View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Columbia University Academic Commons

PHYSICAL REVIEW E 71, 016110(2005

Systematic identification of statistically significant network measures

Etay ziv.*® Robin Koytcheff® Manuel Middendorf and Chris Wigging®
lCollege of Physicians and Surgeons, Columbia University, New York, New York 10027, USA
2Department of Biomedical Engineering, Columbia University, New York, New York 10027, USA
3Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
4Department of Physics, Columbia University, New York, New York 10027, USA
SCenter for Computational Biology and Bioinformatics, Columbia University, New York, New York 10027, USA
(Received 22 June 2003; revised manuscript received 23 February 2004; published 10 January 2005

We present a graph embedding spéee, a set of measures on grapfa performing statistical analyses of
networks. Key improvements over existing approaches include discovery of “motif luorstiple overlap-
ping significant subgraphscomputational efficiency relative to subgraph census, and flexikiligymethod is
easily generalizable to weighted and signed graphse embedding space is based on scalars, functionals of
the adjacency matrix representing the network. Scalars are global, involving all nodes; although they can be
related to subgraph enumeration, there is not a one-to-one mapping between scalars and subgraphs. Improve-
ments in network randomization and significance testing—we learn the distribution rather than assuming
Gaussianity—are also presented. The resulting algorithm establishes a systematic approach to the identification
of the most significant scalars and suggests machine-learning techniques for network classification.
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BACKGROUND since structures with more than three or four nodes would
not be counted. Moreover, it is not readily obvious how to

Re_cent studies of real-world biological, sog:ial, and tech-axtend subgraph census to weighted and/or signed graphs.
nological networks have catalyzed an explosion of researchyis is particularly relevant for genetic regulatory networks
from a broad range of disciplines. Much of the effort in this i which the interactions can be described quantitatively via
emerging field has focused on characterizing the structure qfinding affinities and qualitatively as activating or repress-
networks using various statistical properties that are locajhg or similarly neuronal networks, in which the interactions
(analysis relies on subset of nogles global(relying on all  5re often weighted by the number of synapses between neu-
nodes in scope. The former analysis includes subgraph cenrons and can also exhibit excitatory and inhibitory behaviors.
sus(comparing frequency of subgraph occurrences in a given | their ground-breaking work, Shen-Oet al. identified
graph with those over a distribution of grapfis2]), while  tyree significant motifs in the. coli genetic network. How-
examples of the latter include path lengths and degree distrisyer, rather than counting all structures up to a given size, the
butions(see citations if3]). authors had to resort to posing putative significant structures,

To study local structure statistics, §ocio|ogists de'velopeqlhuS making prior assumptions about which subgraphs are
the k-subgraph census, an enumeration of all possible sulmportant. One topology was found by enumerating all three-
grap_hs ofk nodes appearing in networks. For example, SOCimode subgraphs in the network; a second by searching for
ologists used the three-subgraph census, compared Wwitngle regulator genes regulating at least 13 distinct operons;
three-subgraph distributions in randomized graphs, to quaryng a third by presenting a clustering algorithm based on
tify network transitivity [4—6] (in the context of a social geveral new parameters. Similarly, [ib0] six different sub-
network, high transitivity means that many of your friends graphs were defined using six different algorithms. Rather
are friends with each otherApplying such techniques first than finding subsets of motifs via tailored, parametrized, and

to the Escherichia coligenetic network?2] and later to vari-  hresholded algorithms, a single, generalizable method for
ous biological and physical networkg], Milo et al. showed  jgentifying motifs is needed.

that different networks have different “most significant” sub- | this paper, we first present an embedding space for
graphs. Major limitations of these subgraph approaches imetworks, which igi) computationally efficient as compared
clude computational cost and generalizability. The number ofy sypgraph census for naturally occurring networks @ind
isomorphism classes afigraphsgrows rapidly with graph  easijly applicable to weighted and signed graphs. We then
size [5,8] and subgraph isomorphism is adP-complete empjoy this space in a single, generalizable algorithm to dis-
problem[9].” These computational limitations bias results, cover arbitrarily large, statistically significant network mea-
sures in thee. coli and theSaccharomyces cerevisigenetic
Ipigraphs(directed graphs, or graphs whose edges have directiorf€gulatory networks. Results are presented about the struc-
ality) are ismorphic if there exists a relabeling of their vertices sucture of these networks, including the presence of overlapping
that the two graphs are identical. TN class consists of decision Significant subgraphs. We also introduce a randomization

problems whose solution can be found in polynomial time on ascheme that generates independent identically distributed
nondeterministic Turing machindlP-complete problems are a sub- samples rather than a Markov chain, and we integrate density

set of NP which are particularly hard. Given two grapB8s andG,, estimation into our significance testing rather than asserting
subgraph isomorphism asksGf; is isomorphic to a subgraph &,. Gaussianity.
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are possiblde.g., using different combinations of parenthe-

ses,D(AT)#(A?)]. Our method can easily be generalized to
D M %ﬂ& include these words. For simplicity, herein we will assume

parentheses are implicit and write words without the paren-
theses. ThusD(AT(A(A))) will be written DATAA.

(a) {b) {c}

FIG. 1. Three structures recovered after hard localization on PROPOSAL
significant scalars irE. coli validate our method. Note that these
three structures were identified as statistically significant using one Given this embedding space for networks, essentially a
unique, systematic enumeration of scaléas 7y30[Fig. 1(@) in[2]]  set of measures on a network, one can then employ standard
subgraph contributing to the scaB(DATAA). (b) [Fig. 1(e) in [2]], tools from statistics and machine learning to characterize a
subgraph contributing to the scal(DATAUATA). (c) [Fig. 1(c) in  network of interest. For the specific application of identify-

[2]], subgraph contributing to the scala(DATAATA). ing statistically significant features of a network, this tanta-
lizing observation motivates the technique presented here:
MOTIVATION (1) systematically enumerate word®) evaluate the scalars

o _ obtained from these words for a graph of interé8j;com-

As a motivating example, we consider the three-subgrapRare scalars with the distribution obtained by evaluating sca-
Togo defined as the triad of nodesj, andk and edges  |ars over a randomly generated distribution of matrices, thus
—], J—k, i—k[see Fig. 18], which we represent by its finding statistically significanscalars The fact that scalars
adjacency matri (A; =1 if the jth node is the parent of the are hased on combinations of functionals of the adjacency
ith node, and 0 otherwigeThis nomenclature references the matrix makes our method easily extendable to weighted and
earliest work in subgraph cens[fs5]. We observe that the  sjgned graphs. For example, in the former one could simply
number of 7qg in this graph is trivially found by simple yse the weight matrix in place of the adjacency matrix; in the
matrix manipulation of its adjacency matrix as follows. The |atter, one could use two adjacency matrices representing the
trace of the square gk multiplied by its transpose yields 1. o types of interactions.

Indeed, a count offp3, subgraphs ireny graph can be ob- As stated above, a major limitation of subgraph census is
tained in this way. Similarly, other subgraphs can be enumercomputational efficiency. Here we present analytic and nu-
ated in terms of the adjacency matAxits transposé\, the  merical comparisons between subgraph census and our sca-
diagonal projection operatdd, and its complement de-  |ars technique. Traditional algorithms count subgraphs by
fined for any matrixQ by [D(Q)};;=Q;;dj and U(Q)=Q  performing walkg7,11]. Given a graph witiN nodes and
-D(Q), respectively. Note that we do not use Einstein’s sumedges, the computational cost of subgraph counting grows
mation convention an® is not the trace. exponentially in the size of the subgraphworse than ex-

A, AT, D, U can be visualized as motion on the digraph: ponentially in the densiti /N, and is traditionally infeasible
and AT represent moving one step forward or backward, refor n>4, especially in scale-free networks 11,13. In sca-
spectively;D represents restriction to closed patblsrepre-  |ar calculation, computational complexity is upper bounded
sents open paths. In terms of the adjacency matrix and thgy N33,(¢,- 1), where¢; is the number of letters in scalar
functions that act on it, we can enumera®z as and the sum is performed over all scalars. While complexity
S[D(AT(A%)]. Reading this expression from right to left, we grows exponentially in the number of letters, the exponential
start at a node, move two steps forwdAaf), then one step term is independent of the density and the degree distribu-
backward(AT), and arrive at the original starting nod®).  tion. Thus feature selection using scalars is especially suited
By summing alln? elements of the resulting matrix, we ob- for dense, clustered, or scale-free networks.
tain a count of7y3, Instead of summing, we could also count  This observation is particularly relevant as many naturally
the number of nonzero elementg, These operations on the occurring networks have heterogenous degree distributions
resulting matrix,= or A, yield the number of distinct paths [13]. To quantify the effect of degree distributions on the
between all pairs of end points or the number of distinct pairgperformance of the two algorithms, we benchmark the sub-
of end points, respectively. graph census against our scalars method using randomly

We define aword to be the matrix built from the letters generated networks. We generate multiple graphs of the same
A,AT,D, andU, and ascalaras the integer obtained from the size and density as thg. coli genetic regulatory network,
operations® or A on a word. An enumeration of words and but with different degree distributions, using the class of
sub-sequent evaluation of scalars allows us to embed a givegrowing random networKGRN) models with tunable pa-
network in an infinite-dimensional space. To enumerataametery, first proposed by Krapivsket al. [14] as a gen-
words we systematically combine letters. Obvious redundareralization of the cumulative advantage or preferential at-
cies can be eliminatee.g., U?=U, D?=D, UD=DU=0).  tachment model§15,13. In the GRN model, at every time
We construct words by combining letters such that each letstep a new node is added, and with probabiifyan edge is
ter acts oreverythingto its right. As an example, the word created between the new node and an existing node kwith
D(AT(A(A))) is constructed from the lettdd acting onAT  edges, wheré\=k?. The preferential attachment parameter
acting onA acting onA. The scalar is obtained by evaluating vy acts to tune the degree of heterogeneity in the degree dis-
eitherX (the sum overor N (the number of nonzero ele- tribution. As y approaches 1, or linear preferential attach-
ments in) the word. Other choices for construction of words ment, the degree distribution becomes more heavy tailed,
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FIG. 2. Degree distributions of networks generated using the FIG. 4. A histogram of the kurtosi@ measure of the degree of
Barabasi and Albert preferential attachment model with the tunabl®eakedness of a distributipfior scalars demonstrates many non-
parametery such thatA,=k?, whereA, is the probability of a new Gaussian distribution§.e., distributions with kurtosis greater than
vertex attaching to an existing vertex withlinks. All of these ~ Of less than B This is also the case for subgraph distributions and
networks are the same size and have the same ddn&Bynodes, hence we employ density estimation rather than assuming
519 edgek but differ in their degree distributions. Gaussianity.

and thus more similar to naturally occuring networks. In Fig. BACKGROUND ENSEMBLE
2 we show degree distributions for graphs generated at three A vast literature discusses different randomly generated

different values _Of)/: _In Flg._ 3, we demonstra@e hov_v the network models[3,5,16-21 In [2] a random model was
scalars method significantly improves computational time for

these types of degree distributions, which many biologicafJSGd which preserveltsi(k+,lc_): the in Qegre_e and out degree
(as well as technological and sociologicahetworks of each nodérandom matching of a given in- and out-degree

evidence. sequence is also knoyvn as the conﬁgurati_on moaglQ]).
This can be done efficiently by representing the graph as
ordered lists of parents and children. The number of times
the node occurs in the pargfehild) list is the node’s ou(in)
degree. Permuting one of the two lists, one attains the con-
figuration model. Pathological permutations give rise to mul-
tiple edges and self-interactions. Individual pathologies can
be corrected at little additional computational expefsse
b FIXPATH in [22] for detailg. In this case, we preserve
N(k,,k_, ko), the joint distribution for in and out degree and
self-interactions. 123,12 a similar ensemble is used where
multiple edges are disallowed; however, our approach differs
in the following respectsi) our algorithm is a more efficient
single shuffle rather than multiple swags) iteratively re-
wiring requires the introduction of another cutoff parameter,
defining how many rewiring steps are needed; shuffling ob-
1o . . ‘ ‘ . . . . viates the need for this additional paramet@i; iterative

01 02 03 04 05 06 07 08 09 1 swapping generates Markov chain realizations whereas shuf-

¥ fling generates independent, identically distributed samples;

) ) ) . ... and(iv) we preserve self-interactions.
FIG. 3. A numerical experiment comparing efficiency of “tradi-

tional” subgraph counting algorithnicircles and the proposed
“scalars” algorithm(triangles, as a function ofy, a parameter STATISTICAL SIGNIFICANCE

which tunes the degree of scale invariance in the netsek Fig. L .
2). The number of nodes and the density in the networks were kept !N the past, statistical analyses of subgraphs have relied on

constant and equal to those of tBe coli network tested in the Z Scores or empirical sample estimates of probabilities. In
paper. Scale-free properties similar to naturally occurring network$ig. 4 we show that many featurésoth for subgraphs and
emerge with linear preferential attachment, wherel (e.g., aty ~ for scalar$ are not Gaussian, spscores are inappropriate
~ 1 the network contains hubs whose degree is similar to the degrg®@easures of deviation from the background ensemble. Em-
of hubs in theE. coli network. We see here that the scalars algo- pirical sample estimates are also problematic, for example, if
rithm becomes more efficient at>0.7. the distribution is undersampled. Instead we apply standard

10°

—A— IScaIarls Algo;-ithm I
—— Subgraph Census
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FIG. 5. The scalaE(AATDATAA) has a value of 470 i&. coli. FIG. 6. The scala®(DAUATA) has a value of 42 itE. coli.

Kernel density estimation of the distribution obtained from this sca-Kernel density estimation of the distribution obtained from this sca-
lar for networks generated from the randomization yields a log-lar for networks generated from the randomization yields a log-
likelihood of log(p) <—-708 for this scalar. See Figs. 8 and 9 for soft likelihood of logp)=-525 for this scalar. Soft and hard localiza-
and hard localizations of this scalar, respectively. tions yield a feed-forward topology.

tools from machine learning, namekernel density estima- LOCALIZATION
tion and cross validationto learn the distribution from the
sample data. Cross validation is a model evaluation metho?<
where model learning relies on part of the data, while mode
testing relies on the rest of the data, the holdout iKefbld
cross validation repeats the holdout methdimes. To quan-

Consider the set of scalars for digraph¥B,B,---B,)

(B; e {A,AT},n e N). These scalars perform a census which

includes all possible walks and therefore all possible sub-

graphs. The operatoif3 and U constrain the set of all sub-

tify a network’s deviation from the background ensembile, Wegraphs so that a given scalar only counts a Sf“a” subs_et SI-

learn the distribution for each scalar and measure deviatio 'ultgneously. In this way sgalars inherit _ statistical
significance from subgraphs. While some scalars count an

as the likelihood that an observation was drawn from the dividual sub h oth | : binati ¢
background distribution. Given a graph and our model, wghaividual subgrapn, other scaiars count combinations o

collect m realizations and estimate the probability densitySUbgraphS' The mapping of scalars to subgraphs is thus many

— ; . : to many.
Ez(a\:\gelvc\;)e;c;rit; essctziiri?e;{icEEQZ]éve a valuaw using Gaussian While the analysis proceeds independently of subgraphs,

it is possible, given a graph, to find any scalar’s most repre-
sentative set of subgraphs. We call this prodesalization

1 We define a skeleton to be the smallest subgraph with non-
aizl (2m\2)12 ) zero value of the scalar. As an approximate, greedy algorithm
to find a most representative set of skeletons, given a ghaph

) with nonzero value of a scala#/, we (1) build a subgrapls
yvhqrewi (|:1,..: ,m) are the scalar valugs of the random- by adding nodes fronA until W evaluated ors gives a
izations, and\. is a real-valued smoothing parameter. By nonzero valugsoft localization or the original valughard
partitioning the data into five “folds” and holc_j|.ng out one |ocalization; (2) distill this subgraph by removing nodes
fold at a time to calculate the average probability of a hold-fom s until we arrive at a subgrap such that removing
out_ set_ according to the_other 4/5 of_the défavefold cross any additional nodes would cause the valug/to vanish;
validation” [24]), we define the function and(3) repeat orA-s’ until all nodes have been exhausted.
The resulting algorithm yields a set of representative sub-

m e (wi - wl/ne)2/2

Py, (W) =

1> Ams graphs for a given scalar. Each subgraph in the set is
Q) = 32 I1 P (Wi (1), (2)  labeled according to its isomorphism class. The most repre-
i=1j=1 sentative subgraph is simply the subgraph class that has the

highest relative fraction of the total recovered set of sub-
where {fi(j)}; is the set of indices associated with fold graphs. Multiple iterations of the localization algorithm
(i=1,...,5 We then determin&. as\-=argmaxQ(\). Fora  should be run since the algorithm depends on the order of the
real-world graph of interest, ranking of likelihoods revealsnodes; however, in practice, we do not see differences in
the most significant measures of the network—the scalargesults using different orderings.
which are least like the background ensemble. Figures 5 and As an example, hard and soft localization of the scalar
6 show the results of density estimation on the two mos&(DAUATA) from the E. coli genetic network reveals the
significant scalars. Toso triad [Fig. 1(a)] familiar from [2]. Arbitrarily large sub-
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Closer inspection of the top-scoring scalars reveals some
FIG. 7. The scalatW(UATA) has a value of 306 ifE. coli.  unexpected architectural features. Hard localization of the

Kernel density estimation of the distribution obtained from this sca-significant scala(AATDATAA) yields a 14-node topology
lar for networks generated from the randomization yields a log-(Fig. 9. We observe that th&s, topology, defined by the
likelihood of logp)=-163. In E. coli this scalar is significantly geneshns flIhDC, andfliA, is a motif shared by five over-
underrepresented. The walk that it counts, namely, moving forwardapping FFB'’s. Inspecting the worBATAA on the E. coli
and then backward, but not ending up at the starting point, emphajata, we find that there are 42 distirfgk, paths, but only 10
sizes a fan-in topology. These fan-in structures are thus not Weﬁiistinct%gograndparents. That is, the operatiBrevaluates
represented irE. coli, a finding which supports work in the com- g 42, while the operation/ evaluates to 10. In fact, the gene
putational biology literature in which such prior assumptions abouferp appears in 16 “distinctZoge In this way the network
the network structure are used to infer genetic interacti@fé evidencesmotif hubs—individual nodes that appear in nu-

structures may emerge from a given scalar, highlighting anfMerous, overlapping identical motifs, a result first noted in
other methodological advantage to the algorithm: the searck?6] Using a more primitive significance test and more re-
for significant scalars does not impose any constraints recently reported in27]. Importantly, this result is obtained
garding the size of resulting subgraphs. An upper bound of¥ith a single algorithm without posing any prior assumptions
the computational complexity i —1)=5i%, wheres is the ~ about the network.

size of the resulting substructure afids the length of the Scalars that are significantly smaller relative to the back-
scalar. In general, however, the efficiency of the localizatiorground ensemble also reveal interesting topological features
algorithm is of less concern, as we localize only on a small
set of statistically significant scalars.

E. COLI DATA SET

We implemented our algorithm on tite coli genetic net-
work. The database includes 577 interactions between 423
nodes, combining an existing datab488] with additional
nodes and edges included from a literature search as de-
scribed by Shen-Oret al. [2]. We exclude self-interactions
for a total of 519 edges. Density estimatidisee Figs. 557
demonstrate hoviE. coli deviates from our background en-
semble. Three of the top-ranking statistically significant sca-
lars, =(DAUATA), =(DATAUATA), and=(DATAATA), local-
ize to several structures consistent with Shen-&trral’s
earlier findings with this data sésee Fig. 1. However, we
highlight that identification of these three significant struc-
tures was done using one algorithm without the need to pose FIG. 9. InE. coli hard localization of the most significant scalar

thresholds or parameters or to provide tailored alg(_)rithmsE(AATDATAA) yields this 14-node topology. Note the presence of
No property of the network was _(r';lssumed to be of interesty, yithyhs'—statistically significant subgraphs which share one or
beforehand. Of interest2(AA'DA'AA) was the highest-  ore nodes. For example, there are five overlapping feedforward
scoring scalar. Upon soft localization, we recovered the tWaoxes which share three common genes arranged in a feed-forward
four-node subgraphéFig. 8), which we call “FFB” (feed-  |oop, hns fliA, and flhDC. These three genes act as transcription
forward bo¥ and “+FFL” (feed-forward loop with an inplit  regulators for thé. coliflagellar pathwayHnsandcrp mutants are
The four-node structures are more significant than the relatesbnmotile, but overexpression of the “master operéiDC re-
three-nodeZy3q topology. The methodology thus assigns sig-stores, in part, motility in these mutant stra[i@].
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FIG. 10. InS. cerevisiagboth hard and soft localization of the FIG. 11. In S. cerevisiaghard localization of the significant
significant scalak(DAAATDAA) yields this densely clustered four- scalar S(DAAAUATA) yields this interesting 22-node topology.
node topology which includes a mutual dyad and a three-cycleNote again the fan-out structure whereby two genes regulate a very
Unlike the E. coli network, this network contains feedback similar set of genes.
interactions.

cation of this method for finding statistically significant fea-

statistically underrepresented in tEecoli network(see Fig.  tures of theE. coli and S. cerevisiaegenetic regulatory
7). Localizations reveal structures with nodes that have twd'€tworks. The method has the advantagesashiputational

or more incoming edges. This “fan-in” structure, the opposite?fficiéncyas compared to subgraph census for naturally oc-
of the “SIM” topology, thus appears less often in the net-CUrming networl_<s_,_pa_rt|cularly clustered or_scale-fr_ee net-
work, a finding with important ramifications. For example, Works, andflexibility in that it can be easily applied to
recently researchers attempting to infer genetic regulatoreighted and signed graphs. For example, many biological
interactions have imposed priors which restrict the numbehetworks are published with g'value” associated with each
of edges converging on a node, but leave unrestricted thedge[31,32, i.e., a probability that a certain edge exists
number of edges leaving a nof8]. This prior on a general (implicit in such publications is the assumption that the ex-

of the graph. For example, we find the scaMfUATA) is

“fan-out” topology is thus supported by our findings. istence of each edge is independent of all other eddes
this case, refers to the expected value of that scalar, over
S. CEREVISIAE DATA SET all realizations of the graph. Alternatively, neuronal networks

The yeast dataset is based on the Yeast Proteome Datrz}f’Elve weighted edges describing the number of synapses and

base(YPD) [29] and this particular part of the network con-
sists of 688 nodes with 1079 edgE30|. Analysis of this
network shows the most significant wol{DAAATDAA)
contains a mutual dyath term which we borrow from the
sociological network literature, referring to a pair of vertices
mutually linked, such thaa=b) as the rightmosDAA in-
dicates. Upon hard localization we find that only four nodes
in the network contribute to the word; these four nodes make
up a dense cluster which includes a mutual dyad and a three-
cycle (see Fig. 10 Another significant feature,
S(DAAAUATA), hard-localizes to a 22-node substructure
(Fig. 1)) with a fascinating topology which includes two
parent genes that have a large and almost identical set of
children. In the soft localization of this feature, a minimal
subgraph emerges with a compound topology: the “parent”
layer of a FFL is itself a FFI(Fig. 12. Obviously this five-
node subgraph would not be identified with subgraph census
methods which only count up to three- and four-node sub- g 12, InS. cerevisiagsoft localization of the significant sca-

graphs. lar S(DAAAUATA) yields this five-node topology as the most rep-
INTERPRETATION rgsentat!ve subgraph. Interestingly, the structur_e can be seen as a
hierarchical feed-forward loop. For example, if we replace the
We have presented a generalizable method for enumeratiree-node feed-forward loop with an effective node, that node it-
ing measures of a network and have demonstrated an appkelf becomes the parent layer of another feed-forward loop.
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thus the strength of the interaction. In this caSesalculates Closer investigation into the mapping between scalars and
the functionality of a particular word. While th& operation  subgraphs is needed. The heuristic we develop, localization,
does not differentiate between weighted and unweightedppears to work well. The scalars are easily mapped to their
edges, we could easily imagine other useful quantities ofost representative subgraphs, and some of these subgraphs
interest that we can also use in our space that would bgonfirmed earlier findings on the same data set. However,
functions of the weighted edges, such as the standard devighile in our studies the interpretation of the most represen-
tion. Some of our results oB. co_I| confirm earlier fmdmgs tative subgraphs of the significant scalars was straightfor-
from previous methods, but unlike those methods, this apgard, some scalars may have more difficult interpretations.
proach is a single, systematic algorithm which does not rey note that our focus here was not on subgrapgrsse but
quire any previous assumptions_ about the network being aNdather on a data space, a set of measures on a graph from
lr?ezt(\a/\(/jérwozgfgvgrrégiiltjgg r?ggzdé?nggtﬁﬁ:trgggéﬁgefﬁgfo“l;notielvhich one can perform various statistical studies. In general,
hubs.” “feed-forward bo;<es » and a general “fanout” topol- if one is mterested in a particular su_bgraph, then the best
ogy ' ' approach is to identify that supgraph in the .network. If one

: does not have any preconceptions about which feature of the

tior|1t Isscr\1A<Ia Onrfg \?V'I%r? I:_SZti'fr;grg:ﬁtslé?doirc"’(‘):éﬁft?;ﬁg}sraﬂ]iogza'tsnetwork is important to study, than the scalar space offers an
' Iternative, systematic, efficient, and effective approach to

(T;; ilgfrifs?r?stizml)lgr Z?rtﬁfsgjglleésmotrfnz?jgl O(; tgggs\‘:‘: ensus and/or listing properties deemed relevant. Indeed, the
' y y . gpace may not only be related to subgraphs, but also to more

also preserved, we expect the ranking of scalars to be d'ﬁ?r%obal measures such as various orders of transitidty

ent. We note, then, that one must.take great carein selectll Finally, we note additional utilities of the enumeration of

the _background e_nse_mble to av0|d_ the po_SS|b|I|ty that one Words. First given an algorithm which purports to model a

choice of randomization predetermines which scalars are the : '

most significant. While the configuration model and its Vari_real-world network, one could find statistically significant
9 : gura! = .scalars to identify in what ways the model fails to model the
ants have been used as the appropriate ensemble distributi

for networks in the past, many other random network modelP@al—worId data. Second, given a training set of many graphs

exist which mav be more aporopriate. Potentially. the net-%f multiple classes, this data space could be used to build a
y pprop ’ Y: classifier using machine-learning algorithrtesg., Support

work embedding space we present here will elucidate thes\e/:eCtor Machines(SVMs) [33,34, Boosting [35]) which

issues further. For example, given multiple r_eallzatlons (.)fcould then assign new graphs to one of the clagses
two random network models, one can use this space to in-

vestigate whether the resulting distributions are separabl 36,31 for recent work in this direction providing a modern
and which features make them distinguishable. achine-learning approach for diagnosing netwaekg., ro-

While motivated by work in which the subgraphs are thebust versus fragile economies, graphs with different growth

primitive degrees of freedom, scalars do not have a one-tolgws’ eto).

one mapping to subgraphs. However, every subgraph con- ACKNOWLEDGMENTS
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