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We present a graph embedding spacesi.e., a set of measures on graphsd for performing statistical analyses of
networks. Key improvements over existing approaches include discovery of “motif hubs”smultiple overlap-
ping significant subgraphsd, computational efficiency relative to subgraph census, and flexibilitysthe method is
easily generalizable to weighted and signed graphsd. The embedding space is based on scalars, functionals of
the adjacency matrix representing the network. Scalars are global, involving all nodes; although they can be
related to subgraph enumeration, there is not a one-to-one mapping between scalars and subgraphs. Improve-
ments in network randomization and significance testing—we learn the distribution rather than assuming
Gaussianity—are also presented. The resulting algorithm establishes a systematic approach to the identification
of the most significant scalars and suggests machine-learning techniques for network classification.
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BACKGROUND

Recent studies of real-world biological, social, and tech-
nological networks have catalyzed an explosion of research
from a broad range of disciplines. Much of the effort in this
emerging field has focused on characterizing the structure of
networks using various statistical properties that are local
sanalysis relies on subset of nodesd or global srelying on all
nodesd in scope. The former analysis includes subgraph cen-
susscomparing frequency of subgraph occurrences in a given
graph with those over a distribution of graphsf1,2gd, while
examples of the latter include path lengths and degree distri-
butionsssee citations inf3gd.

To study local structure statistics, sociologists developed
the k-subgraph census, an enumeration of all possible sub-
graphs ofk nodes appearing in networks. For example, soci-
ologists used the three-subgraph census, compared with
three-subgraph distributions in randomized graphs, to quan-
tify network transitivity f4–6g sin the context of a social
network, high transitivity means that many of your friends
are friends with each otherd. Applying such techniques first
to theEscherichia coligenetic networkf2g and later to vari-
ous biological and physical networksf7g, Milo et al. showed
that different networks have different “most significant” sub-
graphs. Major limitations of these subgraph approaches in-
clude computational cost and generalizability. The number of
isomorphism classes ofdigraphsgrows rapidly with graph
size f5,8g and subgraph isomorphism is anNP-complete
problem f9g.1 These computational limitations bias results,

since structures with more than three or four nodes would
not be counted. Moreover, it is not readily obvious how to
extend subgraph census to weighted and/or signed graphs.
This is particularly relevant for genetic regulatory networks
in which the interactions can be described quantitatively via
binding affinities and qualitatively as activating or repress-
ing, or similarly neuronal networks, in which the interactions
are often weighted by the number of synapses between neu-
rons and can also exhibit excitatory and inhibitory behaviors.

In their ground-breaking work, Shen-Orret al. identified
three significant motifs in theE. coli genetic network. How-
ever, rather than counting all structures up to a given size, the
authors had to resort to posing putative significant structures,
thus making prior assumptions about which subgraphs are
important. One topology was found by enumerating all three-
node subgraphs in the network; a second by searching for
single regulator genes regulating at least 13 distinct operons;
and a third by presenting a clustering algorithm based on
several new parameters. Similarly, inf10g six different sub-
graphs were defined using six different algorithms. Rather
than finding subsets of motifs via tailored, parametrized, and
thresholded algorithms, a single, generalizable method for
identifying motifs is needed.

In this paper, we first present an embedding space for
networks, which issid computationally efficient as compared
to subgraph census for naturally occurring networks andsii d
easily applicable to weighted and signed graphs. We then
employ this space in a single, generalizable algorithm to dis-
cover arbitrarily large, statistically significant network mea-
sures in theE. coli and theSaccharomyces cerevisiaegenetic
regulatory networks. Results are presented about the struc-
ture of these networks, including the presence of overlapping
significant subgraphs. We also introduce a randomization
scheme that generates independent identically distributed
samples rather than a Markov chain, and we integrate density
estimation into our significance testing rather than asserting
Gaussianity.

1Digraphssdirected graphs, or graphs whose edges have direction-
alityd are ismorphic if there exists a relabeling of their vertices such
that the two graphs are identical. TheNP class consists of decision
problems whose solution can be found in polynomial time on a
nondeterministic Turing machine.NP-complete problems are a sub-
set ofNP which are particularly hard. Given two graphsG1 andG2,
subgraph isomorphism asks ifG1 is isomorphic to a subgraph ofG2.
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MOTIVATION

As a motivating example, we consider the three-subgraph
T030, defined as the triad of nodesi, j , and k and edgesi
→ j , j →k, i →k fsee Fig. 1sadg, which we represent by its
adjacency matrixA sAij ;1 if the j th node is the parent of the
ith node, and 0 otherwised. This nomenclature references the
earliest work in subgraph censusf1,5g. We observe that the
number ofT030 in this graph is trivially found by simple
matrix manipulation of its adjacency matrix as follows. The
trace of the square ofA multiplied by its transpose yields 1.
Indeed, a count ofT030 subgraphs inany graph can be ob-
tained in this way. Similarly, other subgraphs can be enumer-
ated in terms of the adjacency matrixA, its transposeAT, the
diagonal projection operatorD, and its complementU de-
fined for any matrixQ by fDsQdgi j =Qijdi j and UsQd=Q
−DsQd, respectively. Note that we do not use Einstein’s sum-
mation convention andD is not the trace.

A, AT, D, U can be visualized as motion on the digraph:A
andAT represent moving one step forward or backward, re-
spectively;D represents restriction to closed paths;U repre-
sents open paths. In terms of the adjacency matrix and the
functions that act on it, we can enumerateT030 as
ofD(ATsA2d)g. Reading this expression from right to left, we
start at a node, move two steps forwardsA2d, then one step
backwardsATd, and arrive at the original starting nodesDd.
By summing alln2 elements of the resulting matrix, we ob-
tain a count ofT030. Instead of summing, we could also count
the number of nonzero elements,N. These operations on the
resulting matrix,o or N, yield the number of distinct paths
between all pairs of end points or the number of distinct pairs
of end points, respectively.

We define aword to be the matrix built from the letters
A,AT,D, andU, and ascalaras the integer obtained from the
operationso or N on a word. An enumeration of words and
sub-sequent evaluation of scalars allows us to embed a given
network in an infinite-dimensional space. To enumerate
words we systematically combine letters. Obvious redundan-
cies can be eliminatedse.g., U2=U, D2=D, UD=DU=0d.
We construct words by combining letters such that each let-
ter acts oneverythingto its right. As an example, the word
DsAT(AsAd)d is constructed from the letterD acting onAT

acting onA acting onA. The scalar is obtained by evaluating
either o sthe sum overd or N sthe number of nonzero ele-
ments ind the word. Other choices for construction of words

are possiblefe.g., using different combinations of parenthe-
ses,DsATdp sA2dg. Our method can easily be generalized to
include these words. For simplicity, herein we will assume
parentheses are implicit and write words without the paren-
theses. Thus,DsAT(AsAd)d will be written DATAA.

PROPOSAL

Given this embedding space for networks, essentially a
set of measures on a network, one can then employ standard
tools from statistics and machine learning to characterize a
network of interest. For the specific application of identify-
ing statistically significant features of a network, this tanta-
lizing observation motivates the technique presented here:
s1d systematically enumerate words;s2d evaluate the scalars
obtained from these words for a graph of interest;s3d com-
pare scalars with the distribution obtained by evaluating sca-
lars over a randomly generated distribution of matrices, thus
finding statistically significantscalars. The fact that scalars
are based on combinations of functionals of the adjacency
matrix makes our method easily extendable to weighted and
signed graphs. For example, in the former one could simply
use the weight matrix in place of the adjacency matrix; in the
latter, one could use two adjacency matrices representing the
two types of interactions.

As stated above, a major limitation of subgraph census is
computational efficiency. Here we present analytic and nu-
merical comparisons between subgraph census and our sca-
lars technique. Traditional algorithms count subgraphs by
performing walksf7,11g. Given a graph withN nodes andM
edges, the computational cost of subgraph counting grows
exponentially in the size of the subgraphn, worse than ex-
ponentially in the densityM /N, and is traditionally infeasible
for n.4, especially in scale-free networksf7,11,12g. In sca-
lar calculation, computational complexity is upper bounded
by N3ois,i −1d, where,i is the number of letters in scalari
and the sum is performed over all scalars. While complexity
grows exponentially in the number of letters, the exponential
term is independent of the density and the degree distribu-
tion. Thus feature selection using scalars is especially suited
for dense, clustered, or scale-free networks.

This observation is particularly relevant as many naturally
occurring networks have heterogenous degree distributions
f13g. To quantify the effect of degree distributions on the
performance of the two algorithms, we benchmark the sub-
graph census against our scalars method using randomly
generated networks. We generate multiple graphs of the same
size and density as theE. coli genetic regulatory network,
but with different degree distributions, using the class of
growing random networksGRNd models with tunable pa-
rameterg, first proposed by Krapivskyet al. f14g as a gen-
eralization of the cumulative advantage or preferential at-
tachment modelsf15,13g. In the GRN model, at every time
step a new node is added, and with probabilityAk an edge is
created between the new node and an existing node withk
edges, whereAk=kg. The preferential attachment parameter
g acts to tune the degree of heterogeneity in the degree dis-
tribution. As g approaches 1, or linear preferential attach-
ment, the degree distribution becomes more heavy tailed,

FIG. 1. Three structures recovered after hard localization on
significant scalars inE. coli validate our method. Note that these
three structures were identified as statistically significant using one
unique, systematic enumeration of scalars.sad T030 fFig. 1sad in f2gg
subgraph contributing to the scalarosDATAAd. sbd fFig. 1sed in f2gg,
subgraph contributing to the scalarosDATAUATAd. scd fFig. 1scd in
f2gg, subgraph contributing to the scalarosDATAATAd.
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and thus more similar to naturally occuring networks. In Fig.
2 we show degree distributions for graphs generated at three
different values ofg. In Fig. 3, we demonstrate how the
scalars method significantly improves computational time for
these types of degree distributions, which many biological
sas well as technological and sociologicald networks
evidence.

BACKGROUND ENSEMBLE

A vast literature discusses different randomly generated
network modelsf3,5,16–21g. In f2g a random model was
used which preservedNsk+,k−d: the in degree and out degree
of each nodesrandom matching of a given in- and out-degree
sequence is also known as the configuration modelf3,20gd.
This can be done efficiently by representing the graph as
ordered lists of parents and children. The number of times
the node occurs in the parentschildd list is the node’s outsind
degree. Permuting one of the two lists, one attains the con-
figuration model. Pathological permutations give rise to mul-
tiple edges and self-interactions. Individual pathologies can
be corrected at little additional computational expensessee
FIXPATH in f22g for detailsd. In this case, we preserve
Nsk+,k−,k0d, the joint distribution for in and out degree and
self-interactions. Inf23,12g a similar ensemble is used where
multiple edges are disallowed; however, our approach differs
in the following respects:sid our algorithm is a more efficient
single shuffle rather than multiple swaps;sii d iteratively re-
wiring requires the introduction of another cutoff parameter,
defining how many rewiring steps are needed; shuffling ob-
viates the need for this additional parameter;siii d iterative
swapping generates Markov chain realizations whereas shuf-
fling generates independent, identically distributed samples;
and sivd we preserve self-interactions.

STATISTICAL SIGNIFICANCE

In the past, statistical analyses of subgraphs have relied on
z scores or empirical sample estimates of probabilities. In
Fig. 4 we show that many featuressboth for subgraphs and
for scalarsd are not Gaussian, soz scores are inappropriate
measures of deviation from the background ensemble. Em-
pirical sample estimates are also problematic, for example, if
the distribution is undersampled. Instead we apply standard

FIG. 2. Degree distributions of networks generated using the
Barabasi and Albert preferential attachment model with the tunable
parameterg such thatAk=kg, whereAk is the probability of a new
vertex attaching to an existing vertex withk links. All of these
networks are the same size and have the same densitys423 nodes,
519 edgesd, but differ in their degree distributions.

FIG. 3. A numerical experiment comparing efficiency of “tradi-
tional” subgraph counting algorithmscirclesd and the proposed
“scalars” algorithmstrianglesd, as a function ofg, a parameter
which tunes the degree of scale invariance in the networkssee Fig.
2d. The number of nodes and the density in the networks were kept
constant and equal to those of theE. coli network tested in the
paper. Scale-free properties similar to naturally occurring networks
emerge with linear preferential attachment, whereg=1 se.g., atg
,1 the network contains hubs whose degree is similar to the degree
of hubs in theE. coli networkd. We see here that the scalars algo-
rithm becomes more efficient atg.0.7.

FIG. 4. A histogram of the kurtosissa measure of the degree of
peakedness of a distributiond for scalars demonstrates many non-
Gaussian distributionssi.e., distributions with kurtosis greater than
or less than 3d. This is also the case for subgraph distributions and
hence we employ density estimation rather than assuming
Gaussianity.
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tools from machine learning, namely,kernel density estima-
tion and cross validationto learn the distribution from the
sample data. Cross validation is a model evaluation method
where model learning relies on part of the data, while model
testing relies on the rest of the data, the holdout set.K-fold
cross validation repeats the holdout methodk times. To quan-
tify a network’s deviation from the background ensemble, we
learn the distribution for each scalar and measure deviation
as the likelihood that an observation was drawn from the
background distribution. Given a graph and our model, we
collect m realizations and estimate the probability density
psWj =wd for a scalarj to have a valuew using Gaussian
kernel density estimationf24g:

pl*
swd =

1

m
o
i=1

m
e−suwi − wu/l* d2/2

s2pl*
2d1/2 s1d

wherewi si =1,… ,md are the scalar values of the random-
izations, andl* is a real-valued smoothing parameter. By
partitioning the data into five “folds” and holding out one
fold at a time to calculate the average probability of a hold-
out set according to the other 4/5 of the datas“fivefold cross
validation” f24gd, we define the function

Qsld ;
1

5o
i=1

5

p
j=1

4m/5

plswfis jdd, s2d

where hf is jdj j is the set of indices associated with foldi
si =1,…,5d We then determinel* asl* ;argmaxlQsld. For a
real-world graph of interest, ranking of likelihoods reveals
the most significant measures of the network—the scalars
which are least like the background ensemble. Figures 5 and
6 show the results of density estimation on the two most
significant scalars.

LOCALIZATION

Consider the set of scalars for digraphs,osB1B2¯Bnd
3sBi P hA,ATj ,nPNd. These scalars perform a census which
includes all possible walks and therefore all possible sub-
graphs. The operatorsD andU constrain the set of all sub-
graphs so that a given scalar only counts a small subset si-
multaneously. In this way scalars inherit statistical
significance from subgraphs. While some scalars count an
individual subgraph, other scalars count combinations of
subgraphs. The mapping of scalars to subgraphs is thus many
to many.

While the analysis proceeds independently of subgraphs,
it is possible, given a graph, to find any scalar’s most repre-
sentative set of subgraphs. We call this processlocalization.
We define a skeleton to be the smallest subgraph with non-
zero value of the scalar. As an approximate, greedy algorithm
to find a most representative set of skeletons, given a graphA
with nonzero value of a scalarW, we s1d build a subgraphs
by adding nodes fromA until W evaluated ons gives a
nonzero valuessoft localizationd or the original valueshard
localizationd; s2d distill this subgraph by removing nodes
from s until we arrive at a subgraphs8 such that removing
any additional nodes would cause the value ofW to vanish;
ands3d repeat onA−s8 until all nodes have been exhausted.

The resulting algorithm yields a set of representative sub-
graphs for a given scalar. Eachs8 subgraph in the set is
labeled according to its isomorphism class. The most repre-
sentative subgraph is simply the subgraph class that has the
highest relative fraction of the total recovered set of sub-
graphs. Multiple iterations of the localization algorithm
should be run since the algorithm depends on the order of the
nodes; however, in practice, we do not see differences in
results using different orderings.

As an example, hard and soft localization of the scalar
osDAUATAd from the E. coli genetic network reveals the
T030 triad fFig. 1sadg familiar from f2g. Arbitrarily large sub-

FIG. 5. The scalarosAATDATAAd has a value of 470 inE. coli.
Kernel density estimation of the distribution obtained from this sca-
lar for networks generated from the randomization yields a log-
likelihood of logspd,−708 for this scalar. See Figs. 8 and 9 for soft
and hard localizations of this scalar, respectively.

FIG. 6. The scalarosDAUATAd has a value of 42 inE. coli.
Kernel density estimation of the distribution obtained from this sca-
lar for networks generated from the randomization yields a log-
likelihood of logspd=−525 for this scalar. Soft and hard localiza-
tions yield a feed-forward topology.
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structures may emerge from a given scalar, highlighting an-
other methodological advantage to the algorithm: the search
for significant scalars does not impose any constraints re-
garding the size of resulting subgraphs. An upper bound on
the computational complexity iss,−1doi

si3, wheres is the
size of the resulting substructure and, is the length of the
scalar. In general, however, the efficiency of the localization
algorithm is of less concern, as we localize only on a small
set of statistically significant scalars.

E. COLI DATA SET

We implemented our algorithm on theE. coli genetic net-
work. The database includes 577 interactions between 423
nodes, combining an existing databasef25g with additional
nodes and edges included from a literature search as de-
scribed by Shen-Orret al. f2g. We exclude self-interactions
for a total of 519 edges. Density estimationsssee Figs. 5–7d
demonstrate howE. coli deviates from our background en-
semble. Three of the top-ranking statistically significant sca-
lars,osDAUATAd, osDATAUATAd, andosDATAATAd, local-
ize to several structures consistent with Shen-Orret al.’s
earlier findings with this data setssee Fig. 1d. However, we
highlight that identification of these three significant struc-
tures was done using one algorithm without the need to pose
thresholds or parameters or to provide tailored algorithms.
No property of the network was assumed to be of interest
beforehand. Of interest,osAATDATAAd was the highest-
scoring scalar. Upon soft localization, we recovered the two
four-node subgraphssFig. 8d, which we call “FFB” sfeed-
forward boxd and “+FFL” sfeed-forward loop with an inputd.
The four-node structures are more significant than the related
three-nodeT030 topology. The methodology thus assigns sig-

nificance to a scalar without biasing the size of the resulting
subgraphs.

Closer inspection of the top-scoring scalars reveals some
unexpected architectural features. Hard localization of the
significant scalarosAATDATAAd yields a 14-node topology
sFig. 9d. We observe that theT030 topology, defined by the
geneshns, f lhDC, and f liA, is a motif shared by five over-
lapping FFB’s. Inspecting the wordDATAA on the E. coli
data, we find that there are 42 distinctT030 paths, but only 10
distinctT030 grandparents. That is, the operationo evaluates
to 42, while the operationN evaluates to 10. In fact, the gene
crp appears in 16 “distinct”T030. In this way the network
evidencesmotif hubs—individual nodes that appear in nu-
merous, overlapping identical motifs, a result first noted in
f26g using a more primitive significance test and more re-
cently reported inf27g. Importantly, this result is obtained
with a single algorithm without posing any prior assumptions
about the network.

Scalars that are significantly smaller relative to the back-
ground ensemble also reveal interesting topological features

FIG. 7. The scalarNsUATAd has a value of 306 inE. coli.
Kernel density estimation of the distribution obtained from this sca-
lar for networks generated from the randomization yields a log-
likelihood of logspd=−163. In E. coli this scalar is significantly
underrepresented. The walk that it counts, namely, moving forward,
and then backward, but not ending up at the starting point, empha-
sizes a fan-in topology. These fan-in structures are thus not well
represented inE. coli, a finding which supports work in the com-
putational biology literature in which such prior assumptions about
the network structure are used to infer genetic interactionsf28g.

FIG. 8. InE. coli, soft localization of the most significant scalar
osAATDATAAd yields these two representative subgraphs at equal
relative fractions, which we callsad +FFL, feed-forward loop with
an input andsbd FFB, feed-forward box.

FIG. 9. InE. coli hard localization of the most significant scalar
osAATDATAAd yields this 14-node topology. Note the presence of
“motifhubs”—statistically significant subgraphs which share one or
more nodes. For example, there are five overlapping feedforward
boxes which share three common genes arranged in a feed-forward
loop, hns, f liA, and f lhDC. These three genes act as transcription
regulators for theE. coli flagellar pathway.Hnsandcrp mutants are
nonmotile, but overexpression of the “master operon”f lhDC re-
stores, in part, motility in these mutant strainsf37g.
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of the graph. For example, we find the scalarNsUATAd is
statistically underrepresented in theE. coli networkssee Fig.
7d. Localizations reveal structures with nodes that have two
or more incoming edges. This “fan-in” structure, the opposite
of the “SIM” topology, thus appears less often in the net-
work, a finding with important ramifications. For example,
recently researchers attempting to infer genetic regulatory
interactions have imposed priors which restrict the number
of edges converging on a node, but leave unrestricted the
number of edges leaving a nodef28g. This prior on a general
“fan-out” topology is thus supported by our findings.

S. CEREVISIAE DATA SET

The yeast dataset is based on the Yeast Proteome Data-
basesYPDd f29g and this particular part of the network con-
sists of 688 nodes with 1079 edgesf30g. Analysis of this
network shows the most significant wordosDAAATDAAd
contains a mutual dyadsa term which we borrow from the
sociological network literature, referring to a pair of vertices
mutually linked, such thata�bd as the rightmostDAA in-
dicates. Upon hard localization we find that only four nodes
in the network contribute to the word; these four nodes make
up a dense cluster which includes a mutual dyad and a three-
cycle ssee Fig. 10d. Another significant feature,
osDAAAUATAd, hard-localizes to a 22-node substructure
sFig. 11d with a fascinating topology which includes two
parent genes that have a large and almost identical set of
children. In the soft localization of this feature, a minimal
subgraph emerges with a compound topology: the “parent”
layer of a FFL is itself a FFLsFig. 12d. Obviously this five-
node subgraph would not be identified with subgraph census
methods which only count up to three- and four-node sub-
graphs.

INTERPRETATION

We have presented a generalizable method for enumerat-
ing measures of a network and have demonstrated an appli-

cation of this method for finding statistically significant fea-
tures of theE. coli and S. cerevisiaegenetic regulatory
networks. The method has the advantages ofcomputational
efficiencyas compared to subgraph census for naturally oc-
curring networks, particularly clustered or scale-free net-
works, andflexibility in that it can be easily applied to
weighted and signed graphs. For example, many biological
networks are published with a “p value” associated with each
edge f31,32g, i.e., a probability that a certain edge exists
simplicit in such publications is the assumption that the ex-
istence of each edge is independent of all other edgesd. In
this case,S refers to the expected value of that scalar, over
all realizations of the graph. Alternatively, neuronal networks
have weighted edges describing the number of synapses and

FIG. 10. InS. cerevisiae, both hard and soft localization of the
significant scalarosDAAATDAAd yields this densely clustered four-
node topology which includes a mutual dyad and a three-cycle.
Unlike the E. coli network, this network contains feedback
interactions.

FIG. 11. In S. cerevisiae, hard localization of the significant
scalar osDAAAUATAd yields this interesting 22-node topology.
Note again the fan-out structure whereby two genes regulate a very
similar set of genes.

FIG. 12. InS. cerevisiae, soft localization of the significant sca-
lar osDAAAUATAd yields this five-node topology as the most rep-
resentative subgraph. Interestingly, the structure can be seen as a
hierarchical feed-forward loop. For example, if we replace the
three-node feed-forward loop with an effective node, that node it-
self becomes the parent layer of another feed-forward loop.
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thus the strength of the interaction. In this case,S calculates
the functionality of a particular word. While theN operation
does not differentiate between weighted and unweighted
edges, we could easily imagine other useful quantities of
interest that we can also use in our space that would be
functions of the weighted edges, such as the standard devia-
tion. Some of our results onE. coli confirm earlier findings
from previous methods, but unlike those methods, this ap-
proach is a single, systematic algorithm which does not re-
quire any previous assumptions about the network being ana-
lyzed. Moreover, results regarding the structure of theE. coli
network are presented, including the presence of “motif
hubs,” “feed-forward boxes,” and a general “fanout” topol-
ogy.

It is worth highlighting that under a different randomiza-
tion scheme with a different set of conditionals, the results
may differ substantially. For example, in the case of the yeast
data set, if the number of three-cyles or mutual dyads was
also preserved, we expect the ranking of scalars to be differ-
ent. We note, then, that one must take great care in selecting
the background ensemble to avoid the possibility that one’s
choice of randomization predetermines which scalars are the
most significant. While the configuration model and its vari-
ants have been used as the appropriate ensemble distribution
for networks in the past, many other random network models
exist which may be more appropriate. Potentially, the net-
work embedding space we present here will elucidate these
issues further. For example, given multiple realizations of
two random network models, one can use this space to in-
vestigate whether the resulting distributions are separable
and which features make them distinguishable.

While motivated by work in which the subgraphs are the
primitive degrees of freedom, scalars do not have a one-to-
one mapping to subgraphs. However, every subgraph con-
tributes to at least one scalar. Subgraph counting is compu-
tationally expensive, particularly for clustered, scale-free,
and dense networks, but our method alleviates this issue be-
cause its exponential term is independent of these properties.
The trade-off is that with localization, we can only find sets
of subgraphs that a given scalar counts. A more systematic
alphabet could further constrain the set of subgraphs for a
scalar.

Closer investigation into the mapping between scalars and
subgraphs is needed. The heuristic we develop, localization,
appears to work well. The scalars are easily mapped to their
most representative subgraphs, and some of these subgraphs
confirmed earlier findings on the same data set. However,
while in our studies the interpretation of the most represen-
tative subgraphs of the significant scalars was straightfor-
ward, some scalars may have more difficult interpretations.
We note that our focus here was not on subgraphsper se, but
rather on a data space, a set of measures on a graph from
which one can perform various statistical studies. In general,
if one is interested in a particular subgraph, then the best
approach is to identify that subgraph in the network. If one
does not have any preconceptions about which feature of the
network is important to study, than the scalar space offers an
alternative, systematic, efficient, and effective approach to
census and/or listing properties deemed relevant. Indeed, the
space may not only be related to subgraphs, but also to more
global measures such as various orders of transitivityf3g.

Finally, we note additional utilities of the enumeration of
words. First, given an algorithm which purports to model a
real-world network, one could find statistically significant
scalars to identify in what ways the model fails to model the
real-world data. Second, given a training set of many graphs
of multiple classes, this data space could be used to build a
classifier using machine-learning algorithmsse.g., Support
Vector MachinessSVMsd f33,34g, Boosting f35gd which
could then assign new graphs to one of the classesssee
f36,31g for recent work in this directiond, providing a modern
machine-learning approach for diagnosing networksse.g., ro-
bust versus fragile economies, graphs with different growth
laws, etc.d.
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