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Magma migration and magmatic solitary waves in 3-D 

Chris Wiggins and Marc Spiegelman 
Lamont-Doherty Earth Observatory, Palisades NY 

Abstract. Numerical studies of fluid flow in the mantle sug- 
gest that magma migration is an inherently time-dependent 
process that produces magmatic solitary waves from obstruc- 
tions in melt flux. Previous work has considered one and two 

dimensional problems. Here we present the results of three 
dimensional calculations that utilize a new, efficient multi- 
grid scheme. We demonstrate that one and two dimensional 
solitary waves are unstable and break up into sets of 3-D 
solitary waves which are perfectly spherical when propagat- 
ing through a uniform porosity medium. While these waves 
are not solirons, their non-linear interactions are qualitatively 
similar. The solitary waves are highly opportunistic and es- 
tablish efficient pathways for migration by linking up with 
nearby waves. When the initial condition is a random dis- 
tribution of porosity, the porosity structure can organize into 
elongate, time-dependent channels formed from chains of 
solitary waves. These results are natural consequences of 
the assumptions that the matrix is permeable and viscously 
deformable. We suggest that solitary waves are likely to 
exist in the mantle and may contribute to the episodicity of 
mantle magmatism. 

Introduction 

In an attempt to understand the ascent of magma in the 
Earth's mantle, we have studied the equations governing 
the flow of a low viscosity fluid in a viscously deformable, 
permeable matrix [McKenzie, 1984; Scott and Stevenson, 
1984; Scott and Stevenson, 1986]. Considerable numer- 
ical and analytic work has demonstrated a wide range of 
behaviour inherent in these equations, ranging from magma- 
driven mantle convection to non-linear waves [see Spiegel- 
man, 1993c for review]. Soon after their derivation, the 
1-D equations were shown to exhibit analytic solitary wave 
solutions that share several of the features of solitons, specif- 
ically amplitude-dependent velocity and non-linear interac- 
tions upon collision [Richter and McKenzie, 1984; Scott and 
Stevenson, 1984] although the 1-D waves were shown not to 
be solitons [Barcilon and Richter, 1986]. Later, the solution 
for a single solitary wave was generalized to 2 and 3 dimen- 
sions with the help of some numerics [Barcilon and Lovera, 
1989; O. Lovera, pers. comm. 1993]. Numerical and analyt- 
ical work by Scott and Stevenson [ 1986] and Barcilon and 
Lovera [1989] showed that the 1-D solution was unstable 
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in 2 dimensions and broke up into cylindrical 2-D solitary 
waves. While it was suggested that these waves would be 
unstable in three dimensions, the full time-dependent behav- 
iour of these equations in 3-D remained unknown, owing to 
the taxing computational task of simulation. 

We have now calculated the 3-D time-dependent behav- 
iour of the 1, 2, and 3-D solutions using an efficient multigrid 
algorithm. Our results indicate that the lower dimensional 
solutions are unstable in 3-D and evolve into the 3-D soli- 

tary waves which are perfectly spherical in a homogeneous 
medium. More generally, the solitary waves form a means 
for transmitting variations in fluid flux through the mantle 
and we illustrate the behaviour and consequences of the non- 
linear interactions between solitary waves. 

Model Equations and Numerics 

A detailed derivation of the equations of magma migra- 
tion can be found in McKenzie [ 1984]. Spiegelman [ 1993a,b] 
however, rewrites the full equations in a more tractable form 
that separates matrix shear deformation from volumetric de- 
formation (i.e. compaction and dilation of the matrix). To 
illustrate the simplest non-linear wave behaviour in 3-D, here 
we will neglect matrix shear, melting and consider the limit 
of small porosity. Under these conditions, the dimensionless 
equations reduce to 

0O 
•-C (1) 

- V. k•,VC + C = -V-k•k (2) 

where & is the porosity, C - •7-V is the 'compaction 
rate' or volumetric strain rate of the matrix, V is the matrix 
velocity, k is the unit vector in the vertical and k• oc &"is the 
permeability. Here we use n - 3 because these waves have 
analytic expressions in 1-D [see Barcilon and Richter, 1986; 
Barcilon and Lovera, 1989]. Equation (1) states that changes 
in porosity are due to changes in matrix volume. Equation 
(2) states that volume changes of the matrix are driven by 
variations in the gravity driven flux (RHS) but are resisted by 
viscous stresses in the matrix (lst term LHS). The derivation 
and importance of the viscous stress term for modifying fluid 
flow is discussed in detail in Spiegelman [1993a,b]. This 
term becomes important when changes in fluid flux occur on 
a length scale comparable to the 'compaction length' (~ 100- 
1000 m) and controls the development of solitary waves and 
the flow of melt around obstacles. While the compaction 
length may be small, Spiegelman [ 1993a,b] shows that the 
viscous term can affect fluid flow on scales much larger than 
the compaction length. 

These equations are readily solved numerically. Equa- 
tion (1) is solved with a flux-conservative leap-frog scheme. 
Equation (2) is solved using an iterative multigrid scheme 
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Figure 1. Evolution of a cylindrical 2-D solitary wave in 
3-D. The initial condition is an analytic 2-D solitary wave of 
dimensionless speed c = 9 (Amplitude • 4) which has been 
perturbed by Gaussian white noise of magnitude 10-3 times 
the background porosity. In 3-D the cylindrical waves are un- 
stable and break up into larger spherically symmetric waves. 
When the waves are fully formed, they propagate without 
further change of shape. Each frame shows the position of 
surfaces of constant Porosity which are,scaled relative to the 
background porosity (4,• • 5x background). All waves 
propagate upwards, however, this calculation (and Figure 
2) are performed in a frame that tracks the fastest moving 
wave. W is the dimensionless speed of the frame scaled to 
the velocity of melt in the background porosity. The boxes 
are periodic in both horizontal directions and have constant 
porosity upper boundaries. Box is 96 x 32 x 64 compaction 
lengths (defined for the background porosity), (97 x 33 x 65 
grid points). 

Figure 2. Evolution of a single 1-D solitary wave in 3-D 
which goes unstable directly to spherical waves. The 2-D 
waves are not only unstable; they are not even a transitional 
waveform in three dimensions. Boundary conditions and 
scalings are the same as in Figure 1. Box is 64 x 64 x 64 
compaction lengths (653 grid points). 
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Amplitude of initial 1-D wave 

Figure 3. Sununto3, of results of a series of runs to quantify 
the evolution of 1-D solitary waves in 2-D (circles) and 3-D 
(triangles). The symbols show the maximum porosity of the 
final n-D waves that are produced in each run as a function of 
their initial 1-D amplitude. Note each run produces several 
large solitary waves of slightly varying amplitude. 

Results 

Figure 4. Interaction of two 3-D waves on oblique collision. 
Each frame shows both a constant-porosity surface and a 
contoured vertical cross section through the mid-plane of the 
two waves. This calculation is done in a frame moving at 
the mean velocity of the two waves and shows the classic 
solitoh-like phase-shift on collision. More physically, the 
individual solitary waves retain their shape until they are 
within a few compaction lengths of each other and then fluid 
from the lower wave seeks the higher permeability pathway 
afforded by the upper wave. The upper wave inflates at the 
expense of the lower wave and they appear to trade places. 
The 3-D waves however are not solitons and the larger wave 
tends to grow during collisions. Boundaries are periodic in 
all directions. Box is 643 compaction lengths. 

Figure 5. Evolution of an initially random distribution of 
porosity in a periodic box. This calculation is done in a frame 
fixed to the matrix (W = 0). Porosity waves rapidly circulate 
through the box, re-organizing into elongate channel struc- 
tures of more 'spindle' shaped solitary waves. The channels 
are long lived but remain strongly episodic throughout the 
run. Box is 32 x 32 x 64 compaction lengths. 

[e.g. Press et al., 1992]. The resulting algorithm is second- 
order accurate in space and time and extremely efficient 
because it retains the convergence behaviour of multigrid 
schemes where the number of numerical operations scale 
linearly with the number of grid points. We have tested 
our numerical schemes against the solutions of Barcilon and 
Lovera [1989] who calculate the shape of single solitary 
waves in 1, 2 and 3-D. These waveforms should propagate at 
a constant velocity without changing shape. Our numerical 
algorithm preserves the theoretical amplitude and phase ve- 
locity to about 0.1%: We next reproduced the work of Scott 
and Stevenson [ 1986], verifying the instability of the 1-D so- 
lution in 2 dimensions and the development of cylindrically 
symmetric 2-D solitary waves. 

Extending the analysis to 3 dimensions, we investigated 
the behaviour of one and two dimensional waves in 3-D. 

Both 1-D and 2-D waves are unstable and rapidly break up 
into spherically symmetric 3-D solitary waves (Figures 1 and 
2). In particular, the 1-D waves go directly to spheres and 
the 2-D waves are not even transitional waveforms. Figure 
1 illustrates the general behaviour of the instability. After an 
initial period of propagation, local excesses of porosity begin 
to form resulting in a 'doming' of the porosity isosurfaces. 
Calculation of the fluid flux near these excesses shows that 

viscous stresses drive melt preferentially toward the peak of 
the domes causing the waves to grow. The solitary waves 
stop growing, however, when they can no longer be supplied 
by melt, which occurs when the waves are separated by more 
than a few compaction lengths. At this point the individual 
waves propagate without change of shape. In general, a 
single 1-D wave will break up into a family of higher di- 
mensional waves with similar, but not identical, amplitudes. 
Preliminary linear analysis suggests that the final plan-form 
of the waves and the spread in amplitudes is sensitive to the 
size of the box and the structure of the noise. Nevertheless, 
the mean amplitude of solitary waves appears to be well de- 
termined. Figure 3 summarizes the results of a series of runs 
in 2-D and 3-D showing the final amplitudes of the largest 
waves at the end of each run as a function of the amplitude of 
the initial 1-D wave. For a given 1-D wave, the 3-D waves 
are always larger and faster moving than the cylindrical wave 
that develops in 2-D. While we are developing a scaling ar- 
gument to quantify this behaviour, linear regression shows 
that A! • 2(z>-•)/2Ai is a useful relation between the mean 
amplitude of the final waves, A f, and the initial amplitude 
Ai. D is the maximum physical dimension. 

The development of 3-D solitary waves from arbitrary 
excesses of porosity is robust. As long as the solitary waves 
remain separated by a few compaction lengths in a uniform 
medium, they propagate as perfectly spherical waves. While 
this result might suggest that spherical solitary waves would 
be the preferred waveform in the mantle, it is important to 
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note that the waves are quite opportunistic and will locally 
change their shape to exploit variations in permeability that 
allow for more efficient melt transport. Figure 4 shows the 
interaction of two 3-D waves on collision. Until the waves 

are within a few compaction lengths of each other, they 
propagate independently. However, when they are close 
enough that the high pressure region at the leading edge of 
the lower wave "sees" the higher permeability region in the 
upper wave, fluid flows preferentially from the lower wave 
to the upper one until they appear to trade places. 

A similar interaction is also seen in solitons, which are 
infinitely-conservative solitary waves. We stress, however, 
that these magma waves are not solitons, as they have only 
two, rather than an infinite number of, conserved quantities 
[Barcilon and Richter, 1986]. To verify that the solutions 
do not result from an infinitely integrable system, we al- 
lowed two 3-D solitary waves to interact repeatedly in a 
periodic environment. Unlike soliton collisions, the larger 
wave grows at the expense of the smaller wave and the two 
waves tend to become aligned vertically. After several col- 
lisions, the smaller wave is split in two. This behaviour is 
typical. Multi-dimensional particle-like solitary waves are 
not known to scatter elastically, but generally radiate upon 
collision (D. McLaughlin, pers. comm. 1993) 

Because of this non-conservative behaviour, the place- 
trading interaction provides a means for organizing melt flow. 
Figure 5 shows the evolution of an initially random porosity 
distribution in a periodic box. Because gravity is the only 
driving force, this initial condition organizes into columnar 
channels of solitary waves through a large number of non- 
linear interactions. In this example, the channels are long 
lived but remain strongly episodic with elongate "spindle" 
shape solitary waves that propagate along the higher perme- 
ability region defined by the channel. While some of the 
organization stems from the use of periodic boundary condi- 
tions, the general coalescence and alignment of the melt flow 
paths seems characteristic of wave-wave interactions. 

Discussion 

These results support the inferences of 1 and 2-D prob- 
lems: the equations of magma migration are highly time- 
dependent, and variations in melt flux propagate as non-linear 
solitary waves. In uniform media, the preferred waveform 
in 3-D is a spherically symmetric wave. In heterogeneous 
media, however, the waves may locally change their shape 
to exploit variations in permeability, although they tend to 
remain as compact blobs. This ability of the solitary waves 
to adjust to local circumstances appears to be characteristic 
and persists even when additional processes are included. 
While we have only considered the most basic 3-D problems 
here, other work suggests that solitary waves are robust even 
in the presence of matrix shear and melting. Scott [1988] 
showed that 2-D solitary waves are unaffected by the addi- 
tional diapiric shear flow of the matrix induced by the waves. 

Spiegelman [ 1993a,b,c] quantified the affects of melting and 
freezing on 1-D waves and showed that the waves change 
amplitude in response to changes in the melt flux but are not 
dissipated. More recent 2-D solutions of the full equations 
in a mid-ocean ridge geometry show that spatial variations 
in melting rate can excite solitary waves even when there is 
significant shear and melting. Finally, preliminary calcula- 
tions using a porosity-dependent solid viscosity also produce 
stable solitary waves. More work needs to be done to extend 
these results to 3-D and to investigate additional processes. 
However, all of the work to date suggests that, while the 
shape of the waves may change, their existence depends 
only on the conditions that the matrix is permeable and vis- 
cously deformable. As these conditions are reasonable for 
partially molten regions of the upper mantle, we suggest that 
porosity waves are likely to exist there in some form, and 
may contribute to the episodicity of mantle magmatism. 
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