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ABSTRACT We present an analysis of the planar motion of single semiflexible filaments subject to viscous drag or point
forcing. These are the relevant forces in dynamic experiments designed to measure biopolymer bending moduli. By analogy
with the “Stokes problems” in hydrodynamics (motion of a viscous fluid induced by that of a wall bounding the fluid), we
consider the motion of a polymer, one end of which is moved in an impulsive or oscillatory way. Analytical solutions for the
time-dependent shapes of such moving polymers are obtained within an analysis applicable to small-amplitude deformations.
In the case of oscillatory driving, particular attention is paid to a characteristic length determined by the frequency of
oscillation, the polymer persistence length, and the viscous drag coefficient. Experiments on actin filaments manipulated with
optical traps confirm the scaling law predicted by the analysis and provide a new technique for measuring the elastic bending
modulus. Exploiting this model, we also present a reanalysis of several published experiments on microtubules.

INTRODUCTION

Attempts by theoretical physicists to contribute in some
useful way to the study of biology have, so far, been most
successful in systems in which all forces and motion can be
modeled and mathematized explicitly, or in those governed
by equilibrium statistical mechanics, for which equipartition
can be invoked. One specific example of such success is the
analysis of structural microfilaments, essentially one-di-
mensional mechanical objects with no moving parts. De-
spite this unassuming mechanical description, these semi-
flexible biopolymers are essential for innumerable functions
and processes at the molecular and cellular level.
Depending on the bending modulus of the filament in

question, experiments investigating the elastic properties of
these biopolymers largely rely on either mechanical or
statistical techniques. Microtubules, with a persistence
length of �5 mm, are quite amenable to micromanipulation
or forcing via hydrostatic drag. Actin and nucleic acids,
with persistence lengths near 15 �m and 50 nm, respec-
tively, fall in the realm of statistical mechanics (note that we
are here addressing the bending elasticity, not the stretching
elasticity, another area of great excitement and successes;
Yin et al., 1995; Cluzel et al., 1996; Smith et al., 1996).
An area in which careful analysis has been less prevalent,

however, is investigations of dynamics at the single poly-
mer level. Such a theoretical program has only recently been
made experimentally relevant through the advent of optical
tweezers and the proliferation of similar techniques for
precise and controllable micromanipulation. Whereas treat-
ments of the undamped, inertial case have a long history
(Harris and Hearst, 1966; Landau and Lifshitz, 1986), and

viscously overdamped dynamics have been studied in great
detail and with exciting results in bulk for polymer gels
(Isambert and Maggs, 1996; MacKintosh and Janmey,
1997), the application of viscous dynamics to single poly-
mers and connections with experiment have not been fully
elucidated. We intend this paper to be a complement to the
important works done in the inertial and bulk contexts.
Specifically, we here couple elasticity theory and over-

damped viscous hydrodynamics (as is appropriate in the
biological context) to explore elastohydrodynamics. Al-
though equations with the appropriate units will be suffi-
cient to determine the scales of forces and velocities, if we
wish to extract numbers from the experiments it is necessary
to perform a thorough analysis. The slenderness of the
filaments allows us to simplify greatly the hydrodynamics
and arrive at a local partial differential equation of motion.
We find that coupling to hydrodynamics allows us to extend
the range of mechanical experiments to much smaller bend-
ing moduli. For example, whereas measurements of actin’s
rigidity so far have been via fluctuation analyses invoking
equipartition and thus statistical mechanics, we present here
an experimental method that does not rely on nonzero
temperature. Furthermore, the method allows investigation
into questions that have been raised about whether actin can
even be treated as a semiflexible polymer, or is in fact
scale-sensitive (Käs et al., 1993) or dynamic in its elasticity.
Such a purely mechanical treatment obviates the possible
complications of statistical treatments like dimensionality
(Ott et al., 1993), correlations among sampled images, or
self-avoidance.
It is our hope that this new experimental method, as well

as the general analytic techniques here outlined, will con-
tribute to the current exciting and active dialogue among
physicists and biologists regarding the nature and numbers
behind biopolymer rigidity, as well as the effects of asso-
ciated proteins and varying biochemical environments on
elastic moduli. Furthermore, these new methods and anal-
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yses should prove useful in the study of other examples of
dynamic elastic filaments, such as supercoiled fibers of B.
subtilis (Mendelson, 1990). We intend this investigation to
be the necessary precursor to such promising extensions.
A useful starting point for developing the dynamics of an

elastic filament in a viscous medium will be to consider the
simplest time dependencies possible. To that end, recall the
classic problems introduced by G. G. Stokes (Stokes, 1851),
illustrated in Fig. 1, involving the motion of a viscous fluid
bounded by a wall that is either (I) moved impulsively or
(II) oscillated. These easily solvable problems capture the
essential ideas of viscous diffusion of velocity. The exper-
imental geometry is such that the Navier-Stokes equation
for the velocity field u(x, t) is simply the diffusion equation

ut � �uxx (1)

where � � �/� is the kinematic viscosity, and � and � are
the fluid viscosity and density. Subscripts on functions
indicate differentiation throughout unless otherwise indi-
cated. The salient features of the solutions are the relation-
ships between length scales, time scales, and material pa-
rameters. Specifically, in the impulsive case, the velocity at
any point x and time t depends only on the ratio x/(�t)1/2;
likewise, in the oscillatory case, deformations decay with a
characteristic length that scales as �S(�) � (�/�)1/2.
We introduce here the analogous two problems in elas-

tohydrodynamics, illustrated in Fig. 2. They involve (I) the
deflection of a polymer anchored at one end after the
instantaneous introduction of a uniform fluid velocity U,
and (II) the steady undulations of a polymer, one end of
which is oscillated. Rather than a diffusion equation as in
the Stokes problems, the dynamics of small deformations
y(x, t) of the filament are governed by a fourth-order partial
differential equation of the form

yt � ��̃yxxxx (2)

where �̃ � A/� plays the role of a “hyperdiffusion” coeffi-
cient, A is the bending modulus, and � is the drag coeffi-
cient. This equation has appeared before in the literature on

semiflexible biopolymers (Barkley and Zimm, 1978; Am-
blard et al., 1996; Gittes et al., 1993), primarily in the
context of scaling arguments for relaxation times; our goal
here is to provide a complete solution, given arbitrary initial
and boundary conditions as dictated by experiment. (Nota
bene: In Amblard et al. (1996), Eq. 2 should include a minus
sign; as written, the equation is ill-posed.)
An analysis similar to that presented below of the oscil-

latory passive elastica was carried out a number of years ago
by K. E. Machin (Machin, 1958, 1962), who considered the
motion of a driven flagellum. Machin was interested spe-
cifically in a semiinfinite active flagellum that was bent
with a set of boundary conditions amenable to analysis.
Ours will be more malicious, but not subtle.
We first recall some general features of equations of

motion for elastica embedded in viscous flow. By illustrat-
ing the geometrically exact equation, we hope to make clear
how higher order terms will affect the results of linearized
analysis. We then apply this dynamic to a number of ex-
perimentally relevant scenarios. Inspired by Stokes prob-
lems I and II in fluid dynamics (SI and SII), we first solve
problems I and II of elastohydrodynamics (EHDI and EH-
DII), each of whose dynamic mimics its hydrodynamic
analog. Problem I requires some mathematical details fa-
miliar from elasticity theory to assist our physical intuitions.
Specifically, we use a set of basis functions appropriate to
the equation of motion and specified boundary conditions.
All of the pleasant features found when applying Fourier
space to unbounded or periodic systems are found here as
well, in what we term �-space. Unlike Fourier space,
�-space respects both the compact support and the bound-
ary conditions of the elastica and thus diagonalizes the
equation of motion. We then discuss an experimental real-
ization of problem II and its analysis, which provides a new
technique for the measurement of a polymer’s bending
modulus. Finally, we comment on experiments by a sepa-
rate group to which the EHDI analysis may be applied.FIGURE 1 Geometry of Stokes problems I and II.

FIGURE 2 Geometry of elastohydrodynamic problems I and II.
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ELASTIC FORCES

A bent elastic polymer exerts a restorative force per unit
length given by the functional derivative f� � ���/�r of a
bending energy,

� �
1
2 A �

0

L

ds	2 (3)

(Note that we may also include any forces of constraint,
such as a Lagrangian tension to enforce inextensibility
(Goldstein and Langer, 1995), but such terms will be of
higher order in the curvature than we will consider in this
investigation.) Here 	 is the curvature, s is the arclength,
and A is the bending stiffness constant, with units of en-
ergy� length. This may also be expressed as the product EI
of Young’s modulus E and the moment of inertia I (Love,
1892). For a polymer of persistence length Lp at absolute
temperature T, exploring all configurations in D dimen-
sions, we may also derive by equipartition the equivalence
A � (D � 1)kBTLp/2.
Henceforth we consider elastic filaments lying in the

plane, the geometry best suited to data acquisition via mi-
croscopy. The curvature 	 may then be expressed exactly as
d
/ds, where 
 is the angle between the tangent to the curve
and some fixed axis (see Fig. 3), or equivalently as 	 �
yxx/(1 � yx2)3/2. Taking the functional derivative of the
energy (Eq. 3), we find the force per unit length, exerted
purely in the normal (n̂) direction,

f� � A�	ss �
1
2 	3�n̂ (4)

and the boundary conditions 	 � 	s � 0, indicating torque-
lessness and forcelessness at free ends of elastica (Wein-
stock, 1974; Landau and Lifshitz, 1986). At hinged or
clamped ends different boundary conditions hold, as will be
discussed below.
For small deviations from a horizontal line (�yx� �� 1),

t̂ � êx, n̂ � � êy, and the linearized force is

f� � �Ayxxxxêy � ��yx2	 (5)

(where êy is the unit vector in the y direction), with bound-
ary conditions

yxx � 0 and yxxx � 0 at free ends. (6)

The specification of the filament dynamic is complete upon
definition of the hydrodynamic drag, which balances f�. We
now turn to this problem.

SLENDER-BODY HYDRODYNAMICS

We consider experiments taking place on cellular biological
scales, with typical lengths L in microns, times t in seconds,
and a dynamic viscosity � that of water, in centipoise. The
Reynolds number is UL/� 
 L2/t� 
 10�8/10�2 
 10�6, so
we are safely in the low-Reynolds number or Stokesian
regime. In this Aristotelian overdamped limit, forces bal-
ance velocities rather than accelerations. For a body whose
length is much greater than its width, the well-developed set
of calculations known as slender-body hydrodynamics ap-
plies (Keller and Rubinow, 1976; Cox, 1970, 1971). If this
filamentous polymer has diameter d, length L, and an aspect
ratio d/L �� 1, we have to lowest order in 1/ln(L/d) the
simplified, local, anisotropic proportionality between the
drag force fd and the velocity rt,

fd � ��n̂n̂� �t̂t̂� � �rt  u	 (7)

Here fd(s) is a force per unit length exerted on the filament,
and n̂(s) and t̂(s) are unit vectors in the normal and tangen-
tial directions at arclength s along the polymer. The prod-
ucts n̂n̂ and t̂t̂ indicate tensor multiplication, projecting
velocities normal and tangential to the curve and relating
them via their respective drag coefficients to the applied
force. The velocity of the polymer is denoted rt(s), and u is
any background velocity that may be present in the prob-
lem; the drag should be a function of the former relative to
the latter. The anisotropy, evident when dragging a pencil
through molasses, between motions parallel and perpendic-
ular to a slender object’s long axis is embodied by the
parameter �, which depends logarithmically on the aspect
ratio, with asymptotic behavior � 3 1/2 as L/d 3 . For
small d/L, the viscous drag coefficient � has the limiting
behavior

� �
4��

ln�L/d	 � c (8)

where c is a constant of order unity, which depends on the
shape of the body (Keller and Rubinow, 1976; Cox, 1970,
1971; Lighthill, 1975; Childress, 1981; Shelley and Ueda,
1996).
We now equate the elastic force per unit length with the

drag force (fd � f�) to derive the equation of motion:

� �n̂n̂� �t̂t̂� � �rt  u	 � A�	ss �
1
2 	3�n̂ (9)

FIGURE 3 Geometry of an elastic filament. R � local radius of curva-
ture � 1/	; t, n � unit tangent and normal, cos 
 � t̂ � êx; d � diameter
of the filament; arclength s varies from 0 to L, the total arclength. Within
the approximations of slender-body hydrodynamics, a local anisotropic
proportionality is satisfied between an external force per unit length f and
the velocity v.
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Linearizing the expression for the drag (Eq. 7) for nearly
straight polymers and noting that its tangential components
are of order yx2, the dynamic reduces to

��yt  u	 � �Ayxxxx (10)

Here u � u � êy. In the absence of any background flow we
recover Eq. 2. This is the simplest linearized expression of
elastohydrodynamics: elastic forces, characterized by a
fourth spatial derivative, balance viscous drag. It shares
many similarities with the diffusion equation (Eq. 1) and
may be thought of as “hyperdiffusion” of displacement in
analogy with hyperviscosity.

ELASTOHYDRODYNAMIC PROBLEM I

Now that we have established the equation of motion ap-
propriate to these elastohydrodynamic analogs, we recall
the solutions to the fluid dynamics problems SI and SII in
hopes of exploiting the analogy as much as possible. In
Stokes I (SI), a semiinfinite plane of fluid is driven by a wall
that is motionless for time t� 0 and has velocity Uêy for t�
0. In Stokes II (SII), the wall oscillates as U cos(�t)êy, and
we solve for the behavior after transients have died away.
As illustrated in Fig. 1, velocity gradients are in the x

direction in both Stokes problems, and hence are perpen-
dicular to the direction of flow (along the y axis). In the
absence of an imposed pressure gradient, the Navier-Stokes
equation for the fluid velocity u(x, t) parallel to the wall is
simply the linear diffusion equation (Eq. 1), ut � �uxx.
A convenient method of solving SI with the associated

boundary condition is to postulate a scaling solution in-
spired by dimensional analysis: u(x, t) � UF(�), with � �
x/(�t)1/2. The scaling function F then obeys a nonautono-
mous ordinary differential equation �1⁄2�F� � F��, the
solution of which is F � erfc (�/�2), where erfc is the
complementary error function. Rewriting Eq. 1 in this form
illustrates the scaling behavior alluded to after Eq. 1.
Armed with some understanding of SI, we now turn to

problem I of elastohydrodynamics (EHDI). In problem I, we
consider an elastic filamentous polymer that is anchored at
the origin. For t � 0 it lies along the line segment {y � 0;
0 � x � L}. We then may consider forcing the filament by
moving one end relative to the fluid (moving the anchor) or
moving the fluid relative to the polymer (moving, for ex-
ample, the coverslip). We will first attempt to do this in a
way as analogous to SI as possible.
The strict analog of SI involves a polymer of infinite

extent, obviating the problem of boundary conditions at the
“right” end. Although this scenario is of limited value in
comparing to experiments on actin or microtubules, where
thermal fluctuations dominate on scales longer than the
persistence length, it is useful both in illustration of how
Eqs. 1 and 2 differ, and in application to more rigid bio-
filaments, e.g., filaments of B. subtilis, whose persistence
length is �10 m (Pederson and Goldstein, unpublished
data).

Defining � � x/(�̃t)1/4, the scaling ansatz y � utF(�)
transforms Eq. 2 into F � 1⁄4�F� � �F����. Demanding that
F()3 0, we find that the slope yx � utF�/(�̃t)1/4 grows in
time without bound, thus failing to meet the criterion on
which the linearization of Eq. 9 was predicated: �yx� �� 1.
We therefore turn instead to the case of the finite elastica,
clamped at one end and free at the other, and subject to
impulsive hydrodynamic drag. Our analysis is applicable to
experiments in which either the coverslip is moved or, as a
special case, in which the elastica is allowed to relax from
some initial condition in the absence of flow.
To make the mathematics as transparent as possible, we

first nondimensionalize the equation of motion (Eq. 10).
Distances in x are rescaled by the total length L, time by the
elastohydrodynamic time scale �L4/A, and distances in y by
the (constant) velocity u times this time scale:

x� �L, t� �
�L4

A , y�x, t	 � u
�L4

A h��, �	 (11)

The governing equation, yt � u � ��̃yxxxx, then becomes

h�  1� �h���� (12)

The homogeneous equation is g� � �g����. Well versed
in the litany of Fourier transforms, we first left-multiply by
an as yet arbitrary function �k(�) (where k indicates a
parameter rather than a derivative) and integrate over the
domain of �,

�
0

1

d��k��g� ��
0

1

d��k��
4g (13)

Integration by parts of the fourth-order derivative introduces
eight separate surface terms. The boundary conditions im-
plied by the functional derivative dictate the vanishing of
the second and third derivatives at the free end (x � L).
Requiring g to satisfy these conditions eliminates two of the
eight terms.
The left end of the polymer is clamped at the origin, so

y(x � 0) � yx(x � 0) � 0. Demanding this behavior of g
eliminates two additional surface terms. We now choose�k
to satisfy the same boundary conditions as y, g, and h:
�k(0) � ���k(0) � ��

2�k(1) � ��
3�k(1) � 0. This anni-

hilates the remaining four surface terms. Finally, we choose
�k to obey

��
4 �k � k4�k (14)

Defining gk � �0
1 d��kg, the equation of motion becomes

��gk � �k4gk, the solution to which is

gk��	 � gk�0	e�k4� (15)

If we wish to describe the dynamics in such terms, we must
construct the �k, which necessitates that we identify the
allowed values of k.
A moment’s thought reveals that the �k cannot simply

be constructed out of the familiar sin’s and cos’s of Fourier
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space, which are incompatible with boundary conditions in
which successive derivatives vanish. A countably infinite
family of such �k can, however, be constructed by includ-
ing hyperbolic trigonometric functions as well in the basis
of the function space. The general solution of Eq. 14 is
(Landau and Lifshitz, 1986)

�k � a1sin�k�	 � a2cos�k�	

� a3sinh�k�	 � a4cosh�k�	
(16)

The expression has four unknowns, as a solution to a
fourth-order problem must. Inserting the four boundary
conditions leads to a solvability condition for k:

cos k� �
1

cosh k (17)

This transcendental equation has an infinite number of
solutions. For large values of k, as 1/cosh k 3 0, the
solutions approach the solutions of the Fourier-like solv-
ability condition cos k� 0, i.e., kn�13 �/2� �n. The first
few solutions are

k1 �
�

2 � 0.304 � 1.875,

k2 �
3�
2  0.018 � 4.694,

(18)

k3 �
5�
2 � 0.001 � 7.855,

k4 �
7�
2 � 10.996, . . .

The first three normalized eigenfunctions are shown in
Fig. 4.
Note that had we chosen other boundary conditions, a

different solvability condition and eigenfamily would have
resulted (cf. Appendix B). For example, in the case of the
elastica with free ends, we employ an expansion of y with
the basis functions of Eq. B2.
With appropriate boundary conditions, the operator ��

4

can be proved to be self-adjoint, and thus the eigenfunctions
constitute a complete basis in function space onto which we
may project initial data and relate to later-time solutions via
Eq. 15 in the standard Green’s function way:

g��, �	 � �
0

1

d�����, ��; �	g���, 0	 (19)

where the Green’s function is

���, ��; �	 � �
k

�k��	�k���	e�k4� (20)

This is the exact solution of the linearized homogeneous
equation. Note that the compact support and the boundary

conditions break translation invariance, reflected in the fact
that � cannot be expressed as �(� � ��; �).
We note from the solution (Eq. 20) that each mode gk

decays independently and exponentially with time. This is
to be compared with diffusive problems, in which each
mode decays exponentially in time, except for the zero
(average) mode, which is constant. In this experiment, the
boundary conditions are incompatible with the existence of
a zero mode. The system “hyperdiffuses” to homogeneity.
Because g(�, �) decays to zero, we have h(�, �) 3 h�(�)

as � 3 , where

h���	 �
1
24��

4  4�3 � 6�2	 (21)

Returning to the clamped polymer in the presence of
some background flow, we project the definitional state-
ment h(�, �) � g(�, �) � h�(�) onto the �k(�):

hk��	 � gk��	 � h�k (22)

which implies the initial condition gk(0) � hk(0) � h�k.
Recalling the simple time dependence of the modes gk from
Eq. 15, we see

hk��	 � h�k�1 e�k4�	 � hk�0	e�k4� (23)

The dynamic thus mimics that of a capacitor, charging up
with the final shape state and draining of the initial shape
state, each mode governed independently by decay rate k�4.
In the experiment considered, the initial condition is a flat
polymer: h(�, � � 0) � 0. Because h� is the solution to
h����� � 1, with boundary conditions h�(0) � h��(0) �
h���(1) � h����(1) � 0, we find upon integrating by parts

FIGURE 4 The first three eigenfunctions for EHD problem I. The dotted
line indicates the normalized third-order polynomial describing an elastica
bent by a point force at the right end. Note the surprising overlap with�k1,
as exploited in the text (The Simple EHDI Experiment).
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that h�k � k�4�� k, where �� k � �0
1 d��k, h�k � � d��kh� ,

and thus

h��, �	 � h���	  �
k�k1



�k��	
�� k

k4 e
�k4� (24)

Evaluating the first few integrals, we find for h�k, h�k1 �
6 � 10�2, h�k2 � 9 � 10�4, h�k3 � 7 � 10�5, h�k4 � 1 �
10�5. . . . Each mode with k � k1 decays exponentially
faster in time than the lowest mode, which thus dominates
as � 3 , so

h 3 h�  h�k1e�k1
4� � h��0.06�k1e�12.36� (25)

Our picture of the impulsive dynamic of elastica in vis-
cous flow is thus as follows: we project onto a special
function space in which the long-time solution and the
difference between initial data and the long-time solution
exponentially charge and decay, respectively, each mode
behaving independently. We are left with only the long-time
solution as the asymptotic limit � 3 .

ELASTOHYDRODYNAMIC PROBLEM II

In Stokes II, the driving force is exerted by a wall oscillating
with velocity u � Uêy cos (�t), or position y � y0 cos (�t).
To solve the steady-state limit of SII, we postulate u(x, t) �
U�(ei�tG(�)), where � � x(�/�)1/2 and �(z) indicates the
real part of z. Inserting into Eq. 1, we then see that G
satisfies

iG� G�� (26)

for which the solution vanishing as � 3  is G � e��i�.
We then find that u(x, t)� Ue��/�2 cos(�t� �/�2), or, in
a form useful for comparison to the elastohydrodynamic
case,

u�x, t	 � Ue�S�cos�C�  �t	 (27)

where C � cos(�/4) and S � sin(�/4). This solution de-
scribes right-moving waves of velocity ��S/C, decaying as
x 3  with decay length �S/S.
We now consider a polymer held by an optical trap that

moves with position y(x � 0) � y0 cos (�t). Because we
have shown in the previous section that all modes satisfying
the homogeneous equation of motion with homogeneous
boundary conditions decay exponentially, we must only
find a solution in the presence of inhomogeneity (here, the
driving) to find the long-time limit of the dynamic.
To verify the validity of our analysis as well as the

plausibility of EHDII as a method for measuring biopoly-
mer rigidity, we conducted the experiment (Riveline et al.,
1997) and analyzed image data as described below. A
scaling relation predicted by the analysis was confirmed,
and a new method for measurement of the persistence
length of actin was demonstrated.

The experimental setup is shown in Fig. 5: F-actin is
bound to a latex bead, which is optically trapped. As the
position of the bead oscillates sinusoidally in time, the
filament wiggles back and forth, propagating waves of
displacement down its length. The motion relative to the
fluid is opposed by the fluid viscosity, and the “wiggles” are
opposed by the elasticity of the polymer.
The elastic constant A has units of energy � length, and

the viscous force per unit length per unit velocity has the
dimensions of a viscosity or action density �:

��� � ��� �
mass

length� time�
energy� time
length3 (28)

Thus the natural length obtained from A, �, and the fre-
quency of oscillation � is

���	 � � A���
1/4

� �kBTLp�� �1/4 (29)

Nota bene that �(�) is not a mere rescaling of the persis-
tence length.
With a previously published persistence length for actin

of Lp � 15 �m (Ott et al., 1993), a viscosity � � 0.01 cp,
kBT � 4 � 10�14 erg at T � 300 K, and measuring � in
units of s�1, we obtain

���	 � �2.8 �m
s1/4���1/4 (30)

Thus for frequencies on the order of 1 Hz, we obtain length
scales on the order of microns, somewhat below the persis-
tence length. This range of frequencies seems quite advan-
tageous for experiment.
This elastohydrodynamic length �(�) is precisely the

length found upon nondimensionalizing the equation of
motion (Eq. 2). By analogy to SII, we define the dimen-
sionless coordinate � � x/(�̃�)1/4 � x/�(�) � x(A/��)�1/4

FIGURE 5 Experimental setup.
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and rewrite the solution as

y�x, t	 � y0��ei�th��	� (31)

and Eq. 2 as

ih� �h���� (32)

The solutions of Eq. 32 are of the form h(�) � ce��, where
� may be any one of the four distinct (complex) numbers
such that �4 � �i. These are �j � ij exp(�i�/8), j � 1 . . . 4.
The general solution is the sum of these four solutions,

h��	 � �
j�1

4

cjei
jz0� (33)

where z0 � e�i�/8 � 0.92 � 0.38i. The unpleasant (but
certainly not subtle) remainder of the problem is to solve for
the four cj’s, given some four boundary conditions. At the
left (x � 0) end, we enforce the position and the condi-
tion of torquelessness (as appropriate for an optical trap):
yxx(0)� 0. The right end must satisfy the free end boundary
conditions (Eq. 6). The cj derived from these conditions are
functions of a rescaled polymer length � � L/�(�) and may
properly be written as cj(�).

Semiinfinite polymer

The exact solution for h(�) is presented in Appendix C; it
simplifies greatly, however, for extreme values of L/�(�).
For this reason we include a discussion of the polymer of
infinite extent. In this limit, the two coefficients cj for which
�j has a nonnegative real part must be zero, allowing only
decaying solutions as x 3 .

The solution consistent with the two left-end boundary
conditions is

y�
y0
2 �e�C̃�cos�S̃� � �t	 � e�S̃�cos�C̃�  �t	� (34)

where C̃ � cos(�/8) and S̃ � sin(�/8). Compare with the
solution to SII (Eq. 27). The semiinfinite solution (Eq. 34)
is shown at the bottom of Fig. 6 for �t � n2�/6, n � 1 . . .
6. In the hydrodynamic case, the solution of Eq. 27 de-
scribes exponentially decaying right-moving traveling
waves of transverse velocity. In the elastohydrodynamic
case, the higher order derivative allows more complicated
behavior: right- and left-moving waves of displacement,
with different decay rates and velocities. In this case, the
right-movers have a slower decay (because S̃ � 0.38 �
0.92 � C̃), and might be expected in some sense to domi-
nate over the left-movers. This mechanism will be elabo-
rated on below (under Propulsive Force).

Finite polymer

In the limit of a short or stiff polymer, � �� 1, we rewrite
� � ��, � � x/L � (0, 1) and expand, yielding

h � ��	 � �1
3
2 ��

(35)

�
i��4

1680 ��16� 70�2  70�3 � 21�4	

Equivalently, we may derive this polynomial by truncating
a series expansion for h in � and enforcing the equation of
motion (Eq. 32) and the boundary conditions (Eq. 6). Using
Eq. 35, all four boundary conditions are satisfied exactly,
whereas Eq. 32 is solved to order �(�4).
The exact solution is shown in Fig. 6 for � � 1, 2, 4, and

 and �t� n2�/6, n� 1 . . . 6. Note the existence of a pivot
point at x � 2L/3 as � 3 0. This behavior is described by
the �(�0) term in Eq. 35: as � 3 0, the polymer acts as a
rigid rod. As a consequence, it is impossible to tell if a
movie of such a polymer is being played forward or back-
ward. Indeed, this is a filamentous version of the famous
“one-armed swimmer” or “scallop” example, illustrating the
lack of net propulsion for rigid objects executing time-
reversible motions in low Reynolds number flow (Purcell,
1977; Childress, 1981).

Propulsive force

Problem II and its associated experiment are sufficiently
reminiscent of flagellar hydrodynamics to motivate a cal-
culation of the propulsive force F generated in the x direc-
tion by the wiggling. This can be done by integrating f�, the
force exerted by the polymer on the fluid, along the length
of the filament. We then contract this instantaneous total
force with êx and average over one period. This force is

FIGURE 6 Solutions to EHD problem II for filaments of various
rescaled lengths �.
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equal to and opposite the propulsive force exerted by the
fluid on the polymer.
Noting that the force per unit length in Eq. 4 is a total

derivative,

f� � A�s�	sn̂
1
2 	2t̂� (36)

and recalling the boundary conditions imposed on 	 and 	s,
we have

F � �� dsf� � êx � A	ssin 
�s� 0	 (37)

This is geometrically exact. We now wish to calculate the
time average F� over one period. Within the linearized so-
lution, 	s sin 
 � yxxxyx. Recalling the expression for y in
Eq. 31, we obtain

F� �
y02��

4	2 �� L
���	� (38)

where �(�) is the characteristic length and � is a scaling
function conveniently normalized (see below).
The exact solution to EHDII given in Appendix C can be

used to calculate the function� for all values of the polymer
length. The asymptotic behavior as � 3  is

���	 3 1� 4e�2S̃�sin�2C̃�	 (39)

When the length is short compared to the characteristic
length, the polymer flexes very little, so

� �
11
3360 �4 � ���8	 �

11
3360

��

A L
4 (40)

As Fig. 7 illustrates, the short-length approximation (Eq.

40) shows good agreement with the exact solution for
� � 3, as does the large-� approximation (Eq. 39) for
� � 3. The approach to the asymptotic limit is oscillatory,
with a maximum near � 
 4, the value at which �{h�}
acquires its first root, and a local minimum near � 
 6, the
value at which 	{h�} acquires its second root. The unex-
pected local maximum indicates that there is an optimal
combination of A, �, and a finite L.
Inserting typical numbers from the experiment (in cgs),

� 
 10�2, y0 
 4� 10�4

� 
 2�,
L
d 
 103

we find that F() 
 2 � 10�9 dynes � 3 � 10�2 pN. For
a trap stiffness of �0.02 pN/nm, this would induce a dis-
placement of 1.5 nm, at the lower limit of experimental
observation. The production and measurement of propulsive
force by an artificial flagellum were attempted by G. I.
Taylor (Taylor, 1952), using a glycerine-filled tub to mimic
the low Reynolds numbers found in vivo. Taylor struggled
to drive the flagellum without inducing unwanted torque or
disturbing the flow, a difficulty obviated by the use of
optical traps.
Returning to the asymptotic expressions for h derived in

the previous two sections, we observe a pleasant accordance
with the qualitative features of Fig. 7. In the semiinfinite
case, we noted the presence of right- and left-movers, with
right-moving waves of displacement exhibiting slower de-
cay. Such a dominance accounts for the nonzero propulsive
force in the �3  limit, where a net propulsion to the left
survives. In the � 3 0 case, we recovered a shape that
approaches a pivoting rigid rod, not unlike a one-armed
swimmer. As we expect from life at low Reynolds number
(Purcell, 1977; Childress, 1981), such a motion, invariant
under t 3 �t, can produce no net propulsion.
As a further illustration of the relationship between low-

Reynolds-number swimming and cyclic motions, we ob-
serve that the lowest-order expression for the time-averaged
force is equal to

F�
��

2� �
0

2�/�

dt yx�
x�0

d
dt �

0

L

dx y�x	 (41)

or, noting that �0L dx y(x, t) is simply the area 
(t) under the
curve y(x, t), and that the slope at the left is to first order
simply the tangent angle 
0,

F�
��

2� �
0

2�/�

dt 
0
d

dt �

��

2� � 
0 d
 (42)

This result can be interpreted quite simply: the propulsive
force results from pushing aside some volume (or in two
dimensions, an area) of fluid, projected in the direction of
propulsion êx an amount proportional to 
0. Note that had
we been interested in the propulsion in the transverse (êy)

FIGURE 7 Scaling function � for propulsive force. The large � expan-
sion is plotted for � � 2, and the small-� solution is plotted for � � 3.5.
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direction, the 
0 would not appear, leaving the absence of
net forcing: F �  d
 � 0, as we would expect.
The net force, then, is the area enclosed by a trajectory in


 � 
0 space during some cyclic motion. This representa-
tion is independent of the particular motion exhibited, al-
though we have here considered simple periodic motion, for
which the trajectory is always an ellipse. As � 3 0, the
elliptical trajectory thins to a straight line, encloses no area,
and thus produces no force.
This representation makes clear that in an inertialess

world, net motion is principally geometric in origin rather
than dynamic (Shapere and Wilczek, 1987). In a manner
analogous to the importance of path rather than kinetics in
generating net work in a Carnot diagram, we see that we can
remove time entirely from the expression and consider
instead a path in a low-dimensional projection of the infi-
nite-dimensional shape space.

ANALYSIS OF EXPERIMENTS

Actin

As mentioned in the previous section, the EHDII experi-
ment was performed and the data compared to the solution
of Eq. 32. In this way we were able to confirm the results of
the analysis and investigate a new method for measuring
biopolymer bending moduli. Materials used in the experi-
ment may be found in Riveline et al. (1997).
Knowing the amplitude of the driving of the bead (y0) and

the frequency (�), and reading off the projected length (L)
and the phase (�t) directly from the images, we are left with
a one-parameter fit of the images to the solution of Eq. 32,
varying only �(�) to minimize �2. We can then observe the
dependence of � on �, as illustrated in Fig. 8. The variation
in error bars can be attributed to the widely varying number
of images taken at different frequencies.
Comparing with the earlier analysis (cf. the previous

section), we can extract from this scaling a measurement of
the persistence length. Fitting to

���	 � �kBT� �1/4Lp1/4��1/4 (43)

we determine Lp to be 7.4 � 0.2 �m.
There are a few limitations with this realization of the

experiment which, upon correction, will improve this tech-
nique and make the data more conclusive. An obvious
mechanism for improving the error bars is to accumulate
more data. Image-taking was entirely manual; automation
of this process would clearly be advantageous and improve
the low statistics used here. Furthermore, with careful con-
trol of the timing, images of equal phase can be superposed
to average out thermal fluctuations or experimental varia-
tion in the images before fits are performed.
Most importantly, because our aim was to verify the

plausibility of the experiment, we did not limit ourselves to
small-amplitude wiggling, thus leaving the realm of validity
of the small-yx approximation. We can estimate the error

due to such driving by looking at the relevant terms from the
geometrically exact equation of motion:

yt
�1� yx2	1/2

� ��̃� yxx
�1� yx2	3/2�ss (44)

If we wish to approximate this with Eq. 7, we are measuring
an “effective” �̃ (or “�̃”) where

“�̃” �
�̃

��1� yx2	2�
(45)

where the brackets indicate averaging over the data, and
thus the true A will be underestimated by a factor of
�(1 � yx2)2�, which is always greater than unity. Inspecting
Fig. 9, we see that there are data for which yx is not
necessarily small. For this reason, the data we collected can
only put a lower bound on A. We anticipate that the true
value may be greater by a factor of up to �1.5; clearly,
future experiments should employ smaller amplitude driv-
ing.
We also anticipate that a more accurate treatment of the

geometry and hydrodynamics would refine the technique.
The true geometry is nonlinear and the hydrodynamics
nonlocal, but neither is intractable and both are amenable to
numerics. The geometrically exact, intrinsic formulation
involves some enjoyable mathematics of curve dynamics,
whereas the linearized treatment presented herein is more
illustrative and more easily connected with experiment.
Similarly, in an attempt to make the analysis as clear as
possible, we have omitted from Eq. 7 the background flow
due to the trapped bead.

FIGURE 8 The characteristic length scale �(�) versus frequency �. The
smooth curve is a fit to Eq. 41 for Lp � 7.4 �m. The scaling of the
characteristic length with the fourth root of time suggests that actin is well
described by Eq. 2 and is thus a semiflexible polymer, with a scale-
independent elasticity.
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Some amount of discussion has been entertained in the
biophysical community about the possible scale or time
dependence of the elasticity of biopolymers, including both
actin (Käs et al., 1993) and microtubules (Kurachi et al.,
1995). One of the more powerful features of this technique
is that, because � and thus �(�) are controlled by the
experimenter, specific scales and frequencies can be inves-
tigated to attempt a spectroscopy of elasticity. Equation 4
can be extended without difficulty to include a characteristic
plasticity time scale � or a continuum of times, in an attempt
to model a characteristic rate of bond-breaking in the pres-
ence of bending. Similarly, one can include additional bend-
ing moduli that depend on higher-order derivatives. For
oscillatory motion, occurrences of �t are simply replaced by
�t � 1/� or i� � 1/�. Including higher order derivative terms
simply results in replacing Ay2x2 with Ay2x2 � By4x2 in the
bending energy and Ay4x with Ay4x � By8x in the equations
of motion. We then may recover such an equation as

���t �
1
�� y� �Ayxxxx  By8x (46)

which can be solved in the manner of Eq. 2. This more
general expression makes possible the experimental confir-
mation or refutation of such hypothesized mechanisms.

Microtubules

A recent pair of elastohydrodynamic experiments involving
microtubules (Felgner et al., 1996), brought to our attention
as the original version of this paper was being completed,
provides an excellent opportunity to apply the spirit of
analysis that we have developed for EHDI. In both, the
crucial experimental observable is the motion of the free
end of a microtubule; the analysis must then relate this
motion to the bending modulus A. Experiments were con-
ducted such that the tangent angle, the relevant small pa-

rameter, did not exceed 0.1. Hence the linearized treatment
outlined for EHDI is appropriate.
We will first investigate the analysis appropriate to a

special case of EHDI in which a polymer relaxes to a
straight configuration in the absence of a driving flow. We
then investigate a more complicated experiment in which an
optical trap exerts a point force in the middle of the polymer.

The simple EHDI experiment

In the first experiment (Felgner et al., 1996), a microtubule
is initially clamped at the left to an axoneme and trapped
directly at the free end; the polymer is bent out of its
mechanical equilibrium configuration (cf. Fig. 10 a). When
the trap is shut off, the polymer relaxes back to the straight
shape in a way that we may describe as before: the initial
condition is projected onto the appropriate space, in which
each mode decays independently.
What remains, then, is merely to determine the initial

data: the shape of a biopolymer clamped at one end and held
by a trap at the other. For the elastica exerting a bending
moment m under some external force fe, the (geometrically
exact) general equations of force and torque balance for the
elastica may be combined into the single equation

ms � t̂� �
0

s

d� fe��	 (47)

where t̂ � rs is the unit tangent. In two dimensions, cross
products are scalars, and ms becomes the scalar ms.
Using m � A
s, and considering point external forces

(exerted by the axoneme and the trap) that act at the left and
right ends, we rewrite Eq. 47 (for 0 � s � L) as

A
ss � �Fy cos 
 � Fx sin 
 (48)

where F{x,y} are the components of the force exerted by the
trap, rather than by the axoneme. We expect Fx � 0 and Fy

FIGURE 9 Series of typical images of driven actin filaments in EHDII.
Also shown are fits to the solution of Eq. 32.

FIGURE 10 EHDI experiments (a) A simple special case. (b) End-
driving as well as driving via a point force.

1052 Biophysical Journal Volume 74 February 1998



� 0. Equation 48 is geometrically exact and can be solved
in terms of elliptic integrals.
Note that there is no reason to assume the trap exerts a

force only in the êy direction—the oft-quoted “cantilevered
beam” problem from introductory civil engineering texts.
However, assuming that the polymer is homogeneous along
its arclength, there is no energy cost upon moving the trap
along the axis of the polymer. Therefore the trap can exert
no force in the tangential direction. Accordingly, Fx/Fy �
�dy/dx, and Eq. 48 linearizes to

Ayxxx � �Fy�1� ��yx2		 � �Fy (49)

We now must consider the boundary conditions. The
axoneme clamps the left end of the polymer; thus y(0) �
yx(0) � 0. Because there is no energy cost to rotating a
polymer held in an optical trap, there should be no bending
moment, implying that yxx(L)� 0. Given these three bound-
ary conditions, the solution to (49) is

y�x	 �
ỹ
2 �3�2  �3	, ỹ � y�L	 �

FyL3

3A (50)

where again, � � x/L.
Now that we have our initial data, we project it onto a

function space in which the dynamics are simply exponen-
tial relaxation. In keeping with the experiment we seek here
to model, we focus on the motion of the free end, whose rate
of relaxation provides a direct means of measuring the
bending modulus A. Given the dramatic increase in relax-
ation rates for each subsequent mode (cf. Eq. 15), we expect
only the lowest mode to be relevant beyond negligible
initial times. Moreover, inspecting Fig. 4, we observe that
the eigenfunction �k1 well approximates the normalized
third-order polynomial that describes the initial data,
whereas higher modes more closely resemble Fourier
modes. This close agreement, rather surprising from a sum
of trigonometric and hyperbolic trigonometric functions,
leads to the dominance of the projection of initial data onto
the first mode; specifically, yk1(0) � 0.485ỹ; yk2(0) �
�0.012ỹ, where we define ykn � �0

1 d� y�kn, in analogy to
Eq. 15. Inserting typical numbers (A 
 5 � 10�15 dynes
cm2, L 
 10 � 10 �m, and the drag coefficient from Eq. 8
with d 
 20 nm and � 
 0.01 erg s/cm3), we see that for
times beyond 0.01 s, the amplitudes of subsequent modes
are, at most, 1% that of the first mode. The shape is then
described by y(x) � �k1(x)yk1(t) and decays as e

�rt, with
r � Ak14/�L4. In the model accompanying the experiment, it
was assumed that the shape was described by a single
decaying mode for all times beginning at t� 0. Fortunately,
as we have shown, �k1 well approximates the initial data
such that this introduces only an error �(10�2). Within these
approximations, the free end decays as

y�L, t	
y�L, 0	 � 0.971e�rt � e�rt (51)

so that a measurement of the e-folding time yields r and
hence A. It is now clear that the identity of k1, the solution

to the transcendental equation (Eq. 17), is crucial, as it is
physically manifested in the decay rate.
The model of Felgner et al. (1996) is based first on the

computation of the deflection yl of the free end of the
clamped elastica experiencing a flow linearly increasing in
x and constant in time, with a drag coefficient �̃. Such a flow
would be appropriate for a rigidly rotating rod with constant
angular velocity, rather than for the bent elastic filament, for
which yt(x, t) is nonlinear in both variables. Second, to find
the decay rate of Felgner et al. (1996), the exponential
relaxation of the tip must correspond to some first-order
differential equation. Although this equation is not stated,
we must assume it to be yt(t) � �(v/yl)y(t), (where v is the
maximum flow velocity used in the computation of yl) to
recover the reported decay rate,

r�
120
11
“A”

�̃L4
(52)

where “A” refers to the value of A that would be extracted
from data, using the simplifications described above.
A careful analysis of the drag coefficient in slender-body

hydrodynamics employs a matched asymptotics for the fluid
velocity and is dependent on the shape of the slender body.
Treating a microtubule as a cylinder, the appropriate drag
coefficient is (Cox, 1970a)

� �
4��

ln�L/d	 � 2 ln 2 �1/2	 (53)

Unfortunately, the drag coefficient used by Felgner et al.
(1996) is that appropriate to tangential rather than normal
flow, with numerator 2��, and further suffers from the
replacement of the constant terms in the denominator of Eq.
53 with �ln 2.
We may now compare the results of a differential equa-

tion-motivated analysis with the model of Felgner et al.
(1996). Given some measured e-folding time t*, the eigen-
mode analysis yields the bending modulus A as

A�
�L4

t*
k1�4 (54)

whereas the rodlike treatment implies (from Eq. 52)

“A”�
�̃L4

t*

11
120 (55)

Inserting typical numbers from the experiment, L 
 10 �m,
d 
 0.02 �m, we see that

“A”
A � 1.13

�̃

�
� 0.709 (56)

a systematic underestimate beyond the uncertainties of
experiments.
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The discontinuous EHDI experiment

A more complicated example of EHDI that was also con-
ducted includes driving the axoneme, so that we must in-
corporate an inhomogeneous boundary condition, and point
forcing by an optical trap (Felgner et al., 1996). In this
experiment, the axoneme (attached to the coverslip) is
moved with constant velocity vc between two extreme po-
sitions. During this motion, the polymer is constrained by
the optical trap to pass through some intermediate point (xp,
yp). From the position and velocity of the free end, it is
possible to determine the bending modulus. Enumerating all
of the relevant forces, we consider the force at the left end
due to the axoneme, Fa, the point force due to the trap Fp,
and the force per unit length due to drag, ��yt (cf. Fig.
10 b). We insert these terms into the equation of force and
torque balance for the elastica (Eq. 47) to find the equations
of motion.
We adopt an expansion in 
, keeping only the first-order

terms. Identifying the external force as the drag, and defin-
ing vc as the constant coverslip velocity, the integrand in Eq.
47 becomes �êy(yt � vc).
Noting, as in Eq. 49, the constraint that the force on a

polymer due to an optical trap must have no tangential
component, and taking the axoneme to exert a force Fa at
x � 0 and the trap to exert a point force Fp at s � sp (x �
xp), the y component of the linearized equation reduces to
A
ss � Fa � Fp�(s � sp) � � �s ds(yt � vc), which upon
differentiation implies

��yt � vc	 � �Ayxxxx  Fp��x xp	 (57)

This is our working equation, obtained from the linearized
second derivative of the equation of net torquelessness.
Because we do not know the magnitude of Fp a priori, we

must perform a matching of ya(x), the curve describing the
anchored end, and yf(x), the curve describing the free end,
which solve

��yt{a,f} � vc	 � �Ayxxxx{a,f} (58)

subject to matching conditions at the point of forcing. This
provides an example of a biopolymer subject both to drag
and to micromanipulation via some point force and bound-
ary condition. We will separate the solutions into the ho-
mogeneous and the particular, and in a procedure that is
now familiar, construct the appropriate function space in
which the dynamic is simple.
Inspecting the equation of motion (Eq. 57), we see that it

supports a discontinuity in yxxx; however, yxx is continuous,
as are y and yx. Moreover, if we wish to describe an
experiment in which the filament position is constrained at
the point of forcing xp, we have not only the matching
condition ya(xp)� yf(xp), but the stronger condition ya(xp)�
yf(xp) � yp; here we choose yp to be 0 without loss of
generality. We thus describe a polymer pinned at a certain

intermediate point along the curve by an optical trap, while
the right and left sides perform some coupled motion.
At the free end, we impose forcelessness and torqueless-

ness, yxxx(L) � 0 and yxx(L) � 0, respectively. At the
anchored end, the polymer is clamped to the axoneme
position yA(t); thus y(0)� yA(t), yx(0)� 0. The above-listed
boundary conditions constrain four of the arbitrary con-
stants, the remaining matching equations constitute the re-
maining four, and we may thus completely specify the
solution.
The governing equation is linear, allowing us to separate

y into two separate solutions of Eq. 58: y � y0(h � g),
where y0 is some typical length scale. We choose g(h) to
satisfy the (in)homogeneous boundary conditions and equa-
tion of motion. Compare this with the first example solution
of EHDI, in which h was chosen to satisfy an inhomoge-
neous equation of motion but homogeneous boundary con-
ditions.
As described above, the axoneme moves with constant

velocity vc from yA � � to yA � ��: yA(t) � �vct;
��/vc � t � �/vc. We must now merely solve for the
inhomogeneous solution, expressed as

h{a,f}�x, t	 � �
n�0



cn{a,f}�t	xn (59)

However, we are considering a Stokesian dynamic, in which
the time dependence is first-order and the equation of mo-
tion is linear; the driving is a constant in time, and thus time
should enter only linearly into any steady-state solution for
the position (cf. Landau and Lifshitz, 1987). Constraining
�t
2cn{a,f} � 0, enforcing the eight matching and boundary
conditions, and respecting the relationship between �tcn and
cn�4 dictated by Eq. 58, we completely specify the solution.
To make explicit the qualitative behavior in limiting cases,
and to write the equations as compactly as possible, we
employ three nondimensionalized variables:

� �
x
xp
, � �

x xp
L xp

, � � t
A

�xp4
(60)

The coordinates {�, �}� (0, 1) measure distance on the left
from the axoneme and on the right from the trap, and � is the
time rescaled by the characteristic elastohydrodynamic time
for the anchored section. The fact that xp, rather than l �
L � xp, appears explicitly in our choice of definition of � is
reflected in the equation of motion, in that the functions now
solve slightly different equations for the two sides:

h�
a �

vc
y0

�xp4

A � �h����
a

(61)

h�
f �

vc
y0

�xp4

A � ��xpl �
4

h����
f
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The natural choice for y0 is clearly y0 � vc�xp4/A, whereupon
we are left with the dimensionless equations of motion,

h�
a � 1� �h����

a

(62)
h�
f � 1� ��4h����

f

where we have introduced the ratio of lengths

� �
xp

L xp
�
xp
l (63)

which describes the location of the point of forcing xp
relative to the “extra” length l. As xp nears the anchored
(x � 0) end, � 3 0, and as xp nears the free (x � L) end,
�3 . The solutions to (62) are presented in Appendix D.
As described before, the solution h to the inhomogeneous

boundary conditions will describe the long-time behavior
remaining after transients decay exponentially. We now
turn our attention to the transient g, which must satisfy the
homogeneous boundary conditions g(0)� gx(0)� gxx(L)�
gxxx(L) � g(xp) � 0 and matching conditions [gx(xp)] �
[gxx(xp)] � 0, where the brackets indicate discontinuity at
the optical trap.
The fact that all the boundary conditions are 0-valued

suggests constructing a self-adjoint operator, consistent
with these conditions, from the relevant differential opera-
tor: �x

4. To do so, we left-multiply the equation of motion by
an as-yet arbitrary function �k(x) and integrate over the
entire domain. Because h is constructed to solve the (linear)
equation of motion (Eq. 57), g must as well, and we derive
an equation of motion for the quantities gk �
�0
L dx�k(x)g(x):

1
�̃

�tgk � ��
0

L

dx�k�x	gxxxx (64)

We then integrate the right-hand side by parts. However, we
must admit the possibility that g supports a discontinuity in
its higher-order derivatives, i.e., [gxxx(xp)] � 0. For this
reason, we define {ga(x, t), �k

a(x)} and {gf(x, t), �k
f (x)}, as

in Eq. 58, defined on the anchored and free sections, re-
spectively. If we choose � to obey the same homogeneous
boundary conditions as g, we eliminate all but four of the
surface terms from the integration by parts in Eq. 64), the
remaining terms vanish upon choosing � to obey and
�(xp) � 0 and the same matching conditions as g. We now
choose �k

{a,f} to obey the eigenvalue condition �x
4�k

{a,f} �
k4�k

{a,f}. Because we have constructed a self-adjoint oper-
ator, the eigenvalues are real and positive. We are left with
�tgk � ��̃k4gk, the solution of which is, as before, gk(t) �
gk(0)e��̃k4t for k � 0. Fortunately, the boundary and match-
ing conditions do not admit a solution to gxxxx � 0, and we
need not consider a 0 mode.
Given some initial condition y(x, 0), we project it onto

this strange eigenspace spanned by {�k}. We then con-
struct g(x, t) for all later times in a standard Green’s func-

tion way,

g�x, t	 � �
0

L dx�
L ��x, x�; t	�y�x�, 0	y0

 h�x�, 0	� (65)

where

� � �
k
e��̃k4t�k�x	�k�x�	 (66)

and we see that all modes die.
We now solve for the countably infinite sets {k} and

{�k}. The general solution of �x
4�k

{a,f} � k4�k
{a,f} is

�k
{a,f} � a1{a,f} sin�kx	 � a2{a,f} cos�kx	

� a3{a,f} sinh�kx	 � a4{a,f} cosh�kx	
(67)

where the eight arbitrary constants will solve the four
boundary and four matching conditions. The insertion and
elimination of these constants is not a joyful task and will be
omitted here. The most important fact is that the set of eight
equations for eight unknowns dictates a solvability condi-
tion, written explicitly in Appendix D and graphically con-
structed in Fig. 11, which determines the allowed values of
k, given some fixed ratio �. The first three normalized eigen-
functions are illustrated in Fig. 12 for � � 1⁄2.
The complicated solvability condition can be expressed

compactly as the separable equation

� � �pF�p	H�q	 � F�p	�qH�q	 � 0 (68)

where F(p) � cos(p) cosh(p) � 1, H(q) � cos(q) cosh(q) �
1, p � kxp, and q � kl. This differential relation describes
the motion along each of the branches shown in the figure
as � varies, each branch indexed by arbitrary constants
introduced upon integrations of Eq. 68, and separated by the
singularity lines {H � 0, F � 0} at which the differential
equation is not invertible. The geometry chosen by the
experimenter dictates xp, l, and therefore xp/l � p/q � �.
Inspecting the figure, we see that we choose a set of modes

FIGURE 11 p� q plane showing roots of the solvability condition. Here
p � kxp and q � kl � k(L � xp). The geometry of the experiment dictates
�, as described in the text. Vertical and horizontal lines correspond to
solutions of F(p) � 0 and H(q) � 0, respectively. The diagonal line
indicates the solution to xp/L � 0.8.
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by drawing a line of slope � through the origin; each
intersection with a branch corresponds to one mode.
A further curiosity is that each of the four equations {F,

H, Fp, Hq} � 0 is itself a separate solvability condition
associated with a separate experimental geometry. In the
language of Appendix D, we may rewrite the condition� �
0, with the first letter below indicating the boundary con-
dition for the left end of one side, and the second for the
condition at the right,

� � �cf 	�hf 	 � �ch	� ff 	 (69)

Otherwise stated, the total solvability condition determining
relaxation rates for a biopolymer clamped at the left, trapped
in the middle, and free at the right is an average of those for
1) the left side clamped at 0 and free at xp, with the right side
hinged at xp and free at L, and 2) the left side clamped at 0
and hinged at xp, with the right side free at xp and free at L.
Armed with a set of decaying modes, we may solve the

equation for all times. We now attempt, as in Eq. 50, to
construct a polynomial solution that describes the initial
data. The polymer initially sits at rest with y(0) � � and is
subject to the stated matching and boundary conditions.
Noting that the shape must be described by polynomials of
less than fourth order, because we wish to describe an
elastica experiencing no forces, we find the polynomial y�:

y�a��	 � ��1
3
2 �2 �

1
2 �3� (70)

y�f��	 � ��
3�
2� (71)

The final configuration, after the axoneme comes to rest and
all transients have died, will be �y�: a third-order polyno-
mial on the left and a straight line on the right. A pleasant
fact is that this polynomial can also be derived by taking the
limit as vc 3 0 of y0h{a,f} in Eqs. D1, D2.
We now wish to use this information to arrive at a

measurement of A. Hoping to verify the plausibility of this
analysis, we compare with the results and accompanying
model published with the experiment.
The model presented by Felgner et al. (1996) ignores the

left end (0 � x � xp), seeking to describe the dynamics of
the free end (xp � x � L), and can be summarized as
follows. First, the forces are calculated on a slender body
subject to 1) a constant flow and 2) a flow linearly increas-
ing from 0 at the origin to some vm at the end. The linearly
increasing flow describes that experienced by a rigidly
rotating rod, approximating the force experienced by the
actual (curved) filament. Inexpliciably, different drag coef-
ficients are used for these two forces.
The forces are then used to compute end displacements,

using the results for the elastica clamped at the origin.
Caveats to this approximation include inconsistency with
both the assumption of a rodlike shape and with the exper-
imental geometry, in which the polymer at xp is neither
clamped (yx � 0, as was assumed for the calculation of end

displacement) nor hinged (yxx � 0, as might be considered
appropriate for a straight rod); it is in fact experiencing a
torque at xp due to the side of the filament between the trap
and the axoneme.
Summing 1) the end displacement yc(vc; �1) of a clamped

elastica in constant flow (using the first drag coefficient)
and 2) the end displacement yl(vm; �2) of an elastica subject
to the linearly increasing flow it would have experienced
were it a rigid rod (using the second drag coefficient), the
total deflection y� from a straight line is obtained (see
equation 20 of Felgner et al., 1996):

y� �
���11vm � 30vc	l4

60A ln�2l/d	 (72)

This end displacement is then used to approximate the
deflection that would have been experienced had the fila-
ment in the calculation not been initially horizontal, but
rather constrained to a nonzero slope at the trap, i.e., that of
the t 3  solution for the shape, �y�.
This deflection y�, from the right tip position at t �  to

that at t � �/vc, when the axoneme halts, is the first
experimental observable. The second is the velocity at this
tip at t � �/vc, which is then equated with the maximum
velocity vm in the expression for yl. Dividing y� by the
weighted sum of velocities appearing in the numerator, one
obtains the combination of two observables (y�, vm) and one
experimental parameter (vc) which, according to this model,
is equivalent to a simple quotient with units of time and in
which A appears explicitly,

� �
y�

�11vm � 30vc	
�

11��l4

“A” 60 ln�2l/d	 (73)

where “A” indicates the rigidity that would be extracted
from the data using this model. Note that the expression is
a function only of l, the length of the free segment of the

FIGURE 12 The first three modes for the discontinuous EHDI experi-
ment. The circle indicates the pinning point xp/L � p/(p � q).
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polymer. In this model, l is taken to be “the hydrodynami-
cally relevant length” (Felgner et al., 1996).
Returning to the partial differential equation treatment of

the problem, we see that the solutions to Eq. 58 for the
post-transient polynomial shape relate the velocity of the
free end to the constant stage velocity as

vm � vch�
f ���1 �

3
2
l
xp
vc (74)

This simplification allows us to solve for the ratio in Eq. 72
of observables and parameters in terms of the polynomials
in Eqs. 71 and D1:

� �
�l4

2520A
��16�4 � 210�2 � 420� � 231	

�11� 20�	
(75)

where A indicates the value of the bending modulus that one
would calculate had one used the same data and thus the
same quotient �.
The ratio A/“A” is a simple expression and allows us to

compare the factor by which this differential equation-based
analysis differs from the published model, given some ex-
perimental data �(l). Equating the two expressions for �
and isolating A/“A,” we find

A
“A”� 2

ln�Ld 1
2�1� �	�

ln�Ld 4	e�
�1�

210�2  16�4

231� 420� � (76)

where we have moved the �(1) constants into the argument
of the logarithm for compactness. The dominant behavior is
captured by the polynomial dependence on �, but we can see
that the function will be �2, indicating a systematic under-
estimate by the published model of the bending modulus. A
plot of the ratio, with typical values taken from experiment,
is shown in Fig. 13.
Note that we have arrived at this expression by ignoring

the transient component in the exact expression. This is
valid only in the range where the polynomial (asymptotic)
solution dominates over the transients, a condition that is
violated above � � 4, xp/L � �/(� � 1) � 0.8.
We expect, then, that results obtained with the model in

Felgner et al. (1996) will be comparable, but will system-
atically underestimate the bending modulus A by a factor of
�1⁄2.

CONCLUSIONS

We have attempted to show that a systematic treatment of
linearized elastohydrodynamics for filamentous biopoly-
mers can be formulated with fruitful results. Furthermore,
we have proposed and demonstrated a new technique
(EHDII) that exploits viscous hydrodynamics to extend the
range of mechanical experiments of bending moduli to more
flexible polymers. We expect this experiment to produce
more accurate results when repeated with lower-amplitude

driving, and thereby help determine conclusively the exis-
tence or nonexistence of scale-dependent or time-dependent
elastic behaviors in biopolymers as well as the value of
bending moduli via in vitro assays. It is our hope that the
analysis associated with this experiment will also encourage
renewed interest in the problems of flagellar motion and
slender-body hydrodynamics in general.
Moreover, we have seen that attentiveness to equations of

motion and boundary conditions for the elastica has mea-
surable consequences, and that construction of the appro-
priate function space associated with these conditions leads
to a pleasant union of mathematical and physical intuitions,
relating transcendental equations to physical effects and
experimental observables. We believe that the significance
of boundary conditions and the natural function space for
the elastica has been overlooked in existing treatments of
the dynamics relevant to experiments being performed and
discussed by the community.
We look forward to the extension of this analysis to

arbitrary geometries, reflecting distortions beyond small
order and hydrodynamics beyond the lowest-order approx-
imation of slender-body flow. Although the exact equation
of motion is nonlinear, the Stokesian dynamic and the
vanishing of successive derivatives at ends remain, and we
expect the mechanisms and effects that we have outlined
here to persist.
Natural extensions of this research include nonplanar

geometries and the incorporation of twist. These would be
complementary to recent work on the Hamiltonian dynam-
ics of twisted elastic rods (Goriely and Tabor, 1997; Olson
and Zhurkin, 1996). The dynamics of twist are especially
intriguing in light of recent work on twist-bend coupling
(Kamien, 1998) and the proposal that this coupling creates

FIGURE 13 Quotient of values derived for the bending modulus using
the model of Felgner et al. (1996) and that presented herein.
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scale-dependent elasticity in actin (Käs et al., 1993). We are
currently formulating the analysis appropriate to these
promising applications, armed with the lessons learned in
this investigation (Wiggins et al., 1997).

APPENDIX A: DIGRESSION ON
BOUNDARY CONDITIONS

It is useful to pause momentarily and reflect on the importance of boundary
conditions and how they enter into the analysis. To this end, we consider
an experiment analogous to EHDI in which the left side of the polymer is
hinged rather than clamped. This would be realized by holding the polymer
in an optical trap, for example, rather than some torque-exerting anchor
like an axoneme fixed to a coverslip. For this experimental setup we
replace the boundary condition h�(0, �) � 0 with h��(0, �) � 0.
Intuitively, we expect the polymer to align itself with the flow as t 3

 in the absence of any torque at the left end. Mathematically, we may
think of the change in boundary conditions via some curious pathologies.
The first complication is that there is no time-independent fourth-order
polynomial in � that is consistent with the boundary conditions. This
prevents us from constructing a static attractor for the problem, as in Eq.
21. However, we note that the equation of motion is solved by a fifth-order,
time-dependent polynomial in �:

h���, �	 �
3
2 �� � C	� �

1
4!���3 � �4 

3
10 �5� (A1)

To derive this polynomial, we first express the solution in the form
�ncn(�)�n. However, as in the derivation following Eq. 59, we expect this
solution to depend only linearly on the driving and thus linearly on time.
Constraining �t

2cn � 0 and respecting the relationship between ��cn and
cn�4 dictated by Eq. 12, we uniquely specify the polynomial up to the
constant C.
The fact that our long-time solution contains an arbitrary constant

should lead us to rethink splitting the solution into a polynomial and a set
of only-decaying modes. Returning to the set of eigenvalues of ��

4, we
discover a second complication for this new boundary condition: there now
exists a zero mode—a nontrivial solution, consistent with the boundary
conditions, to the equation ��

4�0 � 0, i.e., the normalized polynomial
�3�. We then may choose C to eliminate the overlap of�0 with the initial
data, i.e., 0 � g0 � �g��0� � �h(�, 0)��0� � �h�(�)��0�.
We now see how the change in boundary conditions creates drastically

different physical behavior. The long-time solution contains a term de-
scribing a straight line whose slope grows with velocity 3u/2L without
bound.
To illustrate further the relationship between a change in boundary

conditions and the qualitative behavior, note that the dynamics, even in the
presence of an inhomogeneous equation of motion, can be cast in terms of
the functional derivative of an energy:

h� � �
�

�h��	

(A2)

 � �
0

1

d����h�
1
2�h��	

2�
The first term represents the drag force acting in the positive y direction,
and the second is simply the nondimensionalization of the elastic bending
energy term from which we originally derived the equation of motion. We
then find

� � �
0

1

d�h�

�

�h��	
� ��

0

1

d��h�	
2 (A3)

indicating that  is a monotonically decreasing function in time (Cross and
Hohenberg, 1993).
We must now only show that for the clamped (hinged) polymer this

energy functional is (is not) bounded from below. Rewriting h� �cn(�)�n,
we can evaluate the energy explicitly as

 � ��
n�0

 cn
n� 1� � (A4)

where

� �
1
2 �

m,n�2

 n�n 1	m�m 1	
n� m 3 cmcn (A5)

If h(0) � hx(0) � 0, c0 � c1 � 0, and the sum in Eq. A4 runs from 2 to
. We see that we cannot simply make  arbitrarily negative by introduc-
ing a large and positive cj for some j, because this term will appear
quadratically (and always positively) in the second term. However, replac-
ing the condition h�(0) � 0 with h��(0) � 0 changes the condition c1 � 0
to c2 � 0; c1 appears in the first term in Eq. A4, but not the second. Now
the energy can become arbitrarily negative if c1 � h�(0) becomes arbitrarily
positive. A divergent slope simply means the curve points straight up, in
accord with our intuition for the long-time behavior of a polymer free to
rotate in some background flow. Note such a long-time behavior means
leaving the small-hx limit for which the dynamic was originally derived.

APPENDIX B: EIGENFUNCTIONS OF ��
4

If we equate functions related by the reflection �3 1� �, there are 4(4�
1)/2 � 10 distinct eigenfunctions of ��

4, determined by boundary condi-
tions, for which this operator is self-adjoint. Each has an associated
solvability condition for the eigenvalues k. We list the solvability condi-
tions and the unnormalized eigenfunctions, indexed according to the con-
ditions at the ends:

�f	 free: hxx � hxxx � 0

�c	 clamped: h� hx � 0

�h	 hinged: h� hxx � 0

�t	 torqued: hxxx � hx � 0

The general solution is �k � a1 cos k� � a2 sin k� � a3 cosh k� � a4
sinh k�, where � � (0, 1). The letters f, c, h, t denote the boundary
conditions at the left and right.
Note that for three special cases, the calculated�k are merely a Fourier

basis. The solvability condition for the f-f and f-c cases appear in Landau
and Lifshitz (1986, Sect. 25, problems 4 and 6). If we differentiate the c-c
expression and define �n � kn/2, then we recover equation 28 of Gittes et
al. (1993). The expansion in terms of k has the advantage of a single
solvability condition cos(kn) cosh(kn) � 1, rather than the two conditions
tanh(�n) � (�1)n tan(�n). The latter two conditions may be derived from
the former via half-angle formulae.

f f:

cos k cosh k� 1;
(B1)

�k � �sin k� � sinh k�	�sin k� sinh k	

� �cos k� � cosh k�	�cos k cosh k	
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c c:

cos k cosh k� 1;

�k � �sin k�  sinh k�	�sin k� sinh k	
(B2)

� � � cos k�  cosh k�	�cos k cosh k	

f c:

cos k cosh k� �1;
(B3)

�k � �sin k� � sinh k�	�sin k sinh k	

� �cos k� � cosh k�	�cos k� cosh k	

h h:

sin k� 0;
(B4)

�k � sin k�

t t:

sin k� 0; (B5)

�k � cos k�

h t:

cos k� 0; (B6)

�k � sin k�

f h:

tan k� tanh k;
(B7)

�k � �sin k� � sinh k�	��cos k� cosh k	

� �cos k� � cosh k�	�sin k sinh k	

f t:

tan k� �tanh k;
(B8)

�k � �sin k� � sinh k�	�sin k� sinh k	

� �cos k� � cosh k�	�cos k cosh k	

c t:

tanh k� �tanh k;
(B9)

�k � �sin k�  sinh k�	�sin k� sinh k	

� �cos k�  cosh k�	�cos k cosh k	

c h:

tan k� tanh k;
(B10)

�k � �sin k�  sinh k�	�cos k� cosh k	

� ��cos k� � cosh k�	�sin k� sinh k	

APPENDIX C: EXACT SOLUTION TO EHD
PROBLEM II

The exact solution to EHDII can be written in somewhat compact form at
the cost of introducing new definitions. Employing the coordinate � � x/L,
the rescaled length � � L/�, and the constant z0 � exp(�i�/8) as in the
text (Elastohydrodynamic Problem II), we introduce � � exp(z0�) and then
write

h��, �	 � h��	 � h���, �	 (C1)

where h is the semiinfinite solution, and h� 3 0 as � 3 . Explicitly,

h� �
1
2 C1��

�  ���	 �
1
2 C2��

i�  ��i�	 (C2)

where

C1��	 � ��1
��i��i  � i � �1� i	�	

�i��1�i � ��1�i  �1�i  i�1�i	 (C3)

C2��	 � ��i
�i��1  �1 � �1 i	� i	

��i��1�i  ��1�i � �1�i � i�1�i	

and

h �
1
2 ���� � ��i�	 (C4)

APPENDIX D: SOLVABILITY CONDITION FOR
DISCONTINUOUS EHDI

Associated with the discontinuous EHDI problem are the solutions to Eq.
58 satisfying the inhomogeneous boundary conditions. These solutions
may be written as polynomials on the left and right sides of the trap:

hf�5 � �
1
80 �5 

1
24 ��4 � ��

6�
1
8��3 

1
4 �� � 1	�2

�� 1105 �4 
1
8 �2 

1
8 � �

3
2 �4���

(D1)

ha�3 �
1
1680 �7�3 

1
240 �6�3  ��3

�� 13560 �3 
1
8 � 

1
8

1
2 �3���3

��� 11
560 �3 �

1
8 � �

1
8�

3
2 �3���2

(D2)

The notation and matching conditions are described in the text (The
Discontinuous EHDI Experiment).
The homogeneous boundary conditions are solved by an expansion in a

specially constructed set of piecewise-defined orthonormal eigenfunctions
of �x

4 with associated eigenvalues appropriate to the boundary and match-
ing conditions. Like the statement sin(kL) � 0 for determining the allowed
Fourier k values for a doubly hinged filament of length L, there is a
solvability condition for p � kxp, q � k(L � xp) � kl, derived by setting
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the determinant of an 8 � 8 matrix to 0, an equation that can be written

0� ��p, q	 �

�sin�q	cos�p	cosh�q	cosh�p	

 cos�q	sin�p	cosh�q	cosh�p	

� cos�q	cos�p	sinh�q	cosh�p	 (D3)

� cos�q	cos�p	cosh�q	sinh�p	

 sin�q	cosh�q	 � cos�q	sinh�q	

� sin�p	cosh�p	  cos�p	sinh�p	

The ratio xp/(L � xp) � q/p � �, set by the geometry of the experiment,
fixes a diagonal line passing through the origin and intersecting the set of
curves defined by this equation to define all of the allowed k values, as
illustrated in Fig. 11.
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