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ABSTRACT

Development of Hierarchical Optimization-based Models

for Multiscale Damage Detection

Hao Sun

In recent years, health monitoring of structure and infrastructure systems has become a

valuable source of information for evaluating structural integrity, durability and reliability

throughout the lifecycle of structures as well as ensuring optimal maintenance planning

and operation. Important advances in sensor and computer technologies made possible to

process a large amount of data, to extract the characteristic features of the signals, and

to link those to the current structural conditions. In general, the process of data feature

extraction relates to solving an inverse problem, in either a data-driven or a model-based

type setting.

This dissertation explores state-of-the-art hierarchical optimization-based computational

algorithms for solving multiscale model-based inverse problems such as system identifica-

tion and damage detection. The basic idea is to apply optimization tools to quantify an

established model or system, characterized by a set of unknown governing parameters, via

minimizing the discrepancy between the predicted system response and the measured data.

We herein propose hierarchical optimization algorithms such as the improved artificial bee

colony algorithms integrated with local search operators to accomplish this task.

In this dissertation, developments in multiscale damage detection are presented in two

parts. In the first part, efficient hybrid bee algorithms in both serial and parallel schemes

are proposed for time domain input-output and output-only identification of macro-scale

linear/nonlinear systems such as buildings and bridges. Solution updating strategies of the

artificial bee colony algorithm are improved for faster convergence, meanwhile, the simplex

method and gradient-based optimization techniques are employed as local search operators

for accurate solution tuning. In the case of output-only measurements, both system pa-

rameters and the time history of input excitations can be simultaneously identified using

a modified Newmark integration scheme. The synergy between the proposed method and



Bayesian inference are proposed to quantify uncertainties of a system. Numerical and exper-

imental applications are investigated and presented for macro-scale system identification,

finite element model updating and damage detection.

In the second part, a framework combining the eXtended Finite Element Method (XFEM)

and the proposed optimization algorithms is investigated, for nondestructive detection of

multiple flaws/defects embedded in meso-scale systems such as critical structural compo-

nents like plates. The measurements are either static strains or displacements. The number

of flaws as well as their locations and sizes can be identified. XFEM with circular and/or el-

liptical void enrichments is employed to solve the forward problem and alleviates the costly

re-meshing along with the update of flaw boundaries in the identification process. Numeri-

cal investigations are presented to validate the proposed method in application to detection

of multiple flaws and damage regions.

Overall, the proposed multiscale methodologies show a great potential in assessing the

structural integrity of building and bridge systems, critical structural components, etc.,

leading to a “smart structure and infrastructure management system”.
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Chapter 1

Introduction

In recent years, health monitoring of structure and infrastructure systems has become a

valuable source of information for evaluating structural integrity, durability and reliability

throughout the lifecycle of structures as well as ensuring optimal maintenance planning

and operation. Important advances in sensor and computer technologies made possible to

process a large amount of data, to extract the characteristic features of the signals, and to

link those to the current structural conditions.

With the primary goal to establish a Structural Health Monitoring (SHM) framework for

assessing serviceability of a structure, detecting damages, evaluating its remaining service

life, etc., the developments of SHM technologies have drawn considerable interests and

efforts of researchers.

In general, we divide SHM into three stages: (i) sensing and data acquisition, (ii) data

analysis, signal feature extraction and identification, model validation and updating, and

(iii) maintenance, repair and rehabilitation operation. From the scale point of view, SHM

can be divided into two categories: (i) monitoring a large scale (macro-scale) structural sys-

tem from a global perspective (see Figure 1.1), and (ii) Nondestructive Testing/Evaluation

(NDT/E) of critical structural components at a meso-scale from a local perspective (see

Figure 1.2). Instrumentation, sensing, modeling and probably identification techniques

might be different considering different structural length scales. Therefore, this work aims

to propose methodologies to solve the inverse problems (e.g., system identification, damage

detection, etc.) in SHM/NDE across multiple structural length scales.



Chapter 1. Introduction 2

   
 

 

 

 

 

 

 

 

 

 Sensor Network 

 

Data Acquisition and 

Pre-processing System 

Data Analysis and Post-processing 

 System identification 

 Finite element model updating 

 Uncertainty quantification 

 Damage detection/diagnosis 

 Future structural response prediction 

 …… 

Report 

 Evaluate structural 

health status 

 Carry out structural 

maintenance 

 Develop repair and 

rehabilitation 

scheme 

 Disaster alarm 

 …… 

 

SHM 

Database 

Scatter 

Scatter 

 Sensor Network 

 

Signal Generation and 

Acquisition System 

Signal Future Extraction 

Scatter Parameter Identification 

Using Finite Element Models 

Figure 1.1: Schemetic representation – the process of SHM.
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Figure 1.2: Schemetic representation – NDT/E of critical structural components.

1.1 Dissertation outline

This dissertation explores state-of-the-art hierarchical optimization-based computational

algorithms for solving multiscale model-based inverse problems such as system identifica-

tion and damage detection. The basic idea is to apply optimization tools to quantify an

established model or system, characterized by a set of unknown governing parameters, via

minimizing the discrepancy between the predicted system response and the measured data.

We herein propose hierarchical optimization algorithms such as the improved artificial bee

colony algorithms integrated with local search operators to accomplish this task.

Developments in multiscale damage detection are presented in two parts, e.g., macro-

and meso-scale analyses. The following summary provides a brief outline of this dissertation:
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• Chapter 2: A modified artificial bee colony (MABC) algorithm is presented in the

context of structural system identification. This algorithm is a population based

stochastic algorithm which requires only few common control parameters. It has a

simple structure, it is easy to implement, it is robust, and it provides results with

high accuracy. The application of a proposed nonlinear factor for convergence control

enhances the balance of global and local searches. The idea behind the nonlinear

factor is to free the method, at its initial steps, to search over the entire search space

and to allow for faster convergence during the local search phase which takes place

towards the end of the iteration process. In this way, the search space is gradually

reduced following a nonlinear trend. To avoid stagnation around local minima, a

“scout bee” search will be carried out if needed. To investigate the applicability of

this proposed technique to structural system identification, two linear systems and

a nonlinear system were studied under different conditions, addressing issues such

as the number of measurements used in identification, noise in the signals, and the

knowledge of the structural mass. In all cases considered, the simulation results show

that the proposed MABC algorithm can produce an excellent parameter estimation

with small errors. The presented method is effective, robust and efficient even with

reduced partial measurements at high noise pollution levels.

• Chapter 3: A hybrid heuristic optimization strategy is presented to simultaneously

identify structural parameters and, when possible, dynamic input time histories from

incomplete sets of output measurements. The proposed strategy combines MABC

with a local search operator, Nelder-Mead Simplex Method (NMSM), integrated in a

Search Space Reduction (SSR) approach, so to improve the convergence efficiency of

the overall identification process. Because of the independent nature of the algorithm,

a parallel scheme is implemented to improve the computational efficiency. If the

time histories of the structural response and information about the structural mass

are available, then the algorithm can also be used for identification of the dynamic

input force time histories through a modified Newmark integration scheme, using the

current estimates of the structural parameters. To investigate the applicability of the

proposed technique, three numerical examples, two shear-type building models and a
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coupled building system model, under different conditions of data availabilities and

noise corruption levels, were tested. The results show that the proposed technique

is powerful in the simultaneous identification of the structural parameters and input

forces even from an incomplete set of noise contaminated measurements.

• Chapter 4: An optimization-based Bayesian inference methodology is presented for

the probabilistic finite element model updating of structural systems. The model up-

dating process is first formulated as an inverse problem analyzed by Bayesian inference

and is solved using a hybrid optimization algorithm. The proposed hybrid approach

is a synergy of a new version of MABC and the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) method. The present MABC version includes four modifications (in the solu-

tion phases of initialization, updating, selection and rebirth) compared with the stan-

dard bee algorithm, which basically improve the global search performance. BFGS

is frequently inserted to improve the algorithm’s finer solution search ability aiming

at a higher solution accuracy. In brief, a probabilistic framework based on Bayesian

inference is first derived so to get the regularized objective function for optimization.

Then the proposed MABC-BFGS algorithm is applied to determine the uncertain

system parameters by minimizing the objective function. System parameters as well

as the prediction error covariance are updated iteratively in the optimization process.

Finally, the effectiveness of the proposed approach was illustrated by the numerical

data sets of the Phase I IASC-ASCE benchmark model and the experimental data sets

of a three-storey frame structure (from the Los Alamos National Laboratory (LANL),

NM, USA).

• Chapter 5: This chapter presents a novel algorithm based on the eXtended Finite

Element Method (XFEM) and a hybrid artificial bee colony (HABC) algorithm to

detect and quantify multiple flaws in structures. The concept is based on recent

work that has shown the excellent synergy between XFEM, used to model the for-

ward problem, and a Genetic-type Algorithm (GA) to solve an inverse identification

problem and converge to the “best” flaw parameters [1–4]. In this work, an adaptive

algorithm that can detect multiple flaws without any knowledge on the number of
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flaws beforehand is proposed. The algorithm is based on the introduction of topo-

logical variables into the search space, used to adaptively activate/deactivate flaws

during run time until convergence is reached. The identification is carried out using

a limited number of strain sensors assumed to be attached to the structure surface

boundaries. Each flaw is approximated by a circular void with three variables: cen-

ter coordinates and radius, within the XFEM framework. In addition, the proposed

HABC scheme combines the guided-to-best solution updating strategy-based MABC

with a local search operator of NMSM, which shows faster convergence and superior

global/local search abilities compared to MABC or classic GA algorithms. Several

numerical examples, with increasing level of difficulty, were studied in order to eval-

uate the proposed algorithm. In particular we considered identification of multiple

flaws with unknown a priori information on the number of flaws (which makes the

inverse problem harder), the proximity of flaws, flaws having irregular shapes (similar

to artificial noise) and the effect of structured/unstructured meshes. The results show

that the proposed XFEM-HABC algorithm is able to converge in all test problems and

accurately identify flaws. Hence this methodology is found to be robust and efficient

for nondestructive detection and quantification of multiple flaws in structures.

• Chapter 6: This chapter presents a novel multiscale algorithm for nondestructive de-

tection of multiple flaws in structures, within an inverse problem type setting, which

further improves the previous work on XFEM−HABC algorithm for multi-void flaws

detection (see Chapter 5). The key idea is to apply a two-step optimization scheme,

where first rough flaw locations are quickly determined and then fine tuning is applied

in these localized subdomains to obtain global convergence to the true flaws. The two

step framework combines the strengths of heuristic and gradient based optimization

methods. The first phase employs a discrete type optimization in which the optimizer

is limited to specific flaw locations and shapes, thus converting a continuous optimiza-

tion problem in the entire domain into a coarse discrete optimization problem with a

limited number of choices. To this end we develop a special algorithm called discrete

artificial bee colony (DABC). The second phase employs a BFGS type approach on

local well defined and bounded subdomains. A semi-analytical approach is developed
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to compute the stiffness derivative associated with the evaluation of objective function

gradients. The XFEM with both circular and elliptical void enrichment functions, is

used to solve the forward problem and alleviate the costly re-meshing of every candi-

date flaw, in both optimization steps. The multiscale algorithm was tested on several

benchmark examples to identify various numbers and types of flaws with arbitrary

shapes and sizes (e.g., cracks, voids, and their combination), without knowing the

number of flaws beforehand. We studied the size effect of the pseudo grids in the first

optimization step and consider the effect of modeling error and measurement noise.

The results were compared with the previous work that employed a single continuous

optimization scheme (e.g., XFEM-GA and XFEM-HABC methods). We illustrate

that the proposed methodology is robust, yields accurate flaw detection results and in

particular leads to significant improvements in convergence rates compared with the

previous work.



7

Part I

Macro-scale (coarse-scale) analysis
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Chapter 2

A Modified ABC algorithm for

Input-Output System Identification

In this chapter, the ABC algorithm and its modified version are presented and validated for input-

output system identification. This chapter is reproduced from the paper co-authored with Professors

Hilmi Luş and Raimondo Betti and published in the Journal of Computers & Structures [5].

2.1 Introduction

Identification of the dynamic characteristics and structural parameters of models repre-

senting complex structural systems plays a key role in SHM for model updating, damage

detection, active control and NDE, etc. The System Identification (SI) process, formulated

as an inverse problem, aims to determine a set of parameters, either physical or non-physical,

of a model that is representative of the structure in question. Physical parameters might

be considered as the mass, damping and stiffness of the structural elements while the co-

efficients of an autoregressive model can be labeled as non-physical parameters. These

estimated parameters can then be used, among other quantities, to predict the structural

response to a future excitation or to assess the structural conditions. In essence, SI can be

thus considered as an optimization process in which the objective is to identify a model of

a system so that its predicted response to a given input is close enough to the measured

response from the real system. In recent years, considerable efforts have been done in devel-
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oping reliable SI models of structural systems using time histories of the structural response

and/or the input, for example, as shown in References [6–12].

There are two categories of approaches for SI, depending on whether the analysis is

conducted in the frequency domain, Frequency Domain Methods (FDMs), or in the time

domain, Time Domain Methods (TDMs). FDMs involve the identification of modal quanti-

ties such as natural frequencies, mode shapes and damping ratios, using frequency domain

tools like the transfer function or the power spectral density function [13–15], and have been

widely used in structural modal analysis. However, dealing with modal characteristics is

not always advantageous when one is interested in damage assessment. In fact, structural

frequencies often vary more greatly because of environmental effects, such as temperature

changes, than because of structural damage, according to experiments carried by Farrar

and Doebling [16]. Another problem is linked to the limited sensitivity of modal charac-

teristics to structural damage: if a change/damage occurs in the stiffnesses of just a few

elements, this might lead to a very small change in the structural frequencies [17] and might

not be easily detected using FDMs. Moreover, mode shapes tend to be very difficult to be

accurately “measured” due to their susceptibility to noise, especially for the higher modes.

By contrast, TDMs aim to estimate the system’s physical parameters using directly

the time histories of the observed structural response and trying to create a mathematical

(physical or non-physical) model that simulates such response as closely as possible. Some

of such methodologies can even track system parameters change during the duration of the

records. Among the TDMs, it is noteworthy to list the identification approaches based on

Least-Square methods [10,11,18,19], the Kalman filters [7–9,20,21], the particle filter [22],

the H∞ filter [23], and the sequential Monte Carlo method [24]. These methods have proven

to be successful in application to structural parametric identification.

However, most of the above mentioned methods require a good initial guess of the pa-

rameters and a proper function gradient. In addition, difficulties arise using these methods

in the identification of large systems when few measurement data is available. Thanks to

the advances in computer technology over the last decades, with a tremendous increase in

computational speed and memory size, methodologies based on heuristic algorithms have

become more popular to solve the optimization problem in SI in the time domain: in partic-
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ular, genetic algorithms (GAs) [17,25–27], particle swarm optimization (PSO) [28,29], arti-

ficial neural networks (ANN) [30], evolutionary strategy (ES) [31], and differential evolution

(DE) [32] have gained great attention and recognition in the field of SI. These algorithms,

even though facing some of the same issues as other TDMs (e.g., solution uniqueness in

the case of an incomplete set of measurements), are conceptually simple, following laws

taken from nature, and rely on performing a large number of iterations (forward analyses)

to identify an “optimal” solution in a search space.

Apart from the above mentioned heuristic algorithms, a novel swarm intelligence algo-

rithm called the artificial bee colony (ABC) algorithm was introduced by Karaboga [33] in

2005 for solving complex numerical optimization problems. This algorithm was motivated

by the intelligent behavior of honey bees when seeking a high quality food source. The ABC

algorithm is a population based stochastic approach with implementation simplicity since

only three common control parameters are used: the colony size, the maximum number of

iterations and the limit number of iterations. It has the advantage of simple structure (as

simple as PSO and DE), ease of use, and high stability. Karaboga and Basturk [34] used it

to optimize multivariable functions and compared their results with those produced by GA,

PSO, DE, and particle swarm inspired evolutionary algorithm (PS-EA). Other studies have

also compared the performance of ABC with other existing heuristic algorithms [35,36], and

the results reported in the literature suggest that ABC is more effective than other methods

in some engineering optimization problems [37–39]. Since this algorithm has been proven to

be successful in dealing with large optimization problems, it seems natural to extend it to

structural parameter identification, considering the problems associated with the limitations

that occur in real life applications such as imcomplete set of noisy measurements.

In this chapter, the ABC algorithm as well as its modified version are presented in

the context of input-output structural SI. The chapter is organized as follows. Section 2.2

describes the formulation of structural SI as an optimization problem. Section 2.3 presents

a modified version of ABC algorithm which is suitable for structural parameter estimation.

Section 2.4 discusses the numerical identification results obtained from two linear systems

and a nonlinear system identified with full and partial measurements under noise free and

noise polluted cases. In Section 2.5, we present the observations and the conclusions.
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2.2 Optimization formulation of system identification

In the case of a structural system, the identification of its structural properties can be

regarded as an optimization problem in which an objective function, e.g., the error between

the actual measured structural response and the estimated response of a structural model, is

defined and the parameters of such a model determined so to optimize (usually to maximize

or to minimize) the objective function.

Let us consider that u(tp) and y(tp) are two vectors containing the input and the

corresponding output, respectively, of a general system at a generic instant tp, where

p = 1, 2, · · · , N (N is the total number of sampling points). Let us now denote with

ŷ(tp) the estimated system’s response obtained from a parametric system’s model using the

associated measured input u(tp), expressed as:

ŷ(tp) = f
(
u(tp), θ̂

)
(2.1)

where θ̂ = {θ̂1, θ̂2, . . . , θ̂Nθ} ∈ RNθ represents a vector containing the estimated values

of the model’s unknown parameters θ = {θ1, θ2, . . . , θNθ} ∈ RNθ : in a mechanical and/or

structural system, for example, the elements θj (j = 1, 2, . . . , Nθ) could be the mass, and/or

damping and/or stiffness parameters.

The objective of any identification procedure is to find the best estimates θ̂ of the

structural parameters θ so to minimize the error between the measured response y(tp) and

the predicted (or estimated) response ŷ(tp) over the entire time-history. This process can be

visualized in Figure 2.1. In identification problems that rely on the dynamic measurements

of the response, the objective function to be minimized through the optimization process

can be formulated as a sum of the mean square error (MSE) between the measured and

predicted responses, such as:

g(θ̂) =
1

NoN

No∑
i=1

N∑
p=1

[ŷi(tp)− yi(tp)]2 (2.2)

where No is the number of observed/recorded time histories of the response which depends

on the number of sensors available in the test (it can range from 1 (only one sensor available)

to the total number of degrees-of-freedom (DOF) of the system (full set of sensors)).
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Figure 2.1: The process of system identification as an optimization problem.

Nevertheless, Stavroulakis and Antes [40] recommended to use the logarithmic transfor-

mation of g(θ) as the objective function instead of directly optimizing Equation (2.2), and

this has been proven to be beneficial in solving inverse optimization problems:

G(θ) = ln [g(θ) + η] (2.3)

where η is a small positive constant, which prevents the appearance of a negative infinity

value in G(θ) (e.g., η = 1 × 10−6). Therefore, the overall identification problem can then

be summarized as:

Find θ̂ = {θ̂1, θ̂2, . . . , θ̂Nθ} ∈ Γ such that G(θ̂)→ min (2.4)

where Γ is the feasible n-dimensional parameter search space:

Γ = {θ̂ ∈ Rn|θmin
j ≤ θ̂j ≤ θmax

j , ∀j = 1, 2, . . . , Nθ} (2.5)

where Nθ is the number of parameters to be identified, θmin
j is the lower bound of the j-th

parameter and θmax
j is the corresponding upper bound.

Equations (2.3)–(2.5) show that the problem of identification can be treated as a lin-

early constrained nonlinear optimization problem. Hence, because of the irregularity of

the multi-dimensional surface G(θ̂), an efficient identification algorithm must be capable of

handling problems related to multiple solutions (more than one minimum) and to local vs.

global minima (many local optima with high complexities may exist in the search space).

While some of these problems (e.g., multiple solutions) can be resolved independently of the

algorithm used (e.g., by choosing proper sensor locations that guarantees uniqueness of the
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solution), others, like local vs. global minima, must be handled directly by the chosen algo-

rithm. Hence heuristic algorithms with both powerful global and local search capabilities

are recommended.

2.3 Artificial bee colony (ABC) algorithms

The basic architecture of the ABC algorithm was inspired by the idea of simulating honey

bees’ foraging behavior (exploration and exploitation of “food sources”) [33–36]. Three

search phases were proposed, named after the type of bees and their corresponding foraging

duties, viz., the Employed Phase, the Onlooker Phase and the Scout Phase. In applying

ABC to system identification problems, the starting point is to accept the equivalence be-

tween “food source location” and “structural model”. This can be explained by considering

that a food source location is similar to a structural model in which it is characterized by

a set of parameters, such as the distance from the hive, the orientation with respect to the

sun, etc.; in an optimization scheme, a location represents a possible solution. Finding the

“best” possible food source is equivalent to finding the set of parameters that corresponds

to the optimized solution.

The detailed procedure of the ABC algorithm and its modified version to solve the

inverse SI optimization problems is presented in the following subsections.

2.3.1 Solution Initialization

The initial step of the ABC algorithm is to select an initial population of possible food

source locations or, in the context of system identification, of possible structural parametric

models. This initial set, denoted with Θ of the order Npop×Nθ, can be randomly generated

keeping the parameters within some specified ranges, i.e., the generic i-th possible solution

(either intended as food source location or structural model) indicated by a vector Θi =

{Θi1,Θi2, . . . ,ΘiNθ} can be generated by:

Θij = θmin
j + rand · (θmax

j − θmin
j ) (2.6)

where Θij indicates the j-th component of the i-th candidate solution; i = 1, 2, . . . , Npop

and j = 1, 2, · · · , Nθ; Npop is the size of the population (bee colony) and Nθ is the number
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of parameter to be optimized; θmax
j and θmin

j are the upper and lower bound, respectively,

of the j-th parameter; ‘rand’ represents a random number uniformly sampled from [0, 1].

Then, the initial set is put into the Employed Phase search for solution upgrading in the

following iterations. The maximum number of iterations for the algorithm termination is

denoted as Nmax.

2.3.2 Employed Phase search

Starting from the initial set of solutions, a search for “improved solutions” or “better fit

solutions” in the neighborhood of each existing one is conducted. This is equivalent to the

task, carried out by “employed bees” or “employed foragers”, of trying to improve their

food sources by a neighborhood search. Hence, for each original solution, a new candidate

solution is randomly generated and the objective function value of such a new solution is

computed by Equation 2.3. If the fitness value of the candidate is better than that of the

previous solution, then the previous solution will be updated to the new candidate one;

otherwise, the previous solution is kept. At the generic iterative step, the new candidate

solution represented by a vector Θup
i is generated using the following updating procedure:

Θup
ij = Θij + 2λ(rand− 0.5) · (Θij −Θkj) (2.7)

where i = 1, 2, . . . , Npop; k (k 6= i) is a random index selected from the integer set

{1, 2, . . . , Npop}; j represents the j-th parameter to be updated; Θup
ij indicates the j-th

component of the i-th updated candidate solution. And λ is a range control parameter

(usually λ = 1 in the standard ABC algorithm) and is responsible for the nature of the

search: if λ is a small number, then the algorithm will adapt more to a local search; oth-

erwise, the algorithm will function for more global searches. It would then be preferable

to have a parameter that changes value during the search process, from large values at the

beginning of the search (where it is important to explore the entire horizon (space)) to small

values towards the end of the search (where it is important to refine the convergence to the

final optimal solution).

In order to balance the search preference and to control the convergence rate as the
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Figure 2.2: The relationship between iterations and the nonlinear factor.

iteration progresses, a nonlinear factor χiter, defined as:

χiter =


1, if Niter < δNmax

1−
∣∣∣∣Niter − δNmax

Nmax

∣∣∣∣m , if Niter ≥ δNmax

(2.8)

is proposed to modify the search range, where iter denotes the current iteration number, δ

is a parameter controlling the termination point of the nonlinear decreasing behavior which

lies in the range of [0, 1], and m is the power exponent representing the nonlinear decreasing

rate. By changing the values of the parameters δ and m, it is possible to control the nature

of the search process.

Figure 2.2 depicts the behavior of the nonlinear factor χiter as a function of the iteration

number, iter, for different values of m and δ (Nmax = 500). Both plots show a nonlinear,

decreasing behavior of χiter as the iteration number increases: at the beginning (small

iteration number), the value of χiter approaches 1, favoring the search over the entire search

space. However, as the number of iterations increases, χiter approaches, more or less rapidly,

to zero, inducing small variation to the current solution. The idea behind χiter is to free

the method, at its initial steps, to search over the entire search space and to allow for faster

convergence during the local search phase which take place towards the end of the iteration

process. To avoid stagnation around local minima, a concept equivalent to the figure of a

“scout bee” in a hive will later be described.

This newly defined χiter factor is now used to adapt the variability of the new candidate
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solution that can be expressed as:

Θup
ij = Θij + 2χiter(rand− 0.5) · (Θij −Θkj) (2.9)

In order to select which i-th food source to retain (either the current one, Θi, or the new

candidate, Θup
i ), a “greedy” selection based on roulette wheel selection strategy is carried

out by comparing the fitness values corresponding to Θi and Θup
i . The fitness function can

be expressed as:

fit(Θi) =

 [1 +G(Θi)]
−1 , if G(Θi) > 0

1 + |G(Θi)| , if G(Θi) ≤ 0
(2.10)

where G(Θi) and fit(Θi) are the objective function and the fitness values, respectively, for

the solution Θi.

2.3.3 Roulette Wheel selection

After the Employed Phase search, a Roulette Wheel strategy is applied to select solutions

for the Onlooker Phase search. Once all the possible candidate solutions have been iden-

tified and the values of the corresponding fitness functions have been determined, then

it is possible to associate a probability of selection to each candidate. Here, a fitness-

proportional selection process is used so that the probability of selection associated with

the i-th candidate is:

pi =
fit(Θi)∑Npop
i=1 fit(Θi)

(2.11)

In this way, a food source with high value of the fitness function will have a higher probability

of being selected.

At this point, to maintain a certain randomness in the process, the new set of Npop

solutions Θi = {Θi1,Θi2, . . . ,ΘiNθ} updated by the Employed Phase search is selected

at random by generating a uniformly distributed random number ri (i = 1, 2, . . . , Npop),

between 0 and 1, and comparing it with the corresponding probability pi. If the probability

associated with the i-th solution, pi, is greater than the associated random number ri,

then the i-th solution is selected and passed to the Onlooker Phase search; otherwise, the

corresponding solution is kept of its original values.
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2.3.4 Onlooker Phase search

For each selected solution set, a new candidate solution is generated following Equation

(2.9) in the Onlooker Phase Search and its fitness compared to the value of the original

one. The solution with the largest fitness value will be chosen as representative of the i-th

solution for the next iteration.

To this end, the new set of Npop possible solution Θi will represent the starting point

of the next iteration. The solution (e.g., food source location or system’s model) with the

largest fitness value among all the Npop locations is recorded and compared with that of the

previous iteration.

2.3.5 Scout Phase search

It might happen that one of the possible solutions, let’s say the l-th solution, is not im-

proved after a given number, Nlim, of iterations while the other solutions keep improving

their fitness: this can happen if the l-th solution represents a local minimum of the fitness

function. At this point, it will be “abandoned” and a new solution, Θsc
i , will be obtained,

with the j-th element determined by Equation (2.6). The superscript sc is chosen to indi-

cate the candidates “scout bee” nature, which is a bee with the task of searching for a new

food source. The use of such a “scout bee” solution is used to enhance the global search

capability of the algorithm, providing a way to exit stagnation points (e.g., local minima).

If the newly found i-th solution is “better” than the abandoned one, the search will continue

using the new location as the new i-th one. Otherwise, a new solution will be generated

and tested again until a new better solution is found.

2.3.6 Pseudocode of the ABC algorithm

To summarize, the basic steps of this modified ABC (MABC) algorithm are shown in

Algorithm 1. It is noteworthy that the difference between the standard and the modified

versions is dependent of the use of χiter in ABC. The MABC algorithm can be reduced to

the standard version by setting χiter ≡ 1.

This MABC algorithm promises to be a robust optimization algorithm for both global

and local searches. In the identification of a structural system, the unknown model’s pa-
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Algorithm 1 – The basic steps of the MABC algorithm

Initialization : initialize the set of possible solutions using Equation (2.6) (following a uniformly

random distribution in a specified search space), and compute the objective function using Equa-

tion (2.3) and the fitness value using Equation (2.10) of the initial population set;

Niter ← 0;

while (Niter ≤ Nmax) do

Employed Phase search : for each possible solution, create a new candidate solution by Equa-

tion (2.9), evaluate its objective function by Equation (2.3) and its fitness value by Equation

(2.10), and select the one with the best fitness as the new possible solution;

Roulette Wheel selection : calculate the probability of each solution using Equation (2.11)

and select possible solutions from those obtained in the Employed Phase by using the Roulette

Wheel selection strategy;

Onlooker Phase search : create new candidates by Equation (2.9), evaluate each of them by

Equations (2.3) and (2.10), and select the better ones as new possible solutions;

if Nlim is met then

Scout Phase search : investigate a new solution by Equation (2.6), replace the original one

by it, and evaluate it by Equations (2.3) and (2.10);

end if

Niter ← Niter + 1;

end while
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Figure 2.3: The flow chart of system identification using MABC.
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rameters, for example the mass, stiffness and damping parameters, and/or coefficients de-

scribing nonlinear behavior, play the role of parameters Θij that need to be estimated and

the parametric space is the solution search space in the optimization process.

A schematic representation of the proposed algorithm in the context of system identifi-

cation is presented in Figure 2.3.

2.4 Numerical applications

In order to investigate the effective applicability of the proposed approach to structural SI,

two linear systems (5-DOF and 20-DOF) and a nonlinear system (2-DOF) are discussed in

this work. The three systems are 2-D shear frame type structures with lumped masses at

each floor. Comparisons of the proposed technique for parametric identification with other

methodologies suggested in literature [28,29,41,42] are carried out in this part.

To verify the effectiveness of MABC for SI with limited output data measurements and

to learn the influence of data availability on the performance of this algorithm, different sets

of time histories of the structural response have been considered: both the case when the

time histories are measured at every DOF (full instrumentation setup) and the case when

the time histories are available at some DOFs (partial instrumentation setup) have been

analyzed. Since accelerometers are commonly used in dynamic field testing, the structural

response is presented here in the form of time histories of the structural accelerations. To

provide a fairly reasonable search space for the parameters, the lower bounds of the search

space are taken to be half and the upper bounds twice the actual values of the parameters

so that the search space can be defined as θ∗/2 ≤ Γ ≤ 2θ∗, where θ∗ is the parameter

vector representing the true values. To analyze the effect of measurement noise on the

identification of the parameters and so on the effectiveness of the MABC algorithm, various

noise pollution levels in both input and output data have been taken into consideration in

the identification analysis: both input and output (I/O) signals have been polluted with

Gaussian zero-mean white noise sequences. The root mean square (RMS) values of the

noise sequences are defined as some certain percentages (i.e. 0% (no noise), 5%, and 10%)

of the original time history signals. To wit, the noisy input-output measurement takes the
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form as follows:

ymeasure = ycorrect + r× βy × q% (2.12)

where ycorrect is the correct signal, ymeasure the measured noisy signal, r the standard zero

mean Gaussian white noise sequence, βy the root-mean-square (RMS) of the correct signal,

and q the level of noise corruption. It is noteworthy that, in addition to the white noise

cases, the cases of colored input and of colored measurement noise were also considered.

However, the identification results for the colored input and colored noise are almost identi-

cal or even better than those obtained for the corresponding white noise cases and so have

not been included in the chapter for space limitation. In some previous studies on system

identification, the assumption of an a-priori known mass matrix has been used quite fre-

quently. This assumption is justified by the assertion that a sufficiently accurate estimation

of the mass can be obtained from the structural drawing. Here, to test the identification

capabilities of the proposed algorithm, both the case of a priori known mass distribution

and the case of the unknown mass distribution have been considered.

In applying MABC to SI, the most time-consuming operation is represented by solving

the 2nd order ODEs during the fitness evaluations, whereas the time taken by the parameter

updates is comparatively negligible. In the first two examples, the systems’ responses are

simulated using the implicit Newmark-β integration method, while in the third example,

obtained by solving (integrating) the ODEs using the 4th to 5th order embedded Runge-

Kutta integration method with adaptive step-size after transforming the ODEs into state

space form. Moreover, since the MABC is a stochastic algorithm, 20 independent runs have

been conducted so as to obtain statistical insights into the process. The numerical analyses

are programmed in MATLAB R© (The MathWorks, Inc., MA, USA) on a standard Intel (R)

Core (TM) 2 Q9550 2.83GHz personal PC with 2G RAM.

2.4.1 A 5-DOF linear system

To study the performance of the MABC algorithm, first let us consider a 5-DOF linear

structural system, modeled as a shear type frame structure (Figure 2.4). The equation of

motion for such a system can be written as:

Mẍ(t) + Cẋ(t) + Kx(t) = Lf(t) (2.13)
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Figure 2.4: A s-DOF shear type linear structural system.

where x(t), ẋ(t) and ẍ(t) are the system’s response components representing displacement,

velocity, and acceleration vectors, respectively; M, C and K are the mass, damping, and

stiffness matrices, of the order s × s, of the system’s model. For shear type models, the

mass matrix is diagonal and the stiffness matrix is tri-diagonal; here we assume the damping

matrix also has a tri-diagonal structure analogous to the stiffness matrix. f(t) is the external

(force) input vector and L is the input location matrix. The properties of the system in this

example are shown in Table 2.1. For the known mass identification case, the parameters to

be identified in this example can be described by a set of ten variables:

θ = {c1, . . . , c5, k1, . . . , k5} (2.14)

while for the unknown mass case, the system can be fully described by a set of fifteen

variables:

θ = {m1, . . . ,m5, c1, . . . , c5, k1, . . . , k5} (2.15)

In this numerical example, the structure is assumed to be excited by an input force

sequence f3(t), which is supposed to be a known white noise sequence of 5 seconds (following

Gaussian distribution with zero mean and a RMS scaled to 1 N) acting on the 3rd DOF.

The sampling time is ∆t = 0.005 sec. In the full output scenario, all the floor accelerations

are measured, whereas in the partial output scenario only the accelerations at the 2nd, 3rd

and 4th DOFs are available. The choice of such floors was dictated by the requirements that

guarantee uniqueness of the identified solution [31]. The values of the algorithm parameters
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Table 2.1: The structural properties of a 5-DOF linear system.

Floor (Mode)

number

Mass

(kg)

Damping

(kNs/m)

Stiffness

(kN/m)

Frequency

(Hz)

Damping

ratio (%)

1 0.1 0.5 130 1.6333 1.9736

2 0.1 0.5 130 4.7676 5.7608

3 0.1 0.5 130 7.5157 9.0813

4 0.1 0.5 130 9.6549 11.6661

5 0.1 0.5 130 11.0119 13.3058

used in the MABC are: Npop = 40 (for the known mass case), Npop = 80 (for the unknown

mass case), Nmax = 1000, Nlim = 200, m = 3 and δ = 0.2. The settings of m and δ

follow the assumption that χiter starts to nonlinearly decrease not early than 1/3 of Nmax

iterations and reaches the final value not smaller than 0.5.

For comparison purposes, the standard ABC algorithm was tested, in which the al-

gorithmic parameters are the same as those used in the modified ABC algorithm (apart

from the nonlinear factor χiter). A classic rank-based genetic algorithm (GA) was also

implemented here by using the MATLAB R© GA ToolboxTM . In this GA, the population

size is chosen to be equal to Npop, the maximum generation equals to Niter. The rate of

crossover was selected equal to 0.8 while a Gaussian function with zero mean value was

adopted for mutation strategy with a scale factor of 0.5 and shrink factor of 0.75 [43]. For

the unknown mass case with complete instrumentation, an algorithm presented in [44, 45],

based on the identification of a first-order model and on its convertion to second order, is

used for comparison purpose.

Simulation results for the known mass case are summarized in Table 2.2 and Table 2.3

corresponding to full output scenario and partial output scenario, respectively. It can be

observed that the MABC algorithm is able to estimate the correct values of the structural

parameters in the noise free case even with partial measurements, whereas the results ob-

tained by the standard ABC algorithm and GA have slight errors. Furthermore, it is seen

from Table 2.2 that the MABC algorithm yields “finer” results (with errors from 0% to 0.6%)

than those obtained via the standard ABC algorithm (with errors from 0.1% to 1.5%) for
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Table 2.2: Results for 5-DOF known mass system in the full output scenario.

Params. True

0% noise 10% noise

ABC MABC ABC MABC

Mean Std. Mean Std. Mean Std. Mean Std.

c1 0.5 0.4996 (0.1) 0.002 0.5000 (0.0) 0 0.4927 (1.5) 0.026 0.4989 (0.2) 0.022

c1 0.5 0.5000 (0.0) 0.001 0.5000 (0.0) 0 0.4996 (0.1) 0.017 0.4986 (0.3) 0.016

c1 0.5 0.5003 (0.1) 0.001 0.5000 (0.0) 0 0.5020 (0.4) 0.010 0.4994 (0.1) 0.010

c1 0.5 0.5000 (0.0) 0.001 0.5000 (0.0) 0 0.4994 (0.1) 0.006 0.4970 (0.6) 0.009

c1 0.5 0.5000 (0.0) 0.001 0.5000 (0.0) 0 0.4985 (0.3) 0.014 0.5011 (0.2) 0.009

k1 130 130.03 (0.02) 0.091 130.00 (0.0) 0.002 130.19 (0.1) 0.645 129.81 (0.1) 0.993

k2 130 129.96 (0.03) 0.091 130.00 (0.0) 0.002 129.72 (0.2) 1.064 129.95 (0.04) 0.732

k3 130 130.00 (0.0) 0.034 130.00 (0.0) 0.001 129.95 (0.04) 0.637 130.03 (0.02) 0.748

k4 130 130.00 (0.0) 0.062 130.00 (0.0) 0.001 130.22 (0.2) 0.537 130.25 (0.2) 0.475

k5 130 130.00 (0.0) 0.070 130.00 (0.0) 0.001 129.95 (0.04) 0.612 129.92 (0.1) 0.701

Max error (%) 0.1 0 1.5 0.6

Note: The values in parentheses are absolute relative errors in %. Std. represents standard deviation.

Table 2.3: Results for 5-DOF known mass system in the partial output scenario.

Params. True

0% noise 10% noise

GA MABC GA MABC

Mean Std. Mean Std. Mean Std. Mean Std.

c1 0.5 0.5149 (2.9) 0.054 0.4999 (0.02) 0 0.5238 (4.8) 0.0746 0.5089 (1.8) 0.049

c2 0.5 0.4885 (2.3) 0.049 0.5000 (0.0) 0 0.4821 (3.6) 0.0397 0.4913 (1.7) 0.034

c3 0.5 0.5076 (1.5) 0.020 0.5001 (0.02) 0 0.5261 (5.2) 0.0575 0.5158 (3.2) 0.029

c4 0.5 0.4988 (0.2) 0.007 0.5000 (0.0) 0 0.4690 (6.2) 0.0801 0.5075 (1.5) 0.022

c5 0.5 0.4907 (1.9) 0.020 0.5000 (0.0) 0 0.5281 (5.6) 0.0749 0.4993 (0.1) 0.022

k1 130 132.41 (1.9) 1.975 130.01 (0.01) 0.020 132.59 (2.0) 2.4832 129.83 (0.1) 1.906

k2 130 133.44 (2.6) 2.002 129.99 (0.01) 0.018 132.03 (1.6) 2.0798 129.70 (0.2) 2.195

k3 130 129.73 (0.2) 0.636 130.00 (0.0) 0.011 133.22 (2.5) 2.9945 129.31 (0.5) 1.479

k4 130 131.14 (0.9) 1.024 130.00 (0.0) 0.007 130.84 (0.6) 0.9761 130.05 (0.1) 1.182

k5 130 132.03 (1.6) 1.863 130.00 (0.0) 0.008 132.57 (2.0) 2.6185 130.48 (0.4) 0.908

Max error (%) 2.9 0.02 6.2 3.2

Note: The values in parentheses are absolute relative errors in %. Std. represents standard deviation.
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both noise free and 10% RMS noise cases. However, both versions of ABC algorithm seem

relatively insensitive to noise corruption. Similarly, in the partial output scenario, both

the MABC algorithm and GA perform well and yield good estimation results with small

errors, ranging from 0.02% to 3.2% for MABC, and from 2.9% to 6.2% for GA, yet with the

modified ABC algorithm performing slightly better than GA. Even for the 10% RMS noise

polluted case with partial measurements, the results obtained by the MABC algorithm show

that estimation errors pertaining to damping and stiffness parameters remain very small

with maximum values of 3.2% and 0.5%, respectively. Figure 2.5 presents a noise free and

noise polluted comparison of identified damping and stiffness parameters for the known

mass case with partial measurements: the parameter estimates are observed to converge to

the true values after 1 × 104 forward analyses, which demonstrates the accuracy and the

high efficiency of the proposed approach.

0 0.5 1 1.5 2 2.5 3 3.5 4
−14

−12

−10

−8

−6

−4

−2

Number of function evaluations (x104)

O
bj

ec
tiv

e 
fu

nc
tio

n

Objective function

0 0.5 1 1.5 2 2.5 3 3.5 4
0.4

0.5

0.6

0.7

0.8

Number of function evaluations (x104)

D
am

pi
ng

 [k
N

s/
m

]

Identified damping parameters

Reference
c1
c2

c3
c4
c5

0 0.5 1 1.5 2 2.5 3 3.5 4
120

125

130

135

140

145

150

Number of function evaluations (x104)

S
tif

fn
es

s 
[k

N
/m

]

Identified stiffness parameters

Reference
k1
k2

k3
k4
k5

(a) Noise free

0 0.5 1 1.5 2 2.5 3 3.5 4
−5

−4.5

−4

−3.5

−3

Number of function evaluations (x104)

O
bj

ec
tiv

e 
fu

nc
tio

n

Objective function

0 0.5 1 1.5 2 2.5 3 3.5 4
0.4

0.5

0.6

0.7

0.8

Number of function evaluations (x104)

D
am

pi
ng

 [k
N

s/
m

]

Identified damping parameters

Reference
c1
c2

c3
c4
c5

0 0.5 1 1.5 2 2.5 3 3.5 4
110

120

130

140

150

160

Number of function evaluations (x104)

S
tif

fn
es

s 
[k

N
/m

]

Identified stiffness parameters

Reference
k1
k2

k3
k4
k5

(b) 10% RMS noise in I/O signals

Figure 2.5: MABC convergence for the known mass case with partial measurements.
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Table 2.4: Results for 5-DOF unknown mass system in the full output scenario.

Params. True

0% noise 10% noise

Ref. [42, 44,45] MABC Ref. [42,44,45] MABC

Mean Mean Std. Mean Mean Std.

m1 0.1 0.1000 (0.0) 0.1001 (0.1) 0.003 0.0988 (1.2) 0.1030 (3.0) 0.003

m2 0.1 0.1000 (0.0) 0.1003 (0.3) 0.001 0.0974 (2.6) 0.1020 (2.0) 0.002

m3 0.1 0.1000 (0.0) 0.1001 (0.1) 0.000 0.0999 (0.1) 0.1011 (1.1) 0.001

m4 0.1 0.1000 (0.0) 0.1008 (0.8) 0.002 0.0973 (2.7) 0.1035 (3.5) 0.002

m5 0.1 0.1000 (0.0) 0.1001 (0.1) 0.003 0.0975 (2.5) 0.1029 (2.9) 0.004

c1 0.5 0.5000 (0.0) 0.4886 (2.3) 0.038 0.6126 (22.5) 0.4906 (1.9) 0.057

c2 0.5 0.5000 (0.0) 0.5069 (1.4) 0.022 0.7481 (49.6) 0.5084 (1.7) 0.030

c3 0.5 0.5000 (0.0) 0.4967 (0.7) 0.015 0.5014 (0.3) 0.5127 (2.5) 0.036

c4 0.5 0.5000 (0.0) 0.508 (1.6) 0.014 0.4904 (1.9) 0.5060 (1.2) 0.030

c5 0.5 0.5000 (0.0) 0.4989 (0.2) 0.010 0.5745 (14.9) 0.5127 (2.5) 0.029

k1 130 130.00 (0.0) 129.99 (0.1) 5.448 129.94 (0.1) 134.38 (3.4) 5.522

k2 130 130.00 (0.0) 130.11 (0.1) 2.367 120.43 (7.4) 132.49 (1.9) 2.929

k3 130 130.00 (0.0) 130.20 (0.2) 0.961 129.25 (0.6) 131.70 (1.3) 2.129

k4 130 130.00 (0.0) 130.72 (0.6) 2.059 130.48 (0.4) 133.37 (2.6) 2.087

k5 130 130.00 (0.0) 130.28 (0.2) 2.911 123.86 (4.7) 134.04 (3.1) 3.381

Max error (%) 0 2.3 49.6 3.5

Note: The values in parentheses are absolute relative errors in %. Std. represents standard deviation.

A more difficult case for the 5-DOF system is when the mass matrix of the system

is also unknown and needs to be identified. Tables 2.4 and 2.5 present the results of the

identification for both the full output scenario and the partial output scenarios, respectively.

In the full output scenario, both the MABC algorithm and the algorithm proposed in

[42] provide good identification results, with a maximum error of 2.3%, for the noise free

case. However, in the 10% RMS noise corruption in the I/O signals, the MABC algorithm

estimated errors of mass, stiffness, and damping parameters range from 1.1% to 3.5%, from

1.2% to 2.5%, and 1.3% to 3.4%, respectively, still providing excellent identification even

for large noise levels. On the contrary, while the algorithm in [42,44,45] is able to estimate

mass and stiffness well, it yields very large errors in damping coefficients identification (up to

49.6%). In the partial output scenario, the methodology in [42,44,45] cannot be applied and

so the results of the proposed ABC algorithm are compared with those obtained through

the GA previously considered. Again, it was found that the results by the MABC algorithm
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Table 2.5: Results for 5-DOF unknown mass system in the partial output scenario.

Params. True

0% noise 10% noise

GA MABC GA MABC

Mean Std. Mean Std. Mean Std. Mean Std.

m1 0.1 0.1034 (3.4) 0.008 0.1012 (1.2) 0.003 0.0965 (3.5) 0.007 0.1025 (2.5) 0.006

m2 0.1 0.1032 (3.2) 0.007 0.1013 (1.3) 0.002 0.1010 (1.0) 0.004 0.1028 (2.8) 0.003

m3 0.1 0.1000 (0.0) 0.000 0.1001 (0.1) 0.001 0.1023 (2.3) 0.002 0.1010 (1.0) 0.001

m4 0.1 0.1026 (2.6) 0.007 0.1016 (1.6) 0.003 0.1008 (0.8) 0.003 0.1039 (3.9) 0.004

m5 0.1 0.1026 (2.6) 0.010 0.1012 (1.2) 0.004 0.0951 (4.9) 0.016 0.1026 (2.6) 0.006

c1 0.5 0.5309 (6.2) 0.091 0.5144 (2.9) 0.045 0.4207 (15.9) 0.122 0.5100 (2.0) 0.072

c2 0.5 0.4685 (6.3) 0.102 0.4926 (1.5) 0.050 0.5616 (12.3) 0.103 0.4845 (3.1) 0.098

c3 0.5 0.5288 (5.8) 0.078 0.5021 (0.4) 0.023 0.4694 (6.1) 0.088 0.5132 (2.6) 0.049

c4 0.5 0.4988 (0.2) 0.009 0.5076 (1.5) 0.017 0.5072 (1.4) 0.059 0.5108 (2.2) 0.035

c5 0.5 0.4907 (1.9) 0.055 0.4995 (0.1) 0.019 0.5035 (0.7) 0.019 0.5097 (1.9) 0.037

k1 130 137.41 (5.7) 7.824 132.31 (1.8) 5.215 121.47 (6.6) 12.542 134.41 (3.4) 7.271

k2 130 133.44 (2.6) 3.085 131.95 (1.5) 3.643 130.46 (0.4) 2.284 133.90 (3.0) 4.585

k3 130 129.73 (0.2) 0.712 130.134 (0.1) 0.815 135.09 (3.9) 3.481 130.51 (0.4) 2.187

k4 130 131.14 (0.9) 2.397 131.29 (1.0) 2.171 132.53 (1.9) 2.309 133.13 (2.4) 2.907

k5 130 134.02 (3.1) 7.085 131.66 (1.3) 4.511 125.72 (3.3) 6.156 134.53 (3.5) 5.286

Max error (%) 6.3 2.9 15.4 3.9

Note: The values in parentheses are absolute relative errors in %. Std. represents standard deviation.

are much better than those obtained by GA for both the noise free and 10% RMS noise

contamination cases despite noise corruption and lack of measurements. The maximum

errors obtained by GA jumps from 6.3% to 15.4% as noise level increases from noise free to

10% RMS noise, whereas those obtained by MABC remain basically the same (from 2.9%

to 3.9%). It is obvious that the MABC algorithm also gives much smaller deviation values

than those by GA (Table 2.5), showing a good level of accuracy despite measurement noise

and lack of data.

Similar to Figure 2.5 for the above known mass case, Figure 2.6 shows a noise free

and noise polluted comparison of the identified parameters for the unknown mass case

with partial measurements. In both cases, convergence is quite fast (after about 4 × 104

forward analyses). It can be seen that the maximum estimate error often exists in mass

and damping parameters and signal noise corruption has usually larger impact on those

parameters’ estimation.
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Figure 2.6: MABC convergence for the unknown mass case with partial measurements.

To test the robustness of the proposed technique in each independent run, the proba-

bility density functions (PDFs) of the normalized parameters have been obtained and are

presented in Figure 2.7. The normalized parameter is defined as the ratio of the identified

parameter value to the true value. In Figure 2.7, the PDFs of the normalized parameters

are obtained from 20 independent runs in the unknown mass case with partial output and

10% RMS noise corruption. It is seen that the normalized parameters approximately follow

normal distributions with the mean values very close to 1 and small standard deviations,

which verifies that the identified parameters are very close to the true values.
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Figure 2.7: The PDFs of the normalized parameters obtained from 20 independent runs in

the unknown mass case with partial output and 10% RMS noise corruption.

2.4.2 A 20-DOF linear system

To further compare the performance of the modified version of ABC with other heuristic

methodologies (e.g., GAs, PSO, and DE) and to verify its applicability to SI as the number

of parameters to be identified increases, a two-dimensional 20-DOF shear type linear system

is analyzed, with properties given in Table 2.6. This system was used by Perry et al. [17]

and Tang et al. [32] to test GAs and DE, respectively. The equations of motion are those

shown in Equation (2.13) with the damping matrix expressed as a linear combination of the

mass matrix M and of the stiffness matrix K written as:

C = aM + bK (2.16)

where a and b are two constant coefficients that can be derived from

ξr =
a

2ωr
+
bωr
2

(2.17)

where ξr is the modal damping ratio associated to the r-th vibrational mode (e.g., r = 1, 2),

and ωr the corresponding modal natural frequency. In this example, ξr is set as 5% in the

first and second vibration modes.
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In this example, the masses, modal damping ratios (used for determining the damping

coefficient parameters a and b), and stiffness values are the unknown parameters to be

identified. For the known mass identification case, the parameters to be identified can be

described by a set of 22 variables:

θ = {k1, . . . , k20, ξ1, ξ2} (2.18)

while for the unknown mass case, the system can be described by a set of 42 variables:

θ = {m1, . . . ,m20, k1, . . . , k20, ξ1, ξ2} (2.19)

Input forces are assumed to be Gaussian noise sequences with the RMS scaled to 1

kN, a duration of 10 seconds, and sampling time ∆t = 0.01 sec; they are applied at every

5 floors of the structure, in exactly the same way described in [17, 32]. Accelerations are

measured at 40% of the floors for the known mass case and at 60% of the floors for the

unknown mass case as detailed in Table 2.7. The MABC parameters used in this example

are: Npop = 50 (for the known mass case), Npop = 100 (for the unknown mass case),

Nmax = 1000, Nlim = 200, m = 3 and δ = 0.2.

Table 2.6: The structural properties of a 20-DOF linear system.

Mass (kg)
Levels 1–10 4000

Levels 11–20 3000

Stiffness (kN/m)

Levels 1-10 5000

Levels 11–15 4000

Levels 16–20 3500

Natural period of vibration (sec)
First mode 2.123

Second mode 0.797

Table 2.7: Location of acceleration measurements for a 20-DOF system.

Mass cases Floor levels

Known mass 2, 4, 7, 10, 12, 14, 17, 20

Unknown mass 1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 18, 20
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The identified results for the 20-DOF system are presented in Tables 2.8 and 2.9 in

comparison with those obtained by GA, PSO, DE and SSRM [17, 32]. The SSRM is a

search space reduction method integrated with a modified GA. Figures 2.8 and 2.9 show

convergences of the mean results obtained via the MABC algorithm for the known and the

unknown mass cases, respectively.

For the known mass case without noise corruption, the MABC provides much better

parameter estimation than the GA and PSO, yielding much smaller errors (a maximum

value of 0.76% in damping parameter estimation), while its performance is comparable to

those of DE and SSRM. From the convergence graphs shown in Figure 2.8, it is observed

that all the parameter estimates stabilize after 2 × 104 forward analyses. Moreover, the

estimated values of damping ratios are quite accurate.

For the unknown mass case with noise corruption (5% and 10% RMS) in I/O signals,

the MABC algorithm performs better than the PSO and as well as the DE and the SSRM,

Table 2.8: Results for 20-DOF known mass system without noise corruption.

Error (%) GA [17] SSRM [17] PSO [32] DE [32] MABC

Mean–k 8.33 0.52 0.71 0.41 0.23

Max.–k 31.28 1.6 3.37 1.29 0.78

Mean–c 15.81 0.64 2.24 0.53 0.22

Max.–c 28.97 1.21 8.31 1.45 0.76

Table 2.9: Results for 20-DOF unknown mass system with noise corruption.

Error (%)
5% RMS noise corruption 10% RMS noise corruption

SSRM [17] PSO [32] DE [32] MABC SSRM [17] PSO [32] DE [32] MABC

Mean–m 1.51 3.61 1.42 1.95 3.00 7.06 3.29 2.84

Max.–m 4.02 10.81 3.56 4.02 10.4 16.27 11.21 5.82

Mean–k 1.38 3.65 1.27 2.12 2.78 5.31 2.63 3.11

Max.–k 3.83 8.13 4.11 4.69 8.64 14.36 9.02 4.96

Mean–c 6.70 10.34 7.23 1.11 14.69 17.31 13.54 1.37

Max.–c 12.9 16.57 10.68 3.00 20.36 29.06 21.04 3.01
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Figure 2.8: Convergence for the free noise known mass case and 40% measurements.
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Figure 2.9: Convergence for the unknown mass case with 60% measurements and 10% noise.
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Figure 2.10: Typical PDFs of the normalized parameters obtained from 20 independent

runs in the unknown mass case with 60% measurements and 10% noise corruption.

with the maximum errors of mass and stiffness obtained by MABC being slightly bigger

than those obtained via the DE and the SSRM. On the other hand, the MABC algorithm

seems to less sensitive to the presence of noise in the damping ratio estimation. In general,

the maximum errors among all the identified parameters obtained by MABC (4.69% for 5%

noise corruption and 4.96% for 10% noise corruption) are quite good when compared with

those obtained by other methods.

Compared with the results discussed by Tang et al. [32], the proposed MABC algorithm

seems to be more efficient than the DE algorithm: when applied to this 20-DOFs case,

the DE algorithm uses an initial population size of 200 (equivalent Nmax = 1000) while

the proposed MABC algorithm runs with a much smaller initial population size (50 for

the known mass case and 100 for the unknown mass case). The population size has a

strong impact on the computational effort of the algorithm since it is linked to the number

of fitness function evaluations which involve the time-consuming operation of solving the

2nd order ordinary differential equations of motion. For an initial population of 200, the

DE algorithm will require about 2 × 106 fitness evaluations while the MABC algorithm,

for initial populations of 50 (known mass case) and 100 (unknown mass case), will require

about 4.5×104 and 9.5×104 function evaluations, respectively, with a substantial reduction

in computational time. In terms of the CPU time used for each run by the proposed

algorithm coded in MATLAB R©, it took on average 18.5 min and 41.6 min, for each single

simulation for the known and unknown mass case, respectively. The computational cost can
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be significantly decreased if the scheme is set to run in parallel on a multi-processor unit

coded in more efficient computer languages (e.g., C, C++, etc.). Figure 2.10 shows several

typical PDFs of the normalized mass and stiffness parameters obtained from 20 independent

runs in the unknown mass case with 10% RMS noise corruption. It is concluded from this

figure that the identified structural parameters are quite accurate.

2.4.3 A 2-DOF nonlinear system

To test the versatility of the modified ABC algorithm in handling nonlinear problems, a

known mass 2-DOF shear type hysteretic nonlinear system, considered by Xue et al. [29],

is employed as the third numerical example here, as shown in Figure 2.11. The equation of

motion of the system can be written as:

Mẍ(t) + Cẋ(t) + r(t) = −Mlüg(t) (2.20)

where M and C are the 2 × 2 mass and damping matrices; x, ẋ and ẍ are relative dis-

placement, velocity, and acceleration vectors to the ground, respectively; l is the ground

motion influence coefficient vector with element 1; üg(t) is the earthquake acceleration; and

r = (r1− r2, r2)T is the vector containing the restoring forces at each floor expressed by the

two following expressions.

ṙ1 =
[
k1 − α1 sgn(ẋ1)r1|r1|n1−1 − β1|r1|n1

]
ẋ1

ṙ2 =
[
k2 − α2 sgn(ẋ2 − ẋ1)r2|r2|n2−1 − β2|r2|n2

]
(ẋ2 − ẋ1)

(2.21)

This nonlinear model was clarified as the Bouc-Wen model [46]. In above two equations, ẋ1

and ẋ2 are the velocities of the first and second masses, respectively, k1 and k2 are stiffness

parameters of the vertical elements, α1, α2, β1, β2, n1and n2 are nonlinear coefficient

parameters, while sgn(·) is signum function (e.g., sgn(ϑ) gives −1, 0, or 1 depending on

whether ϑ is negative, zero, or positive, respectively). Hence, the system parameters to be

identified can be grouped in a set of 10 variables as:

θ = {c1, c2, k1, k2, α2, α2, β1, β2, n1, n2} (2.22)

The values of such parameters used in the numerical analyses are shown in Table 2.10.
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The ElCentro ARR4S40E (1940) earthquake acceleration data is used as input to the

system with a sampling frequency of 100 Hz (∆t = 0.01 sec) for the duration of 10 seconds.

The maximum peak value of the acceleration is scaled to 3g and the signal is filtered with

a high frequency cutoff of 30 Hz and a low frequency cutoff of 0.1 Hz. In order to study

the effects of incomplete sets of measurements, two cases are considered as shown in Figure

2.11: (1) the full output case in which a full set of measurements was available, and (2) the

partial output case with only one output on the 1st DOF. Similar to the cases in [29], two

noise levels 0% and 5% were considered to emphasize the effect of measurement noise on

the identification of the parameters. The MABC parameters are set as follows: Npop = 30,

Nmax = 500, Nlim = 200, m = 3 and δ = 0.2. To compare the performance of the MABC

algorithm for structural SI with other heuristic methodologies, the enhanced particle swarm

optimization (EPSO) method proposed by Charalampakis and Dimou [28] was used: the

inertia weight factor was set as 0.6 and the two acceleration factors as 1.7 suggested in [28];

the population size, maximum iteration number and number of independent runs were the

same as those used in MABC.
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Figure 2.11: A 2-DOF nonlinear system with ground motion excitation.

Table 2.10: The structural properties of a 2-DOF nonlinear system.

Params.

Mass Damping Stiffness Nonlinear parameters

m1 m2 c1 c2 k1 k2 α1 α2 β1 β2 n1 n2

Value 100 80 0.55 0.5 30 24 1 2 2 1 3 2

Note: the units for mass, damping and stiffness are kg, kNs/m and kN/m.
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The mean values and standard deviations are summarized in Table 2.11, for the full

output scenario, and in Table 2.12, for the partial output scenario. Looking at both instru-

mentation setups, it can be seen that the errors obtained using MABC range from 0.1% to

4.0%, in the noise free case, and from 0.1% to 6.9% in the noise polluted case, while, using

EPSO, the corresponding errors range from 0.1% to 5.2%, and from 0.4% to 19.9%. The

results show that the MABC approach provides almost perfect identification in the absence

of measurement noise, as the EPSO. However, in the noise polluted case, the MABC algo-

rithm performs significantly better than EPSO which appears to be more sensitive to noise

corruption. From further analysis, it appears that the MABC algorithm is able to yield

good identification results with small errors, even at higher noise levels. For all cases, the

standard deviations obtained by the MABC are smaller than those by EPSO.

It is noteworthy that the maximum errors usually exist in the estimation of the nonlinear

parameters αi, βi and ni (i = 1, 2), and the signal noise corruption has larger impact on the

estimation of such parameters than on the estimation of damping and stiffness parameters.

Figure 2.12 presents the hysteresis loops of the first floor element for the noise free and noise

polluted cases in the partial output scenario. It can be seen that there is a nearly perfect

Table 2.11: Results for 2-DOF known mass system in the full output scenario.

Params. True

0% RMS noise 5% RMS noise

EPSO [28] MABC EPSO [28] MABC

Mean Std. Mean Std. Mean Std. Mean Std.

c1 0.55 0.5529 (0.5) 0.006 0.5540 (0.7) 0.006 0.5606 (1.9) 0.004 0.5522 (0.4) 0.011

c2 0.5 0.4983 (0.3) 0.004 0.4990 (0.2) 0.004 0.4771 (4.6) 0.003 0.4969 (0.6) 0.013

k1 30 29.969 (0.1) 0.150 30.042 (0.1) 0.175 30.111 (0.4) 0.1437 29.929 (0.2) 0.339

k2 24 24.026 (0.1) 0.158 23.993 (0.1) 0.216 23.744 (1.1) 0.0856 24.115 (0.5) 0.431

α1 1 0.9533 (4.7) 0.133 0.9841 (1.6) 0.093 0.9710 (2.9) 0.1409 0.9775 (2.3) 0.194

α2 2 2.0576 (2.9) 0.142 2.0098 (0.5) 0.146 2.1955 (9.8) 0.0698 1.9672 (1.6) 0.315

β1 2 1.9451 (2.7) 0.226 2.0407 (2.0) 0.190 2.0607 (3.1) 0.2853 1.9754 (1.2) 0.390

β2 1 1.0375 (3.7) 0.143 0.9782 (2.2) 0.104 0.8470 (15.3) 0.1062 1.0611 (6.1) 0.382

n1 3 3.0609 (2.0) 0.174 3.0019 (0.1) 0.124 3.0248 (0.8) 0.1925 3.0433 (1.4) 0.295

n2 2 2.0260 (1.3) 0.134 2.0455 (2.3) 0.081 2.3338 (13.3) 0.0869 2.0184 (0.9) 0.281

Max error (%) 4.7 2.3 15.3 6.1

Note: The values in parentheses are absolute relative errors in %. Std. represents standard deviation.
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Table 2.12: Results for 2-DOF known mass system in the partial output scenario.

Params. TRUE

0% RMS noise 5% RMS noise

EPSO [28] MABC EPSO [28] MABC

Mean Std. Mean Std. Mean Std. Mean Std.

c1 0.55 0.5546 (0.8) 0.004 0.5529 (0.5) 0.004 0.5383 (2.1) 0.0078 0.5534 (0.6) 0.013

c2 0.5 0.4973 (0.5) 0.003 0.5023 (0.5) 0.002 0.4971 (0.6) 0.0071 0.5002 (0.1) 0.019

k1 30 30.063 (0.2) 0.105 29.992 (0.1) 0.111 29.437 (1.9) 0.0879 30.054 (0.2) 0.343

k2 24 23.926 (0.3) 0.121 24.035 (0.1) 0.072 24.624 (2.6) 0.0277 24.032 (0.1) 0.352

α1 1 1.0024 (0.2) 0.085 0.9664 (3.4) 0.086 0.9543 (4.6) 0.1026 1.0245 (2.4) 0.187

α2 2 2.0963 (4.8) 0.110 1.9189 (4.0) 0.131 1.6938 (15.3) 0.2295 2.0512 (2.6) 0.657

β1 2 2.0749 (3.7) 0.347 1.9732 (1.3) 0.187 1.7163 (14.2) 0.1802 2.0716 (3.6) 0.404

β2 1 0.9481 (5.2) 0.140 1.0345 (3.4) 0.074 0.9679 (3.3) 0.1393 0.9332 (6.7) 0.362

n1 3 2.9710 (1.0) 0.101 3.038 (1.3) 0.124 3.1661 (5.5) 0.1392 2.9838 (0.5) 0.243

n2 2 2.1009 (5.0) 0.183 2.0180 (0.9) 0.112 2.3982 (19.9) 0.226 2.0468 (2.3) 0.394

Max error (%) 5.2 4.0 19.9 6.7

Note: The values in parentheses are absolute relative errors in %. Std. represents standard deviation.
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Figure 2.12: Hysteresis loops of the first DOF with partial measurements.

agreement between the simulated and MABC estimated results in the phase-plane plots of

the Bouc-Wen parameter r1 vs. the displacement x1, even with partial outputs and at a

high noise corruption level. Figure 2.13 shows a comparison of the identified normalized

parameters for both the noise free and the noise corrupted measurements in the partial

output case. It is observed that the estimation of parameters rapidly converges and is able

to reach good results after about 8× 103 forward function evaluations.

Figure 2.14 illustrates the PDFs of the normalized parameters obtained from 20 inde-
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pendent runs in the partial output scenario with 5% RMS noise corruption. Similar to the

first two examples, the PDFs approximately follow normal distribution. The mean values of

these normalized parameters are quite close to 1 accounting for good parameter estimates.
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Figure 2.13: MABC convergence for the case of partial measurements.
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Figure 2.14: Typical PDFs of the normalized parameters obtained from 20 independent

runs with 10% RMS noise corruption.

2.4.4 Observations of the numerical examples

The simulation results previously discussed lead to the following observations:

(i) From the simulation results, it can be concluded that the identification of unknown

mass system is much more challenging than that of known mass system, because

the unknown mass system identification is always a high multimodal problem with

complex nonlinearities and convexities while the known mass system has a reduction

of the search space.

(ii) The MABC algorithm has proven to be very efficient for structural parameter iden-

tification: it converges relatively quickly, it is robust, and yields small deviations of

parameter estimation in each independent run.

(iii) All the algorithms considered in this study (MABC, GA, EPSO, etc.) yield good

estimation results with small errors for noise free cases in full output scenarios. The

MABC algorithm, however, performs more satisfactorily than others when dealing

with noisy I/O signals, unknown masses and partial output information.

(iv) The parameters obtained by the MABC algorithm converge quite rapidly the correct

solutions for known mass cases. For complex unknown mass systems, larger population

sizes or more iteration cycles can be employed in order to find finer solutions.

(v) The MABC algorithm seems to be relatively insensitive to noise. It could provide

accurate parameter estimations even for complex systems with partial measurements
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at high noise corruption levels (i.e. 10% RMS noise in I/O signals).

(vi) The maximum error mostly occurs in the identification of mass and damping param-

eters and/or nonlinear parameters. This phenomenon is enhanced if the measured

signals are corrupted by noise.

2.5 Conclusions

In this chapter, a modified artificial bee colony (MABC) algorithm has been presented

in the context of structural system identification. This algorithm is a population based

stochastic algorithm which requires only few common control parameters. It has a simple

structure, it is easy to implement, it is robust, and it provides results with high accuracy.

The application of proposed nonlinear factor for convergence control enhances the balance

of global and local searches. The idea behind the nonlinear factor is to free the method, at

its initial steps, to search over the entire search space and to allow for faster convergence

during the local search phase which takes place towards the end of the iteration process.

In this way, the search space is gradually reduced following a nonlinear trend. To avoid

stagnation around local minima, a “scout bee” search will be carried out if needed. Thus,

the MABC algorithm is supposed to be able to locate finer solutions.

To investigate the applicability of this proposed technique to structural system identifi-

cation, two linear systems (5-DOF and 20-DOF) and a nonlinear system (2-DOF) have been

studied under different conditions, addressing issues such as the number of measurements

used in identification, noise in the signals, and the knowledge of the structural mass. In all

cases considered, the simulation results show that the proposed MABC algorithm can pro-

duce excellent parameter estimation with small errors. The presented method is effective,

robust and efficient even with reduced partial measurements at high noise pollution levels.
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Chapter 3

A Hybrid Parallel ABC algorithm

with Search Space Reductions for

Output-Only Identification with

Unmeasured Input Excitations

In this chapter, a hybrid heuristic optimization strategy in a parallel scheme is presented to simulta-

neously identify structural parameters and dynamic input forces from incomplete sets of output-only

measurements. A modified Newmark integration method is proposed to predict the unmeasured force

time-history. This chapter is reproduced from the paper co-authored with Professor Raimondo Betti,

which was published in the Journal of Structural Control and Health Monitoring [47].

3.1 Introduction

The majority of the study on identification of structural systems in the time domain mainly

focuses on estimating physical parameters, such as mass, stiffness and damping coefficients,

using both the measurement of the input excitation as well as the structural response.

However, in practice, the time-history of dynamic input forces, e.g. wind, traffic, etc., are

often difficult to be directly measured: while the points of application of such forces could

be, more or less, accurately predicted, e.g. the lower-chord nodes in a truss bridge for traffic
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loads or the upwind facade of a building for wind loads, the magnitudes of such forces cannot

be easily measured and is usually inferred from the measurements of system response. For

this reason, dealing with unmeasured input excitations has made the identification of the

structural parameters a much more challenging task, with the analysis relying only on

the information contained in the structural response (output-only) measurements and on

assumptions linked to the experience-based knowledge of the model (e.g., structural mass

is known) and the excitations (e.g., input locations are known).

It then becomes natural (and attractive) to look at the possibility of identifying the input

force along with the physical parameters just by handling the measurements of structural

response. In the past, input force identification has been carried out under the assumption

that the system is “completely known”, e.g. all the system’s parameters are known. Turco

[48] proposed a strategy to identify/reconstruct the excitation forces starting from the

measurement of the stress or strain history in a suitable number of points of a known

structure. Lu and Law [49] presented a sensitivity-based method for identifying input

excitations approximated by Fourier series using the structural dynamic response. Yet,

most of system’s parameters cannot be assumed known a priori (e.g., degradation and

deterioration might exist in a structure) but need to be identified.

In recent years, there have been attempts to simultaneously identify the system’s pa-

rameters and the input force within a time-domain framework using techniques such as the

Iterative Least-Squares Estimation (ILSE) and Kalman filter based techniques. Wang and

Haldar [50] proposed a time domain Recursive Least-Squares (RLS) technique to estimate

the stiffness and damping parameters, at the element level, of a shear type structure ex-

cited by unknown input forces. In a later work, they further extended this approach by

combining it with the EKF and with the Weighted Global Iteration (WGI) method for

the case of a limited number of time-history measurements [51]. Similar studies on local

level structural health assessment with unknown input excitation using ILSE and/or RLS

based techniques can be also found in [52, 53]. Moreover, Chen and Li [54] presented a

modified ILSE procedure for simultaneous identification of system parameters and input

excitation from output-only measurements imposing that the input force vector could be

modified and updated iteratively together with the system’s parameters. Yang et al. [20]
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developed an adaptive tracking technique based on the EKF, called the AEKF-UI, to iden-

tify the structural parameters of linear and nonlinear systems and to track their changes

without any information about the input excitation. Similarly, Xu et al. [55] showed that

a weighted adaptive version of the ILSE could provide a successful identification of the

structural parameters and of the dynamic input loading.

In general, most of the above methods can yield good estimates of both system’s pa-

rameters and/or input forces when the structural response (accelerations, velocities and

displacements) time histories are available at every single discrete point (degree-of-freedom

(DOF)) of the structural model. However, this is a constraint that is not usually satisfied

in real-life applications (see [51]).

Only recently, the issue related to the availability of a limited number of structural re-

sponse components, e.g. accelerations, has been considered within the identification of the

input excitation. In this framework, the value of the unknown force at a given time step

is computed from the measured acceleration at such a given time step and from the other

components of the response (e.g. velocity and/or displacement) computed at previous time

steps. Perry and Koh [17], for example, used this procedure with a modified GA algorithm

called the Search Space Reduction Method (SSRM) [41] for output-only structural iden-

tification, while Law and Yong [56] and Trinh and Koh [57] used such a combination of

measured and computed components of the response in sub-structural identification meth-

ods for large structural models.

In this chapter, a hybrid version of the ABC algorithm (denoted with HABC) has been

proposed for the identification of the parameters of a structural model and, when possible,

of the input excitation considering the limitations that can occur in real life applications,

such as only one type of measurements (either accelerations, or velocities or displacements),

incomplete sets of measurements due to a limited number of sensors and noisy data. This

hybrid algorithm combines MABC, proposed in Chapter 2, with a local search operator like

the Nelder-Mead simplex method (NMSM) and a Search Space Reduction (SSR) strategy

to improve the rate of convergence and accuracy of the algorithm.

The chapter is organized as follows. In Section 3.2, the procedure for the input force

identification is discussed. Section 3.3 presents the proposed HABC-SSR based parallel
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computational identification methodology. In section 3.4, numerical simulations and identi-

fication results obtained from three examples are presented and discussed in details. Section

3.5 contains the final conclusions of this chapter.

3.2 Unknown input force identification based on a modified

Newmark integration

In the case of output-only system identification, a parametric system’s model, in the time

domain, requires the estimation of input (denoted with û(tp), p = 1, 2, . . . , N) so as to

simulate the estimated/predicted system response (denoted with ŷ(tp)), namely,

ŷ(tp) = f
(
û(tp), θ̂

)
(3.1)

where θ̂ represents the parametric vector as discussed in Chapter 2. In the case when the

input time-history is known, then the estimated input is directly set equal to the measured

input, namely, û(tp) = u(tp). If, instead, the input is unknown (only measurements of the

structural response (output-only) are available), then the input time-history û(tp) becomes

an additional “parameter” to be identified along with the system parameters.

In some cases, for example when some of the structural parameters, e.g. the masses, are

known, it is possible to identify the time-histories of the external excitation at the same time

as the remaining structural parameters by using only the measurements of the structural

response, e.g. the acceleration time-histories. Here it is assumed that there is only one force

or one set of forces that need to be identified. This force or set of forces will be labelled in

this chapter as “primary force”. Although, in real life applications, a structure is subjected

to a variety of environmental and man-made actions that occur simultaneously (e.g. traffic

and wind on a bridge, or wind and dynamic shaker on a building), it is reasonable to

assume that the effects induced by the action of interest (primary force) are predominant

over those induced by the other forces (that will then be called “secondary forces”): it is

then possible to consider that the recorded structural response be induced only by one force

or by a specific set of forces, neglecting the contributions of the secondary forces. However,

in one of the numerical examples in Section 3.4, we will show the effects of including the
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secondary effects generated by low amplitude additional excitations on the identification of

the primary input force and of the structural parameters.

Within an iterative optimization process, at each iteration the simulated structural

response and the corresponding input forces can be computed simultaneously using the

current estimated parameters. In this study, a modified Newmark integration scheme is

proposed for the identification of the input force by using the time-histories of the structural

accelerations, following a numerical procedure first proposed by Perry and Koh [17] and

further employed in the sub-structural identification of large structural systems [57]. Before

introducing such a procedure, the following assumptions are made:

(i) In order to avoid non-uniqueness of the solution in the simultaneous identification of

structural parameters and dynamic input, the mass matrix or the mass distribution

of the structure are assumed known a priori. This is an acceptable assumption since,

in real life applications, sufficiently accurate estimates of the mass matrix can be

obtained from the structural drawings looking at the structural geometry, type of

materials, etc. [10].

(ii) The initial conditions of the structure are assumed to be known: for instance, it is

reasonable to assume that, before the application of the input force that need to be

identified (primary input force), the structure be at rest. This assumption is commonly

used in all applications involving seismic analysis of structures, where the effects of

secondary excitations like wind and traffic are usually neglected.

(iii) The points of applications of the unknown dynamic input forces are assumed to be

known. For example, the locations of the dynamic shakers on a building or a bridge,

in the case of a forced excitation test, are known. In this case, the locations of the

primary input forces are known but the magnitude can be estimated through the

identification process. At the other locations, the input forces are assumed either to

be known or zero.

(iv) Sensors are assumed available at the DOFs where the unknown input forces are applied

and at the adjacent DOFs. Sensor placements should be such to prevent non-unique

solutions for the identification process [58].
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Figure 3.1: Structural system response simulation and input force identification procedure.

Based on the above assumption, the procedure to identify the unknown input force is

presented in Figure 3.1 and can be described as follows. At a given k-th iteration of the

iterative optimization algorithm, a mass matrix (assumed to be known) and an estimated

damping and stiffness matrix are available, based on the estimated set of parameters at that

iteration. With this set of matrices, the effective stiffness matrix K̃ (step a.3, Figure 3.1)

and the coefficients α and β (step a.4, Figure 3.1) can be obtained. At this point, for each

time step p, the velocity and displacement vectors at time step p+ 1 can be computed from

the measured acceleration vector at the same time step and the values of the computed

displacements and velocities at a previous time step, namely:

ẋ
(c)
p+1 = ẋ(c)

p +
∆t

2

(
ẍ(c)
p + ẍ

(m)
p+1

)
(3.2)

x
(c)
p+1 = x(c)

p +
∆t

2

(
ẋ(c)
p + ẋ

(c)
p+1

)
(3.3)

where x, ẋ and ẍ are the system’s response components representing displacement, veloc-
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ity, and acceleration vectors, respectively. ∆t denotes the sampling time. The superscript

‘(m)’ represents the measured quantities and the superscript ‘(c)’ denotes the computed

or simulated quantities (step b.3, Figure 3.1). The subscript p indicates a quantity corre-

sponding to time tp. Since the structure may be excited by a combination of both known

and unknown input forces, the dynamic force vector can be written as:

fp = fKNp + fUKp (3.4)

where fKN represents the known force vector while fUK is the unknown force vector obtained

as shown in step b.2, Figure 3.1.

Once the unknown component of the force vector has been computed, it can then be

used together with the known component to obtain the updated estimated values of the

accelerations, velocities and displacements, according to the modified Newmark integration

scheme (step b.4-b.7, Figure 3.1). These estimated accelerations are then used to compute

the objective function value in Equation (2.3).

It is noteworthy that, in this chapter, we consider linear structural systems with the

equation of motion given in Equation (2.13). The energy dissipation mechanism is described

by the Rayleigh damping model as shown in Equations (2.16) and (2.17).

3.3 HABC-SSR-based parallel identification methodology

In this section, a hybrid strategy is proposed for the simultaneous identification of structural

system’s parameters and, when possible, of the dynamic input time histories. The proposed

strategy combines the modified ABC (MABC) algorithm, proposed in Chapter 2, with a

Local Search (LS) operator, the Nelder-Mead Simplex Method (NMSM), integrated within a

Search Space Reduction (SSR) strategy so to improve the convergence as well as to increase

the identification accuracy and reliability. Since each run of the proposed algorithm is

independent from the other runs, a parallel computing scheme can be implemented to

improve the computational efficiency.
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3.3.1 The hybrid artificial bee colony (HABC) algorithm

A hybrid optimization strategy is proposed here, which is comprised of a heuristic global

search optimizer and of an LS operator. The global search optimizer, namely a heuristic

algorithm (e.g., the MABC in Chapter 2), is able to overcome the local optima stagnation

problem while the LS operator is useful for fine solution tuning near the global optimum.

In the current chapter, the Nelder-Mead simplex method (NMSM), a non-gradient-based

LS operator, is adopted in addition to the global optimizer of MABC leading to a hybrid

algorithm, namely the HABC for short.

3.3.1.1 Overview of the Nelder-Mead simplex method.

The Nelder-Mead simplex method (NMSM), as a local descent algorithm, was first proposed

by Nelder and Mead [59] and then further studied by Lagarias et al. [60]. It is character-

ized by fast convergence in search for a local minimum and is applicable for unconstrained

multi-dimensional optimization problems without using function gradient information. This

method converges rapidly to a minimum point of the cost function by generating a simplex

and using this simplex to search for the most promising directions. A simplex is defined as

a geometrical figure which consists of Nθ +1 vertices (or points), where Nθ is the number of

parameters (or variables) to be optimized. The simplex is updated according to the proce-

dures of reflection, expansion, contraction and shrinkage, each of which is characterized by

some scalar parameters, namely the coefficients of reflection (γ), expansion (η), contraction

(χ) and shrinkage (δ). These parameters are selected by the user and must satisfy the

conditions: γ > 0, η > 1, η > γ, 0 < χ < 1, and 0 < δ < 1. In this chapter, we select the

scalar coefficients as γ = 1, η = 2, χ = 0.5 and δ = 0.5, as suggested in a standard NMSM

algorithm. The detailed steps of the NMSM algorithm can be found in References [59,60].

3.3.1.2 The HABC scheme.

In developing an enhanced/hybrid strategy with an LS operator, one has to consider the

following factors: (1) where to add the LS operator, (2) when to start the LS operator, (3)

which individual solution among the population should be used to start the LS operator,

and (4) the maximum number of iterations for the LS operator. In this proposed HABC
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strategy, the NMSM is introduced within the MABC right after the Onlooker Phase Search

and is implemented every Nls iterations, using the current best individual θ̂best from MABC

as the initial guess Θls
1 for the local search. A simplex around the initial guess Θls

1 is first

generated developing Nθ variations of Θls
1 (e.g., Θls

2 , Θls
3 , · · · , Θls

Nθ+1) by slightly altering

each single component Θls
1j to Θls

1 , where j = 1, 2, · · · , Nθ. In this study, a 3% increase on

each component of Θls
1 was used to create the other Nθ additional parameter sets. These

Nθ vectors, together with Θls
1 , are then used as vertices of the simplex. Once the simplex

has been formed, the NMSM is carried out following the procedure introduced in [59, 60]

until the termination criterion is reached (namely, for example, either the iteration number

reaches Nlsiter or the objective function value achieves a user-defined tolerance ε). At the

end of the NMSM, the updated parameter vector Θls
best is transferred back to the MABC

replacing the initial individual θ̂best, and then the global search resumes.

It is noteworthy that a penalty strategy is implemented here to renew the objective

function when NMSM is used for local search. If a candidate parameter set is outside the

feasible search space (restricted by the parameter bounds), then an exaggerated objective

function value is returned. Since this value is uncommonly large in comparison to other

objective function values, the corresponding parameter values can be easily eliminated and

replaced by other optimal values.

For a single independent run, the flaw chart of the proposed HABC algorithm is illus-

trated in Figure 3.2.

3.3.2 Search Space Reduction strategy for the HABC algorithm

The advantage of working with heuristic algorithms such as the proposed HABC algorithm

is that it is possible to perform simultaneously many independent runs, each of which will

lead to an optimal solution. The hope is that these solutions are quite close but it might

happen that few of those might end up being stack in local minima. At this point, it is

convenient to use this set of optimal solutions to redefine a new search space and re-perform

the optimization procedure using this new space as the initial search space. This strategy

can be labeled as Search Space Reduction (SSR).

The idea of SSR, which aims to increase the efficiency and possibly the accuracy of
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Figure 3.2: Flow chart of the proposed HABC algorithm for a single independent run.

identification algorithms by reducing (shrinking) the large search space, has been success-

fully used in GA and hybrid evolutionary algorithm in the previous studies by Perry et

al. [41] and Charalampakis and Koumousis [61], showing a substantial improvement in the

final results when dealing with an initial large parameter search space. Hence, it appears

natural to adopt such a strategy within the proposed version of HABC. Here, this strategy

is implemented by carrying out several independent runs of the HABC, following which

the weighted mean and weighted standard deviation values of the identified parameters are

computed so to determine the new parameter bounds.

Initially, the HABC is performed for a few (IRssr) independent runs evaluating the

values of the objective function and of the corresponding fitness function of the solutions.

All these independent runs will use the same initial search space and can be performed

either sequentially or in parallel, if multiple processors are available. The end result will be

a set of IRssr solutions which can be sorted out and the worst IRssrw ones are eliminated.

At this point, the remaining IRssr − IRssrw (denoted as IR(0)) solutions can be grouped in

a set Ω as follows:

Ω = {θ̂q | q = 1, 2, . . . , IR(0)} (3.5)

where each solution has a corresponding weighting coefficient defined as:

wq =
fit(θ̂q)

max{fit(θ̂q)}q=1,2,...,IR(0)

(3.6)
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where fit(·) is the fitness function used in HABC to rank the solution. In Equation (3.6),

it can be seen that the “best” identified solution will have a weight of unity. For this

set of solutions, it is possible to calculate the weighted mean value of the j-th parameter

(j = 1, 2, . . . , Nθ) as follows:

θ̄j =

IR(0)∑
q=1

wq θ̂qj

/IR(0)∑
q=1

wq

 (3.7)

while the corresponding weighted standard deviation is expressed as:

σj =

√√√√√
IR(0)∑

q=1

wq
(
θ̂qj − θ̄j

)2/IR(0)∑
q=1

wq

 (3.8)

Afterwards, the new trial upper bound and lower bound of the search space of the j-th

parameter can be defined symmetrically around the weighted mean value, so that:

θ̃max
j = θ̄j + λσj

θ̃min
j = θ̄j − λσj

(3.9)

where λ, positive integer, is defined as the window width coefficient of the new trial range.

However, the new trial bounds might exceed the initial boundary values and this would

be in contrast with the purpose of the SSR. To overcome this problem, it is convenient

to define the final new search space of the j-th parameter as the intersection of the initial

search space and the new trial search space, namely:

[
θ̌min
j , θ̌max

j

]new
=
[
θmin
j , θmax

j

]initial ∩
[
θ̃min
j , θ̃max

j

]trial
(3.10)

Within this newly defined search space, the HABC will resume and new optimal solutions

will be reached.

In implementing this SSR strategy, it is important to make the following considerations:

• λ should not be a very small number in order to obtain a reasonably feasible search

space (avoiding stagnation of the optimization process in a small region).

• IR(0) should be large enough so to obtain statistically meaningful results for the

weighted mean and standard deviation θ̄j and σj .
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To this end, Figure 3.3 and Figure 3.4 present a schematic representation of the proposed

HABC algorithm with the associated SSR strategy for the case of a serial (Figure 3.3) or

parallel (Figure 3.4) scheme.

3.3.3 The HABC-SSR based identification scheme

While the architecture of the proposed HABC-SSR strategy is relatively simple and straight-

forward, the implementation requires a set of parameters/indicators that need to be defined

by the user. These parameters/indicators are:

• θmin and θmax: the lower and the upper bound of the initial parameter search space;

• Nθ: the number of parameters to be identified;

• Npop: the population size;

• Nmax: the maximum number of iterations for HABC;

• Nlim: the number of limit iterations;

• m: the power exponent representing the nonlinear decreasing rate;

• δ: a parameter controlling the termination point of the nonlinear decreasing behavior;

• Nls: the starting iteration for the beginning of the local search NMSM;

• Nlsiter: the maximum number of iterations in NMSM;

• IR: the total number of independent HABC runs;

• IRssr: the number of independent runs before SSR is applied;

• IRssrw : the number of solutions to be eliminated before SSR is applied;

• λ: the window width coefficient for the new search space bound in SSR.

The values of such parameters are very much problem dependent, e.g. the number of

parameters to be identified and their bounds, and are strongly related to the computational

capabilities available, e.g. multi-processor machine.

3.4 Numerical applications

In order to investigate the applicability of the proposed technique to the identification of

both structural parameters and dynamic input time histories, three structural systems, a

5-DOF system, a 15-DOF system and three connected frames, have been considered in this
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study. These systems were taken from previous studies [17, 54, 62] so that a comparison of

the proposed technique with other methodologies could be carried out.

To verify the effectiveness of the proposed technique with limited output data mea-

surements and to learn about the influence of data availability on the performance of this

algorithm, different sets of time histories of the structural response have been considered:

both the case when the time histories of the structural response are measured at every

DOF (full instrumentation setup) and the case when the time histories are available only at

some DOFs (partial instrumentation setup) have been analyzed. Since accelerometers are

commonly used in dynamic field testing, the structural response presented here is in the

form of time histories of the structural accelerations.

Similar to Chapter 2, the lower bounds of the search space are taken to be half and

the upper bounds twice the actual values of the parameters so that the search space can

be defined as θ∗/2 ≤ Γ ≤ 2θ∗, where θ∗ is the parameter vector representing the true

values. To analyze the effect of measurement noise on the identification process, various

noise pollution levels in both input and output data have been considered: both input and

output (I/O) signals have been polluted with Gaussian zero-mean white noise sequences,

whose RMS values have been defined as some percentages (e.g., 0% (no noise), 5%, and 10%)

of the original time-history signals. The identification analysis is repeated 10 times and the

average results are reported so to obtain some statistical insights into the process. In each

analysis, the mean values of 0.5(IR− IRssr) best solutions (those with best fitness values)

are considered representative of the identification results. The parameter identification error

is defined as follows:

εj =

∣∣∣∣∣ θ̂j − θ∗jθ∗j

∣∣∣∣∣× 100% (j = 1, 2, . . . , Nθ) (3.11)

where θ̂j and θ∗j are the estimated and the true values of the j-th parameter, respectively.

The numerical analyses are programmed in MATLAB R© using the Parallel Computing

ToolboxTM with the ClusterSize of 12 on a standard Intel (R) Xeon (R) X5355 2.66GHz

server with 32G RAM.
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3.4.1 A 5-DOF system

Let’s consider a 5-DOF shear type structural system as the one presented in a previous work

by Perry [62]. The structural properties are: the lumped mass at each DOFm1 ∼ m3 = 5000

kg and m4 ∼ m5 = 4000 kg, the stiffness values k1 ∼ k3 = 4000 kN/m and k4 ∼ k5 = 2500

kN/m, respectively. The natural periods of the first two modes are 0.80 sec and 0.30 sec,

respectively. The two Rayleigh damping coefficients a and b are 0.5733 and 3.4680× 10−3,

respectively, corresponding to a damping ratio of 5% in each of the first two modes. In

general, the mass matrix only contributes to the damping matrix with a small percentage in

the Rayleigh relationship in Equation (2.16). In order to study the effects of one incomplete

set of measurements, two cases are studied: (1) full sensor placement and (2) partial sensor

placement, considering as output only the time histories of the accelerations measured

at the 2nd, 4th and 5th DOFs. The structure is assumed to be excited by a Gaussian

white noise sequence F5(t), with a RMS scaled to 1 kN, acting on the 5th DOF. This

type of input excitation was chosen so to test the proposed HABC-SSR algorithm under

more unfavorable conditions with respect to those used in [62] where a “smoothed” white

noise sequence was used. To further penalize the approach, a very short time history of

the structural accelerations (500 data points at time interval of 0.001 sec) was considered,

which is identical to the one used in [62]. Since the identification is carried out using only

output measurements and an attempt is made to identify the input force, the mass matrix

is assumed to be known. However, in practical applications, it is possible not to know the

exact value of each single mass but instead a distribution of each floor mass. Hence, in

addition to the case of the mass matrix totally known a priori, the case of the mass matrix

known as a normal distribution is also tested here so to quantify the effects due to the limited

a priori knowledge of system mass on the identification of both structural parameters and

input. In conclusion, HABC-SSR is tested in the identification of the stiffness values, of

two damping coefficients and of the time histories of input force. The parameters settings

of the proposed algorithm used for all cases in this example are given by: Nθ = 7, Npop =

30, Nmax = 60, Nlim = 200,m = 3, δ = 0.2, IR = 30, IRssr = 6, IRssrw = 1, λ = 6, Nls = 15

and Nlsiter = 50.

Case 1 — Mass matrix is known a priori : in this case, the proposed HABC-SSR al-
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Table 3.1: Identified stiffness error for totally known mass matrix case (5-DOF system).

Noise level
Full sensor placement

Partial sensor placement

HABC-SSR SSRM [62]

Mean error Max error Mean error Max error Mean error Max error

0 0.00 0.00 0.00 0.00 0.13 0.31

5 0.67 1.09 1.08 1.88 0.93 2.19

10 0.94 1.95 1.26 2.16 2.24 6.06

Note: the numbers in the table are in percentage (%).

gorithm performs quite well in the identification of the structural parameters and of the

input force time-history. Table 3.1 presents the stiffness identification errors obtained with

the HABC and SSRM presented in [62]. In the noise free case, the identification of the

floor stiffness is exact for both the case of a full instrumentation setup and the case of

limited instrumentation. Even when dealing with noisy measurements, the performance

of the HABC-SSR is excellent: for a noise level of 10% RMS, the mean error is below

1% for the full instrumentation setup while it barely passes the 1% mark (1.26%) for the

case of limited instrumentation, with a maximum error around 2% (1.95% and 2.16%).

These values are much lower than those obtained with the SSRM, where a maximum error

up to 6% was recorded. Similar accuracy is achieved in the identification of the damping

coefficients, where the stiffness proportional damping coefficient (b in Equation (2.16)) is

identified with an error of 0.44% in the case of 10% RMS noise. Similar to the result in [62],

the other damping coefficient a is not identified as accurately since the mass contribution

to the damping is not predominant. In general, it is possible to say that the proposed

HABC seems to be not sensitive to measurement noise in the identification of the unknown

structural parameters.

Same accuracy can be achieved in the estimation of the unknown input force time-

history. Figure 3.5 shows a comparison of the time histories of the original input force

and of the identified one, considering the incomplete instrumentation setup and the cases

of noise-free measurement (Figure 3.5(a)) and 10% RMS noise corrupted measurement

(Figure 3.5(b)). These two figures show an almost perfect agreement between the original
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time-history and the identified one (with the identification RMS errors of 1.583 × 10−5

kN and 0.162 kN for the noise-free and 10% RMS noise corruption case, respectively). It

is also noteworthy that, when a longer time history of noisy measurement is considered

(e.g. 5000 or 10000 data points), the identification of structural parameters is still good;

however, a drift will be observed in the computed velocities and displacements as well as

in the identified force caused by the numerical integration of noisy data. The computed

velocities, displacements and the identified force can be de-trended using either a high-pass

filter or the de-trending technique introduced by Wu et al. [63].

Having the possibility of running the proposed HABC-SSR on a parallel scheme, it was

possible to test the efficiency of running the identification process in parallel in comparison

with the sequential approach. The time required to run the serial version of the algorithm

was 946.7 sec, much longer than the 109.3 sec needed by the parallel strategy version, making

the parallel strategy more appealing for large computational problems. In order to test the

function of the SSR strategy on parameter identification refinement, Figure 3.6 presents the
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Figure 3.5: Identified force with partial sensor placement (5-DOF system).
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Figure 3.6: The PDFs of the stiffness parameters in the partial output scenario without

noise corruption (dashed blue line: before/without SSR; solid red line: after/with SSR)

typical probability density functions (PDFs) of the identified stiffness parameters before and

after the SSR in the noise-free incomplete output scenario. It can be observed that the PDFs

obtained after/with the implementation of SSR have the mean values quite closer to the

true values of the structural stiffnesses, with much smaller standard deviations than those

obtained before/without SSR; this shows that the SSR strategy can effectively improve the

accuracy of the identification process.

Case 2 — Floor masses are known as normal distributions: here, to account for uncer-

tainties in the assessment of the floor masses, the values of the floor mass are known as

normal distributions, centered on the correct value and with a standard deviation of 5%

of such value. Figure 3.7 shows the distributions of the floor masses used in this example.

Even in the presence of such uncertainties, the proposed HABC-SSR performs quite well,

with very accurate identification of the structural parameters. As shown in Table 3.2, the

mean error in the estimation of the floor stiffnesses is quite small (below 2%) in both full

and partial instrumentation cases and for 10% RMS measurement noise, with a maximum

error in the order of 3%. These results can be considered quite good, considering the fact

that only output measurements were used in the identification. As expected, these identified

stiffenesses are slightly more inaccurate than those obtained in the case of the known mass

matrix because of the uncertainties in the floor masses: however, the small magnitude of

such errors shows that such uncertainties do not strongly affect the identification of other

structural parameters, giving a certain flexibility in determining the floor mass values.
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Figure 3.7: A typical normalized mass distribution for 30 independent runs.

Table 3.2: Identified stiffness error for the case of mass matrix known as a normal distribu-

tion (5-DOF system)

Noise level
Full sensor placement Partial sensor placement

Mean error Max error Mean error Max error

0 0.19 0.35 0.54 0.91

5 0.83 1.50 0.89 1.69

10 1.61 2.66 1.72 3.13

Note: the numbers in the table are in percentage (%).

3.4.2 A 15-DOF system

The next example is a 15-storey high rise building, previously studied by Chen and Li [54]

using a modified iterative least-square based procedure (MILSP). This building is modeled

as a 15-DOF shear type structure with a lumped mass and a massless spring at each floor

level. The mass properties are m1 = 30 × 103 kg, m2 ∼ m14 = 28.896 × 103 kg and

m15 = 27.741 × 103 kg, while the stiffness values are k1 = 43051, k2 = 42776, k3 = 42761,

k4 = 42536, k5 = 42496, k6 = 42422, k7 = 42398, k8 = 42372, k9 = 42291, k10 = 42172,

k11 = 42114, k12 = 42093, k13 = 41898, k14 = 41464 and k15 = 43051 kN/m, respectively.

The natural periods of the first two modes are 1.61 sec and 0.54 sec and the two Rayleigh

damping coefficients a and b are chosen as 0.2936 and 6.406 × 10−3 respectively providing

5% damping ratio for each of the first two modes. The structure is assumed to be excited

by a sinusoidal excitation induced by a dynamic shaker at the top floor. This primary

input force has a magnitude of 1× 103 kN and a frequency of 7.96 Hz. Two cases of sensor

availability are considered: (1) full sensor placement and (2) partial sensor placement with

sensors located at 1, 3, 5, 7, 9, 11, 13, 14 and 15 floor levels. The available time histories are
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Table 3.3: Identified stiffness error (15-DOF system).

Noise level

Full sensor placement
Partial sensor placement

This work MILSP [54]

Mean error Max error Mean error Max error Mean error Max error

0 0.01 0.04 - - 0.07 0.26

5 0.46 1.10 2.66 3.46 1.12 1.78

10 0.67 1.45 - - 1.85 6.51

Note: the numbers in the table are in percentage (%).

0 2 4 6 8 10 12 14 16
0

2

4

6

Floor level

A
bs

 e
rr

or
 (

%
)

 

 
MILSP
HABC−SSR

Figure 3.8: Stiffness identification error comparison between the MILSP and the proposed

HABCA-SSR with full sensor placement and 5% noise corruption.

those of the structural acceleration, containing 500 data points sampled at 0.001 sec. These

time histories are also contaminated with Gaussian white noise at 5% and 10% RMS levels.

The objective here is to determine the fifteen stiffness values, the two damping coefficients

and the unknown force acting on the top floor. The parameters HABC-SSR are given by:

Nθ = 17, Npop = 30, Nmax = 150, Nlim = 200,m = 3, δ = 0.2, IR = 30, IRssr = 6, IRssrw =

1, λ = 8, Nls = 20 and Nlsiter = 100.

Even in this example of a 15-DOF system, the performance of the proposed algorithm

is quite good. Looking at Table 3.3, both the mean and the max errors are quite small for

both cases (full and partial instrumentation setup), even for 10% RMS measurement noise.

Figure 3.8 illustrates the comparison of the floor stiffness identification error obtained by

the proposed HABC-SSR and the MILSP presented in [54], clearly showing an error from
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the HABC-SSR that is consistently smaller than that obtained from the MILSP. Figure

3.9 presents the distribution of such identification errors for the different noise levels for

the case of full instrumentation (Figure 3.9(a)) and limited instrumentation (Figure 3.9(b))

setups. For the case of a full set of sensors, errors in the estimated floor stiffnesses of the

order of 1%, even in the presence of 10% RMS noise, are excellent. Same conclusion can be

said when looking at the partial instrumentation case, where a mean error less than 2% is

an indication of a successful identification.

With regard to the identification of the input force, Figure 3.10 shows the comparison

of the correct input force and of the identified one for the cases of noise free data (Figure

3.10(a)) and of 10% RMS noise data (Figure 3.10(b)) when only few accelerometers are

available. In both cases, the identification of the input force can be considered successful,

with the RMS errors of 0.121 kN and 77.710 kN, respectively.
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Figure 3.9: Distribution of stiffness identification errors (15-DOF system).
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Figure 3.10: Identified force with partial sensor placement (15-DOF system).

3.4.2.1 Effects of “secondary forces” on the accuracy of the parameters and

force identification.

Herein, we also carried out a parametric study on the effects of low-amplitude “secondary

forces” distributed over the entire structure on the simultaneous identification of the struc-

tural parameters and the time-history of the “primary force” (the action of the dynamic

shaker). Zero mean white noise sequences, with an identical RMS of 20 kN (2% of the

amplitude of the sinusoidal force applied by the shaker) are applied at each structural floor:

they can represent the effects of additional environmental low-level excitations (usually un-

measured) that are present at the time of the dynamic shaker test. Only the scenario of

partial sensor placement is considered here, with three different levels of noise corruption,

viz., 0%, 5% and 10% RMS white noise added to the original signals. Each time history of

the structural response at different DOFs has a total of 1000 data points, with a sampling

time of 0.001 sec.

Table 3.4 summarizes the identified stiffness errors while Figure 3.11 shows the detailed

error distributions for the stiffness of each floor. It can be seen that the parameter identi-
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Table 3.4: Identified stiffness error (under primary/secondary force excitations)

Error (%)
Noise level (%)

0 5 10

Mean error 0.36 1.65 2.10

Max error 0.74 3.11 8.16
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Figure 3.11: Identified stiffness errors (under primary/secondary force excitations).

fication is still quite good. Figure 3.12 shows the identified sinusoidal force induced by the

shaker at the top floor for the cases of no measurement noise and 10% RMS noise. The

results show an excellent agreement between the correct and the identified force, with small

RMS errors (2.806 kN (noise free) and 79.700 kN (10% RMS noise)).

It is then possible to conclude that, in this example, the identification of both the

structural parameters and the primary input force seems not to be affected by the presence

of unknown secondary forces as long as the amplitude of such forces is small compared to

that of the primary force.

3.4.3 A system of three connected buildings

Another interesting example for testing the effectiveness of the proposed HABC-SSR is

represented by 3 building structures of different heights, connected through two link bridges

at different levels and subjected to seismic ground excitation. In this example, already

studied by Perry and Koh [17], the buildings have 5, 15 and 10 floors, respectively, and are

represented by shear type models, with known floor masses, as shown in Figure 3.13. Each
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Figure 3.12: Identified primary force (under primary/secondary force excitations).

of the link bridges (’link bridge 1’ between the first and central building at the 3rd DOF

and ’link bridge 2’ between the central and second building at the seventh DOF) can be

described as an axial spring whose stiffness is unknown and needs to be identified.

To generate the data used in the identification, the central building is represented by a

mass distribution m1 ∼ m5 = 7 × 105 kg and m6 ∼ m15 = 4 × 105 kg while the stiffnesses

are k1 ∼ k5 = 6×105 kN/m and k6 ∼ k15 = 4×105 kN/m. The side buildings have identical

structural properties for all floors, namely, m = 4× 105 kg and k = 4× 105 kN/m. The two

link bridges are modeled with linear springs whose stiffness is kL = 10× 105 kN/m. These

distributions of mass and stiffness corresponds to natural periods of the first two modes

equal to 1.59 sec and 0.80 sec. The two Rayleigh damping coefficients a and b are chosen

as 0.105 and 0.0034, respectively, resulting in a 2% damping ratio for each of the first two

modes. The system is excited by the NS component of the 1940 ElCentro earthquake record

and the system’s responses are simulated for a duration of 5 sec using a sampling frequency

of 200 Hz.

In this example, the objective is to test the performance of the HABC-SSR in identifying

the fifteen stiffness values of the model of the central building, the two damping coefficients
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Figure 3.13: A system of three connected buildings.

a and b and the two unknown forces within the link bridges, without having any information

about the two side buildings. Here, it is assumed that the floor masses of the central building

are known and that acceleration time histories, with three different levels of measurement

noise (no noise, 5% and 10% RMS), are only available at the 2, 3, 4, 6, 7, 8, 10, 12 and

14 DOFs. In this case, it is assumed that the ground excitation has been recorded and

is known while the two forces transmitted by the link bridges to the central buildings are

unknown, making it a case of known and unknown input forces. The parameter settings

for the proposed HABC-SSR algorithm used in this examples are chosen as follows: Nθ =

17, Npop = 30, Nmax = 200, Nls = 200,m = 3, δ = 0.2, IR = 30, IRssr = 6, IRssrw = 1, λ =

8, Nls = 20 and Nlsiter = 100.

Table 3.5 summarizes the mean and maximum errors in the identified stiffness values

from the HABC-SSR and compares them with those obtained in [17]. In the noise free case,

the HABC-SSR identification is almost perfect (mean error of about 0.02% and maximum

error of 0.05%). In the presence of measurement noise, the result of a mean error less than

1% and a maximum error less than 2%, for both 5% and 10% RMS noise, is still quite
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Table 3.5: Identified stiffness error (a system of three connected buildings)

Noise level
HABC-SSR SSRM [17]

Mean error Max error Mean error Max error

0 0.02 0.05 0.34 1.53

5 0.78 1.60 0.85 2.08

10 0.94 1.82 1.47 3.82

Note: the numbers in the table are in percentage (%).
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Figure 3.14: Identified normalized stiffness with 10% noise corruption (a system of three

connected buildings).

remarkable: Figure 3.14 shows the comparison of the true stiffnesses and of the identified

stiffnesses for the case of 10% RMS measurement noise, with almost perfect agreement

between the true and the identified values.

With regard to the identification of the two unknown forces from the link bridges, the

proposed HABC-SSR algorithm is capable of successfully identifying the unknown compo-

nents of the input force. This can be seen in Figure 3.15, where the two identified forces are

compared with the correct ones for the case of 10% RMS noise. In the presence of noise, a

high-pass filter is used so to remove a linear trend caused by the numerical integration of

noisy accelerations. It can be seen that the identification of the two time histories is quite

accurate, even in the presence of measurement noise. It is noteworthy that the identification

of the force F2(t) is more accurate than the one of F1(t): this slight discrepancy could be

caused by the fact that F2(t) has a large magnitude than F1(t) and so it has a bigger impact

on the system’s response. This phenomenon was also reported in [17].
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Figure 3.15: Identified coupling forces with 10% noise corruption (a system of three con-

nected buildings).

3.5 Conclusions

This chapter presents a hybrid parallel strategy for the simultaneous identification of struc-

tural parameters and, when possible, of input time histories using an incomplete set of

acceleration measurements. The proposed strategy is a parallel computational scheme that

combines a hybrid algorithm, consisting of the MABC algorithm and the Nelder-Mead sim-

plex method, with a Search Space Reduction technique. Three numerical examples have

been carried out to verify the applicability and effectiveness of the proposed method. The

simulation results in this study lead to the following observations and conclusions:

(1) In the process of identifying structural parameters, if the measured signals are only

accelerations and if the masses are known, the time histories of the dynamic input can

be simultaneously computed by using a modified Newmark integration scheme based

on the measurements and on the current estimated structural parameters.

(2) In the case where the input excitation has to be identified, the proposed method

requires a certain a priori knowledge of the structural mass distribution, either the

entire mass matrix or the distribution of the various floor masses. The proposed

identification strategy provides very good parameter and input force estimation even
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with 5% standard deviation of mass estimation error.

(3) For noise free measurement data, the proposed strategy can exactly identify the un-

known parameters and input forces for the full instrumentation setup case as well as

for the incomplete instrumentation case. When output measurements are corrupted

by noise, the identification results are still quite good with reasonably small errors.

(4) The input force time histories can be exactly identified in the noise free case. In the

presence of measurement noise, the identified time histories are also quite accurate,

even though the data need to be de-trended to overcome the problems linked to

the numerical integration of noisy accelerations. The numerical studies show that the

input force(s) can be well identified even with high noise corruption (10% RMS noise).

(5) A parametric study shows that the identification of both the structural parameters

and the primary input force seems not to be affected by the presence of unknown

secondary forces as long as the amplitude of such forces is small compared to that of

the primary force.

(6) The parallel scheme can dramatically save computational time compared with the

serial scheme if a powerful computer with multiple processors is used.

In general, the identification results show that the proposed technique is powerful, robust

and efficient in the simultaneous identification of structural parameters and input time

histories even from incomplete output-only measurements with high noise corruption.
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Chapter 4

Extension of the Hybrid ABC

Algorithm with Bayesian Inference

for Probabilistic FEM Updating

In this chapter, a Bayesian inference methodology is presented for the probabilistic finite element

model updating and damage detection of structural systems. This chapter is reproduced from the

paper co-authored with Professor Raimondo Betti, which is currently under review [64].

4.1 Introduction

Structural finite element model (FEM) updating, based on input-output or output-only

measurements, has been widely used in structural health monitoring, damage and risk eval-

uation, structural control, etc. Since modeling errors between the theoretical FEM and the

real structure (e.g. due to uncertainties caused by dispersed material properties, variation

of construction process, complicated component joint behavior, etc.) are always present,

updating (correcting) the initial/prior FEM characterized by a set of system parameters is

necessary. Because of the pressing need in the industry area, this topic has gained increasing

interest in various disciplines [65–73].

In the process of model updating, one’s objective is to find the optimal system param-

eters and the uncertainties associated with them. The parameters to be identified can be



Chapter 4. Extension of the Hybrid ABC Algorithm with Bayesian Inference for
Probabilistic FEM Updating 69

either physical quantities (e.g. structural mass, damping, stiffness, etc.) or modal quantities

(e.g. natural frequency, mode shape, transfer function, etc.) of a structural system. The

data used in the updating operation is usually the time history of the structural response

(e.g. dynamic strains, displacements, accelerations, etc.) recorded at various locations and,

when possible, the time history of the input excitation. There have been many attempts to

study system identification for model updating in recent years (see Chapters 2–3).

Model updating belongs to the general classification of inverse problems whose well- or

ill-posedness determines whether the model is ‘globally identifiable’, ‘locally identifiable’

or ‘globally unidentifiable’ [74]. In the globally identifiable case (well-posed problem), the

optimal parameter region is centered at a point, while the locally identifiable case (ill-posed

problem) has multiple sets of optimal parameter regions (multiple global optimal points). In

the globally unidentifiable case (badly ill-posed problem), there exist infinite sets of global

optimal solutions (e.g., points in a flat region of the parameter space). In dynamic testing,

for example, the model ‘identifiability’ is usually determined by the number of observations

and by the spatial placement of sensors [58].

There are two categories of methods, in general, for FEM updating and system identi-

fication, namely, deterministic vs. probabilistic methods. The difference between these two

methods is that deterministic methods aim to obtain a single set of optimal parameters

while probabilistic methods estimate statistical distributions of the structural parameters

providing a family of possible models [74].

In most deterministic methods, the uncertain system parameters are determined by

optimizing (usually minimizing) the objective function defined as the Mean Square Error

(MSE) between the measured and the predicted data [5]. To date, deterministic meth-

ods such as least-squares-based methods, heuristic algorithms and filtering techniques have

been developed for model updating and system identification [5,18,25,31,47,55,56,65,75].

By providing well-defined values of the structural parameters, deterministic methods can

effectively determine the structural conditions or health (e.g. damage extent) when the

updating/identification problem is well-posed; however, when many modeling uncertainties

are involved, they fail to give a satisfactory results. On the contrary, probabilistic methods

seem to be much more “robust” in dealing with uncertainties due to their ability to consider
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more than one model weighted by the probabilities conditional on the measured data [76].

One of the most popular probabilistic methods for FEM updating is known as the

Bayesian approach; such an approach takes into account the complete information asso-

ciated within the measured data for statistical inference while an appropriate likelihood

function is given [73]. Recently, many studies have been done on Bayesian FEM updat-

ing for a robust prediction of future structural response and for a reliable assessment of

structural condition. For example, a comprehensive Bayesian model updating framework

was first proposed by Beck and Katafygiotis [66], and then further applied to structural

dynamic models with different types of testing data (e.g. accelerations, modal frequen-

cies, mode shapes, etc.), using several versions of Monte Carlo Method (MCM), such as

Markov Chain MCM (MCMCM) [74], adaptive MCMCM [77], transitional MCMCM [76],

hybrid MCM [70], etc. Other studies on structural damage detection, uncertainty quan-

tification and reliability assessment using Bayesian methodologies can be found in Refer-

ences [73,78–80].

Nevertheless, challenges still exist in the Bayesian FEM updating in spite of its attractive

robustness in the direct quantification of uncertain parameters. To wit, they are:

• Computational challenges: there exist severe computational challenges when a large

number of uncertain parameters need to be updated (in a high-dimensional parameter

space), especially when the model is not globally identifiable [70]. Sampling issues

arise when the posterior probability density function (PDF) is highly nonconvex with

multiple/infinite sharply shaped optima.

• Challenge in construction of the likelihood function: in some applications, the likeli-

hood function cannot be written analytically. Even though the correlation formula

can be used as the likelihood function in terms of a single observed sequence, the joint

PDF of these correlations is difficult to be explicitly derived. Moreover, the compu-

tation burden becomes expensive or, sometimes, impossible though an implicit form

of the likelihood function exists [73].

• Challenge of the updated PDF validation: due to the complex topology of the updated

PDF, in practice, we cannot validate the solution.
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The basic idea in this work is to develop an effective and efficient optimization method

for solving high-dimensional optimization problems in probabilistic FEM updating, without

the need to directly compute the PDFs of the structural parameters. The objective function

is a regularized error function derived from the Bayesian inference for model updating, in

which the regularization term comes from the prior PDF of system parameters while the

regularization parameter is defined conditional on the measured data. The optimal set of

uncertain parameters can be determined by minimizing the regularized MSE function using

powerful optimization algorithms (e.g., the proposed MABC-BFGS; see Section 4.3 for

details), given the measured data, the prior PDFs of model parameters and an appropriate

likelihood function.

The chapter is organized as follows. Section 4.2 describes the Bayesian probabilistic

framework in FEM updating. Section 4.3 presents a modified ABC (MABC) algorithm, the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and the proposed hybrid MABC-BFGS

algorithm for solving the high-dimensional optimization problems in Bayesian analyses.

Then, a numerical example of the 3D Phase I IASC-ASCE benchmark structure is illustrated

in Section 4.4. Furthermore, the proposed algorithm is validated for both model updating

and damage detection using the experimental data sets of a three-storey frame structure

from LANL in Section 4.5. Finally, discussions and concluding remarks are presented in

Section 4.6.

4.2 Bayesian probabilistic framework

4.2.1 Bayes’ Theorem

The focal concept of Bayesian inference is Stochastic Embedding (e.g., embedding any

deterministic model into a class of probabilistic models), in which a model is described by

probability distributions of both the unknown parameters and the prediction error [66].

Let’s say a system can be discretized using a FEM and thus characterized by a set of

uncertain model parameters θ ∈ RNθ , where Nθ denotes the number of parameters. In

order to define this model, one needs to determine the uncertain parameters. If the model

is deterministic, then the goal is to determine a unique set of parameter values while, if the
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model is stochastic, each parameter will be characterized by a PDF whose characteristic

parameters (e.g., mean and standard deviation) need to be determined. One possibility

is to use the Bayes’ Theorem that helps identifying the parameter uncertainties using the

system’s response measurements. In Bayesian inference, provided that the joint prior PDF

of the structural parameters, p(θ), is given (e.g., by user’s assessment of the parameter

uncertainties), the joint posterior PDF of θ conditional on the observed data D is defined

as:

p(θ|D) = c−1p(D|θ)p(θ) (4.1)

with c being the normalizing factor (the evidence given by data D) which can be written

as:

c = p(D) =

∫
Θ
p(D|θ)p(θ)dθ (4.2)

Here, p(D|θ) is the likelihood function which gives a measure of the agreement between the

measured and the predicted system responses.

4.2.2 Formulation of the likelihood function

The process of Stochastic Embedding can be realized by considering the time history of the

prediction error ε(tj) representing the difference between the measured and the predicted

system responses [66]. Assuming that the discrete system response y(tj) is available at

No (No ≤ the total number of DOFs) observed DOFs, the corresponding predicted system

response y(tj ,θ) at a generic time instant tj(j = 1, 2, . . . , N) can be modeled in terms of

the measured system response y(tj) and of the predicted error ε(tj ,θ) (due to measurement

noise and modeling error) for a specified set of parameters θ:

y(tj) = y(tj ,θ) + ε(tj ,θ) (4.3)

where N is the total number of data points. At this point, to describe the uncertainty

of the prediction error, the characterization of ε can be carried out through some proba-

bility models that produce the maximum uncertainty based on the Principle of Maximum

(Information) Entropy [81]. To wit, ε can be modeled as a discrete zero-mean Gaussian

white noise process [66]; namely, ε ∼ N (0,Σε) = N (0, σ2INo×No) with σ being a positive

scalar for a specified θ. Let’s assume that the prediction errors are statistically independent
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given a set of measured data D = {y(tj) : j = 1, 2, . . . , N}. With these assumptions, the

likelihood function can be expressed following the multivariate Gaussian PDF as:

p(D|θ) =
N∏
j=1

p (y(tj)|θ) =
1

(2πσ2)NoN/2
exp

[
−NoN

2σ2
Jg(θ;D)

]
(4.4)

with

Jg(θ;D) =
1

NoN

No∑
i=1

N∑
j=1

[yi(tj)− yi(tj ,θ)]2 (4.5)

where Jg(θ;D) is the goodness-of-fit function (MSE between the measured and the simulated

system outputs). The stochastic independence here is information-based and should not be

confused with causal independence. For example, the predictions errors at previous time

steps have no influence on those at later time steps [82].

4.2.3 The prior and posterior PDFs

Before applying the Bayes’s Theorem to update the system parameters, we need to know

their prior distributions. Now, let’s assume that the prior system parameter vector θ

follows a multivariate Gaussian distribution with mean θ̄ ∈ RNθ and covariance matrix

Σθ ∈ RNθ×Nθ , so its joint PDF can be written as:

p(θ) =
1

(2π)Nθ/2|Σθ|1/2
exp

[
−1

2
(θ− θ̄)Σ−1

θ (θ− θ̄)T
]

(4.6)

This can be built using the a priori information on the parameters available to the user

before the analysis, and so it can be defined as the prior PDF. It is noteworthy that if the

prior parameters are assumed to be independent from each other, p(θ) could be obtained

from the product of the prior distribution of each parameter, namely, p(θ) =
∏Nθ
k=1 p(θk). In

this case, Σθ becomes a diagonal matrix whose diagonal elements consist of the parameters’

standard deviations.

However, since σ2 is an unknown variable in Equation (4.4), it also needs to be updated.

In general, since σ2 is always positive, its prior distribution can be modeled by an inverse

Gamma distribution or a lognormal distribution (note that these two distributions can be

equivalently transformed to each other by adjusting their distribution parameters) [73].

Let’s now assume that, based on the a priori information, σ2 follows the inverse Gamma
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distribution given by p(σ2) = IG(α, β), where α (α > 0) and β (β > 0) are the constant

“hyperparameters”,

p(σ2) =
βα

Γ(α)

(
1

σ2

)α+1

exp

(
− β

σ2

)
(4.7)

where Γ(·) is the Gamma function.

A hierarchical Bayesian inference can then be used to provide a bridge between the prior

and the posterior PDFs of both θ and σ2 [83]. Using Equation (4.1), we can state that the

augmented posterior PDF p(θ, σ2|D) is proportional to

p(θ, σ2|D) ∝ p(D|θ, σ2)p(θ)p(σ2) (4.8)

where p(D|θ, σ2) is the augmented likelihood function which is given by Equation (4.4),

identical to p(D|θ). The substitution of Equations (4.4), (4.6) and (4.7) into Equation (4.8)

yields

p(θ, σ2|D) ∝ 1

σNoN+2(α+1)
exp

[
− 1

σ2

(
NoN

2
Jg(θ;D) + β

)
− 1

2
(θ− θ̄)Σ−1

θ (θ− θ̄)T
]
(4.9)

In determining the uncertain parameters in Bayesian inference, the objective is to find

the maximum value of the posterior PDF pmax(θ, σ2|D) which is a function of θ and σ

(see Figure 4.1). The optimal solution of the model parameters θ and the prediction error

covariance parameter σ2 are the corresponding parameter set that lead p(θ, σ2|D) to the

maximum:

{θ̂, σ̂2} = arg max
θl≤θ≤θu,σ>0

{
p(θ, σ2|D)

}
(4.10)

where θl and θu are the lower and the upper parameter bound vectors.

4.2.4 The objective function for optimization

The sequential optimization method (also known as Gibbs steps [84]) can then be used to

optimize the parameters in Equation (4.10). Firstly, we take the derivative of p(θ, σ2|D)

w.r.t. σ2 and let its value be zero so as to obtain the optimal value σ̂2, namely,

∂p(θ, σ2|D)

∂(σ2)
= 0 ⇒ σ̂2 =

2β +NoNJg(θ;D)

2α+NoN + 2
(4.11)
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Figure 4.1: A schematic representation of the updating process: find the solution that

maximizes the posterior PDF.

Because of the presence of Jg(θ;D), we can state that the optimal value σ̂2 is also a function

of the parameters θ, v.i.z. σ̂2(θ). At this point, we treat σ̂2 as a known variable and plug

it into Equation (4.9) to obtain:

p(θ, σ2|D) ∝ ln
[
p(θ, σ2|D)

]
∝ − [NoN + 2(α+ 1)] ln[σ̂(θ)]− 1

σ̂2(θ)

(
NoN

2
Jg(θ;D) + β

)
− 1

2
(θ− θ̄)Σ−1

θ (θ− θ̄)T

(4.12)

Maximizing p(θ, σ2|D) is equivalent to minimizing the expression as follows (e.g., after

substituting Equation (4.11) into (4.12)):

G(θ) = [NoN + 2(α+ 1)] ln[σ̂(θ)]︸ ︷︷ ︸
part 1

+
1

2
(θ− θ̄)Σ−1

θ (θ− θ̄)T︸ ︷︷ ︸
part 2

+
NoN

2
+ α+ 1︸ ︷︷ ︸

part 3

(4.13)

The second part in Equation (4.13) is called the regularization term (or regularizer), which

is used to improve the well-posedness of inverse problems (see the generalized Tikhonov

regularization for nonlinear ill-posed problems in [85]). The value of G(θ) increases as the

radial distance of θ from the origin θ̄ increases in any direction. If there exist two or

more models fitting the measured data identically well (e.g., affected by modeling errors

or high noise corruptions), the regularizer helps trimming down the set of optimal system

parameters to be the unique one with the smallest 2nd norm [73].

In the case in which the prior distribution of σ2 is unknown, σ̂2 can be separately
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approximated by a purely data-driven term as:

σ̂2 = Jg(θ;D) (4.14)

It is also noteworthy that this data-driven term is linked to a special case of the inverse

Gamma distribution (e.g, given α � NoN and β → 0, we have σ̂2 → Jg(θ;D) leading to

the identical form in Equation (4.14)). Finally, if necessary, the prediction error covariance

can be approximated by σ̂ =
√

Jg(θ̂;D), after the optimal value of θ̂ has been determined.

4.2.5 Posterior PDF approximation

As shown in the work by Yuen et al. [86], the posterior PDF of the system parameters,

p(θ|D), can be approximated by a normal distribution, after an optimal set of uncertain

parameters, θ̂, as well as the prediction error covariance, σ̂2, have been identified. For the

case of a single set of data, the joint posterior PDF can be approximated by a Gaussian

distribution centered at θ̂:

p(θ|D) ≈ N (θ̂,H−1(θ̂)) (4.15)

where H−1 represent the inverse of the Hessian matrix of the objective function G(θ) in

Equation (4.13). When multiple data sets are used, the posterior PDF p(θ|D) can be

approximated by a weighted sum of Gaussian distributions centered at s optimal points

θ̂
(s)

[87]:

p(θ|D) ≈
s∑

k=1

wkN (θ̂
(k)
,H−1(θ̂

(k)
)) (4.16)

where wk are the weights, given by

wk =
p
(
θ̂

(k)
)
p
(
σ̂2(k)

) ∣∣∣H(θ̂
(k)

)
∣∣∣−1/2

∑s
j=1 p

(
θ̂

(j)
)
p
(
σ̂2(j)

) ∣∣∣H(θ̂
(j)

)
∣∣∣−1/2

(4.17)

Herein, s represents the total number of data sets. It is noted that the marginal posterior

PDFs can be extracted from the joint posterior PDF.

4.2.6 Iterative Bayesian model updating procedure

An iterative model updating procedure is proposed here. The pseudo-code for updating the

uncertain parameters using Bayesian inference is illustrated in Algorithm 2.
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Algorithm 2 – Bayesian updating procedure of uncertain parameters

Start with an admissible initial guess for the unknown parameters θ0;

Compute the MSE Jg(θ0;D) using Equation (4.5);

Compute the prediction error covariance σ2
0 using either Equation (4.11) or Equation (4.14);

Compute the objective function G(θ0) using Equation (4.13);

k ← 0;

while convergence is not satisfied do

Update the parameters θ̂
k
← θk + δθk using optimization techniques (e.g., MABC-BFGS);

Compute the MSE Jg(θ̂
k
;D) using Equation (4.5);

Compute the prediction error covariance σ2
k using either Equation (4.11) or Equation (4.14);

Compute the objective function G(θ̂
k
) using Equation (4.13);

if G(θ̂
k
) < G(θk) then

θk ← θ̂
k
;

else

θk ← θk;

end if

k ← k + 1;

end while

Compute the posterior PDF of system parameters using Equation (4.15) or Equation (4.16).

4.3 The proposed MABC-BFGS algorithm

4.3.1 The modified artificial bee colony algorithm

Herein, we propose four modifications to the standard ABC algorithm so as to improve its

convergence. To wit, these modifications involve population initialization, solution updat-

ing, probability calculation/selection, and Scout solution rebirth.

4.3.1.1 Modification I: initialization

When one deals with Bayesian inference, the a priori PDF of system parameters, e.g. normal

or lognormal distribution, may be reasonably assumed. In this case, the population can be

initialized following such a priori distribution. Let’s take the normal distribution as the a

priori distribution: each component in a parameter set θ follows a prior normal distribution
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Figure 4.2: Uniform initialization vs. normal initialization with 1000 samples.

with the mean value θ̄j and the corresponding coefficient of variation (c.o.v.) νj . Thus, each

individual in the initial population Θ (of the order Npop ×Nθ) could be generated by:

Θij = N
(
θ̄j , ν

2
j θ̄

2
j

)
(4.18)

where i = 1, 2, . . . , Npop and j = 1, 2, . . . , Nθ.

This modified initialization takes the advantage of the a priori knowledge of the system

parameter distributions. A typical comparison between the uniform initialization and the

normal initialization is visualized in Figure 4.2. It can be observed that the initial samples

are dependent of the prior PDFs of the parameters.

4.3.1.2 Modification II: solution updating

It can be observed that the solution updating strategy in Equation (2.7) generates a can-

didate solution by performing a single point perturbation based on a uniformly random

combination of the original solution and another one. This has low efficiency because the

new solution set comes from mutation of only a single parameter while other parameters are

kept at the original values as shown in Figure 4.3. Thus, a multiple-point mutation scheme

is presented to improve the solution updating efficiency (see Figure 4.3). Due to the nature

of uniform randomness, the probability of generating a good solution is identical to that

of generating a bad one. This is beneficial for solution exploration (global search) but is

less powerful in solution exploitation (local search) [88]. Therefore, a best-guided updating
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strategy with multiple-point mutation is proposed here for generating candidate solutions,

considering both the randomness and information associated with the current best solution.

To wit, the modified solution updating strategy is written as:

Θup
ij =

 Θij , if rand ≥ ρ

Θij + 2(rand− 0.5) · (Θij −Θkj) + rand · (Θbj −Θij), if rand < ρ
(4.19)

where the superscripts and the subscripts have the same meaning as shown in Section 2.3.2.

The superscript ‘b’ denotes the current best solution in the population. ρ is a cut-off control

parameter which is basically a measure of the likeliness that the solution updating process

is activated. This parameter is similar to the crossover/mutation probability used in genetic

algorithms. An optimal value ρ = 0.1 is used in this chapter, which is obtained from the

numerical optimization test of six benchmark functionals (Sphere, Rosenbrock, Griewank,

Rastrigin, Ackley, and Schwefel functions) as used in [88].

4.3.1.3 Modification III: probability selection

The probability-based selection process, usually conducted through the Roulette Wheel

Strategy, can be carried out by generating a uniformly distributed random number ri in

[0, 1] and comparing it with the probability qi. If qi ≥ ri, then the i-th corresponding

solution Θi will be selected; otherwise (qi < ri), it will not be selected. Looking at the

nature of the probability defined in the standard ABC algorithm (see Equation (2.11)), we

find that the solution associated probabilities are small. Due to the randomness of ri, it

might happen that ri > qmax, e.g., qmax = max{q1, q2, . . . , qNpop}, leading to an undesired

consequence that the best solution is not selected. Especially, in the extreme case that the
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Figure 4.3: A schemtic representation of the solution updating with single- and multiple-

point mutation. Note that the red marked parameters denote the points for mutation.



Chapter 4. Extension of the Hybrid ABC Algorithm with Bayesian Inference for
Probabilistic FEM Updating 80

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fitness value

P
ro

ba
bi

lit
y

 

 

λ = 1
λ = 2
λ = 3
λ = 4
λ = 5

Figure 4.4: The variation of the probability with respect to the parameter λ

solutions, in a large size population, are quite close to each other with similar fitness values,

the associated probability values are extremely small according to Equation (2.11); thus,

the probability of selecting good solutions remains small, and this goes against the purpose

of solution exploitation.

To prevent this situation, we propose a modified definition of probability based on

exponentials, expressed as:

qi = exp

[
λ

(
fit(Θi)

max1≤i≤Npop fit(Θi)
− 1

)]
(4.20)

where λ is a positive constant. The values of qi in Equation (4.20) are between 0 and 1,

with the best solution associated with qmax = 1. This formulation guarantees the selection

of the best solution. Figure 4.4 presents the variation of the probability in Equation (4.20),

as a function of the fitness value, with respect to the parameter λ. Parametric convergence

studies on the mathematical benchmark functions shows that an excellent optimization

result could be reached if given λ = 3.

4.3.1.4 Modification IV: Scout Phase search

In the standard ABC algorithm, the abandoned solution rebirth in the Scout Phase is carried

out by generating random solutions uniformly sampled in the parameter search space using
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Equation (2.6). This random feature is beneficial in the initial iterations; however, as the

algorithm moves to later iterations the random generation of a fresh solution might be

ineffective. Herein, a Gaussian solution rebirth strategy (also known as Gaussian mutation

in evolutionary strategy [31]), taking into account the information associated within the

population, is used in the Scout Phase search:

Θsc
lj = Θlj +N (0, ς2

j ) (4.21)

where j = 1, 2, . . . , Nθ and l denotes the abandoned solution; ςj is the standard deviation

(s.t.d.) of the j-th parameter among the population.

4.3.2 An overview of the BFGS method

In this work, we employ a well-known gradient-based Quasi-Newton approach, v.i.z., the

BFGS method, as our local search operator due to its great performance in solving un-

constrained local optimization problems [89–92]. The starting point of this method is the

initial guess provided by MABC, from which the BFGS is carried out zooming into the fine

scale features of the parameters.

To solve the minimization problem in Equation (4.13), the BFGS method generates a

sequence of line search iterative solutions {θk, k = 0, 1, 2, . . .} by

θk+1 = θk + γkdk (4.22)

dk = −Hk∇G(θk) (4.23)

where γk is the step length, dk is the search direction, Hk is the inverse Hessian approxi-

mation matrix expressed as

Hk+1 =

[
I−

∆θkqTk
qTk ∆θk

]
Hk

[
I− qk(∆θ

k)T

qTk ∆θk

]
+

∆θk(∆θ
k)T

qTk ∆θk
(4.24)

Here, ∆θk represents the solution change and qk denotes the gradient change.

When the objective function is not analytically differentiable, the function gradient can

be approximated using the central finite difference method:

∇G(θk) =

[
∂G

∂θk1
· · · ∂G

∂θkj
· · · ∂G

∂θkn

]T
(4.25)
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with each component computed by

∂G

∂θkj
≈
G(θk1 , . . . , θ

k
j + δθj , . . . , θ

k
n)−G(θk1 , . . . , θ

k
j − δθj , . . . , θkn)

2δθj
(4.26)

where δθj is an infinitesimal perturbation (e.g., 1× 10−6).

The pseudo code of the BFGS method is given in Algorithm 3. It is noteworthy that

the selection of the step length γk in a standard line search is implemented according to the

backtracking procedure and the Armijo rule [93]. The initial inverse Hessian approximation

matrix H0 is set to be an identity matrix, namely, H0 = I.

Algorithm 3 – The BFGS method

Given an admissible initial guess θ0, convergence tolerance ε̄, maximum number of iterations Lmax

and the initial inverse Hessian approximation matrix H0;

k ← 0;

while (k ≤ Lmax),
(
‖θk+1 − θk‖/‖θk‖ > ε

)
and

(
‖∇G(θk)‖ > ε

)
do

Compute the search direction dk = −Hk∇G(θk);

Compute the solution change ∆θk = γkdk according to line search;

Update the solution θk+1 = θk + ∆θk;

Compute the gradient change qk = ∇G(θk+1)−∇G(θk);

Update the inverse Hessian approximation matrix using Equation (4.24);

k ← k + 1;

end while

4.3.3 The hybrid MABC-BFGS scheme

A notable drawback of the BFGS method is its high dependency upon the initial guess.

When the objective function is multimodal, a ‘bad’ initial guess might lead the BFGS

method to be stagnated into a local minimum. To relieve this shortcoming, a ‘good’ solution

found by a global optimizer, such as the MABC algorithm, could be used as the initial guess.

The hybrid scheme between MABC and BFGS is presented as follows:

• Algorithm Switching : The BFGS method is added to MABC right after the Onlooker

Phase search and is activated after the MABC reaches Nstart iterations. Then the

BFGS method is implemented for local solution search frequently, e.g., every other

Nω MABC iterations (Nω denotes the frequency calling BFGS from MABC).
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• Solution Exchange: The current best solution found by the MABC algorithm is taken

as the initial guess (θ0) for the BFGS method. When the stopping criteria are met in

BFGS, its converged solution (θls) is summarized as the local search representative

solution. Afterwards, this solution is compared with its initial guess. If θls is “better”

than θ0 (solution is successfully improved by the local search), then θ0 is replaced

by θls and transfered back to the MABC algorithm; otherwise, the MABC algorithm

restarts using θ0 as its original value.

A flow chart of the proposed MABC-BFGS algorithm is given in Figure 4.5.

4.3.4 Mathematical benchmark function tests

In order to verify the effectiveness of the proposed MABC-BFGS in solving optimization

problems, six mathematical benchmark functions with 30 unknown variables [88] were tested

here. Herein, Bayesian inference is not employed. The MABC control parameters are set

to be Npop = 60, Nlim = 200 and Nmax = 5000. The BFGS control parameters are

Nstart = Nmax/5 = 1000, Lmax = 300, Nω = 500, δ = 1 × 10−8 and ε̄ = 1 × 10−12.

The stopping criteria for the MABC-BFGS are either when the objective function reaches

1 × 10−20 or when the total number of function evaluations reaches 2 × 105. Monte Carlo

simulations were performed: each case was independently repeated 30 times so as to obtain
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Figure 4.5: The flow chart of the proposed MABC-BFGS algorithm.
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Figure 4.6: Convergence lines of six benchmark mathematical functions of 30 dimensions.

statistical results. Finally, the means are summarized as the representative solution.

Figure 4.6 shows convergence lines of the six benchmark functions. It can be seen

that the proposed MABC-BFGS algorithm has a superior convergence rate and a much

better solution accuracy compared with the standard ABC algorithm. Due to its excellent

performance in solving optimization problems, MABC-BFGS appears to be an attractive

approach in application to Bayesian FEM updating.

It is noteworthy that the number of function evaluations is defined as the count of

evaluating the objective functions. In ABC and MABC, it is identical to the number of

fitness evaluations. In BFGS, it includes both the number of objective function evaluations

and the number of gradient function evaluations.

4.4 Numerical example: phase I IASC-ASCE structure

To demonstrate the applicability and effectiveness of the proposed MABC-BFGS algorithm

to probabilistic FEM updating and damage detection, the Phase I IASC-ASCE benchmark

structure (see Figure 4.7(a)) is firstly considered in this section.

The structure is a 4-storey, 2-bay by 2-bay steel frame, with dimensions of 2.5×2.5×3.5
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Figure 4.7: IASC-ASCE benchmark structure and its FEM.

 
 

𝑧 4,𝑐 𝑧 4, 𝑑 

𝑧 4, 𝑎 

𝑧 4, 𝑏 

x 

y 

Accelerometer direction Added mass Equivalent excitation 

L
 =

 1
.2

5
 m

 

Figure 4.8: Plan view of the 4th floor of the IASC-ASCE benchmark structure: sensor

placement, mass increase location and force excitation.

m as shown in Figure 4.7(a). The corresponding FEM considering rigid floor effect is

shown in Figure 4.7(b). In the original Phase I task, several loading and damage cases

were considered. In this work, we only considered the identification problems presented in

Structural Case 4: the structure is asymmetric, due to an increasing slab mass of 150 kg on

the top floor. As the input excitation, a concentrated force, modeled as a filtered Gaussian

white noise, is applied on the 4th floor. Figure 4.8 gives the plan view of the 4th floor,

which is analogous to other three floors. Accelerometers are horizontally placed on the slab

edges. Other detailed description of this structure can be found in the work by [94].

The 12 DOF model is a 3D linear shear type system with rigid floors as shown in Figure

4.7(c). The mass and stiffness matrices corresponding to the DOFs of each floor can be
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written as:

M(i) =


M

(i)
11 0 M

(i)
13

0 M
(i)
11 M

(i)
23

M
(i)
13 M

(i)
23 M

(i)
33

 and K(i) =


K

(i)
11 0 K

(i)
13

0 K
(i)
22 K

(i)
23

K
(i)
13 K

(i)
23 K

(i)
33

 (4.27)

where the superscript (i) is the floor index (i = 1, 2, 3, 4). The standard modal damping

is used here with a single damping ratio ξ = 5% for all the modes. Hence, we have 37

parameters to be identified in total, namely,

θ =
{
ξ,M

(i)
11 ,M

(i)
13 ,M

(i)
23 ,M

(i)
33 ,K

(i)
11 ,K

(i)
13 ,K

(i)
22 ,K

(i)
23 ,K

(i)
33

}
i=1,2,3,4

(4.28)

To link the connection between the measured horizontal accelerations and the 12 DOF

model response, the following equations can be used:

ÿ12DOF
i,x =

ÿa + ÿb
2

; ÿ12DOF
i,y =

ÿc + ÿd
2

; ÿ12DOF
i,η =

ÿa − ÿb
4l

+
ÿd − ÿc

4l
(4.29)

where the superscript 12DOF denotes the 12 DOF model; the subscript i is the floor index;

the subscripts x, y and η denote three directions as shown in Figure 4.7(c); the subscripts

a, b, c and d represent four sensor locations as shown in Figure 4.8.

The time histories of the responses at the sensor locations are generated using the

latest version of the datagen MATLABR© program which can be downloaded from http:

//bc029049.cityu.edu.hk/asce.shm/phase1/ascebenchmark.asp. The measured time

histories of system response are presented in the form of accelerations recorded by a limited

number of accelerometers. A 5-sec long signal with the sampling frequency of 1 kHz is

used in the identification process (N = 5 × 103). To validate the applicability of the

proposed approach to model updating, only input and partial output measurements are

considered here: acceleration time histories are available at the 2nd and the 4th floors

(No = 6). Furthermore, to test the effect of measurement noise on parameter identification,

noise pollution scenarios have been considered. The noisy input-output measurements are

generated by adding a zero mean Gaussian white noise sequence, whose root-mean-square

(RMS) is a certain percentage of the RMS of the correct signal, to the correct (noise free)

signal. Both the noise free and the 20% RMS noise cases are considered in this example.

The numerical analyses are programmed in MATLABR© (The MathWorks, Inc., MA, USA)

on a standard Intel (R) Core (TM) i5-3570K 3.40 GHz PC with 16G RAM.

http://bc029049.cityu.edu.hk/asce.shm/phase1/ascebenchmark.asp
http://bc029049.cityu.edu.hk/asce.shm/phase1/ascebenchmark.asp
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Table 4.1: Prior distribution of system parameters (mean and c.o.v. values)

Parameters M
(i)
II M

(i)
IJ K

(i)
II K

(i)
IJ ξ

Mean 2.5 0 1.5 0 0.03

c.o.v. 20% 20% 30% 30% 30%

Note that i = 1, 2, 3, 4; I, J = 1, 2, 3 and I 6= J . The mean values of diagonal masses are expressed in 103

kg, polar moments of inertia in 103 kgm2, tridiagonal masses in 103 kgm, diagonal stiffnesses in 108 Nm−1,

torsional stiffnesses in 108 Nm, and tridiagonal stiffnesses in 108 N.

The prior distributions of masses, damping ratio and stiffnesses are assumed to be

Gaussian with the mean and c.o.v. values shown in Table 4.1. It is noteworthy that

a confident interval can be applied to select samples so as to prevent sampling negative

values of parameters. Herein, we assume the prior PDF of the prediction error covariance

σ is unknown a priori. Thus Equation (4.14) can be used to approximate its posterior

value σ̂. The MABC-BFGS parameters for all independent runs used here are: Npop = 30,

Nlim = 200, Nmax = 500, Nstart = 300, Lmax = 300, Nω = 50, δ = 1×10−6 and ε̄ = 1×10−8.

A single set of measurement data was considered here. Due to the zero components in

the reference matrices, the relative error of a matrix is defined:

Eij =

∣∣∣Q̂ij −Qij∣∣∣
max {|Qij |}i=1,...,12; j=1,...,12

× 100% (4.30)

where Q̂ij and Qij represent the identified and the true elements, in the mass or the stiffness

matrix, respectively.

4.4.1 Updating of the undamaged “healthy” structure

The parameters representing the updated/posterior distributions of the structural param-

eters to be identified, for the case of 20% RMS noise, are presented in Table 4.2. The

identification results for the noise free case are not listed here because the identified values

are almost the exact values, e.g., with a maximum relative error less than 1 × 10−6 (see

the parameter convergence lines in Figure 4.9). It can be observed from Table 4.2 that the

probabilistic model updating results are excellent, with the identified mean values of masses

and stiffnesses being very close to the true values. Reasonably small standard deviations are
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also obtained. The identified mean value of damping ratio ξ, in the 20% RMS noise case,

is also quite accurate (e.g., ξ = 4.94%) with the relative error of 1.2%. It is noteworthy

that the prediction error covariance in the noise free case is 1.3362× 10−9 m/sec2 (the true

value is zero), while the identified value in the 20% RMS noise case is 0.3095 m/sec2 (the

true value is 0.3204 m/sec2).

Figures 4.9 and 4.10 show the plots of both the objective function and some typical

system parameters as a function of the number of iterations in the model updating of

the IASC-ASCE benchmark structure, for the noise free and the 20% RMS noise case,

respectively. It can be seen that the identified mean value of each parameter converge

Table 4.2: Statistical estimates of the mass/stiffness parameters with 20% RMS noise

Parameter True Identified Parameter True Identified

M
(1)
11 3.4524 3.4996 (0.018) K

(1)
33 2.3202 2.3472 (0.016)

M
(1)
33 3.8194 3.8446 (0.027) K

(1)
13 0 0.0201 (0.011)

M
(1)
13 0 0.0244 (0.020) K

(1)
23 0 −0.0150 (0.010)

M
(1)
23 0 −0.0181 (0.027) K

(2)
11 1.0660 1.0840 (0.007)

M
(2)
11 2.6524 2.7018 (0.018) K

(2)
22 0.6790 0.6916 (0.004)

M
(2)
33 2.9861 2.9709 (0.022) K

(2)
33 2.3202 2.3234 (0.015)

M
(2)
13 0 0.0237 (0.015) K

(2)
13 0 0.0079 (0.010)

M
(2)
23 0 −0.0357 (0.014) K

(2)
23 0 −0.0218 (0.010)

M
(3)
11 2.6524 2.6834 (0.014) K

(3)
11 1.0660 1.0812 (0.006)

M
(3)
33 2.9861 2.9999 (0.020) K

(3)
22 0.6790 0.6896 (0.004)

M
(3)
13 0 0.0474 (0.016) K

(3)
33 2.3202 2.3148 (0.016)

M
(3)
23 0 −0.0550 (0.019) K

(3)
13 0 0.0226 (0.010)

M
(4)
11 1.9599 1.9933 (0.007) K

(3)
23 0 −0.0261 (0.009)

M
(4)
33 2.2131 2.2405 (0.011) K

(4)
11 1.0660 1.0831 (0.005)

M
(4)
13 0.0938 0.1199 (0.008) K

(4)
22 0.6790 0.6882 (0.003)

M
(4)
23 −0.0938 −0.1249 (0.008) K

(4)
33 2.3202 2.3362 (0.015)

K
(1)
11 1.0660 1.0821 (0.005) K

(4)
13 0 0.0220 (0.008)

K
(1)
22 0.6790 0.6891 (0.003) K

(4)
23 0 −0.0205 (0.007)

Note that the parameter units are identical to those in Table 4.1. The values in the parentheses are the

standard deviations.
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to the correct value quite rapidly, after about 1 × 104 function evaluations (each function

evaluation takes about 0.01 sec CPU time). From these figures, it appears that the MABC

is able to find an “effective” initial point for the BFGS and that the BFGS converges quite

rapidly. Hence, the iteraction between MABC and BFGS is proven to be effective and

powerful. The proposed MABC-BFGS algorithm is able to overcome the drawbacks of both

relatively slow convergence of MABC and high initial guess dependency of BFGS, while

taking advantages of MABC great global search ability and of BFGS fast convergence.

Figure 4.11 depicts the identified probability density functions (PDFs) of some typical

system parameters, which were determined using Equation (4.15). It can be seen from Fig-

ure 4.11 that the identified system parameters are quite close to the correct values, yet with
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Figure 4.9: Convergence lines of some typical identified parameters (mean values) of the

IASC-ASCE benchmark structure without measurement noise.
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Figure 4.10: Convergence lines of some typical identified parameters (mean values) of the

IASC-ASCE benchmark structure with 20% RMS measurement noise.

small standard deviations. This demonstrates the robustness of the proposed algorithm

against measurement noise. Figure 4.12 shows the relative error plots of the identified

mean values of mass and stiffness matrices in the 20% RMS noise case. It can be seen that,

in general, the errors are very small with the maximum error less than 2%. The gratify-

ing identification results proves the successful application of the proposed methodology to

structural FEM updating, even in the presence of measurement noise. Figure 4.13 presents

typical pairwise plots of the prior vs. the posterior samples for some mass and stiffness pa-

rameters. It can be seen that even if the knowledge of the prior PDF is not well known, the

system parameters can still be updated quite well, with the updated/posterior parameter

samples being accurately located in the correct parameter region.
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Figure 4.11: The identified posterior PDFs of some typical parameters of the IASC-ASCE

benchmark structure with 20% RMS measurement noise.
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Figure 4.12: Relative error of the identified mass and stiffness matrices (mean values) of

the IASC-ASCE benchmark structure with 20% RMS measurement noise.
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Figure 4.13: Pairwise prior vs. posterior samples for some mass and stiffness parameters in

the identification of the IASC-ASCE benchmark structure.

4.4.2 Damage detection

Phase I of the benchmark structure also includes the task of damage detection. In this

example, we consider six damage scenarios which are summarized here (see Figure 4.14):

• Damage Case 1: all braces of the 1st floors are completely broken (removed).

• Damage Case 2: four braces of the 3rd floor, two acting in x-direction and two in

y-direction, are completely broken.

• Damage Case 3: one brace of the 1st floor acting in y-direction is completely broken.

• Damage Case 4: two braces, one of the 1st floor acting in y-direction and one of the

3rd floor in x-direction, are completely broken.

• Damage Case 5: two columns, one of the 2nd floor and one of the 4th floor, are

completely broken.

• Damage Case 6: one brace of the 1st floor acting in y-direction is cut to 2/3 of its

original cross-sectional area.
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Damage Case 1 Damage Case 2 Damage Case 3

Damage Case 4 Damage Case 5

1/3 cut

Damage Case 6

Figure 4.14: IASC-ASCE benchmark structure damage scenarios. The green lines represent

intact elements and the red lines represent damaged elements (either removed or cut).

Only the case of 20% RMS measurement noise is carried out here for the purpose of

damage detection. Damages are located and quantified by comparing two identified states

of a consistent model (e.g., prior to vs. after the occurrence of damage). The parameters of

the undamaged structure were first identified (see Section 4.4.1) and then were considered

as the “reference mean values” in regard to the damage states. The damage index di is

defined to quantify the damage level:

di =
kui − kdi
kui

× 100% (4.31)

where i denotes the stiffness parameter index (i = 1, 2, . . .); kui represents the identified

mean values of the undamaged stiffness while kdi represents the identified mean values of

the damaged stiffness.
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Figure 4.15 summarizes the identified damage levels (e.g., stiffness reductions) of the

six damage scenarios. It is seen that the identified damage levels (either the lateral or the

torsional stiffness reduction) are quite close to the reference values. It is obvious that the

damages can be accurately located and quantified.
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Figure 4.15: Identified damage levels of the IASC-ASCE benchmark structure.
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4.5 Experimental example: LANL 3-storey frame structure

In this example, experimental data sets of a three-storey frame structure shown in Figure

4.16 are used to validate the proposed method for both FEM updating and structural

damage detection.

The experiment on the test bed structure was conducted by the structural health mon-

itoring group at the Los Alamos National Laboratory (LANL). The structure consists of

aluminum columns and plates assembled using bolted joints. The structure slides on rails

that allow movement in the x-direction only, which simulates the case of shaking table test

with force excitations at the base floor. An accelerometer was attached at the centerline of

each floor, including the base. The floors are made of aluminum plates (30.5 × 30.5 × 2.5

cm). At each floor, four aluminum columns (17.7× 2.5× 0.6 cm) are connected to the top

and the bottom plates, essentially forming a four-DOF system subjected to base excitations.

Moreover, a column (15.0× 2.5× 2.5 cm) is suspended from the center of the top floor and,

together with a bumper mounted on the next floor (see Figure 4.16), is used to simulate

damages. An electrodynamic shaker was used to provide a lateral excitation to the base

floor along the centerline of the structure. Other detailed descriptions of this structure as

well as of the data acquisition system can be found in the technical report by [95].
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excitation signal was chosen in order to avoid the rigid body modes of the structure that are 
present below 20 Hz. The excitation level was set to 2.6 V RMS in the National Instruments 
system. Force and acceleration time series from seventeen different structural state conditions 
were collected, as shown in Table 1, along with information that describes the different states. 
For example, the state condition labeled “State#4” is described as “87.5% stiffness reduction 
in column 1BD”, which means that there was an 87.5% stiffness reduction (corresponding to 
a 50% reduction in the column thickness) in the column located between the base and first 
floor at the intersection of plane B and D. For each structural state condition data were 
acquired from 50 separate tests. For each test the data corresponds to a set of five time series 
measured with the input force transducer and four accelerometers. For illustration purposes, 
Figure 3 plots in concatenated format acceleration time series of State#1, 7, 14, and 17 from 
Channel 2 to 5, where one can see that the amplitude of the time series is relatively consistent.  

(b)

Figure 4.16: The LANL test structure setup: (a) three-storey frame structure with shaker

and (b) basic dimensions (all dimensions are in cm).
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Figure 4.17: Shear type building model of the LANL test bed structure.

It is noteworthy that we model the structure as a 4-DOF shear-type system (e.g., the

base is regarded as the first floor where an input force is applied) as shown in Figure 4.17.

Two non-physical parameters, e.g., stiffness k0 and damping ratio ξ0, of the first DOF

are presented to approximate the sliding frictions between the base floor and the rails.

Therefore, we update the 4-DOF model in the context of input-output identification of 12

parameters (e.g., four lumped masses, four damping ratios and four stiffness parameters).

The rigid body motion of the structure can be well simulated by adjusting k0 and ξ0.

Afterwards, we carried out damage detection through identification of the 4-DOF model in

regard to different damage states (e.g., the damage extent is defined as a relative change of

the stiffness value).

To test the effectiveness of the proposed approach applied to model updating with partial

instrumentation, only the recorded acceleration time histories at the base, first and top floors

were employed in the identification process (No = 3) (see Figure 4.17). Signals, sampled

at 320 Hz for a duration of 25.6 sec, were used at each floor. Since the accelerometers

are located at the centerline of each floor, they are insensitive to the structural torsional

modes. Classic modal damping was used to describe the energy dissipation mechanism of

the structure. Nine recorded experimental scenarios were investigated here, including the

undamaged state and eight damage states as shown in Table 4.3. For each scenario, the

experiment was repeated 50 times and the corresponding system response was recorded.

However, we herein only employed 15 data sets for identification in each state.
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Table 4.3: Nine recorded experimental scenarios of the LANL three-storey frame structure

State Damage Damage level Description (damage location)

0 No 0 Baseline condition (healthy structure)

1 No 0 Added mass (1.2 kg) at the base

2 No 0 Added mass (1.2 kg) on the first floor

3 Yes 21.88% 87.5% stiffness reduction in column 1BD

4 Yes 43.75% 87.5% stiffness reduction in column 1AD and 1BD

5 Yes 21.88% 87.5% stiffness reduction in column 2BD

6 Yes 43.75% 87.5% stiffness reduction in column 2AD and 2BD

7 Yes 21.88% 87.5% stiffness reduction in column 3BD

8 Yes 43.75% 87.5% stiffness reduction in column 3AD and 3BD

The total lumped masses are assumed to be known in the identification process (e.g.,

Mtotal = 26 kg for states 0 and 3–8, and Mtotal = 27.2 kg for states 1 and 2). Herein, we have

12 parameters to be updated in total, namely, θ = {m0,m1,m2,m3, ξ0, ξ1, ξ2, ξ3, k0, k1, k2, k3}.

The parameters of the healthy structure were first identified as the “reference values” in

regard to the damage states. The damage index di defined in Equation (4.31) is employed

to quantify the damage level of each floor.

In the identification process, we assume the prediction error covariance σ follows a prior

inverse Gamma distribution with the hyperparameters α = β = 1 m/s2. Thus Equation

(4.11) is used to calculate its posterior value σ̂. The prior PDFs for masses, damping

ratios and stiffnesses are selected to be independent distributions, namely, mi, ξi and ki

(i = 0, . . . , 3) follow the normal distribution with means equal to their nominal values

m̄i = 6.5 kg (i = 0, . . . , 3), ξ̄i = 3% (i = 0, . . . , 3) and k̄0 = 10 N/m, k̄i = 500 kN/m

(i = 1, . . . , 3), and the corresponding c.o.v. of 10% for masses and 30% for damping and

stiffness parameters, respectively. The MABC-BFGS parameters used here are identical to

those used in Section 4.4.

Table 4.4 presents the statistical results for physical parameter estimates of the test bed

structure using 15 data sets. For all damage states, it is observed that the values of c.o.v.

are reasonably small for mass and stiffness parameters. Nevertheless, posterior damping
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Table 4.4: Statistical results for physical parameter estimates of the LANL structure

State θ m0 m1 m2 m3 ξ1 ξ2 ξ3 k1 k2 k3

0
Mean 7.34 7.50 6.09 5.07 6.20% 0.90% 1.00% 448.31 419.04 327.16

c.o.v. 0.7% 0.8% 1.0% 0.9% 2.9% 6.5% 14.0% 0.8% 0.4% 1.0%

1
Mean 8.46 7.58 6.08 3.88 6.70% 0.80% 0.70% 440.67 418.05 331.10

c.o.v. 0.8% 0.8% 1.3% 0.9% 2.7% 6.7% 9.0% 0.8% 0.5% 1.0%

2
Mean 7.32 9.10 5.94 3.63 6.00% 1.20% 0.90% 456.90 400.61 324.59

c.o.v. 0.7% 0.8% 1.0% 1.2% 2.7% 7.2% 17.3% 0.7% 0.7% 1.0%

3
Mean 7.18 8.17 5.86 4.79 6.60% 1.10% 0.40% 368.51 411.32 318.78

c.o.v. 0.8% 1.0% 1.2% 1.1% 3.6% 6.9% 10.3% 1.0% 1.0% 1.2%

4
Mean 6.94 8.92 5.70 4.44 8.10% 1.00% 0.30% 290.83 424.14 290.68

c.o.v. 0.5% 0.8% 0.8% 1.2% 4.6% 4.8% 13.0% 0.7% 1.0% 1.1%

5
Mean 7.21 7.82 6.34 4.63 6.60% 1.00% 1.50% 465.60 342.93 313.99

c.o.v. 0.8% 0.7% 0.9% 1.0% 4.1% 8.1% 9.3% 0.8% 0.6% 1.1%

6
Mean 7.15 7.81 6.19 4.85 7.23% 0.88% 6.30% 489.73 262.19 296.70

c.o.v. 0.74% 1.57% 1.01% 2.70% 4.09% 5.38% 12.16% 1.41% 1.73% 1.36%

7
Mean 7.46 7.25 6.29 5.00 6.50% 1.10% 0.60% 438.85 417.71 259.50

c.o.v. 0.7% 0.8% 0.8% 1.1% 3.0% 5.4% 10.5% 1.0% 0.4% 1.1%

8
Mean 7.48 7.37 6.56 4.58 6.40% 1.50% 0.50% 453.01 427.61 183.42

c.o.v. 0.7% 0.9% 0.5% 1.5% 4.6% 5.6% 10.1% 0.9% 0.7% 1.4%

Note that the unit for mass is kg and the unit for stiffness parameters is kN/m.

parameters have larger uncertainties. The identified mean frequencies are summarized in

Table 4.5. Figure 4.18 shows the identified posterior PDFs of masses, damping ratios and

stiffness parameters, determined by Equation (4.16), of the healthy test bed structure. It

can be seen that the standard deviations are small thanks to the robustness of the proposed

model updating algorithm. Figure 4.19 illustrates the identified mean mass normalized

mode shapes for the healthy state and three damage states. It is seen that mode shapes

change due to stiffness reductions in the damage states. In addition, an obvious rigid body

motion is observed in the first mode.

Figure 4.20 depicts the predicted acceleration time histories and their power spectra

density functions on the base and the top floors, in comparison with the recorded signal

from experiments. It is observed that those two sets of signals have a quite good agreement.
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Table 4.5: The identified mean frequencies

State Second Mode Third Mode Fourth Mode

0 31.09 (0.10%) 55.05 (0.05%) 72.23 (0.12%)

1 30.19 (0.12%) 53.88 (0.04%) 71.74 (0.06%)

2 30.99 (0.13%) 54.21 (0.04%) 69.72 (0.09%)

3 30.59 (0.26%) 51.79 (0.04%) 70.30 (0.03%)

4 29.97 (0.22%) 47.52 (0.07%) 69.08 (0.05%)

5 30.05 (0.21%) 55.30 (0.07%) 68.10 (0.09%)

6 27.40 (0.80%) 54.83 (0.36%) 65.22 (0.83%)

7 29.88 (0.21%) 51.62 (0.06%) 70.48 (0.05%)

8 28.60 (0.23%) 47.88 (0.09%) 69.42 (0.05%)

Note that the unit of the frequencies is Hz. The values in the parentheses represent c.o.v..
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Figure 4.18: The identified posterior PDFs of damping and stiffness parameters of the

LANL three-storey structure.
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Figure 4.19: The identified mean mass normalized mode shapes for the healthy state and

three damage states.
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Figure 4.20: Predicted accelerations on the top floor of the LANL three-storey structure.
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Figure 4.21: Some typical identified PDFs of the prediction error covariance σ in the iden-

tification of the LANL three-storey structure.

The identified PDFs of the prediction error covariance σ are summarized in Figure 4.21.

The distributions of σ of different damage states show quite small variations accounting for

the algorithm robustness.

Figure 4.22 presents the identified damage indices at each floor of different damage

states. It is obvious that the damage assessment result is fairly good, e.g., the identified

damage extents are close to the reference (theoretical) values. The locations as well as the

levels of damages can be well identified with slight errors.

Furthermore, Figure 4.23 shows the identified posterior PDFs of damaged stiffnesses

corresponding to six damage states (e.g., states 3–8) of the test bed structure. Obvious

stiffness reductions are obtained. Narrow bands of standard deviations can be observed.

The probabilities of stiffness reductions can be quantified after integrating the PDFs to

obtain cumulative distribution functions, which can then be used for probabilistic damage

assessment of structures.
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Figure 4.22: Identified damage indices corresponding to eight damage states of the LANL

three-storey structure.
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Figure 4.23: The identified posterior PDFs of damaged stiffnesses corresponding to six

damage states of the LANL three-storey structure.
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4.6 Conclusions

In this chapter, a hybrid optimization methodology for the probabilistic finite element

model updating of structural systems is presented. The model updating process is first

formulated as an inverse problem analyzed by Bayesian inference and is solved using a hybrid

optimization algorithm. The proposed hybrid approach consists of a global search operator

(the modified artificial bee colony (MABC) algorithm) and a local search operator (the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) method). Parametric studies and numerical

optimization of mathematical functions show that MABC-BFGS has faster convergence

and much better solution search ability compared with the standard ABC algorithm.

The proposed MABC-BFGS approach is then applied to FEM updating through mini-

mizing the regularized objective function derived from Bayesian inference. System param-

eters as well as the prediction error covariance are updated iteratively in the optimization

process. Posterior PDFs of system parameters can be determined using a weighted sum of

Gaussian distributions. Both numerical and experimental examples, e.g., the 3D Phase I

IASC-ASCE benchmark structure and an LANL three-storey frame structure, are finally il-

lustrated to verify the validity of the proposed methodology. Simulation results successfully

show the effectiveness, robustness and efficiency of the proposed method in FEM updating

and damage detection. It can accurately find the correct parameter values with small un-

certainties even in the presence of measurement noise and modeling errors. Furthermore,

even if the a priori knowledge of the parameter distributions is not well known, the posterior

system parameters can still be updated quite well. In general, the proposed algorithm is

successfully applied to probabilistic structural FEM updating as well as damage detection

even with incomplete noisy input-output measurements.
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Chapter 5

Detection of Multiple Flaws Using

Single-Scale Optimization

In this chapter, a novel adaptive approach based on XFEM and a hybrid ABC algorithm is presented

to detect and quantify multiple flaws in critical structural components without a priori knowledge

about the number of flaws. Topological variables are introduced into the search space and used to

adaptively activate/deactivate flaws. This chapter is reproduced from the paper co-authored with

Professors Haim Waisman and Raimondo Betti, which was published in the International Journal

for Numerical Methods in Engineering [96].

5.1 Introduction

Nondestructive identification of flaws and defects (e.g., cracks and voids) in critical struc-

tural components, formulated as an inverse problem or a problem of system identification,

is an important subfield of SHM, that has drawn significant attention during the past few

decades [40, 97–100]. Clearly, flaw detection is extremely important for assessment of the

reliability and durability of structures, determination of the appropriate maintenance pro-

cedures, and prediction of its remaining service life. Nondestructive Evaluation (NDE) of

damage is an attractive methodology to assess flaws without disassembling or damaging the

structure in the process.

Nondestructive testing methods such as ultrosanic, radiographic and electrical impedance

tomography have been widely used for structural damage detection [101–103]. While these
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methods are attractive under some conditions, they are limited to laboratory settings and

specific flaw conditions. In addition, traditional nondestructive evaluation approaches such

as the time-of-flight models and image-processing tools [104] are also limited in that they

sometimes unable to provide accurate information on the location, size and shape of damage.

A robust computational model that can identify various flaw types under general settings

(not necessarily in well controlled laboratory environments and perhaps even under real op-

erational time as those occur) are necessary. Such models could provide accurate prediction

of damage and prevent catastrophic structural failures. Such computational model consists

of the processes of solving both the forward and the inverse problems. The inverse problem

is usually solved by an iterative optimization technique through minimization of measured

and predicted system response error. In this iterative process, the unknown physical prop-

erties (e.g., the flaw boundaries) of the system are characterized by a set of parameters

which are updated by the optimization method until the simulated system response best

matches the measurements. Flaw parameters vary ‘on the fly’ and converge to the ‘best

fit’ values. In every iteration, the predicted system response is approximated by solving a

forward problem, where flaw characteristics have been determined by the optimizer.

Numerical methods such as the standard finite element method (FEM) can be employed

to solve the forward problem. However, these require remeshing of the domain in order to

adjust the mesh to the varying flaw characteristics, where flaw boundaries have to conform

to the mesh. While fast remeshing algorithms become increasingly available [105], it is

still not a trivial task and require significant computational effort, in particular when the

number of forward solves is large. The number of iterations in such inverse problems often

depends on flaw and mesh sizes, number of flaws and sensors, and proximity of flaws to the

sensors.

One way to avoid costly remeshing of the forward problem, is via the boundary element

method (BEM), which has been popular in flaw identification problems [40, 97, 106–110].

BEM transforms the governing equations of elasticity into a boundary integral equation

and solves the problem using Green’s function. Nonetheless, if the flaw boundaries are

arbitrarily shaped, calculation of the Green’s function within a heterogeneous solid becomes

quite difficult. Therefore, applying BEM to these problems is still challenging.
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Only recently, a new numerical approach called the eXtended Finite Element Method

(XFEM) was proposed in application to flaw detection problems [1–4, 111, 112]. XFEM

provides an attractive alternative to standard finite elements in that they do not require

fine spatial resolution in the vicinity of discontinuities nor do they require repeated re-

meshing to properly address propagation of cracks or detection of flaws in such inverse

problems. The XFEM is a Partition of Unity (PU) based technique that locally enriches

the approximation space with some physical knowledge of the problem at hand [113–115].

In many applications, the XFEM is also combined with Level set methods that provides a

convenient framework for identifying enriched nodes in the mesh [114,115].

In the context of flaw detection, Rabinovich et al. [1, 2] were the first to present a

computational scheme based on XFEM and a genetic algorithm (GA) to detect cracks in flat

membranes subjected to either static or dynamic excitations. In a later work by Waisman et

al. [3], the XFEM-GA technique was extended to the detection of various types of flaws such

as straight cracks, circular holes and irregular shaped holes in elastostatics. Several GAs,

e.g. classic GA, micro-GA, and Sawtooth-GA, were employed. The scheme was further

improved by Chatzi et al. [4], proposing a generic XFEM formulation of an elliptical hole

which is utilized to detect any type of flaw (cracks or holes) of any shape. In addition, their

work included experimental validation studies. More recently, Jung et al. [111] proposed an

identification scheme based on a gradient-type optimization method and dynamic XFEM

for identifying scatters (e.g., cracks, voids and inclusions) in an elastic heterogeneous media.

Yan et al. [112] proposed a guided Bayesian inference approach for multiple-flaw parameter

detection and uncertainty quantification. Employing an optimization scheme within an

XFEM framework to identify model parameters, such as the order of various singularities

or thickness of boundary layers, has also been studied by Waisman and Belytschko [116].

Optimization algorithms that find the global minimum such as GAs are more suited for

these inverse problems as there is no straightforward dependency of the objective function on

the design variables. Though gradient-based optimization methods have faster convergence,

they possess the issue of initial guess. Though the algorithms in literature have proven to

be successful methods for detection of flaws, they focused on single flaw detection problems.

They assumed that only one flaw exists and hence the number of specified parameters in
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the search space, used for identification, is predefined a priori.

While detection of a single flaw is important, multiple flaws may exist in many practical

cases. Since we usually have no a priori knowledge on the number of flaws to be identified,

detection of multiple flaws is a difficult task as one cannot directly determine the number of

flaw parameters in the optimization process. Hence, an algorithm that can handle multiple

flaws without a priori knowledge on the number of flaws, must be developed. To this end,

we propose an elegant identification approach for multiple flaws, in which the number of

flaws (which is an unknown beforehand), becomes part of the optimization process. The

idea is to introduce topological variables (that take the binary values of 0 or 1), as additional

parameters in the search space, to automatically switch on and off flaws as the iteration

continues, until convergence is reached. Details on such an approach can be found in Section

5.2 of this chapter.

To summarize, in this chapter, we propose a new algorithm based on the XFEM and

the HABC algorithm (proposed in Chapter 3) to detect and quantify multiple flaws in

structures. The algorithm offers several novel concepts, namely: (1) the use of topological

variables in the optimization process to activate/deactivate flaws during the analysis (hence

the number of flaws need not be known a priori), and (2) the HABC algorithm which

provides a robust, efficient, and fast way to solve these non-unique inverse problems.

The chapter is organized as follows. Section 5.2 describes the formulations of the forward

and the inverse problems. Section 5.3 presents the XFEM formulation for multiple circular

void flaws modeling. In section 5.4, the XFEM-HABC flaw detection scheme is presented.

Section 5.5 presents several numerical examples with increasing complexities, and finally,

discussions and conclusions are given in section 5.6.

5.2 Formulation of the identification problem

Detection and quantification of flaws in structures, e.g., voids, cracks, damage regions,

can be viewed as an inverse engineering problem in that it involves the solution of both

the forward (direct) and the inverse (indirect) problems. In general, when one solves a

forward problem, the problem domain, material properties, governing equations, boundary
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Figure 5.1: Generic solid with traction-free flaws and sensors used to measure its response.

conditions, etc., are given and the response of the system is obtained. However, when

some of the aforementioned information is incomplete, as in most real applications, e.g.,

only measurements are available at some given points while the system characteristics are

unknown, the problem becomes an inverse problem.

Inverse problems can be solved by first guessing the missing information, solving the

forward problem and then repeatedly updating the guess in the forward model until the

simulated system response best fits the measurements recorded by sensors. In this section,

the formulation of the forward and of the inverse problems are discussed.

5.2.1 The forward problem

Consider the forward problem of an elastic solid in domain Ω ∈ R2 with the boundaries

Γu, Γt and Γv as shown in Figure 5.1, where Γu is the outer displacement boundary, Γt the

traction boundary and Γv the inner traction-free void boundary. Note that Γ = Γu∪Γt∪Γv

and Ø = Γv ∩ Γu ∩ Γt. The strong form of this forward problem can be written as

∇ · σ + b = 0 in Ω

σ = D : ε in Ω

ε = ∇su in Ω

σ · n = t̄ on Γt

σ · n = 0 on Γv

u = ū on Γu

(5.1)
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where “·” and “:” are tensor products; σ denotes the Cauchy stress tensor; b is the body

force vector per unit volume; D is the elasticity constitutive tensor; ε is the strain tensor;

u is the displacement vector; n denotes the outward unit normal vector; t̄ and ū represent

the prescribed tractions and displacements on Γt and Γu, respectively. ∇ represents the

Nabla operator while (∇·) denotes the divergence operator; ∇s denotes the symmetric part

of the Nabla operator, defined as ∇s = 1
2

(
∇T +∇

)
.

The weak form of Equation (5.1) can be written as:

Find u ∈ U in domain Ω such that∫
Ω
∇sw : D : ∇su dΩ =

∫
Ω

w · b dΩ +

∫
Γt

w · t̄ dΓt ∀w ∈ W (5.2)

with the trial and weight function spaces (U and W ) expressed as

U = {u|u ∈H 1,u = ū on Γu}

W = {w|w ∈H 1,w = 0 on Γu}
(5.3)

where u is the trial function; w is the weight function; and H 1 is the Sobolev space of

continuous functions with square integrable derivatives.

After discretization of the displacement trial function uh, the weight function wh and

their spaces U h and W h by finite elements, we obtain the discrete weak form∫
Ωh
∇swh : D : ∇suh dΩh =

∫
Ωh

wh · b dΩh +

∫
Γht

wh · t̄ dΓht ∀wh ∈ W h (5.4)

where Ωh and Γht are the discretized domain and traction boundaries, respectively, with

Ωh ⊂ Ω and Γht ⊂ Γt. It is also noteworthy that uh ∈ U h and wh ∈ W h with U h ⊂ U

and W h ⊂ W . Here, we employ XFEM to obtain and solve the governing set of discretized

equations (see Section 5.3).

5.2.2 The inverse problem

Flaw detection problems can be formulated as an inverse problem in which one’s objective is

to find the set of parameters describing the physical flaw/flaws, given a number of measured

data of the system response (e.g., displacements, accelerations, strains, etc.). The measure-

ments are, in general, recorded by a set of sensors placed on the structure. Typically, such
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problems are solved using an iterative process by minimizing the difference between mea-

sured data and predicted data obtained from each forward model. The iteration proceeds

by updating the forward model parameters until the optimization converges to the flaws or

the damage regions that minimize the global error set by the objective function.

The inverse problem can be summarized as follows: Given Ω, Γt, Γu, ū, t̄, D, and some

specific measured response at some given locations (the strain field ε in this work), ones

objective is to find the inner flaw boundary Γv.

In the current work, we assume that each flaw is approximated by a circular shape

void, hence in two dimensions each flaw is represented by its center coordinates and radius,

(x, y, r), respectively. The problem of identifying the inner void boundary becomes then to

identify these parameters for each flaw. In general the solution to this problem is non-unique,

unless sufficient number of sensors are employed and enough measurements are employed.

Mathematically, this inverse problem is casted as an optimization problem whose objective

function is defined as the error between the actual measured structural response and the

estimated response of a parametric model. The parametric model is described by a set of

unknown variables in a vector form:

θ = {θ1, θ2, . . . , θn} ∈ Rn (5.5)

where n represents the number of parameters. These parameters are identified once the

optimization process has converged. Herein, convergence is determined when the objective

function is minimized, that is

g(θ) =

D(α≤β)∑
α=1,β=1

‖εsαβ(θ)− εmαβ‖
‖εmαβ‖

(5.6)

where εs is the computed strain vector; εm is the measured strain vector at several specific

points along the surface of the structure where sensors (strain gauges) are located; subscripts

α and β denote the direction of strain components; D is the dimension of the problem (i.e.

1D, 2D, 3D); ‖ · ‖ is the Euclidean norm of a vector. εs is a function of θ which is obtained

through the forward analysis. In general, the identification problem can be summarized as:

Find θ = {θ1, θ2, . . . , θn} ∈ S such that g(θ)→ min (5.7)



Chapter 5. Detection of Multiple Flaws Using Single-Scale Optimization 112

where S is the feasible n-dimensional parameter search space which can be generally written

as:

S = {θ ∈ Rn|θmin
j ≤ θj ≤ θmax

j , ∀j = 1, 2, . . . , n} (5.8)

where θmin
j is the lower bound of the j-th parameter and θmax

j is the corresponding upper

bound. More specifically, S is defined by providing an initial guess on the number of flaws.

For simplicity, let us assume that nv flaws are present in the structure. Thus the number

of optimization variables is known and, S can be written as:

S = S1 ∪ · · · ∪Sk ∪ · · · ∪Snv (5.9)

with

Sk = {xk, yk, rk ∈ Rnv |xmin
k ≤ xk ≤ xmax

k , ymin
k ≤ yk ≤ ymax

k , rmin
k ≤ rk ≤ rmax

k } (5.10)

and

θ = {x1, y1, r1, . . . , xk, yk, rk, . . . , xnv , ynv , rnv} (5.11)

where k = 1, 2, . . . , nv; nv is the number of flaws (voids); (xk, yk) are k-th circle center

coordinates; rk is the k-th radius; [·]min
k and [·]max

k are the lower and upper bounds of the

k-th flaw for x, y and r, respectively.

In practice, the number of flaws to be detected and quantified is often unknown. When

considering multiple flaws detection using an optimization technique based approach, an

important question arises: how to determine the number of parameters in the optimization

scheme to be identified?

One possible brute force solution is the sequential introduction of flaws into the opti-

mization process, i.e. increasing the number of unknown parameters to be identified as the

iterative scheme continues, as illustrated in Figure 5.2(a). For example, it is shown that if

one starts with a single flaw and adaptively adds more flaws to the search space, assuming

that some critical number of iterations or some critical predefined objective function value

are reached, then the overall convergence behavior to the global objective function is er-

ratic and not smooth, and in some cases may not converge at all. Hence such scheme may

require tremendous computational effort to obtain global convergence as it is not clear how

to efficiently set the criterion for the adaptive incrimination of flaws.
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Figure 5.2: Convergence to the global minimum: (a) brute force sequential method: the

number of flaws increases adaptively until the termination criterion is reached (global con-

vergence is non-smooth) and (b) a topological variable approach proposed in this chapter:

the number of flaws is optimized during the process (global convergence is smooth).

To this end, we propose a more elegant approach to detect multiple flaws, where the

unknown number of flaws becomes part of the optimization. The idea is to introduce

topological variables (that take the binary values of 0 or 1) to determine the number of

flaws during the optimization process. These topological variables are added as additional

parameters to the search space θ, and automatically switch on and off flaws as the iteration

continues. Figure 5.2(b) illustrates the global convergence of such method. It is shown to

have smooth convergence to the target compared to the brute force sequential optimization

method. Moreover, the user only needs to specify the final convergence criteria and the

number of flaws comes out naturally from the optimization scheme. Clearly, this approach

leads to convergence with a significantly smaller effort than the sequential approach as

shown in the results Section 5.5.2.

Let us assume that the number of these topological variables is nt. Then S can be

expressed as:

S = S1 ∪ · · · ∪Sk ∪ · · · ∪Snt (5.12)

with

Sk = {xk, yk, rk, τk ∈ Rnt |xmin
k ≤ xk ≤ xmax

k , ymin
k ≤ yk ≤ ymax

k , rmin
k ≤ rk ≤ rmax

k , τk = 0 or 1}

(5.13)
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and

θ = {x̂1, ŷ1, r̂1, . . . , x̂k, ŷk, r̂k, . . . , x̂nt , ŷnt , r̂nt} (5.14)

where x̂k = τkxk, ŷk = τkyk and r̂k = τkrk; k = 1, 2, . . . , nt; τk is the k-th topological

variable. The topological variable is essentially a switch that controls the existence of flaws.

For instance, if τk = 0, then xkτk = ykτk = rkτk = 0 which means the k-th flaw size is

zero. In other words, such flaw does not exist and its corresponding parameters are canceled

during the optimization process. On the other hand, if τk = 1, then xkτk = xk, ykτk = yk,

and rkτk = rk, the k-th flaw is still active and the topological variable have no impact.

Typically, we set nt ≥ nv so that the topological variables will adaptively turn on and

off the number of flaws in cases. Finally, the total number of flaws can be obtained by

summation of τk, i.e.

nv =

nt∑
k

τk (5.15)

For instance, consider an example where five topological variables are used for a trial iden-

tification process, i.e. nt = 5. Say, if the identified τ is {0, 1, 0, 1, 0}, then nv = 1 + 1 = 2

and the identified number of flaws will be two. In addition, the relevant information of flaw

locations and sizes will be obtained from the nonzero sets (xk, yk, rk) in θ (see Equation

(5.14)).

Figure 5.2(b) illustrates the global convergence of such method. It is shown to have a

smooth convergence to the target compared to a brute force sequential optimization method,

shown in Figure 5.2(a). Moreover, the user only needs to specify the final convergence

criteria and the number of flaws is determined naturally from the optimization scheme.

The computational domain may have complex geometries in which case one would need

to ensure the convergence of parameters within the problem domain Ω. However, directly

restricting the parameters to the feasible domain might be difficult because the constraints

are not simple, i.e. the shape of the structure Ω may be non-regular as illustrated in Figure

5.3. Hence, a penalty strategy is implemented here to renew the objective function in order

to handle the complex constraints. If a candidate parameter set is outside the feasible

region, then an exaggerated objective function value is returned. Since this value is much

larger than the actual objective function value, its parameter values are easily eliminated
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void with the center at (0.617, 0.627) units and the radius 0.04 units. The axes X and Y

represent the problem domain (e.g., the dimension of a plate). Note that the radius is fixed.

and replaced by other optimal values. The penalty objective function can be written as:

G(θ) =

 g(θ), if p(xk, yk) ∈ Ω

κ, if p(xk, yk) /∈ Ω
(5.16)

where κ is a user-defined large number and p(xk, yk) denotes the center point of a circle

with coordinate (xk, yk). Finally, the overall identification problem is summarized as:

Find θ ∈ S such that G(θ)→ min (5.17)

In general, an inverse problem in flaw identification applications is ill-posed and the

uniqueness of the solution cannot be guaranteed unless sufficient sensor measurements are

utilized or the flaws to be identified are ‘large’ enough compared with the finite element
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discretization. Moreover, ill-posedness of a problem may also be manifested through sensi-

tivity of parameters to small perturbations in measurements, even in cases that a solution

is unique. Nonetheless, such ill-posedness may be circumvented by modifying the type and

location of the sensors [1]. The corresponding iterative solution process is usually treated as

a nonlinear optimization problem. The objective function of G(θ) is highly non-convex with

irregularity of multi-dimensional surface as illustrated in Figure 5.4. Thus, multiple local

minima might exist and the optimization algorithm is faced with tremendous difficulties

when the algorithm attempts to converge to the global minimum. Therefore, an optimiza-

tion algorithm with both powerful global and local search abilities should be employed to

solve such inverse problems so as to obtain accurate solutions.

5.3 XFEM-based multi-circular-void flaws modeling

Solution of the inverse problem described in Section 5.2 typically requires re-meshing of the

domain in each cycle/iteration of the optimization method since the flaw locations and sizes

are updated in each forward analysis [3, 117]. While fast meshing algorithms are becoming

increasingly available, this task still remains a significant drain on computational resources.

An alternative approach to overcome the limitation of standard FEM is the XFEM.

The XFEM is a partition of unity based method, where special functions describing the

actual physics of the problem at hand may be incorporated locally into the finite element

approximation space to capture features of interest. Aside from a more accurate modeling

of the physics, the geometry of internal boundaries such as flaws turns out to be separated

from the actual mesh. This feature makes XFEM a powerful tool for modeling the forward

problem in these inverse problem setting [113–115].

5.3.1 XFEM formulation for circular voids

In this work we only consider circular voids in the forward problem. Thus the enrichment

functions are as follows. Consider a domain Ω ∈ R2, as shown in Figure 5.1, partitioned

into finite elements. The displacement field uh(x) is enriched with a weak-discontinuity
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function [115]:

uh(x) =
∑
I∈N

NI(x)uI +
∑
J∈Nen

NJ(x)V (x,θ)aJ (uI ,aJ ∈ R2) (5.18)

where N is the shape function, N represents a set of nodes in the mesh and Nen is a subset

of N that contains all the nodes enriched by the function V . The enriched nodes, belonging

to elements in which the weak discontinuity passes through, are augmented with additional

degrees of freedom aJ , which add more unknowns to the global system of equations. Hence,

the discretized weak form for an enriched element is given as:

uhe (x) =
∑
I∈Ne

NI (x)(uI + V (x,θ)aI) (5.19)

where Ne refers to the number of element nodes. It may be seen from Equation (5.19) that

the physical displacement at an enriched node I is provided in terms of both the standard

DOF uI and the enriched DOF aI . Following the work of Sukumar et. al [115], we employ

a shifted version of the enrichment function such that

uhe (x) =
∑
I∈Ne

NI(x) [uI + (V (x,θ)− V (xI ,θ)) aI ] (5.20)

5.3.2 Discontinuity modeling for multi-circular voids

The level set function is used to represent weak discontinuities such as voids within the

framework of XFEM. The enrichment function used for voids commonly takes the following

Heaviside form in Equation (5.21) [115]:

V (x,θ) =

 1, if φ(x,θ) ≥ 0

0, if φ(x,θ) < 0
(5.21)

where φ(x) is the level set function. The nodes that lie inside the void and whose nodal

support is not intersected by the void are removed from the calculations. This is done

usually by removing the degrees of freedoms associated with those nodes from the system of

equations and solving the system only for the remaining degrees of freedoms. For a circular

void, the minimum signed distance function is used to construct the level set function:

φ(x,θ) = ‖x− xc‖ − rc (5.22)
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where x is any query point, xc = (xc, yc) is the center coordinates of the circle, and rc is

the radius of the circle. Note that, when this function is zero, the actual void geometry

is obtained. Thus, in this case, the level set function will have a positive value outside

the circle, a negative value inside the circle and the points that lie on the circle will be

represented as a zero value of the function. If a body contains several circular discontinuities,

the level set function for all the discontinuities can be defined as:

φ(x,θ) = min {‖x− xci‖ − rci}i=1,2,...,nc
(5.23)

where nc is the number of circles; xci = (xci , y
c
i ) and rci refer to the center coordinates and the

radius of the i-th circle. Figures 5.5–5.7 show the level sets and enrichments visualization

for the cases of a single void, two separate voids and two overlapping voids, respectively.
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Figure 5.5: Level set and enrichment visualization of a single void.

−
1

−1

0

0

0

0

0 0

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

3

3

3

3

3

4

4

4

5

5

0 2 4 6 8 10
0

2

4

6

8

10

(a) Contour plot

0 2 4 6 8 10
0

2

4

6

8

10

(b) Enriched nodes (c) Level set function

Figure 5.6: Level set and enrichment visualization of two separate voids.
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Figure 5.7: Level set and enrichment visualization of two overlapping voids.

5.4 The XFEM-HABC identification scheme

The inverse problem in this work is solved by the HABC algorithm proposed in Chapter 3

(see Section 3.3.1). Nevertheless, in order to improve the efficiency of the Onlooker Phase

search, an alternative solution updating strategy is proposed to take advantage of the global

best solution to guide the search of candidate solutions. In other words, the “guided-to-best”

solution updating strategy is expressed as:

Θup
ij = Θij + 2χiter(rand− 0.5) · (θbj −Θkj) (5.24)

where the superscripts and the subscripts have the same meaning given in Section 2.3.2.

The vector θb denotes the current global best solution with the best fitness value in the

population. And χiter is the convergence control parameter proposed in Equation (2.8)

(note that m = 3 and δ = 0.2 are used to determine χiter in this chapter).

Note that Equation (5.24) is only used in the Onlooker Phase search while the Employed

Phase search still takes the updating strategy in Equation (2.9). Without loss of generality,

the combination of Equations (2.9) and (5.24) consist of a global random search and a

guided-to-best search. This change is assumed to make the algorithm converge more quickly

since the solution can be biased towards the best solution using Equation (5.24).

To summarize, the identification process of XFEM-HABC algorithm is initiated by

generation of a set of individuals randomly sampled in the search space and is updated by

the operation of bee phases, combined with the local search operator (see NMSM in Section

3.3.1), proceeding towards a global optimum target. As discussed in Section 3.3.3, the
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proposed algorithm depends on the following user-defined parameter: lower bound vector

(θmin), upper bound vector (θmax), number of parameters to be identified (n), number of

population size (Npop), maximum number of iterations for HABC (Nmax), number of limit

iteration (Nlim), starting point for local search (Nls), and maximum number of iterations

for NMSM (Nlsiter). While large values of Npop, Nmax and Nlsiter will more likely to result

in global convergence with a small number of iterations, yet the CPU time will increase

dramatically because a significantly large number of forward analysis and fitness evaluations

will be required. Thus a smart choice of these parameters (which typically depends on the

problem) will determine a good trade-off between number of iterations and CPU time. It is

noteworthy that the system parameters (θ) are evaluated by the XFEM solver. In general,

the evolutionary process is repeated until the termination criterion is met. The purpose of

this procedure is to eventually lead to the best parameter set which can best “fit” the flaws.

Remark. It is noteworthy that the HABC algorithm can directly be applied to optimization

problems with continuous parameters/variables according to the nature of the solution

updating strategies. However, while the optimization process involves discrete variables

such as topological variables in this work, the following equation can be used to revise the

updated solution of topological variables:

Θτ
iq =

 0, if θτiq ≤ 0.5

1, if θτiq > 0.5
(5.25)

where i = 1, 2, . . . , Npop and q = 1, 2, . . . , nt; the superscript τ denotes the topological

variables in Θi. Usually, the bounds of the topological variables are set to be [0, 1] so that

the cut-off point of 0.5 in can fairly make the probabilities of choosing 0 or 1 identical.

5.5 Numerical experiments

Four numerical examples are presented in this section to investigate the convergence of the

proposed XFEM-HABC technique in the detection and quantification of multiple flaws in

structures. The examples are structured in an increasing order of difficulty considering

different mesh types, flaw shapes, multiple flaws and their proximity to each other and

given/unknown a priori knowledge on the number of flaws. The system response in terms
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of strains is recorded at some given points by strain gauges and is used as the measured

data to compute the error norm in Equation (5.6) and minimize the objective function in

Equation (5.16). In the process of the XFEM-HABC algorithm for flaws detection, the

most time-consuming part is the fitness evaluation (mainly in forward analysis), whereas

the time taken by the HABC algorithm itself is negligible. Since the HABC algorithm is

a stochastic algorithm, each independent run might bring slightly different solutions. To

avoid solution uncertainty and to ensure good results, five independent runs are conducted

in the statistical simulations. Finally, the result with a minimum objective function value

among the independent runs is selected as the final representative solution for each case.

The algorithm convergence has been analyzed in terms of the number of XFEM forward

solves (analyses) in the numerical experiments.

The strain measurements used herein as structural response are obtained by solving

a reference problem either with an XFEM code or FEM codes. In future work, actual

experimental tests will be explored. The XFEM-HABC algorithm was implemented in

MATLAB R© on a standard Intel (R) Core (TM) 2 Q9550 2.83GHz PC with 2G RAM.
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Figure 5.8: Detection of a single flaw: (a) mesh generation, loading condition and sensor

placement and (b) snapshots of the XFEM-HABC evolutionary process for the target of a

circular void of radius 0.4 (units) located at the center of a rectangular plate.
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5.5.1 Detection of a single flaw within a rectangular plate

In this example, we study the performance of XFEM-HABC scheme on the identification

of a circular void in a rectangular plate of dimensions 10 by 10 (units) (see Figure 5.8(a)).

The purpose of the example is to study convergence behavior of the HABC algorithm

(proposed as improvement in this work) as compared with classic GAs and the standard

ABC algorithm. For this problem, the number of parameters to be identified is three;

namely, the radius rc of the void and the Cartesian coordinates (xc, yc) of its center. Fixed

boundary conditions are applied on the bottom edge of the plate. The target circular void

dimensions are set equal to (xc, yc) = (5, 5), while the radius size is chosen equal to 0.4

units. Eleven strain gauges are assumed to be distributed on the non-fixed boundaries.

Reference measurements are obtained by the circular void(s) enrichment using an XFEM

code. The overall geometry of the problem as well as the 41 × 41 node structured mesh

used for the identification procedure is presented in Figure 5.8(a).

The parameter bounds for the circular void detection problem are defined as xc ∈

[0.5 9.5], yc ∈ [0.5 9.5] and rc ∈ [0 2]. The HABC parameters are set as follows: Npop = 20,

Nmax = 30, Nlim = 30, Nls = 12 and Nlsiter = 15. For comparison purposes, the standard

ABC algorithm was tested, in which the algorithmic parameters are the same as those used

in the HABC algorithm. A classic rank-based genetic algorithm (GA) was also implemented

in this example by using the MATLAB R© GA ToolboxTM. In this GA, the population size

is chosen to be equal to Npop and the maximum generation number equals to Nmax. The

rate of crossover was selected equal to 0.8 while a Gaussian function with zero mean value

was adopted for mutation strategy with a scale factor of 0.5 and shrink factor of 0.75 [43].

Table 5.1 illustrates the identification results using the three different algorithms after

600 forward solves. It can be seen that HABC converges to a much smaller final objective

function value of 8.5670 × 10−5 than those obtained by GA and ABC (0.0150 and 0.0014,

respectively). Figure 5.9 shows the convergence comparison of the three algorithms for

both objective function evaluations and parameter estimation. Clearly, the proposed HABC

converges much faster than GA and ABC and shows superior efficiency. However, a standard

ABC algorithm can also yield good results that are better than those obtained by GA. Figure

5.8(b) depicts the snapshots of the XFEM-HABC evolutionary process for the target of the
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Figure 5.9: Comparison of convergence for alternative algorithms (identification of a single

circular void).
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Table 5.1: Identification results using different algorithms in example 5.5.1.

Flaw parameters True value
Identified value

GA ABC HABC

xc 5.0 4.8304 5.0087 5.0097

yc 5.0 5.3839 4.9490 4.9891

rc 0.4 0.5059 0.3891 0.3999

Final objective function value G 0.0150 0.0014 8.5670×10−5

Note that the algorithm is terminated after 600 forward solves.

circular void. In fact, the flaw parameters are able to converge to the true values after only

several iterations, which shows the attractiveness of the proposed XFEM-HABC algorithm.

5.5.1.1 Parametric study on measurement noise effect.

To analyze the effect of measurement noise on the identification of the flaw parameters,

various noise pollution levels in measurement data have been considered. The measured

strains have been polluted with Gaussian zero-mean white noise sequences, whose RMS

values are defined as some percentages of the clean signal. Namely, the noisy measured

strain vector εm is obtanied by:

εm = εc + r× βε × q% (5.26)

where εc denotes the correct strain; r the Gaussian white noise variable; βε the RMS value

of the correct strain; q% the noise level (e.g., 2%, 5%, 10%, 15%, and even worse 20%).

A Monte Carlo simulation, of 200 independent sample runs, has been carried out so as

to obtain statistical insights into the measurement noise effect on flaws identification. Each

run generates a new Gaussian white noise sequence. For example, Figure 5.10(a) depicts

the strain comparison between measured signal with 20% noise corruption and the clean

signal. A typical set of identification result is shown in Figure 5.10(b). It can be observed

that the proposed XFEM-HABC is able to successfully identify flaw size and location even

with high level of noise corruption (i.e., 10%, 15%, 20% RMS noise levels).
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Figure 5.10: Flaw identification with noisy measurements of one Monte-Carlo realization.
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Figure 5.11: Monte Carlo simulation for identification of a single circular void flaw
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The norm error is used to evaluate the Monte Carlo simulation results, namely

e = 1− ‖θid‖
‖θexact‖

(5.27)

where θid represents the identified parameter vector and θexact represents the exact pa-

rameter vector. Figure 5.11 summarizes the results of the Monte Carlo simulation. Figure

5.11(a) shows the Gaussian white noise distribution with different RMS levels. Figure

5.11(b) shows the Probability Density Function (PDF) of e. It can be seen that, as the

noise level reduces, the mean value of e is closer to zero and the corresponding Gaussian

PDF is sharper (e.g., the spread or uncertainty is smaller).

Figure 5.11(c) shows the convergence of the mean and covariance (COV) of E with

increasing number of Monte Carlo realizations, where a statistical convergence can be ob-

served. Thus, we conclude that the Gaussian white noise leads to a Gaussian distribution

of the identified flaw parameters and the algorithm is robust against high-level noise.

5.5.2 Detection of two flaws within a rectangular plate

The performance of the proposed identification scheme is further studied on the detection

of two voids within a rectangular plate. The geometry of the problem is shown in Figure

5.12. The mesh generation, loading condition, sensor placements and essential boundary

conditions are the same as those in example 5.5.1. We study the convergence of the proposed

algorithm on: 1) two far away flaws and 2) two close flaws. Note that the number of flaws

is not known beforehand and topological variables are employed to converge to the true

number of flaws. The flaw parameter settings in terms of center coordinates and radii

are given in Table 5.2. In all cases, the parameter bounds for the circular voids detection

problem are defined as: xci ∈ [0.5 9.5], yci ∈ [0.5 9.5] and rci ∈ [0 2].

In this example, 3nt void parameters along with nt topological variables need to be iden-

tified, where nt represents the number of topological variables: the radii rci , the Cartesian

coordinates (xci , y
c
i ) of void centers and the topological variables τi, where i = 1, 2, . . . , nt

and nt ≥ 2. Herein, we use nt = 4 for the simulation so that sixteen parameters in total

are identified. The HABC parameters used herein are Npop = 30, Nmax = 100, Nlim = 40,

Nls = 15 and Nlsiter = 15. Table 5.3 reports the identification results of flaw parameters.
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Figure 5.12: Mesh generation, loading condition, sensor placement and two circular flaws

locations within a rectangular plate.

Table 5.2: Flaw parameter settings in example 5.5.2.

Distance of flaws
Flaw 1 (Units) Flaw 2 (Units)

xc1 yc1 rc1 xc2 yc2 rc2

Case 1: Far away 3.0 8.0 0.4 7.0 4.0 0.4

Case 2: Close 4.5 6.5 0.4 5.5 5.5 0.4

Note that the algorithm is terminated after 3000 forward solves. The performance of the

proposed XFEM-HABC algorithm is excellent and yields good estimates of flaw parameters

for both far and close flaws scenarios. However, as expected, it can be observed from Table

5.3 and the final objective function value (G) that it is much easier to converge to far flaws.

This might be because of the more pronounced non-uniqueness that is more likely to occur

in the close flaws scenario (e.g., if the flaws are close enough, they could be approximated

by a single flaw instead of two). Also, it can be understood as if there are more flaws

than sensor per given area which increases the non-uniqueness of the problem. In general,

for both scenarios, the proposed XFEM-HABC converges to the exact number of flaws by

switching the topological parameters on and off, and to the true flaw locations and sizes

very well. It is also noteworthy that the proposed algorithm is able to converge to a much
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Table 5.3: XFEM-HABC identification results in example 6.2

Flaw parameters
Far flaws Close flaws

True value Identified value True value Identified value

Flaw 1

xc1 3.0 3.2853 4.5 4.4646

yc1 8.0 7.8413 6.5 6.6908

rc1 0.4 0.3927 0.4 0.4093

Flaw 2

xc2 7.0 7.0291 5.5 5.4285

yc2 4.0 3.8890 5.5 5.3844

rc2 0.4 0.3519 0.4 0.4155

Number of flaws (Στ ) 2 2 2 2

Final objective function value G) 8.0269e-4 0.0095

Note that the algorithm is terminated after 3000 forward solves.

better result with the objective function less than 1× 10−6 if a larger number of iterations

are used (e.g., 60000 forward solves with the CPU time about 41 min not shown here).

Figures 5.13 and 5.14 depict the typical snapshots of the XFEM-HABC evolutionary

process for the identification of far flaws and close flaws, respectively. Figures 5.15 and

5.16 show the XFEM-HABC convergence of both objective function evaluations and the

number of flaws for detection of both test cases. In these figures, the topological variable

approach was also compared with the brute force sequential method, in which flaws are

simply added to the search space if no convergence is observed.. It can clearly be seen that

the overall objective function convergence behavior of the brute force sequential method is

erratic and not smooth (e.g., the jumping-up-phenomena at the 3000th forward analysis),

while the topological variable approach has a smooth decreasing convergence. Furthermore,

the brute force sequential method requires a larger number of iterations to reach the same

level of objective function value compared with the topological variable approach, increasing

the computational cost significantly. Since the number of flaws is part of the optimization

in the topological variable approach, it keeps changing adaptively until a favorable estimate

is reached. After 3000 forward solves, the identified number of flaws by the XFEM-HABC

algorithm successfully returns 2, the true value.
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Figure 5.13: Snapshots of the XFEM-HABC evolutionary process for the target of two far

away circular voids. Note that the number of identified voids keeps changing dynamically

(due to the topological variables) until the algorithm converges to two.
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Figure 5.14: Snapshots of the XFEM-HABC evolutionary process for the target of two close

circular voids. Note that the number of identified voids keeps changing dynamically (due

to the topological variables) until the algorithm converges to two.
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Figure 5.15: XFEM-HABC convergence of objective function for the topological variables

approach versus a sequential brute force approach for the case of (a) two far away circular

voids and (b) two close circular voids.
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Figure 5.16: XFEM-HABC convergence of number of flaws for the case of (a) two far away

circular voids and (b) two close circular voids.
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Figure 5.17: Mesh generation, loading condition, sensor placement and flaw locations within

a rectangular-like plate.

5.5.3 Detection of three flaws within a rectangular-like plate

The next test case studies the performance of the proposed XFEM-HABC algorithm in

detection of three flaws within a physical shaped rectangular-like plate with unstructured

finite element mesh. Figure 15 depicts the geometry of the problem and the unstructured

mesh that consist of 3297 nodes, that is used for the simulation. Fixed boundary conditions

are applied on the bottom edge of the 2D plate while a tension traction is applied along the

vertical direction on the top edge. Twenty three equally spaced strain gauges are placed

on the edges and used for data collection. The reference measurements are simulated by

using the circular void enrichments XFEM code. As illustrated in Figure 5.17, two cases

regarding the proximity of flaws are considered, Case 1: three circular voids far from each

other, and Case 2: three circular voids where two are close and the third is far away .

In both cases, the number of flaws is unknown beforehand, thus topological variables are

added for the identification.
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In this example, we have three flaws for identification whose parameters are given in

Table 5.4 for both cases 1 and 2. Since the number of flaws is unknown a priori, four

topological variables are used for flaw identification in this case, namely nt = 4. Hence, there

are sixteen parameters in total to be identified. The flaw parameter bounds, for each circular

void, are defined as: xci ∈ [0.5 19.5], yci ∈ [0.5 39.5] and rci ∈ [0 2], where i = 1, 2, . . . , nt.

The shaped boundaries of the plate are used for objective function penalization checking.

This case utilizes the HABC parameters as follows: Npop = 30, Nmax = 200, Nlim = 40,

Nls = 15 and Nlsiter = 15 and identification results are summarized in Table 5.4. Note that

the algorithm is terminated after 6000 forward solves. Snapshots showing the convergence

of the XFEM-HABC evolutionary process are shown in Figures 5.18 and 5.19 for cases 1

and 2, respectively. Figures 5.20 and 5.21 show the convergence of the objective function

evaluations and the number of flaws for both cases, respectively. It can be seen that the

identification results are excellent. The flaw parameters as well as their quantities are

identified accurately. It is interesting to note that two small close target flaws may be

approximated by a single candidate void during the optimization process, as illustrated but

the snapshots in Figure 5.19. Again, a similar conclusion can be reached as in the previous

example that the proposed algorithm is easier to converge to the flaws if they are far from

each other. The XFEM-HABC proves to work well on unstructured finite element mesh

based flaws detection.

5.5.4 Detection of three irregular-shaped flaws within an arch-like plate

In order to study flaws detection in the presence of artificial noise caused by model error,

we study the validity of the proposed algorithm in the case of three non-regular-shaped

flaws within an arch-like plate. The geometry of the plate is shown in Figure 5.22. The

plate is fixed on the bottom edges. Tension traction is applied on the top edge. Two

sets of strain gauges (twenty seven in total) are placed on the free surface boundaries for

measurements acquisition. The reference solution is obtained from an FEM model with an

unstructured mesh that consists of 5827 nodes. The forward analysis in the identification

process is carried out by using the circular voids enrichment XFEM code with the 3429

node structured mesh shown in Figure 5.23. The irregular shaped voids and the use of
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Figure 5.18: Snapshots of the XFEM-HABC evolutionary process in Case 1 (example 5.5.3).
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Figure 5.19: Snapshots of the XFEM-HABC evolutionary process in Case 2 (example 5.5.3).
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Table 5.4: XFEM-HABC identification results of three circular void flaws in example 5.5.3.

Flaw parameters
Case 1 Case 2

True value Identified value True value Identified value

Flaw 1

xc1 10 10.0446 14 14.3345

yc1 30 29.3978 28 27.9345

rc1 1 1.0612 1 1.0802

Flaw 2

xc2 6 4.6717 7.5 6.9145

yc2 20 19.6535 11.5 10.3912

rc2 1 0.8693 0.7 0.7685

Flaw 2

xc3 14 13.7983 6 5.9505

yc3 12 11.7354 10 9.9472

rc3 1 1.0573 0.7 0.8440

Number of flaws (Στ ) 3 3 3 3

Final objective function value G) 0.0248 0.0225

Note that the algorithm is terminated after approximate 6000 forward solves.
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Figure 5.20: Detection of three circular voids in Case 1: XFEM-HABC convergence.
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Figure 5.21: Detection of three circular voids in Case 2: XFEM-HABC convergence.
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Figure 5.22: Unstructured FEM mesh, loading conditions, sensor placement and flaw loca-

tions within an arch-like plate used as the reference solution.
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Figure 5.23: Mesh and boundary conditions for the XFEM forward problem (example 5.5.4).
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Table 5.5: XFEM-HABC identification results of three non-regular shaped void flaws in

example 5.5.4

Flaw parameters Flaw 1 (Units) Flaw 2 (Units) Flaw 3 (Units)
Final objective

function value G

Approximate flaw

parameter values

xc 7.5 16.5 30.0

N/Ayc 7.5 12.9 9.6

rc 0.4 0.5 0.6

Number of

flaws unknown

xc 8.7291 15.8439 29.2430

0.0256yc 9.4135 14.0303 9.5034

rc 0.5272 0.4584 0.5738

FEM with unstructured mesh as reference is equivalent to a model with artificial noise in

measurements. This example is the most difficult problem compared with the previous

three examples and is a major step toward application of this algorithm to real structures.

In this example, we set nt = 4 so that we have sixteen parameters to be identified during

the optimization process; namely, four topological variables and four sets of circular void

parameters whose bounds are set as {xc1, xc2, xc3, xc4} ∈ [0.5 38.5], {yc1, yc2, yc3, yc4} ∈ [0.5 26.5]

and {rc1, rc2, rc3, rc4} ∈ [0 1]. The parameter feasible search space is defined by the plate

outer boundaries (edges). Here in this case, the HABC parameters used for simulation are

Npop = 30, Nmax = 400, Nlim = 40, Nls = 15 and Nlsiter = 20.

Table 5.5 presents the identification results of the flaw parameters. Figure 5.24 presents

the snapshots of the XFEM-HABC convergence process. Figure 5.25(a) and 5.25(b) show

the XFEM-HABC convergence curves of the objective function evaluations and of the num-

ber of flaws, respectively. It is evident from the identification results that the proposed

algorithm is able to truly converge to the correct number of flaws and approximates the

irregular shaped flaws quite well. Figure 5.26 describes the comparison of measured strains

by the FEM and the simulated/estimated strains by the XFEM. It can be seen from this

figure that the differences are very small.

It can be finally concluded that the performance of the proposed XFEM-HABC algo-

rithm is robust and efficient even with the artificial noise in strain measurements caused
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Figure 5.24: Snapshots of the XFEM-HABC evolutionary process in the identification of

three non-regular shaped voids (the number of flaws is unknown a priori).

by irregular shaped flaws and by the numerical/modeling difference (error) between the

FEM and the XFEM with different meshes. In terms of the CPU time used for each run

by the proposed algorithm coded in MATLAB R©, it took on average 27 min. in this case.

The computational cost can be significantly decreased if the scheme is set to run in parallel

on a multi-processor unit coded in more efficient computer languages (e.g., FORTRAN, C,

C++, etc.).

A parametric study of the effect of different initial guesses of the number of topological

variables (nt) on multiple flaws detection is also conducted. The initial guess of nt is

varied from two to seven for the simulation. Figure 5.27 shows the convergence plots of
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Figure 5.25: Detection of three non-regular shaped voids under condition of number of flaws

unknown: XFEM-HABC convergence.
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Figure 5.26: Comparison of measured strains and simulated (estimated or predicted) strains.
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Figure 5.27: XFEM-HABC convergence with different initial guesses of the number of

topological variables: (a) objective function evaluation and (b) zoomed view of the final

objective function values vs. the number of topological variables.

the objective function for different initial guesses of nt. It can be seen that if nt ≥ 3

and sufficient number of iterations are used, the objective function is able to converge to

a constant value (about 0.024 in this example). Thus, we conclude that the initial guess

of the number of topological variables does not have big impact on the proposed XFEM-

HABC algorithm for multiple flaws detection, provided that sufficient number of topological

variables are adopted.

5.6 Conclusions

This work presents a novel computational scheme, namely XFEM-HABC algorithm, for

solving inverse problems for identification of multiple flaws in structures through a limited

number of strain measurements. This algorithm further improves the XFEM-GA detection

algorithms recently proposed in literature [1–4].

While the previous work only considered quantification of a single flaw, we propose an

adaptive algorithm that can identify multiple flaws by introducing a topological variable

into the search space which turns on and off flaws during run time. Hence the number of

flaws to be detected becomes part of the optimization algorithm.
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The proposed HABC algorithm combines the guided-to-best solution updating strategy

based ABC algorithm with a local search operator of the Nelder-Mead simplex method

(NMSM), which has proven to be more efficient and more effective than the standard ABC

and classic GA. During the identification process, each flaw is approximated by a circular

void with three variables: center coordinates and radius. Four examples in the numerical

experiments are chosen to test various issues associated with the robustness of the algorithm

such as mesh types, flaw geometries, multiple flaws, proximity of flaws and known/unknown

number of flaws. It can be concluded that the proposed numerical approach preformed quite

well producing accurate estimated results. For simple cases with known number of flaws,

a few iterations can yield very good identification results. For more realistic cases with

unknown number of flaws, convergence becomes more difficult and thus a larger number

of iterations is needed to capture both flaw locations/sizes and the quantity of flaws. In

the case of irregular shaped flaws, the proposed algorithm converges to the best circular

voids that minimize the error of the actual flaws. Moreover, the performance of the XFEM-

HABC algorithm is robust even with artificial noise involved in measurements. Overall, the

satisfactory results are encouraging for potential implementation of this algorithm in the

field of multi-void flaws detection.
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Chapter 6

Detection of Multiple Flaws Using

Two-Scale Optimization

In this chapter, a novel multiscale algorithm is presented for nondestructive detection of multiple

flaws in structures without a priori knowledge about the number and the type of flaws. The key idea

is to apply a two-step optimization scheme, where first rough flaw locations are quickly determined

and then fine tuning is applied in these localized subdomains to obtain global convergence to the

true flaws. This chapter is reproduced from the paper co-authored with Professors Haim Waisman

and Raimondo Betti, which was published in the International Journal for Numerical Methods in

Engineering [118] and presented in the SPIE Smart Structures/NDE conference [119].

6.1 Introduction

XFEM-based nondestructive identification of multiple flaws/defetcs in structures using a

single-scale continuous optimization technique (e.g. the HABC algorithm) has been pro-

posed in Chapter 5. In this approach, topological variables are employed and the number

of flaws becomes additional parameters of the optimization. Thus, the detection of the

number of flaws and their controlling parameters (positions and sizes) is done in one shot.

The objective of this chapter is to develop a novel multiscale detection scheme that

combines heuristic and gradient based optimization, as applied to detection of multiple

flaws and/or damage regions and leads to significant improvements in convergence rates

compared with the HABC algorithm proposed in the previous chapter.
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The basic concept is to apply a two-step optimization framework by combining strengths

of heuristic- and gradient-based optimization strategies. The first step employs a discrete

type optimization scheme where the optimizer is limited to specific locations and shapes of a

flaw, thus converting a continuous optimization problem into a coarser discrete optimization

with limited number of choices. In this work, we develop a discrete ABC (DABC) algorithm,

which converges to the rough flaw subdoamins. Then a gradient-based optimization of the

BFGS method, which is developed specifically for XFEM systems, is applied and leads

to fast convergence to the true flaws. In the forward XFEM analyses, both circular and

elliptical enrichments are presented to model and approximate the arbitrarily shaped flaws

and damage regions.

The chapter is organized as follows. Section 6.2 describes the general formulation of the

flaw detection problem. Section 6.3 discusses the multiscale flaw detection framework using

hierarchical optimizers. Section 6.4 presents the forward problem solver, v.i.z., the XFEM

formulation for multiple void flaws modeling. Section 6.5 proposes the DABC and BFGS

algorithms for the two-step discrete and continuous optimization. Section 6.6 presents

the sensitivity analysis of flaw parameters in XFEM modeling. Section 6.7 reports on

several benchmark numerical examples with increasing complexities, and finally, concluding

remarks are provided in Section 6.8.

6.2 The inverse problem formulation

As discussed in Section 5.2, detection of flaws can be regarded as solving an inverse problem,

in which an iterative optimization technique can be employed. The iteration proceeds like

a “feed-back” process by updating the forward model (see Section 5.2.1) until an optimal

set of system parameters are returned (e.g. the objective function is minimized).

Let’s recall the inverse problem for flaw detection: Find the inner flaw boundary Γv by

updating the forward model, given Ω, Γt, Γu, ū, t̄, D, and some specific measured response

at some given locations (e.g., the displacement field ũ in this chapter).

Assuming the inner flaw boundary Γv is described by a set of unknown parameters θ,

as shown in Equation (5.5), which is adjusted by solving an optimization problem. To this
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end, the objective function g of the optimization problem is defined as the normalized least

square error between the actual measured structural response and the estimated response

of such parametric model, v.i.z.,

g(θ) =
[Sû(θ)− ũ]T [Sû(θ)− ũ]

ũT ũ
(6.1)

where ũ denotes the measured displacement vector; û denotes the simulated displacement

vector which is a function of θ obtained by solving the forward problem; S represents

the information matrix of sensor locations. In general, the identification problem can be

summarized as:

θ̂ = arg min
θ∈S
{g(θ)} (6.2)

where S is the feasible n-dimensional parameter search space as defined in Equation (5.8)

and n represents the number of parameter in θ. More specifically, the dimension of S is

determined by the initial guess on the number of flaws.

It is noteworthy that detection of flaws with circular void enrichments in XFEM, cor-

responds to a three-parameter optimization problem per each void: center coordinates and

radius (x, y, r).

If elliptical void enrichments are employed to approximate flaws (see Figure 6.1), then

each flaw is represented by five parameters optimization problem, that is center coordinates,

major and minor axes and orientation angle (x, y, a, b, β). In the case that the number of

flaws is unknown a priori, an initial guess on the number of flaws nv, is made. Thus the

system parameter vector to be identified, taking the ellipses as an example, becomes

θ =

nv⋃
i=1

{xi, yi, ai, bi, βi} (6.3)

where ∪ denotes the union operator. The existence of flaws are judged by their sizes. For

example, the candidate flaw is activated if its size is bigger than a threshold value such as

the mesh size; otherwise, the flaw is deactivated and deleted in the corresponding forward

analysis. Alternatively, a topological variable (0/1) based approach proposed in Chapter 5

can also be used to determine the number of flaws in the optimization process. While the

topological approach is able to well identify the flaw number as well as the flaw position

and size, it introduces additional parameters into the optimization process.
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Figure 6.1: Flaws are approximated by elliptical voids.

As discussed in the previous chapter, the computational domain may have complex

geometries in which case one would need to ensure the convergence of parameters within

the problem domain Ω. Therefore, a feasible search space should be considered as shown

in Figure 5.3. In this case, the identification problem becomes an optimization problem

with constraints. However, directly restricting the parameters to the feasible domain might

be difficult from a computational standpoint since the constraints are not simple and may

introduce discontinuity of gradients when gradient-based methods are used. Hence, we

replace a constrained minimization problem by an unconstrained minimization process by

adding the penalty functions. To wit, the objective function is modified as follows in order

to handle the complex constraints:

G(θ) = g(θ) + c
[
κT (θ)κ(θ) + ρT (θ)ρ(θ)

]
(6.4)

where c is a user-defined positive penalty parameter, G(θ) is the penalized objective func-

tion, κ and ρ are the penalized parameters, v.i.z.,

κ(θ) = [κ(θ1), . . . ,κ(θi), . . . ,κ(θn)]T (6.5)

ρ(θ) = [ρ(θ1), . . . ,κ(θi), . . . ,κ(θn)]T (6.6)

with each component computed by

κ(θi) =

 0, if θi ≥ θmin
i

θi − θmin
i , if θi < θmin

i

(6.7)
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and

ρ(θi) =

 0, if θi ≤ θmax
i

θi − θmax
i , if θi > θmax

i

(6.8)

where θmin
i is the lower bound of the ith parameter and θmax

i is the corresponding upper

bound. Since Equations (6.7) and (6.8) have the characteristics of Ramp function (e.g.,

the product of a linear function and the Heaviside function), the computation of their

derivative with respect to the Heaviside center (cut-off point) will introduce singularities

when gradient-based methods are used in the optimization. Therefore, we approximate

these two functions by the smooth sigmoid function so as to obtain a smooth gradient, e.g.,

written as follows:

κ(θi) := (θi − θmin
i )H(θmin

i − θi) ≈ (θi − θmin
i )Hs(θmin

i − θi) (6.9)

ρ(θi) := (θi − θmax
i )H(θi − θmax

i ) ≈ (θi − θmax
i )Hs(θi − θmax

i ) (6.10)

where H is the Heaviside function and Hs is the smooth sigmoid function given by

Hs(x− x0) =
1

1 + exp [−2α(x− x0)]
(6.11)

Here, x denotes the generic variable, α is a positive number corresponding to a sharp

transition at the cut-off point. The effect of α on the approximation of Heaviside function

is shown in Figure 6.2. It is noteworthy that Equations (6.9) and (6.10) are important when

one computes the derivative of G(θ) w.r.t. θ.

Finally, the overall identification problem can be summarized as:

θ̂ = arg min
θ∈S
{G(θ)} (6.12)

which is solved by the two-step optimization approach proposed in Section 6.5.

6.3 The multiscale flaw identification scheme

Herein, we present a multiscale flaw detection scheme (coarse- vs. fine-scale search) to solve

the above mentioned inverse problem. The key idea of the multiscale framework includes a

two-scale search, namely,
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Figure 6.2: The effect of α on the approximation of Heaviside function.

• Coarse Scale Search: The search space is firstly partitioned into a finite number of

nodes defined by a set of pseudo grids (see Figure 6.3). The candidate solutions are

then restricted to the pseudo grid nodes, thus, converting a continuous optimization

problem in the entire domain into discrete optimization with a small number of choices.

In other words, the coarse scale step becomes an optimization problem with a search

over a finite number of solutions in the discrete search space instead of infinite sets of

solutions in the continuous space. The discrete optimization problem is solved using

a carefully designed DABC algorithm (presented in Section 6.5.1).

– Subdomain Convergence: The result of the coarse scale search is the identification

of rough damage regions, which are used to define local subdomains where the

possible candidate flaws are located. Each subdomain is defined as a square

region centred at the identified flaw center. The edge length of each subdomain

is termed the “subdomain band lsub” whose dimension depends on the dimension

of the problem domain.

• Fine Scale Search: A continuous optimization algorithm (e.g., BFGS presented in

Section 6.5.2) is employed to solve the optimization problem within the newly defined

subdomains. The identified flaw parameters obtained from the coarse scale search are

taken as the initial guess of the fine scale search algorithm, leading to fast convergence.
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– Global Convergence: The algorithm proceeds until global convergence is obtained

or a stopping criteria is activated. This process results in the identification of

flaw parameters.

To summarize, the first step aims at a coarse/rough scale search over the parameter

space. The second step plays a role as a search space reduction so as to improve the

optimization convergence. The third step is a fine scale search targeting highly accurate

solution. In general, the flaw chart hierarchy of the proposed algorithm is illustrated in

Figure 6.4.

For example, Figure 6.5 illustrates a schematic representation of the multiscale algorithm

for detection of a single crack embedded in a 2D plate, from scattered plate sensing, pseudo

grids generation, coarse scale search, subdomain definition, to fine scale search.

6.4 Solution of the forward problem by XFEM

Similar to the previous work in Chapter 5, XFEM is employed as the forward problem solver

in the present work. The enriched finite displacement field is given in Equation 5.18. In

general, different enrichment functions can be used depending on the problem (e.g., cracks,

(a) Grid size 5×5 (b) Grid size 10×10 (c) Grid size 20×20

Figure 6.3: Example of the pseudo grids with different sizes. The candidate solution of the

flaw position in the identification process is fixed on the pseudo grid nodes (blue dots “•”).

The background gray grids are the finite element mesh of the physical domain.



Chapter 6. Detection of Multiple Flaws Using Two-Scale Optimization 148

Step 1
Coarse Scale Search

• Discretize the structural domain by multiple pseudo grids;

• Input algorithm parameters and run the discrete optimization with 

circular void parameter settings (e.g., the DABC algorithm 

presented in Section 5.1). 

Subdomain Determination & Convergence

• Output identified flaw parameters from Step 1;

• Define subdomains for Fine Scale Search. 

Step 2
Fine Scale Search

• Input algorithm parameters and run the continuous optimization 

within the subdomains with either circular or elliptical void 

parameter settings according to the user’s choice (e.g., the BFGS 

algorithm proposed in Section 5.2).

Step 1.1

Global Convergence

• Output identified flaw parameters from Step 2.
Step 2.1

Figure 6.4: Flow chart of the multiscale flaw detection methodology.

Scattered Plate Sensing

Crack

Step 1: Coarse scale search (DABC)

Identified flaw region

Figure 6.5: A schematic representation of the multiscale flaw detection algorithm.
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inclusions, boundary layer solutions or other). In this work, we consider flaws to be in

the form of voids, hence the Heaviside function V (x,θ) is adopted to describe the global

enrichment function as illustrated in Equation (5.21).

The function V (x,θ) contains the information of the number of voids as well as their

sizes and shapes. It is noteworthy that the nodes that lie inside the void and whose nodal

support is not intersected by the void are dismissed in the calculations. This is done usually

by removing the DOFs associated with those nodes from the system of equations and solving

for the remaining DOFs. Therefore, the displacement field for void discontinuities can be

approximated using the scheme as in [115]:

uh(x) =
∑
I∈N

V (x,θ)NI(x)uI (6.13)

In numerical implementations, the integration points that lie inside the void are directly

omitted. Hence, the stiffness matrix derived from the weak form of the system equation

can be written as:

K(θ) =

∫
Ω

BTDBV (x,θ)dx (6.14)

where B is the strain-displacement matrix and D is the stress-strain constitutive matrix.

The minimum signed distance function is used to construct the level set function to

capture the shape of the discontinuities and quickly find enriched nodes. For multiple

circular voids, the level set function is expressed in Equation (5.23). The parameters θ

describing circular void boundaries can be written as:

θ =

nc⋃
i=1

{xci , yci , rci} (6.15)

where the subscript i represents the i-th circular void while nc denotes the total number of

circular voids. When the voids are ellipses, the corresponding level set function is [120]:

φ(x,θ) = min

{∥∥∥∥ x̄2
i

a2
i

+
ȳ2
i

b2i

∥∥∥∥− 1

}
i=1,2,...,ne

(6.16)

where ai and bi are the major and minor axes of the i-th ellipse, respectively. Here, x̄i =

(x̄i, ȳi) denotes the transformed coordinates with the origin at the i-th ellipse center (xci , y
c
i )

with orientation βi along the ellipse major radius. The transformation with respect to the

global coordinate system can be written as follows:

x̄i = (x− xci ) cosβi + (y − yci ) sinβi (6.17)
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and

ȳi = (xci − x) sinβi + (y − yci ) cosβi (6.18)

The parameters θ describing the elliptical void boundaries can be written as Equation (6.3).

It is noteworthy that the above level set function for ellipses is not, but similar to,

a signed distance function (e.g., the normalized signed distance). As shown in Equation

(5.21), since we are only interested in the sign of φ and not in its specific value, we adopt

the same linear basis functions (shape functions) as those used in regular finite elements.

Figure 6.6 shows the level set and enrichment visualization of a finite element domain

with multiple circular/elliptical voids.
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Figure 6.6: Level set and enrichment visualization: (a) flaw boundaries; (b) enriched nodes;

(c) contour plot of nodal level set values; and (d) level set function.
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6.5 The two-step optimization algorithm

The multiscale flaw detection algorithm described in Section 6.3 consists of hierarchical

optimizers such as discrete and continuous optimization strategies. In what follows we

summarize the two optimization methods we developed specifically for this multiscale ap-

proach, namely, the discrete ABC (DABC) algorithm, and a gradient-based optimizer (the

BFGS method).

6.5.1 The discrete ABC (DABC) algorithm

When one deals with discrete optimization problems like integer optimization and topolog-

ical or binary variable optimization, a discrete optimization algorithm should be employed.

In this chapter, we present a discrete ABC algorithm which modifies the continuous ABC

algorithm to solve a discrete type optimization problem. In this regard, the solution is

no longer free to vary in the computational domain but is limited to specific points in the

domain. Thus it can only jump from one discrete point to another. To this end, we modify

the solution updating procedure in the standard ABC algorithm:

Θup
ij = Θij + b2(rand− 0.5) · (Θij −Θkj)e (6.19)

where i = 1, 2, . . . , Npop; j = 1, 2, . . . , n; Θ is the parameter population; Θup is the updated

population; k denotes the solution index in the population (k is an integer randomly selected

in [1 Npop] and k 6= i); ‘rand’ denotes a uniformly distributed random number in the range

of [−1, 1]; b·e represents the nearest integer function, e.g., b1.4e = 1 and b1.6e = 2.

Nevertheless, as suggested in Section 4.3.1.2, multi-point mutation leads to much more

efficient solution updating compared to single-point mutation. Therefore, we propose a

DABC algorithm using the new solution updating strategy obtained by modifying the con-

tinuous solution updating strategy in Equation 4.19 into an “integer” version:

Θup
ki =

 Θij , if rand ≥ ρ

Θij +
⌊
2(rand− 0.5) · (Θij −Θkj) + rand · (θbi −Θij)

⌉
, if rand < ρ

(6.20)

The meaning of the indices in Equation (6.20) is identical to those illustrated in Section

4.3.1.2. The purpose of employing the proposed DABC algorithm in this work is to converge

to a number of subdomains where the flaws and/or damage regions are located.
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6.5.2 The BFGS method

In this work, we employ the well-known gradient-based Quasi-Newton approach, v.i.z., the

BFGS method, as our fine scale search operator. The starting point of this algorithm is the

initial guess provided by DABC, the coarse scale detection operator. Then BFGS is carried

out zooming in to the fine scale features of the flaw.

The description as well as the pseudo code of the BFGS method is given in Section 4.3.2.

It is noteworthy that the function gradients used in BFGS are determined by semi-analytical

approach proposed in Section 6.6.

Remark. In general, the BFGS method cannot be directly applied to identification of

multiple flaws if the number of flaws is unknown beforehand, because of two major reasons:

(i) the initial guess of the number of flaws is usually an integer which is larger than the

real value; thus the surface of the objective function becomes much more complicated (e.g.,

highly multi-modal with more local minima compared to the case of known number of flaws)

since the optimization search space is augmented. A local search operator such as BFGS

generally fails to solve such a complex highly multi-modal optimization problem unless a

quite good initial guess is given. (ii) It is difficult to set a good initial guess of the flaw

parameters especially when multiple flaws exist. Nonetheless, the powerful global search

algorithm is a good choice to provide an admissible initial guess for BFGS.

6.5.3 Criteria for algorithm switching from DABC and BFGS

In order to terminate the DABC algorithm, accept the current best individual as the ad-

missible initial guess for BFGS and thus switch the optimization process from DABC to

BFGS, several criteria have been established. To wit, the DABC algorithm is terminated

while BFGS is activated if one or more of the following criteria are fulfilled.

(i) The current iteration number exceeds the maximum iteration number: Niter > Nmax;

(ii) The objective function hasn’t been improved for a number of iterations: Ñiter > Nfail;

(iii) The objective function value reaches a small threshold value: Giter ≤ εG;

(iv) The objective function drops sufficiently, e.g., the ratio of the current objective func-

tion value to the initial one reaches a small threshold value: Giter/G0 ≤ εd.
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where εG and εd are the threshold tolerances for criteria (iii) and (iv). It is noteworthy

that criterion (i) is the most common one which is widely adopted as the basic stopping

criterion in heuristic algorithms. Though criteria (ii)-(iv) are also commonly used, they, in

general, play a role as the joint stopping criteria based on criterion (i) rather than being

employed alone, because it is quite difficult to set the threshold values. More specifically,

the threshold values are problem-dependent. For example, if our demand on the objective

function value is beyond that the optimization process could reach, the optimization will

never find an end (e.g., in the case that measurement noise and modeling error uncertainties

exist). Nonetheless, the combination of these criteria has proven to be successful in heuristic

optimization problems [31]. Herein, we take the following “safe” parameter settings as used

in the numerical examples: Nfail = Nmax/2, εG = 1× 10−10 and εG = 1× 10−8.

6.6 Sensitivity analysis of flaw parameters in XFEM

When one applies gradient-based optimization techniques such as BFGS to minimize the

objective function in Equation (6.4), sensitivities of such a function w.r.t. the parameters

should be computed so as to obtain the function gradients, namely,

∇θG(θ) =

[
∂G

∂θ1

∂G

∂θ2
· · · ∂G

∂θi
· · · ∂G

∂θn−1

∂G

∂θn

]T
(6.21)

For a single flaw, Jung et. al [111] presented the central finite difference scheme to approx-

imate the objective function gradient with each component computed by

∂G

∂θi
≈ G(θ1, . . . , θi−1, θi + δθi, θi+1, . . . , θn)−G(θ1, . . . , θi−1, θi − δθi, θi+1, . . . , θn)

δθi
(6.22)

where δθi is an infinitesimal perturbation (e.g., 1×10−6) and n is the number of parameters

in θ. The finite difference approach is a simple and straight forward way to compute the

stiffness derivative. However, it may introduce errors due to the non-unique way to deter-

mine the increment δθi, since the approximated stiffness derivative depends on a difference

between two perturbed matrices [121]. This numerical differentiation also leads to more se-

vere accuracy errors when high order derivatives are computed. In addition, in the process

of solving inverse problems, the finite difference remains a significant drain on computa-

tional resources to calculate the stiffness derivative (stiffness perturbation and assembling).
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Hence, in the current work an analytical scheme is proposed to determine ∂G/∂θi, that is

∂G

∂θi
=
∂g

∂θi
+ 2c

[
κT (θ)

∂κ(θ)

∂θi
+ ρT (θ)

∂ρ(θ)

∂θi

]
(6.23)

where ∂g/∂θi can be determined by

∂g

∂θi
=

2 [Sû(θ)− ũ]T S

ũT ũ

∂û(θ)

∂θi
(6.24)

and the second and the third parts in Equation (6.23) can be analytically computed, v.i.z.,

∂κ(θ)

∂θi
=

[
0, . . . ,

∂κ(θi)

∂θi
, . . . , 0

]T
(6.25)

∂ρ(θ)

∂θi
=

[
0, . . . ,

∂ρ(θi)

∂θi
, . . . , 0

]T
(6.26)

where the derivatives ∂κ(θi)/∂θi and ∂ρ(θi)/∂θi can be expressed as:

∂κ(θi)

∂θi
=

1 +
[
1− 2α

(
θi − θmin

i

)]
exp

[
2α(θi − θmin

i )
]{

1 + exp
[
2α(θi − θmin

i )
]}2 (6.27)

and
∂ρ(θi)

∂θi
=

1 + [1 + 2α (θi − θmax
i )] exp [−2α(θi − θmax

i )]

{1 + exp [−2α(θi − θmax
i )]}2

(6.28)

In order to further derive Equation (6.24), we need to first compute ∂û(θ)/∂θi. To this end,

consider the general linear finite element equation K(θ)û(θ) = f with f being the constant

force vector, and take the chain rule w.r.t. θi so that

∂K(θ)

∂θi
û(θ) + K(θ)

∂û(θ)

∂θi
= 0 (6.29)

The substitution of Equation (6.29) into Equation (6.24) yields:

∂g

∂θi
=

2 [ũ− Sû(θ)]T S

ũT ũ

[
K−1(θ)

∂K(θ)

∂θi
û(θ)

]
(6.30)

where ∂K(θ)/∂θi is the stiffness derivative w.r.t. flaw parameters. Herein, we follow the ex-

plicit derivation introduced in [121] and compute the stiffness derivative by a semi-analytical

form as follows.
∂K(θ)

∂θi
=A

e∈η

∫
Ωe

BeTDeBe∂V (xe,θ)

∂θi
dxe (6.31)
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where e denotes individual elements and A is the assembly operator over a set of elements

η. Similar to Equations (6.9) and (6.10), V (x,θ) can be also approximated by the smooth

logistic function, expressed as:

V̄ (x,θ) :=
1

1 + exp [−2αφ(x,θ)]
(6.32)

Therefore, we have

∂V̄ (x,θ)

∂θi
=
−2α exp [−2αφ(x,θ)]

{1 + exp [−2αφ(x,θ)]}2
∂φ(x,θ)

∂θi
(6.33)

where the derivative ∂φ(x,θ)/∂θi can be determined using the central difference (see Equa-

tions (6.21) and (6.22)). The reason why the central difference is used is that it is quite

difficult to analytically obtain the close form of the level set derivative due to the “min”

function (see Equations (5.23) and (6.16)) when multiple flaws exist. Moreover, since φ(x,θ)

is a C0 continuous function, the central difference would be a good estimator of its deriva-

tive. In addition, the computational time is negligible. The semi-analytical method requires

only one time stiffness assembly to compute the stiffness gradient and doesn’t necessarily

require solving the entire system compared to the central difference method used by Jung

et. al [111]. Thus, the explicit form of ∇G can be determined following the aforementioned

semi-analytical approach.

6.7 Numerical experiments

The performance of the proposed algorithm for detection of multiple flaws and/or damage

regions is illustrated in this section by four numerical examples. In the first three examples,

we consider a 2D square plate of dimension 1 × 1 unit as shown in Figure 6.7(a) where

the flaws and damage regions are hosted, while an L-shape plate is tested in the fourth

example as illustrated in Figure 6.7(b). We assume the examples are plane-stress problems

with the material properties E = 1 × 1011 and ν = 0.3. The square plate is subjected to

a static uniform traction load on the top edge and is fixed by rollers on the bottom edge.

Sensors are uniformly distributed in the plate domain to record the static displacement

response. A consistent set of uniform structured mesh of 60×60 elements is used in the

forward XFEM solves. The L-shape plate is subjected to static uniform traction forces on
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Figure 6.7: Mesh, sensor placement, loading and boundary conditions of the 2D plates.

the top and the left edges. The bottom and the right edges are fixed on rollers. The size of

the elements in the mesh are chosen to be 0.05 units. Since the number of flaws is unknown

beforehand, an initial guess value of 5 is adopted in all the following numerical analyses.

In the identification process, the candidate/identified flaw is generated if its size is larger

than the elemental mesh size. Moreover, we take α = 1× 103 in Equations (6.9) and (6.10)

and the penalty parameter c = 1 to construct the objective functions in all the simulations.

To avoid solution uncertainty, each optimization problem is repeated twenty times in the

statistical simulations. Either the mean result of the half best solutions or the unique best

solution with the minimum objective function value is reported and analyzed.

The measurements used in the simulation are obtained by solving a reference problem

through either the XFEM code or the standard FEM code. The numerical analyses are

programmed in MATLAB R© (The MathWorks, Inc., MA, USA) on a standard Intel (R)

Core (TM) i5-3570K 3.40 GHz PC with 16G RAM.

6.7.1 Parametric study on the effect of pseudo grid size

We first study on the effect of pseudo grid size on the flaw detection accuracy in Step 1:

the coarse scale search with DABC (the discrete optimization step) so as to determine an

optimal value of the grid size. Here, we consider a relatively simple problem, e.g., detection

of a single circular void with the center at (0.657, 0.613) units and the radius 0.05 units.
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Figure 6.8: Parametric convergence studies of the objective function with different pseudo

grid sizes using the proposed XFEM-DABC-BFGS algorithm. Note that the gradients in

BFGS are computed by using the proposed semi-analytical form.

Nevertheless, the number of flaws is not known a priori. We implement the DABC algorithm

to detect such a flaw in Step 1 given different pseudo grids, e.g., with the mesh size of 5×5,

10×10, 15×15, 20×20, 25×25, 30×30, 35×35, 40×40, respectively. The mean result of ten

best statistical runs is summarized here for evaluation of grid size effect. Figure 6.8 shows

the parametric convergence lines of the objective function for different grid sizes. It can be

seen that the algorithm is able to converge to some certain value of the same order (e.g.,

1× 10−20) if the grid size is much smaller than the flaw size; otherwise, the algorithm fails

to accurately detect the flaw (e.g., in the case 5×5 in Figure 6.8, the final objective function

value is 6.2× 10−6 which is much larger).

This study suggest that the pseudo grid size used in Step 1 should not be too large.

Nonetheless, an optimal value of the grid size 20×20 is used as a representative size in all

the examples, though this optimal grid size is of an empirical value.

6.7.2 Detection of two circular void flaws

The performance of the proposed identification scheme is studied on the detection of two

circular voids. As presented in Chapter 5 (Section 5.5.2), two cases regarding the flaw

proximity have been considered here to validate the algorithm convergence: (i) two far flaws
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with (x1, y1, r1) = (0.3, 0.8, 0.04) and (x2, y2, r2) = (0.7, 0.4, 0.04); (ii) two close flaws with

(x1, y1, r1) = (0.45, 0.65, 0.04) and (x2, y2, r2) = (0.55, 0.55, 0.04). The parameter bounds

used in Step 1 optimization are defined as: xi ∈ [0.05 0.95], yi ∈ [0.05 0.95] and ri ∈ [0 0.2],

where i = 1, 2. The DABC parameter settings used here are given as follows: Npop = 10,

Nlim = 30, Nmax = 80 and n = 15. The parameters in BFGS are ε = 1 × 10−8 and Lmax

= 200. The subdomain band is taken lsub = 0.3 units. In these examples, the reference

measurements used in identification are generated by XFEM.

The purpose of this example is to study the convergence behavior of the proposed

multiscale optimization approach as compared to a single step continuous optimization

scheme such as GA and HABC. Circular voids are consistently used to model the flaws.

Hence, we have run the GA algorithm, the HABC algorithm, and the hybrid DABC-BFGS

algorithm together with the XFEM forward solver to identify these two flaws.

6.7.2.1 Two far flaws.

We consider the detection of two far flaws in this case. Figure 6.9 illustrates the comparison

of the statistically mean objective convergence lines using the above mentioned optimization

methods. It can be observed that HABC performs better than the classic GA algorithm

with higher convergence efficiency, while the multiscale DABC-BFGS approach shows a

much superior convergence than all other methods. The combination of coarse and fine

scale search (e.g., combined discrete and continuous optimization methods) successfully

yields a much more precise identification result than those of continuous GA and HABC.

With the initial guess assigned from DABC, the BFGS method is able to converge to a much

smaller objective function value (1.34 × 10−21), meanwhile, yielding a faster convergence

rate. Overall, the DABC-BFGS method is superior to any of the continuous approaches

such as GA or HABC.

It is also noteworthy from Figure 6.9 that the proposed semi-analytical method for

gradient computation improves the convergence efficiency of BFGS, which requires much

less XFEM forward analyses than those of the central difference based method, though their

final identification accuracies are identical. Moreover, we also test the effect of the penalty

parameter c on the algorithm convergence (e.g., by setting c = 1, 1 × 103 and 1 × 106,
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Figure 6.9: Convergence comparison of different optimization methods. Note that the

gradients in BFGS are computed by either the central difference method or the proposed

semi-analytical form.

Table 6.1: Identified flaw parameters in the case of noise corruption

Noise level (%)
Flaw 1 (Units) Flaw 2 (Units)

x1 y1 r1 x2 y2 r2

0 0.3000 0.8000 0.0400 0.7000 0.4000 0.0400

5 0.3151 0.7999 0.0406 0.7267 0.3889 0.0322

10 0.3235 0.7584 0.0374 0.7293 0.4062 0.0385

True value 0.3 0.8 0.04 0.7 0.4 0.04

respectively). It is noted that identical convergence lines are obtained. Hence, it appears

that c doesn’t have an explicit impact on the convergence, and it is sufficient to choose c ≥ 1.

Figure 6.10 depicts a number of typical snapshots of the XFEM-DABC-BFGS evolutionary

identification process for the target of two far voids. It is obvious that the subdomains,

the flaw sizes and positions as well as the number of flaws are identified with quite high

accuracy (e.g., the maximum relative error of the flaw parameters is less than 1× 10−6).

The effect of measurement noise on the identification result is also analyzed here. Table

6.1 shows the mean XFEM-DABC-BFGS identification results obtained from 100 Monte

Carlo simulations, using two separate sets of measurements corrupted with typical levels of
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noise, e.g., 5% and 10% root-mean-square (RMS) noise ratios to the noise-free signal. The

Gaussian zero-mean white noise sequence is employed as the added noise signal. Figure

6.11 shows the identified flaws as well as the probability density functions (PDFs) for the

identification error of each flaw. Similar to Equation (5.27), a norm error is defined to

evaluate the Monte Carlo simulation results, written as

ei = 1− ‖{xi, yi, ri}id‖
‖{xi, yi, ri}exact‖

(6.34)

where i denotes the flaw index, (xi, yi) are the circular center coordinate, ri is the radius,

the superscript id represents the identified parameter vector, and the superscript exact

represents the exact parameter vector. The operator ‖ · ‖ denotes the L2 norm. Though

the identification accuracy is slightly worse than that of the noise-free case, the discrepancy

between the identified and the true flaws is quite small which is negligible. The narrow PDFs

of the error indicate that the proposed algorithm is fairly robust against measurement noise.

6.7.2.2 Two close flaws.

In this case, we test the proposed approach by identification of two close flaws which is

assumed to be more difficult for algorithm convergence than the detection of two far flaws.

This might be because the multi-modal surface of the objective function becomes more

apparent in the neighborhood of close flaws, which, as a result, leads to much more local

minima in this region making the optimization problem more complicated. Another reason

is that pronounced non-uniqueness is more likely to occur in the close flaws scenario. For

example, if the flaws are close enough, they could be approximated by a single flaw instead

of two. This phenomenon is finally evidenced by the identification results (e.g., see Figure

6.13(a)).

Figure 6.12 shows both the local and the global convergence lines in the iterative identi-

fication process. It is observed that the proposed XFEM-DABC-BFGS converges to a global

minimum (1.46× 10−20) provided that the DABC algorithm assigns a good initial guess to

BFGS; otherwise, the algorithm converges to a local minimum (2.01 × 10−5). Figure 6.13

depicts the identified two close flaws obtained from the local convergence and the global

convergence, respectively. Furthermore, Figure 6.14 illustrates the snapshots of the XFEM-

DABC-BFGS identification process with a global convergence behavior. It is evident from
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Figure 6.10: Snapshots of the XFEM-DABC-BFGS evolutionary identification process for

the target of two far voids. The gradients in BFGS here are computed using the semi-

analytical form. Note that the subdomains are determined based on the result of the 494th

XFEM analysis. BFGS is then implemented taking such a result as an initial guess.
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Figure 6.11: A typical example of the identified two far flaws under noise corruption. The

PDFs represent the distribution of the parameter identification errors.
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Figure 6.12: XFEM-DABC-BFGS convergence for identification of two close flaws (local vs.

global minima).
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Figure 6.13: Identified two close flaws using the XFEM-DABC-BFGS scheme (local vs.

global convergence solution). Note that the gradients in BFGS here are computed using

the semi-analytical form.

this figure that the number of flaws keeps switching on and off until a favorable estimate is

reached. The subdomains are defined in the right regions. The two close flaws are finally

well detected, whose identified parameters have extraordinarily accurate positions and sizes.

6.7.3 Detection of three damaged regions

To assess the robustness of the proposed XFEM-DABC-BFGS algorithm for detection of

irregular-shaped flaws, we study detection of three damaged regions consisting of both

irregular-shaped voids and arbitrary shaped cracks as shown in Figure 6.15(a).

Flaw region 1 is an L-shape void, flaw region 2 is the combination of a void and two

cracks, and flaw region 3 consists of a group of cracks. The reference measurements are

generated by the regular FEM with a fine unstructured mesh using ABAQUS (see Figure

6.15(b)). The contour plot of the von Mises stress field is shown in Figure 6.15(b). The

irregular-shaped flaws and the use of FEM with unstructured mesh are equivalent to in-

troducing modeling error which is somewhat similar to “artificial noise” in measurements.

We emphasize that due to the difference between the reference model (unstructured FEM
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Figure 6.14: Snapshots of the XFEM-DABC-BFGS evolutionary identification process for

the target of two close voids. The gradients in BFGS here are computed using the semi-

analytical form. Note that the subdomains are determined based on the result of the 491st

XFEM analysis. BFGS is then implemented taking such a result as an initial guess.
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Figure 6.15: The damage has three regions including both cracks and voids. A set of fine

unstructured mesh is used to generate the reference measurements by standard FEM.
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Figure 6.16: XFEM-DABC-BFGS convergence for identification of three damage regions.

Note that The gradients in BFGS here are computed using the semi-analytical form.

modeled with ABAQUS) and the forward model (structured XFEM), we avoid the so called

“inverse-crime”, which is defined when the same model is used to synthesize as well as invert

data in an inverse problem [1].

The DABC parameter settings used for simulation in this example are Npop = 10, Nlim =

30, Nmax = 120 and n = 15. The BFGS parameters, the subdomain band and the parameter

bounds are identical to those used in Example 6.7.2. Both GA and HABC algorithms are

also tested for comparison purpose. Figure 6.16 presents the iterative convergence lines for
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Figure 6.17: Snapshots of the XFEM-DABC-BFGS evolutionary identification process for

the target of three damage regions. The gradients in BFGS here are computed using the

semi-analytical form. Note that the subdomains are determined based on the result of the

1007th XFEM analysis. BFGS is then implemented taking such a result as an initial guess.

Elliptical voids are used in BFGS to approximate the damage regions.
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identification of three damage regions. It can be observed that the XFEM-DABC-BFGS

algorithm based on semi-analytical gradients has the best convergence behavior. Figure 6.17

depicts a set of snapshots of the XFEM-DABC-BFGS evolutionary identification process.

It is noteworthy in the XFEM-DABC-BFGS algorithm that the circular enrichment

based XFEM is used in Step 1 to model the flaws as the DABC optimization proceeds.

Once the search space reduction is applied and the subdomains are well determined in Step

1.1, enrichments of the XFEM solver are switched to ellipses in Step 2 and semi-analytical

gradient-based BFGS is employed to solve the optimization problem within the subdomains.

It is found that the proposed algorithm is able to converge to the correct number of

damage regions as well as approximate the flaws and damage regions quite well. Especially,

in the identification of flaw region 3, the group of cracks can be accurately estimated using

a single ellipse. It is thus concluded that the proposed algorithm is robust and insensitive to

artificial noise due to uncertainties associated with flaw shape. Each XFEM analysis takes

about 0.2 seconds. The total time of a single semi-analytical XFEM-DABC-BFGS run for

this example is less than 15 minutes.

6.7.4 Detection of three curved cracks in an L-shape plate

To further understand the modeling error effects on the convergence of XFEM-DABC-

BFGS, an L-shape plate with three “banana-shaped” cracks, as shown in Figure 6.18(a),

is investigated. Similar to the example in Section 6.7.3, the reference measurements are

obtained by standard FEM with unstructured mesh using ABAQUS so as to consider real

scenarios with modeling error uncertainties. Therefore, an “inverse crime” is also avoided

in this example. The FEM mesh as well as the von Mises contour plot is given in Figures

6.18(b).

The DABC parameters used in this example are Np = 10, Nlim = 30, Nmax = 120 and

n = 15. The BFGS parameters are same as those in Example 6.7.2. The subdomain band

is taken lsub = 0.6 units. Similar to the above examples, the GA, HABC and DABC-BFGS

algorithms are tested in this example. In the multiscale flaw detection process, circular

enrichments are first used to approximate the cracks in Step 1 (DABC) and then elliptical

enrichments are employed in Step 2 (BFGS).
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Figure 6.18: The damage in the L-shape plate includes three curved cracks. A set of fine

unstructured mesh is used to generate the reference measurements by regular FEM, while

structured mesh is employed in the XFEM forward analysis.
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Figure 6.19: XFEM-DABC-BFGS convergence for identification of three curved cracks.

Note that The gradients in BFGS here are computed using the semi-analytical form.

Figure 6.19 depicts the evolutionary convergence lines of different algorithms. It can be

seen that the semi-analytical XFEM-DABC-BFGS algorithm gives the best performance.

Figure 6.20 presents a number of typical snapshots of the XFEM-DABC-BFGS evolutionary

process for identification of three curved cracks. It is also clear from the figure that the

cracks can be detected quite well using void approximations. We conclude that in both

Examples 6.7.3 and 6.7.4 that the proposed XFEM-DABC-BFGS algorithm using semi-

analytical gradients is robust and efficient under uncertainties caused by modeling error.
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Figure 6.20: Snapshots of the XFEM-DABC-BFGS evolutionary identification process for

the target of three curved cracks. The gradients in BFGS here are computed using the

semi-analytical form. Note that the subdomains are determined based on the result of the

1203rd XFEM analysis. BFGS is then implemented taking such a result as an initial guess.

Elliptical voids are used in BFGS to approximate the damage regions.
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6.8 Conclusions

This chapter presents a novel multiscale algorithm based on XFEM for detection of multiple

flaws and/or damage regions in structures using hierarchical optimizers (e.g., the DABC

algorithm and the BFGS method). The proposed algorithm can be applied to quantify

any number and type of flaw with arbitrary shape and size (e.g., cracks, voids, and their

combination) without knowing the number of flaws beforehand.

The present work further improves the previous work on XFEM−HABC algorithm for

multi-void flaws detection (see Chapter 5). The key idea of the proposed algorithm is

to apply a two step optimization scheme, where first rough flaw locations and sizes are

quickly determined and then fine tuning is applied in smaller subdomains to obtain global

convergence to the true flaws. An XFEM model with both circular and elliptical enrichments

is used to solve the forward problem. In general, the circular enrichments are used in the

coarse scale search phase while the elliptical enrichments are employed in the fine scale

search.

The first phase employs a discrete type optimization in which the optimizer is limited

to specific flaw locations and shapes, thus converting a continuous optimization problem

in the entire domain into a coarse discrete optimization problem with limited number of

choices. To this end we develop a special algorithm called discrete ABC algorithm. The

second phase employs a gradient-based optimization of the BFGS type on local well defined

and bounded subdomains. A semi-analytical approach is developed to compute the stiffness

derivative associated with the evaluation of objective function gradients.

Four benchmark examples are studied considering effects of modeling error and mea-

surement noise and the algorithm is compared with a single step continuous optimization

schemes. It is evident that the proposed methodology is robust, efficient and yields quite

accurate flaw detection results under these uncertainties. Moreover, the multiscale approach

converges much faster than the single step methods proposed in the literature. The simu-

lation results demonstrate the potential application of the proposed algorithm in the field

of nondestructive structural damage detection.
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Chapter 7

Conclusions

The concluding chapter presents the main contributions and some concluding remarks of this disser-

tation. Directions of future research are also introduced.

7.1 Main contributions and concluding remarks

This dissertation investigated state-of-the-art hierarchical optimization-based computational

algorithms for multiscale model-based system identification and damage detection. The

model is typically characterized by a set of unknown parameters governing the actual sys-

tem’s behavior. These parameters can be identified by employing optimization tools such

as the improved artificial bee colony algorithms and local search operators like the simplex

method and gradient-based optimization techniques. The dissertation is presented in two

parts depending on the scale of the system. The first three chapters (2–4) concentrates

on identification and damage detection of macro-scale systems like buildings and bridges

through time domain input-output and output-only measurements. The second two chap-

ters (5–6) aim at multiple flaws/defects detection of meso-scale systems such as critical

structural components like plates.

The author’s main contributions in the field of damage detection of multiple length scale

systems presented in this dissertation are summarized here:

• Improved ABC algorithms: Several improved versions of the artificial bee colony

(ABC) algorithm in both serial and parallel schemes have been proposed in the con-
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text of parameter identification. Local search operators such as the simplex method

and BFGS-type method were added to improve the algorithm local search capability.

The performances of the proposed algorithms were illustrated by either numerical

or experimental data settings under different conditions, addressing issues such as

limited instrumentation, noise in measured signals, modeling errors, a priori knowl-

edge of the system, etc. Comparisons with other existing identification approaches

have been carried out for demonstration of the superior performance of the proposed

methodology. Robustness and effective applicability to identification problems have

been observed for the proposed family of improved ABC algorithms.

• Output-only identification: A framework for output-only identification of building

and bridge systems has been proposed. This can be done by inserting a modified

Newmark integration method into the optimization-based identification process, which

is used for predicting the time history of input excitations. If the time histories of the

structural response (e.g., accelerations) and information about the structural mass are

available, then the proposed method is able to simultaneously identify the structural

parameters and input forces.

• Bayesian inference: An optimization-based Bayesian inference methodology has

been presented for probabilistic finite element model updating of macro-scale struc-

tural systems. The model updating process is first formulated as an inverse problem

analyzed by Bayesian inference. Then a hybrid optimization approach is presented

to solve such a high-dimensional inverse problem. System parameters as well as the

prediction error covariance are updated iteratively in the optimization process. Pos-

terior PDFs of uncertain system parameters can be determined using a weighted sum

of Gaussian distributions. The effectiveness of the proposed approach was illustrated

by both numerical and experimental data sets of building-type systems.

• XFEM for multi-flaw detection using static data: A novel algorithm based on

the eXtended Finite Element Method (XFEM) and the improved ABC algorithms

has been proposed to detect and quantify multiple flaws in structures. In this work,

an adaptive algorithm that can detect multiple flaws without any knowledge on the
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number of flaws beforehand is proposed. While the previous XFEM-GA work only

considered quantification of a single flaw [1–4], we propose an adaptive algorithm that

can identify multiple flaws by introducing a topological variable into the search space

which turns on and off flaws during run time. Hence the number of flaws to be de-

tected becomes part of the optimization algorithm. Each flaw is approximated by a

circular or an elliptical void. Either a continuous optimization algorithm (e.g., the

improved ABC algorithms) or a two-step optimization scheme (e.g., discrete ABC al-

gorithm vs. BFGS-type optimization) can be used to determine the flaw parameters.

The identification is based on a limited number of static strain or displacement sensors

uniformly placed in the problem domain or attached to the structure surface bound-

aries. The proposed methodology was tested and illustrated by several benchmark

examples, showing a successful identification of various numbers and types of flaws

with arbitrary shapes and sizes (e.g., cracks, voids, and their combination), without

knowing the number of flaws beforehand.

7.2 Future research directions

Based on the observations of the present work, future research can be directed as follows:

• When dealing with identification of a macro-scale system such as buildings and bridges,

matching the whole time history of measurements is a challenging task and its com-

putational cost is expensive, since the optimization algorithm requires to solve the

forward model many times. Even though efficient optimization tools reduce the num-

ber of forward analyses, the computational issue still exists. Possible solutions could

be the synergy of the data-driven approach and the model-based approach. For in-

stance, a data-driven approach is first employed to identify modal parameters (e.g.,

frequencies and mode shapes) and an optimization model-based approach is then ap-

plied to match the “measured” modal parameters. This process doesn’t necessarily

require solving the whole system and only needs eigen-analyses of matrices. Therefore,

one possible future research could be concentrated on proposing a framework combin-

ing data-driven and optimization model-based approaches, in which mode matching



Chapter 7. Conclusions 175

issues will be addressed.

• The present work deal with identification problems given a single type of measurement

(e.g., acceleration response of a building). Nevertheless, heterogeneous sensing is

widely used in nowadays SHM, e.g., to record accelerations, displacements, strains,

etc. Therefore, possible future research could be focused on optimization model-based

identification taking into account heterogeneous data fusion.

• Though the XFEM-based flaw detection approaches were numerically proved to be

promising, a lab and filed testing is required in the future to validate the proposed

methodologies. Since the current flaw detection framework only deals with homoge-

neous materials., future study could be concentrated on detecting multiple flaws em-

bedded in composite materials through developing a laminate theory-based XFEM. In

addition, the present work only considers 2D plane-stress problems with excitations

and measurements along plane directions. Future work will extend the flaw identifi-

cation to 3D models by developing an XFEM with shell- or plate- elements and using

dynamic measurement of waves [122].



176

Part IV

Bibliography



Bibliography 177

Bibliography

[1] D. Rabinovich, D. Givoli, and S. Vigdergauz, “XFEM-based crack detection scheme using

a genetic algorithm,” International Journal for Numerical Methods in Engineering, vol. 71,

no. 9, pp. 1051–1080, 2007.

[2] D. Rabinovich, D. Givoli, and S. Vigdergauz, “Crack identification by ’arrival time’ using

XFEM and a genetic algorithm,” International Journal for Numerical Methods in Engineering,

vol. 77, no. 3, pp. 337–359, 2009.

[3] H. Waisman, E. Chatzi, and A. W. Smyth, “Detection and quantification of flaws in structures

by the extended finite element method and genetic algorithms,” International Journal for

Numerical Methods in Engineering, vol. 82, no. 3, pp. 303–328, 2010.

[4] E. N. Chatzi, B. Hiriyur, H. Waisman, and A. W. Smyth, “Experimental application and

enhancement of the XFEM–GA algorithm for the detection of flaws in structures,” Computers

& Structures, vol. 89, no. 7-8, pp. 556–570, 2011.
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[44] H. Luş, M. De Angelis, R. Betti, and R. Longman, “Constructing second-order models of

mechanical systems from identified state space realizations. part I: Theoretical discussions,”

Journal of Engineering Mechanics, vol. 129, no. 5, pp. 477–488, 2003.



Bibliography 181
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