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ABSTRACT

Sequential Statistical Signal Processing with
Applications to Distributed Systems

Yasin Yılmaz

Detection and estimation, two classical statistical signal processing problems with well-

established theories, are traditionally studied under the fixed-sample-size and centralized

setups, e.g., Neyman-Pearson target detection, and Bayesian parameter estimation. Re-

cently, they appear in more challenging setups with stringent constraints on critical re-

sources, e.g., time, energy, and bandwidth, in emerging technologies, such as wireless sensor

networks, cognitive radio, smart grid, cyber-physical systems (CPS), internet of things

(IoT), and networked control systems. These emerging systems have applications in a wide

range of areas, such as communications, energy, the military, transportation, health care,

and infrastructure.

Sequential (i.e., online) methods suit much better to the ever-increasing demand on

time-efficiency, and latency constraints than the conventional fixed-sample-size (i.e., offline)

methods. Furthermore, as a result of decreasing device sizes and tendency to connect

more and more devices, there are stringent energy and bandwidth constraints on devices

(i.e., nodes) in a distributed system (i.e., network), requiring decentralized operation with

low transmission rates. Hence, for statistical inference (e.g., detection and/or estimation)

problems in distributed systems, today’s challenge is achieving high performance (e.g., time

efficiency) while satisfying resource (e.g., energy and bandwidth) constraints.

In this thesis, we address this challenge by (i) first finding optimum (centralized) sequen-

tial schemes for detection, estimation, and joint detection and estimation if not available in

the literature, (ii) and then developing their asymptotically optimal decentralized versions

through an adaptive non-uniform sampling technique called level-triggered sampling. We

propose and rigorously analyze decentralized detection, estimation, and joint detection and



estimation schemes based on level-triggered sampling, resulting in a systematic theory of

event-based statistical signal processing. We also show both analytically and numerically

that the proposed schemes significantly outperform their counterparts based on conven-

tional uniform sampling in terms of time efficiency. Moreover, they are compatible with the

existing hardware as they work with discrete-time observations produced by conventional

A/D converters.

We apply the developed schemes to several problems, namely spectrum sensing and

dynamic spectrum access in cognitive radio, state estimation and outage detection in smart

grid, and target detection in multi-input multi-output (MIMO) wireless sensor networks.
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Chapter 1

Introduction

In statistical signal processing, efficiency in terms of critical resources, such as time/number

of observations, energy, and bandwidth, becomes increasingly important. In particular,

minimizing the average decision making time/delay is crucial due to the ever-increasing need

for speed in today’s technology. This fact strongly underpins the significance of sequential

(i.e., online) methodologies. A sequential method, unlike the traditional fixed-sample-size

methods, is equipped with a stopping rule which adapts the number of observations used

to make a decision, i.e., the time to stop taking new observations and make a decision,

to the observation history. With such a stopping capability, a sequential method, for each

realization of the random observation signal, can tailor the sample size (i.e., number of

observations) to the constraints on specific performance measures in a problem [e.g., type

I (false alarm) and type II (misdetection) error probabilities in detection; mean squared

error (MSE) in estimation]. On the other hand, a fixed-sample-size (i.e., offline) method,

regardless of the observation history, waits until a specific amount of observation is collected,

and then at this deterministic time makes its decision (e.g., detection and/or estimation).

For example, it is known [1, Page 109] that the sequential probability ratio test (SPRT),

which is the optimum sequential detector for i.i.d. observations, requires for Gaussian

signals, on average, four times less samples than the best fixed-sample-size detector to reach

a decision with the same level of confidence. This significant time efficiency comes with the

costs of sophisticated analysis and some practical challenges. Particularly, a sequential

method, in a distributed (i.e., networked) system, needs online information transmission,
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posing a serious challenge for energy- and bandwidth-constrained systems. Considering that

energy and bandwidth constraints are typical of many emerging technologies (e.g., wireless

sensor networks, cyber-physical systems, internet of things) sequential methods that satisfy

such resource constraints are of great interest recently.

In this thesis, we address the challenge briefly explained above. Specifically, we design

optimum sequential detectors, estimators, and joint detectors and estimators; and then

develop their decentralized versions that rely on low-rate information transmission in a

distributed system. With the term decentralized, we denote distributed systems with low-

rate information transmission from nodes to a fusion center (which may be one of the

nodes), as opposed to centralized systems with high information transmission rates. Hence,

it should not be confused with the term ad hoc, which denotes the lack of a fusion center.

Here, we also sometimes use the terms distributed and decentralized interchangeably.

The main contributions of this thesis are twofolds: (i) the development of optimum se-

quential schemes, (ii) the design and analysis of decentralized sequential schemes based on an

event-based non-uniform sampling technique called the level-triggered sampling. This adap-

tive sampling technique is key to achieving high efficiency in minimizing the average sample

size through low-rate information transmission. The sampling times in level-triggered sam-

pling are dynamically (i.e., adaptively) determined by the signal that is sampled, hence

random. This is in contrast with the time-based sampling, in which sampling times are de-

terministic, e.g., the classical uniform-in-time sampling with periodic sampling times. More

specifically, in level-triggered sampling, a new sample is taken when the signal changes at

least by a constant ∆ since the last sampling time, as shown in Fig. 1.1. The sampling

times t1, t2, t3, t4 in Fig. 1.1 are dictated by the random signal Xt, whereas those of uniform

sampling are given by a preselected period T , regardless of Xt.

Using uniform sampling in a distributed system we know the sampling times throughout

the system, but sample magnitudes need to be quantized with a few bits to report to

the fusion center, incurring considerable quantization errors at the fusion center. On the

other hand, since the level-triggered sampling procedure is uniform in magnitude change,

at each sampling time a node, transmitting only a single bit, can easily report to the fusion

center whether the magnitude change since the last sampling time is above ∆ or below
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Figure 1.1: The level-triggered sampling procedure.

−∆. Moreover, the fusion center can infer the sampling times from the bit arrival times,

although for the ultimate statistical task (e.g., detection and/or estimation) sampling times

do not need to be precisely recovered, as opposed to data compression [2].

Some variants of level-triggered sampling are used in the literature under the names

of level-crossing sampling, time-encoding machine, send-on-delta sampling, and Lebesgue

sampling for , control systems [3; 4; 5], data compression [2], analog-to-digital (A/D) conver-

sion [6; 7; 8], continuous-time data transmission [9; 10; 11], continuous-time detection [12;

13] and estimation [14], imaging applications [15; 16; 17]. It also naturally appears in bio-

logical sensing systems. Interestingly, the all-or-none principle, according to which neurons

fire, i.e., transmit electrical signals, in many multicellular organisms, including plants, in-

sects, reptiles and mammals, is closely related to level-triggered sampling [18]. Event-based

techniques, as alternative to time-driven techniques, are first [3] and most commonly used

in the context of control systems. Their appearance in the context of signal processing is

much later [2].
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1.1 Contributions

It was shown in [12; 14] that with continuous-time observations, level-triggered sampling

is an ideal fit for information transmission in decentralized detection and estimation as it

achieves a strong type of asymptotic optimality called order-2 asymptotic optimality by

transmitting a single bit per sample. In other words, it attains a very high performance

standard while being extremely resource-efficient. This is possible due to the well-behaved

(i.e., continuous-path) continuous-time observations since at each sampling time the mag-

nitude change in such a continuous-time signal is exactly either ∆ or −∆, without any

overshoot (cf. Fig. 1.1), and thus the change information is fully represented by a single

bit. However, these impressive theoretical results have practical limitations as they rely

on applying level-triggered sampling to analog signals without A/D conversion. Although

there are significant works (e.g., [8; 7; 19]) towards building a new digital signal processing

(DSP) theory based on event-based sampling, such a theory is still not mature, and thus

uniform sampling dominates today’s DSP technology.

A vast majority of the existing devices work, and will continue to work in the near future,

with discrete-time observations produced by conventional A/D converters based on uniform

sampling and quantization. Hence, a comprehensive theory for discrete-time observations is

needed to use level-triggered sampling for statistical signal processing tasks on the existing

hardware. To that end, in this dissertation, we rigorously analyze the use of level-triggered

sampling with discrete-time observations for the statistical signal processing tasks.

We should emphasize here that we are interested in level-triggered sampling as a means

of transmitting local statistics/information to a remote center, not for A/D conversion.

The real challenge in using level-triggered sampling with discrete-time observations is the

overshoot problem due to the excess signal level above/below the sampling threshold, as

shown in Fig. 1.1. Such an overshoot value is not represented by the single bit which

can only encode the threshold (upper/lower) that triggered sampling. If this problem is

not treated, the overshoot values cannot be recovered at the fusion center, and even worse

accumulate in time. We propose and rigorously analyze several ways to overcome the

overshoot problem.

Specifically, in [20], for the spectrum sensing problem in cognitive radio networks, we
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use a few additional bits to quantize the overshoot value in each sample, and show that

this scheme can achieve order-2 asymptotic optimality. In [21], for decentralized detection,

assuming some local statistics are known we compute an average value for the overshoot,

and use a single bit to represent each sample. Moreover, in [21] we consider non-ideal re-

porting channels between the fusion center and nodes. In [22], we encode each overshoot

value in time, and transmit a single pulse for each sample in the context of target detection

in wireless sensor networks. In [23], we propose asymptotically optimal decentralized esti-

mators based on multi-bit level-triggered sampling, in which overshoot values are quantized

as in [20]. For a restricted class of stopping times we find, in [24], the optimum (centralized)

sequential vector parameter estimators under two different formulations, and develop a com-

putationally efficient decentralized version of the more tractable one. Similarly, we find an

optimum sequential joint detector and estimator in [25] for a set of problems in which both

detection and estimation are equally important. Then, in [26], we extend this optimum

sequential joint detection and estimation scheme to a cooperative multi-node setup, and

apply this extended optimum solution to the dynamic spectrum access problem in cognitive

radio networks.

1.2 Outline

The dissertation is organized into three parts for detection, estimation, and joint detection

and estimation. Firstly, in Chapter 2, we consider sequential distributed detection, and

spectrum sensing in cognitive radio networks as an application. Then, in Chapter 3, we

treat the sequential estimation problem for linear models, and its application to a wireless

sensor network. Finally, in Chapter 4, sequential joint detection and estimation is handled

with two applications: dynamic spectrum access in cognitive radio networks, and state

estimation in smart grid. We conclude the dissertation in Chapter 5.

We represent vectors and matrices with lower-case and upper-case bold letters, respec-

tively.
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Part I

Detection
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Chapter 2

Sequential Distributed Detection

2.1 Introduction

We consider the problem of binary decentralized detection, i.e., hypothesis testing, where

a number of distributed sensors, under bandwidth constraints, communicate with a fusion

center (FC) which is responsible for making the final decision. In [27] it was shown that

under a fixed fusion rule, with two sensors each transmitting one bit information to the FC,

the optimum local decision rule is a likelihood ratio test (LRT) under the Bayesian criterion.

Later, in [28] and [29] it was shown that the optimum fusion rule at the FC is also an LRT

under the Bayesian and the Neyman-Pearson criteria, respectively. It was further shown in

[30] that as the number of sensors tends to infinity it is asymptotically optimal to have all

sensors perform an identical LRT. The case where sensors observe correlated signals was

also considered, e.g., [31; 32].

Most works on decentralized detection, including the above mentioned, treat the fixed-

sample-size approach where each sensor collects a fixed number of samples and the FC

makes its final decision at a fixed time. There is also a significant volume of literature

that considers the sequential detection approach, e.g., [33; 34; 35; 36; 12; 20; 21; 22]. In

[36; 12; 20; 21; 22], the sequential probability ratio test (SPRT) is used both locally and

globally. SPRT is optimal for i.i.d. observations in terms of minimizing the average sample

number (i.e., decision delay) among all sequential tests satisfying the same error probability

constraints [37]. It is also known that SPRT asymptotically requires, on average, four
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times less samples (for Gaussian signals) to reach a decision than the best fixed-sample-

size test, for the same level of confidence [1, Page 109]. Relaxing the one-bit messaging

constraint, the optimality of the likelihood ratio quantization is established in [38]. Data

fusion (multi-bit messaging) is known to be much more powerful than decision fusion (one-

bit messaging) [39], albeit it consumes higher bandwith. Moreover, the recently proposed

sequential detection schemes based on level-triggered sampling, e.g., [12; 20], are as powerful

as data-fusion techniques, and at the same time they are as simple and bandwidth-efficient

as decision-fusion techniques.

Besides having noisy observations at sensors, in practice the channels between sensors

and the FC are noisy. The conventional approach to decentralized detection ignores the

latter, i.e., assumes ideal transmission channels, and addresses only the first source of un-

certainty, e.g., [27; 12]. Adopting the conventional approach to the noisy channel case

yields a two-step solution. First, a communication block is employed at the FC to recover

the transmitted information bits from sensors, and then a signal processing block applies

a fusion rule to the recovered bits to make a final decision. Such an independent block

structure causes performance loss due to the data processing inequality [40]. To obtain the

optimum performance the FC should process the received signal in a channel-aware man-

ner [41], [42]. Most works assume parallel channels between sensors and the FC, e.g., [43;

44]. Other topologies such as serial [45] and multiple-access channels (MAC) [46] have also

been considered. In [47] a scheme is proposed that adaptively switches between serial and

parallel topologies.

In this chapter, we design and analyze channel-aware sequential decentralized detection

schemes based on level-triggered sampling, under different types of discrete and continu-

ous noisy channels. In Section 2.2, we describe the general structure of the decentralized

detection approach based on level-triggered sampling with noisy channels between sensors

and the FC. We derive channel-aware sequential detection schemes based on level-triggered

sampling in Section 2.3. We then present, in Section 2.4, an information theoretic frame-

work to analyze the decision delay performance of the proposed schemes based on which

we provide an asymptotic analysis on the decision delays under various types of channels.

The asymptotic analysis on decision delays facilitates finding appropriate signaling schemes



CHAPTER 2. SEQUENTIAL DISTRIBUTED DETECTION 9

under different continuous channels. In Section 2.5, as an application, we deal with the

cooperative spectrum sensing problem in cognitive radio networks. Finally, Section 2.6

concludes the chapter.

2.2 System Descriptions

Consider a wireless sensor network consisting of K sensors each of which observes a discrete-

time signal {ykt , t ∈ N}, k = 1, . . . ,K. Each sensor k computes the log-likelihood ratio (LLR)

{Lk
t , t ∈ N} of the signal it observes, samples the LLR sequence using the level-triggered

sampling, and then sends the LLR samples to the fusion center (FC). The FC then combines

the local LLR information from all sensors, and decides between two hypotheses, H0 and

H1, in a sequential manner.

Observations collected at the same sensor, {ykt }t, are assumed to be i.i.d., and in addition

observations collected at different sensors, {ykt }k, are assumed to be independent. Hence,

the local LLR at the k-th sensor, Lk
t , and the global LLR, Lt, are computed as

Lk
t , log

fk1 (y
k
1 , . . . , y

k
t )

fk0 (y
k
1 , . . . , y

k
t )

= Lk
t−1 + lkt =

t∑

n=1

lkn, and Lt =

K∑

k=1

Lk
t , (2.1)

respectively, where lkt , log
fk
1 (y

k
t )

fk
0 (y

k
t )

is the LLR of the sample ykt received at the k-th sensor

at time t; fki , i = 0, 1, is the probability density function (pdf) of the received signal by

the k-th sensor under Hi. The k-th sensor samples Lk
t via the level-triggered sampling at

a sequence of random sampling times {tkn}n that are dictated by Lk
t itself. Specifically, the

n-th sample is taken from Lk
t whenever the accumulated LLR Lk

t − Lk
tkn−1

, since the last

sampling time tkn−1 exceeds a constant ∆ in absolute value, i.e.,

tkn , inf
{
t > tkn−1 : L

k
t − Lk

tkn−1

6∈ (−∆,∆)
}
, tk0 = 0, Lk

0 = 0. (2.2)

Let λkn denote the accumulated LLR during the n-th inter-sampling interval, (tkn−1, t
k
n], i.e.,

λkn ,

tkn∑

t=tkn−1
+1

lkt = Lk
tkn
− Lk

tkn−1

. (2.3)

Immediately after sampling at tkn, as shown in Fig. 2.1, an information bit bkn indicating
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FC

S1

S2

SK

ch1

ch2

chK

δT̃

y1t

y2t

yKt

b1n

b2n

bKn

z1n

z2n

zKn

I1i (t) Î1i (t) Ĩ1i (t)

I2i (t)

IKi (t)

Î2i (t)

ÎKi (t)

Ĩ2i (t)

ĨKi (t)

Figure 2.1: A wireless sensor network with K sensors S1, . . . , SK , and a fusion center (FC).

Sensors process their observations {ykt }, and transmits information bits {bkn}. Then, the FC,
receiving {zkn} through wireless channels, makes a detection decision δT̃ . I

k
i (t), Î

k
i (t), Ĩ

k
i (t)

are the observed, transmitted and received information entities respectively, which will be

defined in Section 2.4.1.

the threshold crossed by λkn is transmitted to the FC, i.e.,

bkn , sign(λkn). (2.4)

Let us now analyze the signals at the FC. Denote the received signal at the FC corre-

sponding to bkn as zkn, as shown in Fig. 2.1. The FC then computes the LLR λ̃kn of each

received signal and approximates the global LLR Lt as

L̃t ,

K∑

k=1

Nk
t∑

n=1

λ̃kn with λ̃kn , log
pk1(z

k
n)

pk0(z
k
n)
, (2.5)

where Nk
t is the total number of LLR messages the k-th sensor has transmitted up to time

t, and pki (·), i = 0, 1, is the pdf of zkn under Hi. In fact, the FC recursively updates L̃t

whenever it receives an LLR message from any sensor. In particular, suppose that the m-th

LLR message λ̃m from any sensor is received at time tm. Then at tm, the FC first updates

the global LLR as

L̃tm = L̃tm−1
+ λ̃m. (2.6)

It then performs an SPRT step by comparing L̃tm with two thresholds Ã and −B̃, and
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applying the following decision rule

δtm ,





H1, if L̃tm ≥ Ã,
H0, if L̃tm ≤ −B̃,
continue to receive LLR messages, if L̃tm ∈ (−B̃, Ã).

(2.7)

The thresholds (Ã, B̃ > 0) are selected to satisfy the error probability constraints P0(δT̃ =

H1) ≤ α and P1(δT̃ = H0) ≤ β with equalities, where α, β are target error probability

bounds, and

T̃ , inf{t > 0 : L̃t 6∈ (−B̃, Ã)} (2.8)

is the decision delay.

Note that each sensor, in fact, implements a local SPRT [cf. (2.7), (2.8)], with thresholds

∆ and −∆ within each sampling interval. At sensor k the n-th local SPRT starts at time

tkn−1 and ends at time tkn when the local test statistic λkn exceeds either ∆ or −∆. This

local hypothesis testing produces a local decision represented by the information bit bkn, and

induces local error probabilities αk and βk which are given by

αk , P0(b
k
n = 1), and βk , P1(b

k
n = −1) (2.9)

respectively, where Pi(·), i = 0, 1, denotes the probability under Hi.

With ideal channels between sensors and the FC, we have zkn = bkn, so from (2.9) we can

write the local LLR λ̃kn = λ̂kn, where

λ̂kn ,





log P1(bkn=1)
P0(bkn=1)

= log 1−βk
αk
≥ ∆, if bkn = 1,

log P1(bkn=−1)
P0(bkn=−1)

= log βk
1−αk

≤ −∆, if bkn = −1
(2.10)

is the LLR of the transmitted bit bkn. The inequalities above can be obtained by apply-

ing a change of measure. For example, to show the first one, we have αk = P0(λ
k
n ≥

∆) = E0[1{λk
n≥∆}] where Ei[·] is the expectation under Hi, i = 0, 1 and 1{·} is the indicator

function. Noting that e−λk
n =

fk
0 (y

k

tkn−1
+1

,...,yk
tkn

)

fk
1 (y

k

tkn−1
+1

,...,yk
tkn

)
, we can write

αk = E1[e
−λk

n1{λk
n≥∆}] ≤ e−∆

E1[1{λk
n≥∆}] = e−∆

P1(λ
k
n ≥ ∆) = e−∆(1− βk).

Note that for the case of continuous-time and continuous-path observations at sensors,

the inequalities in (2.10) become equalities as the local LLR sampled at a sensor [cf. (2.1)]
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is now a continuous-time and continuous-path process. This suggests that the accumulated

LLR during any inter-sampling interval [cf. (2.3)] due to continuity of its paths will hit

exactly the local thresholds±∆. Therefore, fromWald’s analysis for SPRT, αk = βk = 1
e∆+1

[?]; hence a transmitted bit fully represents the LLR accumulated in the corresponding inter-

sampling interval. Accordingly, the FC at sampling times exactly recovers the values of LLR

processes observed by sensors [12].

On the other hand, when sensors observe discrete-time signals, due to randomly over/under

shooting the local thresholds, the observed LLR λkn in (2.3) is a random variable, which is

in absolute value greater than ∆. However, the transmitted LLR λ̂kn in (2.10) is a fixed

value, that is also greater than ∆ in absolute value. While in continuous-time the FC

fully recovers the LLR accumulated in an inter-sampling interval by using only the re-

ceived bit, in discrete-time this is not possible. In order to ameliorate this problem, in [12;

21] it is assumed that the local error probabilities {αk, βk} are available to the FC; and

therefore the LLR of zkn, that is, λ̃kn = λ̂kn, can be obtained; while in [20] the overshoot is

quantized by using extra bits in addition to bkn. Nevertheless, neither method enables the

FC to fully recover λkn unless an infinite number of bits is used.

In this chapter, we will initially assume in Sections 2.3 and 2.4 that the local error

probabilities αk, βk, k = 1, . . . ,K are available at the FC in order to compute the LLR

λ̃kn of the received signals, as in [12; 21]. Then, in Section 2.5, following [20], we consider

quantizing overshoot using additional bits. For the case of ideal channels, we denote the

thresholds in (2.7) with A and −B, and the decision delay in (2.8) with T . In the case of

noisy channels, the received signal zkn is not always identical to the transmitted bit bkn, and

thus the LLR λ̃kn of zkn can be different from λ̂kn of bkn, given in (2.10). In the next section,

we consider some popular channel models and give the corresponding expressions for λ̃kn.

2.3 Channel-aware Fusion Rules

In computing the LLR λ̃kn of the received signal zkn, we will make use of the local sensor error

probabilities αk, βk, and the channel parameters that characterize the statistical property of

the channel. One subtle issue is that since the sensors asynchronously sample and transmit
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the local LLR, in the presence of noisy channels, the FC needs to first reliably detect

the sampling time in order to update the global LLR. In this section we assume that the

sampling time is reliably detected and focus on deriving the fusion rule at the FC. In Section

2.4.4, we will discuss the issue of sampling time detection.

2.3.1 Binary Erasure Channels (BEC)

Consider binary erasure channels between sensors and the FC with erasure probabilities

ǫk, k = 1, . . . ,K. Under BEC, a transmitted bit bkn is lost with probability ǫk, and correctly

received at the FC, i.e., zkn = bkn, with probability 1− ǫk. Then the LLR of zkn is given by

λ̃kn =





log P1(zkn=1)
P0(zkn=1)

= log 1−βk
αk

, if zkn = 1,

log P1(zkn=−1)
P0(zkn=−1)

= log βk
1−αk

, if zkn = −1.
(2.11)

Note that under BEC the channel parameter ǫk is not needed when computing the LLR

λ̃kn. Note also that in this case, a received bit bears the same amount of LLR information

as in the ideal channel case [cf. (2.10)], although a transmitted bit is not always received.

Hence, the channel-aware approach coincides with the conventional approach which relies

solely on the received signal. Although the LLR updates in (2.10) and (2.11) are identical,

the fusion rules under BEC and ideal channels are not. This is because the thresholds Ã

and −B̃ of BEC, due to the information loss, are in general different from the thresholds A

and −B of the ideal channel case.

2.3.2 Binary Symmetric Channels (BSC)

Next, we consider binary symmetric channels with crossover probabilities ǫk between sensors

and the FC. Under BSC, the transmitted bit bkn is flipped, i.e., zkn = −bkn, with probability

ǫk, and it is correctly received, i.e., zkn = bkn, with probability 1− ǫk. The LLR of zkn can be

computed as

λ̃kn(z
k
n = 1) = log

P1(z
k
n = 1|bkn = 1)P1(b

k
n = 1) + P1(z

k
n = 1|bkn = −1)P1(b

k
n = −1)

P0(zkn = 1|bkn = 1)P0(bkn = 1) + P0(zkn = 1|bkn = −1)P0(bkn = −1)

= log
(1− ǫk)(1 − βk) + ǫkβk
(1− ǫk)αk + ǫk(1− αk)

= log
1−

β̂k︷ ︸︸ ︷
[(1− 2ǫk)βk + ǫk]

(1− 2ǫk)αk + ǫk︸ ︷︷ ︸
α̂k

(2.12)
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where α̂k and β̂k are the effective local error probabilities at the FC under BSC. Similarly

we can write

λ̃kn(z
k
n = −1) = log

β̂k
1− α̂k

. (2.13)

Note that α̂k > αk, β̂k > βk if αk < 0.5, βk < 0.5, ∀k, which we assume true for

∆ > 0. Thus, we have |λ̃kn,BSC | < |λ̃kn,BEC | from which we expect the performance loss

under BSC to be higher than the one under BEC. The numerical results provided in Fig.

2.2 will illustrate this claim. Finally, note also that, unlike the BEC case, under BSC the

FC needs to know the channel parameters {ǫk} to operate in a channel-aware manner.

2.3.3 Additive White Gaussian Noise (AWGN) Channels

Now, assume that the channel between each sensor and the FC is an AWGN channel. The

received signal at the FC is given by

zkn = hknx
k
n + wk

n (2.14)

where hkn = hk,∀k, n, is a known constant complex channel gain; wk
n ∼ Nc(0, σ

2
k); x

k
n is the

transmitted signal at sampling time tkn, given by

xkn =





a, if λkn ≥ ∆,

b, if λkn ≤ −∆,
(2.15)

where the transmission levels a and b are complex in general.

The distribution of the received signal given xkn is then zkn ∼ Nc(hkx
k
n, σ

2
k). The LLR of

zkn is given by

λ̃kn = log
pk(z

k
n|xkn = a)P1(x

k
n = a) + pk(zn|xkn = b)P1(x

k
n = b)

pk(zkn|xkn = a)P0(xkn = a) + pk(zkn|xkn = b)P0(xkn = b)

= log
(1− βk) exp(−ckn) + βk exp(−dkn)
αk exp(−ckn) + (1− αk) exp(−dkn)

, (2.16)

where ckn ,
|zkn−hka|2

σ2
k

and dkn ,
|zkn−hkb|2

σ2
k

.

2.3.4 Rayleigh Fading Channels

If a Rayleigh fading channel is assumed between each sensor and the FC, the received

signal model is also given by (2.14)-(2.15), but with hkn ∼ Nc(0, σ
2
h,k). We then have
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zkn ∼ Nc(0, |xkn|2σ2h,k + σ2k) given x
k
n; and accordingly, similar to (2.16), λ̃kn is written as

λ̃kn = log

1−βk

σ2
a,k

exp(−ckn) + βk

σ2
b,k

exp(−dkn)
αk

σ2
a,k

exp(−ckn) + 1−αk

σ2
b,k

exp(−dkn)
(2.17)

where σ2a,k , |a|2σ2h,k + σ2k, σ
2
b,k , |b|2σ2h,k + σ2k, c

k
n ,

|zkn|2
σ2
a,k

and dkn ,
|zkn|2
σ2
b,k

.

2.3.5 Rician Fading Channels

For Rician fading channels, we have hkn ∼ Nc(µk, σ
2
h,k) in (2.14), and hence zkn ∼ Nc(µkx

k
n, |xkn|2σ2h,k+

σ2k) given xkn. Using σ2a,k and σ2b,k as defined in the Rayleigh fading case, and defining

ckn ,
|zkn−µka|2

σ2
a,k

, dkn ,
|zkn−µkb|2

σ2
b,k

we can write λ̃kn as in (2.17).

2.4 Performance Analysis

In this section, we first define some information entities which will be used throughout the

section; then find the non-asymptotic expression for the average decision delay Ei[T ], and
provide an asymptotic analysis on it as the error probability bounds α, β → 0 for ideal and

noisy channels.

2.4.1 Information Entities

Note that the expectation of an LLR corresponds to a Kullback-Leibler (KL) information

entity. For instance,

Ik1 (t) , E1

[
log

fk1 (y
k
1 , . . . , y

k
t )

fk0 (y
k
1 , . . . , y

k
t )

]
= E1[L

k
t ], and Ik0 (t) , E0

[
log

fk0 (y
k
1 , . . . , y

k
t )

fk1 (y
k
1 , . . . , y

k
t )

]
= −E0[L

k
t ]

(2.18)

are the KL divergences of the local LLR sequence {Lk
t }t under H1 and H0, respectively.

Similarly

Îk1 (t) , E1

[
log

pk1(b
k
1 , . . . , b

k
Nk

t
)

pk0(b
k
1 , . . . , b

k
Nk

t
)

]
= E1[L̂

k
t ] , Îk0 (t) , −E0[L̂

k
t ]

Ĩk1 (t) , E1

[
log

pk1(z
k
1 , . . . , z

k
Nk

t
)

pk0(z
k
1 , . . . , z

k
Nk

t
)

]
= E1[L̃

k
t ] , Ĩk0 (t) , −E0[L̃

k
t ]

(2.19)
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are the KL divergences of the local LLR sequences {L̂k
t }t and {L̃k

t }t respectively. Define

also Ii(t) ,
∑K

k=1 I
k
i (t), Îi(t) ,

∑K
k=1 Î

k
i (t), and Ĩi(t) ,

∑K
k=1 Ĩ

k
i (t) as the KL divergences

of the global LLR sequences {Lt}, {L̂t}, and {L̃t} respectively.
In particular, we have

Ik1 (1) = E1

[
log

fk1 (y
k
1)

fk0 (y
k
1)

]
= E1[l

k
1 ], and I

k
0 (1) = E0

[
log

fk0 (y
k
1 )

fk1 (y
k
1 )

]
= −E0[l

k
1 ] (2.20)

as the KL information numbers of the LLR sequence {lkt }; and Ii(1) ,
∑K

k=1 I
k
i (1), i = 0, 1

are those of the global LLR sequence {lt}. Moreover,

Ik1 (t
k
1) = E1


log

fk1 (y
k
1 , . . . , y

k
tk1
)

fk0 (y
k
1 , . . . , y

k
tk1
)


 =E1[λ

k
1], Î

k
1 (t

k
1) = E1

[
log

pk1(b
k
1)

pk0(b
k
1)

]
= E1[λ̂

k
1 ],

and Ĩk1 (t
k
1) =E1

[
log

pk1(z
k
1 )

pk0(z
k
1 )

]
= E1[λ̃

k
1 ]

(2.21)

are the KL information numbers of the local LLR sequences {λkn}, {λ̂kn}, and {λ̃kn}, respec-
tively, under H1. Likewise, we have Ik0 (t

k
1) = −E0[λ

k
n], Î

k
0 (t

k
1) = −E0[λ̂

k
n], and Ĩk0 (t

k
1) =

−E0[λ̃
k
n] under H0. To summarize, Iki (t), Î

k
i (t), and Ĩ

k
i (t) are respectively the observed (at

sensor k), transmitted (by sensor k), and received (by the FC) KL information entities as

illustrated in Fig. 2.1.

Next we define the following information ratios,

η̂ki ,
Îki (t

k
1)

Iki (t
k
1)
, and η̃ki ,

Ĩki (t
k
1)

Iki (t
k
1)
, (2.22)

which represent how efficiently information is transmitted from sensor k and received by

the FC, respectively. Due to the data processing inequality, we have 0 ≤ η̂ki , η̃
k
i ≤ 1, for

i = 0, 1 and k = 1, . . . ,K. We further define

Îi(1) ,
K∑

k=1

η̂ki I
k
i (1) =

K∑

k=1

Îki (1), and Ĩi(1) ,
K∑

k=1

η̃ki I
k
i (1) =

K∑

k=1

Ĩki (1) (2.23)

as the effective transmitted and received values corresponding to the KL information Ii(1),

respectively. Note that Îi(1) and Ĩi(1) are not real KL information numbers, but projections

of Ii(1) onto the filtrations generated by the transmitted, (i.e., {bkn}), and received, (i.e.,

{zkn}), signal sequences, respectively. This is because sensors do not transmit and the FC

does not receive the LLR of a single observation, but instead they transmit and it receives the
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LLR messages of several observations. Hence, we cannot have the KL information for single

observations at the two ends of the communication channel, but we can define hypothetical

KL information to serve analysis purposes. In fact, the hypothetical information numbers

Îi(1) and Ĩi(1), defined using the information ratios η̂ki and η̃ki , are crucial for our analysis

as will be seen in the this section.

The KL information Iki (1) of a sensor whose information ratio, η̃ki , is high and close to 1

is well projected to the FC. Conversely, Iki (1) of a sensor which undergoes high information

loss is poorly projected to the FC. Note that there are two sources of information loss for

sensors, namely, the overshoot effect due to having discrete-time observations and noisy

transmission channels. The latter appears only in η̃ki , whereas the former appears in both

η̂ki and η̃ki . In general with discrete-time observations at sensors we have Îi(1) 6= Ii(1)

and Ĩi(1) 6= Ii(1). Lastly, note that under ideal channels, since zkn = bkn,∀k, n, we have

Ĩi(1) = Îi(1).

2.4.2 Ideal Channels

Let {τkn : τkn = tkn − tkn−1} denote the inter-arrival times of the LLR messages transmitted

from the k-th sensor. Note that τkn depends on the observations yk
tkn−1+1

, . . . , yk
tkn
, and since

{ykt } are i.i.d., {τkn} are also i.i.d. random variables. Hence, the counting process {Nk
t } is

a renewal process. Similarly the LLRs {λ̂kn} of the received signals at the FC are also i.i.d.

random variables, and form a renewal-reward process. Note from (2.8) that the SPRT can

stop in between two arrival times of sensor k, e.g., tkn ≤ T < tkn+1. The event Nk
T = n

occurs if and only if tkn = τk1 + . . .+ τkn ≤ T and tkn+1 = τk1 + . . .+ τkn+1 > T , so it depends

on the first (n + 1) LLR messages. From the definition of stopping time [48, pp. 104] we

conclude that Nk
T is not a stopping time for the processes {τkn} and {λ̂kn} since it depends

on the (n + 1)-th message. However, Nk
T + 1 is a stopping time for {τkn} and {λ̂kn} since

we have Nk
T + 1 = n ⇐⇒ Nk

T = n − 1 which depends only on the first n LLR messages.
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Hence, from Wald’s identity [48, pp. 105] we can directly write the following equalities

Ei



Nk

T
+1∑

n=1

τkn


 = Ei[τ

k
1 ](Ei[N

k
T ] + 1), (2.24)

and Ei



Nk

T
+1∑

n=1

λ̂kn


 = Ei[λ̂

k
1](Ei[N

k
T ] + 1). (2.25)

We have the following theorem on the average decision delay under ideal channels.

Theorem 1. Consider the decentralized detection scheme given in Section 2.2, with ideal

channels between sensors and the FC. Its average decision delay under Hi is given by

Ei[T ] =
Îi(T )
Îi(1)

+

∑K
k=1 Î

k
i (t

k
Nk

T
+1

)− Ei[Yk]Îki (1)
Îi(1)

(2.26)

where Yk is a random variable representing the time interval between the stopping time and

the arrival of the first bit from the k-th sensor after the stopping time, i.e., Yk , tk
Nk

T
+1
−T .

Proof. From (2.24) and (2.25) we obtain

Ei



Nk

T
+1∑

n=1

τkn


 = Ei[τ

k
1 ]
Ei

[∑Nk
T
+1

n=1 λ̂kn

]

Ei[λ̂k1 ]

where the left-hand side equals to Ei[T ] + Ei[Yk]. Note that Ei[τ
k
1 ] is the expected stopping

time of the local SPRT at the k-th sensor and by Wald’s identity it is given by Ei[τ
k
1 ] =

Ei[λ
k
1 ]

Ei[lk1 ]
,

provided that Ei[l
k
1 ] 6= 0. Hence, we have

Ei[T ] =
Ei[λ

k
1 ]

Ei[λ̂k1 ]

Ei

[∑Nk
T
+1

n=1 λ̂kn

]

Ei[l
k
1 ]

− Ei[Yk] =
Iki (t

k
1)

Îki (t
k
1)

Îki (T ) + Îki (t
k
Nk

T
+1

)

Iki (1)
− Ei[Yk]

where we used the fact that E1

[∑Nk
T
+1

n=1 λ̂kn

]
= E1[L̂

k
T ]+ Ẽ1[λ̂

k
Nk

T
+1

] = Îk1 (T )+ Îk1 (tkNk
T
+1

) and

similarly E0

[∑Nk
T
+1

n=1 λ̂kn

]
= −Îk0 (T ) − Îk0 (tkNk

T
+1

). Note that Ẽi[·] is the expectation with

respect to λ̂k
Nk

T
+1

and Nk
T under Hi. By rearranging the terms and then summing over k on

both sides, we obtain

Ei[T ]
K∑

k=1

Iki (1)
Îki (t

k
1)

Iki (t
k
1)︸ ︷︷ ︸

Îi(1)

= Îi(T ) +
K∑

k=1

{
Îki (t

k
Nk

T
+1

)− Ei[Yk] Iki (1)
Îki (t

k
1)

Iki (t
k
1)︸ ︷︷ ︸

Îki (1)

}

which is equivalent to (2.26).
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The result in (2.26) is in fact very intuitive. Recall that Îi(T ) is the KL information

at the detection time at the FC. It naturally lacks some local information that has been

accumulated at sensors, but has not been transmitted to the FC, i.e., the information

gathered at sensors after their last sampling times. The numerator of the second term on

the right hand side of (2.26) replaces such missing information by using the hypothetical

KL information. Note that in (2.26) Îki (t
k
Nk

T
+1

) 6= Îki (t
k
1), i.e., Ẽi[λ̂

k
Nk

T
+1

] 6= Ei[λ̂
k
1 ], since N

k
T

and λ̂k
Nk

T
+1

are not independent.

The next result gives the asymptotic decision delay performance under ideal channels.

Theorem 2. As the error probability bounds tend to zero, i.e., α, β → 0, the average

decision delay under ideal channels given by (2.26) satisfies

E1[T ] =
| log α|
Î1(1)

+O(1), and E0[T ] =
| log β|
Î0(1)

+O(1), (2.27)

where O(1) represents a constant term.

Proof. See Appendix A.

It is seen from (2.27) that the hypothetical KL information number, Îi(1), plays a key

role in the asymptotic decision delay expression. In particular, we need to maximize Îi(1)

to asymptotically minimize Ei[T ]. Recalling its definition

Îi(1) =

K∑

k=1

Îki (t
k
1)

Iki (t
k
1)
Iki (1)

we see that three information numbers are required to compute it. Note that Iki (1) = Ei[l
k
1 ]

and Iki (t
k
1) = Ei[λ

k
1], which is given in (2.28) below, are computed based on local observations

at sensors, thus do not depend on the channels between sensors and the FC. Specifically,

we have

Ik1 (t
k
1) = (1− βk)(∆ + E1[θ̄

k
n])− βk(∆ + E1[θ

k
n]),

and Ik0 (t
k
1) = αk(∆ + E0[θ̄

k
n])− (1− αk)(∆ + E0[θ

k
n])

(2.28)

where θ̄kn and θkn are local over(under)shoots given by θ̄kn , λkn − ∆ if λkn ≥ ∆ and θkn ,

−λkn −∆ if λkn ≤ −∆. Due to |lkt | <∞,∀k, t we have θ̄kn, θ
k
n <∞,∀k, n.
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On the other hand, Îki (t
k
1) represents the information received in an LLR message by

the FC, so it heavily depends on the channel type. In the ideal channel case, from (2.10) it

is given by

Îk1 (t
k
1) = (1− βk) log

1− βk
αk

+ βk log
βk

1− αk
,

and Îk0 (t
k
1) = αk log

1− βk
αk

+ (1− αk) log
βk

1− αk
.

(2.29)

Since Îki (t
k
1) is the only channel-dependent term in the asymptotic decision delay expression,

we will next obtain its expression for each noisy channel type considered in Section 2.3.

2.4.3 Noisy Channels

In all noisy channel types that we consider in this chapter, we assume that channel pa-

rameters are either constants or i.i.d. random variables across time. In other words, ǫk, hk

are constant for all k (see Sections 2.3.1, 2.3.2, 2.3.3), and {hkn}n, {wk
n}n are i.i.d. for all

k (see Sections 2.3.3, 2.3.4, 2.3.5). Thus, in all noisy channel cases discussed in Section

2.3 the inter-arrival times {τ̃kn} of the LLR messages, and the LLRs {λ̃kn} of the received

signals are i.i.d. across time as in the ideal channel case. Accordingly the average decision

delay in these noisy channels has the same expression as (2.26), as given by the following

proposition. The proof is similar to that of Theorem 1.

Proposition 1. Under each type of noisy channel discussed in Section 2.3, the average

decision delay is given by

Ei[T̃ ] =
Ĩi(T̃ )
Ĩi(1)

+

∑K
k=1 Ĩ

k
i (t

k
Nk

T
+1

)− Ei[Ỹk]Ĩki (1)
Ĩi(1)

(2.30)

where Ỹk , tk
Nk

T̃
+1
− T̃ .

The asymptotic performances under noisy channels can also be analyzed analogously to

the ideal channel case.

Proposition 2. As α, β → 0, the average decision delay under noisy channels given by

(2.30) satisfies

E1[T̃ ] =
| log α|
Ĩ1(1)

+O(1), and E0[T̃ ] =
| log β|
Ĩ0(1)

+O(1). (2.31)
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Proof. See Appendix A.

Recall that Ĩi(1) =
∑K

k=1
Ĩki (t

k
1 )

Iki (t
k
1
)
Iki (1) in (2.31) where Iki (1) and Iki (t

k
1) are independent

of the channel type, i.e., they are same as in the ideal channel case. We will next compute

Ĩki (t
k
1) for each noisy channel type, and consider the choices of the signaling levels a, b in

(2.15) that maximize Ĩki (t
k
1).

BEC:

Under BEC, from (2.11) we can write the LLR of the received bits at the FC as

λ̃kn =





λ̂kn, with probability 1− ǫk,
0, with probability ǫk.

(2.32)

Hence, we have

Ĩki (t
k
1) = Ei[λ̃

k
1 ] = (1− ǫk)Îki (tk1) (2.33)

where Îki (t
k
1) is given in (2.29). As can be seen in (2.33) the performance degradation under

BEC is only determined by the channel parameter ǫk. In general, from (2.27), (2.31) and

(2.33) this asymptotic performance loss can be quantified as 1
1−mink ǫk

≤ Ei[T̃ ]
Ei[T ] ≤ 1

1−maxk ǫk
.

Specifically, if ǫk = ǫ,∀k, then we have Ei[T̃ ]
Ei[T ] =

1
1−ǫ as α, β → 0.

BSC:

Recall from (2.12) and (2.13) that under BSC local error probabilities αk, βk undergo

a linear transformation to yield the effective local error probabilities α̂k, β̂k at the FC.

Therefore, using (2.12) and (2.13), similar to (2.29), Ĩki (t
k
1) is written as follows

Ĩk1 (t
k
1) = (1− β̂k) log

1− β̂k
α̂k

+ β̂k log
β̂k

1− α̂k
,

and Ĩk0 (t
k
1) = α̂k log

1− β̂k
α̂k

+ (1− α̂k) log
β̂k

1− α̂k

(2.34)

where α̂k = (1 − 2ǫk)αk + ǫk and β̂k = (1 − 2ǫk)βk + ǫk. Notice that the performance loss

in this case also depends only on the channel parameter ǫk.

In Fig. 2.2 we plot Ĩk1 (t
k
1) as a function of αk = βk and ǫk, for both BEC and BSC.

It is seen that the KL information of BEC is higher than that of BSC, implying that the

asymptotic average decision delay is lower for BEC, as anticipated in Section 2.3.2.
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Ĩ
k 1
(t

k 1
)

ǫk αk = βk

Figure 2.2: The KL information, Ĩk1 (t
k
1), under BEC and BSC, as a function of the local

error probabilities αk = βk and the channel error probability ǫk.

AWGN:

In the remainder of the section, we will drop the sensor index k of σ2h,k and σ2k for

simplicity. In the AWGN case, it follows from Section 2.3.3 that if the transmitted signal

is a, i.e., xkn = a, then ckn = u, dkn = va; and if xkn = b, then ckn = vb, d
k
n = u where

u ,
|wk

n|2
σ2 , va ,

|wk
n+(a−b)hk |2

σ2 , vb ,
|wk

n+(b−a)hk |2
σ2 . Accordingly, from (2.16) we write the KL

information as

Ĩk1 (t
k
1) =Ē1[λ̃

k
1 ] = (1− βk)E

[
log

(1− βk)e−u + βke
−va

αke−u + (1− αk)e−va

]
+ βkE

[
log

(1− βk)e−vb + βke
−u

αke−vb + (1− αk)e−u

]

=(1− βk) log
1− βk
αk

+ βk log
βk

1− αk︸ ︷︷ ︸
Îk1 (t

k
1 )

+

βk

(
1− βk
βk

E1︷ ︸︸ ︷

E

[
log

1 + βk
1−βk

eu−va

1 + 1−αk
αk

eu−va

]
+

E2︷ ︸︸ ︷

E

[
log

1 + 1−βk
βk

eu−vb

1 + αk
1−αk

eu−vb

])

︸ ︷︷ ︸
Ck
1

, (2.35)

where E[·] denotes the expectation with respect to the channel noise wk
n only, and Ē1[·]

denotes the expectation with respect to both xkn and wk
n under H1. Since w

k
n is independent

of xkn under both H0 and H1, we used the identity Ē1[·] = E[E1[·]] in (2.35).
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Note from (2.35) that we have Ĩk1 (t
k
1) = Îk1 (t

k
1) + βkCk1 and Ĩk0 (t

k
1) = Îk0 (t

k
1) + αkCk0 .

Similar to Ck1 we have Ck0 , −E1− 1−αk
αk
E2. Since we know Ĩki (t

k
1) ≤ Îki (tk1), the extra terms,

Ck1 , Ck0 ≤ 0 are penalty terms that correspond to the information loss due to the channel

noise. Our focus will be on these terms as we want to optimize the performance under

AWGN channels by choosing the transmission signal levels a and b that maximize Cki .
From (2.14), we see that the received signal zkn will have the same variance, but different

means, ahk and bhk, if x
k
n = a and xkn = b are transmitted respectively. Hence, we expect

that the detection performance under AWGN channels will improve if the difference |a− b|
between the transmission levels increases. In [21, Lemma 2], we show that this is in fact

true, i.e., maximizing Cki is equivalent to maximizing |a − b|. If we consider a constraint

on the maximum allowed transmission power at sensors, i.e., max(|a|2, |b|2) ≤ P 2, then the

antipodal signaling is optimum, i.e., |a| = |b| = P and a = −b.

Rayleigh Fading:

It follows from Section 2.3.4 that ckn = ua, d
k
n = σ2

a

σ2
b
ua when x

k
n = a; and ckn =

σ2
b

σ2
a
ub, d

k
n =

ub when x
k
n = b where ua ,

|ahk
n+wk

n|2
σ2
a

, ub ,
|bhk

n+wk
n|2

σ2
b

, and σ2a = |a|2σ2h+σ2, σ2b = |b|2σ2h+σ2

as defined in Section 2.3.4. Define further ρ ,
σ2
a

σ2
b
. Hence, using (2.17) we write the KL

information as

Ĩk1 (t
k
1) = (1− βk)E


log

1−βk

σ2
a
e−ua + βk

σ2
b
e−ρua

αk
σ2
a
e−ua + 1−αk

σ2
b
e−ρua


+ βkE


log

1−βk

σ2
a
e−ρ−1ub + βk

σ2
b
e−ub

αk
σ2
a
e−ρ−1ub + 1−αk

σ2
b
e−ub




= (1− βk) log
1− βk
αk

+ βk log
βk

1− αk︸ ︷︷ ︸
Îk1 (t

k
1 )

+

βk

(
E

[
log

1 + 1−βk
βk

ρ−1eζb

1 + αk
1−αk

ρ−1eζb

]
+

1− βk
βk

E

[
log

1 + βk
1−βk

ρeζa

1 + 1−αk
αk

ρeζa

])

︸ ︷︷ ︸
Ck
1

(2.36)

where ζa , ua(1− ρ) and ζb , ub(1− ρ−1).

Note that when |a| = |b| which corresponds to the optimal signaling in the AWGN

case, we have ρ = 1, ζa = ζb = 0 and therefore Ĩk1 (t
k
1) = 0 in (2.36). This result is quite

intuitive since in the Rayleigh fading case the received signals differ only in their variances.

Specifically, from Section 2.3.4, the received signals at the FC will have zero mean and the
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H0

Rayleigh Fading

Figure 2.3: The penalty term Cki for Rayleigh fading channels as a function of ρ, where

αk = βk = 0.1, σ2h = σ2 = 1, P 2 = 10, Q2 = 1.

variances σ2a and σ2b when xkn = a and xkn = b, respectively. Therefore, in this case intuitively

we should increase the difference between the two variances, i.e.,
∣∣|a|2 − |b|2

∣∣. Consider the

following constraints: max(|a|2, |b|2) ≤ P 2 and min(|a|2, |b|2) ≥ Q2, where the first one is

the peak power constraint as before, and the second is to ensure reliable detection of an

incoming signal by the FC. In Fig. 2.3, we numerically show that the optimum signaling

scheme, that maximizes Cki , corresponds to |a| = P, |b| = Q (ρ maximum) or |a| = Q, |b| = P

(ρ minimum).

Rician Fading:

In the Rician fading case, upon defining h̃kn , hkn − µk from Section 2.3.5 we have ckn =

|ah̃k
n+wk

n|2
σ2
a

, dkn = |ah̃k
n+wk

n+(a−b)µk |2
σ2
b

when xkn = a; and ckn = |bh̃k
n+wk

n+(b−a)µk |2
σ2
a

, dkn = |bh̃k
n+wk

n|2
σ2
b

when xkn = b. We will drop the subscript k in µk for convenience. We further define

z̃a , ah̃kn +wk
n and z̃b , bh̃kn +wk

n that are zero-mean Gaussian variables with variances σ2a

and σ2b , respectively. Then from Section 2.3.5 similar to (2.36) we write the KL information
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Ck 1
,|a

|6=
|b|
−
Ck 1

,|a
|=

|b|

σ2
h |µ|2

Figure 2.4: Ck1,|a|6=|b|−Ck1,|a|=|b| in Rician fading channels as a function of |µ|2 and σ2h, where

P 2 = 10, Q2 = 1.

as

Ĩk1 (t
k
1) =Î

k
1 (t

k
1) + βk

(
E

[
log

1 + 1−βk
βk

ρ−1eζb

1 + αk
1−αk

ρ−1eζb

]
+

1− βk
βk

E

[
log

1 + βk
1−βk

ρeζa

1 + 1−αk
αk

ρeζa

])

︸ ︷︷ ︸
Ck
1

(2.37)

where ζa , −
(
|z̃a+(a−b)µ|2

σ2
b

− |z̃a|2
σ2
a

)
and ζb , −

(
|z̃b+(b−a)µ|2

σ2
a

− |z̃b|2
σ2
b

)
.

Since AWGN and Rayleigh fading are specific cases of Rician fading when σh = 0 and

|µ| = 0, respectively, the optimum signaling scheme in this case is a function of |µ| and
σh. In Fig. 2.4, we show that the non-symmetric constellation, which is optimum under

Rayleigh fading, is much better than the symmetric one, which is optimum under AWGN,

for small |µ|. On the other hand, for large |µ|, the symmetric constellation is only slightly

better than the non-symmetric one. Hence, a non-symmetric constellation should be used

if µ and σh are unavailable.

2.4.4 Discussions

Considering the unreliable detection of the sampling times under continuous channels, we

should ideally integrate this uncertainty into the fusion rule of the FC. In other words, at
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the FC the LLR λ̃kt of the received signal zkt should be computed at each time instant t if

the sampling time of the k-th sensor cannot be reliably detected. In the LLR computations

in (2.16) and (2.17) the prior probabilities Pi(x
k
n = a) and Pi(x

k
n = b) are used. These

probabilities are conditioned on the sampling time tkn. Here, we need the unconditioned

prior probabilities of the signal xkt which at each time t takes a value of a or b or 0, i.e,

xkt =





a if Lk
t − Lk

tkn−1

≥ ∆

b if Lk
t − Lk

tkn−1

≤ −∆

0 if Lk
t − Lk

tkn−1

∈ (−∆,∆).

(2.38)

As before, the received signal at time t is zkt = hkt x
k
t +wk

t . Then, the LLR λ̃kt of zkt is given

by

λ̃kt = log
(1− βk)Pk

s,1p(z
k
t |xkt = a) + βkP

k
s,1p(z

k
t |xkt = b) + (1− P

k
s,1)p(z

k
t |xkt = 0)

αkP
k
s,0p(z

k
t |xkt = a) + (1− αk)P

k
s,0p(z

k
t |xkt = b) + (1− Pk

s,0)p(z
k
t |xkt = 0)

(2.39)

where P
k
s,i is the probability that the FC receives a signal from sensor k under Hi. Since

the FC has no prior information on the sampling times of the sensors, this probability can

be shown to be 1
Ei[τk1 ]

, where Ei[τ
k
1 ] is the average intersampling (communication) interval

for sensor k under Hi, i = 0, 1. For instance, under AWGN channels [cf. (2.16)] by defining

ckt ,
|zkt −hka|2

σ2
k

, dkt ,
|zkt −hkb|2

σ2
k

, and gkt ,
|zkt |2
σ2
k

we have

λ̃kt = log
(1− βk)Pk

s,1e
−ckt + βkP

k
s,1e

−dkt + (1− P
k
s,1)e

−gkt

αkP
k
s,0e

−ckt + (1− αk)P
k
s,0e

−dkt + (1− Pk
s,0)e

−gkt
. (2.40)

Under fading channels λ̃kt is computed similarly. Realizations of λ̃kt of (2.40) and λ̃kn of

(2.16) are shown in Fig. 2.5 where P = 10 is used.

Note that in this case, {λ̃kt } are i.i.d. across time, and so are {λ̃t} where λ̃t ,
∑K

k=1 λ̃
k
t

is the global LLR at time t. Hence, from Wald’s identity, similar to Theorem 2 we can

write E1[T ] = E1[
∑T

t=1 λ̃t]

E1[λ̃t]
= | logα|

E1[λ̃t]
+ O(1). Therefore, we again need to maximize the KL

information E1[λ̃
k
t ] (resp. −E0[λ̃

k
t ]) in order to minimize the average delay E1[T ] (resp.

E0[T ]). However, analyzing this expectation is now much more involved than analyzing

(2.35). On the other hand, in practice we need to ensure reliable detection of the sampling

times by using high enough signaling levels P and Q. Then, the average delay performance
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Figure 2.5: Realizations of the LLRs λ̃kn and λ̃kt computed at the FC under reliable and

unreliable detection of the sampling times, respectively.

of this unreliable detection scheme becomes identical to that of the reliable detection scheme

analyzed in Section 2.4.3.

As an alternative approach, in the unreliable detection case one can follow a two-step

procedure to mimic the reliable detection case. Since it is known that most of the computed

LLRs {λ̃kt } are uninformative that correspond to the no message case, a simple thresholding

operation can be applied to update the LLR only when it is informative. The threshold-

ing step is in fact a Neyman-Pearson test between the presence and absence of a message

signal. The threshold can be adjusted to control the false alarm and misdetection probabil-

ities. Setting the threshold appropriately we can obtain a negligible false alarm probability,

leaving us with the misdetection probability. Note that such a test would turn a continu-

ous channel into a BEC with erasure probability, ǫ̃k, equal to the misdetection probability.

Recall from Section 2.3.1 that under BEC λ̃kn is the same as in the ideal channel case which

corresponds to the reliable detection case here. Thus, if an LLR survives after thresholding,

in the second step it is recomputed as in the channel-aware fusion rules obtained in Sections

2.3.3, 2.3.4 and 2.3.5. Moreover, the KL information in (2.35), (2.36) and (2.37) will only

be scaled by (1− ǫ̃k) as shown in (2.33). Consequently, the results obtained in Section 2.4.3

are also valid in this approach to the unreliable detection case.
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2.5 Spectrum Sensing in Cognitive Radio Networks

Spectrum sensing is one of the most important functionalities in a cognitive radio system

[49], by which the secondary users (SU) decide whether or not the spectrum is being used

by the primary users. Various spectrum sensing methods have been developed based on ex-

ploiting different features of the primary user’s signal [50]. On the other hand, cooperative

sensing, where multiple secondary users monitor the spectrum band of interest simulta-

neously and cooperate to make a sensing decision, is an effective way to achieve fast and

reliable spectrum sensing [51; 52; 53; 54; 55].

In cooperative sensing, each secondary user collects its own local channel statistic, and

sends it to a fusion center (FC), which then combines all local statistics received from

the secondary users to make a final sensing decision. The decision mechanism at the FC

can be either sequential or fixed sample size. In other words, the FC can either try to

make a decision every time it receives new information or it can wait to collect a specific

number of samples and then make a final decision using them. It is known that sequential

methods are much more effective in minimizing the decision delay than their fixed sample

size counterparts. In particular, the sequential probability ratio test (SPRT) is the dual of

the fixed sample size Neyman-Pearson test, and it is optimal among all sequential tests in

terms of minimizing the average sample number (decision delay) for i.i.d. observations [56;

37]. Sequential approaches to spectrum sensing have been proposed in a number of recent

works [57; 58; 59; 60; 61; 62].

The majority of existing works on cooperative and sequential sensing assume that

the SUs synchronously communicate to the FC. This implies the existence of a global

clock according to which SUs sample their local test statistics using conventional uni-

form sampling. There are a few works allowing for asynchrony among SUs (e.g., [60;

61]), but none of them provides an analytical discussion on the optimality or the efficiency

of the proposed schemes. In this section, we develop a new framework for cooperative sens-

ing based on a class of non-uniform samplers called the event-triggered samplers, in which

the sampling times are determined in a dynamic way by the signal to be sampled. Such

a sampling scheme naturally outputs low-rate information (e.g., 1 bit per sample) without

performing any quantization, and permits asynchronous communication between the SUs
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and the FC [12]. Both features are ideally suited for cooperative sensing in cognitive ra-

dio systems since the control channel for transmitting local statistics has a low bandwidth

and it is difficult to maintain synchrony among the SUs. Moreover, we will show that by

properly designing the operations at the SUs and FC, the cooperative sensing scheme based

on event-triggered sampling can significantly outperform the one based on the conventional

uniform sampling.

2.5.1 Problem Formulation and Background

2.5.1.1 Spectrum Sensing via SPRT

Consider a cognitive radio network where there are K secondary users performing spectrum

sensing and dynamic spectrum access. Let {ykt }, t ∈ N, be the discrete-time signal observed

by the k-th SU, which processes it and transmits some form of local information to a fusion

center. Using the information received at the fusion center from theK SUs, we are interested

in deciding between two hypotheses, H0 and H1, for the SU signals: i.e., whether the primary

user (PU) is present (H1) or not (H0). Specifically, every time the fusion center receives

new information, it performs a test and either 1) stops accepting more data and decides

between the two hypotheses; or 2) postpones its decision until a new data sample arrives

from the SUs. When the fusion center stops and selects between the two hypotheses, the

whole process is terminated.

Note that the decision mechanism utilizes the received data sequentially as they arrive at

the fusion center. This type of test is called sequential as opposed to the conventional fixed

sample size test in which one waits until a specific number of samples has been accumulated

and then uses them to make the final hypothesis selection. Since the pioneering work of

Wald [56], it has been observed that sequential methods require, on average, approximately

four times [1, Page 109] less samples (for Gaussian signals) to reach a decision than their

fixed sample size counterparts, for the same level of confidence. Consequently, whenever

possible, it is always preferable to use sequential over fixed sample size approaches.

Assuming independence across the signals observed by different SUs, we can cast our
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problem of interest as the following binary hypothesis testing problem

H0 : {y11 , . . . , y1t } ∼ f10 ; {y21 , . . . , y2t } ∼ f20 ; . . . ; {yK1 , . . . , yKt } ∼ fK0
H1 : {y11 , . . . , y1t } ∼ f11 ; {y21 , . . . , y2t } ∼ f21 ; . . . ; {yK1 , . . . , yKt } ∼ fK1 ,

(2.41)

where ∼ denotes “distributed according to” and fk0 and fk1 are the joint probability density

functions of the received signal by the k-th SU, under H0 and H1 respectively. Since we

assume independence across different SUs the log-likelihood ratio (LLR) Lt of all the signals

received up to time t, which is a sufficient statistic for our problem, can be split as

Lt =
K∑

k=1

Lk
t (2.42)

where Lk
t represents the local LLR of the signal received by the k-th SU, namely

Lk
t , log

fk1 (y
k
1 , . . . , y

k
t )

fk0 (y
k
1 , . . . , y

k
t )
. (2.43)

Hence, each SU can compute its own LLR based on its corresponding observed signal, and

send it to the fusion center which collects them and computes the global cumulative LLR

Lt using (2.42). Note that the local LLRs can be obtained recursively. That is, at each

time t, the new observation ykt gives rise to an LLR increment lkt , and the local cumulative

LLR can then be updated as

Lk
t = Lk

t−1 + lkt =

t∑

n=1

lkn, (2.44)

where

lkt , log
fk1 (y

k
t |yk1 , . . . , ykt−1)

fk0 (y
k
t |yk1 , . . . , ykt−1)

, (2.45)

and fki (y
k
t |yk1 , . . . , ykt−1) denotes the conditional pdf of ykt given the past (local) signal sam-

ples under hypothesis Hi. Of course when the samples of the received signal in each SU are

also i.i.d., that is, we have independence across time, then the previous expression simplifies

considerably and we can write lkt = log
fk
1 (y

k
t )

fk
0 (y

k
t )

where now fki represents the pdf of a single

sample in the k-th SU under hypothesis Hi.

As we mentioned, the fusion center collects the local LLRs and at each time instant t is

faced with a decision, namely to wait for more data to come, or to stop receiving more data

and select one of the two hypotheses H0,H1. In other words the sequential test consists of



CHAPTER 2. SEQUENTIAL DISTRIBUTED DETECTION 31

a pair (T , δT ) where T is a stopping time that decides when to stop (receiving more data)

and δT a selection rule that selects one of the two hypotheses based on the information

available up to the time of stopping T .
Of course the goal is to make a decision as soon as possible which means that we would

like to minimize the delay T , on average, that is,

min
T ,δT

E0[T ], and/or min
T ,δT

E1[T ]. (2.46)

At the same time we would also like to assure the satisfactory performance of the deci-

sion mechanism through suitable constraints on the Type-I and Type-II error probabilities,

namely

P0(δT = 1) ≤ α and P1(δT = 0) ≤ β, (2.47)

where Pi(·),Ei[·], i = 0, 1 denote probability and the corresponding expectation under

hypothesis i. Levels α, β ∈ (0, 1) are parameters specified by the designer.

Actually, minimizing in (2.46) each Ei[T ], i = 0, 1 over the pairs (T , δT ) that satisfy the

two constraints in (2.47), defines two separate constrained optimization problems. However,

Wald first suggested [56] and then proved [37] that the Sequential Probability Ratio Test

(SPRT) solves both problems simultaneously. SPRT consists of the pair (S, δS) which is

defined as follows

S = inf {t > 0 : Lt 6∈ (−B,A)} , δS =





1, if LS ≥ A,
0, if LS ≤ −B.

(2.48)

In other words, at every time instant t, we compare the running LLR Lt with two thresholds

−B,A where A,B > 0. As long as Lt stays within the interval (−B,A) we continue taking

more data and update Lt; the first time Lt exits (−B,A) we stop (accepting more data) and

we use the already accumulated information to decide between the two hypotheses H0,H1.

If we call S the time of stopping (which is clearly random, since it depends on the received

data), then when LS ≥ A we decide in favor of H1, whereas if LS ≤ −B in favor of H0.

The two thresholds A,B are selected through simulations so that SPRT satisfies the two

constraints in (2.47) with equality. This is always possible provided that α+ β < 1. In the

opposite case there is a trivial randomized test that can meet the two constraints without
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taking any samples (delay equal to 0). Note that these simulations to find proper values for

A,B are performed once offline, i.e. before the scheme starts, for each sensing environment.

The popularity of SPRT is due to its simplicity, but primarily to its very unique opti-

mality properties. Regarding the latter we must say that optimality in the sense of (2.46),

(2.47) is assured only in the case of i.i.d. observations. For more complex data models,

SPRT is known to be only asymptotically optimum.

SPRT, when employed in our problem of interest, exhibits two serious practical weak-

nesses. First the SUs need to send their local LLRs to the fusion center at the Nyquist-rate

of the signal; and secondly, the local LLR is a real number which needs infinite (practically

large) number of bits to be represented. These two problems imply that a substantial com-

munication overhead between the SUs and the fusion center is incurred. In this work, we

are interested in decentralized schemes by which we mean that the SUs transmit low-rate

information to the fusion center.

2.5.1.2 Decentralized Q-SPRT Scheme

A straightforward way to achieve low-rate transmission is to let each SU transmit its local

cumulative LLR at a lower rate, say at time instants T, 2T, ...,mT, ..., where the period T ∈
N; and to quantize the local cumulative LLRs using a finite number of quantization levels.

Specifically, during time instants (m − 1)T + 1, ...,mT , each SU computes its incremental

LLR Lk
mT − Lk

(m−1)T of the observations yk(m−1)T+1, . . . , y
k
mT , to obtain

λkmT , Lk
mT − Lk

(m−1)T =
mT∑

t=(m−1)T+1

lkt , (2.49)

where lkt is the LLR of observation ykt , defined in (2.45). It then quantizes λkmT into λ̃kmT

using a finite number r̃ of quantization levels. Although there are several ways to perform

quantization, here we are going to analyze the simplest strategy, namely uniform quantiza-

tion. We will also make the following assumption

max
k,t
|lkt | < φ <∞, (2.50)

stating that the LLRs of all observations are uniformly bounded by a finite constant φ

across time and across SUs.
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From (2.49) and (2.50) we can immediately conclude that |λkmT | < Tφ. For our quanti-

zation scheme we can now divide the interval (−Tφ, Tφ) uniformly into r̃ subintervals and

assign the mid-value of each subinterval as the corresponding quantized value. Specifically

we define

λ̃kmT = −Tφ+
Tφ

r̃
+

⌊
r̃(λkmT + Tφ)

2Tφ

⌋
2Tφ

r̃
. (2.51)

These quantized values are then transmitted to the FC. Of course the SU does not need to

send the actual value but only its index which can be encoded with log2 r̃ bits.

The FC receives the quantized information from all SUs, synchronously, and updates

the approximation of the global running LLR based on the information received, i.e.

L̃mT = L̃(m−1)T +

K∑

k=1

λ̃kmT . (2.52)

Mimicking the SPRT introduced above, we can then define the following sequential scheme

(S̃, δS̃), where

S̃ = TM; M = inf
{
m > 0 : L̃mT 6∈ (−B̃, Ã)

}
; δ̃S̃ =





1, if L̃S̃ ≥ Ã,
0, if L̃S̃ ≤ −B̃.

(2.53)

Again, the two thresholds Ã, B̃ are selected to satisfy the two error probability constraints

with equality. We call this scheme the Quantized-SPRT and denote it as Q-SPRT.

As we will see in our analysis, the performance of Q-SPRT is directly related to the

quantization error of each SU. Since we considered the simple uniform quantization, it is

clear that

|λkmT − λ̃kmT | <
Tφ

r̃
. (2.54)

We next consider three popular spectrum sensing methods and give the corresponding

local LLR expressions.

2.5.1.3 Examples - Spectrum Sensing Methods

Energy Detector

The energy detector performs spectrum sensing by detecting the primary user’s signal en-

ergy. We assume that when the primary user is present, the received signal at the k-th SU
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is ykt = xkt + wk
t , where x

k
t is the received primary user signal, and wk

t ∼ Nc(0, σ
2
w) is the

additive white Gaussian noise. Denote θk ,
E[|xk

t |2]
σ2
w/2 then the received signal-to-noise ratio

(SNR) at the k-th SU is
E[|xk

t |2]
σ2
w

= θk
2 . Also define γkt ,

|ykt |2
σ2
w/2

. The energy detector is based

on the following hypothesis testing formulation [50]

H0 : γkt ∼ χ2
2,

H1 : γkt ∼ χ2
2(θk),

(2.55)

where χ2
2 denotes a central chi-squared distribution with 2 degrees of freedom; and χ2

2(θk)

denotes a non-central chi-squared distribution with 2 degrees of freedom and noncentrality

parameter θk.

Using the pdfs of central and non-central chi-squared distributions, we write the local

LLR, lkt , of the observations as follows

lkt = log

1
2 exp

(
−γk

t +θk
2

)
I0

(√
θkγ

k
t

)

1
2 exp

(
−γk

t
2

) = log I0

(√
θkγ

k
t

)
− θk

2
, (2.56)

where I0(x) is the modified Bessel function of the first kind and 0-th order.

Spectral Shape Detector

A certain class of primary user signals, such as the television broadcasting signals, exhibit

strong spectral correlation that can be exploited by the spectrum sensing algorithm [63].

The corresponding hypothesis testing then consists in discriminating between the channel’s

white Gaussian noise, and the correlated primary user signal. The spectral shape of the

primary user signal is assumed known a priori, which can be approximated by a p-th order

auto-regressive (AR) model. Hence the hypothesis testing problem can be written as

H0 : ykt = wk
t ,

H1 : ykt =
∑p

i=1 aiy
k
t−i + vkt ,

(2.57)

where {wk
t }, {vkt } are i.i.d. sequences with wk

t ∼ Nc(0, σ
2
w) and vkt ∼ Nc(0, σ

2
v), while

a1, . . . , ap are the AR model coefficients.

Using the Gaussian pdf the likelihoods under H0 and H1 can be easily derived. Then,
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accordingly the local LLR of the sample received at time t at the k-th SU can be written as

lkt = log
fk1 (y

k
t |ykt−1, . . . , y

k
t−p)

fk0 (y
k
t )

= log

1
πσ2

v
exp

[
− 1

σ2
v
|ykt −

∑p
i=1 aiy

k
t−i|2

]

1
πσ2

w
exp

(
− 1

σ2
w
|ykt |2

)

=
1

σ2w
|ykt |2 −

1

σ2v

∣∣∣ykt −
p∑

i=1

aiy
k
t−i

∣∣∣
2
+ log

σ2w
σ2v
. (2.58)

Gaussian Detector

In general, when the primary user is present, the received signal by the k-th SU can be

written as ykt = hkt st + wk
t , where h

k
t ∼ Nc(0, ρ

2
k) is the fading channel response between

the primary user and the k-th secondary user; st is the digitally modulated signal of the

primary user drawn from a certain modulation, with E[|st|2] = 1; and wk
t ∼ Nc(0, σ

2
w) is

the additive white Gaussian noise. It is shown in [64] that under both fast fading and slow

fading conditions, spectrum sensing can be performed based on the following hypothesis

testing between two Gaussian signals:

H0 : ykt ∼ Nc(0, σ
2
w),

H1 : ykt ∼ Nc(0, ρ
2
k + σ2w).

(2.59)

Then, using the Gaussian pdf the local incremental LLR lkt is derived as

lkt = log
fk1 (y

k
t )

fk0 (y
k
t )

= log

1
π(ρ2k+σ2

w)
exp

(
− |ykt |2

ρ2k+σ2
w

)

1
πσ2

w
exp

(
− |ykt |2

σ2
w

) =
ρ2k

σ2w(ρ
2
k + σ2w)

|ykt |2 + log
σ2w

ρ2k + σ2w
. (2.60)

2.5.2 Decentralized Spectrum Sensing via Level-triggered Sampling

Here, we achieve the low-rate transmission required by the decentralized SPRT by adopt-

ing event-triggered sampling, that is, a sampling strategy in which the sampling times are

dictated by the actual signal to be sampled, in a dynamic way and as the signal evolves in

time. One could suggest to find the optimum possible combination of event-triggered sam-

pling and sequential detection scheme by directly solving the double optimization problem

defined in (2.46), (2.47) over the triplet sampling, stopping time, and decision function.

Unfortunately the resulting optimization turns out to be extremely difficult not accepting

a simple solution. We therefore adopt an indirect path. In particular, we propose a de-

centralized spectrum sensing approach based on a simple form of event-triggered sampling,
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namely, the level-triggered sampling. Then we show that the performance loss incurred

by adopting this scheme as compared to the centralized optimum SPRT is insignificant.

This clearly suggests that solving the more challenging optimization problem we mentioned

before, produces only minor performance gains.

2.5.2.1 Level-triggered Sampling at each SU

Using level-triggered sampling, each SU samples its local cumulative LLR process {Lk
t } at

a sequence of random times {tkn}, which is particular to each SU. In other words we do

not assume any type of synchronization in sampling and therefore communication. The

corresponding sequence of samples is {Lk
tkn
} with the sequence of sampling times recursively

defined as follows

tkn , inf
{
t > tkn−1 : L

k
t − Lk

tkn−1

6∈ (−∆,∆)
}
, tk0 = 0, Lk

0 = 0. (2.61)

where ∆ is a constant. As we realize from (2.61) the sampling times depend on the actual

realization of the observed LLR process and are therefore, as we pointed out, random.

Parameter ∆ can be selected to control the average sampling periods Ei[t
k
n− tkn−1], i = 0, 1.

In Section 2.5.3.2, we propose a practically meaningful method to set this design parameter

∆ in a way that assures a fair comparison of our method with the classical decentralized

scheme, that is, Q-SPRT.

What is interesting with this sampling mechanism is that it is not necessary to know

the exact sampled value but only whether the incremental LLR Lk
t − Lk

tkn−1

crossed the

upper or the lower threshold. This information can be represented by using a single bit.

Denote with {bkn} the sequence of these bits, where bkn = +1 means that the LLR increment

crossed the upper boundary while bkn = −1 the lower. In fact we can also define this bit as

bkn = sign(λkn) where λ
k
n , Lk

tkn
− Lk

tkn−1

.

We can now approximate the local incremental LLR as λ̂kn = bkn∆, and since Lk
tkn

=
∑n

j=1 λ
k
j we conclude that we can approximate the local LLR at the sampling times using

the following equation

L̂k
tkn

=

n∑

j=1

λ̂kj =

n∑

j=1

bkj∆ = L̂k
tkn−1

+ bkn∆. (2.62)
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Note that we have exact recovery, i.e., L̂k
tkn

= Lk
tkn
, if the difference Lk

t − Lk
tkn−1

, at the times

of sampling, hits exactly one of the two boundaries ±∆. This is for example the case when

{Lk
t } is a continuous-time process with continuous paths.

The advantage of the level-triggered approach manifests itself if we desire to communi-

cate the sampled information, as is the case of decentralized spectrum sensing. Indeed note

that with classical sampling we need to transmit, every T units of time, the real numbers

Lk
mT (or their digitized version with fixed number of bits). On the other hand, in the level-

triggered case, transmission is performed at the random time instants {tkn} and at each tkn

we simply transmit the 1-bit value bkn. This property of 1-bit communication induces sig-

nificant savings in bandwidth and transmission power, which is especially valuable for the

cognitive radio applications, where low-rate and low-power signaling among the secondary

users is a key issue for maintaining normal operating conditions for the primary users.

We observe that by using (2.44), we have Lk
t − Lk

tkn−1

=
∑t

j=tkn−1+1 l
k
j where, we recall,

lkt is the (conditional) LLR of the observation ykt at time t at the k-th SU defined in (2.45).

Hence (2.61) can be rewritten as

tkn = inf
{
t > tkn−1 :

t∑

j=tkn−1+1

lkj 6∈ (−∆,∆)
}
. (2.63)

The level-triggered sampling procedure at each secondary user is summarized in Algorithm

1. Until the fusion center terminates it, the algorithm produces the bit stream {bkn} based
on the local cumulative LLR values Lk

t at time instants {tkn}, and sends these bits to the

fusion center instantaneously as they are generated.

Remarks:

• Note that the level-triggered sampling naturally censors unreliable local information

gathered at SUs, and allows only informative LLRs to be sent to the FC.

• Note also that each SU essentially performs a local SPRT with thresholds ±∆. The

stopping times of the local SPRT are the inter-sampling intervals and the correspond-

ing decisions are the bits {bkn} where bkn = +1 and bkn = −1 favor H1 and H0 respec-

tively.



CHAPTER 2. SEQUENTIAL DISTRIBUTED DETECTION 38

Algorithm 1 The level-triggered sampling procedure at the k-th SU

1: Initialization: t← 0, n← 0

2: λ← 0

3: while λ ∈ (−∆,∆) do

4: t← t+ 1

5: Compute lkt (cf. Sec. 2.5.1.3)

6: λ← λ+ lkt
7: end while

8: n← n+ 1

9: tkn = t

10: Send bkn = sign(λ) to the fusion center at time instant tkn
11: Stop if the fusion center instructs so; otherwise go to line 2.

2.5.2.2 Proposed Decentralized Scheme

The bit streams {bkn}k from different SUs arrive at the FC asynchronously. Using (2.42)

and (2.62), the global running LLR at any time t is approximated by

L̂t =
K∑

k=1

L̂k
t = ∆

K∑

k=1

∑

n:tkn≤t

bkn. (2.64)

In other words the FC adds all the received bits transmitted by all SUs up to time t and then

normalizes the result with ∆. Actually the update of L̂t is even simpler. If {tn} denotes the
sequence of communication instants of the FC with any SU, and {bn} the corresponding

sequence of received bits then L̂tn = L̂tn−1
+ bn∆ while the global running LLR is kept

constant between transmissions. In case the FC receives more than one bit simultaneously

(possible in discrete time), it processes each bit separately, as we described, following any

random or fixed ordering of the SUs.

Every time the global LLR process {L̂t} is updated at the FC it will be used in an

SPRT-like test to decide whether to stop or continue (receiving more information from

the SUs) and in the case of stopping to choose between the two hypotheses. Specifically

the corresponding sequential test (Ŝ, δ̂Ŝ) is defined, similarly to the centralized SPRT and

Q-SPRT, as

Ŝ = tN ; N = inf
{
n > 0 : L̂tn 6∈ (−B̂, Â)

}
; δ̂Ŝ =





1, if L̂Ŝ ≥ Â,
0, if L̂Ŝ ≤ −B̂.

(2.65)
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Ŝ counts in physical time units, whereas N in number of messages transmitted from the SUs

to the FC. Clearly (2.65) is the equivalent of (2.53) in the case of Q-SPRT and expresses

the reduction in communication rate as compared to the rate by which observations are

acquired. In Q-SPRT the reduction is deterministic since the SUs communicate once every

T unit times, whereas here it is random and dictated by the local level triggered sampling

mechanism at each SU. The thresholds Â, B̂, as before, are selected so that (Ŝ, δ̂Ŝ) satisfies
the two error probability constraints with equality. The operations performed at the FC

are also summarized in Algorithm 2.

Algorithm 2 The SPRT-like procedure at the fusion center

1: Initialization: L̂← 0, n← 0

2: while L̂ ∈ (−B̂, Â) do
3: n← n+ 1

4: Listen to the SUs and wait to receive the next bit bn at time tn from some SU

5: L̂← L̂+ bn∆

6: end while

7: Stop at time Ŝ = tn

8: if L̂ ≥ Â then

9: δ̂Ŝ = 1 – the primary user is present

10: else

11: δ̂Ŝ = 0 – the primary user is not present

12: end if

13: Inform all SUs the spectrum sensing result

2.5.2.3 Enhancement

A very important source of performance degradation in our proposed scheme is the differ-

ence between the exact value of Lk
t and its approximation L̂k

t (see [12]). In fact the more

accurately we approximate Lk
t the better the performance of the corresponding SPRT-like

scheme is going to be. In what follows we discuss an enhancement to the decentralized

spectrum sensing method described above at the SU and FC, respectively. Specifically, for

the SU, we consider using more than one bit to quantize the local incremental LLR values,

while at the FC, we are going to use this extra information in a specific reconstruction

method that will improve the approximation L̂k
t and, consequently, the approximation of

the global running LLR. We anticipate that this enhancement will induce a significant im-
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provement in the overall performance of the proposed scheme by using only a small number

of additional bits. Finally we should stress that there is no need for extra bits in the case

of continuous-time and continuous-path signals since, as we mentioned, in this case L̂k
t and

Lk
t coincide.

Overshoot Quantization at the SU

Recall that for the continuous-time case, at each sampling instant, either the upper or the

lower boundary can be hit exactly by the local LLR, and therefore the information trans-

mitted to the fusion center was simply a 1-bit sequence and this is sufficient to recover

completely the sampled LLR using (2.62). In discrete-time case, at the time of sampling,

the LLR is no longer necessarily equal to the boundary since, due to the discontinuity of

the discrete-time signal, we can overshoot the upper boundary or undershoot the lower

boundary. The over/under shoot phenomenon introduces a discrepancy in the whole sys-

tem resulting in an additional information loss (besides the loss in time resolution due to

sampling). Here we consider the simple idea of allowing the transmission of more than one

bits, which could help approximate more accurately the local LLR and consequently reduce

the performance loss due to the over/under shoot phenomenon.

Bit bkn informs whether the difference λkn , Lk
tkn
− Lk

tkn−1

overshoots the upper threshold

∆ or undershoots the lower threshold −∆. Consequently the difference qkn , |λkn| −∆ ≥ 0,

corresponds to the absolute value of the over/under shoot. It is exactly this value we

intend to further quantize at each SU. Note that qkn cannot exceed in absolute value the

last observed LLR increment, namely |lk
tkn
|. To simplify our analysis we will assume that

|lkt | < φ <∞ for all k, t as in (2.50). In other words the LLR of each observation is uniformly

bounded across time and SUs.

Since for the amplitude qkn of the overshoot we have qkn ≤ |lktkn | this means that 0 ≤
qkn < φ. Let us now divide the interval [0, φ), uniformly, into the following r̂ subintervals

[(m−1),m)φr̂ , m = 1, . . . , r̂. Whenever qkn falls into one such subintervals the corresponding

SU must transmit a quantized value q̂kn to the FC. Instead of adopting some deterministic

strategy and always transmit the same value for each subinterval, we propose the following
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simple randomized quantization rule

q̂kn =





⌊ qknr̂φ ⌋
φ
r̂ , with probability p =

1−exp(qkn−(⌊ qknr̂

φ
⌋+1)φ

r̂
)

1−exp(−φ
r̂
)

(⌊ qknr̂φ ⌋+ 1)φr̂ , with probability 1− p = exp(qkn−⌊ qknr̂

φ
⌋φ
r̂
)−1

exp(φ
r̂
)−1

.

(2.66)

Simply said, if qkn ∈ [(m − 1),m)φr̂ then we quantize qkn either with the lower or the upper

end of the subinterval by selecting randomly between the two values. The quantized value

q̂kn that needs to be transmitted to the FC clearly depends on the outcome of a random game

and is not necessarily the same every time qkn falls into the same subinterval. Regarding

the randomization probability p the reason it has the specific value depicted in (2.66) will

become apparent in Lemma 1.

If we have r̂ subintervals then we transmit r̂ + 1 different messages corresponding to

the values mφ
r̂ , m = 0, . . . , r̂. Combining them with the sign bit bkn that also needs to be

communicated to the FC, yields a total of 2(r̂+1) possible messages requiring log2 2(1+ r̂) =

1 + log2(1 + r̂) bits for transmitting this information. It is clear that each SU needs to

transmit only an index value since we assume that the FC knows the list of all 2(1 + r̂)

quantized values.

Modified Update at the FC

Let us now turn to the FC and see how it is going to use this additional information.

Note that the k-th SU, every time it samples, transmits the pair (bkn, q̂
k
n) where, we recall,

the sign bit bkn informs whether we overshoot the upper threshold ∆ or undershoot the

lower threshold −∆ and q̂kn the quantized version of the absolute value of the overshoot.

Consequently since we have λkn = bkn(∆+qkn) it is only natural to approximate the difference

as follows

λ̂kn = bkn

(
∆+ q̂kn

)
, (2.67)

which leads to the following update of the local running LLR

L̂k
tkn

= L̂k
tkn−1

+ bkn

(
∆+ q̂kn

)
. (2.68)

This should be compared with the simplified version (2.62) where the term q̂kn is missing.

It is exactly this additional term that increases the accuracy of our approximation and
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contributes to a significant performance improvement in our scheme. Of course the update

of the global running LLR is much simpler. If the FC receives at time tn information (bn, q̂n)

from some SU, then it will update its approximation of the global running LLR as follows

L̂tn = L̂tn−1
+ bn (∆ + q̂n) . (2.69)

The updated value will be held constant until the next arrival of information from some

SU.

For the SU operations given in Algorithm 1, only line 10 should be modified when

multiple bits are used at each sampling instant, as follows

10: Quantize qkn as in (2.66) and send (bkn, q̂
k
n) to the fusion center at time tkn.

On the other hand, for the FC operations given in Algorithm 2, lines 4 and 5 should be

modified as follows

4: Listen to the SUs and wait to receive the next message (bn, q̂n) from some SU.

5: L̂← L̂+ bn(∆ + q̂n).

With the proposed modification at each SU and at the FC we have in fact altered the

communication protocol between the SUs and the FC and also the way the FC approximates

the global running LLR. The final sequential test (Ŝ, δ̂Ŝ) however, is exactly the same as in

(2.65). We are going to call our decentralized test Randomized Level Triggered SPRT and

denote it as RLT-SPRT1. As we will demonstrate theoretically and also through simulations,

the employment of extra bits in the communication between SUs and FC will improve,

considerably, the performance of our test, practically matching that of the optimum.

Let us now state a lemma that presents an important property of the proposed quanti-

zation scheme. Its proof is given in Appendix A.

Lemma 1. Let q̂kn be the (r̂+1)-level quantization scheme defined in (2.66) for the overshoot

qkn, then

E[e±bkn(∆+q̂kn)|bkn, qkn] ≤ e±bkn(∆+qkn) = e
±(Lk

tkn
−Lk

tkn−1

)
, (2.70)

where E[·] denotes expectation with respect to the randomization probabilities.

1In [12] the corresponding decentralized D-SPRT test that uses level triggered sampling at the sensors

(that play the role of the SUs) is based only on 1-bit communication.
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Note that the approximation in the incremental LLR Lk
tkn
−Lk

tkn−1

induces an equivalent

approximation for the incremental LR exp(Lk
tkn
− Lk

tkn−1

). The randomization is selected so

that the latter, in average (over the randomization), does not exceed the exact incremental

LR. One could instead select p so that the average of the approximation of the incremental

LLR matches the exact LLR value. Even though this seems as the most sensible selection,

unfortunately, it leads to severe analytical complications which are impossible to overcome.

The proposed definition of p, as we will see in the next section, does not have such problems.

2.5.3 Performance Analysis

In this section, we provide an asymptotic analysis on the stopping time of the decentral-

ized spectrum sensing method based on the level-triggered sampling scheme proposed in

Section 2.5.2, and compare it with the centralized SPRT procedure given by (2.48). A

similar comparison is performed for the conventional decentralized approach that uses uni-

form sampling and quantization [cf. (2.49),(2.52)]. For our comparisons we will be con-

cerned with the notion of asymptotic optimality for which we distinguish different levels [12;

65].

Definition 1. Consider any sequential scheme (T , δT ) with stopping time T and decision

function δT satisfying the two error probability constraints P0(δT = 1) ≤ α and P1(δT =

0) ≤ β. If S denotes the optimum SPRT that satisfies the two error probability constraints

with equality then, as the Type-I and Type-II error probabilities α, β → 0, the sequential

scheme (T , δT ) is said to be order-1 asymptotically optimal if 2

1 ≤ Ei[T ]
Ei[S]

= 1 + oα,β(1); (2.71)

order-2 asymptotically optimal if

0 ≤ Ei[T ]− Ei[S] = O(1); (2.72)

2A quick reminder for the definitions of the notations o(·), O(·) and Θ(·): f(x) = o (g(x)) if f(x) grows

with a lower rate than g(x); f(x) = O (g(x)) if f(x) grows with a rate that is no larger than the rate of

g(x); and f(x) = Θ (g(x)) if f(x) grows with exactly the same rate as g(x). Thus o(1) represents a term

that tends to 0. Particularly for this case we will write ox(1) to indicate a quantity that becomes negligible

with x and ox,y(1) to indicate a quantity that becomes negligible either with x or with y or with both.
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and finally order-3, if

0 ≤ Ei[T ]− Ei[S] = oα,β(1), (2.73)

where Pi(·) and Ei[·] denote probability and the corresponding expectation under hypothesis

Hi, i = 0, 1.

Remark: In our definitions the left-hand side inequalities are automatically satisfied because

S is the optimum test. Note that order-2 asymptotic optimality implies order-1 because

Ei[S],Ei[T ] → ∞ as α, β → 0; the opposite is not necessarily true. Order-1 is the most

frequent form of asymptotic optimality encountered in the literature but it is also the

weakest. This is because it is possible for Ei[T ] to diverge from the optimum Ei[S] without
bound and still have a ratio that tends to 1. Order-2 optimality clearly limits the difference

to bounded values, it is therefore stronger than order-1. Finally the best would be the

difference to become arbitrarily small, as the two error probabilities tend to 0, which is the

order-3 asymptotic optimality. This latter form of asymptotic optimality is extremely rare

in the Sequential Analysis literature and corresponds to schemes which, for all practical

purposes, are considered as optimum per se.

Next we study the three sequential tests of interest, namely the optimum centralized

SPRT, the Q-SPRT and the RLT-SPRT and compare the last two with the optimum in

order to draw conclusions about their asymptotic optimality. We start by recalling from

the literature the basic results concerning the tests of interest in continuous time. Then

we continue with a detailed presentation of the discrete-time case where we analyze the

performance of Q-SPRT and RLT-SPRT when the corresponding quantization schemes

have a number of quantization levels that depends on the error probabilities.

2.5.3.1 Analysis of Centralized SPRT, Q-SPRT and RLT-SPRT

With continuous-time and continuous-path observations at the SUs, it is known that RLT-

SPRT, using only 1-bit achieves order-2 asymptotic optimality [12], whereas Q-SPRT can-

not enjoy any type of optimality by using fixed number of bits [66].

In discrete time the corresponding analysis of the three sequential schemes of interest

becomes more involved, basically due to the overshoot effect. This is particularly apparent

in RLT-SPRT where because of the overshoots, 1-bit communication is no longer capable
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of assuring order-2 asymptotic optimality as in the continuous-time and continuous-path

case. In order to recover this important characteristic in discrete time, we are going to use

the enhanced quantization/communication scheme proposed in Section 2.5.2.3. Let us now

consider in detail each test of interest separately.

In discrete time, for the optimum centralized SPRT, we have the following lemma that

provides the necessary information for the performance of the test.

Lemma 2. Assuming that the two error probabilities α, β → 0 at the same rate, the cen-

tralized SPRT, S, satisfies

E0[S] ≥
1

KI0
H(α, β) = | log β|

KI0
+ oβ(1); E1[S] ≥

1

KI1
H(β, α) = | log α|

KI1
+ oα(1), (2.74)

where H(x, y) = x log x
1−y + (1 − x) log 1−x

y ; and Ii =
1
K |Ei[L1]|, i = 0, 1 are the average

Kullback-Leibler information numbers of the process {Lt} under the two hypotheses.

Proof. It should be noted that these inequalities become equalities in the continuous-time

continuous-path case. The proof can be found in [67, Page 21].

Let us now turn our attention to the two decentralized schemes, namely the classical

Q-SPRT and the proposed RLT-SPRT. We have the following theorem that captures the

performance of Q-SPRT.

Theorem 3. Assuming that the two error probabilities α, β → 0 at the same rate, and that

the number r̃ of quantization levels increases with α, β, then the performance of Q-SPRT,

S̃, as compared to the optimum centralized SPRT, S, satisfies

0 ≤ E1[S̃ ]− E1[S] ≤
2| log α|
KI21

φ

r̃
{1 + or̃(1)} + T

φ

I1
{1 + or̃(1)}+ oα(1)

0 ≤ E0[S̃ ]− E0[S] ≤
2| log β|
KI20

φ

r̃
{1 + or̃(1)} + T

φ

I0
{1 + or̃(1)} + oβ(1).

(2.75)

Proof. We provide the proof in [20, Appendix A].

As with the classical scheme, let us now examine the behavior of the proposed test when

the number of quantization levels increases as a function of the two error probabilities α, β.

We have the next theorem that summarizes the behavior of RLT-SPRT.
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Theorem 4. Assuming that the two error probabilities α, β → 0 at the same rate, and that

the number r̂ of quantization levels increases with α, β, then the performance of RLT-SPRT,

Ŝ, as compared to the optimum centralized SPRT, S, satisfies

0 ≤ E1[Ŝ]− E1[S] ≤
| log α|

KI1∆tanh(∆2 )

φ

max{r̂, 1}{1 + o∆,r̂(1)} +
1

I1
(∆ + φ) + o∆,r̂(1) + oα(1),

0 ≤ E0[Ŝ]− E0[S] ≤
| log β|

KI0∆tanh(∆2 )

φ

max{r̂, 1}{1 + o∆,r̂(1)} +
1

I0
(∆ + φ) + o∆,r̂(1) + oβ(1).

(2.76)

Proof. The proof can be found in [20, Appendix B].

2.5.3.2 Comparisons

In order to make fair comparisons, the two decentralized schemes need to satisfy the same

communication constraints. First, each SU is allowed to use at most s bits per communica-

tion. This means that the number of quantization levels r̃ in Q-SPRT must satisfy r̃ = 2s

while for RLT-SPRT we have 2(1 + r̂) = 2s suggesting that r̂ = 2s−1 − 1.

The second parameter that needs to be specified is the information flow from the SUs

to the FC. Since receiving more messages per unit time increases the capability of the FC

to make a faster decision, it makes sense to use the average rate of received messages by

the FC as a measure of the information flow. In Q-SPRT, every T units of time the FC

receives, synchronously, K messages (from all SUs), therefore the average message rate is

K
T . Computing the corresponding quantity for RLT-SPRT is less straightforward. Consider

the time interval [0, t] and denote with Nt the total number of messages received by the FC

until t. We clearly have Nt =
∑K

k=1N k
t where N k

t is the number of messages sent by the

k-th SU. We are interested in computing the following limit

lim
t→∞

Nt

t
= lim

t→∞

K∑

k=1

N k
t

t
=

K∑

k=1

lim
t→∞

1

1
N k

t
(
∑N k

t
n=1 t

k
n − tkn−1) +

1
N k

t
(t− tkN k

t
)
=

K∑

k=1

1

Ei[tk1]
,

(2.77)

where we recall that {tkn} is the sequence of sampling times at the k-th SU and for the

last equality we used the Law of Large Numbers since when t → ∞ we also have N k
t →

∞. Consequently we need to select ∆ so that
∑K

k=1
1

Ei[tk1 ]
= K

T . To obtain a convenient

formula we are going to become slightly unfair for RLT-SPRT. From [20, Lemma 7] we
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have that 1
Ei[tk1 ]

≤ |Ei[L
k
1 ]|

∆tanh(∆
2
)
, which means that,

∑K
k=1

1
Ei[tk1 ]

≤ KIi

∆tanh(∆
2
)
. Therefore, if

we set KIi

∆tanh(∆
2
)
= K

T or, equivalently, ∆ tanh(∆2 ) = T Ii, the average message rate of

RLT-SPRT becomes slightly smaller than the corresponding of Q-SPRT. Note that the

average Kullback-Leibler information numbers, Ii, i = 0, 1, can be once computed offline via

simulations.

Under the previous parameter specifications, we have the following final form for the

performance of the two schemes. For Q-SPRT

0 ≤ E1[S̃]− E1[S] ≤
φ

KI21

| log α|
2s−1

{1 + os(1)} + T
φ

I1
{1 + os(1)} + oα(1)

0 ≤ E0[S̃]− E0[S] ≤
φ

KI20

| log β|
2s−1

{1 + os(1)}+ T
φ

I0
{1 + os(1)}+ oβ(1);

(2.78)

while for RLT-SPRT

0 ≤ E1[Ŝ]− E1[S] ≤
1

T

φ

KI21

| log α|
max{2s−1 − 1, 1}{1 + oT,s(1)} + T +

φ

I1
+ oT,s(1) + oα(1),

0 ≤ E0[Ŝ]− E0[S] ≤
1

T

φ

KI20

| log β|
max{2s−1 − 1, 1}{1 + oT,s(1)} + T +

φ

I0
+ oT,s(1) + oα(1).

(2.79)

Comparing (2.78) with (2.79) there is a definite resemblance between the two cases.

However in RLT-SPRT we observe the factor 1
T in the first term of the right hand side

which, as we will immediately see, produces significant performance gains. Since T is the

communication period, and we are in discrete time, we have T ≥ 1. Actually, for the

practical problem of interest we have T ≫ 1 suggesting that the first term in RLT-SPRT is

smaller by a factor T , which can be large.

For fixed T and s, none of the two schemes is asymptotically optimum even of order-

1. However, in RLT-SPRT we can have order-1 asymptotic optimality when we fix the

number of bits s and impose large communication periods. Indeed using (2.74) of Lemma 2

we obtain

1 ≤ E1[Ŝ]
E1[S]

= 1 +
E1[Ŝ]− E1[S]

E1[S]
≤ 1 + Θ

(
1

T

)
+

TKI1

| log α| + oα(1), (2.80)

consequently selecting T → ∞ but T
| logα| → 0 we assure order-1 optimality. It is easy to

verify that the best speed of convergence towards 1 of the previous right hand side expression

is achieved when T = Θ(
√
| log α|).
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We should emphasize that similar order-1 optimality result, just by controlling the

period T , cannot be obtained in Q-SPRT, and this is due to the missing factor 1
T in (2.78).

Consequently this is an additional indication (besides the continuous-time case) that the

proposed scheme is more efficient than the classical decentralized Q-SPRT.

Let us now examine how the asymptotic optimality properties of the two methods im-

prove when we allow the number of bits s to grow with α, β, while keeping T constant. Note

that in the case of Q-SPRT selecting 2s−1 = | log α| or, equivalently, s = 1 + log2 | log α|
assures order-2 asymptotic optimality. For RLT-SPRT, using for simplicity the approxima-

tion 2s−1−1 ≈ 2s−1, the same computation yields s = 1+log2 | log α|−log2 T . Of course the

two expressions are of the same order of magnitude, however in RLT-SPRT the additional

term − log2 T , for all practical purposes, can be quite important resulting in a need of sig-

nificantly less bits than Q-SPRT to assure order-2 asymptotic optimality. The conclusions

obtained through our analysis, as we will see in the next section, are also corroborated by

our simulations.

2.5.4 Simulation Results

In this section, we provide simulation results to evaluate the performance of the proposed

cooperative spectrum sensing technique based on level-triggered sampling and that based

on conventional uniform sampling, and how the two tests compare with the optimum cen-

tralized scheme. In the simulations, the sampling period of the uniform sampling is set as

T = 4. For the level triggered sampling, we adjust the local threshold ∆ so that the average

rate of received messages by the FC matches that of uniform sampling, i.e.
∑K

k=1
1

Ei[tk1 ]
= K

T

(see Section 2.5.3.2). The upper-bound φ for overshoot values is set as the 10−4 quantile of

the LLR of a single observation which is computed once offline via simulations. We mainly

consider a cognitive radio system with two SUs, i.e., K = 2, but the effect of increasing user

diversity is also analyzed in the last subsection. All results are obtained by averaging 104

trials and using importance sampling to compute probabilities of rare events. We primarily

focus on the energy detector since it is the most widely used spectrum sensing method. The

results for the spectral shape detector and the Gaussian detector are quite similar. In the

subsequent figures average sensing delay performances are plotted under H1.
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Figure 2.6: Average decision delay vs error probabilities (α, β) for optimum centralized and

Q-SPRT, RLT-SPRT with 1,2,3,∞ number of bits.

Fixed SNR and K, varying α, β: We first verify the theoretical findings presented in

Section 2.5.3 on the asymptotic optimality properties of the decentralized schemes. We

assume two SUs operate in the system, i.e. K = 2. For the energy detector, we set the

receiver SNR for each SU to 5 dB and vary the error probabilities α and β together between

10−1 and 10−10.

Fig. 2.6 illustrates asymptotic performances of the decentralized schemes using 1,2,

3 and ∞ number of bits. Our first interesting result is the fact that by using a finite

number of bits we can only achieve a discrete number of error rates. Specifically, if a

finite number of bits is used to represent local incremental LLR packages, then there is
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a finite number of possible values to update the global running LLR (e.g. for one bit we

have ±∆). Hence, the global running LLR, which is our global test statistic, can assume

only a discrete number of possible values. This suggests that any threshold between two

consecutive LLR values will produce the same error probability. Consequently, only a

discrete set of error probabilities (α, β) are achievable. Increasing the number of bits clearly

increases the number of available error probabilities. With infinite number of bits any

error probability can be achieved. The case of infinite number of bits corresponds to the

best achievable performance for Q-SPRT and RLT-SPRT. Having their performance curves

parallel to that of the optimum centralized scheme, the ∞-bit case for both Q-SPRT and

RLT-SPRT exhibits order-2 asymptotic optimality. Recall that both schemes can enjoy

order-2 optimality if the number of bits tends to infinity with a rate of log | log α|.
It is notable that the performance of RLT-SPRT with a small number of bits is very close

to that of∞-bit RLT-SPRT at achievable error rates. For instance, the performance of 1-bit

case coincides with that of ∞-bit case, but only at a discrete set of points as can be seen

in Fig. 2.6–b. However, we do not observe this feature for Q-SPRT. Q-SPRT with a small

number of bits (especially one bit) performs significantly worse than∞-bit case Q-SPRT as

well as its RLT-SPRT counterpart. In order to achieve a target error probability that is not

in the achievable set of a specific finite bit case, one should use the thresholds corresponding

to the closest smaller error probability. This incurs a delay penalty in addition to the delay

of the∞-bit case for the target error probability, demonstrating the advantage of using more

bits. Moreover, it is a striking result that 1-bit RLT-SPRT is superior to ∞-bit Q-SPRT at

its achievable error rates, which can be seen in Fig. 2.6–c.

Fig. 2.7 corroborates the theoretical result related to order-1 asymptotic optimality that

is obtained in (2.80). Using a fixed a number of bits, s = 2, the performance of RLT-SPRT

improves and achieves order-1 asymptotic optimality, i.e. E1[Ŝ]
E1[S] = 1+ o(1), as the communi-

cation period tends to infinity, T = Θ(
√
| log α|). Conversely, the performance of Q-SPRT

deteriorates under the same conditions. Although in both cases Q-SPRT converges to the

same performance level, its convergence speed is significantly smaller in the increasing T

case, which can be obtained theoretically by applying the derivation in (2.80) to (2.78).

This important advantage of RLT-SPRT over Q-SPRT is due to the fact that the quanti-
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Figure 2.7: Average decision delay normalized by the optimum centralized performance

vs. error probabilities (α, β) for Q-SPRT and RLT-SPRT with 2 bits and communication

period either T = 4 or T = Θ(
√
| log α|).

zation error (overshoot error) observed by SUs at each communication time in RLT-SPRT

depends only on the LLR of a single observation, but not on the communication period,

whereas that in Q-SPRT increases with increasing communication period. Consequently,

quantization error accumulated at the FC becomes smaller in RLT-SPRT, but larger in

Q-SPRT when T = Θ(
√
| log α|) compared to the fixed T case. Note in Fig. 2.7 that, as

noted before, only a discrete number of error rates are achievable since two bits are used.

Here, we preferred to linearly combine the achievable points to emphasize the changes in

the asymptotic performances of RLT-SPRT and Q-SPRT although the true performance

curves of the 2-bit case should be stepwise as expressed in Fig. 2.6.

Fixed α, β and K, varying SNR: Next, we consider the sensing delay performances of Q-

SPRT and RLT-SPRT under different SNR conditions with fixed α = β = 10−6 and K = 2.

In Fig. 2.8, it is clearly seen that at low SNR values there is a huge difference between Q-

SPRT and RLT-SPRT when we use one bit, which is the most important case in practice.

This remarkable difference stems from the fact that the one bit RLT-SPRT transmits the

most part of the sampled LLR information (except the overshoot), whereas Q-SPRT fails

to transmit sufficient information by quantizing the LLR information. Moreover, as we can

see the performance of the 1-bit RLT-SPRT is very close to that of the infinite bit case and



CHAPTER 2. SEQUENTIAL DISTRIBUTED DETECTION 52

the optimum centralized scheme. At high SNR values depicted in Fig. 2.8–b, schemes all

behave similarly, but again RLT-SPRT is superior to Q-SPRT. This is because the sensing

delay of Q-SPRT cannot go below the sampling interval T = 4, whereas RLT-SPRT is not

bounded by this limit due to the asynchronous communication it implements.

Figure 2.8: Average decision delay vs SNR for optimum centralized and Q-SPRT, RLT-

SPRT with 1,∞ number of bits.

Fixed SNR, α and β, varying K: We, then, analyze the case where the user diversity

increases. In Fig. 2.9, it is seen that with increasing number of SUs, the average sensing

delays of all schemes decay with the same rate of 1/K as shown in Section 2.5.3 (cf. (2.74),

(2.75) and (2.76)). The decay is more notable for the 1-bit case because the overshoot

accumulation is more intense, but very quickly becomes less pronounced as we increase the

number of SUs. It is again interesting to see that the 1-bit RLT-SPRT is superior to the

∞-bit Q-SPRT for values of K greater than 3.

2.6 Conclusion

In this chapter, we considered detection in distributed systems with resource (e.g., time,

energy, bandwidth) constraints. We have proposed sequential detectors that use level-

triggered sampling for information transmission, as opposed to the classical fixed-sample-size

detectors and conventional information transmission methods based on uniform sampling
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Figure 2.9: Average decision delay vs number of SUs (K) for optimum centralized and

Q-SPRT, RLT-SPRT with 1,∞ number of bits.

and quantization. The proposed detectors are designed to satisfy timing (i.e., latency)

constraints thanks to their sequential nature, which aims to minimize average decision delay;

and also energy and bandwidth constraints by transmitting low rate information through

level-triggered sampling. And they significantly outperform their classical counterparts.

We have first proposed a detector that transmits a single bit per sample, and assumes

that the local error probabilities at nodes are available to the fusion center. We have further

designed the proposed detector to operate in a channel-aware manner under different noisy

channel models. The average decision delay performance of the proposed detector has also

been analyzed (both non-asymptotically and asymptotically). And based on the asymp-

totic analysis the appropriate signaling constellations have been identified under different

continuous channels.

We have then developed a similar sequential detector based on level-triggered sampling

for cooperative spectrum sensing in cognitive radio networks. In this detector, without

assuming the knowledge of local error probabilities, a few additional bits per sample are

used as an alternative method to deal with the overshoot problem. We have shown both

analytically and numerically that the proposed spectrum sensing scheme performs much

better than its conventional counterpart based on uniform sampling in terms of average

sensing delay.
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Part II

Estimation
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Chapter 3

Sequential Estimation for Linear

Models

3.1 Introduction

In this chapter, we are interested in sequentially estimating a vector of parameters (i.e., re-

gression coefficients) x ∈ R
n at a random stopping time S in the following linear (regression)

model,

yt = hT
t x+ wt, t ∈ N, (3.1)

where yt ∈ R is the observed sample, ht ∈ R
n is the vector of regressors and wt ∈ R is the

additive noise. We consider the general case in which ht is random and observed at time

t, which covers the deterministic ht case as a special case. This linear model is commonly

used in many applications. For example, in system identification, x is the unknown system

coefficients, ht is the (random) input applied to the system, and yt is the output at time t.

Another popular example is the signal amplitude estimation in a communications channel,

where x is the transmitted signal, yt is the received signal, ht is the (fading) channel gain

(which is also estimated periodically using pilot signals), and wt is the additive channel

noise.

A sequential estimator (S, x̂S), as opposed to a traditional fixed-sample-size estimator,

is equipped with a stopping rule which determines an appropriate time S to stop taking
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samples based on the observed samples. Hence, the stopping time S (i.e., the number of

samples used in estimation) is a random variable. Endowed with a stopping mechanism, a

sequential estimator is preferred to its fixed-sample-size counterpart especially when taking

samples is costly, and thus we want to minimize the average sample number. Another

advantage of sequential estimators is that they provide online estimates, whereas fixed-

sample-size estimators produce offline estimates. More specifically, in sequential estimation,

we keep refining our estimate as new samples arrive until no further refinement is needed

(i.e., the accuracy of our estimator reaches a target level). On the other hand, in fixed-

sample-size estimation, a single estimate is provided after observing a certain number of

samples.

Distributed (e.g., cyber-physical) systems are currently a key area of research, with

many emerging technologies such as wireless sensor networks, cognitive radio networks,

smart grids, and networked control systems. Distributed estimation is a fundamental task

that can be realized in such systems. Timing constraints are typical of distributed systems,

which we can address with sequential estimators. However, the online nature of sequential

estimation, in the ideal case, requires frequent high-rate data communications across the

system, which becomes prohibitive for energy-constrained systems (e.g., a wireless sensor

network with a large number of sensors). Thus, for such resource-constrained systems,

designing resource-efficient distributed estimators is of utmost importance. On the other

hand, fixed-sample-size estimators fail to satisfy both the timing and resource constraints

in distributed systems since a considerable amount of data communications simultaneously

takes place at the deterministic estimation time, which may also cause congestion in the

system [23].

3.1.1 Literature Review

The stopping capability of sequential estimators comes with the cost of sophisticated anal-

ysis. In most cases, finding an optimum sequential estimator that attains the sequential

Cramér-Rao lower bound (CRLB) is not a tractable problem if the stopping time S is

adapted to the complete observation history [68]. Alternatively, [69] and more recently in

[14; 23] proposed to restrict S to stopping times that are adapted to a specific subset of the
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complete observation history, which leads to simple solutions with alternative optimality.

This idea of using a restricted stopping time first appears in [69] without any optimality

result. In the case of continuous-time observations, a sequential estimator with a restricted

stopping time was shown to achieve the sequential version of the CRLB in [14]. In the

discrete-time case, a similar sequential estimator was shown to achieve the conditional se-

quential CRLB in [23].

Here, with discrete-time observations and using a similar restricted stopping time we

present the optimum sequential estimator for the more challenging unconditional problem.

Moreover, we treat the vector parameter estimation problem, whereas only the scalar pa-

rameter estimation problem was considered in [69; 14; 23].

Distributed vector parameter estimation has been studied in a variety of papers, e.g., [70;

71; 72; 73; 74; 75; 76; 77; 78; 79]. Among those [70; 71; 73; 74; 75] consider a wireless sensor

network with a fusion center (FC), which computes a global estimator using local informa-

tion received from sensors, whereas [76; 77; 78; 79] consider ad hoc wireless sensor networks,

where sensors in the absence of an FC compute their local estimators and communicate them

through the network. Distributed estimation under both network topologies is reviewed in

[72]. In [70; 72; 75; 76; 78; 79] a general nonlinear signal model is assumed.

The majority of pertinent works in the literature, e.g., [70; 71; 72; 73; 74; 75; 76;

77], studies fixed-sample-size estimation. There are a few works, such as [78; 79], that

consider sequential distributed vector parameter estimation. Nevertheless, [78; 79] as-

sume that sensors transmit real numbers, which obviously requires quantization in prac-

tice. In many applications quantization must be performed using a small number of

bits due to strict energy constraints. Recently, in a series of papers [12; 20; 21; 14;

23] it was shown that level-triggered sampling, which is a non-uniform sampling method,

meets such strict constraints by infrequently transmitting a single bit from sensors to the

FC. Moreover, distributed schemes based on level-triggered sampling can significantly out-

perform their counterparts based on traditional uniform-in-time sampling [20].

Following the distributed schemes based on level-triggered sampling presented for scalar

parameter estimation in [14] and [23] we propose in this chapter a computationally efficient

distributed scheme for vector parameter estimation. In the level-triggered sampling proce-
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dure, we propose to encode the random overshoot in each sample, which is due to discrete-

time observations, in time, unlike [20; 23], which quantize the random overshoot, and [12;

21], which compute an average value for it. Instead of the direct implementation of level-

triggered sampling for each dimension of the unknown parameter vector, which has a

quadratic computational complexity in the number of dimensions, we develop a simpli-

fied distributed estimator based on level-triggered sampling with a linear computational

complexity.

3.1.2 Outline

In the first part of the chapter, for a restricted class of stopping rules that depend solely on

the regressors, {ht} in (3.1), we formulate the problem in Section 3.2. We then derive, in

Section 3.3, the optimum sequential estimators, that minimize the average sample number

for a given target accuracy level, under two different formulations of the problem. In the

first formulation, we use the conditional covariance of the estimator given the regressors

{ht} to assess its accuracy, and show that the optimum stopping rule is a one-dimensional

thresholding on the Fisher information, regardless of the dimension of the unknown pa-

rameter vector x. In the second formulation, following the common practice, we use the

(unconditional) covariance of the estimator to assess its accuracy, and show that the com-

plexity of the optimal stopping rule increases prohibitively with the dimension of x. Our

analytical results demonstrate the usefulness of conditioning on ancillary statistics such as

{ht}. Although covariance is a generic accuracy measure, conditional covariance is preferred

to it in the presence of an ancillary statistic that is independent of the unknown parameters

[80].

Then, in the second part of the chapter, from the optimum sequential estimator in

the conditional problem, we develop, in Section 3.4, a computationally efficient distributed

sequential estimator that meets the timing and stringent energy constraints in a wireless

sensor network. We achieve the energy efficiency via level-triggered sampling, a nonuniform

sampling technique, and the computational efficiency through a simplification on the opti-

mal estimator. Simulation results show that the simplified distributed estimator attains a

very similar performance to those of the unsimplified distributed estimator and the optimal
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estimator when the regressors in ht are uncorrelated. We also show in the simulation re-

sults that the performance gap between the simplified estimator and the unsimplified and

optimal estimators increases with the correlation. Nevertheless, the simplified estimator

achieves a good performance even in the correlated case. Finally, the chapter is concluded

in Section 3.5.

3.2 Problem Formulation and Background

In (3.1), at each time t, we observe the sample yt and the vector ht, hence {(yp,hp)}tp=1 are

available. We assume {wt} are i.i.d. with E[wt] = 0 and Var(wt) = σ2. We are interested in

sequentially estimating x. The least squares (LS) estimator minimizes the sum of squared

errors, i.e.,

x̂t = argmin
x

t∑

p=1

(yp − hT
p x)

2, (3.2)

and is given by

x̂t =




t∑

p=1

hph
T
p




−1
t∑

p=1

hpyp = (HT
t H t)

−1HT
t yt, (3.3)

where H t = [h1, . . . ,ht]
T and yt = [y1, . . . , yt]

T .

Under the Gaussian noise, wt ∼ N (0, σ2), the LS estimator coincides with the minimum

variance unbiased estimator (MVUE), and achieves the CRLB, i.e., Cov(x̂t|H t) = CRLBt.

To compute the CRLB we first write, given x and H t, the log-likelihood of the vector yt as

Lt = log f(yt|x,H t) = −
t∑

p=1

(yp − hT
p x)

2

2σ2
− t

2
log(2πσ2). (3.4)

Then, we have

CRLBt =

(
E

[
− ∂2

∂x2
Lt

∣∣H t

])−1

= σ2U−1
t , (3.5)

where E

[
− ∂2

∂x2Lt

∣∣H t

]
is the Fisher information matrix and U t , HT

t H t is a nonsingular

matrix. Since E[yt|H t] = H tx and Cov(yt|H t) = σ2I, from (3.3) we have E[x̂t|H t] = x

and Cov(x̂t|H t) = σ2U−1
t , thus from (3.5) Cov(x̂t|H t) = CRLBt. Note that the maximum

likelihood (ML) estimator, that maximizes (3.4), coincides with the LS estimator in (3.3).

In general, the LS estimator is the best linear unbiased estimator (BLUE). In other

words, any linear unbiased estimator of the form Atyt with At ∈ R
n×t, where E[Atyt|H t] =



CHAPTER 3. SEQUENTIAL ESTIMATION FOR LINEAR MODELS 60

x, has a covariance no smaller than that of the LS estimator in (3.3), i.e., Cov(Atyt|H t) ≥
σ2U−1

t in the positive semidefinite sense. To see this result we write At = (HT
t H t)

−1HT
t +

Bt for some Bt ∈ R
n×t, and then Cov(Atyt|H t) = σ2U−1

t + σ2BtB
T
t , where BtB

T
t is a

positive semidefinite matrix.

The recursive least squares (RLS) algorithm enables us to compute x̂t in a recursive

way as follows

x̂t = x̂t−1 +Kt(yt − hT
t x̂t−1)

where Kt =
P t−1ht

1 + hT
t P t−1ht

and P t = P t−1 −Kth
T
t P t−1,

(3.6)

where Kt ∈ R
n is a gain vector and P t = U−1

t . While applying RLS we first initialize

x̂0 = 0 and P 0 = δ−1I, where 0 represents a zero vector and δ is a small number, and then

at each time t compute Kt, x̂t and P t as in (3.6).

3.3 Optimum Sequential Estimators

In this section we aim to find the optimal pair (T , x̂T ) of stopping time and estimator

corresponding to the optimum sequential estimator. The stopping time for a sequential

estimator is defined as the time it first achieves a target accuracy level. We assess the

accuracy of an estimator by using either its covariance matrix Cov(x̂t), which averages also

over Ht, or conditional covariance matrix Cov(x̂t|H t). Although traditionally the former is

used in general, in the presence of an ancillary statistic whose distribution does not depend

on the parameters to be estimated, such as Ht, the latter was shown to be a better choice

in [80] through asymptotic analysis. Specifically, the optimum sequential estimators can be

formulated as the following constrained optimization problems,

min
T ,x̂T

E[T |HT ] subject to f (Cov(x̂T |HT )) ≤ C, (3.7)

and min
T ,x̂T

E[T ] subject to f (Cov(x̂T )) ≤ C, (3.8)

under the conditional and unconditional setups, respectively, where f(·) is a function from

R
n×n to R and C ∈ R is the target accuracy level.

Note that the constraint in (3.7) is stricter than the one in (3.8) since it requires that x̂T

satisfies the target accuracy level for each realization of HT , whereas in (3.8) it is sufficient
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that x̂T satisfies the target accuracy level on average. In other words, in (3.8) even if for

some realizations of HT we have f (Cov(x̂T |HT )) > C, we can still have f (Cov(x̂T )) ≤ C.

In fact, we can always have f (Cov(x̂T )) = C by using a probabilistic stopping rule such

that we sometimes stop above C, i.e., f (Cov(x̂T |HT )) > C, and the rest of the time

at or below C, i.e., f (Cov(x̂T |HT )) ≤ C. On the other hand, in (3.7) we always have

f (Cov(x̂T |HT )) ≤ C, and moreover since we observe discrete-time samples, in general we

have f (Cov(x̂T |HT )) < C for each realization of HT . Hence, the optimal objective value

E[T ] in (3.8) will, in general, be smaller than the optimal objective value E[T |HT ] in (3.7).

Note that on the other hand, if we observed continuous-time processes with continuous

paths, then we could always have f (Cov(x̂T |HT )) = C for each realization of HT , and

thus the optimal objective values of (3.7) and (3.8) would be the same.

The accuracy function f should be a monotonic function of the covariance matrices

Cov(x̂T |HT ) and Cov(x̂T ), which are positive semi-definite, in order to make consistent

accuracy assessments, e.g., f(Cov(x̂T )) > f(Cov(x̂S)) for T < S since Cov(x̂T ) ≻ Cov(x̂S)

in the positive definite sense. Two popular and easy-to-compute choices are the trace Tr(·),
which corresponds to the mean squared error (MSE), and the Frobenius norm ‖ · ‖F . In the

sequel we will next treat the two problems in (3.7) and (3.8) separately.

3.3.1 The Optimum Conditional Sequential Estimator

Denote {Ft} as the filtration that corresponds to the samples {y1, . . . , yt} where Ft =

σ{y1, . . . , yt} is the σ-algebra generated by the samples observed up to time t and F0 is

the trivial σ-algebra. Similarly we define the filtration {Ht} where Ht = σ{h1, . . . ,ht},
i.e., the accumulated history related to the coefficient vectors, and H0 is again the trivial

σ-algebra. It is known that, in general, with discrete-time observations and an unrestricted

stopping time, that is {Ft ∪Ht}-adapted, the sequential CRLB is not attainable under any

noise distribution (Gaussian or non-Gaussian) except for the Bernoulli noise [68]. On the

other hand, in the case of continuous-time observations with continuous paths the sequential

CRLB is attainable by using an {Ht}-adapted stopping time [14]. Moreover, with an {Ht}-
adapted stopping time, that depends only on HT , the LS estimator attains the conditional

sequential CRLB as we will show in the following Lemma. Hence, in this paper we restrict
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our attention to {Ht}-adapted stopping times as in [69; 14; 23].

Lemma 3. With a monotonic accuracy function f and an {Ht}-adapted stopping time T
we can write

f (Cov(x̂T |HT )) ≥ f
(
σ2U−1

T
)

(3.9)

for all unbiased estimators under Gaussian noise, and for all linear unbiased estimators

under non-Gaussian noise, and the inequality in (3.9) holds with equality for the LS esti-

mator.

The proof is given in Appendix B. Since T is {Ht}-adapted, i.e., determined by HT ,

we have E[T |HT ] = T , and thus from (3.7) we want to find the first time that a member of

our class of estimators (i.e., unbiased estimators under Gaussian noise and linear unbiased

estimators under non-Gaussian noise) satisfies the constraint f (Cov(x̂T |HT )) ≤ C, as well

as the estimator that attains this earliest stopping time. From Lemma 3 it is seen that

the LS estimator achieves the earliest stopping time among its competitors. Hence, for the

conditional problem the optimal pair of stopping time and estimator is (T , x̂T ) where T is

given by

T = min{t ∈ N : f
(
σ2U−1

t

)
≤ C}, (3.10)

and from (3.3),

x̂T = U−1
T VT , VT , HT

T yT , (3.11)

which can be computed recursively as in (3.6). The recursive computation of U−1
t = P t in

the test statistic in (3.10) is also given in (3.6). Note that for an accuracy function f such

that f(σ2U−1
t ) = σ2f(U−1

t ), e.g., Tr(·) and ‖ · ‖F , we can use the following stopping time,

T = min{t ∈ N : f
(
U−1

t

)
≤ C ′}, (3.12)

where C ′ = C
σ2 is the relative target accuracy with respect to the noise power. Hence, given

C ′ we do not need to know the noise variance σ2 to run the test given by (3.12).

Note that U t = HT
t H t is a non-decreasing positive semi-definite matrix, i.e., U t �

U t−1,∀t, in the positive semi-definite sense. Thus, from the monotonicity of f , the test

statistic f
(
σ2U−1

t

)
is a non-increasing scalar function of time. Specifically, for accuracy
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functions Tr(·) and ‖·‖F we can show that if the minimum eigenvalue of U t tends to infinity

as t→∞, then the stopping time is finite, i.e., T <∞.

For the special case of scalar parameter estimation, we do not need a function f to assess

the accuracy of the estimator since instead of a covariance matrix we now have a variance

σ2

ut
, where ut =

∑t
p=1 h

2
p and ht is the scaling coefficient in (3.1). Hence, from (3.12) the

stopping time in the scalar case is given by

T = min

{
t ∈ N : ut ≥

1

C ′

}
, (3.13)

where ut
σ2 is the Fisher information at time t. This result is in accordance with [23, Eq. (3)].

3.3.2 The Optimum Unconditional Sequential Estimator

In this case we assume {ht} is i.i.d.. From the constrained optimization problem in (3.8),

using a Lagrange multiplier λ we obtain the following unconstrained optimization problem,

min
T ,x̂T

E[T ] + λf (Cov(x̂T )) . (3.14)

We are again interested in {Ht}-adapted stopping times to use the optimality property of

the LS estimator in the sequential sense. For simplicity assume a linear accuracy function

f so that f(E[·]) = E[f(·)], e.g., the trace function Tr(·). Then, our constraint function

becomes the sum of the individual variances, i.e., Tr (Cov(x̂T )) =
∑n

i=1 Var(x̂
i
T ). Since

Tr (Cov(x̂T )) = Tr (E [Cov(x̂T |HT )]) = E [Tr (Cov(x̂T |HT ))], we rewrite (3.14) as

min
T ,x̂T

E [T + λTr (Cov(x̂T |HT ))] , (3.15)

where the expectation is with respect to HT .

From Lemma 3, we have Tr (Cov(x̂T |HT )) ≥ Tr
(
σ2U−1

T
)
where σ2U−1

t is the covariance

matrix of the LS estimator at time t. Note that U t/σ
2 is the Fisher information matrix at

time t [cf. (3.5)]. Using the LS estimator we minimize the objective value in (3.15). Hence,

x̂T given in (3.11) [cf. (3.6) for recursive computation] is also the optimal estimator for the

unconditional problem.

Now, to find the optimal stopping time we need to solve the following optimization

problem,

min
T

E
[
T + λTr

(
σ2U−1

T
)]
, (3.16)
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which can be solved by using the optimal stopping theory. Writing (3.16) in the following

alternative form

min
T

E

[T −1∑

t=0

1 + λTr
(
σ2U−1

T
)
]
, (3.17)

we see that the term
∑T −1

t=0 1 accounts for the cost of not stopping until time T and the

term λTr
(
σ2U−1

T
)
represents the cost of stopping at time T . Note that U t = U t−1 +hth

T
t

and given U t−1 the current state U t is (conditionally) independent of all previous states,

hence {U t} is a Markov process. That is, in (3.17), the optimal stopping time for a Markov

process is sought, which can be found by solving the following Bellman equation:

V(U) = min
{
λTr

(
σ2U−1

)
︸ ︷︷ ︸

F (U )

, 1 + E[V(U + h1h
T
1 )|U ]︸ ︷︷ ︸

G(U )

}
, (3.18)

where the expectation is with respect to h1 and V is the optimal cost function [81]. The

optimal cost function is obtained by iterating a sequence of functions {Vm} where V(U ) =

limm→∞ Vm(U ) and

Vm(U ) = min
{
λTr

(
σ2U−1

)
, 1 + E[Vm−1(U + h1h

T
1 )|U ]

}
.

In the above optimal stopping theory, dynamic programming is used. Specifically, the

original complex optimization problem in (3.16) is divided into simpler subproblems given

by (3.18). At each time t we are faced with a subproblem consisting of a stopping cost

F (U t) = λTr
(
σ2U−1

t

)
and an expected sampling cost G(U t) = 1 + E[V(U t+1)|U t] to

proceed to time t + 1. Since {U t} is a Markov process, and {ht} is i.i.d., (3.18) is a

general equation holding for all t. The optimal cost function V(U t), selecting the action

with minimum cost (i.e., either continue or stop), determines the optimal policy to follow

at each time t. That is, we stop the first time the stopping cost is smaller than the average

cost of sampling, i.e.,

T = min{t ∈ N : V(U t) = F (U t)}.

We obviously need to analyze the structure of V(U t), i.e., the cost functions F (U t) and

G(U t), to find the optimal stopping time T .
Note that V, being a function of the symmetric matrix U = [uij ] ∈ R

n×n, is a function

of n2+n
2 variables {uij : i ≤ j}. Analyzing a multi-dimensional optimal cost function proves
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intractable, hence we will first analyze the special case of scalar parameter estimation and

then provide some numerical results for the two-dimensional vector case, demonstrating

how intractable the higher dimensional problems are.

3.3.2.1 Scalar case

For the scalar case, from (3.18) we have the following one-dimensional optimal cost function,

V(u) = min

{
λσ2

u
, 1 + E[V(u+ h21)]

}
, (3.19)

where the expectation is with respect to the scalar coefficient h1. Specifically, at time t

the optimal cost function is written as V(ut) = min
{

λσ2

ut
, 1 + E[V(ut+1)]

}
, where ut+1 =

ut+h
2
t+1. Writing V as a function of zt , 1/ut we have V(zt) = min

{
λσ2zt, 1 + E[V(zt+1)]

}
,

where zt+1 =
zt

1+zth2
t+1

, and thus in general

V(z) = min

{
λσ2z︸ ︷︷ ︸
F (z)

, 1 + E

[
V
(

z

1 + zh21

)]

︸ ︷︷ ︸
G(z)

}
. (3.20)

We need to analyze the cost functions F (z) = λσ2z and G(z) = 1 + E

[
V
(

z
1+zh2

1

)]
. The

former is a line, whereas the latter is, in general, a nonlinear function of z. We have the

following lemma regarding the structure of V(z) and G(z). Its proof is given in the Appendix

B.

Lemma 4. The optimal cost V and the expected sampling cost G, given in (3.20), are

non-decreasing, concave and bounded functions of z.

Following Lemma 4 the theorem below presents the stopping time for the scalar case of

the unconditional problem. The proof can be found in Appendix B.

Theorem 5. The optimal stopping time for the scalar case of the unconditional problem in

(3.8) with Tr(·) as the accuracy function is given by

T = min

{
t ∈ N : ut ≥

1

C ′′

}
, (3.21)

where C ′′ is selected so that E
[
σ2

uT

]
= C, i.e., the variance of the estimator exactly hits the

target accuracy level C.



CHAPTER 3. SEQUENTIAL ESTIMATION FOR LINEAR MODELS 66

Note that the optimal stopping time in (3.21) is of the same form as that in the scalar

case of the conditional problem, where we have T = min
{
t ∈ N : ut ≥ 1

C′

}
from (3.13). In

both conditional and unconditional problems the LS estimator

x̂T =
vT
uT

is the optimal estimator. The fundamental difference between the optimal stopping times

Algorithm 3 The procedure to compute the threshold C ′′ for given C
1: Select C′′

2: Estimate C = E

[
σ2

uT

]
through simulations, where uT =

∑T
t=1 h

2
t

3: if C = C then

4: return C′′

5: else

6: if C > C then

7: Decrease C′′

8: else

9: Increase C′′

10: end if

11: Go to line 2

12: end if

in (3.13) and (3.21) is that the threshold in the conditional problem is written as C ′ = C
σ2 ,

hence known beforehand; whereas the threshold C ′′ in the unconditional problem needs to be

determined through offline simulations following the procedure in Algorithm 3, assuming

that some training data {ht} is available or the statistics of ht is known so that we can

generate {ht}. We also observe that C ′ ≤ C ′′, hence the optimal objective value E[T ] of the
unconditional problem is in general smaller than that of the conditional problem as noted

earlier in this section. This is because the upper bound σ2C ′′ on the conditional variance

σ2

uT
[cf. (3.21)] is also an upper bound for the variance E

[
σ2

uT

]
= C, and the threshold C ′ is

given by C ′ = C
σ2 .

3.3.2.2 Two-dimensional case

We will next show that the multi-dimensional cases are intractable by providing some nu-

merical results for the two-dimensional case. In the two-dimensional case, from (3.18) the
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optimal cost function is written as

V(u11, u12, u22) = min

{
λσ2

u11 + u22
u11u22 − u212

, 1 + E
[
V(u11 + h21,1, u12 + h1,1h1,2, u22 + h21,2)

]}
,

where U =


 u11 u12

u12 u22


 , h1 =


 h1,1

h1,2




(3.22)

and the expectation is with respect to h1,1 and h1,2. Changing variables we can write V as

a function of z11 , 1/u11, z22 , 1/u22 and ρ , u12/
√
u11u22,

V(z11, z22, ρ) =

min

{
λσ2

z11 + z22
1− ρ2︸ ︷︷ ︸

F (z11,z22,ρ)

, 1 + E

[
V
(

z11
1 + z11h21,1

,
z22

1 + z22h21,2
,

ρ+ h1,1h1,2
√
z11z22√

(1 + z11h21,1)(1 + z22h21,2)

)]

︸ ︷︷ ︸
G(z11,z22,ρ)

}
,

(3.23)

which can be iteratively computed as follows

Vm(z11, z22, ρ) =

min

{
λσ2

z11 + z22
1− ρ2 , 1+E

[
Vm−1

(
z11

1 + z11h21,1
,

z22
1 + z22h21,2

,
ρ+ h1,1h1,2

√
z11z22√

(1 + z11h21,1)(1 + z22h21,2)

)]}
,

(3.24)

where limm→∞ Vm = V.
Note that ρ is the correlation coefficient, hence we have ρ ∈ [−1, 1]. Following the

procedure in Algorithm 4 we numerically compute V from (3.24) and find the boundary

surface

S (λ) = {(z11, z22, ρ) : F (λ, z11, z22, ρ) = G(z11, z22, ρ)},

that defines the stopping rule. In Algorithm 4, firstly the three-dimensional grid

(n1dz, n2dz, n3dr), n1, n2 = 0, . . . ,
Rz

dz
, n3 = −

1

dr
, . . . ,

1

dr

is constructed. Then, in lines 5-7 the stopping cost F [cf. (3.23)] and in line 8 the first

iteration of the optimal cost function V1 with V0 = 0 are computed over the grid. In
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Algorithm 4 The procedure to compute the boundary surface S for given λ

1: Set dz, Rz, dr, dh, Rh; Nz = Rz
dz + 1; Nr = 2

dr + 1; Nh = 2Rh
dh + 1

2: z1 = [0 : dz : Rz]; z2 = z1; ρ = [−1 : dr : 1] {all row vectors}
3: Z1 = 1Nzz1; Z2 = ZT1 {1Nz: column vector of ones in R

Nz}
4: h = [−Rh : dh : Rh]

5: for i = 1 : Nr do

6: F (:, :, i) = λ Z1+Z2

1−ρ(i)2 {stopping cost over the 3D grid}
7: end for

8: V = min(F, 1) {start with V0 = 0}
9: dif =∞; Fr = ‖V‖F

10: while dif > δ Fr {δ: a small threshold} do
11: for i = 1 : Nz2 do

12: z11 = Z1(i); z22 = Z2(i) {linear indexing in matrices}
13: for j = 1 : Nr do

14: G = 0 {initialize continuing cost}
15: for k = 1 : Nh do

16: h1 = h(k) {scalar}; h2 = h {vector}
17: z′11 = z11/(1 + z11h

2
1) {scalar}; Z ′

11 = z′111Nh {vector}
18: Z ′

22 = z22./(1 + z22h2.
2) {vector; dot denotes elementwise operation}

19: ρ′ = [ρ(j) + h1h2
√
z11z22]./

√
(1 + z11h21)(1 + z22h2.2) {vector}

20: I1 = Z ′
11/dz + 1; I2 = Z ′

22/dz + 1; I3 = (ρ′ + 1)/dr + 1 {fractional indices}
21: J8×Nh = linear indices of 8 neighbor points using ⌊In⌋, ⌈In⌉, n = 1, 2, 3

22: Dn = ⌈In⌉ − In; Dn = 1−Dn, n = 1, 2, 3 {distances to neighbor indices}
23: W 8×Nh = weights for neighbors as 8 multiplicative combinations of Dn, Dn

24: V Nh×1 = diag(WTV(J)) {average the neighbor V values}
25: E1×Nh = 1

2π exp(− 1
2 (h

2
1 + h2.

2)) dh2 {weights in the integral}
26: G = G+ E V {update continuing cost}
27: end for

28: ℓ = i+ (j − 1)Nz2 {linear index of the point the 3D grid}
29: V ′(ℓ) = min(F (ℓ), 1 +G) {new optimal cost function}
30: end for

31: end for

32: dif = ‖V ′ − V‖F ; Fr = ‖V‖F
33: V = V ′ {update the optimal cost function}
34: end while

35: Find the points where transition occurs between regions V = F and V 6= F , i.e., S .

lines 10-34, the optimal cost function V is computed for each point in the grid by iterating

Vm [cf. (3.24)] until no significant change occurs between Vm and Vm+1. In each itera-

tion, the double integral with respect to h1,1 and h1,2 corresponding to the expectation in

(3.24) is computed in lines 15-27. While computing the integral, since the updated (future)
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ρt

zt,11
zt,22

Figure 3.1: The surface that defines the stopping rule for λ = 1, σ2 = 1 and h1,1, h1,2 ∼
N (0, 1) in the two-dimensional case.

(z11, z22, ρ) values, i.e, the arguments of Vm−1 in (3.24), in general may not correspond to

a grid point, we average the Vm−1 values of eight neighboring grid points with appropriate

weights in lines 21-24 to obtain the desired Vm−1 value.

The results for λ ∈ {0.01, 1, 100}, σ2 = 1 and h1,1, h1,2 ∼ N (0, 1) are shown in Fig.

3.1 and Fig. 3.2. For λ = 1, the dome-shaped surface in Fig. 3.1 separates the stopping

region from the continuing region. Outside the “dome” V = G, hence we continue. As

time progresses zt,11 and zt,22 decrease, so we move towards the “dome”. And whenever we

are inside the “dome”, we stop, i.e., V = F . We obtain similar dome-shaped surfaces for

different λ values. However, the cross-sections of the “domes” at specific ρt values differ

significantly. In particular, we investigate the case of ρt = 0, where the scaling coefficients

ht,1 and ht,2 are uncorrelated. For small values of λ, e.g., λ = 0.01, the boundary that

separates the stopping and the continuing regions is highly nonlinear as shown in Fig.

3.2(a). In Fig. 3.2(b) and 3.2(c), it is seen that the boundary tends to become more and

more linear as λ increases.

Now let us explain the meaning of the λ value. Firstly, note from (3.23) that F and

G are functions of z11, z22 for fixed ρ, and the boundary is the solution to F (λ, z11, z22) =

G(z11, z22). When λ is small, the region where F < G, i.e., the stopping region, is large,

hence we stop early as shown in Fig. 3.2(a) 1. Conversely, for large λ the stopping region is

1Note that the axis scales in Fig. 3.2(a) are on the order of hundreds and zt,11, zt,22 decrease as t
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wt,11 wt,11 wt,11

(b) λ = 1 (c) λ = 100

wt,22 wt,22 wt,22

unc.
con.

(a) λ = 0.01

C

C

Figure 3.2: The stopping regions for ρt = 0, σ2 = 1 and ht,1, ht,2 ∼ N (0, 1),∀t in the

unconditional problem with (a) λ = 0.01, (b) λ = 1, (c) λ = 100. That of the conditional

problem is also shown in (c).

small, hence the stopping time is large [cf. Fig. 3.2(c)]. In fact, the Lagrange multiplier λ is

Algorithm 5 The procedure to compute the boundary surface S

1: Select λ

2: Compute S (λ) as in Algorithm 4

3: Estimate C = E

[
σ2 zT ,11+zT ,22

1−ρ2
T

]
through simulations, where zt,11 = 1/ut,11, zt,22 = 1/ut,22,

ρt = ut,12/
√
ut,11ut,22 and T = min{t ∈ N : (zt,11, zt,22, ρt) is between S and the origin}

4: if C = C then

5: return S

6: else

7: if C > C then

8: Increase λ

9: else

10: Decrease λ

11: end if

12: Go to line 2

13: end if

selected through simulations following the procedure in Algorithm 5 so that the constraint

Tr

(
E
[
σ2U−1

T
])

= E

[
σ2

zT ,11+zT ,22

1−ρ2
T

]
= C is satisfied. Note that line 2 of Algorithm 5 uses

Algorithm 4 to compute the boundary surface S .

In general, in the unconditional problem we need to numerically compute the stopping

rule offline, i.e., the hypersurface that separates the stopping and the continuing regions, for

increases.
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a given target accuracy level C. This becomes a quite intractable task as the dimension n of

the vector to be estimated increases since the computation of G in (3.23) involves computing

an n-dimensional integral, which is then used to find the separating hypersurface in a n2+n
2 -

dimensional space. On the other hand, in the conditional problem we have a simple stopping

rule given in (3.12), which uses the target accuracy level C
σ2 as its threshold, hence known

beforehand for any n. Specifically, in the two-dimensional case of the conditional problem

the optimal stopping time is given by T = min
{
t ∈ N :

zt,11+zt,22
1−ρ2t

≤ C
σ2

}
, which is a function

of zt,11 + zt,22 for fixed ρt. In Fig. 3.2(c), where ρt = 0 and σ2 = 1, the stopping region of

the conditional problem, which is characterized by a line, is shown to be smaller than that

of the unconditional problem due to the same reasoning in the scalar case.

3.4 Distributed Sequential Estimator

In this section, we propose a computationally efficient scheme based on level-triggered sam-

pling to implement the conditional sequential estimator in a distributed way. Consider a

network of K distributed sensors and a fusion center (FC) which is responsible for comput-

ing the stopping time and the estimate. In practice, due to the stringent energy constraints,

sensors should infrequently convey low-rate information to the FC, which is the main con-

cern in the design of a distributed sequential estimator.

As in (3.1) each sensor k observes

ykt = (hk
t )

Tx+ wk
t , t ∈ N, k = 1, . . . ,K (3.25)

as well as the coefficient vector hk
t = [hkt,1, . . . , h

k
t,n]

T at time t, where {wk
t }k,t 2 are inde-

pendent, zero-mean, i.e., E[wk
t ] = 0, ∀k, t, and Var(wk

t ) = σ2k, ∀t. In other words, we allow

for different noise variances at different sensors. Then, similar to (3.3) the weighted least

squares (WLS) estimator

x̂t = argmin
x

K∑

k=1

t∑

p=1

(
ykp − (hk

p)
Tx
)2

σ2k

2The subscripts k and t in the set notation denote k = 1, . . . ,K and t ∈ N.
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is given by

x̂t =




K∑

k=1

t∑

p=1

hk
p(h

k
p)

T

σ2k




−1
K∑

k=1

t∑

p=1

hk
py

k
p

σ2k
= Ū

−1
t V̄t (3.26)

where Ū
k
t , 1

σ2
k

∑t
p=1 h

k
p(h

k
p)

T , V̄ k
t , 1

σ2
k

∑t
p=1 h

k
py

k
p , Ū t =

∑K
k=1 Ū

k
t and V̄t =

∑K
k=1 V̄

k
t .

As before it can be shown that the WLS estimator x̂t in (3.26) is the BLUE under the

general noise distributions. Moreover, in the Gaussian noise case, where wk
t ∼ N (0, σ2k) ∀t

for each k, x̂t is also the MVUE. Note that x̂t in (3.26) coincides the ML estimator in the

Gaussian case.

Following the steps in Section 3.3.1 it is straightforward to show that (T , x̂T ) is the

optimum sequential estimator where

T = min
{
t ∈ N : f

(
Ū

−1
t

)
≤ C

}
, (3.27)

is the stopping time and the estimator x̂t is given in (3.26). Note that (T , x̂T ) is achievable

only in the centralized case, where all local observations until time t, i.e., {(ykp ,hk
p)}k,p

3, are available to the FC. Local processes {Ūk
t }k,t and {V̄ k

t }k,t are used to compute the

stopping time and the estimator as in (3.27) and (3.26), respectively. On the other hand, in

a distributed system the FC can compute approximations Ũ
k

t and Ṽ k
t at each time t, and

then use these approximations to compute the stopping time and the estimator as in (3.27)

and (3.26), respectively.

3.4.1 Key Approximations in Distributed Approach

Before proceeding to explain the proposed distributed scheme, we note that the RLS esti-

mator is a special case of the Kalman filter, which is easily distributed through its inverse

covariance form, namely the information filter. In the information filter, an n × n matrix,

namely the information matrix, and an n × 1 vector, namely the information vector, are

used at each time, similar to Ū t and V̄t in the LS estimator, respectively. Distributed im-

plementations of the information filter in the literature, e.g., [82], require the transmission

of local information matrices and information vectors from sensors to the FC at each time

3The subscript p in the set notation denotes p = 1, . . . , t.
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t, which may not be practical, especially for large n, since it requires transmission of O(n2)

terms.

Considering Tr(·) as the accuracy function f in (3.27), that is, assuming an MSE con-

straint, we propose to transmit only the n diagonal entries of Ū
k
t for each k, giving us a

computationally tractable scheme with linear complexity, i.e., O(n), instead of quadratic

complexity, i.e., O(n2). Using the diagonal entries of Ū t we define the diagonal matrix

Dt , diag (dt,1, . . . , dt,n)

where dt,i =

K∑

k=1

t∑

p=1

(hkp,i)
2

σ2k
, i = 1, . . . , n.

(3.28)

We further define the correlation matrix

R =




1 r12 · · · r1n

r12 1 · · · r2n
...

...
. . .

...

r1n r2n · · · 1



, (3.29)

where rij =

∑K
k=1

E[hk
t,ih

k
t,j ]

σ2
k√

∑K
k=1

E[(hk
t,i)

2]

σ2
k

∑K
k=1

E[(hk
t,j)

2]

σ2
k

, i, j = 1, . . . , n.

Proposition 3. For sufficiently large t, we can make the following approximations,

Ū t
∼= D

1/2
t R D

1/2
t

and Tr

(
Ū

−1
t

)
∼= Tr

(
D−1

t R−1
)
.

(3.30)

The proof of Proposition 3 is provided in Appendix B. Then, assuming that the FC

knows a priori the correlation matrix R, i.e.,
{
E[hkt,ih

k
t,j ]
}
i,j,k

4 and
{
σ2k
}
[cf. (3.29)], it can

compute the approximations in (3.30) if sensors report their local processes
{
Dk

t

}
k,t

to the

4The subscripts i and j in the set notation denote i = 1, . . . , n and j = i, . . . , n. In the special case where

E[(hk
t,i)

2] = E[(hm
t,i)

2], k,m = 1, . . . ,K, i = 1, . . . , n, the correlation coefficients







ξ
k
ij =

E[hk
t,ih

k
t,j ]

√

E[(hk
t,i)

2]E[(hk
t,j)

2]
: i = 1, . . . , n− 1, j = i+ 1, . . . , n







k

together with
{

σ2
k

}

are sufficient statistics since rij =
∑K

k=1
ξkij/σ

2

k∑
K
k=1

1/σ2

k

from (B.19).
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FC, where Dt =
∑K

k=1D
k
t . Note that each local process

{
Dk

t

}
t
is n-dimensional, and its

entries at time t are given by

{
dkt,i =

∑t
p=1

(hk
p,i)

2

σ2
k

}

i

[cf. (3.28)]. Hence, we propose that

each sensor k sequentially reports the local processes {Dk
t }t and {V̄ k

t }t to the FC, achieving

linear complexity O(n). On the other side, the FC, using the information received from

sensors, computes the approximations {D̃t} and {Ṽt}, which are then used to compute the

stopping time

T̃ = min
{
t ∈ N : Tr

(
Ũ

−1

t

)
≤ C̃

}
, (3.31)

and the estimator

x̃T̃ = Ũ
−1

T̃ ṼT̃ (3.32)

similar to (3.27) and (3.26), respectively. The approximations Tr
(
Ũ

−1

t

)
in (3.31) and Ũ T̃ in

(3.32) are computed using D̃t as in (3.30). The threshold C̃ is selected through simulations

to satisfy the constraint in (3.7) with equality, i.e., Tr
(
Cov

(
x̃T̃ |H T̃

))
= C.

3.4.2 Proposed Estimator Based on Level-triggered Sampling

Level-triggered sampling provides a very convenient way of information transmission in dis-

tributed systems as recently shown in [12; 20; 21; 14; 23]. Methods based on level-triggered

sampling, sending infrequently small number of bits, e.g., one bit, from sensors to the FC,

enables highly accurate approximations and thus high performance schemes at the FC.

They significantly outperform canonical sampling-and-quantizing methods which sample

local processes using the conventional uniform-in-time sampling and send the quantized

versions of samples to the FC [20]. On the other hand, level-triggered sampling, which is

a non-uniform sampling technique, naturally outputs single-bit information. Moreover, the

FC can effectively recover the samples of local processes by using these low-rate information

from sensors.

All of the references above that propose schemes based on level-triggered sampling

deal with one-dimensional, i.e., scalar, local processes. However, in our case {V̄ k
t }t is n-

dimensional and even worse {Ū k
t }t is n2+n

2 -dimensional 5 for each k. Applying a scheme that

was proposed for one-dimensional processes in a straightforward fashion for each dimension,

5This is because Ū
k
t is symmetric.
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i.e., entry, of Ū
k
t becomes cumbersome, especially when n is large. Hence, in this paper we

propose to use the approximations introduced in the previous subsection, achieving linear

complexity O(n).

We will next describe the distributed scheme based on level-triggered sampling in which

each sensor non-uniformly samples the local processes {Dk
t }t and {V̄ k

t }t, transmits a single

pulse for each sample to the FC, and the FC computes {D̃t} and {Ṽt} using received

information. Our scheme employs a novel algorithm to transmit a one-dimensional process,

separately for each dimension of {Dk
t }t and {V̄ k

t }t. In other words, our scheme at each

sensor k consists of, in total, 2n level-triggered samplers running in parallel.

3.4.2.1 Sampling and Recovery of Dk
t

Each sensor k samples each entry dkt,i of D
k
t at a sequence of random times {skm,i}m 6 given

by

skm,i , min
{
t ∈ N : dkt,i − dkskm−1,i,i

≥ ∆k
i

}
, sk0,i = 0, (3.33)

where dkt,i =
∑t

p=1

(hk
p,i)

2

σ2
k
, dk0,i = 0 and ∆k

i > 0 is a constant threshold that controls the

average sampling interval. Note that the sampling times {skm,i}m in (3.33) are dynamically

determined by the signal to be sampled, i.e., realizations of dkt,i. Hence, they are random,

whereas sampling times in the conventional uniform-in-time sampling are deterministic with

a certain period. According to the sampling rule in (3.33), a sample is taken whenever the

signal level dkt,i increases by at least ∆k
i since the last sampling time. Note that dkt,i =

∑t
p=1

(hk
p,i)

2

σ2
k

is non-decreasing in t.

At each sampling time skm,i, sensor k transmits a single pulse to the FC at time tkm,i ,

skm,i + δkm,i, indicating that dkt,i has increased by at least ∆k
i since the last sampling time

skm−1,i. The value of the transmitted pulse is not important since it only indicates dk
skm,i,i

−
dk
skm−1,i,i

≥ ∆k
i . The delay δ

k
m,i between the transmission time and the sampling time is used

to linearly encode the overshoot

qkm,i ,

(
dk
skm,i,i

− dk
skm−1,i,i

)
−∆k

i < θd, ∀k,m, i (3.34)

6The subscript m in the set notation denotes m ∈ N
+.
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Figure 3.3: Illustration of sampling time sm, transmission time tm, transmission delay δm

and overshoot qm. We encode qm = (dsm − dsm−1
)−∆ < θd in δm = tm − sm < 1 using the

slope φd > θd.

and given by

δkm,i =
qkm,i

φd
∈ [0, 1), (3.35)

where φ−1
d is the slope of the linear encoding function (cf. Fig. 3.3), known to sensors and

the FC.

Assume a global clock, that is, the time index t ∈ N is the same for all sensors and the FC,

meaning that the FC knows the potential sampling times. Assume further ultra-wideband

(UWB) channels between sensors and the FC, in which the FC can determine the time of

flight of pulses transmitted from sensors. Then, FC can measure the transmission delay

δkm,i if it is bounded by unit time, i.e., δkm,i ∈ [0, 1). To ensure this, from (3.35), we need to

have φd > qkm,i, ∀k,m, i. Assuming a bound for overshoots, i.e., qkm,i < θd, ∀k,m, i, we can

achieve this by setting φd > θd
7. Consequently, the FC can uniquely decode the overshoot

by computing qkm,i = φdδ
k
m,i (cf. Fig. 3.3), using which it can also find the increment

occurred in dkt,i during the interval (skm−1,i, s
k
m,i] as d

k
skm,i,i

−dk
skm−1,i,i

= ∆k
i +q

k
m,i from (3.34).

It is then possible to reach the signal level dk
skm,i,i

by accumulating the increments occurred

7In fact, by setting the slope φd arbitrarily large we can make the transmission delay arbitrarily small.
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until the m-th sampling time, i.e.,

dk
skm,i,i

=

m∑

ℓ=1

(
∆k

i + qkℓ,i

)
= m∆k

i +

m∑

ℓ=1

qkℓ,i. (3.36)

Using
{
dk
skm,i,i

}
m

the FC computes the staircase approximation d̃kt,i as

d̃kt,i = dk
skm,i,i

, t ∈ [tkm,i, t
k
m+1,i), (3.37)

which is updated when a new pulse is received from sensor k, otherwise kept constant. Such

approximate local signals of different sensors are next combined to obtain the approximate

global signal d̃t,i as

d̃t,i =

K∑

k=1

d̃kt,i. (3.38)

In practice, when the m-th pulse in the global order regarding dimension i is received from

sensor km at time tm,i, instead of computing (3.36)–(3.38) the FC only updates d̃t,i as

d̃tm,i,i = d̃tm−1,i,i +∆km
i + qm,i, d̃0,i = ǫ, (3.39)

and keeps it constant when no pulse arrives. We initialize d̃t,i to a small constant ǫ to

prevent dividing by zero while computing the test statistic [cf. (3.40)]. Note that in general

d̃tm,i,i 6= dsm,i,i unlike (3.37) since all sensors do not necessarily sample and transmit at

the same time. The approximations
{
d̃t,i
}
i
form D̃t = diag(d̃t,1, . . . , d̃t,n), which is used in

(3.31) and (3.32) to compute the stopping time and the estimator, respectively. Note that

to determine the stopping time as in (3.31) we need to compute Tr

(
Ũ

−1

t

)
using (3.30) at

times
{
tm
}
when a pulse is received from any sensor regarding any dimension. Fortunately,

when the m-th pulse in the global order is received from sensor km at time tm regarding

dimension im we can compute Tr

(
Ũ

−1

tm

)
recursively as follows

Tr

(
Ũ

−1

tm

)
= Tr

(
Ũ

−1

tm−1

)
−
κim(∆

km
im

+ qm)

d̃tm,im d̃tm−1,im

, Tr

(
Ũ

−1

0

)
=

n∑

i=1

κi
ǫ
, (3.40)

where κi is the i-th diagonal element of the inverse correlation matrix R−1, known to the

FC. In (3.40) pulse arrival times are assumed to be distinct for the sake of simplicity. In

case multiple pulses arrive at the same time, the update rule will be similar to (3.40) except

that it will consider all new arrivals together.
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3.4.2.2 Sampling and Recovery of V̄ k
t

Similar to (3.33) each sensor k samples each entry v̄kt,i of V̄
k
t at a sequence of random times

{
αk
m,i

}
m

written as

αk
m,i , min

{
t ∈ N :

∣∣v̄kt,i − v̄kαk
m−1,i,i

∣∣ ≥ γki
}
, αk

0,i = 0, (3.41)

where v̄kt,i =
∑t

p=1

hk
p,iy

k
p

σ2
k

and γki is a constant threshold, available to both sensor k and the

FC. It has been shown in [20, Section IV-B] that γki is determined by

γki tanh(γ
k
i /2) = T

K∑

k=1

E[v̄kt,i]

K

to ensure the average sampling interval T . Since v̄kt,i is neither increasing nor decreasing, we

use two thresholds γki and −γki in the sampling rule given in (3.41). Specifically, a sample

is taken whenever v̄kt,i increases or decreases by at least γki since the last sampling time.

Then, sensor k at time pkm,i , αk
m,i+β

k
m,i transmits a single pulse bkm,i to the FC, indicating

whether v̄kt,i has changed by at least γki or −γki since the last sampling time αk
m−1,i. We can

simply write bkm,i as

bkm,i = sign
(
v̄k
αk
m,i,i
− v̄k

αk
m−1,i,i

)
, (3.42)

where bkm,i = 1 implies that v̄k
αk
m,i,i
− v̄k

αk
m−1,i,i

≥ γki and bkm,i = −1 indicates that v̄k
αk
m,i,i
−

v̄k
αk
m−1,i,i

≤ −γki . The overshoot ηkm,i ,
∣∣v̄k

αk
m,i,i
− v̄k

αk
m−1,i,i

∣∣ − γki is linearly encoded in

the transmission delay as before. Similar to (3.35) the transmission delay is written as

βkm,i =
ηkm,i

φv
, where φ−1

v is the slope of the encoding function, available to sensors and the

FC. Assume again that (i) there exists a global clock among sensors and the FC, (ii) the

FC determines channel delay (i.e., time of flight), and (iii) overshoots are bounded by a

constant, i.e., ηkm,i < θv, ∀k,m, i, and we set φv > θv. With these assumptions we ensure

that the FC can measure the transmission delay βkm,i, and accordingly decode the overshoot

as ηkm,i = φvβ
k
m,i. Then, upon receiving the m-th pulse bm,i regarding dimension i from

sensor km at time pm,i the FC performs the following update,

ṽpm,i,i = ṽpm−1,i,i + bm,i

(
γkmi + ηm,i

)
, (3.43)

where
{
ṽt,i
}
i
compose the approximation Ṽt = [ṽt,1, . . . , ṽt,n]

T . Recall that the FC employs

Ṽt to compute the estimator as in (3.32).
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Algorithm 6 The level-triggered sampling procedure at the k-th sensor for the i-th dimension

1: Initialization: t← 0, m← 0, ℓ← 0, χ← 0, ψ ← 0

2: while χ < ∆k
i and ψ ∈ (−γki , γki ) do

3: t← t+ 1

4: χ← χ+
(hk

t,i)
2

σ2

k

5: ψ ← ψ +
hk
t,iy

k
t

σ2

k

6: end while

7: if χ ≥ ∆k
i {sample dkt,i} then

8: m← m+ 1

9: skm,i = t

10: Send a pulse to the FC through channel chdk,i at time instant tkm,i = skm,i +
χ−∆k

i

φd

11: χ← 0

12: end if

13: if ψ 6∈ (−γki , γki ) {sample v̄kt,i} then
14: ℓ← ℓ+ 1

15: αkℓ,i = t

16: Send bkℓ,i = sign(ψ) to the FC through channel chvk,i at time instant pkℓ,i = αkℓ,i +
|ψ|−γk

i

φv

17: ψ ← 0

18: end if

19: Stop if the FC instructs so; otherwise go to line 2.

The level-triggered sampling procedure at each sensor k for each dimension i is summa-

rized in Algorithm 6. Each sensor k runs n of these procedures in parallel. The sequential

estimation procedure at the FC is also summarized in Algorithm 7. We assumed, for the

sake of clarity, that each sensor transmits pulses to the FC for each dimension through a

separate channel, i.e., parallel architecture. On the other hand, in practice the number of

parallel channels can be decreased to two by using identical sampling thresholds ∆ and γ

for all sensors and for all dimensions in (3.33) and (3.41), respectively. Moreover, sensors

can even employ a single channel to convey information about local processes {dkt,i} and

{v̄kt,i} by sending ternary digits to the FC. This is possible since pulses transmitted for {dkt,i}
are unsigned.

3.4.3 Discussions

We introduced the distributed estimator in Section 3.4.2 initially for a continuous-time

system with infinite precision. In practice, due to bandwidth constraints, discrete-time
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Algorithm 7 The sequential estimation procedure at the fusion center

1: Initialization: Tr←∑n
i=1

κi

ǫ , m← 1, ℓ← 1, d̃i ← ǫ ∀i, ṽi ← 0 ∀i
2: while Tr < C̃ do

3: Listen to the channels {chdk,i}k,i and {chvk,i}k,i, and wait to receive a pulse

4: if m-th pulse arrives through ch
d
km,im at time tm then

5: qm = φd(tm − ⌊tm⌋)
6: Tr← Tr − κim (∆km

im
+qm)

d̃im (d̃im+∆km
im

+qm)

7: d̃im = d̃im +∆km
im

+ qm

8: m← m+ 1

9: end if

10: if ℓ-th pulse bℓ arrives through ch
v
pℓ,jℓ

at time pℓ then

11: ηℓ = φv(pℓ − ⌊pℓ⌋)
12: ṽjℓ = ṽjℓ + bℓ(γ

pℓ
jℓ

+ ηℓ)

13: ℓ← ℓ+ 1

14: end if

15: end while

16: Stop at time T̃ = tm

17: D̃ = diag(d̃1, . . . , d̃n), Ũ
−1

= D̃
−1/2

R−1D̃
−1/2

, Ṽ = [ṽ1, . . . , ṽn]
T

18: x̃ = Ũ
−1
Ṽ

19: Instruct sensors to stop

systems with finite precision are of interest. For example, in such systems, the overshoot

qkm,i ∈
[
j θdN , (j + 1)θdN

)
, j = 0, 1, . . . , N − 1, is quantized into q̂km,i =

(
j + 1

2

) θd
N where N is

the number of quantization levels. More specifically, a pulse is transmitted at time tkm,i =

skm,i +
j+1/2
N , where the transmission delay j+1/2

N ∈ (0, 1) encodes q̂km,i. This transmission

scheme is called pulse position modulation (PPM).

In UWB and optical communication systems, PPM is effectively employed. In such

systems, N , which denotes the precision, can be easily made large enough so that the quan-

tization error |q̂km,i − qkm,i| becomes insignificant. Compared to conventional transmission

techniques which convey information by varying the power level, frequency, and/or phase

of a sinusoidal wave, PPM (with UWB) is extremely energy efficient at the expense of high

bandwidth usage. Hence, PPM suits well to energy-constrained sensor network systems.
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3.4.4 Simulation Results

We next provide simulation results to compare the performances of the proposed scheme

with linear complexity, given in Algorithm 6 and Algorithm 7, the unsimplified version of

the proposed scheme with quadratic complexity and the optimal centralized scheme. A

wireless sensor network with 10 identical sensors and an FC is considered to estimate a five-

dimensional deterministic vector of parameters, i.e., n = 5. We assume i.i.d. Gaussian noise

with unit variance at all sensors, i.e., wk
t ∼ N (0, 1),∀k, t. We set the correlation coefficients

{rij} [cf. (B.19)] of the vector hk
t to different values in [0, 1). In Fig. 3.4 and Fig. 3.5, they

are set to 0 and 0.5 to test the performance of the proposed scheme in the uncorrelated

and correlated cases, respectively. We compare the average stopping time performance of

the proposed scheme with linear complexity to those of the other two schemes for different

MSE values. In Fig. 3.4 and Fig. 3.5, the horizontal axis represents the MSE normalized

by the square of the Euclidean norm of the vector to be estimated, i.e., nMSE , MSE
‖x‖22

.
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Figure 3.4: Average stopping time performances of the optimal centralized scheme and the

distributed schemes based on level-triggered sampling with quadratic and linear complexity

vs. normalized MSE values when scaling coefficients are uncorrelated, i.e., rij = 0,∀i, j.

In the uncorrelated case, where rij = 0, ∀i, j, i 6= j, the proposed scheme with linear
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complexity nearly attains the performance of the unsimplified scheme with quadratic com-

plexity as seen in Fig. 3.4. This result is rather expected since in this case Ū t
∼= Dt for

sufficiently large t, where Ū t and Dt are used to compute the stopping time and the esti-

mator in the unsimplified and simplified schemes, respectively. Strikingly the distributed

schemes (simplified and unsimplified) achieve very close performances to that of the optimal

centralized scheme, which is obviously unattainable in a distributed system, thanks to the

efficient information transmission through level-triggered sampling. It is seen in Fig. 3.5
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Figure 3.5: Average stopping time performances of the optimal centralized scheme and the

distributed schemes based on level-triggered sampling with quadratic and linear complexity

vs. normalized MSE values when scaling coefficients are correlated with rij = 0.5,∀i, j.

that the proposed simplified scheme exhibits an average stopping time performance close to

those of the unsimplified scheme and the optimal centralized scheme even when the scaling

coefficients {hkt,i}i are correlated with rij = 0.5, ∀i, j, i 6= j, justifying the simplification

proposed in Section 3.4.1 to obtain linear complexity.

Finally, in Fig. 3.6 we fix the normalized MSE value at 10−2 and plot average stopping

time against the correlation coefficient r where rij = r, ∀i, j, i 6= j. We observe an

exponential growth in average stopping time of each scheme as r increases. The average

stopping time of each scheme becomes infinite at r = 1 since in this case only some multiples
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Figure 3.6: Average stopping time performances of the optimal centralized scheme and the

distributed schemes based on level-triggered sampling with quadratic and linear complexity

vs. correlation coefficient for normalized MSE fixed to 10−2.

of a certain linear combination of the parameters to be estimated, i.e., hkt,1
∑n

i=1 cixi, are

observed under the noise wk
t at each sensor k at each time t, hence it is not possible to

recover the individual parameters. Specifically, it can be shown that ci =

√
E

[(
hk
t,i

)2]

E

[(
hk
t,1

)2] ,

which is the same for all sensors as we assume identical sensors. To see the mechanism

that causes the exponential growth consider the computation of Tr(Ū
−1
t ), which is used to

determine the stopping time in the optimal centralized scheme. From (3.30) we write

Tr(Ū
−1
t ) ∼= Tr(D−1

t R−1) =

n∑

i=1

κi
dt,i

(3.44)

for sufficiently large t, where dt,i and κi are the i-th diagonal elements of the matrices Dt

and R−1, respectively. For instance, we have κi = 1,∀i, κi = 8.0435,∀i and κi = ∞ when

r = 0, r = 0.9 and r = 1, respectively. Assuming that the scaling coefficients have the

same mean and variance when r = 0 and r = 0.9, we have similar dt,i values [cf. (3.28)]

in (3.44), hence the stopping time of r = 0.9 is approximately 8 times that of r = 0 for

the same accuracy level. Since MSE = E
[
‖x̂T −x‖22

]
= Tr(Ū

−1
t ) in the centralized scheme,

using κi for different r values we can approximately know how the average stopping time
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changes as r increases for a given MSE value. As shown in Fig. 3.6 with the label “Theory”

this theoretical curve is in a good match with the numerical result. The small discrepancy

at high r values is due to the high sensitivity of the WLS estimator in (3.26) to numerical

errors when the stopping time is large. The high sensitivity is due to multiplying the matrix

Ū
−1
T with very small entries by the vector V̄T with very large entries while computing the

estimator x̂T in (3.26) for a large T . The distributed schemes suffer from a similar high

sensitivity problem [cf. (3.32)] much more than the centralized scheme since making error

is inherent in a distributed system. Moreover, in the distributed schemes the MSE is not

given by the stopping time statistic Tr
(
Ũ

−1

t

)
, hence “Theory” does not match well the

curves for the distributed schemes. Although it cannot be used to estimate the rates of the

exponential growths of the distributed schemes, it is still useful to explain the mechanism

behind them as the distributed schemes are derived from the centralized scheme.

To summarize, with identical sensors any estimator (centralized or distributed) experi-

ences an exponential growth in its average stopping time as the correlation between scaling

coefficients increases since in the extreme case of full correlation, i.e., r = 1, each sensor k,

at each time t, observes a noisy sample of the linear combination
∑n

i=1 xi

√
E

[(
hk
t,i

)2]

E

[(
hk
t,1

)2] , and

thus the stopping time is infinite. As a result of exponentially growing stopping time, the

WLS estimator, which is also the ML estimator and the MVUE, i.e., the optimal estimator,

in our case, and the distributed estimators derived from it become highly sensitive to er-

rors as r increases. In either uncorrelated or mildly correlated cases, which are of practical

importance, the proposed distributed scheme with linear complexity performs very close to

the optimal centralized scheme as shown in Fig. 3.4 and Fig. 3.5, respectively.

3.5 Conclusion

We have treated the problem of sequential vector parameter estimation under both central-

ized and distributed settings. In the centralized setting two different formulations, which

use unconditional and conditional covariances of the estimator respectively to assess the es-

timation accuracy, are considered and the corresponding sequential estimators are derived.

The conditional formulation, having a simple stopping rule for any number of parame-
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ters, was shown to be preferable to the unconditional formulation, whose stopping rule can

only be found by complicated numerical computations even for a small number of parame-

ters. Moreover, following the optimum conditional sequential estimator we have developed

a computationally efficient distributed sequential estimator based on level-triggered sam-

pling. Simulation results have shown that the proposed scheme with linear complexity has

a similar performance to that of the optimal centralized scheme.
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Part III

Joint Detection and Estimation
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Chapter 4

Sequential Joint Detection and

Estimation

4.1 Introduction

Detection and estimation problems appear simultaneously in a wide range of fields, such

as wireless communications, power systems, image processing, genetics, and finance. For

instance, to achieve effective and reliable dynamic spectrum access in cognitive radio, a

secondary user needs to detect primary user transmissions, and if detected estimate the

cross channels that may cause interference to primary users [26]. In power grid monitoring,

it is essential to detect the correct topological model, and at the same time estimate the

system state [83]. Some other important examples are detecting and estimating objects

from images [84], target detection and parameter estimation in radar [85], and detection

and estimation of periodicities in DNA sequences [86].

In all these applications, detection and estimation problems are intrinsically coupled,

and are both of primary importance. Hence, a jointly optimum method, that maximizes

the overall performance, is required. Classical approaches either treat the two subproblems

separately with the corresponding optimum solutions, or solve them together, as a com-

posite hypothesis testing problem, using the generalized likelihood ratio test (GLRT). It is

well known that such approaches do not yield the optimum overall result [87; 25]. In the

former approach, for example, the likelihood ratio test (LRT) is performed by averaging
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over the unknown parameters to solve the detection subproblem optimally, and then relying

on the detection decision the Bayes estimators are used to solve the estimation subprob-

lem. On the other hand, in GLRT, the maximum likelihood (ML) estimates of all unknown

parameters are computed, and then using these estimates LRT is performed as in a simple

hypothesis testing problem. In GLRT, the primary emphasis is on the detection perfor-

mance and the estimation performance is of secondary importance. GLRT is very popular

due to its simplicity. However, it is not always optimal in terms of the detection perfor-

mance in the Neyman-Pearson sense [88], and also the overall performance under mixed

Bayesian/Neyman-Pearson [89] and pure Bayesian [87] setups.

Although there is a number of works on joint detection and estimation, e.g., [87; 90;

91; 92; 89; 93; 86; 83; 25], this important topic is not sufficiently treated in the literature.

The first systematic theory on joint detection and estimation appeared in [87]. This initial

work, in a Bayesian framework, derives optimum joint detector and estimator structures

for different levels of coupling between the two subproblems. [90] extends the results of

[87] on binary hypothesis testing to the multi-hypothesis case. In [91], different from [87;

90], the case with unknown parameters under the null hypothesis is considered. [91] does

not present an optimum joint detector and estimator, but shows that, even in the classical

separate treatment of the two subproblems, LRT implicitly uses the posterior distributions

of unknown parameters, which characterize the Bayesian estimation. [92] deals with joint

multi-hypothesis testing and non-Bayesian estimation considering a finite discrete parameter

set and the minimax approach. [89] and [93] study Bayesian estimation under different

Neyman-Pearson-like formulations, and derive the corresponding optimum joint detection

and estimation schemes. [86], in a minimax sense, extends the analysis in [93] to the general

case with unknown parameters in both hypotheses. [83] handles the joint multi-hypothesis

testing and state estimation problem for linear models with Gaussian noise. It finds the

joint posterior distribution of the hypotheses and the system states, which can be used to

identify the optimum joint detector and estimator for a specific performance criterion in a

unified Bayesian approach.

Most of the today’s engineering applications are subject to resource (e.g., time, energy,

bandwidth) constraints. For that reason, it is essential to minimize the number of observa-
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tions used to perform a task (e.g., detection, estimation) due to the cost of taking a new

observation, and also latency constraints. Sequential statistical methods are designed to

minimize the average number of observations for a given accuracy level. They are equipped

with a stopping rule to achieve optimal stopping, unlike fixed-sample-size methods. Specif-

ically, we cannot stop taking samples too early due to the performance constraints, and

do not want to stop too late to save critical resources, such as time and energy. Optimal

stopping theory handles this trade-off through sequential methods. For more information

on sequential methods we refer to the original work [56] by Wald, and a more recent work

[94]. The majority of existing works on joint detection and estimation consider only the

fixed-sample-size problem. Although [91] discusses the case where observations are taken

sequentially, it lacks a discussion on optimal stopping, limiting the scope of the work to the

iterative computation of sufficient statistics. The only work that treats the joint detection

and estimation problem in a “real” sequential manner is [25]. It provides the exact optimum

triplet of stopping time, detector, and estimator for a linear scalar observation model with

Gaussian noise.

In this chapter, following the methodology presented in [25], we develop a general frame-

work for optimum sequential joint detection and estimation in Section 4.2. In particular,

we extend [25] in five directions: We consider (i) a general non-linear signal model (ii) for

vector observations (iii) with a universal noise model, and also (iv) a general problem for-

mulation with unknown parameters under both hypotheses. Moreover, (v) we extend our

analysis to the multi-hypothesis case in the smart grid application. After presenting the

general theory, we pave the way for applications by systematically analyzing more specific

cases. We then apply the developed theory to two popular concepts, namely cognitive radio

and smart grid in Sections 4.3 and 4.4, respectively. Finally, the concluding remarks are

given in Section 4.5.
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4.2 Optimum Sequential Joint Detection and Estimation

4.2.1 Problem Formulation

Consider a general model

yt = f(x,H t) +wt, t = 1, 2, . . . , (4.1)

where yt ∈ R
M is the measurement vector taken at time t; x ∈ R

N is the unknown vector

of parameters that we want to estimate; H t is the observation matrix that relates x to yt;

f : RM → R
M is a (possibly nonlinear) function of x and H t; and wt ∈ R

M is the noise

vector.

In addition to estimation, we would like to detect the true hypothesis (H0 or H1) in a

binary hypothesis testing setup, in which x is distributed according to a specific probability

distribution under each hypothesis, i.e.,

H0 : x ∼ π0,

H1 : x ∼ π1.
(4.2)

Here, we do not assume specific probability distributions for x, Ht, wt, or a specific system

model f . We only assume π0 and π1 are known, and {yt,H t} are observed at each time t.

Note that we allow for correlated noise wt and correlated Ht.

Since we want to both detect and estimate, we use a combined cost function

C (T, dT , x̂
0
T , x̂

1
T ) = a0P0(dT = 1|HT ) + a1P1(dT = 0|HT )

+ b00E0

[
J(x̂0

T ,x)1{dT=0}|HT

]
+ b01E0

[
J(x̂1

T ,x)1{dT=1}|HT

]

+ b10E1

[
J(x̂0

T ,x)1{dT=0}|HT

]
+ b11E1

[
J(x̂1

T ,x)1{dT=1}|HT

]
(4.3)

where T is the stopping time, dT is the detection function, {x̂0
T , x̂

1
T } are the estimators when

we decide on H0 and H1, respectively, J(x̂T ,x) is a general estimation cost function, e.g.,

‖x̂T −x‖2, and {ai, bij}i,j=0,1 are some constants. We denote with Ht and {Ht} the sigma-

algebra and filtration generated by the history of the observation matrices {H1, . . . ,H t},
respectively, and with Pi and Ei the probability measure and expectation under Hi. The

indicator function 1{A} takes the value 1 if the event A is true, or 0 otherwise. In (4.3),
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the first two terms are the detection cost, and the remaining ones are the estimation cost.

Writing (4.3) in the following alternative form

C (T, dT , x̂
0
T , x̂

1
T ) = E0

[
b00J(x̂

0
T ,x)1{dT=0} +

{
a0 + b01J(x̂

1
T ,x)

}1{dT=1}|HT

]

+ E1

[{
a1 + b10J(x̂

0
T ,x)

}1{dT=0} + b11J(x̂
1
T ,x)1{dT=1}|HT

]
(4.4)

it is clear that our cost function corresponds to the Bayes risk given {H1, . . . ,H t}.
In a sequential setup, in general, the expected stopping time (i.e., the average number

of samples) is minimized subject to a constraint on the cost function. In the presence

of an ancillary statistic, such as Ht, conditioning is known to have significant advantages

[80; 24], hence the cost function in (4.3) is conditioned on Ht. Intuitively, there is no

need to average the performance measure C (T, dT , x̂
0
T , x̂

1
T ) over Ht, which is a reliable

statistic (i.e., does not include noise). Conditioning onHt also facilitates finding an optimum

sequential scheme [24], and frees our formulation from assuming statistical descriptions (e.g.,

probability distribution, independence, stationarity) on the observation matrix H t. As a

result, our objective is to minimize E[T |Ht] subject to a constraint on C (T, dT , x̂
0
T , x̂

1
T ).

Let Ft and {Ft} denote the sigma-algebra and filtration generated by the complete

history of observations {(y1,H1), . . . , (yt,H t)}, respectively, thus Ht ⊂ Ft. In the pure

detection and pure estimation problems, it is well known that serious analytical compli-

cations arise if we consider a general {Ft}-adapted stopping time, that depends on the

complete history of observations. Specifically, in the pure estimation problem, finding the

optimum sequential estimator that attains the sequential Cramer-Rao lower bound (CRLB)

is not a tractable problem if T is adapted to the complete observation history {Ft} [68;

95]. Similarly, in the pure detection problem with an {Ft}-adapted stopping time, we end

up with a two-dimensional optimal stopping problem which is impossible to solve (analyt-

ically) since the thresholds for the running likelihood ratio depend on the sequence {H t}.
Alternatively, in [69; 14; 24; 23; 25], T is restricted to {Ht}-adapted stopping times, which

facilitates finding an optimal solution. In this paper, we are interested in {Ht}-adapted
stopping times as well. Hence, E[T |Ht] = T and we aim to solve the following optimization

problem,

min
T,dT ,x̂0

T ,x̂1

T

T s.t. C (T, dT , x̂
0
T , x̂

1
T ) ≤ α, (4.5)
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where α is a target accuracy level.

Above, from a theoretical point of view, we explained why we unconventionally minimize

T instead of E[T ], which is the usual practice in classical optimal stopping problems. From

an operational point of view, we start with the following stopping rule: stop the first time

the target accuracy level α is achieved, i.e., the inequality C (T, dT , x̂
0
T , x̂

1
T ) ≤ α is satisfied.

This operational problem statement gives us the problem formulation in (4.5), which in

turn defines an {Ht}-adapted stopping time T . This is because T is solely determined

by C (T, dT , x̂
0
T , x̂

1
T ), which, as seen in (4.3), averages over {yt} and thus is a function of

only {H t}. The stopping rule considered here is a natural extension of the one commonly

used in sequential estimation problems, e.g., [69; 23], and is optimum for {Ht}-adapted
stopping times, as shown in (4.5). Note that the solution sought in (4.5) is optimum for

each realization of {H t}, and not on average with respect to this sequence.

4.2.2 Optimum Solution

4.2.2.1 Optimum Estimators

Let us begin our analysis with optimum estimators. Grouping the terms with the same

estimator in (4.3), we can write the optimum estimators as

x̂
0
T = argmin

x̂0

T

b00E0

[
J(x̂0

T ,x)1{dT=0}|HT

]
+ b10E1

[
J(x̂0

T ,x)1{dT=0}|HT

]

x̂
1
T = argmin

x̂1

T

b01E0

[
J(x̂1

T ,x)1{dT=1}|HT

]
+ b11E1

[
J(x̂1

T ,x)1{dT=1}|HT

]
.

Since both estimators can be found in the same way, we will only focus on x̂
0
T . Re-

call that Ft denotes the sigma-algebra generated by the complete history of observations

{(y1,H1), . . . , (yt,H t)}. Then, we can write

x̂
0
T = argmin

x̂0

T

∞∑

t=0

E0

[(
b00 + b10 L̄t

)
J(x̂0

T ,x)1{dt=0}|Ht

]1{T=t},

= argmin
x̂0

T

∞∑

t=0

E0

[(
b00E0

[
J(x̂0

T ,x)|Ft

]
+ b10 Lt E1

[
J(x̂0

T ,x)|Ft

] )1{dt=0}|Ht

]1{T=t},

(4.6)
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where L̄t ,
p1({ys}ts=1,x|Ht)

p0({ys}ts=1,x|Ht)
and Lt ,

p1({ys}ts=1|Ht)

p0({ys}ts=1|Ht)
are likelihood ratios. To write (4.6) we

used the facts that L̄t = Lt
p1(x|{ys}ts=1,Ht)

p0(x|{ys}ts=1,Ht)
= Lt

p1(x|Ft)
p0(x|Ft)

and dt is Ft-measurable (i.e., dt is

deterministic given Ft).

Define a new probability distribution p2 ,
b00p0+b10Ltp1

b00+b10Lt
. We are, in fact, searching for

an estimator that minimizes E2

[
J(x̂0

T ,x)|Ft

]
, i.e.,

x̂
i
T = argmin

x̂i
T

E2

[
J(x̂i

T ,x)|Ft

]
, i = 0, 1. (4.7)

Note that for a large class of cost functions [96, pp. 239–241], including the mean square

error (MSE) Ei

[
‖x̂0

T − x‖2|Ft

]
, the optimum estimator is given by the conditional mean

Ei[x|Ft], which we will consider throughout the paper whenever a specification is needed.

Hence, for MSE and many other cost functions

x̂
0
T = E2[x|FT ] =

b00E0[x|FT ] + b10LTE1[x|FT ]

b00 + b10LT
. (4.8)

Similarly, we can write

x̂
1
T =

b01E0[x|FT ] + b11LTE1[x|FT ]

b01 + b11LT
. (4.9)

We see that the optimum estimators in (4.8) and (4.9) are weighted averages of the minimum

MSE (MMSE) estimators under H0 and H1. Note that typically the likelihood ratio LT is

smaller than 1 under H0 and larger than 1 under H1, that is, x̂
i
T is close to Ei[x|FT ].

With the optimum estimators given in (4.7) the cost function in (4.3) becomes

C (T, dT ) = a0P0(dT = 1|HT ) + a1P1(dT = 0|HT )

+ b00E0

[
E0

[
J(x̂0T ,x)|FT

]
︸ ︷︷ ︸

∆00
T

1{dT=0}|HT

]
+ b01E0

[
E0

[
J(x̂1T ,x)|FT

]
︸ ︷︷ ︸

∆01
T

1{dT=1}|HT

]

+ b10E1

[
E1

[
J(x̂0T ,x)|FT

]
︸ ︷︷ ︸

∆10
T

1{dT=0}|HT

]
+ b11E1

[
E1

[
J(x̂1T ,x)|FT

]
︸ ︷︷ ︸

∆11
T

1{dT=1}|HT

]
, (4.10)

where ∆ij
t is the posterior expected estimation cost when Hj is decided under Hi.

Considering the conditional mean as the optimum estimator, from (4.8) and (4.9),

∆ij
t = Ei

[
‖x− Ei[x|Ft]‖2|Ft

]
+ Ei

[
‖Ei[x|Ft]− x̂

j
t‖2|Ft

]

= Tr (Covi[x|Ft]) + δij‖E0[x|Ft]− E1[x|Ft]‖2, (4.11)
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where Tr(·) is the trace of a matrix, δ0j =
(

b1jLt

b0j+b1jLt

)2
and δ1j =

(
b0j

b0j+b1jLt

)2
. In other

words, ∆ij
t is the MMSE under Hi plus the distance between our estimator x̂

j
t and the

optimum estimator under Hi. The latter is the penalty we pay for not knowing the true

hypothesis.

Note that for b00 = b10 and b01 = b11 (e.g., the case bij = b ∀i, j, where we do not

differentiate between estimation errors), the optimum estimators in (4.8) and (4.9) coincide,

and as a result δ00 = δ01 = Lt
1+Lt

and δ10 = δ11 = 1
1+Lt

in (4.11). In other words, we use the

estimator x̂T = E0[x|FT ]+LTE1[x|FT ]
1+LT

regardless of the detection decision.

4.2.2.2 Optimum Detector

We now search for the optimum decision function dT that minimizes (4.10). Combining all

the terms under E0 we write

dT = argmin
dT

∞∑

t=0

E0

[
a01{dt=1} + a1Lt1{dt=0} + b00∆

00
t 1{dt=0} + b01∆

01
t 1{dt=1}

+b10Lt∆
10
t 1{dt=0} + b11Lt∆

11
t 1{dt=1}|Ht

]1{T=t}, (4.12)

where Lt =
p1({ys}ts=1|Ht)

p0({ys}ts=1
|Ht)

. Since 1{dt=0} = 1− 1{dt=1},

dT = argmin
dT

∞∑

t=0

E0

[{
a0 + b01∆

01
t − b00∆00

t −
(
a1 + b10∆

10
t − b11∆11

t

)
Lt

}1{dt=1}|Ht

]1{T=t}

+ a1 + b00E0[∆
00
T |HT ] + b10E1[∆

10
T |HT ]. (4.13)

Note that a1 + b00E0[∆
00
T |HT ] + b10E1[∆

10
T |HT ] does not depend on dT , and the term inside

the expectation is minimized by

dt =





1 if Lt

(
a1 + b10∆

10
t − b11∆11

t

)
≥ a0 + b01∆

01
t − b00∆00

t

0 otherwise.
(4.14)

The optimum decision function dt is coupled with the estimators x̂0t , x̂
1
t through the posterior

estimation costs {∆ij
t } due to our joint formulation [cf. (4.3)]. Specifically, while making

a decision, it takes into account all possible estimation costs that may result from the true

hypothesis and its decision. In the detection-only problem with bij = 0,∀i, j, the coupling

disappears, and dt boils down to the well-known likelihood ratio test.
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4.2.2.3 Complete Solution

We can now identify the optimum stopping time T, and as a result the complete solution

(T, dT, x̂
0
T, x̂

1
T) to the optimization problem in (4.5).

Theorem 6. The optimum sequential joint detector and estimator (T, dT, x̂
0
T, x̂

1
T) that solves

the problem in (4.5) is given by

T = min{t ∈ N : Ct ≤ α} (4.15)

dT =





1 if LT

(
a1 + b10∆

10
T
− b11∆11

T

)
≥ a0 + b01∆

01
T
− b00∆00

T

0 otherwise.
(4.16)

x̂
i
T = argmin

x̂i
T

E2i

[
J(x̂i

T ,x)|FT

]
, i = 0, 1, (4.17)

(
e.g., x̂iT =

b0iE0[x|FT] + b1iLTE1[x|FT]

b0i + b1iLT

for J(x̂i
T ,x) = ‖x̂i

T − x‖2, etc.
)

where

Ct , E0

[{
a0 + b01∆

01
t − b00∆00

t −
(
a1 + b10∆

10
t − b11∆11

t

)
Lt

}−
+ a1Lt + b00∆

00
t + b10Lt∆

10
t |Ht

]

(4.18)

is the optimal cost at time t, E2i is the expectation with respect to the probability measure

p2i =
b0ip0+b1iLtp1

b0i+b1iLt
and A− = min(A, 0).

Proof. In (4.7)–(4.9), we showed that x̂
0
T and x̂

1
T minimize the cost function in (4.3) for

any stopping time T and decision function dT , i.e., C (T, dT , x̂
0
T , x̂

1
T ) ≤ C (T, dT , x̂

0
T , x̂

1
T ).

Later in (4.14), we showed that C (T, dT , x̂
0
T , x̂

1
T ) ≤ C (T, dT , x̂

0
T , x̂

1
T ). Hence, from (4.5), the

optimum stopping time is the first time Ct , C (t, dt, x̂
0
t , x̂

1
t ) achieves the target accuracy

level α, as shown in (4.15). From (4.13) and (4.14), we write the optimal cost Ct as in

(4.18).

According to Theorem 6, the optimum scheme, at each time t, computes Ct [cf. (4.18)],
and then compares it to α. When Ct ≤ α, it stops and makes a decision using (4.16). Finally,

it estimates x using (4.17). Considering the conditional mean as the optimum estimator a

pseudo-code for this scheme is given in Algorithm 8.

Since the results in Theorem 6 are universal in the sense that they hold for all proba-

bility distributions and system models, in Algorithm 8 we provide a general procedure that
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Algorithm 8 The procedure for the optimum scheme in Theorem 6

1: Initialization: t← 0, C ← ∞
2: while C > α do

3: t← t+ 1

4: L =
p1({ys

}t
s=1

|Ht)

p0({ys
}t
s=1

|Ht)

5: ei = Ei[x|Ft], i = 0, 1

6: MMSEi = Tr(Covi[x|Ft]), i = 0, 1

7: ∆0j = MMSE0 +
(

b1jL
b0j+b1jL

)2
‖e0 − e1‖2, j = 0, 1

8: ∆1j = MMSE1 +
(

b0j
b0j+b1jL

)2
‖e0 − e1‖2, j = 0, 1

9: Cost: C as in (4.18)

10: end while

11: Stop: T = t

12: if L
(
a1 + b10∆

10 − b11∆11
)
≥ a0 + b01∆

01 − b00∆00 then

13: Decide: d = 1

14: Estimate: x̂ = b01e0+b11Le1

b01+b11L

15: else

16: Decide: d = 0

17: Estimate: x̂ = b00e0+b10Le1

b00+b10L

18: end if

requires computation of some statistics (cf. lines 4,5,6,9). In specific cases, such statistics

may be easily computed. However, in many cases they cannot be written in closed forms,

hence intense computation is required to estimate them (e.g., a multi-dimensional integral).

The fact that such computation is performed online (i.e., as new observations arrive at each

time t) is the bottleneck of the generic algorithm given in Algorithm 8.

4.2.3 Separated Detection and Estimation Costs

In the combined cost function, given by (4.3), if we penalize the wrong decisions only with

the detection costs, i.e., b01 = b10 = 0, we get the following simplified alternative cost

function

C (T, dT , x̂
0
T , x̂

1
T ) = a0P0(dT = 1|HT ) + a1P1(dT = 0|HT )

+ b00E0

[
J(x̂0

T ,x)1{dT=0}|HT

]
+ b11E1

[
J(x̂1

T ,x)1{dT=1}|HT

]
. (4.19)

In this alternative form, detection and estimation costs are used to penalize separate cases.

Specifically, under Hi, the wrong decision case is penalized with the constant detection
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cost ai, and the correct decision case is penalized with the estimation cost Ei[J(x̂
i
T ,x)|Ht].

Since ai is the only cost to penalize the wrong decision case, it is typically assigned a larger

number here than in (4.3).

Substituting b01 = b10 = 0 in (4.7)–(4.9) yields the following optimum estimators

x̂
i
T = argmin

x̂i
T

Ei

[
J(x̂i

T ,x)|FT

]
, i = 0, 1, (4.20)

(
e.g., x̂iT = Ei[x|FT ] for J(x̂

i
T ,x) = ‖x̂i

T − x‖2
)
, (4.21)

which we use when Hi is decided. According to (4.21), when we decide on Hi, we use the

MMSE estimator under Hi, as opposed to (4.8) and (4.9), which are mixtures of the MMSE

estimators under both hypotheses. Consequently, from (4.11), the posterior estimation cost

∆ii
t = Tr(Covi[x|Ft]) = MMSEi

t. (4.22)

Moreover, with b01 = b10 = 0, the optimum decision function in (4.14) becomes

dt =





1 if Lt

(
a1 − b11∆11

t

)
≥ a0 − b00∆00

t

0 otherwise.
(4.23)

The above decision function is biased towards the hypothesis with better estimation per-

formance. Specifically, when the MMSE under H1 is smaller than that under H0 (i.e.,

∆11
t < ∆00

t ), it is easier to satisfy the inequality Lt

(
a1 − b11∆11

t

)
≥ a0 − b00∆00

t , and thus

to decide in favor of H1. Conversely, H0 is favored when ∆00
t < ∆11

t . Since the detector in

(4.23) uses the maximum likelihood (ML) criterion, as in the likelihood ratio test, together

with the MMSE criterion, we can call it ML & MMSE detector. On the other hand, the

detector in (4.14) similarly favors the hypothesis that can decrease the general estimation

cost [cf. (4.3)] more.

Finally, the optimum stopping time in this special case is still given by (4.15), where

Ct = E0

[
(a1Lt + b00∆

00
t )1{dt=0} + (a0 + b11Lt∆

11
t )1{dt=1}|Ht

]
(4.24)

= E0

[{
a0 − b00∆00

t −
(
a1 − b11∆11

t

)
Lt

}−
+ a1Lt + b00∆

00
t |Ht

]
,

with ∆ii
t = MMSEi

t for the conditional mean optimum estimator.
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4.2.4 Linear Quadratic Gaussian (LQG) Model

We next consider, as a special case, the quadratic estimation cost J(x̂i
T ,x) = ‖x̂i

T − x‖2,
and the linear system model

yt = Htx+wt, (4.25)

where wt is the white Gaussian noise with covariance σ2I, and x is Gaussian under both

hypotheses, i.e.,

H0 : x ∼ N (µ0,Σ0),

H1 : x ∼ N (µ1,Σ1).
(4.26)

In this case, we compute

pi({ys}ts=1|Ht) =

∫

RN

pi({ys}ts=1,x|Ht) dx

=

∫

RN

exp
(
− 1

2σ2

∑t
s=1 ‖ys −Hsx‖2

)

(2π)mt/2σmt

︸ ︷︷ ︸
pi({ys}ts=1|Ht,x)

exp

(
−1

2‖x− µi‖2Σ−1

i

)

(2π)n/2|Σi|1/2︸ ︷︷ ︸
πi

dx

=

exp


−1

2


∑t

s=1
‖ys‖2
σ2 + ‖µi‖2Σ−1

i

− ‖vt
σ2 +Σ−1

i µi‖2(U t
σ2 +Σ

−1

i

)−1






(2π)mt/2 σmt |Σi|1/2
∣∣∣U t

σ2 +Σ−1
i

∣∣∣
1/2

∫

RN

exp

(
−1

2

∥∥∥∥x−
(
U t
σ2 +Σ−1

i

)−1 (vt
σ2 +Σ−1

i µi

)∥∥∥∥
2

U t
σ2 +Σ

−1

i

)

(2π)n/2
∣∣∣∣
(
U t

σ2 +Σ−1
i

)−1
∣∣∣∣
1/2

dx

︸ ︷︷ ︸
=1

, (4.27)

where U t ,
∑t

s=1 H
′
sHs, vt ,

∑t
s=1H

′
sys, and ‖x‖2Σ = x′Σx. As a result, the likelihood

ratio Lt =
p1({ys}ts=1|Ht)

p0({ys}ts=1
|Ht)

is given by

Lt =

√√√√√
|Σ0|

∣∣∣U t
σ2 +Σ−1

0

∣∣∣

|Σ1|
∣∣∣U t
σ2 +Σ−1

1

∣∣∣
exp

[
1

2

(∥∥∥
vt

σ2
+Σ−1

1 µ1

∥∥∥
2
(
U t
σ2 +Σ

−1

1

)−1−
∥∥∥
vt

σ2
+Σ−1

0 µ0

∥∥∥
2
(
U t
σ2 +Σ

−1

0

)−1

+ ‖µ0‖2Σ−1

0

− ‖µ1‖2Σ−1

1

)]
. (4.28)
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From (4.27), it is seen that the posterior distribution pi(x|Ft) =
pi({ys}ts=1,x|Ht)

pi({ys}ts=1|Ht)
is

N
((

U t

σ2
+Σ−1

i

)−1 ( vt

σ2
+Σ−1

i µi

)

︸ ︷︷ ︸
Ei[x|Ft]

,

(
U t

σ2
+Σ−1

i

)−1

︸ ︷︷ ︸
Covi[x|Ft]

)
. (4.29)

The closed form expressions for the necessary and sufficient statistics in Algorithm 8,

namely Lt, Ei[x|Ft] and Covi[x|Ft], are given in (4.28) and (4.29). Note that these statistics,

and thus the posterior estimation cost ∆ij
t [cf. (4.11)] are functions of U t and vt only.

Hence, in (4.18), given U t the expectation is taken over vt = U tx +
∑t

s=1H
′
sws, which

is distributed as N (U tµi,U tΣiU t + σ2U t) under Hi. As a result, Ct and the optimum

stopping time T [cf. (4.15)] are functions of U t only, which is in fact the Fisher information

matrix. At each time t, for the corresponding U t, we can easily estimate the optimal cost Ct
[cf. (4.18)] through Monte Carlo simulations. Specifically, given U t we generate realizations

of vt, compute the expression inside the expectation in (4.18), and average them.

The above scheme performs online simulations to estimate Ct for the specific U t value

at time t. Alternatively, for a large number of U values, C(U) can be computed offline

to obtain a stopping rule based on U , reducing the online computation considerably. In

particular, a hyper-surface Q = {U : C(U) = α} that separates the continuation region

R = {U : C(U) > α} and stopping region S = {U : C(U ) < α} in an N2+N
2 -dimensional

space determines the optimal stopping rule. Although U t =
∑t

s=1H
′
sHs has N

2 entries, it

is in fact N2+N
2 -dimensional due to symmetry. Such a hyper-surface can be found through

offline Monte Carlo simulations. This alternative method significantly reduces the amount

of online computations since at each time t we only need to check whether U t is in the

continuation or stopping region. On the other hand, to decrease the amount of online

computations it performs exhaustive offline computations. Hence, it should be preferred

in the cases where offline resources are cheap. The procedure for the alternative optimum

scheme is summarized in Algorithm 9.

4.2.5 Independent LQG Model

Here, we further assume in (4.25) that the entries of x are independent (i.e., Σ0 and Σ1

are diagonal), and H t is diagonal. Note that in this case M = N , and the entries of yt are
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Algorithm 9 The procedure for the optimum scheme with offline computation

1: Initialization: t← 0, U ← 0, v ← 0

2: Compute the continuation region R
3: while U ∈ R do

4: t← t+ 1

5: U ← U +H ′
tHt; v ← v +H ′

tyt

6: end while

7: Stop: T = t

8: Ai =
U
σ2 +Σ−1

i ; bi =
v
σ2 +Σ−1

i µi, i = 0, 1

9: L =

√
|Σ0||A0|

|Σ1||A1|
exp

[
1
2

(
b′1A1b1 − b′0A0b0 + µ′

0Σ
−1
0 µ0 − µ′

1Σ
−1
1 µ1

)]

10: ei = A−1
i bi

11: MMSEi = Tr(A−1
i )

12: ∆0j = MMSE0 +
(

b1jL
b0j+b1jL

)2
‖e0 − e1‖2, j = 0, 1

13: ∆1j = MMSE1 +
(

b0j
b0j+b1jL

)2
‖e0 − e1‖2

14: if L
(
a1 + b10∆

10 − b11∆11
)
≥ a0 + b01∆

01 − b00∆00 then

15: Decide: d = 1

16: Estimate: x̂ = b01e0+b11Le1

b01+b11L

17: else

18: Decide: d = 0

19: Estimate: x̂ = b00e0+b10Le1

b00+b10L

20: end if

independent. This may be the case in a distributed system (e.g., wireless sensor network) in

which each node (e.g., sensor) takes noisy measurements of a local parameter, and there is

a global event whose occurrence changes the probability distributions of local parameters.

In such a setup, nodes collaborate through a fusion center to jointly detect the global event

and estimate the local parameters. To find the optimal scheme we assume that all the

observations collected at nodes are available to the fusion center.

Due to spatial independence we have pi({ys}ts=1|Ht) =
∏N

n=1 pi({ys,n}ts=1|Hn
t ), where
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pi({ys,n}ts=1|Hn
t ) is given by the scalar version of (4.27), i.e.,

pi({ys,n}ts=1|Hn
t ) =

exp


−

1
2



∑t

s=1
y2s,n
σ2 +

µ2
i,n

ρ2i,n
−

(
vt,n

σ2 +
µi,n

ρ2
i,n

)2

ut,n

σ2 + 1

ρ2
i,n







(2π)t/2 σt ρi,n
√

ut,n

σ2 + 1
ρ2i,n

∫

R

exp



−


xn−

vt,n

σ2
+

µi,n

ρ2
i,n

ut,n

σ2
+ 1

ρ2
i,n




2

2
ut,n

σ2
+ 1

ρ2
i,n




√
2π

ut,n

σ2 + 1

ρ2
i,n

dx

︸ ︷︷ ︸
=1

, (4.30)

where the subscript n denotes the n-th entry of the corresponding vector, ρ2i,n is the n-th

diagonal entry of Σi, ut,n =
∑t

s=1 h
2
s,n and vt,n =

∑t
s=1 hs,nys,n. As a result, the posterior

distribution pi(xn|Fn
t ) =

pi({ys,n}ts=1,xn|Hn
t )

pi({ys,n}ts=1|Hn
t )

of each local parameter xn is

N




vt,n
σ2 +

µi,n

ρ2i,n
ut,n

σ2 + 1
ρ2i,n

,
1

ut,n

σ2 + 1
ρ2i,n


 , (4.31)

and thus the MMSE estimator and MMSE under Hi are

Ei[xn|Fn
t ] =

vt,n
σ2 +

µi,n

ρ2i,n
ut,n

σ2 + 1
ρ2i,n

and MMSEi
t,n =

1
ut,n

σ2 + 1
ρ2i,n

,

respectively. Note that MMSEi
t =

∑N
n=1 MMSEi

t,n. The global likelihood ratio is given by

the product of the local ones, i.e., Lt =
∏N

n=1 L
n
t , where from (4.30) Ln

t =
p1({ys,n}ts=1|Hn

t )

p0({ys,n}ts=1
|Hn

t )
is

written as

Ln
t =

ρ0,n
ρ1,n

√√√√√
ut,n

σ2 + 1
ρ20,n

ut,n

σ2 + 1
ρ21,n

exp



1

2




(
vt,n
σ2 +

µ1,n

ρ21,n

)2

ut,n

σ2 + 1
ρ21,n

−

(
vt,n
σ2 +

µ0,n

ρ20,n

)2

ut,n

σ2 + 1
ρ20,n

+
µ20,n
ρ20,n

−
µ21,n
ρ21,n





 .

(4.32)

In this case, the optimal cost Ct and thus the optimum stopping time T (cf. Theorem

6) are functions of the local entities {ut,n}nn=1 only since Lt, {Ei[xn|Fn
t ]}, MMSEi, and

accordingly ∆ij
t are functions of {ut,n, vt,n}nn=1 only. Hence, here the continuation and

stopping regions that determine the optimal stopping rule can be found through offline

simulations in an N -dimensional space, which is much smaller than the N2+N
2 -dimensional
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space under the general LQG model. Consequently, the scheme that finds the optimal

stopping rule through offline simulations is more viable here. In simulations, we generate

the realizations of each entry vt,n of vt independently and according to N (µi,nut,n, ρ
2
i,nu

2
t,n+

σ2ut,n).

4.3 Dynamic Spectrum Access in Cognitive Radio Networks

4.3.1 Background

Dynamic spectrum access is a fundamental problem in cognitive radio, in which secondary

users (SUs) are allowed to utilize a wireless spectrum band (i.e., communication channel)

that is licensed to primary users (PUs) without affecting the PU quality of service (QoS)

[79]. Spectrum sensing plays a key role in maximizing the SU throughput, and at the same

time protecting the PU QoS. In spectrum sensing, if no PU communication is detected,

then SU can opportunistically utilize the band [97; 98]. Otherwise, it has to meet some

strict interference constraints. Nevertheless, it can still use the band in an underlay fashion

with a transmit power that does not violate the maximum allowable interference level [99;

100]. Methods for combining the underlay and opportunistic access approaches have also

been proposed, e.g., [101; 102; 26]. In such combined methods, the SU senses the spectrum

band, as in opportunistic access, and controls its transmit power using the sensing result,

which allows SU to coexist with PU, as in underlay.

The interference at the PU receiver is a result of the SU transmit power, and also

the power gain of the channel between the SU transmitter and PU receiver. Hence, SU

needs to estimate the channel coefficient to keep its transmit power within allowable limits.

As a result, channel estimation, in addition to PU detection, is an integral part of an

effective dynamic spectrum access scheme in cognitive radio. In spectrum access methods

it is customary to assume perfect channel state information (CSI) at the SU, e.g., [99; 101;

100]. Recently, in [26], the joint problem of PU detection and channel estimation has been

addressed.

It is also crucial to minimize the sensing time for maximizing the SU throughput. Specif-

ically, decreasing the sensing period, that is used to determine the transmit power, saves
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time for data communication, increasing the SU throughput. Consequently, dynamic spec-

trum access in cognitive radio is intrinsically a sequential joint detection and estimation

problem.

4.3.2 Problem Formulation

We consider a cognitive radio network consisting of K SUs, and a pair of PUs. In PU

communication, a preamble takes place before data communication for synchronization

and channel estimation purposes. In particular, during the preamble both PUs transmit

random pilot symbols simultaneously through full duplexing. Pilot signals are often used

in channel estimation, e.g., [103], and also in spectrum sensing, e.g., [104]. We assume each

SU observes such pilot symbols (e.g., it knows the seed of the random number generator) so

that it can estimate the channels that connect it to PUs. Moreover, SUs cooperate to detect

the PU communication, through a fusion center (FC), which can be one of the SUs. To

find the optimal scheme we again assume a centralized setup where all of the observations

collected at SUs are available to the FC. In practice, under stringent energy and bandwidth

constraints SUs can report to the FC using level-triggered sampling, a non-uniform sampling

technique known to achieve asymptotic optimality while satisfying such constraints [20].

When the channel is idle (i.e., no PU communication), there is no interference constraint,

and as a result an SU can transmit with full power Pmax. In this case, SUs receive pure noise.

On the other hand, in the presence of PU communication, to satisfy the peak interference

power constraints I1 and I2 of PU 1 and PU 2, respectively, SU k should transmit with

power Pk = min
{
Pmax,

I1
x2
1k
, I2
x2
2k

}
, where xjk is the channel coefficient between PU j and

SU k. Hence, firstly the presence/absence of PU communication is detected. If no PU

communication is detected, then a designated SU transmits data with Pmax. Otherwise,

the channels between PUs and SUs are estimated to determine transmission powers, and

then the SU with the highest transmission power starts data communication.

We can model this sequential joint detection and estimation problem using (4.25). Here,

the vector x = [x11, . . . , x1K , x21, . . . , x2K ]′ holds the channel coefficients; the diagonal

matrix

H t = diag(ht,1, . . . , ht,1, ht,2, . . . , ht,2)
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holds the pilot signals; yt and wt are the observation and noise vectors in R
2K , respectively.

Then, we have the following binary hypothesis testing problem

H0 : x = 0,

H1 : x ∼ N (µ,Σ),
(4.33)

where µ = [µ11, . . . , µ2K ]′, Σ = diag(ρ211, . . . , ρ
2
2K) with µjk and ρ2jk being the mean and

variance of the channel coefficient xjk, respectively.

Since channel estimation is meaningful only under H1, we do not assign estimation cost

to H0, and perform estimation only when H1 is decided. In other words, we use the cost

function

C (T, dT , x̂T ) = a0P0(dT = 1|HT ) + a1P1(dT = 0|HT )

+ E1

[
b11‖x̂T − x‖21{dT=1} + b10‖x‖21{dT=0}|HT

]
, (4.34)

which is a special case of (4.3). When H0 is decided, it is like we set x̂T = 0. Similar to

(4.5), we want to solve the following problem

min
T,dT ,x̂T

T s.t. C (T, dT , x̂T ) ≤ α, (4.35)

for which the optimum solution follows from Section 4.2.2.

4.3.3 Optimum Solution

We write the optimum estimator as

x̂T = E1[x|FT ] (4.36)

by substituting b01 = 0 into (4.9). Then, from (4.10), the posterior estimation costs are

given by

∆11
T = Tr (Cov1[x|FT ])

∆10
T =

2∑

j=1

K∑

k=1

Ei[x
2
jk|F jk

T ] =

2∑

j=1

K∑

k=1

{(
Ei[xjk|F jk

T ]
)2

+ Var1[xjk|F jk
T ]

}

= ‖x̂T ‖2 + Tr (Cov1[x|FT ]) .
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As a result, we get the optimum detector, from (4.14), as

dT =





1 if LT

[
a1 + b10‖x̂T ‖2 + (b10 − b11)Tr (Cov1[x|FT ])

]
≥ a0

0 otherwise
(4.37)

since b00 = b01 = 0 here. In practice, a single weight is used for the estimation error

regardless of the detection decision. Hence, assuming b10 = b11 = b1 we obtain the following

optimum solution.

Corollary 1. The optimum sequential joint detector and estimator that solves (4.35) is

given by

T = min{t ∈ N : Ct ≤ α} (4.38)

dT =





1 if LT ≥ a0
a1+b1‖x̂T‖2

0 otherwise
(4.39)

x̂T = E1[x|FT], (4.40)

where

Ct , E0

[{
a0 −

(
a1 + b1‖x̂t‖2

)
Lt

}− |Ht

]
+ b1E1

[
‖x̂t‖2 + Tr (Cov1[x|Ft]) |Ht

]
+ a1 (4.41)

is the optimal cost at time t.

Proof. Since for any stopping time T we showed in (4.36) and (4.37) that C (T, dT , x̂T ) ≤
C (T, dT , x̂T ), the optimum stopping time T is the first time Ct , C (t, dt, x̂t) achieves the

target accuracy level α, proving (4.38). Finally, (4.39), (4.40), (4.41) directly follow from

(4.37), (4.36), (4.18), respectively.

From (4.31), the posterior distribution of each channel coefficient xjk under H1 is known

to be Gaussian with mean and variance

E1[xjk|F jk
t ] =

vt,jk
σ2 +

µjk

ρ2jk
ut,j

σ2 + 1
ρ2jk

, and Var1[xjk|F jk
t ] =

1
ut,j

σ2 + 1
ρ2jk

, j = 1, 2, k = 1, . . . ,K, (4.42)

where ut,j =
∑t

s=1 h
2
s,j and vt,jk =

∑t
s=1 hs,jys,jk. Note that the entries of x̂t, and

Tr (Cov1[x|Ft]) =
∑2

j=1

∑K
k=1 Var1[xjk|F

jk
t ] are given in (4.42). Since the received signal
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under H0 is white Gaussian noise, and the likelihood p1({ys,jk}ts=1|Hjk
t ) is given by (4.30),

we write the local and global likelihood ratios Ljk
t =

p1({ys,jk}ts=1|H
jk
t )

p0({ys,jk}ts=1
|Hjk

t )
and Lt as

Ljk
t =

exp




1
2




(
vt,jk

σ2 +
µjk

ρ2
jk

)2

ut,j

σ2 + 1

ρ2
jk

− µ2
jk

ρ2jk







ρjk
√

ut,j

σ2 + 1
ρ2jk

, Lt =

2∏

j=1

K∏

k=1

Ljk
t . (4.43)

The necessary and sufficient statistics for the optimum schemes given in Algorithm 8 and

Algorithm 9 are provided in (4.42) and (4.43). Similar to Section 4.2.5, in (online/offline)

Monte Carlo simulations for estimating the optimal cost, we generate the realizations of

vt,jk independently for each pair (j, k) and according to N (0, σ2ut,j) and N (µjkut,j, ρ
2
jku

2
t,j+

σ2ut,j) under H0 and H1, respectively.

4.3.4 Discussions

Since the statistics in (4.42) and (4.43) are functions of {ut,j , vt,jk}j,k only, and the expecta-

tions in (4.41) are conditioned on {hs,j}s,j for s = 1, . . . , t, the optimal cost Ct is a function

of the Fisher information ut,1 and ut,2 only. Hence, the continuation and stopping regions

that determine the optimal stopping rule can be easily found through offline simulations in

a 2-dimensional space, compared with the N -dimensional and N2+N
2 -dimensional spaces in

Section 4.2.5 and Section 4.2.4, respectively. That is, in this problem, Algorithm 9, which

considerably decreases the amount of online computation by finding offline the optimum

stopping rule for {ut,1, ut,2}, is preferred over Algorithm 8, which estimates Ct online at

each time t.

The optimum estimator, given by (4.40), is the posterior expected value, i.e., MMSE

estimator, of the channel coefficient vector under H1 as channel estimation is meaningful

only when PU communication takes place. The optimum detector, given in (4.39), uses the

side information provided by the estimator. Specifically, the farther away the estimates are

from zero, i.e., ‖x̂T‖2 ≫ 0, the easier it is to decide for H1. For b1 = 0, i.e., in the pure

detection problem, it boils down to the well-known likelihood ratio test (LRT). Note that

the proposed scheme in Corollary 1 can be used in parallel to dynamically access to multiple

spectrum bands.
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In the conventional approach, the detection and estimation problems are treated sep-

arately with a combination of either sequential detector and fixed-sample-size estimator

or sequential estimator and fixed-sample-size detector, as opposed to the sequential joint

detector and estimator (SJDE) given in Corollary 1. An important example to the former

is the combination of sequential probability ratio test (SPRT) and MMSE estimator. In the

pure detection problem, SPRT is the optimum sequential detector for i.i.d. observations

{yt,jk}, which is not the case here. Since it is the most common sequential detector, we con-

sider it here. In SPRT, we continue taking new observations as long as the likelihood ratio

is between two thresholds, and stop the first time it crosses a threshold. At the stopping

time, H1 (resp. H0) is decided if the upper (resp. lower) threshold is crossed [56], and finally

the MMSE estimator of x under H1 (resp. H0) is computed. On the other hand, since the

accuracy of channel estimation is crucial in satisfying the PU interference constraints under

H1, in SJDE, the cost function, and as a result the stopping time and decision function

involve the estimator. To verify the involvement of the estimator in the decision function

we also compare SJDE with the combination of the stopping time given in (4.38) for SJDE,

the LRT detector, and the MMSE estimator.

In Fig. 4.1, we numerically show the superior performance of SJDE over i) the combined

SPRT detector and MMSE estimator (SPRT & Est.), and ii) the sequential LRT detector

and MMSE estimator (SLRT & Est.), which are described above. The α value on the hor-

izontal axis is the target accuracy level that we want to achieve in terms of the combined

detection and estimation cost in (4.34), i.e., C (T, dT , x̂T ) ≤ α. The combined SLRT detec-

tor and MMSE estimator is equipped with the stopping rule of SJDE to demonstrate the

advantage of incorporating the side information from estimation into the decision function.

SJDE is specifically designed to minimize the stopping time subject to a constraint on the

combined cost, thus expectedly achieves the best performance in Fig. 4.1. Since SLRT &

Est. uses the optimum stopping time, given by (4.38), for the problem in (4.35), it outper-

forms SPRT & Est., in which the detector and estimator are completely separated, and the

stopping time is solely determined by the detector, following a conventional approach.

In our problem of interest, it is crucial that SUs do not violate the maximum inter-

ference constraint, which in turn ensures an admissible PU outage probability. In case of



CHAPTER 4. SEQUENTIAL JOINT DETECTION AND ESTIMATION 108

0.4 0.5 0.6 0.7 0.8 0.9 1
15

20

25

30

35

40

45

Target accuracy, α

A
v
er
a
g
e
st
o
p
p
in
g
ti
m
e

 

 
SJDE
SPRT & Est.
SLRT & Est.

Figure 4.1: Average stopping time vs. target accuracy level for SJDE in Corollary 1, the

conventional SPRT detector & MMSE estimator, and the sequential LRT detector & MMSE

estimator equipped with the stopping rule of SJDE.

misdetection the SU transmits with maximum power, which may cause the violation of

outage constraint. Even when the SU correctly detects PU communication, poor channel

estimate may still cause the SU to transmit with a non-admissible power. On the other

hand, the false alarm, which corresponds to deciding on H1 under H0, is not related to the

outage constraint, but only degrades the SU throughput. Therefore, in the combined cost

expression in (4.34) the second and third terms are more important than the first term.

Accordingly, in Fig. 4.1 we use a0 = a1 = 0.2 and b11 = b10 = b1 = 0.6. Since the second

part of the third term in (4.34) already penalizes misdetection, we do not differentiate be-

tween the coefficients, a0 and a1, of the detection error probabilities. In Fig. 4.1, referring

to (4.33) we use µjk = 0, i.e., Rayleigh fading channel xjk, and ρ2jk = σ2 = E[|h2t,j ] = 1,

where j = 1, 2 and k = 1, . . . , 5 are the PU and SU indices, respectively.
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4.4 State Estimation in Smart Grid with Topological Uncer-

tainty

4.4.1 Background and Problem Formulation

State estimation is a vital task in real-time monitoring of smart grid [105]. In the widely

used linear model

yt = Hx+wt, (4.44)

the state vector x = [θ1, . . . , θN ]′ holds the bus voltage phase angles; the measurement

matrix H ∈ R
M×N represents the network topology; yt ∈ R

M holds the power flow and

injection measurements; and wt ∈ R
M is the white Gaussian measurement noise vector.

We assume a pseudo-static state estimation problem, i.e., x does not change during the

estimation period. For the above linear model to be valid it is assumed that the differences

between phase angles are small. Hence, we can model θn, n = 1, . . . , N using a Gaussian

prior with a small variance, as in [106; 83].

The measurement matrix H is also estimated periodically using the status data from

switching devices in the power grid, and assumed to remain unchanged until the next

estimation instance. However, in practice, such status data is also noisy, like the power

flow measurements in (4.44), and thus the estimate of H may include some error. Since

the elements of H take the values {−1, 0, 1}, there is a finite number of possible errors.

Another source of topological uncertainty is the power outage, in which protective devices

automatically isolate the faulty area from the rest of the grid. Specifically, an outage changes

the grid topology, i.e., H , and also the prior on x. We model the topological uncertainty

using multiple hypotheses, as in [83; 107; 108; 109]. In (4.44), under hypothesis j we have

Hj : H = Hj, x ∼ N (µj,Σj), j = 0, 1, . . . , J, (4.45)

where H0 corresponds to the normal-operation (i.e., no estimation error or outage) case.

Note that in this case, for large J , in (4.3) there will be a large number of cross estimation

costs bjiEj [‖x̂i
T − x‖21{dT=i}|HT ], i 6= j that penalize the wrong decisions under Hj . For

simplicity, following the formulation in Section 4.2.3, we here penalize the wrong decisions

only with the detection costs, i.e., bji = 0, i 6= j, and bjj = bj > 0. Hence, generalizing the
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cost function in (4.19) to the mulihypothesis case, we use the following cost function

C (T, dT , {x̂j
T }) =

J∑

j=0

{
ajP(dT 6= j) + bjEj

[
‖x̂j

T − x‖21{dT=j}
]}

. (4.46)

Here we do not need the conditioning on Ht as the measurement matrices {Hj} are deter-

ministic and known. As a result the optimum stopping time T is deterministic and can be

computed offline.

4.4.2 Optimum Solution

Similar to (4.21), the optimum estimators are given by

x̂
j
T
= Ej [x|FT], j = 0, . . . , J,

=

(
U

j
t

σ2
+Σ−1

j

)−1(
v
j
t

σ2
+Σ−1

j µj

)
, (4.47)

where the closed form expression follows from (4.29) withU
j
t = tH ′

jHj and v
j
t = H ′

j

∑t
s=1 ys.

We use the estimator x̂j
T
when Hj is decided. Substituting {x̂j

T
} in (4.46) we have

C (dT) =

J∑

j=0

Ej

[
(aj − bj∆j

T
)1{dT 6=j}

]
+ bj∆

j
T
, (4.48)

where ∆j
t = Tr(Covj[x|Ft]) = Tr

((
U

j
t

σ2 +Σ−1
j

)−1
)

from (4.22) and (4.29), respectively.

Hence,

dT = argmin
dT

J∑

j=0

∫
· · ·
∫

Aj(dT)
(aj − bj∆j

T
) pj

(
{yt}Tt=1

)
dy1 . . . dyT, (4.49)

where Aj(dT) is the region where Hj is rejected, i.e., dT 6= j, under Hj . To minimize the

summation over all hypotheses, the optimum detector, for each observation set {yt}, omits

the largest (aj−bj∆j
T
) pj

(
{yt}Tt=1

)
in the integral calculation by choosing the corresponding

hypothesis. That is, the optimum detector is given by

dT = argmax
j

(aj − bj∆j
T
) pj

(
{yt}Tt=1

)
, (4.50)
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where ∆j
T
= Tr

((
UT

σ2 +Σ−1
j

)−1
)

and, from (4.27),

pj

(
{yt}Tt=1

)
=

exp


−1

2


∑T

t=1
‖yt‖2
σ2 + ‖µj‖2Σ−1

j

− ‖vT

σ2 +Σ−1
j µj‖2(UT

σ2 +Σ
−1

j

)−1






(2π)mT/2 σmT |Σj|1/2
∣∣∣UT

σ2 +Σ−1
j

∣∣∣
1/2

.

Finally, from (4.48) and (4.50), the optimal cost Ct = C (dt) is given by

Ct =
J∑

j=0

(aj − bj∆j
t)Pj(dt 6= j) + bj∆

j
t , (4.51)

which can be numerically computed offline for all t by estimating the sufficient statistics

{Pj(dt 6= j)}t,j through Monte Carlo simulations. Once the sequence {Ct} is obtained,

the optimum detection and estimation time is found offline using T = min{t : Ct ≤ α}.
In simulations, we generate the realizations of yt according to N (Hjµj ,HjΣjH

′
j + σ2I);

find dt using (4.50); and average 1{dt 6=j} over the realizations. Since the correct hypothesis

is unknown, the individual average costs under each hypothesis are summed to yield the

overall average cost in (4.51). According to the optimum stopping rule we stop taking new

observations and perform detection and estimation (in a joint manner) when this overall

average cost is as small as the target value α.

4.4.3 Discussions

Similar to Section 4.2.3, the optimum detector in (4.50) is biased towards the hypothesis

with best estimation performance (i.e., smallest MMSE), hence is an ML & MMSE detector.

We next present numerical results for the proposed scheme using the IEEE-4 bus system

(c.f. Fig. 4.2). Note that in this case the state status is characterized by a 3-dimensional

vector, i.e., x ∈ R
3 (the phase angle of bus 1 is taken as the reference). In Fig. 4.2, it is seen

that there are eight measurements collected by meters, thus the topology is characterized

by a 8-by-3 matrix, i.e., H ∈ R
8×3.

Since the impedances of all links are known beforehand, we assume that they are of unit

values without loss of generality. Here, instead of considering all possible forms of H , we

narrow down the candidate grid topologies to the outage scenarios. In particular, as given
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P4

P1

P2

P3

P4−1

P1−2P2−3

P3−4

Figure 4.2: Illustration for the IEEE-4bus system and the power injection (square) and

power flow (circle) measurements.

in (4.52), H0 represents the default topology matrix, and {H i, i = 1, 2, 3, 4} correspond to

the scenarios where the links l1−2, l2−3, l3−4, l4−1 (li−j denotes the link between bus i and

bus j) break down, respectively.

We use the following distributions for the state vector x under the hypotheses {Hi}.

H0 : x ∼ N (π/5× 1, π2/9× I), H1 : x ∼ N (2π/5 × 1, π2/16× I),

H2 : x ∼ N (3π/5 × 1, π2/25 × I), H3 : x ∼ N (4π/5 × 1, π2/36 × I),

H4 : x ∼ N (π × 1, π2/4× I),

where ai = 0.2, bi = 0.8,∀i, 1 is the vector of ones and I is the identity matrix. The

measurements are contaminated by the white Gaussian noise wt ∼ N (0, I). The goal is

to decide among the five candidate grid topologies, and meanwhile, to estimate the state
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vector.

H0 =




θ2 θ3 θ4

P1 −1 0 −1

P1−2 −1 0 0

P2 2 −1 0

P2−3 1 −1 0

P3 −1 2 −1

P3−4 0 1 −1

P4 0 −1 2

P4−1 0 0 1




, H1 =




0 0 −1
0 0 0

1 −1 0

1 −1 0

−1 2 −1
0 1 −1
0 −1 2

0 0 1




, (4.52)

H2 =




−1 0 −1
−1 0 0

1 0 0

0 0 0

0 1 −1
0 1 −1
0 −1 2

0 0 1




, H3 =




−1 0 −1
−1 0 0

2 −1 0

1 −1 0

−1 1 0

0 0 0

0 0 1

0 0 1




, H4 =




−1 0 0

−1 0 0

2 −1 0

1 −1 0

−1 2 −1
0 1 −1
0 −1 1

0 0 0




.

(4.53)

Since SPRT is not applicable in the multi-hypothesis case, we compare the proposed

SJDE scheme with the combination of SLRT detector and MMSE estimator, equipped the

stopping time given in (4.15). Fig. 4.3 illustrates that SJDE significantly outperforms

this combination. We see that SJDE requires smaller average number of samples than

SLRT & Est. to achieve the same target accuracy. Specifically, with small average sample

size (i.e., stopping time), the improvement of SJDE is substantial. This is because smaller

sample size causes larger estimation cost ∆j
T
, which in turn emphasizes the advantage of the

proposed detector, given by (4.50), over the conventional LRT detector. In fact, in smart

grid monitoring, the typical sample size is small since the system state evolves quickly, and

thus there is limited time for the control center to estimate the current state.
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Figure 4.3: Average stopping time vs. target accuracy level for SJDE and the combination

of sequential LRT detector & MMSE estimator equipped with the stopping rule of SJDE.

4.5 Conclusion

We have developed a general framework for optimum sequential joint detection and estima-

tion. More specific cases have also been analyzed for application purposes. Applying the

developed theory to two popular problems, namely dynamic spectrum sensing in cognitive

radio networks, and state estimation in smart grid with topological uncertainties, we have

proposed optimum sequential procedures, and numerically analyzed their performances.

Numerical results show considerable performance gains over the conventional methods.
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Chapter 5

Conclusions

In this thesis, we have considered sequential detection, estimation, and joint detection

and estimation, and their applications to decentralized systems, such as wireless sensor

networks, cognitive radio, and smart grid. We have designed optimum sequential schemes

for estimation, and joint detection and estimation. An event-based sampling technique

called level-triggered sampling has been used as a means of information transmission in

decentralized systems with stringent energy and bandwidth constraints. The sequential

decentralized schemes designed in this thesis are compatible with the existing hardware

based on conventional A/D conversion. Rigorous analyses have been performed to show

that the developed decentralized schemes achieve a strong type of asymptotic optimality

called order-2 asymptotic optimality. We have shown both analytically and numerically

that the proposed schemes based on level-triggered sampling significantly outperform their

counterparts based on conventional uniform sampling in terms of minimizing the average

sample size, i.e., decision time.
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Appendix A

Proofs in Part I

A.1 Theorem 2

We will prove the first equality in (2.27), and the proof of the second one follows similarly.

Let us first prove the following lemma.

Lemma 5. As α, β → 0 we have the following KL information at the FC

Î1(T ) = | log α|+O(1), and Î0(T ) = | log β|+O(1). (A.1)

Proof. We will show the first equality and the second one follows similarly. We have

Î1(T ) =P1(L̂T ≥ A)E1[L̂T |L̂T ≥ A] + P1(L̂T ≤ −B)E1[L̂T |L̂T ≤ −B]

=(1− β)(A+ E1[θA])− β(B + E1[θB ]) (A.2)

where θA, θB are overshoot and undershoot respectively given by θA , L̂T −A if L̂T ≥ A and

θB , −L̂T − B if L̂T ≤ −B. From [12, Theorem 2], we have A ≤ | log α| and B ≤ | log β|,
so as α, β → 0 (A.2) becomes Î1(T ) = A+ E1[θA] + o(1). From (2.10) we have |λ̂kn| <∞ if

0 < αk, βk < 1. If we assume 0 < ∆ < ∞ and |lkt | < ∞,∀k, t, then we have 0 < αk, βk < 1

and as a result Îki (t
k
1) = Ei[λ̂

k
1 ] < ∞. Since the overshoot cannot exceed the last received

LLR value, we have θA, θB ≤ Θ = maxk,n |λ̂kn| < ∞. Similar to Eq. (73) in [12] we can

write β ≥ e−B−Θ and α ≥ e−A−Θ where Θ = O(1) by the above argument, or equivalently,

B ≥ | log β| − O(1) and A ≥ | log α| − O(1). Hence we have A = | log α| + O(1) and

B = | log β|+O(1).
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From the assumption of |lkt | < ∞,∀k, t, we also have Îi(1) ≤ Ii(1) < ∞. Moreover, we

have Ei[Yk] ≤ Ei[τ
k
1 ] < ∞ since Ei[l

k
1 ] 6= 0. Note that all the terms on the right-hand side

of (2.26) except for Îi(T ) do not depend on the global error probabilities α, β, so they are

O(1) as α, β → 0. Finally, substituting (A.1) into (2.26) we get (2.27).

A.2 Proposition 2

Note that in the noisy channel cases the FC, as discussed in Section 2.3, computes the

LLR λ̃kn of the signal it receives, and then performs SPRT using the LLR sum L̃t. Hence,

analogous to Lemma 5 we can show that Ĩ1(T̃ ) = | log α|+O(1) and Ĩ0(T̃ ) = | log β|+O(1)

as α, β → 0. Note also that due to channel uncertainties |λ̃kn| ≤ |λ̂kn|, so we have Ĩki (t
k
1) ≤

Îki (t
k
1) < ∞ and Ĩi(1) ≤ Îi(1) < ∞. We also have Ei[Ỹk] ≤ Ei[τ̃

k
1 ] < ∞ as in the ideal

channel case. Substituting these asymptotic values in (2.30) we get (2.31).

A.3 Lemma 1

For given qkn, q̂
k
n takes the two values defined in (2.66) with probability p and 1 − p re-

spectively. Define ǫ̂ = φ
r̂ , that is, the common length of the subintervals. Suppose that

(m − 1)ǫ̂ ≤ qkn < mǫ̂, m = 1, . . . , r̂ then q̂kn takes the two end values with probabilities

p, (1 − p) respectively, but let us consider p unspecified for the moment. We would like to

select p so that

pe±bkn(∆+(m−1)ǫ̂) + (1− p)e±bkn(∆+mǫ̂) ≤ e±bkn(∆+qkn). (A.3)

Since bkn is a sign bit this is equivalent to solving the inequality

pe±(m−1)ǫ̂ + (1− p)e±mǫ̂ ≤ e±qkn , (A.4)

from which we conclude that

p = min

{
e−mǫ̂ − e−qkn

e−mǫ̂ − e−(m−1)ǫ̂
,

emǫ̂ − eqkn
emǫ̂ − e(m−1)ǫ̂

.

}
(A.5)

It is straightforward to verify that the second ratio is the smallest of the two, consequently

we define p to have this value which is the one depicted in (2.66).
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Appendix B

Proofs in Part II

B.1 Lemma 3

In Section 3.2, the LS estimator was shown to be the MVUE under Gaussian noise and the

BLUE under non-Gaussian noise. It was also shown that Cov(X̂t|H t) = σ2U−1
t . Hence, we

write

f
(
Cov(X̂T |HT )

)
= f

(
E

[ ∞∑

t=1

(X̂t −X)(X̂t −X)T 1{t=T }
∣∣H t

])

= f

( ∞∑

t=1

E

[
(X̂t −X)(X̂t −X)T

∣∣H t

] 1{t=T }

)
(B.1)

≥ f
( ∞∑

t=1

σ2U−1
t 1{t=T }

)
(B.2)

= f
(
σ2U−1

T
)
, (B.3)

for all unbiased estimators under Gaussian noise and for all linear unbiased estimators under

non-Gaussian noise. The indicator function 1{A} = 1 if A is true, and 0 otherwise. We

used the facts that the event {T = t} is Ht-measurable and E[(X̂t −X)(X̂t −X)T |H t] =

Cov(X̂t|H t) ≥ σ2U−1
t to write (B.1) and (B.2), respectively.
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B.2 Lemma 4

We will first prove that if V(z) is non-decreasing, concave and bounded, then so is G(z) =

1 + E

[
V
(

z
1+zh2

1

)]
. That is, assume V(z) satisfies: (a) d

dzV(z) ≥ 0, (b) d2

dz2
V(z) < 0, (c)

V(z) < c <∞,∀z. Then by (c) we have

1 + V
(

z

1 + zh21

)
< 1 + c,∀z, (B.4)

hence G(z) < 1 + c is bounded. Moreover,

d

dz
V
(

z

1 + zh21

)
=

d
dzV(z)

(1 + zh21)
2
> 0, ∀z (B.5)

by (a), and thus G(z) is non-decreasing. Furthermore,

d2

dz2
G(z) = E

[
d2

dz2
V
(

z

1 + zh21

)]
= E

[
d2

dz2V(z)
(1 + zh21)

4

︸ ︷︷ ︸
<0 by (b)

+
d
dzV(z)

−(1 + zh21)
3/2h21︸ ︷︷ ︸

<0 by (a) & z= 1
u
>0

]
, ∀z, (B.6)

hence G(z) is concave, concluding the first part of the proof.

Now, it is sufficient to show that V(z) is non-decreasing, concave and bounded. Assume

that the limit limm→∞ Vm(z) = V(z) exists. We will prove the existence of the limit later.

First, we will show that V(z) is non-decreasing and concave by iterating the functions

{Vm(z)}. Start with V0(z) = 0. Then,

V1(z) = min

{
λσ2z, 1 + E

[
V0
(

z

1 + zh21

)]}
= min{λσ2z, 1}, (B.7)

which is non-decreasing and concave as shown in Fig. B.1. Similarly we write

V2(z) = min

{
λσ2z, 1 + E

[
V1
(

z

1 + zh21

)]}
, (B.8)

where 1 + E

[
V1
(

z
1+zh2

1

)]
is non-decreasing and concave since V1(z) is non-decreasing and

concave. Hence, V2(z) is non-decreasing and concave since pointwise minimum of non-

decreasing and concave functions is again non-decreasing and concave. We can show in

the same way that Vm(z) is non-decreasing and concave for m > 2, i.e., V(z) = V∞(z) is

non-decreasing and concave.

Next, we will show that V(z) is bounded. Assume that

V(z) < min{λσ2z, c} = λσ2z1{λσ2z≤c} + c1{λσ2z>c}. (B.9)
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1

λσ2z
V1(z)

Figure B.1: The function V1(z) is non-decreasing and concave.

Then, from the definition of V(z) we have 1 + E

[
V
(

z
1+zh2

1

)]
< c. Since V(z) is non-

decreasing, E
[
V
(

z
1+zh2

1

)]
≤ E

[
V
(

1
h2
1

)]
. From (B.9) we can write

1+E

[
V
(

z

1 + zh21

)]
≤ 1+E

[
V
(

1

h21

)]
< 1+E

[
λσ2

h21
1{λσ2

h2
1

≤c}

]
+c P

(
λσ2

h21
> c

)
, (B.10)

Recalling 1 + E

[
V
(

z
1+zh2

1

)]
< c we want to find a c such that

1 + E

[
λσ2

h21
1{λσ2

h2
1

≤c}

]
+ c P

(
λσ2

h21
> c

)
< c. (B.11)

For such a c we have

1 < c P

(
λσ2

h21
≤ c
)
− E

[
λσ2

h21
1{λσ2

h2
1

≤c}

]

= E

[(
c− λσ2

h21

)1{λσ2

h2
1

≤c}

]
= E

[(
c− λσ2

h21

)+
]
, (B.12)

where (·)+ is the positive part operator. We need to show that there exists a c satisfying

E

[(
c− λσ2

h2
1

)+]
> 1. Note that we can write

E

[(
c− λσ2

h21

)+
]
≥ E

[(
c− λσ2

h21

)+ 1{h2
1>ǫ}

]

> E

[(
c− λσ2

ǫ

)+ 1{h2
1>ǫ}

]

=

(
c− λσ2

ǫ

)+

P(h21 > ǫ), (B.13)
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where
(
c− λσ2

ǫ

)+
→ ∞ as c → ∞ since λ and ǫ are constants. If P(h21 > ǫ) > 0, which is

always true except the trivial case where h1 = 0 deterministically, then the desired c exists.

Now, what remains is to justify our initial assumption V(z) < min{λσ2z, c}. We will

use induction to show that the assumption holds with the c found above. From (B.7), we

have V1(z) = min{λσ2z, 1} < min{λσ2z, c} since c > 1. Then, assume that

Vm−1(z) < min{λσ2z, c} = λσ2z1{λσ2z≤c} + c1{λσ2z>c}. (B.14)

We need to show that Vm(z) < min{λσ2z, c}, where Vm(z) = min
{
λσ2z, 1 + E

[
Vm−1

(
z

1+zh2
1

)]}
.

Note that 1+E

[
Vm−1

(
z

1+zh2
1

)]
≤ 1+E

[
Vm−1

(
1
h2
1

)]
since Vm−1(z) is non-decreasing. Sim-

ilar to (B.10), from (B.14) we have

1 + E

[
Vm−1

(
1

h21

)]
< 1 + E

[
λσ2

h21
1{λσ2

h2
1

≤c}

]
+ c P

(
λσ2

h21
> c

)
< c, (B.15)

where the last inequality follows from (B.11). Hence,

Vm(z) < min{λσ2z, c}, ∀m, (B.16)

showing that V(z) < min{λσ2z, c}, which is the assumption in (B.9).

We showed that V(z) is non-decreasing, concave and bounded if it exists, i.e., the

limit limm→∞ Vm(z) exists. Note that we showed in (B.16) that the sequence {Vm} is

bounded. If we also show that {Vm} is monotonic, e.g., non-decreasing, then {Vm} con-

verges to a finite limit V(z). We will again use induction to show the monotonicity for

{Vm}. From (B.7) we write V1(z) = min{λσ2z, 1} ≥ V0(z) = 0. Assuming Vm−1(z) ≥
Vm−2(z) we need to show that Vm(z) ≥ Vm−1(z). Using their definitions we write Vm(z) =

min
{
λσ2z, 1 + E

[
Vm−1

(
z

1+zh2
1

)]}
and Vm−1(z) = min

{
λσ2z, 1 + E

[
Vm−2

(
z

1+zh2
1

)]}
. We

have 1 + E

[
Vm−1

(
z

1+zh2
1

)]
≥ 1 + E

[
Vm−2

(
z

1+zh2
1

)]
due to the assumption Vm−1(z) ≥

Vm−2(z), hence Vm(z) ≥ Vm−1(z).

To conclude, we proved that Vm(z) is non-decreasing and bounded in m, thus the limit

V(z) exists, which was also shown to be non-decreasing, concave and bounded. Hence, G(z)

is non-decreasing, concave and bounded.
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F (z)

G(z)

V(z)

Figure B.2: The structures of the optimal cost function V(z) and the cost functions F (z)

and G(z).

B.3 Theorem 5

The cost functions F (z) and G(z) are continuous functions as F is linear and G is concave.

From (3.20) we have V(0) = min{0, 1+V(0)} = 0, hence G(0) = 1+V(0) = 1. Then, using

Lemma 4 we illustrate F (z) and G(z) in Fig. B.2. The optimal cost function V(z), being
the minimum of F and G [cf. (3.20)], is also shown in Fig. B.2. Note that as t increases z

tends from infinity to zero. Hence, we continue until the stopping cost F (zt) is lower than

the expected sampling cost G(zt), i.e., until zt ≤ C ′′. The threshold C ′′(λ) = {z : F (λ, z) =

G(z)} is determined by the Lagrange multiplier λ, which is selected to satisfy the constraint

Var(x̂T ) = E

[
σ2

uT

]
= C [cf. (3.14)].

B.4 Proposition 3

The simplified distributed scheme that we propose in Section 3.4 is motivated from the

special case where E[hkt,ih
k
t,j ] = 0, ∀k, i, j = 1, . . . , n, i 6= j. In this case, by the law of large

numbers for sufficiently large t the off-diagonal elements of Ū t
t vanish, and thus we have

¯U t
t
∼= Dt

t and Tr(Ū
−1
t ) ∼= Tr(D−1

t ). For the general case where we might have E[hkt,ih
k
t,j ] 6= 0
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for some k and i 6= j, using the diagonal matrix Dt we write

Tr

(
Ū

−1
t

)
= Tr

((
D

1/2
t D

−1/2
t Ū tD

−1/2
t︸ ︷︷ ︸

Rt

D
1/2
t

)−1
)

(B.17)

= Tr

(
D

−1/2
t R−1

t D
−1/2
t

)

= Tr
(
D−1

t R−1
t

)
. (B.18)

Note that each entry rt,ij of the newly defined matrix Rt is a normalized version of the

corresponding entry ūt,ij of Ū t. Specifically, rt,ij =
ūt,ij√
dt,idt,j

=
ūt,ij√

ūt,iiūt,jj
, i, j = 1, . . . , n,

where the last equality follows from the definition of dt,i in (3.28). Hence, Rt has the same

structure as in (3.29) with entries

rt,ij =

∑K
k=1

∑t
p=1

hk
p,ih

k
p,j

σ2
k√

∑K
k=1

∑t
p=1

(hk
p,i)

2

σ2
k

∑K
k=1

∑t
p=1

(hk
p,j)

2

σ2
k

, i, j = 1, . . . , n.

For sufficiently large t, by the law of large numbers

rt,ij ∼= rij =

∑K
k=1

E[hk
t,ih

k
t,j ]

σ2
k√

∑K
k=1

E[(hk
t,i)

2]

σ2
k

∑K
k=1

E[(hk
t,j)

2]

σ2
k

(B.19)

and Rt
∼= R, where R is given in (3.29). Hence, for sufficiently large t we can make the

approximations in (3.30) using (B.17) and (B.18).


