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Abstract 

Transcriptional Regulation of Neuroectodermal Lineage Commitment in Embryonic Stem Cells 

Yuan-Ping Huang 

        Lineage commitment of pluripotent cells is a critical step in the development of 

multicellular organisms and a prerequisite for efficient differentiation of stem cells into terminal 

cell types. During successful neuroectodermal lineage commitment, extracellular signals 

terminate the pluripotency program, activate neural transcriptional program, and suppress 

alternative mesendodermal fate. Retinoic acid (RA) has been identified as a potent inducer of 

neural differentiation in embryonic stem cells (ESCs), yet the transcriptional program initiated 

by RA is poorly understood. Expression profiling of differentiating ESCs revealed delayed 

response of the pluripotency marker Oct4 and neural marker Sox1 following RA treatment, 

suggesting that RA regulates the pluripotency program and neural transcriptional program 

indirectly through induction of additional transcription factors.  

         In this study, I identified a zinc finger factor Zfp703 as a downstream effector of RA-

mediated neuroectodermal lineage commitment. Zfp703 expression in ESCs resulted in Oct4 

repression, Sox1 induction, and neural differentiation. Moreover, Zfp703 strongly suppresses 

mesendodermal fate by repressing genes such as Brachyury, Eomes, and Mixl1 even under 

conditions favoring mesendoderm specification. Zfp703 binds to and represses Lef1 promoter, 

raising the possibility that it might modulate Wnt signaling via regulating Lef1. Finally, Zfp703 

is not required for RA-mediated Oct4 repression and Sox1 induction. However, it is necessary 

for efficient Brachyury repression by RA. Based on these data, I propose that Zfp703 is involved 

in the transcription regulation during neural progenitor specification. Through downregulating of 



both mesendodernal fate and pluripotency, Zfp703 de-represses neural transcriptional program 

and indirectly promotes the default neuroectodermal lineage commitment.  
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Chapter 1. Introduction  

        One of the most fascinating phenomena during the embryonic development of metazoans is 

the generation of multitudinous cell types from a single cell: the zygote. In mouse, the zygote 

undergoes waves of divisions after fertilization to generate an apparent homogeneous cell mass 

known as the morula (Figure 1.1-A). Subsequently, these cells segregate into two populations 

with distinct fates and development potential: the inner cell mass (ICM) which will contribute 

mostly to the embryo proper and the trophectoderm (TE) giving rise primarily to extraembryonic 

tissues supporting placenta development (Acloque et al., 2012). After TE has emerged, around 

E3.5 (at early blastocyst stage), ICM cells further split into two groups: the epiblast, a pluripotent 

embryonic layer and the primitive endoderm (PE) which contributes to extraembryonic tissues. 

At the onset of gastrulation from E6.5 (Figure 1.1-B), subsets of cells in the epiblast move to the 

primitive streak (PS) where they undergo epithelial to mesenchymal transition (EMT), fold 

inward to form mesendoderm- a transient population that quickly separates into the embryonic 

endoderm and mesoderm (Johnson, 2009; Thiery et al., 2009). At this point, the remaining 

epiblast cells will give rise to the embryonic neuroectoderm. So far, the basic embryonic body 

plan comprising three primary germ layers has been established, and cells within these three 

lineages are poised to develop into all mature cell types in the animal. Hence, the fate choice 

between neuroectoderm and mesendoderm by pluripotent epiblast cells at early gastrulation 

marks the first cell lineage commitment in the embryo proper. And the segregation between 

these two cellular identities is fundamental for the generation of diversified cell types down the 

developmental path.    
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Embryonic stem cells as a model system to study early development 

         To fully understand the regulation of germ layer development, it is necessary to 

characterize the molecular basis of lineage commitment upon gastrulation. However, such 

attempts are hindered by the relative inaccessibility of embryos in placental mammals 

(Chenoweth et al., 2010). Even if the technical difficulties to isolate embryos are overcome, it 

remains challenging to acquire sufficient amount of homogeneous cells for gene profiling and 

biochemical analyses. This road block was cleared by the derivation of mouse embryonic stem 

cells (ESCs, Figure 1.1-A), first achieved through explanting blastocysts or ICMs on a layer of 

mitotically inactivated fibroblasts (feeder cells) (Evans and Kaufman, 1981; Martin, 1981). ESCs 

self-renew and are capable of expansion in culture extensively. Moreover, they can be 

differentiated to form cells of three germ layers in vitro and contribute to all tissues (including 

germline) in chimeric mice generated by blastocyst injection (Bradley et al., 1984), a property 

defined as pluripotency. Importantly, the molecular events and timeline of ESC differentiation in 

vitro faithfully recapitulate embryonic development in vivo (Niwa, 2010). With these 

characteristics, ESCs represent a powerful model system.  They could provide unlimited source 

of relatively pure cell populations at specific developmental stages, as long as proper 

differentiation protocols are adopted. Therefore, ESCs can greatly facilitate the molecular 

characterization at different time points in development, as well as the investigation of the 

transition between earlier and later cell fates.    
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Figure 1.1 Early development of mouse embryo 

A. Pre-implantation development modified from (Niakan et al., 2013). After fertilization, cells in 

pre-implanting embryos first segregated into trophectoderm (TE) and inner call mass (ICM) at 

morula stage around E3.0.  Embryonic stem cells (ESCs) are derived from ICM and expressing 

key pluripotency genes Oct4 and Nanog. Subsequently in the late blastocyst around E4.5, cells in 

ICM further split into primitive endoderm (PE) and epiblast. B. Early post-implantation 

development taken from (Marikawa, 2006). At the onset of gastrulation around E6.5, subsets of 

the cells in the epiblast move to the primitive streak (PS) and fold inward to form mesoderm and 

endoderm; whereas cells remaining in the epiblast will give rise to neuroectoderm.   
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Transcription network maintaining ESC pluripotency 

         During the transition from morula to blastocyst, TE and ICM are separated by the regional 

activity of the transcription factor Tead4 (Nishioka et al., 2009), resulting in TE cells expressing 

Cdx2 and the T-box transcription factor eomesodermin (Eomes), and ICM cells expressing the 

Pou-domain transcription factor Oct4. Oct4 is essential for ICM identity. In morulas lacking 

Oct4, inner cells differentiate along TE lineage, and they do not develop any embryonic rudiment 

although the mutant embryos can implant in the uterus (Nichols et al., 1998). Oct4 acts 

cooperatively with the SRY-box transcription factor Sox2 to regulate multiple target genes, 

including fibroblast growth factor 4 (FGF4) (Basilico et al., 1997) and key transcription factors 

such as Nanog (Boyer et al., 2005). Sox2-null mutants form normal blastocysts but fail 

development before gastrulation (Avilion et al., 2003). The last pluripotent stage before lineage 

commitment between mesendoderm and neuroectoderm, the epiblast, is marked by and 

dependent on the expression of Nanog. Nanog is initially expressed in a “salt and pepper” 

manner throughout the ICM (Plusa et al., 2008). However, it is restricted to the epiblast at late 

blastocyst stage. Embryos lacking Nanog fail to establish epiblast identity due to ICM 

degeneration (Silva et al., 2009). Based on these findings, it has been argued that Oct4, Sox2, 

and Nanog are critical for the establishment of pluripotent state in vivo.  However, the molecular 

mechanisms underlying their actions could not be readily elucidated by merely studying the 

embryos. And this is where the advantages of ESCs as a model system have been effectively 

utilized. 

          Research on ESCs has revealed a transcription factor network that sustains pluripotent 

state in which Oct4, Sox2, and Nanog play essential roles along with other factors such as Klf4, 

Esrrb, Zfx, and Tbx3 (Galan-Caridad et al., 2007; Jaenisch and Young, 2008; Nichols and Smith, 
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2012). Among them, Oct4 might be the most crucial factor. It is uniformly expressed 

continuously throughout the epiblast stage and in ESC culture. Moreover, Oct4-null ESCs cannot 

be recovered by serial gene targeting, and conditional elimination of Oct4 in ESCs results in their 

conversion to trophoblast-like cells (Niwa et al., 2000). Chromatin immunoprecipitation-

sequencing (ChIP-seq) experiments established that Sox2 is a key Oct4 partner (Nichols and 

Smith, 2012). Oct4/Sox2 binding elements have been identified in multiple pluripotency genes, 

including Nanog. (Catena et al., 2004; Kuroda et al., 2005; Okumura-Nakanishi et al., 2005). 

Genome-wide ChIP-seq analyses demonstrated that Oct4, Sox2, and Nanog co-occupy a 

significant proportion of their target genes (Boyer et al., 2005; Chambers and Tomlinson, 2009). 

These genes encode transcription factors regulating pluripotency and differentiation.  Oct4, Sox2, 

and Nanog thus construct a feed forward loop (Figure 1.2) in which they act cooperatively to 

promote the expression of themselves and other genes supporting ESC identity, meanwhile 

repressing genes inducing differentiation (Boyer et al., 2005). Because of the self-sustained 

nature of this transcription network, pluripotency in epiblast as well as ESCs can be maintained 

indefinitely. In fact, this transcription network is sufficient to reprogram mature differentiated 

cells back to ESC-like state when reinitiated through overexpression of only four factors: Oct4, 

Sox2, Klf4, and c-Myc (Takahashi and Yamanaka, 2006). Therefore when pluripotent cells 

commit to differentiate towards specific lineages, this self-sustained transcription network must 

be terminated. (Smith, 2009).  
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Figure 1.2 ESC transcriptional network maintaining pluripotency 

The core transcription factors Oct4, Sox2, and Nanog cooperatively activate the expression of 

themselves and other pluripotency genes to form the ESC transcriptional network to maintain the 

ESC identity. At the same time, Oct4, Sox2, and Nanog also repress differentiation genes. 

(Taken from (Loh et al., 2011))     
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Lineage commitment of mesoderm and endoderm       

          The formation of primitive streak (PS) in the posterior region of the embryo is the critical 

initial step in the lineage commitment of epiblast. It marks the onset of gastrulation, which 

subsequently results in the generation of the primary germ layers and the establishment of the 

basic body plan in the embryo (Tam and Loebel, 2007). PS cells express markers Brachyury (T), 

Mixl1, Eomes, and Evx1 (Arnold et al., 2008; Dush and Martin, 1992; Rivera-Perez and 

Magnuson, 2005; Robb et al., 2000) , and its formation depends on the integration of Nodal, 

WNT, and Bmp signaling pathways (Rossant and Tam, 2004). BMP4 is secreted from the 

extraembryonic ectoderm (ExE) (Winnier et al., 1995) whereas Wnt3 is induced by the 

unprocessed form of nodal (Ben-Haim et al., 2006). Moreover, Wnt3 activates a feedback loop 

sustaining nodal expression in the epiblast, which in turn maintains Bmp4 expression in the ExE 

(Ben-Haim et al., 2006; Brennan et al., 2001).  

         Following its appearance, groups of cells move from epiblast through the PS where they 

undergo EMT and emerge as different mesoderm or endoderm tissues depending on their 

allocation of these cells along the anterior-posterior axis  (Figure 1.3) (Johnson, 2009; Thiery et 

al., 2009).  The formation of anterior and posterior PS derivatives is dependent on nodal and 

BMP activities, respectively (Tam and Loebel, 2007); whereas the specification of middle PS 

derivatives is subject to the interaction of TGF-β, FGF, and Wnt signaling (Marikawa, 2006).  

        Primary germ layer induction and patterning can be modeled by ESCs in vitro. Treatment of 

ESCs with Bmp4, Wnt3a, and/or Activin A in serum or serum-free cultures promotes 

differentiation towards endodermal and mesodermal cell types (D'Amour et al., 2005; Jackson et 

al., 2010). Gene expression profiling demonstrated that there is an initial down-regulation of 

pluripotency genes such as Oct4 and Rex1 along with increased Fgf5 expression, which marks 
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the epiblast stage (Hirst et al., 2006). Subsequent transient expression of Brachyury and Mixl1 

suggests the passing of the differentiating cells through a PS-like state before the emergence of 

Flk1 and Sox17, whose expression denotes early mesoderm and endoderm development (Hirst et 

al., 2006; Ng et al., 2005).  Thus, differentiation of ESCs recapitulates key processes of 

mesendoderm specification and facilitates its detailed molecular characterization (Pereira et al., 

2012).     
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Figure 1.3 Lineage commitment during early gastrulation  

Primitive streak (PS, visualized here by in situ hybridization of PS/mesendodermal marker Mixl1) 

formation requires the Wnt, Bmp, and Nodal signaling. At early gastrulation, epiblast cells 

committed to mesendodermal fate move through the PS and are further specified by the 

interaction between Bmp, Fgf, and Nodal signaling: the anterior-most region of the PS (the node) 

will become axial mesoderm and definitive endoderm; the anterior-third segment of the PS will 

give rise to paraxial mesoderm; The middle-third area of the PS will generate lateral plate 

mesoderm; and the posterior-third part of the PS will develop into the extraembryonic mesoderm. 

Meanwhile, the cells remain in the epiblast will commit to the neuroectodermal lineage 

(modified from (Tam and Loebel, 2007)). 
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Neural induction 

         Epiblast cells that are not recruited to the PS will form the neuroectoderm (Figure 1.3) 

(Tam and Loebel, 2007).  At the onset of gastrulation, these cells possess the ability to develop 

as either epidermis or neural tissues, however by the end of gastrulation the lineage commitment 

has completed (Ozair et al., 2013). In vertebrates, the generation of nervous system from 

neuroectodermal precursor cells is termed neural induction, during which  the neuroectoderm 

forms on the dorsal side of the embryo in response to signals from the adjacent dorsal mesoderm 

called the “node” in chick and mouse (Stern, 2005). In chick, a population of epiblast cells 

begins to express Fgf3 and Fgf8 before the formation of the node (Streit et al., 2000; Wilson et 

al., 2000). With sustained Fgf signaling, cells in the node secret small diffusible molecules-  such 

as noggin, chordin, and follistatin- which bind to extracellular Bmps or Wnts and prevent these 

ligands from activating their cognate receptors (Hemmati-Brivanlou et al., 1994; Sasai et al., 

1994; Smith and Harland, 1992). As a result, ectodermal cells exposed to Bmps and Wnts 

become epidermis, while they become neural in the absence of those two signals (Moody et al., 

2013). By the end of gastrulation, the neuroectoderm cells form the neural plate which 

subsequently folds into a tube before developing into the brain at its anterior and the spinal cord 

at its posterior end (Ozair et al., 2013).  

Transcription regulation of neural lineage commitment 

         Once committed in response to extracellular signals, the nascent neuroectodermal 

precursors begin to express a host of transcription factors which maintain those precursors as 

neurogenic, expand the neuroectodermal precursor population in the neural plate and initiate the 

differentiation of committed neural progenitors (Moody et al., 2013). As neural development 

proceeds, the profile of transcription factors changes progressively, reflecting different stages of 



 

14 
 

neurogenesis. First, transcription factor Zic1 sensitizes the neuroectodermal precursors to Noggin 

(Kuo et al., 1998), whereas Churchill and Zeb2 prevent these cells from acquiring 

mesendodermal fate by limiting the mesodermal-inducing activities of Fgf and Activin/Nodal 

signals, respectively (Chng et al., 2010; Sheng et al., 2003). At this point, Zfp521 is intrinsically 

induced (Kamiya et al., 2011). Together with p300, Zfp521 further stabilizes neuroectodermal 

fate by activating transcription factors Geminin, Irx1, and SoxB1 family members (Sox1, Sox2, 

and Sox3), which antagonize Wnt and Bmp signaling (Cavodeassi et al., 2001; Kamiya et al., 

2011; Kroll et al., 1998; Rogers et al., 2009). Subsequently, Zic2, Geminin and SoxB1 factors 

facilitate the expansion of neural plate by promoting the proliferation of committed neural 

progenitors while preventing them from further neural differentiation via repressing bHLH 

proneural genes (Brewster et al., 1998; Bylund et al., 2003; Seo et al., 2005). Finally, Zic and Irx 

genes act downstream of the SoxB1 genes to promote the onset of bHLH proneural gene 

expression, which results in the transition from committed neural progenitors to postmitotic 

neurons (Gomez-Skarmeta and Modolell, 2002; Houtmeyers et al., 2013). 

        The experimental observations above summarize the function of the transcription factors 

during neural lineage commitment from a gene-by-gene perspective. However, it is highly 

possible that these factors function in a gene regulatory network similar to that in the ESCs. An 

initial set of transcription factors establishes the identity of neuroectodermal precursors and 

sustains the expansion of neuroectoderm before being down-regulated. Then another set of 

factors is induced and converts the neuroectodermal cells to committed neural progenitors. 

Finally, these neural progenitor factors are down-regulated, and a third group of transcription 

factors is activated to initiate neural differentiation (Moody et al., 2013). Despite extensive 

studies in the embryos, the functional interactions among transcription factors controlling neural 
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specification are not very well understood, and their direct targets are generally unknown. Yet 

this information is crucial to elucidate the hierarchy of transcription factors within transcriptional 

cascades controlling neural lineage commitment.   

Neural induction in ESCs 

         There are two principle approaches for induction of neural identity in ESCs. The first 

method closely recapitulates processes characteristic for neural induction in vivo and relies 

primarily on the inhibition of mesendoderm-inducing SMAD signaling pathways (activated by 

Nodal and Bmp signals) and activity of endogenous Fgf signals (Figure 1.4-A) (Chambers et al., 

2009; Tropepe et al., 2001). Fgf signaling is required for mouse ESCs to progress to a primed 

state of pluripotency (the primitive ectoderm stage) before becoming competent for neural 

induction (Kunath et al., 2007; Ying et al., 2003). Inhibition of Nodal pathway down-regulates 

Nanog and promotes expression of Zeb2 as well as Coup-TFII (Nr2f2), which directly represses 

Oct4 expression and promotes expression of other neural-specific genes (Chng et al., 2010; Rosa 

and Brivanlou, 2011). Bmp inhibition contribute to the neuroectodermal differentiation by 

suppressing the induction of non-neural germ layers, maintaining the expression of shared 

pluripotency and neural genes like Sox2, and promoting the expression of cell-intrinsic neural 

determinants, such as Zfp521 (Greber et al., 2011; Kamiya et al., 2011). Together, Fgf and 

Bmp/Nodal inhibitors consolidate neural lineage commitment through down-regulating the 

transcription network in ESCs, preventing the induction of mesendoderm determinants, and 

promoting the onset of neural transcription programs.   

         The second, historically older approach relies on treatment of ESCs cultured as suspension 

aggregates termed embroid bodies (EBs) with retinoic acid (RA) (Figure 1.4-B) (Bain and 

Gottlieb, 1994; Gottlieb and Huettner, 1999). After several days of continued culture, robust 
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neurogenesis is observed. The changes in morphology and gene expression in EBs bear striking 

resemblance to the in vivo neural development. After the addition of RA, the expression of 

pluripotency gene Oct4 is rapidly and efficiently extinguished; followed by the emergence of the 

neuroectodermal marker Sox1. This indicates the termination of the ESC transcription network 

and the initiation of neuroectodermal lineage commitment. Subsequently, EB cells start to 

express neural progenitor markers (e.g. Pax6) and stem cell marker Nestin. Finally, postmitotic 

neurons expressing Tuj1 and NF appear in the culture (Moody et al., 2013). While there is no 

evidence that RA would be required for neural induction in vivo, it has been reported to repress 

mesodermal marker Brachyury and Wnt-3a in developing mouse embryo (Iulianella et al., 1999). 

So, similar to the neuralizing method with FGF and SMAD inhibitors, RA-induced neural 

lineage commitment also involves the down-regulation of the ESC transcription network, the 

initiation of neural transcription programs, and the suppression of alternative fates. Given the 

parallel molecular and temporal events between RA-induced neurogenesis and embryonic 

development, it can serve as a surrogate system to investigate molecular mechanisms of neural 

induction.  Important advantage of the RA driven approach is that the process is anchored by a 

defined inductive signal that provides convenient entry point for mapping the transcriptional 

cascade leading to neural specification.  
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Figure 1.4 Neural induction in ESCs 

There are two approaches to induce neural differentiation in ESCs. A. The combination of Fgf 

and inhibitors of both Bmp (Noggin) and Nodal signaling (SB431542, SB) can drive ESCs to 

become committed neuroectodermal cells and subsequently postmitotic neurons through 

progressive stages closely reflecting the in vivo process (modified from(Gottlieb, 2002; Wada et 

al., 2009)).  B. Alternatively, the ESCs can be cultured as aggregates known as embryoic bodies 

(EBs) and treated with retinoic acid (RA) to induce neural fate (modified from (Gottlieb, 2002)).     
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Retinoic acid signaling   

         RA is a metabolic product of liposoluble vitamin A (retinol).  Most animals cannot 

synthesize vitamin A so they need to get it from the diet and store as retinoids in the liver 

(Blomhoff and Blomhoff, 2006).   Retinoids are transported as retinol, which is released into the 

bloodstream and bound to retinol-binding protein 4, plasma (RBP4) before taken up by target 

cells via membrane receptor for RBP4, STRA6 (Kawaguchi et al., 2007). Once in the cytoplasm, 

retinol binds to retinol-binding protein1, cellular (RBP1) and is converted to all-trans RA by 

retinol dehydrogenase and retinaldehyde dehydrogenases (RALDHs) (Sandell et al., 2007). The 

newly-synthesized RA is then bound by cellular retinoic acid binding proteins 1 and 2 (CRABP1 

and CRABP2) in the cytoplasm. Subsequently, RA can act in a paracrine manner where it is 

released from the secreting cells and taken up by receiving cells, or it can act in an autocrine 

fashion. Either way, RA enters the nucleus with the assistance of CRABP2 and binds to 

heterodimers of ligand-inducible transcription factors comprising the RA receptors (RARα, 

RARβ, and RARγ) and retinoic X receptors (RXRα, RXRβ, and RXRγ) (Budhu and Noy, 2002). 

RA-bound RAR/RXR complexes regulate gene expression through binding to DNA sequences 

within the promoter of target genes called retinoic acid response elements (RAREs) (Bastien and 

Rochette-Egly, 2004). After RA has activated RARs, it exits the nucleus and is catabolized by 

the CYP26 class of P450 enzymes in the cytoplasm (Figure 1.5-A) (Ross and Zolfaghari, 2011).    

         It has been proposed that in the absence of RA, the apo-receptor heterodimer RAR/RXR 

binds to the RAREs and recruits corepressors and histone deacetylase complexes (HDACs) to 

maintain target gene repression (Hart, 2002). In the presence of ligand, a conformational change 

leads to the replacement of corepressors by co-activator complexes (Figure 1.5-B). This induces 

chromatin remodeling and facilitates the assembly of the transcription pre-initiation complex, 
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therefore activating target gene expression (Wei, 2003). A recent study from our lab using RA-

mediated ESC differentiation and whole genome chromatin immunoprecipitation sequencing 

(ChIP-seq) suggests that RA also activates target genes via inducing de novo RAR/RXR binding 

to the RAREs that are not occupied by the apo-receptor dimers (Mahony et al., 2011). 

           Based on the mechanism of RA-mediated gene expression, there are two criteria for 

identifying direct target genes of RA signal. First, because RA-bound RAR/RXR induces gene 

expression independent of de novo protein synthesis, direct target genes should respond very 

quickly to RA signal and exhibit upregulated expression within short timeframe. Second, direct 

target genes have RAREs bound by RAR/RXR in their regulatory elements and should show 

enrichment of receptor binding in ChIP-seq experiments.          
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Figure 1.5 RA signaling 

A. After the entry of RA to the cytoplasm, cellular retinoic-acid-binding protein 2 (CRABP2) 

binds to RA and facilitates the access into the nucleus. In the nucleus, RA binds to RA receptors 

(RARs) and retinoid X receptors (RXRs), which themselves heterodimerize and bind to a 

sequence of DNA that is known as the retinoic acid-response element (RARE). This binding 

activates the transcription of target genes. At the end of the signaling event, RA is catabolized in 

the cytoplasm by the CYP26 class of P450 enzymes (taken from (Maden, 2007)). B. Without RA, 

RARE-bound apo-receptor heterodimers associate with corepressor complex and repress gene 

expression. Upon binding of RA, coactivator complex replaces corepressors and therefore 

activate target gene expression. (modified from (Marletaz et al., 2006)). 
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RA-regulated genes in ESC differentiation 

          RA treatment of ESCs results in both increase and decrease in the expression of a set of 

genes encoding transcription factors, RA metabolism and transport proteins, extracellular matrix 

components, protooncogenes, growth factors and their receptors, cytoskeletal proteins, proteins 

involved in cell metabolism, cell surface antigens, apoptosis-related factors, cell-cycle regulators, 

and signaling mediators (Balmer and Blomhoff, 2002; Soprano et al., 2007). The analysis of 

temporal changes in gene expression subdivides the regulated genes into early and late 

responding categories. A subset of genes is induced rapidly (within 8-16 hours) upon RA 

treatment in the presence of cycloheximide. These genes are primary response genes and based 

on ChIP-seq experiments can be further divided into 3 classes (Mahony et al., 2011). The genes 

in the first class possess RAREs in the proximity (within 20 Kbp) of their transcription start sites 

bound by the apo-receptor heterodimer RAR/RXR. Cyp26a1, Hoxa1, Cdx1, Meis2, Stra8, Hoxa2 

and Rarb belong to this class. The second class of genes, such as Hoxb5, Hoxb1, Hoxa3, Hoxa5, 

Tshz1, etc., is activated by de novo RAR/RXR binding to the RAREs in response to RA 

treatment. Genes of the third class, including Zfp703, Hoxc4, Kchn1, Zfp503, and Fbp1, do not 

have proximal RAREs and therefore might be activated indirectly by secondary transcription 

factors or by distal RAR/RXR bound enhancers.  In addition to the primary response genes, a 

much larger group genes show altered expression at later time points (1 or more days) followed 

RA exposure, and these changes in expression are dependent on new protein synthesis. These 

genes, such as Rex-1, Pbx1, Mash-1, NeuroD and N-cadherin, are secondary respondents and 

therefore regulated indirectly by RA. It is noteworthy that many of the genes in this group are 

implicated in specific differentiation pathways. Lastly, 5-6 days after RA stimulation, genes 

marking terminal differentiation are expressed (Soprano et al., 2007). 
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Mechanism of RA-induced neural lineage commitment 

          In the developing neural tube, RA signaling initiates neural differentiation (Diez del Corral 

and Storey, 2004).  It is also involved in specifying caudal hindbrain and rostral cervical spinal 

cord identity (Liu et al., 2001; Niederreither et al., 2000); as well as patterning and 

differentiation of spinal motor neurons and interneurons (Novitch et al., 2003; Pierani et al., 1999; 

Sockanathan and Jessell, 1998).  As previously mentioned, RA treatment is one of the most 

common approaches to direct in vitro neural differentiation of ESCs that recapitulates multiple 

important features of neuroectodermal lineage commitment in vivo: the termination of the ESC 

transcription network, the initiation of neuroectodermal transcription programs, and the 

suppression of mesendodermal differentiation. These phenomena require RA signal to 

downregulate key transcription factors involved in maintaining pluripotency and specifying 

mesendodermal fate; meanwhile upregulate transcription factors promoting neuroectodermal 

formation (Figure 1.6). However, the mechanism through which RA regulates these crucial 

factors remains poorly understood. Mapping and understanding the operation of transcription 

regulatory network downstream of RA signaling would provide important insights in the earliest 

cell fate choice in the embryo proper during development and enable us to devise better methods 

for cell differentiation to harness the potential of ESCs in regenerative medicine. 
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Figure 1.6 RA promotes neuroectodermal differentiation of ESCs 

A. ESCs can differentiate in vitro along neuroectodermal or mesendodermal lineages in response 

to RA and Wnt3A/Activin, respectively. B. For RA signal to promote neural differentiation, it 

has to repress pluripotency (sustained by Oct4, Sox2 and Nanog), suppress mesendodermal fate 

(marked by T/Brachyury, Mixl1 and Eomes), and promote neuroectodermal specification 

(induced by Sox1 and Nr2f2). However, molecular mechanism underpinning RA-mediated cell 

fate choice is not well characterized.   
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RA represses the ESC transcription network 

          The first step in ESC differentiation is the termination of the transcription network 

sustaining the pluripotent state. Indeed, RA treatment of EBs causes a rapid drop in the 

expression of key transcription factors that maintain ESC identity such as Oct4 and Nanog at 

both mRNA and protein levels, indicating that these factors are subjected to transcription 

repression downstream of RA signaling (Shahhoseini et al., 2010). Since the output of RA-bound 

RAR/RXR dimers on primary response genes is almost exclusively transcriptional activation 

(Wei, 2003), the repression of pluripotent genes is likely to be an indirect effect of RA, mediated 

by the transcriptional repressors downstream of RA treatment. Consistent with this notion, time-

course expression profiling of differentiating EBs indicates that there is little change in the 

expression of Oct4 mRNA during the first 8 hours of RA exposure, and the most profound 

mRNA decrease happens between 8-24 hours after RA addition (Mahony et al., 2011). 

Furthermore, genome wide ChIP-seq analysis does not identify RAR binding sites in the vicinity 

of Oct4 promoter region (Mahony et al., 2011). These lines of evidence strongly suggest that 

Oct4 is regulated indirectly by RA. In order to better characterize the mechanism of RA-

mediated repression of the ESC transcription network, it is crucial to identify which of the direct 

response genes are involved in the repression of pluripotency genes.  

        The initial attempts to elucidate the mechanism of Oct4 repression by RA in embryonic 

carcinoma cells (ECs) and ESCs identified several hormone response elements (HREs) in Oct4 

enhancer regions required for its repression (Pikarsky et al., 1994). Subsequent investigation 

revealed that these HREs, despite having features of RAREs, are not directly bound by 

RAR/RXR. Instead, gel bandshift assay suggested that nuclear orphan receptors Coup-TFs bind 

to these elements and mediate the repression (Schoorlemmer et al., 1994).  COUP-TFs such as 
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COUP-TF1, Nr2F2 (COUP-TF2), ARP-1 and EAR-2 recognize these HREs and repress Oct4 

promoter when overexpressed in ECs and ESCs (Rosa and Brivanlou, 2011; Schoorlemmer et al., 

1994). Given the induced expression of Coup-TF1 and ARP-1 during RA-induced ESC 

differentiation, these results indicate that COUP-TFs might operate as downstream effectors of 

RA-mediated exit of pluripotency. 

          Another transcription factor that has been implicated in the repression of Oct4 by RA is 

the primary response gene Hoxa1. It belongs to the homeobox (Hox) family of proteins that 

regulates embryonic patterning and organogenesis (Mallo et al., 2010). With the presence of an 

RARE in its 3’ enhancer, Hoxa1 is a direct target of RA signal (Langston et al., 1997). Targeted 

inactivation of Hoxa1 in mice leads to developmental defects, including hindbrain deficiencies 

and abnormal skull ossification, which ultimately lead to neonatal death (Chisaka et al., 1992; 

Mark et al., 1993). Interestingly, RA treatment of Hoxa1 null ESCs results in higher mRNA level 

of Oct4 when comparing to heterozygous or wild-type ESCs. Upon LIF removal, Hoxa1 null 

ESCs shows reduced Fgf5 expression and elevated Gata4, Sox17 and Dab2 levels (Martinez-

Ceballos et al., 2005), suggesting that instead of differentiating along the neuroectodermal 

lineage as wild-type ESCs, Hoxa1 mutant cells are prone to follow an endodermal pathway and 

failed to differentiate into neurons (Martinez-Ceballos and Gudas, 2008).  These cells express 

several-fold lower levels of many neural differentiation markers such as nestin, β-tubulin III, and 

MAP2 than wild-type cells. Conversely, higher levels of endodermal markers (i.e. Sox17 and 

Col4a1) are observed. Importantly, re-introduction of exogenous Hoxa1 to the null cells restores 

their ability to produce neurons. Hence these observations indicate that Hoxa1 might be a critical 

downstream mediator of RA-induced neural lineage commitment.    
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        Lastly, the orphan nuclear receptor GCNF has also been proposed to be required for the 

repression of pluripotency genes in RA-induced ESC differentiation (Gu et al., 2005). GCNF is a 

transcriptional repressor that down-regulates target genes by binding to responsive elements in 

the promoter region (Cooney et al., 1998). During mouse development, the expression pattern of 

GCNF is inversely correlated with that of Oct4; and Oct4 expression is not efficiently turned off 

in somatic cells at gastrulation in GCNF null mutants (Fuhrmann et al., 2001). The mutant 

embryos subsequently die around E10.5 (Chung et al., 2001). In wild-type ESCs, GCNF protein 

is induced by RA treatment, peaks between 24-36 hours, and drops to undetectable levels after 3 

days. While Oct4 protein is dramatically decreased in wild-type cells between 24-72 hours after 

RA induction, increased level of Oct4 and other pluripotency genes such as, Nanog, Sox2, FGF4, 

and Stella is found in GCNF mutant ESCs (Gu et al., 2005). GCNF binds to response elements 

located in the promoter of Oct4, as well as the promoter and 3’ untranslated region of Nanog 

(Fuhrmann et al., 2001; Gu et al., 2005). When co-expressed with luciferase constructs 

containing these elements, GCNF is capable of repressing the luciferase activity (Gu et al., 2005).  

Together, these results suggest that GCNF mediates the repression of ESC transcription network 

downstream of RA signal by directly repressing Oct4 and Nanog. Recently, GCNF has been 

shown to be important for the transition from primitive to definitive neural stem cells in the early 

neural stem cell lineage through the repression of Oct4 (Akamatsu et al., 2009), indicating that 

GCNF might be involved in multiple aspects of RA-induced neural lineage commitment.      

Transcriptional network in RA-induced neuroectodermal lineage commitment 

         So far, COUP-TFs, Hoxa1, and GCNF have all been identified as potential downstream 

effectors of RA-induced repression of pluripotency. And both Hoxa1 and GCNF seem to be 

required for the effective down-regulation of Oct4 and other key ESC transcription factors at the 



 

30 
 

onset of differentiation. However, loss of either Hoxa1 or GCNF does not completely abolish the 

repression of Oct4 by RA, suggesting that Hoxa1 and GCNF might be able to compensate each 

other or be compensated by additional factor. Like the key transcription factors that act 

cooperatively in a regulatory network to maintain ESC identity and specify neural fate, it is 

possible that RA induces neuroectodermal lineage commitment through initiating a 

transcriptional network consisting of groups of primary and secondary respondents to effectively 

terminate the pluripotency network and promote neural differentiation. Moreover, little is 

currently known about mechanisms mediating suppression of the mesendodermal fate in RA- 

mediated neural induction.  Therefore, it will be important to map the transcriptional cascade 

downstream of RA signaling in greater detail to delineate the key steps and regulatory 

interactions leading to efficient acquisition of neural identity. 

NET family transcription factors 

         The transcription factors identified as putative downstream effectors of RA-induced neural 

lineage commitment in this study are zinc finger proteins Zfp703 and Zfp503. They belong to the 

NET family (Noc, Nlz, Elbow, and Tlp-1) of C2H2 zinc finger proteins important for diverse 

developmental processes across multiple organisms (Nakamura et al., 2004). In drosophila, noc 

mutants display defect in the light sensitive organs (the ocelli) (Woodruff and Ashburner, 1979a, 

b) and embryonic superaesophageal ganglion (Cheah et al., 1994); whereas elbow mutant flies 

have small bent wings (Davis et al., 1997). Homozygous elbow and noc mutants also exhibit 

defects in tracheal development, specifically stalled and aberrant migration of the dorsal branch 

and lateral trunks of the trachea (Dorfman et al., 2002). Meanwhile, mutations in tlp-1 affect 

specification of asymmetric cell fate and cell fusion, causing abnormal tail morphogenesis in C. 

elegans (Zhao et al., 2002). Lastly, in zebrafish, nlz1 (also known as Zfp703) and nlz2 (also 
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known as Zfp503) genes are required for proper patterning and development of the hindbrain 

(Hoyle et al., 2004; Runko and Sagerstrom, 2003).  

        The NET family proteins are related to the Sp/Buttonhead family of transcription factors 

with which they share three conserved domains: an N-terminal Sp motif that might regulate 

protein degradation (Su et al., 1999) or transcriptional activity (Murata et al., 1994), a 

Buttonhead (Btd) box which appears to be required for transcriptional activation in some cases 

(Athanikar et al., 1997), and a C2H2 zinc finger (Suske, 1999) (Figure 1.6). While proteins in the 

Sp family bind GC-rich DNA sequences with three tandem zinc fingers (Kadonaga et al., 1987), 

it is not clear whether NET proteins can bind DNA via its single zinc finger. First, usually 2-4 

C2H2 zinc fingers are required for efficient DNA binding (Iuchi, 2001). Single zinc fingers in 

GATA and GAGA family proteins require adjacent basic domains, which NET proteins lack, to 

interact with DNA (Omichinski et al., 1997; Pedone et al., 1996; Pedone et al., 1997). Moreover, 

although Nlz proteins can form homo- or heterodimers, thereby bringing multiple zinc fingers 

together, such complexes are not required for Nlz function (Runko and Sagerstrom, 2004). 

Finally, among four conserved residues involved in contacting DNA within DNA-binding C2H2 

zinc fingers, only two residues are conserved in the C2H2 zinc finger of the NET proteins 

(Nakamura et al., 2004; Wolfe et al., 2000). Therefore these observations indicate that the C2H2 

zinc finger of the NET proteins does not bind DNA per se but might mediate protein-protein 

interactions. 

        While it is not known whether NET proteins interact with DNA, it is likely that they control 

transcription as transcriptional co-repressors or repressors. First, Elbow, Tlp-1, Nlz1, and Nlz2 

are located in the nucleus (Dorfman et al., 2002; Runko and Sagerstrom, 2003, 2004; Zhao et al., 

2002), and Nlz1 must be nuclear to be fully functional (Runko and Sagerstrom, 2004). Second, 
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ectopic Elbow represses the expression of tracheal genes in Drosophila, and Nlz1 or Nlz2 

overexpression leads to loss of gene expression in the rostral hindbrain of zebrafish (Hoyle et al., 

2004; Runko and Sagerstrom, 2003, 2004). Conversely, elbow and noc mutant flies exhibit an 

expansion in the expression of tracheal branch-specific genes (Dorfman et al., 2002), and the 

expression of a dominant-negative form of Nlz1 results in the expansion of rhombomere 5-

specific gene expression (Runko and Sagerstrom, 2003). Furthermore, Gal4-Nlz1 and Gal4-Nlz2 

fusion proteins repress transcription from Gal4-responsive promoters in both cell lines and 

zebrafish embryos (Runko and Sagerstrom, 2003). Lastly, Elbow, Nlz1 and Nlz2 bind to the 

corepressor Groucho through the repressor interaction domain containing a serine/threonine-rich 

region, and Nlz1 and Nlz2 also interact with histone deacetylases HDAC1 and HDAC2 

(Dorfman et al., 2002; Runko and Sagerstrom, 2003, 2004). Together, this suggests that NET 

family proteins act primarily as transcriptional repressors or co-repressors.                   
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Figure 1.7 Net family proteins share conserved domains 

Domains of the zebrafish Nlz1, Nlz2 and the human Sp1 proteins are shown. The proteins are 

shown as white boxes, except for the internal start site (I; black), the Sp motif (Sp; gray), 

serine/threonine-rich regions (S/T; blue), the glutamine-rich region (Q; yellow), the Btd box 

(green), the C2H2 zinc finger (ZF; red), the repressor interaction domain (RID; hatched), and a 

region required for nuclear localization (N; stippled). Numbers indicate amino acid positions. 

Dr, Danio rerio; Hs, Homo sapiens (taken from (Runko and Sagerstrom, 2004)). 
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Zfp703 as oncogene in tumor progression 

         Zfp703 (ZNF703 in human) is the mammalian homolog of Nlz1. Human ZNF703 is 

located in the proximal chromosome arm 8p (8p12) within a region that is commonly amplified 

in estrogen-positive (ER+) breast cancers (Chin et al., 2006).  Expression profile of primary 

breast tumors revealed that ZNF703 is amplified predominately in the Luminal B subtype, with 

increased gene and protein expression associated with poor clinical outcomes (Chin et al., 2007; 

Reynisdottir et al., 2013; Sircoulomb et al., 2011). ZNF703 is capable of transforming NIH 3T3 

fibroblasts and regulate cell proliferation in human breast epithelial cells (Holland et al., 2011). 

Interestingly, ZNF703 binds to the promoter of TGFBR2 together with HDAC1 and mediates 

repression of the receptor therefore modulating the effect of TGF-β signaling on the proliferation 

of breast tumor cell line MCF7 (Holland et al., 2011). The data above suggests that ZNF703 acts 

as a novel oncogene in Luminal B breast cancer. Recently, ZNF703 has also been shown to act 

as an oncogene to promote gastric cancer progression (Yang et al., 2014).   

        Mouse Zfp703 (also known as Zeppo1) shares 96% amino acids with human ZNF703, and 

it is expressed in the mammary epithelium (Slorach et al., 2011). Similar to the human protein, 

Zfp703 overexpression in a mouse breast cancer model increases lung metastasis; while Zfp703 

knockdown has the opposite effect (Slorach et al., 2011). Zfp703 reduces cell-cell adhesion and 

stimulates cell migration and proliferation (Slorach et al., 2011). It regulates transcription, 

interacts with Groucho, and represses E-cadherin as well as Wnt and TGF-β reporters (Slorach et 

al., 2011). Together, this indicates that Zfp703 is a key regulator of breast cancer progression. 

          Despite the emerging evidence supporting the oncogenic characteristics of Zfp703, little is 

known about its function during normal mammalian development. Nevertheless, it is highly 

possible that Zfp703 participates in embryogenesis, particularly in the development of the 
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nervous system. First, Zfp703 homolog in Drosophila, nocA, has been involved in the 

development of embryonic brain (the superaesophageal ganglion) (Cheah et al., 1994). Second, 

the homolog of Zfp703 in zebrafish (Nlz1) plays an important role in the specification of 

rhombomere identity in developing hindbrain (Hoyle et al., 2004). Finally, its closely related 

paralog in the same family, Zfp503 (Nolz1) is implicated in the specification of motor neurons 

(Ji et al., 2009) and striatal projection neurons in mice (Ko et al., 2013; Urban et al., 2010).  

Dissertation outline 

         Multiple studies have examined RA-mediated neural differentiation and proposed several 

transcription factors, including COUP-TFs, Hoxa1, and GCNF, as repressors involved in Oct4 

repression. However, my analysis of RA targets indicated that besides Hoxa1, COUP-TFs and 

GCNF are not primary targets of RA signaling, raising the questions how they are regulated and 

whether additional factors contribute to the effects of RA. Moreover, it is not clear how RA 

signaling initiates neural transcription program and suppress non-neural (mesendoderm) 

differentiation, two premises for consolidating neural identity. To revisit these questions and 

build more accurate transcriptional map reflecting the cascade of events triggered by RA 

signaling, I performed a screen that identified Zfp703 as a new factor downstream of RA that 

exhibited the strongest effect on the repression of Oct4. Next I identified putative target genes of 

Zfp703, examined whether Zfp703 controls neural lineage specification, and probed its ability to 

repress mesendodermal genes. Based on the results I propose a revised model of the hierarchy of 

regulatory events downstream of RA signaling during neuroectodermal lineage commitment.  
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Chapter 2. Screen for primary response genes of RA signaling that repress pluripotency 
factor Oct4 

Introduction  

        RA treatment is the most commonly adopted approach to differentiate ESCs along the 

neuroectodermal lineage (Bain and Gottlieb, 1994; Gottlieb and Huettner, 1999). However, 

molecular mechanisms underlying RA-mediated neural induction remain elusive. Since the ESC 

state (i.e. self-renewal and pluripotency) is sustained by the transcriptional network comprising 

the Oct4, Sox2, and Nanog feed forward loop, neural induction has to be accompanied by the 

termination of this transcription program (Jaenisch and Young, 2008; Nichols and Smith, 2012). 

Originally, it was proposed that RA extinguishes pluripotency by repressing Oct4 via the direct 

interaction of RAR/RXR with the HREs in its promoter (Pikarsky et al., 1994). But this notion 

was ruled out based on the following observations: (1) Oct4 promoter HREs are not bound by 

RAR/RXR (Schoorlemmer et al., 1994); (2) RA-bound RAR/RXRs almost always act as 

transcriptional activators rather than repressors (Wei, 2003); and (3) the delayed change in 

expression of Oct4 suggests that it is not a direct target of RA (Mahony et al., 2011). Therefore, 

the most parsimonious hypothesis is that RA signal terminates the ESC transcriptional network 

indirectly through the induction transcriptional repressors of Oct4 and other pluripotency factors.  

        Previous attempts to characterize Oct4 repressors downstream of RA have identified several 

genes participating in the process. COUP-TFs such as COUP-TF1, ARP-1 and EAR-2 recognize 

Oct4 promoter HREs and function as repressors in Oct4 promoter reporter assays (Schoorlemmer 

et al., 1994). Moreover, both Hoxa1 and GCNF have been shown to be required for effective 

Oct4 repression and neural differentiation following RA treatment (Akamatsu et al., 2009; Gu et 

al., 2005; Martinez-Ceballos et al., 2005; Martinez-Ceballos and Gudas, 2008).  However, loss of 

either Hoxa1 or GCNF does not completely abolish the repression of Oct4 by RA, suggesting 
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that they might act redundantly, and additional factors likely contribute to RA-mediated 

termination of the ESC state. Importantly, the exit of pluripotency is just the first step of neural 

lineage commitment. In order to consolidate the neuronal fate, RA must also be able to induce 

the neural transcription program and suppress the alternative mesendodermal fate. So far, little is 

known about the effectors and mechanisms in these processes. Therefore to better understand the 

transcriptional network underpinning RA-mediated neuroectodermal lineage commitment, it is 

critical to identify additional RA target genes involved in the repression of pluripotecy, the 

induction of neuronal fate, and the suppression of mesendodermal differentiation.      

         In this chapter, I performed a small-scale screen of RA primary response genes to identify 

putative downstream effectors of RA-mediated neuroectodermal lineage commitment. I first 

examined the dynamics in expression levels of Oct4 and Sox1 following RA treatment. Next I 

selected a set of seven candidate primary response genes involved in the regulation of 

transcription, cloned their cDNAs and generated inducible ESC lines to test the effects of their 

expression in the absence of RA signaling on Oct4 expression levels.  
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Results 

Delayed response in Oct4 and Sox1 expression upon RA treatment 

         To identify additional players in RA-mediated neuroectodermal lineage commitment, I 

adopted the in vitro differentiation protocol of mouse ESCs (Wichterle et al., 2002). In this 

protocol EBs are treated with 1μM RA two days (Day2, Figure 2.1-A) after the start of 

differentiation (as opposed to four days in the original protocol developed by Bain et al. (Bain 

and Gottlieb, 1994)), at a point when cells still express uniformly high levels of the pluripotency 

marker Oct4 (Figure 2.1-B). One day later (Day3) Oct4 was significantly downregulated and 

simultaneously early neural marker Sox1 was up-regulated in EBs; while EBs not retreated with 

RA maintained high level of Oct4 expression and exhibited minimal induction of Sox1 (Figure 

2.4-A, Ctrl ). Importantly, Sox1 and Oct4 were expressed in mutually exclusive pattern upon RA 

treatment, indicating that in one day RA has efficiently directed many cells to exit the ESC state 

and commit to neural lineage. To examine the dynamics of Oct4 downregulation and Sox1 

upregulation, I analyzed mRNA levels by collecting samples at 0, 8, and 24 hours following the 

addition of RA and performed qRT-PCR (Figure 2.1-C). There was no significant difference in 

Oct4 mRNA level between RA treated and untreated cells (p value: 0.15) during the first 8 hours. 

However, 16 hours later Oct4 mRNA level in RA-treated cells was significantly lower than that 

in control cells (7-fold; p value: 0.0004), suggesting that the most profound decrease of Oct4 

mRNA occurred between 8-24 hours after RA was added. Interestingly, Sox1 was induced in a 

similar pattern, with small difference in mRNA level in RA-treated cells compared to untreated 

cells (1.49 fold; p value 0.02) 8 hours following RA treatment and more significant increase in 

RA-treated cells at 24 hours following RA treatment (7 folds more than untreated cells; p value: 

0.004). This kinetics was markedly different from the regulation of primary RA target genes such 
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as Hoxa1 that exhibited peak of induction already at 8 hours after RA treatment (Figure 2.1-C). 

The delayed response in Oct4 and Sox1 mRNA expression upon RA treatment suggests that 

Oct4 and Sox1 are not direct targets of RA signaling. Given the central role of Oct4 and Sox1 in 

the transcriptional program in ESCs and neural progenitors, this result indicates that RA 

promotes the transition from ESCs to neural progenitors through induction of primary response 

genes that directly or indirectly repress Oct4 and induce Sox1.  
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Figure 2.1 RA treatment promotes commitment of neuroectodermal fate 

Mouse ESCs were differentiated as embroid bodies (EBs) for 2 days before treatment of RA 

(1μM). The expression of Oct4 and Sox1 proteins were analyzed on Day0, Day2, and Day3 of 

differentiation. And the mRNA of Hoxa1, Oct4 and Sox1 was analyzed by qRT-PCR at 0, 8, and 

24 hours following the addition of RA. A. Schematic of ESC differentiation. B. Cross sections of 

ESCs on Day0 as well as EBs on Day2 and Day3. Oct4 protein was expressed uniformly from 

Day0 to Day2. 24 hours after RA treatment, Oct4 protein was quickly extinguished, and a 

concomitant emergence of Sox1-positive cells can be observed in EBs, suggesting that these 

cells have committed to the neuroectodermal lineage in response to RA signal. C. Time-course 

qRT-PCR of Hoxa1, Oct4 and Sox1through the differentiation. Whereas a typical RA target gene 

such as Hoxa1 was induced within 8 hours of RA treatment, the expression level of both Oct4 

and Sox1 showed little change through the same period. Significant downregulation of Oct4 and 

upregulation of Sox1 occurred between Day2+8h and Day3, suggesting that Oct4 and Sox1 are 

not direct targets of RA (3 independent experiments; mRNA relative expression levels were 

shown as average ± standard deviation).     
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Candidate RA target genes regulating transcription 

          Since the first premise of lineage commitment regardless of terminal fates is the exit of the 

ESC state. I began my project by identifying putative primary response genes that act as 

downstream effectors of RA to repress Oct4. I analyzed Affymetrix expression data of cDNA 

libraries obtained from differentiating ESCs on Day0, Day2 prior to RA treatment, Day2 8h after 

the addition of RA, and Day3 (Mahony et al., 2011). First I checked the expression patterns of 

the reported repressors of Oct4: GCNF, COUP-TFs (Nr2f1 and Nr2F2), and Hoxa1 (Figure 2.2). 

Interestingly, the expression of COUP-TFs peaked on Day3 of differentiation when Oct4 

repression has already been completed. Meanwhile, GCNF was already expressed in ESCs and 

increased only modestly (< 2 fold) following RA treatment, indicating that it unlikely initiates 

Oct4 repression in response to RA. Hoxa1 was barely detectable from Day0 to Day2 and was 

quickly induced after RA addiction. Its expression reached the highest level after 8 hours of RA 

treatment. This pattern of repression best matched the profile of putative Oct4 repressors.  

To identify additional candidate transcription factors with similar expression profile, I 

filtered genes with Log2 change expression greater than 2.5 for ones annotated by Gene 

Ontology as regulators of transcription (Table 2.1). Besides promoting neural differentiation, RA 

is also involved in the specification of rostro-caudal identity (Liu et al., 2001). Indeed, 14 of the 

20 transcription regulators induced by RA are Hox factors or co-factors previously shown to be 

regulated by RA signaling (Mahony et al., 2011).  
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Figure 2.2 Dynamics in the expression of reported effectors downstream of RA-mediated 

Oct4 repression 

Mouse ESCs were differentiated as embroid bodies (EBs) for 2 days before treatment of RA 

(1μM). Total mRNA samples were collected at different time points from Day0 to Day3 and 

analyzed by microarray profiling (Mahony et al., 2011). Relative expression levels of reported 

effectors responsible for RA-mediated Oct4 repression, including COUP-TFs (Nr2f1 and Nr2f2), 

Hoxa1, and GCNF, were obtained on Day0, Day2, Day2+8hrs, and Day3, then normalized to 

their the maximize expression level among these time points. The induction pattern of Hoxa1 

confirmed that it is a typical primary response gene and direct target of RA, with rapid 

upregulation during the first 8 hours of RA treatment followed by downregulation as the cells 

proceeded to Day3. On the other hand, both Coup-TFs were not induced between Day2 and 

Day2+8hr, suggesting their upregulation might be a secondary effect of RA. While the 

expression of GCNF peaked at 8 hours after RA treatment, its induction began before the 

addition of RA, suggesting that RA signal might not have major effect on GCNF expression 

(Microarray profiling and analysis done by E. Mazzoni and S. Mahony (Mahony et al., 2011)).       
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Table 2.1 Genes annotated by Gene Ontology Biological Process as regulators of 

transcription with Log2 expression change >2.5 at 8 hours after RA treatment. 

Shaded are Hox factors and co-factors. Highlighted are genes cloned and tested for Oct4 

repression. (Microarray profiling and analysis done by E. Mazzoni and S. Mahony (Mahony et 

al., 2011)) 

  

Probe 
Foldchange 

[Log2] P-value 

Day2-
RA 

RAR 
binding 

site 
within 
20Kbp 

Day2+RA 
RAR 

binding 
site 

within 
20Kbp of 

TSS 

Zfp703 7.98 0.000001 

Hoxb5 7.74 0.000001 

Hoxb1 7.57 0.000007 

Hoxa1 5.56 0.000002  

Hoxb4 5.49 0.000036 

Cdx1 5.44 0.000000  

Hoxa3 5.17 0.001039 

Hoxa5 4.98 0.000001 

Hoxb6 4.70 0.001732 

Hoxa4 4.53 0.000059 

Meis2 4.11 0.000041  

Hoxb2 4.07 0.000069 

Hoxc4 3.87 0.000001 

Hoxb3 3.86 0.000126 

Hoxa2 3.54 0.000321  

Tshz1 3.54 0.004358 

Rarb 3.52 0.000112  

Nrip1 2.98 0.000072 

Zfp503 2.97 0.009475 

Hoxa10 2.91 0.000112 
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Zfp703 is sufficient to repress Oct4 on the transcription level 

          To test the ability of identified candidate transcriptional regulators to repress Oct4 

expression, I decided to focus on factors other than Hox genes and their co-factors with the 

exception of Hoxa1, which has been previously implicated in repression of Oct4. I cloned Hoxa1 

and five of the six non-Hox genes (all except Nrip1), V5 epitope-tagged at C-terminus, and 

recombined their cDNAs downstream of the TetO promoter to generate six doxycycline (Dox) 

inducible ESC lines (Figure 2.3-A). Treatment of the cell lines with Dox led to robust expression 

of V5 tagged factors 24 hours later (Figure 2.3-C). To test the ability of these factors to modulate 

Oct4 expression, I differentiated the 6 lines as EBs. On Day 2 I split the EBs into four dishes – 

one kept as a control, one treated with RA, one treated with Dox and one treated with both Dox 

and RA. Cells were harvested 24 hours later on Day 3, and Oct4 mRNA was quantified by qPCR 

(Figure 2.3-B). As shown in Figure 2.3-D, Cdx1 and the previously-identified Oct4 repressor 

Hoxa1 reduced Oct4 mRNA only moderately by ~30% (p values: 0.06 and 0.06, respectively).  

Importantly I identified two new factors - Zfp703 and Zfp503 that were sufficient to repress Oct4 

mRNA by ~80% (p values: 0.01 and 0.03, respectively). The effect of Zfp703 and 503 

expression was not significantly different from the effect of RA treatment (p value: 0.33 for 

Zfp703; 0.13 for Zfp503). This result suggests that Zfp703 and Zfp503 might act as primary 

downstream effectors of RA-mediated termination of ESC transcription network. 
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Figure 2.3 Using inducible ESC lines to screen for additional effectors of RA 

A panel of candidate transcription factors induced by RA within 8 hours was cloned into a TetO 

inducible vector (Mazzoni et al., 2011), which then was used to construct inducible ESC lines for 

each factor. Subsequently, these inducible ESCs were differentiated as EBs for 2 days before 

treated with RA (1μM) or doxycycline (1.5μg/ml). The expression of Oct4 mRNA was analyzed 

by qRT-PCR on Day3. A. Schematic of the inducible vector. B. Schematic of ESC 

differentiation. C. Expression of candidate TFs in EBs revealed by V5-tag immunostaining 24 

hours following doxycycline treatment, confirming the robust induction of the inducible ESC 

system. D. Oct4 mRNA expression in non-treated and doxycycline- or RA-treated inducible EBs 

on Day3. While expression of Tshz1 and Rarb had no effect on Oct4, Hoxa1 and Cdx1 only led 

to moderate decrease in Oct4 mRNA. Importantly, Zfp703 and Zfp503 induction resulted in 

significant downregulation of Oct4. (3 independent experiments; mRNA relative expression 

levels were shown as percentage values normalized to –Dox control value ± standard deviation; 

*p<0.05; **p<0.01; ***p<0.001).    
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Zfp703 is sufficient to repress Oct4 protein 

          To examine effects of inducible expression of transcriptional regulators on Oct4 protein 

level and to study the effect with cellular resolution, I performed immunostaining of Day3 EBs 

with antibodies against Oct4 and anti-V5 antibodies to visualize the expression of the epitope- 

tagged induced factors. As shown in Figure 2.4-A, the addition of doxycycline resulted in 

various degrees of induction in different ESC lines. While the V5 appeared patchy in iTshz1 EBs, 

the majority of iZfp703 and iCdx2 cells expressed the induced factor following doxycycline 

treatment. Zfp703 expression resulted in significant decrease in the number of cells expressing 

Oct4 protein, so did the induction of Cdx2, a well-established Oct4 repressor (Wang et al., 2010). 

Meanwhile, Tshz1 expression led to similar protein level of Oct4 as untreated control. To further 

analyze the correlation between the candidate factors and Oct4, I quantified the proportion of 

cells co-expressing the candidate factor and Oct4 protein over the total number of cells 

expressing the candidate factor. As shown in Figure 2.4-B, more than 90% of the cells 

expressing Tshz1 were Oct4-positive, whereas only 20% of Zfp703-positive cells and less than 

10% of Cdx2-positive cells expressed Oct4, suggesting that similar to Cdx2, Zfp703 is sufficient 

to repress Oct4 protein when expressed in EBs. The fact that the majority Zfp703-expressing 

cells did not express Oct4 suggested that the repression of Oct4 by Zfp703 is likely cell-

autonomous. However, the level of Oct4 protein did decrease in some cells in iZfp703 EBs that 

were V5- negative, arguing the possibility of non-cell-autonomous effects of Zfp703 on Oct4.  

          Although Zfp503 expression was also sufficient to repress Oct4 mRNA on Day3 (Figure 

2.3-C), closer observation by immunostaining revealed that the EBs looked unhealthy with 

increased cell death (Figure 2.5) thus making the results with iZfp503 difficult to interpret. 
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Together with the fact that Zfp703 was induced much higher than Zfp503 (Table 2.1), I hence 

focused the remaining study on Zfp703. 
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Figure 2.4 Zfp703 represses Oct4 protein 

Inducible ESC lines expressing Zfp703, Tshz1, and Cdx2 were differentiated as EBs and treated 

with doxycycline on Day2. Then the protein expression of Oct4 and the induced factors was 

analyzed by immunostaining 24 hours later on Day3. A. Cross sections of Day3 EBs which were 

either untreated or treated with doxycycline therefore expressing Zfp703, Tshz1, or Cdx2, 

respectively. Expression of Zfp703 and Cdx2 led to marked decrease in Oct4-positive cells in 

EBs, whereas extensive Oct4 protein expression sustained in untreated EBs and EBs expressing 

Tshz1. B. quantification of cells co-expressing Oct4 and the induced factors. About 20% of 

Zfp703-expressing cells and less than 5% of Cdx2-expressing cells were Oct4-positive. While 

more than 90% of Tshz1-expressing cells also expressed Oct4. These results suggested that both 

Zfp703 and Cdx2 can effectively repress Oct4 on the protein level (3 independent experiments; 

numbers of cells expressing both induced TFs and Oct4 relative to all TF-expressing cells were 

shown as average percentage ± standard deviation; **p<0.01; ***p<0.001).  
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Figure 2.5 Zfp503 induction leads to cell death 

Inducible ESCs expressing Zfp503 were differentiated as EBs and treated with doxycycline on 

Day2. Then the expression of V5-tagged Zfp503 and cleaved active Caspase 3 was analyzed by 

immunostaining 24 hours later on Day3. Cross sections of untreated or doxycycline-treated EBs 

were shown. Zfp503 expression resulted in increased level of cleaved Caspase 3 in EBs, 

suggesting that Zfp503 induces cell death. 
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Zfp703 is directly regulated by RA 

          While Zfp703 is the top gene induced at 8 hours following RA treatment, ChIP-seq of 

RAR did not reveal binding sites within 20Kbp region of its start site (Table 2.1). Therefore it 

remained unclear whether Zfp703 is actually a direct target of RA signaling. Based on the fast 

induction of Zfp703, I speculated whether Zfp703 might be regulated by distal chromatin 

interactions beyond the 20 Kbp window we used in the initial analysis (Mahony et al., 2011). To 

test this hypothesis, I took advantage of recently obtained data in the lab that mapped long- 

distance chromatin interactions by paired-end tag sequencing (ChIA-PET) using RNA 

polymerase II (PolII) as an anchor to identify long-range interactions between transcription start 

sites (TSS) and distal elements (Figure 2.6-A & B). Consistent with the low level expression of 

Zfp703 on Day0, I detected few interactions between Zfp703 TSS and distal genomic regions. In 

contrast, analysis on Day 3 of differentiation revealed strong interactions between Zfp703 TSS 

and two sites located ~140Kbp upstream (Figure 2.6-C). Importantly, when we aligned ChIP-seq 

data mapping binding sites of RARs, these two distal sites were enriched for RAR binding 8 

hours after RA treatment. Together, these data suggested that RARs are recruited to two distal 

elements following RA treatment that loop and engage Zfp703 TSS to regulate its expression.   

          To verify whether these 2 elements function as distal enhancers, I aligned the ChIA-PET 

results on Day3 with ChIP-seq data mapping enhancer signatures in neural progenitors (Figure 

2.7-A). Interestingly, both elements are associated with the active enhancer marker H3K27ac, the 

co-factor p300, and the pan-enhancer marker H3K4me1. This information suggests that these 2 

elements might be bona fide enhancers. Next, I performed conservation analysis for these 

elements and found significant enrichment of conserved sequences in the first RAR binding site 

among mammals in comparison to adjacent sites (Figure 2.8-A). In the second RAR site I also 
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identified multiple highly conserved regions (Figure 2.8-B). Therefore these two sites seemed to 

be conserved in mammals. Based on the facts that (1) these two sites interact with Afp703 TSS 

during active transcription; (2) they are bound by RAR following RA treatment; (3) they are 

colocalized with active enhancer signatures; and (4) they are evolutionarily conserved in 

mammals, Zfp703 is likely a direct target of RA regulated by these two RAR-bound distal 

enhancers.  
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Figure 2.6 RA might activate Zfp703 through long-range chromatin interactions 

A. and B. Schematic of ChIA-PET. Formaldehyde crosslinked chromatin was sonicated and 

chromatin complexes bound with RNA polymerase II (green) were pulled down using PolII 

antibody (blue). Specific linkers were added to the open ends and subsequently ligated in the 

diluted conditions. After the chromatin complexes were reverse-crosslinked, DNA material was 

subjected to PET extraction and next-generation sequencing statistically significant interactions 

were called at FDR ≤ 0.05 using the ChIA-PET tool (Li et al., 2010) (taken from (Sandhu et al., 

2012)). C. Alignment between PolII ChIA-PET and RAR ChIP-seq around Zfp703 locus during 

differentiation. While few interactions showed up in this region on Day0, the transcription start 

site (TSS) of Zfp703 exhibited strong interactions with 2 distal elements (approximately 140Kb 

upstream) on Day3 after 24hours of RA treatment. Interestingly, these elements were enriched 

for RAR binding after 8 hours of RA treatment on Day2, suggesting that RA might activate 

Zfp703 expression through long-range chromatin interactions. (ChIA-PET and analysis done by 

E. Mazzoni in collaboration with the C. L. Wei group)    
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Figure 2.7 Distal RAR binding sites colocalize with enhancer signatures 

Alignment of PolII ChIA-PET on Day3 EBs treated with RA with ChIP-seq data for enhancer 

signatures H3K27ac, p300, and H3K4me1 in neural progenitors around Zfp703 locus. The 

colocalization of all three enhancer signatures with the two distal elements interacting with 

Zfp703 and RAR (Figure 2.6-C) suggests that these two elements function as enhancers through 

which RA regulates the expression of Zfp703. (ChIA-PET and analysis done by E. Mazzoni in 

collaboration with the C. L. Wei group; ChIP-seq and analysis of enhancer signatures in neural 

progenitors done by M. Closser in collaboration with the D. Gifford group)    
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Figure 2.8 Distal RAR binding sites are conserved in mammals 

Multiple alignment and conservation analysis around 1Kbp region flanking the two distal RAR 

binding sites upstream of Zfp703 TSS. Shown in the middle of each panel are scores of 

conservation among mammals using the PhastCons package (Siepel et al., 2005). Pair-wise 

alignment between mouse and 7 organisms can be found at the bottom of each panel. The 

analysis was performed using UCSC genome browser.  Both sites are conserved across mammals. 

While there is significant enrichment of conserved sequences proximal to RAR site1 (A) 

compared to the adjacent regions; patches of highly conserved sections can be observed in the 

vicinity of RAR site 2 (i.e., Chr8:27954650-27954750 and Chr8: 27955050-27955200 in B).     
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Discussion    

         In this chapter, I established that RA treatment in 2 day old EBs represses Oct4 and 

promotes the exit of pluripotency. Importantly, I determined that Oct4 (as well as Sox1) is likely 

not a direct target of RA signaling. I examined expression data and identified 6 candidate 

transcription factors that might mediate effects of RA. Finally, I generated inducible ESC lines to 

test the function of these factors and discovered that both Zfp703 and Zfp503 are sufficient to 

effectively repress Oct4 in the absence of RA. Therefore, I hypothesize that Zfp703 and Zfp503 

are novel downstream factors of RA signaling that contribute to the termination of the ESC 

transcription network in neural lineage commitment.  

RA indirectly regulates the ESC and neural transcriptional network 

          In our system, as previously reported, Oct4 is not a direct target of RA signaling. Its 

mRNA expression changed minimally in the first 8 hour of RA treatment but dramatically 

decreased during the following 16 hours. The facts that RA-bound RAR/RXRs act as 

transcriptional activators and that no RAR binding sites were identified in the proximity of Oct4 

promoter further support this notion (Mahony et al., 2011). So RA must induce some other 

transcription factors to repress Oct4 and terminate the ESC state. Interestingly, although Sox1 is 

induced by RA, and theoretically this could be achieved by the binding of RA-bound RAR/RXR 

to its promoter, the delayed induction of Sox1 is inconsistent with direct regulation by RA. 

Similar to Oct4, its mRNA expression level did not change much during the first 8 hours of RA 

treatment but was significantly upregulated between 8-24 hours after RA addition (Figure 2.1-C). 

There is no RAR binding site around Sox1 promoter either (Mahony et al., 2011). Taken together, 

these results suggest that RA regulates both ESC and neural transcriptional networks indirectly 
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through induction of additional transcription factors that can repress Oct4 and promote Sox1 

expression during neuroectodermal lineage commitment. 

         There can be two reasons why RA signaling regulates the ESC and neural transcriptional 

programs indirectly through an additional layer of transcription factors rather than directly 

repressing Oct4 and inducing Sox1 by RAR binding. First, because the factors mediating 

neuroectodermal lineage commitment downstream of RA might also be regulated by other 

signaling pathways, they can serve as hubs for the integration of various signal inputs to ensure 

coordinated expression of genes involved in the commitment of ESCs towards neural fate. 

Second, since one transcription factor can regulate multiple genes, this mechanism provides a 

convenient way for RA signaling to simultaneously control large number of genes without 

RAREs. It could also enable RA to effectively modulate different transcription networks by 

directly regulating only a small number of direct targets.        

Additional transcription factors are involved in Oct4 repression by RA 

        Although multiple transcription factors, including COUP-TFs, Hoxa1, and GCNF have 

been shown to participate in RA-mediated Oct4 repression (Gu et al., 2005; Martinez-Ceballos et 

al., 2005; Schoorlemmer et al., 1994), only Hoxa1 appears to be a direct target of RA signaling. 

However, expression of Hoxa1 in inducible ESCs only led to moderate Oct4 repression, 

significantly weaker that the effects of RA (Figure 2.3-D), indicating that additional transcription 

factors downstream of RA might be involved in Oct4 repression.  

To identify the putative Oct4 repressors, I analyzed expression data and found 6 

candidate transcription factors that were significantly induced within 8 hours of RA treatment. In 

the screen using the inducible ESC lines established with these factors, I discovered that both 
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Zfp703 and Zfp503 can significantly repress Oct4 on mRNA and protein level when expressed 

without RA, suggesting that they might also be downstream effectors of RA-mediated exit of 

pluripotency. Zfp703 and Zfp503 belong to the NET family transcription factors whose members 

have been implicated in various events during embryonic development and cancer (Pereira-

Castro et al., 2013). While Zfp703 and Zfp503 are required for proper patterning of hindbrain in 

zebrafish, little is known about their role during early neurogenesis. Importantly, Zfp703 and 

Zfp503 have been shown to interact with corepressors Groucho and HDACs and act as 

transcriptional repressor (Runko and Sagerstrom, 2003, 2004). Therefore, the findings in this 

chapter indicate that Zfp703 and Zfp503 might be induced by RA signaling and initiate the 

repression of Oct4 and the exit of pluripotency during the first stage of RA-induced 

neuroectodermal lineage commitment (Figure 2.9).  

Transcriptional network terminating the ESC state 

         In my screen of 6 early-response transcription factors downstream of RA (Figure 2.3-D), 

expression of Zfp703 and Zfp503 resulted in significant down-regulation of Oct4 mRNA in the 

absence of RA. Whereas Hoxa1 induction only led to moderate Oct4 repression during the same 

period, despite that it has been reported to be required for efficient RA-mediated down-

regulation of Oct4 and neural differentiation (Martinez-Ceballos et al., 2005; Martinez-Ceballos 

and Gudas, 2008). Furthermore, COUP-TFs have been shown to bind to the HREs in Oct4 

promoter and repress transcription upon binding (Schoorlemmer et al., 1994). And Nr2f2 is 

required for neuronal specification of human ESCs through directly repressing Oct4 and turning 

on genes driving neuronal fate (Rosa and Brivanlou, 2011). However, they are upregulated after 

the initiation of Oct4 repression, similar to Sox1 in our system (Figure 2.2). Finally, despite that 

GCNF has been demonstrated as necessary for RA-induced exit of pluripotency and neural 
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differentiation (Akamatsu et al., 2009; Gu et al., 2005), its mRNA is expressed at high levels 

already in ESCs and is only mildly induced following RA treatment (Figure 2.2). These 

observations suggest that RA does not regulate Oct4 and thus the ESC state through only one 

downstream transcription factor. Rather, it might rely on a group of factors that function 

redundantly and interdependently to achieve fast and precise repression of the genes maintaining 

the ESC identity. Consistent with this notion, Oct4 is still repressed by RA in ESCs lacking 

either Hoxa1 or GCNF (Gu et al., 2005; Martinez-Ceballos et al., 2005). Based on this 

information, I hypothesize that Zfp703 and Zfp503 are the key initial repressors of Oct4 assisted 

by Hoxa1 and Cdx1. Secondary repressors induced 24 hours after RA treatment (COUP-TFs) 

likely consolidate the repression of Oct4 and the termination of pluripotency. To test this 

hypothesis and to map the transcriptional cascade downstream of Zfp703, I set out to 

characterize the effects of Zfp703 overexpression at genome-wide level. 
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Figure 2.9 RA might initiate neuroectodermal lineage commitment by inducing Zfp703 

RA promotes neuroectodermal differentiation of ESCs by indirectly repressing pluripotency gene 

such as Oct4 and upregulating key neuroectodermal regulators like Sox1. Zfp703, a transcription 

factor and a putative direct target of RA, is likely the major effector mediating the onset of 

pluripotency termination downstream of RA.    
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Chapter 3. Global effects of Zfp703 on gene expression profile and neurogenesis 

Introduction 

        Members of the NET family proteins have been shown to regulate gene expression during 

embryonic development in various organisms including Drosophila, zebrafish, and mice 

(Pereira-Castro et al., 2013) as well as in cancer progression (Holland et al., 2011; Slorach et al., 

2011). Hence, NET family proteins seem to regulate different sets of target genes in a context-

dependent manner. I identified Zfp703 as an RA-induced transcriptional regulator that 

effectively represses Oct4 expression. However, RA signaling regulates additional genes and 

pathways during ESC neuroectodermal induction – namely it effectively induces expression of 

neuroectodermal genes and represses mesendodermal lineage. In the next two chapters I will 

examine whether Zfp703 recapitulates any of these additional activities attributed to the fate 

choice of neuroectoderm over mesendoderm by RA signaling. I will test whether Zfp703: (1) 

regulates expression of other genes implicated in Oct4 repression (COUP-TFs, GCNF, etc.); (2) 

represses additional pluripotency genes besides Oct4; (3) activates expression of 

neuroectodermal specific genes; and (4) represses mesendodermal lineage-specific genes. To 

address these questions I performed genome-wide expression profiling and gene ontology 

analysis in control and Zfp703-expressing cells, confirmed key downstream targets of Zfp703, 

identified Zfp703 binding sites by ChIP-seq analysis, and derived Zfp703 conditional knockout 

cells to determine requirements for Zfp703 in RA-mediated neuroectodermal differentiation of 

ESCs. 
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Results  

Expression profiling of EBs expressing Zfp703 

         To characterize the effects of Zfp703 expression on the global pattern of gene expression, I 

differentiated the inducible Zfp703 ESC line as EBs for 2 days and treated them with or without 

doxycycline for 24 hours. On Day3 I collected EBs, prepared cDNA libraries, and analyzed gene 

expression by GeneChip 430A 2.0 Array  from Affymetrix which comprises more than 39,000 

probesets representing approximately 14,000 genes (Figure 3.1-A). The result from 4 

independent replicas indicated that compared to control, expression of Zfp703 in EBs led to > 2-

fold downregulation of 109 genes and upregulation of 173 genes with p value less than 0.05 

(Figure 3.1-B). The 50 most upregulated or downregulated genes are listed in Table 3.1.  

Gene ontology (GO) analysis of putative Zfp703 target genes 

        To get a general idea of the functions involving these 282 Zfp703-regulated genes, I 

conducted GO analysis using Database for Annotation, Visualization and Integrated Discovery 

(DAVID) v6.7 from National Institute of Allergy and Infectious Diseases (NIAID) (Table 3.2-A) 

and found that the top-ranked GO categories according to p values are developmental process 

(1.20E-18), multicellular organismal process (1.50E-08), biological regulation (2.40E-05), and 

cellular process (1.40E-04). Because developmental process ranked as the first GO category 

according to the p value, and I am most interested in understanding the role of Zfp703 during 

early development, I performed a second round of GO analysis on the 99 genes in the category of 

developmental process (Table 3.2-B). Interestingly, the top-ranked categories according to p 

values within developmental process comprised mesoderm development (3.00E-06), ectoderm 

development (1.00E-05), mRNA transcription regulation (1.50E-05), cell communication 

(6.50E-05), and neurogenesis (1.10E-04). Therefore the GO analysis of putative Zfp703 target 
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genes suggested that in addition to Oct4 repression, Zfp703 might participate in other relevant 

early embryonic developmental processes. 
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Figure 3.1 Gene expression profiling of Zfp703-expressing EBs 

Inducible Zfp703 ESCs were differentiated as EBs for 2 days before treated with or without 

doxycycline. Then the samples were collected on Day3, and total cDNA was prepared and 

subjected to microarray analyses. A. Schematic of ESC differentiation. B. Volcano plot showing 

genes whose expression level significantly changed in doxycycline-treated EBs compared to 

untreated ones. Zfp703 expression led to downregulation of 109 genes and upregulation of 173 

genes (4 independent experiments with cutoffs as fold change: 2 and p-value: 0.05).    
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Table 3.1 Top 50 genes affected by Zfp703 expression ranked by fold-change 

 
Rank Gene Up-fold Rank Gene Down-fold 

1 Acta2 7.825689 1 Nkx1-2 17.71596 
2 Csn3 7.50006 2 T 16.30743 
3 Igfbp5 7.19221 3 Mixl1 14.75618 
4 Synpo2l 6.947807 4 Hoxb1 13.35986 
5 Col1a2 6.85199 5 Wnt8a 10.89776 
6 Igfbp5 6.77359 6 Eomes 10.76884 
7 Col1a2 6.622636 7 Nkx1-2 10.18989 
8 Ets1 6.462058 8 Eomes 9.931783 
9 Nr2f2 6.4234 9 Fst 9.494982 
10 Tal2 5.9036 10 Apln 9.210899 
11 Thbs1 5.897475 11 Fgf8 8.567696 
12 Nrk 5.766512 12 Fst 8.496554 
13 Sox1 5.763515 13 Aplnr 7.787348 
14 Cryab 5.309863 14 Cdx1 6.137744 
15 Gpm6a 5.259384 15 Wnt3 5.995048 
16 Tgfbi 4.852696 16 Rbp1 5.161519 
17 Anxa1 4.759348 17 Hoxa1 4.971188 
18 Gpm6a 4.684581 18 Cnpy1 4.952869 
19 Ets1 4.670638 19 Defa-rs2 4.438122 
20 Phlda1 4.463592 20 Cnpy1 4.330779 
21 Fosl2 4.456245 21 Dkk1 4.321925 
22 Cadm3 4.428384 22 Nefl 4.311172 
23 Tgfbi 4.383843 23 Cdx2 4.166731 
24 Igf2 4.370416 24 Cxx1c 4.158531 
25 Cotl1 4.272188 25 Pim2 4.121471 
26 Tgfbi 4.207836 26 Cabp7  4.033081 
27 Synpo2l 4.02347 27 Ntn1 3.823372 
28 Gab2 3.977862 28 Ror1 3.803289 
29 Hdac9 3.949652 29 Alox15 3.787318 
30 Clic5 3.831111 30 Cnpy1 3.77149 
31 Hdac9 3.813861 31 Gbx2 3.746454 
32 Armcx3 3.789828 32 Tdgf1 3.733802 
33 Krt18 3.788724 33 AU020094 3.727307 
34 Gadd45b 3.686982 34 Enpp2 3.628458 
35 Prnd 3.634711 35 Lhpp 3.622605 
36 Cyr61 3.572909 36 Nkx1-2 3.541297 
37 Thbs1 3.564796 37 Sp5 3.528271 
38 Pax3 3.472756 38 Prr18 3.523384 
39 Lrp2 3.46073 39 Wnt5b 3.447873 
40 Camk2n1 3.432875 40 Nefl 3.445313 
41 Gbp2 3.431339 41 Btla 3.437892 
42 Synpo2l 3.425609 42 Evx1 3.39707 
43 Nrk 3.421276 43 Cer1 3.263713 
44 Hrc 3.413748 44 Hoxb2 3.245185 
45 Acta1 3.411877 45 Zfp428 3.239637 
46 Dsp 3.381145 46 Prickle1 3.168788 
47 Gbp1 3.342031 47 Lef1 3.152981 
48 Ppm1h 3.327644 48 Nme5 3.140101 
49 Krt8 3.308301 49 1700097N02Rik 3.083912 
50 Zfp516 3.267424 50 Fgf5 3.048187 
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Table 3.2 Gene ontology (GO) analyses of putative Zfp703 target genes 

A. 282 putative Zfp703 target genes were subjected to GO analysis, and top-ranked functional 

categories were shown with p values. B. A second round of GO analysis for the 99 genes 

belonging to “Developmental process” from the first round GO analysis.     

 

GO Term Count % P-Value 
Developmental process 99 34.6 1.20E-18 
Multicellular organismal process 106 37.1 1.50E-08 
Biological regulation 136 47.6 2.40E-05 
Locomotion 17 5.9 1.40E-04 
Cellular component organization 47 16.4 7.50E-04 
Death 18 6.3 2.50E-03 
Cellular process 156 54.5 2.30E-02 
Biological adhesion 15 5.2 4.90E-02 
Growth 7 2.4 7.40E-02 
Immune system process 18 6.3 9.60E-02 

 

GO Term Count % P-Value 
Mesoderm development 24 8.4 3.00E-06 
Ectoderm development 26 9.1 1.00E-05 
mRNA transcription regulation 41 14.3 1.50E-05 
Cell communication 34 11.9 6.50E-05 
Neurogenesis 22 7.7 1.10E-04 
Cell structure and motility 30 10.5 3.40E-04 
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Lineage specific markers regulated by Zfp703 

         Gene-by-gene examination of the most important lineage-specific markers provides 

important insight into the programs regulated by Zfp703. First I extended analysis of 

pluripotency markers upon Zfp703 induction. In addition to Oct4, I detected downregulation of 

Fgf4 (2.5 fold) and Lef1 (3.1 fold) (Figure 3.2 and Table 3.1), two genes involved in the 

maintenance of the ESC state, and 6.4-fold upregulation of Nr2f2 (COUP-TF2), a gene 

implicated in Oct4 repression. Interestingly, Zfp703 had only negligible effect on Nanog 

expression (1.1-fold downregulation as compared to nearly 20-fold downregulation by RA 

treatment), indicating that Zfp703 targets only a subset of pluripotency genes, and that successful 

repression of the entire pluripotency program might depend on additional downstream regulators 

such as Nr2f2.   

Next I examined effects of Zfp703 on markers of neuroectodermal lineage. Zfp703 

induced early markers of neural differentiation Sox1 (5.6 fold) and Zeb2 (3.1 fold) (Figure 3.2 

and Table 3.1).  However, many additional neural lineage genes (Pax6, Neurog2, Ascl1, or Sox21) 

were not significantly induced 24 hours following Dox treatment, in contrast to their induction 

following RA application. Meanwhile, Zfp703 increased expression of several epidermal genes, 

including Col1a2 (6.8 fold), Krt18 (3.8 fold), Krt8 (3.3 fold), and Col1a1 (2.9 fold), raising the 

possibility that Zfp703 might be initially biasing neuroectodermal differentiation of ESCs 

towards epidermal phenotype.  

Finally, I examined the expression of mesendodermal markers to determine whether 

Zfp703 promotes differentiation of ESCs along all major germ layers. Expression profiling 

revealed that mesodermal (Mixl1, Lhx1, Gata6, Sox17, and Gsc) and endodermal (Wnt3, Eomes, 

and Lef1) as well as mesendoderm lineage marker Brachyury (T) were among the most strongly 
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downregulated genes upon Zfp703 expression (Figure 3.2 and Table 3.1). Together, these data 

suggest that Zfp703 might be involved in key decision steps in RA-mediated differentiation of 

ESCs, acting as a suppressor of pluripotency as well as mesendodermal lineage and an activator 

of neuroectodermal fate. 
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Figure 3.2 qRT-PCR verification of putative Zfp703 target genes   

Inducible Zfp703 ESCs were differentiated as EBs for 2 days before treated with or without 

doxycycline. 24 hours later the samples were collected and qRT-PCR was performed. Relative 

expression levels in Zfp703-expressing (doxycycline-treated) EBs were normalized to untreated 

ones. Consistent with the microarray data, Zfp703 expression resulted in downregulation of 

genes implicated in maintaining pluripotency (Lef1 and Oct4) as well as differentiation of 

mesoderm (Mixl1, Lhx1, Gata6, Sox17, and Gsc) and endoderm (Wnt3, Eomes, and Lef1). 

Meanwhile, Zfp703 expression also led to upregulation in epidermis markers (Col1a2, Krt18, 

Krt8, and Col1a1) as well as genes involved in neurogenesis (Sox1, Nr2f2, and Zeb1) (3 

independent experiments; mRNA relative expression levels were normalized to non-treated 

control EBs and shown as average). 
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Zfp703 regulates a subset of important genes involved in RA-mediated neuroectodermal 

lineage commitment 

         Zfp703 is putatively a direct target of RA. And expression profiling as well as qPCR 

analyses suggest that Zfp703 is likely implicated in all major events of RA-mediated 

neuroectodermal lineage commitment, raising the question to which extent can Zfp703 

recapitulate the effects of RA on gene expression. To address this issue, I compared the genes 

whose expression level is significantly changed (fold change ≥ 2 and p-value ≤ 0.05) upon RA 

treatment and Zfp703 expression through analyzing the microarray profiling data on Day3 EBs 

that has been treated with RA or induced to express Zfp703 from Day2. As shown in Figure 3.3-

A, RA treatment resulted in 988 genes significantly upregulated on Day3; while Zfp703 

expression led to 173 upregulated genes at the same point. 29 genes are upregulated by both RA 

and Zfp703 (16% of total genes upregulated by Zfp703 expression). On the other hand, RA 

treatment caused 963 genes significantly downregulated on Day3; whereas Zfp703 expression 

resulted in 109 downregulated genes during that period. 47 genes are downregulated by both RA 

and Zfp703 (43% of total genes downregulated by Zfp703 expression). Therefore, Zfp703 seems 

to recapitulate the effect of RA on only a small subset of RA-regulated genes. Because 43% of 

genes downregulated by Zfp703 overlap with genes downregulated by RA, the major function of 

Zfp703 might be a transcription repressor downstream of RA.  

The genes regulated by both RA and Zfp703 are listed in Table 3.3. Among them are key 

transcription factors in ESC lineage commitment. Critical neuroectodermal fate determinant 

Sox1 and Nr2f2 are upregulated by both RA and Zfp703; while genes specifying mesendoderm 

such as Brachyury (T), Eomes, Wnt3, and Lef1 are repressed by both RA and Zfp703. 

Interestingly, epiblast marker Fgf5 is also downregulated, suggesting that both RA and Zfp703 
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promote the progression of ESCs through the epiblast stage towards lineage commitment. In 

summary, although Zfp703 causes similar changes in expression of only a small number of RA-

regulated genes (Figure 3.3), it is sufficient to recapitulate the effect of RA on key regulators of 

ESC lineage commitment, specifically genes involved in the fate choice between neuroectoderm 

and mesendoderm. These data further support the notion that Zfp703 might be a suppressor of 

pluripotency and mesendodermal lineage and an activator of neuroectodermal fate downstream 

of RA. 
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Figure 3.3 Overlap between genes regulated by Zfp703 and RA on Day3 

Microarray profiling data from Zfp703-expressing and RA-treated Day3 EBs were compared, 

and Van diagrams for genes upregulated (A) as well as downregulated (B) under each condition 

are shown (Cutoff: fold change ≥ 2 and p-value ≤ 0.05). A. RA treatment led to significant 

upregulation of 988 genes on Day3; whereas Zfp703 expression resulted in significant 

upregulation of 173 genes. 29 genes are significantly upregulated in both RA treatment and 

Zfp703 expression. B. RA treatment caused significant downregulation of 963 genes; while 

Zfp703 expression led to significant downregulation of 109 genes. There are 47 genes 

significantly downregulated in both RA treatment and Zfp703 expression (Microarray profiling 

and analysis on RA-treated Day3 EBs done by E. Mazzoni and S. Mahony (Mahony et al., 

2011)). 
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Table 3.3 Genes regulated by both RA and Zfp703 expression 

Microarray profiling data of RA-treated and Zfp703-expressing Day3 EBs were compared and 

genes whose expression is affected by both RA and Zfp703 are listed. (Cutoff: fold change ≥ 2 

and p-value ≤ 0.05) 

 

 

 

 

 

 

 

 

 

   

Up Down Down 
Tgfbi Sgk1 Prickle1 
Nr2f2 Pla2g1b 1700097N02Rik 
Fzd2 Pim2 Eras 
Fbn2 Slc7a7 Ror1 

Gap43 Tnfsf11 Cnpy1 
Dsc2 T          Fgf5 
Tgm2 Fst Grik3 
Gbp7 Spry4 Vrtn 
Dsp Nkx1-2 Slc7a7 

Cotl1 Foxd3 Lef1 
Tgm2 Wnt8a AU020094 
Rhou Epha1 Cnpy1 

Col1a2 Etv4 Btla 
Crabp2 Timp4 Cnpy1 

Csf1 Zic3  
Gab2 Eomes  

8430427H17Rik Nefl  
Sema3c Celf4 
Fndc3b          Ggct 

Frk 1700097N02Rik
Trp53i11 Spry2 
Zfp516 Pla2g1b 
Sox1 Enpp2 
Cpm Fbp1 

        Cxxc4 Pllp 
Wnt3 

 Rerg  
 L1td1  

 Tdgf1  
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Zfp703 induces neural progenitor marker Sox1 

          While early neural lineage marker is among the top Zfp703-induced genes, presence of 

multiple markers of epidermal lineage prompted me to more carefully examine whether Zfp703 

leads primarily to the specification of epidermis or neural tissue (Figure 3.2). To confirm the 

gene expression analysis and to examine expression of Sox1 and epidermal markers with cellular 

resolution I turned to qPCR and to immunocytochemical analyses of Day3 EBs expressing 

Zfp703 (Figure 3.4-A). While RA treatment resulted in almost 6-fold increase in Sox1 mRNA 

level, Zfp703 induction by doxycycline led to a more moderate but still significant ~2-fold 

upregulation in Sox1 mRNA (Figure 3.4-B), compared to non-treated control EBs (p value: 0.02). 

Importantly, the expression level of Zfp703 is similar in RA-treated and doxycycline treated EBs 

(Figure 3.4-B), ruling out the possibility that the observed effects of Zfp703 are due to 

abnormally high expression level resulting from the inducible system. At this point, changes in 

mRNA level were accompanied with comparable increase in the number of cells expressing 

Sox1 protein (Figure 3.4-C). Together, these data suggested that Zfp703 expression is sufficient 

to partially recapitulate the effect of RA in converting pluripotent cells to Sox1-positive neural 

progenitors. 
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Figure 3.4 Zfp703 promotes the commitment of neural progenitors 

Inducible Zfp703 ESCs were differentiated as EBs for 2 days before treated with RA or 

doxycycline. 24 hours later the EBs were collected for qRT-PCR and immunocytochemistry 

analyses. A. Schematic of experiments on the effect of Zef703 on neurogenesis. After induction 

by RA or doxycycline on Day2, EBs were analyzed on Day3 for neural progenitor marker and 

Day6 for postmitotic neuronal markers. B. The expression of Zfp703 and Sox1 in Day3 EBs. 

While both RA treatment and Zfp703 induction by doxycycline resulted in about 10-fold 

increase in Zfp703 mRNA level compared to non-treated EBs, RA treatment resulted in 6-fold 

increase in Sox1 mRNA, and Zfp703 expression (Dox) led to 2-fold upregulation of Sox1 

mRNA (3 independent experiments; mRNA relative expression levels were normalized to non-

treated control EBs and shown as average ± standard deviation; **p<0.01). C. Sections of Day3 

EBs stained for V5 and Sox1. Both RA treatment and the expression of V5-tagged Zfp703 

(doxycycline treatment) resulted in more Sox1-positive neural progenitors compared to non-

treated control EBs.    
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Zfp703 transiently induces epidermal genes 

        In addition to Sox1, Zfp703 expression also led to upregulation of epidermal genes (Figure 

3.2).  Indeed, I observed upregulation of keratins Krt8 and Krt18 on Day3 by qPCR (Figure 3.5-

B) and immunostaining (Figure 3.5-C). Importantly, keratins and Sox1 were expressed in non-

overlapping populations of cells (keratin-positive cells close to the periphery of EBs surrounding 

more centrally-located Sox1 cells), indicating that the two lineages are effectively resolved in 

Zfp703-expressing cells (Figure 3.6-A). Furthermore, by Day 4 of differentiation Sox1-positive 

cells appeared to accumulate relative to keratin-positive cells (Figure 3.6-A) and by Day 6 the 

EBs are composed primarily of Sox1-positive neural cells (Figure 3.6-B). These data indicate 

that while initially both epidermal and neural lineages are specified in response to Zfp703 

induction, neural cells become the dominant population in Day 4-6 EBs. The delayed emergence 

of Sox1 cells in Zfp703-expressing EBs compared to EBs treated with RA (Figure 3.4-B) 

suggests that the neural induction is likely to be an indirect consequence of Zfp703 induction.  
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Figure 3.5 Zfp703 induces epidermal genes 

Inducible Zfp703 ESCs were differentiated as EBs for 2 days before treated with or without 

doxycycline. On Day3 the EBs were collected for qRT-PCR and immunocytochemistry analyses. 

A. Schematic of ESC differentiation. B. Zfp703 expression (Dox) resulted in ~7-fold 

upregulation in Krt8 mRNA and ~11-fold increase in Krt18 mRNA compared to non-treated 

control (Ctrl) on Day3, consistent with the microarray data (Figure 3.2) (3 independent 

experiments; mRNA relative expression levels were normalized to non-treated control EBs and 

shown as average ± standard deviation; **p<0.01). C. Sections of Day3 EBs showed that there 

were more cells positive for Krt8 and Krt18 proteins when treated with doxycycline (Dox) 

compared with non-treated control (Ctrl), suggesting that Zfp703 expression induced Krt8 and 

Krt18 proteins on Day3. 
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Figure 3.6 Zfp703 mainly promotes neural progenitor fate rather than epidermis 

Inducible Zfp703 ESCs were differentiated as EBs for 2 days before treated with or without 

doxycycline. The EBs were then collected on Day3, Day4, and Day6 for immunocytochemistry 

analysis using antibodies against neural progenitor marker Sox1, epidermis gene Krt8 (K8), V5 

(tagged Zfp703), differentiated epidermis marker Krt1 and epidermal progenitor marker Krt5. 

Meanwhile, Zfp703 expression was examined by qRT-PCR on Day4 and Day6 (3 independent 

experiments; mRNA relative expression levels were normalized to non-treated control EBs and 

shown as average ± standard deviation). A. While there were significantly more K8-positive 

cells and Sox1-positive cells in doxycycline-treated EBs compared to non-treated (Ctrl) EBs on 

Day3, the difference in the number of K8-positive cells was less profound on Day4. Importantly, 

there was a dramatic increase in Sox1-positive cells in doxycycline-treated EBs on Day4, and no 

cells co-expressed K8 and Sox1. Moreover, there appeared to be a decrease in cells expressing 

K8 in doxycycline-treated EBs, suggesting the induction of epidermis genes by Zfp703 

expression might be transient. B. Sections of Day6 EBs stained for Sox1, Krt1, and Krt5. At this 

stage, Zfp703-expressing EBs were predominately populated by Sox1-positive neural 

progenitors compared to non-treated control while staining of Krt1 and Krt5 showed no 

difference. Together, these data indicated that Zfp703 expression mostly led to neural progenitor 

specification rather than epidermis fate.   
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Zfp703 promotes neurogenesis 

         Detection of a significant number of Sox1 positive cells in Day 6 EBs (Figure 3.6-B) was 

surprising, since by this time most cells in RA-treated EBs progress from Sox1-positive neural 

progenitors to NeuN- and Tuj1-positive postmitotic neuronal stage. To address whether Sox1-

positive cells in Zfp703-expressing EBs are bona fide neural progenitors and committed to 

differentiate down the path of neural lineage, I stained Day 6 EBs for postmitotic neuronal 

marker NeuN (Figure 3.7-A). Importantly, I detected NeuN-positive cells in EBs expressing 

Zfp703 and their number appeared larger compared to the number of NeuN-positive cells in 

control EBs. However, since the distribution of NeuN-positive cells was heterogeneous, I 

decided to perform quantification on dissociated and replated cells. I dissociated EBs on Day6 

and cultured them as single cells for 2 additional days before staining them for postmitotic 

neuronal markers NeuN and Tuj1. As shown in Figure 3.7-C, the induced Tuj1-positive cells 

exhibited typical neuronal morphology with several neurites extending from cell bodies. 

Quantification of NeuN-positive cells revealed that while there were about 20% NeuN-positive 

cells in non-treated EBs, 80% and 50% of the cells are NeuN-positive in EBs treated with RA 

and doxycycline, respectively (Figure 3.7-B). Therefore, Zfp703 is capable of promoting 

neurogenesis in the absence of exogenous retinoids. 

         Only 50% of the cells in Zfp703-expressing EBs exhibited postmitotic neuronal markers 

NeuN and Tuj1 (Figure 3.7-B and 3.7-C), raising the question about the identity of the remaining 

cells. To address this, I stained Day6 iZfp703 EBs with a panel of neural, epidermal, and 

oligodendroglial markers including Pax6, Nestin, Krt1, Krt5, and Olig2. None of these markers 

exhibited significant difference between non-treated, RA-treated, and doxycycline-treated EBs 

(data not shown), indicating that Sox1-positive cells present in the Zfp703 expressing EBs might 
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be arrested in a naïve neural progenitor stage. Because the majority of the cells in Zfp703-

expressing EBs were positive either for postmitotic neuronal markers NeuN and Tuj1 or neural 

progenitor marker Sox1, I concluded that the primary effect of Zfp703 is to specify neural 

identity on top of repressing Oct4.    
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Figure 3.7 Zfp703 promotes neurogenesis 

Inducible Zfp703 ESCs were differentiated as EBs for 2 days before treated with RA from Day2 

to Day5 or doxycycline from Day2 to Day6. On Day6 the EBs were either collected for 

immunostaining or dissociated and subjected to culture for 2 more days. Moreover, Zfp703 

expression was examined by qRT-PCR on Day6 EBs (3 independent experiments; mRNA 

relative expression levels were normalized to non-treated control EBs and shown as average ± 

standard deviation). A. Sections of Day6 EBs stained for postmitotic neuronal marker NeuN. 

While significantly more NeuN-positive cells can be observed in EBs treated with RA or 

doxycycline, the distribution of NeuN-positive cells was not homogeneous cross EBs subjected 

to identical treatment. B. Image and quantification of NeuN-positive cells in dissociated cultures 

on Day8. While ~50% of the cells expressed postmototic neuronal marker NeuN after 

doxycycline treatment, less than 20% of the cells were NeuN-positive in non-treated group (Ctrl) 

C. Image and quantification of Tuj1-positive cells in dissociated cultures on Day8 showed 

similar results. (3 independent experiments; proportion of cells expressing markers relative to 

total cell number were expression shown as average percentage ± standard deviation; *p<0.05, 

**p<0.01, ***p<0.001). 
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Discussion 

Effects of Zfp703 on gene expression 

         In order to identify putative Zfp703 target genes and shed light on its function during 

neuroectodermal lineage commitment, I conducted gene expression profiling and GO analysis of 

EBs expressing Zfp703. In addition to the repression of Oct4 which has already been 

demonstrated through the experiments in chapter 2, Zfp703 overexpression also resulted in 

strong repression of genes driving mesoderm and endoderm differentiation (i.e. Brachyury, 

Mixl1, and Eomes) with concomitant induction of genes participating in neurogenesis and 

epidermis formation. This suggests that Zfp703 might have a broader role in RA-mediated 

neuroectodermal lineage commitment by promoting neuroectodermal lineage at the expense of 

mesendodermal differentiation rather than merely repressing Oct4.  

        The Net family proteins have been reported to function as transcriptional repressors 

(Nakamura et al., 2004). However, Zfp703 expression in EBs led to more genes significantly 

upregulated than downregulated (173 vs. 109). This could be explained by two scenarios. First, 

Zfp703 might repress a repressor of the induced genes. Second, despite that the NET proteins 

have been reported to interact with corepressors Groucho and HDACs (Runko and Sagerstrom, 

2003, 2004), it remains plausible that they can act as context-dependent activators and repressors. 

Notably, it is thought that NET family proteins cannot bind DNA (Nakamura et al., 2004). 

Therefore the sequence-specificity and the outcome of transcription regulation for Zfp703 could 

be determined by the cofactors it interacts with.  
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Zfp703 modulates a subset of key lineage determinants regulated by RA  

          Zfp703 is potentially a direct target of RA (Figure 2.6 and 2.7). And its expression in EBs 

without additional signaling molecules resulted in decreased expression of pluripotency genes 

and genes specifying mesendodermal lineage as well as increased expression of neuroectodermal 

genes – the exact changes of gene expression during neuroectodermal lineage commitment 

exerted by RA. This argues that Zfp703 might be an important downstream effector of RA that is 

involved in the major transcriptional regulatory events during neural differentiation. It also flags 

the question to what extent Zfp703 can recapitulate the effect of RA on gene expression. To 

address this issue, I compared microarray profiling data on Day3 EBs treated with RA or induced 

to express Zfp703. RA treatment resulted in much more genes significantly upregulated and 

downregulated than Zfp703 expression (about 10 times more genes in each category, Figure 3.3). 

This is not surprising because of the pleiotropic effects of RA on gene expression. And Zfp703 

might be more specific on gene regulation during ESC differentiation.   

          When I look at the genes with similar expression pattern in both RA-treated and Zfp703-

expressing EBs, I found that Zfp703 only affects a small subset of RA-regulated genes (29 out of 

988 genes upregulated and 47 out of 963 genes downregulated by RA, Figure 3.3). Because RA 

treatment induces a hoard of transcription factors, and Zfp703 is only one of them (Table 2.1), it 

is reasonable that Zfp703 expression alone cannot mimic the full effects of RA on gene 

expression. Nevertheless, 43% of the genes downregulated by Zfp703 (47 out of 107, Figure 3.3) 

are also downregulated by RA; while only 16% of the genes upregulated by Zfp703 (29 out of 

173, Figure 3.3) are also upregulated by RA. It appears that Zfp703 is more important for 

transcriptional repression than activation during neuroectodermal specification, consistent with 

its proposed role as a transcriptional repressor (Nakamura et al., 2004). Finally, despite the small 
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overlap of genes regulated by both RA and Zfp703, this group encompasses key players in 

lineage commitment: the neuroectodermal fate determinants Sox1 and Nr2f2, genes specifying 

mesendoderm  Brachyury (T), Eomes, Wnt3, and Lef1, as well as the epiblast marker Fgf5 (Table 

3.3). In conclusion, Zfp703 might be an important downstream effector of RA which exerts 

transcriptional regulation on critical genes during the fate choice of differentiating ESCs between 

neuroectoderm and mesendoderm.  

Zfp703 and transcriptional network of neural induction 

          The data in this chapter suggested that Zfp703 might have a broader role in RA-induced 

neuroectodermal lineage commitment beyond Oct4 repression. Specifically, Zfp703 expression 

led to the emergence of neural progenitors and subsequently, postmitotic neurons in EBs without 

RA treatment. Thus Zfp703 is sufficient to induce neural fate. In addition to Sox1, Zfp703 

expression also resulted in upregulation of Nr2f2 and Zeb2 (Figure 3.2); both are critical in 

neural differentiation (Ozair et al., 2013). Interestingly, Nr2f2 has been shown to be required for 

Oct4 repression and neural lineage commitment in human ESCs (Rosa and Brivanlou, 2011). 

Hence it is possible that Zfp703 specifies neural fate by initiating a transcriptional network 

encompassing Sox1, Nr2f2, and Zeb2 which both consolidates the repression of the pluripotency 

program and initiates neural differentiation program.  

Zfp703 mainly promotes neural rather than epidermis differentiation 

         While I observed transient upregulation of epidermal genes including keratins and 

collagens in Zfp703-expressing EBs (Figure 3.2), keratins were not induced following RA 

treatment (although Col1a2 was upregulated by both Zfp703 and RA, Table 3.3), indicating that 

Zfp703 initially promotes neuroectodermal identity that is later refined to produce mostly neural 

cells. Lack of keratin induction in RA-treated EBs suggests the existence of Zfp703-independent 
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repressors of early epidermal fate that are induced in response to RA treatment. Despite initial 

elevation of Krt8 and Krt18 mRNA and protein in Day3 EBs expressing Zfp703 (Figures 3.5 and 

3.6-A), the Krt8- or Krt18-positive cells tend to localize mainly at the periphery of EBs (Figure 

3.6-A), and their numbers decrease as differentiation progresses. Already by Day4, Sox1-

positive neural progenitors greatly outnumbered cells expressing Krt8 (Figure 3.6-A). 

Importantly, there were no cells co-expressing Sox1 and Krt8. The exact identity of Krt8- and 

Krt18-positive cells has not been determined. While Krt8 and Krt18 are highly expressed in 

Merkel cells mediating the sense of touch (Van Keymeulen et al., 2009), the definitive marker of 

Merkel cells, Atoh1 (Morrison et al., 2009) was not induced throughout the differentiation (data 

not shown). Lastly, at the end of differentiation (Day6), preliminary immunostaining of 

epidermis progenitor maker Krt5 and differentiated epidermis marker Krt1 showed no difference 

between untreated EBs and EBs expressing Zfp703 (Figure 3.6-B), indicating that the epidermal 

fate is not a major output of Zfp703 induction.  

Gap in efficiency between Zfp703- and RA-induced neurogenesis 

         Zfp703 is sufficient to induce neural fate. However, when compared to RA, Zfp703 

expression alone in EBs led to markedly lesser extent of upregulation in Sox1 mRNA and fewer 

neural progenitors on Day3 (Figure 3.4-B and 3.4-C) as well as fewer postmitotic neurons on 

Day6 (Figure 3.7). The difference in the efficiency of specifying neural fate between Zfp703 and 

RA can be explained in two scenarios. First, Zfp703 might not be the only effector downstream 

of RA responsible for promoting neurogenesis. There are additional factors functioning in a 

redundant manner. This is supported by the fact that Zfp703 can only recapitulate the effects of 

RA among a small group of genes (Figure 3.3). Second, although Zfp703 expression only led to 

moderate increase of neural progenitors in Day3 EBs, significantly more Sox1-positive cells are 
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present in Day4 and Day6 EBs expressing Zfp703 (Figure 3.6). It remains to be determined 

whether Sox1- positive cells present in Day6 EBs are frozen in an immature naïve state that they 

cannot escape, or whether they simply lack a patterning signal that could initiate a delayed 

program on neural differentiation. Nevertheless, the delayed emergence of Sox1 cells in Zfp703 

expressing EBs suggests that the effect on neurogenesis of Zfp703 is likely to be indirect. And 

the accumulation of Sox1 cells indicates that there are Zfp703-independent mechanisms to 

promote the maturation of neural progenitors downstream of RA.   

Zfp703 partially recapitulates important effects of RA on lineage commitment 

          In conclusion, Zfp703 expression promotes neurogenesis with the initial induction of both 

neural and epidermal fates. Because I already demonstrated that Zfp703 is sufficient to repress 

key pluripotency gene Oct4, Zfp703 seems to be involved in both the termination of the ESC 

transcriptional program and the initiation of neuroectodermal transcriptional networks, two 

critical events during RA-mediated neuroectodermal lineage commitment (Figure 3.8). Based on 

microarray profiling, Zfp703 expression also strongly represses mesendodermal fate (Figure 3.2). 

In the next chapter I will verify the effect of Zfp703 on medendoderm specification and examine 

the transcriptional cascade of Zfp703-mediated fate choice during ESC differentiation.      
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Figure 3.8 Zfp703 suppresses pluripotency and promotes neurogenesis 

Zfp703 expression alone is sufficient to repress key pluripotency gene Oct4 and promote the exit 

of the ESC state, rendering the cells poised to make the fate choice between neuroectoderm and 

mesendoderm. Moreover, Zfp703 expression is also sufficient to induce neuroectodermal 

determinants Sox1 and Nr2f2, pushing the cells to differentiate along the neuroectodermal 

lineage and eventually leading to enhanced neurogenesis. 
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Chapter 4. Zfp703 suppresses mesendodermal fate  

Introduction 

        Proper specification of neuroectodermal lineage has to be accompanied by the suppression 

of mesendodermal fate (Thomson et al., 2011). Indeed, exogenous RA has been reported to 

repress mesodermal marker Brachyury and Wnt-3a in developing mouse embryo (Iulianella et al., 

1999). However it remains unknown whether RA primarily activates the neural transcriptional 

program that represses mesendoderm differentiation or whether it enables execution of the 

default neural fate by primarily repressing mesendodermal transcriptional program. Identification 

of Zfp703 as an important target of RA signaling provided an entry point to start dissecting the 

hierarchy of regulatory network underlying RA-mediated neural specification.  

        To examine the role of Zfp703 in the fate choice between neuroectoderm and mesendoderm 

in differentiating ESCs, in this chapter I set out to address 3 questions: (1) Is Zfp703 sufficient to 

counteract activity of mesendoderm-inducing signals? (2) Does expression of Zfp703 in 

committed mesendodermal cells lead primarily to induction of neural markers or to repression of 

mesendodermal markers? (3) Does Zfp703 bind in the proximity of neural or mesendodermal 

lineage genes? (4) Is Zfp703 required for neural induction and/or mesendoderm repression? For 

the first two questions, I adopted ESC differentiation conditions promoting specification of 

mesendodermal lineage and tested the effect of RA treatment and Zfp703 overexpression on the 

expression of mesendodermal markers. For the last two questions, I performed ChIP-seq 

experiments on ZFp703-expressing EBs to identify its genome-wide binding sites as well as 

luciferase assay to examine the effect of Zfp703 binding on the expression of adjacent genes. 

Finally, I derived Zfp703 null ESCs and conducted preliminary loss-of-function analyses of 

Zfp703.      
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Results 

Zfp703 suppresses the acquisition of mesendodermal fate 

          The microarray profiling data from Zfp703-expressing Day3 EBs indicates that Zfp703 

strongly represses mesendodermal determinants such as Brachyury, Eomes, and Mixl1 (Figure 

3.2). To test whether Zfp703 expression is sufficient to repress mesendodermal fate, I adopted a 

mesendodermal differentiation protocol in which inducible Zfp703 ESCs were kept in serum-

free media as monolayer for 2 days followed by treatment with GSK3β-inhibitor (GSK3i) and 

ActivinA. As shown in Figure 4.1-B, treatment of these two factors led to robust induction of 

Brachyury-expressing cells compared to control, confirming the effective mesendoderm 

differentiation. After verifying the protocol, I first tested if Zfp703 expression is sufficient to 

prevent the induction of mesendodermal fate by adding either RA or doxycycline to the culture 

on Day1 (Figure 4.2-A). As shown in Figure 4.2-B, both RA treatment and Zfp703 expression 

prior to the addition of GSK3i and ActivinA strongly interfered the induction of Brachyury, 

Eomes, and Mixl1 mRNA. Importantly, pretreatment of cells with RA or doxycycline also led to 

the upregulation of Sox1 mRNA in cells despite the subsequent exposure to mesendoderm-

inducing agents (Figure 4.2-C). Consistent with these observations, on Day3 around 80% of the 

cells receiving GSK3i and ActivinA expressed Brachyury protein; whereas very few cells 

pretreated with RA or doxycycline were positive for Brachyury. Conversely, while plenty of 

Sox1-positive cells existed in cultures with RA or doxycycline, they were rare among control 

cells receiving GSK3i and ActivinA (Figure 4.3). Together these results indicate that Zfp703 is 

sufficient to efficiently prevent the induction of mesendodermal identity and induce 

neuroectodermal differentiation when expressed prior to the exposure of cells to mesendoderm-

specifying signal.  
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Figure 4.1 Gsk3i and Activin A drives mesendodermal differentiation 

ESCs were dissociated and plated as monolayer in serum-free medium on Day0 and kept in 

serum-free condition from Day0 to Day2. On Day2 Gsk3i and ActivinA were added. 

Subsequently the cells were fixed and stained on Day3. A. Schematic of ESC differentiation. B. 

immunostaining of Day3 cultures for mesendodermal marker Brachyury and nuclear marker 

DAPI. Treatment of Gsk3i and ActivinA resulted in robust emergence of Brachyury-positive 

cells.  
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Figure 4.2 Zfp703 prevent the response to mesendoderm-inducing signals 

Inducible Zfp703 ESCs were plated as monolayer on Day0. RA or doxycycline was added on 

Day1. Then the cells were treated with ActivinA and GSK3i on Day2 for 24 hours. The cells 

were collected on Day3 for qRT-PCR analysis. A. Schematic of ESC differentiation. B. 

Expression of mesendoderm markers Brachyury, Eomes, and Mixl1 on Day3. Pretreatment of 

doxycycline or RA on Day1 led to significantly lower mRNA levels of these mesendoderm 

markers, suggesting that both Zfp703 and RA prevented the cells from responding to 

mesendoderm induction mediated by ActivinA and GSK3i. C. Expression of neural progenitor 

marker Sox1. D. Expression of Zfp703. Pretreatment of doxycycline or RA on Day1 led to 

significantly higher mRNA level of Sox1 on Day3, suggesting that both Zfp703 and RA 

promoted neural progenitor specification even that the cells were exposed to ActivinA and 

GSK3i from Day2 to Day3 (3 independent experiments; mRNA relative expression levels were 

normalized to ESCs treated with only ActivinA and GSK3i and shown as average ± standard 

deviation; *p<0.05; **p<0.01; ***p<0.001).     
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Figure 4.3 Zfp703 and RA favor neuroectoderm over mesendoderm fate 

Inducible Zfp703 ESCs were plated as monolayer on Day0. RA or doxycycline was added on 

Day1. Then the cells were treated with ActivinA and GSK3i on Day2 for 24 hours. The cells 

were fixed on Day3 for immunocytochemistry analysis. A. Expression of the neuroectodermal 

marker Sox1, mesendodermal marker Brachyury, and Zfp703 (tracked by V5 staining). While 

ActivinA and GSK3i induced extensive Brachyury expression in control cells on Day3, 

pretreatment of doxycycline or RA resulted in very few Brachyury-expressing cells. Meanwhile, 

doxycycline and RA treatment led to the emergence of Sox1-positive cells on Day3. B. 

Quantification of cells expressing Brachyury or Sox1 protein on Day3 (3 independent 

experiments; proportion of cells expressing Sox1 or Brachyury relative to total cell numbers 

were show as average percentage ± standard deviation; **p<0.01; ***p<0.001).    
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Zfp703 represses mesendodermal marker Brachyury in committed cells            

          So far, I have demonstrated that Zfp703 expression is sufficient to induce neuroectodermal 

commitment (Figure 3.3 and 3.6) and suppress mesendodermal fate (Figure 4.2 and 4.3). 

However, the transcriptional hierarchy underpinning these phenomena has not been elucidated. 

Specifically, there are two putative models to explain the mechanism of Zfp703 in ESC fate 

choice (Figure 4.4). Zfp703 might actively induce important components in the neuroectodermal 

lineage such as Sox1 and Nr2f2, which in turn repress mesendodermal determinants Brachyury, 

Eomes and Mixl1 (Figure 4.4-A). Alternatively, Zfp703 might primarily repress mesendodermal 

determinants therefore removing the inhibitory effects of these factors on neuroectodermal genes 

and de-repressing the neuroectodermal fate (Figure 4.4-B). To distinguish between these two 

models, I examined whether Zfp703 can repress mesendodermal determinants without inducing 

neuroectodermal markers. To do this, I treated cells with GSK3i and ActivinA for 24 hours 

before the addition of RA or doxycycline (Figure 4.5-A). 12 hours later, there was significant 

downregulation of Brachyury mRNA in cells receiving RA or doxycycline (Figure 4.5-B). 

Immunostaining of Brachyury protein showed similar results (Figure 4.5-C). Interestingly, under 

this condition neither RA nor Zfp703 could induce Sox1 (Figure 4.5-C). Taken together, these 

experiments demonstrate that in nascent mesendodermal cells Zfp703 is sufficient to repress key 

mesendodermal marker Brachyury, however it is not sufficient to induce expression of early 

neuroectodermal markers. Because Zfp703 represses Brachyury without inducing Sox1, the 

second model (Figure 4.4-B) seems to be more accurate that Zfp703 functions primarily as a 

repressor of mesendodermal fate which consequently leads to the de-repression of 

neuroectodermal potential in differentiating ESCs grown under basal conditions. 
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Figure 4.4 Putative models of transcriptional cascade downstream of Zfp703 

There are two possible scenarios of transcriptional hierarchy in Zfp703-mediated fate choice of 

neuroectoderm over mesendoderm. A. Zfp703 actively induces key transcriptional factors in 

neuroectodermal lineage such as Sox1 and Nr2f2, which in turn repress mesendodermal 

determinants Brachyury, Eomes, and Mixl1. B. Zfp703 primarily represses mesendodermal 

determinants and thus removing their inhibition of neuroectodermal factors and de-repressing 

neuroectodermal fate.    
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Figure 4.5 Zfp703 and RA represses Brachyury in committed mesendodermal cells 

Inducible Zfp703 ESCs were plated as monolayer on Day0 and treated with ActivinA and GSK3i 

on Day2. RA or doxycycline was added on Day3, and cells were collected 12 hours later for 

qRT-PCR and immunocytochemistry analysis. A. Schematic of ESC differentiation. B. 

Expression of Zfp703 and Brachyury mRNAs at Day3+12hrs. Treating cells with doxycycline or 

RA after they were committed to mesendoderm fate through exposure of ActivinA and GSK3i 

still resulted in repression of Brachyury mRNA (3 independent experiments; mRNA relative 

expression levels were normalized to ESCs treated with only ActivinA and GSK3i and shown as 

average ± standard deviation; ***p<0.001). C. Expression of Brachyury and Sox1 proteins at 

Day3+12hrs. Brachyury was widely expressed in control cells, whereas treatment of doxycycline 

or RA greatly reduced the number of Brachyury-positive cells in culture. Meanwhile, the Sox1 

staining was negative in all three conditions.     
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Zfp703 ChIP-seq yielded few binding sites  

         Now I have established and tested a model of transcriptional cascade downstream of 

Zfp703 in the fate choice of ESCs: Zfp703 primarily represses mesendodermal determinants and 

therefore de-represses neuroectodermal factors to steer the differentiation towards 

neuroectoderm and subsequently neuronal lineage. There are two outstanding questions 

remaining: (1) Whether Zfp703 directly represses pluripotency and mesendodermal genes; (2) 

whether Zfp703 is necessary for RA-mediated neuroectodermal lineage commitment. To address 

the first question I designed experiments to map genome-wide binding sites of Zfp703 by 

chromatin immunoprecipitation followed by deep sequencing (ChIP-seq). I differentiated 

inducible Zfp703 ESCs as EBs and treated them with doxycycline on Day2 for 24 hours before 

fixing and lysing them on Day3. Subsequently, the cell lysate was fractioned with sonication 

before subjected to immunoprecipitation with control IgG or V5 antibody. The protein-chromatin 

complexes pulled down were then sequenced and resulting data analyzed by our collaborators in 

David Gifford’s computational lab at MIT. Among three independent ChIP-seq experiments, we 

identified only 330 high-confidence binding sites (p<0.0002, one such site is shown in Figure 

4.6-A), much fewer than in other ChIP-seq experiments for developmentally regulated 

transcription factors that typically yield 5,000-30,000 binding sites. The low number of Zfp703 

peaks might either reflect high degree of selectivity in its recruitment to DNA or might reflect 

less efficient immunoprecipitation because of indirect binding of Zfp703 to DNA. Motif analysis 

indicates that 163 out of 330 sites containing the sequence ACAA(A/T)(G/A)G. A search for 

conserved motifs suggests that this sequence is bound by Sox proteins of the HMG group (Figure 

4.6-B).  Among the top 140 sites, 7 are intragenic (2 with motif), and 133 are intergenic. Only 7 

sites appeared in the 20Kbp vicinity of top 100 Zfp703-regulated genes (Table 3.1).    
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Figure 4.6 Zfp703 ChIP-Seq  

Inducible Zfp703 ESCs were differentiated as EBs and treated with or without doxycycline on 

Day2. On Day3 the cells were fixed and subjected to ChIP with control IgG or V5 antibody. The 

precipitated DNA fragments then underwent deep sequencing and computational analysis 

conducted by David Gifford’s lab at MIT. 330 high-confidence binding sites were identified with 

p value <0.0002. A. One representative high-confidence Zf703 binding site on chromosome 1. B. 

163 out of 330 high-confidence sites possess the HMG protein (Sox2, Sox3, and Sox6) binding 

motif ACAA(A/T)(G/A)G.  
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Zfp703 represses Lef1         

       Because the majority of high-confidence binding sites were found far from transcription start 

sites of genes regulated following Zfp703 expression, it was difficult to correlate ChIP-Seq and 

microarray results. It also suggests that Zfp703 might regulate these genes came indirectly 

through additional mechanisms. To identify such mechanisms, we adopted less stringent criteria 

for peak-calling and detected one binding site in the promoter region of Lef1 (7Kb upstream 

from transcription start site, TSS; p value: 0.003), a critical transcription factor mediating the 

activation of genes in response to Wnt signaling (Figure 4.7-A). Since the fold enrichment for 

this binding site was 3.6 IP/WCE (whole cell extract), and the q-value is 0.089 after multiple 

hypothesis testing correction, it was not included in the 330 high-confidence binding sites. To 

validate whether this is a real binding site, I performed ChIP-PCR and confirmed the interaction 

(Figure 4.7-B). Because Lef1 also came up as a gene downregulated by Zfp703 expression in the 

array data (Figure 3.2), I then examined whether Zfp703 represses Lef1 through binding to its 

promoter. I cloned the 1Kb region of Lef1 promoter encompassing the Zfp703 binging site into a 

luciferase reporter vector (Figure 4.8-A) and co-expressed it with or without Zfp703 in 293T 

cells. Zfp703 expression resulted in ~2-fold reduction in luciferase activity compared to control 

(Figure 4.8-B). Therefore, Zfp703 likely directly binds to the promoter of Lef1 and seems to 

repress its expression. Given the close relationship between Lef1 and Wnt signaling (Mao and 

Byers, 2011), one plausible mechanism of gene regulation exerted by Zfp703 might be through 

the attenuation of Wnt pathway. This would argue that Zfp703 regulates pluripotency and 

mesendodermal genes indirectly.  
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Figure 4.7 Zfp703 binds to the promoter of Lef1 

Inducible Zfp703 ESCs were differentiated as EBs for 2 days before treated with doxycycline. 24 

hours later the EBs were dissociated and fixed before lysed and sonicated. The lysate was then 

subjected to ChIP using either control IgG or V5 antibody. A. Image of ChIP-seq for Zfp703 and 

Pol2 around Lef1 locus. There was a peak at ~7 Kbp upstream of the transcription start site of 

Lef1 (arrow), suggesting Zfp703 binds to its promoter. B. ChIP-PCR using primer pairs flanking 

Zfp703 binding site in Lef1 promoter (Lef1) and an unbound control region (Ctrl). While 

product was generated from both lysate (input) and ChIP using V5 antibody with Lef1 primers, 

ChIP with control IgG and PCR with Lef1 primers yielded no band, neither did PCR using Ctrl 

primers, confirming that Zfp703 interacts with Lef1 promoter.   
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Figure 4.8 Zfp703 represses the activity of Lef1 promoter 

HEK293T cells were transfected with plasmid containing luciferase under the control of Lef1 

promoter together with mock or Zfp703 expression vectors. 24 hours later the cells were lysed, 

and the lysate was subjected to luciferase assay. A. The schematic of the luciferase construct. 

The 1Kbp sequence encompassing the Zfp703 binding site called in ChIP-seq analysis was 

cloned upstream of luciferase reporter gene. B. Expression of Zfp703 led to ~40% decrease in 

luciferase activity compared to control, suggesting that Zfp703 is able to repress Lef1 promoter 

(3 independent experiments; luciferase activities in Zfp703-expressing cells were normalized to 

that of mock transfected cells and shown as average percentage ± standard deviation; *p<0.05).     
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Conditional targeting of Zfp703 

           To address the second outstanding question whether Zfp703 is an indispensable 

downstream effector of RA-mediated neuroectodermal lineage commitment, I set to generate a 

conditional Zfp703 allele. The targeting vector was generated by recombineering using bacterial 

artificial chromosomes (BACs) (Malureanu, 2011). In the vector, the second exon of Zfp703, 

which encodes the bulk of the protein and major functional domains, was flanked by loxP sites 

(Figure 4.9). I screened 200 targeted ESC clones and generated chimera mice with the help of the 

transgenic facility. Afterwards, I mated the chimera with flippase-expressing mice to get rid of 

the Neomycin-resistant cassette and obtained 4 F1 pups carrying one floxed allele (2 still 

retained Neo cassettes) and one wild-type allele (heterozygous). During subsequent 2 rounds of 

the mating between the 2 pairs of heterozygous F1 animals, I obtained 24 F2 pups, of which 17 

were heterozygous, and 7 were wild-type. The mating between 4 pairs of heterozygous F2 

animals (half retained Neo cassettes) yielded 15 heterozygous and 10 wild-type. Together, these 

matings generated 32 heterozygous, 17 wild-type, and none homozygous F2/F3 pups (Table 4.1). 

The lack of homozygous progenies and the 1.9-to-1 ratio between heterozygous and wild-type 

mice among all F2 and F3 pups suggested surprising lethality of animals homozygous for the 

floxed Zfp703 allele. To circumvent the embryonic lethality of homozygous mice I decided to 

derive ESC lines from mating between heterozygous mice (Table 4.2). Out of 4 pregnant females 

I derived 20 ESC lines, of which 13 were heterozygous, 7 were wild-type, and none was 

homozygous. This suggested that the floxed allele is homozygous lethal during preimplantation 

stage. In this approach we had nearly 100% success in ESC derivation, therefore the lethality 

likely happens before E3.0. Hence, this strategy could not be used for Zfp703 loss-of-function 

analysis. 
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Figure 4.9 Conditional targeting strategy of Zfp703 

Top: The targeting construct was designed that the exon2 of Zfp703 together with a Neomycin-

resistant selection cassette were flanked by loxP sites. Bottom: Exon2 of Zfp703 encodes the 

bulk of the protein and major functional domains Sp: the SP motif, S/T: serine/threonine-rich 

regions, Q: the glutamine-rich region, Btd: the Buttonhead box, RID: the repressor interaction 

domain, ZF: the C2H2 zinc finger, N: a region required for nuclear localization (modified from 

(Runko and Sagerstrom, 2004)). 
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Zfp703 knockout first allele 

          As an alternative strategy I established collaboration with Dr. Brian P. Brooks in NIH who 

generously provided heterozygous mice carrying Zfp703 knockout first allele (Skarnes et al., 

2011). The targeted allele was generated by recombineering through inserting a β-gal reporter 

and a Neomycin-resistant cassette between exon 1 and exon 2 of Zfp703 to disrupt the 

production of full-length functional protein (Figure 4.10).  Based on the initial mating between 2 

pairs of heterozygous mice, embryos homozygous for Zfp703 knockout first allele seemed to die 

during late gestation period between E12.5 and P1. With these mice, I was able to derive one 

Zfp703 mutant ESC line. 

Zfp703 is required for efficient suppression of mesendoderm fate by RA 

         To test whether Zfp703 is required for RA-mediated suppression of mesendodermal fate, I 

cultured wild-type and Zfp703 mutant ESCs for 2 days before treating them with Gsk3i and 

ActivinA. Subsequently on Day3 I added RA to the culture before collecting mRNA samples 12 

hours later for qRT-PCR (Figure 4.11-A). As shown in Figure 4.11-B, Zfp703 was readily 

induced by RA in wild-type cells; whereas in mutant cells it is barely detectable. While RA 

treatment led to ~2-fold repression of mesendodermal marker Brachyury in wild-type cells, the 

extent of repression was significantly attenuated in Zfp703 mutant cells (p value: 0.01; Figure 

4.9-C), suggesting that Zfp703 might be required for optimal suppression of mesendoderm fate 

during RA-mediated neuroectodermal lineage commitment.  
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Figure 4.10 Zfp703 knockout first allele 

A cassette comprising splicing acceptor (SA), IRES, beta-gal reporter, and Neomycin-resistant 

gene flanked by frt sites (blue triangles) was inserted between exon1 and exon2 of Zfp703, 

resulting in the prevention of the production of full-length Zfp703 protein therefore generating a 

null allele. Red triangles: loxP sites. 
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Figure 4.11 Loss of Zfp703 attenuated RA-mediated suppression of mesendoderm fate 

Wild-type or Zfp703 mutant ESCs were plated as monolayer on Day0 and treated with ActivinA 

and GSK3i on Day2. RA was then added on Day3, and cells were collected 12 hours later for 

qRT-PCR. A. Schematic of ESC differentiation. B. Expression of Zfp703. While Zfp703 mRNA 

was induced by RA in wild-type cells, it is barely detectable in mutant cells (3 independent 

experiments; mRNA relative expression levels were normalized to untreated control wild-type 

EBs and shown as average ± standard deviation). C. Expression of mesendodermal marker 

Brachyury. RA treatment resulted in ~50% decrease in Brachyury mRNA compared to non-

treated (Ctrl) among wild-type cells, whereas in mutant cells RA treatment led to less than 20% 

decrease in Brachyury mRNA (3 independent experiments; mRNA relative expression levels 

were normalized to untreated control EBs and shown as average percentage ± standard deviation; 

*p<0.05).    
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Zfp703 is not required for Oct4 repression or Sox1 induction by RA 

         Next I examined if Zfp703 is required for the other two events during RA-mediated 

neuroectodermal lineage commitment: the exit of pluripotency and the initiation of neural 

transcription program. I differentiated wild-type and Zfp703 mutant ESCs as EBs and treated 

them with RA on Day2 before performing qRT-PCR on Day3 mRNA samples (Figure 4.12-A). 

As shown in Figure 4.12-B and 4.12-C, no difference in RA-mediated Oct4 repression or Sox1 

induction was observed between wild-type and mutant EBs, suggesting that the loss of Zfp703 

might be compensated by other factors for the termination of the ESC transcriptional network 

and the specification of neural progenitors during neuroectodermal lineage commitment. 
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Figure 4.12 Zfp703 is not required for RA-mediated Oct4repression and Sox1 induction 

Wild-type or Zfp703 mutant ESCs were differentiated as EBs for 2 days before treated with 1μM 

or 100nM RA. On Day3 the EBs were collected for qRT-PCR. A. Schematic of ESC 

differentiation. B. Expression of Oct4 after 24 hours of RA treatment. Oct4 mRNA was 

effectively downregulated in both wild-type and Zfp703 mutant cells by RA compared to non-

treated cells (Ctrl). C. Expression of Sox1mRNA on Day3. In both wild-type and Zfp703 mutant 

cells RA treatment led to upregulation of Sox1 compared to non-treated cells (Ctrl) (1 

experiment).   
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Discussion 

Zfp703 and ESC fate choice during differentiation 

          Although Zfp703 expression in EBs caused significant change among only a small group 

of genes (~200, Figure 3.1), these genes are implicated in all three processes critical for 

neuroectodermal lineage commitment: the exit from pluripotency, the initiation of neural 

transcriptional program, and the suppression of non-neural fate. In previous chapters I 

demonstrated that Zfp703 expression is sufficient to repress Oct4 and induce neural specification. 

The results from experiments in this chapter suggested that Zfp703 acts also as a potent repressor 

of key transcription factors specifying mesendoderm. It represses Brachyury, Mixl1, and Eomes 

even under the condition when ESCs were induced to differentiate along mesendodermal lineage 

(Figures 4.2, 4.3 and 4.5). These results suggest that Zfp703 plays central role in the fate choice 

between neuroectoderm and mesendoderm of differentiating ESCs, after it first represses 

pluripotency genes Oct4 thereby terminating the ESC state. Because Zfp703 can repress 

mesendodermal determinants such as Brachyury without simultaneous induction of 

neuroectodermal factors such as Sox1, I concluded the primary function of Zfp703 is the 

suppression of mesendodermal fate (Figure 4.4-B). As this suppression leads to de-repression of 

neuroectodermal factors, Zfp703 indirectly drives the cells towards neuroectodermal lineage. 

There are two implications of this conclusion. First, it helps to explain the gap in neurogenesis 

capacity between Zfp703 expression and RA treatment, since RA could directly induce neural 

factors independent of Zfp703. It also suggests that Zfp703 is more important to function as a 

repressor of mesendodermal fate rather than an inducer of neural differentiation as a downstream 

effector of RA. Consistent with this notion, preliminary results from Zfp703 mutant ESCs 

indicate that Zfp703 is required for optimized suppression of mesendodermal determinants by 
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RA; while it is not required for RA-mediated Sox1 induction (Figure 4.12). Second, the de-

repression nature of Zfp703-mediated neuroectodermal commitment is reminiscent of the 

“default” neural induction. Although Zfp703 was identified as an RA-induced factor in this study, 

it would be interesting to determine whether Zfp703 is also involved in “default” neural 

differentiation.   

Zfp703 and Wnt signaling 

          To reveal the genome-wide binding sites and direct target genes of Zfp703, I performed 

ChIP-seq experiments on EBs expressing Zfp703. However, I obtained only 330 significant 

binding events. Specifically, very few of them were located proximal to the top 100 genes 

regulated by Zfp703. This could be explained by three scenarios. First, the quality of 

immunoprecipitation might be poor due to the indirect recruitment of Zfp703 to DNA therefore 

resulting in significant false-negative rate. Second, the regulation of these genes mediated 

through long-range distal enhancers bound by Zfp703 would not be unveiled using current 

analytic algorithm. Third, these genes could be secondary targets of signaling pathways regulated 

by Zfp703 and thus interacting with secondary transcriptional factors. The latter scenario is 

supported by my finding that Zfp703 binds to Lef1 promoter and represses its activity in 

luciferase assay (Figures 4.7 and 4.8). Lef1, a critical transcription factor mediating the 

activation of genes in response to Wnt signaling (Mao and Byers, 2011), was also downregulated 

by Zfp703 on mRNA level during differentiation (Figure 3.2). Moreover, Zfp703 has been 

reported to suppress the activation of the Wnt reporter (Slorach et al., 2011). Importantly, Wnt 

signaling is required for not only mesendodermal differentiation but also the maintenance of the 

ESC state (Lindsley et al., 2006; Nusse et al., 2008). Hence, one of the putative mechanisms for 

Zfp703 to mediate both the exit from pluripotency and the repression of mesendodermal fate 
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might be through attenuation of Wnt signaling pathway. Zfp703 has been shown to repress TGF-

β signaling in human and mouse cells (Holland et al., 2011; Slorach et al., 2011), suggesting that 

Zfp703 might exert its function primarily through regulation of signaling pathways.  

Phenotypes of Zfp703 mutants  

          Zfp703 expression is sufficient to bias differentiation of ESCs towards neuroectoderm. To 

address whether Zfp703 is required during normal RA-mediated neuroectodermal lineage 

commitment, I derived and differentiated Zfp703 mutant ESCs. The preliminary results indicated 

that Zfp703 is not required for RA-mediated Oct4 repression or Sox1 induction, raising the 

possibility that additional factors are also implicated in RA-mediated exit of pluripotency and 

specification of neural progenitors therefore compensating the loss of Zfp703 in the mutants. In 

fact, Zfp503, a close homolog of Zfp703 directly regulated by RA (Table 2.1) (Chang et al., 

2004), is also sufficient to repress Oct4 when overexpressed (Figure 2.3-D) although further 

analyses of Zfp503 was complicated by the fact that it induces cell death (Figure 2.5). Because 

Zfp703 and Zfp503 can act as homo- and heterodimers (Runko and Sagerstrom, 2004), they 

might function cooperatively to regulate the ESC transcriptional network and the neural 

transcription program. Hence the more profound phenotypes of neuroectodermal lineage 

commitment in vivo might only be revealed when both Zfp703 and Zfp503 are targeted. 

Nevertheless, Zfp703 is required for full repression of Brachyury in RA-treated early 

mesendodermal cells (Figure 4.11). 

Homozygous lethality of Zfp703 conditional allele 

           The death of Zfp703 mutant embryos homozygous for the knockout first allele between 

E12.5 to around birth suggested that Zfp703 is an essential gene critical for the normal 

development during late gestation stage (Figure 4.10). However, it cannot explain the 
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preimplantation lethality of embryos homozygous for the conditional allele I generated. The 

most likely explanation is that the insertion of loxP sites disrupted a yet unknown essential 

regulatory element (i.e. enhancers or non-coding RNAs), causing the observed lethality. In fact, 

the region proximal to the inserted loxP site upstream of Zfp703 exon2 is highly conserved 

among mammals (Figure 4.13) and might be important for preimplantation development.  
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Figure 4.13 The region around one loxP site is highly conserved among mammals 

Alignment of genomic sequences at the position of the first loxP site upstream of exon2 on the 

conditional targeting allele. The sequence disrupted by the loxP sites (red letters) was highly 

conserved across 13 mammalian species. 
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Chapter 5. Conclusion and future directions 

Conclusion 

           I began this study by identifying downstream effectors of RA-mediated neuroectodermal 

lineage commitment based on the observation that critical transcription factors involved in three 

discrete cellular statuses during ESC lineage commitment: the pluripotent ESC state (Oct4, 

Nanog, and Sox2), the committed neuroectodermal (Sox1 and Nr2f2) precursors and 

mesendodermal progenitors (Brachyury, Eomes, and Mixl1) are not direct targets of RA. 

Through a screening with transcription factors induced rapidly by RA using an inducible ESC 

system, I found that Zfp703, a member of NET family zinc finger proteins, is sufficient to 

repress Oct4 when expressed alone. This suggests that Zfp703 might be a downstream effector of 

RA which represses pluripotency genes and thus leads to the exit of the ESC state, the perquisite 

of lineage specification during differentiation. Subsequent microarray profiling and qPCR 

analyses indicated that Zfp703 not only affects plutipotency genes but also upregulates genes 

specifying neuroectodermal fate and downregulate mesendodermal markers. Despite Zfp703 

expression induces both neural progenitor marker Sox1 and some epidermal genes like keratins 

early in the differentiation, Sox1-expressing neural progenitors and NeuN/Tuj1-positive 

postmitotic neurons dominated the later culture. Hence Zfp703 promotes neuronal identity. On 

the other hand, Zfp703 suppresses mesendodermal differentiation even under conditions favoring 

mesendodermal fate. Because Zfp703 strongly represses mesendodermal determinants such as 

Brachyury without concomitant induction of neuroectodermal genes such as Sox1, I concluded 

that Zfp703 primarily represses mesendodermal fate and by doing so de-represses 

neuroectodermal genes therefore promoting neurogenesis. Therefore, Zfp703 seems to be 
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implicated in the lineage choice between neuroectoderm and mesendoderm, the first crucial fate 

decision toward making diversified cell types during embryogenesis. 

          In order to illuminate how Zfp703 regulates gene expression, I conducted ChIP-seq 

experiments to characterize the genome-wide binding sites of Zfp703. The results revealed very 

few high-confidence binding sites in the genome that are far from genes highly-regulated by 

Zfp703. This might due to the fact that Zfp703 does not bind DNA directly (Nakamura et al., 

2004). Nevertheless, Lef1 was one of the few Zfp703-regulated genes with Zfp703 enriched site 

in the proximity of its transcription start site (~7Kb upstream). I confirmed that Zfp703 binds to 

the promoter of Lef1 and represses its activity. Based on these results, I propose that Zfp703 

might modulate Wnt signaling during ESC differentiation through repressing Lef1. Given the 

implication of Wnt signaling and Lef1 in both the maintenance of pluripotency and the 

specification of mesendodermal fate (Lindsley et al., 2006; Nusse et al., 2008), this could be a 

plausible mechanism of Zfp703 in promoting neuroectodermal lineage commitment. On the 

other hand, I cannot rule out the possibility that Zfp703 directly represses key mesendoderm 

determinants (such as Brachyury, Eomes, and Mixl1) and Oct4. While I failed to detect Zfp703 

binding sites in the proximity of these genes, the low signals of Zfp703 ChIP-seq suggests that I 

might miss many weaker sites, the genes are regulated by distal enhancers, or that secondary 

repressors might be involved in the repression of these genes.  

         Lastly, I performed preliminary Zfp703 loss-of-function analyses using ESCs carrying the 

knockout first allele. While RA-mediated repression of Brachyury under mesendoderm-inducing 

condition was attenuated in Zfp703 mutant ESCs, the repression of Oct4 and the upregulation of 

Sox1 by RA are unaffected in Zfp703 mutant EBs. Interestingly, Zfp503, a member in the NET 

protein family closely related to Zfp703 and directly regulated by RA signal (Chang et al., 2004), 
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was also sufficient to repress Oct4 when expressed in EBs. This information suggests that 

Zfp703 might be required for optimized suppression of mesendodermal fate in RA-mediated 

neuroectodermal lineage commitment, and other factors could also contribute to the termination 

of the ESC transcriptional network and the initiation of neural differentiation program 

downstream of RA. Consistent with this notion, neurogenesis resulting from Zfp703 expression 

is not as robust as RA treatment. 

       In conclusion, through this study I defined one of the putative important transcriptional 

cascades downstream of RA in neuroectodermal lineage commitment (Figure 5.1). Specifically, 

RA directly activates Zfp703, which represses pluripotency gene Oct4 therefore promotes the 

exit of the ESC state. As cells are now poised to commit to two alternative fates: neuroectoderm 

and mesendoderm, Zfp703 further represses mesendodermal determinants Brachyury, Eomes, 

and Mixl1 thus removing their repression of neuroectodermal genes such as Sox1 and Nr2f2. This 

de-repression of key transcription factors eventually leads to the emergence of neuronal identity. 

There are several caveats about this model. First, it might not be the only mechanism of RA-

mediated neuroectodermal lineage commitment, since Zfp703 cannot fully recapitulate the 

effects of RA. Second, I cannot conclude whether Zfp703 repress Oct4 and Brachyury directly 

through binding to their regulatory elements in the genome or indirectly through secondary 

repressors due to the ChIP-seq results. Third, because the relative ratio of Oct4 to Sox2 is an 

important factor affecting the choice between neuroectodermal vs. mesendodermal lineages 

(Thomson et al., 2011), downregulation of Oct4 by Zfp703 would result in high Sox2/Oct4 ratio, 

which might also contribute to Zfp703-mediated neurogenesis. Interestingly, although RA is not 

involved in neural induction in vivo, this model bears striking resemblance to the “default” 

neural induction, the prevailing neutralizing mechanism in mammalian embryogenesis. RA-
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mediated and “default” neural induction might converge upon Zfp703. And it would be 

important to determine the role of Zfp703 in the “default” neural induction. 
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Figure 5.1 Model of RA-mediated neuroectodermal lineage commitment  

RA directly induces Zfp703, which represses pluripotency gene Oct4 and mesendodermal 

determinants Brachyury, Eomes, and Mixl1. By doing so Zfp703 removes the repression on 

neuroectodermal genes such as Sox1 and Nr2f2. Subsequently, the de-repression of these 

transcription factors leads to the emergence of neuroectodermal fate.  
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Discussion 

Cell state transition during lineage commitment 

         There are three distinct cell states involved in the commitment of ESCs to neuroectodermal 

or mesendodermal lineages, a process faithfully recapitulating the first step toward making 

diverse cell types in the embryo at the onset of gastrulation in developing epiblast. These cell 

states are the pluripotent ESC state maintained by the ESC transcriptional program composed of 

the core transcription factors Oct4, Sox2 and Nanog; the neuroectodermal progenitors specified 

by transcription factors Sox1 and Nr2f2; as well as the mesendodermal precursors established by 

transcription factors Brachyury, Eomes, and Mixl1. The transition between cell states during 

lineage commitment is driven by extracellular signals. For example, RA and FGF can promote 

neuroectodermal commitment, whereas Wnt and Activin induce mesendodermal identity 

(Thomson et al., 2011). These signaling pathways affect cell states through regulation of gene 

expression which leads to the termination or activation of specific transcriptional programs that 

subsequently consolidate cell fate. To ensure coordinated regulation of these transcriptional 

programs and to prevent cells from acquiring mixed identities, two general themes can be 

observed in the mechanisms of these signaling pathways in lineage commitment. First, there are 

multiple downstream effectors regulating the same set of genes in transcriptional programs 

specifying cell states. This redundancy will ensure robust and thorough regulation of key 

transcription factors. At the same time, it would also serve as fail-safe cushion that if one effector 

fails, the cell state transition can still proceed. Second, there are downstream effectors able to 

affect multiple transcriptional programs involved in lineage commitment. This is a convenient 

way for the signaling pathways to exert integrated effects during cell state transition with a few 

effectors as the hubs of transcriptional regulation.  
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         Both themes are well-illustrated in RA-mediated neuroectodermal lineage commitment. 

Successful neuroectoderm specification requires the transition of the cells from pluripotent state 

to committed neuroectodermal identity. On the level of transcriptional regulation, RA must 

terminate the ESC transcriptional program, activate neuroectodermal factors and repress 

mesendodermal determinants to facilitate this transition. In the termination of ESC 

transcriptional program, Hoxa1, Coup-TFs, and GCNF have all been proposed to repress key 

pluripotency gene Oct4 and/or Nanog downstream of RA (Gu et al., 2005; Martinez-Ceballos et 

al., 2005; Rosa and Brivanlou, 2011; Schoorlemmer et al., 1994). I also identify two potent Oct4 

repressors: Zfp703 and Zfp503 in this study. Therefore RA might terminate the ESC 

transcriptional program through multiple downstream effectors to achieve robust and complete 

exit of the pluripotent state. It is also possible that RA uses different combination of effectors at 

different time points throughout neuroectodermal commitment to ensure sustained repression of 

the ESC transcriptional program. Consistent with this notion, these effectors are induced at 

various time points after RA treatment (Figure 2.2). Among them, Zfp703 seems to play critical 

role in RA-mediated Oct4 repression and the subsequent exit of pluripotent state. First, it is 

rapidly and highly induced in response to RA signal (within 8 hours, Table 2.1). Second, it 

represses Oct4 to the extent comparable to RA (Figure 2.3-D). Finally, it upregulates Nr2f2 

(Coup-TFII, Figure 3.2), another downstream effector involved in Oct4 repression. Therefore 

Zfp703 might be the effector that initiates the termination of the ESC transcriptional program by 

repressing Oct4 in response to RA. Meanwhile, it also facilitates sustained repression of 

pluripotency genes via inducing Nr2f2 thus constituting a feed forward loop leading to efficient 

exit of the ESC state. It should be noted, however, that Zfp703 is not the only effector in the 

termination of the ESC transcriptional program, as it proceeds normally in Zfp703 mutant ESCs 
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treated with RA (Figure 4.12-B), possibly due to the effects of Zfp503. This is consistent with 

the redundant nature of the regulation. 

        Regarding the second theme, Zfp703 also seems to be an ideal hub to integrate the 

regulation of multiple transcriptional programs during neuroectodermal lineage commitment. In 

addition to repressing Oct4, Zfp703 strongly represses mesendodermal determinants Brachyury, 

Eomes, and Mixl1. By repressing both Oct4 and mesendodermal fate, Zfp703 de-represses 

neuroectodermal factors Sox1 and Nr2f2 thus promoting neuroectodermal identity. Hence, RA is 

capable of coordinately regulating the ESC, neuroectoderm, and mesendoderm transcriptional 

programs through Zfp703 to facilitate the transition from ESC to neuroectodermal progenitors. 

This puts Zfp703 at the center of transcriptional regulation downstream of RA (Figure 5.1).  

         How can Zfp703 regulate such diverse genes given the fact that it might not bind DNA by 

itself (Nakamura et al., 2004)? One possible mechanism is that it modulates the signaling 

pathways controlling those genes. Lef1 is an important downstream effector of Wnt signaling 

which is involved in the maintenance of pluripotency and mesendoderm specification (Lindsley 

et al., 2006; Nusse et al., 2008). As Zfp703 binds to the promoter of Lef1 and represses its 

activity (Figure 4.7 and 4.8), it might regulate both the ESC and mesendoderm transcriptional 

program through modulating Wnt signaling.  

        A second putative mechanism is that Zfp703 could act as a cell type specific cofactor of 

transcription factors that modulates their activity and in turn regulates diverse target genes in a 

context dependent manner. One group of potential Zfp703 partners includes Sox proteins 

because their binding motif is enriched in Zfp703 biding sites in ChIP-seq experiments (Figure 

4.6-B). Among them, Sox2 is a particularly intriguing candidate. It is expressed in ESCs and is a 
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member of the ESC transcriptional program maintaining pluripotency together with Oct4 and 

Nanog. Unlike the latter two factors whose expression is rapidly exhausted following the onset 

of neural differentiation, Sox2 stays present through neuroectodermal and neural progenitor 

stages (Collignon et al., 1996). In fact, it is required for the maintenance of neural progenitors 

(Wegner, 2011). ChIP-seq experiments revealed that Sox2 binds to the vicinity of both ESC-

specific genes and a large number of neural genes (Bergsland et al., 2011). Therefore, while 

activating ESC genes to sustain pluripotency, Sox2 also establishes transcriptional competence 

for neural development in ESCs, as evidenced by the association with bivalent histone marks 

(H3K4me3 and H3K27me3) at the Sox2 binding sites in the proximity of neural genes. 

Subsequently, Sox3 is recruited to these sites to activate the neural differentiation program 

(Bergsland et al., 2011).  Differential regulation of gene expression by Sox2 can be explained by 

the differential expression of a cell type specific cofactor. In pluripotent cells ESC-specific genes 

are co-bound by Sox2, Oct4, and Nanog thus providing a convenient way to sort out genes to be 

activated. When neural differentiation proceeds, induced Zfp703 might bind to Sox2 and repress 

its activity at Sox2-bound ESC genes. Induction of Sox1 and Sox3 then might result in activation 

of neural genes to further consolidate neural identity later in differentiation. To comprehensively 

assess the function of Zfp703 in the cell state transition during neuroectodermal lineage 

commitment, it would be important to determine whether Zfp703 partner with Sox2 or other 

proteins to regulate gene expression and to determine why Zfp703 is recruited only to a small 

subset of Sox2 bound sites in ESCs.   

Zfp703 and neural induction 

         In mammalian embryonic development, neuroectoderm specification and the subsequent 

induction of neural identity follow the “default” mechanism. At the onset of gastrulation a subset 
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of the apparently homogeneous pluripotent epiblast cells form primitive streak (PS) in response 

to the combination of Nodal, Wnt, and BMP signaling (Rossant and Tam, 2004). Then groups of 

epiblast cells move through the PS and emerge as mesendoderm under the control of the same 

signals (Marikawa, 2006; Tam and Loebel, 2007). Epiblast cells that do not receive Nodal, Wnt, 

and BMP signaling will not be recruited to the PS and become neuroectodermal progenitors. 

Therefore, the “default” fate of epiblast cells is neuroectodermal commitment unless they receive 

these signals. Among neuroectodermal progenitors, those are exposed to Bmps and Wnts will 

become epidermis while cells do not receive these signals acquire neural identity. Again, the 

“default” fate of neuroectodermal progenitors is neural lineage unless they are exposed to Bmps 

and Wnts. This “default” model of neural induction suggests that the inhibition of these signaling 

pathways can effectively drive pluripotent cells towards neural lineage, which can be achieved in 

vivo through the secretion of Bmp/Wnt antagonists by the cells in the node or in vitro via Nodal 

and Bmp inhibition on ESCs (Chambers et al., 2009; Hemmati-Brivanlou et al., 1994; Sasai et al., 

1994; Smith and Harland, 1992).  

         Although treatment of ESCs with RA can lead to efficient neurogenesis (Bain and Gottlieb, 

1994; Gottlieb and Huettner, 1999), there is no evidence that RA is required for neural induction 

in vivo. Here, Zfp703 might provide a link between RA and the “default” model of neural 

induction. Zfp703 is a downstream effector of RA and sufficient to promote neuroectodermal 

identity when expressed in the absence of the signal (Figure 3.4). Importantly, Zfp703 likely 

achieves this through repressing pluripotency and mesendodermal fate therefore de-repressing 

the neuroectoderm specification (Figure 5.1). The de-repression mode of Zfp703-mediated 

neuroectodermal commitment bears striking resemblance to the “default” model of neural 

induction. Interestingly, one plausible mechanism underpinning the role Zfp703 in the fate 
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choice of neuroectoderm over mesendoderm is through modulating Wnt signaling because 

Zfp703 binds to and represses Lef-1, a critical Wnt signal transducer (Figure 3.2, Figure 4.7 & 

4.8). As Wnt inhibition is part of the “default” neural induction, Zfp703 might drive 

neurogenesis following the similar route. It will be interesting to investigate whether Zfp703 is 

induced in an RA-independent manner to assist during the “default” neural induction. 

         Despite the apparent similarities between Zfp703-mediated neurogenesis and the “default” 

model, disparities exist. Specifically, there is an initial emergence of cells with epidermal 

markers in EBs expressing Zfp703 (Figure 3.5) which should not occur if the cells follow the 

“default” mechanism strictly. As population of cells expressing epidermal genes decreases and 

neural progenitors dominate the later culture (Figure 3.6), this suggests that Zfp703 alone cannot 

fully recapitulate the “default” neurogenesis. Other mechanisms might contribute to effective 

repression of epidermal identity during neural induction. Zfp521, another zinc-finger nuclear 

protein, might be involved in this process. It has been shown to be essential and sufficient to 

drive “default” neural differentiation of mouse ESCs (Kamiya et al., 2011). Zfp521 is 

intrinsically induced in differentiating ESCs and cooperates with the coactivator p300 to activate 

key neuroectoderm-specific genes Sox1, Sox3 and Pax6 which in turn consolidate neural identity. 

Interestingly, Zfp703 induction following RA treatment precedes the induction of Zfp521, 

indicating that it might act downstream in the RA triggered neurogenic transcriptional cascade. 

The interplay between Zfp703, Zfp521 and other intrinsic factors during neural differentiation 

should be further investigated to determine the implication of Zfp703 in the “default” neural 

induction. On the other hand, while Zfp703 is highly induced by RA, its expression is 

upregulated in untreated EB cultures albeit to a lesser extent (data not shown). The mechanisms 
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of RA-independent Zfp703 induction  following the “default” neural induction remain to be 

investigated.       

        It should be noted that Zfp703 is not the only downstream effector mediating neurogenesis 

initiated by RA. First, the capacity of Zfp703 to induce Sox1-positive neural progenitors and 

subsequently NeuN/Tuj1-positive postmitotic neurons is lagging that of RA, indicating that 

additional downstream effectors of RA contribute to its neuralizing effects. Moreover, Sox1 

induction by RA treatment is unaffected in Zfp703 mutant ESCs (Figure 4.12-C). And Hoxa1, 

GCNF, and Nr2f2 have all been proposed to be required for optimized neural differentiation in 

response to RA (Akamatsu et al., 2009; Martinez-Ceballos and Gudas, 2008; Rosa and Brivanlou, 

2011). Hence, Hoxa1, GCNF, and Nr2f2 might be implicated in Zfp703-independent 

mechanisms downstream of RA contributing to the robust neurogenesis. Interestingly, Zfp703 

expression leads to the upregulation of Nr2f2, suggesting the potential crosstalk and integration 

of transcriptional networks driving neurogenesis. Lastly, the accumulation of Sox1-positive 

neural progenitors in later cultures of Zfp703-expressing cells when the majority of RA-induced 

neural progenitors have already become postmitotic (Figure 3.6-B) indicates that additional 

Zfp703-independent factors promote the terminal differentiation of neural progenitors. In 

conclusion, while part of the neuralizing effects of RA can be attributed to the mechanism 

similar to the “default” model that is putatively mediated by Zfp703, RA-mediated neural 

induction still retains its unique features that are quite distinct from the prevailing in vivo model.         

Gene regulation through long-range chromatin interactions 

        Traditionally, the standard way of assigning putative target genes to transcription factors 

has been based on the proximity (typically within 10-20Kbp upstream and downstream) of 

transcription factor binding site to a transcription start site (TSS).  This approach has also been 
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adopted to identify genes that are direct targets of RA signaling during ESC differentiation 

through monitoring RAR binding (Mahony et al., 2011). However, applying proximal binding as 

the only criteria for direct targets might not provide the “whole picture” of regulation exerted by 

one transcription factor. For example, Zfp703 is rapidly induced following RA treatment (within 

8 hours, Table 2.1). The fast response, similar to that of the canonical RA target genes such as 

Hoxa1 (Figure 2.1-C), suggests direct regulation by RA signal, but there is no enrichment of 

RAR binding within the 20Kbp window of Zfp703 TSS (Mahony et al., 2011). Recently, long-

range chromatin interactions via enhancers have been demonstrated as an important mechanism 

of gene regulation (Harmston and Lenhard, 2013). The development of techniques such as ChIA-

PET provides the access to genome-wide, long-range chromatin interactions (Li et al., 2010). 

When combined with ChIP-seq for enhancer signatures and conservation analysis, these 

techniques can offer a more comprehensive scope of direct targets regulated by specific 

transcription factors. Indeed, ChIA-PET data indicate that there are two distal RAR binding sites 

interacting with Zfp703 TSS following RA treatment (Figure 2.6). These sites colocalize with 

enhancer signatures H3K27ac, p300, and H3K4me1 (Figure 2.7), and they are conserved in 

mammals (Figure 2.8). Together, these observations strongly suggest that Zfp703 is directly 

regulated by RA through RAR binding to distal enhancers. Although mutagenesis of these 

elements is still necessary to verify that they are required for RA-mediated Zfp703 induction, 

this finding provides the first evidence for an involvement of distal regulatory elements engaged 

by RA signaling. It would be interesting to identify other RA targets regulated in the same 

manner. In contrast, Chip-seq experiments revealed very few interactions between genomic 

regions bound by Zfp703 and transcription start sites supporting the notion that Zfp703 might 
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function as a transcriptional repressor responsible for disruption, rather than establishment of 

long distance chromatin interactions. 
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Future directions 

Characterization of Zfp703-interacting proteins 

         Given that Zfp703 expression leads to both activation and repression of genes, and the fact 

that Zfp703 might not bind DNA by itself (Nakamura et al., 2004), it will be critical to identify 

Zfp703-interacting proteins throughout RA-mediated neuroectodermal lineage commitment by 

proteomics and co-immunoprecipitation approaches. The results will not only address whether 

Zfp703 functions as both repressors and activators in a context-dependent manner, but also 

explain how Zfp703 achieve its sequence specificity when regulating its target genes. Finally, it 

will also clarify whether Zfp703 and Zfp503 act as a dimer in promoting neural fate. 

Further investigating the effect of Zfp703 on Wnt signaling 

          Despite that Zfp703 has been reported to suppress the activation of the Wnt reporter in 

human breast cancer cell lines (Slorach et al., 2011), and it represses Lef1 likely through binging 

to its promoter, it remains to be confirmed whether the identified binding site is required for 

Zfp703-mediated regulation of Lef1. Luciferase assay using Lef1 promoter in which this site is 

mutated would help to clarify this issue. Moreover, it is not clear how Zfp703 affect Wnt 

signaling during neuroectodermal lineage commitment. Experiments using Wnt agonists 

/antagonists combined with Zfp703 expression or knockout and carefully monitoring the activity 

of Wnt signaling during neuroectodermal lineage commitment will be necessary to determine 

whether modulation of Wnt signaling is the major mechanism underlying the function of Zfp703. 

Zfp703 ChIP-seq and enhancers 

         While Zfp703 is able to bind to the promoter of Lef1, a significant portion of binding sites 

identified in ChIP-seq experiments actually overlapped with enhancer signatures such as 
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H3K4me1, H3K27Ac, and p300 (Smith and Shilatifard, 2014). It would be interesting to verify 

the binding by ChIP-PCR, examine the effect of Zfp703 on these enhancers by luciferase assay, 

and in the long term knock out these enhancers to compare the phenotype with Zfp703 mutant in 

ESCs. It would also be important to identify transcription factors co-occupying these sites with 

Zfp703 through motif analysis and validate them by proteomics experiments. Interestingly, the 

motif present in 163 out of 330 high-confidence Zfp703 binding sites is potentially bound by 

Sox2, Sox3, and Sox6. Given the dual role of Sox2 in both the maintenance of pluripotency and 

the promotion of neuronal fate, it could be an attractive Zfp703 co-factor. It will be important to 

test the effect of Zfp703 on enhancers in the presence or absence of Sox2 by luciferase assay. 

Together, these experiments will offer a more comprehensive view of Zfp703-mediated gene 

regulation. 

Zfp703 and Zfp503 double-knockout 

          Because both Zfp703 and Zfp503 are able to repress Oct4 and induce Sox1 when 

overexpressed, and Zfp703 mutant ESCs behave normally in RA-induced Oct4 downregulation 

and Sox1upregulation, it is likely that Zfp503 is compensating the function of Zfp703, and both 

of them are required for RA-mediated neuroectodermal lineage commitment. To test this, it 

would be necessary to generate Zfp703 and Zfp503 double-knockout ESCs and mice to 

characterize the phenotypes in vitro as well as in vivo.     
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Material and methods 

Cell culture and neural differentiation 

ESCs were differentiated as previously described (Wichterle et al., 2002). Briefly, ESCs were 

trypsinized and seeded at 5 × 105 cells/ml in ANDFK medium (Advanced 

DMEM/F12:Neurobasal (1:1) medium, 10% knockout-SR, Pen/Strep, 2 mM L-glutamine, and 

0.1 mM 2-mercaptoethanol) to initiate formation of embroid bodies (Day 0). Medium was 

exchanged on day 2 of differentiation. Patterning of embroid bodies was induced by 

supplementing media on day 2 with 1 μM RA (Sigma). For ChIP experiments, the same 

conditions were used but scaled to seed 1 × 107 cells on Day 0. 

Generation of inducible lines 

The p2Lox-V5 plasmid was generated by replacing GFP with the L1-L2 Gateway cassette from 

pDEST-40 (Invitrogen) in the p2Lox plasmid. The cassette contains a V5-His double epitope tag 

in frame downstream of the L2 recombination site. Open reading frames of genes are cloned by 

polymerase chain reaction (PCR). To minimize the introduction of mutations during PCR 

amplification, Phusion polymerase was used (New England Biolabs). Open reading frames were 

directionally inserted into pENTR/D-TOPO vector (Invitrogen) following manufacturer 

instructions. The 5’ primer always contains the addition of the CACC sequence to ensure 

directional integration. Then the pENTR plasmid with NO STOP codon is recombined with the 

p2Lox-V5 to construct a V5-His C-terminal fusion protein in LR recombination. Inducible lines 

were generated by treating the recipient ESCs for 16 hours with doxycycline to induce Cre 

followed by electroporation of p2Lox-V5 plasmids harboring the desired construct. After G418 

selection, on average three resistant clones were picked, characterized and expanded. 
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Mesendoderm differentiation 

ESCs were plated on gelatine-coated dishes and cultured with ES medium (EmbryoMax D-MEM 

(Fisher) supplemented with 10% ES-FBS (Invitrogen), L-Glutamine (Gibco), 0.1 mM β-

mercaptoethanol and 100 U/ml LIF) with initial density of 1.5 × 104 cells/cm2 (Day -1). The next 

day (Day0) the medium was exchanged to D0 differentiation media (Advanced DMEM 

(Invitrogen) + 1% N-2 (1 vial, Invitrogen) + 2% B-27 (1 vial, Invitrogen) + 1% Glutamax 

(Invitrogen)). 48 hours later on Day2, the medium was refreshed with D0 differentiation media 

supplemented with 50 ng/mL ActivinA (Peprotech E Coli produced) and 5 nM GSK3 inhibitor 

XV (Calbiochem). Cells were harvest on Day3 for qPCR and immunocytochemistry analysis.  

Immunocytochemistry 

Antibodies used in this study include: Goat anti-Oct4 (Santa Cruz, sc-8628), Rabbit anti-Sox1 

(Cell Signaing, #4194), Mouse anti-V5 (Invitrogen, R960-25), Rabbit anti-V5 (Abcam, ab9116), 

Goat anti-Brachyury (Santa Cruz, sc-17745), Rabbit anti-Krt1, Rabbit anti-Krt5, Rat anti-Krt8, 

Mouse anti-Krt18, Mouse anti-NeuN and mouse anti-Tuj1. Alexa488-, FITC-, Cy3- and Cy5-

conjugated secondary antibodies were obtained from either Invitrogen or Jackson 

Immunoresearch.  

Expression analysis 

Total RNA was extracted from ES cells or embryoid bodies using Qiagen RNAeasy kit (Qiagen). 

For quantitative PCR analysis, cDNA was synthesized using SuperScript III (Invitrogen) and 

amplified using SYBR green brilliant PCR amplification kit (Stratagene) and Mx3000 

thermocycler (Stratagene). For GeneChip expression analysis, RNA was amplified using Ovation 

amplification and labeling kit (NuGen) and hybridized to Affymetrix Mouse Genome 430 2.0 
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microarrays. Expression microarray experiments were performed in biological quadruplicate for 

each analyzed time point. Arrays were scanned using the GeneChip Scanner 3000. Data analysis 

was carried out using GeneSpring GX (Agilent Technologies). Differentially expressed genes 

after 24 hours of doxycycline treatment were defined by ranking all probesets by the moderated 

t-statistic-derived P-value and setting thresholds of P < 0.05 and a fold-change of at least 2.  

ChIP-seq protocols 

ChIP protocols were adapted from previously published method (Guenther et al., 2008). Briefly, 

approximately 6 × 107 cells were cross-linked using formaldehyde and snap-frozen in liquid 

nitrogen. Cells were thawed on ice, resuspended in 5 ml lysis buffer 1 (50 mM Hepes-KOH, pH 

7.5, 140 mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% NP-40, 0.25% Triton X-100) and mixed 

on a rotating platform at 4°C for 5 minutes. Samples were spun down for 3 minutes at 3,000 rpm, 

resuspended in 5 ml lysis buffer 2 (10 mM Tris-HCl, pH 8.0, 200 mM NaCl, 1 mM EDTA, 0.5 

mM EGTA), and mixed on a rotating platform for 5 minutes at room temperature. Samples were 

spun down once more, resuspended in lysis buffer 3 (10 mM Tris-HCl, pH 8.0, 100 mM NaCl, 1 

mM EDTA, 0.5 mM EGTA, 0.1% Na-deoxycholate, 0.5% N-lauroylsarcosine) and sonicated 

using a Misonix 3000 model sonicator to sheer cross-linked DNA to an average fragment size of 

approximately 500 bp. Triton X-100 was added to the lysate after sonication to final 

concentrations of 1% and the lysate spun down to pellet cell debris. The resulting whole-cell 

extract supernatant was incubated on a rotating mixer overnight at 4°C with 100 μl of Dynal 

Protein G magnetic beads that had been preincubated for 24 hours with 10 μg of the appropriate 

antibody in a phosphate-buffered saline/bovine serum albumin solution. Rabbit anti-V5 (Abcam, 

ab9116) was used for ChIP experiments. After approximately 16 hours of bead-lysate incubation, 
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beads were collected with a Dynal magnet. ChIP samples were washed with the following 

regimen, mixing on a rotating mixer at 4°C for 5 minutes per buffer: low-salt buffer (20 mM Tris 

at pH 8.1, 150 mM NaCl, 2 mM EDTA, 1% Triton X-100, 0.1% SDS), high-salt buffer (20 mM 

Tris at pH 8.1, 500 mM NaCl, 2 mM EDTA, 1% Triton X-100, 0.1% SDS), LiCl buffer (10 mM 

Tris at pH 8.1, 250 mM LiCl, 1 mM EDTA, 1% deoxycholate, 1% NP-40), and TE containing 50 

mM NaCl. After the final bead wash, samples were spun down to collect and discard excess 

wash solution, and bound antibody-protein-DNA fragment complexes were eluted from the 

beads by incubation in elution buffer at 65°C with occasional vortexing. Cross-links were 

reversed by overnight incubation at 65°C. Samples were digested with RNase A and Proteinase 

K to remove proteins and contaminating nucleic acids, and the DNA fragments precipitated with 

cold ethanol.  

Luciferase Reporter Assay 

Genomic DNA fragments of ~1Kb encompassing putative Zfp703 binding sites were cloned into 

pGL4.3 vector (Promega). HEK293 cells were plated at 1 × 105  per well (24-well plate), 

expanded for 16 hr and cotransfected with a mixture of 500ng pDEST41-Zfp703, 450ng pGL4.3 

construct, and 50ng pGL4.74[hRluc/TK] plasmids using 1 μl Lipofectamine 2000 (Invitrogen). 

Cells were lysed 24 hr later and processed for luciferase assay using Dual-Luciferase Reporter 

Assay System (Promega). Luciferase activity was measured by 20/20n luminometer (Turner 

Biosystems). 
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