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ABSTRACT

Structure Characterization of the 70S–BipA Complex

Using Novel Methods of  Single Particle Cryo-Electron Microscopy

Danny Nam Ho

Diseases caused by pathogenic bacteria continue to be major health concerns. For example, 

it is estimated that in the year 2000 typhoid fever caused over 21,000,000 illnesses and ~200,000 

deaths (Crump et al., 2004). The disease is caused by S. typhi, a closely-related serotype of S. typhiu-

murium, the salmonella strain in which BipA was first identified. The CDC estimated that in 2013, 

multidrug resistant bacteria caused over 2 million infections in the United States, ending in more 

than 23,000 deaths (CDC, 2013). This number is set to rise as more bacteria become resilient to the 

collection of conventional antibiotics. The increasing number of multidrug resistant bacterial strains 

necessitates the development of new antimicrobial drugs. 

The protein BipA is an attractive target for drug research. The bipA gene is ubiquitous in 

eubacteria and lower eukaryotes such as protozoa, but is absent from higher-order eukaryotes such as 

humans.  Studies have shown that BipA participates in a variety of stress-related pathways and its ex-

pression is paramount to a bacteria’s ability to adapt to adverse environment conditions. Because the 

protein is essential for bacterial survival, BipA presents a major vulnerability of pathogenic bacteria. 

Additionally, BipA’s only known binding partner is the ribosome. An antibiotic targeting the protein 

itself or its interactions to the ribosome may disable only the bacteria, but have no effect on the eu-

karyotic host. A comprehensive model of BipA bound to the 70S ribosome will provide unparalleled 

insight into BipA’s binding site and its mechanism. 



Toward this goal, cryo-EM techniques were employed to visualize and characterize the bind-

ing site of BipA on the 70S ribosome. Over the last years, the introduction of new automated algo-

rithms for particle selection (AutoPicker) and classification (RELION) for the cryo-EM technique 

has revolutionized the workflow of the entire imaging and reconstruction process. We have taken full 

advantage of these advancements to obtain the final resonstruction of the 70S–BipA complex. 

An X-ray structure of isolated BipA–GMPPNP was elucidated, by collaborators, and used for 

further molecular modeling of the protein to reveal possible atomic interactions between BipA and 

70S ribosome. Additional biochemical studies were performed to fully characterize the specific ribo-

somal complex that optimizes binding of the factor. Together, the cryo-EM reconstruction, the BipA 

X-ray structure, the subsequent molecular modeling, and the additional biochemical studies provide 

a comprehensive model for BipA binding. 
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PREFACE

The following dissertation aims to trace the progress, discuss the methods, and present new 

discoveries of the 70S–BipA complex and the single-particle cryo-electron microscopy technique.  

Chapter 1 introduces the single-particle cryo-electron microscopy technique and new procedures for 

particle selection and classification. Chapter 2 will orient the reader in the translation process, par-

ticularly focusing on the elongation cycle. This chapter ends by introducing the translational GTPase 

BipA and its known physiological functions. The reconstruction of the 70S–BipA complex was ob-

tained by using novel methods of image processing (AutoPicker) and unsupervised particle classifica-

tion (RELION). Chapter 3 provides an in-depth comparison between the use of old and new image 

procesisng and classification techniques for the BipA dataset. Chapter 4 provides the structural and 

biochemical analysis of the 70S–BipA complex reconstruction. Chapter 5 introduces the burgeoning 

projects aimed at further characterizing the unique aspects of BipA, building on the unexpected and 

exciting discoveries presented in Chapter 4. Finally, the appendix provides copies of works in which I 

am co-author: 1) the published work on AutoPicker and 2) the latest draft of an article detailing the 

design of a new electron micrscopy image processing suite, Arachnid. 
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CHAPTER 1 ABBREVIATIONS

Abbreviation Full Title
1D one-dimensional
2D two-dimensional
3D three-dimensional
Å angstrom
CCD charge-coupled device
CMOS complementary metal–oxide–semiconductor
cryo-EM single-particle cryo-electron microscopy
CTF contrast transfer function
DED direct electron detector
DP diffraction pattern
DQE detective quantum efficiency
EF-G elongation factor G
EM electron microscopy
EMDB Electron Microscopy Data Bank
FT Fourier transform
KDa kilodalton
MAP maximum a posterior
MDa megadalton
ml milliliter
nM nanomolar
pM picomolar
PSF point spread function
RNA ribonucleic acid
S svedberg
SNR signal-to-noise ratio
SPR single-particle reconstruction
TEM transmission electron microscope
α alpha
β beta
μl microliter
μM micromolar
μm micron or micrometer
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1.1 INTRODUCTION

Biological pathways depend not on the work of a single protein or enzyme, but on multiple 

partners working in concert with one another. There is an increasing need to explore the functions 

and mechanisms of multicomponent complexes. Insight into a macromolecule’s function may be 

gained by studying its physical structure. For structure determination of such molecules, two meth-

odologies are regularly employed: nuclear magnetic resonance, X-ray crystallography, and transmis-

sion electron microscopy. The goal of these methods is to obtain a meaningful model of the macro-

molecule’s structure. 

Traditionally, X-ray crystallography has been the method used for obtaining atomic resolu-

tion structure of biological molecules such as isolated proteins and multicomponent complexes. 

X-ray crystallography has allowed unparalleled insights into the mechanisms of large macromolecu-

lar machines such as the 3.2 MDa prokaryotic 70S ribosome (Ban et al., 2000) and 2.6 MDa yeast 

fatty-acid synthase (Lomakin et al., 2007). However, as will be discussed in Sections 1.2.1 and 1.2.3, 

the X-ray crystallography technique becomes increasingly more difficult as the size of the investigated 

macromolecule increases.  

Electron microscopy allows visualization of biological specimens spanning a huge range of 

physical dimensions, from single molecules to whole cells. On the one hand, imaging of whole cells 

using electron tomographic techniques has provided information on the organization and supra-

structures of cellular organelles, albeit at resolutions far from providing atomic information. On the 

other hand, single-particle cryo-electron microscopy (“cryo-EM” for brevity) routinely provides 3D 

reconstructions of macromolecules above 300 kDa in weight. A major advantage of the cryo-EM 

method, as will be discussed in Sections 1.2.2 and 1.3.6, is the ability to capture a spectrum of differ-

ent conformational and functional states of a dynamic macromolecule in a single experiment. These 
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reconstructions are representations of free, isolated macromolecules unhindered by crystallographic 

packing constraints. 

Unfortunately, the vast majority of cryo-EM reconstructions have resolutions worse than 3.5 

Å, not allowing de novo atomic modeling. However, in cases of reconstructions resolved to resolu-

tions between 3.5 and 10 Å, fitting of known X-ray structures into the map allows a pseudo-atomic 

model of the molecule to be produced. Thus, X-ray and cryo-EM information can be combined to 

give a meaningful interpretation of the lower-resolution reconstruction (Rossmann et al., 2005).

While this dissertation will focus primarily on reconstructions determined using cryo-EM 

techniques, X-ray crystallographic information is often leveraged to give insightful interpretation 

of the cryo-EM density maps, as will be seen in Chapters 2, 3, and 4. To provide full appreciation 

of the research presented, this chapter will give a brief review of X-ray crystallography and a more 

in-depth treatment of cryo-EM. The chapter is organized as follows: first, the X-ray crystallography 

method is presented in Section 1.2.1. Next, the cryo-EM technique is introduced in Section 1.2.2 

to provide a foundation for the remainder of the chapter. As cryo-EM and X-ray crystallography are 

the most frequently used techniques for structure determination, a comparison of the two methods 

follows in Section 1.2.3. Finally, the cryo-EM technique is expanded upon in individual subsections 

of Section 1.3.

1.2 METHODS OF STRUCTURE DETERMINATION

1.2.1 X-ray Crystallography

The X-ray crystallography method is regularly employed to provide atomic resolution struc-
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tures of proteins and biological macromolecules. In X-ray crystallography, structurally identical mol-

ecules are packed into an ordered three-dimensional crystal lattice.  Contacts at the interface between 

the molecules allow the molecules to reach a low energy state and pack into a periodic arrangement, 

forming a three-dimensional crystal. 

When the crystal is bombarded by X-rays, the resulting interactions of the X-ray beam with 

lattice molecules diffract the beam in a way that is characteristic for the atomic structure (Bragg, 

1913). The diffracted beams are recorded as an array of spots called a diffraction pattern. Diffracting 

the X-ray beam may be thought of as performing a Fourier transform of the investigated molecule’s 

atomic structure, and the diffraction spots are in fact the recorded intensities of each sinusoid com-

ponent. The intensity of each diffraction spot is enhanced by the periodic repetition of the structural 

motifs in the crystal lattice. Thus, diffraction to high resolution requires well-formed crystals with 

structurally homogenous molecules. As will be seen in Section 1.2.2, the same fundamental laws 

govern the diffraction of X-ray beams and scattering of electrons in cryo-EM.

Each diffraction pattern essentially represents a 2D central slice in Fourier space of the 3D 

Fourier transform of the molecule. Recording the diffraction of the crystal as the latter is rotated on 

a goniometer at regular intervals yields different diffraction patterns, which can be used to fill the 3D 

Fourier space. Taking the inverse transform of the 3D Fourier map gives the electron density distri-

bution of the molecule in real space.  However, structure determination is not so straightforward. 

X-ray structure determination requires both amplitude and phase data of the incident X-ray 

beam. Unfortunately, diffraction patterns only supply information about the amplitude, not phase of 

the diffracted X-rays that have interacted with the crystal.  This is commonly referred to as the “phase 

problem” in X-ray crystallography. Additional crystallographic experiments, such as the use of molec-

ular replacement, must be conducted to obtain the missing phase data (Wlodawer et al., 2008). The 
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reward of such efforts is a high-resolution near-atomic structure, usually at 3.5 Å or higher, depend-

ing on the quality of the crystal.  

Each X-ray structure is a representation of a molecule in a single state. Multiple X-ray struc-

tures must be obtained to visualize the ensemble of functional and conformational states for dynamic 

macromolecular machines. For example, the ribosome experiences intrinsic, large-scale rotations of 

the two subunits to each other and appears in different conformational states that cannot be ob-

served with a single X-ray structure (Fischer et al., 2010). In most cases, multiple crystallographic 

experiments must be performed, which can prove to be difficult because crystallization is a laborious, 

multiparameter, optimization process. 

Obtaining crystals is an essential step in X-ray crystallography, but continues to be a bottle-

neck for the application of the method. Regions of flexibility on the surfaces of molecules prevent 

the molecules from reaching a low energy state and thus, disfavor productive crystallization. Larger 

molecules and assemblies are structurally more complex, with increased probability of having such 

flexible regions. As a rule of thumb, the larger the investigated molecule or complex, the more dif-

ficult it may be to crystallize (Wery and Schevitz, 1997). 

There are exceptional achievements, such as the X-ray structures of ribosomes, which ul-

timately reinforce the rule of thumb. X-ray ribosomal structures were obtained only after decades 

of research and effort. The first X-ray structures of the 30S small subunit at 3 Å (Wimberly et al., 

2000), 50S large subunit at 2.4 Å (Ban et al., 2000), and the complete 70S ribosome, initially at 7.8 

Å in 1999 (Cate et al., 1999) and then 5.5 Å in 2001 (Yusupov et al., 2001), were a boon for crystal-

lographers. Few multicomponent macromolecule as complex as the ribosome has been deposited in 

the Protein Data Bank (PDB). Another notable achievement in X-ray crystallography was the stru-

ture of RNA Polymerase II, solved by Kornberg and coworkers in 2001 (Cramer et al., 2001; Gnatt 
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et al., 2001). Extensive reviews on the principles and protocols for X-ray crystallography can be 

found in (Drenth, 2007; Ladd and Palmer, 2013).

1.2.2 Single Particle Cryo-Electron Microscopy (Cryo-EM)

Cryo-EM has evolved into a powerful method for structure determination of macromolecu-

lar complexes (Frank, 2013). Cryo-EM is an abbreviated term to describe an ensemble of techniques 

involving sample preparation, imaging in the transmission electron microscope, processing of the 

data, reconstruction of the 3D object using the 2D experimental projection data, and interpretation 

of the density map obtained. For recent examples of this workflow, see (Hashem et al., 2013; Li et 

al., 2013a; Allegretti et al., 2014). This section provides a foundation for understanding the impor-

tance and relevance of the method while Section 1.3 expands upon each step in the process.

In cryo-EM, the investigated macromolecule is assumed to exist in multiple, isolated, struc-

turally identical copies (“particles”) in the sample.  After a small aliquot of the sample is applied 

to the EM grid, the plunge-freezing technique (McDowall et al., 1983) (Section 1.3.1) is used to 

immobilize the particles in a thin layer of vitreous ice. The frozen-hydrated grid is then transferred 

to the transmission electron microscope (TEM) for data collection (Sections 1.3.2-1.3.4). Two-

dimensional (2D) projection images of the specimen field, called electron micrographs, are recorded, 

as shown in Figure 1.1. Each micrograph can be treated as a projection of the specimen field’s 3D 

Coulomb potential distribution onto a plane that is normal to the electron beam. By extension, each 

2D particle image captured in the micrograph can be treated as a 2D projection of the macromole-

cule’s Coulomb potential distribution. Each micrograph captures hundreds of projections of particles 

lying in unknown orientations. In terms of the Fourier transform, the micrograph images implicitly 
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contain both phase and amplitude data. Thus, the phase problem of X-ray crystallography does not 

exist in electron microscopy. In fact, phase data originating from cryo-EM reconstructions of the 

ribosome have been used to provide phase information for crystallographic studies (Ban et al., 1998; 

Stuart and Abrescia, 2013).

The projection theorem (see Frank, 2006) states that the Fourier transform of each 2D 

projection image is a central slice in the 3D transform of the macromolecule. Thus, the 3D Fourier 

space of the macromolecule can be “filled up” using the 2D Fourier transformations of the experi-

mental data if the projection angle of each particle image can be determined. One can see immediate 

parallels between the scattering of electrons and the diffraction of X-rays discussed in the previous 

section. Indeed, the same physical laws of scattering govern both phenomena (Williams and Carter, 

2009d). The main difference is that an image is formed in the case of EM and the Fourier informa-

tion is derived from such images, whereas in X-ray crystallography the Fourier information is derived 

from diffraction. As discussed below, the EM projection images collected are distorted representa-

tions of the true object due to the aberrations of the TEM imaging system, and correction for these 

aberrations is required before one can obtain a faithful model of the real object. 

The single-particle reconstruction (SPR) technique, see (Frank, 2009), schematically outlined 

in Figure 1.2 and elaborated below in Sections 1.3.5-1.3.7, aims to solve the reconstruction prob-

lem: how to obtain a faithful 3D representation of the investigated molecule’s Coulomb distribution 

from the experimental 2D projection data. The technique takes advantage of a large collection of 

EM projections of structurally identical particles, laying in random orientations. The SPR technique 

involves two main stages: determination of the projection image parameters, and 3D reconstruc-

tion of the desired macromolecule. In the first stage, parameters such as the defocus value of the 

micrograph must be determined for later image correction. A faithful reconstruction of the original 
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macromolecule requires image correction of the experimental data for the aberrations of the electron 

microscope imaging system, to be discussed below. Individual particle images are isolated and their 

respective projection angles are determined for alignment of the data and reconstruction of the final 

density map. 

The SPR technique implicitly assumes that multiple projection images originate from struc-

turally identical particles. In X-ray crystallography, structural homogeneity among molecules is 

selected for intrinsically during the crystallization process, as discussed in Section 1.2.1. However, 

in cryo-EM, it is difficult to find biochemical means of ensuring complete structural homogeneity 

among free, isolated particles. Heterogeneity exists in two main forms: compositional and confor-

mational. Regarding the former, variation in ligand occupancies can result in complexes of differing 

composition (Gao et al., 2004). Regarding the latter, the particle in its native state can thermo-

dynamically assume a large range of conformational states (Frank and Gonzalez, 2010).  Separa-

tion of conformers is essential because structural details are diminished if data from structurally 

different particles are merged together. Several classification techniques, to be discussed in Section 

1.3.6 and Chapter 3, have been developed to separate different conformers into smaller but more 

homogeneous subsets, thus allowing an inventory of molecules in different functional states to be 

reconstructed from a single dataset. Originally considered a major obstacle for cryo-EM, structural 

heterogeneity can now be seen as an advantage of the SPR method because an entire spectrum of 

functional states can be captured and inventoried in a single experiment (Frank, 2013). Impressive 

studies with large datasets have successfully produced inventories for studying the dynamics of the 

tRNA with the 70S ribosome (Fischer et al., 2010) or the biogenesis of the 30S small ribosomal 

subunit (Mulder et al., 2010). 

In recent years, the cryo-EM methodology has benefitted from a surge of new technolo-
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gies paired with novel automated algorithms for single-particle reconstruction (Veesler et al., 2013; 

Langlois et al., 2014a). Taking advantage of these advancements has resulted in impressive recon-

structions of ever-increasing resolutions, shown in Table 1.1. Of note is the recent cryo-EM recon-

struction of the yeast mitochondrial ribosomal large subunit, resolved to ~3.2 Å. The resolution was 

high enough to enable ab initio atomic modeling of the rRNA and proteins (Amunts et al., 2014). 

The cryo-EM method has quickly become a popular choice for structure determination of macro-

molecules, especially those that have resisted crystallization. As of December 31, 2013, single particle 

reconstructions make up 1702 (78.1%) of the 2179 depositions in the Electron Microscopy Data 

Bank (EMDB), shown in Figure 1.3.  A deeper treatment of the EM field can be found in the texts 

of (Frank, 2006), (Reimer and Kohl, 2008), and (Williams and Carter, 2009c).

1.2.3 Cryo-EM Versus X-ray Crystallography

A comparison of the two methodologies, Cryo-EM and X-ray Crystallography, is important 

for understanding the advantages and limitations of both techniques. In X-ray crystallography, as 

discussed in Section 1.2.1, intensities of diffraction pattern spots are amplified by the redundancy 

of structural motifs in the crystal lattice. The ordered lattice essentially boosts the “signal” from each 

atom in the molecule. The recorded diffraction spots are easily measured and discernible from the 

surrounding background. In contrast, cryo-EM images of biological samples have a low signal-to-

noise ratio (SNR) due to high intrinsic levels of background noise. Some of the background noise, as 

will be discussed in Section 1.3.2, originates from inelastically scattered electrons. Most of the noise, 

however, is a result of the necessity to use a low electron dose to prevent extensive radiation damage 

to biological macromolecules. To solve the problem of low SNR, multiple particle images of the same 

projection view are averaged together: the real signal is boosted while the stochastic noise is reduced. 



11

Sample quantity requirements differ dramatically between cryo-EM and X-ray crystallo-

graphic experiments. The native cellular concentrations of different biological molecules vary widely 

depending on the identity of the molecule of interest. Genetic and biochemical means of overex-

pressing and purifying a molecule may be laborious, or in some cases, impossible to carry out. For 

the preparation of cryo-specimens, microliters (μl) of samples at nanomolar (nM) concentrations are 

needed. In contrast, crystallization of the investigated molecule usually requires micromolar (μM) 

concentrations to supersaturate the solution for productive crystal formation. Also, because mul-

tiple sample conditions and parameters must be screened for optimal crystallization, an even larger 

amount of sample is often needed. For example, the typical concentration of ribosomal components 

needed for a cryo-EM experiment is in the ~30-50 nM range (Amunts et al., 2014), while crystal-

lographic experiments report sample concentrations in the μM ranges (Khatter et al., 2014). Thus, 

cryo-EM appears as an attractive method to study proteins or macromolecules that are difficult to 

express in sufficient quantities for crystallization attempts. 

Save for density maps of viruses and for recent achievements in the EM field, most cryo-EM 

reconstructions have not been resolved to the atomic resolution typical for X-ray structures. Ab initio 

atomic modeling requires resolutions of 3.5 Å or better (Zhou, 2011). To date, of the 1702 single-

particle reconstruction depositions in the EMDB, only 18 (1.1%) have resolved to resolutions of 3.5 

Å or better. In contrast, 436 single-particle reconstructions (25.6%) have intermediate resolutions 

between 5-10 Å. In this intermediate range, secondary structures such as α-helices and β-sheets, and 

the spatial arrangement of domains in the macromolecule can be visualized. Fitting of a known X-ray 

structure into the intermediate-resolution density map, which is the subject of Section 1.3.7, allows 

meaningful interpretation of the reconstruction (Trabuco et al., 2008). 
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1.3 CRYO-EM 

While Sections 1.2.2 and 1.2.3 provided a foundation for appreciating the cryo-EM method, 

this section gives an in-depth treatment of each individual step of the method. A review of the math-

ematical concepts underlying SPR methods in cryo-EM are beyond the scope of this dissertation, 

but treatments can be found in the texts of (Frank, 2006) and (Reimer and Kohl, 2008). Instead, a 

conceptual and practical review of each step is provided here.

1.3.1. Sample Preparation

The ideal cryo-EM sample preparation method must protect the biological samples against 

radiation damage by the electron beam in the TEM. The plunge-freezing technique, see (Grassucci 

et al., 2007), fulfills this stipulation and has become the standard in preparing cryo-EM specimens. 

A holey-carbon EM grid, usually made of copper or gold, acts as the scaffold on which the sample 

is applied. Before sample application, a thin layer of amorphous carbon is placed onto the EM grid 

(Grassucci et al., 2007). The amorphous carbon assists in the determination of the contrast transfer 

function, to be discussed later in Sections 1.3.3 and 1.3.6. A droplet of the sample is then applied 

to the grid. The particles, free-floating in the solvent, are able to sample the full spectrum of orienta-

tions and conformational states.

The specimen grid is held at the tip of tweezers in a plunge freezer, shown schematically in 

Figure 1.4. Here, excess liquid must be blotted off, leaving a thin layer of the aqueous sample suit-

able for rapid freezing. In practice, aqueous layers of up to .2 μm (200 nm) allow rapid vitrification. 

Specimen thicknesses greater than 1 μm do not vitrify rapidly, resulting in crystalline ice formation 

and damage to the native specimen structure (Dobro et al., 2010). The grid is then rapidly plunged 

into a pool of liquid ethane or propane, vitrifying the aqueous solution into a glass-like vitreous ice 
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(McDowall et al., 1983), and immobilizing the particles. 

Vitreous ice provides a variety of benefits. In this amorphous ice, the water molecules have 

not crystallized into a lattice, and thus, the particles’ structures remain intact. At cryogenic tempera-

tures, the vitreous ice protects the sample and reduces the amount of radiation damage incurred by 

the electron beam in the microscope (Grassucci et al., 2008). The sample is also preserved in a hy-

drated environment resembling native cellular conditions. The frozen-hydrated specimen grid is then 

transferred to the TEM for imaging. 

1.3.2. The Electron Microscope and Image Formation

A schematic of a typical transmission electron microscope is shown in Figure 1.5 and in-

depth protocols are found in (Grassucci et al., 2008). In the TEM, electrons are initially generated 

from an electron source such as a tungsten crystal or wire filament (Rose, 2008). A potential dif-

ference set up between the tip and a grounded anode determines the acceleration voltage. The best 

acceleration voltage to be used depends on the nature of the specimen. Increasing voltages will imbue 

electrons with greater penetrating power but reduce the number of scattering events that will oc-

cur between the electron beam and the specimen (Kanaya and Okayama, 1972; Baker et al., 2010). 

Structural information about the specimen is encoded in the distribution and phases of the scattered 

electrons, and thus, a reduction in scattering events also means less useful information is obtained. 

Typical voltages used to image biological specimens range from 80 keV to 300 keV.

The accelerated electrons are steered with magnetic deflectors and focused into a coherent 

parallel beam through a series of electro-magnetic lenses, called condensors. While optical lenses in 

light microscopes are made of glass, a lens in the electron microscope is a magnetic field, produced 

by running current through coils of conducting wire. 
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At the subatomic level, matter is mostly empty, and thus the majority of the electrons in the 

focused beam pass through the specimen unscattered (Reimer and Kohl, 2008). Interactions that 

occur between the incident electrons with the specimen result in two principal forms of scatter-

ing: elastic and inelastic. In the former, the path of an incident electron passing close to an atomic 

nucleus is changed due to its attraction to the positive potential of the nucleus. In this interaction, 

shown in Figure 1.6, the elastically scattered electrons exit the specimen with a change in phase from 

the incident phase but without change in kinetic energy (Williams and Carter, 2009b). Structural 

information about the particles is encoded within these elastically scattered electrons.  

Interaction between incident electrons and the electrons in atomic orbitals result in inelastic 

scattering. In this type of scattering, kinetic energy is transferred from the incident electron to the 

atomic orbital electrons of the specimen (Williams and Carter, 2009a). The resulting inelastically 

scattered electrons leave the specimen at random angles with an overall loss of energy. Inelastic scat-

tering ionizes the electron cloud, acts as a source of incoherent signal, and induces free radicals that 

scatter and break chemical bonds in the specimen (Baker and Rubinstein, 2010). This is the major 

source of the radiation damage to the specimen as well as a source of background noise in the elec-

tron micrograph. Inelastic scattering is diffuse and provides little structural information about the 

specimen. 

The electron beam leaving the specimen is focused by the objective lens to produce a first im-

age, which is subsequently magnified by a set of projection lenses. Image contrast in the final micro-

graph originates from both amplitude and phase contrast. Amplitude contrast is generated when the 

objective aperture, placed at the objective lens, prevents high-angle scattered electrons from pro-

ceeding to the image detection system. Elastically scattered electrons contain meaningful structural 

information about the specimen (Wade, 1992). It is the interference of the phase-shifted elastically 
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scattered electrons with the unscattered electrons that generates phase contrast, which is the main 

contribution to the image contrast in the final micrograph. The pattern of phase shifts in the back 

focal plane can be changed by defocusing the microscope with the objective lens (Frank, 2006). 

1.3.3. The Aberrated Microscope

Electromagnetic lenses experience many of the same defects as optical lenses. Given a perfect 

point as the input object in an imaging system, the final image recorded will be an approximation of 

the original object: it will convoluted by a function, called the point spread function (PSF), whose 

shape depends on the aberrations of the imaging system. Among the defects in the TEM are spheri-

cal aberrations, chromatic aberrations, and axial astigmatism (Penczek, 2010). The Fourier transform 

of the PSF is the contrast transfer function (CTF), whose terms include the spherical aberration, 

axial astigmatism, and defocus value (Wade and Frank, 1977; Penczek et al., 1997; Zhu et al., 1997). 

The signature of the CTF can be seen in the absolute-squared Fourier transform of the micrograph, 

called the computed power spectrum (Frank, 2006). The white Thon rings, shown in Figure 1.7, in 

the power spectrum originate from the scattering of the amorphous carbon film that was laid onto 

the EM grid during sample preparation (Section 1.3.1). 

In practice, computing the power spectrum from the entire micrograph in a single transform 

operation gives a poor estimate for the CTF. Instead, computing the power spectrum of smaller, par-

tially overlapping subregions of the micrograph and averaging them produces an overall cleaner, less 

noisy power spectrum (Frank, 2006). Assuming there is no astigmatism in the image, one can take 

the 1D azimuthal average of the 2D power spectrum to obtain the 1D profile of the CTF. Accurately 

determining the CTF, discussed in Section 1.3.5, will allow correction of the data to obtain a faithful 

reconstruction of the original object. A mathematical treatment of the PSF and CTF are beyond the 
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scope of this dissertation, though their introduction here is important to understand how the data 

will be processed, once digitized.

1.3.4. Image Detectors for the Electron Microscope

The choice of image detector is very important, as each recording device has its own advan-

tages and disadvantages. The experimentalist must match the resolution goals of the experiment with 

the correct detector for maximum performance and efficiency. In evaluating the performance of a 

detector, one parameter often used is the detective quantum efficiency (DQE) (Vulovic et al., 2010), 

defined as the ratio of the SNR output squared to the SNR input squared. The parameter can be 

plotted as the percentage of the incident electrons counted as a function of different spatial frequen-

cies and shows how well a given detector can detect an electron event (Booth et al., 2006). A perfect 

device would have a DQE of 1, meaning that every electron event is detected and recorded. Three 

major types of devices have been used for data collection: photographic emulsion film, charge-cou-

pled devices (CCD), and direct electron detectors (DED). DQE curves comparing CCD and DD 

cameras are shown in Figure 1.8. 

Photographic emulsion film consists of silver halide grains suspended in a gel matrix. Elec-

trons striking the film cause ionization of the halide grains, transforming them into metallic silver. 

Photographic emulsion film, such as the Kodak SO-163 with a grain size of 5 μm, allows the collec-

tion of a large specimen field and has a higher DQE performance than CCDs at high spatial fre-

quencies. Until recently, the use of film was preferred for high-resolution projects. However, the great 

disadvantage is the required dark room development and digitization before assessment of the data 

and image processing can take place (Cheng and Walz, 2009). 

With scintillator-coupled charge-coupled devices (CCDs), an indirect method of electron 



17

detection is used. In this system, incident electrons first collide with a scintillator, which converts the 

electron signal into a photon signal. The photons emitted are transported by a dense bundle of fiber 

optics to a CCD array consisting of potential wells where the light signal is converted into an elec-

trical signal. The electrical charge is accumulated in the wells before being read out line by line and 

recorded as a digital micrograph (Brink and Chiu, 1994). The signal conversion process results in a 

loss of resolution, and thus the CCD has a lower DQE performance than film (Booth et al., 2006). 

An additional problem is “blooming”, which occurs when a charge fills up a CCD well and bleeds 

out into the surrounding wells. Thus, the readout from a single pixel may be due to the contributions 

from multiple surrounding CCD wells. The great advantage of the CCD camera, as a newly intro-

duced completely digital medium, is the convenience of use (Sander et al., 2005). The digital data 

are immediately available for quality assessment of the specimen field, image processing, and recon-

struction techniques. 

Within the last two years, the introduction of the direct electron detection (DED) device, 

also a completely digital medium, has revolutionized electron microscopy imaging strategies (Vee-

sler et al., 2013). With DED devices, a CMOS active-pixel sensor is exposed directly to the electron 

beam, removing the need for a scintillator fiber optics system. Thus, the resolution loss associated 

with the signal conversion process in CCD cameras is avoided. The DED sensor has the ability to 

detect and map each electron strike event, instead of integrating an accumulated charge (Milazzo et 

al., 2011). The DED device has an improved DQE performance over those of both film and CCD 

cameras (Li et al., 2013b; Li et al., 2013c). Overall, the DED device offers convenience of automa-

tion, immediate access to the data, and has a high DQE performance across all spatial frequencies. 

Additionally, because of the increased readout speed on the CMOS chip, the exposure of each image 

can be broken up into dose-fractionated frames, essentially allowing for the correction of beam-
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induced movement and drift upon alignment of the frames (Li et al., 2013b). 

1.3.5. Image Processing

Over the last few years, the SPR workflow has undergone significant improvements. These 

improvements have aimed to remove user intervention in the workflow, reduce subjectivity in choos-

ing image processing parameters, and promote a more automated performance. Much of the work 

presented in this dissertation serves to show the quality of the new algorithms and techniques. In 

certain cases, elaborated upon in Chapter 3, both old and new methods were utilized to process the 

same data, and the results were compared to benchmark the quality of the new methodologies. An 

introduction to both traditional and recent workflows is required to appreciate the scope of the work 

in this dissertation.

Powerful software platforms such as SPIDER (Frank et al., 1981), EMAN2 (Tang et al., 

2007), and FREALIGN (Grigorieff, 2007) provide users with procedures for analysis and processing 

of electron microscopy data. Arachnid (Langlois, R. E., Ho D. N., Frank, J., 2014. In Preparation), 

introduced below, was developed to streamline the entire process and introduce a comprehensive 

pipeline, shown in Figure 1.9. Before image analysis can take place, electron microscopy data must 

be digitized. Film data must be scanned by a densitometer, while CCD and DED data are already 

digital formats. If dose-fractionated frames are taken, frame alignment to correct for beam-induced 

drift must take place before additional image processing steps can follow. 

Traditionally, the first step of the workflow is to estimate the defocus and determine the CTF 

of each micrograph for later correction of the images. In Arachnid, the procedure ara-defocus esti-

mates the 2D power spectra from the image using Welch’s periodogram method (Welch, 1967), then 

takes the azimuthal average to produce a 1D CTF profile, introduced earlier in Section 1.3.3. The 
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procedure fits a model 1D CTF curve to this 1D profile to estimate the defocus of the micrograph. A 

viewing program, such as ara-screen in the Arachnid suite, allows the experimenter to view the com-

puted powers spectra and assess the quality of the micrographs. Within the 2D power spectra one 

can easily see the imaging aberrations in the image such as drift or astigmatism, which deform the 

Thon rings, as shown in Figure 1.7. In this figure, only the micrograph in (a) would be kept because 

it has circular, full Thon Rings indicating minimal drift, while (b) and (c) would be discarded due to 

extensive thermal drift and astigmatism, respectively. 

After the dataset has been manually assessed for high-quality micrographs, individual par-

ticle windows must be selected and cropped from each micrograph. In the SPIDER environment, 

the established procedure uses the template-matching algorithm LFC-Pick (Rath and Frank, 2004) 

to find a collection of candidate particle windows. The results are presented to the user in a graphics 

user interface (GUI) ranked in descending cross-correlation value to the given template reference. 

Traditionally, the user had to manually inspect all candidate particles to verify the selection, being 

careful to keep real particles and discard any non-particles, such as dust or crystalline ice. The process 

is prone to user subjectivity: individual particles have very low contrast on the background noise and 

choosing real particles with the human eye is problematic. 

AutoPicker, a program using a new particle algorithm in the Arachnid suite, has been de-

veloped to make the particle-picking procedure completely automated (Langlois et al., 2014b). 

As LFC-Pick, AutoPicker uses a Gaussian blurred disc of a user-defined diameter as a template for 

finding candidate particles. While the user can still manually reject particles, the verification process 

is extremely robust to dust, noise, and other features termed “non-particles.”  An important feature 

in AutoPicker is its ability to reject noise windows. Rather than utilizing a user-specified number of 

windows or cross-correlation threshold, AutoPicker utilizes a simple Bayesian classifier to automati-
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cally find a cross-correlation threshold for each micrograph (Otsu, 1979). This allows AutoPicker to 

effectively eliminate noise windows. Results from the use of AutoPicker show that this automated 

selection method produces reconstructions resolved to the same resolutions as the previous goldstan-

dard, the manual verification method (Langlois et al., 2011). The work in this dissertation uses both 

manual verification and automated selection methods and shows that the particle dataset chosen by 

the new AutoPicker procedure is comparable to, or better than, the results from the SPIDER proce-

dure. 

1.3.6. Classification of the Heterogeneous Dataset

An assumption of the SPR technique is that the dataset is comprised of structurally identical 

particles. However, as introduced earlier, unless chemical interventions are taken to ensure homo-

geneity of the sample, this is rarely the case (Frank, 2013). The use of particle images originating 

from heterogeneous structures for a single reconstruction results in a 3D density map that is a blend 

multiple underlying structures. The combination of heterogeneous structures blurs high-resolution 

details. Meaningful interpretation of the reconstruction is obviously problematic as the density map 

obtained may not be representative of a physiologically relevant conformation of the investigated 

particle. Heterogeneity is especially common for the ribosome, where often a multitude of functional 

states naturally co-exist (Agirrezabala et al., 2008; Zhang et al., 2008). Thus, it is imperative to sepa-

rate the different structural classes before refinement of any single density map of interest. Disentan-

gling the different compositional and conformational subpopulations allows the researcher to take an 

inventory of all the functional states that may exist in the sample (Scheres, 2010).  

There are several methods to classify particles and improve the homogeneity of the dataset. In 

the supervised classification method (Shaikh et al., 2008), implemented in SPIDER, separation of par-
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ticles into subsets is dependent on each particle’s resemblance to one of two given 3D references. Dif-

ference in the cross-correlation values is graphed as a histogram, with the zero value at the center of 

the histogram, designating particles that are equally correlated to both references (Valle, et al. 2002). 

Unfortunately, non-particles and low-contrast particles may not have high correlation to either of the 

two references. The user has to determine the cross-correlation cutoff for subclasses. The technique 

is prone to bias, as reference models used always rely on a priori information (Frank, 2009). Further 

discussion of this method is provided in chapter 3.

Unsupervised classification techniques cluster the particles into subsets based on their intrinsic 

similarities to one another. ML3D (Scheres et al., 2007) and RELION (Scheres, 2012) are recent 

programs developed for unsupervised classification of particles selected from each electron micro-

graph, utilizes a maximum a posteriori (MAP), a regularized likelihood optimization algorithm, to 

separate particles representing different underlying structures. RELION requires the user to define 

the number of K classes, and acts to find the most probable reconstructions based on the observed 

data and available prior information. This program is highly robust and, in the case of the ribosome 

-- as will be shown in chapter 3 -- is sufficiently sensitive to separate out multiple different classes of 

ribosomes with different ligand and tRNA occupancies, as well as free subunits. Each class can be 

refined using an iterative refinement procedure to yield a final reconstruction. In this way, a spectrum 

of conformations may be inventoried from a single sample. 

1.3.7 Interpretation of the Reconstruction

As discussed in Section 1.2, most cryo-EM reconstructions are not of sufficient resolution to 

allow ab initio atomic modeling. The typical density map, with intermediate resolutions between 5 

and 10 Å, cannot resolve the molecular interactions between the components of an assembly (Bai et 
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al., 2013). However, single-particle reconstructions are now routinely produced at subnanometer (< 

10 Å) resolutions, with maps of asymmetric molecules within the last year approaching atomic-level 

resolution, defined at ~3 Å or better (Bai et al., 2013; Hashem et al., 2013). As discussed in Section 

1.2.3., the fitting of X-ray structures into an intermediate-resolution cryo-EM density map leverages 

the atomic accuracy of an X-ray structure to produce a pseudo-atomic model of the reconstruction.

Two major fitting approaches have been utilized: rigid-body fitting and flexible fitting. Rigid-

body fitting keeps the X-ray structure static and unperturbed as an exhaustive search over transla-

tional and rotational angles seek to place the X-ray structure into the cryo-EM map in a way that 

results in highest correlation between the density map and the X-ray structure. This rough position-

ing of the molecule is implemented in a variety of visualization programs such as VMD (Humphrey 

et al., 1996) and UCSF Chimera (Pettersen et al., 2004).  Additionally, one can “fragment” the 

X-ray structure into its various domains, rigid-fit each domain separately, and perform a real-space 

refinement while reinforcing the integrity of the chemical bonds at the boundaries, for maximum 

correlation (Chapman, 1995; Gao et al, 2003). However, the segmentation can be highly subjective 

and may lead to mis-fitting and misinterpretation (Rossmann et al., 2001). A comprehensive review 

of the various rigid-body fitting methods and implementations is found in (Wriggers and Chacón, 

2001).

Flexible fitting is available in a variety of different program suites including SITUS (Wriggers 

et al., 1999), RSRef (Chapman, 1995), and Molecular Dynamics Flexible Fitting (MDFF) (Trabuco 

et al., 2009). A review of these approaches is beyond the scope of this dissertation, and treatments 

can be found in (Sanbonmatsu, 2012) and (Ahmed et al., 2012). The technique used in this dis-

sertation is the MDFF method implemented via the program VMD (Trabuco et al., 2011). In this 

technique, molecular dynamic (MD) simulations are utilized to drive the X-ray structure locally into 
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the cryo-EM density. The density gradient of the reconstruction is translated into a new potential 

energy term in the MD simulations. This energy function acts as a steering force, driving the X-ray 

structure into high-density areas of the reconstruction. Additional harmonic restraints are provided 

to preserve the correct stereochemistry of the atoms and the secondary structures of the particle, pre-

venting overfitting of the atomic structure due to the drive to occupy the density map (Mackerell et 

al., 1998). The result of MDFF is representative for a whole set of structures, each a pseudo-atomic 

model that is a compatible with the EM data. This is because density maps with resolutions between 

5-10 Å lack sufficient information for the positioning of amino acid side chains, though second-

ary structures can be positioned accurately. Thus, except for the precise positions of the side chains, 

the pseudo-atomic model, integrating X-ray and cryo-EM data, is a plausible representation of the 

native, physiologically significant state of the particle, free from the errors of crystallization experi-

ments.  The method works well for reconstructions with subnanometer resolution. Lower-resolution 

maps, with large high-density areas, allow for atoms to erroneously sample a spectrum of positions, 

making interpretations of the model unreliable.

MDFF allows the X-ray structure conformational flexibility during the fitting process in 

order to occupy the reconstruction. In the case of EF-G, the translocase, the isolated X-ray structure 

(PDB: 1FNM) (Laurberg et al., 2000), is significantly different from the bound state of the factor, as 

revealed by cryo-EM (Valle et al., 2003). It was not until almost a decade later that an X-ray struc-

ture of EF-G bound to a 70S was solved (Gao et al., 2009). As shown in Figure 1.10, domain IV 

shifts approximately 27 Å towards the A site of the 30S small subunit upon binding to the ribosome 

(Li et al., 2011). In cases where X-ray structures of single components and a cryo-EM reconstruction 

of the entire assembly is known, such as the CRISPR RNA surveillance complex (Wiedenheft et al., 

2011), one can fit individual proteins to provide a meaningful model of the entire assembly.
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Figure 1.1. Single particle reconstruction. (A) 2D projection images of the specimen field (electron 
micrographs) capture hundreds of particle projections, each assumed to be a structurally 
identical, differing only in their view orientation. (B) Each particle image is isolated from the 
micrograph, allowing a dataset of particles to be compiled. (C) Determination of each particle 
image’s projection angle is necessary for 3D reconstruction. Using this information, methods 
such weighted back-projection or Fourier reconstruction techniques can be utilized to obtain a 3D 
reconstruction. Reproduced with permission from (Mitra and Frank, 2006)
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Figure 1.2. The traditional workflow of the single-particle reconstruction (SPR) technique. The 
workflow shown here assumes that micrographs have been 1) digitized and 2) reviewed for 
quality. Software suites such as SPIDER (Frank et al., 1981) are traditionally used to implement 
procedures such as automated particle selection. However, the candidate particles must be 
verified manually by the user to remove non-particles from the dataset before alignment of 
particle images can take place. Once aligned, each defocus group is reconstructed separately 
and corrected for the CTF (Wiener filtering). Following CTF correction, each defocus group 
reconstruction is merged to give an initial volume. Iterative refinement of the projection angles 
gives a final volume. Reproduced with permission from (Leith, 2012) (http://it.iucr.org/). 
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Figure 1.3. Current statistics for the Electron Microscopy Data Bank (EMDB). Over the last 10 
years, the cumulative number of depositions in the EMDB had grown tremendously, as shown in 
(A). As of  December 31, 2013, there are a total of 2111 map entries. Distribution of the released 
maps based on EM technique, in percentage of total depositions, is shown in (B), with each slice 
of the pie pertaining to a different technique. Statistics from EMDB (www.ebi.ac.uk/pdbe/emdb/
statistics_main.html)
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Figure 1.4. Schematic of a plunge-freezer. A small aqueous sample is applied to an EM grid, 
usually made of copper or gold. Excess liquid can be blotted off (not shown) to produce a thin 
layer of the sample. The grid, held by tweezers, is rapidly plunged into a pool of liquid ethane or 
propane, converting the aqueous solution into vitreous ice. The process immobilizes the biological 
sample in a frozen-hydrated environment that protects the sample from radiation as well as 
mimics natural cellular conditions. Reproduced with permission from (Frank, 2011).
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Figure 1.5. A schematic of a typical transmission electron microscope (TEM). An electron source 
at the top of the TEM generates a cloud of electrons, which are accelerated in the field between 
cathode and anode. Condenser lenses focus electrons into a coherent beam that travels down 
the microscope to interact with the specimen. The scattered electrons are focused by the objec-
tive lens into an initial image. Projection lenses magnify the image. The final image, called an 
electron micrograph, is recorded by a detector at the bottom of the TEM.
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Figure 1.6. Elastic and inelastic scattering. The majority of incident electron pass through the 
specimen unscattered. Interactions between the incident electrons with a specimen’s nucleus 
or orbital electrons results in two principal forms of scattering: elastic and inelastic, respectively. 
Elastically scattered electrons are deflected by the nucleus and leave the specimen without 
kinetic energy loss. Inelastically scattered electron interact with orbital electrons and ionize the 
electron cloud, causing breakage of chemical bonds. These electrons leave the specimen with a 
loss of energy.
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Figure 1.7. Computed power spectrum. The signature of the CTF can be seen in the Thon ring 
pattern of the computed power spectra of each micrograph image. Quality of the micrograph 
image can also be assessed at the same time. Good micrograph give rise to round, full Thon 
rings in (A). Patterns produced by continuous drift of the specimen stage and jump drift can be 
seen in (B) and (E), respectively. Aberrations of the microscope, such as axial astigmatism, can 
be seen in (C). Computed power spectra from severely underfocused micrographs have small, 
closely spaced Thon rings such as in (D).
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Figure 1.8. Comparison of the Detection Quantum Efficiency (DQE) of various digital detectors. 
The DQE is measured, for three different detectors, from 0 to 1.0 across fractions of the physical 
Nyquist frequency. The K2 base is an integrated camera, without the ability to count electrons 
and dose-fractionate the exposure. The K2 Summit, due to its ability to localize and count 
electron events, can produce images with subpixel accuracy in super-resolution mode. The Gatan 
Ultrascan CCD is a 4K x 4K integrated camera. Reproduced with permission from (Li et al, 2013).
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Figure 1.9. The Arachnid workflow. The Arachnid suite of procedures aims to streamline the 
image processing of electron micrograph data in preparation for classification techniques 
(Langlois, R. E., Ho D. N., Frank, J., 2014. In Prep). Like the traditional workflow in Figure 1.1, 
the first step is to determine the CTF and defocus. Quality assessment of the micrographs can 
be done concurrently with computing the power spectra. AutoPicker can be utilized to select 
particles, which can be cleaned via ViCer. The final set of particle images can be used for 3D 
unsupervised classification, here by RELION (Scheres, 2012). After classification, classes are 
visually inspected and refined.
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Figure 1.10. EF-G: isolated state versus the fitted state. In (A), the X-ray structure of EF-G in 
solution (PDB:1FNM) (Laurberg et al., 2000) is rigidly placed in a cryo-EM map of bound–EF-G 
resolved to 10.9 Å (Valle et al., 2003). After MDFF (Trabuco et al., 2008), domain IV displays a 
large 27 Å shift, shown in (C), to produce the fitted structure in (B) (Li et al., 2011).
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BipA, a Novel Translational GTPase
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CHAPTER 2 ABBREVIATIONS

Abbreviation Full Title
(p)ppGpp guanosine pentaphosphate (precursor of ppGpp)
30S IC 30S initiation complex
30S PIC 30S pre-initiation complex
3D three-dimensional
70S IC 70S initiation complex
Å angstrom
A site aminoacyl site
aa-tRNA aminoacyl tRNA
BipA BPI-inducible protein A
BPI bactericidal/permeability-increasing protein
CCA cytosine-cytosine-adenosine
CTD c-terminal domain
E site exit site
EF-G elongation factor G

EF-Tu elongation factor Tu
EF4 elongation factor 4
EM electron microscopy
GAP GTPase-activating protein
GDP guanosine diphosphate
GTP guanosine triphosphate
IF initiation factor
Kd dissociation constant
Mb megabases
mRNA messenger RNA
nM nanomolar
P site peptidyl site
ppGpp guanosine tetraphosphate
PTC peptidyl transfer center
RF release factor
RNA ribonucleic acid
rRNA ribosomal RNA
SD shine-degarno
SHX serine hydroxamate
SRL sarcin ricin loop
trGTPase translational GTPase
tRNA transfer RNA
μM micromolar
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2.1 INTRODUCTION

While Chapter 1 aimed to provide a review of the methods used in this dissertation, this 

chapter focuses on the translational machinery and aims to introduce the biology behind the research 

later presented in Chapters 3 and 4. We begin with an introduction to ribosome structure and the 

mechanism of translation in Section 2.2. A deeper treatment of the bacterial elongation cycle is 

provided in Section 2.3. Finally, Section 2.4 introduces a recently discovered translational GTPase 

(trGTPase), BipA, whose structure bound to the ribosome and mechanism are the main foci of the 

rest of this dissertation. 

2.2 TRANSLATION

The process of translation, whereby the genetic message encoded in messenger RNA 

(mRNA) is translated into a sequence of amino acids, is central to life in all organisms. At the heart 

of translation and protein synthesis is the ribosome, a large macromolecular complex composed of 

both protein and ribonucleic acid (RNA). Ribosomes across the different kingdoms of life differ in 

composition, as discussed below, but the overall structure is largely conserved. It should be noted 

that while the bacterial system will be used to illustrate the process of translation for the remainder of 

the chapter, the mechanism of translation is largely shared among all three kingdoms of life.

2.2.1 The Translational Machinery: The Ribosome

In all kingdoms of life, the ribosome is composed of a small and large subunit. In eubacte-

ria and archaea, the small 30S subunit and the large 50S subunit form the complete 70S ribosome, 

while the eukaryotic counterparts are the 40S, 60S, and 80S, respectively. On each subunit lie three 
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sites for the binding of transfer RNA (tRNAs), designated the aminoacyl (A), peptidyl (P), and exit 

(E) sites. Each subunit is a multicomponent, ribonucleoprotein complex. For example, in eubacteria, 

the small 30S subunit is composed of a 16S rRNA and 21 proteins while the large 50S subunit is 

composed of a 5S and an 18S rRNA and 34 proteins (Agrawal et al., 2011). Table 2.1 summarizes 

the ribosomal RNA (rRNA) and protein composition of ribosomes among various species. The com-

plexity of this molecular machine reflects the monumental task that it must perform in translating 

mRNA nucleotide sequences with high fidelity into long amino acid polypeptides.

The first structures of the ribosome were described by Palade (Palade, 1955). Here, the ribo-

somes were seen as small particulates lining the endoplasmic reticulum. Studies in the E. coli system 

revealed that the complete 70S ribosome was composed of two subunits disparate in size (Huxley 

and Zubay, 1960). Using EM, Jim Lake was able to describe extensively the main topology of the 

ribosome and produce a 3D model of the macromolecular complex by inference from a few views 

(Lake, 1976). Unfortunately, ribosomal studies remained somewhat stagnant for the next decade. 

The first single particle structure of the 50S large subunit was done by Radermacher (Radermacher et 

al., 1987), albeit using the negative-stain technique. The first cryo-EM structure of the 70S was ob-

tained at 40 Å in 1990 (Frank et al., 1991).  It was not until 1995 that a cryo-EM reconstruction of 

the ribosome resolved to 25 Å (Frank et al., 1995), allowed characterization of topological features, 

intersubunit bridges, the binding sites of tRNAs, and the peptide exit channel. 

The first atomic structures of the 30S subunit from Thermus thermophilis  (Wimberly et al, 

2000; Schluenzen et al., 2000) and 50S from Haloarcula marismortui in 2000 (Nissen et al., 2000a), 

followed by the complete 70S ribosome from Thermus thermophilis in 2001 (Yusupov et al., 2001) 

revolutionized the field of ribosomal research. 
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2.2.2 Translation at a Glance

The entire translation process, shown in Figure 2.1, is divided into four stages: initiation, 

elongation, termination, and recycling. During each stage, a number of translational factors modu-

late the ribosome to promote polypeptide production using amino acids delivered to the ribosome 

by tRNA. This section summarizes the entire process, but an extensive treatment of each stage can be 

found in (Rodnina et al., 2011). 

During the initiation stage, a ribosomal complex is assembled in a step-wise manner to ulti-

mately form a competent 70S initiation complex (the 70S IC), which is primed for the start of the 

first elongation cycle. Complementary binding between a portion of the 16S rRNA in the 30S small 

subunit with the Shine-Delgarno sequence of the mRNA, a conserved ribosomal binding sequence 

found upstream of the AUG start codon, positions the mRNA onto the platform of the 30S subunit 

and its start codon into the P site, leading to the formation of the 30S pre-initiation complex (30S 

PIC). Initiation factors (IFs) 1, 2, and 3 act in concert to position the first aminoacylated tRNA (aa-

tRNA), bound to a formyl derivative of methionine (fMet), into the P site. The IFs facilitate produc-

tive interaction between the anticodon of the fMet-tRNAfMet and the AUG start codon, forming the 

30S initiation complex (30 IC). Dissociation of IF1 and IF3 and the joining of a 50S subunit with 

the 30S IC results in the 70S initiation complex (70S IC) primed for the first cycle of elongation. 

The elongation cycle is divided into three principal steps: decoding, tRNA accommodation/

peptide bond formation, and translocation. In the decoding step, incoming aa-tRNAs are delivered 

to the A site on the 30S subunit by elongation factor Tu (EF-Tu) where the anticodon stem loop of 

the aa-tRNA samples the codon of the mRNA in the 30S A site. Successful cognate-codon recogni-

tion stabilizes the aa-tRNA in the A site, releasing free energy that is used to induce conformational 

changes in the 30S head and EF-Tu, thereby promoting GTP hydrolysis on EF-Tu. Following GTP 
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hydrolysis, EF-Tu dissociates from the ribosome, leaving the aa-tRNA in the A site to be accommo-

date dinto the peptidyl transfer center (PTC) located on the 50S subunit. Here, peptide bond forma-

tion occurs, transferring the nascent polypeptide chain bound to peptidyl tRNA in the P site to the 

aa-tRNA in the A site. In the subsequent translocation, the concerted movement of the tRNAs (from 

the A and P sites, to the P and the E sites, respectively) and the mRNA by one codon, catalyzed by 

elongation factor G (EF-G), results in an empty A site for the next incoming aa-tRNA. The process 

starts anew, with each elongation cycle incorporating an additional amino acid into the growing 

nascent polypeptide chain, which exits the ribosome via an exit tunnel of the 50S subunit. 

Termination of translation occurs when a stop codon (UAA, UAG, or UGA) is reached in 

the mRNA template. Here, the codon is recognized by release factors (RF) 1 or 2 instead of an aa-

tRNA. RF1 recognizes the stop codons UAA and UAG while RF2 recognizes UAA and UGA. The 

specific release factor binds to the A site of the 30S subunit, mimicking an A-site tRNA. The RF 

not only recognizes the stop codon but also breaks the ester linkage of the polypeptide chain to the 

peptidyl-tRNA, thereby releasing the nascent peptide into the exit tunnel. Subsequently, RF3 binds 

to facilitate the release of either RF1 or RF2, thus completing translation termination. 

The research in this thesis focuses largely on the translational GTPase BipA and its homo-

logues. Thus, a more in-depth treatment of the elongation cycle and the various canonical elongation 

factors is provided below in Section 2.3. 

2.3 THE BACTERIAL ELONGATION CYCLE

Each round of the elongation cycle incorporates an amino acid to a growing nascent 

polypeptide chain. The process is divided into three main steps: decoding, accommodation/peptide 
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bond formation, and translocation. The entire cycle is coordinated, regulated, and catalyzed by 

the ribosome and two enzymes belonging to the elongation factor family of translational GTPases 

(trGTPases): EF-Tu and EF-G. Here, the structural basis for the elongation cycle is described to 

provide an understanding for the high fidelity, rapidity, and mechanism of the process.  

2.3.1 tRNA Structure and The Ternary Complex

tRNAs are the adaptor molecules that act as the translators between the nucleic acid and 

polypeptide codes. The tertiary structure of a phenyalanine tRNA molecule is shown in Figure 2.2. 

At the 3’ CCA end of the tRNA, named for the typical cytosine-cytosine-adenosine sequence found, 

amino acids are attached via an ester linkage, “charging” the tRNA to form an aminoacyl-tRNA. At 

the other end of the aa-tRNA is the anticodon, three nucleotide bases capable of complementary 

binding to a specific codon of the mRNA blueprint. Other regions, such as the D-loop and the vari-

able loop, are very flexible, allowing for distortion of the tRNA, an ability important for decoding 

and accommodation, discussed below.  

This entire assembly of EF-Tu–GTP–aa-tRNA is termed the ternary complex. EF-Tu is a 

translational GTPase consisting of three domains, shown schematically in Figure 2.3. Domain I, 

termed the GTPase domain, binds to GTP and catalyzes its hydrolysis to GDP and an inorganic 

phosphate. This domain is conserved among all translational GTPases. Domains II and III both 

adopt a β-barrel motif and are responsible for binding the aa-tRNA. The L7/L12 protein of the 50S 

large subunit is thought to recruit the ternary complex (as well as a number of other factors) to the 

ribosome (Wahl and Moller, 2002; Diaconu et al., 2005). Binding of the ternary complex to the 

ribosome, shown in Figure 2.4, positions the aa-tRNA into the A site of the 30S small subunit and 

EF-Tu adjacent to the A site of the ribosome, with Domain I positioned at the GTPase-associated 
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center (GAC) on the 50S large subunit and Domain II interacting with the 16S rRNA of the 30S 

small subunit. The GAC is characterized by the region of the 50S subunit encompassing protein L11 

at the base of the L7/L12 stalk and the Sarcin-ricin loop (SRL), A2660-A2664 of the 23S rRNA 

(Valle et al., 2003a; Clementi et al., 2010; Voorhees et al., 2010; Shi et al., 2012).

2.3.2 Decoding and the GTPase-Activation Mechanism

Once the ternary complex has successfully bound, a distortion in the anticodon stem and a 

rotation of the D-loop in the aa-tRNA results in the tRNA adopting a conformation known as the 

A/T state (Valle et al, 2003a). In this state, discussed further in Section 2.3.4, the tRNA anticodon 

samples the codon on the mRNA template in a process called decoding. Noncognate tRNA can-

not be stabilized on the ribosome, and such ternary complexes readily dissociate from the ribosome. 

Near-cognate tRNAs are not as stable in the decoding center as a cognate tRNA, especially after 

GTP hydrolysis on EF-Tu has occured, to be discussed below. Successful cognate codon-anticodon 

recognition results in the release of binding energy used to induce a domain closure of the 30S small 

subunit (Ogle et al., 2002). 

Adoption of the tRNA into the A/T state, codon recognition, the subsequent binding en-

ergy release, and the 30S domain closure are all important signals for GTPase activation of EF-Tu. 

The closure of the 30S induces further conformation changes in EF-Tu Domain II resulting in the 

disruption of the tRNA’s contact with the switch I loop (residues 40-62) in EF-Tu Domain I. The 

disruption of switch I is accompanied by a rearrangement of two amino acids, Val20 and Ile60, that 

make up a “hydrophobic gate” (Villa et al., 2009). This rearrangement allows His84 to be coordinat-

ed into the catalytic site of Domain I by A2662 of the SRL (Berchtold et al., 1993; Aleksandrov and 

Field, 2013). On EF-Tu, His84 is the catalytic amino acid responsible for hydrolysis, as mutation of 
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this residue to an alanine reduces the rate of GTP hydrolysis by six orders of magnitude (Daviter et 

al., 2003). While various proposed mechanisms differ in the exact role of His84, there is agreement 

on the reordering of His84 into the active site inline with a water molecule and the γ-phosphate 

of the GTP as necessary for productive hydrolysis (Voorhees et al., 2010; Liljas et al., 2011). This 

GTPase-activation mechanism is universally shared by all elongation trGTPases. The stabilizing of 

the transition state for GTP hydrolysis by the ribosome is akin to the stabilization mechanism of 

other traditional GTPase-activating proteins (GAPs) such as Ran and Ras. Thus, the ribosome itself 

can be considered a GAP (Liljas et al., 2011). 

2.3.3 Accommodation and Peptide Bond Formation

GTP hydrolysis results in conformational changes in EF-Tu Domain III that disrupt its 

binding to the tRNA and to the ribosome. tRNA detachment from EF-Tu further promotes EF-

Tu dissociation from the ribosome (Valle et al., 2003a). The correct codon-anticodon recognition 

stabilizes the remaining interactions of the tRNA with the ribosome, allowing the aa-tRNA to swivel 

and accommodate its 3’ CCA end into the peptidyl transfer center (PTC) on the 50S subunit (Valle 

et al., 2003a; Gromadski and Rodnina, 2004). Near-cognate tRNAs are much more unstable in 

comparison to cognate tRNAs once EF-Tu has dissociated from the ribosome. Biochemical studies 

suggested that nearly a 50-fold increase in GTP consumption was required for amino-acid incorpora-

tion of near-cognate codons as compared to cognate codons (Ruusala et al., 1982). Crystallographic 

and biochemical experiments show that the PTC is composed of 23S rRNA residues (Voorhees et al., 

2009), promoting the idea that the ribosome acts as a ribozyme during peptide bond formation. 

Structural and biochemical data suggest that the aa-tRNA is accommodated into the PTC 

following an induced-fit model. Once positioned, the α-amino group of the aa-tRNA performs a 
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nucleophilic attack on the aminoacyl ester linkage on peptidyl-tRNA, resulting in the transfer of the 

peptide chain from the P-site tRNA onto the A-site tRNA (Bashan et al., 2003; Trobro and Åqvist, 

2005). 

2.3.4 tRNA Conformations & Hybrid States

During elongation, tRNAs exhibit a variety of different conformations as they move se-

quentially from the A to the P and then to the E site. This movement is incremental and a number 

of tRNA hybrid states, shown in Figure 2.5, can been observed (Agirrezabala et al., 2012). These 

states, such as the A/T state mentioned in Section 2.3.2, are canonically named ‘X/Y’ where ‘X’ is 

the position of the anticodon stem loop and ‘Y’ is the position of the 3’ CCA end of any particular 

tRNA relative to the three tRNA binding sites on the 30S and the 50S (Moazed and Noller, 1989). 

Aminoacyl-tRNAs during the decoding process, bound to the ternary complex, are said to be in the 

A/T state. Accommodated A-site aa-tRNAs, with their anticodons in the A site of the 30S and their 

3’ aminoacylated CCA ends in the PTC, are said to be in the A/A state. Peptidyl tRNAs, with their 

anticodon in the P site of the 30S and their 3’ peptidyl end in the PTC of the 50S are in the P/P 

state. After peptidyl transfer has occurred, the deacylated P-site tRNA and the new A-site peptidyl 

tRNA must now move to the E site and P site, respectively, to make room for the next incoming aa-

tRNA. Hybrid state formation has been linked to an intersubunit rotation of the 30S relative to the 

50S by 5-10 degrees (Agirrezabala et al., 2008). This so-called “rotated” or “ratcheted” state, shown 

in Figure 2.4, is also important for the translocation step of elongation. 
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2.3.5 Translocation

In translocation, the movement of the mRNA and the anticodon of the tRNAs by one codon 

is mediated by the trGTPase elongation factor G (EF-G). As in EF-Tu, the first domain of EF-G is a 

GTPase domain, though EF-G contains an additional  domain, called G’, that interacts with the C-

terminal of the L7/L12 protein (Datta et al., 2005). EF-G is possibly the best example of molecular 

mimicry: its crystal structure (Czworkowski et al., 1994) strongly resembles the general shape of the 

entire ternary complex (Nissen et al., 2000b). As shown in Figure 2.3, Domains I and II resemble 

the structure of EF-Tu, while III, IV, and V collectively mimic the tRNA, with domain IV specifi-

cally resembling the anticodon stem arm of the tRNA. Indeed, the first visualization of EF-G bound 

to the ribosome, via cryo-EM, revealed that domain IV of EF-G docks into the A site just as A/T 

tRNA (Agrawal et al., 1998). Comparisons between cryo-EM densities of bound EF-G (Valle et al., 

2003b) and X-ray solution structures of EF-G (Czworkowski et al., 1994; al-Karadaghi et al., 1996) 

revealed a 27 Å swiveling of domain IV that must occur for binding to the A site (Li et al., 2011). 

Several recent crystallographic structures reveal that bound EF-G orders the catalytic His87 in its 

GTPase domain in a similar position as His84 of EF-Tu, suggesting a shared mechanism of GTPase 

activation (Pulk and Cate, 2013; Tourigny et al., 2013).

Binding of domain IV of EF-G to the A site seemingly “pushes” the tRNAs into their sub-

sequent binding sites. While spontaneous translocation (absent of any elongation factors) has been 

observed (Cornish et al., 2008), the EF-G-mediated translocation rate is orders of magnitude faster 

(Rodnina et al., 1997).  GTP hydrolysis and the resulting conformational changes in EF-G cause 

the protein to dislodge from its binding site. The reverse rotation of the 30S subunit back into the 

unrotated state of the ribosome leaves the tRNAs in the P and E sites while the mRNA has moved by 

one codon. This state essentially resets the ribosome for the next cycle of elongation.
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2.3.6 EF4: The Backtranslocase

Errors in the elongation process, such as the mis-incorporation of a noncognate tRNA, must 

be identified and rectified. Beyond the kinetic proofreading steps employed during the decoding and 

accommodation process, the ribosome may use another elongation factor: EF4 (initially known as 

LepA). The factor’s gene was first identified as the part of the lep operon, an operon upstream of the 

signal peptidase I gene in E. coli (March and Inouye, 1985a).  Characterization of the gene product 

of the lep operon revealed that the protein product, called LepA, has high sequence homology to 

elongation factor EF-G and EF-Tu (March and Inouye, 1985b). 

Since its discovery, further structure (Connell et al., 2008; Evans et al., 2008) and functional 

studies (Qin et al., 2006; Liu et al., 2011) have established the protein as the backtranslocase. The 

protein catalyzes a backtranslocation of the ribosome, allowing tRNAs in the E and P site to shift 

back to the P and A site, respectively, as part of an error-correction mechanism (Qin et al., 2006; 

Yamamoto et al., 2014). Spontaneous backtranslocation of the ribosome has been previously ob-

served (Konevega et al., 2007; Fischer et al., 2010). Cryo-EM maps of the 70S–LepA complex, after 

backtranslocation has occurred, revealed that LepA distorts the A-site tRNA into a new, previously 

uncharacterized, A/L state (Connell et al., 2008). LepA was subsequently renamed EF4 to reflect its 

inclusion in the elongation factor family of GTPases.  

2.4 BipA

2.4.1 Discovery and Initial Characterization of the BipA Protein

Pathogenic bacteria encounter a variety of environments during their life cycle. In order to 
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survive, these bacteria must adapt to environmental stresses such as abrupt changes in temperature, 

pH, nutritional resources, and amino acid pools. To cause disease, these bacteria invade host cells, 

where they are often met with a battery of innate antimicrobial agents. Host cells may release antimi-

crobial agents such as defensins, lysozymes, and bactericidal/permeability-increasing protein (BPI). 

Quick response and adaptation to the stress imposed by the host immune system is imperative for 

successful bacterial survival. 

BipA, an elongation trGTPase, was first discovered in 1995 by two-dimensional electro-

phoresis. Qi and coworkers (Qi et al., 1995) exposed Salmonella enterica typhimurium cells to BPI 

in order to activate the stress response of these bacteria. Two-dimensional gel electrophoresis was 

performed before and after exposure to BPI in an effort to detect proteins whose expression levels 

change over the course of the stress response. Comparison of the gels revealed the presence of a pro-

tein induced by more than sevenfold over basal levels during the stress response. After extraction and 

sequencing of the various proteins, these authors found high sequence homology between one 67.4 

kDa protein, named BipA (BPI-Inducible Protein A), and the canonical elongation factors, such as 

EF-Tu and EF-G.  

2.4.2 The bipA Gene

A study of 191 fully sequenced prokaryotic genomes found one copy of the bipA sequence in 

all but 26 genomes smaller than 1.5Mb (Margus et al., 2007). Among different genomes, the bipA 

gene is highly conserved, especially in Domain I and the C-terminal domain, a domain of unknown 

function (Scott et al., 2003). Recently, bipA has been found in the genomes of various lower-order 

eukaryotes such as S. salsa (Wang et al., 2008) and trypanosomes (unpublished data). However, 

higher eukaryotic organisms, such as humans, do not contain a homologous sequence. While there 
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may be a homolog of BipA in higher order eukaroytes, it may not have been detected as the sequence 

could be quite different from those of lower eukaryotes and prokaryotes.

2.4.3 BipA Shares Homology with the Elongation Factor Family of Translational 

GTPases

BipA has overall sequence and structural homology to EF-Tu, EF-G, and EF4, the canoni-

cal members of the elongation factor family of GTPases. As discussed in Sections 2.3, EF-Tu delivers 

aminoacyl-tRNAs to the A site of the 30S subunit for decoding and accommodation, EF-G is the 

ribosomal translocase, and EF4 is the ribosomal backtranslocase. Table 2.2 provides a summary of 

the sequence homology between BipA and the elongation factors. Biochemical studies have shown 

that BipA does not share the same functions as EF4 or EF-G. As yet, no biochemical study has been 

able to deduce a role for BipA during the normal course of elongation. Thus, while BipA has high 

sequence homology to EF-Tu, EF-G, and EF4, it cannot be considered an elongation factor. 

BipA, EF-G, and EF4 each have five domains, shown schematically in Figure 2.6. Domains 

I, II, III, and V are common to all three proteins. Domain I, the GTPase domain, is the most con-

served domain. Point mutations of conserved amino acids at the predicted BipA GTP hydrolysis site 

negates its GTPase activity, reinforcing the idea that BipA, EF-G, and EF4 share the same mecha-

nism of GTPase hydrolysis. The G’ domain of EF-G is absent from BipA and EF4. Studies have 

shown that this G’ domain interacts with ribosomal protein L7/L12 (Nechifor et al., 2007). Its dele-

tion or the deletion of L7/L12 results in a reduction of EF-G’s GTPase activity. As the other elonga-

tion trGTPases, BipA catalyzes the hydrolysis of GTP to GDP, a point that will be discussed below 

in Section 2.4.4. 

While four out of the five domains are common to all three proteins, each has a unique do-
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main specific to its function and mechanism. EF-G’s Domain IV extensively interacts with the ribo-

some in the intersubunit space by mimicking the anticodon loop of the A site tRNA (Connell et al., 

2007).  BipA and EF4 both lack a domain homologous to EF-G Domain IV. Instead, the C-terminal 

domains of BipA and EF4 are unique domains specific to each protein. For comparison purposes, the 

domain nomenclature established for EF-G is used to number both BipA’s and EF4’s corresponding 

homologous domains. Thus, BipA and EF4’s domains are named I, II, III, V, and CTD, even though 

Domain V is the fourth domain in the linear sequence.  

Finally, while all three proteins have been shown to bind to the same general site on the 70S 

ribosome (Owens et al., 2004), the sequence of BipA’s CTD has no homology to any other protein 

sequence. Superimposing the crystal structures of EF-G bound to the 70S ribosome in the pre-trans-

location state (PDB: 3J5X from (Brilot et al., 2013)), and EF4 bound to the 70S ribosome in the 

post-backtranslocated state (PDB: 3DEG from (Connell et al., 2008)), reveals extensive topological 

differences between the EF4 CTD and EF-G Domain IV. As shown in Figure 2.7, not only are the 

topologies of the two domains completely different, but they also occupy different spatial regions, 

the significance of which will be discussed in Chapter 4. BipA’s CTD, with its non-homologous 

sequence, may also have structural features that are distinct from EF-G and EF4 (deLivron et al., 

2009). Finding the specific ribosomal interactions will be crucial to understanding BipA’s mechanism 

and function. 

2.4.4 The Ribosome Enhances BipA’s GTPase Activity

Due to its high sequence homology to other elongation factors, it was expected that BipA’s 

binding partner would be the ribosome. Pull-down assays corroborated this hypothesis (deLivron 

and Robinson, 2008). Biochemical studies pinpointed BipA’s binding to the general docking site as 
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other elongation factors. BipA’s CTD mediates its interaction with the 70S ribosome (deLivron et 

al., 2009). A deletion of the CTD eliminates binding completely, suggesting a crucial important of 

the unique CTD in binding and, by extension as discussed below, GTP hydrolysis. 

Akin to EF-G, EF-Tu, and EF4, BipA also experiences 70S ribosome-induced increase in 

GTPase activity, suggesting a shared mechanism for GTPase activation (deLivron and Robinson, 

2008). Isolated, purified BipA in vitro has a basal turnover rate of 19.8 h-1. This activity is increased 

fourfold to ~80 h-1 in the presence of 70S ribosomes. Compared to the rate of EF-G GTPase activ-

ity in the presence of 70S ribosomes, ~6-7 s-1 (Rodnina et al., 1997), BipA is approximately 315X 

slower at catalyzing the hydrolysis of GTP to GDP. 

2.4.5 BipA Exhibits Two Ribosomal Binding Modes

BipA exhibits two distinct ribosomal binding modes. In the first binding mode, under 

normal cellular conditions, BipA binds to the 70S ribosome. Biochemical titration assays (unpub-

lished results from Victoria Robinson) show that BipA competes with EF-G for binding near the A 

site. However, BipA can only effectively compete with EF-G when the BipA quantity is over 3X the 

quantity of EF-G. 

Several antibiotics known to bind to the A site were used to confirm the general binding site 

of BipA. Studies found that thiostrepton, which binds to the base of the L7/L12 stalk, was able to 

block BipA binding (Mikolajka et al., 2011). This same antibiotic also blocks the binding of EF-G 

and EF4. (Walter et al., 2012). Interestingly, fusidic acid was shown to inhibit the GTPase activity of 

EF-G, but not that of BipA (Mikolajka et al., 2011). Also, fusidic acid, which inhibits translation by 

binding to EF-G, has no effect on BipA GTPase activity. The differential effects of antibiotics on the 

elongation factors indicate that BipA has distinct structural features. 
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In the second binding mode, when a stringent response is induced by the addition of serine 

hydroxamate (SHX), an amino acid analog that inhibits correct charging of serine tRNAs, BipA 

changes its binding affinity. Under these conditions, pull-down assays show that BipA associates 

solely with free 30S subunits, with little affinity for either the 50S large subunit or the 70S ribo-

some. Studies determined that this differential binding mode occurs upon BipA binding to ppGpp 

instead of GTP (deLivron and Robinson, 2008). The accumulation of the guanosine nucleotide                 

(p)ppGpp is the hallmark of the stringent response (Goldman and Jakubowski, 1990; Magnusson 

et al., 2005). ppGpp is the derivative of (p)ppGpp and a global stress alarmone (Magnusson et al., 

2005). (p)ppGpp is largely produced by RelA, a ribosomal factor which binds to the ribosome A site 

in the presence of a deacylated A-site tRNA (Haseltine and Block, 1973; Payoe and Fahlman, 2011). 

Production of (p)pGpp quickly causes a cascade of different stress-response pathways leading to 

expression of specific stress response-related proteins (Kanjee et al., 2012). 

 Its overproduction during the stringent response initializes a cascade of stringent-response 

pathways (Kanjee et al., 2012). The structural and biochemical changes responsible for this differen-

tial binding are not known. Interestingly, BipA is only found in organisms that also have RelA, the 

protein responsible for the creation of ppGpp. This further suggests that BipA and ppGpp work in 

concert with the ribosome to control gene expression during stress response. 

2.4.6 The Physiological Function of BipA

Very little is known about the physiological function of BipA. While the ribosome is a 

known binding partner of BipA, no other protein or macromolecular complex has been identified as 

a potential target. Thus, while BipA’s role has been implicated in a variety of pathways, the specific 

physiological function has never been fully elucidated.
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The discovery of BipA, in S. typhimurium cells experiencing sudden stress conditions, led 

Qi and coworkers to speculate BipA’s role in the stringent response (Qi et al., 1995). The stringent 

response was first identified in bacterial cells under amino acid starvation conditions (Forro, 1965). 

However, the term has come to mean the induction of a general stress response to a variety of sudden 

stresses such as amino acid starvation, nutrient depletion, gene expression repression, pH changes, 

heat shock, and antimicrobial agents such as defensins, lysozymes, and bactericidal/permeability 

increasing protein (BPI) (Jain et al., 2006; Carneiro et al., 2011). 

Studies have reinforced BipA’s vital role in the stringent response to a variety of environmen-

tal stresses. BipA has been shown to confer resistance to a variety of antimicrobial agents including 

sodium dodecyl sulfate (Kiss et al., 2004), BPI (Qi et al., 1995; Grant et al., 2003), and BPI de-

rivatives (Barker et al., 2000). These mutants show greatly reduced growth upon exposure to these 

agents. BipA was found necessary for the expression of the group 2 capsule gene clusters (Rowe et al., 

2000) which encode the proteins required for mediating resistance to host immune system responses 

(Merino and Tomás, 2001). Deletion or mutation in the bipA gene leads to increased bacterial sensi-

tivity to heat shock (Rowe et al., 2000) and cold shock (Pfennig and Flower, 2001; Kiss et al., 2004). 

Inactivation of the protein in E. coli cells results in the disappearance of the other stress proteins, 

leading to speculation that BipA has a possible role in gene regulation (Freestone et al., 1998b; Free-

stone et al., 1998a). Addition of S. meliloti BipA can reverse the phenotype of ΔbipA E. coli (Krish-

nan and Flower, 2008). Such an extensive conservation suggests that BipA plays a major functional 

and physiological role in bacteria. Lastly, as detailed in the previous section, under amino acid starva-

tion conditions, BipA experiences differential binding modes, to either the 70S ribosome or the 30S 

small ribosomal subunit, depending on the nucleotide concentration present in the bacterial system 

(deLivron and Robinson, 2008). BipA’s dissociation constant, Kd, for GTP, GDP, and ppGpp are 22 
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μM, 29 μM, 11 μM, respectively (unpublished data from Victoria Robinson). BipA’s higher affinity 

for ppGpp implies that BipA is primed to respond quickly under sudden stress conditions.

Beyond involvement in the stringent response, BipA has been implicated in the regulation 

of virulence-related gene expression in a variety of species. In enteropathogenic E. coli, BipA mu-

tants have dramatically reduced expression of the LEE pathogenicity island, a cluster of genes that 

encodes proteins necessary for colonization and invasion of host cells (Grant et al., 2003). Addition-

ally, pathogenic bacteria cells lacking a functional BipA protein have reduced motility, resulting in 

inability of these cells to attach to host cells (Farris et al., 1998; Møller et al., 2003). In S. meliloti, 

which invades and forms symbiotic relationships with plants, BipA is required for symbiosis and for 

the response to sudden pH fluctuations upon bacterial invasion of the plant host (Kiss et al., 2004). 

Interestingly, (Kiss et al., 2004) found that E. coli BipA can rescue the phenotype of the S. meliloti 

BipA mutant, suggesting that the protein has shared functions across bacterial species. 
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Species E. Coli S. Cerevisiae H. Sapiens B. Taurus
Mitochrondria

Molecular Mass (MDa) 2.3 3.3 4.3 2.7

Diameter (Å) ~260 ~300 ~320 ~320

Sedimentation Coefficient 70S 80S 80S 55S

Small Subunit Name 30S 40S 40S 28S

rRNA 16S 18S 18S 12S

# of Proteins 21 33 33 29

Large Subunit Name 50S 60S 60S 39S

rRNA 23S and 5S 5S, 5.8S, 25S 5S, 5.8S, 28S 16S

# of Proteins 34 46 47 50

Table 2.1. Comparison of ribosomes across different species. Structural information on ribosomes 
in different species is summarized. While ribosomes across the different kingdoms of life differ in 
composition, the overall architecture is largely conserved: each complete ribosome is composed 
of a small and large subunit. Each subunit is a multicomponent complex of both proteins and 
ribonucleic acid (RNA). Structural information was obtained from (Agrawal et. al, 2011) and 
(Anger et al., 2013)
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Elongation

Recycling

Termination 
& Release

Figure 2.1. Translation in eubacteria. The entire process of translation is depicted here in four 
stages: initiation, elongation, termination/release, and recycling. During each stage, a number of 
translational factors modulate the ribosome to promote productive polypeptide synthesis. During 
initiation, a 70S complex is assembled with an fMet-tRNAfmet in the P site paired with an AUG 
start codon on the mRNA. In each round of elongation, a single amino acid is incorporated into 
the nascent polypeptide chain. During termination, release factors (RFs) recognize one of three 
stop codons and catalyze the release of the polypeptide chain from the ribosome. In recycling, 
the 70S is disassembled into its individual components to be reused in a new initiation stage. 
Reproduced with permission from (Schmeing and Ramakrishnan, 2009, with re-adjusted color 
scheme).
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Figure 2.2. The secondary and tertiary structure of tRNA. The cloverleaf secondary structure of 
a phenylalanine tRNA is shown in (A). Its crystal structure (PDB:1EHZ) (Shi and Moore, 2000), 
resolved to 1.9 Å, is shown in (B) with various structural features color-coded and labeled 
accordingly. (A) is reproduced with permission from (Shi and Moore, 2000).
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Figure 2.3. EF-Tu and EF-G. The domains of EF-Tu and EF-G are depicted schematically in (A). 
The crystal structures of the aa-tRNA–EF-Tu–GTP ternary complex (PDB: 1EHZ from Nissen 
et al., 1995) and EF-G (PDB: 1DAR from al-Karadaghi et al., 1996) are shown in (B), with each 
domain colored as the primary sequence in (A). The tertiary structure of the ternary complex and 
EF-G strongly resemble each other in overall shape. Domains I and II are homologous between 
EF-Tu and EF-G. EF-G domains III, IV, and V collectively resemble the shape of the aminoacyl-
tRNA (aa-tRNA). 



64

Figure 2.4. The binding of the ternary complex and EF-G. The cryo-EM map of the ternary 
complex bound to the 70S ribosome (Agirrezabala et al., 2011), shows EF-Tu in the GTPase-
associated center (GAC) of the ribosome and the aa-tRNA anticodon stem loop (ASL) in the 
A site of the 30S. (A) Focused view of the architecture of the ternary complex.  (B) The entire 
70S–ternary complex.  (C) Reconstruction of the 70S–EF-G complex (Valle et al., 2003b), 
showing EF-G occupying the same general binding site as the ternary complex. EF-G’s domain 
IV extends into the A site of the 70S ribosome. EF-G binding stabilizes intersubunit rotation of the 
30S with respect to the 50S in a “rotated” or “ratcheted” state (Frank et al., 2007). The unrotated 
and rotated states are shown superimposed in (C) in yellow and magenta, respectively. 30S 
small subunit landmarks are abbreviated as follows: h - head; pt - platform; sp - spur. Figures 
reproduced with permission from (Frank, 2009). 

B

A

D

C
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Figure 2.5. tRNA hybrid states. During elongation, tRNAs move sequentially with the mRNA, from 
the A (aminoacyl) to the P (peptidyl) and then to the E (exit) site. The movement is accompanied 
by the intersubunit rotation, which has been observed to occur spontaneously or with the binding 
of EF-G. In (A), different ribosomal classes, captured by cryo-EM (Agirrezabala et al., 2012), 
show distinct conformations of tRNAs in the classic A/A-P/P state (class 2), P/P state (class 3), 
P/P-P/E state (classes 5 and 6) and two intermediate classes (classes 4A and 4B). Fitting of 
tRNA X-ray structures into cryo-EM maps allow comparison of the different tRNA hybrid states in 
(B). A-site, P-site, and E-site tRNAs are shown in magenta, green, and blue, respectively. Figures 
(A) and (B) are reproduced with permission from (Frank, 2012) and (Agirrezabala and Frank, 
2009), respectively.
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B
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Table 2.2. Sequence homology between S. enterica BipA and other S. enterica elongation factors. 
(A) Overall protein sequence homology between BipA and other canonical elongation factors (EF-
Tu, EF-G, and EF4) with the BipA sequence used as the reference. Shown in parenthesis is the 
percentage of positives: amino acids who differ in identity but have the same chemical properties. 
(B) The BipA sequence, further divided into individual domains according to the numbering 
scheme in Figure 2.6. Each of BipA’s domains were compared to the corresponding homologous 
domain in EF-G and EF4. The BipA CTD has no homology to EF-G domain IV or EF4 CTD. 
Because EF-Tu contains only three domains, its sequence was not used for individual domain 
comparisons. CTD = C-terminal domain.

Protein BipA EF-Tu EF-G EF4

Number of Amino Acids 607 394 704 598

Number of Domains 5 3 5 5

Sequence Homology -- 32% (48%) 27% (44%) 28% (47%)

A

Homologous Protein EF-G EF4

BipA Domain #

I 39%  (55%) 39%  (58%)

II 28%  (48%) 30%  (52%)

III 35%  (60%) 27%  (46%)

V 27%  (48%) 29%  (50%)

CTD -- --

B
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Figure 2.6. Domain comparisons between EF-G, EF4, and BipA. EF-G, BipA, and EF4 are 
composed of five individual domains. Domains I, II, III, and V are common to all three proteins. 
Domain IV of EF-G, which makes extensive contacts with the ribosome, is absent from both BipA 
and EF4. Instead, BipA and EF4 each have a unique CTD that is required for ribosomal binding.

704601

VEF-G I G’
1

I II III IV
290 399 482

BipA CTDII IIII IBipA
1 197 290 397 476 607

V

EF4 CTDVII IIII IEF4
1 192 276 400 479 599
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EF-G & EF4
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CTD
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Figure 2.7. Superimposition of EF-G and EF4 crystal structures. The crystal structures of EF-G 
bound to the 70S in a pre-translocation state (PDB: 3J5X) and EF4 bound to the 70S ribosome 
in a post-backtranslocation state (PDB: 3DEG) are shown superimposed on one another. The 
superimposition reveals that four of the five domains (I,II, III, and V) overlay well, while EFG 
domain IV and EF4’s CTD occupy different spatial regions. Domains I, II, III, and V in EF-G and 
EF4 are colored red and blue, respectively, per protein. The non-homologous domains, EF-G 
Domain IV and EF4 CTD, are colored in pink and green, respectively.  CTD = C-terminal domain.

90°
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CHAPTER 3: 

Image Processing of the BipA Dataset and Its Use as 
a Testbed for New Automated Particle Picking and 

Classification Techniques
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CHAPTER 3 ABBREVIATIONS

Abbreviation Full Title
2D two-dimensional
3D three-dimensional
ATP adenosine triphosphate
CC cross-correlation
CCF cross-correlation function
EF-G elongation factor G
EF-Tu elongation factor Tu
GAC GTP-associated center
MAP maximum a posterior
ML maximum likelihood
NP new particle
RELION REgularised LIkelihood OptimisatioN
SPR single-particle reconstruction
tRNA transfer RNA

ViCer View Classifier
μm micrometer or micron
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3.1 INTRODUCTION

Following the protocol of single-particle reconstruction detailed in Chapter 1, a single 3D 

reconstruction requires thousands, if not hundreds of thousands, of particle projection images that 

must each be found and picked from the larger micrographs. The particle-picking problem can be 

divided into two steps: particle selection and particle verification. In the first step, candidate particles 

must be recognized and windowed from the larger micrograph. This task is made more difficult by 

inherent high levels of noise and the low contrast of the biological particles in the micrograph. Thus, 

the candidate particle dataset will comprise of true particles and contaminants (i.e. ice crystals, dust, 

and other features that by their size can be mistaken for particles – we call them “nonparticles”). At 

the same time, some true particle may have been missed by the particle selection procedure. 

In the second step, the set of candidate particles must be verified to ensure that particle 

images entering the alignment and reconstruction phases are indeed true particles and not contami-

nants. This second step has posed a bottleneck for the single-particle reconstruction (SPR) workflow 

as researchers have had to visually inspect candidate particles and visually decide the veracity of each. 

Recently, the new algorithm AutoPicker (Langlois et al., 2014b), discussed in Chapter 1.3.5, was 

introduced as an unsupervised method for particle picking and verification. 

After candidate particles have been verified, the dataset can be used for reconstruction. 

Initially, the underlying assumption of the reconstruction technique is that dataset is comprised of 

structurally identical particles. However, as discussed in Chapter 1.3.6, this assumption rarely holds 

true and classification techniques must be employed to separate out different conformations that may 

inhabit the sample. Traditionally, supervised classification or unsupervised classification techniques 

(i.e. RELION (Scheres, 2012a)) have been employed to separate the larger dataset into subsets of 

more homogenous particles. 
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Over the course of the last few years, the introduction of automated selection and verification 

programs such as AutoPicker and the classification program RELION has revolutionized the work-

flow of the SPR technique. Here in our lab, the BipA dataset was used as one of the first testbeds for 

the AutoPicker algorithm. I was fortunate to be a part of this project and helped optimize AutoP-

icker parameters and design the layout and ergonomics of the accompanying visualization program 

Ara-Display and the larger image processing suite Arachnid (Langlois, R., Ho, D., deGeorges, A., 

Frank, J. in prep). Thus, this chapter not only serves to sketch out the methods I used to obtain the 

final reconstruction of the 70S–BipA complex, but also provides an outline of the recent improve-

ments to the SPR workflow. Characterization of the BipA data is given in Section 3.2. In Section 

3.3, the candidate particle datasets used for manual verification and AutoPicker are characterized, 

respectively. In Section 3.4, the manually verified BipA dataset is compared with the AutoPicker 

BipA dataset. In Section 3.5, the supervised classification technique is introduced and its application 

to the BipA dataset is presented. In Section 3.6, the program RELION, a novel unsupervised classifi-

cation method (Scheres, 2012a), and its application in classifying of the BipA dataset, are discussed. 

The chapter culminates in a description of the reconstruction of the 70S–BipA complex, resolved to 

a resolution of 8.5 Å, to be fully characterized in Chapter 4.

3.2 CHARACTERIZATION OF THE BIPA DATASET AND THE CHOICE OF 

VARIOUS PROCESSING PARAMETERS

Preparation of the 70S–BipA sample (in vitro reactions and cryo-EM grid preparation) is 

outside the scope of this chapter and will be detailed in Chapter 4. In all, 434 film micrographs were 

record ed on the FEI Tecnai F30 Polara electron microscope (FEI, Eindhoven) with Kodak Electron 
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SO-163 Image Film at a low dose (~18e-/Å2) and nominal 59,000x magnification setting. At the 

cali brated magnification of 58,269x (calibrated by Robert Grassucci on September 28, 2009; the 

data were collected on February 25, 2010), the pixel size is 1.2 Å at the specimen level when digi-

tized using the 16-bit ZI Imagine Photoscan 2000 densitometer (Z/I Imagine, Aalen, Germany) at a 

sampling rate of 7 μm. 

The data were decimated by a factor of two to increase the signal-to-noise ratio and improve 

the visibility of the power spectrum for CTF com putation, giving a final pixel size of 2.4 Å. The 

power spectrum of each micrograph was computed using the program SPIDER (Frank et al., 1981; 

Frank et al., 1996). Visual inspection of the power spectra allowed quality assessment of the micro-

graphs. Those micrographs with power spectra showing significant amounts of drift (see Figure 1.7B) 

were discarded, leading to a final film dataset of 312 micrographs. 

The 70S ribosome is estimated to be approximately 250 Å in diameter.  In the micrograph, at 

a pixel size of 2.4 Å, this corresponds to a ~105 pixel diameter for the 70S ribosome. Practical usage 

indicates that the particle of interest should inhabit about 65-70% of the final window size. Thus, 

the particle window size was designed as 160x160 pixels. The final three-dimensional map of the 

70S–BipA complex, presented in Chapter 4, was reconstructed using undecimated data. 

3.3 CHARACTERIZATION OF THE MANUALLY VERIFIED AND 

AUTOPICKER DATASET 

3.3.1 The Particle Picking Algorithm, LFC-Pick

The program suite SPIDER (Frank et al., 1981) was used to process the micrographs. Spe-
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cifically for particle picking and windowing, the procedure LFC-Pick was employed. This procedure 

utilizes a 2D template for finding candidate particles via the local normalized cross-correlation 

algorithm described by Alan Roseman (Roseman, 2003) and implemented in SPIDER by Rath and 

coworkers (Rath and Frank, 2004). In the procedure, a 2D projection is simulated from a given 3D 

reference. A circular mask with a user-defined diameter pertaining to the estimated particle diameter, 

is applied to the simulated image, producing the final 2D template. The user defines the window size 

of the isolated particle images. 

In LFC-Pick, computation of the CCF between the template and the entire micrograph is 

followed by peak search to find candidate particles. As described in Chapter 1, a peak in the CCF 

indicates a positions where the micrograph resembles the template. The peak search finds all candi-

date particles that have the highest correlation, and consequently the highest CCF peaks, to the 2D 

template.  To account for the possible fluctuation in beam illumination and consequently contrast in 

local areas of the micrograph, normalization is applied under the footprint of the 2D template mask. 

One can take the fast Fourier transform of the experimental micrograph area underneath the tem-

plate mask to estimate the area’s pixel density variance. LFC-Pick crops particle windows and places 

them in stacks, one per micrograph. Particles are stacked in descending order according to their 

cross-correlation value to the 2D template.

For the BipA dataset, a reconstruction of an empty 70S ribosome, provided in-house by Dr. 

Wen Li, was used as the 3D reference to generate the 2D template. Template matching and particle 

cropping with LFC-Pick yielded a complete candidate particle dataset of 503,592 images. 

Each particle image stack had to be manually inspected and true particle selected from the 

gallery of candidate particles.  I used the SPIDER-associated display program WEB (Frank et al., 

1996) to visually inspect each of the 312 particle image stacks, which displayed the particles in 
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descending order of cross-correlation values. Both highest- and lowest-ranked particles tended to be 

non-particles, as shown in Figure 3.1. Sharp, high-contrast edges are typical features of ice contami-

nants and other non-particles. Particle images showing these artifacts were immediately rejected from 

the dataset. Many non-particle images were found dispersed throughout the gallery of candidate 

particles, interspersed among good, true particles (Figure 3.1). 

LFC-Pick found an overwhelming number of candidate particles, many of which were simply 

images containing pure noise. The transition from good particles to such noise images is readily vis-

ible in micrographs imaged at far-from-focus, defined here as a defocus > 3.0 μm, but more difficult 

to discern in close-to-focus micrographs (defocus < 2 μm), as low-defocus particles have, as a rule, 

low contrast. Thus, there were fewer particles verified in defocus groups at close-to-focus than de-

focus groups at far-from-focus.  This distinction will become important in the comparison with the 

performance of the AutoPicker program, as discussed below. 133,782 particle images comprised the 

final manually verified dataset. The manual verification process requires considerable time investment 

by the researcher. In the case of the BipA manually verified dataset, the entire process was completed 

in approximately 4.5 weeks. 

3.3.2 The AutoPicker-Verified Dataset

By design, the AutoPicker algorithm seeks to eliminate the time investment and user subjec-

tivity of the manual verification process. Like LFC-Pick, the procedure also finds and crops candidate 

particles from the micrograph using a template-matching algorithm. However, instead of using a 3D 

reference to generate the 2D template, AutoPicker uses a Gaussian blurred disk as 2D template, an 

option also available in LFC-Pick, but employs additional tools, as detailed below. The radius of the 

disk is the estimated radius of the investigated particle. The algorithm is particularly powerful when 
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paired with the visualization program Ara-Display, part of the Arachnid suite (Langlois, R., Ho, D., 

deGeorges, A., Frank, J. in prep), which I helped to design. The program allows the user to visualize 

the entire micrograph with the windowed candidate particles marked. In this way, the user can visu-

ally determine, for example, whether the selected particles may be contaminants or part of a cluster 

of aggregated particles.

Unlike LFC-Pick, the AutoPicker algorithm has additional tools which are able to 1) differen-

tiate between true particles and non-particles and 2) find an appropriate threshold by which to reject 

the non-particles. After candidate particles have been found, principal component analysis (PCA) 

is employed on power spectra of particle windows. Assuming a Gaussian distribution, AutoPicker 

immediately rejects particle images that are extreme outliers (more than 4 standard deviations from 

the mean). This step removes the most obvious high-contrast non-particles (i.e., the first few particles 

shown in Figure 3.1C). Similarity between the remaining windows and the 2D template is measured 

via the CCF, and the results are graphed as a histogram of CC scores. The optimal threshold to sepa-

rate particles from non-particles is found using a cutoff algorithm described in (Otsu, 1979). Here, 

the algorithm looks for an obvious indicator, in terms of the CC histogram, that marks the transition 

from true particles to non-particles. 

For the BipA data set, the entire AutoPicker procedure was run on 312 micrographs in under 

four hours without user intervention, giving a final dataset of 293,036 particles. As shown in Figure 

3.2, the AutoPicker-verified dataset shows no signs of the high contrast non-particles that plagued 

the datasets generated by LFC-Pick. The AutoPicker dataset was classified using RELION (Scheres, 

2012a), to be discussed below in Section 3.6.



85

3.4 COMPARISON OF THE MANUALLY VERIFIED WITH THE 

AUTOPICKER DATASET

3.4.1 Scheme of Comparison

The AutoPicker algorithm has been previously benchmarked against two manually verified 

datasets, one of the 70S ribosome and the other of the ATP Synthase (Langlois et al., 2014b). For 

the 70S ribosome dataset, the particles were selected by LFC-Pick and then manually verified by the 

authors. Manual verification was considered the “gold standard” technique for particle verification. 

Thus, manually verified particles were considered true particles (true positives). 

Particle coordinates after manual verification and AutoPicker were compared to determine 

the performance of AutoPicker against manual verification. Three criteria were used to gauge 

AutoPicker’s performance: 1) the recall fraction, 2) the new particle (NP) fraction, and 3) the quality 

of the reconstructions from each dataset. The recall fraction is the fraction of manually verified 

particles that were also found by AutoPicker. The NP fraction is the fraction of total AutoPicker 

particles that were missed by manual verification. For calculating the recall and NP fractions, defocus 

groups were created to combine information from different micrographs of similar defocus. 

In the benchmark study (Langlois et al., 2014b), of which I am a co-author, we observed 

that AutoPicker was able to consistently pick a vast majority (>85%) of the same particles found by 

manual verification, regardless of the defocus. However, the performance at low defocus and high 

defocus differed, a point to be discussed below. Additionally, AutoPicker picked many more particles 

than manual verification. Whether the additionally picked particles likely to be are true particles can 

be gauged by reconstructing a density map using the entire enlarged particle dataset. We showed that 

both the 70S ribosome and ATP Synthase reconstructions using particles selected by AutoPicker had 
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resolutions equal or better than those of reconstructions using manually verified particles.

3.4.2 The Recall and New Particle Fractions of the AutoPicker Dataset

For the BipA dataset, the same statistical comparisons can be made between the manually 

verified dataset of 132,264 particles and the AutoPicker dataset of 293,036 particles. In terms of the 

quantity of particles picked, AutoPicker consistently picks approximately twice as many particles as 

manual verification across the entire defocus range. Also regardless of defocus, AutoPicker has a very 

high recall fraction (>.82 in all but one defocus group). This means that AutoPicker is able find the 

vast majority of the same particles that were manually verified.

The small fraction of manually verified particles that were not found by AutoPicker could ei-

ther be non-particles erroneously chosen by me, or true particles that AutoPicker could not find. The 

former possibility is the likelier situation because the recall fraction rate increases with defocus. As 

discussed, particles at high defocus (>3 μm) have higher contrast than particles at low defocus. Thus, 

at high defocus, true particles are more easily visually discernable, resulting in a higher percentage of 

true particles in the manually verified high defocus groups. A very high recall fraction then means 

that AutoPicker has a strong ability to pick true particles.

All AutoPicker particles that were not found by manual verification are particles that may be 

new true particles missed by manual verification or non-particles erroneously chosen by AutoPicker. 

Both scenarios seem likely. Visual inspection of the AutoPicker dataset still shows signs of contami-

nants, although high-contrast non-particles have been rejected. Overall, the NP fraction decreases 

with increasing defocus. At low defocus, approximately 66% of the AutoPicker particles are new. At 

high defocus, this fraction falls to approximately 55%, indicating greater agreement between the two 

datasets as defocus increases. Thus, at low defocus, I may have missed selecting true particles and re-
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jecting them as non-particles during the manual verification process. The benchmark study (Langlois 

et al., 2014b) showed the same trend for the 70S ribosome dataset, with the same interpretation. 

As the defocus increases, it is expected that the agreement between the AutoPicker dataset and the 

manually verified dataset will increase as particles become easier to discern by the human eye. 

Overall, the recall fractions suggest that the AutoPicker dataset contains almost all the par-

ticles of the manually verified dataset, indicating AutoPicker’s strong ability to find true particles. 

Combined with the NP fractions trend, this suggests that the AutoPicker dataset contains additional 

true particles missed by me. The ability to find true particles is important, especially at low defocus, 

where valuable high-resolution information about the investigated macromolecule is found. Addi-

tionally, the use of AutoPicker reduced the time investment from over four weeks to a few hours, and 

all but removes the bottleneck imposed by manual verification. This improvement moves the entire 

cryo-EM workflow closer to becoming a streamlined, automated high throughput process.

3.5 SUPERVISED CLASSIFICATION

As discussed in Chapter 1 (Sections 1.2.2 and 1.3.6), an assumption of the SPR technique 

is that the dataset is comprised of structurally identical particles. However, this is rarely the case in 

cryo-EM studies: heterogeneity, both compositional and conformational, often exists. Disentangling 

the different conformations that may exist in a sample is a necessity for meaningful interpretation of 

the data.

3.5.1 The Supervised Classification Technique

In the supervised classification technique (Valle et al., 2002; Gao et al., 2004), the particle 



88

dataset is divided into more homogenous subsets according to each particle’s resemblance to two 3D 

references. For each 3D reference, a set of simulated projections of equally spaced views in angular 

space, are generated. Two rounds of reference-based projection alignment (Penczek et al., 1994) is 

applied to the particle dataset, once for each reference. Each particle image in the dataset is matched, 

using the cross-correlation function (CCF), with the highest-correlated simulated projection view 

image for each reference. Thus, each particle image is assigned two cross-correlation values, CC1 and 

CC2, one for each reference. The difference in CC value (ΔCC = CC2-CC1), allows the researcher 

to gauge how well the particle image is differentiated between the two references. A positive ΔCC 

value means that the particle has higher resemblance to a simulated projection from reference 2, 

while a negative value means that the particle has greater correlation with reference 1.  ΔCC can be 

graphed as a histogram, with a zero center value indicating particle images that have equal correlation 

with each reference. 

This classification technique has several problems. First, the choice of references requires a 

priori information about the structure of the investigated complex. Second, non-particles that have 

subsisted in the dataset even after verification will not align substantially to either reference, although 

a carefully chosen threshold range may exclude these images. Finally, while theoretically the classifica-

tion should produce a bimodal distribution of resemblance, allowing for easy division of particles, 

the result is often unimodal (Gao et al., 2004; Scheres et al., 2007). The researcher must necessarily 

choose a ΔCC cutoff threshold range, defined as X ≤ ΔCC ≤ Y, where ‘X’ is the minimum allowed 

ΔCC value and ‘Y’ is the maximum allowed ΔCC value. All particles with a ΔCC value falling 

within this range are entered into a data subset and a density map is reconstructed from the subset. 

The choice of threshold range, as discussed below, is highly subjective and the optimal range is only 

found by visually inspecting multiple density maps reconstructed using different threshold ranges.



89

Model bias of the final reconstruction towards the reference can be assessed during the itera-

tive 3D reconstruction process. Here, a low-quality 3D reference with no factor bound, such as an 

empty 70S ribosome, can be used for reference-based alignment and orientation determination in 

the first round of refinement. In the following rounds in this iterative process, if a density for the 

bound factor appears, one can be assured that additional density originates from information in the 

particle images and not from the reference used.  

3.5.2 Supervised Classification of the BipA Manually Verified Dataset

For supervised classification, reconstructions of an empty 70S ribosome and a 70S–EF-G 

complex were chosen as reference 1 and reference 2, respectively, for reference-based alignment. The 

references are shown in Figure 3.4. The 70S–EF-G complex was chosen as a reference because of the 

similarity, both in structure and sequence, between BipA and EF-G. Also, as discussed in Section 

2.4, biochemical studies pinpointed BipA’s binding site near the GTPase-associated center (GAC) of 

the 70S ribosome, akin to the binding site of EF-G. Thus, the 70S–BipA complex was assumed to 

have overall structure resemblance to the 70S–EF-G complex. Both references were filtered to ~12.5 

Å prior to the start of reference-based alignment. After alignment, every particle image was assigned 

two CC values, CC1 and CC2, corresponding to the particle image’s resemblance to the empty 70S 

reference and the 70S–EF-G reference, respectively. 

The normalized histogram of the distribution of resemblance, shown in Figure 3.4, is 

graphed with the number of particles on the y-axis and the difference of CC values  (ΔCC = CC2-

CC1) on the x-axis. The histogram shows a unimodal distribution of resemblance. Many particles 

had equal or near-equal resemblance to both references. There could be a variety of reasons for a 

unimodal distribution. Particle images with high amounts of drift, particle images of pure noise, 
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and non-particles, will have a difficult time aligning to either reference, resulting in a very low ΔCC 

value.   Most likely, due to resolution limitations, the difference in cross-correlation values might 

be in the order of the noise.  In that case, the underlying bimodal distribution will blend into one 

unimodal one.

With this idea in mind, six cutoff thresholds, shown in Figure 3.4B, were chosen. The corre-

sponding particle statistics and resolution of the subsequent respective reconstructions are also given.  

For cutoff #1, with a threshold of -1 ≤ ΔCC ≤ 1, the corresponding reconstruction, resolved to 9.5 

Å, used the entire dataset of 133,782 particles (Figure 3.5). While the cutoff #1 reconstruction had 

the highest resolution of any cutoff reconstruction, the map showed no density for BipA, expected 

to be bound proximal to the A site. Reconstructions using thresholds of only negative or positive 

ΔCC, (cutoffs #2 and #3) depicted a 70S ribosome with P-site tRNA occupancy and a 70S ribosome 

with marginal prospective density for BipA, respectively. Thus, the subsequent three choices of cutoff 

thresholds (#4 - #6) aimed to optimize the visibility of BipA in the 70S–BipA complex by incremen-

tally limiting the acceptable ΔCC range. 

The best reconstruction of the 70S–BipA complex was obtained from cutoff #6. While this 

reconstruction had the lowest resolution, ~13 Å, the BipA density is strong and fully realized. The 

reconstruction shows clear density of the protein proximal to the A site at the GAC, as expected from 

previous biochemical data. Unexpected was an additional density for an A-site tRNA and a slightly 

weaker density for a P-site tRNA.  A potential, scattered mass of density for the E-site tRNA was also 

detected. Collectively, the cutoff reconstructions show that while imperfect, supervised classification 

is capable of separating the particles into more homogenous subsets for ligands of this size. Unfor- Unfor-Unfor-

tunately, further analysis of the 70S–BipA complex was hindered by the low resolution of the recon-

struction, which did not meet the criteria for MDFF fitting and modeling. 
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3.5.3 Moving Forward with the BipA AutoPicker Dataset

With AutoPicker’s introduction, the BipA dataset was primed to be used as a testbed for the 

new algorithm. However, because the cryo-EM results for the 70S–BipA complex were unpublished, 

the data were not included in the benchmark study (Langlois et al., 2014b). Nevertheless, the testing 

I performed with the AutoPicker algorithm helped to optimize AutoPicker parameters and prompted 

the subsequent development of a new post-particle selection cleaning procedure, called ViCer (Lan-

glois et al., 2014a). 

Analysis of the AutoPicker dataset statistics compelled me to abandon the manually verified 

dataset. The suboptimal resolutions of the reconstructions from the supervised classification tech-

nique also compelled me to find new methods of classification. Thus, I used the newly introduced 

program RELION (Scheres, 2012a) for unsupervised classification of the AutoPicker dataset. 

3.6 UNSUPERVISED CLASSIFICATION USING RELION

3.6.1 RELION: Implementation of the Maximum a Posterior (MAP) Approach to 

Cryo-EM Data

In cryo-EM we seek the solution of Θ, an unknown 3D reconstruction, based on χ, the col-

lection of particle images (nomenclature of variables as introduced in Scheres, 2012b). By using the 

regularized likelihood optimization, also known as maximum a posterior (MAP) estimation, we seek 

to optimize the probability of observing the 3D model(s) (Θ) given the collected particle dataset (χ), 

which is defined by the term ‘posterior.’  The posterior is proportional to the maximum likelihood 

(ML) function (Sigworth et al., 2010) regularized by prior information (Scheres, 2012b). We often 
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have additional prior information on the biological sample that can be given as constraints or regu-

larization parameters on the estimator. A mathematical treatment of the MAP estimator is beyond 

the scope of this dissertation, but can be found in (Scheres, 2012b). Th e classifi cation program RE-(Scheres, 2012b). Th e classifi cation program RE-. The classification program RE-

LION (Scheres, 2012a) implements the MAP for cryo-EM structure determination in the presence 

of heterogeneity.

In the initial setup of RELION, the user chooses the expected number of classes, designated 

as the parameter K, and provides a low-resolution (<60 Å) 3D reference, often a known reconstruc-Å) 3D reference, often a known reconstruc-) 3D reference, often a known reconstruc-

tion devoid of bound exogenous factors. RELION then uses an iterative process to optimize the 

posterior of the density maps of the K classes. In the first iteration of classification, the entire particle 

dataset is randomly divided evenly into the designated number of K classes. The low-resolution 3D 

reference is used for an initial alignment of the each subset of particles and then an initial set of K 

reconstructions are obtained.  In the Fourier implementation of the algorithm (Scheres, 2012b), each 

particle in the entire dataset is then compared to Fourier central slices of each of the K reconstruc-

tions using a likelihood function, which gives each particle a likelihood probability distribution of 

belonging to each view of each class. This process is similar to reference-based orientation determina-

tion, which uses the cross-correlation function and not a likelihood function; however, an important 

difference is that an entire probability distribution is computed, taking into account the likelihood of 

the particle to belong to every simulated class view, rather than a single set of parameters assigned.

At the end of each iteration, new density maps are reconstructed for each class. All particle 

images contribute to the reconstruction for each class. However, each particle image’s contribution 

is weighted proportionally based on their likelihood probability and prior information. The process 

starts anew in the next iteration, with the previous iteration’s K reconstructions given as prior 

information. The classification, with finer angular sampling from iteration to iteration, seeks to find 
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the most probable K reconstructions based on the observed data and available prior information. 

3.6.1 Disentangling Conformations in the BipA Dataset Using RELION

The total Autopicker dataset consisted of 293,036 particles. RELION (Scheres, 2012a) was 

employed for three-dimensional particle classification and reconstruction, while the classification 

scheme, shown in Table 3.1 and Figure 3.6, was adapted from earlier work in this lab (Hashem et 

al., 2013). The initial round of 3D classification was performed to separate genuine particles from 

non-particles using a rough angular sampling of 15 degrees. Non-particle classes are recognizable 

by showing scattered, noisy density.  Thus, RELION has the additional advantage of being able to 

distinguish non-particles from true particles, facilitating an additional particle clean-up step. 

Iterative rounds of RELION, with gradually finer angular sampling and corresponding local 

search ranges, were employed to classify different ribosomal conformations and binding states. At 

the end of each round, classes deemed visually inconsistent with the appearance of a BipA-bound 

70S complex were rejected and the corresponding particles were removed from the dataset in the 

next round of classification. Starting in Round 3, a class of an obvious, but low-quality 70S ribosome 

began to appear in the classification. These classes, seen also in later rounds, contain relatively few 

particle assignments. Particle images that make up these classes may have greater levels of noise or 

may contain higher levels of drift than other particle images, resulting in their assignment to a differ-

ent low-quality 70S class.

Overall, five distinct ribosomal classes were observed: an empty 70S (21,540 particles); 70S 

with E-site tRNA occupancy (36,775 particles); 70S with P-site tRNA occupancy (57,295 particles); 

70S with E-site and P-site tRNA occupancy (28,992 particles); and 70S with BipA as well as A- and 

P-site tRNAs (22,938 particles), designated as the 70S–BipA complex of interest to be discussed 
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in this paper. While all five classes are shown in Figure 3.7, only the BipA-bound class was further 

refined, to give the final reconstruction. The cryo-EM reconstruction of the 70S–BipA complex, pre-

sented in Chapter 4, is resolved to a resolution of 8.5 Å as assessed using the gold standard protocol 

(Liao and Frank, 2010; Henderson et al., 2012).
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Figure 3.1. Galleries of LFC-Pick particles and manually verified particles. The LFC-Pick 
procedure was employed in SPIDER (Rath and Frank, 2004) to select and isolate candidate 
particle windows. (A) and (B) show candidate particles 1-25 and 400-425, respectively, from 
Micrograph 69 with a defocus of 1.5 μm. (C) and (D) show candidate particles 1-25 and 400-425, 
respectively, from Micrograph 188, with a defocus of 2.5 μm. (E) shows the manually verified 
particles from particles 1-25 of Micrograph 188, boxed in green.
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Figure 3.2. Galleries of AutoPicker candidate particles. The AutoPicker procedure (Langlois, R. 
et al, 2014a) was employed to select and isolate candidate particle windows. (A) and (B) show 
candidate particles 1-25 and 400-425, respectively, from Micrograph 69, with a defocus of 1.5 μm. 
(C) and (D) show candidate particles 1-25 and 400-425, respectively, from Micrograph 188, with a 
defocus of 2.5 μm.
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Figure 3.3. The recall and new particle (NP) fraction values from a comparison of the manually 
verified and AutoPicker datasets. 312 micrographs were divided into 15 defocus groups. (A) 
shows the fraction of manually verified particles, per defocus group, that were also found by 
AutoPicker, designated the recall fraction. The recall trend line, in red, displays an increasing 
slope, indicating that there is greater agreement between manually verification and AutoPicker 
as the defocus increases. (B) shows the fraction of AutoPicker particles, per defocus group, 
that were not found by the manual verification technique, designated the new particle (NP) 
fraction. The NP trend line, in red, displays a decreasing slope. This is also indicative of greater 
agreement between manually verification and AutoPicker as the defocus increases.

0.5	  

0.55	  

0.6	  

0.65	  

0.7	  

1.5	   2	   2.5	   3	   3.5	  
1.5 2.0 2.5 3.0 3.5

0.50

0.55

0.60

0.65

0.70

Defocus (μm)

N
P 

Fr
ac

tio
n

Fraction of AutoPicker Particles Not Found by Manual Verification

A

B



98

CUTOFF
RECONSTRUCTION #

CUTOFF MIN CUTOFF MAX NO. OF 
PARTICLES

RESOLUTION 
(Å)

1 -1 1 133782 9.52
2 -1 0 45489 11.07
3 0 1 88331 9.91
4 0.1 1 62560 10.71
5 0.2 1 35673 11.39
6 0.26 1 23491 13.10

B

Figure 3.4. Results of supervised classification of the BipA manually verified dataset. (A) The 
normalized ΔCC =  CC2-CC1, displaying the distribution of resemblance for the BipA manually 
verified particle dataset. The two density maps shown are the references used for supervised 
classification: am empty 70S ribosome (reference 1) and a 70S–EF-G complex (reference 2), in 
red and blue, respectively. Use of the technique did not generate a bimodal histogram, showing 
that the classification was imperfect. (B) A table displaying the statistics of the various ΔCC cutoff 
threshold ranges used to divide the particles into more homogeneous subsets. Reconstructions 
for each cutoff threshold range are shown in Figure 3.5.
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Cutoff 1
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Cutoff 2

Cutoff 5

Cutoff 3
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Figure 3.5. Reconstructions from supervised classification. A total of six density maps were 
reconstructed using particle subsets from various cutoff thresholds, shown in Figure 3.4. The 
cutoff #1 reconstruction, using all 133,782 particles, displays no density for the BipA protein, 
although its resolved resolution (~9.3 Å) is the best of any class. The cutoff #2 reconstruction 
(using only particles with negative ΔCC values) also display no density for the BipA protein, 
although there is a stronger density for a P-site tRNA. Starting with the cutoff #3 reconstruction, 
a density for BipA can be seen near the GTPase-associated center (GAC) of the 70S ribosome. 
The cutoff #6 reconstruction shows the strongest density for BipA, although its resolved resolution 
(~13 Å) is the worst of any of cutoff reconstruction. All prospective densities for BipA are colored 
in red. 
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Table 3.1. The RELION classification scheme for the BipA AutoPicker dataset. The BipA 
AutoPicker dataset was classified in six rounds of RELION classification. In the initial three 
rounds, only non-particle classes were discarded. In later rounds of RELION, particles assigned 
to classes visually inconsistent with a 70S–complex were discarded. In Round 6, particles 
from class 2 and 4 were pooled together for the final reconstruction of the 70S–BipA complex. 
Abbreviations are as follows: ‘70S–All’ - 70S ribosome with scattered densities for BipA and three 
tRNAs; ‘70S–BipA’ - 70S ribosome complexed with BipA, a P-site tRNA, and an A-site tRNA.

RELION Round Class # Particles Description Rejected

Round 1 1 51185 70S–E-site tRNA
Total # Particles: 2 62219 70S–All
293036 3 45399 70S–All

4 42445 Non-particles X
5 44112 70S–All
6 47676 70S–All

Round 2 1 15458 70S–E-site tRNA
Total # Particles: 2 21896 Non-particles X
250591 3 21553 70S–P-site tRNA–E-site tRNA

4 25145 70S–BipA
5 30975 70S–P-site tRNA–E-site tRNA
6 24050 70S–BipA
7 22497 70S
8 31241 70S–P-site tRNA–E-site tRNA
9 24684 Non-particles X
10 33092 Non-particles X

Round 3 1 8602 Low-Quality 70S X
Total # Particles: 2 3379 Non-particles X
170919 3 22424 70S–BipA

4 28992 70S–P-site tRNA–E-site tRNA X
5 14065 70S–E-site tRNA X
6 22710 70S–E-site tRNA X
7 18888 70S–BipA
8 8800 70S X
9 20050 70S–BipA
10 23009 70S–P-site tRNA X

Round 4 1 10386 70S–P-site tRNA X
Total # Particles: 2 11920 70S–BipA
61362 3 2175 Low-quality 70S X

4 12134 70S–BipA
5 14259 70S–BipA
6 10488 70S–BipA

Round 5 1 8785 70S–BipA
Total # Particles: 2 17099 70S–BipA
48801 3 1963 Low-quality 70S X

4 4255 70S–P-site tRNA X
5 11101 70S–BipA
6 5598 70S–BipA

Round 6 1 11840 70S–BipA
Total # Particles: 2 9640 70S–P-site tRNA
42583 3 11098 70S–BipA

4 10005 70S–P-site tRNA
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Figure 3.6. Density maps of the classes observed in the RELION classification scheme. Density 
maps of the ribosomal classes corresponding to those tabulated in Table 3.1 are presented here. 
Ribosomal components are highlighted in different colors: A-site tRNA - magenta; P-site tRNA - 
green; E-site tRNA - orange; BipA - red. Abbreviations are as follows: ‘70S–All’ - 70S ribosome 
with scattered densities for BipA and three tRNAs; ‘70S–P-site–E-site’ - 70S ribosome complexed 
with a P-site tRNA and E-site tRNA;‘70S–BipA’ - 70S ribosome complexed with BipA, a P-site 
tRNA, and an A-site tRNA.
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Figure 3.7. Observed ribosomal classes in the BipA AutoPicker dataset. RELION (Scheres, 
2012a) was employed for 3D classification of the BipA AutoPicker dataset. Overall, five distinct 
ribosomal classes were observed: an empty 70S (21,540 particles); 70S with E-site tRNA 
occupancy (36,775 particles); 70S with P-site tRNA occupancy (57,295 particles); 70S with E-site 
and P-site tRNA occupancy (28,992 particles); and 70S with BipA as well as A- and P-site tRNAs 
(22,938 particles), designated as the 70S–BipA complex of interest. The 70S–BipA class was 
further refined to give the final reconstruction, presented in Chapter 4, resolved to 8.5 Å.
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CHAPTER 4: 

The Cryo-EM Structure of BipA 
Bound to the Ribosome 
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CHAPTER 4 ABBREVIATIONS

Abbreviation Full Title
(p)ppGpp guanosine (penta)tetraphosphate
aa-tRNA aminoacyl-tRNA
BipA BPI-Inducible Protein A
CCA cytosine-cytosine-adenosine
CTD c-terminal domain
DTT dithiothreitol
EF-G elongation factor G
EF4 elongation factor 4
GAC GTPase-associated center
GMPPNP 5'-Guanylyl imidodiphosphate
GTP guanosine triphosphate
IPTG isopropyl β-D-1-thiogalactopyranoside 
kcat turnover rate
kcat/KM catalytic efficiency

M molar
MDFF molecular dynamics flexible fitting
mM millimolar
mRNA messenger RNA
NTD n-terminal domain
OB-fold oligonucleotide/oligosaccaride-binding fold 
OD optical density
pmol picomoles
PTC peptidyl transfer center
RMSD root-mean-square deviation
rRNA ribosomal RNA
SAD single-wavelength anomalous diffraction
SDS sodium dodecal sulfate
SeMet selenomethionine
SRL sarcin-ricin loop
trGTPase translational GTPase
tRNA transfer RNA
α alpha
β beta
βME β-mercaptoethanol 
μl microliter
μM micromolar
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4.1 INTRODUCTION

The reconstruction of the S. enterica 70S–BipA complex, resolved to 8.5 Å, presents a pre-

viously uncharacterized structure. In order to elucidate the specific interactions between the BipA 

protein and the 70S ribosome, as well as the protein’s interactions with the A-site tRNA, one can 

leverage the precision of known X-ray structures and employ fitting techniques to generate a quasi-

atomic model of the entire complex. Ideally, we would fit an atomic structure of the 70S ribosome 

occupied with A-site and P-site tRNAs into the density map. The final necessary component for a 

complete model of the 70S–BipA complex would be a full X-ray structure of BipA, to be fitted into 

the portion of the density map corresponding to the protein. 

To date, only a portion of the C-terminal domain of Vibrio parahaemolyticus BipA has been 

solved (PDB: 3E3X, unpublished structure by Nocek, B. et al). Sequence comparison between the V. 

parahaemolyticus BipA and the S. enterica BipA revealed 65% sequence homology. However, as only 

a portion of the protein was crystallized, the structure of V. parahaemolyticus BipA was unsuitable 

for use in further molecular modeling. Fortunately, our collaborators in the Robinson lab were able 

to solve the full X-ray structure of S. enterica BipA to 2.7 Å, allowing us to complete the molecular 

modeling of the entire 70S–BipA complex. Our model, along with additional biochemical experi-

ments, provides exciting insights to the way BipA binds to the ribosome. 

Much of the work presented in this chapter was performed in close collaboration with the 

lab of Dr. Victoria Robinson. For this reason, Ala Shaqra in the Robinson Lab is a co-first author 

on the work presented here. Demarcation of contributions by members of the Robinson lab is given 

where appropriate. The chapter is structured in the following way: Section 4.2 provides details on 

the elucidation of the BipA X-ray structure, solved by Dr. Victoria Robinson. The use of MDFF to 

fit the X-ray structures of the 70S ribosome, the two tRNAs, and the BipA X-ray structures into the 
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reconstruction is provided in Section 4.3. The quasi-atomic model of the 70S–BipA complex is dis-

cussed in Section 4.4. Our model prompted the design of a new series of biochemical experiments, 

performed by Ala Shaqra, aimed at characterizing the specific ribosomal species needed for optimal 

BipA binding, to be discussed in Section 4.5. Section 4.6 concludes the chapter with an interpreta-

tion of the results and discusses the possible implications of the newfound insights.

4.2 THE BIPA X-RAY STRUCTURE

4.2.1 Expression and Purification of BipA

S. enterica BipA was purified as described previously (deLivron and Robinson, 2008). In 

brief, BipA was overproduced in E. coli BL21(DE3) (Novagen, Billerica, MA) and purified using  

HisTrap FF crude column (GE Biosciences, Piscataway, NJ) and gel filtration chromatography as 

previously described (deLivron and Robinson, 2008).  Selenomethionine derivatized protein was 

obtained by transforming B834(DE3)pLysS (Novagen, Billerica, MA) cells with pWW3.  Cells were 

grown according to a procedure adapted from a protocol supplied by J. Brannigan, R. Lewis and 

A. Wilkinson.  In brief, a 1 ml overnight culture was used to inoculate 50 ml of LB.  The cells were 

grown at 37 °C until reaching an OD600 ~ 1.0, harvested by centrifugation and washed twice with 

pre-warmed media containing 2X-M9 salts, 4% (w/v) glucose, 2 mM MgSO4, 25 mg/ml FeSO4–

7H2O, thiamine, riboflavin, pyridoxine monohydrate, niacinamide, 30 mg/ml kanamycin and 40 

mg/ml of all the amino acids excluding Met which was substituted with SeMet.  The cells were then 

resuspended in 1 L of the same media and grown at 37 °C to an OD600 ~ 0.6 before induction with 

0.5 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) overnight at 18 °C.  The protein was puri-
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fied using the same procedure as described above for the native protein except that all buffers were 

supplemented with 1 mM DTT to prevent oxidation of the selenomethionine residues.  

4.2.2 BipA Crystallization, X-ray Data Collection and Refinement

Crystals of S. enterica BipA, absent of any energy nucleotide, were grown by the hanging 

drop method of vapor diffusion from a PEG4000 solution. Selenomethionine-derivatized crystals 

were obtained under similar conditions. Crystals were flash-frozen after brief soaking in a reservoir 

solution containing 15% (v/v) glycerol.  The crystals belong to space group P21 with unit cell param-

eters a = 89.5 Å, b = 84.1 Å, c = 95.61 Å, a = g = 90° and b = 106.2° corresponding to 2 molecules 

in the asymmetric unit. Diffraction data were collected at 100 °K at the National Synchrotron Light 

Source (Brookhaven, NY) on beamlines X6, X25 and X29. Processing, integration and scaling of 

data was done with DENZO and SCALEPACK (Otwinowski and Minor, 1997). Structure factors 

were rescaled for anisotropy and ellipsoidal truncation with the Diffraction Anisotropy web server 

(Strong et al., 2006). 

The structure was solved using SAD phasing with data collected from a single selenome-

thionine-derivatized protein crystal. Positions of six pairs of Se sites related by a 2-fold NCS were 

determined from the peak wavelength utilizing the SAD phasing protocol implemented in SOLVE 

(Terwilliger and Berendzen, 1999).  From these initial phases, an automated SOLVE search of the 

15-2.7 Å SAD data located 21 additional Se-met residues present in the asymmetric unit which con-

tains two BipA molecules. RESOLVE was used to generate a preliminary model of BipA consisting 

of approximately 2/3 of the polypeptide chain, as poly(alanine and glycine), in the asymmetric unit 

and assigned side chains to 156 amino acid residues (Terwilliger, 2003). The partial structure was 

rigid-body fitted into the asymmetric unit and refined with REFMAC5 (Murshudov et al., 1997). 
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A minimal starting model of BipA was made by removing all loops and extended polypeptide chain 

regions that did not correspond exactly to the SAD electron density. This model was then refined 

against the native data set at 2.7 Å and subjected to iterative cycles of model building using COOT 

(Emsley and Cowtan, 2004) and refinement with REFMAC5 (Murshudov et al., 1997) until conver-

gence. Stereochemistry of the model was inspected with PROCHECK (Laskowski et al., 1993).  

The final model of BipA contains 568 of the 607 residues in the protein and has a final Rwork 

of 25.4 and an Rfree of 29.6%.  Undefined regions of the structure include the switch I (residues 34-

55), a large flexible loop in the CTD (residues 541-552) and seven residues at the C-terminus of the 

protein (residues 600-607). Statistics for the refinement are given in Table 4.1.  Figures were gener-

ated using PyMol (DeLano, 2002).  

4.2.3 Overall Structure of S. enterica BipA

The BipA X-ray structure has five domains, as shown in Figure 4.1, which have been named 

according to the domain definitions of EF-G, as discussed in Chapter 2. Domain I (residues 1-197), 

a GTPase fold, is a six-stranded β-sheet surrounded by five α-helices. Domain II (residues 198-290) 

is a six-stranded Oligonucleotide/ Oligosaccaride-binding fold (OB-fold). All translational GTPases 

contain these two domains at their N-terminus (Margus et al., 2007). Domains III (residues 291-

397) and V (residues 398-476) have similar split β-α-β folds. A ten-residue linker connects the fifth 

C-terminal domain (CTD) (residues 477-607) to the previous four domains. This domain has two 

centrally located β-sheets: one is a twisted extension to an adjoining β-sheet in domain III and the 

other surrounds a short helix, which in turn is bordered on the opposite side by a flexible loop. A 

small, basic helix (residues 593-601) is present at the C-terminus of the protein. This helix is crucial 

for both 70S and 30S ribosome binding (deLivron et al., 2009). The unique features of this domain 
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prompted us to submit it to the DALI server in order to more closely examine its similarities and 

differences to other protein structures (Holm and Rosenstrom, 2010). DALI gave no significant hits, 

indicating that the CTD of BipA has a novel fold never observed before in any protein deposited in 

the PDB. 

4.2.4 Comparison of the Unbound BipA, EF-G, and EF4 X-ray Structures

The overall structural features of isolated EF-G, EF4 and BipA resemble one another as 

would be expected from their high degree of sequence similarity, as discussed in Chapter 2 (Section 

2.4.3) and in deLivron (2009) (deLivron et al., 2009). All three proteins have five domains, four of 

which are topologically equivalent (Aevarsson et al., 1994; al-Karadaghi et al., 1996; Evans et al., 

2008). However, there are quite a number of distinguishing structural features in all three proteins 

(Figure 4.2). For example, both BipA and EF4 are missing the G’ domain present in EF-G, and the 

switch regions in all three proteins are of different length. Domain II in BipA more closely resembles 

the corresponding domain in EF4 in that it is missing the first two strands of the β-barrel present in 

EF-G. Domains III and V in all three proteins superimpose well onto one another with RMSD of 

less than 3.0 Å for ~140 residues. As shown in Figure 4.2, the orientation of these domains relative 

to the GTPase and β-barrel domains are different in each protein. 

Undoubtedly, the distinguishing structural component of each protein family is the domain 

that is positioned distal to the GTPase domain. For EF-G, this is domain IV whereas in EF4 and 

BipA it is the CTD. Interestingly, the CTDs of BipA and EF4 have novel folds but the argument can 

be made that the CTD of BipA is quite distinct, as shown in Figure 4.3. This is because domain IV 

in EF-G and the CTD of EF4 both have an antiparallel β-sheet with either one or two helices on one 

side. The CTD of BipA looks nothing like these domains, eluding to the idea that BipA may make 
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very different contacts with the ribosome than either EF-G or EF4. In summary, even though the 

gross morphological features of the EF-G, BipA and EF4 families of proteins are similar, they each 

have distinctive structural attributes enabling them to interact selectively with a given biological state 

of the ribosome.   

4.3 CHARACTERIZATION OF THE 70S–BIPA CRYO-EM 

RECONSTRUCTION 

4.3.1 Sample Preparation and Electron Microscopy

Purified BipA and 70S ribosome samples were prepared as described in Sections 4.2.1 and 

4.5.1, respectively. In vitro complexes were assembled by incubating 50 nM ribosomes, 500 nM 

BipA, and 1.25 μM GMPPNP together in a buffer of 10 mM Tris (pH 7.5), 5 mM MgCl2, 30 mM 

NH4Cl, 1 mM DTT for 20 minutes at 37 °C. A total of 4 μl of the in vitro reaction were applied to 

200-mesh holey carbon grids (Quantifoil 2/4 grid, Quantifoil Micro Tools GmbH, Jena, Germany) 

as described previously (Grassucci et al., 2007). Grids were blotted and plunge-frozen in liquid ethan 

at with a Vitrobot (FEI, Portland, Oregon).  

Data collection of the BipA dataset was described at length in Chapter 3 (Section 3.2). In 

brief, film micrographs were recorded on the FEI Tecnai F30 Polara electron microscope (FEI, Eind-

hoven) with Kodak Electron SO-163 Image Film at a low dose (~18e-/A2) and a calibrated magni-

fication of 58,269x. The pixel size is 1.2 Å at the specimen level when digitized using the 16-bit ZI 

Imagine Photoscan 2000 densitometer (Zeiss, Aalen, Germany) at a sampling rate of 7 μm. 
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4.3.2 Reconstruction Procedures

Image processing and AutoPicker particle selection of the BipA film dataset were described 

in Chapter 3, Sections 3.2 and 3.3.2, respectively. RELION (version 1.2b7) (Scheres, 2012) was 

used for 3D classification and refinement of the BipA AutoPicker particle dataset. The classification 

scheme was discussed extensively in Chapter 3. In the final round (Round #6) of RELION classifica-

tion, a total of 42,583 particles where classified into four classes, as described in Table 3.1 and shown 

in Figure 3.6. Classes 1 (11,840 particles) and 3 (11,098 particles) were visually consistent with a 

70S ribosome bound with BipA as well as A- and P-site tRNAs, as shown in Figure 3.7. Superimpo-

sition of Class 1 and Class 3 reconstructions showed no differences in the 70S, A-site tRNA, P-site 

tRNA, or BipA conformations. Class 2 and Class 4 were reconstructions of a 70S bound with a 

P-site tRNA. Particles assigned to Class 1 and 3 were pooled together to give a final subset of 22,938 

particles for 3D refinement 70S–BipA reconstruction. 

RELION was employed for automated refinement of the reconstruction using a low-resolu-

tion empty 70S ribosome (EMD ID: 2277) filtered to 60 Å as an initial model. The final reconstruc-

tion of the 70S–BipA complex is resolved to a resolution of 8.53 Å as assessed by the gold standard 

protocol (Henderson et al., 2012). The FSC curve is shown in Figure 4.5. The estimated accuracy of 

assigned angles as reported by RELION was 1.826°. RELION post-processing with auto-mask and 

auto-bfactor determined the resolution of the map as 8.35 Å and the b-factor of the map as -718.818 

Å2. However, in each case, the reporting of the second and third decimal is questionable. The final 

cryo-EM reconstruction of the 70S–BipA complex, depicted in Figure 4.4, shows a 70S ribosome 

complexed with BipA as well as A- and P-site tRNAs. All figures of the reconstruction were gener-

ated using UCSF Chimera (Pettersen et al., 2004).
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4.3.3 Segmentation and Display of Density Maps

The 70S–BipA cryo-EM reconstruction was segmented using several modules in UCSF Chi-

mera (Pettersen et al., 2004). The SEGGER module was used for initial segmentation of the volume 

isolated (Pintilie et al., 2010; Baker and Rubinstein, 2011). Segments containing less than 10,000 

voxels were discarded. Segments were refined manually using the Volume Eraser module implement-

ed in UCSF Chimera. Overall, five segments were obtained, corresponding to the 50S large ribo-

somal subunit, the 30S ribosomal subunit, a P-site tRNA, an A-site tRNA, and BipA, as shown in 

Figure 4.4. The segments obtained were smoothed using a Gaussian filter in the volume filter module 

of Chimera.

4.3.4 The 70S–BipA Reconstruction

Overall, the ribosome is found in the classical, non-rotated conformation. As compared 

with the E. coli 70S ribosome, the S. enterica 70S ribosome here is equivalent in protein and rRNA 

composition. Thus, as discussed below in Section 4.4.1, the atomic structure of the E. coli ribosome 

will be used in the molecular modeling of the complex. There is only scattered density present for 

the highly flexible L9 and L7/L12 proteins, which have been difficult to visualize both in cryo-EM 

and X-ray structures. The P-site tRNA is in the canonical P/P conformation as seen by comparison 

with previous structures (Agirrezabala et al., 2012), while the A-site tRNA is in a deformed, previous 

uncharacterized conformation (Figure 4.7). While the density for the P-site tRNA is complete, the 

A-site tRNA evidently lacks density for its 3’ CCA end, a point we will elaborate on in a later sec-

tion. 
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We see masses of density for the first four domains (I, II, III, and V) of BipA, and partial 

density for its CTD, as shown in Figures 4.6 and 4.9. When overlaid with the bound structures of 

the elongation factors (not shown), it is apparent that BipA’s domains I and II bind with the 70S 

ribosome in a way that is similar to domains I and II of EF-G, EF-Tu, and EF4. These two domains 

contact the GTPase-associated center of the ribosome, at the Sarcin-Ricin Loop of the 23S rRNA. 

This result is congruent with previous biochemical studies that have pinpointed BipA binding to the 

same general -- though not equivalent – ribosomal binding site as the canonical elongation factors. 

Akin to these factors, BipA experiences an increase in ribosome-induced GTPase activity, suggesting 

a shared mechanism for GTPase activation. Density for contact between BipA’s Domain III and the 

30S small subunit is apparent only at lower thresholds, suggesting that the interaction between the 

protein and the subunit is either transient or weak. This finding agrees with previous sequence ho-

mology studies which predicted that few amino acids in Domain III are required for the binding of 

BipA (deLivron et al., 2009). In contrast, Domain V makes strong contacts with the L11 NTD lobe, 

similar to the binding between EF-G and this lobe. Although density for the CTD of BipA is only 

partially observed, the CTD is seen to make strong contacts with the A-site tRNA through multiple 

points.  Moreover, the A-site tRNA is apparently deformed as a consequence of these interactions. 

This deformation will be further characterized below.

4.4 A QUASI-ATOMIC MODEL OF THE 70S–BIPA COMPLEX

4.4.1 Atomic structure modeling 

To elucidate the interactions between the protein and the ribosome, the Molecular Dynamics 
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Flexible Fitting (MDFF) (Trabuco et al., 2008) technique was employed. Fitting of the atomic struc-

tures into the cryo-EM reconstruction was performed using MDFF (Trabuco et al., 2009) (assuming 

a generalized-Born implicit solvent) as implemented in program NAMD (Tanner et al., 2011). The 

cryo-EM map of the 70S–BipA complex was fitted with an atomic model of the 70S–P-tRNA–A-

tRNA complex (PDBs: 3JOU and 3JOT) (Agirrezabala et al., 2012) and the X-ray structure of BipA. 

The X-ray structure of BipA lacks two fragments: One is the distal loop region (residues 542-552) in 

the CTD, where the structure is expected to be highly unstable in the ribosome-unbound form.  The 

other is for the Switch I region (residues 35-52) immediately neighboring the GTP.  The two missing 

regions were modeled as two loops to create a stereochemically complete structure for further fitting. 

This resultant model of BipA was first flexibly fitted into the segmented map for BipA, followed by a 

fitting of the entire model of the 70S–P-tRNA–A-tRNA–BipA into the complete unsegmented map.

4.4.2 A Model of the 70S–BipA Complex

The atomic model of BipA fitted into our density map is shown in Figure 4.6. The binding 

sites of Domains I and II proved to be quite similar as those of the homologous domains in EF-G, 

EF-Tu, and EF4, suggesting a similar mechanism of ribosome-induced GTPase activation. The map 

shows only partial density for the switch I (residues 34-55) region in Domain I, which indeed has 

been shown to be flexible in the crystal structure of BipA. For MDFF, as discussed above, this region 

was filled in as a flexible loop. Examination of this region in the 70S–BipA reconstruction, shown 

in Figure 4.8A, reveals that MDFF was unable to rebuild a model of the BipA switch I loop, likely 

due to poor starting model. To elucidate the amino acids of BipA that likely fits into this density, 

we superimposed the X-ray structures of T. thermophilus EF-G (PDD: 4JUW) and EF-Tu (PDB: 

2XQD), both with structured switch I regions and in their GTPase-activated states, onto BipA’s 
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Domain I. As shown in Figure 4.8A, residues 54-63 of EF-G and residues 52-61 of EF-Tu fits very 

well into this partial density in the 70S–BipA reconstruction. As discussed in Chapter 2, section 

2.3.2, GTPase activation requires the correct coordination of three unverisally conserved amino 

acids in Domain I of translational GTPases. In T. thermophilus EF-Tu, these residues are: Val20 in 

the P-loop, Ile61 in the switch I loop, His85 in the switch II loop. In T. thermophilus EF-G, the 

homologous residues are Ile20 , Ile63, and His87, respectively. In S. enterica BipA, the homologous 

residues are Val14, Ile54, and His78, respectively. As shown in Figure 4.8B, there is high agreement 

in the positions of Val14 and His78 in the BipA model with the corresponding homologous residues 

of both EF-G and EF-Tu. Disagreement in the position of BipA Ile54 with EF-Tu Ile61 and EF-G 

Ile63 can be attributed to the ill-fitted BipA switch I loop, as discussed above. Thus, our model 

suggests that we have captured a GTPase-activated state of BipA bound to the 70S ribosome.

Within Domain III, amino acids 313-327 form a flexible loop, which is within the vicinity 

of the ribosomal protein S12 on the 30S small subunit. As previously noted, any interaction be-

tween Domain III and the small subunit may be transient and not sufficient to stabilize the binding 

of the protein. Additionally, we revisited a previous mutational study (deLivron et al., 2009) aimed 

at identifying amino acids necessary for binding. In that study, point mutations were performed on 

amino acids shared among elongation factors as well as uncharacterized peptides in the novel CTD. 

This study found that R375 in Domain III is not required for BipA binding. In our model, R375 

is situated in the vicinity of a very large flexible region spanning residues 29-60 of Domain II, and 

thus, this residue may not be necessary for any kind of ribosomal binding or structure stabilization. 

Finally, the flexible residues in this section display a strong density in the reconstruction, suggesting 

that the bound form of BipA may be more rigid in this domain. 

As compared with the X-ray structure of BipA, Domain V is shifted toward the L11 protein 
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on the base of the L7/L12 stalk and makes strong contacts, especially along the α-helix and β-sheet 

formed by amino acids E409-G435. These interactions mirror the binding interactions of other ca-

nonical elongation factors to the ribosome. In a point mutation study (deLivron et al., 2009), R422 

and K423 were found to be unnecessary for binding while K427, K434, and R436 were required. In 

our model, both R422 and K423 lie far from any 50S subunit proteins while K427, L434, and R436 

are near the interface between Domain V and the L11 protein of the L7/L12 stalk base, and thus, 

may be required for stable binding of BipA to the ribosome (Figure 4.9).

The CTD is a novel non-homologous domain necessary for BipA binding and activity (de-

Livron et al., 2009). By means of MDFF fitting, we observe that various flexible regions of the CTD 

that lack density, such as the large distal loop, are in proximity of four 23S rRNA helices on the large 

50S subunit, namely H89-H92 (Figure 4.9). These 23S helices may help coordinate the CTD into 

position for proper and efficient binding, as well as stabilize BipA’s interaction with the A-site tRNA. 

Additionally, according to the aforementioned study by deLivron and coworkers (deLivron et al., 

2009), H527 and R529 are both important for BipA binding. As shown by our model, these amino 

acids are in proximity to H89, perhaps aiding in the coordination of the CTD.  Residue K562, 

also instrumental for the activity of BipA, is in proximity to the Sarcin-Ricin Loop (SRL) at H95, 

an important center for ribosome-induced GTPase activity. BipA’s CTD extends toward the A-site 

tRNA and thereby appears to induce a new conformation of the tRNA previously unobserved in the 

literature.

While the position of the anticodon remains unchanged from the A/A state, the rest of the 

tRNA exhibits a distortion due to various interactions with regions of the BipA’s CTD. The im-

portance of BipA’s distal loop (residues 535-556) was unexplained in the point mutation study by 

deLivron and coworkers (deLivron et al., 2009), which found that N536, K541, K542, and R547 
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are all necessary for effective BipA binding to the ribosome. This region was not ordered in the X-ray 

structure. Our model shows that all four of these amino acids lie in close proximity to the entire 

breadth of the A-site tRNA acceptor stem, and thus may be the reason why the acceptor stem itself is 

displaced by 6-8 Å, away from its position in the canonical A/A tRNA state, and toward BipA. The 

D-loop of the tRNA has strong interactions with the final basic α-helix of the BipA CTD (resi-

dues 593-601). In our model, G46 in the D-loop flips out of the tRNA ladder structure within the 

vicinity of R598 in the final α-helix (Figure 4.10). We suggest that the final α-helix is responsible 

for strong interactions with the tRNA, possibly by coordinating the nucleotides within the D-loop. 

These interactions apparently distort the D-loop of the tRNA, causing it to shift by 8 Å away from 

its position in the A/A state, toward BipA. Previous studies found that deletion or mutation of the 

final α-helix abrogates BipA’s binding (deLivron and Robinson, 2008). Additionally, this helix is uni-

versally conserved in all BipA sequences across prokaryotes. Our model thus provides an explanation 

for the importance of the final α-helix in the binding of BipA. 

The CCA end of the A-site tRNA could not be fitted using the atomic coordinates, as we 

lack sufficient density in the reconstruction. This observation led to questions about the tRNA’s 

identity and acylation state, which are addressed below with biochemical assays. Additionally, the 

presence of the A-site tRNA in a BipA-bound complex was unexpected. Previous biochemical studies 

(Farris et al., 1998; deLivron and Robinson, 2008), aimed at characterizing the BipA-bound com-

plex, did not suggest the presence or necessity of an A-site tRNA. Thus, the observation of an A-site 

tRNA in the reconstruction prompted a reexamination of previous biochemical assays (deLivron and 

Robinson, 2008; deLivron et al., 2009).  Several studies have noted regular tRNA contamination in 

70S samples and have stressed that extra precautions, such additional washing cycles or the use of 

puromycin must be taken to ensure a purified sample (Leshin et al., 2010; Meskauskas et al., 2011). 
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Additional complexes (not shown) were reconstructed using isolated BipA and purified 70S samples, 

with careful precautions taken to wash out tRNA contamination. In this case the reconstruction re-

flects a homogenous population of empty ribosomes, with no trace of a mass for BipA. These experi-

ments suggest that BipA’s interaction with the A-site tRNA is an integral requirement for its binding 

and activity. 

SECTION 4.5 BIOCHEMICAL CHARACTERIZATION OF BIPA GTPASE 

ACTIVITY AND BINDING IN THE PRESENCE OF VARIOUS RIBOSOMAL 

COMPLEXES

4.5.1 Ribosome Isolation

S. enterica 70S ribosomes were obtained as described, with the following modifications 

(deLivron et al., 2009): Crude ribosome pellets were resuspended in 10 mM Tris (pH 7.5), 10 mM 

MgCl2, 30 mM NH4Cl, 1 mM DTT. 100 OD254 units were applied to a 7-47 % gradient and cen-

trifuged at 96,000 x g for 7.2 hr at 4 °C in a Surespin 630 rotor (Thermo Scientific, Waltham, MA). 

Fractions containing 70S ribosomes were pooled, pelleted, resuspended in the same buffer, flash-

frozen in liquid nitrogen and stored at -80 °C until use.

4.5.2 Steady State GTP Hydrolysis Assays

Guanine nucleotide hydrolysis activities of BipA were determined by measuring the release of 

free phosphate with the malachite green-ammonium molybdate assay (Lanzetta et al., 1979; deLiv-

ron et al., 2009). Assays were done in 96-well plate format. His-tagged BipA protein (1 μM) was 
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incubated for 5 to 90 min at 37 °C in a 200 μl reaction mixture containing 20 mM Tris (pH 7.5), 

200 mM NaCl, 10 mM MgCl2, 2 mM β-mercaptoethanol (βME) and 50 – 2000 μM GTP. Where 

indicated, BipA was incubated with 25 nM of a given ribosomal species at 37 °C for 30 min. At the 

specified time points, 30 μl is removed and added to 200 μl of malachite green solution to quench 

the reaction. After 30 min, color formation was measured at 660 nm using a Synergy HT 96-well 

plate reader (Bio-Tek, Winooski, VT). Kinetic parameters were determined by a non-linear regres-

sion fit of the data to the Michaelis-Menten equation using GraphPad Prism (Version 5.0d). Kinetic 

values are reported as average values with standard deviations and correspond to a minimum of three 

independent experiments.

4.5.3 Ribosome Association Experiments

Examination of complex formation between BipA and the ribosome was done using co-sedi-

mentation through a sucrose gradient using the same technique as in our previous studies (deLivron 

and Robinson, 2008). Specific ribosome complexes were prepared as described by Blaha and cowork-

ers (Blaha et al., 2000). In brief, 70S ribosomes (100 pmol) are heat-activated in polymix buffer 

containing 20 mM MgCl2 for 30 min at 37 °C.  A custom-synthesized mRNA [5’-GGCAAGGAG-

GUAAAAAUG-3’] was designed to accommodate an initiator tRNA at the P-site (FM-03, tRNA 

Probes, Inc) and either an aminoacylated (L-50, tRNA Probes, Inc, College Station, TX) or un-

charged Lys–tRNA (L-01, tRNA Probes, Inc, College Station, TX) at the A-site. This mRNA was 

added to activated ribosomes at 3-fold molar excess and allowed to incubate for another 30 minutes 

at 37 °C.  To assemble an initiation complex (70S IC), a P-site tRNA, at a 3-fold excess, was added 

to the ribosome and incubated for 3 min at 37 °C.  Here, we use the notation of X-tRNAX, where 

X designates the amino acid charged to the tRNA and the superscripted X denotes the anticodon. 
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To produce a 70S IC with an A-site tRNA, either Lys-tRNALys or tRNALys (designating charged or 

uncharged) was introduced to the 70S IC complex in 3-fold molar excess and incubated again for 

3 min at 37 °C. The resulting complexes, presumably with either tRNALys or Lys-tRNALys in the A 

site, are designated 70S IC(A) and 70S IC(A)*, respectively. The complexes were then cooled to 30 

°C and BipA:GMPPNP (pre-incubated on ice for 30 min) added to the mixture, followed by a final 

incubation for 30 minutes at 30 °C. 

4.5.4 Steady-State Kinetics 

Previous studies from the Robinson Lab demonstrated that BipA binds to the 70S ribosome 

with a 1:1 stoichiometry and that the GTPase activity of the protein is stimulated by this association 

(deLivron and Robinson, 2008). For the current studies, the malachite green-ammonium molybdate 

assay was adapted to a 96-well plate format by Ala Shaqra. In agreement with previous studies, we 

observed the same increase in the BipA turnover rate (kcat) from 18.0 ± 0.6 hr-1 in its unbound, iso-

lated form to 57.6 ± 5.2 hr-1 in the presence of purified 70S ribosome (Figure 4.11A). To determine 

if the presence of an A-site tRNA has any effect on the GTPase activity of BipA, three complexes 

were assembled as described above: a 70S IC, 70S IC(A) and 70S IC(A)*. GTP hydrolysis activity 

of BipA was measured in the presence of each of these complexes (Figure 4.11A). Interestingly, there 

was only a modest change in the ribosome-stimulated GTPase activity of BipA when an A-site tRNA 

was present on the 70S ribosome. Similar three- to four-fold increases in kcat values were obtained 

for BipA–70S, BipA–70S IC and BipA 70S IC(A)* and a two-fold increase was measured for BipA–

70S IC(A). There is, however, a difference in the catalytic efficiency of BipA in the presence of these 

various ribosomal species with the largest change observed between BipA in isolation, kcat/KM of 4.5 

M-1s-1, and BipA–70S–IC(A)*,  of 17.5 M-1s-1, as shown in Figure 4.11B. However, the fact remains 
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that BipA is not a proficient enzyme, especially in comparison to EF-G, whose catalytic efficiency 

is 12 uM-1s-1 in the presence of the 70S ribosome (Mohr et al., 2000). The increase observed in the 

presence of an A-site tRNA may indicate a quicker turnover of GTP by BipA in response to the pres-

ence of this moiety, however, steady state kinetic analysis done for this work is not suitable to address 

this question directly.

4.5.5 Association of BipA and the 70S Ribosome in the Presence of an A-site tRNA

To determine whether the association of BipA and the 70S ribosome is modified in the pres-

ence of an A-site tRNA, in vitro ribosome-binding assays were utilized. Purified His-tagged BipA 

was incubated with the various 70S ribosome complexes described above in the presence of excess 

GMPPNP. The samples were then applied to a 1.1 M sucrose cushion and centrifuged. Fractions 

were collected above the cushion, representing the free protein, and from the bottom of the tube that 

had passed through the cushion, representing ribosome bound samples, and analyzed on SDS–poly-

acrylamide gel electrophoresis for the presence of BipA. As shown in Figure 4.12, similar to our pre-

vious studies, in the absence of nucleotide, BipA was unable to bind to the 70S ribosome. Interest-

ingly, no change in the relative binding of BipA to ribosomes programmed with occupancy of either 

an acylated or deacylated tRNAs was observed. This was a surprising finding, but it corroborates our 

kinetic data where the presence of an A-site tRNA did not substantially alter the GTPase properties 

of the protein. However, it should be noted that the assembled ribosome complexes are known to 

be unstable. The A site is shallower and wider than the P or E sites on the ribosome and has a lower 

affinity for tRNA. As such, a fraction of BipA may not be able to bind if these complexes fall apart in 

vitro. This may be the why we observe partial binding of BipA to the 70S ribosomal complexes and 

why there are very few known structural models with a stably bound A-site tRNA. 
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Competition binding studies were done with the antibiotic puromycin to corroborate the 

presence of the BipA CTD in the A site of the 70S ribosome and these studies brought some unex-

pected results. The binding assays were done as described above, except puromycin (2 mM) was incu-

bated with heat-activated 70S ribosomes for 3 minutes at 37°C.  These complexes were then cooled 

to 30°C upon which BipA was added in the presence or absence of GMPPNP (2 mM), and allowed 

to bind the ribosome for 30 min. Puromycin, an aminonucleoside antibiotic, binds near the peptidyl 

transfer center (PTC) of the ribosome, overlapping with the A-site tRNA (Hansen et al., 2002). In 

fact, part of the molecule resembles the 3’ CCA end of the aminoacylated tRNA. It is thought to 

act by inhibiting peptide-bond formation by perturbing or preventing the correct positioning of the 

aminoacylated ends of tRNAs in the PTC. The use of puromycin surprisingly resulted in complete 

BipA binding to the ribosome. As shown in Figure 4.12, there is no detectable unbound fraction of 

BipA. Intriguingly, the association of BipA with the 70S ribosome in the presence of puromycin is 

guanine nucleotide-independent. 

SECTION 4.6 DISCUSSION 

We have captured and structurally characterized a novel ribosomal complex: the 70S–BipA 

complex. Our results corroborates years of biochemical data and provides answers to previously 

unsolved questions (deLivron and Robinson, 2008; deLivron et al., 2009) on the importance of a 

variety of BipA amino acids. The binding site of BipA’s Domain I and Domain II in our map overlap 

well with the G domains of elongation factors such as EF-G (Agrawal et al., 1998), and the amino 

acids conserved between BipA and the canonical elongation factors have proven to be essential for 

GTPase hydrolysis activity (deLivron et al., 2009). Thus, BipA’s GTPase mechanism is likely to be 

similar to that EF-G, EF-Tu, and EF4. 
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The results of the puromycin binding assays are intriguing for a number of reasons. First of 

all, this is one of the few examples of an antibiotic inducing such a binding state of an elongation 

factor. Fusidic acid is known to bind to the ribosome-bound state of EF-G, preventing its dissocia-

tion from the 70S ribosome after GTP hydrolysis (Bodley et al., 1969). While the mechanism by 

which puromycin stabilizes BipA binding is unclear, a situation analogous to that between fusidic 

acid and EF-G seems unlikely as BipA is able to bind, in the presence of puromycin, independent of 

the guanine nucleotide species. 

Secondly, these experiments support the requirement of an A-site tRNA for BipA’s associa-

tion with the ribosome. Puromycin, with high affinity to the A site of the ribosome, may interact 

productively with the BipA CTD. The majority of the interactions between the BipA CTD and the 

A-site tRNA in the cryo-EM reconstruction are between the large distal loop region and the acceptor 

stem arm of the tRNA. It is conceivable that the high amount of flexibility in the CTD allows BipA 

to sample the A site of the ribosome. Productive interaction with a moiety in the A site, such as an 

A-site tRNA or puromycin, may stabilize BipA binding. By negating the requirement for the A-site 

tRNA, puromycin is changing the structure and the dynamics of the ribosome into a state that sup-

ports BipA association. 

Our biochemical GTPase assays reveal that BipA’s catalytic efficiency is highest in the pres-

ence of an A-site tRNA. Particularly, the three- to four-fold increases in BipA catalytic efficiency in 

both the presence of acylated and deacylated A-site tRNA are novel, unexpected findings. We believe 

the presence of an A-site tRNA may help to additionally stabilize the binding, allowing BipA to have 

longer contact with the GTPase-associated center on the 50S subunit, resulting in greater sampling 

of the GAC. The CTD is especially important for binding because of its interactions with the A-

site tRNA and the surrounding helices of the 23S rRNA. Point mutations and deletions that have 
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resulted in abrogation of binding of the protein (deLivron et al., 2009) are shown in our model at 

important regions of the CTD for A-site tRNA interaction. As we lack density for the 3’ CCA end 

of the A-site tRNA in our reconstruction, there may be a mixture of acylated and deacylated tRNAs 

in our complex. Studies have suggested that because a deacylated A-site tRNA cannot be accommo-

dated within the PTC, the tRNA could sample a large conformational space (Whitford et al., 2010) 

before dissociating from the 70S ribosome. We suggest that BipA may be able to bind to a deacylated 

A-site tRNA due to this unique attribute, which allows BipA’s flexible distal loop to establish optimal 

interaction with the tRNA. 

RelA is well-known enzyme capable of sensing a deacylated A-site tRNA. RelA is responsible 

for the production of guanosine tetraphosphate, (p)ppGpp, the universal alarmone in the bacterial 

stringent response. The production of this nucleotide triggers cascades of stress response pathways. A 

recent cryo-EM reconstruction of the 70S–RelA complex revealed that RelA binds proximal to the 

A-site of the 70S and strongly interacts with a highly distorted A-site tRNA which resembles the one 

observed in the A/T state (Agirrezabala et al., 2013). Thus, the conformation of the A-site tRNA re-

sulting from interaction with BipA on the ribosome is different from that observed upon interaction 

with RelA. Previous studies show that RelA binding is optimal when there is an uncharged tRNA in 

the A site (Payoe and Fahlman, 2011; Agirrezabala et al., 2013). Here in our study, we suggest that 

BipA can also sense an A-site tRNA, aminoacylated or deacylated.

The mechanism of BipA binding and the structure of the 70S–BipA complex have been 

elusive. While studies have characterized BipA’s participation in various stress (Wang et al., 2008; 

Neidig et al., 2013), stringent (Pfennig and Flower, 2001), and pathogenicity pathways (Grant et 

al., 2003), the exact mechanism by which BipA modulates gene expression has not been elucidated. 

BipA seemingly modulates gene expression levels (Krishnan and Flower, 2008), but contains no 
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DNA- or RNA-binding motifs. 

Our model of the 70S–BipA complex brings newfound insights to the binding of BipA to 

the 70S ribosome. As BipA has been known to participate in stringent response pathways, BipA’s 

ability to bind the 70S ribosome in the presence of an A-site tRNA may be crucial for its physiologi-

cal function. It is tempting to speculate that BipA could be modulating the stringent response, not 

by recognizing specific genes or mRNA sequences, but through its interaction with the A-site tRNA. 

If BipA’s stable binding also helps to stabilize a deacylated A-site tRNA, then the uncharged tRNA 

may be held in the A site long enough for other proteins, such as RelA, to bind and recognize the 

deacylated tRNA. In this scenario, BipA, by providing a scaffold for RelA, would indrectly cause a 

cascade of gene expression specific to stress response and adaptation pathways. As yet, no biochemi-

cal or structural studies have attempted to find a link between BipA and RelA. While there is still 

much to be elucidated, our reconstruction and model of the 70S–BipA complex provides answers to 

previous unexplained results as well as present clues to BipA’s mechanism.
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90°

Domain I
Domain II Domain II

Domain III Domain III

Domain V

C-terminal Domain

Figure 4.1. The X-ray Structure of BipA. The X-ray structure of S. enterica BipA, absent of any 
nucleotide, was solved to 2.7 Å. Overall, Domains I and II exhibit the canonical structure of 
the GTPase and β-barrel domain, respectively, that are shared by all elongation translational 
GTPases (trGTPases). Domains III and V resemble the tertiary architectures of the corresponding 
homologous domains in EF-G and EF4.  The C-terminal domain topology is novel and previously 
uncharacterized. Several undefined regions of the structure could not be visualized: the switch I 
(residues 34-55), a large flexible loop in the C-terminal domain (CTD) (residues 541-552), shown 
as a dashed line above, and seven residues at the C-terminus of the protein (residues 600-607). 
Domains are colored according to the scheme presented in Figure 2.6.
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Native BipA Se-met BipA
Data Collection and Phasing

Space Group P21 P21

Molecules per 
asymmetric unit 2 2

Unit Cell Parameters a=89.4 Å, b=84.0 Å, 
95.6 Å, b = 106.2 °

a=90.0 Å, b=83.3 Å, 
96.2 Å, b = 106.2 °

Resolution (Å) 15-2.7 (2.8-2.7) 30-2.4 (2.47-2.4)
Wavelength (Å) 0.97934 0.9783
Unique reflections (N, F > 0) 34,022 46,063
Completeness, % 96.4 (87.8) 82.3 (35.2)
I/σI 15.1 (4.2) 13.7 (2.7)

Rmerge
a 0.089 (0.207) 0.096 (0.277)

Multiplicity 5.0 (2.8) 5.7 (1.9)
Figure-of-merit 0.88 (0.94) 0.31 (0.11)

Refinement
Reflections, work/free 32,246 / 1,776
Protein Atoms 8,842
Water Atoms 44

Rwork
b 25.40%

Rfree
c 29.60%

RMSD bond lengths (°) 0.0078
RMSD bond angles (°) 1.54

Ramachandran Plot
Most favored (%) 92.9
Allowed (%) 6.3
Disallowed (%) 0.8

Table 4.1. Crystallographic statistics of data collection and refinement. Highest shell values are in 
parenthesis. Completeness and Rmerge are given for all data and for data in the highest resolution 
shell.

aRmerge = ∑hkl∑i|Ihkl,i − Ihkl|/∑hkl∑iIhkl,i, where Ihkl,i is the ith observed intensity and Ihkl is the average 
intensity over symmetry equivalent measurements

bRwork = Σhkl |Fo-Fc| / ΣhklFo, where Fo and Fc are the observed and calculated structure factor 
amplitudes, respectively for all reflections hkl used in refinement.

cRfree is calculated for 5% of the data that were not used in refinement.
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Figure 4.2. Superimposition of the X-ray structures of unbound EF-G, BipA, and EF4. (A) The 
crystal structures of EF-G (PDB: 1FNM), BipA (PDB: 3BV5), and EF4 (PDB: 3CB4) are shown 
individually. (B) The crystal structure of EF-G superimposed on BipA shows that BipA lacks a 
G’ domain and a homologous EF-G domain IV.  In addition, the CTD of BipA and EF-G domain 
IV are positioned in opposite directions in relation to the rest of the protein. The BipA CTD may 
provide new contacts to the ribosome. (C) The CTD of BipA and LepA have different topologies. 
Thus, BipA may have distinct contacts to the ribosome from either LepA or EF-G (11, 12). The 
LepA structure, however, lacks the final 50 amino acids at the c-terminal. EF-G and LepA are 
colored differently for comparison purposes, the domain colors of BipA follow the color scheme 
presented in Figure 4.1. 
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Figure 4.3. Comparison of the structural topologies of EF-G Domain IV, EF4 CTD, and BipA CTD.  
Domain IV in EF-G and the CTD of EF4 both have an antiparallel β-sheet with either one or two 
helices on one side. However, the two domains do not share sequence homology. The CTD of 
BipA looks nothing like these domains, suggesting that BipA may have specific uncharacterized 
interactions with the ribosomes. 
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Figure 4.4. Cryo-EM reconstruction of the 70S–BipA complex.  The segmented map of the 
70S–BipA complex is shown here in two views: (A) side view and (B) front view with transparent 
subunits. Visualized in the reconstruction is a complete 70S ribosome, segmented into the 50S 
subunit (blue), and the 30S subunit (yellow), BipA (red), A-site tRNA (magenta), and P-site tRNA 
(green).  Various ribosomal landmarks are labeled for orientation.
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Figure 4.5. The Fourier Shell Correlation (FSC) curve for the 70S–BipA reconstruction. The 
~23,000 particles assigned to the 70S–BipA class were randomly divided into half-sets using 
RELION. Separate 3D volumes were reconstructed from each half-set and the cross-correlation 
values between the half-volumes across Fourier shells were calculated. The resolution of the 
70S–BipA reconstruction was determined using the FSC = .143 cutoff, according to the gold 
standard protocol (Henderson et al, 2012). 
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Figure 4.6.Fitting of the BipA X-ray structure into the BipA cryo-EM density. MDFF was employed 
to fit the BipA X-ray structure (blue) into the protein’s cryo-EM density (grey), to produce the 
final quasi-atomic model of BipA in a ribosome-bound state (red). There is little change in the 
position of Domains I and II before and after fitting. Domains III and V shift by ~10 Å and 19 Å, 
respectively, towards the base of the L7/L12 stalk to fit their corresponding density. The most 
dramatic difference between the x-ray structure and the fitted structure occurs in the c-terminal 
domain, which shifts by ~30 Å to fit into the corresponding cryo-EM density. 
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P/P tRNA

P/P tRNA A-site tRNA

A/A tRNA

(in BipA-bound 70S)

A/A tRNA

D-loop

Acceptor 
stem loop

A-site tRNA
(70S : BipA)

180°

A B

Figure 4.7. Conformations of the A-site and P-site tRNAs in the 70S–BipA complex.  Ribbon 
diagrams of A-site and P-site tRNA obtained by flexible fitting, are shown in magenta and green, 
respectively. In peach are the corresponding A/A and P/P tRNA configurations determined in a 
previous study 2. In the 70S–BipA complex, while the P-site tRNA remains in the P/P state (A), 
the A-site tRNA is subjected to an 8-Å deformation throughout the D-loop and the acceptor stem 
loop (B), away from the A/A configuration, towards BipA.
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Figure 4.8. The switch I and switch II regions of BipA, EF-G, and EF-Tu. Residues 34-55 of 
switch I region are undefined in the BipA X-ray structure. Thus, a flexible loop was filled in to 
create a stereochemically complete X-ray structure for MDFF. (A) The BipA switch I region has 
clear density within the reconstruction. However, MDFF was unable to fit the flexible loop into 
the corresponding density due to the poor initial model. The X-ray structures of EF-G (PDB: 
4JUW) and EF-Tu (PDB: 2XQD), both in a GTPase activated state with an ordered switch I loop, 
were superimposed onto the fitted model of BipA. EF-G and EF-Tu show good agreement in the 
position of their switch I loops with the BipA switch I density. (B) Comparison of the amino acids 
necessary for BipA GTPase activity (Val14, Ile54, and His78) with the homologous residues in 
EF-G and EF-Tu show high agreement in the positions of the P-loop amino acid (BipA: Val14, EF-
G: Ile20, EF-Tu: Val20) and Switch II catalytic histidine (BipA: His78, EF-G: His87, EF-Tu: His85).
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Figure 4.9. The binding site of BipA on the ribosome.  The X-ray structure of BipA was flexibly 
fitted into its corresponding cryo-EM density to elucidate the binding contacts of BipA.  BipA is 
shown in red, 50S subunit proteins and 23S rRNA in blue, and 30S subunit proteins and 16S 
rRNA in yellow.  Domains I and II, highlighted in (A), show that BipA exhibits similar binding 
contacts as several other elongation factors. Amino acids found to be important for BipA binding 
in point mutational studies (deLivron et al, 2009) are shown as stick representations.
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Figure 4.10. Interaction between A-site tRNA and BipA’s CTD.  The BipA CTD has extensive 
interactions with the A-site tRNA, namely in two regions:  (A) the distal loop with acceptor 
stem loop, and (B) the final α-helix with the D-loop.  In (B), a close-up of the various possible 
interactions between the final α-helix with the D-loop. A canonical A/A tRNA (in peach) is shown 
for comparison. Mutations in the final α-helix results in significant reduction of BipA binding 
(deLivron 2009). 
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Figure 4.11. The GTPase activity of BipA in the presence of various ribosomal species. (A) 
tabulates the steady state kinetic parameters of BipA in the presence of various 70S species. As 
shown, the presence of an A-site tRNA, aminoacylated or deacylated, increases BipA’s catalytic 
efficiency (kcat/KM) , graphed in (B). BipA exhibits the highest catalytic efficiency in the presence of 
an A-site tRNA. Ribosomal species are named as follows: BipA - the isolated protein; BipA + 70S 
- BipA reacted with purified 70S ribosomes; BipA–70S IC - BipA reacted with the an assembly of 
70S–P-site fMet-tRNAfMet; BipA–70S IC(A) - BipA reacted with the a pre-assembled 70S–P-site 
fMet-tRNAfMet–A-site tRNALys; BipA–70S IC(A)* - BipA reacted with the a pre-assembled 70S–P-
site fMet-tRNAfMet–A-site Lys-tRNALys.

Ribosomal Species Vmax 

(pmol of PO4/pmol of BipA/min)

KM

(mM)

kcat 
(h-1)

kcat/KM

(M-1s-1)

BipA 0.30 ± 0.01 1.11 ± 0.12 18.00 ± 0.60 4.55 ± 0.50
Bip + 70S 0.96 ± 0.09 1.67 ± 0.30 57.60 ± 5.10 9.66 ± 1.93

BipA–70S IC 1.33 ± 0.19 2.50 ± 0.62 79.80 ± 11.40 8.94 ± 2.56

BipA–70S IC(A) 0.61 ± 0.03 0.84 ± 0.12 36.60 ± 1.80 12.20 ± 1.87
BipA–70S IC(A)* 1.04 ± 0.09 1.00 ± 0.23 62.40 ± 5.40 17.47 ± 4.48
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Figure 4.12. Binding of BipA in the presence of various ribosomal species. In vitro ribosome-
binding assays were utilized to determine whether various ribosomal complexes had an effect 
on the the association of BipA with the 70S ribosome. Purified His-tagged BipA was incubated 
with the various 70S ribosome complexes in the presence of excess GMPPNP. Three specific 
complexes, are demarcated above the chart: BipA–70S IC, BipA–70S IC(A), and BipA–70S 
IC(A)*. These three complexes correspond to the same complexes introduced in Figure 4.9. In 
the presence of puromycin, BipA completely binds to the 70S ribosome in a guanine nucleotide 
independent manner. 

Components
BipA + + + + + + + +
70S + + + + + + + +
mRNA - - + + + + - -
fMet-tRNAfMet - - - + + + - -
Lys-tRNALys - - - - + - - -
tRNALys - - - - - + - -
Puromycin - - - - - - + +
GMPPNP - + + + + + + -
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I began the 70S–BipA project aiming to find new insights into the binding of the ubiqui-

tously conserved BipA protein. As BipA shares high structural and sequence homology to the ca-

nonical elongation factors, I expected a reconstruction of the 70S–BipA complex to resemble the 

structure of 70S–EF-Tu and 70S–EF-G complexes. However, previous studies (deLivron and Rob-

inson, 2008) predicted that BipA has unique interactions and binding modes to the ribosome that 

is not displayed by any other elongation factor. This is especially true for BipA’s CTD, which has no 

homology to any known protein. Indeed, our model of the 70S–BipA complex provides structurally 

characterization of a novel ribosomal complex. Our map helps to corroborate years of biochemi-

cal studies and suggests the importance of the BipA CTD in not only BipA binding, but also in the 

promotion of BipA’s GTPase activity. The surprising structural findings of the 70S–BipA reconstruc-

tion, such as the simultaneous presence of the A-site tRNA in our complex, led us to design a series 

of biochemical assays that characterized the ribosomal species optimal for BipA binding to the 70S 

ribosome. 

As BipA is a ubiquitous protein in bacteria and lower eukaryotes, and has an essential role 

in the bacterial stringent response, it presents an attractive target for drug research. BipA’s novelty as 

a translational factor and stringent response regulator was suggested time and time again in previ-

ous studies (Qi et al., 1995; Farris et al., 1998a; Farris et al., 1998b; Grant et al., 2003; Vogt et al., 

2011; Neidig et al., 2013). Elucidation of the 70S–BipA complex structure, BipA’s X-ray structure, 

and characterization of the ribosomal complexes that optimizes its binding may help in the further 

development of antibiotics exploiting the protein’s specific interactions with the 70S ribosome.

The idea that the 70S–BipA complex could indirectly induce adaptation pathways by act-

ing as a scaffold for other proteins, such as RelA, is an exciting prospect. This scenario would neatly 

position BipA at the beginning of the stringent response and help to explain how BipA participates 
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in such a variety of stress adaptation pathways. Biochemical studies are currently underway to find 

a link between RelA and the 70S–BipA complex. In these studies, the S. enterica RelA protein will 

be overexpressed and purified. Pull-down assays, performed as previously described (deLivron and 

Robinson, 2008), will be used to detect whether the purified RelA protein can bind to the 70S–BipA 

complex. Crystallization attempts of unbound RelA or a 70S–BipA complex have been unsuccess-

ful. The only cryo-EM reconstruction of the 70S–RelA complex (Agirrezabala et al., 2013) visualizes 

only 80% of the protein’s mass, prompting speculation as to whether the RelA ribosome-bound state 

captured by cryo-EM is truly the functional state in which the protein binds to the ribosome (Sta-

rosta et al., 2014).  

However, the 70S–BipA complex is only one of two ribosome–BipA complexes. Recall that 

BipA has two binding modes, one to the complete 70S ribosome in the presence of GTP and the 

other with the isolated 30S in the presence of ppGpp. The second binding mode was discovered by 

deLivron and coworkers (deLivron and Robinson, 2008), but characterization of the 30S–BipA com-

plex remains unstudied. Thus, there is yet no knowledge as to how and in what conformation BipA 

binds to the free, isolated 30S subunit. 

My initial attempts, at the beginning of my dissertation research, to image an in vitro sample 

of purified 30S subunits complexed with BipA–ppGpp were substantially hindered by sample aggre-

gation and contamination. Biochemical interventions, such as varying the magnesium or salt con-

centration, were unsuccessful in alleviating such problems. This meant that per micrograph, relatively 

few particles were free and isolated. An extraordinary amount of data would have been required to 

collect enough non-aggregated particle images. Particle verification, at that time, was still done by 

manual visual inspection of the candidate particle images and an unacceptable amount of effort and 

time would have been required. However, with the development of AutoPicker to which I contribut-
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ed, processing the large amounts of required data is no longer a daunting task. Also, use of RELION 

has been successful in classifying recent complexes of the small eukaryotic subunit (Hashem et al., 

2013). Thus, a project to visualize the 30S–BipA complex would be much easier to attempt now. 

A project focused on elucidating the structure of the 30S–BipA complex is exciting as it 

will provide answers to another piece of the BipA puzzle. Biochemical studies have been unable to 

elucidate the conformational changes that must occur within BipA in order to induce its binding 

to the isolated 30S subunit. It is suggested that 30S–bound state of BipA may exhibit a completely 

novel conformation than the 70S–bound state (deLivron and Robinson, 2008). This idea is further 

reinforced by our 70S–BipA reconstruction, which shows few interactions between BipA and the 

30S subunit. In fact, the research represent here suggests that BipA requires susbtantial amounts of 

interactions between the 70S ribosome and the A-site tRNA in order to stabilize its binding. Absent 

of a 50S subunit or A-site tRNA, additional interactions between the 30S subunit and BipA would 

be necessary to stabilize BipA binding to the subunit.  Thus, elucidation of the 30S–BipA structure 

will provide insights as to how BipA conformationally changes when bound to ppGpp. This 

structure will subsequently provide insights as to how BipA responds to increasing levels of ppGpp 

during stress. 

The mechanism by which puromycin stabilizes BipA binding remains elusive. As puromycin 

binds at the PTC of the 50S subunit, the CTD of BipA is the only domain of the protein that can 

interact with the antibiotic. We can only speculate that perhaps the interactions between BipA and 

puromycin stabilizes a conformation of the CTD that has not been visualized in both the X-ray 

structure and our cryo-EM reconstruction. A new extension to the 70S–BipA cryo-EM project has 

begun, aimed at reconstructing the 70S–BipA–puromycin complex. In addition to puromycin, 

biochemical and structural studies into the effects of other antibiotics on the binding of BipA, may 
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further insights to how the CTD of BipA interacts with the ribosome.  

Structural characterizations of ribosome–BipA complexes provide answers to one part of a 

larger BipA story. There is still much to learn about this mysterious protein. Studies have been un-

able to determine how the binding of BipA affects cellular viability and expression of stress-related 

proteins. Studies have clearly shown that BipA is essential for bacterial stress adaptation to adverse 

cellular conditions, but no knowledge has been garnered about BipA’s specific position in any stress 

pathway. Ongoing structural and biochemical studies will be needed to elucidate BipA’s specific 

physiological function. 

Finally, the work presented here not only served to characterize the structure of the 70S–

BipA complex, but also showcased several exceptional advancements in the field of cryo-EM. I have 

shown that AutoPicker can remove the substantial cost of time investment and the user subjectiv-

ity of manual particle verification, with no detriment to the quality of the particle dataset used for 

reconstruction. In addition, RELION has replaced the imperfect supervised classification technique 

to allow an inventory of conformations to be classified and visualized from a single sample. Finally, 

as introduced in Chapter 1, the new direct electron detectors are enabling the collection of data with 

unprecedented quality. Collectively, these advancements harken in a new age in the cryo-EM field, 

where a high-throughput single-particle cryo-EM workflow is now readily accessible and producing 

near-atomic resolution reconstructions.
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Figure A1. Local resolution assessment of the 70S–BipA reconstruction. The program 
ResMap (Kucukelbir et al., 2013) was employed to assess the local resolution of the 70S–
BipA reconstruction, resolved to an overall resolution of 8.5 Å. The core of the density map, 
corresponding to the core of the ribosome, exhibits the highest local resolution, generally 7.5 
Å or better. The regions on the periphery show lower resolution. This is expected, as periphery 
regions of the 70S ribosome have more flexibility. One such example is the L1 protein, which 
has the lowest resolution (10 Å or lower) of any part of the map. The BipA protein, overall, has 
intermediate resolutions between 7.5 and 9.0 Å.
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