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Abstract

Engineering a Repeats-in-Toxin Scaffold for Stimulus-Responsive Biotech-

nology Applications

Kevin P. Dooley

Protein scaffolds are described as polypeptide frameworks with well-defined tertiary

structures that are tolerable to mutagenesis or insertions. These scaffolds have gained

significant interest from researchers and clinicians as they have challenged immunoglob-

ulin domains as the preferred protein to address critical problems in biomedical engi-

neering and biotechnology. While engineered antibodies and antibody fragments have

been immensely successful, their complex structure, costly production and purification

requirements, and large size preclude them from a host of applications. Small, stable

proteins devoid of disulfide bond networks that express well recombinantly in prokary-

otic systems offer viable alternatives to immunoglobulins.

Repeat proteins are characterized structurally by tandem repeats of a consensus

motif. These proteins are used in nature to mediate a variety of protein-protein interac-

tions and are appealing scaffolds to bioengineers because of their predictable secondary

structures. Several repeat scaffolds have been identified and successfully engineered for

in vivo imaging and therapeutic applications. We have identified the repeats-in-toxin

(RTX) protein as a potential antibody mimetic and interesting scaffold for protein en-

gineering studies. RTX domains are commonly associated with extracellular proteins

secreted through the type 1 secretion system in Gram-negative bacteria. They are

composed of tandem repeats of a nonamer calcium binding sequence capped by N and



C-termianl flanking regions. These proteins are conformationally dynamic and will fold

from an intrinsically disordered state to a compact β-roll secondary structure in re-

sponse to increasing calcium concentration. We aim to explore the RTX domain as an

alternative protein scaffold and exploit the intrinsic conformational response to calcium

as a mechanism to mediate molecular interactions.

In our first study, we rationally engineer the RTX domain as a calcium-responsive

physical cross-linker for hydrogel formation. Protein based materials are favorable for

many biomedical applications because of their biocompatibility, tunable mechanical

properties, and predictable erosion rates. We have designed a hydrophobic interface

on the surface of the RTX domain that is present only in the calcium-bound β-roll

conformation. In the absence of calcium, the peptide returns to its disordered state,

delocalizing the hydrophobic patch and in turn mitigating the driving force for self-

assembly. We show that these mutant RTX domains, with the aid of additional protein

cross-linkers, self-assemble into cross-linked macromolecular hydrogel networks, only in

the presence of calcium.

To expand on this study, we further engineered the RTX domain to contain hy-

drophobic surfaces on both sides of the folded β-roll simultaneously. By doing this,

we doubled the cross-linking capacity of the mutant RTX. This translates to a higher

oligomerization state and lower protein concentration required for self-assembly. We

also show the double mutant can function as a stand-alone cross-linking domain, elim-

inating the need for extraneous self-assembling proteins. This designed RTX mutant

provides a new platform for stimulus-responsive cross-linking and self-assembly.



In our next line of work, we created several synthetic RTX peptides based on a

consensus design approach. Such an approach relies on identifying the minimal re-

quirements for a single repeating unit, and concatenating the unit to achieve a desired

protein interface. We identified the consensus nonameric unit for the RTX domain

and generated several constructs of varying lengths using this sequence. However, it

was discovered that these designed RTX peptides undergo a reversible phase change

in response to calcium. Rather than abandon these synthetic peptides, we looked to

use them as calcium-responsive protein purification tags. By appending a consensus

RTX domain to a protein of interest, we were able to rapidly and efficiently purify

fusions out of cell lysate by precipitation cycling. We were also able to separate the tag

from the protein of interest by including a protease recognition site between the two.

This system offers an alternative to time consuming and expensive chromatographic

techniques for recombinant protein purification.

In our final study, we evaluated the RTX domain as a scaffold for evolving molecular

recognition. We planned to use the calcium-responsive structural rearrangement as a

switch to turn an evolved binding interface “on” and “off”. One face of the folded β-

roll structure was randomized on the genetic level and the resultant protein constructs

were selected against a target protein using ribosome display technology. A consen-

sus binding sequence emerged after several rounds of biopanning and was thoroughly

characterized. The evolved β-roll bound the target protein with low micromolar affin-

ity. Although this weak attraction was not suitable for efficiently capturing the target

protein in a packed column application, this work provides a platform for evolving

the RTX protein for molecular recognition. Several strategies are discussed to achieve



higher affinity binders.

Overall, this dissertation explores the RTX domain as an alternative stimulus-

responsive scaffold for use in a variety of biotechnology applications. We have success-

fully developed new protein based platforms based on rationally designed or combina-

torailly selected RTX proteins for calcium-responsive biomaterials, non-chromatographic

protein purification, and calcium-dependent molecular recognition.
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Chapter 1

Introduction

1



Excerpts from this chapter have been previously published as, “Replacing Antibodies:
Engineering New Binding Proteins” with coauthors Kevin Dooley, Oren Shur & Scott
Banta appearing in Annual Review of Biomedical Engineering, volume 15, pages 93-113.

1.1 Protein Engineering

Naturally evolved proteins composed of the twenty common amino acids are responsi-

ble for enabling the cellular processes which make life possible. Their staggering array

of functions includes molecular transport, signaling, ligand recognition, catalysis, and

self-assembly. The multitude and specificity of these interactions is attributed to intri-

cate three dimensional folding and diverse structural architectures of protein domains.

Secondary and tertiary structural motifs fold in such ways to create binding pockets,

catalytic active sites, and charged surfaces that are central to protein function.

The inherent relationship between sequence, structure, and function is at the heart

of protein engineering. Classically, the field has been applied on two main fronts. First,

to identify residues involved with a protein’s catalytic activity, thermostability, binding

capacity, or other property of interest [21,106,117]. By mutating positions on the DNA

level thought to be important for these properties and evaluating the resultant protein

construct, critical residues and interactions can be identified. Secondly, and more in-

terestingly, protein engineers have applied these same principles in hopes of generating

mutant proteins with enhanced or entirely novel functions. The field has flourished with

the advent of combinatorial biochemistry, high-throughput screening, and advances in

genomic/proteomic technologies. The expanding protein engineering toolbox allows for

the efficient and precise manipulation of natural or synthetic DNA. And further, mutant
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DNA libraries with diversities of ˜1012 variants are routinely prepared using degenerate

codons and oligonucleotides. Coupling this with prokaryotic expression in Escherichia

coli or other systems has led to cost-effective production of folded, functional protein

libraries containing previously unexplored molecules.

Over the last few decades, protein engineering has garnered much interest in the

biomedical and biotechnology arenas. There is a constant demand for new protein-

based tools for therapeutics, in vivo imaging, drug delivery, clinical diagnostics, and

bioseparations. Engineers rely on naturally occurring protein domains, or scaffolds, as

starting points to create new, functional proteins for these applications. The term scaf-

fold has been used to describe polypeptide frameworks with well-defined secondary and

tertiary structures that are amenable to mutations or insertions. Sufficient space must

be available in the scaffold to introduce mutations without compromising the stability

of the three-dimensional protein structure, similar to the hypervariable complementar-

ity determining regions (CDR) in antibodies. These peptide loops contain the highest

density of diversity, both structurally and sequentially, and generally do not interfere

with the folding of the antibody structure.

Antibodies are undoubtedly the most successfully engineered class of proteins in the

last 20 years. In 2010, the 25 actively marketed FDA approved monoclonal antibodies

generated $43 billion USD in sales [42]. Since the immune system of higher organ-

isms is nature’s paradigm for selecting highly specific binding proteins, immunoglob-

ulin domains were a logical choice to begin engineering efforts. Antibodies have been

shown to bind a diverse repertoire of targets, from large, multi-domain proteins to

small molecules. However several limitations make antibodies an impractical solution

3



to many biomedical problems.

The most common problem associated with antibodies is their large, complex as-

semblies. They are 150 kDa multi-domain glycoproteins that are structurally reliant on

disulfide bridges, which cannot form in the reducing cytosol of microbial hosts. Con-

sequently, expression must be directed to the periplasmic space of prokaryotes, which

leads to poor yield. Mammalian cell cultures are also commonly used, but are mired

with time consuming and costly production requirements. More recently, recombinantly

expressed antibody fragments have been successfully engineered to bind a multitude of

targets [60]. Although smaller in size, antibody fragments can still suffer from some

of the same limitations as full-length immunoglobulin (Ig) domains. As such, small,

thermostable, single-domain proteins devoid of disulfide bonds and glycosylation are at-

tractive alternatives. They should be able to express and fold rapidly in the cytoplasm

of bacterial systems while avoiding aggregation and proteolytic cleavage. Low molecular

weight proteins are also more manageable in terms of display technologies for directed

evolution experiments. Several protein scaffolds that meet these criteria have been iden-

tified, allowing for researchers to choose an appropriate framework for their engineering

interests. These scaffolds have been reviewed in detail [11, 17,51,58,75,88,107].

1.2 Repeat Protein Scaffolds

Nature frequently uses repeating structural motifs to mediate a host of protein-protein

interactions. In fact, the immune systems of jawless invertebrates rely on leucine-rich

repeat (LRR) domains as opposed to Ig-based proteins for immunological response

4



[2,3,33,66,89,90]. The crystal structure for one such domain is provided in Figure 1.1a.

Because these repeat proteins are naturally involved with selection of high affinity

variants in some organisms, they are thought to be suitable scaffolds for engineering

applications. Repeat proteins are modular domains that consist of tandem repeats of a

10-50 amino acid sequence. The modularity allows for concatenation of the repeating

building block, which translates to a tunable surface for engineering purposes. Synthetic

constructs can also be generated through consensus design. This allows for uniformity

across the designed protein, making it easier to add, delete or alter repeats and can

also result in increased stability and expression levels, all of which are desired traits for

protein scaffolds [20]. Consensus designs for leucine-rich repeats, tetratricopepties, and

HEAT repeat proteins have all been reported [78,109,118].

Another interesting modular scaffold is the ankyrin repeat (AR) protein, shown in

Figure 1.1b. Ubiquitous in nature, they are responsible for mediating a broad range

of protein interactions and have been reported in cytosolic, membrane-bound, and se-

creted forms [67]. Structurally, they are comprised of a β-turn followed by 2 anti-parallel

α-helices and an unstructured loop, leading into the next repeat unit [67]. They express

well in microbial hosts, and have a high degree of solubility and stability. Functionally

designed ankyrin repeat proteins (DARPins) selected from consensus combinatorial li-

braries have been shown to bind to a variety of targets with picomolar affinity, including

kinases and membrane receptors associated with malignant tissue [5, 6, 38, 131].

Elastin-like peptides (ELP) are repetitive, artificial polypeptides modeled after the

recurring primary sequence of the hydrophobic domain in tropoelastin [77]. While

ELPs are not technically a repeat protein scaffold per se, their successful implemen-
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tation into several biomedical systems makes them worth mentioning in this section.

They are composed of repeating blocks of the peptide motif (VPGXG)n where X is the

guest residue (any amino acid besides proline) and n is the number of repeating units.

These pentapeptide repeats exhibit a reversible inverse temperature transition resulting

in the formation of an insoluble coacervate phase at temperatures above their transi-

tion temperature. This phase transition has been exploited for a variety of interesting

applications in biomaterials development, targeted drug delivery, and wound healing

strategies. By fusing hydrophilic and hydrophobic ELP blocks together, Chilkoti and

coworkers have developed thermally triggered self-assembling spherical micelles [37,55].

These micelles have been conjugated with targeting peptides and small molecule anti-

cancer drugs for therapeutic treatment strategies [15, 27, 36]. Koria et al. have used

these particles as vehicles to deliver bioactive proteins to highly proteolytic epidermal

wound sites thereby enhancing the wound-healing cascade in diabetic mouse models [69].

ELP domains have also been used as protein purification tags for efficient separation of

recombinantly expressed proteins from host cell proteins [54]. The inverse temperature

transition is used to specifically precipitate ELP fusions from cell lysate resulting in pure

protein of interest. The ELP response to an external stimulus provides a layer of control

over the engineered system, which can prove advantageous for many applications.
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Figure 1.1: Repeat scaffolds. Panel (a) depicts a leucine rich repeat (LRR) protein with
an elongated stretch of β-sheet rich repeats responsible for complexing with antigens
(PDB 3ZYN). Panel (b) shows a designed ankyrin repeat protein (DARPin) (PDB
4DUI). The projecting loops and α-helical repeating units have been evolved to bind
a variety of targets. A metallo protease from S. marcescens (PDB 1SAT) in panel (c)
shows the repeats-in-toxin motif in green. Note the similarites in structure between the
folded RTX domain and the LLR binding interface.

1.3 The Repeats-in-Toxin (RTX) Domain

There are a number desirable traits for a potential protein scaffold depending on the

engineering goals, some of which have been outlined above. One such protein backbone

that meets several of these criteria is the repeats-in-toxin (RTX) domain. RTX domains
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are typically found at the C-terminus of virulence factors and extracellular lipases or

proteases secreted by Gram-negative bacteria through a designated type 1 secretion

system (T1SS) [13]. The T1SS forms channels spanning the entire cellular envelope,

bypassing the periplasmic space, composed of three separate domains: (i) an inner

membrane domain operating as an ATP binding cassette exporter, (ii) a membrane

fusion protein, and (iii) an outer membrane protein [25, 73]. A C-terminal secretion

signal is recognized by this complex, and proteins are exported from the cytosol directly

to the extracellular space.

RTX domains are structurally composed of a repeating nonamer calcium binding

sequence of the prototype GGXGXDXUX where X can represent any amino acid and U

represents an aliphatic residue, most commonly leucine [13]. These repeats are typically

found in successive blocks (5-10 repeats per block) separated by flanking regions (20-50

residues). The repeating glycine/aspartate-rich motif reversibly binds calcium, which

was found to be essential for protein function. At cytosolic calcium concentrations (sub-

millimolar), the RTX domains behave as intrinsically disordered peptides, evidenced by

extended hydrodynamic radii and the absence of hydrophobic clustering [25]. Upon se-

cretion to the extracellular milieu, higher calcium concentrations induce RTX folding

into a compact, stable, β-rich structure. Crystallographic studies on a metallo protease

from S. marcescens (PDB 1SAT) have determined RTX domains fold into a parallel

β-helix or β-roll structure, shown in Figure 1.1c. The first six residues in the canonical

repeating unit (GGXGXD) compose flexible turning regions responsible for coordi-

nating calcium ions while the last three residues (XUX) create short β-strands. Two

repeating units create one full turn of the corkscrew-like structure.
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Perhaps the most thoroughly investigated RTX domain has been isolated from the

secreted adenylate cyclase toxin (CyaA) from Bordetella Pertussis, the causative agent

of whooping cough [13, 25, 26, 92, 108]. CyaA is composed of an N-terminal catalytic

domain and a C-terminal hemolytic domain, largely made up of RTX repeats (Figure

1.2). Interestingly, the block V cluster of glycine/aspartate-rich repeats along with its

N and C-terminal flanking regions has been shown to fold autonomously, retaining the

intrinsic calcium-induced structural rearrangement when isolated from the full length

RTX domain [13]. The block V RTX protein is an interesting platform for engineering

experiments as it is a relatively small (20 kDa), cysteine-free, modular protein that offers

a unique calcium-dependent switching mechanism from an intrinsically disordered state

to a compact, stable β-roll structure.

Figure 1.2: Adenylate cyclase toxin schematic. The adenylate cyclase toxin is com-
posed of a C-terminal catalytic domain and an N-terminal hemolytic domain. The RTX
portion of the hemolytic domain is highlighted and the primary sequence for the block
V repeats is given on the right. The starred repeats represent non-native RTX repeats.
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1.4 Characterizing the RTX Domain

Prior to designing functional β-roll domains for biotechnology applications, the isolated

protein needed to be extensively characterized. Several properties pertaining to calcium

responsiveness, surface immobilization, and modularity were investigated. First, the

role of the N and C-terminal flanking regions were studied and the minimal requirements

for calcium-induced folding were elucidated. Blenner and coworkers created a series of

block V RTX constructs with incremental truncations to either the N or C-terminal

flanking region [19]. It was discovered that only the C-terminal cap was required to

achieve protein folding in the presence of calcium. Truncation of this C-terminal capping

region resulted in marked losses in calcium responsiveness, whereas no significant loss

was observed with the complete removal of the N-terminal flanking region. Also, the

naturally occurring C-terminal flank could be replaced with globular proteins (MBP &

YFP) while sustaining no loss in calcium-induced RTX folding. These results suggest

that calcium-responsive folding is an intrinsic property of the glycine/aspartate-rich

repeats, and a C-terminal cap is required for entropic stabilization.

The conformational behavior of the block V RTX protein was further characterized

by Szilvay et al. using an in vitro FRET-based method [111]. Optically active proteins

CFP and YFP were grafted onto the N and C-terminus of the RTX domain, respectively,

replacing the native flanking groups. Addition of calcium ions to these chimeras caused

an increase in FRET efficiency that was attributed to changes in the end-to-end distance

of the RTX domain, indirectly reporting RTX folding. Again, it was shown that globular

proteins can serve as suitable capping groups, suggesting that the native flanking regions

do not play a specific role in β-roll formation.
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Since the RTX domain is a repeating protein, it is important to understand its

sequence modularity and concatenation tolerance in order to efficiently tune the scaffold

depending on the engineering application. Shur & Banta created a set of block V RTX-

based peptides ranging in size from 5 to 17 repeats in length, with and without the

native C-terminal cap [104]. Additionally, the ordering of non-standard RTX repeats

(*’d in Figure 1.2), typically located near the C-terminus, was examined by modifying

their position in the RTX sequence. As expected, all uncapped constructs were non-

responsive to calcium. Moving the non-standard repeats away from the C-terminus

resulted in drastic losses in calcium affinity and cooperativity, suggesting the non-

natively ordered constructs fold along an alternative pathway. However, all naturally

ordered, C-terminally capped constructs folded in a similar fashion as the wild-type

protein indicating the RTX domain is tolerant to concatenation. This offers a tunable

β-sheet interface for a variety of engineering applications.

Lastly, immobilization of the block V RTX domain on a solid surface was investi-

gated and the subsequent calcium binding properties were elucidated [105]. Cysteine

modified RTX constructs were immobilized on gold plated quartz crystals for analy-

sis by quartz crystal microbalance (QCM). This sensitive instrument can detect small

perturbations in mass loading and has been used to analyze biomolecular interactions

and conformational changes [30,124,125]. Shur et al. demonstrated that a solid surface

can entropically stabilize uncapped RTX domains in a similar fashion as the globular

proteins discussed previously, with minimal effects on calcium affinity or cooperativity.

The retention of calcium-induced protein folding while immobilized on a solid surface

opens the door for a host of applications, particularly in biosensor development and
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smart protein purification.

1.5 Engineering the RTX Domain

Although much work has been devoted to identifying and characterizing RTX domains,

few attempts have been made at engineering them for specific purposes. Lilie et al.

constructed synthetic RTX domains based on a consensus sequence. However, a molec-

ular crowding agent in addition to 100 mM calcium were required to induce calcium-

responsive folding [72]. Scotter et al. demonstrated the ability of a minimally designed

RTX domain to form non-amyloid-like filaments in the presence of lanthanum ions (not

calcium). Filament formation was reversible using a chelating agent [101]. While these

findings are scientifically interesting, no practical applications of the peptides were dis-

cussed.

In this work, we aim to explore the RTX domain as an alternative protein scaffold

for use in biotechnology and biomedical systems including biomaterials development,

engineered molecular recognition, and non-chromatographic bioseparations. The intrin-

sic calcium-induced structural rearrangement will be exploited as a peptide switching

mechanism to mediate different protein-protein interactions. The residues composing

the short β-strand faces will be evaluated for mutation tolerance. We hypothesize that

these residues can be readily mutated because (i) crystallographically, the side chains

of the residues in the 7th and 9th positions of the RTX motif project radially into the

solvent and do not play an integral role in β-roll stabilization, and (ii) these positions

are highly variable in naturally occurring RTX domains. This will open the door to
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protein engineering techniques including rational design and directed evolution to gen-

erate mutant RTX domains with entirely novel functions. Consensus design will also

be evaluated as a viable engineering strategy for RTX repeats. The specific goals of

this thesis work are outlined below.

1. Engineer the RTX domain as a calcium-responsive cross-linking domain

for proteinaceous hydrogel formation. Chapter 2 discusses the rational en-

gineering of the RTX domain to create a leucine-rich face in the calcium-bound

conformation capable of self-assembling. The RTX calcium responsiveness is used

as a switch to modulate self-assembly. The resultant protein-based hydrogels are

thoroughly characterized by microrheology to elucidate the mechanical properties

of these new materials. Chapter 3 expands on this initial work by doubling the

cross-linking potential of the leucine-rich RTX mutants. By creating cross-linking

interfaces on both sides of the folded β-roll simultaneously, a higher association

number can be achieved. This translates to lower protein concentrations required

for self-assembly and allows the RTX domain to function as a stand-alone cross-

linking domain, circumventing the need for additional cross-linking moieties.

2. Evaluate a consensus designed RTX domain as a non-chromatographic

protein purification tag. Chapter 4 discusses the engineering of a consensus

designed RTX domain. Interestingly, we found that our consensus protein under-

goes a reversible phase transition in response to calcium. We have exploited this

triggered precipitation mechanism to efficiently separate recombinantly expressed

proteins from host cell contamination. We further engineered this system to sepa-

rate the RTX tag from the expressed protein resulting in isolated, highly purified
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protein of interest.

3. Engineer the RTX domain as an allosterically regulated molecular recog-

nition element. In Chapter 5, we use directed evolution to select for RTX molec-

ular recognition against a target protein, lysozyme. A library of RTX mutants is

assembled and selected for via an optimized ribosome display method. Binding

affinity, thermodynamics, and allosteric regulation are extensively characterized

using biophysical techniques including isothermal titration calorimetry.
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Chapter 2

Rational Engineering of an RTX

Domain for Calcium-Responsive

Self-Assembly
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Project Collaborators: Kevin Dooley, Yang Hee Kim, Hoang Liu, Raymond Tu, & Scott

Banta

A version of this chapter entitled, “Engineering of an Environmentally Responsive Beta
Roll Peptide for Use as a Calcium-Dependent Cross-Linking Domain for Peptide Hy-
drogel Formation” appeared in Biomacromolecules volume 13, issue 6, pages 1758-17.
KD prepared DNA constructs, expressed and purified all proteins, performed all CD,
FRET, bis-ANS fluorescence spectroscopy, microrheology experiments and analysis.

2.1 Abstract

We have created a set of rationally designed peptides that form calcium-dependent

hydrogels based on the beta roll (β-roll) peptide domain. In the absence of calcium,

the β-roll domain is intrinsically disordered. Upon addition of calcium, the peptide

forms a β-helix secondary structure. We have designed two variations of our β-roll do-

main. First, we have mutated one face of the β-roll domain to contain leucine residues,

so that the calcium-dependent structural formation leads to dimerization through hy-

drophobic interactions. Second, an α-helical leucine zipper domain was appended to

the engineered β-roll domain as an additional means of forming intermolecular cross-

links. This full peptide construct forms a hydrogel only in calcium-rich environments.

The resulting structural and mechanical properties of the supramolecular assemblies

were compared to the wild type domain using several biophysical techniques including

circular dichroism, FRET, bis-ANS binding and microrheology. The calcium respon-

siveness and rheological properties of the leucine β-roll containing construct confirm the

potential of this allosterically-regulated scaffold to serve as a cross-linking domain for
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stimulus-responsive biomaterials development.

2.2 Introduction

The development of smart materials and hydrogels has opened to the door to a host of

potential applications in such fields as drug delivery, tissue engineering and microflu-

idics [28,41,43,57,68,71,87,96]. Hydrogels are composed of water-soluble monomers that

are physically or covalently cross-linked to form three dimensional polymer networks.

This cross-linking can often be controlled by the incorporation of stimulus-responsive

proteins or peptides into the monomeric building block. Stimuli such as pH, temper-

ature, or ionic strength can be used to regulate the assembly of hydrogel networks.

Several examples of protein domains that facilitate environmentally responsive gelation

have been described, including elastin-like peptides, calmodulin, and α-helical leucine

zipper domains [12,41,115].

Alpha-helical leucine zippers are a common structural motif found in DNA binding

proteins. The name is derived from the periodic repeat of leucine residues that protrude

outward and align along a side of the helix creating a hydrophobic driving force to

form “zipped” coiled-coil bundles. These domains have been extensively characterized

and have proven useful in developing stimulus-responsive hydrogels as they assemble

and dissociate in response to changes in temperature and pH [64, 128]. Previously,

we have appended these domains to enzymes and other globular proteins to create

bi-functionalized hydrogel constructs [76, 120,121].

In this work, we present a new domain suitable for creating physical cross-links
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and a hydrogel network. We used a β-roll peptide scaffold taken from the block V

repeats-in-toxin (RTX) domain of adenylate cyclase from Bordetella pertussis. The

β-roll motif is a modular repeated sequence that has been shown to be intrinsically

disordered in the absence of calcium [13,25]. In calcium-rich environments, the peptide

forms a β-helix consisting of two short parallel β-sheet faces separated by turns. A

highly conserved aspartic acid residue in each turn is responsible for calcium binding

[8]. A C-terminal capping group responsible for entropic stabilization is required for

conformational response to calcium. We have previously characterized the calcium

responsiveness and capping requirements of the native β-roll domain [19,105,111]. Each

β-strand in the folded β-roll domain contains two amino acids that protrude radially

from the scaffold and are exposed to the solvent. We hypothesize that mutating the

protruding residues on one face to leucine side chains will create a hydrophobic surface

suitable for cross-linking in response to calcium binding (Figure 2.1).

Thus, we have rationally designed an allosterically-regulated β-roll motif that should

form calcium-dependent cross-links suitable for hydrogel formation. Hydrogel net-

works modulated by calcium-induced conformational change differ from conventional

approaches that rely heavily on pH and temperature swings to destabilize intermolec-

ular cross-links. Allosteric regulation allows for the precise tuning of gel formation and

strength by simply adjusting the calcium concentration, making these gels suitable for

applications in systems that do not permit fluctuations in temperature or pH.

In order to assemble a macromolecular hydrogel network, we have fused an α-helical

leucine zipper domain (H) to the N-terminus of the leucine β-roll (Leuβ) through a

soluble linker region (S). Both the H and S domains have been previously character-
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Figure 2.1: β-roll structures. (a) Crystal structure of an extracellular lipase from Pseu-
domonas sp. MIS38 (PDB 2Z8X) containing a β-roll domain. The folded β-roll domain
can be seen in the lower right with the bound calcium ions in red. The structure of
this folded β-roll was used as a template to model the block V β-roll domain of adeny-
late cyclase from B. pertussis. Homology models were generated using SWISS-MODEL
which are shown in (b) and (c) (Swiss Institute of Bioinformatics). The positions of
the bound calcium ions were approximated manually. (b) Model of the WT adenylate
cyclase β-roll peptide used in this work along with its primary sequence. The surface ex-
posed residues in the folded conformation are highlighted in magenta with the residues
underlined in the sequence. Calcium ions are shown in red. (c) Model of the mutant
leucine β-roll engineered in this work along with its primary sequence. The leucine
mutations to the WT β-roll are shown in blue and underlined in the sequence.
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ized [102,103,128]. In the absence of calcium, the β-roll should remain disordered while

the leucine zippers can form tetrameric coiled-coil bundles. The lack of interaction

between the disordered β-roll domains should prohibit the formation of a hydrogel.

Upon addition of calcium, the β-roll should undergo a conformational change forming

the leucine-rich face. The hypothesized cross-linking between β-roll domains along with

the formation of the leucine zipper bundles should provide the physical interactions nec-

essary to form a hydrogel (Figure 2.2). Gel formation and strength will be modulated

using the calcium-dependent allosteric control that is intrinsic to the peptide sequence.

Through circular dichroism (CD) spectroscopy, bis-ANS binding, and terbium binding,

we show that the leucine mutations have minimal effect on the response of the peptide

to calcium. After appending the H and S domains to the wild type (WTβ) and engi-

neered leucine β-roll (forming HS-WTβ and HS-Leuβ respectively), rheological analysis

confirms the hydrogel formation is a result of the leucine mutations as the HS-WTβ

does not self-assemble in calcium-rich environments.

2.3 Materials & Methods

2.3.1 Materials

The maltose binding protein (MBP) expression kit and all enzymes were purchased from

New England Biolabs (Ipswich, MA). Isopropyl β-D-1-thiogalactopyranoside (IPTG)

was obtained from Promega (Madison, WI). HaltTM protease inhibitor cocktail was

purchased from Fisher Scientific (Waltham, MA). Amicon centrifugal filters were pur-

chased from Millipore (Billerica, MA). Native PAGE gels, running buffer, protein lad-
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Figure 2.2: Leuβ hydrogel formation. (a) Calcium-induced conformational change of
the β-roll. In the absence of calcium, the β-roll remains disordered. Upon addition of
calcium, the β-roll undergoes a reversible structural change forming the corkscrew-like
structure. The β-roll is depicted face forward. Calcium ions are shown in red. (b)
Hydrogel monomeric building block. The α-helical leucine zipper domain (H) is shown
in yellow with the soluble linker domain (S) in blue. The mutant leucine β-roll with
the C-terminal capping region are shown in green. (c) Hydrogel transition. Prior to
the addition of calcium, the helical domains can form tetrameric bundles, but the β-
roll domains remain unstructured. When calcium is added, the folded β-roll domains
expose the leucine rich faces, enabling cross-linking and hydrogel network formation.
Some folded β-rolls are depicted from a side view, showing how two leucine faces could
cross-link.
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der, and SimplyBlue SafeStain were obtained from Life Technologies (Grand Island,

NY). All chemicals and other reagents were purchased from Sigma-Aldrich (St. Louis,

MO) unless otherwise specified.

2.3.2 Cloning into pMAL and pQE9 Vectors

Both WTβ and Leuβ proteins were expressed using a modified pMAL vector. The intein

domain from pET-EI/OPH, a gift from Dr. David Wood (Ohio State University, OH),

was cloned into the pMAL vector [46]. The WT β-roll and the C-terminal capping region

were amplified out of pDLE9-CyaA, a gift from Dr. Daniel Ladant (Institut Pasteur,

Paris, France), using PCR primers with KpnI and HindIII restriction sites for ligation

into the pMAL-intein vector [13]. The mutant β-roll was constructed by inserting the

appropriate leucine codons into two overlapping oligonucleotides encoding for the entire

β-roll sequence. The oligonucleotides were annealed and extended to produce the full-

length double stranded leucine β-roll. The C-terminal capping domain was added by

overlap extension PCR. KpnI and HindIII sites were added to the capped leucine β-roll

before ligation into pMAL-intein. Both HS-WTβ and HS-Leuβ were expressed using a

modified pQE9AC10Acys vector, a gift from Dr. David Tirrell (California Institute of

Technology, CA) [102]. In this work, AC10Acys is termed H-S-H. Both β-roll genes were

amplified by PCR using primers with SphI and SpeI restrictions sites for subsequent

cloning into pQE9, which was previously modified to remove the C-terminal H domain.

pMAL vectors were transformed into OmniMAX (Invitrogen) and pQE9 vectors were

transformed into SG13009 (QIAGEN) E.coli strains for expression. A schematic of the

constructs is provided in Figure 2.3. All oligonucleotide sequences can be found in the
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Figure 2.3: Schematic of β-roll constructs. WTβ and Leuβ were expressed as fusions
to maltose binding protein (MBP) and purified by intein cleavage. HS-WTβ and HS-
Leuβ were expressed using the pQE9 vector and purified using polyhistadine tags. H
represents an α-helical leucine zipper domain and S represents a randomly coiled linker
domain. The blocks are not drawn to scale.

publication listed at the beginning of this chapter.

2.3.3 Expression and Purification of WT and Leucine β-rolls

The WTβ and Leuβ constructs were expressed identically in LB media containing 2

g/L D-glucose. 1 L cultures (supplemented with 100 µg/mL ampicillin) were inoculated

from an overnight culture of the appropriate pMAL-intein vector. The 1 L cultures were

incubated at 37 °C with shaking until an OD600 = 0.6 is reached. Protein expression

was induced by the addition of IPTG to a final concentration of 0.3 mM. Expression

was carried out for 2 h at 37 °C with shaking. Cells were pelleted at 3,000 x g for 15 min

and the supernatant was discarded. The cell pellets were resuspended in 25 mL MBP

column buffer (20 mM Tris-HCl, 200 mM NaCl, 1 mM EDTA, pH 7.4) containing Halt

protease inhibitor cocktail. Cells were lysed by sonication with a microtip sonicator for

6 min on ice (Misonix Sonicator 3000). The lysate was clarified by centrifugation at

15,000 x g for 30 min after which the pellet was discarded. The supernatant was diluted

5-fold with MBP column buffer and loaded onto amylose resin columns, according to the

manufacturer’s protocol (New England Biolabs). The columns were washed, capped,

and filled with 8 mL of intein cleaving buffer (137 mM NaCl, 2.7 mM KCl, 8.1 mM
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Na2HPO4, 1.76 mM KH2PO4, 40 mM bis-Tris, 2 mM EDTA, pH 6.2) for incubation

at 37 °C for 12-16 h. Cleaved β-roll was eluted with 50 mL of MBP column buffer,

concentrated in 10 kDa MWCO Amicon centrifugal filters, and buffer exchanged with

20 mM bis-Tris, 25 mM NaCl, pH 6.0. The samples were run over a 16/10 QFF ion-

exchange column (GE Healthcare) using an AKTAFPLC (GE Healthcare). Separation

between MBP fusions and cleaved β-roll was achieved using an NaCl gradient from 25

mM to 500 mM over 20 column volumes. β-roll fractions were collected and desalted

prior to SDS-PAGE. Sample concentrations were determined by absorption at 280 nm

(Spectramax M2, Molecular Devices) using calculated extinction coefficients (WTβ, ε280

= 17,780 M-1cm-1; Leuβ, ε280 = 16,500 M-1cm-1). Typical yields ranged from 3-7 mg of

pure protein per L culture.

2.3.4 Expression and Purification of HS Constructs

Both HS-WTβ and HS-Leuβ constructs were expressed identically and purified using

immobilized metal affinity chromatography and a polyhistidine tag. 1 L cultures of

Terrific Broth (TB) were supplemented with 50 µg/mL kanamycin and 200 µg/mL

ampicillin prior to inoculation from an overnight culture of the appropriate vector.

Protein expression was induced by the addition of IPTG to a final concentration of

0.5 mM after an OD600 = 0.6 is reached. Expression was carried out for 5 h at 37 °C

with shaking. Cells were pelleted and resuspended in 25 mL of HisA buffer (20 mM

Tris-HCl, 150 mM NaCl, 40 mM imidazole, pH 7.5) supplemented with Halt protease

inhibitor cocktail. Cells were harvested and lysed as described previously. Samples were

loaded on to a 5 mL nickel charged HisTrap FF column (GE Healthcare) equilibrated

24



in HisA. Unbound protein was eluted with 10 column volumes of HisA, and the his-

tagged construct was eluted with HisB buffer (20 mM Tris-HCl, 150 mM NaCl, 500

mM imidazole, pH 7.5) using a linear gradient to 100% HisB over 20 column volumes.

Fractions containing the desired protein were collected and confirmed by SDS-PAGE.

Samples were desalted and concentrated by ultrafiltration using 30 kDa MWCO Amicon

centrifugal filters. Increased purity can be achieved by size exclusion chromatography.

Typical yields ranged from 20-30 mg of pure protein per L culture.

2.3.5 Circular Dichroism Spectroscopy

CD spectroscopy was performed as described previously [19]. Briefly, 100 μM samples

were loaded into a 0.01 cm pathlength quartz cuvette and analyzed on a J-815 CD

spectrometer (Jasco, Easton, MD) equipped with a Peltier junction temperature con-

troller. All measurements were performed in triplicate in 50 mM Tris pH 7.5 at 25

°C. Titration data were fit using SigmaPlot (Systat Software, San Jose, CA) nonlinear

regression software.

2.3.6 bis-ANS Binding Fluorescence Spectroscopy

250 nM protein samples were loaded into a 1 cm pathlength cuvette and equilibrated

with 0 or 50 mM calcium prior to the addition of 1 μg/mL bis-ANS. Changes in fluores-

cence emission were measured from 420 nm to 600 nm using a FMO-427S monochroma-

tor (Jasco, Easton, MD). Excitation was at 390 nm. All measurements were performed

in triplicate in 50 mM Tris pH 7.5 at 25 °C.
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2.3.7 Fluorescence Resonance Energy Transfer (FRET)

1 μM protein samples were titrated with terbium chloride. Following excitation of the

sample at 282 nm, changes in fluorescence emission from bound terbium ions were

monitored at 545 nm. All experiments were performed in 96 well plates in 20 mM

PIPES pH 6.8, 120 mM NaCl, 10 mM KCl. Terbium was incubated with the protein

samples for 30 min at 25 °C prior to reading. All data were fit using SigmaPlot nonlinear

regression software.

2.3.8 Native Polyacrylamide Gel Electrophoresis (PAGE)

2 μg samples of Leuβ and WTβ were run on 4-16% Bis-Tris 1.0 mm gels. The voltage

was held constant at 150 V and the run time was set to 105 min. For runs completed

with calcium, 5 mM CaCl2 was added to the running buffer. The gels were stained with

SimplyBlue SafeStain according to the manufacturer’s protocol.

2.3.9 Hydrogel Preparation

Hydrogel constructs were allowed to self-assemble by reconstituting lyophilized protein

with small volumes of water as previously described [120]. HS-WTβ and HS-Leuβ

concentrations were determined by UV absorbance at 280 nm using the extinction

coefficients ε280 = 24,750 M-1cm-1 and ε280 = 23,470 M-1cm-1 respectively. 1.5 mg of

protein was diluted in 250 μL of 5 mM Tris-HCl pH 7.5 with the appropriate salt

concentration. Samples were frozen overnight at -80 °C and lyophilized the following

day. The lyophilized protein was rehydrated with 25 µL of Millipore water yielding 6
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wt% samples. Mechanical mixing, vortexing, and centrifugation were used to insure all

of the protein is rehydrated. The samples were centrifuged for 5 min at 13,000 x g to

remove any air bubbles and allowed to set.

2.3.10 Microrheology

Microrheology was used to analyze the mechanical properties of a viscoelastic fluid by

following the motion of micrometer sized spherical particles embedded in the sample.

In this study, passive microrheology was used, which relies on the intrinsic Brownian

motion of the particles caused by small thermal fluctuations [29, 80]. The particles’

mean square displacements (MSD) can be calculated experimentally and are related to

the mechanical properties of the fluid through a generalized Stokes-Einstein equation:

{
Δř2 (s)

}
=

dkBT

3πasĞ(s)
(2.1)

where {∆ř2(s)} is the time averaged Laplace transform of the particles’ MSD, d is the

dimensionality of the track (2 for this work), kB is the Boltzmann constant, T is the

temperature, a is the radius of the tracer particle, s is the Laplace frequency, and Ğ(s)

is the frequency dependent Laplace representation of the complex modulus. This is

composed of both the elastic (G’) and viscous (G”) moduli [81,128]. 1 μm fluorescently

labeled tracer particles were added when reconstituting the lyophilized protein. The

samples were mixed thoroughly, loaded onto a glass microscope slide between two strips

of Parafilm and sealed with a glass coverslip. Particle motion was observed using a

Nikon Eclipse 50i microscope with a 40X objective. 300 frames of video were recorded

per run at an exposure time of 33ms with a Nikon HRD076 camera. Three separate
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videos were taken per sample to ensure a good statistical average. Readings were made

in the middle of each sample so that edge effects can be neglected. Image stacks were

created using ImageJ and analyzed using Interactive Data Language (IDL) software.

The particle trajectories and rheological properties of each sample were calculated using

algorithms created by Crocker et al. [32].

2.4 Results

2.4.1 Leucine β-roll Characterization

A β-roll domain from the adenylate cyclase protein from B. pertussis was rationally

mutated to contain a leucine-rich face, and the mutant peptide was expressed, purified

and characterized. Experiments were conducted to compare the mutant construct to

the WTβ to ensure the mutations did not disrupt the response of the peptide to calcium.

CD spectroscopy, bis-ANS dye binding, and terbium binding experiments all suggested

that the mutated β-roll exhibits a similar calcium-induced conformational change and

calcium binding affinity as compared to the wild type peptide. In the absence of calcium,

both Leuβ and WTβ CD spectra exhibited a large negative peak at 198 nm indicative

of randomly coiled polypeptide. Upon addition of 50 mM calcium, both constructs

showed a similar increase in β-sheet secondary structure with a negative peak emerging

at 218 nm (Figure 2.4a-b). These results are consistent with what has been reported

previously [19]. A calcium titration was performed by monitoring the change in CD

signal at 218 nm (Figure 2.4e). Both data were fit to the Hill equation yielding nearly

identical calcium binding affinities and binding cooperativity (Table 2.1). Bis-ANS
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Construct Kd(mM) nH R2

WTβ 0.91 ± 0.02 2.91 ± 0.2 0.993
Leuβ 0.87 ± 0.02 2.97 ± 0.2 0.996

Table 2.1: Summary of calcium binding affinity and Hill coefficients for the WTβ and
Leuβ constructs.

binding was used to further probe structural changes in response to calcium. Bis-ANS

binds to surface exposed hydrophobic patches resulting in an increase in fluorescence

signal in calcium-rich environments [19,112]. Both WTβ and Leuβ fluorescence signals

were measured in the presence and absence of 50 mM calcium (Figure 2.4c-d). The

slightly elevated signal in Figure 2.4d was a result of the additional hydrophobic residues

in the Leuβ.

Fluorescence resonance energy transfer (FRET) experiments were performed to con-

firm the CD and bis-ANS binding data. Terbium, a lanthanide atom, was titrated into

β-roll samples. The emission from bound terbium ions in close proximity to excited

tyrosine residues was measured spectrophotometrically [61, 130]. It is important to

note that while terbium is often used as a calcium analog, it does not directly indicate

calcium binding. However, when analyzed in coordination with the CD and bis-ANS

data, terbium binding does corroborate the claim that both constructs bind calcium in

a similar manner. The terbium titrations for the WTβ and Leuβ yield Kd values of 97

± 4 μM and 91 ± 4 μM, respectively (Figure 2.4f).

WT and leucine constructs were analyzed by native PAGE to confirm the oligimer-

ization state of the mutant β-roll in the presence of calcium. Both samples migrated

similarly through the native gel in the absence of calcium (Figure 2.9). Upon addition

of 5 mM calcium to the running buffer, there was a clear difference in migration between
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Figure 2.4: WTβ and Leuβ calcium responsiveness and characterization. (a) WTβ and
(b) Leuβ CD spectra in the presence (���) and absence (—) of 50 mM calcium showing
similar responses. These results are consistent with bis-ANS binding results for WTβ
and Leuβ shown in (c) and (d), respectively. The higher bis-ANS signal observed for
the leucine construct is due to the increased number of nonpolar residues. The CD
calcium titration (e) shows nearly identical curves for both WTβ ( ) and Leuβ (#).
The data are fit to the Hill equation and the parameters are summarized in Table 2.1.
Terbium binding results are shown in (e) for the WTβ ( ) and Leuβ (#) constructs.
Both show very similar responses.
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the WTβ and Leuβ. The Leuβ appeared to run larger, suggesting the formation of an

oligomer, most likely caused by the cross-linking of the leucine rich faces. While these

gels are not entirely quantitative, they do suggest an apparent difference in size, only

in the presence of calcium.

2.4.2 HS-Leucine β-roll Characterization

An α-helical leucine zipper domain (H) along with a randomly coiled soluble domain

(S) was fused to the N-terminus of the leucine and WT β-rolls. Similar characterization

experiments were performed in order to determine if these domains have any effect on

calcium-induced structural change. The CD spectra showed changes in response to

calcium, but the signal was dominated by the largely helical content of the H domain

(Figure 2.8). Bis-ANS binding experiments showed no discernible difference between

the HS-WTβ and HS-Leuβ proteins (Figure 2.5a-b). It is important to note that the

fluorescence signals were much higher in this case due to bis-ANS binding to the H and

S domains. However, the relative change in peak intensity upon addition of calcium was

conserved among all 4 constructs (2.5x higher). The terbium titrations for HS-WTβ

and HS-Leuβ (Figure 2.5c) yielded Kd values of 93 ± 3 μM and 86 ± 2 μM respectively.

2.4.3 HS-Leucine β-roll Microrheology

Mechanical properties of HS-WTβ and HS-Leuβ samples were characterized using mi-

crorheology. The Brownian motion of small particles imbedded into the sample was

recorded using video microscopy, and the average mean square displacements (MSD)

of the particles were calculated as a function of time. The MSD of the tracer particles
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Figure 2.5: HS-WTβ and HS-Leuβ calcium responsiveness and characterization. (a) HS-
WTβ and (b) HS-Leuβ bis-ANS binding spectra in the presence (���) and absence (—)
of 50 mM calcium. This data is consistent with the bis-ANS data presented in Figure
2.4, with the increases in baseline fluorescence due to binding to H and S domains.
Terbium binding titrations are shown in (c) for the HS-WTβ ( ) and HS-Leuβ (#)
constructs. CD spectra are included in the Supplemental Information.

32



allows one to quantify the mechanical properties of the fluid where they are embed-

ded [81, 128]. Once the MSD is obtained, the frequency dependent viscous and elastic

moduli of a sample can be calculated using the modified Stokes-Einstein equation given

above. Both constructs demonstrate concentration-dependent gelation. Initial experi-

ments showed that at protein concentrations below 5 wt%, the samples remained viscous

with and without calcium. Conversely, at weight percentages above 10%, the samples

were completely elastic (Data not shown). At weight percentages of 6%, we observed

a calcium-dependent phase transition and behavior at this concentration was further

explored.

6 wt% samples of HS-WTβ and HS-Leuβ were prepared as described above. After

tracer particles were imbedded in the samples, video microscopy was used to record

the motion of the particles. The trajectories and mechanical properties were calculated

using IDL software. The viscous (G”) and elastic (G’) moduli of HS-WTβ and HS-Leuβ

as a function of frequency are shown in Figure 2.6. Both WT and leucine constructs

appeared to be viscous liquids in buffer (Figure 2.6a-b) and in the presence of 50 mM

magnesium (Figure 2.6c-d). However, while the WTβ construct remained viscous in 50

mM calcium (Figure 2.6e), the leucine construct formed a hydrogel (Figure 2.6f). To

supplement this data, a calcium titration was performed with 6 wt% HS-Leuβ samples.

The calcium concentration was varied from 0-10 mM and the resultant rheological

plots were given in Figure 2.7. Large shifts in the elastic and viscous moduli were

observed at 500 μM calcium with a crossover frequency of about 3 s-1. As the calcium

concentration is increased, the crossover frequency continued to decrease. At 10 mM

calcium, the sample was elastic in the frequency range we explored.
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Figure 2.6: HS-WTβ and HS-Leuβ roll microrheology. Viscous (#) and elastic ( )
moduli have been calculated for 6wt% HS-WTβ and HS-Leuβ samples. Both constructs
appear mostly viscous in buffer (a-b) and in 50 mM magnesium (c-d). The HS-WTβ
remains viscous in 50 mM calcium as well (e). The HS-Leuβ sample shows a shift in
mechanical properties after the addition of calcium, gaining elasticity as compared to
the HS-WTβ control. MSD vs. τ plots are included in the Supplemental Information
for all microrheology experiments.
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Figure 2.7: HS-Leuβ microrheology calcium titration. Viscous (#) and elastic ( ) mod-
uli have been calculated for 6 wt% HS-Leuβ samples at various calcium concentrations
showing the transition from viscous liquid to hydrogel. MSD vs. τ plots are included
in the Supplemental Information for all microrheology experiments.
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2.5 Discussion

Several biophysical techniques were used in this work to probe the calcium binding,

structural confirmation, and mechanical properties of the WTβ and Leuβ peptide con-

structs. We showed that the leucine mutations made to the WT β-roll resulted in no

change in calcium responsiveness or binding affinity; similar conformational changes

were observed in the mutant β-roll as shown by CD and bis-ANS binding. This was

expected as the residues selected for mutation most likely do not participate in calcium

binding [8]. Assuming the β-roll adopts a structure similar to those derived crystal-

lographically in other RTX containing proteins, the amino acid side chains that were

mutated project radially outwards, away from the hydrophobic core minimizing any

potential steric effects. Further, native PAGE data indicated a calcium-dependent dif-

ference in migration between the mutant and WT proteins, likely caused by leucine

β-roll cross-linking. This premise was elucidated through the rheological experiments

after cloning both constructs into the pQE9 vector.

Appending the H and S domains to the N-termini of the WT and leucine β-roll

also resulted in minimal effects on response to calcium as shown by the bis-ANS and

terbium binding data. This was consistent with our previous results showing that the

native N-terminal capping group of the β-roll domain does not play an important role

in protein folding [19]. Although the CD spectra of the constructs containing the H

and S domains were dominated by the highly helical H domain, there appeared to be

conformational changes following the addition of calcium.

The microrheology data presented substantial differences in viscoelastic properties

between the HS-WTβ and HS-Leuβ peptides in the presence of calcium. At 6 wt%,
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both constructs exhibited viscous character in buffer and in buffer supplemented with

50 mM magnesium. The magnesium control showed that ionic effects did not influence

the changes in mechanical properties of both samples. When calcium was added to the

HS-WTβ protein, the sample remained viscous. Here, we suspect that the WT β-roll

is fully folded, as indicated by the CD data. However, this calcium-induced structural

response does not promote the formation of a hydrogel network as the WTβ domains

do not interact. Upon addition of calcium to the HS-Leuβ, we observed a significant

change in rheological properties. The sample appeared to be elastic, showing frequency

independent viscous and elastic moduli. At 50 mM calcium, we expected the leucine

β-roll to be completely folded, and the engineered hydrophobic leucine face should be

exposed to the solvent. This hydrophobic face promotes cross-linking of the β-roll

domains. The calcium-dependent physical cross-linking coupled with the coiled-coil

bundles formed by the leucine zipper domains provides enough interaction to alter the

mechanical properties of the sample and create a hydrogel network. It may also be

possible for the leucine zipper domains to interact with the leucine β-roll domains, and

this would introduce a different mode of cross-linking within the hydrogels.

The transition from viscous liquid to hydrogel shown in Figure 2.7 is consistent with

the Leuβ CD titration in Figure 2.4, where we observed the transition from disordered

to structured peptide between 0.5-3.0 mM calcium. At concentrations higher than 3

mM the β-roll was completely folded. A strong parallel can be drawn with the rheology

data in Figure 2.7. The sample was found to transition from a viscous liquid to a

hydrogel between 0.5-5 mM calcium. By 10 mM, the hydrogel was completely formed

as the β-roll domains should have been completely folded, maximizing the cross-linking.
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Most stimulus-responsive hydrogels described in the literature use cross-link forming

scaffolds and then a trigger is found to destabilize the binding interaction. For example,

the leucine zipper-based hydrogels are destabilized by changes in pH as this interferes

with the alpha helix formation. And the elastin-like peptide based hydrogels take

advantage of the unique inverse temperature transition to destabilize the hydrogel.

We have taken a different approach in this work, where we have chosen a scaffold

that undergoes a specific and unique conformational transition from an intrinsically

disordered structure to the folded β-roll domain in response to calcium. The β-roll

domain is not normally involved in biomolecular recognition or self-assembly, so this

feature was engineered into the scaffold to control self-assembly by calcium addition.

Eliminating the reliance on temperature and pH swings to modulate self-assembly may

allow for the use of these hydrogels in more biologically relevant environments, where

changes in temperature or pH are not tolerated.

Although the gels produced in this proof-of-concept work have relatively low elastic

moduli, the leucine β-roll can be optimized in future work to create stronger hydrogels

for different applications. Since the β-roll is a modular repeat protein, the number of

repeats and composition of the repeating unit can be easily altered to extend the size

and makeup of the hydrophobic domain. In addition, alternative cross-linking strategies

could be incorporated such as the inclusion of specific ionic interactions as has been

explored for the leucine zipper domains. Also, the β-roll has a second face amenable to

mutation, which could be used to create leucine-rich surfaces on both sides of the β-roll

domain.
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2.6 Conclusions

In this work, we presented a rationally engineered peptide that can be used to create

allosterically-controlled hydrogel networks. Leucine mutations were inserted into the

β-roll peptide scaffold to create a hydrophobic surface suitable for cross-linking, which is

exposed only after calcium binding. An α-helical leucine zipper domain with a randomly

coiled linker were attached to the N-terminus of the beta roll to provide additional

physical cross-linking. Hydrogels formed only in calcium-rich environments where the

folded leucine β-roll domains provided the necessary hydrophobic interface. The WTβ

remained a viscous liquid regardless of the calcium concentration.
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2.7 Supplemental Information

Figure 2.8: HS-WTβ and HS-Leuβ CD spectra. HS-WTβ (a) and HS-Leuβ (b) were
analyzed by CD spectroscopy with (���) and without (—) 10 mM calcium. The spectra
are dominated by the helical domain indicated by the positive peaks at 192 nm and
negative peaks around 205 nm. An obvious shift in secondary structure is observed
after the addition of calcium due to beta roll folding. All measurements were taken in
triplicate in 50 mM Tris pH 7.5 at 25 °C.

Figure 2.9: WTβ and Leuβ native PAGE. WTβ (a) and Leuβ (b) domains were run on
4-16% bis-Tris native gels (Invitrogen). WTβ (c) and Leuβ (d) fractions were then run
in buffer supplemented with 5 mM calcium. Purity of the samples was ensured by SDS-
PAGE. While these results are not precisely quantitative, there is a clear perturbation
in migration observed following calcium addition.
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Figure 2.10: The calculated mean square displacements for HS-WTβ and HS-Leuβ are
given with respect to lag time in buffer (a-b), 50 mM magnesium (c-d), and 50 mM
calcium (e-f), respectively.
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Figure 2.11: The calculated mean square displacements for HS-Leuβ samples are given
with respect to lag time at various calcium concentrations.
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Chapter 3

Doubling the Cross-Linking

Potential of a Rationally

Engineered RTX Domain for

Calcium-Responsive Self-Assembly
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Project Collaborators: Kevin Dooley, Beyza Bulutoglu, & Scott Banta

A version of this chapter entitled, “Doubling the cross-linking potential of a rationally-
designed beta roll peptide for calcium-dependent proteinaceous hydrogel formation” has
been submitted to Biomacromolecules. KD prepared DNA constructs, expressed and pu-
rified all proteins, performed all FRET, bis-ANS fluorescence spectroscopy, microrheol-
ogy experiments and analysis.

3.1 Abstract

We have rationally engineered a stimulus-responsive cross-linking domain based on a

repeats-in-toxin (RTX) peptide to enable the triggered formation of supramolecular hy-

drogel networks. The peptide isolated from the RTX domain is intrinsically disordered

in the absence of calcium. In calcium-rich environments, the peptide folds into a beta

roll (β-roll) secondary structure composed to two parallel β-sheet faces. Previously,

we mutated one of the faces to contain solvent exposed leucine side chains which are

localized only in the calcium-bound β-roll conformation. We demonstrated the ability

of this mutant peptide to self-assemble into hydrogels in the presence of calcium with

the aid of additional peptide-based cross-linking moieties. Here, we have expanded this

approach by engineering both β-roll faces to contain leucine resides thereby doubling

the cross-linking potential for each monomeric building block. These leucine-rich sur-

faces impart a hydrophobic driving force for self-assembly. Extensive characterization

was performed on this double-faced mutant to ensure the retention of calcium affinity

and subsequent structural rearrangement similar to that of the wild type domain. We

genetically fused an α-helical leucine zipper capable of forming tetrameric coiled-coil

44



bundles to the peptide and the resulting chimeric protein self-assembles into a hydrogel

only in calcium-rich environments. To further investigate the cross-linking potential

of the mutant β-roll, we constructed concatemers of the β-roll with maltose binding

protein (MBP), without the leucine zipper domains. These concatemers show a similar

sol-gel transition in response to calcium. Several biophysical techniques were used to

probe the structural and mechanical properties of the mutant β-roll domain and the

resulting supramolecular networks including circular dichroism, fluorescence resonance

energy transfer, bis-ANS binding, and microrheology. These results demonstrate that

the engineered β-roll peptides can mediate calcium-dependent cross-linking for protein

hydrogel formation without the need for additional cross-linking moieties.

3.2 Introduction

Protein-based biopolymer hydrogels composed of three-dimensionally cross-linked macro-

scopic networks have been widely investigated for a host of applications in the biomed-

ical field because of their biocompatibility, predictable erosion rates, and tunable vis-

coelastic properties [12,52,62,65,110]. Proteins or peptides with the ability to respond

“intelligently” to external stimuli such as pH, temperature, ionic strength or light are

often incorporated into monomeric polymer building blocks to trigger or disrupt self-

assembly through a variety of mechanisms. Calmodulin, elastin-like polypeptides, and

α-helical leucine zipper domains have been used to actuate hydrogel formation in re-

sponse to environmental cues, leading to successful implementation into microfluidic

systems, biosensors, and vehicles for controlled release [7, 12,23,41,62,119].
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We have previously reported a rationally designed peptide based on the beta roll (β-

roll) domain that functions as a stimulus-responsive cross-linker for calcium-dependent

hydrogel formation [35]. The β-roll scaffold was taken from the block V repeats-in-toxin

(RTX) domain of adenylate cyclase from Bordetella pertussis [13]. It is a modular, re-

peating polypeptide that undergoes a reversible structural rearrangement in response to

calcium. The peptide is intrinsically disordered in the absence of calcium and folds into

a β-roll in calcium-rich environments consisting of two parallel β-sheet faces separated by

flexible turn regions (Figure 3.1a) [13,25]. Conserved aspartic acid residues in the turn

regions are responsible for coordinating calcium ions in each turn. Only a C-terminal

capping group is required for calcium-induced folding of the polypeptides [19,111].

Figure 3.1: Homology models for WT and mutant β-roll domains with primary se-
quences. Homology models for WTβ (a), Leuβ (b), and DLeuβ (c) domains were gener-
ated with SWISS-MODEL (Swiss Institute of Bioinformatics) using a β-roll containing
lipase as a template (PDB 2Z8X). The side chains of the surface exposed residues are
highlighted and underlined in the sequences. All images were rendered in PyMOL.

Each β-sheet face in the folded conformation contains eight resides with solvent ex-
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posed side chains that project radially away from the hydrophobic core. In our previous

study, we mutated one β-sheet face to contain leucine residues at these eight positions

(Figure 3.1b). We fused the mutant leucine β-roll (Leuβ) to a self-assembling α-helical

leucine zipper domain (H) and a randomly coiled hydrophilic linker (S) which is in-

cluded to provide flexibility and prevent aggregation. Both H and S domains have

been extensively characterized previously [102, 103, 128]. Without calcium, the helices

form tetrameric coiled-coil bundles, but the β-roll domains remain unstructured, delo-

calizing the leucine-rich patches and prohibiting HS-Leuβ supramolecular self-assembly.

After calcium binding, the β-roll folds and the leucine-rich faces are exposed creating

a hydrophobic driving force for oligomerization (Figure 3.2a). The resulting calcium-

responsive hydrogel networks have been characterized using a variety of techniques [35].
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Figure 3.2: Monomeric polymer building blocks and assembled hydrogel networks. All
cartoons represent β-roll domains in the folded conformation after calcium (red) binding.
(a) HS-Leuβ monomer composed of an α-helical leucine zipper (yellow), a randomly
coiled linker (purple), and the mutant Leuβ (light blue). The assembled network depicts
an association number of 2 for Leuβ. (b) HS-DLeuβ monomer composed of an α-helix,
linker, and DLeuβ mutant (green). Association numbers of ≥2 are depicted. (c) MBP-
DLeuβ-MBP-DLeuβ monomer. The DLeuβ can achieve higher oligomerization states
and does not require cross-linking provided by the helical bundles. Alpha-helices and
MBP were rendered in PyMOL using PDB files 1GCL and 1YTV respectively.

In this study, we have expanded this approach by further engineering the Leuβ pep-

tide to increases its cross-linking potential. The folded β-roll domain consists of two

β-sheet faces, each with eight solvent exposed residues. We have now rationally engi-
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neered a “double-faced” leucine β-roll peptide (DLeuβ) such that all sixteen positions

are leucines (Figure 3.1c). This should enable cross-linking on both sides of the folded

construct simultaneously, thereby increasing the potential oligomerization state (Figure

3.2b). Previously, Leuβ domains were approximated to have an association number of 2

(Figure 3.2a), which required significant protein concentrations (60 mg/mL) and addi-

tional cross-linking moieties to assemble into supramolecular networks. We hypothesize

that DLeuβ will self-assemble at lower weight percentages as concentration dependent

sol-gel transition and oligomerization state of the cross-linking domain are directly re-

lated [128]. Further, DLeuβ should be able to induce calcium-dependent self-assembly

without the additional cross-linking provided by the α-helical leucine zippers (Figure

3.2c). Circular dichroism (CD), fluorescence resonance energy transfer (FRET) and

bis-ANS binding were used to ensure DLeuβ folds in a similar manner as the wild type

β-roll (WTβ) and Leuβ in response to calcium. The mechanical properties of HS-DLeuβ

were analyzed using a microrheology technique and compared to results obtained previ-

ously for HS-WTβ and HS-Leuβ [35]. Finally, the utility of the DLeuβ as a stand-alone

cross-linking domain was assessed by creating fusions to maltose binding protein (MBP)

and analyzing the resulting hydrogel networks (Figure 3.2c).

3.3 Materials & Methods

3.3.1 Materials

Amylose resin, the MBP expression kit, and all enzymes for DNA cloning were pur-

chased from New England Biolabs (Ipswich, MA). Isopropyl β-D-1-thiogalactopyranoside
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(IPTG) and ampicillin sodium salt were purchased from Gold Biotechnology (St. Louis,

MO). Amicon centrifugal filters were purchased from Millipore (Billerica, MA). All ma-

terials for polyacrylamide gel electrophoresis (PAGE) experiments as well as 1 μm Nile

Red FluoSpheres for particle tracking were purchased from Life Technologies (Grand

Island, NY). All oligonucleotides were purchased from Integrated DNA Technologies

(Coralville, IA). BL21 E. coli cells were purchased from Bioline (Taunton, MA). All

other reagents were purchased from Sigma-Aldrich (Sr. Louis, MO) unless otherwise

stated.

3.3.2 Cloning into the pMAL expression plasmid

Cloning and expression of the WTβ and Leuβ constructs have been described in the

previous chapter. The DLeuβ peptide was assembled by annealing and extending two

overlapping oligonucleotides encoding for the entire gene. The C-terminal cap of the

β-roll domain was amplified from the pDLE-9-cyaA plasmid, a gift from Dr. Daniel

Ladant (Institut Pasteur, Paris, France), and appended to the DLeuβ gene by overlap

extension PCR [13]. KpnI and HindIII restriction sites were added for ligation into a

modified pMAL plasmid containing a self-cleaving intein, a gift from Dr. David Wood

(Ohio State University, Columbus, OH) [46]. DLeuβ was also cloned into the same

pMAL-intein backbone modified with an α-helical domain (H) and a soluble linker (S)

from the pQE9AC10Acys plasmid, a gift from Dr. David Tirrell (California Institute

of Technology, Pasadena, CA) [102]. The resultant constructs, pMAL-intein-DLeuβ

and pMAL-intein-HS-DLeuβ were transformed into BL21 E. coli cells for expression.

Concatemers of MBP and DLeuβ (Figure 3.2c) were cloned into the pMAL-c4e vector
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backbone. DLeuβ with the C-terminal cap was amplified out of pMAL-intein-DLeuβ

construct and cloned using EcoRI and BamHI restriction sites. MBP was amplified from

the pMAL-c4e construct and inserted after DLeuβ-Cap via BamHI and SalI restriction

sites. Lastly, the second DLeuβ-Cap was amplified and cloned using SalI and HindIII

restriction sites, resulting in the final construct: pMAL-MBP-DLeuβ-MBP-DLeuβ. All

oligonucleotide sequences can be found in the publication listed at the beginning of this

chapter.

3.3.3 Expression & Purification of DLeu Constructs

All DLeuβ constructs were expressed identically in Terrific Broth (TB) supplemented

with 100 µg/mL ampicillin and 2 g/L D-glucose. Saturated 10 mL overnight cultures

containing the appropriate transformed cells were diluted in 1 L of sterilized TB and

grown at 37 °C and shaken at 220 RPM. Once the optical density (OD) at 600 nm

reached 0.6, protein expression was induced with IPTG to a final concentration of 0.3

mM. Expression was carried out for either 5 h at 37 °C or 16 h at 25 °C after which cells

were harvested via centrifugation at 5,000 x g for 10 min. Cell pellets were resuspended

in 50 mL MBP column buffer (20 mM Tris-HCl, 200 mM NaCl, 1 mM EDTA, pH 7.4)

per L of culture. Expressed protein was liberated from the cells by microtip sonication

for 6 min on ice (Sonicator 3000, QSonica, Newtown, CT). Cell debris and insoluble

protein were collected via centrifugation at 15,000 x g for 30 min and discarded. Soluble

protein was diluted five-fold in MBP column buffer and loaded onto equilibrated amylose

resin drip columns. The columns were washed to remove any nonspecifically bound

protein. MBP-DLeuβ concatemers were eluted with maltose and further purified on
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a Superdex HiLoad 16/60 size exclusion chromatography column (GE Healthcare).

Columns containing proteins with the intein domain were saturated with intein cleaving

buffer (137 mM NaCl, 2.7 mM KCl, 8.1 mM Na2HPO4, 1.76 mM KH2PO4, 40 mM bis-

Tris, 2 mM EDTA, pH 6.2), capped, and incubated at 37 °C for 12-16 h. Cleaved fusion

proteins were eluted with 50mL of MBP column buffer and concentrated using either

10 or 30 kDa MWCO centrifugal filter devices. The samples were buffer exchanged

into 20 mM bis-Tris, 25 mM NaCl, pH 6.0 and loaded onto a 16/10 Q FF ion exchange

column (GE Healthcare). Target proteins were eluted using a linear NaCl gradient from

25 mM to 500 mM over 20 column volumes. Protein size and purity were confirmed

by SDS-PAGE. Protein concentration was determined by absorbance at 280 nm using

calculated extinction coefficients available in the Supplemental Information. Purified

protein fractions were pooled, concentrated and buffer exchanged into the appropriate

assay buffer.

3.3.4 Circular Dichroism Spectroscopy

100 µM β-roll samples were loaded into a 0.1 mm path length quartz cuvette and

analyzed on a J-815 CD spectrometer (Jasco, Easton, MD). The temperature was held

constant at 25 °C by a Peltier junction temperature controller. Samples were incubated

in the presence or absence of CaCl2 prior to analysis. All experiments were performed

in triplicate in 50 mM Tris pH 7.4. Titration data were fit to the Hill equation using

SigmaPlot (Systat Software, San Jose, CA) nonlinear regression software.
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3.3.5 Bis-ANS Dye Binding

1 μM β-roll samples were prepared in 50 mM Tris pH 7.4 in the presence and absence

of 50 mM CaCl2 prior to the addition of 5 μg/mL bis-ANS dye. Samples were loaded

into a 1 cm path length UV cuvette and analyzed on a SpectraMax M2 cuvette reader

(Molecular Devices, Sunnyvale, CA). Fluorescence emission was monitored from 420

nm to 600 nm following excitation at 390 nm. All measurements were performed in

triplicate.

3.3.6 Fluorescence Resonance Energy Transfer (FRET)

1 μM β-roll samples were prepared in 20 mM PIPES buffer pH 6.8 supplemented with

120 mM NaCl and 10 mM KCl. A terbium (III) chloride stock solution was prepared

in the same buffer. β-roll samples were titrated with increasing amounts of terbium in

96 well microtiter plates and incubated at 25 °C for 30 min prior to analysis. Tyrosine

residues in the β-roll domain were excited at 282 nm and the fluorescence emission from

bound terbium ions was monitored at 545 nm. All data were collected in triplicate.

3.3.7 Hydrogel Preparation

All β-roll samples were prepared in a similar manner. 500 µL of diluted protein samples

were lyophilized in 5 mM Tris pH 7.4 supplemented with CaCl2 or MgCl2. Self-assembly

was initiated by reconstituting the lyophilized protein in 1/10 the original volume re-

sulting in 4-6 wt% (40-60 mg/mL) protein in 50 mM Tris pH 7.4. Mechanical mixing,

vortexing, and centrifugation were used to ensure all of the lyophilized protein was

53



rehydrated. Samples were allowed to set at room temperature for 30 min prior to

analysis.

3.3.8 Microrheology

Microrheology experiments were performed as previously described with minor modi-

fications [35]. When rehydrating lyophilized protein for particle tracking experiments,

ddH2O was supplemented with 1 μm FluoSpheres conjugated with Nile Red. The sam-

ples were mixed, loaded onto a glass slide and sealed with a coverslip. Particle motion

was tracked using an Olympus IX81 motorized inverted microscope with a 40 X ob-

jective. A high-speed Hamamatsu C9300 digital camera was used to record particle

motion at an exposure time of 33 ms. 300 frames of video were recorded at 30 frames

per second for each run. 3 runs were recorded per sample to ensure a good statistical

average. All runs were recorded on a ThorLabs air table to eliminate ambient vibra-

tional noise. All videos were analyzed using MetaMorph software and converted to

TIFF stacks in ImageJ [1]. Particle tracking and rheological analysis were completed

in Interactive Data Language (IDL) software using algorithms created by Crocker et

al. [32].

3.4 Results

3.4.1 DLeuβ Characterization

The rationally designed “double-faced” leucine β-roll was expressed, purified, and char-

acterized by CD, bis-ANS dye binding, and terbium binding assays to assess its response
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to calcium and self-assembly capability. We have previously characterized the WTβ and

Leuβ using these same techniques [35]. 100 μM samples of purified protein were an-

alyzed by CD in the presence and absence of 10 mM CaCl2. The resulting spectra

are shown in Figure 3.3a-c for WTβ, Leuβ, and DLeuβ constructs, respectively. All

three proteins demonstrated similar conformational changes in response to calcium. In

calcium-free environments, the spectra exhibited large negative peaks at 198 nm, which

is indicative of randomly coiled peptide. Significant changes in secondary structure

were observed in 10 mM CaCl2 for all β-roll domains. A random coil to β-sheet tran-

sition was evidenced by the emergence a negative peak at 218 nm and is consistent

with previous reports [19]. Calcium-induced folding parameters were also similar for all

three constructs. A titration was performed by monitoring CD signal at 218 nm over

a range of CaCl2 concentrations (Figure 3.3c). The data were fit to the Hill equation

and the resulting calcium binding parameters are summarized in Table 3.1. Leuβ and

DLeuβ bound calcium with affinities similar to the wild type peptide and all constructs

exhibited cooperative binding with Hill coefficients (nH) greater than 1. Bis-ANS is

a commonly used molecular probe that binds to protein surfaces through hydrophobic

interactions causing in an increase in fluorescence [56]. It can be used to detect changes

structure and has been previously used to examine the conformational transition of β-

roll peptides [19, 35]. Purified DLeuβ was incubated with bis-ANS in the presence and

absence of calcium and the resulting emission spectra are available in the Supplemen-

tal Information. Significant increases in fluorescence were observed in the calcium-rich

samples indicating a disordered to folded transition.

55



Construct KD (mM) nH R2

WTβ 0.91 ± 0.02 2.3 ± 0.1 0.997
Leuβ 0.82 ± 0.01 3.1 ± 0.1 0.998

DLeuβ 1.18 ± 0.02 4.6 ± 0.3 0.998

Table 3.1: Calcium binding properties for WT, Leuβ, and DLeuβ peptides.

Figure 3.3: β-roll CD characterization. Mean residue ellipticity (MRE) were plotted
over a range of wavelengths for WTβ (a), Leuβ (b), and DLeuβ (c) in the presence
(� � �) and absence (—) of 10 mM CaCl2. (d) Relative MRE at 218 nm for WTβ
( ), Leuβ (∆), and DLeuβ (©) plotted over a range of calcium concentrations. All
data were collected in triplicate in 50 mM Tris pH 7.4. Titration data were fit to
the Hill equation using non-linear regression software and the resulting parameters are
summarized in Table 3.1.

Terbium, a fluorescent calcium analog, was shown previously to trigger β-roll folding

[19, 35]. In the folded conformation, bound terbium ions are in close proximity to a

tyrosine residue in the 7th repeat of the β-roll. Excitation of the tyrosine residue results
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in a fluorescence emission from the terbium ion proportional to the distance between

the two [4]. A terbium titration was performed while monitoring this fluorescence

emission and the resulting plot is available in the Supplemental Information. While

this does not directly report calcium-induced folding, it is consistent with the CD and

bis-ANS data suggesting that the DLeuβmutant retains its intrinsic stimulus-responsive

conformational behavior.

3.4.2 HS-DLeuβ Microrheology

An α-helical leucine zipper domain (H) and an unstructured hydrophilic linker (S) were

appended to the N-terminus of the DLeuβ (Figure 3.2b). We previously demonstrated

that this N-terminal fusion does not interfere with β-roll folding in response to cal-

cium [35]. Self-assembly into non-covalently cross-linked supramolecular networks was

analyzed by passive microrheology. Average mean square displacements (MSD) of 1

μm fluorescent particles embedded into the samples were calculated over a range of

frequencies. Additionally, viscous and elastic moduli were extracted from the particle

motion videos using an inverse Laplace transform method based on the generalized

Stokes-Einstein equation [32]. Initial experiments were conducted at 6 wt%, the con-

centration at which HS-Leuβ self-assembles in calcium-rich environments. It should also

be noted that 6 wt% HS-WTβ was shown to remain viscous regardless of the calcium

concentration [35]. The results from these experiments are provided in Figure 3.4. HS-

DLeuβ remained viscous in 50 mM MgCl2 at 6 wt% (Figure 3.4a) and assembled into

an a hydrogel network in the presence of 50 mM CaCl2 (Figure 3.4b). All MSD vs. τ

plots are available for all rheological experiments in the Supplemental Information.
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Figure 3.4: HS-DLeuβ microrheology results at 6 wt% (60 mg/mL). Viscous (#) and
elastic moduli ( ) were plotted over a range of frequencies in the presence of 50 mM
MgCl2 (a) or CaCl2 (b). All mean square displacement (MSD) vs. τ plots are available
in the Supplemental Information.

The rheology experiments were repeated at lower weight percentages to explore the

lower critical protein concentration required for HS-DLeuβ self-assembly. The results

at 4 wt% are shown in Figure 3.5a-e. Again, the HS-WTβ construct remained viscous

in both magnesium (Figure 3.5a) and calcium (Figure 3.5b) rich solutions. HS-Leuβ

appeared viscous in magnesium (Figure 3.5c) and remained largely viscous in calcium

(Figure 3.5d) exhibiting a crossover frequency of approximately 12 sec-1. HS-DLeuβ

remained viscous in magnesium (Figure 3.5e) and self-assembled into a hydrogel in the

presence of calcium (Figure 3.5f), similar to that observed at 6 wt%.
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Figure 3.5: HS-WTβ (a,b), HS-Leuβ (c,d), and HS-DLeuβ (e,f) microrheology results
at 4 wt% (40 mg/mL). Viscous (#) and elastic moduli ( ) were plotted over a range of
frequencies in the presence of 50 mM MgCl2 (a,c,e) or CaCl2 (c,d,f). All mean square
displacement (MSD) vs. τ plots are available in the Supplemental Information.

3.4.3 MBP-DLeuβ Concatemer Microrheology

In order to assess the utility of DLeuβ as a stand-alone cross-linking domain, we ge-

netically constructed concatemers of DLeuβ and MBP. The monomeric block is shown

in Figure 3.2c. In this case, the linkers are either composed of a poly-asparagine linker

59



at the C-terminus of MBP or the unstructured capping group at the C-terminus of

DLeuβ. Significantly higher weight percentages were required (21.3 wt%) to maintain

the same molar cross-linking content used in the 6 wt% HS-β-roll experiments. Rheolog-

ical analysis was performed as described above and the results are provided in Figure

3.6. A viscoelastic to elastic transition was observed when moving from magnesium

rich (Figure 3.6a) to calcium-rich (Figure 3.6b) samples. Rheological analyses were

also performed on samples with identical cross-linking content as the 4 wt% HS-β-roll

experiments (14.2 wt%), and similar results were obtained. Samples prepared in the ab-

sence of calcium remained viscoelastic (Figure 3.6c) while samples prepared in 50 mM

calcium self-assembled into elastic networks in the frequency range explored (Figure

3.6d).

60



Figure 3.6: MBP-DLeuβ concatemer microrheology results. Samples were ran at equiv-
alent cross-linking content as 6 wt% (a, b) and 4 wt% (c, d) experiments described
previously. Total protein weight percentages are 21.3% (a, b) and 14.2% (c, d). Vis-
cous (#) and elastic moduli ( ) were plotted over a range of frequencies in the presence
of 50 mM MgCl2 (a, c) or 50 mM CaCl2 (b, d). All mean square displacement (MSD)
vs. τ plots are available in the Supplemental Information.

3.5 Discussion

In this work, we have rationally engineered a stimulus-responsive cross-linking peptide

by exploiting the calcium-induced conformational change intrinsic to the β-roll domain.

Unlike other environmentally responsive cross-linkers that rely on large swings in tem-

perature or pH to destabilize cross-linking interactions, the Leuβ and DLeuβ require

only small amounts of calcium to trigger self-assembly, providing a much gentler mech-

anism. Additionally, viscoelastic properties can be allosterically regulated by simply
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adjusting the calcium concentration. Several biophysical techniques were used to in-

vestigate the structural responses of the mutant peptides to calcium, the lower critical

protein concentration required for self-assembly, and the mechanical properties of the

resulting supramolecular networks. We have shown previously that mutating one face

of the β-roll peptide (Leuβ) has minimal impact on the affinity for calcium or the struc-

tural rearrangement induced upon calcium binding [35]. By mutating both faces to

contain leucine residues (DLeuβ), we have substantially increased the solvent exposed

hydrophobic surface area of the folded construct. Despite the significant increase in hy-

drophobicity, little effect on calcium responsiveness or protein solubility was observed

for DLeuβ. Similar CD spectra were obtained in the presence and absence of 10 mM

calcium for WTβ, Leuβ, and DLeuβ constructs (Figure 3.3a-c) indicating a disordered

to β-sheet transition. Titrations yielded similar affinities for calcium (approximately

1 mM), however larger variations in the Hill coefficients were observed. Interestingly,

both mutants bind calcium with a higher cooperativity than WTβ (Table 3.1). The

data suggested that higher calcium concentrations were required to initiate folding,

especially for the double mutant, most likely caused by the increased hydrophobicity

of surface exposed side chains in the folded confirmation. Bis-ANS dye binding ex-

periments were used supplement the CD data and ensure the DLeuβ mutant retained

the calcium binding properties intrinsic to the WTβ domain. Significant increases in

fluorescence emission were detected in calcium-rich solutions as compared to spectra

obtained in the absence of calcium (Figure 3.7b, SI). This increase in fluorescence can be

attributed to an increase in hydrophobic surface area amenable to dye binding caused

by calcium-induced folding. These results are in agreement with previously reported
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data for WTβ and Leuβ [19, 35]. Terbium binding assays were also conducted to fur-

ther ensure the performance of the DLeuβ mutant. Figure 3.7a (SI) shows increases

in fluorescence emissions as terbium concentrations are increased from 0-500 μM. Near

identical responses were observed for WTβ and Leuβ in Chapter 2. However, it is im-

portant to note that while terbium acts as a calcium analog, it does not directly report

calcium affinity. Taken together, the CD, bis-ANS, and terbium binding data suggest

that all three constructs bind calcium in a similar manner resulting in a transition from

a disordered state to a spatially organized β-roll structure.

After the preliminary characterization was completed, the self-assembly capabilities

of DLeuβ were assessed by two separate approaches. First we expanded our previous

study by appending an α-helical leucine zipper domain (H) and a soluble linker (S)

to the N-terminus of DLeuβ (Figure 3.2b). Microrheology experiments performed at 6

wt% confirmed HS-DLeuβ self-assembly into a hydrogel in 50 mM CaCl2 (Figure 3.4b)

while remaining a viscous in 50 mM MgCl2 (Figure 3.4a), thereby verifying what we

have previously observed with Leuβ. Without calcium, the helical domains can assem-

ble into tetrameric coiled-coil bundles, but the unstructured β-roll domains prohibit

the formation of a macromolecular network. In 50 mM CaCl2, we expect the β-roll

domains to be fully folded thus localizing the leucine side chains into a structurally

well-defined surface suitable for cross-linking. In our earlier work, the Leuβ peptide

contained leucine residues on only one face of the folded β-helix which yielded a po-

tential association number of 2 (Figure 3.2a). This required protein concentrations of

60 mg/mL (6 wt%) to induce self-assembly. At lower concentrations, there were not

enough cross-links to sustain a macromolecular hydrogel. We hypothesized that by
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designing a β-roll peptide with cross-linking interfaces on both sides of the folded con-

struct, the association number could potentially be increased (Figure 3.2b). Association

numbers higher than 2 should facilitate self-assembly at lower protein concentrations.

To investigate this, we prepared 40 mg/mL (4 wt%) samples of HS-WTβ, HS-Leuβ,

and HS-DLeuβ. Self-assembly was observed only for the HS-DLeuβ sample in calcium.

All constructs remained viscous in the magnesium controls (Figure 3.5). Figure 3.5d

suggested that the HS-Leuβ sample was viscoelastic as indicated by the crossover of

the viscous and elastic moduli in the explored frequency range. However, as mentioned

above, there are not enough cross-links to fully induce self-assembly into a hydrogel at

4 wt%. At protein concentrations below 4wt%, HS-DLeuβ assembled into several small

elastic aggregates, but they did not constitute the entire volume, indicating fluctuations

in local protein concentration (data not shown). These rheological experiments suggest

that DLeuβ has a higher association number than the Leuβ construct.

To further test the utility of the DLeuβ as a stimulus-responsive cross-linking do-

main, we constructed concatemers of DLeuβ and MBP (Figure 3.2c), eliminating the

α-helical leucine zipper domains. The microrheology results indicate similar calcium-

dependent self-assembly properties as seen with the HS constructs (Figure 3.6). Both

21.3 wt% and 14.2 wt% samples in magnesium had significantly more viscoelastic char-

acter than the corresponding HS samples (Figure 3.6a, c). In order to normalize the

cross-linking content between the HS and concatemer experiments, significantly higher

protein concentrations were required due to the large size of MBP. However, a clear tran-

sition in mechanical properties was still observed for the concatemer samples at both

weight percentages tested (Figure 3.6b, d). These results demonstrated that the DLeuβ
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mutant has the ability to create enough elastically effective associations to actuate

self-assembly in the presence of calcium, without depending on additional cross-linking

provided by the leucine zipper domains.

The DLeuβ peptide is considerably different from other stimulus-responsive protein-

associating domains used for hydrogel cross-linking. β-roll domains do not naturally

participate in self-assembly or biomolecular recognition; the self-assembly capabilities

were rationally designed and engineered into the stimulus-responsive domain itself.

More commonly, a naturally associating domain is placed in an environment which

destabilizes the cross-linking interactions such as higher pH, temperature or by addition

of denaturation agents. In contrast, the DLeuβ can be easily modulated from disordered

to structured and, in turn, sol to gel by simply adjusting the calcium concentration,

providing a much gentler mechanism for self-assembly. This may also offer a convenient

strategy to encapsulate small molecules inside a β-roll hydrogel. Target molecules can be

incubated with soluble β-roll cross-linking domains after which calcium can be added

to trigger macromolecular assembly, trapping small molecules inside. Catalytically

active proteins can also be inserted in between β-roll cross-linking domains to create

bifunctional stimulus-responsive enzymatic hydrogels. Future experiments are planned

to investigate erosion rates, reversibility of self-assembly and to further elucidate the

mechanical properties of the β-roll hydrogels. While the microrheology experiments

clearly demonstrate a sol-gel transition, the absolute values of G’ and G” are most

likely distorted by the inverse Laplace transform analysis. Traditional oscillatory shear

rheology over a larger time domain should provide more accurate measurements of the

viscous and elastic moduli of these new materials.

65



3.6 Conclusions

In this work, we have described a calcium-responsive β-roll peptide with the ability to

induce self-assembly into supramolecular networks. The β-roll scaffold was modified

to create two hydrophobic surfaces suitable for cross-linking which are available only

after calcium-induced structural rearrangement of the peptide. We have characterized

the self-assembly capabilities of this domain by fusing an α-helical leucine zipper to

the N-terminus and completing microrheology analysis. These chimeras were shown to

self-assemble only in the presence of calcium. DLeuβ was also shown to self-assemble at

lower protein concentrations than the single-faced mutant, indicating a higher associa-

tion number. Furthermore, we have demonstrated the ability of the DLeuβ peptide to

induce self-assembly without the additional cross-links provided by the leucine zipper

by evaluating concatemers of DLeuβ and MBP. Thus we showed that Dleuβ can serve as

a new cross-linking domain, capable of hydrogel formation, which can be allosterically-

regulated via alteration of calcium concentrations.
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3.7 Supplemental Information

Construct Extinction Coefficient (M-1cm-1)
WTβ 17,780
Leuβ 16,500
DLeuβ 16,500
HS-WTβ 24,750
HS-Leuβ 23,470
HS-DLeuβ 23,470
MBP-DLeuβ-MBP-DLeuβ 162,440

Table 3.2: Extinction coefficients

Figure 3.7: DLeuβ characterization. Terbium (a) binding results and bis-ANS (b)
binding results in the presence (� � �) and absence (—) of 50 mM calcium for DLeuβ

Figure 3.8: 6 wt% HS-DLeuβ MSD plots in 50 mM magnesium (a) and calcium (b)
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Figure 3.9: 4 wt% HS-WTβ (a,b), HS-Leuβ (c,d), and HS-DLeuβ (e,f) MSD plots in 50
mM magnesium (a,c,e) and 50 mM calcium (b,d,f)
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Figure 3.10: 21.3 wt% (a,b) and 14.1 wt% (c,d) MBP concatemer MSD plots in 50 mM
magnesium (a,c) and calcium (b,d)
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Chapter 4

A Designed RTX Domain for

Calcium-Responsive Bioseparations
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Project Collaborators: Kevin Dooley, Oren Shur, Matthew Baltimore, Mark Blenner &

Scott Banta

A version of this chapter entitled, “A designed, phase changing RTX-based peptide
for efficient bioseparations” appeared in BioTechniques volume 54, issue 4, pages 197-
206. KD cloned all knockouts and AdhD constructs. KD completed all precipitation
experiments, SDS-PAGE gels, and yield/activity analysis.

4.1 Abstract

Chromatography is typically the most costly and time consuming step in protein purifi-

cation processes. As a result, alternative methods have been sought for bioseparations.

One successful approach has been the use of stimulus-responsive tags that can reversibil-

ity precipitate out of solution. With an appropriate stimulus, target proteins can be

efficiently and rapidly removed from complex solutions and purified. While effective,

these tags tend to require either temperature changes or relatively harsh buffer condi-

tions to induce precipitation. Therefore, there is a need for gentler alternatives. We

have developed a synthetic peptide, based on the natural repeats-in-toxin (RTX) do-

main, which undergoes calcium-responsive, reversible precipitation. In this work, this

tag is coupled to maltose binding protein and shown capable of efficiently purifying the

fusion protein. The maltose binding protein fusion was appended to green fluorescent

protein, β-lactamase and a thermostable alcohol dehydrogenase and we demonstrate

that these constructs can also be purified using calcium-induced precipitation. Finally,

protease cleavage downstream of the precipitating tag demonstrates that pure, active

target protein can be obtained by cycling precipitations before and after cleavage. This
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work presents a new stimulus-responsive precipitating tag that can be used for efficient

bioseparations using gentler conditions that existing alternatives .

4.2 Introduction

Non-chromatographic purification techniques are of significant interest as chromatog-

raphy is typically the most expensive step in protein purification [94]. Alternative

approaches have been sought and these methods often rely on targeted precipitation

of the protein. One approach is metal chelate affinity precipitation, where thermore-

sponsive copolymers can be used to specifically precipitate out poly-histidine tagged

recombinant proteins [9, 70]. Another purely protein based approach is the use of

thermoresponsive elastin-like peptides (ELPs) that precipitate with small temperature

increases and consist of tandem repeats of the sequence VPGXG [83, 84]. ELPs un-

dergo an inverse phase transition and aggregation, which is thought to be driven by the

exposure of hydrophobic patches upon heating [129]. As part of a purification system,

ELPs have been coupled to intein domains which have been genetically engineered into

their minimal self-cleaving units [123]. When coupled, the ELP-intein system allows for

a simple two stage purification scheme. In the first step, the ELP is triggered and the

fusion protein is purified. Then, the intein is induced to cleave off the target protein and

the ELP is again precipitated, leaving behind pure target protein [10]. While effective

for many purification applications, the necessary heating of samples or the alternative

use of high salt concentrations can be problematic in many situations [45]. Another

protein-based non-chromatographic purification scheme developed by Ding et al. relies
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on calcium-dependent precipitation of annexin B1 [34]. A self-cleaving intein has also

been incorporated to remove the tag following purification.

Our interest in alternatives to chromatography is a product of discoveries made while

exploring repeat scaffolds for protein engineering applications. Repeat scaffolds are of

interest to protein engineers as their repetitive, predictable secondary structures make

them ideal for both studying folding and engineering novel functions [31, 53]. Multiple

examples exist of repeat scaffolds being engineered for biomolecular recognition, most

notably the ankyrin repeats [16]. In order to improve the engineerability of these

scaffolds, efforts have been made toward consensus design. Consensus design seeks to

identify the core repeating peptide unit. Once this unit is identified, multiple repeats

can be concatenated as necessary for the particular application. Consensus design

approaches have been successfully used for a number of repeat scaffolds, including

ankyrin repeats, tetratricopeptide repeats, and armadillo repeats [18, 78, 86, 91]. The

ability to alter the size of a scaffold is of particular use when engineering binding, as

the interface size can be tuned to the particular target.

In an effort to explore novel scaffolds for protein engineering, we have sought to

identify a repeat scaffold which is also stimulus-responsive. Towards this end, we have

investigated the calcium-responsive repeats-in-toxin (RTX) domain. The RTX domain

is found in proteins secreted through the bacterial type 1 secretion system [59]. The

domain consists of repeats of the consensus amino acid sequence GGXGXDXUX, where

X is variable and U is a hydrophobic amino acid. One of the most well characterized

RTX domains is the block V RTX domain from the adenylate cyclase toxin (CyaA)

of B. pertussis. The domain is intrinsically disordered in the absence of calcium and
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forms a β-roll structure (Figure 4.1a) in the presence of calcium [25]. Of note, the

block V RTX domain retains its reversible calcium responsiveness even when expressed

separately from the larger protein [13,19]. Previous efforts have been made to use RTX

domains in protein engineering, including incorporation into mesh networks, design of

synthetic RTX peptides, and hydrogel forming RTX domains [35,72,99,101].

Figure 4.1: β-roll structure and sequence logo. (a) Crystal structure of β-roll domain
from metalloprotease of S. marcescens (PDB: 1SAT). (b) Amino acid frequencies for a
single β-roll repeat identifying consensus sequence GGAGNDTLY. Height of the letter
corresponds to proportion of sequences containing the particular amino acid at that
position. Sequence logo was generated using WebLogo.

Our original objective in this work was to design consensus RTX domains. Specifi-

cally, we identified the frequency of amino acids at each position of the nine amino acid

repeat unit from a set of RTX-containing proteins (Figure 4.1b). This led to identifi-

cation of the consensus sequence GGAGNDTLY. We then sought to create a library of

consensus RTX constructs consisting of 5, 9, 13, or 17 repeats of the consensus unit.

Upon purification of a number of these constructs, we observed that many of them pre-

cipitate in the presence of calcium. Therefore, we decided to explore the possibility for

using these consensus β-roll tags (BRTs) as a tool for bioseparations, similar to the ELP

system. Here, we report the use of BRTs to purify recombinant proteins. We first pu-

rify a maltose binding protein (MBP)-BRT17 fusion as a proof of principle. Then, this
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MBP-BRT17 construct is fused to green fluorescent protein (GFP), which was used as a

reporter during initial purification experiments. We have also fused β-lactamase and a

thermostable alcohol dehydrogenase (AdhD) to demonstrate the feasibility of purifying

enzymatic proteins. Finally, a specific protease site was engineered downstream of the

tag to show target proteins can be fully purified by protease cleavage while retaining

their activity.

4.3 Materials & Methods

4.3.1 Materials

All oligonucleotides were purchased from Integrated DNA Technologies (Coralville, IA).

All enzymes for cloning experiments as well as the maltose binding protein expression

system were purchased from New England Biolabs (Ipswich, MA). Isopropyl β-D-1-

thiogalactopyranoside (IPTG) was obtained from Promega (Madison, WI). PAGE gels,

protein ladder, and SimplyBlue SafeStain were obtained from Life Technologies (Grand

Island, NY). All chemicals and other reagents were purchased from Sigma-Aldrich (St.

Louis, MO) unless otherwise specified.

4.3.2 Cloning

Four different sized MBP-BRT fusions were prepared consisting of 5, 9, 13, or 17 repeats

of the consensus RTX sequence (named BRT5, BRT9, BRT13, and BRT17). In order

to generate the DNA fragment for BRT9, three oligonucleotides were synthesized: cons-

beta-1, cons-beta-2, and cons-beta-3. 1 ng of each of these oligonucleotides was mixed
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along with the primers cons1-AvaI-F and cons9-BseRI-HindIII-R. PCR was performed

and a clean product was obtained and gel extracted. This fragment was digested with

AvaI and HindIII and cloned into the similarly digested pMAL-c4E vector to generate

pMAL-BRT9.

To generate the BRT5 construct, pMAL-BRT9 was used as a template for PCR

with the primers cons1-AvaI-F and cons5-BseRI-HindIII-R. This product was digested

with AvaI and HindIII and cloned into the pMAL-c4E vector producing pMAL-BRT5.

BRT13 was produced by concatenation of four additional repeats to BRT9. Con-

catenations were achieved using a recursive ligation technique we developed, similar to

those previously described [82,85]. This four repeat insert was amplified using primers

cons1-BtsCI-F and cons4-BseRI-HindIII-R. The product was digested with BtsCI and

HindIII and cloned into pMAL-BRT9 cut with BseRI and HindIII to yield pMAL-

BRT13. BRT17 was produced analogously to BRT13, except that the reverse primer

cons8-BseRI-HindIII-R was used instead of cons4-BseRI-HindIII-R.

The emGFP gene was amplified from Invitrogen pRSET/emGFP vector using primers

GFP-BseRI-F and GFP-HindIII-R. The β-lactamase gene was amplified from the pMAL-

c4E vector using primers βlac-BseRI-F and βlac-HindIII-R. AdhD was amplified out

of pWUR85 using primers AdhD-BserI-F and AdhD-HindIII-R [24]. All three of these

inserts were digested with BseRI and HindIII and cloned into similarly digested pMAL-

BRT17 to yield pMAL-BRT17-GFP, pMAL-BRT17-βlac and pMAL-BRT17-AdhD.

The native enterokinase site in the pMAL-c4E vector, which sits between MBP and

BRT17, was knocked out in the pMAL-BRT17-βlac and pMAL-BRT17-AdhD plasmids.

Two rounds of site directed mutagenesis were required to change the native recogni-
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tion site, DDDDK, to DDGEQ, which was shown to be resistant to cleavage. A novel

enterokinase recognition site was also engineered downstream of BRT17 in these con-

structs to allow for purification of the untagged protein of interest. All oligonucleotide

sequences can be found in the publication listed at the beginning of this chapter.

4.3.3 Expression and Purification

For expression and cloning, Invitrogen Omnimax T1 E. coli cells were used. 1 L cultures

of TB supplemented with 100 µg/mL ampicillin and 0.2% glucose were inoculated with

10 mL of overnight culture. Cultures were grown at 37 °C with shaking at 225 RPM

to an approximate OD600 of 0.6 and induced with 0.3 mM IPTG. Cells harboring

pMAL-BRT17 and pMAL-BRT17-βlac were allowed to express for an additional 2 h

and harvested. Cultures transformed with pMAL-BRT17-GFP were transferred to a

shaker at 25 °C and allowed to express for an additional 16 h and then harvested as no

fluorescence was observed when expressed at 37 °C. Cultures transformed with pMAL-

BRT17-AdhD were allowed to express at 37 °C for an additional 16 h as previously

reported [24]. Cells were harvested after expression and resuspended in 1/20 culture

volume of 50 mM Tris-HCl, pH 7.4 for precipitation purification. For amylose resin

purification, cells were resuspended in 1/20 culture volume of MBP column buffer

(20 mM Tris-HCl, 200 mM NaCl, 1 mM EDTA, pH 7.4). In both cases, cells were

subsequently lysed via sonication using 15 second pulses for a total of 150 seconds.

Lysate was then clarified by centrifugation at 15,000 x g for 30 min at 4 °C. For amylose

resin purification, clarified lysate was diluted with five volumes of column buffer and

purified as previously described [19]. All subsequent steps were performed at room
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temperature.

For precipitation purification, clarified lysate was added to a concentrated calcium

stock as indicated by the calcium concentration in the data presented. For example,

for precipitation of MBP-BRT17 lysate in 100 mM CaCl2, 950 μL of clarified lysate

was added to 50 μL of 2M CaCl2 solution. The sample was promptly mixed by gentle

pipetting and allowed to sit at room temperature for 2 min. The sample was then

centrifuged at 16,000 x g in a microcentrifuge for 2 min. The supernatant was carefully

removed and the pellet was resuspended in the same Tris buffer by gentle pipetting. The

turbid solution was centrifuged and washed for four additional cycles. For the final step,

the pellet was resuspended in Tris buffer with a concentration of EGTA equivalent to

the original calcium concentration. Gentle pipetting was sufficient to cause the sample

to redissolve as confirmed by observation and the lack of a precipitate upon subsequent

centrifugation.

4.3.4 Recovery, Activity and Fluorescence Assays

Concentrations of all purified proteins were determined by 280 nm absorbance using

calculated extinction coefficients. A table of all extinction coefficients is provided in the

Supplemental Information. Recovery of MBP-BRT17 both by amylose resin purification

and precipitation was determined using solely this method.

MBP-BRT17-GFP recoveries were estimated by comparing fluorescence emission

intensity at 509 nm with excitation at 487 nm. 100-fold dilutions of both clarified

lysate and purified protein were made for fluorescence measurements. Purified proteins

were resuspended in the same volume as the lysate from which they were extracted, so
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signals were compared directly.

For estimation of MBP-BRT17-βlac recovery, protein was added to a nitrocefin

solution and the absorbance at 486 nm was tracked corresponding to the hydrolysis of

nitrocefin. 500 μL of nitrocefin solution was prepared by placing three nitrocefin disks

(Fluka) in 450 μL 50 mM Tris-HCl, pH 7.4 and 50 μL DMSO. In each sample well, 50

μL of this solution was mixed with 90 μL of the same Tris buffer and 10 μL of protein

sample. For each sample tested, serial dilutions from 1X to 1000X were prepared from

lysate and purified protein. Initial rates were determined by measuring the change in

absorbance at 486 nm over the first 10% of the change in signal between the starting

absorbance and the end absorbance. The same nitrocefin stock solution was used for

all samples to account for variations in concentration. MBP-BRT17-AdhD recovery

was also evaluated by enzymatic activity using a protocol previously described [24].

Since this alcohol dehydrogenase has been isolated from the hyperthermofile Pyrococcus

furiosus, all samples were heat treated at 80 °C for 1 h prior to evaluating activity. All

assays were performed at saturated conditions of both cofactor and substrate, 0.5 mM

NAD+ and 100 mM 2,3-butanediol, respectively. Reaction mixtures containing 2,3-

butanediol and protein sample in 50 mM glycine pH 8.8 were incubated at 45 °C in a

96 well UV microplate in a spectrophotometer. Reactions were initiated by the addition

of NAD+. Initial rates were calculated by following the production of NADH at 340 nm.

Specific activity of cleaved AdhD was calculated using an NADH extinction coefficient

(ε340 = 6.22 mM-1 cm-1). All spectroscopic measurements were done on a SpectraMax

M2 spectrophotometer (Molecular Devices, Sunnyvale, CA).
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4.4 Results & Discussion

In order to identify the consensus RTX sequence, a database of RTX containing proteins

was constructed by a search of the UniProt database for hemolysin-type calcium binding

domains. Individual repeats were identified and the frequency of amino acids at each

of the nine repeat positions was determined (Figure 4.1b). From this result, the repeat

sequence GGAGNDTLY was identified as the consensus sequence. For a few of these

positions, other amino acids were found with nearly equal frequency. However, as this

sequence was found to be effective for purification, further investigation on sequence

variation was not performed. A variety of synthetic RTX domains of different lengths

(5, 9, 13, and 17 repeats) were prepared as fusions to the C-terminus of MBP. These

lengths were chosen based on the natural variability in the lengths of RTX domains.

These BRT constructs were named BRT5, BRT9, BRT13, and BRT17, with numbers

denoting the number of repeats. Unexpectedly, we observed that upon the addition

of calcium to the purified BRT17 construct, there was significant precipitation out of

solution, which was reversed upon the addition of the chelating agent, EGTA.

In order to more thoroughly characterize the observed precipitation behavior, cells

were induced to express the four MBP-BRT constructs. Clarified cell lysates were

prepared from these four cultures and were then titrated with calcium to assess precip-

itation behavior. Briefly, 1 mL of clarified cell lysate was mixed with calcium chloride

solution at the indicated concentrations, clarified by centrifugation, and the mass of

the pellet measured (Figure 4.2). Due to possible variations in cell growth rates and

densities, all cultures were started from saturated overnight cultures and induced simul-

taneously. Both BRT13 and BRT17 precipitated when calcium concentrations exceeded
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25 mM. Some precipitation was observed from BRT5 and BRT9 lysate, similar to what

was observed with control cell lysate. Addition of an equivalent concentration of EGTA

allowed the pellets to quickly dissolve again upon gentle pipetting.

Figure 4.2: Mass of precipitated pellet versus calcium chloride concentration and
BRT size. Results for MBP-BRT5( ), MBP-BRT9(#), MBP-BRT13(c), and MBP-

BRT17(1). Error bars represent standard deviations for 3 trials.

While both BRT13 and BRT17 precipitated upon calcium addition, it was observed

that the BRT17 formed a pellet that was easier to clarify and was selected for further

examination. Three additional constructs were prepared by fusing MBP-BRT17 to

the N-terminus of GFP, β-lactamase, and AdhD, all of which are well-folded proteins.

(named MBP-BRT17-GFP and MBP-BRT17-βlac, MBP-BRT17-AdhD respectively).

These three proteins were fused to MBP to allow for amylose resin chromatography

purification as an orthogonal comparative technique. GFP was chosen as a reporter

protein for initial purification experiments to track the location of the BRT. β-lactamase

and AdhD were chosen as they are well characterized enzymes with straightforward
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assays to assess activity.

The folding of RTX domains into β-roll secondary structures is highly calcium-

specific. Therefore, we were interested in whether or not the precipitation behavior

observed was also calcium-specific. To test this, MBP-BRT17-GFP was purified on

an amylose resin and diafiltered into salt-free Tris buffer. Diafiltration was necessary

as proteins are purified in high salt buffer for the amylose resin and it was observed

that BRT precipitation was significantly reduced in high salt. This is consistent with

previous observations that RTX calcium affinity is reduced with increasing salt con-

centration [111]. Solutions of various salts were added to final concentrations of 100

mM. The samples were then gently mixed by pipetting, allowed to sit for 2 min, and

centrifuged at 16,000 x g in a microcentrifuge for 2 min. Tubes were then inverted and

the presence of a pellet at the top was indicative of precipitation (Figure 4.3). BRT

precipitation was observed to be calcium-specific, with near complete precipitation of

MBP-BRT17-GFP (as indicated by the remaining color in solution) in calcium and no

precipitation in other salts. While this behavior does not establish the formation of a

β-roll structure, it does indicate that at least one property of the β-roll is preserved in

these constructs.
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Figure 4.3: Ion specificity of BRT precipitation. Purified MBP-BRT17-GFP was mixed
with 100 mM of the compound indicated, and centrifuged to collect any pellet. The
tube was then inverted such that precipitated protein remained on top. The compounds
were as follows: (a) CaCl2, (b) MgCl2, (c) MnCl2, (d) NaCl, and (e) (NH4)2SO4.

For all four constructs tested, calcium concentrations greater than 25 mM were found

to cause precipitation of the fusion protein. To assess the ideal calcium concentration,

all four constructs were precipitated from 1 mL of clarified cell lysate in 25, 50, 75, and

100 mM calcium chloride. Pellets were washed in salt-free Tris buffer five times. Pellets

were broken up upon washing, but did not redissolve until exposed to an equivalent

concentration of EGTA after the final wash. The 100 mM CaCl2 samples were found

to not fully redissolve, so only lower CaCl2 concentrations were tested further. A

slight increase in recovery was observed at 75 mM CaCl2 (as compared to lower CaCl2

concentrations) as confirmed by SDS-PAGE (data not shown). All four constructs were

subsequently purified by precipitation with 75 mM CaCl2 and SDS-PAGE gels were

run after five washes (Figure 4.4). No significant difference was found with increasing

number of washes, so further quantification and recovery measurements were performed

on samples washed five times. To confirm scalability, the analogous protocol was also

performed on 50 mL lysate, and comparable results were obtained (data not shown).
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Additionally, we briefly tested the reversibility of the precipitation process. It was found

that addition of calcium to the redissolved pellet in EGTA solution did yield a pellet

once again. However, full pellet size was only recovered after dialysis into EGTA-free

buffer.

Figure 4.4: SDS-PAGE results for purification of four fusion constructs tested. Numbers
are standard size in kDa. Expected molecular weights for MBP-BRT17, MBP-BRT17-
GFP, MBP-BRT17-βlac, and MBP-BRT17-AdhD are 57.1, 83.4, 88.6, and 89.1 kDa,
respectively. (1-2) Purification of MBP-BRT17. Lane 1 is clarified lysate, and 2 is
purified fusion protein. (3-4) Same samples for purification of MBP-BRT17-GFP. (5-6)
Same samples for MBP-BRT17-βlac. (7-8) Same samples for MBP-BRT17-AdhD.

We next sought to quantify the recovery and functionality of the purified proteins

after precipitation. To assess recovery of MBP-BRT17, we used the theoretically deter-

mined extinction coefficient to estimate concentration by absorbance at 280 nm (57).

Results from purifying the construct on an amylose resin were compared to BRT precip-
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itation. For MBP-BRT17-GFP, recoveries were calculated as the percentage of fluores-

cence signal of purified sample compared to lysate (this was normalized against control

lysate). Along with total protein recoveries estimated by UV absorbance, recoveries of

both MBP-BRT17-βlac and MBP-BRT17-AdhD were estimated by comparing lysate

activity to activity of these constructs after purification. MBP-BRT17-βlac recover-

ies were calculated using activity measured by tracking the absorbance at 486 nm for

the hydrolysis of nitrocefin. MBP-BRT17-AdhD recoveries were calculated by tracking

NADH formation at 340 nm in saturating conditions of both substrate and cofactor.

Results of these trials are shown in Table 4.1. For MBP-BRT17, calcium precipitation

recovers about double the amount of protein as compared to amylose resin purification.

MBP-

BRT17
MBP-BRT17-GFP MBP-BRT17-βlac MBP-BRT17-AdhD

Calcium,

mM

Fold vs.

Resin

Fold vs.

Resin

Fluores.

Recovered

Fold vs.

Resin

Activity

Recovered

Fold vs.

Resin

Activity

Recovered

25 2.0 ± 0.1 2.8 ± 0.1 61 ± 3% 4.1 ± 0.1 1.6 ± 0.1% 1.6 ± 0.1 3.8 ± 0.5%

50 2.3 ± 0.1 3.7 ± 0.1 86 ± 6% 5.3 ± 0.2 4.0 ± 0.1% 1.7 ± 0.1 4.7 ± 0.7%

75 2.2 ± 0.2 2.8 ± 0.3 78 ± 8% 5.1 ± 0.2 3.4 ± 0.1% 2.2 ± 0.1 8.3 ± 1.4%

Table 4.1: “Fold vs. Resin” denotes protein quantity recovered relative to amylose resin
for equivalent loading amount. For MBP-BRT17-GFP, MBP-BRT17-βlac, and MBP-
BRT17-AdhD fluorescence and activity are the respective properties relative to clarified
lysate. Errors represent standard deviations. All data were collected in triplicate.

For MBP-BRT17-GFP, we observed up to 86% recovery of fluorescence. MBP-

BRT17-βlac recovery from the lysate was not as high, but was still 5-fold better than

the amylose resin, yielding a significant quantity of protein. Similar results were also

observed for MBP-BRT17-AdhD, although the yields were not quite as high compared
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to the resin (2-fold improvement). The activities recovered in Table 4.1 are seemingly

low, but still out performed the amylose resin purification. Small errors may have been

introduced while assessing the fusion protein activity in crude lysate, even though we

have accounted for endogenous hydrolysis (β-lactamase) and reduction (AdhD). Table

4.2 lists the absolute yield of each fusion protein in mg/mL based on UV absorption at

280 nm. All fusion proteins were shown to be purified in high yields.

Calcium, mM MBP-BRT17 MBP-BRT17-GFP MBP-BRT17-βlac MBP-BRT17-AdhD

25 268 ± 11 333 ± 12 124 ± 3 198 ± 3
50 305 ± 14 434 ± 17 160 ± 7 273 ± 9
75 295 ± 26 336 ± 40 176 ± 5 214 ± 6

Table 4.2: Absolute yield of precipitated constructs given in mg/mL. Values were deter-
mined using UV absorbance at 280 nm and calculated extinction coefficients available in
the Supplemental Information. All data were collected in triplicate and errors represent
standard deviations.

To increase the utility of this tag, it would be beneficial to couple our system with

a cleavage tag to separate the protein of interest from the BRT. The pMAL-c4E vector

we used for these experiments contains a cleavable enterokinase site between the MBP

and BRT. This recognition sequence was removed via site directed mutagenesis. A

new enterokinase site was engineered between the BRT and the protein of interest for

MBP-BRT17-βlac and MBP-BRT17-AdhD. Therefore, as a proof of principle, we took

precipitation purified MBP-BRT17-βlac and MBP-BRT17-AdhD and subjected them

to overnight cleavage by enterokinase digestion. Calcium can then be added directly to

the cleavage reaction to precipitate MBP-BRT17, thereby separating the tag from the

protein of interest following centrifugation. These results are given in Figure 4.5 for

MBP-BRT17-AdhD, showing pure, soluble protein by SDS-PAGE.
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Figure 4.5: SDS-PAGE results for purification and cleavage of AdhD. Numbers are
standard size in kDa. Estimated molecular weight for AdhD is 31.9 kDa. (1) Clarified
MBP-BRT17-AdhD lysate. (2) Purified fusion protein. (3) Enterokinase cleavage. (4)
Precipitated MBP-BRT17. (5) Soluble AdhD. 3x protein concentrations were used in
lanes 3, 4, and 5.

Recoveries of 93 ± 7% were obtained by tracking UV absorbance at 280 nm, meaning

93% of the AdhD in the precipitation purified sample was recovered after cleavage and

reprecipitation of the tag. Specific activity of the purified enzyme was also calculated

to be 20.2 ± 1.3 min-1, which is similar to what has been previously reported, indicating

this system has little to no effect on protein structure or function [24]. However, in the

case of MBP-BRT17-βlac, the cleaved β-lactamase remained in the insoluble fraction

following enterokinase cleavage and calcium precipitation. Upon further investigation
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it was found that β-lactamase will precipitate in high calcium concentrations. As a con-

trol experiment, we purchased recombinant β-lactamase and observed similar behavior.

In 75 mM calcium, an insoluble pellet was formed upon centrifugation. Activity as-

says confirmed a significant amount of active protein in the insoluble fraction (data

not shown). This illustrates a caveat of the BRT system. Proteins that naturally pre-

cipitate in calcium solutions cannot be efficiently separated from the BRT. For future

improvement of this system, the protease used could be fused to the precipitating BRT

or a self-cleaving intein could be incorporated. Fusing the protease to the BRT would

enable its removal from the target protein in the final precipitation. A self-cleaving

intein would fulfill a similar function. It should also be noted that the BRT can pre-

cipitate without being fused to MBP, suggesting MBP is not essential for this system,

however MBP may be useful to improve protein expression levels.

It is not completely clear why these consensus RTX constructs are able to function

as a bioseparations tag. We do observe a correlation between length and precipitation

(Figure 4.2), so size certainly plays a role. However, there has not been extensive

work in studying the role of number of repeats on RTX behavior. We recently studied

the impact of altering the number of native RTX repeats in the block V CyaA RTX

domain of B. pertussis but no significant size effect was observed and, further, a C-

terminal capping was required for calcium responsiveness [104]. As for past efforts at

synthetic RTX domains, the synthetic domains created by Scotter et al. consisted of

4 RTX repeats and those prepared by Lilie et al. consisted of 8 repeats [72, 101]. The

peptides create by Lilie et al. were weakly calcium-responsive, while those of Scotter

et al. were only lanthanum responsive and formed partially insoluble filaments in the
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presence of lanthanum. In general, it is fairly well established that beta sheets are

prone to aggregation and nature uses various strategies to ensure solubility, so perhaps

BRTs are a balance between this tendency and the calcium responsiveness of the β-

roll [98]. Further investigation will be required to better elucidate the mechanism of

BRT functionality, but their use as a tool for protein purification is clear.

4.5 Conclusions

The technique described here offers a new stimulus-responsive phase-changing peptide

that could be useful in a range of applications similar to those for which ELPs have been

used, such as recombinant protein purification or in the creation of “smart” biomateri-

als. This tag possesses certain advantages over ELPs and annexin B1 since precipitation

is simpler to achieve and the BRT is significantly smaller. Additionally, BRT17 pre-

cipitates in as little as 25 mM calcium chloride at room temperature compared with

larger ionic strength and higher temperature increases required for ELP precipitation.

Precipitation also occurs instantaneously, whereas annexin B1 based systems require a

2 h incubation period at 4°C. Overall, BRTs offer a new tool for rapid purification of

recombinant proteins. The protocol described here can be performed to obtain purified

fusion protein from lysate in only a few minutes. Further optimization of the BRT

system should enable the use of specific proteases to purify target proteins and further

improve the precipitation and resolubilization process, greatly enhancing the ability to

rapidly purify recombinant proteins.
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4.6 Supplemental Information

Construct ε280, M-1cm-1

MBP-BRT17 91,680
MBP-BRT17-GFP 113,695
MBP-BRT17-βlac 119,765

MBP-BRT17-AdhD 144,175
AdhD 52,370

Table 4.3: Extinction coefficients
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Chapter 5

Engineering the RTX Domain for

Calcium-Dependent Molecular

Recognition
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Project Collaborators: Kevin Dooley, Oren Shur, Raymond Bellon, Geza Szilvay, Mark

Blenner & Scott Banta

A version of this chapter is being prepared for publication. KD prepared DNA library,
completed all ribosome display experiments, and B1β characterization.

5.1 Abstract

Typically, antibody and antibody fragments have filled the demand for new molecular

recognition elements required for clinical diagnostic exams, protein-based biosensors,

therapeutic treatment strategies, and a host of other applications in biomedical en-

gineering and biotechnology. However, non-immunoglobulin protein scaffolds recently

emerged as viable alternatives which improve on many of the roadblocks faced by an-

tibodies while maintaining similar degrees of affinity and specificity. We identified the

repeats-in-toxin (RTX) domain as one such scaffold. These domains are conforma-

tionally dynamic and intrinsically disordered in the absence of calcium. Calcium-rich

environments induce a reversible structural rearrangement to a compact, stable β-roll

structure. We plan to use this calcium triggered conformational change as a peptide

switch to modulate a designed binding interface thereby generating an allosterically

regulated binding domain. The β-roll provides a flat, stacked β-sheet surface amenable

to mutations. We designed a β-roll library by randomized 8 surface exposed residues on

this β-sheet face. As a proof-of-concept work, we evolved a mutant RTX domain with

low micromolar affinity for a model protein, lysozyme, via ribosome display. The bind-

ing affinity and energetic profile were evaluated by isothermal titration calorimetry. We
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also evaluated the practical utility and stimulus-responsive behavior of the mutant RTX

domain by attempting to capture the target protein in a calcium-rich packed column.

5.2 Introduction

Advances in combinatorial protein engineering techniques and high throughput screen-

ing have allowed researchers to explore alternatives to full-length immunoglobulin (Ig)

domains to address critical problems in biomedicine and biotechnology. Several non-Ig

based proteins have been engineered for applications in large-scale affinity chromatogra-

phy, in vivo imaging, diagnostic screening, biosensor development, and cancer therapy

with several constructs progressing into clinical trials [14,126,127]. Traditionally, anti-

bodies have filled the demand for new, engineered molecular recognition elements. As

nature’s preferred method for immunological response, antibodies possess the ability to

bind to a staggering array of antigens. The affinity and specificity to which antibodies

bind their targets is predicated on the selection of an optimal binding interface from

a large, diverse library. This process has been successfully mimicked in the labora-

tory giving rise to FDA approved engineered antibodies for therapeutic applications,

responsible for generating billions in revenue annually [42].

However, this paradigm has been challenged in recent years by an emergent class of

protein scaffolds. Small, single domain proteins devoid of disulfide bonds are becom-

ing increasingly popular as starting frameworks for engineering molecular recognition.

These scaffolds maintain the potential to achieve similar levels of affinity and speci-

ficity as full length antibodies while improving on many of the drawbacks discussed
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in Chapter 1 including large size, post-translational modification requirements, and

low levels of recombinant expression. In-depth reviews on several of these domains

are available [11, 17, 51, 58, 75, 88, 107]. One such scaffold that fits these criteria is the

calcium-responsive RTX protein. In previous chapters, the RTX domain was evalu-

ated as a physical cross-linker in stimulus-responsive biomaterials development and as

a protein purification tag. Here we aim to investigate the RTX domain as a potential

scaffold for engineering molecular recognition. Moreover, we aim to use the peptide’s

calcium-induced structural rearrangement to modulate an engineered binding interface

to explore a calcium-specific “capture and release” strategy for chromatographic purifi-

cation.

Antibodies are commonly used in immunoaffinity applications to capture analytes

of interest with achievable affinities in the nano- to picomolar range [44, 100]. Com-

mercially available products, including sepharose beads and agarose resins, conjugated

with engineered antibodies are marketed for purification of host cell proteins such as

DNA/RNA polymerases, growth factors, and ligases (Sigma-Aldrich, Neoclone). Since

immunoglobulins bind their targets with such high affinities, a critical challenge lies in

creating effective strategies to release the captured target from the antibody. Typically,

protein denaturants or large swings in pH are required to destabilize the antibody-

antigen complex and recover the target molecule [63, 114]. These extreme conditions

can often irreversibly damage both the target and the immobilized antibody causing a

drop in functional analyte recovery and an abbreviated column lifetime [22]. Here we

propose to evolve the RTX domain to bind a target protein with similar affinity and

specificity as immunoglobulin domains while in the calcium-bound β-roll conformation.
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By removing the calcium from the system, the engineered binding face will lose its

structure thereby releasing the target molecule. Combining the molecular recognition

advantages of antibodies with a simple release mechanism will offer an attractive system

for chromatographic purification as well as other biotechnology applications.

5.2.1 Directed Evolution

There are several methods available to protein engineers for generating biomolecules

with novel functions for research and clinical applications including computational and

rational design. The most common method used to produce new molecular recognition

elements is directed evolution. Modeled after the natural evolutionary process, directed

evolution is based on applying selective pressure to a protein library in order to isolate a

variant with a desired phenotype (affinity, catalytic activity, stability, etc.). This cyclic

process is outlined in Figure 5.1. After identifying the RTX domain as a potential

scaffold, a library of mutant RTX proteins was constructed. The folded RTX domain is

composed of two parallel β-rich faces separated by flexible turn regions. This stacked β-

sheet face is structurally similar to the binding interface of leucine rich repeat proteins,

which naturally participate in biomolecular recognition. The side chains of the 7th and

9th residues in the glycine/aspartate rich repeating sequence (GGXGXDXUX) are

solvent exposed and highly variable in naturally occurring RTX domains. The library

was built by using overlapping oligonucleotides such that the 7th and 9th position

in every other repeat was randomized. By doing this, the mutated positions form a

contiguous surface in the calcium-bound β-roll conformation. The library construction

process is outlined in Figure 5.2.
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Figure 5.1: Directed evolution cycle for isolating new binding proteins. A suitable
scaffold is selected and sites for mutagenesis are identified. A library of mutants is
constructed at the DNA level and selected at the protein level using a library display
technology. Library diversity can be added back to the system through error-prone
PCR, DNA shuffling or some other mutagenesis technique. The cyclic process is re-
peated until the desired phenotype is achieved.
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Figure 5.2: RTX library construction. Two long oligonucleotides coding for the entire β-
roll gene were used to create the RTX library. Eight randomized positions were created
by inserting NNK codons at the indicated positions. The oligonucleotides were annealed
and extended. The resulting randomized protein is shown in the folded conformation
with the bound calcium ions shown in red and the randomized surface shown in pink.
The primary sequence is shown with the randomized positions underlined.
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Once a library is constructed on the DNA level, the cognate translated protein con-

structs must be evaluated for the desired phenotype. A linkage is required between

the translated mutant proteins and the genetic information that codes for them. This

genotype-phenotype linkage can be achieved through a variety of available display tech-

nologies and is critical for any directed evolution experiment. Some common methods

include compartmentalizing DNA inside a carrier vehicle such as bacteriophage (phage

display) or E. coli/S. cerevisiae (cell surface display) while displaying the translated

protein on the outside of the carrier. Other methods directly (mRNA display) or in-

directly (ribosome display) link the genetic material to the associated protein through

covalent bonds. All of these technologies are well documented and some are sold com-

mercially in kits [39,40,49,74,95,97,113,116].

5.2.2 Ribosome Display

For this work, we elected to use ribosome display to select for molecular recognition

against a model protein, lysozyme. This technology offers several advantages over

some of the more conventional techniques like phage or cell surface display. It is a

completely in vitro method that allows for more diverse libraries to be selected against

[93]. DNA libraries are not restricted by inefficient transformation into E. coli or yeast

for expression. Instead, the libraries are produced in their protein form using purified

cell extracts containing all of the required machinery for transcription and translation.

A description of the ribosome display process is given in Figure 5.3 and has been outlined

previously [39,40,93]. The RTX library is first cloned into the ribosome display vector

(pRDV) which provides a T7 promoter and a ribosome binding site. The gene for an
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unstructured portion of the endogenous E. coli tolA protein lies directly downstream

of the RTX library in pRDV. The sole function of this protein, in this context, is to act

as a spacer and allow the translated protein of interest to exit the ribosomal tunnel.

The library and spacer are amplified by PCR using primers which anneal outside of the

promoter and in the middle of the tolA spacer. It is important to note here that the

amplicon does not include a stop codon. The amplified library is transcribed in vitro

producing an mRNA strand coding for the RTX mutant and the tolA spacer. 5’ and 3’

stem loops help stabilize and protect the mRNA strand from ribonuclease degradation.

The mRNA strands are then translated in the presence of E. coli extracts. Since there

is no stop codon present, the protein remains covalently attached to the tRNA inside

the ribosome, with the tolA spacer allowing the protein of interest to fold outside of

the tunnel in solution.

Ternary complexes composed of the ribosomal subunits, mRNA strand, and nascent

folded protein can then be used for selection against an immobilized target. In this work,

biotinylated lysozyme was immobilized on streptavidin coated microtiter plates and in-

cubated with the ternary complexes. Weakly bound mutants were removed by stringent

washes. Surviving library members were recovered by dissociating the ribosomal pro-

teins thereby releasing the mRNA into solution. mRNA stands coding for surviving

mutants were reverse transcribed into cDNA and amplified by PCR for ligation back

into pRDV for a subsequent round of selection. Library diversity can be conveniently

introduced at this step by error-prone PCR, DNA shuffling, or some other mutagenesis

technique. These cyclic processes, both ribosome display and directed evolution, can

be repeated as necessary until the desired phenotype is achieved.
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Figure 5.3: Ribosome display vector map and selection process.

100



5.2.3 Isothermal Titration Calorimetry

In this work, we hope to evolve a folded RTX mutant with the ability to bind lysozyme.

Following the directed evolution process, the phenotypes of surviving mutants must be

assessed. Most methods of evaluating molecular recognition, including ELISA and IC50,

do so indirectly and depend on other chemical reactions or binding interactions con-

comitantly. Isothermal titration calorimetry (ITC) experimetns can be perfomed on

spectrophotometrically silent reactants, in turbid or hetrogeneous solutions, and over a

wide range of biologically relavent environemtns (pH, ionic strength, temperature) [48].

ITC can provide a complete thermodynamic analysis of binding energetics between

two molecules without the need for extraneous reactions or labeling reagents. Molec-

ular recognition events are invariably associated with energetic changes in the system.

These small amounts of heat evolved from the formation/breaking of interactions can

be detected accurately to approximately ± 0.1 μcal with current calorimeters [50]. In

a typical experiment, a concentrated solution of ligand is titrated isothermally into a

cell containing a dilute solution of its binding partner, usually referred to as the macro-

molecule. A schematic of the instrument is provided in Figure 5.4. A reference cell

is held at a constant temperature. Any energy released to or absorbed by the system

upon the formation of macromolecule-ligand complexes in the sample cell are detected

in a feedback loop. A compensatory amount of power is delivered to the sample cell to

maintain a constant temperature difference with the reference cell (ideally ΔT = 0).

The differential power applied to the sample cell is recorded for each injection of ligand

and integrated with respect to time. From these integrated power plots, a quantitative

analysis of binding affinity and thermodynamic driving forces for molecular association
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can be performed.

Figure 5.4: ITC schematic. Two cells, a reference and sample, are maintained at a
constant temperature. Ligand is titrated into the sample cell containing macromolecule.
Energy absorbed by or released to the system upon macromolecule-ligand complex
formation is detected by a feedback control loop in the sample cell. The system either
lowers or raises the thermal power applied to the sample cell to restore the temperature
balance between the two cells.

For a simple molecular binding model consisting of a macromolecule (M) and ligand

(X), the reversible binding interaction can be written as [50]:

M +X 
MX (5.1)

The change in Gibbs free energy (ΔG) upon the formation of the MX complex can be

related to the standard Gibbs free energy (ΔG0) through the equations:
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∆G = ∆G0 +RTlnKa (5.2)

and

Ka =
[MX]

[M ][X]
(5.3)

where Ka represents the association binding constant. At equilibrium, ΔG = 0 and the

following substitution can be made:

∆G0 = −RTln
(

[MX]

[M ][X]

)
(5.4)

Additionally, the molar ratio between the concentration of bound ligand (Xb) and

the concentration of total macromolecule (Mt) in the system can be calculated. This

parameter, ν, is given by:

ν =
[X]b
[M ]t

=
[MX]

[M ]t
=

[MX]

[MX] + [M ]
=

Ka[X]

1 +Ka[X]
(5.5)

Since the calorimeter measures the enthalpic contributions directly, the entropic changes

can be calculated by using the standard form of the overall Gibbs free energy change.

∆G0 = ∆H0 − T∆S0 (5.6)

By substitution:

∆H0 − T∆S0 = −RTln
(

[MX]

[M ][X]

)
(5.7)
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In one ITC experiment, using this relatively simple analysis, a complete energetic profile

of binding as well the affinity and stoichiometry can be calculated.

5.3 Materials & Methods

5.3.1 Materials

The maltose binding protein (MBP) expression kit, amylose resin, and all cloning en-

zymes were purchased from New England Biolabs (Ipswich, MA). Isopropyl β-D-1-

thiogalactopyranoside (IPTG) and ampicillin sodium salt were obtained from Gold

Biotechnology (St. Louis, MO). Amicon centrifugal filters were purchased from Milli-

pore (Billerica, MA). Native PAGE gels, running buffer, protein ladder, and SimplyBlue

SafeStain were obtained from Life Technologies (Grand Island, NY). All DNA oligonu-

cleotides were synthesized by Integrated DNA Technologies (Coralville, IA). All chem-

icals and other reagents were purchased from Sigma-Aldrich (St. Louis, MO) unless

otherwise specified.

5.3.2 Library Construction

The randomized β-roll library was constructed using two, long, overlapping oligonu-

cleotides encoding for the entire gene. Randomized positions were created at the DNA

level using mixed codons. At the eight selected positions, NNK degenerate codons were

inserted. N represents any base, A, T, C or G. K represents the keto-containing bases,

G or T. This codon stretch can represent all 20 common amino acids while simultane-

ously knocking out two E. coli RNA stop codons, ochre (UAA) and umber (UGA). The
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library oligonucleotides were annealed and extended creating full-length, hybridized li-

brary. The C-terminal capping region was added by overlap extension PCR. Please

refer to Appendix A for oligonucleotide sequences and PCR conditions.

5.3.3 Ribosome Display

The ribosome display method is thoroughly outlined in Appendix A. It was modeled

after previously published protocols from Pluckthun and coworkers [39,40,93]. Instruc-

tions for preparing E. coli extracts and translational premix can be found in these

protocols as well.

5.3.4 Cloning into the pMAL Vector

The consensus β-roll selected from the ribosome display experiments was cloned into the

pMAL vector and an intein-modified pMAL construct described previously [35]. Both

cloning experiments were designed identically. The gene was amplified out of pRDV

using the following forward and reverse primers with KpnI and HindIII restriction sites,

respectively.

5’-AATAATGGTAACGGGTTCTGCACGCGACGATGTGC-3’

5’-TAATAAAAGCTTTTAGTCCGGATACTGCGCCATTGCC-3’

Following purification, the PCR product was digested and ligated into the appropriate

vector with T4 DNA ligase yielding pMAL-B1β and pMAL-intein-B1β. The constructs

were then transformed into E. coli for expression.
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5.3.5 Expression & Purification of B1β Constructs

All pMAL constructs were expressed identically. 1 L cultures of sterilized TB media

supplemented with 2 g/L D-glucose and 100 μg/mL ampicillin were inoculated with

saturated 10 mL cultures of E. coli harboring the appropriate plasmid. Cell growth

was carried out at 37 °C and 220 RPM until OD600 = 0.6. At this point, expression was

induced by adding IPTG to a final concentration of 0.3 mM. Expression was carried out

for 5 h at 37 °C and 220 RPM after which the cells were harvested by centrifugation

at 3,000 x g for 10 min. Cell pellets were resuspended in 50 mL of MBP column

buffer (20 mM Tris-HCl, 200 mM NaCl, 1 mM EDTA, pH 7.4) and lysed via microtip

sonication for 6 min on ice (Sonicator 3000, QSonica, Newtown, CT). Cell debris and

insoluble protein were pelleted by centrifugation at 15,000 x g for 30 min. Soluble

fractions were pooled and diluted in 250 mL MBP column buffer. The clarified lysate

was then loaded onto amylose resin drip columns. Host cell proteins in the flow through

were discarded and captured MBP-tagged constructs were washed with 50 mL of MBP

column buffer. Immobilized MBP-B1β was then used for chromatography experiments

as described below. Intein containing constructs were washed with intein cleaving

buffer (137 mM NaCl, 2.7 mM KCl, 8.1 mM Na2HPO4, 1.76 mM KH2PO4, 40 mM

bis-Tris, 2 mM EDTA, pH6.2), capped, and allowed to cleave for 12-16 h at 37 °C.

Cleaved constructs were eluted with 25 mL MBP column buffer and concentrated in

10 kDa MWCO centrifugal filters. Anion exchange chromatography (AEC) was used

as a polishing step to remove any residual MBP-intein. Samples were buffer exchanged

into a low salt AEC buffer (20 mM bis-Tris, 25 mM NaCl, pH 6.0) and loaded onto

a 16/10 Q FF ion-exchange column using an AKTAFPLC (GE Healthcare). Samples
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were washed with low salt AEC buffer and eluted on a 20 column volume gradient

with a high salt AEC buffer (20 mM bis-Tris, 500 mM NaCl, pH 6.0). Untagged B1β

fractions were pooled, concentrated and buffer exchanged into an appropriate assay

buffer. Purity levels were confirmed by SDS-PAGE analysis. Protein concentrations

were determined by absorbance at 280 nm using a calculated extinction coefficient (ε280

= 22,190 M-1cm-1)

5.3.6 Circular Dichroism Spectroscopy

Circular dichroism experiments were performed as previously described [19,35]. Briefly,

100 μM samples were analyzed on a Jasco J-815 CD spectrometer (Jasco, Easton, MD)

in 50 mM Tris pH 7.4. Samples were incubated with increasing amounts of CaCl2 for

titration experiments. The temperature was held constant at 25 °C by a Peltier junction

temperature controller and all experiments were performed in triplicate. Titration data

were fit to the Hill equation using SigmaPlot nonlinear regression software (Systat

Software, San Jose, CA).

5.3.7 Fluorescence Resonance Energy Transfer (FRET)

1 μM protein samples were titrated with increasing concentration of terbium chloride.

Changes in fluorescence emission from bound terbium ions were tracked at 545 nm

following the excitation of a proximal tyrosine residue at 282 nm. All experiments are

performed in 96 well microtiter plates in 20 mM PIPES pH 6.8, 120 mM NaCl, 10 mM

KCl. Terbium was incubated with the protein samples for 30 min at 25°C prior to

reading. All data were collected in triplicate and analyzed using SigmaPlot nonlinear
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regression software (Systat Software, San Jose, CA).

5.3.8 Bis-ANS Binding

Bis-ANS dye binding experiments were performed in 1 cm path length UV cuvettes on

a Spectramax M2 spectrophotometer (Molecular Devices, Sunnyvale, CA). 1 µM β-roll

samples were incubated in the presence or absence of 50 mM CaCl2. 5 µg/mL bis-ANS

dye was added following equilibration. Fluorescence emission was measured from 420

nm to 600 nm following excitation at 390 nm. All measurements were made in triplicate

in 50 mM Tris pH 7.4.

5.3.9 Isothermal Titration Calorimetry (ITC)

ITC experiments were performed on a MicroCal Auto-iTC200 system (GE Healthcare)

in 50 mM Tris pH 7.4. 3.5 mM lysozyme in this same buffer was used in the syringe

and 150 µM of purified B1β was used in the cell. A series of 18 2 µL injections were

made over the course of a 50 min run. The resultant changes in differential power upon

injection were recorded. These peaks were integrated and fit using Origin data analysis

and graphic software (Northampton, MA). Kinetic and thermodynamic properties of

binding were calculated.

5.3.10 Immobilized β-roll Chromatography

B1 β-roll was expressed as a fusion to MBP and lysed using the conditions described

above. MBP-B1β fusions were immobilized in amylose-charged drip columns while host

cell contamination was removed with 50 mL of MBP column buffer. The columns
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were then equilibrated with a modified MBP column buffer without EDTA and supple-

mented with either 50 mM CaCl2 or MgCl2. A concentrated bolus of lysozyme in the

appropriate modified MBP column buffer was injected to the top the column. Syringe

pumps supplied modified buffer to the top of the columns at 1 mL/min. Fractions

were collected in 1 min intervals and analyzed on a spectrophotometer for total protein

content by absorbance at 280 nm.

5.4 Results

5.4.1 Ribosome Display

A randomized β-roll library was subjected to several rounds of selection against immo-

bilized lysozyme via ribosome display in the presence of calcium. Detailed procedural

notes on the ribosome display cycle can be found in Appendix A. Throughout the selec-

tion process, the amount of recovered mRNA after each round was tabulated and can

be found in Table 5.1. During the first 4 rounds, as the number of washes per round

slowly increased, the mRNA recovery levels steadily increased. When the stringency

was ramped up in round 5, a marked drop in recovery was observed. The recovery

levels were found to increase four-fold in the following round, while maintaining the

same number of washes. While mRNA recovery levels do not directly report molecular

recognition, the resultant trend is interesting. It is also important to note here that

the amount of lysozyme immobilized in each round remained constant throughout the

entire experiment.

Following each round of selection, the recovered genetic information was cloned
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Round Washes mRNA (ng/μL) Full Length Recovery
1 1 12 50%
2 2 20 63%
3 3 36 38%
4 5 40 25%
5 8 4 13%
6 8 16 60%

Table 5.1: mRNA & full length β-roll clone recoveries. Recovered mRNA concentrations
for all rounds of selection are given. The percentage of full-length β-roll genes without
stop codons recovered after each round is given in the last column.

Clone Randomized Residues
B1 WF LE AT DA

B2 WF LE AT DA

B3 WF LE AT DA

B4 WF LE AT DA

B5 LY RQ AT DA

B6 VP EG SP VP

Table 5.2: Randomized positions for selected clones. The eight randomized spots for
each full-length selected β-roll mutant after the 6th round are given.

back into the ribosome display vector for subsequent rounds. At this point, some of the

DNA was transformed into E. coli and 8-10 individual colonies were screened to ensure

the integrity of the library and to determine if a convergent sequence emerged. The

percentage of recovered full-length β-roll genes without stop codons is provided in Table

5.1. Of the 10 clones sequenced following the 6th round of selection, 6 contained full-

length β-roll genes without stop codons. The randomized positions of these 6 clones

are given in Table 5.2. At this point, a consensus sequence emerged and no further

selections were carried out. The B1 β-roll mutant (B1β) was cloned into an expression

vector for analysis.
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5.4.2 B1β Preliminary Characterization

B1β was expressed and purified using the pMAL-intein system described above. The

structural response of the mutant peptide to calcium was analyzed by far UV circular

dichroism (CD). Spectra were obtained for 100 μM samples in the presence and absence

of 10 mM calcium and are given in Figure 5.5a. The peptide was highly disordered in

the calcium-free environment evidenced by the large negative peak at 198 nm. Upon

calcium addition, a negative peak emerged at 218 nm, indicative of β-sheet formation.

These spectra are characteristic of the disordered to β-roll structural transition for

RTX domains, as discussed in Chapters 2 and 3. A calcium titration was performed

and the resultant data were fit to the Hill equation (Figure 5.5b). B1β bound calcium

cooperatively with an affinity of 2.7 ± 0.1 mM and a Hill coefficient of 4.4 ± 0.4. To

further characterize the B1 clone, a bis-ANS dye binding experiment was performed

(Figure 5.5c). Bis-ANS binds non-specifically to surface exposed hydrophobic patches

and can be used to evaluate β-roll conformation [19, 35, 56]. 1 mM β-roll samples

were tested in the presence and absence of 50 mM calcium. A large increase in bis-ANS

fluorescence was observed in the calcium-rich environment indicating a more structured

conformation. A terbium chloride titration was also performed to evaluate B1β. This

lanthanide ion is commonly used as a calcium analog and was shown to trigger β-roll

folding in previous studies [19, 35]. Terbium will participate in fluorescence resonance

energy transfer with a tyrosine residue in the 7th repeat of the β-roll. Tyrosine can

be excited at 282 nm and the subsequent emission from the bound terbium ion can

be tracked at 545 nm. The results from this experiment are given in Figure 5.5d.

A typical hyperbolic response to increasing terbium concentration was observed and
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Figure 5.5: Preliminary B1β characterization. (a) Far UV CD spectra for B1β in the
presence (� � �) and absence (—) of 10 mM CaCl2. (b) Calcium titration for B1β by
monitoring MRE at 218 nm from 0-10 mM CaCl2. (c) bis-ANS dye binding spectra for
B1β in the presence (� � �) and absence (—) of 50 mM CaCl2. (d) Terbium titration
for B1β by monitoring emission at 545 nm from bound terbium ions.

agrees with other mutant β-roll domains characterized. These data all suggest that

B1β behaves similarly to the wild type β-roll (WTβ) and retained the intrinsic calcium-

induced structural rearrangement.

5.4.3 B1β Binding Characterization

Following the preliminary analysis of B1β, the affinity of the mutant β-roll for lysozyme

was characterized by isothermal titration calorimetry (ITC). 3.5 mM lysozyme was

titrated into the experimental cell containing 150 µM purified B1β. The resulting heats

generated are given in Figure 5.6a. A control experiment that accounts for any buffer
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mismatch effects was performed and the resulting titration is given in Figure 5.6b. Here,

3.5 mM lysozyme was titrated into the cell which contained only buffer. Despite the

large background heats, a clear difference is observed between these experiments. In the

titration containing the evolved β-roll (Figure 5.6a), a considerably larger differential

power was observed for the first several injections. The peak areas were integrated and

plotted against the molar ratio of lysozyme to β-roll, given in Figure 5.6c. A control

experiment where 3.5 mM lysozyme was titrated into the cell containing the wild type

β-roll was also performed. The integrated heats from this experiment are plotted in

Figure 5.6d. While the wild type control experiment shows no evidence of binding, the

B1β titration fits the typical sigmoidal response, indicative of molecular interaction.

These data were fit to an iterated equation of the form [122]:

Q =
nMt∆HVo

2

1 +
Xt

nMt

+
1

nKaMt

−

√(
1 +

Xt

nMt

+
1

nKMt

)2

− 4Xt

nMt

 (5.8)

where:

Q = total heat content Ka = equilbrium association constant

ΔH = molar heat of ligand binding Mt = macromolecule bulk concentration

Vo = active cell volume Xt = ligand bulk concentration

n = number of sites

with inital guesses for Ka, ΔH and n. The derivation for this formula can be found

in the Supplemental Information. From these fits an equilibrium dissociation constant,

binding stoichiometry, and thermodynamic binding contributions were extracted and
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Figure 5.6: B1β binding characterization. (a) Raw ITC data showing changes in differ-
ential power in response to a lysozyme titration into B1β. (b) Raw ITC data showing
the buffer contribution to the released heats. (c) Integrated heats from the lysozyme
titration into B1β. (d) Integrated heats from the lysozyme titration into WTβ control
experiment. Non-linear fits were made using Origin data analysis and graphic software.

summarized in Table 5.3. B1β binds to lysozyme in a 1:1 fashion with low micromolar

affinity. The binding was shown to be exothermic as evidenced by the calculated change

in enthalpy.

In order to assess the practical utility of the mutant β-roll and allosteric regulation of

the binding interface, we conducted a chromatographic residence time assay. The B1β

clone was expressed as a fusion to MBP and captured on amylose resin drip columns.

The columns were then equilibrated with 50 mM CaCl2 or MgCl2. A concentrated

bolus of lysozyme was introduced to the top of the column while under 1 mL/min

flow of MBP column buffer supplemented with the appropriate salt. Fractions were
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n 0.942 ± 0.04
KD 6.21 ± 2.3 (μM)
ΔH -2,549 ± 190 (cal/mol)
ΔS 15.3 (cal/mol/deg)

Table 5.3: B1β binding parameters.

Figure 5.7: Lysozyme elution plots. Absorbance at 280 nm was tracked over the elution
in 50 mM CaCl2 (� � �) and 50 mM MgCl2 (—) for WTβ (a) and B1β (b).

collected from the eluate and analyzed for total protein content. Elution plots for B1β

and WTβ are given in Figure 5.7 in the presence of calcium and magnesium. The data

were fit to a Gaussian distribution and the peak residence times are given in Table 5.4.

The data demonstrated that in the presence of calcium, the B1β mutant significantly

increased the residence time of lysozyme in the amylose columns. Lysozyme incubated

with immobilized WTβ eluted at the same time regardless of the magnesium or calcium

concentration.
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Construct Peak Residence Time (min)
WTβ + MgCl2 15.9
WTβ + CaCl2 16.0
B1β + MgCl2 17.6
B1β + CaCl2 19.2

Table 5.4: Lysozyme peak residence times for the WTβ and B1β constructs in magne-
sium and calcium.

5.5 Discussion

In this work, we have evolved a mutant β-roll domain with affinity for lysozyme from

a randomized library using ribosome display technology. This cyclic process main-

tains the critical linkage between genotype and phenotype, necessary for any directed

evolution experiment, through ternary complexes composed of the nascent translated

protein, the cognate mRNA coding for that protein, and the ribosomal complex re-

sponsible for translation. Following each round of selection, the mRNA from surviving

clones was recovered and moved back into the ribosome display plasmid for subsequent

rounds of selection. The total mRNA recovery for each round was tabulated and pro-

vided in Table 5.1. As the selection process progressed, mRNA recovery levels steadily

increased. This is most likely due to the increased recovery of β-roll clones with affin-

ity for the immobilized target. When the selections became more stringent in the 5th

round, the mRNA recovery dropped by an order of magnitude suggesting clones with

low affinity for the target or clones non-specifically bound to the blocking proteins or

polystyrene plate were removed from the library. In the following round the recov-

ery levels quadrupled while maintaining high stringency, suggesting the library was

enriched with target-binding β-roll domains. A strong parallel can be drawn between
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the mRNA recovery data and the sequencing results from full-length β-roll clones. A

marked increase in full-length recovery was observed between rounds 5 and 6 (Table

5.1). Increased washing stringency in the 5th round may have also helped remove some

of the frame shifted, truncated, or otherwise disrupted β-roll mutants with non-specific

affinity or transcriptional advantages from the library.

Following the 6th round of selection, 67% of the full-length genes sequenced con-

tained identical residues at the 8 randomized positions indicating the emergence of a

consensus sequence (Table 5.2). Additionally, clone B5 contained identical residues at

positions 5-8 with the consensus B1 β-roll. A homology model of the B1β binding inter-

face was generated and compared to WTβ in Figure 5.8. The evolved binding interface

topology is considerably different from the relatively flat surface of WTβ. Tryptophan

and phenylalanine, two bulky amino acids, occupy the first two randomized positions

and extend outward into the solvent creating a cleft. Two negatively charged residues

occupy the 4th and 7th positions and may provide some electrostatic stabilization of

the B1β-lysozyme complex.

The consensus B1β was extensively characterized using several biophysical tech-

niques to ensure retention of the intrinsic calcium-responsive behavior. Far UV circular

dichroism analysis in Figure 5.5a indicated a similar disordered to β-sheet transition as

seen with other mutant β-roll domains previously evaluated in Chapters 2 and 3. B1β

was shown to bind calcium ions cooperatively and with similar affinity as WTβ, Leuβ,

and DLeuβ (Figure 5.5b). Increases in bis-ANS fluorescence in the presence of calcium

indicated the formation of a partially hydrophobic surface amenable to dye binding

(Figure 5.5c). Terbium chloride titrations showed near identical responses to all other
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Figure 5.8: WTβ and B1β surface topology. Homology models are given for WTβ
(a) and B1β (b) in the calcium-bound conformation highlighting the evolved binding
interface. The spheres represent bound calcium ions. The primary sequences for each
domain are given on the right. Both models were generated using SWISS-MODEL
(Swiss Institute of Bioinformatics) and rendered in PyMOL.
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β-roll domains analyzed previously (Figure 5.5d). The initial characterization of B1β

determined that the mutant binds calcium and undergoes a structural transition into

a stable β-roll secondary structure similar to that of the WT domain.

B1β was selected from the randomized library in the presence of calcium and there-

fore was most likely in the folded conformation during the selection process. To assess

the affinity of B1β for lysozyme, isothermal titration calorimetry (ITC) experiments

were performed. Small amounts of heat released to or absorbed by the system upon

ligand binding can be detected and analyzed. B1β titrations with lysozyme in the pres-

ence of calcium produced changes in differential power when compared to lysozyme

titrations into buffer alone (Figure 5.6a, b). The titration data was analyzed and the

integrated heats for the lysozyme-B1β titration are given in Figure 5.6c. Identical ex-

periments were conducted using the unmodified WTβ as a control. Integrated heats for

this titration are given in Figure 5.6d (raw data not shown).

The data were fit using the equation provided in the previous section and several

binding parameters were extracted (Table 5.3). B1β bound lysozyme at 1:1 stoichiom-

etry with low micromolar affinity, while the WTβ had no affinity for the target what-

soever under identical conditions. Since both lysozyme and the β-roll are of similar

size (lysozyme 14.7 kDa, β-roll 15.9 kDa), and monomeric, a 1:1 binding ratio was

expected. Thermodynamic contributions to the Gibbs free energy of association were

also calculated from the data. A modest enthalpy change of -2.5 kcal/mol indicated an

exothermic binding process. The magnitude and sign of the enthalpic contribution rep-

resent the global heat effects on the system during the titration. However, a favorable

reorganization of the hydrogen bonding network between the macromolecule, ligand
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and solvent is typically the largest contributor to a negative change in enthalpy [50].

The entropic contributions were also indirectly measured and determined to be 15.3

cal/mol/deg. This increase is most likely caused by the exclusion of water molecules

previously arranged on the lysozyme-B1β interface [47,79].

An affinity of 6.21 ± 2.3 µM of B1β for lysozyme was determined by preliminary

ITC experiments. To investigate the possible utility of evolved β-roll domains in smart

chromatography applications, we attempted to capture lysozyme using immobilized

B1β. We hypothesized that we can use the intrinsic calcium-induced conformational

response of the β-roll to selectively modulate the designed binding interface. After

capturing the target protein, it can be released by chelating the calcium ions out of

solution thereby delocalized the evolved binding surface and returning the β-roll to its

disordered state. MBP-B1β fusions were prepared and immobilized in amylose resin

columns equilibrated with CaCl2. Initial attempts to capture injected lysozyme on B1β

packed columns proved unsuccessful. SDS-PAGE analysis confirmed lysozyme was not

retained in the column but rather eluted upon washing the column with calcium-rich

buffer (data not shown). It was determined that the affinity of B1β was simply too

weak to successfully capture the target protein on column.

Alternatively, a column residence time assay was performed to investigate the effects,

if any, B1β had on lysozyme retention inside the packed columns. This assay also

provided insight into the allosteric regulation of lysozyme binding. A concentrated

dose of lysozyme was injected on to a B1β immobilized column equilibrated with CaCl2

or MgCl2, and the eluate was evaluated for total protein content. Additional control

experiments were completed with immobilized WTβ and the elution plots are given in
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Figure 5.7. The residence times for the lysozyme peaks were calculated and are given in

Table 5.4. Lysozyme eluted from the WTβ packed column at approximately 16 minutes

regardless of β-roll conformation. Columns packed with B1β in the presence of calcium

showed significant retention of lysozyme with a peak elution time of 19.2 minutes as

compared to 17.6 minutes in MgCl2. B1β bound to lysozyme sufficiently well enough

to slow its elution from the column by 3.2 minutes when compared to WTβ in the

presence of calcium. An intermediate residence time of 17.6 minutes for B1β in MgCl2

is an interesting result. This indicates that either the unstructured version of B1β has

some affinity for lysozyme or that some fraction of B1β is actually folded despite MgCl2

saturation, perhaps due to molecular crowding.

Some considerations need to be taken into account in order to successfully implement

an evolved β-roll domain into a stimulus-responsive chromatography system. First,

and most importantly, β-roll peptides with sub-micromolar affinities for desired targets

need to be isolated. Following 6 rounds of fairly stringent selection, we were able

to evolve a β-roll with low micromolar affinity, which is significantly weaker binding

when compared to antibodies with typical affinities in the mid to low nanomolar range.

Affinity maturation strategies such as error-prone PCR and DNA shuffling can be used

to add diversity to selected libraries and explore more of the possible sequence space

[11]. The ribosome display cycle requires a PCR step where these strategies can be

conveniently introduced. Also, selecting for smaller dissociation rate constants directly

can be used to evolve higher affinity variants [93]. An alternative strategy to immobilize

evolved β-roll clones on a solid chromatography support will be required. We have

previously shown that β-roll domains tolerate C-terminal cysteine mutations, which can
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be used to conjugate β-rolls to sulfhydrl agarose resins via covalent thioether linkages

[105]. Once an immobilization strategy is optimized, β-roll packed columns can be tested

for capture efficiency, durability, shelf-life, and tolerance to harsh buffering conditions.

5.6 Conclusions

We have successfully developed a platform to select RTX binding domains from a

randomized library via ribosome display. By conducting rounds of panning against

an immobilized model protein lysozyme, we selected an RTX variant, B1β, with low

micromolar affinity in the calcium-bound conformation. This task was particularly

challenging when compared to most work in this field as the RTX domain does not nat-

urally participate in biomolecular recognition. A full energetic profile of B1β –lysozyme

binding was elucidated through isothermal titration calorimetry. We were unable to

successfully capture the target protein on a B1β packed column, but we were able to

observe substantial shifts in lysozyme residence time when compared to the WTβ. Our

inability to capture the target on column can most likely be attributed to the relatively

weak dissociation constant. However, there are several strategies available to select for

the tightest binders possible including affinity maturation and off-rate selection. These

methods are currently being explored to select against other interesting target proteins

including maltose binding protein, green fluorescent protein, and the Fc domain of

antibodies.

122



5.7 Supplemental Information

5.7.1 Fitting ITC Data to a Single Binding Site

This derivation has been taken from the ITC Data Analysis in Origin Tutorial Guide,

version 7.0.

Ka = association binding constant

n = number of binding sites

Vo = active cell volume

Mt, M = bulk and free concentrations of macromolecule

Xt, X = bulk and free concentrations of ligand

Θ = fraction of sites occupied by the ligand, X

The association binding constant can be defined as:

Ka =
Θ

(1−Θ)[X]
(5.9)

The bulk concentration of ligand in the cell can be defined as:

Xt = [X] + nΘMt (5.10)

Combining the two above equations yields:

Θ2 −Θ

[
1 +

Xt

nMt

+
1

nKaMt

]
+

Xt

nMt

= 0 (5.11)

Solving this quadratic expression for Θ gives only one root:
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Θ =
1

2

1 +
Xt

nMt

+
1

nKaMt

−

√(
1 +

Xt

nMt

+
1

nKaMt

)2

− 4Xt

nMt

 (5.12)

The total heat content of the solution of volume Vo can be written as:

Q = nΘMt∆HVo (5.13)

Substitution for Θ gives:

Q =
nMt∆HVo

2

1 +
Xt

nMt

+
1

nKaMt

−

√(
1 +

Xt

nMt

+
1

nKaMt

)2

− 4Xt

nMt

 (5.14)

This value of Q describes the total heat content in the system at any particular injection

with volume Vo. However, the parameter of interest is the change of heat between

injections. Since the volume changes incrementally with each injection of ligand, a

small volume correction must be included to calculate the difference in heats between

each injection. The correct expression to calculate the heat releasted between injections

is therefore:

∆Q(i) = Q(i) +
dVi
Vo

[
Q(i) +Q(i− 1)

2

]
−Q(i− 1) (5.15)

Initial guess are typically made by Origin for n, Ka, and ΔH with reasonable accu-

racty. The calculated heat is compared to the measured heat for each injection and

improvemnts to the inital guesses are made. This process is iterated until no significant
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improvment in the fit can be made.
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Chapter 6

Summary & Future Directions
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6.1 Summary & Future Directions

6.1.1 Summary

In this work, we describe our efforts to engineer the calcium-responsive RTX domain for

use in various biotechnology applications. Chapter 1 provides a broad strokes overview

of protein engineering theory and techniques. The success of engineered antibodies

is discussed along with many of the difficulties associated with their production and

purification. Engineers are beginning to investigate alternative protein scaffolds to cir-

cumvent these issues. Several of these domains are identified and discussed including

repeat scaffolds composed of short, repeating motifs. We then provide an in-depth re-

view of the RTX domain including biological relevance and structural characterization.

The block V RTX from B. pertussis was shown to undergo a disordered to β-roll transi-

tion in response to calcium binding independently from the other blocks, providing and

interesting calcium-responsive scaffold akin to other antibody mimetic proteins. Sev-

eral studies characterizing the block V domain and evaluating its potential as a scaffold

for protein engineering are discussed. A large majority of the initial characterization

focused on identifying the minimum capping requirements for calcium-induced folding

and exploring the tolerance to concatenation and immobilization. It was determined

that only a C-terminal flanking region is required for calcium-dependent β-roll formation

which impacted the design of the constructs presented in this work. These extensive

studies performed by coworkers Blenner, Shur, and Szilvay provided the necessary foun-

dations to actually engineer the RTX domain for specific purposes [19,104,105,111].

Chapter 2 focuses on rationally engineering the block V RTX protein for use in
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calcium-responsive hydrogel systems. We identified 8 residues in the folded β-roll con-

formation suitable for mutation. These positions form a stacked β-sheet face with

the side chains projecting radially into the solvent. By changing these positions to

leucine, we created a hydrophobic sticky patch that is present only in the calcium-

bound conformation. A robust analysis of the mutant construct ensured retention of

the calcium-responsive properties intrinsic to the wild type domain. In the absence of

calcium, the leucine-rich patch is delocalized thus mitigating the driving force for self-

assembly. Alpha-helical leucine zipper domains capable of forming tetrameric coiled-coil

bundles were appended to the N-terminus of the leucine β-roll mutants to provide ad-

ditional means of cross-linking. The constructs were evaluated by microrheology in

calcium or magnesium rich buffer. The rheological analysis confirmed our hypothesis

that self-assembly is calcium-dependent and the resulting hydrogels can be allosterically

regulated by adjusting the calcium concentration.

Chapter 3 expands on the platform discussed in Chapter 2. The folded β-roll struc-

ture is composed of two parallel β-sheet faces separated by flexible turning regions.

Here we deigned a “double-face” leucine β-roll where both β-sheet faces are rationally

mutated to contain leucine residues. Again, this construct was extensively character-

ized to ensure β-roll formation in response to calcium. Despite the hydrophobicity of

the surface exposed residues on both faces, the double mutant responded to calcium

in a similar manner as the wild type protein. Constructs were prepared with alpha

helical leucine zippers as before and microrheology was used to confirm the formation

of a hydrogel in the presence of calcium. Self-assembly was observed at considerably

lower protein concentrations due to the higher cross-linking content and oligomeriza-
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tion state. We also confirmed the potential of the double leucine β-roll to function as

a stand-alone cross-linking domain. Concatemers of maltose binding protein and the

double leucine mutant were constructed and analyzed. Self-assembly in response to

calcium was observed without the aid of additional cross-linking moieties. This is an

exciting result that opens the door to a host of biomaterials applications.

In Chapter 4, we explored a consensus design strategy for the RTX domain. Con-

sensus design is used to identify the minimal requirements for a single unit in repeat

proteins, often times resulting in higher stability and recombinant expression levels.

We searched the UniProt data base and examined approximately 250 RTX containing

proteins to identify a consensus sequence. Concatemers of 5, 9, 13, and 17 repeats

were constructed and analyzed. Unexpectedly, these consensus constructs underwent a

reversible phase change in response to calcium. Instead of abandoning these designed

β-roll domains, we tried to use this inducible phase change for something useful. By

appending the 17 repeat β-roll tag (BRT) to proteins of interest, we were able to rapidly

and efficiently separate target proteins from host cell proteins by precipitation cycling.

The precipitation mechanism was shown to be calcium-specific as other ions did not

induce a phase change. This system worked remarkably well even with highly solu-

ble proteins such as maltose binding protein. In addition to MBP, we were able to

purify fusions to green fluorescent protein, β-lactamase and alcohol dehydrogenase D

from Pyrococcus furiosus. The precipitation process had no adverse effects on protein

structure or activity. To further improve the utility of the tag, we engineered a protease

cleavage site between the BRT and protein of interest. Using this cleavage mechanism

and re-precipitating the tag, we were able to purify significant amounts of pure, ac-
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tive, untagged protein of interest. Our system offers a fast and reliable method to

purify recombinant proteins without using time consuming and costly chromatographic

purification.

Chapter 5 describes our last study in which we evaluated the RTX domain as a suit-

able scaffold for evolving molecular recognition. We planned to use the calcium-induced

conformational change as a peptide switch to mediate an evolved binding interface, thus

creating an allosterically regulated binding domain. We hoped to use this mutant RTX

domain for capture and release smart chromatography. The same 8 positions that were

shown to tolerate mutations in Chapter 2 were randomized for this work. An RTX

library was generated by inserting randomized codons at these positions in two, long

oligonucleotides. The gene was hybridized and cloned into a plasmid for directed evo-

lution experiments via ribosome display. Ternary complexes of the ribosomal subunits,

mRNA, and translated protein maintained a linkage between genotype and phenotype

and were used for biopanning experiments. Following 6 rounds of selection against

immobilized lysozyme, a consensus β-roll variant emerged, B1β. This mutant was char-

acterized and was shown to undergo a disordered to β-roll transition in response to

calcium. The thermodynamics and binding affinity between B1β and lysozyme were

examined by isothermal titration calorimetry. B1β had relatively weak affinity for

lysozyme at 6.2 μM. Due to this low affinity, we were unable to capture lysozyme on

B1β packed columns. However, substantial increases in lysozyme residence time were

observed. Strategies to evolve mutants with higher affinity and other considerations for

implementation into a chromatographic system are discussed.
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6.1.2 Future Work

While the work presented here is relatively extensive, there is always room for optimiza-

tion and innovation. The biomaterials work in Chapters 2 and 3 describe the rational

engineering approach taken to develop a calcium-responsive protein cross-linking do-

main suitable for hydrogel formation. This works clearly demonstrates the ability of the

mutant RTX domain to self-assemble into protein hydrogels. However, further char-

acterization of the resultant materials, including properties such as erosion rate, mesh

size, precise oligomerization state, and aggregate structure would be beneficial prior to

implementation into engineered systems.

The BRT system outlined in Chapter 4 demonstrates a useful method for purifying

recombinantly expressed proteins. A few improvements can be made to increase its util-

ity and make it more marketable commercially. First, the vector can be optimized to

create a convenient multiple cloning site to allow researchers to easily swap out proteins

of interest. Next, the mechanism by which proteins of interest are separated from the

BRT can be optimized. Currently enterokinase must be used to proteolytically cleave

off the tag and cannot be conveniently recovered after cleavage. Perhaps a more eco-

nomically fruitful strategy would be to genetically fuse the BRT to the protease directly

for expression in E. coli. BRT-enterokianse could be easily purified using precipitation

cycling. This fusion could then be added directly to precipitation purified proteins of

interest. After cleavage, BRT-enterokinase could be recovered along with the remaining

BRT by re-precipitation. Alternatively, including a self-cleaving intein to remove the

tag instead of a protease may help cut costs.

Strategies to improve evolved RTX binding domains as well as future directions were
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discussed at the end of Chapter 5. Another interesting consideration worth mentioning

is exploring the second face of the folded β-roll. Similar to the approach taken to

double the cross-linking potential of the leucine β-roll, the second face could be evolved

for molecular recognition. This could be used to simply increase avidity or to bring to

proteins of interest in close proximity in a calcium-dependent manner.

These future experiments constitute only a few of the possible directions for this

body of work. The β-roll domain has proven to be a versatile scaffold for calcium-

responsive bio-based engineering applications.
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[74] John Löfblom. Bacterial display in combinatorial protein engineering. Biotech-
nology journal, 6(9):1115–1129, 2011. 5.2.1
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[111] Géza R Szilvay, Mark A Blenner, Oren Shur, Donald M Cropek, and Scott Banta.
A fret-based method for probing the conformational behavior of an intrinsically
disordered repeat domain from bordetella pertussis adenylate cyclase. Biochem-
istry, 48(47):11273–11282, 2009. 1.4, 2.2, 3.2, 4.4, 6.1.1

[112] Reiji Takashi, Yuji Tonomura, and Manuel F Morales. 4, 4’-bis (1-
anilinonaphthalene 8-sulfonate)(bis-ans): a new probe of the active site of myosin.
Proceedings of the National Academy of Sciences, 74(6):2334–2338, 1977. 2.4.1

[113] Tsutomu Tanaka, Ryosuke Yamada, Chiaki Ogino, and Akihiko Kondo. Re-
cent developments in yeast cell surface display toward extended applications in
biotechnology. Applied microbiology and biotechnology, 95(3):577–591, 2012. 5.2.1

144



[114] Nancy E Thompson, Katherine M Foley, Elizabeth S Stalder, and Richard R
Burgess. Identification, production, and use of polyol-responsive monoclonal anti-
bodies for immunoaffinity chromatography. Methods in enzymology, 463:475–494,
2009. 5.2

[115] Shana Topp, V Prasad, Gianguido C Cianci, Eric R Weeks, and Justin P Gallivan.
A genetic toolbox for creating reversible ca2+-sensitive materials. Journal of the
American Chemical Society, 128(43):13994–13995, 2006. 2.2

[116] Michael W Traxlmayr and Christian Obinger. Directed evolution of proteins for
increased stability and expression using yeast display. Archives of biochemistry
and biophysics, 526(2):174–180, 2012. 5.2.1

[117] Kevin M Ulmer. Protein engineering. Science, 219(4585):666–671, 1983. 1.1

[118] Agathe Urvoas, Asma Guellouz, Marie Valerio-Lepiniec, Marc Graille, Dominique
Durand, Danielle C Desravines, Herman van Tilbeurgh, Michel Desmadril, and
Philippe Minard. Design, production and molecular structure of a new family of
artificial alpha-helicoidal repeat proteins (αrep) based on thermostable heat-like
repeats. Journal of molecular biology, 404(2):307–327, 2010. 1.2

[119] Ian Wheeldon. Protein engineering strategies for modular, responsive, and spa-
tially organized biomaterials. Tissue and Organ Regeneration: Advances in
Micro-and Nanotechnology, page 265, 2014. 3.2

[120] Ian R Wheeldon, Scott Calabrese Barton, and Scott Banta. Bioactive proteina-
ceous hydrogels from designed bifunctional building blocks. Biomacromolecules,
8(10):2990–2994, 2007. 2.2, 2.3.9

[121] Ian R Wheeldon, Joshua W Gallaway, Scott Calabrese Barton, and Scott
Banta. Bioelectrocatalytic hydrogels from electron-conducting metallopolypep-
tides coassembled with bifunctional enzymatic building blocks. Proceedings of the
National Academy of Sciences, 105(40):15275–15280, 2008. 2.2

[122] Thomas Wiseman, Samuel Williston, John F Brandts, and Lung-Nan Lin. Rapid
measurement of binding constants and heats of binding using a new titration
calorimeter. Analytical biochemistry, 179(1):131–137, 1989. 5.4.3

[123] David W Wood, Wei Wu, Georges Belfort, Victoria Derbyshire, and Marlene
Belfort. A genetic system yields self-cleaving inteins for bioseparations. Nature
biotechnology, 17(9):889–892, 1999. 4.2

145



[124] Jun Wu, Donald M Cropek, Alan C West, and Scott Banta. Development of a
troponin i biosensor using a peptide obtained through phage display. Analytical
chemistry, 82(19):8235–8243, 2010. 1.4

[125] Jun Wu, Jong Pil Park, Kevin Dooley, Donald M Cropek, Alan C West, and Scott
Banta. Rapid development of new protein biosensors utilizing peptides obtained
via phage display. PloS one, 6(10):e24948, 2011. 1.4

[126] T Wurch, P Lowe, V Caussanel, C Bes, A Beck, and N Corvaia. Development of
novel protein scaffolds as alternatives to whole antibodies for imaging and ther-
apy: status on discovery research and clinical validation. Current pharmaceutical
biotechnology, 9(6):502–509, 2008. 5.2
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Appendix A

RTX Ribosome Display
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A.1 Introduction

Ribosome display is a proven in vitro selection technique that is commonly used to

evolve new high-affinity protein binders. Engineered antibody fragments as well as other

alternative protein scaffolds, including designed ankyrin repeat proteins (DARPins),

have been successfully evolved. This protocol aims to outline the necessary steps to

obtain a high-affinity RTX binding domain using this technology.

A.2 Materials

A.2.1 General

� 96-well streptavidin coated plates, pre-blocked (Pierce 15501)

� RNeasy RNA purification mini kit (QIAGEN 74104)

� QIAquick PCR purification kit (QIAGEN 28104)

� RNaseZAP (Sigma R2020-250ML)

� MEGAScript T7 in vitro transcription kit (Life Technologies AM1334)

� Sterilized pipette tips and centrifuge tubes

A.2.2 Buffers

� TBS - 50 mM Tris, 150 mM NaCl pH 7.5 sterile filtered

� TBST - 50 mM Tris, 150 mM NaCl, 0.05% (v/v) Tween 20 pH 7.5 sterile filtered
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� WBT - 50 mM Tris acetate, 150 mM NaCl, 50 mM magnesium, 0.05% (v/v)

Tween 20 pH 7.5 sterile filtered

� WB-BSA - 50 mM Tris acetate, 150 mM NaCl, 50 mM magnesium, 0.5% (w/v)

BSA pH 7.5

� EB - 50 mM Tris acetate, 150 mM NaCl, 25 mM EDTA pH 7.5 sterile filtered

� Saccharomyces cerevisiae RNA (Sigma R6750-100MG), 25 µg/µL in H2O. Aliquot

and store at -20C

� 200 mg/mL heparin in H2O, store 20 µL aliquots at -20C, do not filter

� 2M CaCl2 in TBS

� 2M MgCl2 in TBS

A.2.3 Library Oligonucleotides and Primers

Swiss9 Library F

5’-TCGCGGCCCAGCCGGCCATGGCGGGTTCTGCACGCGACGATGTGCTGA-

TCGGCGACGCGGGTGCGAATNNKCTGNNKGGCCTGGCTGGTAACGACGT-

CTTGTCTGGTGGTGCGGGCGATGATNNKCTGNNKGGTGACGAGGGCTCC-

GATCTGCTGAGCGGTGATGCCGGCAACGAC-3’

Swiss9 Library R

5’-TTCGGCCCCCGAGGCCCCGCCACGGATCGTGTCATGGCCACCACCGGAC-

TCMNNAATMNNGTCGTGACCATAACCAACACCGAACAGGTAGGTATCGTC-
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GCCCTGACCGCCMNNCAAMNNGTCGTTGCCGGCATCACCGCTCAGCAGAT-

CGGAGCCCTCGTCACC-3’

Swiss9 pRDV F (BamHI)

5’-AATAATGGATCCGGTTCTGCACGCGACGATGTGC-3’

Swiss9 pRDV R (HindIII)

5’-TAATAAAAGCTTGTCCGGATACTGCGCCATTGCCTC-3’

β-roll/Cap Overlap F

5’-GTGGCCATGACACGATCCGTATCAACGCGGGGGCGGACCA-3’

β-roll/Cap Overlap R

5’-TGGTCCGCCCCCGCGTTGATACGGATCGTGTCATGGCCAC-3’

T7B

5’-ATACGAAATTAATACGACTCACTATAGGGAGACCACAACGG-3’

tolAK

5’-CCGCACACCAGTAAGGTGTGCGGTTTCAGTTGCCGCTTTCTTTCT-3’

Anti-ssRA

5’-TTAAGCTGCTAAAGCGTAGTTTTCGTCGTTTGCGACTA-3’
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Swiss9 pMAL F (KpnI)

5’-AATAATGGTACCGGGTTCTGCACGCGACGATGTGC-3’

Swiss9 pMAL R (HindIII)

5’-TAATAAAAGCTTTTAGTCCGGATACTGCGCCATTGCC-3’

A.3 Ribosome Display Cycle

A.3.1 Library Construction

The β-roll library is constructed by annealing and extending the library oligonucleotides

Swiss9 Library F and Swiss9 Library R. Since the library oligonucleotides are so large,

touchdown PCR is used to avoid any non-specific annealing. Prepare reactions on ice

and add components in the following order:

Volume Component
36 µL H2O
10 µL HF Buffer
1 µL Swiss9 Library F
1 µL Swiss9 Library R
1 µL dNTPs
1 µL Phusion

and use the following PCR protocol:
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PCR Conditions
98C Hold
98C 5:00
98C 0:15 x7
72C* 0:20 x7
72C 1:30
4C Hold

*Annealing temperature is decreased by 2C each cycle until 60C is reached.

Run 5µL of this product on an agarose gel. The gel may appear smeared, but there

should be a bright band around 250bp. Pool all reactions and purify using the QIAGEN

PCR cleanup kit. The C-terminal capping group can now be added by overlap extension

PCR. Prepare reactions on ice and add components in the following order:

Library
Volume Component
35 µL H2O
10 µL HF Buffer
1 µL Swiss9 pRDV F (BamHI)
1 µL β-roll/Cap Overlap R
1 µL dNTPs
1 µL Swiss9 Library
1 µL Phusion
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C-terminal Cap
Volume Component
35 µL H2O
10 µL HF Buffer
1 µL β-roll/Cap Overlap F
1 µL Swiss9 pRDV R (HindIII)
1 µL dNTPs
1 µL pMAL-WTβ-roll*
1 µL Phusion

*Any construct containing the C-terminal cap can be used as template here.

The same PCR conditions can be used to amplify both the library and the C-

terminal capping group. The primers have been designed with a Tm of 69C enabling

the use of two-step PCR.

PCR Conditions
98C Hold
98C 2:00
98C 0:15 x30
72C 0:05 x30
72C 4:00
4C Hold

The resulting gels are shown below with the library on the left and the C-terminal

cap on the right.
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All library and C-terminal cap reactions should be pooled and purified separately.

The library and C-terminal cap are now prepared to be fused by overlap extension

PCR. Prepare reactions on ice and add components in the following order:

Volume Component
34 µL H2O
10 µL HF Buffer
1 µL Swiss9 pRDV F (BamHI)
1 µL Swiss9 pRDV R (HindIII)
1 µL Swiss9 Library OE
1 µL C-terminal Cap OE
1 µL dNTPs
1 µL Phusion

PCR Conditions
98C Hold
98C 2:00
98C 0:15 x30
72C 0:08 x30
72C 4:00
4C Hold
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Capped Swiss9 Library

Pool all reactions and purify using the QIAGEN PCR cleanup kit. If there are

multiple non-specific bands, use the QIAGEN gel extraction kit instead. The library is

now prepared for cloning into pRDV. Digest both the library and pRDV with BamHI-

HF and HindIII-HF using the following procedure:

Digestion Conditions
42 µL DNA
5 µL Cut Smart

Buffer
1.5 µL BamHI
1.5 µL HindIII

Mix well by pipetting up and down and incubate at 37C for 1 h. For the digested

library, remove enzymes and DNA fragments by purifying on the QIAGEN PCR cleanup

kit. Elute the cleaned DNA into 30 µL of H2O. Run the entire pRDV digestion on an

80 mL agarose gel. Excise the digested vector backbone and purify using the QIAGEN

gel extraction kit. Combine 2 lanes of digested vector on a single spin column and elute

in 50 µL of H2O.
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Digested pRDV

The digested vector and library are now ready to be ligated. For the initial library

ligation, several ratios should be investigated. For later rounds of cloning after selec-

tions, only the most efficient ratio should be used (5:1 worked the best for lysozyme

work). Incubate the ligation reactions at 16C for 16-24 hours. Clean up the ligation re-

actions using the QIAGEN PCR clean up kit and elute into 10 μL of water. Transform

0.8 µL of the ligation reaction into 25 µL of 5α electrocompetent cells. Plate 100 µL of

the transformants on LB-AMP plates and pick several colonies for sequencing analysis

to ensure the library is intact.

A.3.2 Preparing DNA for in vitro Transcription

Once the library has been successfully ligated into pRDV, the DNA required for in vitro

translation can be amplified directly off of the ligation reactions. Prepare reactions on

ice and add components in the following order:

156



Volume Component
35 µL H2O
10 µL HF Buffer
1 µL T7B
1 µL tolAK
1 µL dNTPs
1 µL pRDV-Swiss9 Ligation
1 µL Phusion

PCR Conditions
98C Hold
98C 2:00
98C 0:15 x30
65C 0:15 x30
72C 0:20 x30
72C 5:00
4C Hold

T7B/tolAK PCR

Pool all reactions and purify on the QIAGEN PCR cleanup kit. Record the con-

centration by A260. This will be used as the template DNA for in vitro transcription.

Excess DNA can be stored at -20C indefinitely.
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A.3.3 In vitro Transcription

Care needs to be taken when handling RNA. It is very temperamental and degrades

very easily. Spray all pipettes and bench space down with RNaseZAP. Wear gloves at

all times when handling reagents, pipettes, and tubes. Remove the MEGAscript T7

transcription kit from the -20C and keep the enzyme mix on ice. Vortex the ribonu-

cleotides and reaction buffer until they are completely in solution. Briefly centrifuge

all reagents before opening them. Keep the 10X reaction buffer at room temperature.

Assemble the reaction at room temperature, not on ice. The 10X reaction buffer

can co-precipitate the template DNA if the reaction is assembled on ice. Prepare the

reactions in the following order:

Volume Component
to 20
µL

Nuclease-free H2O

2 µL ATP
2 µL CTP
2 µL GTP
2 µL UTP
2 µL 10X Reaction Buffer
0.1 µg PCR product
2 µL Enzyme Mix

For convenience, mix all ribonucleotides together first, and add 8 µL if setting up

more than one reaction. Gently flick the tube to mix the reagents and briefly centrifuge

to collect the reaction mixture at the bottom of the tube. Incubate the reaction mix at

37C for 4.5 hours. Both the transcription time and amount of PCR product have been

optimized for the Swiss9 library.

After 4.5 hours, the reaction should be complete. Use the QIAGEN RNeasy RNA
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purification mini kit to isolate the mRNA. The on-column DNase digestion is not neces-

sary. Elute once with 50 µL of RNase free H2O. Use the A260 measurement to estimate

the RNA concentration.

A260 x dilution factor x 40 = µg/mL RNA

Typically yields are approximately 2.5-3 µg/µL. 10 µg are required for in vitro

translation. Transcriptional efficiency can also be evaluated by gel electrophoresis. On

a 1% TBE agarose gel, load approximately 1 µg of RNA mixed with an equal volume

of Gel Loading Buffer II. Be sure to denature the mRNA prior to loading. Incubate the

mRNA with the loading buffer at 80-90C for 3-5 minutes. Run the gel under standard

conditions (150 V, 25 minutes). Save transcribed mRNA for future use at -80C

A.3.4 In vitro Translation

The purified mRNA from the previous section will be used as template for the in vitro

translation reaction. Prepare reactions on ice and add components in the following

order:

Volume Component Stock
Conc.

Final
Conc.

to 110
µL

Nuclease-free H2O - -

24 µL mRNA 2.5 µg/µL 10 µg
50 µL S12 Extract - -
41 µL Translational Premix - -
3.3 µL Anti-ssRA Oligo 100 µM 3 µM

If the mRNA concentration is below 2.5 µg/µL, up to 15.7 µL can be added. Com-

pensate by adding less nuclease-free water. Mix carefully in the tube by pipetting up

and down. Incubate at 37C for 12.5 minutes. Stop the reactions by transferring 100
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µL of the reaction into 400 µL of ice-cold WBT containing 0.5% BSA and 12.5 µL/mL

heparin (200 mg/mL stock). Place the stopped reaction on ice for 1-2 minutes. Cen-

trifuge for 5 minutes at 14,000 x g at 4C and transfer to an ice-cold tube. Use 150 µL

of this translated mix for the selection experiments. Discard the remaining solution.

A.3.5 Target Immobilization

The most efficient way to complete rounds of selections is against an immobilized target.

Biotinylated targets can easily be immobilized on streptavidin coated plates. Kits are

available to chemically biotinylate a protein of interest (Pierce 21338). Alternatively,

and more conveniently, biotinylated targets may be available directly from vendors

(Lysozyme – GeneTex GTX82960, GST – Perkin Elmer 6760305M).

Wash a streptavidin coated plate with ice cold TBST once. Add a molar excess of

biotinylated target (usually 100 µL of 100-200 µM solution) in TBST to the pre-blocked

plate. Two wells will be needed per round of selection (folded/unfolded). Cover with

parafilm and allow the target to incubate for 1 h at 4C on an orbital shaker. Wash

the wells three times with ice cold TBST, slapping the wells face-down each time on

a paper towel. Wash once with ice cold WBT and do not remove until the ternary

complexes are ready to be added for selection.

A.3.6 Selection

Add 150 µL of the translated mix to the wells containing the immobilized target. Add

1.9 µL of 2 M CaCl2 or MgCl2 to the well to a final concentration of 25 mM for folded

and unfolded selections, respectively. Gently pipette up and down to mix. Cover the

wells with parafilm and incubate for 1 h at 4C on an orbital shaker.
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A.3.7 Washing

After an h of binding, non-specifically bound clones must be washed off. Wells should

be washed with 300 µL ice cold WBT containing 0.1% BSA, slapping the well face-down

on a clean paper towel each time. For initial rounds of selection, fewer washes should

be used (1-3 washes). The stringency should be increased for later rounds of selection

(5-10 washes). Off-rate selections can also be used by simply incubating with WBT

for 5-10 minutes on an orbital shaker instead of immediately removing the buffer. The

Tween 20 percentage can also be increased for more stringent washes.

A.3.8 Elution

After the final wash, the bound complexes can be eluted by simply adding a chelator.

This will cause the ribosomes to dissociate and release the captured mRNA. To each

well, add 100 µL EB (containing 25 mM EDTA) and let stand for 1-2 minutes. Transfer

the eluate to a fresh microcentrifuge tube containing 1 µL of 1mg/mL S. cerevisiae RNA

solution. Add 100 µL EB a second time to the same well, let sand, and transfer to the

same microcentrifuge tube. Additional S. cerevisiae RNA is not needed. Incubate the

tube on ice for 10 minutes. Purify the recovered mRNA using the QIAGEN RNeasy

RNA purification mini kit. Double all required buffer volumes since the starting volume

is 200 µL. Elute once into 30 µL of RNase free H2O. Obtain the RNA concentration at

store at -80C.
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A.3.9 Reverse Transcription

Once the recovered mRNA has been purified, it must be transcribed back to cDNA for

subsequent cloning into pRDV. Prepare the following mixes on ice and add the reagents

in the order listed.

Volume Component Stock
Conc.

Final
Conc.

10.3 µL Recovered mRNA - -
2.5 µL Swiss9 pRDV R (HindIII) 10 µM 2.5 µM

To denature mRNA, heat Mix 1 in the thermocycler to 70C for 5 minutes, then chill

on ice for at least 5 minutes.

Volume Component Stock
Conc.

Final
Conc.

4 µL Reaction Buffer 5x 1x
1.2 µL MgCl2 25 mM 1.5 mM
1 µL dNTP Mix 0.5 mM 10 mM
1 µL Reverse Transciptase 20x 1x

Combine the denatured Mix 1 with Mix 2. Use the following procedure in the

thermocycler:

RT Conditions
25C Hold
25C 5:00
42C 60:00
4C Hold

After completion, the reaction can be stored in the -20C. No further treatment/purification

is necessary.
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A.3.10 Amplifying the cDNA

Once the cDNA is synthesized, it needs to be hybridized and amplified to be cloned

back into pRDV. Prepare the following mixes on ice and add the reagents in the order

listed.

Volume Component
34 µL H2O
10 µL HF Buffer
1 µL Swiss9 pRDV F (BamHI)
1 µL Swiss9 pRDV R (HindIII)
1 µL dNTPs
1 µL cDNA
1 µL Phusion

PCR Conditions
98C Hold
98C 2:00
98C 0:15 x30
72C 0:08 x30
72C 4:00
4C Hold

PCR from cDNA
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The DNA should be clean and should not require gel extraction, especially in the

first few rounds. Clone this DNA back into pRDV as recommended in the previous

section.
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