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and Development, College of Physicians and Surgeons, Columbia University, New York, New York 10032 USA 

The N-myc gene encodes a putative transcription factor that is thought to function in the regulation of gene 
expression during cell differentiation and/or growth. To examine the role of N-myc during development, we 
have used targeted mutagenesis in embryonic stem cells to produce a mouse line that carries an N-myc null 
allele. Mice homozygous for the mutation died between 10.5 and 12.5 days of gestation. Histological analysis 
of mutant embryos revealed that organs and tissues expected at these stages of development were present. 
However, multiple defects were observed, primarily in tissues and organs that normally express N-myc. In 
particular, mutant hearts were underdeveloped, often retaining the S-shape more typical of 9-day-old embryos. 
In addition, cranial and spinal ganglia were reduced in size and/or cellularity. Most of the noted defects were 
more consistent with a role of N-myc in proliferation of precursor populations than with a block in 
differentiation per se, at least at these early stages. These results demonstrate that N-myc plays an essential 
role during development and clearly confirm that N-myc has a physiological function that is distinct from that 
of the other myc-family genes. 
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The N-myc gene is a member of a family of nuclear 
proto-oncogenes that includes three well-characterized 
members, c-myc, N-myc, and L-myc (Alt et al. 1986). 
These genes encode related but distinct nuclear phos- 
phoproteins that can contribute to tumorigenesis both in 
vitro and in vivo. The three myc-family genes have dis- 
tinct expression patterns in normal development, and 
changes in their expression have been correlated with 
the response of cultured cells to differentiation agents 
and mitogenic stimuli. The activation pattern of these 
genes in spontaneously arising tumors also appears to 
partially reflect their specific expression patterns during 
normal development. On the basis of such findings, the 
myc gene products are thought to function in the regu- 
lation of gene expression in the context of cell growth 
and differentiation (Zimmerman and Alt 1990), but their 
precise function remains to be determined. 

Various findings have led to the suggestion that myc 
proteins may function to regulate transcription, DNA 
replication, or both (L/ischer and Eisenman 1990). In par- 
ticular, regions conserved among myc proteins include 
DNA-protein or protein-protein interaction motifs that 
have been found in a number of other DNA-binding, 

transcriptional regulatory, and cell-lineage determina- 
tion proteins (Villares and Cabrera 1987; Caudy et al. 
1988; Thisse et al. 1988; Olso 1990). This speculation 
was supported further by the fact that all three proteins 
have been found to specifically bind a common DNA 
sequence (Blackwell et al. 1990; Halazonetis and Kandil 
1991; Kerkhoff et al. 1991; Prendergast and Ziff 1991, 
1992; Alex et al. 1992; Ma et al. 1992) and that such 
binding is facilitated by heterodimeric association with 
the Max protein (Blackwood and Eisenman 1991; Pren- 
dergast et al. 1991; Ma et al. 1992). The observation that 
these three proteins appear to bind preferentially to the 
same target sequence and in association with the same 
partner protein suggests that their activities may overlap 
significantly (Ma et al. 1992). 

A function for N-myc in normal cell growth has been 
suggested by observations that overexpression of N-myc 
in growth factor-deprived quiescent fibroblasts can in- 
duce DNA synthesis (Cavalieri and Goldfarb 1988) and 
that N-myc is induced in pre-B cells following exposure 
to the mitogenic factor interleukin-7 (IL-7) (Morrow et 
al. 1992). Furthermore, the N-myc protein was demon- 
strated to bind in vitro to the retinoblastoma (Rb) gene 
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product, which has been purported to have a role in cell 
cycle regulation (Rustgi et al. 1991; Wagner and Green 
1991). In this regard, it has been proposed that Rb may 
modulate transcription during the cell cycle by modify- 
ing the activity of transcriptional factors such as E2F 
(Wagner and Green 1991; Weintraub et al. 1992). 

During murine embryogenesis, the N-myc gene has a 
very restricted pattern of expression. The earliest stage at 
which N-myc expression has been documented is that of 
gastrulation. At this stage, N-myc transcripts are found 
at their highest levels in the expanding primitive streak 
and embryonic mesoderm (Downs et al. 1989). Once 
somitogenesis and neurulation proceed, the highest lev- 
els of N-myc expression are detected in the central ner- 
vous system (CNS) in the cranial and spinal ganglia and 
within other structures of neural crest origin, such as the 
mesenchyme of the mandibular and maxillary processes 
{Kato et al. 1991). During early organogenesis, a marked 
restriction in the spatial distribution of N-myc expres- 
sion is-observed. The primitive nephric tubules, the scle- 
rotome, the myocardium of the cardiac ventricles, and 
the digestive tract express abundant levels of N-myc 
(Kato et al. 1991). Later, N-myc transcripts are detected 
in the lung, kidney, gut, and stomach epithelium (Mu- 
grauer et al. 1988; Hirning et al. 1991). In adult mice, 
N-myc expression tends to be low or undetectable in 
most differentiated tissues, although expression is found 
in lymphoid differentiation organs where the gene con- 
tinues to be expressed in precursor lymphocytes (Zim- 
merman and Alt 1990; Morrow et al. 1992). Thus, N-myc 
expression appears to be confined to cells that represent 
early differentiation stages in tissues derived from differ- 
ent embryonic germ cell layers, suggesting that N-myc 
may play an important generalized function in the dif- 
ferentiation of tissues and/or organs, perhaps to promote 
the self-renewal of precursor cells and/or to preclude 
their terminal differentiation. 

To directly test for an essential function for N-myc in 
mammalian development, we have used gene-targeted 
mutagenesis in embryonic stem (ES) cells to generate a 
line of mice that carry a null mutation of the N-myc 
gene. Mice homozygous for this mutation die during em- 
bryonic development and show defects in the formation 
of a number of different tissues and organs. 

R e s u l t s  

Inactivation of the N-myc gene in mice 

Previously, we have described the generation of ES cell 
lines in which a portion of the second exon of the N-myc 
gene was replaced with a neo r gene (Charron et al. 1990). 
The mutant N-myc allele generated by this approach 
lacks most of the second exon of N-myc and is not likely 
to produce a partial N-myc protein because the neo gene 
fused after the second codon of the N-myc gene is ter- 
minated by stop codons in all three reading frames. 
Moreover, no ATG initiation codon is present in the 
N-myc reading frame of the fusion transcript down- 
stream of the neo gene. Two ES cell clones (CCE-P-7.3 

Essential role of N-myc during mouse embryogenesis 

and CCE-P-7.12)were injected into C5 7BL/6 blastocysts, 
which were used to generate somatic chimeras. Male 
chimeras were bred to check for germ-line contribution 
of the  ES cells by screening for the presence of agouti 
offspring following mating to non-agouti (black) females. 
Germ-line chimeras were obtained from CCE-P-7.12. As 
expected, 50% of these offspring carried the mutated 
N-myc allele, as evidenced by Southern blotting proce- 
dures. The N-myc +/- mice were not overtly abnormal 
compared with their wild-type littermates. In addition, 
N-myc +/- animals of both sexes were fertile. The 
N-myc +/- mice were bred to MF1 mice to expand the 
pool of mice carrying the mutated N-myc allele. 

Homozygous N-myc mutant animals die in utero 

To investigate the effect of loss of N-myc function, 
N-myc +/- mice were intercrossed. Genotypes of the re- 
sulting offspring were determined at 3--4 weeks of age by 
Southern blot analysis of tail DNA using a 5' N-myc 
EcoRI-BamHI probe (Charron et al. 1990). From a total 
of 191 progeny analyzed, no mice homozygous for the 
N-myc- mutation were found, clearly indicating that 
the mutation results in embryonic lethality (Table 1). 
These findings are in accord with those of a recent pre- 
liminary characterization of a separate N-myc null mu- 
tant line (Sewal et al. 1991). To determine the time of 
death more precisely, N-myc +/- animals were inter- 
crossed, and pregnant females were sacrificed at different 
times of gestation. (The day at which the vaginal plug 
was found is designated 0.5 dpc). The embryos were dis- 
sected out of the visceral yolk sac, and their genotype 
was determined by Southern blot analysis of DNA iso- 
lated from the corresponding yolk sac (Fig. 1; only 9.5 
dpc and 11.5 dpc are shown in panels A and B, respec- 
tively). As a control, we also analyzed DNA isolated 
from maternal tissues at the time of the dissection; in 
this assay, the wild-type gene is visualized as a 7.7-kb 
band and the mutant allele as an 8.4-kb band (Fig. 1, 

Table 1. Viability of N-myc-/N-myc- embryos 

Genotype of 
live embryos 

Number Number 
Age a of litters of pups + / + + / - - / - 

E9.5 7 50 10 27 13 
El0.5 14 95 21 46 28 
Ell.5 13 93 26 50 6 b 

E12.5 9 51 18 25 0 r 
E13.5 1 4 3 1 0 
W3-4 33 191 53 138 0 

aE9.5, El0.5, E11.5, and E12.5 represent days 9.5, 10.5, 11.5, and 
12.5 of gestation, respectively; W3-4 represents a range in ages 
of the pups in weeks after birth. 
bin addition, 11 dead N-myc-/N-myc- embryos were geno- 
typed during the process of resorption. 
tin addition, 8 dead N-myc-/N-myc- embryos were genotyped 
during the process of resorption. 
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Figure 1. Southern analysis of offspring from heterozygous crosses. Yolk sac DNAs from 9.5-dpc (E9.5, A) and 11.5-dpc (Ell.5, B) 
embryos derived from N-myc +/- heterozygote crosses were digested with EcoRI, Southern blotted, and probed with a 5' N-myc 
EcoRI-BamHI probe {Charron et al. 1990). Lanes 9 show tail DNA isolated from the mother, and wild-type (+; lower bands) and 
disrupted N-myc alleles ( - ; upper bands). The genotype of each embryo is indicated at the top of each lane. 

A,B). These studies demonstrated that at 9.5 dpc and 10.5 
dpc, the ratio of wild-type, N - m y c  + / -  and N - m y c -  l -  
embryos is 1 : 2 : 1 (Fig. 1; Table 1). However, at 11.5 
dpc, 11 of the 17 N - m y c - / N - m y c - / -  embryos identified 
were moribund or dead and in the process of resorption. 
Of note, a variable amount of DNA degradation was ob- 
served in some of these samples (Fig. 1B, lanes 2,7). At 
12.5 dpc, fewer homozygous mutant embryos were 
found and they were all in the process of being resorbed. 
This analysis indicates that absence of functional N - m y c  
expression results in embryonic lethality between 10.5 
dpc and 12.5 dpc. 

Expression of normal  and m u t a t e d  N-myc alleles 

A recent report described an N - m y c  mutation that was 
designed to disrupt gene function but was found to be 
incomplete owing to an unexpected integration of the 
construct that permitted expression of variable levels of 
normal transcripts (Bernelot-Moens et al. 1992). Restric- 
tion mapping analyses of the targeted N - m y c  allele in 
CCE-P-7.12 confirmed that we had achieved the intended 
replacement mutation (data not shown). To confirm this 
finding in mutant animals, we used Northern blotting 
procedures to assay for production of wild-type and mu- 
tated N - m y c  transcripts in N - m y c  + / +, N - m y c  + / - ,  and 
N - m y c - / -  embryos at 10.5 dpc. RNA samples were as- 
sayed for hybridization to an N - m y c  exon 3 probe that 
detects transcripts from both the normal (expected size, 
2.9 kb) and mutated (expected size, 3.6 kb) alleles (Char- 
ron et al. 1990). These analyses demonstrated that only 
the 3.6-kb N - m y c / n e o  fusion transcripts were present in 
N - m y c -  / - embryos, confirming that the mutation elim- 
inates expression of normal N - m y c  mRNA (Fig. 2, top). 
To verify this interpretation we also assayed these RNAs 
for hybridization to a second probe derived from N - m y c  
exon 2 sequences that were deleted in the mutated al- 
lele; as expected, this probe detects normal 2.9-kb tran- 

scripts in RNA from N - m y c  + / + or N - m y c  + / - embryos 
but detects no transcripts in the RNA samples from 
N - m y c - / -  embryos (Fig. 2, middle). 

Phenotype of the N - m y c - / -  mice  

At all days examined, N - m y c - / -  embryos were often, 
but not always, substantially reduced in size compared 
with their N - m y c  + / -  or N-myc + / + littermates (data 
not shown). Furthermore, at 9.5-11.5 dpc, we observed 3 
homozygous mutant embryos of 12 with a profoundly 
reduced cellularity throughout the embryo (based on mi- 
croscopic inspection of tissue sections), but none of 
these embryos showed any sign of necrosis. The reduc- 
tion in size also was reflected by the amount of RNA 
that could be extracted from the N - m y c - / -  mutant em- 
bryos compared with those of wild-type and heterozy- 
gous animals. On a per embryo basis, we could extract 
only about half the amount of RNA from a 10.5-dpc ho- 
mozygous mutant embryo (58 + 3 ~g; n = 5) as we 
could from a corresponding wild-type (112 __+ 4 ~g; 
n = 4) or a heterozygous (128 + 3 ~g; n = 4) embryo. 
Assuming that the amount of extractable RNA corre- 
lates with cell number, this result is consistent with the 
visual indications that the homozygous mutant embryos 
had fewer cells than their wild-type or heterozygous lit- 
termates. Taken together, these results suggest that the 
homozygous N - m y c  mutation may interfere with cell 
proliferation. 

To determine whether this apparent difference in size 
and/or cellularity was the result of a generalized devel- 
opmental retardation of the homozygous mutant embryos, 
we determined their developmental stage compared with 
that of control littermates by counting the number of 
somite pairs. At 9.5 dpc, we found 26 __- 2 somite pairs 
(n -- 3), 27 + 1 somite pairs (n = 8) and 25 + 2 somite 
pairs (n = 8 ) f o r  the N - m y c  +/+, N - m y c  + / - ,  and 
N - m y c - / -  embryos, respectively. At 10.5 dpc, we found 
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Figure 2. Expression of the N-myc gene in 10.5-dpc N-myc 
wild-type, heterozygous, and homozygous mutant embryos. To- 
tal RNA {15 ~g) was isolated from whole 10.5-dpc embryos, 
fractionated by electrophoresis through a formaldehyde-agarose 
gel, transferred to Hybond membrane, and assayed for hybrid- 
ization to 32p-labeled probes. Two individual wild-type ( + / + ), 
heterozgous ( + / - ), and homozygous mutant (-  / - ) embryos 
were analyzed. Duplicate blots were hybridized to N-myc third 
exon (top) and N-myc second exon (middle)probes. Blots were 
subsequently hybridized to a B-actin probe (bottom) to control 
for the relative quantity of mRNA in each lane. CCE-A-7.2 is an 
ES cell line in which one allele of N-myc was targeted by the 
same strategy used to derive the mutant mouse strain. RAT 1A 
is a fibroblast cell line as a negative control. 

35 --- 3 somite pairs (n = 3), 35 -+ 2 somite pairs 
(n = 10), and33 - 3 somitepairs (n = 8)forN-myc +/+ 
N-myc +/-,  and N - m y c - / -  embryos, respectively. 
Thus, based on this criterion, the N - m y c - / -  embryos 
were at approximately the same stage of development as 
their wild-type and heterozygous littermates. 

To determine whether the retardation in the growth of 
the N - m y c - / -  embryos was the result of abnormal pla- 
centation, histological sections of placentas were exam- 
ined by hematoxylin and eosin staining. No differences 
were observed (data not shown). Recently, embryonic le- 
thality in mutant  mice that lack a functional c-myb 
product was shown to result from a defect in erythropoi- 
esis (Mucenski et al. 1991). However, erythropoiesis in 
the N-myc-  / - embryos appeared normal based on a his- 
tological survey. In addition, we found that cells recov- 
ered from 9.5-dpc N - m y c - / -  yolk sacs could differenti- 
ate into red blood cells in an in vitro culture system 
(Wong et al. 1986a, b; data not shown). Therefore, the 
embryonic lethality in N-myc-  / - mice does not appear 
to result from a deficiency in erythropoiesis, although 

we cannot preclude a role for N-myc in erythropoiesis 
later in development. 

To define more precisely the phenotype of N-myc-  / - 
mice, we performed an extensive histological analysis of 
sections of 9.5-, 10.5-, and 11.5-dpc embryos. These stud- 
ies revealed that all of the structures and organs were 
present in N-myc - / -  embryos. However, at all stages 
examined, the development of certain homozygous mu- 
tant organs appeared retarded relative to that of control 
littermates. The most striking differences will be dis- 
cussed in detail in the following paragraphs. 

Heart The organ most strikingly affected b y  the 
N-myc - / -  mutation is the heart. At 9.5, 10.5, and 11.5 
dpc, the heart is one of the most differentiated organs. At 
this time in development, N-myc expression is restricted 
to the myocardium. Comparison of multiple transverse 
histological sections of different wild-type and mutant  
embryos at the level of the heart revealed dramatic dif- 
ferences (Fig. 3; representative sections are shown). Dif- 
ferences between wild-type and mutant  hearts were 
noted as early as 9.5 dpc; in contrast to the wild-type 
hearts, the ventricular region of 9.5-dpc homozygous 
mutant  embryos has not yet divided into chambers, and 
the trabeculation of the ventricle is reduced (Fig. 3). At 
10.5 and 11.5 dpc, even more dramatic differences were 
noted. In the wild-type embryos, the myocardium is well 
developed and it is possible to distinguish the atria, the 
ventricles, atrioventricular canal, interatria septum, in- 
terventricular septum, and the trabeculae carneae (Fig. 3; 
representative sections are shown). However, the hearts 
of all the 10.5-dpc (n = 4) and 11.5-dpc (n = 3) mutant  
embryos analyzed appeared substantially underdevel- 
oped compared with the wild-type embryos (Fig. 3). In 
four of the 10.5-dpc and one of the 11.5-dpc mutant  em- 
bryos, we could identify the area within the heart tissue 
that should generate the atria and the ventricles; how- 
ever, these hearts retained the S-shape more typical of 
embryonic day 9. In addition, the endocardium, which 
normally undergoes a regionally restricted epithelial- 
mesenchymal transformation to generate the anlagen of 
valvular and septal tissues (Zak 1984), is still present in 
the 10.5- and 11.5-dpc mutant  hearts. In the other two 
l l.5-dpc mutant  embryos, the atria and ventricular 
chambers of the heart were present and formation of the 
interventricular septums was initiated. However, trabe- 
culation of the ventricles was reduced, suggesting that 
heart development was less advanced (data not shown). 

In two mutant  embryos (one at 10.5 dpc and the other 
at 11.5 dpc), the pericardium appeared normal but its 
cavity was almost empty owing to the underdeveloped 
heart (Fig. 3). In two 11.5-dpc mutant  embryos, we also 
observed the enlargement or dilatation of the anterior 
cardinal vein (Fig. 3). Such changes were never observed 
in wild-type or heterozygous embryos. 

CNS The N-myc gene is highly expressed in the CNS 
during development. Therefore, we examined multiple 
sections of 9.5- through 11.5-dpc embryos to determine 
whether the absence of N-myc perturbed neural devel- 
opment. In the CNS, the expression of the N-myc gene is 
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Figure 3. Histological analysis of hearts derived from N-myc 
wild-type and homozygous mutant embryos. Transversal sec- 
tions through the heart of 9.5-dpc (E9.5, top), 10.5-dpc (ElO.5, 
middle), and 11.5-dpc (El 1.5, bottom) wild-type { + / +, left) and 
homozygous N-myc mutant ( - / - ,  right) embryos are shown. 
(a) Atria; (c) anterior cardinal vein; (drg) dorsal root ganglia; (tc) 
trabeculae carneae; (v) ventricles. The magnifications are 24x 
for the 9.5-dpc embryos and 15x for the 10.5- and ll.5-dpc 
embryos. 

found in the brain, cranial ganglia, and spinal ganglia; 
expression is also found in the neural crest-derived max- 
illary and mandibular processes (Kato et al. 1991). The 
earliest differences observed for the mutant embryos 
were seen at 9.5 dpc. Size reduction of the spinal and 
cranial ganglia (most notably the trigeminal V and the 
acoustico-facialis ganglia) was most obvious in 10.5- and 
l l.5-dpc mutant embryos (Fig. 4A-C). In addition, the 
trigeminal, acoustico-facialis, and dorsal root ganglia had 
a less dense cellularity in some N - m y c -  / - embryos than 
in wild-type embryos. Irregularity and decreased cellu- 
larity in the neural ectoderm of the telencephalon and 

myelencephalon also was observed in some mutant em- 
bryos (Fig. 4A). 

The cranial and the spinal ganglia contain the sensory 
neuron cell bodies. Therefore, we looked for perturbation 
of axon formation by staining sections with antibodies 
against neurofilament, N-CAM, and another neural-spe- 
cific marker, mAb3A10 (Furley et al. 1990). By this 
method of analysis, axon extension and fasciculation ap- 
peared normal (data not shown). N-myc is expressed in 
the developing neural retina and lens (Hirning et al. 
1991). However, invagination of the optic vesicles and 
the lens vesicles appeared normal, though perhaps 
slightly delayed, in the mutant embryos. 

Other organs During renal development, the N-myc 
gene is highly expressed in the mesonephric tubular cells 
just derived from the conversion of the embryonic mes- 
enchyme to epithelium (Mugrauer et al. 1988; Kato et al. 
1991). At all stages analyzed (9.5, 10.5, and 11.5 dpc), 
mesonephric tubules of mutant embryos appeared mor- 
phologically normal. However, the number of tubules 
observed in the N - m y c - / -  embryos was reduced com- 
pared with that of their wild-type and heterozygous lit- 
termates (Fig. 5). It should be emphasized, however, that 
these kidney defects are unlikely to be associated with 
the death of homozygous N-myc mutant embryos, as 
embryogenisis proceeds well in mutants of both mice 
and humans that lack kidneys (Gluecksohn-Schoenhe- 
imer 1945; Phillips 1970). 

N-myc expression has also been found in other sites at 
9.5-12.5 dpc, including mandibular and maxillary pro- 
cesses, sclerotome, and the digestive tract (Kato et al. 
1991). However, histological analyses revealed no major 
abnormalities in these tissues in N-myc homozygous 
mutant mice. 

Discussion 

Lack of N-myc function results in embryonic lethality 

A recessive null mutation at the N-myc locus results in 
lethality during embryonic development of homozy- 
gotes. Based on the early onset and abundance of N-myc 
expression during gastrulation (Downs et al. 1989), it 
may have been predicted that N - m y c -  / - mice would die 
very early in development. Moreover, the apparent role 
of N-myc in proliferation or in the cell cycle also would 
suggest a possible cell-lethal phenotype (Morrow et al. 
1992; Rustgi et al. 1991; Wagner and Green 1991). How- 
ever, our data clearly indicate that homozygous mutant 
embryos develop relatively normally until 9.5 dpc and do 
not die until 10.5-12.5 dpc of gestation, a time after 
which much of the abundant early N-myc expression has 
occurred. Histological analyses showed that major organ 
systems are present in developing embryos but that sev- 
eral organs such as the heart, the CNS, and the kidney 
appeared developmentally retarded. Therefore, lack of 
the N-myc product does not affect the initial stages of 
organogenisis but does seem to interfere with the normal 
development of some organs apparently by perturbing 
normal cellular proliferation and/or more advanced 
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Figure 4. Histological analysis of CNS from wild-type and N-myc-  / - embryos. (A) Transversal sections through the brain at the level 
of the trigeminal ganglia of 9.5- (E9.5), 10.5- (El0.5), and 11.5- (El 1.5) wild-type {+/+, left) and homozygous mutant { - / - ,  right) 
embryos. Note that the homozygous mutant embryo at 11.5 dpc was reduced in size and cellularity compared with the normal control. 
The magnifications are 55x for the 9.5-dpc embryos and 22x for the 10.5- and l l.5-dpc embryos. (d) Diencephalon; lgS) trigeminal 
ganglia; (g7-8) acoustico-facialis ganglia; (L) lens invagination; (m) myelencephalon; (op) optic vesicle; {or) otic vesicle; (t) telenceph- 
alon. (B} Transversal sections at the level of the heart to show the dorsal root ganglia of 10.5-dpc (El0.5) and 11.5-dpc (El 1.5) wild-type 
(+/+,  left) and two homozygous mutant ( - / - ,  middle and right) embryos. Magnification, 42x. (C) High magnification (84x) of 
trigeminal ganglia from transversal brain sections of wild-type (+ /+ ,  left) and two homozygous mutant ( - / - ,  middle and right) 
embryos. 

stages of differentiation. This interpretation is supported 
by the finding that ES cells that lack a functional N - m y c  
gene proliferate normally and are able to contribute to a 
variety of somatic tissues in chimeric embryos and 
adults (Sewal et al. 1991; B.A. Malynn, J. Charron, and 
F.W. Alt, unpubl.). 

The embryonic lethality displayed by homozygous 
N - m y c  mutant  animals contrasts with the phenotype of 
mice that have targeted mutations of the tyrosine kinase 
class of oncogenes. Although the products of these genes 
have been implicated in cell proliferation, homozygous 
mutant  animals displayed a surprisingly limited pheno- 
type (Schwartzberg et al. 1991; Soriano et al. 1991; Ty- 
bulewicz et al. 1991; Molina et al. 1992). One proposed 

explanation for the lack of a major phenotype associated 
with these mutations is the functional redundancy be- 
tween different members of this family of related pro- 
teins (Soriano et a1.1991). N-myc belongs to a gene fam- 
ily whose members may well have overlapping activity 
{for review, see Zimmerman and Alt 1990). However, the 
more severe phenotype of the homoygous N-myc muta- 
tion indicates that it plays a unique role in more tissues 
and earlier than most members of the tyrosine kinase 
class of oncogenes. In general, N-myc and c-myc are co- 
expressed in embryos during gastrulation (Downs et al. 
1989). The onset of developmental defects in homozy- 
gous N-myc mutants is manifest only when the expres- 
sion patterns of N - m y c  and c-myc  start to be differen- 
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Figure 5. Histological analysis of kidney 
from wild type and N-myc-/- embryos. 
Transversal sections through the kidney of 
10.5-dpc wild-type ( + / +, left) and two ho- 
mozygous mutant ( - / - ,  middle and 
right) embryos. Note that the N-rnyc- l- 
embryo shown in the right panel was 
smaller than the embryos shown in the 
other panels. (rest) Mesonephric tubules; 
{msd) mesonephric duct. Magnification, 
38x. 

tially restricted to different tissue components (Mu- 
grauer et al. 1988; Himing et al. 1991; Kato et al. 1991); 
thus, coincident expression of N-myc and c-myc (or pos- 
sibly L-myc) may explain (1) why mutant  embryos sur- 
vive until mid-gestation and (2) the lack of a major phe- 
notype in certain tissues. 

N-myc is the second example of a nuclear oncogene 
that has been disrupted by homologous recombination. 
Embryos that lack a functional c-myb gene also die in 
utero. However, the lethal phenotype of c-myb mutant  
embryos is not manifested until 15 dpc and apparently 
results primarily from a block in adult-type erythropoi- 
esis. Therefore, the c-myb mutant  phenotype is of a 
much more restricted nature than that exhibited by the 
N-myc mutants. In addition, embryonic erythropoiesis 
appears to occur relatively normally in the absence of 
functional N-myc expression, but the lethality of the 
homozygous N-myc mutation at mid-gestation pre- 
cludes analysis of N-myc function in adult type erythro- 
poiesis. 

The N-myc protein belongs to a class of transcription 
factors that contain helix-loop-helix and/or leucine zip- 
per motifs; some of these proteins have been implicated 
in the control of cell determination (L/ischer and Eisen- 
man 1990). Our studies provide the first direct demon- 
stration of a critical role for such proteins in the devel- 
oping mammalian embryo. In addition, a number of 
genes encoding other putative transcription factors of 
the homeo box class of proteins have been mutated by 
gene targeting (Chisaka and Capecchi 1991; Joyner et al. 
1991; Lufkin et al. 1991; LeMouellic et al. 1992}. The 
resulting mutants  also exhibited restricted phenotypic 
abnormalities compared with those observed for N-myc 
mutants. 

Specific defects associated with the N-myc null 
Mutation 

All of the defects documented in N-myc mutant  em- 
bryos occur in tissues that normally express the N-myc 
gene. One of the more pronounced phenotypes observed 
in mutant  embryos was a reduction in size that appar- 
ently correlates with a decrease in total cell number. 

However, the size of the homozygous mutant  embryos 
varied widely. It is possible that the variability in phe- 
notype may reflect a difference of expressivity of the 
N-myc mutation owing to the genetic heterogeneity of 
the outbred background into which the homozygous 
N-myc mutant mice were generated. 

Reduction in cell density or number is obvious in the 
developing nervous system. In this regard, N-myc ex- 
pression normally is found in neural crest-derived cells 
{Kato et al. 1991). Yet, in mutant  embryos most neural 
crest-derived structures appear normal except for the re- 
duction of the cranial and spinal ganglia in size and/or 
cellularity. Therefore, our results could be explained if 
the absence of N-myc expression affects either the pro- 
liferation of the initial pool of neural crest cells that 
migrate to form the ganglia {Altman and Bayer 1982} or 
the expansion of the postmigratory cell population. Fur- 
thermore, axon extension and fasciculation appears nor- 
mal in the mutant  embryos, which suggests that the ab- 
sence of N-myc does not prevent the differentiation of 
neural crest cells into neurons, at least at this develop- 
mental stage. 

N-myc is also expressed in the mesonephric tubules 
that are derived by the conversion of the mesonephric 
mesenchyme into a polarized epithelium (Mugrauer et 
al. 1988; Ekblom 1989; Kato et al. 1991). This conversion 
in the mesonephros, which is a transient structure, is 
similar to the conversion that will occur later during 
kidney development [derived from the metanephros, 
around embryonic day 12J. It is known that in the kid- 
ney, the conversion of the mesenchyme into epithelium 
of the kidney tubules occurs in response to an inductive 
signal from the ureter epithelium (Grobstein 1956). In 
N-myc- / -  embryos, we observe the presence of meso- 
nephric tubules in the mesonephros, which suggests that 
the lack of N-myc expression does not affect the conver- 
sion of the mesonephric mesenchyme into epithelium. 
However, the number of mesonephric tubules formed is 
reduced, suggesting that N-myc expression may be re- 
quired for the appropriate proliferation of the induced 
mesenchyme in response to the inductive signals. Mice 
homozygous for a mutation that leads to impaired ex- 
pression of the normal N-myc product show an under- 
development of the lung airway epithelium. It was pro- 
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posed that N-myc is required for the proliferation of the 
lung epi the l ium in response to a local inductive signal 
emanat ing from the lung mesenchyme (Bernelot-Moens 
et al. 1992). In the homozygous mutan t  N-myc embryos 
of our studies, the development of the lung appears nor- 
mal  unt i l  at least 11.5 dpc. Therefore, although N-myc 
may play vital roles in differentiation of other organs 
later in development,  the early onset of lethali ty during 
organogenisis in homozygous null  mutants  precludes in- 
vestigation of such functions. 

Mice homozygous for the N-myc mutat ion most  
l ikely die from a major defect of the heart. Lack of func- 
tional N-myc expression results either in embryos that 
do not form a heart containing four well-developed 
chambers or in embryos in which  the heart contains the 
atria and ventricles but underdeveloped valvular and sep- 
tal tissues as well  as trabecula carnea. During heart de- 
velopment, interactions between the cardiac endotheli- 
u m  and the myocard ium lead to an ep i the l ium-mesen-  
chymal  transformation that generates the anlagen of 
valvular and septal tissues and the trabeculation of the 
ventricles (Zak 1984). The absence of any valvular or 
septal tissues in some embryos suggests that lack of 
N-myc protein may  impact  in some way upon this dif- 
ferentiation process. Previous studies indicated that the 
ep i the l ium-mesenchymal  transformation depends on a 
developmental ly regulated signal expressed by the asso- 
ciated myocardium (Mjaatvedt et al. 1991 and references 
therein). Because the N-myc gene is normal ly  expressed 
in the myocardium (Kato et al. 1991), our findings sug- 
gest that lack of N-myc expression may  interfere wi th  
the production of this signal. 

Possible function of the N-myc protein 

Our analyses of developmental  defects in N-myc mutan t  
embryos have not clearly defined a function for the 
N-myc protein; however, a number  of significant general 
observations can be made. First, it is clear that the 
N-myc defect is manifested in a variety of different tis- 
sues and organs, indicating that this protein has a rather 
generalized function in development. In addition, most 
of the noted defects were more consistent wi th  a reduc- 
tion in cell number  or density than wi th  a block in dif- 
ferentiation per se. One possible interpretation of our 
findings is that N-myc expression may  be required to 
expand specific pools of precursor cells by promoting 
their growth, inhibi t ing their death, and/or  preventing 
their terminal  differentiation. It has been shown that 
consti tutive expression of c-myc can inhibi t  differentia- 
tion of cultured cell l ines (Theile et al. 1985; Coppola 
and Cole 1986; Denis et al. 1987; Freytag 1988; Larcher 
et al. 1991 ). In addition, it is notable that prelymphocyte- 
specific growth factor, I1-7, induces N-myc in pre-B cells 
while  also inducing proliferation, but not differentiation. 
In this context, defects associated wi th  the lack of 
N-myc expression might  be attributed to the lack of a 
sufficient quanti ty  of particular s tem cells. Recently, it 
has been suggested that N-myc/Rb interactions may  be 

involved in the control of cell proliferation and that 
N-myc expression may  prevent entry into a distinct 
predifferentiation state in Go/G1 that is a prerequisite for 
terminal  differentiation (Wagner and Green 1991). Thus, 
for certain cell types, N-myc may serve as a molecular  
switch, directing cells to a pathway that can lead either 
to continued proliferation or to terminal  differentiation. 

Materia ls  and m e t h o d s  

Southern blot analysis 

Tail and embryo DNA was prepared as described previously 
(Hogan et al. 1986). Purified DNA was digested with the indi- 
cated restriction endonuclease, fractionated by electrophoresis 
through 0.8% agarose gels, blotted onto N-Hybond membrane 
{Amersham), and hybridized to the 5' N-myc EcoRI-BamHI 
probe described in Charron et al. (1990). Blots were washed with 
0.1 x SSC and 0.1% SDS at 65~ 

Northern blot analysis 

Total RNA was prepared from 10.5-dpc embryos as described 
(Auffray and Rougeon 1980), and Northern blotting was per- 
formed according to Maniatis et al. (1989). A 330-bp XhoI- 
BssHII genomic fragment and a 2.1-kb ClaI-EcoRI genomic 
fragment were used as second and third exon probes, respec- 
tively (DePinho et al. 1986). The human ~-actin probe was a 
2.2-kb eDNA fragment (Gunning et al. 1983). 

Generation of germ-line chimeras 

Embryo manipulations were carried out as described (Schwartz- 
berg et al. 1989). Ten to twelve ES cells from the N-myc mutant 
cell lines were injected per blastocyst, which were derived from 
C57BL/6 or MF-1 mice. Injected blastocysts were cultured in ES 
cell medium for 1-2 hr before transfer of 6-10 embryos to one 
uterine horn of one pseudopregnant female mouse. Chimeric 
pups were identified by eye pigmentation when MF-1 blasto- 
cysts were used or by coat color chimerism when C57BL/6 blas- 
tocysts were injected. Chimeric males were bred to MF-1 or 
C57BL/6 females to test for germ-line transmission of the dom- 
inant agouti coat color marker. Transmission of the mutated 
allele was detected by Southern blot analysis of tail DNA from 
F1 offspring with agouti coat color. 

Histological analysis 

Embryos were dissected out of the visceral yolk sac and fixed for 
16 hr in 4% paraformaldehyde, dehydrated in graded alcohols 
and xylenes, and embedded in paraffin as described (Wilkinson 
and Green 1990). Sections Of 6 ~m thickness were stained with 
Harris hematoxylin and eosin. Black-and-white micrographs 
were taken with a Nikon Optiphot-2 microscope, a Nikon FX- 
DX photomicrographic system, and Kodak technical pan film. 
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