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ABSTRACT 

Non-linear Dynamics in ETG Mode Saturation and Beam-Plasma Instabilities 

Erinc K. Tokluoglu 

 Non-linear mechanisms arise frequently in plasmas and beam-plasma systems resulting in 

dynamics not predicted by linear theory. The non-linear mechanisms can influence the time 

evolution of plasma instabilities and can be used to describe their saturation. Furthermore time 

and space averaged non-linear fields generated by instabilities can lead to collisionless transport 

and plasma heating. In the case of beam-plasma systems counter-intuitive beam defocusing and 

scaling behavior which are interesting areas of study for both Low-Temperature and High 

Energy Density physics. 

The non-linear mode interactions in form of phase coupling can describe energy transfer 

to other modes and can be used to describe the saturation of plasma instabilities. In the first part 

of this thesis, a theoretical model was formulated to explain the saturation mechanism of Slab 

Electron Temperature Gradient (ETG) mode observed in the Columbia Linear Machine (CLM), 

based on experimental time-series data collected through probe diagnostics [1]. ETG modes are 

considered to be a major player in the unexplained high levels of electron transport observed in 

tokamak fusion experiments and the saturation mechanism of these modes is still an active area 

of investigation. The data in the frequency space indicated phase coupling between 3 modes, 

through a higher order spectral correlation coefficient known as bicoherence. The resulting 

model is similar to [2], which was a treatment for ITG modes observed in the CLM and correctly 

predicts the observed saturation level of the ETG turbulence. The scenario is further supported 



  

by the fact that the observed mode frequencies are in close alignment with those predicted 

theoretical dispersion relations.  

 Non-linear effects arise frequently in beam-plasma systems and can be important for both 

low temperature plasma devices commonly used for material processing as well as High Energy 

Density applications relevant to inertial fusion. The non-linear time averaged fields generated by 

beam-plasma instabilities can be responsible for defocusing and distorting beams propagating in 

background plasma. This can be problematic in inertial fusion applications where the beam is 

intended to propagate ballistically as the background plasma neutralizes the beam space charge 

and current. We used particle-in-cell (PIC) code LSP to numerically investigate the defocusing 

effects in an ion beam propagating in background plasma experiences as it is exposed to the non-

linear fields generated by Two-Stream instability between beam ions and plasma electrons. 

Supported by theory and benchmarked by the numerical solutions of governing E&M equations, 

the simulations were used to find and check scaling laws for the defocusing forces in the 

parameter space of beam and plasma density as well as the beam ion mass. A transition region 

where the defocusing fields peak has been identified, which should be avoided in the design of 

experimental devices. We further proposed a diagnostic tool to identify the presence of the two-

stream instability in a system with parameters similar to the National Drift Compression 

Experiment II (NDCX-II) and conducted proof-of concept simulations. In the case of electron 

beam propagating in background plasma instability driven collisionless scattering and plasma 

heating is observed. 1-D simulations conducted in EDIPIC were benchmarked in LSP to study 

the excitation and time-evolution of electron-electron Two-Stream instability. Coupling of 

electron dynamics via non-linear ponderomotive force created by instability generated fields 

with ion cavities and Ion-Acoustic mode excitation was observed. Furthermore 2-D simulations 



  

of  an electron-beam in a background plasma was performed. Many of the effects in observed in 

1-D simulations were replicated. Morever generation of oblique modes with transverse wave 

numbers were observed in the simulations, which resulted in significant transverse scattering of 

beam electrons and the time evolution of the turbulent spectrum was studied via Fourier 

techniques. It is plausible that the modes excited might be interacting non-linearly via mode-

coupling, however further theoretical and numerical investigation of the turbulent spectrum is 

needed. The study of the more realistic 2-D system and the spectrum is important for the 

understanding of collisionless heating of plasmas by beams and the underlying energy delivery 

which can have important applications in especially low temperature plasma systems used 

primarily in etching and materials processing.
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Chapter 1 

Literature Overview of Drift Waves, ETG 

Modes and Experimental ETG Studies 

Conducted in the CLM: 

 

Part 1: Literature Overview of Drift Waves and ETG 

Modes: 

I-Introduction: 

Drift waves have in the past years become a study of interest in tokamak plasmas. The 

major cause of interest is the anomalous particle and thermal transport (in the case of 

temperature gradient modes) induced by these instabilities. While the ion branch of drift waves 

like the ITG wave is better understood in terms of transport (ion transport measured and 

simulated for tokamak plasmas generally agree with the neoclassical limit, ITG saturation and 
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suppression by mode coupling and effects of zonal flows are better understood), electron 

transport remains anomalously large. Thus it is important to study modes which may be culpable 

for anomalously large turbulent transport, one of which is the ETG mode. In this section we will 

give a brief literature review of of drift waves, providing a quick overview of the underlying 

theory. We will also look at some of the experimental evidence of their existence in large scale 

tokamaks, which is applicable to ITER and their effects on turbulent transport. Most of the 

discussion we present here will be based on the comprehensive literature review of Horton 

(1999) [5]. The familiar reader can proceed to part 2 of this chapter where we will briefly 

summarize slab ETG experiments conducted in the Columbia Linear Machine in the previous 

years. 

 As we mentioned earlier, drift waves have started to attract more attention due to their 

influence on particle and thermal transport. In the first part of this chapter we will make an 

overview of what can be expected in a large scale tokamak like ITER. In Section II we will give 

a theoretical description of drift waves, the underlying physical principles and the energy drive, 

the dispersion relation and the question of stability and we will look at the toroidal versions of 

these modes, those we can expect to see in a tokamak. In Section III we will first look at the 

observation of these modes in large tokamaks like TEXT and TFTR, and look at simulation 

results to address questions of saturation, effects of simulation noise and the question of scaling 

which would be rather important for ITER. In section IV we will make a brief summary of our 

general overview. 
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II-Theoretical Background 

 Drift waves stem from the diamagnetic drift velocity, which is also responsible for 

creating rotational diagmagnetic current in plasmas. By its nature the diamagnetic drift is a FxB 

velocity, where F denotes force. Replacing F with the pressure gradient divided by density , -

p/n the diamagnetic drift velocity can be derived as: 

       
 

     
                  (1) 

Where  for species a e, n, p denotes charge, density and pressure respectively and B is the 

magnetic field. If at some radial location r, we have an azimuthal distribution of phase fronts, 

given by some azimuthal spatial number        , in other words a wave number, following 

the simple relation ω=kv, we attain the diamagnetic drift frequency and what we would have is 

an azimuthally rotating wave, i.e. a drift wave created by the pressure gradient. This is the 

essence of the drift wave dispersion relation, the diamagnetic drift frequency is thus given by: 

       
  

    

    
       (2) 

Eqn 2 gives the diamagnetic frequency for an electron drift mode (its ion counterpart will be in 

exactly the same form), Ln here denotes the gradient scale length in density, assuming our 

pressure gradient comes from the density gradient and    is the electron temperature. For 

temperature gradient waves, this gradient scale length parameter L will be of course the 

temperature gradient scale length. In slab geometry the perpendicular wave number will be given 

by         a mode where m is the azimuthal harmonic number and r is the location of the 

mode. 
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Here we will summarize some characteristics of drift waves: 

 Drift waves are electrostatic perturbations,         where   denotes the scalar 

potential, 

 They are mostly rotational modes with k >> k// 

 The modes are quasineutral since k D <<1, where D denotes the Debye Length. This 

means the spatial variations of the modes are larger than the Debye Length, so in the 

scale length of drift wave variations quasineutrality is a good approximation. 

 The existence of E// and the electrostatic characteristic imply that the magnetic field lines 

should be defrosted, since generalized Ohm’s law : 

   
 

 
           (3) 

Imply that E.B=0. The Defrosting of the magnetic field lines, bring in conditions for 

plasma collisionality and also set limits on the gradient scale length and the perturbation 

frequency. 

 Drift waves are in fact the weak turbulence solutions to the Hasegawa-Mima Equation, 

which can be derived from the Drift-kinetic equation including polaziration drift effects 

and describes the convection of potential vorticity. In the high turbulence limit, where the 

ExB (1
st
 order) associated with the fluctuations are large, the solutions take the form of 

potential vortices. 

 Since these modes are electrostatic, for frequencies when the particles would be fast 

enough to respond to the perturbations, we will employ an adiabatic-like response 

together with Poisson’s equation. For collisionless drift waves, where energy dynamics of 

the modes is based entirely on resonant particle wave interactions, where the parallel 
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velocity of the particles match the parallel phase velocity of the wave, Vlasov’s Equation 

is used with Poisson in order to kinetically compute the dispersion relation. This is called 

a self-consistent Vlasov-Poisson system and is widely used by simulation codes. 

 For most cases the density response to potential perturbation is given by: 

 

       
    

  
             (4) 

 

Where N is zero-order density,    is the electron temperature in and    denotes a 1
st
 

order fluctuation in the scalar potential. Here the delta operator is an anti-Hermitian 

operator denoting the phase shift between the potential perturbation and density 

fluctuation. k here denotes a wave number, so in Eqn. 4 the operator is showing the phase 

shift caused kinetic wave-particle interaction. It is important to note that it is this phase 

shift that determines whether or not a mode will be growing and in collisional cases, can 

be created by resistivity which can either create growth or damping, and viscosity which 

will always create damping. The kinetic delta can of course cause either decay or growth 

depending on the sign of        in velocity space at the point where         . 

Studying Fig.1 one can see that the ExB drift created by the perturbation will be along 

the potential contours and will create a net influx of particles to the phase shifted 

maximum of the potential perturbation, due to the background density. Depending on the 

sign of the phase shift, the density fluctuation will either precede or follow the density 

perturbation, creating a negative feedback effect in the case of a damped mode, and a 

positive feedback effect in the case of a growing mode. 
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Fig 1 Phase Shifted potential and density fluctuation maxima creating a feedback 

effect [5] 

 

The same figure with no phase shift between potential and density fluctuation can be used 

to show that the ExB convection creates a net flux of particles in the symmetry direction 

(y in Fig 1), if the time is calculated for a box of length delta y and height of delta x to be 

filled up by this influx of particles, then delta y be divided by this time, it can be shown 

that the structure will be propagating in y with the diamagnetic speed [5]. 

 

 The particle flux and the thermal flux of species a are given by the following: 

   
 

 
 ∫        

 
         (5) 

   
 

  
 ∫          

 
        (6) 
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vE here denotes the ExB drift in the radial direction created by the azimuthal E field of 

the mode since for an adiabatic response the density fluctuation n and the vE which is 

      are exactly 180 degrees out of phase, both the particle flux and the heat flux 

averaged over a magnetic surface in space and time will be identically zero (since we use 

sinusoidal eigenfunctions for the modes). Thus only when there is a phase shift between 

the density and the potential will the drift wave create particle and thermal flux, resulting 

in transport and heat conduction. 

The diffusivity created by the modes is neoclassical and the theory is essentially that of 

quasi-linear diffusion where a group of modes interact with resonant particles with 

matching parallel velocity and cause them to diffuse radially (on a time average, since n 

or T is larger in the interior plasma, the net effect is a radially outward flux) outward due 

to their EXB convection, while decelerating them axially (for an unstable mode). The 

diffusion coefficient is given by: 

     
  

 
  

    

  
        (7) 

ρs = cs ωce is a larmor radius like quantity with cs being the sound speed,  ωce is the 

electron-cyclotron frequency, L is the scale length, c is the speed of light in vacuum, Te is 

electron temperature and B is the magnetic flux density as usual. 

 It is important to look at the Dispersion relation or the plasma dispersion function for the 

drift waves to understand the issue of stability. For this analysis we will briefly describe 

how a dispersion relation for a kinetic drift wave can be calculated, extend it to the 

temperature gradient case and look at the Nyquist technique and the eta-e/i parameter. 

Solving the dispersion relation using the Vlasov-Poisson system requires the delta-f 
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approximation, where we will assume that the background distribution is near-

maxwellian and the perturbative delta-f is very small compared to f. Solving delta-f in 

terms of f using Vlasov Eqn, then integrating in velocity space will give delta n, the 

density fluctuation, which we can put into Vlasov’s equation to get D(ω)φ = 0. Since φ 

cannot be zero  complex ω values with D(ω) = 0 are the solutions of the system. The 

critical parameter defining stability is: 

   
       

       
         (8) 

The    parameter, (   is analogous in nature). And the Plasma Dispersion function looks like: 

         

    
 

  
*   〈

        

     
     

   
 〉+       (9) 

J0 here is a bessel function resulting from gyro-averaging (phase averaging), gyrokinetic Vlasov 

equation, j denotes species of particles.  In this equation 

    
     

     

   

  
*       

 

 
 +     (10) 

     
             (11) 

By sweeping complex ω in the positive half plane, where the imaginary frequencies are all 

positive and plotting the corresponding D(ω) in the complex plane we can investigate stability. If 

area enclosed by D(ω) contains the zero point that means there exists a solution for which D(ω) 

=0 for our ω values which all had positive real parts, meaning an unstable solution exists. Since 

the plasma dispersion can be reduced down to a polynomial function with rational coefficients, 

the rational root theorem dictates that the complex solutions come in stable/unstable pairs. But 
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we are only interested in growing solutions, since damped solutions with high imaginary will not 

exist in the plasma unless driven by some non-linear mechanism (i.e. mode coupling). This 

technique is called the Nyquist Diagram Technique. Fig 2 illustrates a case for which an unstable 

solution exists: 

(a) (b)  

  

Fig 2 a- The frequency upper half plane sweep      , b- Plasma dispersion function sweep 

      . 

 

It can be seen from Fig.2.b that the critical value for   above which unstable solutions exists is 

2/3. 

Drift wave dispersion relations can be derived from kinetic or gyrokinetic equations (the 

gyrokinetic equation would be taken moments of by velocity space integration after sometimes 

multiplying by a velocity containing term to create gyro-fluid equations). The calculation is in 

essence what we described in this section, and involves the use of Poisson’s equation (Vlasov-

Poisson system calculations). In the limit of kyρs <1 , i.e long scale fluctuations the dispersion 

relation can be simplified to: 



１０ 
 

      
 

 
 (   

    

    

  ⁄ )
 

   
  

 
(   

    

    

  ⁄ )
 

   (12) 

Here    
 is the electron thermal velocity and   is Te/Ti. This dispersion relation is true for slab 

geometry. Important thing to note here is that the imaginary part is larger than the real part for 

these sets of solutions (ITG case will also be analogous) which makes the quick detection and 

feedback suppression of these modes very difficult. 

Since there is a threshold value above which the unstable modes exist, it is not surprising that the 

modes are local to regions of strong temperature/density gradient. The localization of the modes 

stems from the fact that due to the density gradient the particle distribution function is no longer 

uniform in space. Thus a mode can be resonant with the particles at one radial position r, but no 

longer resonant in r + Δr. This is reflected in the fact that the diamagnetic frequency, which 

determines the frequency of the modes is a function of L, the scale length of the gradient. 

Changing the r coordinate from the center of the mode, ωTj (j denotes ion or electron) and thus ω. 

Hence ω/ k// will change with the radial coordinate and at a certain r, the mode will not be 

resonant or resonant with the particles as to create damping (in the case of ITG, phase velocity 

can fall to cs limit, meaning the mode will be strongly landau damped by the ions and cease to 

exist). The radial width dependence is given by: 

          ⁄       (13) 

The saturation and suppression mechanism of drift waves are not perfectly understood. It is 

known however that the zero order EXB rotation break up the potential contours or streamers 

along which particles diffuse, thus creating suppression. Fig 3. Illustrate this effect: 

 



１１ 
 

 

 

 

 

 

Fig 3 ExB shear flow suppression of drift waves 

For ITG modes zonal flows, which are m=0, n= 0 uniform structures with only an imaginary 

linear frequency, have been shown to have a suppression effect. For ETG modes however zonal 

flows have been shown to be unimportant. The saturation of ETG modes is under investigation, 

one of the popular schemes used in simulation codes is the mode coupling of fastest growing 

modes to the damped ETG modes through 3 wave coupling, under frequency and wave vector 

matching conditions, thus creating saturation.  

 Having summarized the drift modes in general, let’s take a look at what happens in 

toroidal geometry. In toroidal geometry, the magnetic field lines have curvature, so in the 

starting fluid, gyro-fluid or kinetic equations toroidal eigenfunctions should be employed along 

with the inclusion of B drift in the appropriate continuity and/or Vlasov equations, (Fluid 
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equations with phase shifted adiabatic response where the phase shift term contain the kinetic 

effects are sometimes used) to get the drift-wave equation, which will give the same D(ω)φ =0 

nature dispersion relation that we seek. We are not going to go any further into the details of 

these calculations but briefly summarize to very important results. The first important difference 

is that in toroidal geometry drift wave solutions will exhibit ballooning type behavior and be 

localized to regions of the plasma, near the plasma edge, where the curvature is destabilizing. 

 

Fig 4 Contours of potentials of drift wave simulation showing localization to the outside of 

the torus and bad curvature localization. 

 The second important result is the resonant localization of the modes (resonant to the field lines) 

and the notion of magnetic shear induced damping. Using the following eigenfunction for the 

potential fluctuation: 

        ∑        
                + c.c            (14) 

where m and n are the polodial and toroidal rotation numbers associated with the mode,   and 

  are polodial and azimuthal coordinates respectively and c.c stands for complex conjugates. We 
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assume that in the tokamak the magnetic field takes the form        ̂      ̂ and iota or 1/q 

will become 

 
 

    
 

   

   
        (15) 

With R being the major and r being the minor radius. This will give the following expression for 

magnetic shear or the rate of change of the twist of magnetic field lines: 

   
 

 

  

  
        (16) 

As we noted before,   is taken to be small for drift waves and    ⁄          determines the 

wave-particle resonance. Eq. 17 will determine    for this toroidal geometry: 

    
         ̂           

    

  
     (17) 

Eq 17 shows that   is determined by the difference in the twist of the perturbation and the 

magnetic field lines.   being very small is a characteristic of the drift wave and q being a 

function of r will change with the radial location and as a result   will increase. In the case of an 

ion drift wave, an increase in   will cause the parallel phase velocity to drop to cs level and 

strong ion landau damping will kill the mode. Thus q’s dependence on r, controls local width of 

the mode. Same reasoning can be employed for electrons where the change in parallel wave 

number will throw the mode off resonance. Thus the drift modes in toroidal tokamaks will be 

localized to magnetic surfaces with matching q, very similar in concept to magnetic islands and 

their widths will be determined by the rate of change of q with respect to r, or magnetic shear s, 

giving us the notion of magnetic shear induced damping. 
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III- Toroidal Drift Modes in Tokamak Experiments and Large Scale 

Simulations: 

 We first start by the observation of drift waves in TFTR (Mazzucato, Nazikian) and 

TEXT(Brower et.al. 1985). Table 1 Shows the applicable drift wave parameters in TEXT and 

TFTR: 

 

Table 1 Drift Wave parameters in TFTR and TEXT. 

Brower measured the electron density fluctuation in TEXT using far IR spectroscopy. It is 

important to note that in the Lab frame, the frequencies are Doppler shifted by the azimuthal 0 

order background EXB rotation by mvE where m is the azimuthal mode number and vE is the 

azimuthal EXB which was measured using HI beam probe diagnostics. The power spectral 

density measured was in perfect alignment with the quasi-linear drift wave theory and the 

following measured dispersion was produced. 
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Fig 5 Spectral distribution (Dispersion) measured in the TEXT experiment. 

It is important to note that in        region, the mode frequency grows with ky (since it 

grows with the diamagnetic drift frequency) and beyond that region decays, giving a maximum 

plasma frame frequency the imaginary part of which will be more or less the maximum growth 

rate. This is very typical of drift wave dispersion relations. The TEXT experiment’s lab frame 

and plasma frame frequency calculations and the corresponding peak (max growth rate at max 

frequency in the plasma frame) agreement with the theoretical spectral density distribution was 

shown as incontrovertible evidence to the existence of these modes in TEXT. 
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In the TFTR experiment, the density fluctuation level n1/n0 was measured as a function of 

auxiliary heating in the core using microwave reflectometry. The increase in the fluctuation level 

with the increase in neutral beam heating measured at a location r, r/a = 0.3 a being the minor 

radius, is typical of drift wave turbulence, since stronger heating in the core creates a stronger 

drift wave which will saturate at a higher saturation level, giving a larger fluctuation in density. 

Fig 6 illustrates their results. 

 

Fig 6. TFTR density fluctuation measurements with respect to increased Neutral Beam 

heating. 

We will now focus on some of the more recent simulation work, that are applicable to 

ITER. The "Center for Gyrokinetic Particle Simulation for Turbulent Transport in Burning 

Plasmas" has  been selected by the Department of Energy's program of "Scientific Discovery 

through Advanced Computing (SciDAC) – Advanced Simulation of Fusion Plasmas". This is a 

combined effort between PPPL, Columbia University, University of Colorado, University of 

Colorado, University of Tenesse, UC Irvine, UCLA and UCDAVIS. This is a collaborated 

scientific effort to better understand turbulent transport in fusion plasmas to better understand 
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turbulence in the regimes of operations for experimental fusion reactors like ITER and to create a 

framework for fusion simulation projects in the future. They have developed the GTC code 

(global toroidal code) which is a PIC (particle in cell) simulation code optimized in efficiency for 

large scale parallel computation complemented by a electromagnetic flux tube code (GEM). The 

GPSC group has published a number of papers in turbulence simulation addressing issues of 

particle noise that increases when the number of particles in the simulation is increased. 

Gyrokinetic Particle in Cell codes trace the velocity and space evolution of billions of particles 

using parallel computing using a Vlasov-Poisson system, where the particle distributions in 

space and velocity (through wave-particle interaction and also spatial distribution) result in E-

fields through Poisson,  the E-fields than accelerate and decelerate particles to modify the 

particle distributions creating a closed system. Using a large but finite amount of particles brings 

about the discrete particle noise problem. Using an insufficient number of particles tend to 

predict lower transport (generally lower in some cases higher)due to numerical noise, as the 

simulated spectral energy is contained partly in normal modes of the plasma dispersion relation 

as well, these normal modes being the numerical noise. However in their paper it is shown that 

they have overcome this problem as they show that they can calculate fluctuation levels 

independent of N. This is very important for the simulation of a large scale device like ITER 

which will require very large number of particles for turbulence simulation. Fig 7 shows that 

their fluctuation levels are independent of N for an slab drift wave simulation. 
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Fig 7 Drift wave fluctuation level simulations with varying N. The high frequency normal 

modes are suppressed with increasing N, while the low frequency drift mode fluctuation 

level remains independent of N, thus not having much of a noise issue. 

The GTC code has some new interesting findings on the issue of scaling. The GTC 

simulation code was used to investigate the scaling effect of ETG streamers when the device size 

is significantly increased. Streamers are radial excursions of constant potential on which particles 

diffuse in and out due to EXB drift. The expected result of the simulation was to find that the 

streamers scale with the device radius, thus creating a long path between the core and the outer 

plasma where electrons would propagate, causing large particle and thermal transport. Their 

simulation results however indicate that the electrons do not in fact go all the way on these 

extended excursions and also saturate to within a few percent of Te. This suggest that these 

modes will not create the anomalously large electron transport observed in large tokamaks, 

hinting that ETG modes may not be the only cause for large transport in large tokamaks. Fig 8 is 

a constant toroidal coordinate surface of their simulation results, where the radial streamers and 

the azimuthally propagating ETG mode structure is visible. 
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Part 2: Experimental Studies of ETG Modes Conducted in the CLM 

The layout of CLM has been described in Ref. [9, 10]. CLM produces steady-state collisionless 

cylindrical plasma column in an uniform axial magnetic field (Fig.8). 

 

 

Fig .8. Scheme of CLM and electron heating method. 

  

The typical plasma parameters in CLM are: 39105~  cmn , TB 1.0 , eVTe 205 , 

and eVTi 53 , the diameter of the plasma column is about ~ 6 cm and its length L is about ~ 

150 cm, respectively [10]. The scheme of the electron heating method is shown in Fig.8. A 

positively biased (+20V) disk mesh is placed at the center of plasma column and accelerates the 
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electrons.  The moderate neutral pressure in the transition region guarantees that the accelerated 

electrons are thermalized to a Maxwellian distribution.  

Figure 9 shows the typical power spectra of potential fluctuations. The mode with 

frequency f ~ 2.4 MHz has been identified as ETG mode with azimuthal wave number m~14–16 

)1,1(   ie kk  and propagate in the electron diamagnetic direction. The characteristic of 

the drift waves,  kk // , is also satisfied by this mode [10].  

 

 

Fig.9. Power spectra of potential fluctuation with different LTe 
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Chapter 2: 

Non-linear Saturation Mechanism of 

ETG Waves 

 

I-Introduction: 

The Electron Temperature Gradient mode (ETG) is a very plausible candidate to explain 

the large electron particle transport and thermal conduction. Production and identification of slab 

electron temperature gradient (ETG) modes and measurement electron transport have been 

already reported [10]. Now we develop a theoretical model of non-linear saturation mechanism 

of ETG mode based on the three wave coupling of an unstable high frequency ETG mode with a 

damped ETG radial harmonic and a damped ion acoustic (IA) mode. Bicoherence analysis of 

CLM data show coupling between ETG modes (~2.4 MHz) and a low frequency mode (~50 

kHz). The large damping drive of the ETG radial harmonic accompanied by the smaller but finite 

damping of the IA mode present an energy sink for the unstable ETG mode, thus causing 

saturation. This model predicts a saturation level of ~10% and agrees with the observed levels of 

ETG modes in the CLM.  

Electron transport still remains as an unresolved issue for magnetically confined plasmas.  

The most plausible physics scenario for this anomalous electron transport seems to be based on 

Electron Temperature Gradient (ETG) instabilities [5,11,12]. In contrast, experimental validation 



２２ 
 

of theories of electron transport is lacking. Extensive theoretical and simulation work clearly 

establish its dynamic behavior, both linear and nonlinear [5,13-19]. 

The number of experiments with identifications of ETG mode and consequent electron 

transport is very limited [20-22] due to certain diagnostic problems with the high frequency and 

short wavelengths of electron turbulence. 

Production and identification of slab ETG mode have been successfully demonstrated in 

a basic experiment in Columbia Linear Machine (CLM) [29]. This result has been recently 

verified partially in numerical simulation [30]. Now we present a new model of nonlinear ETG 

mode saturation mechanism based on the three wave coupling and the experimental evidence of 

this mode coupling through bicoherence of potential fluctuations.   

  

This chapter is organized as follows. Section II presents evidence of mode coupling 

between ETG modes and a low frequency mode. Section III A. presents the derivation of the 

non-local ETG dispersion relation and shows the radial variation of the drive parameter 1/k// LTe 

will lead to radial harmonics which can explain the existence of the low frequency mode if 

coupling between radial harmonics happens. In III.B. we present a model to determine the ETG 

saturation level based on three mode coupling between an ETG mode, its damped radial 

harmonic and an m=0 IA mode which is the most likely candidate for the low frequency mode. 

Finally, the conclusion and the discussions are given in section IV. 
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II- Bispectral Analysis of CLM Data: 

In the lab frame the ETG frequencies will be Doppler shifted by the ExB rotation: and 

ωETG_Lab = ωETG_Plasma +m ωEXB ~ 2 (2.4 MHz) for ωExB ~ 2 (140kHz) ,where m = 15 is the 

azimuthal mode number.  Fig 10 Top shows the fluctuation spectrum where the ETG mode 

packet at 2.4 MHz and low frequency fluctuations below 100kHz are visible.   

a-  
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b-  

Fig.10. a- Power Spectral Density of CLM potential fluctuations, showing the coexistence of 

ETG modes with a low frequency mode. B- Bicoherence showing coupling of the ETG 

modes with a low frequency mode. 

 

Bicoherence is often used as the signature of mode coupling [25] and is given by:  

 

          
                          

                             

     

X(ω) here denotes the complex amplitude of the fluctuation spectrum at frequency ω. 

Bicoherence is a normalized version of bispectrum that gives the relative phase difference of the 

fluctuations at 3 discrete additive frequencies averaged over Fourier windows. In the absence of 
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coupling, this relative phase will be random and average to zero. If coupling is to happen as an 

independent event in each window, then the relative phase difference from different Fourier 

windows will be correlated and will converge to a non-zero value, signifying phase coupling. 

 Figure 10 bottom shows the bicoherence of the CLM fluctuation spectrum. Strong phase 

coupling of the ETG modes with a low frequency mode is evident. 

 If we zoom in the lower coupling island and apply a simple filter for the bicoherence 

noise level, it appears that the strongest coupling interaction occurs between a low frequency 

about  ~ 50 kHz mode and the ETG modes at around 2.4 MHz in the lab frame. Fig.11. shows 

the bicoherence island corresponding to coupling between  ETG modes (~2.4 MHz) and low 

frequency mode at  ~50 kHz. In the next section we will show that this can be explained by the 

coupling of a ETG mode with its radial harmonic. 
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Fig 11. The close-up of Bicoherence. This plot shows strong coupling of the ETG modes 

with a low frequency mode around 50kHz. 

 

IV. Theoretical Calculations:  

A.  Dispersion Relation of the ETG Modes: 

 In this section we derive a dispersion relation for slab ETG modes. In order to derive the 

dispersion relationship, we start with the following fluid equations which are produced by taking 

moments of a gyrokinetic Vlasov’s equation in anology with ITG radial harmonics [2]. The 

following fluid equations include ExB non-linearity, non-linearities of higher order are ignored: 
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In the above equations we have used the following definitions: 

   
 (

   
  

   
)

  

,    
 (

   
  

   
)

  

       

   
  

  
     

  

  
     

 
  

   

  

 

  
 

 

  
   ⃗ ⃗⃗  ⃗⃗   ⃗⃗⃗   ⃗ ⃗⃗  ⃗⃗     ̂     ⃗⃗⃗       (21) 

Here we have used x,y and z to denote radial r, azimuthal r and axial coordinates; v//e , ne , ne0 

and pe denote perturbation in parallel electron velocity, perturbed electron density, equilibrium 

electron density and perturbed total electron pressure respectively. It is also important to note 

that in the above equations the potential is in the units of Te/e , all length scales are in the units of 

ρe the electron cyclotron radius and the time scales are in the units of Ωe the electron cyclotron 

frequency. The perturbed density ne is normalized by ne0 the equilibrium density. In the CLM the 

density profiles are nearly flat making Ln go to infinity, thus n can be dropped from the above 

equations. Assuming that the ions respond adiabatically ( 1 ik  ) we have: 

     ̃    
   ̃

  
           (22) 
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Since ETG waves are electrostatic in nature, we employ Poisson’s equation which under the 

above conditions becomes: 

      
      ̃           (23) 

In Eqns 22,23   ̃ and  ̃ denote 1
st
 order density and potential perturbations. For the potential 

perturbation we will use the following eigenfunction: 

      ̃                     (24) 

In Eqn 24, m denotes the azimuthal mode number, km = m/r = 2m/L is the azimuthal wave 

number L being the system length in the azimuthal direction. Using Eqns 18-21,24 together with 

Eqn 23, we obtain the following equation for ETG modes: 
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In Eqn 25    
 is the electron thermal velocity and ωTe , electron temperature diamagnetic 

frequency is given by: 

      
 

    

     

        (26)  

In the radially local limit, the dispersion relation is obtained by equating the second term in Eqn 

25 to zero. Now we proceed to perform the calculations for the radially nonlocal problem. Here 

we will denote the radial location at which the temperature gradient is maximum as x=0. This 

radial position will also be the center of the main ETG mode. We then proceed to expand ωTe 

around its maximum at x=0: 
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Where ’’ denotes the 2
nd

 derivative with respect to the radial coordinate x. Using this expansion 

we find the following differential equation: 

 ̃               ̃         (28) 
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Eqn 28 is a Weber Equation, the solution for which is known to be Hermite Polynomials, 

denoted by Hl(x) in this paper, where l denotes the order of the polynomial and the radial mode 

number of the ETG wave. Thus the full solution for the potential perturbation takes the following 

form: 

    ̃      (    )  
    

      (30) 

It is important to note here that in the absence of magnetic shear, the radial width and the 

localization of the mode will be determined by the radial dependence of the diamagnetic drift 

frequency [5].Furthermore the following truncation condition for the Hermite Polynomials can 

be utilized to derive the dispersion relation: 

                   (31) 

For long wave perturbations with low azimuthal mode number, i.e   
    

   , the dispersion 

relation becomes: 
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Note here that the term on the left hand side of Eqn 32 is a small correction term. Equating the 

LHS of Eqn 32 to zero, one can easily obtain the familiar linear ETG dispersion for the central 

frequency of the slab ETG mode. 
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 Using          Eqn 16 can be solved perturbatively to give: 
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Thus modes with different radial mode numbers, will have different radial profiles. Since ωTe  

essentially determines the frequency of the mode and depends on the radial coordinate, a slightly 

off-centered mode, i.e. a radial harmonic will have a frequency that is different from the 

fundemental ETG mode (i.e. l=0 mode) by a small but finite amount. 
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Fig.12. CLM Electron Temperature Profile. The profile shows the maximum drive is 

around r~ 2 cm and is strongly dependent on the radial coordinate, which will lead to 

radial localization and the creation of radial harmonics. 

Using a typical CLM profile as in Fig.12. we can compute the following parameters 

    
     

 

   

        , LTe ~ 0.2cm,     
           , Te ~8eV,          cm which yield a 

frequency difference                 between m=15, l= 0 mode and m=15,l=1. This shows 

that the coupling between an m=15 l=0 ETG mode and a m=15, l=1 ETG radial harmonic can 

explain the existence of phase coupling between 2 ETG modes and a low frequency (~50 kHz) 

we have shown in Section II. The coupling between these two modes will require that the low 

frequency mode will be an m=0 mode. Since the frequency of this mode is relatively low, this 
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mode is likely to be related to ion dynamics. Thus the most likely candidate for the low 

frequency mode is an ion acoustic mode. 

 

B. Calculation of ETG Saturation Level Based on Three 

mode coupling: 

 

 In this section we will discuss our theoretical calculation of the rms ETG saturation level 

based on three wave coupling, prompted by experimental evidence. Consistent with experimental 

observation we consider a suitable three wave coupling to be an unstable m=15, l=0 ETG mode 

coupling into an m=15, l=1 damped radial harmonic and an m=0 damped IA mode, where m 

denotes the azimuthal mode number and l denotes the radial harmonic number. As a result of the 

coupling interaction the unstable ETG mode non-linearly saturates through combined damping 

drives of the stable ETG radial harmonic and the ion acoustic mode. In order to produce the 

coupled wave equations we will use two sets of fluid equations, 1
st
 set to describe the high 

frequency dynamics created by electrons and a 2
nd

 set to describe low frequency dynamics 

created by ions. We first start with fluid equations describing high frequency electron dynamics 

[5,27-30]: 
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In these equations ne is the high frequency perturbed electron density of ETG modes, ne0 

is the equilibrium electron density, v//e is the high frequency perturbation in parallel velocity, E// 

is the perturbation in parallel electric field, τ is the ratio of electron and ion temperatures, me is 

the electron mass, ve is the perturbation in ExB drift velocity, pe is the perturbation in electron 

pressure and p0 is the equilibrium pressure. Equation 19 is the electron momentum balance in the 

parallel direction with a ExB convection non-linearity. Finally equation 20 is an energy equation.  

Similarly we describe the low frequency ion dynamics in the presence of an IA mode 

using the following fluid equations: 
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In equations 38-40 ni is the perturbation in ion density and Γ is the adiabatic index.  

In the first order, the parallel electric field and the parallel gradient of pressure are 

functions of k// for both ETG drift waves and the IA mode and thus are small. The ExB velocities 

used in these equations are created by the 1
st
 order electrostatic perturbations of the ETG modes, 

since for the IA mode the ExB drift is essentially zero. It is important to note that ExB 

convection due to ETG modes of the perturbation in perturbation in parallel velocity will result 

in coupling. The ExB drift velocity created by ETG mode j is given by              ̂     

where φ denotes the potential perturbation created by the ETG mode. The continuity equation for 

electrons and ions can be used to relate v// and φ, the perturbation in parallel velocity and the 
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perturbation in potential due to a mode. The high frequency electron continuity equation can be 

used to give a relation between the high frequency perturbation in the parallel velocity and the 

electrostatic potential:
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       (41) 

In Eqn 24, we have used an adiabatic ion response and quasineutrality. The index j denotes an 

ETG mode, either m=15,l=0 or its radial harmonic m=15,l=1.. 

Similarly the low frequency ion continuity equation produces the following relation for the 

perturbation in the parallel flow velocity created by the IA mode and the electrostatic 

perturbation of the IA mode: 
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      (42) 

 Here we have assumed there will be a low frequency  background electron response to 

the IA mode, which will be adiabatic. We have also made use of quasineutrality as before. 

It is important to note that for resonant three wave coupling to happen, the mode 

frequencies and wave vectors have to be commensurate: 

  jki  
, jki kkk 

      (43) 

As discussed in Section A, ETG modes and thus any modes driven by unstable ETG 

modes will be localized to the region of maximum temperature gradient,  approximately r0 ~2 cm 
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for CLM with a small radial width and that radial harmonics created by the dependence of ωTe on 

r will have radial profiles described by Hermite Polynomials [26,27]. In cartesian coordinates 

where we have substituted r-r0 x for the radial coordinate, r y for radial arc length, we have 

the following eigen functions for the ETG modes: 
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For the IA mode we have: 
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Where m is the azimuthal mode number, km = 2πm/L is the azimuthal wave number as before, L 

is the system length in y, Hl is a Hermite polynomial of order l describing the radial mode profile 

and Δx ~ 2/12

e

,,

Te

2

e )2/||( 

Te is the radial mode width due radial dependence of ωTe, as 

described in Sec A. the diamagnetic frequency due to electron temperature gradient, with respect 

to x,  ” denotes 2
nd

 derivative in x, and ρe denotes the electron gyro-radius and c.c. denotes the 

complex conjugate.  Inserting expressions for vj , v//j (Eqns 40-42), the mode eigenfunctions 

(Eqns 44-47) into the momentum balance equations (Eqns 35,38) and using the resonance 

condition (Eqn 43) as a selection rule we derive the following coupled wave equations after 

significant manipulations: 
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where j is the growth/damping rate of mode j, and k// is the parallel wavenumber of ETG modes 

and k//IA is the parallel wavenumber of the IA mode .The above equations are derived by 

spatially integrating the eigenfunctions in the radial coordinate normalized by the mode width   

 ̅  
 

  
       ∫   ̅, to isolate the time dependent complex amplitude:    
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Evaluating the coupled wave equations in steady state by equating them to zero and using   

the following normalizations for time dependent complex mode amplitudes,
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We put the coupled wave equations into standard form: 
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In the above equations, V denotes the coupling coefficient and is given by: 
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Using the coupled wave equations in standard form the rms saturation level normalized by 

electron temperature is given by: 
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Using the nonlocal dispersion relation we have derived in the previous section Eqn 15 for the 

ETG modes and using a simple kinetic dispersion relation for the IA mode, the complex 

frequencies are calculated. Using the complex frequencies calculated this way in Eqn 48, the 

saturation level is found to be ~ 9%. This result is in agreement with the ETG modes produced in 

CLM experiments. 
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Chapter 3: 

 

LSP Particle-In-Cell Code 

I-General Introduction: 

 LSP is an advanced, customizable, multi-dimensional, electromagnetic, fully-kinetic (it 

can also be run as hybrid), parallelizable particle-in-cell (PIC) code, capable in modeling in 1-D, 

2-D and 3-D spatial  systems in cartesian, cylindrical and spherical geometries. In this chapter 

we will give a general description of the code with emphasis on aspects important to modeling 

plasmas, beams and beam-plasma systems. Developed by Vosscientific, the code comes with a 
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basic user manual, installation instructions, a graphical user interface (GUI) and a P4 post-

processor and detailed information about LSP is readily available [33-36]. It can also be run as a 

cloud-in-cell code, which is useful for noise reduction which will discuss in more detail when we 

discuss particle pushers in 3.4. 

 LSP is written in C in object oriented fashion [35]. Important PIC code elements like grid 

cells and particles are instances of their respective classes and have added functionality through 

member functions. Physics related functions are implemented separately and the whole code is 

linked through the extensive use of header (*.h) files. Object Oriented implementation is 

extremely sensible for parallelization of the code since different objects are allocated to different 

CPUs. We will discuss parallelization in more detail in 3.3. The inter-CPU communication is 

handled using the Multi-Processor Intreface (MPI),  Since objects reside in the heap, all memory 

allocation is fully dynamic and is actively performed during runtime.  The source files *.c and 

the header files *.h are accessible and can be modified by the user which allows the user to carry 

out modifications as deemed necessary.  

II - Compiler Flags and Control: 

 LSP is an extremely flexible code, capable of running in many different settings, 

handling different creation models, solvers, pushers and geometries. This extreme flexibility 

comes from the fact that a new executable is to be created every time a new system is modeled 
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forsimulation and this executable is specific to the new system described by an input. The input 

file is a essentially a text file (though the extension is typically .lsp), following a sequential 

straightforward syntax of setting up important options and parameters in the code, essentially 

describing the system to be modeled. A user can simply type his/her input file or use the GUI 

which automatically generates it. The simulation code parses this input file and sets up 

parameters in the code accordingly. The top portion of the input file is the compiler flags, which 

are options that customize many important aspects of the code including the geometry, the 

dimensionality, parallelization, surface interactions and the solver and the pusher to be used. The 

flexibility comes from the fact the source contains #if n_def COMPILER_FlAG #endif code 

blocks. These compiler flags are specified in the makedef file (LINUX) in the source code 

directory and should match exactly with the compiler flags that are referred to in the input file. 

So everytime a compiler flag is included, the code in between the if-end if block referring to that  

compiler flag gets compiled. This structure of LSP allows the user to create input specific 

executables and makes the code extremely flexible and capable of modeling a wide range of 

physical systems. 

 The next portion of the input file is the control sequence. This part essentially specifies 

essential time and time-step dependent parameters of the code including, the runtime, the time 

step, the diagnostic and restart dump intervals as well as intervals for load balancing which 

evenly re-allocates macro-particles to CPUs. If an implicit solver is used which is iterative in 
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nature, implying that the solution is in fact best fit from a regression problem, the maximum 

number of iterations for convergence as well as the maximum tolerance for the residuals are also 

specified in this section. If a beam simulation is performed, it may be wise to use the moving 

frame algorithm, the velocity of the inertial frame and the time this frame starts to move are also 

specified in this section. 

 

III-Grid, Regions and Domain Decomposition: 

 Particle-in-cell codes divide the spatial simulation to cells, specified by the grid. This 

essentially converts the electromagnetic or electrostatic partial differential equations to partial 

difference equations which are solved using numerical techniques, which we will discuss in 3.5. 

The particles in the cell are allocated to grid points with a given weight and provide the source 

terms for the non-homogeneous difference equations. If a particle has contribution to the total 

charge or the current density at more than one grid point, which essentially changes the “shape” 

of the macro-particle the code essentially becomes a cloud-in-cell, a feature that LSP supports in 

a somewhat simplified form. Regardless of this feature, the determination of the grid size is 

essential to stability and convergence of the solution as well as resolution of physical phenomena 

such as sub-Debye length dynamics. The grid-size is typically chosen so as to resolve the sheath 

or the Debye length. LSP supports both uniform and non-uniform grids. One important point to 

note is that LSP is inherently 3-D in space. This is to say that in lower dimension simulations, the 

unused dimensions are specified as one cell thick with a length of one centimeter. 
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 If a parallel run is to be performed, the spatial simulation space is divided into regions, 

which reside on different CPUs. This region split is performed in one direction which can be any 

direction for higher dimensional simulation. One restriction is that each region should at least be 

3 cells thick. Parallelization in LSP requires the multi-processor compiler flag to be turned on 

and the regions in the input file to be appropriately defined as outlined above. Inter-CPU 

communication is carried out using the Multi-Processor-Interface protocol. This requires the 

code to be linked using the mpicc C-linker rather than the standard gcc linker.  

 

IV- Objects and Medium Models: 

 Surfaces and volumetric objects are defined in the LSP input file under the section 

Objects. Note that these objects are not to be confused with instances, objects referred to in this 

section are simply cell properties that are used to define physical structures such as metal walls, 

dielectric surfaces and vacuum chambers. Objects can either be solid or vacuum. The range of 

the object is defined by specifying a start and a stop point in each direction. LSP has an inherent 

property of overriding the object property in the cells. This is to say that if objects overlap, the 

latter defined objects overrides the property defined by the previous objects. Thus complicated 

hollow physical structures, such as vacuum chambers, can be defined using sequential definition 

of solid and vacuum block objects. Once and object is defined it can be given a potential, which 

will be a Dirichlet type boundary condition for the solver.  

 LSP also supports medium models. An object can be a conductor or can be made up of a 

user defined medium. The permeability and the permittivity of the medium are defined as 
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parameters that are in the units of their free space counterparts.  Fig.13. shows the rendering and 

graphical representation of the simulation physical space prepared to model a hall thruster. 

 

Fig.13. Screen Capture from the LSP GUI showing the rendering of the grid and objects 

used to model a hall thruster. The outer and the inner rings are user defined dielectric 

mediums. The space in between these layers, shown in pink, is the vacuum chamber where 

the plasma resides. The outer square box is a SOLID object defining the initial cell 

property which is metal in this case. 

 

 

V- Solvers, Stability Considerations and Particle Pushers 

 LSP supports a wide range of solvers for both electrodynamic and electrostatic fields. 

The classical electrodynamic explicit field solver is essentially the well-known leap-frog 

algorithm. This is a fast solver, however can become numerically Von Neumann unstable if the 

time step becomes larger than the Courant Limit, where the speed of light is replaced by the 
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velocity of the fastest moving species in the simulation. LSP also supports a range of implicit 

solvers, including the Alternating Direction Implicit (ADI) solver which is an extension of 

Crank-Nicholson Scheme. Implicit solvers are generally more stable compared to explicit solvers 

in terms of stability. However there is a trade-off as the difference equation matrix becomes non-

sparse and non-tridiagonal. Some of the implicit solvers supported by LSP are thus iterative 

regression solvers, where the solution is a best fit given the maximum allowed number of 

iterations between time steps and the solution tolerance. LSP also supports a Matrix solver, 

which requires a linear algebra library and an electrostatic FFT solver which is appropriate for 

simulations with periodic boundary conditions. Table 2 below is taken from Ref.33 (PPPL notes) 

and makes a comparison of the electromagnetic field solvers of LSP, in terms of asymptotic 

complexity and the relaxation of convergence conditions. 
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Table.2. Comparison of Electromagnetic Field Solvers supported by LSP [36]. 

 There are several particle pushers that LSP uses. The default particle pusher is 

momentum conserving. The momentum conserving particle pusher suffers from grid heating or 

the so called Debye Length instability which artificially heats particles until the Debye Length 

reaches the grid size. There is an implementation for an energy conserving particle pusher which 

avoids the grid heating problem. Using the compiler flag EXTENDED_PARTICLES, LSP can 

be converted into a Cloud-In-Cell code. This is a simple CIC implementation where the particle 

weight is distributed equally to the nearest 2 grid points. The shape of the simulation macro 

particle is essentially a rectangle of 2 cell thickness. More complicated weighting schemes are 

known in literature, where the macro-particle shape can be triangular or even a spline. These 
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weighting schemes are known to reduce numerical noise. More over LSP also has the option of 

treating the particles implicitly as well, which can be used both in the PIC and the CIC setting. 

Table.3. below summarizes LSP particle pushers [36]. 

 

Table.3. Summary of LSP Particle Pushers. 

 

VI. Boundaries, Potentials and External Fields: 

 LSP supports several boundary conditions for the field solver and the particle pusher. The 

two most relevant conditions are the outlet and periodic boundary conditions. The outlet 

boundary condition in the case of an electromagnetic simulation allows an EM wave to leave the 

simulation domain at the specified surface. When used with an electrostatic solver, the outlet 

boundary condition turns into a Neumann boundary where the gradient of the scalar potential is 

specified to be zero. The periodic boundary condition ensures that the fields are periodic at the 



４７ 
 

two specified surfaces. One other implication of periodic boundaries is that the particles who 

cross these boundaries re-emerge at the other boundary and thus are recycled. Potentials are 

defined at surfaces when objects are created. These potentials serve as Dirichlet boundary 

conditions for the electrostatic field solver when defined. 

 LSP also supports the inclusion of external fields. One important point to note here is that 

most physical quantities are specified in LSP through the use of functions. There are more than 

30 predefined functions available for the user, where the coefficients are user determined. Using 

the USE_PYTHON complier option and using a Python-like syntax the user can define his/her 

own functions. Once constructed, the functions are given reference numbers and physical 

quantities in the input file are set using these reference numbers. LSP has the innate notion that 

spatial and temporal dependencies are separable. Thus for almost any given physical quantity 

including the external fields there is a temporal and a spatial function, the end result for the 

physical quantity is then determined as the multiplication of these two functions.  

VI. Particle Species and Particle Creation Models: 

 LSP can model any particle species using a class description. The macro particles 

belonging to a particle species are instances of this class description. Using this class description 

allows the user to distinguish particles belonging to different physical groups in the simulation, 

i.e. it is possible to treat electrons of a beam and the electrons of the background plasma as two 

different species. The particle pusher for the specific species is also specified in this section. 

When the code is running in hybrid mode, a particle species can be defined as migrant, meaning 

particles of this class below a certain energy defined by the user will be treated as a “fluid 

particle”, in other words will not be treated kinetically that is standard of PIC codes. According 
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to the evolution of their kinetic energies particles belonging to a migrant particle species will 

migrate between the fluid and kinetically described groups. The mass and the charge of the 

particles are in the units of the mass of electron and the charge of a positron respectively. 

 There is a wide range of particle creation models supported by LSP. In this section we 

will briefly describe those that are most relevant to the simulation of beam-plasma simulations. 

The first model we will discuss is the plasma creation model. Using this model the user can 

create particles at the beginning of the simulation in a volume of space within the simulation 

domain, typically in vacuum. The particle in cell number is specified in each direction. The 

velocity distribution default is an isotropic Gaussian with zero drift velocity in the plasma model. 

However one can also define an average fluid velocity functionally. All velocity quantities 

defined in the code are in the units of gamma-beta product. The density is specified functionally. 

Beams can be modeled using either an injection model or one of the emission models which 

include thermal, Child-Langmuir field stress and secondary emission. Creating large potential 

gradients to extract particles from a surface often result in the fast loss of simulation particles, 

which have to be resupplied using either an ionization or repopulation model. The ionization 

model implemented in LSP is an extension of the collisional plasma model and uses Monte-

Carlo scattering. However this method requires a user created resource file containing a table of 

interactions specifying parameters such as collisional cross sections, momentum and energy 

transfer rates versus the kinetic energy. Hence an accurate description of the ionization of a 

particular gas is not straightforward. Moreover the loss of faster particles throughout the run of 

the simulation results in the cooling of the plasma and a lowering of the ionization rate. Thus 

achieving a quasi-static density level for long simulations using the ionization model is also a 

major difficulty in LSP. Thus injection is often the most convenient way of simulating a beam 
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with a given axial directed kinetic energy in LSP. Unlike the plasma model, beam injection is not 

volumetric, i.e. the beam has to enter the simulation domain from a line or a surface. The 

particle-in-cell number, distribution and temperature are specified identically to the plasma 

model. However the density is specified indirectly, by specifying a current density in the units of 

A/cm
2
. The beam profile can be specified by the spatial dependence function of the current 

density. There is also the option of specifying a convergence length for non-collimated beams. 

 

VII. Diagnostics: 

 LSP offers a wide range of diagnostic tools for the post-processing of simulation data. 

The graphical tools for analyzing are written in IDL and output files have .p4 extension. The 

depending on the requested data, the data is either dumped as a separate file at specified time 

intervals or can be lumped together. Most common data dumps are the scalars, the fields and the 

phase space. The scalar data includes densities of certain species and the scalar potential, 

however for the scalar potential to be computed the solver should be electrostatic, in other words 

upon calculating the electric field LSP does not separate the field into its electrostatic, i.e. the 

negative gradient of scalar potential, and electrodynamic, i.e. the negative time derivative of the 

vector potential in the case of an electrodynamic simulation. Thus in electrodynamic simulations 

it is not possible to observe the scalar potential. The field dumps contain the data related to the 

electric field, the magnetic field and the current density at the specified directions. Both the 

scalar and field data contain data vs spatial field position. This data can be exported to a text file, 

parsed with a numerical tool package like MATLAB and the further customized analysis can be 

performed. The phase space data is the compilation of the velocities and the positions of all 
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simulation macro particles. When plotted in velocity versus position space an individual particle 

is identified as an individual dot and the whole collection is presented. Velocity versus position 

data is essential in the observations of velocity space fluctuations which result from plasma 

instabilities and are also essential in determining saturation mechanism dynamics such as wave-

particle trapping. The scalar, field and phase space dumps can be concatenated into movie files 

which can be displayed using the built-in postprocessor or can be exported to image files which 

can then be concatenated into a movie file format like .avi for display. LSP also provides data 

dumps for the distribution function with respect to either velocity in a certain direction or the 

total kinetic energy. While creating these dumps the user identifies a region of interest in the 

simulation domain and provides the number of bins which is used to discretize the velocity 

space. LSP also supports other dumps including energy and charge deposition at surfaces. 

 In addition to the dumped data, LSP collects data in a separate file called history. The 

history file can contain a range of information. The most typical data contained in the history file 

is the probe diagnostics. These are very similar to actually probes in an experiment and display 

data at a given location versus time. Typical probes can collect field and velocity data and can be 

taken in a window as opposed to a single point. The history file can also be used to collect global 

data like total energy, total kinetic energy, total field energy and total macro particle count. The 

global energy probes can be used to identify whether or not the simulation has energy 

conservation problems due to numerical mechanisms like grid heating. The macro particle count 

can become important for long-time scale simulations where one is trying to balance the loss at 

the walls by a resupply mechanism like ionization to achieve quasi-static levels in density. In 

addition to global data the history file can be used to observe the number of iterations for 

convergence and the residuals for simulations where iterative implicit field solvers are employed. 
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Chapter 4:  

Simulation of Ion-Beam Driven Two Stream 

Instability and its Non-linear Effects. 

Part 1: Effects of two-stream instability on an intense ion beam 

propagating in background plasma. 

I-Introduction 

The current and charge neutralization of intense charged particle beams by background 

plasma enables ballistic beam propagation and has a wide range of applications in inertial fusion 

and high energy density physics. However, beam-plasma interactions can result in the 

development of collective instabilities that may have deleterious effects on ballistic propagation 

of the ion beam. We study an intense ion beam pulse propagating in a background plasma, which 

is subject to two-stream instability between the beam ions and the plasma electrons. Making use 
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of the particle-in-cell code LSP we have simulated this interaction over a wide range of beam 

and plasma parameters. We show, depending on the beam and plasma parameters, that there are 

two different regimes where the instability saturates due to nonlinear wave-trapping effects of 

either the beam ions or the plasma electrons. Two regimes have different scalings for the self-

electric and self-magnetic fields of the ion beam pulse propagating in background plasma. 

Beam-plasma systems have a wide range of applications in inertial fusion and high 

energy density physics. For heavy ion fusion in particular, the background plasma presents a 

means of current and charge neutralization, enabling the ballistic propagation of the intense beam 

pulse. However the free energy source presented by the beam can lead to the development of 

plasma instabilities. The theory of these instabilities was developed using a kinetic framework 

[37]. The non-linear time-averaged electric and magnetic forces associated with the instabilities 

can lead to collisionless relaxation and anamolous transport, effects which have been studied 

numerically using both a Vlasov and a multi-fluid model [38]. In the case of an electron beam 

propagating in back ground plasma, the non-linear current driven by the mode can result in 

current enhancement which was demonstrated using a PIC code [39]. and was experimentally 

observed [40].  In the case of an intense ion beam, the non-linear time-averaged current driven 

by the two-stream instability between the beam ions and the plasma electrons has been shown to 

reverse the total current and thus also the self-magnetic field [41]. Thus in the case of a ion 

beam-plasma system experiencing the two-stream instability both the radial electric field 

resulting from the pondermotive field pressure of the axial electric field of the mode, and the 

reversed magnetic field act together to defocus the beam as it propagates. This can have a large 

deleterious effect for ion beam-plasma devices used in experimental heavy ion fusion. In this 

work we simulate a H+ beam with beam velocity       , where c is the speed of light in 
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vacuum, propagating in a cold carbon plasma using the particle-in-cell code LSP [42]. We 

change the ratio of beam density    and plasma density    and show that this ratio controls the 

magnitudes of the self-fields at saturation, which in turn determine the defocusing forces the 

intense beam pulse experiences during propagation. 

Part 1 of this chapter is organized as follows. In Sec.II. we give a brief description of the 

simulation set-up and the particle-in-cell code LSP. In Sec.III. we present a theoretical 

description of the non-linear self-fields generated by the beam driven two-stream instability and 

how they depend on beam-plasma parameters. In Sec.IV we present the results from the 

numerical experiments and make comparisons with theoretical predictions. Finally we 

summarize the important results in Sec.V. 

II- Setup of Simulations: 

In this work we simulate an intense Gaussian proton (H+) beam pulse with beam density 

               , pulse duration               axial directed beam with velocity    = c/2 

where c is the speed of light in vacuum. The background plasma density        is varied in the 

simulations, details of which will be discussed in Sec.IV. The radial profile of the intense proton 

beam is also Gaussian with radius        . In the range of simulated background densities   , 

the plasma skin depth       remains smaller than this radius. The simulations are performed 

using particle-in-cell code LSP using the collisionless plasma model. Thus any radial scattering 

observed in the simulations is solely due to collisionless scattering of particles due to self-fields. 

LSP supports multi-dimensional simulations in both phase and physical space. We use LSP in a 

2D slab geometry setting in physical space, x denoting the radial extent and z denoting the 
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direction of beam propagation, and 3D in velocity space with y denoting the azimuthal extent. 

The field solver used for the simulation is explicit and  electro-dynamic with the time step 

chosen in each particular run to satisfy both the Courant condition and also         , where 

       is the resonant mode frequency and     is the electron plasma frequency of the 

background plasma, since the resonant mode frequency and the plasma frequency change with 

the background density. The axial grid size    is chosen to satisfy              , where kz is 

the resonant wave number, to achieve a fine resolution of the axial mode structure. The radial 

grid size is fixed at           which provides enough resolution to observe changes in the 

beam radius and the radial displacement of beam ions. The domain size for the simulation is x: [-

11,11] cm and z: [0,240] cm. We also employ the moving frame algorithm which starts tracking 

the beam when it reaches the center of the simulation domain which takes 15.5 ns. Figure 14 

below is an excerpt from one of the runs showing the beam density pulse profile after the pulse 

has reached the center of the simulation domain and the moving frame algorithm has started and 

is descriptive of the physical simulation setup. 
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Fig.14: Density Profile prior to instability for                     ,       

         ,        ,             ,    = c/2, t = 16 ns. 

 

III-Non-linear Effects of the Ion Beam Driven Two-Stream 

Instability: 

In the case of an ion beam propagating in background plasma, the beam plasma system will be 

subject to beam driven two-stream instability between the beam ions and the plasma electrons. 

The mode will be driven kinetically by resonant beam ions. For a cold plasma and beam, the 

plasma dispersion function         for the absolute instability will be: 

Propagation 

direction 



５６ 
 

          
   

  

    
  

  
 

         
            (61) 

 

Here                    are the resonant mode frequency, the background electron plasma 

frequency, the beam ion plasma density, the resonant wave number and the axial directed beam 

velocity respectively.  

In this work, the main interest is in the effects of the two-stream instability,  namely the non-

linear fields the instability generates. There are two fields that can create radial defocusing of a 

charged particle beam:   , the radial electric field and     the azimuthal magnetic field. In the 

case of two stream instability, large amplitude oscillations in   ,  the axial electric field, develop. 

Due to the transverse beam profile and its finite extent, the radial electric field strength has a 

transverse gradient,       
 . This gradient creates a ponderomotive force in the radial direction. 

Plasma electrons get radially displaced and the beam ions are pulled away by the resulting 

ambipolar field. The radial electric field generated this way is thus defocusing for the beam ions. 

The defocusing force due to the radial electric field,    is given by: 

     
         

 

      
  

 

 
        

               (62) 

Here   
  is the axial electron velocity oscillation amplitude,    is the resonant mode frequency 

and    is the electron mass. The field is a quadratic function of   
 , the electron velocity 

oscillation amplitude due to the instability. This is a perturbation, i.e a 1
st
 order quantity. Hence 

the radial electric field is non-linear. Due to the negative sign of the gradient, it is defocusing for 

the beam ions. 
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The second field to look at is   , the azimuthal magnetic field. To understand the effects of two-

stream instability on the azimuthal magnetic field, we first look at the current. The total electron 

current now has a component         
 > which is the averaged non-linear current resulting 

from the perturbations in electron density and electron axial velocity due to the instability, in 

addition to the classical inductive electron return current
5,6

. With the inclusion of this time-

averaged non-linear term, the total current, which is the sum of the beam current    
  and total 

electron current   
  becomes: 
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The second term in the parenthesis comes from the average         
 >. Here            are 

plasma density, beam density and beam radius respectively. It is important to note that when 

      , which is typically the case for neutralization, the non-linear term will exceed one and 

the total current will be reversed. This is to say that due to the contribution of the non-linear 

current driven by instability the beam current will be overcompensated. In the absence of the 

two-stream instability the beam current will be reduced or neutralized by the electron current, 

depending on the skin depth, creating a classical pinching azimuthal magnetic field. But with the 

introduction of the non-linear current, the total current will be reversed and for       will be 

substantial in magnitude. The end result is that    the azimuthal magnetic field will also become 

reversed and the magnetic force it applies on the beam will be defocusing: 
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It is important to notice again the quadratic dependence of    on the electron velocity oscillation 

amplitude,   
 .  In the presence of the instability we no longer have the classical force balance 

between azimuthal magnetic field and radial electric field. In this case both fields will introduce 

defocusing forces and the beam profile can become significantly disrupted. Fig. 15 is a beam 

density contour plot excerpt from the same simulation from which figure 14 in Sec.II was 

generated. Fig.14. shows the density profile at t = 16 ns, which is right after the beam has 

traveled to the center of the simulation domain. This is prior to the development of the 

instability. Figure 15 is the same beam at t = 40 ns, after nearly 6 m of propagation in plasma. 

This is after the full development and the saturation of the instability. The increase in radius and 

the distortion of the radial beam due to the non-linear defocusing forces is evident. 
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Fig.15. Density Profile after ~ 6 m of propagation for                     ,       

         ,        ,             ,    = c/2 

 

Looking at Eqns.2 and 4 we can arrive at  the very important conclusion that the non-linear fields 

generated by the instability depend strongly on the axial electron velocity oscillation amplitude. 

Thus the saturation fields which will be responsible for defocusing of the beam, will depend on 

the saturation value of the electron axial velocity oscillation amplitude. Hence it is important to 

understand how the instability saturates, given the beam-plasma system parameters. 



６０ 
 

Depending on the parameters of the beam-plasma system, the two-stream instability can saturate 

either by trapping plasma electrons, or by trapping beam ions
5
. In the case of electron trapping 

saturation of the instability will occur when the electron oscillation amplitude reaches the phase 

velocity of the resonant mode   
         ,  which will be comparable to    the beam velocity. 

In the case of ion trapping, beam ions will be oscillating with axial velocity   
       

               (     )   at saturation, where        are the plasma frequencies of the 

background plasma electrons and the beam ions respectively.  is the growth rate of the resonant 

mode given by       (      )
    

.  As the electrons and beam ions both experience the same 

electric fields, both species attain the same momentum in a given amount of time. This 

momentum balance gives:       
               

 . Solving for   
  we get  
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   Depending on which species reach their respective saturation level 

oscillation amplitude first, the instability will saturate by the particle trapping of either beam ions 

or the plasma electrons. Under this picture of saturation, the saturation value of electron velocity 

oscillation amplitude normalized by beam velocity will be given by: 
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The first limit is the case when the instability saturates by ion trapping, and the second limit is 

the case when the instability saturates by electron trapping.  
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Blue: Plasma Electrons, Red: Plasma Ions, Green: Beam ions. Phase space at saturation    

vs z.  

Fig.16. Identification of Saturation Mechanism using Phase Space diagnostics. Top: 

                  ion trapping regime, Bottom:                     

electron trapping regime.                ,        ,             ,    = c/2 
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The saturation mechanism and consequently the electron velocity amplitude is determined by a 

parameter, we denote by  , which is a function of the beam-plasma density and beam-electron 

mass ratio. Thus for a given beam density and beam ion mass, having relatively less plasma 

density will cause the instability to saturate by electron trapping and the electron oscillation 

velocity amplitude at saturation will be of order ~  . In the dense background plasma limit, the 

instability will saturate by ion trapping of the beam ions and the electron velocity oscillation 

amplitude normalized by beam velocity will be given by the scaling parameter   itself. This 

understanding of electron velocity amplitude dependence on beam parameters can be tested 

using PIC code LSP. Fig.16. top shows a high background density       simulation phase 

space. Notice the electron oscillation amplitude is roughly half of beam velocity as expected. 

Fig.16. bottom shows     beam plasma system in the lower background density limit. Since 

the scaling parameter is greater than 1, electron velocity oscillation amplitude is comparable to 

  . A significant population of plasma electrons wave-trapped by the instability is observed in 

this case, which results in the saturation of the instability. 

IV-Scaling of The Self-Fields and the Defocusing Force: 

In order to understand the scaling of defocusing forces with respect to changes in system 

parameters, we need to change the scaling parameter which will change electron oscillation 

velocity amplitude and consequently the non-linear fields. We do this by changing the 

background density in the range     [              ]     which corresponds to 

           while keeping other system parameters constant. As described in detail in Sec.II. we 

simulate a proton beam with a Gaussian radial profile with radius        , peak density 

               , pulse duration              and axial directed beam velocity       , 
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c is the speed of light in vacuum. Fig.17. shows the scaling of electron velocity oscillation 

amplitude and radial electric field when the scaling parameter is changed by altering the 

background plasma density. 

 

 

Fig.17. Top: Scaling of rms electron velocity oscillation amplitude measured on axis. The 

analytic estimate is given by Eqn.65.  Bottom: Scaling of radial defocusing electric field 

from LSP simulation, measured at          which corresponds to the maximum field 

ion trapping 

region 

e- trapping 

region 



６４ 
 

strength.     (     )
   

 ,    (
  

  
)
   

        for H+ beam. The Analytic estimate is 

given by Eqn.62. 

 

Fig.17. Top is the confirmation of electron velocity oscillation amplitude (at saturation) scaling 

given by Eqn.65. Fig.17. bottom shows the scaling of radial electric field. Notice here that in the 

low density electron trapped limit (     (     )
   

  ) radial electric field saturates at a 

maximum value. This is expected since in this region            
           

 , which is constant 

irrespective of the scaling parameter and the background density. Therefore in the electron 

trapping regime the radial electric field is insensitive to changes in background plasma density. 

For the investigation of azimuthal magnetic field, we compare the results of the PIC code LSP 

with the analytical estimation (Eqn.64) as well as the numerical solution of Ampere’s Law for 

the vector potential with the inclusion of the non-linear electron current term introduced by the 

instability, which we solve for the same set of parameters used in the simulations. For the 

numerical solution of the ODE, we used the same Gaussian radial beam profile for the beam 

density and the step size as with the simulations        cm. 
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             (67) 

Fig.18. shows the comparison of the analytical solution and the numerical solution of the 

modified Ampere’s law including the instability driven time-averaged non-linear electron current 

with the results from the particle-in-cell code for different       . The data points from the 

numerical solutions and the PIC simulations contain the maximum value of the azimuthal 
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magnetic field strength, which are located at around x = 1 cm with small  variation. The 

analytical solution is a rough estimate with no explicit positional dependence except through 

beam density profile, for which we have used the peak value. The curves from the PIC code, the 

analytical solution and the numerical solution for Ampere’s law are in good agreement, and they 

each show the same trend. In the transition region, where      and the mode saturation 

mechanism changes from ion trapping to electron trapping or vice versa, the azimuthal magnetic 

field strength is maximized. This is intuitive since azimuthal magnetic field depends on the total 

current, where the non-linear electron current dominates. In the electron trapping regime the 

electron perturbed velocity is maximum with amplitude      , however the background plasma 

density is low. In the ion trapping regime the background plasma density is high, but the electron 

velocity oscillation amplitude  is low    . Thus transition region is an optimum regime in the 

parameter space where the electron velocity is close to is maximum, and the background density 

is still large, thus yielding a large non-linear current, and consequently a large azimuthal 

magnetic field. This azimuthal magnetic field is defocusing. It is also important to point out that 

the radial electric field reaches its maximum in the transition region and then remains constant in 

the electron trapping regime. Thus the total defocusing force will be maximum at this region in 

parameter space. Therefore the transition region is a regime to avoid for the design of 

experimental beam-plasma devices where the two-stream instability is expected to develop.  
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Fig.18. Confirmation of azimuthal magnetic field scaling, which is reversed and 

defocusing.     (     )
   

 *   (
  

  
)
   

        for H+ beam. Note that the 

maximum magnetic field strength is attained at the transition region. 

 

Having described the behavior or the radial electric field    and the azimuthal magnetic field    

as the background density is changed, we can now look at how the Lorentz Force that will be 

exerted on a beam ion scales. 
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Fig.19. Lorentz Force (radial)     vs        log-scale. The points are LSP PIC code results 

where the instability is present, the continuous curve is the analytical estimate of the total 

defocusing force for the case of no instability. 

 

Looking at Fig.19. we can compare the Lorentz force curves in the presence and the absence of 

the instability. The no-instability case can correspond to a system where          . Here   is 

the growth rate of the instability and   is the system size in the axial direction. In this case the 

instability does not have enough time to develop to saturation as it transits the finite size system. 

The first thing to note when comparing the classical and non-linear forces is the difference in the 

sign. The classical case where the non-linear fields due to the instability is ignored predicts a 

pinching force [43,44], whereas in the presence of the instability the transverse total force will in 

fact be defocusing. The second thing to note is the difference in the magnitude of the forces. As 

can be seen from Fig.19. for the same set of parameters the non-linear force can be significantly 

e- trapping 

region 

Transition  

Region 

ion trapping 

region 
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larger than the classical estimation where the non-linear effects are not taken into consideration. 

The scaling of the non-linear forces with back ground density reveal a potential device design 

problem. For a beam-plasma device with background plasma density larger than the beam 

density by an order of magnitude for the case of a proton beam, it can be seen that the instability 

will saturate by electron trapping. To improve the neutralization performance, it is intuitive to 

introduce more background plasma, i.e. increase   , after all the purpose of the plasma is to 

reduce the space charge and the total current and thus reduce the self-fields. However in the 

presence of the instability increasing the plasma density for a device operating in the electron 

trapping regime, will put the system closer to the transition region  (        ~ 40 which 

corresponds to     for a proton beam) in the parameter space where the maximum defocusing 

force is attained. Thus increasing plasma density in the electron trapping regime will actually 

increase the total defocusing force, and deteriorate the neutralization performance of the beam 

plasma device. This counter-intuitive conclusion can be of crucial importance for device design.  

V-Conclusion: 

In this work, we investigated the effects of beam-driven two-stream instability on the 

transverse defocusing of an ion beam propagating in background plasma. We showed that the 

non-linear fields generated by the instability can result in significant defocusing of the beam and 

that the saturation values of the fields depend strongly on the saturation amplitude of axial 

electron velocity oscillations. By identifying a scaling parameter which is a function of beam 

plasma density, and beam ion and electron mass we studied the scaling behavior of the non-

linear fields, when the scaling parameter is changed by sweeping the background density. Using 

PIC code LSP we showed that in the low background density limit, where the instability 
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saturates by electron trapping, the radial electric field will become independent of the 

background density. The azimuthal magnetic field and the total defocusing force will be 

maximized for the transition region between the high and low background density limits and we 

identified this region as a least favorable design space for a beam-plasma device in the presence 

of the two-stream instability. We also showed that in the electron trapping regime (low 

background density limit) increasing the plasma density will counter-intuitively increase the total 

defocusing force and reduce device performance in terms of the ballistic propagation and field 

neutralization. 
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Part 2 : Detection of two-stream instability in an ion beam 

plasma system through beamlet extraction.  

I-Introduction 

In Part 2 of this chapter we again study an ion beam pulse propagating in a background 

plasma, which is subject to two-stream instability between the beam ions and plasma electrons, 

using PIC code LSP. The non-linear effects of the instability can be much more pronounced in 

thin beams, as the density gradient is increased. Therefore we propose that a beamlet extracted 

from even a slow heavy-ion beam can be used as a diagnostic tool to identify the presence of the 

two-stream instability and quantify for its effects. We test this idea by simulating a cold, low-

emittance thin beamlet extracted from a           Li+ beam parameters similar to the proposed 

NDCX-II and show that the presence of the instability can be investigated tracking the spot size 

of the extracted beamlet. 

In the case of heavy ion beams, the displacements and the distortion created by the two-

stream mode can be small and its detection difficult. In this paper we propose a diagnostic 

method, whereby a beamlet is extracted from the original beam and propagated an equal distance 

with the original beam. Tracking the spot size of the extracted beamlet will reveal whether or not 

the instability is present. We demonstrate this idea using a fully-kinetic multidimensional PIC 

code in a 2-D setting using a moving-frame electrostatic solver for 3 different cases. 
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II- Simulation of an Ion Beam with NDCX-II Parameters 

Propagating in Background Plasma: 

In the case of the proposed NDCX-II experiment there is a Li+ beam with axial directed 

velocity        ,              , r = 2 cm propagating in background carbon plasma 

with density                  . However the relatively small axial velocity implies that 

the non-linear fields will be small in magnitude, and Li ions will be harder to displace due to 

their larger inertia. Therefore macroscopic changes to the beam profile will not occur and the 

presence of the instability will much harder to detect. To test this idea, we simulated an NDCX-II 

like beam with a radial flat top profile and an axial Gaussian pulse with           with PIC 

code LSP using a moving frame algorithm where            Fig.20. shows the phase space of 

the beam plasma system at saturation. 
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Fig.20. Beam-Plasma system phase space at saturation of the two-stream instability t = 240 

ns. Blue- Plasma electrons, Red-Plasma Ions, Green – Beam Ions. 

 

Fig.20. clearly shows the modulation of electron velocity due to the instability. Note here that 

this instability has saturated by the wave-trapping of electrons and the oscillation amplitude of 

electron velocity at saturation is consequently comparable to the beam velocity which is 

expected for the given beam-ion mass, plasma and beam densities [41]. There is also a 

population of electrons that have escaped trapping due to the axial gradient in     . They appear 

as a precursor e- current preceding the beam. To study any possible defocusing effects, we next 

look at the density contours and radial cross-sections of the beam at different times. 

 

Trapped 

electrons 

De-trapped 

electrons 
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a-  

 

b-   
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c-  

Fig.21. a: Radial Beam density Profiles at t= 100, 200 and 300 ns, b: Beam Density Contour 

at t = 100 ns (1 m of propagation), c: Beam Density Contour at t = 300 ns (3 m of 

propagation). 

 

Looking at Fig.21. right we can see that even though the instability develops as can be 

observed by the modulation in density, the non-linear defocusing forces are not strong enough to 

significantly distort the beam profile and increase the beam spot size. Note at t= 100 ns which 

corresponds to the initial linear stage of the instability             . The instability saturates 

around t = 240 ns. At t = 300 ns             , yielding             ⁄   In an experimental 

perspective this shows that the detection of the two-stream instability in the ballistic propagation 

stage of the device will be diagnostically difficult. 
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III- Simulation of an Extracted Ion Beamlet 

Although the detection of the instability through defocusing effects will be difficult for an ion 

beam with radius           ,where        denotes skin depth and is roughly 2 cm for NDCX-II 

parameters, for a beamlet extracted from the beam the change in radius normalized by initial 

radius can be much more dramatic and thus easier to detect. In the case of the beamlet since 

                the total magnetic field, which is the sum of the classical pinching field and the 

non-linear defocusing field will be smaller. However the radial defocusing force due to the radial 

electric field which under NDCX-II parameters is much larger than the magnetic field will be 

enhanced if the beam profile is such that a reduction in radius will imply a larger gradient or stay 

the same if the reduction in radius does not alter the density gradient, since     
 

 
        

     

and the gradient of the perturbation in axial velocity and the fields is the gradient of beam 

density as the mode is electrostatic . Hence the presence of two-stream instability can be easily 

diagnosed by extracting a beamlet of smaller radius and propagating it through the background 

plasma, for the same duration as the original beam. A beamlet of radius rb =0.1 cm with NDCX-

II parameters for profile shape, beam and background plasma density was simulated using PIC 

code LSP. Fig.22. shows the evolution of beam density profile in the beam frame as it propagates 

through background plasma. 
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a-  

b-  

c-  

Fig.22. a: Radial Beamlet density Profiles at t= 100, 200 and 300 ns, b: Beamlet Density 

Contour at t = 100 ns (1 m of propagation), c: Beam Density Contour at t = 300 ns (3 m of 

propagation). 
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The results of the beamlet        cm simulation indicate that unlike the original beam, 

the extracted beamlet becomes significantly distorted and defocused due to the increase in non-

linear defocusing forces created by the beam driven two-stream instability. In fact 
   

   
    for t= 

300 ns. Hence tracking the spot size of an extracted beamlet can be a useful tool to detect the 

presence of two-stream instability. 

 Next we need to demonstrate that the subsequent spreading of the beamlet is due to the 

non-linear defocusing forces generated by the two-stream instability and not because of poor 

neutralization or beam emittance. Note that all simulations performed for this work have cold 

beam and plasma species. To illustrate this we perform a simulation, where the ion beamlet will 

be charge and current neutralized by an electron beam of same density, profile and velocity. In 

this case the instability will not develop as the velocity distribution is no longer a sum of two 

delta functions at two different velocities (            ) and thus there is no streaming of 

particles. Fig.23. below shows the evolution of the ion beam density contours and radial profile 

when it is neutralized by an electron beam. 

 

a-  
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b-  

c-  

Fig.23. Top: Radial Beam density Profiles at t= 100, 200 and 300 ns, Middle Beam Density 

Contour at t = 100 ns (1 m of propagation), Bottom: Beam Density Contour at t = 300 ns (3 

m of propagation). 

 

The density contour plots of Fig.23. demonstrate that there is no modulation of beam 

density, which shows that as expected the two-stream instability is entirely absent. Moreover 

both the contour plots and the radial profile show almost no increase in spot size, which is 

significant as it validates that the defocusing of the ion beamlet in a stationary background 
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plasma is entirely due to the non-linear time-averaged forces generated by the two-stream 

instability. 

IV- Conclusion: 

In Part 2 of Chapter 4 we have shown that beam-driven two-stream instability can lead to 

the creation of non-linear defocusing fields which can significantly distort fast, light-ion (i.e. 

proton) beams. In the case of slower, heavy ion beams the presence of the instability might 

become much harder to detect. We proposed that a diagnostic can be used to extract a beamlet 

from the original beam. In the case of a beamlet, the increase in spot size relative to the initial 

spot size will be much more significant and easier to detect. This will provide an experimental 

tool to quantify for the presence of the two-stream instability in the beam-plasma system. The 

results of this section was presented and to be further submitted for publication [45-47]. 
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Chapter 5:  

Simulation of Electron-beam Driven Two-

Stream Instability 

 

5.1 1-D Fully Kinetic Simulation of an Electron Beam Propagating 

in Background Plasma performed in EDIPIC and LSP 

 

I-Introduction 

The interaction of electron beams with plasmas is of considerable importance particularly 

for hybrid DC/RF coupled plasma sources used in plasma processing [37]. An electron beam is 

formed by emission from one surface, is accelerated through a dc bias electric field and enters 

the bulk plasma. Emitted electrons excite electron plasma (Langmuir) waves through the two-

stream instability. Due to the high localized plasmon pressure, ion acoustic waves are excited 

parametrically. The plasma waves saturate by non-linear wave trapping. Eventually coupling 

between electron plasma waves and ion acoustic waves deteriorates the Langmuir waves, which 

leads to a bursting behavior. The two-stream instability and the consequent ion fluctuations are 

studied over a wide range of system parameters using the particle-in-cell codes EDIPIC [38,39] 
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and LSP. The influenceof these instabilities on collisionless electron heating are presented for a 

hybrid RF-DC plasma source. The results of these simulations were reported [40,41]. 

 

II- Setup of Simulations 

 Table 4 and 5 below contain the parameters used in EDIPIC and LSP simulations for the 

electron beam- background plasma system. 

 

 

 

 

 

 

 

 

Table 4 EDIPIC Simulation Parameters. 

 

• System length 3 cm 

• Ion mass: 10, 20, 40, 60, and 80 amu 

• All ions are specularly reflected from the walls 

• Electrons with energy below 400 eV are specularly reflected from the walls 

• Start with rectangular density profile 

• Plasma density 1e16 m
-3

 

• No collisions 

• Initial electron temperature 2 eV, ion temperature 0.1 eV 

• Constant electron emission 1.25e20 m
-2

 s
-1

 from cathode at x=3 cm  

• Voltage 800 V 

• Grid has 1614 cells of size 18.585 m 

• Time step 0.739 ps 

• 2000 particles of each species per cell 

• Duration of simulation 10 s 
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Table 5 Parameters of LSP Simulations 

 

III- Excitation, Saturation and Dissipation of the Two Stream 

Instability. 

 

 The streaming of the beam electrons against the stationary back ground plasma 

kinetically excite the Two-Stream Instability between the beam and plasma electrons. (The mode 

between the beam electrons and plasma ions can be shown to be always damped in the case). The 

frequency of the instability is determined by the simple kinetic relation              where 

• Argon plasma  𝑛𝑝        𝑐𝑚  

• Plasma frequency 𝜔𝑝           𝑟𝑎𝑑𝑠 𝑠 

• e-beam 𝑛𝑏     8  𝑐𝑚  

• 𝐾𝐸𝑧      𝑒𝑉 

• 𝛽       𝛾    

• All species cold, 0 eV 

• L ~ 6  cm, absorbing walls, no collisions 

• 0.01 cm grid size 

• Time step 0.033 ns 

• 200 pic for plasma particles, 5 for beam 

• Flat initial density profiles 

• Similar parameters overall as the initial EDIPIC runs 
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    is the electron plasma frequency,    is the axial beam velocity and k is the wave number. As 

we will discuss shortly with reflecting boundary conditions at the anode end, the instability can 

be excited depending on the system size and the background density. When excited, the 

instability exhibits the following time evolution shown in Fig.24. below. 

       

 

Fig.24 Axial Electric Field vs Time from different probe locations showing the linear 

growth, saturation and dissipation of the instability using EDIPIC. 

 

The excitation of the two-stream instability depends whether or not the resonant wave number 

can be contained in the physical system or          where      is the system size. Thus when 

the system size is reduced below half the resonant wavelength, the instability will no longer 

develop. The same effect can be produced by reducing the background plasma density while 

Linear Growth Non-linear saturation 

Dissipation 
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keeping beam velocity constant. Reducing the plasma density will reduce the electron plasma 

frequency and thus the resonant mode number. When the half wavelength of the resonant mode 

exceeds the system size due to the periodic boundary conditions the resonant mode will no 

longer be contained in the system and the instability will not develop. This effect using variation 

of the system size is demonstrated in Fig.5.2. It is also important to note that the occurrence of 

the instability is intermittent. Most of the EDIPIC simulations were run up to 10s displaying 

periods of instability followed by quiet states. 

 

 

 

 

 

 

 

 

 

No Instability Short System 

Size using EDIPIC 

Instability Longer System 

Size using EDIPIC 

Fig.25.a Top: e- phase space, 

red plasma e-, green beam e-

.Middle: Ion Phase space and 

Ex. Blue ion velocities, red Ex 

Bottom: Density and Potential: 

red plasma e-, blue ions, green 

potential.For an Argon 

Plasma. System size is 2 cm. 

Note there are no oscillations 

in the phase space, the 

potential and the density. The 

instability is absent. 

Fig.25.b Top: e- phase 

space, red plasma e-, green 

beam e-.Middle: Ion Phase 

space and Ex. Blue ion 

velocities, red Ex Bottom: 

Density and Potential: red 

plasma e-, blue ions, green 

potential.For an Argon 

Plasma. System size is 4 

cm. Note there are 

oscillations in the phase 

space, the potential and the 

density. The electrostatic 

two-stream instability is 

present. 
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A closer inspection of the phase space reveals that the instability saturates by the wave-

particle trapping of beam electrons, a fact that is demonstrated both in EDIPIC and LSP 

simulations. Fig.26. is the phase space of the LSP simulation taken during the linear growth and 

saturation stage of the instability demonstrating particle trapping. 

 

 

 

 

 

 

 

 An analysis of the distribution function for the plasma electrons gives important insight 

for the dissipation mechanism of the instability. The  1
st
 order axial Electric field created by the 

electrostatic instability creates axial collisionless scattering of the plasma electrons. This results 

in the increase of the axial electron temperature and the distribution function widens, to an extent 

that the tails of the distribution reach the phase velocity of the instability, which is    the axial 

Fig.26. Phase Space Evolution: Left: t=320 ns Linear Stage, Right t= 460 ns non-linear 

stage showing particle-trapping of electrons (blue: plasma e-, red beam e-, green plasma 

ions). Trapping of electrons seems to be the primary mechanism of non-linear saturation.  
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directed beam velocity. This results in landau damping and the instability is dissipated. Fig.27 

shows the widening of the distribution function for EDIPIC simulations of different background 

Ion Species. 

 

 

 

IV-Ion Dynamics, Cavity Formation and Ion Acoustic 

Waves 

 

 An interesting result of the development of the Two-Stream Instability is non-linear ion 

dynamics. Ion dynamics come primarily from the non-linear ponderemotive force generated by 

the axial electric field associated with the instability which is given by Eqn 68. 

           
          (68) 

Fig.27. Collisionless heating of plasma electrons due to high E-fields for different ion 

mass. Final f for plasma e- is given at t = 5 s. 
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 It is important to understand why the axial gradient in the first order electric field is 

generated. In the beam-plasma system the electron beam is injected from the cathode end and 

travels through the plasma until it hits the anode. The instability is thus first created at the 

cathode end and it propagates through the plasma as it grows. Thus a wave front at the anode end 

has more time to grow compared to a wave front closer to the cathode end. This results in an 

electric field that is largest at the anode end. The consequence is an axial gradient which is 

proportional to twice the axial wavenumber. Since the magnitude of the electric field is largest at 

the anode end, the ponderomotive field pressure is also the highest at this location. Due to this 

field pressure plasma electrons with their small inertia are the first to be displaced, setting up an 

ambipolar field which causes the ion density to be locally depleted as well. Fig.28 shows the 

formation of the Ion Cavity both in EDIPIC and LSP simulations. 

 

 

 

 

 

 

 

e-beam 

e-beam 

Fig.28.a. Ex-field and Ni  (ion density)slices for mass = 20 amu. Ion cavity formation at 

the peak of  two stream standing wave due to ponderomotive force from EDIPIC 

simulation. Note the cavity starts forming at the anode end where the field is the largest. 
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e-beam 

e-beam 

Fig.28.b. Top: Axial Electric Field vs axial position t = 230 ns, Bottom: Ion Density 

(Black), plasma e- density (red) vs x. Left t= 300ns showing Ion Cavity formation at the 

anode end from the LSP simulation. 
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Once the ion cavity is formed, it propagates as an Ion Acoustic wave towards the cathode 

end. Fig.29 shows the propagation of the IA mode through the plasma from the LSP simulation 

as a perturbation in the ion density. 

 

 

 

 

 

 

Fig 29. Plasma density vs position at t=570 ns from LSP simulation. Red is electron and 

black is ion density. Excitation and propagation of IA mode from the anode end to the 

cathode is evident. 

 

Using a spatial array of probe diagnostics in the simulation, the propagation of the IA 

mode can be tracked and its phase velocity can be measured. Fig.30. shows the ion density and 

electric field recorded by an array of probes versus simulation time performed during the 

e-beam 

IA mode 
Propagation 
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EDIPIC simulation. Table 6. shows the comparison of the measured phase velocity versus   , the 

ion acoustic speed. 

 

 

  

 

 

 

 

  

Slope~ V
i,p

 

Fig.30. Top: Ion Density at Probe Location vs time. Bottom: Axial Electric Field 

at Probe location vs time. 
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Table 6. Measurement of Ion Acoustic Mode phase velocity and comparison with the sound 

speed for different ion species and electron temperature performed in EDIPIC. 

 

 

 

 

Mi (amu) Te (eV) Cs (m/s) Vi,p(m/s) Vi,p / Cs 

10 2 4390 5200 1.18 

20 2.3 3330 3714 1.11 

40 2 2195 2800 1.28 

60 2.25 1901 2333 1.3 

80 2.1 1590 2131 1.34 
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5.2 2-D Simulation of an Electron Beam Propagating in 

Background Plasma 

I- Introduction 

 One major short coming of EDIPIC in modeling beam-plasma systems is that this code is 

1-D, although a 2-D version of the code is now being developed. To study the effects of two-

stream instability in a beam-plasma system, we carried out further simulations using LSP in 

Cartesian 2-D coordinates. The system size and beam-plasma parameters were chosen to 

replicate a real low-temperature device [54,55].  In Sect. II a brief summary of simulation and 

beam-plasma parameters for this two-dimensional numerical investigation is presented. 

 The two dimensional simulation replicates the major results of the 1-D study, in terms of 

the excitation of the two-stream instability between beam and plasma electrons, the particle 

trapping of this mode and the consequent saturation and the parametric development of ion 

cavities and excitation of IA modes due to the non-linear ponderomotive force generated by the 

axial electric field. However it extends the 1-D simulation results in the discovery of the 

excitation of oblique plasma waves the spectrum of which evolve in time, suggesting correlation 

and potentially mode coupling between waves with different two-dimensional wave numbers. 

This turbulent spectrum demonstrates an interesting time evolution which will be discussed in 

detail in Sect. III. A very important result of modes with oblique mode numbers is that these 

modes have associated transverse electric fields which result in transverse collisionless scattering 

of the beam electrons. Consequently the distribution function of the beam electrons evolve in 
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time, in parallel with the evolution of the k-spectrum. This interesting result will be discussed in 

more detail in Sect. IV. The results of this study were presented in various conferences[55-60]. 
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II- Setup of Simulations 

 As mentioned earlier, the parameters for the 2-D LSP simulation were chosen to replicate 

a real low-temperature device descried in Ref. 54, 55  Table 7 summarizes the beam-plasma 

parameters and the simulation settings such as the solver, grid size and time step used for this 

numerical investigation. 

 

 

 

 

 

 

 

 

 

Table 7.  Summary of Parameters and Settings for the 2-D LSP simulation of the e-beam 

plasma system. 

 

 

• T = 600 ns, Δ𝑡 = 0.002 ns, 

•  Δx  Δz        c , 400 cells in each direction. 

• Electrostatic Alternating Direction Implicit Solver, Static ADI is 

used. 

• H+ plasma 𝑛𝑝           𝑐𝑚 , e-beam 𝑛𝑏           𝑐𝑚  

• KE = 30 eV directed axial energy for beam electrons 

•  T = 0 eV for all 3 species. 

• Collisionless Plasma Model,Beam Injection Model 
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Fig. 31. Depiction of the Physical Simulation Domain and the coordinates used. The beam 

is injected parallel to the z-axis from the left (cathode) to the right (anode). The beam 

thickness is 1.2 cm in total, equaling the width of the background plasma. 

 

 In Fig.31 we provide a brief description of the physical system and the coordinate system 

used in this simulation. It is important to note that the beam thickness is chosen to be 1.2 cm in 

total, which equals the entire width of the background plasma in x-direction, in order to avoid 

edge related gradients to scatter beam electrons transversely. Since the collisionless plasma 

model is used, any scattering that is observed is purely due to the transverse electric field 

associated with the Langmuir turbulence. 

 

 

 

0.6 cm 

x 

-0.6 cm 

0.6 cm 0.6 cm z 
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III- Excitation of Oblique Modes and Evolution of the K-

Spectrum  

 In this section we will present the results from the 2-D simulation run using contour plots 

of the scalar potential taken at different times and the k-space discrete Fourier transforms of the 

scalar potentials performed using MATLAB signal processing toolbox using the built-in two 

dimensional fast fourier transform function, fft2.  We will use  ̃ to denote the k-space transform 

of scalar potential  . The k-space transform of  ̃ is given by: 

 ̃        ∑        x                    (69) 

Note since  ̃ is a complex quantity with phase information in contour plots we will plot it’s 

magnitude, corresponding to the amplitude of the signal versus position as usual. The phase 

space of particle velocities versus axial (z) and transverse (x) coordinates are also provided at the 

sampling times in order to provide an understanding of the current state of the instability in terms 

of linear growth, saturation and dissipation. 

 At t=25 ns inspecting Fig.32 we see a fully developed axial Langmuir wave. The contour 

plot of | ̃| reveals that the mode is primarily axial, with                  . The peak amplitude 

of fluctuations is less than 10V. The phase space from this time slice reveals that the mode has 

already saturated by the wave-particle trapping of beam electrons at this stage. 
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Fig.32. Top, Left: Potential Contour Plot t=25 ns. Right: Potential K space 

spectrum t= 25 ns. The k-spectrum has peaks at (50, 15) and (70, 30) 1/cm.   

Bottom, Red: Plasma Electrons, Blue: Beam Electrons. cm z=[0.2,0.4] cm Left: Vz vs 

z x =[-0.4, 0.4] . Right: Vx vs x. z =[0.3, 0.7]. Instability has saturated by particle 

trapping. 
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 At t= 100 ns the system has gone into a turbulent state. It is evident from the contour 

plots of the scalar potential that there are a several coexisting oblique modes. The spectral 

analysis of the turbulence reveals that the peak of the spectrum has shifted to an oblique mode 

with                        with a peak amplitude of around 10V. There are modes with 

smaller amplitudes at (25, 50) cm
-1

 and (40,60) cm
-1

. The phase space shows that the turbulence 

is stronger at the anode end, the axial velocity of particles demonstrate a turbulent state and the 

transverse velocity clearly has spatial structures which correspond to the transverse components 

of the oblique modes. Fig. 33 demonstrates the above mentioned key results. 

 

 

 

 

 

 

 

Fig.33. Top, Left: Potential Contour Plot t=100 ns. Right: Potential K space 

spectrum t= 100 ns. The peak of the k-spectrum has shifted to ~(30,30) 1/cm 

Bottom, Red: Plasma Electrons, Blue: Beam Electrons. cm z=[0.2,0.4] cm Left: Vz vs z x 

=[-0.4, 0.4] . Right: Vx vs x. z =[0.3, 0.7]. Spatial Modulation of Vx is observed. 



９９ 
 

  At t = 200 ns the turbulence has fully developed. The mode at (30,30) cm
-1 

is the most 

dominant mode at this stage with an amplitude of 10V,  there is another strong low k mode at 

(15,15) cm
-1

 and the mode at (35,50) cm
-1

 is still present although at a weaker state. The 

spectrum demonstrates a clear energy flow from high k axial modes to low k oblique modes. The 

wavenumbers for these modes are commensurate. This suggests a correlation between the modes 

in the lines of 3-wave coupling, however the frequencies associated also have to be 

commensurate with requires further spectral analysis in the time-frequency domain. However the 

non-linear nature of the dispersion relation implies that one of these modes should not be a 

Langmuir wave. This will require the simulation to be rerun with a grid of point probe 

diagnostics to capture time domain signals. The phase space also confirms that the state of the 

system is strongly turbulent and as in t= 100 ns the transverse velocity of particles reveal spatial 

structures indicative of the presence of fluctuations with transverse components. Fig.34. 

demonstrate the above mentioned key results. 
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 The data taken at t = 300 ns of the simulation reveals some interesting results. At this 

stage the turbulence starts to weaken. This can clearly be seen in the phase space. The (30,30) 

Fig.34. Top, Left: Potential Contour Plot t=25 ns. Right: Potential K space 

spectrum t= 25 ns. The k-spectrum has peaks at ~(15,15), (30,30) and (35,50) 

1/cm 

Bottom, Red: Plasma Electrons, Blue: Beam Electrons. cm z=[0.2,0.4] cm Left: 

Vz vs z x =[-0.4, 0.4] . Right: Vx vs x. z =[0.3, 0.7]. Spatial Modulation of Vx is 

observed. 
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and (15,15) modes still coexist with peak amplitudes around 8V. As we will describe in detail in 

the next section, the weakening of the turbulence results in less collisionless scattering of beam 

electrons. Fig.35 displays the scalar potential and phase space data taken at t = 300 ns. 

 

 

 

 

 

 

 

 

 At the final stage of the simulation the turbulence continues to weaken and the resulting 

collisionless scattering is also reduced. The k-spectrum demonstrates a very interesting time 

Fig.35 Top, Left: Potential Contour Plot t=300 ns. Right: Potential K space spectrum t= 

300 ns. The k-spectrum has peaks at (15,15), (15,25) and (40,30) 1/cm 

Bottom, Red: Plasma Electrons, Blue: Beam Electrons. cm z=[0.2,0.4] cm Left: Vz vs z x 

=[-0.4, 0.4] cm . Right: Vx vs x. z =[0.3, 0.7] cm. Spatial Modulation of the transverse 

velocity is still evident. 
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evolution as the low k modes at (15,15) and (30,30) cease to exist and are replaced by a 

dominant higher k oblique mode at (40,45) cm
-1

. The presence of a single dominant mode is also 

evident observing the contours of the scalar potential as wave fronts traveling at almost a 45 

degree angle are clearly visible. Fig.36. presents the data taken at t= 500 ns of the simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig.36 Top, Left: Potential Contour Plot t=500 ns. Right: Potential K space 

spectrum t= 500 ns. The low k peaks disappear.  Spectral maximum is at 

(40,45) 1/cm. 

Bottom, Left: Potential Contour Plot t=500 ns. Right: Potential K space 

spectrum t= 500 ns 
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IV-Collisionless Scattering and Ion Dynamics: 

 One important result of the excitation of oblique modes is the collisionless transverse 

scattering of electrons. This is important in the understanding of energy transverse from the 

beam to the plasma and the evolution of electron distribution functions for both plasma and beam 

electrons which become anisotropic, which was studied theoretically and demonstrated 

experimentally [54,55].  

 In order to capture this physical affect the simulation is set using the collisionless plasma 

model. Thus any transverse or axial scattering we will observe in the Vx vs Vz phase space is 

purely due to the Lorentz force created by the electric field.  In order to minimize the edge 

effects of the beam and plasma profiles we have chosen the beam width to span the entire length 

of the plasma, as the edge gradients will generate fields that will also scatter particles. To study 

the collisionless scattering associated with the oblique modes of the turbulence, the data 

presented in the section will be taken at the center of the plasma transversely x = [-0.4, 0.4] cm 

the entire width of the system being x = [-0.6, 0.6] cm. The simulation domain is divided into 3 

parts axially: region 1 the cathode z = [0.2,0.4] cm, region 2 mid-plasma z = [0.5,0.7] cm and 

region 3  the anode z = [0.8,1.0] cm. The entire length of the system is z = [0.0, 1.2] cm.  

Looking at Fig.37.a. we can observe the Vx vs Vz phase space taken at the above 

described 3 regions of the simulation domain. Both the plasma electrons (red particles) and the 

beam electrons (blue particles) are initially cold, having delta function like distribution functions 

which is evident in the cathode region. In the mid-plasma and anode regions due to the presence 
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of the resonant axial Langmuir mode the particles scatter axially. Since beam electrons in the 

anode region have traversed the entire length of the plasma, they are exposed to the fields for a 

longer duration of time and thus are scattered more. This is a common feature that we will 

observe in all 5 time slices. 

The state of the velocity phase space at t = 100 ns can be seen in Fig.37.b. Due to the 

excitation of oblique modes, the beam and plasma electrons are scattered transversely. It is 

important note that each dot represents an individual particle in the Fig.37. By collecting 

particles and sorting them in velocity bins it is possible to extract the particle distribution 

function. The transverse scattering is more pronounced at the anode end due to the longer time of 

exposure to the fields for the beam electrons and due to the fact that turbulence is stronger at the 

anode end since the wavefronts also had more time to grow. Thus both the plasma and the beam 

electrons are scattered more at this region. The velocity spread in the transverse direction has 

tripled compared to its state at t= 25 ns. 

 

a- 

 

 

b-  
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c-  

 

 

d- 

 

 

e- 

 

 

 

 

 At t = 200 ns, the turbulence is in a strong state. The velocity spread of the particles 

become spherical due to significant transverse scattering due to the presence of several 

coexisting low-k oblique modes, the (15,15) 1/cm and (30,30) 1/cm modes being the most 

dominant, as can be seen in Fig.37.c. At t= 300 ns the turbulence starts to weaken and the 

scattering is also reduced as can be seen in5.14.d. At t= 500 ns the state of the beam plasma 

system is almost non-turbulent with a dominant high-k oblique mode. The reduction of the 

turbulence has immediate consequences in the scattering of the particles. As can be seen in 

Fig. 37. Red: Plasma Electrons, Blue: Beam Electrons. Left: Region 1 x =[-0.4, 0.4] cm 

z=[0.2,0.4] cm. Middle: Region 2, x =[-0.4, 0.4] cm z=[0.5,0.7] cm. Right: Region 3 x 

=[-0.4, 0.4] cm z=[0.8,1.0] cm.a- t = 25 ns, b- t = 100 ns, c- t = 200ns, d- t = 300 ns and 

e-  t= 500 ns.  



１０６ 
 

Fig.37.e the scattering in all three regions of the simulation domain has been significantly 

reduced compared to the t= 200 ns and t= 300 ns states. Since fresh beam particles are injected 

during the simulation, the reduction of transverse scattering is mostly easily observed in the 

beam electrons. 

 The time evolution of the turbulent spectrum is clearly correlated with the strength of the 

collisionless scattering that the particles experience. When the system is a strongly turbulent state 

with coexisting low k modes, the distribution functions of the electrons are significantly altered. 

When the turbulence weakens and is dominated by a high-k mode towards the end of the 

simulation consequently the transverse scattering is reduced. It is important to understand the 

time evolution of the spectrum and the interaction the modes with each other as it is evident that 

the modes are immediately responsible for the collisionless scattering of beam and plasma 

particles and the collisionless heating of the plasma which is an important mechanism of power 

delivery from the beam to the plasma. This analysis will require further investigation as 

continuation of this work.  
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Chapter 6: 

Conclusion: 

 In this work we have investigated two major instability driven non-linear mechanisms 

that relate to the main branches of research in plasma physics: magnetic confinement and inertial 

fusion. The initial part of this work was a theoretical study of the non-linear saturation 

mechanism of slab Electron Temperature Gradient (ETG) modes. In toroidal geometry the 

modes can be responsible for the high levels of anomalous transport observed in tokamaks. 

Supported by the experimental evidence from the Q-Machine CLM a theoretical model based on 

the non-linear interaction of stable and unstable modes in the form of 3-wave coupling was 

determined, with the 3
rd

 partner of the triplet being an IA mode. This model explains the high 

correlation levels observed between the modes, correctly estimates the frequency difference 

between the stable and unstable ETG radial harmonics and produces a saturation level which is ~ 

10% of the electron temperature that is consistent with experimental observations in the CLM. 

 The second part of this thesis focuses on the numerical studies of beam-plasma 

interactions conducted in Princeton Plasma Physics Laboratory under the supervision of Dr. Igor 

Kaganovich of the Non-Neutral group. We investigated the effects of the non-linear time-

averaged fields generated by two-stream instability in the case of an ion-beam propagating in 

background plasma. The investigation revealed that the saturation mechanism of the instability is 

either the trapping of plasma electrons or beam ions depending on beam-plasma parameters such 
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as beam and plasma density as well as the beam ion mass. The saturation mechanism is directly 

correlated with the amplitude of electron oscillations in phase space. The time-averaged electron 

oscillations are directly responsible for creating a non-linear reversed magnetic field and the 

radial gradient of the squared magnitude of the oscillations are responsible for the creation of a 

radial ambiploar defocusing electric field in the form of a ponderomotive force. Hence the 

magnitude of the non-linear fields depend directly on the choice of beam density, plasma density 

and ion mass. We summarized this dependence in the form of a unitless parameter which we 

named . Using particle-in-cell simulations we have demonstrated the dependence of these non-

linear defocusing fields on these parameters and investigated the scaling. We have determined 

that in the transition region where the instability saturation mechanism switches from electron 

trapping to ion trapping or vice versa, the defocusing fields are maximized, a result that we 

confirmed analytically and also with the numerical solution of the underlying Ampere’s Law for 

the vector potential. The identification of a maximal defocusing region in the parameter space 

gives important insight to experimentalists in the design of future inertial fusion devices that may 

be subject to the two-stream instability. The investigation was further carried to propose a 

diagnostic tool to detect the instability in High Energy Density and Heavy Ion Fusion devices. 

The convective nature of the instability makes it difficult to detect and study in heavy ion 

systems, especially when the distortion of the beam profiles are less pronounced due to the 

higher inertia of the beam ions. However in the case a small radius beamlet, the distortion and 

defocusing is much more easily observed as the percentage of change in the spot size is 

increased. Proof-of-concept simulations with parameters similar to the NDCX-II experiment 

were performed and it was shown that beamlets extracted from the beam and propagated in 
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background plasma an equal distance as the original beam can be used to diagnose the two-

stream instability simply by tracking the beamlet spot size. 

 Finally we extended the study of beam-plasma interactions to electron beams. The 

particle-in-cell code LSP was initially used to benchmark 1-D simulations performed by Dimitri 

Sydrenko from University of Alberta. Important observations made include the dependence of 

the excitation of the instability on the plasma density and system size, collisionless heating of the 

plasma and the coupling of the electron-electron two stream instability to ion cavities and ion 

acoustic modes through non-linear ponderomotive force. The results from the two codes were 

shown to be in close alignment. LSP was then later used to simulate a low temperature 

experimental device in a 2-D setting. Many of the main results from the 1-D simulations were 

again confirmed. The 2-D simulations further revealed the excitation of oblique modes with 

transverse mode numbers, which result in transverse fields. These fields were shown to 

collisionlessly scatter beam and plasma electrons. The evolution of the turbulent spectrum was 

studied using Fourier transform techniques. The time evolution suggest interaction and power 

transfer between the modes, which can be non-linear as in the case of three wave coupling. 

However further investigation both in simulation and in theory to understand the evolution of 

this turbulent spectrum. The study of two-stream instability dependent dynamics is important to 

understand to power delivery and collisionless scattering in low temperature beam plasma 

devices which has applications in low temperature plasma etching and materials processing.  
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