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ABSTRACT

Studies in Stochastic Networks: Efficient
Monte-Carlo Methods, Modeling and

Asymptotic Analysis

Jing Dong

This dissertation contains two parts. The first part develops a series of bias reduction

techniques for: point processes on stable unbounded regions, steady-state distribution

of infinite server queues, steady-state distribution of multi-server loss queues and loss

networks and sample path of stochastic differential equations. These techniques can

be applied for efficient performance evaluation and optimization of the corresponding

stochastic models. We perform detailed running time analysis under heavy traffic

of the perfect sampling algorithms for infinite server queues and multi-server loss

queues and prove that the algorithms achieve nearly optimal order of complexity. The

second part aims to model and analyze the load-dependent slowdown effect in service

systems. One important phenomenon we observe in such systems is bi-stability, where

the system alternates randomly between two performance regions. We conduct heavy

traffic asymptotic analysis of system dynamics and provide operational solutions to

avoid the bad performance region.
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Chapter 1

Introduction to Part I

The first part of the dissertation focuses on the algorithmic development and theo-

retical analysis of bias reduction techniques for several stochastic models that arise in

various engineering and business applications. Sampling based computational meth-

ods are a fundamental part of the numerical toolset for performance evaluation and

optimization of these models.

When evaluating the performance of a sampling scheme, the most analytically

tractable measure of estimator quality is the mean square error (MSE). Suppose we

are interested in estimating the mean of a random quantity Z, denoted as α = EZ.

Our sampling scheme outputs an estimator of α, denoted as Ẑ. Then

MSE(Ẑ) = E[(Ẑ − α)2]

= Bias(Ẑ)2 + Var(Ẑ)

where Bias(Z) = E[Ẑ]− α.

We can reduce the variance of the estimator by sampling i.i.d. copies of Ẑ and take

the average. Specifically,

Var

(
1

N

N∑
k=1

Ẑk

)
=

1

N
Var(Ẑ1)

When applying this Monte Carlo method, the variance the estimator converges to

zero at rate 1/N . In the contrast, Bias(Z), cannot be eliminated through sampling
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i.i.d. copies of Ẑ, i.e. E[1/N
∑N

k=1 Ẑk] = E[Ẑ1]. Bias measures the systematic error

of Ẑ.

In this dissertation, we develop algorithms to eliminate or reduce the bias of the

estimator, thus improve the efficiency of Monte Carlo methods. In Chapter 2, we de-

velop simulation schemes to sample point processes on stable unbounded regions. We

also develop perfect sampling algorithms for infinite server queues. Perfect sampling

consists of simulating without any bias from the steady-state distribution of a given

ergodic process. In Chapter 3, we constructed perfect sampling algorithms for multi-

server loss queues and loss networks. We conduct the running time analysis of our

algorithms under heavy-traffic. Lastly in Chapter 4, we propose and analyze a class

of algorithms that would allow us approximate the sample path of multi-dimensional

stochastic differential equations (SDE) with any desired level of accuracy (ε-strong

simulation).

The rest of the introduction is organized as follows. We first give an overview of

perfect sampling (Section 1.1) and sample path simulation of SDEs (Section 1.2). We

then introduce the idea of “record breakers”, which are used in the development of

both our perfect simulation algorithms and our SDE sampling schemes.

Throughout the discussion, we refer to a unit of computational effort (compu-

tational cost) as the simulation of a random variable or the evaluation of a simple

function.

1.1 Perfect sampling

The steady state distribution in a particular set, measures the long run proportion of

time the stochastic process spends in that set [1]. Specifically, for an ergodic process.

π(C) := lim
t→∞

1

t

∫ t

0

1{X(s) ∈ C}ds

It is widely used for system performance evaluation. As the steady-state distribution

is defined as the limiting distribution of the process as time goes to infinity, most naive
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forward simulation algorithms suffer from the bias induced by the initial transient.

This is because the process is in general initialized from an arbitrary state that does

not follow the steady-state distribution [2].

The most common perfect sampling protocol, known as coupling from the past

(CFTP), was proposed in the ground breaking paper by Propp and Wilson [3]. The

theoretical concepts underlying is the following. Suppose that the process starts

operating from the infinite past at an arbitrary state. It would be at stationarity at

time zero. If we could recover the state of such system at time zero, then we get

an unbiased sample from its steady-state distribution. There has since been a lot

of work involving implementation of this idea for various applications and improving

the efficiency of the algorithms (see for example [4],[5],[6] et al.). Kendall once said

“The topic of perfect simulation is made up of a variety of interacting ideas rather

than a single grand theory: more of an orchestra of complementary techniques than

a virtuoso prima donna of a Big Theory.” It still remains an active research area.

Chapter 2 of this dissertation develops the perfect sampling algorithm for infinite

sever queues with general interarrival time and service time distributions using the

idea of CFTP. The main difficulty in applying CFTP to the general infinite server

queueing models is that the state space, which consists of the age process of the

renewal arrival process and a measured value process for remaining service times, is

infinite dimensional and the transition kernel of the underlying Markov process is not

directly accessible.

Foss and Tweedie [7] proved that CFTP can be applied if and only if the under-

lying process is uniformly ergodic. Kendall [8] proposed a variation of CFTP, called

Dominated Coupling From the Past (DCFP), which allows one to obtain samples from

the steady-state distribution of ergodic process without requiring uniform ergodicity.

A nice summary of DCFTP is given in [9]. The idea is to construct a stationary pro-

cess which suitably dominates the process of interest and can be simulated backwards

in time from a stationary state at time zero. Then, a suitable lower bound process,
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coupled with the upper bound, must also be simulated in stationarity and backwards

in time. A typical application of DCFTP involves the construction of the upper and

lower bounds up to a time in the past when they both meet. Then one says that the

coalescence occurs. The process of interest is reconstructed forward in time from the

coalescence position up to time zero, using the same input sequence that was used

to simulate the coupled upper and lower bounds. The state of the process of interest

at time zero must then follow the corresponding steady-state distribution. Chapter 3

of this dissertation develops perfect sampling algorithms for multi-server loss queues

and loss networks with general interarrival time and service time distributions based

on this idea.

The majority of the available perfect sampling algorithms for queues involve ex-

ponential distributional assumptions (on service times and/or interarrival times) and

very few of such algorithms are applicable in the context of queueing networks. None

of them, up to date, have been designed and analyzed in the setting of many server

systems in heavy-traffic.

The paper [10] is one of the earliest to consider DCFTP in the setting of geo-

metrically ergodic Harris recurrent Markov chains. General DCFTP algorithms have

been developed more recently in [8] and [11] for Harris recurrent chains, although

there are important practical limitations as outlined on p.788 in [11]. In particular,

their algorithms assume that one has analytical access to the transition kernel of the

underlying Markov chain after several transitions. A recent paper by Sigman [12]

provides an implementable DCFTP algorithm for multi-server queues with Poisson

arrivals, but the algorithm requires rather strong conditions on stability; in [13] the

conditions are relaxed (also in the setting of Poisson arrivals), using a regenerative

technique, but the expected termination time of the algorithm is infinite. In con-

nection to loss queueing systems, Murdoch and Takahara [14] applied CFTP in the

context of queueing models with bounded state space. For instance, they consider

loss queues with renewal arrivals but with bounded service times. In this case, CFTP
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can be easily implemented. The papers [15], [16] and [17] are close in spirit to the

main ideas of our development, as we take a point process approach to the problem.

However, their approach requires the use of spatial birth and death processes (gener-

ally of poisson type) as the dominating processes and as pointed out in Section 8 of

[18], the algorithms appear to significantly increase in complexity as the arrival rate

increases.

In Chapter 2 & 3, we provide a practical simulation procedure that works under

the assumption of renewal arrivals with finite mean and i.i.d. service time distri-

bution with finite mean (although in our running time analysis in heavy traffic we

impose additional moment conditions for service times, but we still are able to cover

distributions such as log-normal, which have been observed to accurately fit service

time distributions in many server applications [19]). In order to implement DCFTP

strategy in the setting of loss queues, we simulate a stationary infinite server queue

backwards in time as our dominating process. A variation from the standard DCFTP

protocol just explained is that we use the upper bound process itself to detect co-

alescence, thereby bypassing the need for a lower bound process and improving the

running time of the algorithm. Basically we detect coalescence over a time interval

in which all customers initially present in the infinite server system leave and no loss

of customers occurs during that time interval. We perform running time analysis of

the algorithms under heavy traffic and prove that they achieve nearly optimal order

of complexity.

1.2 Sample path simulation of SDEs

Consider an SDE of the form

dX(t) = µ(X(t))dt+ σ(X(t))dB(t) , X(0) = x(0) (1.1)

where B (·) is a d′-dimensional Brownian motion, and µ (·) : Rd → Rd and σ (·) :

Rd → Rd×d′ satisfy suitable regularity conditions. We assume, in particular, that
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both µ (·) and σ (·) are Lipschitz continuous so that a strong solution to the SDE

is guaranteed to exist [20]. SDEs occur in a variety of applications from physics

to financial engineering. These applications require characterizing complex path-

dependent functionals, such as the first passage time inf{t ≥ 0 : X(t) ∈ C}, or

the mean performance measure Ef(X) where X = {X(t) : 0 ≤ t ≤ T}. In most

cases, explicit analytical solutions are not available or suffer greatly from the curse

of dimensionality (inefficient). In this context, simulation-based methods become

attractive.

In general, the sample path X can not be generated and stored exactly/completely,

because it is infinite dimensional. A natural approximation would be to first simulate

the process on discrete skeletons and then construct the rest of the process by linear

interpolation between grid points or treat them as piecewise constants.

One simplest such approximation is the Euler Scheme, where we simulate X̃h(t)

for t ∈ {0, h, 2h, 3h, . . . } sequentially,

X̃h
i (t+ h) = X̃h

i (t) + µi(X̃
h(t))h+

d′∑
j=1

σi,j(X̃
h(t))(Bj(t+ h)−Bj(t))

for i = 1, 2, . . . , d.

Under regularity conditions on the drift and diffusion function: 1) lipschitz conditions

[2], |µ(x)−µ(y)| ≤ K|x−y| and |σ(x)−σ(y)| ≤ K(x−y), 2) linear growth condition

|µ(x)|+ |σ(x)| ≤ K(1 + |x|), we have

E[(X(1)− X̃h(1))2] = O(h).

This implies E|X(1)− X̃h(1)| = O(h1/2). Every replication of the sample path takes

O(1/h) units of computational effort. Thus, if we want to achieve a MSE of order

ε2, it would take O(ε−4) units of computational effort. This is far from the optimal

rate of convergence of such estimator, O(ε−2), when we have access to an unbiased

estimator for which each sample requires O(1) units of computational effort.

If we view Euler scheme as a first order expansion, then by applying a second

order expansion on the diffusion term, we get the Milstein scheme [2], where we use
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the recursion

X̂h
i (t+ h) = X̂h

i (t) + µi(X̂
h(t))h+

d′∑
j=1

σ(X̂h(t))(Bj(t+ h)−Bj(t))

+
d′∑
j=1

d∑
l=1

m∑
l=1

d′∑
m=1

∂lσ
′
i,j(X̂

h(t))σl,m(X̂h(t)

∫ t+h

t

(Bm(s)−Bm(t)) dBj(s)

for i = 1, 2, . . . , d, to simulate X̂h(t) for t ∈ {0, h, 2h, 3h, . . . } sequentially.

Under Lipschitz conditions and the linear growth condition on the drift and diffusion

functions as in the Euler scheme [2], we have,

E[(X(1)− X̂h(1))2] = O(h2).

This implies E|X(1) − X̂h(1))| = O(h). Under this scheme, if we want to achieve

a MSE of order ε2, it would take O(ε−3) units of computational effort, still worse

than the O(ε−2) rate of convergence. The term
∫ t+h
t

(Bm(s)−Bm(t)) dBj(s) in the

recursion for the Milstein scheme in the multi-dimensional setting is called the Lévy

area. One main obstacle in implementing the Milstein scheme and other higher order

approximating schemes are that we do not know how to simulate the Lévy area and

other higher order iterated integrals exactly for multi-dimensional SDEs. We believe

our work in Chapter 4 provides some insights to this problem.

1.2.1 Multilevel Monte Carlo methods

Heinrich [21] introduced the idea of Multilevel Monte Carlo methods. Giles [22]

applied the idea to sample path simulation, which substantially improve the rate

of convergence of the above mentioned SDE estimation schemes (Euler scheme and

Milstein scheme). The idea goes as follows. If we write the estimator as a telescoping

sum of estimators across different grid size levels, assuming we can evaluate E[f(Xh0)]

explicitly,

Ẑ = E[f(Xh0)] +
L∑
l=1

Ȳhl
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where Ȳhl = 1
Nl

∑Nl
k=1 Yhl(k) are independent for different l’s, and Yhl(k)’s are i.i.d.

samples distributed as f(Xhl)− f(Xhl−1).

then

1)

Bias(Ẑ) = Bias(f(XhL))

The bias is only determined by the finest grid size (largest l).

2)

Var(Ẑ) =
L∑
l=1

1

NL

Var(Yhl)

If the variance decreases as the grid size decreases, we would allocate more

computational budget Nl to smaller l’s and less to larger l’s to achieve an

overall optimal budget allocation.

Specifically, under Euler scheme, if f is Lipschitz continuous, we have

Bias(Ẑ) = O(h
1/2
L )

and

Var(Yhl) ≤ E[(f(Xhl)− f(Xhl−1))2]

≤ 2E[(f(Xhl)− f(X))2] + 2E[(f(X)− f(Xhl−1))2]

= O(hl).

Then

MSE = O(hL) +O(
L∑
l=1

1

Nl

hl−1)

If we pick hl = 2−l, then to achieve a MSE of order ε2, we need to set L = O(log(ε)).

As for Nl’s, by solving the optimization problem

min
L∑
l=1

Nl

hl

s.t.
L∑
l=1

hl
Nl

≤ ε2
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we have Nl = O(ε−2 log(1/ε)hl), and the total computational cost is

L∑
l=1

Nl

hl
= O(ε−2(log(1/ε))2).

Recently, McLeish [23] and Rhee and Glynn [24] (around the same time, inde-

pendently) developed a randomized multilevel method to eliminate the bias of the

estimator completely. The idea again use the telescoping sum. For f Lipschitz con-

tinuous we write,

f(X) = f(Xh0) +
∞∑
l=1

(f(Xhl)− f(Xhl−1)).

We next introduce a random variable N independent of everything else and write

Ef(X) = Ef(Xh0) +
∞∑
l=1

E[f(Xhl)− f(Xhl−1)]
E[I(N ≥ l)

P (N ≥ l)

= Ef(Xh0) +
∞∑
l=1

E

[
f(Xhl)− f(Xhl−1)

P (N ≥ l)
I(N ≥ l

]

= E

[
f(Xh0) +

N∑
l=1

f(Xhl)− f(Xhl−1)

P (N ≥ l)

]

Then Z̃ := f(Xh0) +
∑N

l=1(f(Xhl)− f(Xhl−1))/P (N ≥ l) is an unbiased estimator of

Ef(X).

If we simulate f(Xhl)− f(Xhl−1)’s independent of each other, then

Var(Z) ≤ E[Z̃2]

≤ E[f(Xh0)2] + CE[f(Xh0)]|Bias(Xh0)|

+
∞∑
l=1

E[(f(Xhl)− f(Xhl−1))2]

P (N ≥ l)
+ C

∞∑
l=1

Bias(Xhl−1)2

P (N ≥ l)

and the expected computation cost is

O(
∞∑
l=1

h−1
l P (N ≥ l)).

When applying Euler scheme in this setting, to guarantee finite variance of the

estimator, the expected computational cost is infinity. The Milstein scheme will
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ensure both finite variance and finite mean computational cost, but as we pointed

out before, for multi-dimensional diffusion process, we do not know how to simulate

the Lévy area exactly.

1.2.2 ε-strong simulation and our contributions

ε-strong simulation of stochastic processes is a very recent research area. In Chapter

4 of this dissertation, we develop and analyze a simulation scheme that would allow

us to construct a family of processes Xε = {Xε (t) : t ∈ [0, 1]}, for each ε ∈ (0, 1),

supported on a probability space (Ω,F , P ), and such that the following properties

hold:

(T1) The process Xε is piecewise constant, with finitely many discontinuities in [0, 1].

(T2) The process Xε can be simulated exactly and, since it takes only finitely many

values, its path can be fully stored.

(T3) We have that with P -probability one

sup
t∈[0,1]

||Xε (t)−X (t)||∞ < ε. (1.2)

(T4) For any m > 1 and 0 < εm < ... < ε1 < 1 we can simulate Xεm conditional on

Xε1 ,...,Xεm−1 .

We refer to the family of procedures that achieve the construction of such family

{Xε : ε ∈ (0, 1)} as ε-strong simulation methods or Tolerance-Enforced Simulation

(TES).

The paper of Chen and Huang [25] provides the construction of Xε satisfying only

(T1) to (T3). In particular, bound (4.2) is satisfied for a given fixed ε0 = ε > 0, but it

is not clear how to jointly simulate {Xεm}m≥1 as εm ↘ 0 when applying the techniques

in [25]. Chen and Huang [25] extended the applicability of an algorithm introduced by

Beskos and Roberts [26]. The procedure of Beskos and Roberts [26], applicable only
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to one dimensional diffusions, imposed strong boundedness assumptions on the drift

coefficient and its derivative. The technique in [25] enabled the extension by using

a localization technique; see also [27] for another extension. All these algorithms

assume σ(·) constant. The assumption of a constant diffusion coefficient comes at

basically no cost in the context of one dimensional diffusions, because one can always

apply Lamperti (one-to-one) transformation to recast the simulation problem to one

involving a diffusion with constant σ (·). However, such transformation cannot be

generally applied in higher dimensions.

The major obstacle involved in developing exact sampling algorithms for multidi-

mensional diffusions is the fact that σ (·) cannot be assumed to be constant. Moreover,

even in the case of multidimensional diffusions with constant σ (·), the one dimen-

sional algorithms developed so far can only be extended to the case in which the

drift coefficient µ (·) is the gradient of some function, that is, if µ (x) = ∇v (x) for

some v (·). The reason is that in this case one can represent the likelihood ratio L (t),

between the solution to (4.1) and Brownian motion (assuming σ = I for simplicity)

involving a Riemann integral of the form

L (t) = exp

(∫ t

0

µ (X (s)) dX (s)− 1

2

∫ t

0

‖µ (X (s))‖2
2 ds

)
=

exp (v (X (t)))

exp (v (X (0)))
exp

(
−1

2

∫ t

0

λ (X (s)) ds

)
,

for λ (x) = ∆v (x) + ||∇v (x)||22.

The fact that the stochastic integral can be transformed into a Riemann integral

facilitates the execution of the acceptance/rejection method, because one can interpret

(up to a constant and using localization as in [25]) the exponential of the integral of

λ (·) as the probability that no arrivals occur in a Poisson process with a stochastic

intensity. Such event (i.e. no arrivals) can be simulated by the thinning property of

Poisson processes.

The paper of [28] extended the work of [26] in that their algorithms satisfy (T1) to

(T4). The paper [29] not only provides an additional extension which allows to deal
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with one dimensional SDEs with jumps, but also contains a comprehensive discussion

on exact and ε-strong simulation for SDEs. Property (T4) in the definition of TES is

desirable because it provides another approach to construct unbiased estimators for

expectations of the form Ef (X). In order to see this, let us assume for simplicity

that f (·) is positive and Lipschitz continuous in the uniform norm with Lipschitz

constant K. Then, let T be a positive random variable, independent of everything

else, with a strictly positive density g (·) on [0,∞) and define

Z := I (f (X) > T ) /g (T ) . (1.3)

Observe that

EZ = E(E (Z|X)) = E

∫ ∞
0

I (f (X) > t)
g (t)

g (t)
dt = Ef (X) ,

so EZ is an unbiased estimator for Ef (X). If Properties (T1) to (T4) hold, it is

possible to simulate Z by noting that f (Xε) > T + Kε implies f (X) > T and

f (Xε) < T − Kε implies f (X) ≤ T . Since (T4) allows to keep simulating as ε

becomes smaller and T is independent of Xε with a positive density g (·), then one

eventually is able to simulate Z exactly. It is noted in [28] that the expected number

of random variables required to simulate Z is typically infinite. The recent paper by

Pollock et. al. [29] discusses via numerical examples the practical limitations of these

types of estimators.

Our motivation in Chapter 4 of this dissertation is to investigate a novel approach

using the theory of rough path that allows to study ε-strong simulation for multidi-

mensional diffusions in substantial generality, without imposing the assumption that

σ (·) is constant or that a Lamperti-type transformation can be applied. Given the

previous discussion on the connections between exact sampling and ε-strong simula-

tion, and the limitations of the current techniques, we believe that our results here

provide an important step in the development of exact sampling algorithms for gen-

eral multidimensional diffusions. Bayer et. al. [30] also use rough path analysis for
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Monte Carlo estimation, but their focus is on connections to multilevel techniques

and not on ε-strong simulation.

Finally, we note that in order to build our Tolerance-Enforced Simulation proce-

dure we had to obtain new tools for the analysis of Lévy areas and associated con-

ditional large deviations results conditional on the increments of Brownian motion.

We believe that these results might be of independent interests.

1.3 The idea of record breakers

One common strategy used throughout the development of the first part of this dis-

sertation is the use of “record breakers” to control the contribution of “future” infor-

mation. In this section, we introduce how this idea arises in the simulation of infinite

server queue and multi-dimensional SDEs.

1.3.1 Infinite server queue

We start with a point process description of the infinite server queue. In Figure 1.1,

the point Zn = (An, Vn) denotes the n-th customer (counting backward in time),

whose arrival time is An and service requirement is Vn, n = 1, . . . , 4. One important

feature of infinite server queue is that every customer starts service immediately upon

arrival (there is no queue). If we project Zn to the horizontal axis by drawing a −45o

line. The intersection of this line with the horizontal axis is the departure time of

such n-th customer. We follow the technical tradition that an arrival at time t is

counted in the system at time t (closed circle) while a departure at time t is not

counted (open circle), so to make the process Càdlàg. We can also draw a vertical

line at any t ∈ R. The height of the intersection of the −45o lines emanating from the

points Zn with An ≤ t and such vertical line, if positive, represents the corresponding

remaining service time of that customer at time t.

We notice from the point process description in Figure 1.1 that customer Zn =
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Figure 1.1: Point process description of an infinite server queue

{An, Vn}, with Vn ≤ |An| will have left the system by time 0. Thus if we can find a

random number κ such that

Vn ≤ |An| for all n ≥ κ,

then we can simulate the arrival stream backwards in time up to κ (i.e. {Zn : 1 ≤

n ≤ κ}) to recover the state of the system at time zero.

The challenge here is that κ defined above depends on future customer informa-

tion, i.e. {Zn : n > κ}, and simulating this future information takes infinite amount of

time. We overcome this difficulty by defining a sequence of “record breakers”. Then

instead of simulating all the customer information in the future we only ask future

a yes/no question defined as “are there any more record breakers”. In simulation,

answering this yes/no question is equivalent to sampling a Bernoulli random variable

with probability of success p, which equals to the probability that there are no more

record breakers. If the Bernoulli trial is a success, then we are done. Otherwise we

find the next record breaker, move to that time point and ask future the same yes/no

question again. We repeat the above process until the Bernoulli trial returns a suc-

cess. At that time, we know that there are no more record breakers in the future. We

also locate the position (time) of all the record breakers. In Chapter 2 &3, we shall

explain how to use this “record breaker” idea to simulate the infinite server queue.
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1.3.2 Stochastic differential equations

The diffusion process

dX(t) = µ(X(t))dt+ σ(X(t))dB(t)

can be view as a mapping of the underlining Brownian motion. The general strategy

would be if we can construction the Brownian path with certain error bound, then we

can use some continuous mapping property to pass this error bound to the solution

of the SDE. However, the diffusion mapping is not in general continuous under the

uniform topology unless the drift term σ(·) is a constant. The way to solve this

continuity problem is to lift the space up to the space of rough paths endowed with

some suitable α-Hölder metric. The new mapping from the space of rough paths to

the solution of SDE is then continuous. However, the space of rough paths contains

not only the path itself, but also the iterated integral of the path. The theory of

rough path applies to more general settings. In the specific case of Brownian motion,

the space of rough path consists of the Brownian path {B(t), 0 ≤ t ≤ T} and the

Lévy area {
∫ t
s

(Bi(u)−Bi(s)) dBj(u), 0 ≤ s < t ≤ T}. Thus, in order to control the

error of the approximation to the SDE in this case, we not only need to control the

error of the approximated Brownian path but also the approximated Lévy area.

In Chapter 4, we use a wavelet construction of Brownian motion, known as the

Lévy-Ciesielski Construction,

B (t) = W 0
0 Λ0

0(t) +
∞∑
n=1

2n−1∑
k=1

(W n
k Λn

k(t))

where Λn
k(·) is a sequence base functions.

Let tnk = k/2n. We can also write the Lévy area as the following infinite sum.∫ tnk+1

tnk

(Bi(u)−Bi(t
n
k)) dBj(u)

=
∞∑

h=n+1

2h−n−1∑
l=1

[Bi(t
h
2h−nk+2l−1)−Bi(t

h
2h−nk+2l−2)][Bj(t

h
2h−nk+2l)−Bj(t

h
2h−nk+2l−1)].
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We call n in the infinite sum “level n” and k in the sum from 0 to 2n − 1 the “kth

term in level n”. We then use the strategy of simulating the infinite sum up to a

random but finite level N , such that the contribution of the higher level terms are

under control.

The challenge here is that N is not a stopping time with respect to the filtration

generated by {W n
k : 0 ≤ n ≤ N, 0 ≤ k ≤ 2n − 1}. We again use the idea of “record

breakers”, where by asking future yes/no questions we find all the “record breakers”

and by knowing that there are no more “record breakers”, the contribution of the

terms in higher levels that are not simulated yet are well under control. See Chapter

4 for details in term of how to implement this idea to simulate the Brownian path

and the Lévy areas with desired level of accuracy.

The main technicality in implementing the idea of “record breakers” is the simu-

lation of the Bernoulli random variable with unknown/uncomputable probability of

success, which is used to answer the yes/no question. To accomplish this, we use

techniques from rare-event simulation.
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Chapter 2

Sampling Point Processes on

Stable Unbounded Regions and

Perfect Sampling for Infinite

Server Queues

Given a marked renewal point process (assuming that the marks are i.i.d.) we say

that an unbounded region is stable if it contains finitely many points of the point

process with probability one. In this chapter we provide algorithms that allow to

sample these finitely many points efficiently. We explain how exact simulation of the

steady-state measure valued state descriptor of the infinite server queue follows as a

simple corollary of our algorithms. We provide numerical evidence supporting that

our algorithms are not only theoretically sound but also practical. Finally, we also

apply our results to gradient estimation of steady-state performance measures.
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2.1 Problem formulation and main contributions

Let N = {N (t) : t ∈ (−∞,∞)} be a two sided time stationary renewal point

process. We write {An : n ∈ Z0} for the times at which the process N jumps, where

Z0 = Z\{0} denotes the set of integers removing zero, and with A1 > 0 > A−1. For

simplicity we assume that An < An+1 for every n. Further, we define Xn = An+1−An.

Now let {Vn : n ∈ Z0} be a sequence of independent and identically distributed

(i.i.d.) random variables (r.v.’s) which are independent of the process N . Define

Zn = (An, Vn) and consider the marked point process M = {Zn : n ∈ Z0} which

forms a subset of R2. We say that a (Borel measurable) set B is stable if |M ∩ B| <∞

almost surely (where |C| is used to denote the cardinality of the set C).

Under natural assumptions on the inter-arrival times underlying N and on the

distribution of the Vn’s (stated in Section 3.2) we propose and study a class of algo-

rithms that allow to sample exactly (i.e. without any bias) a realization of the set

M∩B for a large class of unbounded, stable sets B.

Our method is based on a construction that is being used in [31]; see also [32] for

related ideas. The method involves the technique of simulating the maximum of a

negative drift random walk and the last passage time of independent and identically

distributed random variables to an increasing boundary.

As an application of the class of algorithms that we study here, we provide a

procedure that allows to sample from the steady-state measure valued descriptor of

an infinite server queue without any bias (i.e. perfect sampling). Such a procedure,

for instance, is obtained by considering the particular case in which B takes the

form B = {(t, v) : v > |t| , t ≤ 0}. Given that point processes constitute a natural

way of constructing queueing models in great generality, we believe that the class of

algorithms that we propose here have the potential to be applicable to the design of

exact sampling algorithms of more general queueing models.

We argue empirically that it is cheaper to run our exact sampling procedure to

fully delete the initial bias than it is to do a burn-in period that reduces the bias to
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a reasonable size, say 5%, when talking about, for instance, the steady-state queue

length.

Finally, we apply our exact sampling algorithms for infinite server queues to per-

form steady-state sensitivity analysis. For instance, we consider quantities such as

the derivative of the steady-state average remaining service time with respect to the

arrival rate or service rate. These quantities are of great interests in stochastic opti-

mization via simulation.

So, in summary, our contributions are as follows:

i) We provide the first exact sampling algorithm for stationary marked renewal

processes on unbounded and stable sets, see Section 3.2.

ii) As a corollary of i) we explain how to obtain an exact sampling algorithm for

the steady-state measure valued descriptor of the infinite server queue. We also

show empirically that this algorithm is practical in the sense of being both easy

to code and fast to run, see Section 3.1.2.

iii) Finally, we provide new procedures for the sensitivity analysis of steady-state

performance measures of the infinite server queue, see Section 2.4.

2.2 Sampling from stable unbounded regions

We start by discussing the assumptions behind our development.

Assumptions:

A1) Assume that E |Vn|1/α < ∞ for some α > 0, we also write F (·) = P (Vn ≤ ·)

for the cumulative distribution function (CDF) of Vn and put F (·) = 1− F (·)

for the tail CDF.

A2) We assume that F (·) is known and easily accessible either in closed form or

via efficient numerical procedures. Moreover, we can simulate Vn conditional
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on Vn ∈ [a, b] with P (Vn ∈ [a, b]) > 0. Finally we can find u(k) such that

u(k) ≥
∫∞
k
P (|V1|1/α > ν)dν and u(k)→ 0 as k →∞.

A3) Recall that Xn = An+1 − An > 0. Define ψ (θ) = logE exp (θXn) and assume

that there exists δ > 0 such that ψ (δ) <∞. Finally, let us write µ = EXn.

A4) Define G (·) = P (Xn ≤ ·) and G (·) = 1 − G (·). Suppose that G (·) is known

and that it is possible to simulate from Geq (·) := µ−1
∫∞
· G (t) dt. Moreover, let

Gθ (·) = E exp (θXn − ψ (θ)) I (Xn ≤ ·) be the associated exponentially tilted

distribution with parameter θ for ψ (θ) <∞. We assume that we can simulate

from Gθ (·).

Consider the class of sets B ⊂ R2 that are Borel measurable and such that

B ⊂ Cα = {(t, v) : |v| ≥ |t|α}.

Our goal in this section is to develop an algorithm that allows to sample without

any bias the random set M∩ Cα, and therefore M∩ B. We will discuss extensions

that follow immediately from our formulation at the end of this section. Figure 2.1

illustrates the different shapes that the set Cα can take depending on the values of

α > 0.

α = 1 α > 1 0 <α < 1

Figure 2.1: The area of Cα. The horizontal axis corresponds to the t coordinate while

the vertical axis represents the v coordinate
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We now proceed to explain our construction. As the stationary renewal point

process is time reversible, starting at 0 the distribution of the forward process {Zn :

n > 0} and the backward process {Zn : n < 0} are the same. In what follows we

limit our discussion to the construction of the forward process and the simulation of

the backward process is completely analogous.

Let ε ∈ (0, µ). Consider any random time κ, finite with probability one but large

enough such that

An+1 ≥ n(µ− ε) and |Vn+1| ≤ (n(µ− ε))α

for all n ≥ κ.

If such random time κ is well defined, we only need to simulate the stationary

process up to κ to get a sample from the unbounded region.

Proposition 2.2.1 The random time κ defined above exists and it is finite with prob-

ability one.

Proof. By Chebyshev’s inequality,

P (An+1 < n(µ− ε)) ≤ E[exp(θ(n(µ− ε)− An+1))) ≤ exp(−n(−θ(µ− ε)− ψ(−θ)))

for any θ ≥ 0.

Let

I(−ε) = max
θ≥0
{−θ(µ− ε)− ψ(−θ)}

As ψ(0) = 0, ψ′(0) = µ and ψ′′(0) = V ar(X) > 0, I(−ε) > 0. Then

P (An+1 < n(µ− ε)) ≤ exp(−nI(−ε))

and
∞∑
n=1

P (An+1 < n(µ− ε)) ≤ exp(−I(−ε))
1− exp(−I(−ε))

<∞
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By Borel-Cantelli lemma, {An+1 ≥ n(µ− ε)} eventually almost surely.

Similarly and independently we have

∞∑
n=1

P (|Vn+1| > (n(µ− ε))α)

=
∞∑
n=1

P (|V1|1/α > n(µ− ε))

≤ 1

µ− ε

∫ ∞
0

P (|V1|1/α > ν)dν <∞

Thus, again by Borel-Cantelli lemma, {|Vn+1| ≤ (n(µ−ε))α} eventually almost surely.

Therefore, P (κ <∞) = 1 2

As {An : n ≥ 1} and {Vn : n ≥ 1} are independent of each other, we consider the

following construction. Let κ(A) be a random time satisfying that An+1 ≥ n(µ−ε) for

n ≥ κ(A), and κ(V ) be a random time satisfying that Vn+1 ≤ n(µ− ε) for n ≥ κ(V ).

Clearly κ (A) and κ (V ) are not stopping times and this makes the simulation of

these times challenging. However, we will explain how to sample these times and

then we can set κ = max{κ(A), κ(V )}. Our construction will allow us to simulate

{An : n ≥ 1} and {Vn : n ≥ 1} separately.

2.2.1 Simulation of {Ak : 1 ≤ k ≤ max{n, κ (A)}+ 1}

In this subsection we will introduce a method to simulate κ(A) together with {Ak :

k ≥ 1}.

First, define A1 according to the distribution Geq (·). Sampling A1 can be done

according to A4).

Now, observe that An+1 = A1 +X1 + ...+Xn and define

S̃n = n(µ− ε)− (An+1 − A1) =
n∑
i=1

Yi,

where Yi = (µ − ε) − Xi. Note that the Yi’s are i.i.d. with EYi = −ε. If we set

S̃0 = 0, then {S̃n : n ≥ 0} is a random walk with negative drift. We are interested in

sampling up to the last time n at which S̃n > 0.
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We define the following sequence of random times:

∆1 = 0, Γ1 = inf{n ≥ ∆1 : S̃n − S̃∆1 > 0},

and for j ≥ 2

∆j = inf{n ≥ Γj−11{Γj−1 <∞} ∨∆j−1 : S̃n ≤ 0},

Γj = inf{n ≥ ∆j : S̃n − S̃∆j
> 0}.

Now, let γ = inf{j ≥ 1 : Γj =∞} and note that ∆γ+1 = ∆γ and that S̃n ≤ 0 for

n ≥ ∆γ, which in particular implies that An+1 ≥ n(µ− ε) for n ≥ ∆γ. Therefore, we

have that ∆γ = κ (A).

In what follows we will explain how to simulate the ∆j’s and Γj’s sequentially and

jointly with the underlying random walk until time ∆γ. One important observation

is that for every j ≥ 1, ∆j <∞ almost surely by the strong law of large numbers.

Let us write Fn = σ{Y1, Y2, ..., Yn} for the σ-field generated by the Yj’s up to time

n. Let ξ ≥ 0 and define

Tξ := inf{n ≥ 0 : S̃n > ξ},

then by the strong Markov property we have that for j ≤ γ,

P (Γj =∞|F∆j
) = P (Γj =∞|S̃∆j

) = P (T0 =∞) > 0,

where we use P (·) to denote the nominal probability measure under which S̃0 = 0.

It is important then to note that

P (γ = k) = P (T0 <∞)k−1 P (T0 =∞)

for k ≥ 1. In other words, γ is geometrically distributed. The procedure that we

have in mind is to simulate ∆γ in time intervals, and the number of time intervals is

precisely γ.

Let ψY (θ) = logE exp(θYi). As the moment generating function of Xi is finite

in a neighborhood of the zero, ψY (·) is also finite in a neighborhood of zero and
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EYi = ψ′Y (0) = −ε, Var(Yi) = ψ′′Y (0) > 0. Then by the convexity of ψY (·), one can

always select ε > 0 sufficiently small so that there exists η > 0 with ψY (η) = 0 and

ψ′Y (η) > 0. The root η allows us to define a new measure Pη based on exponential

tilting so that
dPη
dP

(Yi) = exp(ηYi).

Moreover, under Pη, S̃n is random walk with positive drift equal to ψ′Y (η) ([1] P.

365). Therefore Pη(T0 <∞) = 1 and P (T0 <∞) = Eη(exp(−ηS̃T0)). More generally,

Pη(Tξ <∞) = 1 and

q (ξ) := P (Tξ <∞) = Eη(exp(−ηS̃Tξ))

for each ξ ≥ 0. Based on the above analysis we now introduce a convenient represen-

tation to simulate a Bernoulli random variable J (ξ) with parameter q (ξ) namely,

J (ξ) = I(U ≤ exp(−ηS̃Tξ)). (2.1)

where U is a uniform random variable independent of everything else under Pη.

Identity (2.1) provides the basis for an implementable algorithm to simulate a

Bernoulli with success probability q(ξ). Sampling {S̃1, ..., S̃T0} conditional on T0 <∞,

as we shall explain now, corresponds to basically the same procedure. First, let us

write P ∗(·) = P (·|T0 < ∞). The following result provides an expression for the

likelihood ratio between P ∗ and Pη.

Lemma 2.2.2 We have that

dP ∗

dPη
(S̃1, ..., S̃T0) =

exp(−ηS̃T0)
P (T0 <∞)

≤ 1

P (T0 <∞)
.

Proof.

P (S̃1 ∈ H1, ..., S̃T0 ∈ HT0|T0 <∞)

=
P (S̃1 ∈ H1, ..., S̃T0 ∈ HT0 , T0 <∞)

P (T0 <∞)

=
Eη[exp(−ηS̃T0)I(S̃0 ∈ H0, ..., S̃T0 ∈ HT0)]

P (T0 <∞)
.
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2

The previous lemma provides the basis for a simple acceptance / rejection pro-

cedure to simulate {S̃1, ..., S̃T0} conditional on T0 < ∞. More precisely, we propose

(S̃1, ..., S̃T0) from Pη (·). Then one generates a uniform random variable U indepen-

dent of everything else and accept the proposal if

U ≤ 1

1/P (T0 <∞)
× dP ∗

dPη
(S̃1, ..., S̃T0) = exp(−ηS̃T0).

This criterion coincides with J (0) according to (2.1). So, the procedure above simul-

taneously obtains both a Bernoulli r.v. J (0) with parameter q (0), and the corre-

sponding path {S̃1, ..., S̃T0} conditional on T0 <∞.

Algorithm 2.1 (Outputs (S̃0, ..., S̃∆γ ))

S0. Set K = 0, and S0 = 0

S1. Simulate (S̃1, ..., S̃T0) from Pη and compute J := J (0) according to (2.1).

S2. If J = 1, then let SK+j = S̃j for j = 1, ..., T0 and update K ←− K + T0. Then,

go back to S1.

Otherwise, J = 0 (i.e. ∆γ = K), stop and output (S0, ..., SK)

Remark: We will show in Section 3.3.1 of Chapter 3 that the expected number of

times we need to repeat Step 1 does not change with the system scale (i.e. the arrival

rate).

We noted earlier that ∆γ = κ (A) and Algorithm 1 together with the initial

procedure to sample A1 allows us to simulate (Aj+1 : 0 ≤ j ≤ κ (A)), and we know

that An+1 ≥ n(µ − ε) for n ≥ κ (A). We need to simulate An+1 for n ≤ κ =

max{κ (A) , κ (V )}, and κ (V ) is independent of κ (A). So, there might be cases for

which we will have to sample An+1 for n > κ (A). Since An+1 = A1 − S̃n + n(µ − ε)

it suffices to explain how to simulate S̃n for n > ∆γ. In turn, it suffices to explain
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how to simulate (S̃n : n ≥ 0) with S̃0 = 0 conditional on T0 = ∞. We will once

again apply an acceptance/rejection procedure but this time we will use the original

(nominal) distribution as the proposal distribution. Define

P ′ (·) = P (·|T0 =∞).

The following result provides an expression for the likelihood ratio between P ′ and

P .

Lemma 2.2.3 We have that

dP ′

dP
(S̃1, ..., S̃l) =

I(T0 > l)(1− q(−S̃l))
P (T0 =∞)

≤ 1

P (T0 =∞)
.

Proof.

P (S̃1 ∈ H1, ...., S̃l ∈ Hl|T0 =∞)

=
P (S̃1 ∈ H1, ...S̃l ∈ Hl, T0 =∞)

P (T0 =∞)

=
E[I(S̃1 ∈ H1, ..., S̃l ∈ Hl)I(T0 > l)P (T0 =∞|S̃0, ..., S̃l)]

P (T0 =∞)
.

The result then follows from the strong Markov property and homogeneity of the

random walk. 2

We are in good shape now to apply acceptance/rejection to sample from P ′. The

previous lemma indicates that to sample {S̃0, ..., S̃l} given T0 = ∞ we can propose

from the original (nominal) distribution and accept with probability q(−S̃l) as long

as S̃j ≤ 0 for all 0 ≤ j ≤ l. So, in order to perform the acceptance test we need

to sample a Bernoulli with parameter q(−S̃l), but this is easily done using identity

(2.1). Thus we obtain the following procedure.

Algorithm 2.2 (Given n ≥ 0 outputs {A1, A2, ..., Amax{n,κ(A)}+1})

S1. Run Algorithm 2.1 and obtain {S0, S1, ..., SK}.
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S2. If K = κ (A) ≥ n, jump to S6. Otherwise, K < n, let l = n−K ≥ 1.

S3. Simulate {S̃0, S̃1, ..., S̃l} from the original (nominal) distribution with S̃0 = 0.

S4. If S̃j ≤ 0 for all 0 ≤ j ≤ l then sample a Bernoulli J(−S̃l) with parameter q(−S̃l)

using (2.1) and continue to S5. Otherwise (i.e. S̃j > 0 for some 1 ≤ j ≤ l) go

back to S3.

S5. If J(−S̃l) = 1, go back to S3. Otherwise, J(−S̃l) = 0, let SK+i = SK + S̃i for

i = 1, 2, ..., l

S6. Let m = max{n, κ(A)}. Simulate A1 with CDF Geq(·) = µ−1
∫∞
· Ḡ(t)dt. Set

An+1 = A1 − Sn + n(µ− ε) for n = 1, ...,m. Output {A1, ..., Am+1}.

2.2.2 Simulation of {Vn : 1 ≤ n ≤ κ(V ) + 1}

In this section we will introduce a method to simulate κ(V ) together with the {Vn :

n ≥ 1}.

Let p(n) = P (|V1| > (n(µ − ε))α). We define Υ0 = 0 and Υi = inf{n > Υi−1 :

|Vn+1| > (n(µ − ε))α} for i = 1, 2, .... We also define two independent sequences of

random variables, {V̂n+1 : n ≥ 1}, and {V̄n+1 : n ≥ 1} as follows. The elements in

each sequence are i.i.d., V̂n+1 is distributed as Vn+1 conditional on |Vn+1| > (n(µ−ε))α,

and V̄n+1 follows the distribution of Vn+1 conditional on |Vn+1| ≤ (n(µ − ε))α. We

simulate V1 following its nominal distribution independent of everything else.

Let σ = inf{i ≥ 0 : Υi = ∞}. Then Vn+1 ≤ (n(µ − ε))α for n ≥ Υσ−1 + 1. We

next introduce a method to sample Υ1,Υ2, ... sequentially and jointly with the Vn’s

up until Υσ−1.

The following lemma provides the basis to guarantee the termination of our pro-

cedure.
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Lemma 2.2.4 If E|V1|1/α <∞, then

P (Υ1 =∞) =
∞∏
i=1

(1− p(i)) ≥ exp(−2E|V1|1/α/(µ− ε)) > 0,

consequently Eσ ≤ exp(2E|V |1/α/(µ− ε)) <∞.

Remark: The bound on Eσ can be improved. This improvement is important for the

theoretical asymptotic analysis of GI/GI/∞ application, see Section 3.3.1 in Chapter

3 for details.

Proof.

P (Υ1 =∞) =
∞∏
n=1

(1− p(n))

≥
∞∏
n=1

exp(−2p(n))

≥ exp(− 2

µ− ε

∫ ∞
0

P (|V1|1/α > ν)dν)

= exp(−2E|V1|1/α

µ− ε
).

For i = 2, 3, ... conditional on Υ(i− 1) = k:

P (Υi =∞|Υi−1 = k)

=
∞∏

n=k+1

(1− p(n))

≥ exp(−
2
∫∞
k
P (|V1|1/α > ν)dν

µ− ε
≥ exp(−2E|V1|1/α

µ− ε
)

Thus σ is stochastically dominated by a geometric random variable with parameter

p = exp(−2E|V1|1/α/(µ− ε)), the result then follows. 2

Notice that

l∏
i=k+1

(1− p(i))

≥ P (Υi =∞|Υi−1 = k)

≥
l∏

i=k+1

(1− p(i))× exp(−
2
∫∞
l
P (|V1|1/α > ν)dν

µ− ε
) (2.2)
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for l ≥ k + 1.

Thus if we are simulating I ∼ Bernoulli(ri) with ri := P (Υi = ∞|Υi−1), then with

probability one we can check whether U ≤ P (Υi = ∞|Υi−1) for U ∼ Unif[0, 1] by

making l sufficiently large without calculating the infinite product in the definition

of P (Υi =∞|Υi−1).

On the other hand, if we define
∏0

j=1(1− p(j)) := 1, then

P (Υ1 = n|Υ1 <∞) = p(n)

∏n−1
j=1 (1− p(j))
P (Υ1 <∞)

≤ p(n)
1

P (Υ1 <∞)
.

Consider a random variable N with the following probability density function

P (N = n) = cp(n)

for n = 1, 2, ..., where c = (
∑∞

n=1 p(n))−1. Then P (Υ1 = n|Υ1 < ∞)/P (N = n) ≤

1/(cP (Υ1 <∞)).

So we can simulate Υ1 given Υ1 <∞ using acceptance / rejection with N as the

proposal random variable. Generalizing the idea to Υi, we can obtain the following

algorithm

Algorithm 2.3 (Given Υi−1 = k, outputs Υi conditional on Υi <∞)

S1. Let c = (
∑∞

n=k+1 p(n))−1. Simulate N with probability density function P (N =

n) = cp(n) for n = k + 1, k + 2, ...

S2. Simulate U ∼ Unif[0, 1] independently. If U ≤
∏N−1

j=k+1(1 − p(j)) , set Υi = N

and stop. Otherwise go back to S1

We conclude this section with our procedure to simulate {V1, V2, ...Vκ(V )+1}.

Algorithm 2.4 (Outputs {V1, V2, ...Vκ(V )+1})

S0. Set Υ0 = 0, i = 1. Simulate V1 from its nominal distribution.
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S1. Simulate I ∼ Bernoulli(ri) with ri := P (Υi =∞|Υi−1) (see (2.2)).

S2. If I = 1, set κ(V ) = Υi−1 + 1. Simulate Vκ(V )+1 by sampling from V̄κ(V )+1 and

stop. Otherwise I = 0, sample Υi conditional on Υi < ∞ and the value of

Υi−1 using Algorithm 2.3. Simulate the process between Υi−1 + 2 and Υi + 1

by sampling from V̄n for Υi−1 + 2 ≤ n ≤ Υi and V̂n for n = Υi + 1. Set i = i+ 1

and then go back to S1.

2.3 Application to the infinite-server queue

As a direct application of the ideas discussed in the previous section we study steady-

state simulation for the infinite server queue. The following diagram indicates how to

construct the steady-state measure valued descriptor assuming that we can sample

all the points inside the set

C = {(t, v) : v ≥ |t| , t ≤ 0}.

Let Q(t, y) denote the number of people in the system at time t with residual service

time strictly greater than y and E(t) denote the time elapsed since the previous arrival

at time t (i.e. E (·) is the age process associated with N (·)). Figure 2.2 below depicts

the region C. Every point in |M ∩ C| is projected to the vertical line at time zero

by drawing a −450 line. The final position in the vertical line if positive, represents

the corresponding remaining service time. Since the underlying point process is time

stationary, the whole configuration of points obtained by this procedure at time zero

is a snap shot of the steady-state distribution of the infinite server queue.

2.3.1 Algorithm for the infinite server queue

As depicted in Figure 2.2 after projecting into the vertical line at t = 0, we obtain the

stationary remaining service requirements of the customers at time zero. We shall

use R1, R2, ..., RQ(0,0) to denote the remaining service times. The labeling is arbitrary
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y

t

Q(t, y)

0

Figure 2.2: The points lies in the shaded area correspond to people who are still in

the system at time 0 with remaining service time greater than y

although we will assign smaller indexes to customers that have spent less time in the

system. Our algorithm proceeds as follows.

Algorithm 2.5 (Outputs {R1, R2, ..., RQ(0,0)} and E(0))

S1. Use Algorithm 2.4 to simulate the {Vn, 1 ≤ n ≤ κ(V ) + 1}.

S2. Use Algorithm 2.2 to simulate the {A1, A2, ..., Amax{κ(V ),κ(A)}+1}.

S3. Set κ = max(κ(V ), κ(A)). If κ > κ(V ), simulate Vn by sampling from V̄n for

n = κ(V ) + 2, ..., κ+ 1.

S4. Set q = 0, i = 0 and repeat the following procedure until i = κ:

set i = i+ 1; if Vi > Ai, set q = q + 1 and Rq = Vi − Ai.

Output {R1, R2, ...Rq} and A1.

2.3.2 Numerical results

Let Y = {Y (t) : t ≥ 0} be a continuous time Markov process on the state space Ω

and f is a real-valued function defined on Ω. The ergodic theorem guarantees in great
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generality (assuming a unique stationary distribution π (·)) that

1

t

∫ t

0

f(Y (s))ds→
∫

Ω

f(y)π(dy)

as t → ∞ almost surely for every positive, measurable function f (·). In the setting

of the infinite server queue such a stationary distribution exists if EVn < ∞ and

EXn <∞. The most natural estimator for Eπf(Y ) :=
∫

Ω
f(y)π(dy) is therefore

Φ(t, Y (0)) :=
1

t

∫ t

0

f(Y (s))ds,

where Y (0) is the initial state. The estimator Φ (t, Y (0)) is generally biased unless

Y (0) is sampled from the stationary distribution π (·) ([2] P. 97). Our algorithm has

the obvious advantage of removing the initial transient.

In what follows we conduct some simulation experiment to evaluate the practical

performance of our algorithm. The idea is to fix a reasonable tolerance error, say

10%, for a given performance measure. Then we want to empirically find how large

a burn-in period one would need in practice to reduce the initial transient bias to

about 10%. In order to effectively quantify the error we select a class of systems for

which π (·) can be explicitly evaluated.

We consider an infinite server queue with Poisson arrivals and Lognormal service

times. As we are interested in the efficiency of our algorithm for relatively large sys-

tems, we set the arrival rate λ = 100 and the service time Vn ∼ Lognormal(−0.25, 0.5)

(i.e. Vn has the same distribution as exp (−.25 + .5×N(0, 1)), where N (0, 1) denotes

a standard Gaussian random variable).

Let Y (t) = (Q(t, ·), E(t)) ∈ D[0,∞) × R+, then Y (t) is a Markovian measure

valued descriptor of the infinite server queue (of course in the Poisson arrival case one

does not need to keep track of A (·)).

We first compare the performance of our algorithm to the burn-in period de-

fined as the period needed to reduce the initial transient as indicated earlier. Let

f(Y (t)) = Q(t, 0), i.e. the number of people in the system at time t. We measure

the computation effort of the algorithm in terms of the number of arrivals (we call
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this the number of steps) simulated. Given ε > 0 we let n(ε) denote the minimum

number of steps required so that |EΦ(An(ε), (φ, 0))−EπQ(0, 0)|/EπQ(0, 0) ≤ ε, where

(φ, 0) denotes a system that starts empty with E(0) = 0 (recall that E(·) is the age

process associated with N(·), i.e. when E(0) = x, A1 is distributed as Xn conditional

on Xn > x). Table 2.1 shows the relation between ε and n(ε), obtained empirically

based on the average of 104 independent replications

Table 2.1: Bias of Φ(Sn(ε))

ε n(ε) computer time (s)

10.26% 6× 102 0.0310

5.71% 1× 103 0.0382

1.17% 5× 103 0.1367

Compared to the results in Table 2.1, our algorithm is unbiased. The average

number of steps involved is n = 592.6369 based on the average of 104 independent

replications and the average computer time needed for a single replication is 0.0249

s.

In addition, in Table 2.2 we compare the performance of the estimators Φ(An, (φ, 0))

and Φ(An′ , (Q(0, ·), A1)), where Q(0, ·) and A1 are sampled according to Algorithm

5. n and n′ are calibrated so that the computation budget is basically the same in

both estimators. Under our procedure, Eκ, the average number of arrivals required

to terminate is approximately equal to 600. So for instance, the first row in Table

2 corresponds to n = 104. This means that n′ ≈ 9.4 × 103 = 104 − 600. The true

value of EπQ(0, 0) is 88.2497. The sample mean and sample standard deviation are

calculated using the method of Batch means. The result in Table 2.2 shows that our

mixed method performs better than the batch means with relatively small computa-

tion budget, while with large budget, the two methods are about the same.
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Table 2.2: Simulation result with different initial states.

(φ, 0) (Q(0, ·), A1)

n Sample Mean Sample Std Sample Mean Sample Std

1× 104 86.1274 1.0104 88.1713 0.6018

5× 104 89.0893 0.4587 88.2956 0.3770

1× 105 88.5151 0.3531 88.1270 0.2976

5× 105 88.3022 0.1481 88.3581 0.1402

2.4 Application to sensitivity analysis of the infinite-

server queue

In this section, we apply our algorithm to sensitivity analysis of the infinite server

queue. We consider a sequence of systems indexed by (λ, ν), λ > 0, ν > 0. Given

(λ, ν), the interarrival times are multiplied by 1/λ, obtaining Xn/λ for all n, and the

service times are multiplied by 1/ν, thus we have Vn/ν for all n. We assume that

EVn < ∞ and EXn < ∞. We will use the notation Qλ,ν (·) to denote the infinite

server queue descriptor for the (λ, ν)-system. Our strategy rests on the application

of Infinitesimal Perturbation Analysis (IPA), see for instance [33] P. 386. We assume

here that the interarrival times have a continuous distribution.

We illustrate the methodology by computing the sensitivity of the steady-state

average remaining service time, which we denote by EπR̄(λ, ν); namely,

EπR̄(λ, ν) = Eπ
1

Qλ,ν (0, 0)

∫ ∞
0

yQλ,ν (0, dy) .

We also consider

EπR
∞(λ, ν) = Eπ(inf{y ≥ 0 : Qλ,ν (0, y) = 0}),

in words, the steady-state maximum remaining service time. In order to apply IPA

we need to define a few quantities.
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First, let us define Ξ̄(λ, ν) to be the average elapsed service time of the cus-

tomers that are present at time zero (given the construction of the stationary process

{Qλ,ν (t, ·) : t ∈ (−∞,∞)}, see Figure 2.2). That is,

Ξ̄(λ, ν) =
1

Qλ,ν (0, 0)

−∞∑
n=−1

|An|
λ
I

(
|An|
λ

<
Vn
ν

)
Likewise, define V̄ (λ, ν) as the average of the total service requirement of the cus-

tomers that are present at time zero, namely

V̄ (λ, ν) =
1

Qλ,ν (0, 0)

−∞∑
n=−1

Vn
v
I

(
|An|
λ

<
Vn
ν

)
.

Next, we define Ξ(∞) (λ, ν) as the elapsed service time of the customer with the

maximum remaining service time at time zero and V (∞)(λ, ν) as his total service

time requirement. Specifically, if we let m = arg max{n : Vn/ν − |An|/λ} then

Ξ(∞) (λ, ν) =
|Am|
λ

and V (∞)(λ, ν) =
Vm
ν

We then obtain the following representation for the derivatives of EπR̄(λ, ν) and

EπR
∞(λ, ν) with respect to λ and ν.

Lemma 2.4.1 We have that

i)
∂

∂λ
EπR̄(λ, ν) =

1

λ
EπΞ̄(λ, ν) and

∂

∂ν
EπR̄(λ, ν) = −1

ν
EπV̄ (λ, ν);

ii)

∂

∂λ
EπR

∞(λ, ν) =
1

λ
EπΞ(∞)(λ, ν) and

∂

∂ν
EπR

∞(λ, ν) = −1

ν
EπV

(∞)(λ, ν).

Proof. We only give a proof of part i) here as the proof of part ii) is entirely analogous.

Let Rn denote the remaining service time of the nth customer at time zero and Vn as

his total service time requirement, then Rn ≤ Vn. Thus if EVn <∞, we have

EπR̄(λ, ν) <∞
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for any λ > 0,ν > 0.

For a fixed sample path ω constructed backward in time, let Rn(λ, ν, ω), n < 0, denote

the remaining service time of customer n (counting backward in time) at time 0 in

system (λ, ν). Then Rn(λ, ν, ω) = (Vn(ω)/ν − |An(ω)|/λ)+ and

lim
h→0

Rn(λ+ h, ν, ω)−Rn(λ, ν, ω)

h
=
|An(ω)|
λ2

1{Vn(ω)

ν
≥ |An(ω)|

λ
}

lim
h→0

Rn(λ, ν + h, ω)−Rn(λ, ν, ω)

h
= −Vn(ω)

ν2
1{Vn(ω)

ν
≥ |An(ω)|

λ
}

Thus the derivative ∂
∂λ
R̄(λ, ν) and ∂

∂ν
R̄(λ, ν) exists.

Let Ξn denote the elapsed service time of the nth customer at time zeros and define

Ξn = Vn if he is no longer in the system at time zero, then Ξn ≤ Vn. Therefore

Eπ
∂
∂λ
R̄(λ, ν) <∞ and Eπ

∂
∂ν
R̄(λ, ν) <∞.

As

|(R̄n(λ+ h, ν)− R̄n(λ, ν))/h| ≤ max
κλ+h,ν<n<0

Vn/λ
2

and

|(R̄n(λ, ν + h)− R̄n(λ, ν))/h| ≤ max
κλ,ν+h<n<0

Vn/ν
2,

by Lebesgue Dominated Convergence Theorem, we have

∂

∂λ
EπR̄(λ, ν) = Eπ

∂

∂λ
R̄(λ, ν) and

∂

∂ν
EπR̄(λ, ν) = Eπ

∂

∂ν
R̄(λ, ν)

As the interarrival times have a continuous distribution, P (Vn/ν = |An|/λ) = 0 for

n < 0.

Combining the change of limit and the sample path analysis we have

∂

∂λ
EπR̄(λ, ν) =

1

λ
EπΞ̄(λ, ν) and

∂

∂ν
EπR̄(λ, ν) = −1

ν
EπV̄ (λ, ν)

2

Table 2.3 shows the simulated results of an infinite server queue with base (i.e.

λ = 1) interarrival times distributed as Gamma(2, 2) and base (i.e. ν = 1) service

times distributed as Lognormal(−0.25, 0.5).
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Table 2.3: Simulation result from exact sampling.

(λ, ν) ∂
∂λ
EπR̄(λ, ν) ∂

∂ν
EπR̄(λ, ν) ∂

∂λ
EπR

∞(λ, ν) ∂
∂ν
EπR

∞(λ, ν)

(80, 1) 7.0741× 10−3 −1.1320 6.1022× 10−3 −2.8389

(100, 1) 5.6470× 10−3 −1.1316 4.9379× 10−3 −2.9495

(120, 1) 4.7236× 10−3 −1.1337 4.2337× 10−3 −3.0684
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Chapter 3

Perfect Sampling for Loss Systems

In this chapter we present the first class of perfect sampling algorithms for the steady-

state distribution of non-Markovian multi-server loss queues and loss networks. The

running time of our algorithms is analyzed in the context of many server systems in

heavy-traffic; corresponding both to the so-called Quality-Driven (QD) regime, and

the Quality-and-Efficiency-Driven (QED, also known as Halfin-Whitt) regime. In

both cases, we show that our algorithm achieves sub-exponential complexity as the

number of servers and the arrival rate increase. Moreover, in the QD regime, our

algorithm achieves a nearly optimal rate of convergence.

In order to implement our strategy in the setting of loss queues, we simulate a

stationary infinite server queue backwards in time from the stationary distribution

at time zero as our dominating process. In Chapter 2, we explain how to simulate

the steady-state measure valued system descriptor of the infinite server queue at a

single time point (time zero). In this chapter, we introduce an extension on that,

which allows us to simulate the infinite serve queue backwards in time. We also

propose a novel application of the DCFTP protocol. Specifically, we use the upper

bound process itself to detect coalescence, thereby bypassing the need for a lower

bound process and improving the running time of the algorithm. Basically we detect

coalescence over a time interval in which all customers initially present in the infinite
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server system leave and no loss of customers occurs during that time interval, so that

at the end the of time interval, the two systems (coupled infinite server queue and

loss queue) have the same set of customers.

3.1 Basic strategy and main results

In this section we introduce the basic strategy to simulate the systems. We also

present some results about the efficiency of our algorithms. We leave the details of

the algorithms and proofs of the results to subsequent sections. We start with the

strategy to simulate the many-server loss queue in steady state and then generalize

our strategy to cover loss networks.

3.1.1 Coalescence time with an GI/GI/C/C queue

To facilitate our explanation, we restate the Markovian descriptor of the infinite server

(GI/GI/∞) queue which was introduced in Chapter 2. The Markovian description of

the state of the multi-server loss queue (GI/GI/C/C) follows the same rationale.

Let N = {N (t) : t ∈ (−∞, 0]} be a one sided time stationary renewal point

process. We write {An : n ≥ 1} for the times at which the process N jumps counting

backwards in time from time zero with An+1 < An < 0. Furthermore, we define

Xn = |An+1 − An|. Now let {Vn : n ≥ 1} be a sequence of i.i.d. random variables

(r.v.’s) which are independent of the process N . Define Zn = (An, Vn) and consider

the marked point process M = {Zn : n ≥ 1} ∈ R2 which we call the “arriving

customer stream”. More specifically, we consider customers arriving to the system

according to a renewal process with i.i.d. interarrival times Xn’s. Independent of the

arrival process, their service requirements Vn’s are also i.i.d..

We write G(·) = P (Xn ≤ ·) for the cumulative distribution function (CDF) of Xn

and put Ḡ(·) = 1−G(·) for its tail CDF. Similarly, we write F (·) = P (Vn ≤ ·) as the

CDF of Vn and F̄ (·) = 1− F (·) as its tail CDF.
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The following assumption is imposed throughout our discussion:

Assumption 3.1.1 EXn <∞ and EVn <∞.

We next introduce a Markovian description of the states of the systems. LetQ(t, y)

denote the number of people in the system at time t with residual service time strictly

greater than y. Notice that for fixed t, Q(t, ·) is a piecewise constant step function.

If we denote {r1(t), .., rm(t)} as the ordered (positive) remaining service times of

customers in the system at time t. Then Q(t, 0) = m and Q(t, y) =
∑m

i=1 I(ri(t) > y).

We also let E(t) denote the time elapsed since the previous arrival at time t (i.e.

E (t) = t − max{An : An ≤ t}) and W (t) = (E(t), Q(t, ·)) ∈ R+ × D[0,∞). Then

{W (t) : t ∈ R} forms a Markov process which describes the state of the infinite server

queue.

Similarly, we denote WL(t) = (EL(t), QL(t, ·)) ∈ R+ × D[0,∞) as the state of

the loss system with C servers at time t, where EL(t) = t − max{An : An ≤ t}

denotes the time elapsed since the previous arrival, and QL(t, y) counts the number

of people in the loss system at time t with residual service time strictly greater

than y. Only costumers who see less than C servers busy at arrival are admitted

to the system and all admitted customers start service immediately upon arrival. If

we let (rL(1)(t), . . . , r
L
(mL)(t)) denote the ordered (positive) remaining service times of

customers in the system at time t, then QL(t, 0) = mL and QL(t, y) =
∑mL

i=1 I(r(i)(t) >

y).

We now provide a coupling between W (·) and WL(·) such that EL(t) = E(t) and

QL(t, y) ≤ Q(t, y) for all y ≥ 0. In this sense, we say that WL(t) ≤ W (t). The

coupling proceeds as follows: we use same stream of customers, M (same arrival

times and service requirements), to update both systems. One can label the servers

in the infinite server system, assign customers to the empty server with the smallest

label, and by tracking only the state of the first C servers in the infinite server system

one automatically tracks the state of the loss system. Based on this coupling, we have
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that if WL(s) = W (s), then WL(t) ≤ W (t) for t ≥ s.

Definition 3.1.2 A coalescence time is a time T < 0 at which the state of the loss

system is identified from the coupled infinite server system, i.e. WL(T ) = W (T ).

As discussed earlier the infinite server system imposes an upper bound on the loss

system. A natural way to construct the coalescence (or coupling) time would be to

define the coalescence time as the first time (going backwards in time) the infinite

server queue empties (assuming, say, unbounded interarrival time distribution, this

will occur). However, this coalescence time generally grows exponentially with the

arrival rate [34]. So, to detect the coalescence in a more efficient manner, we consider

the following construction. Let R(t) denote the maximum remaining service time

among all customers in the system at time t. And consider a random time τ < 0

satisfying

1) R(τ) < |τ |;

2) infτ≤t≤τ+R(τ){C − Q(t, 0)} ≥ 0 where C is the number of servers in the loss

queue.

As we will show in Section 3.3.2, τ is well defined and our coalescence time is T :=

τ +R(τ). In simple words, Everyone who was present at time τ in the infinite server

queue will have left at time τ +R(τ). And since the infinite sever queue has less than

C customers on [τ, τ + R(τ)], the loss queue is also operating below capacity C on

that interval. Thus the infinite serve queue and the loss queue must have the same

set of customers present in the system by τ + R(τ). From then on we can recover

the state of the loss queue at time zero using the same stream of customers as for the

infinite server queue on [τ +R(τ), 0].
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3.1.2 Basic strategy and main results for the GI/GI/∞ queue

Simulating the infinite server queue in backwards in time from stationarity at time

zero is not trivial, so we first need to explain how to do this task. There are two cases

to be considered.

Case 1 The interarrival time has finite exponential moment in a neighborhood of the

origin. More specifically, define ψ (θ) = logE exp (θXn). There exists θ > 0

such that ψ(θ) <∞.

Case 2 The interarrival time does not have finite exponential moment, i.e. it has heavy-

tail distribution.

As we shall explain, we can always reduce the second case to the first one by

defining yet another coupled upper bound process trough truncation. Specifically,

denote Xn ∧ b = min{Xn, b}. We then fix a suitably large constant b and define a

coupled infinite server queue with truncated interarrival times: {Xn∧b : n ≥ 1}. This

truncation essentially speed up the arrival process. By coupling we mean we use the

same stream of customers to update both the original system and the truncated one,

i.e., We use (Xn, Vn) to update the original system and (Xn ∧ b, Vn) to update the

truncated one. We also define the event times as the arrival time and the departure

time of the n-th customer, n ≥ 1 (counting backwards in time). Then the infinite

server queue with truncated interarrival times imposes an upper bound, in terms of

the number of customers in the system, on the original infinite server queue at the

corresponding event times. Precisely, the event times are defined as An =
∑n

i=1 Xi

and An + Vn, n ≥ 1, for the infinite server system, and An(b) :=
∑n

i=1(Xi ∧ b) and

An(b) + Vn for the truncated infinite server system. Notice that the actual time of

the events (such as arrivals and departures) may be different for the two systems

because of the truncation. But from the simulation point of view, we simulate the

same amount of information to get the corresponding event times in both systems.
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In what follows, we shall first concentrate our discussion on Case 1 which also

includes the infinite server queue with truncated interarrival times. We then explain

how to extend the result to the heavy-tailed case.

3.1.2.1 Simulating the stationary GI/GI/∞ queue backwards in time.

In this subsection, we introduce a procedure to simulate states of the stationary

infinite server system backwards in time for time intervals of any specified length.

The construction is similar to the single time point (i.e. time zero) case explained in

Chapter 2.

We write µ = EXn and fix an ε ∈ (0, µ). Define κ0 := 1. We consider a sequence

of random times κj, j = 1, 2, · · · , finite with probability one but large enough such

that

|An − Aκj−1
| ≥ (n− κj−1)(µ− ε) and Vn ≤ (n− κj−1)(µ− ε) for all n ≥ κj. (3.1)

Notice that Vn ≤ |An − Aκj−1
| for n ≥ κj. This implies that a customer who arrives

before Aκj will not be in the system at time Aκj−1
. Thus, using {Zn : 1 ≤ n ≤ κj},

we can recover the system descriptor W (t) for t ∈ [Aκj−1
, 0].

Figure 3.1 gives more details about the construction. Every point Zn, with n > κj,

will not land into the upper triangle defined by the vertical line at Aκj−1
and the −45o

line intersecting it at the time axis (x axis).

A
κ
3

A
κ
1

A
κ
2

0 t

Service time 

Figure 3.1: Coupling times of the infinite server queue

The κj’s give us some flexibility to separate the simulation of the two processes.
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We first simulate the service times and then conditional on the sample path of the

service time we simulate the arrival process jointly with κj’s.

Define J1(0) := 1 and let

Jk(l) = inf{n > Jk(l − 1) : Vn > (n− Jk(0))(µ− ε)),

γk = inf{l ≥ 0 : Jk(l) =∞},

Jk+1(0) = Jk(γk − 1)

for k = 1, 2, · · · and l = 1, 2, · · · , γk.

We first simulate the random time: Jk(l)’s for k = 1, 2, · · · and l = 1, 2, · · · , γk, and

then simulate {Vn : n ≥ 1} conditional on Jk(l)’s; see Algorithm 3.1 in Section 3.2.1

for details.

Given the sample path of {Vn : n ≥ 1} and Jk(l)’s, we next simulate {An : n ≥ 1}

and κj’s. This is done by simulating the negative-drift random walk jointly with its

running time maximum. Specifically, we define

S̃n = n(µ− ε)− (An+1 − A1) =
n∑
i=1

Yi,

where Yi = (µ − ε) − Xi+1. Note that Yi’s are i.i.d. with EYi = −ε. An+1 =

A1 − S̃n + n(µ− ε). We then define ∆1(0) := 0 and Γ1(0) := 0. Fix m > 0 and let

∆j(l) = inf{n ≥ Γj(l − 1) : S̃n − S̃∆j(0) ≤ −m},

Γj(l) = inf{n ≥ ∆j(l) : S̃n − S̃∆j(l) ≥ m},

αj = inf{l ≥ 1 : Γj(l) =∞},

κj = min{Jk(0) : Jk(0) ≥ ∆j(αj) + 1},

∆j+1(0) = κj − 1,

Γj+1(0) = ∆j+1(0)

for j = 1, 2, ... and l = 1, 2, · · · , αj.

Notice that the process S̃n will never go above S̃∆j(0) from ∆j(αj) on. This implies
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that |An − Aκj−1
| ≥ (n − κj−1)(µ − ε) for n ≥ κj. Under the light-tail assumption

(Case 1), we simulate the random times ∆j(l) and Γj(l) for j = 1, 2, ..., l = 1, 2, ..., αj

and {S̃n : n ≥ 0} by the exponential tilting and acceptance-rejection method. The

details are explained in Algorithm 3.2 in Section 3.2.2.

For the heavy-tailed case (Case 2), we can choose the truncation parameter b

such that E[Xn ∧ b] =
∫ b

0
Ḡ(x)dx = µ − 1/2ε. This is doable because we assume

EXn =
∫∞

0
Ḡ(x)dx <∞. Denote An(b) as the backwards renewal times of the trun-

cated arrival process. Then the κj(b)’s we constructed for the truncated system must

automatically satisfy the conditions characterizing κj’s in (3.1) for the original system

as well.

Our algorithm works only under the mild condition in Assumption 3.1.1. But we

do impose stronger conditions on the service time distribution to rigorously show good

algorithmic performance, especially in heavy traffic (i.e. as the arrival rate increases).

We consider a sequence of systems indexed by s ∈ N+. We shall say that s is the

scale of the system. We speed up the arrival rate of the s-th system by scale s. That

is, the interarrival times of the s-th system are given by X
(s)
n = Xn/s. We keep the

service time distribution fixed for all systems, i.e. the service times do not scale with

s. The following theorem summarizes the performance of the procedure we proposed

for simulating stationary infinite server queue.

Theorem 3.1.3 Assume E[Xn] <∞, and

(1) if EV q
n <∞ for some q > 2, then

Es
πκ1 = O(sq/(q−1));

(2) if we further assume E[exp(θVn)] <∞ for some θ > 0, then

Es
πκ1 = O(s log s).
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Its proof is given in Section 3.3.1.

3.1.3 Basic strategy and main results for the GI/GI/C/C sys-

tem

Once we simulate the customer streams backwards in time and construct the states

of the dominating stationary infinite server queue accordingly, we can check and find

the coalescence time T = τ + R(τ) where τ is defined in Section 3.1.1 backwards in

time. Use the state of the infinite server queue at time T as the state of the many-

server loss queue at the same time and go forwards in time using the same stream of

customers to construct the state of the loss queue up to time 0.

Like in the infinite server queue case, we again consider a sequence of systems

indexed by s ∈ N+ where the arrival rate of the s-th system is scaled by s and

the service rate is kept fixed. Let ρ = E[Vn]/E[Xn] (the ratio of the mean service

time and mean interarrival time of the base system). We analyze the system in two

heavy-traffic asymptotic regimes. One is the quality driven (QD) regime where ρ < 1

and the number of servers in the s-th system, Cs, is s. The other is the quality and

efficiency driven (QED) regime where ρ = 1 and the number of servers in the s-th

system, Cs, is s+ b
√
s with b > 0.

Theorem 3.1.4 summarizes the performance of the coalescence time in the QD

regime.

Theorem 3.1.4 Assume EXn < ∞ and Xn’s are non-lattice and strictly positive.

We also assume that EV q
n <∞ for any q > 0 and the cumulative distribution function

(CDF) of Vn is continuous. Then

Es
πτ = o(sδ)

for any δ > 0.
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Remark 3.1.1 The existence of all moments assumption on the service time distri-

bution covers a range of heavy tailed distributions, such as Weibull and log-normal,

which are known to fit well data in applications [19].

Theorem 3.1.5 analyzes the performance of the coalescence time in the QED

regime.

Theorem 3.1.5 Assume EX2
n < ∞. We also assume EV q

n < ∞ for any q > 0 and

the CDF of Vn is continuous. Then for b large enough, we have

logEs
πτ = o(sδ)

for any δ > 0.

The main difficulty in the proof of Theorem 3.1.4 and Theorem 3.1.5 is that it

involves the state of the system on an interval rather than a single point. In Section

3.3.2, we prove Theorem 3.1.4 by using the sample path large deviation results [35] of

infinite server queue. For Thereom 3.1.5, we prove it by applying Borel-TIS inequality

[36] to the diffusion limit process of infinite server queue [37]. The details is also given

in Section 3.3.2.

3.1.4 Extensions and main results for the loss network

Following the definition in [34], we consider a generalized loss network with J stations,

labeled 1, 2, · · · , J and suppose that station j comprises Cj servers. We have L

possible routes, labeled 1, 2, ..., L and for each route l, a J dimensional routing vector

Pl. Pl is consist of 1’s and 0’s, where Pl(j) = 1 means route l requires a server

at station j. A routing request l is blocked and thus lost if any station j with

Pl(j) = 1 is full at the arrival time of the request. Customers requesting route l form

a renewal process with i.i.d. interarrival times {X(l)
n : n ≥ 1}. The CDF of X

(l)
n is

Gl. Independent of the arrival process, the service times {V (l)
n : n ≥ 1} are also i.i.d.

with CDF Fl. We assume that Gl’s and Fl’s satisfy Assumption 3.1.1.
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Following the same strategy as in the many-server loss queue case, we first couple

the loss network with a network of infinite-server stations. Notice that no customer

is blocked or lost in the infinite server system, thus it imposes an upper bound on the

number of jobs in the loss system. Let Qj(t, y) denote the number of jobs in the j-th

station with remaining service time strictly greater than y at time t. Note that a class

l job with remaining service time greater than y in the system will be counted in all

Qj(t, y)’s with Pl(j) = 1. Let Rj(t) denote the longest remaining service time among

all customers in station j at time t. Let R(t) = max1≤j≤J{Rj(t)}. Then similar

to the many server loss queue, we define a random time τ ′ satisfying the following

conditions:

1) R(τ ′) ≤ |τ ′|,

2) infτ ′≤t≤τ ′+R(τ ′) inf1≤j≤J{Cj −Qj(t, 0)} ≥ 0,

i.e. all links are operating below capacity on the interval [τ ′, τ ′ +Rm(τ ′)].

At time τ ′ + R(τ ′), everyone in the network of infinite-server stations will be in

the loss network as well. Thus from then on (forwards in time), we can update the

loss system using the inputs of the infinite-server system.

In order to simulate the network of infinite-server stations with L types of routing

requests, we simulate L independent networks of infinite-server stations; each dealing

with a single type of routing request. Then we do a superposition of them. The

simulation of each independent network of infinite-server stations are exactly the

same as what we have described in Section 3.1.2, as a type l routing request occupies

a server from each station j with Pl(j) = 1 simultaneously and for the same amount of

time. For the l-th system, let Z
(l)
n = (A

(l)
n , V

(l)
n ) represent the arrival time and service

time of the n-th routing request counting backwards in time and κ(l) be a random time

satisfying that V
(l)
n ≤ |A(l)

n | for all n ≥ κ(l). Then following the procedure described

in Section 3.1.2, we will be able to simulate κ(l) as the maximum of two random times

associated the arrival process and service time process respectively.
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We now consider a sequence of systems indexed by s ∈ N+. We speed up the the

arrival rate of the s-th system by s, i.e. X
(l,s)
n = X

(l)
n /s, and keep the service rate

fixed. The same result as in Theorem 3.1.3 will still be holding here. Specifically,

Theorem 3.1.6 (Theorem 3.1.3’) Assume EX
(l)
n <∞ (C).

(1) if E[(V
(l)
n )q] <∞ for some q > 2, then

Es
πκ

(l) = O(sq/(q−1));

(2) if we further assume E[exp(θV
(l)
n )] <∞ for some θ > 0, then

Es
πκ

(l) = O(s log s)

for l = 1, 2, · · · , L.

The proof of Theorem 3.1.6 is the same as that of Theorem 3.1.3 except for a few

notational changes, thus we shall omit it here.

If we held the number of routing request types, L, fixed, as we shall explain below,

similar results as in Theorem 3.1.4 and Theorem 3.1.5 for the coalescence time will be

holding here as well. We again run L independent networks of infinite-server stations

as described above. Network l serves routing request of type l only, for l = 1, 2, ..., L.

Let Q(l)(t, 0) denote the number of jobs in network l at time t and R(l)(t) denote the

maximum remaining service time among all jobs in the network at time t. Then we

have R(t) = max{R(l)(t) : 1 ≤ l ≤ L}.

We consider two asymptotic regimes. One is the QD regime where for the base

system we have
L∑
l=1

EV
(l)
n

EX
(l)
n

Pj(l) < Cj. (3.2)

For the s-th system, the number of servers in the j-th station is Cs
j = sCj for j =

1, 2, ..., J .

Assign a fixed numberHl to each route l. Hl is well chosen such that E[V
(l)
n ]/E[X

(l)
n ] <

Hl and
∑L

l=1HlPl(j) ≤ Cj. This is doable because of (3.2). Let Hs
l = sHl. Define a

random time τ̄ ′ satisfying the following two conditions:
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1) R(l)(τ̄ ′) ≤ |τ̄ ′| for l = 1, 2, · · · , L,

2) inf τ̄ ′≤t≤τ̄ ′+R(τ̄ ′){Hl −Ql(t, 0)} ≥ 0 for l = 1, 2, · · · , L.

Notice that τ̄ ′ is an upper bound on τ ′. As the number of types of routing request

is fixed at L (it does not scale with s), using the construction outlined in Section

3.3.2.1, we can show that the result in Theorem 3.1.4 holds for τ̄ ′ as well.

Theorem 3.1.7 (Theorem 3.1.4’) Assume EX
(l)
n < ∞ and X

(l)
n ’s are non-lattice

and strictly positive. We also assume E[(V
(l)
n )q] < ∞ for any q > 0 and Fl is

continuous. Then

Es
πτ
′ = o(sδ)

for any δ > 0.

The other asymptotic regime is the QED regime where for the base system we

have
L∑
l=1

EV
(l)
n

EX
(l)
n

Pj(l) = Cj

and the number of servers in the j-th station of the s-th system is Cs
j = sCj + βj

√
s

for j = 1, 2, · · · , J

We then let Il = E[V
(l)
n ]/E[X

(l)
n ] and Isl = sIl + al

√
s where al’s are well chosen

such that
∑L

l=1 alPj(l) ≤ βj.

We define a random time τ̃ ′ that satisfies the following two conditions:

1) R(l)(τ̃ ′) ≤ |τ̃ ′| for l = 1, 2, · · · , L,

2) inf τ̃ ′≤t≤τ̃ ′+R(τ̃ ′){Il −Q(l)(t, 0)} ≥ 0 for l = 1, 2, · · · , L.

As before, τ̃ ′ is an upper bound on τ ′. It is easy to check using the construction

outlined in Section 3.3.2.2 that the result in Theorem 3.1.5 holds for τ̃ ′ as well.
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Theorem 3.1.8 (Theorem 3.1.5’) Assume E[(X
(l)
n )2] <∞. We also assume

E[(V
(l)
n )q] <∞ for any q > 0. Then for bj’s large enough, we have

logEs
πτ
′ = o(sδ)

for any δ > 0.

We shall omit the proof of Theorem 3.1.7 and Theorem 3.1.8 as it is the same as

the proof of Theorem 3.1.4 and Theorem 3.1.5 with the introduction τ̄ ′ and τ̃ ′ except

for a few notational changes.

The rest of this chapter is organized as follows. In Section 3.2 we provide the

details required to implement our general strategy outlined in this section for the

infinite server queue backward in time from the steady state at time zero. In Section

3.3 we study the running time of our algorithms under heavy traffic. Some technical

results in the development of Section 3.3 are given in Section 3.4.

3.2 Detailed simulation algorithms

In order to provide the details of our simulation algorithms outlined in Section 3.1,

we shall first work under the light-tailed case (Case 1) where we assume there exists

θ > 0 such that ψ(θ) < ∞. The extension to the heavy-tailed case (Case 2) was

introduced in Section 3.1 and we shall provide more details in Section 3.2.3.

We further impose the following assumptions on our ability to simulate the service

times and interarrival times.

Assumption 3.2.1 We assume that for each x ≥ 0, F (x) is easily computable,

either in closed form or via efficient numerical procedures. Moreover, we can simulate

Vn conditional on Vn ∈ (a, b] with P (Vn ∈ (a, b]) > 0. The sampling time of Vn

conditional on Vn ∈ (a, b] is assumed to be independent of a and b.
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Assumption 3.2.2 Suppose that G (·) is known and that it is possible to simulate

from Geq (·) := µ−1
∫∞
· G (t) dt. Moreover, let Gθ (·) = E exp(θXn − ψ (θ))I(Xn ≤ ·)

be the associated exponentially tilted distribution with parameter θ for ψ (θ) <∞. We

assume that we can simulate from Gθ (·).

Remark 3.2.1 Assumption 3.2.1 can be applied to virtually any model used in prac-

tice, including distributions such as Gamma, phase-type, Pareto, Weibull, Lognormal,

and mixtures of them. Knowledge of the underlying distribution is required in Pro-

cedure A below. Note that the required simulation procedure is not restricted to the

inversion method. One can use, for example, the acceptance/rejection method, but a

good proposal distribution for the conditional distribution given Vn ∈ (a, b] might have

to be constructed based on knowledge of the density function to increase efficiency.

Assumption 3.2.2 is applicable to models for which the moment generating function is

finite, these include distributions such as Gamma, phase type, hyperexponential, and

other mixtures of them.

We next introduce our algorithm to simulate {Vn : n ≥ 1}. Conditional on the

sample path of {Vn : n ≥ 1}, we then explain how to to simulate {An : n ≥ 1} and

κj’s.

3.2.1 Simulation of {Vn : n ≥ 1} and Jk(l)’s for k = 1, 2, · · · ,

l = 1, 2, · · · , γk

We will first introduce the procedure to simulate J1(l) for l = 1, 2, · · · , γ1. Recall that

J1(l)’s record the position of all the record breakers. Let p(n) = P (V1 > n(µ − ε)).

Then P (J1(l) = ∞|J1(l − 1) = k) =
∏∞

n=k+1(1 − p(n)), which is the probability

of success (there are no more record breakers) of the Bernoulli trial. It involves

the evaluation of the product of infinite terms. In Procedure A, we introduce a

sandwiching approximation scheme to sampling the Bernoulli trail together with J1(l)

if J1(l) <∞.
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The following lemma guarantees the termination of our procedure.

Lemma 3.2.3 If EV1 <∞, then

P (J1(1) =∞) =
∞∏
n=1

(1− p(n)) ≥ exp(−cEV1

µ− ε
) > 0 (3.3)

for some constant c depending on the value of p(1), and consequently

Eγ1 ≤ exp(cEV1/(µ− ε)) <∞.

Proof.

P (J1(1) =∞) =
∞∏
n=1

(1− p(n)) ≥
∞∏
n=1

exp(−cp(n))

≥ exp(− c

µ− ε

∫ ∞
0

P (V1 > ν)dν) = exp(−cEV1

µ− ε
).

For l = 2, 3, · · · , conditional on J1(l − 1) = k:

P (J1(l) =∞|J1(l − 1) = k) =
∞∏

n=k+1

(1− p(n))

≥ exp(−
c
∫∞
k
P (V1 > ν)dν

µ− ε
) ≥ exp(−cEV1

µ− ε
),

thus γ1 is stochastically dominated by a geometric random variable with parameter

p = exp(−cEV1/(µ− ε)). The result then follows. 2

We next introduce our sandwiching approximation scheme. Notice that

h∏
i=k+1

(1− p(i)) ≥ P (J1(l) =∞|J1(l − 1) = k)

≥
h∏

i=k+1

(1− p(i))× exp(−
2
∫∞
h
P (V1 > ν)dν

µ− ε
) (3.4)

for h > k.

Another important observation is that if we let
∏k

i=k+1(1− p(i)) = 1, then

h−1∏
i=k+1

(1− p(i))−
h∏
i=k

(1− p(i)) = p(h)
h−1∏
i=k

(1− p(i)) = P (J1(l) = h|J1(l − 1) = k)
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for h > k.

Let

u(h) = exp(−
2
∫∞
h
P (V1 > ν)dν

µ− ε
).

We now propose the following procedure to simulate the value of J1(l) conditional on

J1(l − 1) = k.

Procedure D (Simulate J1(l) given J1(l − 1) = k)

S1. Initialize h = k + 1, g = 1− p(h) and f = gu(h). Simulate U ∼ Unif[0, 1]

S2. While f < U < g,

set h = h+ 1, g = g(1− p(h)) and f = gu(h)

end while

S3. If U ≤ f , then J1(l) =∞. Otherwise, J1(l) = h.

The simulation of Jk(l) for k = 1, 2, . . . , l = 1, 2, . . . , γk follows the same rationale.

We let pk(n) = P (V1 > n(µ− ε)|V1 ≤ (n + Jk(0)− Jk−1(0))(µ− ε)). Then following

the same argument leading to (3.3) and (3.4), we have correspondingly

P (Jk(1) =∞) > 0,

and
h∏

i=n+1

(1− pk(i))

≥P (Jk(l)− Jk(0) =∞|Jk(l − 1)− Jk(0) = n)

≥
h∏

i=n+1

(1− pk(i))× exp(−
2
∫∞
h
P (V1 > ν|V1 ≤ ν + (Jk(0)− Jk−1(0))(µ− ε))dν

µ− ε
)

for h > n.

Let

uk(h) = exp(−
2
∫∞
h
P (V1 > ν|V1 ≤ ν + (Jk(0)− Jk−1(0))(µ− ε))dν

µ− ε
).
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We now propose a modification of Procedure D that allows us to simulate Jk(l) con-

ditional on Jk(l − 1)− Jk(0) = n.

Procedure D1 (Simulate Jk(l) given Jk(l − 1)− Jk(0) = n)

S1. Initialize h = n+ 1, g = 1− pk(h) and f = guk(h). Simulate U ∼ Unif[0, 1].

S2. While f < U < g,

set h = h+ 1, g = g(1− pk(h)) and f = guk(h)

end while

S3. If U ≤ f , then Jk(l) =∞. Otherwise, Jk(l) = Jk(0) + h.

Based on Procedure D1 and our previous analysis we have:

Algorithm 3.1 (Sample Vn’s jointly with Jk(l)’s)

S0. Set J0(0) = −∞, J1(0) = 1, k = 1, l = 1. Simulate V1 according to its nominal

distribution.

S1. Simulate Jk(l) conditional on the value of Jk(l − 1) using Procedure D1.

S2. If Jk(l) =∞, set γk = l, Jk+1(0) = Jk(γk − 1), k = k + 1, l = 1 and go back to

Step 1. Otherwise, go to S3.

S3. Simulate Vn for Jk(l−1) < n < Jk(l) by conditioning on Vn ≤ (n−Jk(0))(µ−ε)

and simulate VJk(l) by conditioning on (Jk(l)− Jk(0))(µ− ε) < VJk(l) ≤ (Jk(l)−

Jk−1(0))(µ− ε). Set l = l + 1 and go back to S1.

When running the above algorithm, we specify K as the number of intervals

([Jk(0), Jk(γk − 1)]) we want to simulate. We then run Algorithm I from k = 1

till k = K. The program will give us {Vn : 1 ≤ n ≤ JK(γK − 1)} and Jk(l)’s for

k = 1, 2, · · · , K, l = 1, 2, · · · , γk.
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3.2.2 Simulation of {An : n ≥ 1} and ∆j(l)’s, Γj(l)’s for j =

1, 2, ..., l = 1, 2, ..., αj

Given the sample path of {Vn : n ≥ 1}, we will first explain how to simulate the ∆j(l)’s

and Γj(l)’s sequentially and jointly with the underlying random walk {S̃n : n ≥ 1}.

We then simulate A1 according to Geq(·) and set An+1 = A1 + n(ε − µ) − S̃n. The

analysis and methodology in this subsection closely follows those in [32] and [31]. The

same procedure can be used to simulate a negative drifted random walk, S̃n, together

with its running time maximum defined as maxk≥n{S̃k}.

Let Fn = σ{Y1, Y2, · · · , Yn}, the σ-field generated by the Yj’s up to time n. Let

ξ ≥ 0 and define

Tξ = inf{n ≥ 0 : S̃n > ξ}.

Then by the strong Markov property we have that for 1 ≤ l ≤ αj,

P (Γj(l) =∞|F∆j(l)) = P (Γj(l) =∞|S̃∆j(l)) = P (Tm =∞) > 0,

where we use P (·) to denote the nominal probability measure.

It is important then to notice that

P (αj = k) = P (Tm <∞)k−1P (Tm =∞)

for k ≥ 1. In other words, αj is geometrically distributed. The procedure that we

have in mind is to simulate each stage ∆j(αj) in time intervals, and the number of

time intervals is precisely αj.

Let ψY (θ) = logE exp(θYi) be the log moment generating function of Yi. As we

assume ψX(θ) is finite in a neighborhood of zero, ψY (·) is also finite in a neighborhood

of zero. Moreover EYi = ψ′Y (0) = −ε and Var(Yi) = ψ′′Y (0) > 0. Then by the

convexity of ψY (·), one can always select ε > 0 sufficiently small so that there exists

η > 0 with ψY (η) = 0 and ψ′Y (η) ∈ (0,∞). The root η allows us to define a new

measure Pη based on exponential tilting so that

dPη
dP

(Yi) = exp(ηYi).
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Moreover, under Pη, S̃n is random walk with positive drift equal to ψ′Y (η) [1]. There-

fore Pη(Tξ <∞) = 1 and

q(ξ) := P (Tξ <∞) = Eη exp(−ηS̃Tξ)

for each ξ ≥ 0. Based on the above analysis we now introduce a convenient represen-

tation to simulate a Bernoulli random variable J (ξ) with parameter q (ξ), namely,

J (ξ) = I(U ≤ exp(−ηS̃Tξ)), (3.5)

where U is a uniform random variable independent of everything else under Pη.

Identity (3.5) provides the basis for an implementable algorithm to simulate a

Bernoulli random variable with success probability q(ξ). Sampling {S̃1, · · · , S̃Tξ}

conditional on Tξ < ∞, as we shall explain now, corresponds to basically the same

procedure. First, let us write

P ∗(·) = P (·|Tξ <∞).

The following result provides an expression for the likelihood ratio between P ∗ and

Pη.

Lemma 3.2.4 We have that

dP ∗

dPη
(S̃1, ..., S̃Tξ) =

exp(−ηS̃Tξ)
P (Tξ <∞)

≤ exp(−ηξ)
P (Tξ <∞)

.

Proof.

P (S̃1 ∈ H1, ..., S̃Tξ ∈ HTξ |Tξ <∞)

=
P (S̃1 ∈ H1, ..., S̃Tξ ∈ HTξ , Tξ <∞)

P (Tξ <∞)

=
Eη[exp(−ηS̃Tξ)I(S̃1 ∈ H0, ..., S̃Tξ ∈ HTξ)]

P (Tξ <∞)
.

2
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The previous lemma provides the basis for a simple acceptance / rejection pro-

cedure to simulate {S̃1, ..., S̃Tξ} conditional on Tξ < ∞. More precisely, we propose

{S̃1, ..., S̃Tξ} from Pη (·). Then one generates a uniform random variable U indepen-

dent of everything else and accept the proposal if

U ≤ P (Tξ <∞)

exp(−ηξ)
× dP ∗

dPη
(S̃1, ..., S̃Tξ) = exp(−η(S̃Tξ − ξ)).

This criterion coincides with J(ξ) according to (3.5). So, the procedure above simul-

taneously obtains both a Bernoulli random variable J(ξ) with parameter q(ξ), and

the corresponding path {S̃1, ..., S̃Tξ} conditional on Tξ <∞ under P (·) if J(ξ) = 1.

As E[Yi] = −ε < 0, by strong law of large numbers we have ∆j(l) < ∞ almost

surely for j = 1, 2, ... and l = 1, 2, ..., αj. We next define

q̄(ξ) = 1− q(ξ) = P (Tξ =∞)

and

P ′(·) = P (·|Tξ =∞).

The following result provides an expression for the likelihood ratio between P ′ and

P .

Lemma 3.2.5 We have that

dP ′

dP
(S̃1, ..., S̃n) =

I(Tξ > l)q̄(ξ − S̃n)

P (Tξ =∞)
≤ 1

P (Tξ =∞)
.

Proof.

P (S̃1 ∈ H1, ...., S̃n ∈ Hn|Tξ =∞)

=
P (S̃1 ∈ H1, ...S̃n ∈ Hn, Tξ =∞)

P (Tξ =∞)

=
E[I(S̃1 ∈ H1, ..., S̃n ∈ Hn)I(Tξ > n)P (Tξ =∞|S̃1, ..., S̃n)]

P (Tξ =∞)
.

The result then follows from the strong Markov property and homogeneity of the

random walk. 2
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We are in good shape now to apply acceptance/rejection to sample from P ′. The

previous lemma indicates that to sample {S̃1, ..., S̃n} given Tξ =∞. We can propose

from the original (nominal) distribution and accept with probability q̄(ξ− S̃n) as long

as S̃j ≤ ξ for all 0 ≤ j ≤ n. And in order to perform the acceptance test we need to

sample a Bernoulli with parameter q̄(ξ − S̃n), but this is easily done using identity

(2.1).

Now consider 0 ≤ ξ1 < ξ2, we define

P o(·|Tξ1 <∞, Tξ2 =∞).

The following result provides an expression for the likelihood ratio between P o and

Pη.

Lemma 3.2.6 We have that

dP o

dPη
(S̃1, ...S̃Tξ1 ) =

exp(−ηS̃Tξ1 )q̄(ξ2 − S̃Tξ1 )

P (Tξ1 <∞, Tξ2 =∞)
≤ exp(−ηξ1)

P (Tξ1 <∞, Tξ2 =∞)
.

Proof.

P (S̃1 ∈ H1, ..., S̃Tξ1 ∈ HTξ1
|Tξ1 <∞, Tξ2 =∞)

=
Eη[I(S̃1 ∈ H1, ..., S̃Tξ1 ∈ HTξ1

) exp(−ηS̃Tξ1 )P (Tξ2 =∞|S̃1, ..., S̃Tξ1 )]

P (Tξ1 <∞, Tξ2 =∞)
.

2

We again use acceptance/rejection to sample {S̃1, ..., S̃Tξ1} given Tξ1 < ∞ and

Tξ2 =∞. We propose {S̃1, ..., S̃Tξ1} from Pη(·). Then we simulate a uniform random

variable U independent of all else and accept the proposal if

U ≤ P (Tξ1 <∞, Tξ2 =∞)

exp(−ηξ1)
× dP o

dPη
(S̃1, ..., S̃Tξ1 ) = exp(−η(S̃Tξ1 − ξ1))q(ξ2 − S̃Tξ1 ).

Based on the above analysis we propose the following algorithm.

Algorithm 3.2 (Given Vn’s and Jk(l)’s, sample S̃n’s together with ∆j(l)’s, Γj(l)’s

and κj’s)
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S0. Set ∆1(0) = Γ1(0) = 0, S̃0 = 0, j = 1, l = 1, ξ = ∞, γ = −m. Sample A1

according to Geq(·).

S1. Simulate S1, ..., STγ from the original (nominal) distribution.

S2. If Si ≤ ξ for all 1 ≤ i ≤ Tγ then sample a Bernoulli J(ξ − STγ ) with parameter

q(ξ − STγ ) using (3.5) and continue to S3. Otherwise (i.e. Si > ξ for some

1 ≤ i ≤ Tγ) go back to S1.

S3. If J(ξ − STγ ) = 1, go back to S1. Otherwise J(ξ − STγ ) = 0, let ∆j(l) =

Γj(l − 1) + Tγ and S̃Γj(l−1)+i = S̃Γj(l−1) + Si for i = 1, ..., Tγ. If j ≥ 2, set

ξ = S̃∆j−1(αj−1) +m− S̃∆j(l).

S4. Simulate S1, ..., STm from Pη(·). Sample a Bernoulli J(ξ−STm) with parameter

q(ξ−STm) using (3.5) and U ∼ Unif[0, 1]. Let J∗ = I(U ≤ exp(−η(STm−m))×

(1− J(ξ − STm)).

S5. If J∗ = 1, let Γj(l) = ∆j(l) + Tm and S̃∆j(l)+i = S̃∆j(l) + Si for 1 ≤ i ≤ Tm. Set

γ = min{0, S̃∆j(0) −m− S̃Γj(l)}. If j ≥ 2, set ξ = S̃∆j−1(αj−1) + m− SΓj(l). Set

l = l + 1 and go back to step 1. Otherwise J∗ = 0, set αj = l, κj = inf{Jk(0) :

Jk(0) ≥ ∆j(αj) + 1}, ∆j+1(0) = κj − 1, ξ = m and continue to S6.

S6. Let h = ∆j+1(0)−∆j(αj). Sample S1, ..., Sh from the original distribution.

S7. If Si ≤ ξ for all 1 ≤ i ≤ h then sample a Bernoulli J(ξ − Sh) with parameter

q(ξ − Sh) using (3.5) and continue to S8. Otherwise (i.e. Si > ξ for some

1 ≤ i ≤ h), go back to S6.

S8. If J(ξ−Sh) = 1, go back to S6. Otherwise J(ξ−Sh) = 0, let S̃∆j(αj)+i = S̃∆j(αj)+

Si for i = 1, ..., h. Set An+1 = A1 +n(ε−µ)− S̃n for n = ∆j(0) + 1, ...,∆j+1(0).

Set j = j + 1, l = 1, ξ = S̃∆j−1(αj−1) +m− S̃∆j(0), γ = −m and go back to S1.
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When running the above algorithm, we specify K as the number of intervals

([κj−1, κj]) we want to simulate and then repeat the above process from j = 1 till

j = K. The program will give us {An : 1 ≤ n ≤ κK} and {κj : 1 ≤ j ≤ K}.

3.2.3 Coupled infinite server queue with truncated interar-

rival times

In this subsection, we provide some additional details for simulating the coupled

truncated system together with the original system.

We first explain how to simulate A1 jointly with A1(b). The equilibrium distribu-

tion of Xn is Geq(x) =
∫ x

0
Ḡ(u)du/EXn and the equilibrium distribution of Xn ∧ b

is

Gb
eq(x) =

∫ x
0
Ḡ(u)du

E[Xn ∧ b]
I{x ≤ b}.

Thus we simulate A1 with CDF Geq(x), if A1 ≤ b, we set A1(b) = A1. Otherwise if

A1 > b, we keep simulating Xe with CDF Geq(x) until Xe ≤ b and set A1(b) = Xe.

In particular we have A1(b) ≤ A1.

When simulating Xn∧b’s from the nominal distribution, we first simulate Xn with

CDF G(·) and set Xn ∧ b = min{Xn, b}. Denote Yn(b) = (E[Xn ∧ b] − ε′) − Xn ∧ b

and let ηb be chosen such that logE exp(ηbYn(b)) = 0. When simulating Xn ∧ b’s

under exponential tilting Pηb(·), we first simulate Yn(b) under Pηb(·) and set Xn ∧ b =

(E[Xn ∧ b] − ε′) − Yn(b). If Xn ∧ b < b, set Xn = Xn ∧ b, otherwise (Xn ∧ b = b),

sample Xn conditional on Xn ≥ b under the nominal distribution P (·).

3.3 Performance analysis

In the previous section, we provide our simulation algorithm and show that our al-

gorithm works in the sense that the termination time is finite with probability one.

In this section, we conduct some further asymptotic analysis on the performance of
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our algorithm. We first analyze the algorithm for the infinite server system and then

conduct some analysis on the coalescence time for the many-server loss system.

3.3.1 Termination time for the infinite server system (Proof

of Theorem 3.1.3)

Theorem 3.1.3 provides the relationship between the moment of the service times and

Es
πκ. We next give a proof of it. We shall omit the subscription π and s when there

is no confusion for notational convinience. We first give a proof of the light tailed

case. Let κ(V ) = inf{k > 1 : Vn+1 ≤ n(µ − ε)/s for all n ≥ k} and κ(A) = inf{k >

1 : An+1 ≥ n(µ − ε)/s for all n ≥ k}. Then κ1 = max{κ(V ), κ(A)} We prove the

theorem by establishing the bounds for κ(V ) (Lemma 3.3.1) and κ(A) (Lemma 3.3.2)

respectively.

Lemma 3.3.1 If EV q
n <∞ for some q > 2, then

Eκ(V ) = O(sq/(q−1)).

Proof. Let p(n) = P (V1 > n(µ− ε)/s). For k sufficiently large, we have

P (κ(V ) > k) = 1−
∞∏

n=k+1

(1− p(n))

≤ 1− exp(− 2s

µ− ε

∫ ∞
k(µ−ε)/s

P (V > ν)dν).

By Chebyshev’s inequality

P (Vn > ν) ≤ EV q
n

νq
.

Let δ = 1/(q − 1), then for s sufficiently large, we have

∞∑
k=s1+δ

P (κ(V ) > k) ≤
∞∑

k=s1+δ

2s

µ− ε

∫ ∞
k(µ−ε)/s

P (V > ν)dν

≤ 2EV q
n s

q

(q − 1)(q − 2)(µ− ε)q
∞∑

k=s1+δ

1

kq−1

= O(sq−(1+δ)(δ−2)).
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As q − (1 + δ)(q − 2) = 1 + δ,

Eκ(V ) =
∞∑
k=0

P (κ(V ) > k)

=
s1+δ−1∑
k=0

P (κ(V ) > k) +
∞∑

k=s1+δ

P (κ(V ) > k)

≤ s1+δ +O(s1+δ).

2

Notice that when E exp(θVn) <∞ for some θ > 0,

P (Vn > ν) ≤ E exp(θ(Vn − ν)) = E exp(θVn) exp(−θν).

Similarly as above, for s sufficiently large we have

∞∑
k=d 2

θ(µ−ε) s log se

P (κ(V ) > k) ≤ 2E exp(θVn)

(µ− ε)2θ2

and

Eκ(V ) =

s log s−1∑
k=0

P (κ(V ) > k) +
∞∑

k=s log s

P (κ(V ) > k) ≤ s log s+O(1).

Thus if E exp(θV ) <∞ for some θ > 0, then

Eκ(V ) = O(s log s).

Lemma 3.3.2 Assume there exist θ > 0, such that ψ(θ) <∞, then

Eκ(A) = O(s).

Proof. Based on the algorithm proposed in Section 3.2.2, we divide the proof into

two parts. We first prove that the expected number of iterations is O(1). We then

prove that the expected number of steps to reach −m or m is O(s).

Let Tξ = inf{n ≥ 0 : S̃n > ξ}. Recall that for the base system there exist η > 0

with ψY (η) = 0 and ψ′Y (η) > 0. And the number of iterations is distributed as a geo-

metric random variable with probability of success P (Tm =∞) = 1−Eη exp(−ηS̃Tm)
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Then for the sth system with Y s
i = Yi/s we have S̃n/s > m is equivalent to S̃n >

sm. Thus the number of iterations is a Geometric random variable with probability

of success

P (Tsm =∞) = 1− Eη exp(−ηS̃Tsm) ≥ 1− exp(−ηsm).

Similarly, let T ′ξ = inf{n ≥ 0 : S̃n < ξ}. Define Mn = S̃n + nε, then Mn is

a martingale with respect to the filtration generated by {Y1, Y2, ..., Yn}. As EYi =

−ε < 0, P (T−m <∞) = 1. By the Optional Sampling Theorem, EMT ′−m
= ES̃T ′−m +

εET ′−m = 0. Thus

ET ′−m =
m

ε
−
E[m− ST ′−m ]

ε
.

Then for the sth system we have

ET ′−sm =
sm

ε
−
E[sm− ST ′−sm ]

ε
.

(sm−ST ′−sm) converges to the ladder hight Y − distribution as s→∞ and supmE[(sm−

ST ′−sm)p] <∞ yields E[(Y −)p] <∞ for p > 1 [1]. Therefore, ET ′−sm = O(s). 2

For the heavy-tailed case, we select the truncation parameter b such that E[Xn ∧

b] = µ− 1/2ε. Then we set ε′ = 1/2ε and define κ(A(b)) as a random time satisfying

that |An+1| ≥ n(E[Xn ∧ b] − ε′) = n(µ − ε) for n ≥ κ(A(b)). As |An+1| ≥ |An+1(b)|

under our coupling scheme, we can set κ(A) = κ(A(b)). By Lemma 3.3.2, we have

Eκ(A) = Eκ(A(b)) = O(s). κ(V ) is defined as before, a random time satisfying that

Vn ≤ n(µ− ε) for n ≥ κ(V ). Then Eκ(V ) = O(s log s) by Lemma 3.3.1.

As κ1 = max{κ(V ), κ(A(b)}, we have Eκ = O(s log s). This concludes the proof

of Theorem 3.1.3.

3.3.2 Coalescence time for the many-server loss system (Proof

of Theorem 3.1.4 and Theorem 3.1.5)

As we are simulating the process backwards in time, it is natural to define the following

filtration
←−
H t = σ{W (−u) : 0 ≤ u ≤ t},
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for which
←−
Hu ⊂

←−
H t for 0 ≤ u ≤ t. τ is a stopping time with respect to

←−
H t. We next

try to draw connections between the backward process and some forward process.

Define

τ ∗ = inf{t+R(t) : sup
t≤u≤t+R(t)

{Q(u, 0)} < s, t ≥ 0}.

τ ∗ is a stopping time with respect to Ht where Ht = σ{M(u) : 0 ≤ u ≤ t}. The

stochastic process {Q(t, 0) : t ∈ R} has a piecewise constant sample path with a finite

number of points of discontinuity on any finite length intervals almost surely. Thus

for any fixed T > 0, we have

Pπ(τ > T ) = Pπ(
⋂

−T≤t≤0

({R(t) > −t}
⋃

(
⋃

t≤u≤(t+R(t))∧0

({Q(u, 0) > s})))

= Pπ(
⋂

−T≤t≤0

({R(T + t) > −t}
⋃

(
⋃

T+t≤u≤(T+t+R(T+t))∧T

{Q(u, 0) > s})))

= Pπ(
⋂

0≤w≤T

({R(w) > T − w}
⋃

(
⋃

w≤u≤(w+R(w))∧T

{Q(u, 0) > s})))

= Pπ(τ ∗ > T ).

The second equality holds by stationarity; this gives us Eπτ = Eπτ
∗.

Next, we use a special construction similar to that in Section 4 of [38] to prove the

results for Es
πτ
∗. The idea is to use a geometric trial argument. We divide the time

frame into blocks that are roughly independent. And if the process is well-behaved

(staying around its measure-valued fluid limit) on one block, then τ ∗ is reached before

the end of that block.

Let Q̄(t, y) denote the number of customers in the infinite server queue that starts

empty at time zero with remaining service time greater than y at time t ≥ 0. For

convenience, we also define Q̄u(t, y) = Q̄(u + t, y) − Q̄(u, t + y) as the number of

customers who arrive after u with remaining service time larger than y at time u+ t.
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3.3.2.1 Proof of Theorem 3.1.4.

We first prove the theorem for the light-tailed case. The heavy-tail case proceeds by

selecting the truncation parameter c sufficiently large.

For the QD regime, by “well-behaved”, we mean that the process does not de-

viate δs, for some δ > 0, from its fluid limit. The following lemma states that the

probability of not being “well-behaved” decays exponentially fast with the system

scale.

Lemma 3.3.3 Assume ψ(θ) < ∞ for some θ > 0 and Xn’s are non-lattice and

strictly positive. We also assume the CDF of Vn is continuous. Then for any δ > 0,

there exist I∗(δ) > 0, such that

P (Q̄(t, y) > (1 + δ)λs

∫ t+y

y

F̄ (u)du for some t ∈ [0, 1], y ∈ [0,∞))

= exp(−sI∗(δ) + o(s)).

The proof of Lemma 3.3.3 follows form the tow-parameter sample path large

deviation result for infinite server queues in [35]. We shall omit it here.

We next introduce our construction of “blocks”. Let l(s) = inf{y : (1+δ)s
∫∞
y
F̄ (u)du ≤

1/2}, we define the following sequence of random times Ξi’s: Ξ0 := 0. Given Ξi−1 for

i = 1, 2, · · · , define

ri = inf{k : k ≥ R(Ξi−1), k = 1, 2, · · · ),

z = inf{k : k ≥ l(s), k = 1, 2, · · · },

Ξi = Ξi−1 + ri + z.

We define a Bernoulli random variable ξi, with ξi = 1 if and only if

Q̄Ξi−1+(k−1)t0(t, y) ≤ (1 + δ)λs

∫ t+y

y

F̄ (u)du

for all t ∈ [0, 1], y ∈ [0,∞) and every k = 1, 2, · · · , ri + z.
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Choose δ < 1/ρ − 1. We first check that ξi = 1 implies that τ ∗ is reached before

Ξi. Since ri ≥ R(Ξi−1), all the customers in the system at time Ξi−1 + ri will be those

who arrive after Ξi. Then ξi = 1 implies that

Q(Ξi−1 + ri, y) ≤
ri/t0∑
k=1

∫ kt0+y

(k−1)t0+y

F̄ (u)du

= (1 + δ)λs

∫ ri+y

y

F̄ (u)du

≤ (1 + δ)λs

∫ ∞
y

F̄ (u)du,

thus, R(Ξi−1 + ri) ≤ l(s).

And for every t ∈ (k − 1, k], k = 1, 2, ..., z

Q(Ξi−1 + ri + t, y) ≤ (1 + δ)λs

∫ ri+t+y

y

F̄ (u)du

≤ (1 + δ)λs

∫ ∞
y

F̄ (u)du,

thus Q(Ξi−1 + ri + t, 0) ≤ (1 + δ)ρs ≤ s for t ∈ [0, R(Ξi−1 + ri)].

Now let N = inf{i ≥ 1 : ξi = 1}, then

Eτ ∗ ≤ E
N∑
i=1

(ri + z).

We now show a bound for E
∑N

i=1(ri + z). The proof is given in the Section 3.4.

Lemma 3.3.4 Assume ψ(θ) < ∞ for some θ > 0 and ψN(θ) is continuously differ-

entiable throughout R. We also assume the CDF of Vn is continuous and EV q
n < ∞

for any q > 0. Then

E[
N∑
i=1

(ri + z)] = o(sδ)

for any δ > 0.

This concludes the proof of the light tailed case. We next extend the theorem to

the heavy-tailed case. We prove it by drawing connection to the truncated system.
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Here we delicately choose the truncation parameter b so that the truncated system

still operating the QD regime. More specifically, we choose b such that∫ ∞
b

Ḡ(x)dx < 1/ρ− 1.

This can be achieved since EXn =
∫∞

0
Ḡ(x)dx <∞. Then for fixed such b we have

ρb =
E[Vn]

E[Xn ∧ b]
=

EVn
EXn −

∫∞
b
Ḡ(x)dx

< 1

and

Es
πτ(b) = o(sδ)

for any δ > 0, where τ(b) denote the coalescence time in the truncated system.

We next prove by contradiction that the coalescence in the truncated system

implies the coalescence in the original system with the same amount of information

simulated. Recall that τ(b) is a random time satisfying that the system has less than

s customers at τ(b). The maximum remaining service time among all customers in

the system at time τ is denoted as R(τ(b)). R(τ(b)) ≤ |τ(b)| and during R(τ(b))

unites of time from τ(b) on the system always has less than s customers. We can

look for τ(b) at departure times of customers. We assume the process Q(t, y) is

right continuous with left limit, so customers departure at time t will not counted

in Q(t, 0). Suppose τ(b) equals to the departure time of the n-th customer. Then

every customer arriving between τ(b) and τ(b) + R(τ(b)) sees strictly less than s

customers (excluding himself) when he enters the system. We set τ equal to the

departure time of the n-th customer in the original system and R(τ) by definition

equals to the maximum remaining service time among all customers in the system at

time τ . We have R(τ) ≤ R(τ(b)). We claim that every customer arriving between τ

and τ +R(τ) must see less than s customers (excluding himself) when he enters the

system. Suppose this is not the case. Then there exist a customer m, 1 ≤ m ≤ n

who arrives between τ and τ + R(τ) and finds at least s customers in the system

already. The customer with the same index m must have arrived between τ(b) and
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τ(b) + R(τ(b)) in the truncated system and Q(Am(b)−) ≥ Q(Am−) ≥ s. We get a

contradiction. Therefore, we must have seen the coalescence in the original system

as well with the same amount of information simulated.

3.3.2.2 Proof of Theorem 3.1.5.

For QED regime, by “well-behaved”, we mean that the process does not deviate C
√
s,

for some C > 0, from its fluid limit. The following lemma states that the probability

of both being “well-behaved” and not “well-behaved” are bounded away from zero.

Lemma 3.3.5 Fix any η > 0. Let ν(y) = (
∫∞
y
F̄ (u)du)1/(2+η). Assume EX2

n < ∞

and EV q
n < ∞ for any q > 0. Then for any large enough C, there exists ζ1(C) > 0

and ζ2(C) > 0, such that

P (Q̄(t, y) ≤ λs

∫ t+y

y

F̄ (u)du+ C
√
sν(y) for all t ∈ [0, 1], y ∈ [0,∞)) ≥ ζ1(C) (3.6)

and

P (Q̄(t, y) > λs

∫ t+y

y

F̄ (u)du+ C
√
sν(y) for some t ∈ [0, 1], y ∈ [0,∞)) ≥ ζ2(C).

(3.7)

The proof of Lemma 3.3.5 follows form the proof of Lemma 9 in [38]. Our case is

actually simpler, as we are dealing with a one sided bound (upper bound) as appose

to the two sided bound in [38]. This simplification allows us to remove the light-tail

assumption on interarrival time distribution required in [38]. We shall only briefly

outline the procedure here.

For Inequality (3.6), the idea is to consider the diffusion limit of Q(t, y) as a two

dimensional Gaussian random field [37], and then invoke Borell-TIS inequality [36].

Assume EX2
n <∞, EVn <∞ and the CDF of Vn is continuous. Pang and Whitt

[37] has proved that for the GI/GI/∞ queue with any given initial age E(0),

Q̄(t, y)− λs
∫ t+y
t

F̄ (u)du
√
s

⇒ R(t, y) in DD[0,∞)[0,∞),
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whereR(t, y) = R1(t, y)+R2(t, y) is a Gaussian random field withR1(t, y) = λ
∫ t

0

∫∞
0
I(u+

x > t + y)dK(u, x) and R2(t, y) = λc2
a

∫ t
0
F̄ (t + y − u)dB(u), where K(u, x) =

W (λu, F (x))−F (x)W (λu, 1) in whichW (·, ·) is a standard Brownian sheet on [0,∞)×

[0, 1] and B(·) is a standard Brownian motion independent of W (·, ·). The constant

ca is coefficient of variation of the interarrival times, i.e. ca =
√

Var(Xn)/EXn. We

denote

R̃i(t, y) =
Ri(t, y)

v(y)

and define the d-metric (a pseudo-metric) for i = 1, 2

di((t, y), (t′, y′)) = E[(R̃1(t, y)− R̃2(t′, y′))2]

We then invoke the Borell-TIS inequality. We shall skip the verification of the con-

ditions for such invocation here as it is tedious and detailedly proved in [38]. Let

S = [0, 1] × [0,∞). it is shown in [38] that, there exist constants Mi,1 > 0 and

Mi,2 > 0, such that E[supS R̃i(t, y)] ≤ Mi,1 < ∞ and supS E[R̃i(t, y)2] ≤ Mi,2 < ∞.

And for Ci ≥ E[supS R̃i(t, y)], for i = 1, 2,

P (sup
S
R̃i(t, y) ≥ Ci) ≤ exp{− 1

2 supS E[R̃i(t, y)2]
(Ci − E[sup

S
R̃i(t, y)])2}.

Let C ≥ 2 max{E[supS R̃1(t, y)], E[supS R̃2(t, y)]}. Then

P (R(t, y) ≤ Cν(y) for all t ∈ [0, 1], y ∈ [0,∞))

≥P (sup
S
R̃1(t, y) + sup

S
R̃2(t, y) ≤ C)

≥P (sup
S
R̃1(t, y) ≤ C

2
)P (sup

S
R̃2(t, y) ≤ C

2
) > 0.

Let X0 denote the interarrival time of the first customer and V0 denote its service

time. We also denote Q̄0(t, y) as an independent infinite server process starting empty
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and with E(0) = 0. Then for s large enough, we have

P (Q̄(t, y) ≤ λs

∫ t+y

y

F̄ (u)du+ C
√
sν(y) for all t ∈ [0, 1], y ∈ [0,∞))

=P (Q̄0(t−X0, y) + 1{V0 > t+ y} ≤ λs

∫ t+y

y

F̄ (u)du+ C
√
sν(y)

for all t ∈ [X0, 1], y ∈ [0,∞))

≥P (Q̄0(t, y) + 1{V0 > t+X0 + y} ≤ λs

∫ t+X0+y

y

F̄ (u)du+ C
√
sν(y)

for all t ∈ [0, 1−X0], y ∈ [0,∞))

≥P (Q̄0(t, y) ≤ λs

∫ t+y

y

F̄ (u)du+ C
√
sν(y) for all t ∈ [0, 1], y ∈ [0,∞))

=P (
Q̄0(t, y)− λs

∫ t+y
y

F̄ (u)du
√
s

≤ Cν(y) for all t ∈ [0, 1], y ∈ [0,∞)).

It is easy to check that the set {f : |f(t, y)| ≤ Cν(y) for all t ∈ [0, 1], y ∈ [0,∞)} is a

continuity set, thus by the Functional Central Limit Theorem result in [37], we have

P (
Q̄0(t, y)− λs

∫ t+y
y

F̄ (u)du
√
s

≤ Cν(y) for all t ∈ [0, 1], y ∈ [0,∞))

→P (R(t, y) ≤ Cν(y) for all t ∈ [0, 1], y ∈ [0,∞)) > 0.

Inequality (3.7) is easy to prove as we can always isolate a point (t∗, y∗) inside

S. The projection of the process on that point posses Gaussian distribution. More

specifically,

P (Q̄(t, y) > λs

∫ t+y

y

F̄ (u)du+ C
√
sν(y) for some t ∈ [0, 1], y ∈ [0,∞))

≥P (Q̄(t∗, y∗) > λs

∫ t∗+y∗

y∗
F̄ (u)du+ C

√
sν(y∗))

=P (
Q̄(t∗, y∗)− λs

∫ t∗+y∗
y∗

F̄ (u)du
√
s

> Cν(y∗)),

and by Fatou’s lemma

lim inf
s→∞

P (
Q̄(t∗, y∗)− λs

∫ t∗+y∗
y∗

F̄ (u)du
√
s

> Cν(y∗)) ≥ P (R(t∗, y∗) > Cν(y∗)) > 0.
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Let m(s) = inf{y : C
√
s(v(y)+

∫∞
y
v(s)ds) ≤ 1

2
}. Following the same construction

as for the QD regime, we define the sequence of random times Ξi’s as follows: Ξ0 := 0.

Given Ξi−1 for i = 1, 2, · · · ,

ri = inf{k : k ≥ R(Ξi−1), k = 1, 2, ...),

z = inf{k : k ≥ m(s), k = 1, 2, ...},

Ξi = Ξi−1 + ri + z.

We introduce a Bernoulli random variable ξi with ξi = 1 if and only if

Q̄Ξi−1+(k−1)t0(t, y) ≤ λs

∫ t+y

y

F̄ (u)du+ C
√
sν(y)

for all t ∈ [0, 1], y ∈ [0,∞) and every k = 1, 2, ..., ri + z.

We next show that ξi = 1 implies that τ ∗ is reached before Ξi. Since ri ≥ R(Ξi−1),

all the customers at time Ξi−1 + ri will be those arrive after Ξi. Thus we have ξi = 1

implies that

Q(Ξi−1 + ri, y) ≤
ri∑
k=1

{λs
∫ kt0+y

(k−1)t0+y

F̄ (u)du+ C
√
sν((k − 1) + y))}

≤ λs

∫ ∞
y

F̄ (u)du+ C
√
s(ν(y) +

∫ ∞
y

ν(u)du).

As
∫∞
y
F̄ (u)du decays faster than ν(y) as y grows large, for s large enough, we have

R(Ξi−1 + ri) < m(s).

Likewise for every t ∈ (k − 1, k] and k = 1, 2, · · · , z,

Q(Ξi−1 + ri + t, y) ≤ λs

∫ ∞
y

F̄ (u)du+ C
√
s(ν(y) +

∫ ∞
y

ν(u)du).

Thus when β > C(ν(0) +
∫∞

0
ν(u)du), for t ∈ [0, R(Ξi−1 + ri)], we have

Q(Ξi−1 + ri + t, 0) ≤ s+ C(ν(0) +

∫ ∞
0

ν(u)du)
√
s ≤ s+ β

√
s

Now let N = inf{i ≥ 1 : ξi = 1}. Then Eτ ∗ ≤ E[
∑N

i=1(ri + z)]. We next show a

bound for E
∑N

i=1(ri + z). The proof is given in the Section 3.4.
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Lemma 3.3.6 Assume EX2
n <∞ and EV q

n <∞ for any q > 0. Then

logE[
N∑
i=1

(ri + z)] = o(sδ)

for any δ > 0.

Notice that our proof of Theorem 3.1.5 only requires the existence of the second

moment of the interarrival time distribution. We thus conclude the proof of Theorem

3.1.5.

3.3.2.3 Numerical experiment

In this subsection, we run some numerical experiments aimed at verifying the running

time of our algorithm measured by Es
π[τ ] for different values of s. The algorithms

appear to have substantially better performance in practice. In the QD regime, our

numerical experiments suggest that Es
π[τ ] is almost bounded as apposed to grow sub-

linearly with s indicated by Theorem 3.1.4. This is because in the QD regime, the

stationary probability that the queue length process is above Cs decays exponentially

with the system scale s. In the QED regime, our numerical experiments suggest a

growth rate of O(
√
s) as apposed to the sub-exponentially growth rate in Theorem

3.1.5. This empirical bound is intuitive, as in the QED regime, the situation when

coalescence occurs is similar to the case when a mean zero random walk spends s

units of time below 0. If the increments of the random walk have finite variance, this

situation occurs with probability O(1/
√
s).

The performance was tested using a wide range of distributions and the overall

conclusions are similar. The numbers displayed (Table 3.1 and Table 3.2) are obtained

assuming that a generic base interarrival time, Xn, follows a Gamma distribution with

shape parameter 2 and rate parameter 2 (Γ(2, 2)). For the s-th system, the interarrival

is distributed as Xn/s, and a generic service time, Vn, follows lognormal distribution,

where log Vn ∼ N(−1/2, 1/2). We use 1000 replications for each value of s.
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Table 3.1: Simulation results for τ (QD: λ = s, Cs = 1.2s)

s mean 95% confidence interval

100 22.6297 [21.3381, 23.9213]

500 15.6162 [15.1791, 16.0533]

1000 15.8816 [15.4559, 16.3073]

Table 3.2: Simulation results for τ (QED: λ = s, Cs = s+ 2
√
s )

s mean 95% confidence interval

100 22.6297 [21.3381, 23.9213]

500 37.0449 [32.7770, 41.3128]

1000 42.0704 [37.9622, 46.1786]

3.4 Proof of Lemma 3.3.4 and Lemma 3.3.6

We first prove the following two lemmas (Lemma 3.4.1 and Lemma 3.4.2) as a prepa-

ration.

Lemma 3.4.1 If EV q
n <∞ for any q > 0, then for any fixed p > 0,

E[( max
k=1,2,...n

Vk)
p] = o(nδ)

for any δ > 0.

Proof. For any fixed δ > 0 we can find δ′ ∈ (0, δ). Let q = 1/δ′+ p. By Chebyshev’s

inequality we have

F̄ (u) ≤ EV q

uq
.
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Let F̄n(u) = P (maxk=1,2,...,n Vk > u) then

E[( max
k=1,2,...n

Vk)
p] = p

∫ ∞
0

up−1F̄n(u)du

≤ n1/(q−p) + np

∫ ∞
n1/(q−p)

up−1F̄ (u)du

≤ n1/(q−p) + np

∫ ∞
n1/(q−p)

EV q

uq−p+1
du

= nδ
′
+

p

q − p
EV q.

2

E[
N∑
i=1

(ri + z)] = E[
∞∑
i=1

(ri + z)I{N ≥ i}]

≤
∞∑
i=1

E[(ri + z)2]1/2P (N ≥ i)1/2 by Holder’s inequality.

Lemma 3.4.2 If EXn < ∞ and EV q
n < ∞ for any q > 0, then for any p ≥ 1 we

have

E[(ri + z)p]1/p = o(sδ)

for any δ > 0.

Proof. By Minkowski inequality, E[(ri+z)p]1/p ≤ E[rpi ]
1/p+z. Using similar argument

as in the proof of Lemma 3.4.1, we can show that l(s) = o(sδ) for any δ > 0, thus

z = o(sδ) for any δ > 0.

For fixed δ > 0, we can find δ′ ∈ (0, pδ/(1 + pδ)), such that

E[rpi ] ≤ E[E[( max
k=1,...,Ns(Ξi−1)−Ns(Ξi−2)

Vk)
p|Ns(Ξi−1)−Ns(Ξi−2)]]

≤ CE[(Ns(Ξi−1)−Ns(Ξi−2))δ
′
] Lemma 3.4.1

≤ C(E[Ns(Ξi−1)−Ns(Ξi−2)])δ
′

Jensen’s inequality for concave function

≤ Cλ̃δ
′
sδ
′
E[ri−1 + z]δ

′
Key Renewal Theorem.

Let wi = ri + z for i = 1, 2, · · · . As z it is a constant that only depends on s and z =

o(sδ
′
), then Ewi ≥ z ≥ 1 and Ewi = Eri+z ≤ Cλ̃δ

′
sδ
′
(Ewi−1)δ

′
+z ≤ C̃sδ

′
(Ewi−1)δ

′
,
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where C̃ = Cλ̃δ
′
+ 1. As E[rp1] = Eπ[R(0)p] = o(sδ

′
). By iteration we have

Ewi ≤ C̃1/(1−δ′)sδ
′/(1−δ′) for i = 1, 2, · · ·

Thus Erpi = o(spδ) and E[(ri + z)p]1/p = o(sδ). 2

Proof.[Proof of Lemma 3.3.4] We first notice that P (ξi = 0) ≤ E[w1] exp(−sI∗(δ) +

o(s)) by Lemma 3.3.3.

P (N ≥ 1) = 1.

P (N ≥ 2) = P (ξ1 = 0) ≤ E[w1] exp(−sI∗(δ) + o(s))

Recall that wi = ri + z for i = 1, 2, · · · .

P (N ≥ 3) = P (N ≥ 1)P (N ≥ 3|N ≥ 2)

= P (ξ1 = 0)P (ξ2 = 0|ξ1 = 0)

≤ P (ξ1 = 0)E[w2|ξ1 = 0] exp(−sI∗(δ) + o(s))

≤ E[w1]E[w2|ξ1 = 0] exp(−2sI∗(δ) + o(s)).

We next prove that E[w2|ξ1 = 0] = exp(o(s)). Notice that P (ξi = 0) ≥ exp(−sI∗(δ)+

o(s)) by Lemma 3.3.3. Then for any p > 0, q > 0 and 1/p+ 1/q = 1,

E[w2|ξ1 = 0] =
E[w2I{ξ1 = 0}]
P (ξ1 = 0)

≤ E[wp2]1/pP (ξ1 = 0)1/q

P (ξ1 = 0)
Holder’s inequality

≤ E[wp2]1/pE[w1]1/q exp(
1

p
sI∗(δ) + o(s)),

thus
1

s
logE[w2|ξ1 = 0] ≤ 1

s
(
1

p
logE[wp2] +

1

q
logE[w1] + o(s)) +

1

p
I∗(δ).

By sending p to infinity, we have E[w2|ξ1 = 0] = exp(o(s)).

Similarly by iteration,

P (N ≥ k) = exp(−ksI∗(δ) + o(s)) for k = 4, 5, . . .
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Then
∑∞

i=1 P (N ≥ i)1/2 = O(1). As E[
∑N

i=1(ri+z)] ≤
∑∞

i=1E[(ri+z)2]1/2P (N ≥ i)1/2

and E[(ri + z)2]1/2 = o(sδ) for any δ > 0, we have E[
∑N

i=1(ri + z)] = o(sδ). 2

Proof.[Proof of Lemma 3.3.6]

P (N ≥ 1) = 1.

P (N ≥ 2) = P (ξ1 = 0)

≤ 1− E[ζ1(C)w1 ] Lemma 3.3.5

≤ 1− ζ1(C)E[w1] Jensen’s inequality

= 1− b exp(−o(sδ)).

Moreover,

P (N ≥ 3) = P (N > 2|N > 1)P (N > 1)

= P (ξ2 = 0|ξ1 = 0)P (ξ1 = 0)

≤ E[1− ζ1(C)w2|ξ1 = 0]P (ξ1 = 0)

≤ (1− ζ1(C)E[w2|ξ1=0])P (ξ1 = 0).

We next show that E[w2|ξ1 = 0] = o(sδ) for any δ > 0. Notice that P (ξi = 0) ≥ ζ2(C)

by Lemma 3.3.5, then

E[w2|ξ1 = 0] =
E[w2I{ξ1 = 0}]
P (ξ1 = 0)

≤ Ew2

ζ2(C)

Similarly by iteration we have

P (N ≥ k) ≤ (1− b exp(−o(sδ)))k for any δ > 0 and k = 4, 5, . . .

Then for any δ > 0, log
∑∞

i=1 P (N ≥ i)1/2 = o(sδ). As E[
∑N

i=1(ri+z)] ≤
∑∞

i=1 E[(ri+

z)2]1/2P (N ≥ i)1/2 and E[(ri + z)2]1/2 = o(sδ) for any δ > 0, we have logE[
∑N

i=1(ri +

z)] = o(sδ). 2
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Chapter 4

ε-Strong Simulation for

Multidimensional Stochastic

Differential Equations via Rough

Path Analysis

Consider the a multi-dimensional Stochastic Differential Equation (SDE)

dX(t) = µ(X(t))dt+ σ(X(t))dZ(t) , X(0) = x(0) (4.1)

where Z (·) is a d′-dimensional Brownian motion, and µ (·) : Rd → Rd and σ (·) :

Rd → Rd×d′ satisfy suitable regularity conditions. We shall assume, in particular,

that both µ (·) and σ (·) are Lipschitz continuous so that a strong solution to the

SDE is guaranteed to exist. Additional assumptions on the first and second order

derivatives of µ (·) and σ (·) which are standard in the theory of rough paths will be

discussed in the sequel.

Our contribution in this chapter is the joint construction of X = {X (t) : t ∈ [0, 1]}

and a family of processes Xε = {Xε (t) : t ∈ [0, 1]}, for each ε ∈ (0, 1), supported on

a probability space (Ω,F , P ), and such that the following properties hold:
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(T1) The process Xε is piecewise constant, with finitely many discontinuities in [0, 1].

(T2) The process Xε can be simulated exactly and, since it takes only finitely many

values, its path can be fully stored.

(T3) We have that with P -probability one

sup
t∈[0,1]

||Xε (t)−X (t)||∞ < ε. (4.2)

(T4) For any m > 1 and 0 < εm < ... < ε1 < 1 we can simulate Xεm conditional on

Xε1 ,...,Xεm−1 .

We refer to the family of procedures that achieve the construction of such family

{Xε : ε ∈ (0, 1)} as ε-strong simulation methods.

Our construction requires a detailed study of continuity estimates of the Ito map

using Lyon’s theory of rough paths. We approximate the underlying Brownian mo-

tion, jointly with the Lévy areas with a deterministic ε error in the underlying rough

path metric.

4.1 Main Results

Our approach consists in studying the process X as a transformation of the underlying

Brownian motion Z. Such transformation is known as the Ito-Lyons map and its

continuity properties are studied in the theory of rough paths, pioneered by T. Lyons,

in [39]. A rough path is a trajectory of unbounded variation. The theory of rough

paths allows to define the solution to an SDE such as (4.1) in a path-by-path basis

(free of probability) by imposing constraints on the regularity of the iterated integrals

of the underlying process Z. Namely, integrals of the form

Ai,j (s, t) =

∫ t

s

(Zi (u)− Zi (s)) dZj (u) . (4.3)
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The theory results in different interpretations of the solution to (4.1) depending

on how the iterated integrals of Z are interpreted. In this paper, we interpret the

integral in (4.3) in the sense of Ito.

It turns out that the Ito-Lyons map is continuous under a suitable α-Hölder metric

defined in the space of rough paths. In particular, such metric can be expressed as

the maximum of the following two quantities:

||Z||α := sup
0≤s<t≤1

||Z(t)− Z(s)||∞
|t− s|α

, (4.4)

||A||2α := sup
0≤s<t≤1

max
1≤i,j≤d′

|Ai,j(s, t)|
|t− s|2α

. (4.5)

In the case of Brownian motion, as we consider here, we have that α ∈ (1/3, 1/2). It

is shown in [40], that under suitable regularity conditions on µ (·) and σ (·), which we

shall discuss momentarily, the Euler scheme provides an almost sure approximation in

uniform norm to the solution to the SDE (4.1). Our first result provides an explicit

characterization of all of the (path-dependent) quantities that are involved in the

final error analysis (such as ||Z||α and ||A||2α),the difference between our analysis

and what has been done in previous developments is that ultimately we must be able

to implement the Euler scheme jointly with the path-dependent quantities that are

involved in the error analysis. So, it is not sufficient to argue that there exists a path-

dependent constant that serves as a bound of some sort, we actually must provide a

suitable representation that can be simulated in finite time.

In order to provide our first result, we introduce some notations. Let Dn denote

the dyadic discretization of order n and ∆n denote the mesh of the discretization.

Specifically, Dn := {tn0 , tn1 , . . . , tn2n} where tnk = k/2n for k = 0, 1, 2, . . . , 2n and ∆n =

1/2n. Suppose we have a discretized approximation scheme.

Given X̂n(0) = x(0), define {X̂n(t) : t ∈ Dn} by the following recursion:

X̂n
i (tnk+1) = X̂n

i (tnk) + µi(X̂
n(tnk))∆n + σi(X̂

n(tnk))(Z(tnk+1)− Z(tnk)), (4.6)
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and let X̂n(t) = X̂n(btc) where btc = max{tnk : tnk ≤ t} for t ∈ [0, 1]. We denote

Rn
i,j(t

n
l , t

n
m) :=

m∑
k=l+1

Ai,j(t
n
k−1, t

n
k).

and for fixed β ∈ (1− α, 2α), write

ΓR := sup
n

sup
0≤s<t≤1,s,t∈Dn

max
1≤i,j≤d′

|Rn
i,j(s, t)|

|t− s|β∆2α−β
n

.

We also redefine ||Z||α and ||A||2α as

||Z||α := sup
n

sup
0≤s<t≤1,s,t∈Dn

||Z(t)− Z(s)||∞
|t− s|α

,

||A||2α := sup
n

sup
0≤s<t≤1,s,t∈Dn

max
1≤i,j≤d′

|Ai,j(s, t)|
|t− s|2α

.

The new definitions are equivalent to (4.4) and (4.5) since both Z and A are contin-

uous processes.

Theorem 4.1.1 Suppose that there exists a constant M such that ||µ||∞ ≤ M ,

||µ′||∞ ≤ M and ||σ(i)||∞ ≤ M for i = 0, 1, 2, 3. Then it is well known that a

solution to X can be constructed path-by-path (see [40] and Section 4.3). Moreover,

if ||Z||α ≤ Kα <∞, ||A||2α ≤ K2α <∞, and ΓR < KR, we can compute G explicitly

in terms of M , Kα, K2α and KR, such that

sup
t∈[0,1]

||X̂n(t)−X(t)||∞ ≤ G∆2α−β
n .

Remark 4.1.1 A recipe that explains step-by-step how to compute G is given in the

appendix to this section.

Using Theorem 4.1.1, we can proceed to state the main contribution of this paper.

Theorem 4.1.2 In the context of here Theorem 4.1.1, there is an explicit Monte

Carlo procedure that allows to simulate random variables Kα, K2αand KR jointly

with {Z(t) : t ∈ Dn} for any n ≥ 1. In turn, given any deterministic ε > 0 we can

select N0 sufficiently large, such that for n ≥ N0

sup
t∈[0,1]

||X̂n(t)−X(t)||∞ ≤ ε, (4.7)
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with probability one. Moreover, conditional on X̂n(·) we can subsequently refine our

approximation to produce X̂n′(·) with the property that supt∈[0,1] ||X̂n′(t)−X(t)||∞ ≤ ε′

for any ε′ < ε.

Remark 4.1.2 An explicit description of the algorithm involved in the Monte Carlo

procedure of Theorem 4.1.2 is given in Algorithm II at the end of Section 4.2.5 and

the discussion that follows it. The discussion in the remark that follows Algorithm II

explains how to further refine the discretization to obtain X̂n′(·).

4.1.1 On Relaxing Boundedness Assumptions

The construction of X̂n(·) in order to satisfy (4.7) assumes that ||µ||∞ ≤M , ||µ(1)||∞ ≤

M and ||σ(i)||∞ ≤ M for i = 0, 1, 2, 3. While these assumptions are strong we can

relax them. In particular, as we shall argue now. Theorem 4.1.2 extends directly to

the case in which µ and σ are Lipschitz continuous, with µ differentiable and σ is

three times differentiable. Since µ and σ are Lipschitz continuous we know that X (·)

has a strong solution which is non-explosive.

We can always construct µM and σM so that µ(i) (x) = µ
(i)
M (x) for ‖x‖∞ ≤ cM and

i = 0, 1, and σ(i) (x) = σ
(i)
M (x) for ‖x‖∞ ≤ cM for i = 0, 1, 2, 3. Also we can choose

cM →∞, and ||µM ||∞ ≤M , ||µ(1)
M ||∞ ≤M and ||σ(i)

M ||∞ ≤M for i = 0, 1, 2, 3.

For M ≥ 1 we consider the SDE (4.1) with µM and σM as drift and diffusion

coefficients, respectively, and let XM (·) be the corresponding solution to (4.1). We

start by picking someM0 ≥ 1 such that ε < cM0 and letM = M0. Then run Algorithm

II to produce {X̂n
M(t) : t ∈ [0, 1]}, which according to Theorem 4.1.2 satisfies,

sup
t∈[0,1]

||X̂n
M(t)−XM(t)||∞ ≤ ε.

Note that only Steps 5 to 8 in Algorithm II depend on the SDE (4.1), through the

evaluation of G, which depends on M and so we write GM := G. If

sup
t∈[0,1]

||X̂n
M(t)||∞ ≤ cM − ε,
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then we must have that X (t) = XM (t) for t ∈ [0, 1] and we are done. Otherwise, we

let M ←− 2M and run again only Steps 5 to 8 of Algorithm II. We repeat doubling

M and re-running Steps 5 to 8 (updating GM) until we obtain a solution for which

supt∈[0,1] ||X̂n
M(t)||∞ ≤ cM − ε. Eventually this must occur because

lim
M→∞

sup
t∈[0,1]

||XM(t)−X(t)||∞ = 0

almost surely and X (·) is non explosive.

The rest of the chapter is organized as follows. Section 4.2 is divided into three

subsections and it builds the elements behind the proof of Theorem 4.1.2. As it turns

out, one needs to simulate bounds on the so-called Hölder norms of the underlying

Brownian motion and the corresponding Lévy areas. So, Section 4.2 first studies

some basic estimates of for Brownian motion obtained out of its wavelet synthesis.

Section 4.3 is also divided in several parts, corresponding to the elements of rough

path theory required to analyze the SDE described in (4.1) as a continuous map

of Brownian motion under a suitable metric (described in Section 4.1). While the

final form of the estimates in Section 4.3 might be somewhat different than those

obtained in the literature on rough path analysis, the techniques that we use there are

certainly standard in that literature. We have chosen to present the details because

the techniques might not be well known to the Monte Carlo simulation community

and also because our emphasis is in finding explicit constants (i.e. bounds) that are

amenable to simulation.

4.1.2 The Evaluation of G.

We next summarize the way to calculate G in terms of M , ||Z||α, ||A||2α and ΓR.

Procedure A.
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S1. Find δ and Ci(δ) for i = 1, 2, 3 that satisfies the following relations:

C1(δ) ≥ C3(δ)δ2α +Mδ1−α + dM ||Z||α + d3M2||A||2αδα

C2(δ) ≥ C3(δ)δα + d3M2||A||2α

C3(δ) ≥ 2

1− 21−3α

(
MC1(δ) + dMC1(δ)2||Z||α + d2MC2(δ)||Z||α

+2d3M2C1(δ)||A||α
)

S2. Set C1 = 2
δ
C1(δ), C2 = 2

δ
(C2(δ) +MC1 + dMC1||Z||α) and

C3 =
2

1− 21−3α
(MC1 + dMC2

1 ||Z||α + d2MC2||Z||α + 2d3M2C1||A||α)

S3. Find δ′ and Bi(δ
′) for i = 1, 2, 3 that satisfies the following relations:

B1(δ′) > B3(δ′)δ′2α + 2Mδ′1−α + 2M ||Z||α + 4M2||A||2αδ′α

B2(δ′) > B3(δ′)δ′α + 4M2||A||2α

B3(δ′) >
4

1− 21−3α

(
MB1(δ′) +MB1(δ′2||Z||α +MB2(δ′)||Z||α

+2M2B1(δ′)||A||α
)

S4. Set B = 2
δ′
B1(δ′)

S5. Set G1 = (1 +B)C3

S6. Find δ′′ and C4(δ′′) such that

Bδ′′α ≤ 2α+β − 2

C4(δ′′) ≥ 2(1− 2 +Bδ′′α

2α+β
)−1(Bd3M2ΓR + 2d3M2C1ΓR)

S7. Set C4 = (1 +Bδ′′α)C4(δ′′3M2ΓR + 2d3M2C1ΓR)/δ′′

S8. Set G2 = C4 + d3M2ΓR

S9. Set G = G1 +G2.
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4.2 Use of Wavelets to Bound α-Hölder Norms,

Tolerance-Enforced Simulation, and The Proof

of Theorem 4.1.2.

Our goal in this section is to simulate the upper bounds for ||Z||α, ||A||2α and ΓR

respectively. We will first recall Lévy-Ciesielski’s construction of Brownian motion

and provide a high level picture of the approach that we will follow based on “record

breakers”.

4.2.1 Wavelet Synthesis of Brownian Motion and Record Break-

ers

We do so by implementing the Lévy-Ciesielski construction of Brownian motion which

is explained next following [41] pages 34-39. First we need to define a step function

H(·) on [0, 1] by

H(t) = I (0 ≤ t < 1/2)− I (1/2 ≤ t ≤ 1) .

Then define a family of functions

Hn
k (t) = 2(n−1)/2H(2n−1t− (k − 1))

for all n ≥ 0 and 1 ≤ k ≤ 2n−1. Set H0
0 (t) = 1 and then one obtains the following.

Theorem 4.2.1 (Lévy-Ciesielski Construction) If {W n
k : 0 ≤ k < 2n, n ≥ 0} is

a sequence of independent standard normal random variables, then the series defined

by

Z (t) = W 0
0

∫ t

0

H0
0 (s) ds+

∞∑
n=1

2n−1∑
k=1

(
W n
k

∫ t

0

Hn
k (s) ds

)
(4.8)

converges uniformly on [0, 1] with probability one. Moreover, the process {Z (t) : t ∈

[0, 1]} is a standard Brownian motion on [0, 1].



CHAPTER 4. ε-STRONG SIMULATION FOR SDES 87

Eventually we will simulate the series up to a random but finite level N which can

be viewed as the order of dyadic discretization. The level N is selected so that the

contribution of the remaining terms (terms beyond level N) can be guaranteed to be

bounded by a user defined tolerance error. We think of simulating the discretization

levels sequentially, so we often refer to “time” when discussing levels.

Once we have simulated up to time (or level) N , we further decompose the anal-

ysis into two parts. One dealing with finding the upper bound for ||Z||α (Section

4.2.2), the other dealing with finding the upper bound for ΓR (Section 4.2.3). We

then combine these two parts to obtain an upper bound for ||A||2α.

For both parts, we use a strategy based on a suitably defined sequence of “record

breakers”. We ask a “yes or no” question to the future (i.e. to higher order discretiza-

tion levels). The question, which corresponds to the simulation of a Bernoulli random

variable, is “will there be a new record breaker?” The definition of record breakers

need to satisfy the following two conditions.

Conditions:

1. The following event happens with probability one: beyond some random but

finite time, there will be no more record breakers.

2. By knowing that there are no more record breakers, the contribution of the

terms that we have not simulated yet are well under control (i.e. bounded by a

user defined tolerance error).

Now we explain for each part, how the above strategy is applied. We have d′

independent Brownian motions and we will use W n
i,k for i ∈ {1, ..., d′} to denote the

(n, k) coefficient in the expansion (4.8) for the i-th Brownian motion.
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For ||Z||α we say a record is broken at (i, n, k), for 1 ≤ i ≤ d′, n ≥ 0 and

0 ≤ k < 2n, if

|W n
i,k| > 4

√
n+ 1.

Let N1 := max{n ≥ 1 : |W n
i,k| > 4

√
n+ 1 for some 1 ≤ k ≤ 2n−1}. Lemma 4.2.3

shows that E[N1] <∞. Thus Condition 1 for “record breaker” is satisfied. We then

check Condition 2. By Lemma 4.2.2, we have ||Z||α ≤ 22α
∑∞

n=0 2−n(1/2−α)V n where

V n = max1≤k≤2n−1 |W n
k |. Once we found N1, we have

||Z||α ≤
dlog2N1e∑
n=1

2−n(1/2−α)V n +
∞∑

dlog2N1e+1

2−n(1/2−α)
√
n+ 1

≤
dlog2N1e∑
n=1

2−n(1/2−α)V n +
(dlog2N1e+ 1)−1/2(1/2−α)

1− 2−1/2(1/2−α)
.

For ΓR, we first define a sequence of random walks

Lni,j(0) := 0,

Lni,j(k) := Lni,j(k − 1) +
(
Zi(t

n
2k−1)− Zi(tn2k−2)

) (
Zj(t

n
2k)− Zj(tn2k−1)

)
,

for k = 1, 2, · · · , 2n−1.

We then say a record is broken at (n, k, k′), for n ≥ 1, 0 ≤ k < k′ < 2n−1, if

|Lni,j(k′)− Lni,j(k)| > (k′ − k)β∆2α
n .

LetN2 := max{n ≥ 1 : |Lni,j(k′)−Lni,j(k)| > (k′−k)β∆2α
n for some 0 ≤ k < k′ ≤ 2n−1}.

Lemma 4.2.5 proves that N2 < ∞ with probability 1, which justifies Condition 1.

Once we found N2, by Lemma 4.2.7, we have

ΓR ≤
2−(2α−β)

1− 2−(2α−β)
max
n≤N2

max
1≤i,j≤d′

max
0≤k<k′≤2n−1

{ |Lni,j(k′)− Lni,j(k)|
(k′ − k)β∆2α

n

}
.

Thus, Condition 2 is satisfied as well.
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Once we established the bounds for ||Z||α and ΓR, by Lemma 4.2.7, we have

||A||2α ≤ ΓR
2

1− 2−2α
+ ||Z||2α

21−α

1− 2−α
.

In Section 4.2.5, we will explain how to simulate the random numbers (N1 and N2)

jointly with the wavelet construction using the “record breaker” strategy introduced

above. Specifically, we first find all the record breakers in sequence and then simulate

the rest of the process conditional on the information of the record breakers.

4.2.2 ε-Strong Simulation of Bounds on α-Hölder Norms of

Brownian Path

In this section, we will explain how to use the wavelet synthesis to approximate a

single Brownian motion, Z, in the α-Hölder norm, (4.4). Of course, since we have

d′ Brownian motion, ultimately the algorithm that we shall describe for such an ap-

proximation (see Algorithm I below) will be run d′ independent times.

Let us define V n = max0≤k<2n |W n
k |. We have the following auxiliary lemma.

Lemma 4.2.2

‖Z‖α ≤ 22α

∞∑
n=0

2−n( 1
2
−α)V n.

Proof. For any interval [t, t + δ] ⊂ [0, 1], suppose 2−m+2 ≤ δ ≤ 2−m+1, then there

exists two level n dyadic points tmk and tmk+1 such that [t, t+ δ] ⊂ [tmk , t
m
k+1]. Using the

Lévy-Ciesielski construction, one can check that

|Z(t+ δ)− Z(t)| ≤
m∑
n=0

2−m+n
2 V n +

∞∑
n=m+1

2−
n
2 V n.
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Since δ > 2−m+2, we have

|Z(t+ δ)− Z(t)|
δα

≤ 22α(
m∑
n=0

2−(1−α)m+n
2 V n +

∞∑
n=m+1

2−
n
2

+αmV n)

≤ 22α(
m∑
n=0

2−(1−α)n+n
2 V n +

∞∑
n=m+1

2−
n
2

+αnV n)

≤ 22α

∞∑
n=0

2−n( 1
2
−α)V n.

As the interval [t, t+ δ] is arbitrarily chosen, we obtain the result. 2

Owing to Lemma 4.2.2 we can now find a bound on ||Z||α. Let

N1 = max{n ≥ 1 : |W n
k | > 4

√
n+ 1 for some 1 ≤ k ≤ 2n−1}.

Lemma 4.2.3

E (N1) <∞

Proof. We note that

E (N1) ≤
∞∑
n=1

2n−1∑
k=1

P (|W n
k | > 4

√
n+ 1) ≤

∞∑
n=1

2n−1 exp (−8n) <∞.

2

The strategy is then to simulate N1 jointly with the sequence {W n
k }. It is impor-

tant to note that N1 is not a stopping time with respect to the filtration generated

by {(W n
k : 1 ≤ k ≤ 2n−1) : n ≥ 1}. Note that if N1 is simulated jointly with {W n

k },

then for 2n + k ≥ N1 + 1, |W n
k | ≤ 4

√
n+ 1 and thus we can compute

Kα =

[log2N1]∑
n=1

2−n( 1
2
−α)V n +

∞∑
n=log2N1+1

2−n( 1
2
−α)
√
n+ 1 <∞. (4.9)

We call a pair (n, k) such that |W n
k | > 4

√
n+ 1 a broken-record-pair. All pairs

(both broken-record-pairs and non broken-record-pairs) can be totally ordered lexico-

graphically. The distribution of subsequent pairs at which records are broken is not

difficult to compute (because of the independence of the W n
k ’s). So, using a sequen-

tial acceptance / rejection procedure we can simulate all of the broken-record-pairs.
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Conditional on these pairs the distribution of the {(W n
k : 1 ≤ k ≤ 2n) : n ≥ 1} is

straightforward to describe. Precisely, if (k, n) is a broken-record-pair, then W n
k is

conditioned on |W n
k | > 4

√
n+ 1 and thus is straightforward to simulate. Similarly,

if (k, n) is not a broken-record-pair, then W n
k is conditioned on |W n

k | ≤ 4
√
n+ 1 and

also can be easily simulated.

The simulation of the broken-record-pairs has been studied in [42], see Algorithm

2W. We synthesize their algorithm for our purposes next.

Algorithm 4.1: Simulate N1 jointly with the broken-record-pairs

Input: A positive parameter ρ > 4.

Output: A vector S which gives all the indices l = 2n + k such that (n, k) is a

broken-record-pair.

S0. Initialize R = 0 and S to be an empty array.

S1. Set U = 1, D = 0. Simulate V ∼ Uniform(0, 1).

S2. While U > V > D, set R← R+ 1 and U ← P (|W n
k | ≤ %

√
logR)×U and D ←

(1−R1−%2/2)× U .

S3. If V ≥ U , add R to the end of S, i.e. S = [S,R], and return to Step 1.

S4. If V ≤ D, N = max(S).

S5. Output S.

Remark 4.2.1 Observe that for every l = 2n + k ∈ S, we can generate W n
k condi-

tional on the event {|W n
k | > %

√
log l}; for other 1 ≤ l ≤ N (i.e. l /∈ S) generate W n

k

given {|W n
k | ≤ %

√
log l}. Note that at the end of Algorithm 1 and after simulating

W n
k for l = 2n + k ≤ N one can compute quantities such as Kα according to (4.9).
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4.2.3 Analysis and Bounds of α-Hölder Norms of Lévy Areas

We shall start by stating the following representation of the Lévy area Ai,j(t
n
k , t

n
k+1),

which we believe is of independent interest.

Lemma 4.2.4

Ai,j(t
n
k , t

n
k+1)

=
∞∑

h=n+1

2h−n−1∑
l=1

[Zi(t
h
2h−nk+2l−1)− Zi(th2h−nk+2l−2)][Zj(t

h
2h−nk+2l)− Zj(t

h
2h−nk+2l−1)].

The inner summation inside the expression of Ai,j(t
n
k , t

n
k+1) motivates the definition

of the following family of processes (Lni,j (k) : k = 0, 1, ..., 2n−1), for n ≥ 1:

Lni,j(0) := 0

Lni,j(k) := Lni,j(k − 1) + (Zi(t
n
2k−1)− Zi(tn2k−2))(Zj(t

n
2k)− Zj(tn2k−1)),

for k = 1, 2, ..., 2n−1.

Using this definition and Lemma 4.2.4 we can succinctly write Ai,j(t
n
k , t

n
k+1) as

Ai,j(t
n
k , t

n
k+1) =

∞∑
h=n+1

(Lhi,j(2
h−n(k + 1))− Lhi,j(2h−nk)). (4.10)

Moreover, the following result allows to control the behavior of the terms in the

previous infinite series.

Lemma 4.2.5 There exists N2 < ∞ such that for all n ≥ N2 and all l < m < 2n−1

we have

|Lni,j(m)− Lni,j(l)| ≤ (m− l)β∆2α
n .

Now, recall that

Rn
i,j(t

n
l , t

n
m) :=

m∑
k=l+1

Ai,j(t
n
k−1, t

n
k).

A direct application of Lemmas 4.2.4 and 4.2.5 yields the next corollary.
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Corollary 4.2.6

Rn
i,j(t

n
l , t

n
m) =

∞∑
h=n+1

(Lhi,j(2
h−nm)− Lhi,j(2h−nl)).

We conclude this section with a proposition which summarizes the bounds that

we will simulate.

Lemma 4.2.7 Suppose that N2 is chosen according to Lemma 4.2.5. We define

ΓL := max
1≤i,j≤d′

max
n<N2

max
0≤l<m≤2n−1

{ |Lni,j(m)− Lni,j(l)|
(m− l)β∆2α

n

}
.

Then

ΓR ≤
2−(2α−β)

1− 2−(2α−β)
ΓL

and

||A||2α ≤ ΓR
2

1− 2−2α
+ ||Z||2α

21−α

1− 2−α
.

4.2.4 Elements of ε-Strong Simulation for Bounds on α-Hölder

Norms of Lévy Areas

There is some resemblance between the problem of sampling N1 in Section 4.2.2,

which involves a sequence of i.i.d. random variables (W n
k ’s), and sampling of N2

introduced in Section 4.2.3. However, simulation of N2, which is basically our main

goal here, is a lot more complicated because there is fair amount of dependence on

the structure of the Lni,j (k)’s as one varies n. Let us provide a general idea of our

simulation procedure in order to set the stage for the definitions and estimates that

must be studied first.

Suppose we have simulated {(Wm
i,k : 0 ≤ k < 2m) : m ≤ N} for some N (to be

discussed momentarily) and define

τ1 (N) := inf{n ≥ N+1 : |Lni,j(m)−Lni,j(l)| > (m−l)β∆2α
n for some 0 ≤ l < m < 2n−1}.

Because of Lemma 4.2.5 we have that the event {τ1 (N) =∞} has positive probability.

We will explain how to simulate a Bernoulli random variable with success parameter
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P (τ1 (N) =∞|FN). If such Bernoulli represents a success, then we have that N2 = N

and we would have basically concluded the difficult part of the simulation procedure

(the rest would be simulating under a series of conditioning events whose probability

increases to one n grows). If the Bernoulli in question represents a failure (i.e its

value is zero), then we will try again until obtaining a successful Bernoulli trial.

Now, part of the problem is that Algorithm 4.1 has been already executed, so

N ≥ N1, in other words, while the random variables {W n
i,k : 0 ≤ k < 2n} are

independent (for fixed n > N), they are no longer identically distributed. Instead,

W n
i,k is standard Gaussian conditioned on the event {|W n

i,k| < 4
√
n+ 1}.

Nevertheless, if n is large enough, all of the events {|W n
i,k| < 4

√
n+ 1} will occur

with high probability. So, we shall first proceed to explain how to simulate a Bernoulli

random variable with probability of success P (τ1 (n′) = ∞|Fn′) assuming n′ is a

deterministic number. The procedure actually will produce both the outcome of the

Bernoulli trial and if such outcome is a failure (i.e. τ1 (n′) <∞), also

{Wm
i,k : 1 ≤ k ≤ 2m, n′ < m ≤ τ1 (n′)}.

Our procedure is based on acceptance / rejection using a carefully chosen proposal

distribution for the Wm
i,k’s based on exponential tilting of the Ln

′
i,j (k)’s, conditional on

Fn′ . To this end, we will need to compute the associated (conditional on Fn′) moment

generating function of Lni,j (k) and the family of distributions induced over the W n
i,k’s

and W n
j,k’s when exponentially tilting Ln

′
i,j (k), this will be done in Section 4.2.4.1.

Then, we need some large deviations estimates in order to enforce the feasibility of a

certain randomization procedure, these estimates are given in Section 4.2.4.2. These

are all the elements needed for the simulation procedure of α-Hölder Norms of Lévy

Areas given in Section 4.2.5.
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4.2.4.1 Basic Notation, Conditional Moment Generating Functions, and

Associated Exponential Tilting

First, we recall the wavelet synthesis discussed in Section 4.2.1, which was explained

for a single Brownian motion. Since we will work with d′ Brownian motions here we

need to adapt the notation. For each i ∈ {1, ..., d′} let {(W n
i,k : 1 ≤ k ≤ 2n) : n ≥ 1}

be the sequence of i.i.d. N(0,1) random variables arising in the wavelet synthesis (4.8)

for Zi (·).

Now, define

Fn=σ{{(Wm
i,k : 0 ≤ k < 2m) : m ≤ n}}.

and for the conditional expectation given Fn we write

En( · ) := E( · | Fn).

In order to reduce the length of some of the equations that follow, we write, for each

r ∈ {1, 2, ..., 2n},

Λn
i (tnr ) := (Zi(t

n
r )− Zi(tnr−1)). (4.11)

Then, using the following very useful pair of equations (for k = 1, 2, ...., 2n−1)

Λn
i (tn2k−1) =

1

2
Λn−1
i (tn−1

k ) + ∆1/2
n W n

i,k. (4.12)

Λn
i (tn2k) =

1

2
Λn−1
i (tn−1

k )−∆1/2
n W n

i,k,

we can see that

Fn = σ{∪m≤n(Z (t)− Z (s)) : 0 ≤ s < t ≤ 1, t, s ∈ Dm}.

and we have that (for 0 ≤ k ≤ 2n−1)

Lni,j (k) =
k∑
r=1

Λn
i

(
tn2r−1

)
Λn
j (tn2r) .

Assume that k < k′, we will iteratively compute

En{exp
(
θ0{Ln+m

i,j (k′)− Ln+m
i,j (k)}

)
} (4.13)

= En[En+1[...En+m−1[exp
(
θ0{Ln+m

i,j (k′)− Ln+m
i,j (k)}

)
]...]].
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We first start from inner expectation.

Corollary 4.2.8

En+m−1 exp(θ0Λn+m
i

(
tn+m
2r−1

)
Λj

(
tn+m
2r

)
)

=
(
1− θ2

0∆2
n+m

)−1/2
exp

(
θ1Λn+m−1

j (tn+m−1
r )Λn+m−1

i (tn+m−1
r )

)
exp

(
η1Λn+m−1

j (tn+m−1
r )2 + η1Λn+m−1

i (tn+m−1
r )2

)
,

where

θ1 := θ0(1− θ2
0∆2

n+m)−1/4, η1 := θ2
0

(
1− θ2

0∆2
n+m

)−1
∆n+m/8.

Moreover, define

P ′
n+m,tn+mr

(
W n+m
i,r ∈ A,W n+m

j,r ∈ B
)

=
En+m−1

(
I(W n+m

i,r ∈ A,W n+m
j,r ∈ B

)
exp(θ0Λn+m

i

(
tn+m
2r−1

)
Λn+m
j

(
tn+m
2r

)
))

En+m−1 exp(θ0Λn+m
i

(
tn+m
2r−1

)
Λn+m
j

(
tn+m
2r

)
)

,

then under P ′
n+m,tn+mr

, and given Fn+m−1, we have that (W n+m
i,r ,W n+m

j,r ) follows a

Gaussian distribution with covariance matrix

Σi,j
n+m

(
tn+m
r

)
=

1

1− θ2
0∆2

n+m

 1 −θ0∆n+m

−θ0∆n+m 1

 ,

and mean vector

µi,jn+m

(
tn+m
r

)
= Σi,j

n+m

(
tn+m
r

) θ0∆
1/2
n+mΛn+m−1

j (tn+m−1
r )/2

−θ0∆
1/2
n+mΛn+m−1

j (tn+m−1
r )/2

 .

So, from Corollary 4.2.8 we conclude that

En+m−1[exp(θ0

k′∑
r=k+1

Λn+m
i

(
tn+m
2r−1

)
Λj

(
tn+m
2r

)
)]

=
(
1− θ2

0∆2
n+m

)−(k′−k)/2
exp(θ1

k′∑
r=k+1

Λn+m−1
j (tn+m−1

r )Λn+m−1
i (tn+m−1

r ))

exp(η1

k′∑
r=k+1

Λn+m−1
j (tn+m−1

r )2 + η1

k′∑
r=k+1

Λn+m−1
i (tn+m−1

r )2). (4.14)
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If m ≥ 2, we can continue taking the corresponding conditional expectation given

Fn+m−2. Due to the recursive nature of (4.13) and the linear quadratic terms that

arise in (4.14) it is convenient to consider

2n+m−1∑
r=1

θ1

(
tn+m−1
r

)
Λn+m−1
j (tn+m−1

r )Λn+m−1
i (tn+m−1

r ) (4.15)

+
2n+m−1∑
r=1

η1

(
tn+m−1
r

)
(Λn+m−1

j (tn+m−1
r )2 + Λn+m−1

j (tn+m−1
r )2),

where

θ1

(
tn+m−1
r

)
= θ1 × I (r ∈ {k + 1, ..., k′}) , η1

(
tn+m−1
r

)
= η1 × I (r ∈ {k + 1, ..., k′}) .

Then, recursively define for l = 2, ...,m

θl+
(
tm+n−l
r

)
= θl−1

(
tm+n−l+1
2r−1

)
+ θl−1

(
tm+n−l+1
2r

)
(4.16)

θl−
(
tm+n−l
r

)
= θl−1

(
tm+n−l+1
2r−1

)
− θl−1

(
tm+n−l+1
2r

)
ηl+
(
tm+n−l
r

)
= ηl−1

(
tm+n−l+1
2r−1

)
+ ηl−1

(
tm+n−l+1
2r

)
ηl−
(
tm+n−l
r

)
= ηl−1

(
tm+n−l+1
2r−1

)
− ηl−1

(
tm+n−l+1
2r

)
ρl
(
tm+n−l
r

)
=

∆n+m−l+1θ
l
+

(
tm+n−l
r

)
1− 2∆n+m−l+1ηl+ (tm+n−l

r )
,

hl
(
tm+n−l
r

)
=

∆n+m−l+1(
1− 2∆n+m−l+1ηl+ (tm+n−l

r )
) (

1− ρl (tm+n−l
r )2

) ,
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and set

ηl
(
tm+n−l
r

)
=
ηl+
(
tm+n−l
r

)
4

+
hl
(
tm+n−l
r

)
8

(
θl−
(
tm+n−l
r

)2
+ 4ηl−

(
tm+n−l
r

)2

+4θl−
(
tm+n−l
r

)
ηl−
(
tm+n−l
r

)
ρl
(
tm+n−l
r

))
,

θl
(
tm+n−l
r

)
=
θl+
(
tm+n−l
r

)
4

+ hl
(
tm+n−l
r

)(
θl−
(
tm+n−l
r

)
ηl−
(
tm+n−l
r

)
+

1

4
θl−
(
tm+n−l
r

)2
gl
(
tm+n−l
r

)
+ηl−

(
tm+n−l
r

)2
ρl
(
tm+n−l
r

))
.

Finally, define

A
(
tn+m−l
r

)
=θl−1

(
tn+m−l+1
2r−1

)
Λn+m−l+1
j (tn+m−l+1

2r−1 )Λn+m−l+1
i (tn+m−l+1

2r−1 )

+ θl−1

(
tn+m−l+1
2r

)
Λn+m−l+1
j (tn+m−l+1

2r )Λn+m−l+1
i (tn+m−l+1

2r ),

B
(
tn+m−l
r

)
=ηl−1

(
tn+m−l+1
2r−1

)
(Λn+m−l+1

j (tn+m−l+1
2r−1 )2 + Λn+m−l+1

j (tn+m−l+1
2r−1 )2)

+ ηl−1

(
tn+m−l+1
2r

)
(Λn+m−l+1

j (tn+m−l+1
2r )2 + Λn+m−l+1

j (tn+m−l+1
2r )2),

and

C
(
tn+m−l
r

)
=
(
1− 2∆n+m−lη

l
+

(
tm+n−l
r

))−1
(

1− ρl
(
tm+n−l
r

)2
)−1/2

.

So, in particular we can write (4.15) as

2n+m−2∑
r=1

(A
(
tn+m−2
r

)
+B

(
tn+m−2
r

)
),

and the following result is key in evaluating (4.13).

Corollary 4.2.9 For l = 2, 3, ...,m and r = 1, 2, ..., 2n+m−l

En+m−l exp(A
(
tn+m−l
r

)
+B

(
tn+m−l
r

)
)

=C
(
tn+m−l
r

)
exp

(
θl
(
tm+n−l
r

)
Λi

(
tm+n−l
r

)
Λj

(
tm+n−l
r

))
exp

(
ηl
(
tm+n−l
r

) (
Λi

(
tm+n−l
r

)2
+ Λj

(
tm+n−l
r

)2
))

.
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Moreover, define

P ′
n+m−l+1,tn+m−l+1

r

(
W n+m−l+1
i,r ∈ A,W n+m−l+1

j,r ∈ B
)

=
En+m−l

(
I(W n+m−l+1

i,r ∈ A,W n+m−l+1
j,r ∈ B

)
exp(A

(
tn+m−l
r

)
+B

(
tn+m−l
r

)
))

En+m−l exp(A (tn+m−l
r ) +B (tn+m−l

r ))
,

then under P ′
n+m−l+1,tn+m−l+1

r
, and given Fn+m−l, we have that (W n+m−l+1

i,r ,W n+m−l+1
j,r )

follows a Gaussian distribution with covariance matrix

Σi,j
n+m−l+1

(
tn+m−l+1
r

)
=

1

1− ρl (tm+n−l
r )2

×

 (
1− 2∆n+m−lη

l
+

(
tm+n−l
r

))−1
gl
(
tm+n−l
r

)
gl
(
tm+n−l
r

) (
1− 2∆n+m−lη

l
+

(
tm+n−l
r

))−1


and mean vector

µi,jn+m

(
tn+m−l+1
r

)
=∆

1/2
n+m−lΣ

i,j
n+m−l+1

(
tn+m−l+1
r

)
×

 Λi

(
tn+m−l
r

)
ηl−
(
tn+m−l
r

)
+ 1

2
Λj

(
tn+m−l
r

)
θl−
(
tn+m−l
r

)
Λj

(
tn+m−l
r

)
ηl−
(
tn+m−l
r

)
+ 1

2
Λi

(
tn+m−l
r

)
θl−
(
tn+m−l
r

)
 .

Using Corollary 4.2.9 we conclude that

En+m−l exp(
2n+m−l∑
r=1

(A
(
tn+m−l
r

)
+B

(
tn+m−l
r

)
))

=
2n+m−l∏
r=1

C
(
tn+m−l
r

)
× exp

2n+m−l−1∑
r=1

(A
(
tn+m−l−1
r

)
+B

(
tn+m−l−1
r

)
)

 .

Therefore, combining Corollary 4.2.8 and repeatedly iterating the previous expression
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we conclude that

En exp(θ0{Ln+m
i,j (k)− Ln+m

i,j (k′)})

=
(
1− θ2

0∆2
n+m

)−(k′−k)/2
m∏
l=2

2n+m−l∏
r=1

C
(
tn+m−l
r

)
× exp(

2n∑
r=1

θm (tnr ) Λi (t
n
r ) Λj (tnr ) +

2n∑
r=1

ηm (tnr ) {Λi (t
n
r )2 + Λj (tnr )2}). (4.17)

4.2.4.2 Conditional Large Deviations Estimates for Lni,j (k)

We wish to estimate, for k′ > k and k′, k ∈ {0, 1, ..., 2n+m−1},

Pn

(
|Ln+m

i,j (k′)− Ln+m
i,j (k)| > (k′ − k)

β
∆2α
n+m

)
≤ exp(−θ0 (k′ − k)

β
∆2α
n+m)× {En[exp(θ0{Ln+m

i,j (k′)− Ln+m
i,j (k)})]

+ En[exp(−θ0{Ln+m
i,j (k′)− Ln+m

i,j (k)})]}.

We borrow some intuition from the proof of Lemma 4.2.5 and select

θ0(m, k′, k) := θ0 =
γ

(k′ − k)1/2 ∆2α′
n ∆m

. (4.18)

We will drop the dependence on (m, k′, k) for brevity. In addition, we pick γ ≤ 1/4

and α′ ∈ (α, 1/2) so that

exp(−θ0 (k′ − k)
β

∆2α
n+m) = exp(−γ (k′ − k)

β−1/2
∆2(α−α′)
n ∆2α−1

m )

Our next task is to control the En exp(θ0{Ln+m
i,j (k′)−Ln+m

i,j (k)}), which is the purpose

of the following result, proved in the appendix to this section.

Lemma 4.2.10 Suppose that θ0 is chosen according to (4.18), and n is such that for

ε0 ∈ (0, 1/2)

max
r≤2n
{|Λi (t

n
r )| , |Λj (tnr )|} ≤ ∆α′

n (4.19)

and ∣∣∣∣∣
m∑

r=l+1

Λi(t
n
r )Λj(t

n
r )

∣∣∣∣∣ ≤ ε0(m− l)β∆2α′

n for all 0 ≤ l < m ≤ 2n (4.20)
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with α′ ∈ (α, 1/2), then

En[exp(θ0{Ln+m
i,j (k′)− Ln+m

i,j (k)})] ≤ 4 exp
(
ε0γ(k′ − k)β−1/2

)
.

Remark 4.2.2 It is very important to note that due to Lemma 4.2.3 we can always

continue simulating the Wm
i,k’s (maybe conditional on {

∣∣Wm
i,k

∣∣ < 4
√
m+ 1} in case

m > N1) to make sure that (4.19) holds for some n. Similarly, condition (4.20) can

be simultaneously enforced with (4.19) because of Lemma 4.2.5. Actually, Lemmas

4.2.3 and Lemma 4.2.5 indicate that conditions (4.19) and (4.20) will occur eventually

for all n larger than some random threshold enough. Our simulation algorithms will

ultimately detect such threshold, but Lemma 4.2.10 does not require that we know that

threshold.

As a consequence of Lemma 4.2.10, using Chernoff’s bound, we obtain the follow-

ing proposition.

Proposition 4.2.11 If n is such that (4.19) and (4.20) hold, then

Pn

(
|Ln+m

i,j (k′)− Ln+m
i,j (k)| > (k′ − k)

β
∆2α
n+m

)
≤ 8 exp

(
−1

2
γ (k′ − k)

β−1/2
∆2(α−α′)
n ∆2α−1

m

)
.

4.2.5 Joint Tolerance-Enforced Simulation for α-Hölder Norms

and Proof of Theorem 4.1.2.

Define

Cn(m) = {|Ln+m
i,j (k′)− Ln+m

i,j (k)| > (k′ − k)β∆2α
n+m for some 0 ≤ k < k′ < 2n+m−1},

and put τ1 (n) = inf{m ≥ 1 : Cn(m) occurs}. We write C̄n(m) for the complement of

Cn(m), so that

Pn(τ1 (n) <∞) =
∞∑
m=1

P
(
Cn(m) ∩ ∩m−1

l=1 C̄n(m)
)
.
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To facilitate the explanation, we next introduce a few more notations. Let

ωn:n+m := {W l
i,k : 1 ≤ k ≤ 2n, 1 ≤ i ≤ d′, n < l ≤ n+m}.

In addition, define

vn(k, k′|m) :=6 exp

(
−1

2
γ (k′ − k)

β−1/2
∆2(α−α′)
n ∆2α−1

m

)
× I

(
0 ≤ k < k′ ≤ 2n+m−1

)
I (m ≥ 1)

bn(m) :=
∑

0≤k<k′≤2m+n−1

vn(k, k′|m)

qn(k, k′|m) :=
vn(k, k′|m)

bn(m)

and

P i,j,k,k′

n,m (ωn:n+m ∈ ·) =
EnI (ωn:n+m ∈ ·) exp

(
θ0{Ln+m

i,j (k′)− Ln+m
i,j (k)}

)
En exp

(
θ0{Ln+m

i,j (k′)− Ln+m
i,j (k)}

) .

We also denote

ψn(m, i, j, k, k′) := logEn exp
(
θ0{Ln+m

i,j (k′)− Ln+m
i,j (k′)}

)
Observe that

bn (m) =
∑

0≤k<k′≤2n+m−1

6 exp

(
−1

2
γ (k′ − k)

β−1/2
∆2(α−α′)
n ∆2α−1

m

)
≤ 22(m+n) exp

(
−1

2
γ∆2(α−α′)

n ∆2α−1
m

)
.

Thus, bn(m) → 0 as n → ∞. Then we can select any probability mass function

{g(m) : m ≥ 1}, e.g. g(m) = e−1/(m − 1)! for m ≥ 1, by assuming that n is

sufficiently large, such that

g(m) ≥ d′2bn(m)

Now consider the following procedure, which we called Procedure Aux, for ”aux-

iliar”, which is given for pedagogical purposes because as we shall see shortly is not

directly applicable but just useful to understand the nature of the method that we
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shall ultimately use.

Procedure Aux

Input: We assume that we have simulated {(W n
i,k : 0 ≤ k < 2l) : l ≤ n}}.

Output: A Bernoulli F with parameter Pn (τ1(n) <∞), and if F = 1, also

ωn:n+M = {W l
i,k : 1 ≤ k ≤ 2n, 1 ≤ i ≤ d′, n < l ≤ n+M}

conditional on the event τ1(n) <∞.

S1. Sample M according to g (m).

S2. Given M = m sample I and J i.i.d. from the uniform distribution over the set

{1, 2, ..., d′}.Then, sample K ′, K from qn (k, k′|m).

S3. Given M = m, I = i,J = j,K = k, and K ′ = k′, simulate ωn:n+m from

P i,j,k,k′
n,m (·). Note that simulation from P i,j,k,k′

n,m (·) can be done according to Corol-

lary 4.2.9.

S4. Compute

Ξn(m, i, j, k, k′, ωn:n+m)

=
1

g(m)d′−2qn(k, k′|m) exp
(
θ0{Ln+m

i,j (k′)− Ln+m
i,j (k)} − ψn(m, i, j, k, k′)

) ,
and

Nn (m) =
∑

1≤i,j≤d′

∑
1≤h<h′≤2n+m−1

I
(∣∣Ln+m

i,j (h′)− Ln+m
i,j (h)

∣∣ > (h− h′)β∆2α
n+m

)
.

S5. Simulate U uniformly distributed on [0, 1] independent of everything else and

output

F = I
(
U < I

({∣∣Ln+m
i,j (k′)− Ln+m

i,j (k)
∣∣ > (k − k′)β∆2α

n+m

}
∩ ∩m−1

l=1 C̄n(l)
)

×Ξn(m, i, j, k, k′, ωn:n+m)/Nn(m)) .

If F = 1, also output ωn:n+m.
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We claim that the output F is distributed as a Bernoulli random variable with

parameter Pn (τ1(n) <∞). Moreover, we claim that if F = 1, then, ωn:n+M is dis-

tributed according to Pn
(
ωn:n+τ1(n) ∈ · | τ1(n) <∞

)
. We first verify the claim that

the outcome in Step 5 follows a Bernoulli with parameter Pn (τ1(n) <∞). In order

to see this, let Qn denote the distribution induced by Procedure Aux. Note that

Qn(U < I
({∣∣Ln+M

i,j (K ′)− Ln+M
i,j (K)

∣∣ > (K −K ′)β∆2α
n+M

}
∩ ∩M−1

l=1 C̄n(l)
)

× Ξn(M, I, J,K,K ′, ωn:n+M)/Nn (m))

=EQn [I
({∣∣Ln+M

i,j (K ′)− Ln+M
i,j (K)

∣∣ > (K −K ′)β∆2α
n+M

}
∩ ∩M−1

l=1 C̄n(l)
)

× Ξn(M, I, J,K,K ′, ωn:n+M)/Nn (m)]

=
∞∑
m=1

∑
1≤i,j≤d′

∑
1≤k<k′≤2n+m−1

EQn
[
I
({∣∣Ln+m

i,j (k′)− Ln+m
i,j (k)

∣∣ > (k − k′)β∆2α
n+m

}
∩ ∩m−1

l=1 C̄n(l)
)
× dPn

dP i,j,k,k′
n,m

(ωn:n+m)× 1

Nn (m)

]
=
∞∑
m=1

∑
1≤i,j≤d′

∑
1≤k<k′≤2n+m−1

En

(
I
({∣∣Ln+m

i,j (k′)− Ln+m
i,j (k)

∣∣ > (k − k′)β∆2α
n+m

}
∩ ∩m−1

l=1 C̄n(l)
)

Nn (m)

)

=
∞∑
m=1

Pn
(
Cn(m) ∩ ∩m−1

l=1 C̄n(l)
)

= Pn(τ1 (n) <∞).

Similarly,

Qn

(
ωn:n+M ∈ A |U < I

(
Cn(M) ∩ ∩M−1

l=1 C̄n(l)
)

Ξn(M, I, J,K,K ′, ωn:n+M)
)

=
∞∑
m=1

EQn

(
ωn:n+m ∈ A ,

dP I,J,K,K′
n,m

dPn
(ωn:n+m)

I
(
Cn(m) ∩ ∩M−1

l=1 C̄n(l)
)

Pn(τ1 (n) <∞)

)

=
∞∑
m=1

Pn (ωn:n+m ∈ A , τ1 (n) = m) /Pn(τ1 (n) <∞)

=Pn
(
ωn:n+τ1(n) ∈ A | τ1(n) <∞

)
The deficiency of Procedure Aux is that it does not recognize that n > N1. Let

us now account for this fact and note that conditional on FN1 we have that W n
i,k’s are
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i.i.d. N(0, 1) but conditional on {|W n
i,k| < 4

√
n+ 1} for all n > N1. Define

Hn
m = {|W r

i,k| < 4
√
r + 1 : 1 ≤ k ≤ 2r, n < r ≤ n+m}.

In order to simulate PN1 (τ1(N1) <∞) we modify step 3 of Procedure Aux. Specifi-

cally, we have

Procedure B

Input: We assume that we have simulated {(W l
i,k : 0 ≤ k < 2l) : l ≤ n}. So, the

Wm
i,k’s are i.i.d. N(0, 1) but conditional on {|Wm

i,k| < 4
√
m+ 1} for all m > n. We also

assume that conditions (4.19) and (4.20) hold in Lemma 4.2.10; note the discussion

following Lemma 4.2.10 which notes that this can be assumed at the expense of

simulating additional Wm
i,k’s (with {|Wm

i,k| < 4
√
m+ 1} if m > N1).

Output: A Bernoulli F with parameter Pn(τ1(n) <∞,Hn
∞), and if F = 1, also

ωn:n+τ1(n) = {W l
i,k : 1 ≤ k ≤ 2n, 1 ≤ i ≤ d′, n < l ≤ n+ τ1 (n)}

conditional on τ1(n) <∞ and on Hn
∞.

S1. Sample M according to g (m).

S2. Given M = m sample I and J i.i.d. from the uniform distribution over the set

{1, 2, ..., d′}.Then, sample K ′, K from qn (k, k′|m).

S3. Given M = m, I = i,J = j,K = k, and K ′ = k′, simulate ωn:n+m from

P i,j,k,k′
n,m (·). Note that simulation from P i,j,k,k′

n,m (·) can be done according to Corol-

lary 4.2.9.

S4. Compute

Ξn(m, i, j, k, k′, ωn:n+m)

=
1

g(m)d′−2qn(k, k′|m) exp
(
θ0{Ln+m

i,j (k′)− Ln+m
i,j (k)} − ψn(m, i, j, k, k′)

) ,
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and

Nn (m) =
∑

1≤i,j≤d′

∑
1≤k<k′≤2n+m−1

I
(∣∣Ln+m

i,j (k′)− Ln+m
i,j (k)

∣∣ > (k − k′)β∆2α
n+m

)
.

S5. Simulate U uniformly distributed on [0, 1] independent of everything else and

output

F

=I

(
U <

I
(
Hn
m ∩

{∣∣Ln+m
i,j (k′)− Ln+m

i,j (k)
∣∣ > (k − k′)β∆2α

n+m

}
∩ ∩M−1

l=1 C̄n(l)
)
P (Hn+m

∞ )

P (Hn
∞)

×Ξn(m, i, j, k, k′, ωn:n+m)/Nn(m))

(Notice that P (Hn+m
∞ )/P (Hn

∞) = P (Hn
n+m) and can be computed in finite

steps.)

If F = 1, also output ωn:n+m.

Let Q̃n denote the distribution induced by Procedure B̃. Following the same

analysis as that given for Procedure B, we can verify that

Q̃n(U <
I
(
Hn
m ∩

{∣∣Ln+m
i,j (k′)− Ln+m

i,j (k)
∣∣ > (k − k′)β∆2α

n+m

}
∩ ∩M−1

l=1 C̄n(l)
)
P (Hn+m

∞ )

P (Hn
∞)

× Ξn(m, i, j, k, k′, ωn:n+m)/Nn(m))) = Pn (τ1(n) <∞|Hn
∞) .

And if the Bernoulli trial is a success, then, ωn:n+M is distributed according to

Pn
(
ωn:n+τ1(n) ∈ · | τ1(n) <∞,Hn

∞
)
.

Finally, if τ1 (n) = ∞, we still need to simulate ωn:n+m for any m ≥ 1. But now,

conditional on {τ1(n) =∞,Hn
∞}. Note that

Pn (ωn:n+m ∈ A | τ1(n) =∞,Hn
∞)

=
Pn (ωn:n+m ∈ A , τ1(n) =∞,Hn

∞)

Pn (τ1(n) =∞,Hn
∞)

=
EnI(ωn:n+m ∈ A,τ1(n) > m,Hn

m)Pn+m(τ1(n+m) =∞,Hn+m
∞ )

Pn (τ1(n) =∞,Hn
∞)

.



CHAPTER 4. ε-STRONG SIMULATION FOR SDES 107

We do this by sampling ωn:n+m from Pn (·) and accept the path with probability

I(τ1(n) > m,Hn
m)Pn+m(τ1(n+m) =∞,Hn+m

∞ ).

This clearly can be done since we can easily simulate Bernoullis with probability

Pn+m(τ(n+m) =∞,Hn+m
∞ ) = Pn+m(τ1(n+m) =∞ | Hn+m

∞ )Pn+m(Hn+m
∞ ).

We summarize the algorithm as follows:

Algorithm 4.2: Simulate N1 and N2 jointly with W n
i,k’s for 1 ≤ n ≤ N0, where

N0 is chosen such that supt∈[0,1] ||X̂N0(t)−X(t)||∞ ≤ ε

Input: The parameters required to run Algorithm 4.1, and Procedures A and B.

These are the tilting parameters θ0’s.

S1. Simulate N1 jointly with Wm
i,k’s for 0 ≤ m ≤ N1 using Algorithm 4.1 (see the

remark that follows after Algorithm I). Let n = N1.

S2. If any of the conditions (4.19) and (4.20) from Lemma 4.2.10 are not satisfied

keep simulating Wm
i,k’s for m > n until the first level m > n for which conditions

(4.19) and (4.20) are satisfied. Redefine n to be such first level m.

S3. Run Procedure B and obtain as output F and if F = 1 also obtain ωn:n+τ(n).

S4. If τ(n) <∞ (i.e. F = 1) set n←− τ(n) and go back to Step 2. Otherwise, go

to Step 4.

S5. Calculate G according to Procedure A and solve for N0 such that G∆2α−β
N0

< ε.

S6. If N0 > n sample ωn:N0 from Pn(·) and sample a Bernoulli random variable, I

with probability of success PN0(τ(N0) =∞,HN0
∞ ).

S7. If I = 0, go back to Step 6.

S8. Output ω0:N0 .
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We obtain {W l
i,k : 0 ≤ k < 2l, l ≤ N0, 1 ≤ i ≤ d} from Algorithm II. We have

from recursions (4.11) and (4.12) how to obtain

{(Zi(tlr)− Zi(tlr−1)) : 1 ≤ r ≤ 2l, 1 ≤ l ≤ N0, 1 ≤ i ≤ d} (4.21)

and then we can compute {X̂N0(t) : t ∈ DN0} using equation (4.6).

Remark 4.2.3 Observe that after completion of Algorithm 4.2, one can actually con-

tinue the simulation of increments in order to obtain an approximation with an error

ε′ < ε. In particular, this is done by repeating Steps 4 to 8. Start from Step 4 with

n = N0. The value of G has been computed, it does not depend on ε. However, one

needs to recompute N0 := N0 (ε′) such that G∆2α−β
N0

< ε′. Then we can implement

Steps 5 to 8 without change. One obtains an output that, as before, can be trans-

formed into (4.21) via the recursions (4.11), yielding {X̂N0(ε′)(t) : t ∈ DN0(ε′)} with a

guaranteed error smaller than ε′ in uniform norm with probability 1.

4.3 Rough Path Differential Equations, Error Anal-

ysis, and The Proof of Theorem 4.1.1

The analysis in this section follows closely the discussion from [40] Section 3 and

Section 7; see also [43] Chapter 10. We made some modifications to account for the

drift of the process and also to be able to explicitly calculate the constant G. Let us

start with the definition of a solution to (4.1) using the theory of rough differential

equations.

Definition 4.3.1 X(·) is a solution of (4.1) on [0, 1] if X(0) = x(0) and

|Xi(t)−Xi(s)− µi(X(s))(t− s)−
d′∑
j=1

σi,j(X(s))(Zj(t)− Zj(s))

−
d′∑
j=1

d∑
l=1

d′∑
m=1

∂lσi,j(X(s))σl,m(X(s))Am,j(s, t)| = o(t− s)
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for all i and 0 ≤ s < t ≤ 1, where Ai,j (·) satisfies

Ai,j(r, t) = Ai,j(r, s) + Ai,j(s, t) + (Zi(s)− Zi(r))(Zj(t)− Zj(s)) (4.22)

for 0 ≤ r < s < t ≤ 1.

The previous definition is motivated by the following Taylor-type development,

Xi(t+ h) =Xi(t) +

∫ t+h

t

µi(X(u))du+
d′∑
j=1

∫ t+h

t

σi,j(X(u))dZj(u)

≈Xi(t) +

∫ t+h

t

µi(X(u))du

+
d′∑
j=1

∫ t+h

t

σi,j (X(t) + µ(X(t))(u− t) + σ(X(t))(Z(u)− Z(t))) dZj(u)

≈Xi(t) + µi(X(t))h+
d′∑
j=1

σi,j(X(t))(Zj(t+ h)− Zj(t))

+
d′∑
j=1

d∑
l=1

d′∑
m=1

∂lσi,j(X(t))σl,m(X(t))

∫ t+h

t

(Zm(u)− Zm(t))dZj(u).

The previous Taylor development suggests definingAi,j(s, t) :=
∫ t
s
(Zi(u)−Zi(s))dZj(u).

Depending on how one interprets A(s, t), e.g. via Ito or Stratonovich integrals, one

obtains a solution X(·) which is interpreted in the corresponding context.

In order to obtain the Ito interpretation of the solution to equation (4.1) via

definition (4.3.1) we shall interpret the integrals in the sense of Ito. In addition, as

we shall explain, some technical conditions (in addition to the standard Lipschitz

continuity typically required to obtain a strong solution a la Ito) must be imposed in

order to enforce the existence of a unique solution to (4.3.1).

There are two sources of errors when using X̂n in equation (4.6) to approximate

X. One is the discretization on the dyadic grid, but assuming that Ai,j
(
tnk , t

n
k+1

)
is

known; this type of analysis is the one that is most common in the literature on rough

paths (see [40]). The second source of error arises precisely accounting for the fact
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that Ai,j
(
tnk , t

n
k+1

)
is not known. Thus we divide the proof of Theorem 4.1.1 into two

steps (two propositions), each dealing with one source of error.

Similar to X̂n(t), we define {Xn(t) : t ∈ Dn} by the following recursion: given

Xn(0) = X(0),

Xn
i (tnk+1) =Xn

i (tnk) + µi(x
n(tnk))∆n +

d′∑
j=1

σi,j(X
n
i (tnk))(Zj(t

n
k+1)− Zj(tnk))

+
d′∑
j=1

d∑
l=1

d′∑
m=1

∂lσi,j(X
n
i (tnk))σl,m(Xn

i (tnk))Am,j(t
n
k , t

n
k+1), (4.23)

and for t ∈ [0, 1], we let Xn(t) = Xn(btc), where in this context btc = max{s ∈ Dn :

s ≤ t}.

Proposition 4.3.2 Under the conditions of Theorem 4.1.1, we can compute a con-

stant G1 explicitly in terms of M , ||Z||α and ||A||2α, such that for n large enough

||Xn(t)−X(t)||∞ ≤ G1∆3α−1
n .

The proof of Proposition 4.3.2 will be given after introducing some definitions and

key auxiliary results. We denote

Ini (r, t) := Xn
i (t)−Xn

i (r)− µi(Xn(r))(t− r)−
d′∑
j=1

σi,j(X
n(r))(Zj(t)− Zj(r))

and

Jni (r, t) := Ini (r, t)−
d′∑
j=1

d∑
l=1

d′∑
m=1

∂lσi,j(X
n(r))σl,m(Xn(r))Am,j(r, t).

The following lemmas introduce the main technical results for the proof of Propo-

sition 4.3.2.

Lemma 4.3.3 Under the conditions of Theorem 4.1.1, there exist constants C1, C2

and C3 that depend only on M , ||Z||α and ||A||2α, such that for any large enough n

and r, t ∈ Dn,

||Xn(t)−Xn(r)||∞ ≤ C1|t− r|α,

|In(r, t)||∞ ≤ C2|t− r|2α,
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and

||Jn(r, t)||∞ ≤ C3|t− r|3α.

Proof. We follow For r ≤ s ≤ t, r, s, t ∈ Dn, we have the following important

recursions:

Ini (r, t) = Ini (r, s) + Ini (s, t) + (µi(X
n(s))− µi(Xn(r)))(t− s)

+
d′∑
j=1

(σi,j(X
n(s))− σi,j(Xn(r)))(Zj(t)− Zj(s))

and

Jni (r, t)

=Jni (r, s) + Jni (s, t) + (µi(X
n(s))− µi(Xn(r))) (t− s)

+
d′∑
j=1

[σi,j(X
n(s))− σi,j(Xn(r))−

d∑
l=1

∂lσi,j(X
n(r))(Xn

l (s)−Xn
l (r))

+
d∑
l=1

∂lσi,j(X
n(r))Inl (r, s)](Zj(t)− Zj(s))

+
d′∑
j=1

d∑
l=1

d′∑
m=1

[∂lσi,j(X
n(s))σl,m(Xn(s))− ∂lσi,j(Xn(r))σl,m(Xn(r))]Am,j(s, t)

(4.24)

We next divide the proof into two parts. We first prove that there exists a small

enough constant δ > 0 and three large enough constants C1(δ), C2(δ) and C3(δ),

all independent of n, such that for |t − r| < δ, ||Xn(t) − Xn(r)||∞ ≤ C1(δ)|t −

r|α, ||In(r, t)||∞ ≤ C2(δ)|t − r|2α and ||Jn(r, t)||∞ ≤ C3(δ)|t − r|3α. We prove it by

induction. First we have Jn(r, r) = 0 and Jn(r, r + ∆n) = 0. Suppose the result

hold for all pairs of r0, t0 ∈ Dn with |t0 − r0| < |t − r|. We then pick s ∈ Dn as

the largest point between r and t such that |s − r| ≤ |t − r|/2. Then we also have

|s+ ∆n − r| > |t− r|/2 and |t− (s+ ∆n)| < |t− r|/2.
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As

Xn
i (t)−Xn

i (s) =Jni (s, t) + µi(X
n(s))(t− s) +

d′∑
j=1

σi,j(X
n(s))(Zj(t)− Zj(s))

+
d′∑
j=1

d∑
l=1

d′∑
m=1

∂lσi,j(X
n(s))σl,m(Xn(s))Am,j(s, t),

we have

|Xn
i (t)−Xn

i (s)|

≤C3(δ)|t− s|3α +M |t− s|+ dM ||Z||α|t− s|α + d3M2||A||2α|t− s|2α

≤(C3(δ)δ2α +Mδ1−α + dM ||Z||α + d3M2||A||2αδα)|t− s|α

≤C1(δ)|t− s|α

for C1(δ) > C3(δ)δ2α +Mδ1−α + dM ||Z||α + d3M2||A||2αδα.

And as

Ini (s, t) = Jni (s, t) +
d′∑
j=1

d∑
l=1

d′∑
m=1

∂lσi,j(X
n(s))σl,m(Xn(s))Am,j(s, t),

we have

|Ini (s, t)| ≤ C3(δ)|t− s|3α + d3M2||A||2α|t− s|2α

≤ (C3(δ)δα + d3M2||A||2α)|t− s|2α ≤ C2(δ)|t− s|2α

for C2(δ) > C3(δ)δα + d3M2||A||2α.

We now analyze the recursion (4.24) term by term. First,

|µi(Xn(s))− µi(Xn(r))| ≤MC1(δ)|s− r|α,

|σi,j(Xn(s))− σi,j(Xn(r))−
d∑
l=1

∂lσi,j(X
n(r))(Xn

l (s)−Xn
l (r))| ≤MC1(δ)2|s− r|2α,

|
d∑
l=1

∂lσi,j(X
n(r))Inl (r, s)| ≤ dMC2(δ)|s− r|2α,



CHAPTER 4. ε-STRONG SIMULATION FOR SDES 113

and

|∂lσi,j(Xn(s))σl,m(Xn(s))− ∂lσi,j(Xn(r))σl,m(Xn(r))| ≤ 2M2C1(δ)|s− r|α.

Then

|Jni (r, t)|

≤|Jni (r, s)|+ |Jni (s, t)|

+ (MC1(δ) + dMC1(δ)2||Z||α + d2MC2(δ)||Z||α + 2d3M2C1(δ)||A||α)|t− r|3α

Likewise, we have

|Jni (s, t)|

≤|Jni (s, s+ ∆n)|+ |Jni (s+ ∆n, t)|

+ (MC1(δ) + dMC1(δ)2||Z||α + d2MC2(δ)||Z||α + 2d3M2C1(δ)||A||α)|t− s|3α

=|Jni (s+ ∆n, t)|

+ (MC1(δ) + dMC1(δ)2||Z||α + d2MC2(δ)||Z||α + 2d3M2C1(δ)||A||α)|t− s|3α.

Then

|Jni (r, t)|

≤|Jni (r, s)|+ |Jni (s+ ∆n, t)|

+ 2{MC1(δ) + dMC1(δ)2||Z||α + d2MC2(δ)||Z||α + 2d3M2C1(δ)||A||α}|t− s|3α

≤{21−3αC3(δ) + 2(MC1(δ) + dMC1(δ)2||Z||α + d2MC2(δ)||Z||α

+ 2d3M2C1(δ)||A||α)}|t− s|3α

≤C3(δ)|t− s|3α,

for

(1− 21−3α)C3(δ)

>2(MC1(δ) + dMC1(δ)2||Z||α + d2MC2(δ)||Z||α + 2d3M2C1(δ)||A||α).
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Therefore, if we deliberately choose δ, C1(δ), C2(δ) and C3(δ) such that

C1(δ) > C3(δ)δ2α +Mδ1−α + dM ||Z||α + d3M2||A||2αδα

C2(δ) > C3(δ)δα + d3M2||A||2α

C3(δ) >
2

1− 21−3α

(
MC1(δ) + dMC1(δ)2||Z||α + d2MC2(δ)||Z||α

+2d3M2C1(δ)||A||α
)

Then we have

||Xn(t)−Xn(r)||∞ ≤ C1(δ)|t− r|α,

||In(r, t)||∞ ≤ C2(δ)|t− r|2α,

||Jn(r, t)||∞ ≤ C3(δ)|t− r|3α,

for |t− r| < δ.

We now extend the analysis to the case when |t− r| > δ. For n large enough (∆n <

δ/2), if |t− r| > δ, we can always find points si ∈ Dn and r = s0 < s1 < · · · < sk = t

such that max1≤i≤k |si − si−1| < δ and min1≤i≤k |si − si−1| > δ/2. Then

|Xn
i (t)−Xn

i (r)| ≤
k∑
l=1

|Xn
i (sl)−Xn

i (sl−1)| ≤ kC1(δ)|t− r|α ≤ 2

δ
C1(δ)|t− r|α

Let C1 = 2
δ
C1(δ) and we can write ||Xn(t)−Xn(r)||∞ < C1|t− r|α. Next,

|Ini (r, t)| ≤
k∑
l=1

{|Ini (sl−1, sl)|+ |(µi(Xn(sl))− µi(Xn(s0)))(sl − sl−1)|

+ |(σi(Xn(sl))− σi(Xn(s0)))(Z(sl+1)− Z(sl))|}

≤k[C2(δ)|t− r|2α +MC1|t− r|1+α + dMC1||Z||α|t− r|2α]

≤2

δ
(C2(δ) +MC1 + dMC1||Z||α)|t− r|2α

By setting C2 = 2
δ
(C2(δ) +MC1 + dMC1||Z||α), we have ||In(r, t)||∞ < C2|t− r|2α.

Now following the same induction analysis on Jni (s, t) as we did in the case |t−s| < δ,
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we have

|Jni (r, t)|

≤ 2

23α
C3|t− r|3α + 2(MC1 + dMC2

1 ||Z||α + d2MC2||Z||α + 2d3M2C1||A||α)|t− r|3α

If we choose

C3 =
2

1− 21−3α
(MC1 + dMC2

1 ||Z||α + d2MC2||Z||α + 2d3M2C1||A||α),

then ||Jn(r, t)||∞ ≤ C3|t− s|3α.

2

Lemma 4.3.4 Let x(0) and x̃(0) ∈ Rd be two different vectors. We denote Xn(t)

and X̃n(t) for t ∈ Dn as the n-th dyadic approximation defined by (4.23) with initial

value x(0) and x̃(0) respectively. Under the conditions of Theorem 4.1.1, there exists

a constant B, independent of n, such that for t ∈ Dn,

||Xn(t)− X̃n(t)− (Xn(0)− X̃n(0))||∞ ≤ Btα||Xn(0)− X̃n(0)||∞.

Moreover,

||Xn(t)− X̃n(t)||∞ ≤ (1 +B)||Xn(0)− X̃n(0)||∞.

Proof. Let

Y n
i,h(t) =

Xn
i (t)− X̃n

i (t)

||Xn
h (0)− X̃n

h (0)||∞
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We define 0/0 = 0.

Then following the recursion (4.23), we have

Y n
i,h(t

n
k+1)

=Y n
i,h(t

n
k) +

µi(X
n(tnk))− µi(X̃n(tnk))

||Xn
h (0)− X̃n

h (0)||∞
∆n

+
d′∑
j=1

σi,j(X
n(tnk))− σi,j(X̃n(tnk))

||Xn
h (0)− X̃n

h (0)||∞
(Zj(t

n
k+1)− Zj(tnk))

+
d′∑
j=1

d∑
l=1

d′∑
m=1

{∂lσi,j(X
n(tnk))σl,m(Xn(tnk))− ∂lσi,j(X̃n(tnk))σl.m(X̃n(tnk))

||Xn
h (0)− X̃n

h (0)||∞

× Am,j(tnk , tnk+1)} (4.25)

Then (4.23) and (4.25) together define an recursion to generate Xn, X̃n and Y n.

Following Lemma 4.3.3, there exists a constant B that depends only on M , ||Z||α
and ||A||2α, such that

||Y n(t)− Y n(0)||∞ ≤ Btα.

Thus,

||Xn(t)− X̃n(t)− (Xn(0)− X̃n(0))||∞ ≤ Btα||Xn(0)− X̃n(0)||∞,

and

||Xn(t)− X̃n(t)||∞ ≤ (1 +B)||Xn(0)− X̃n(0)||∞.

2

We are now ready to prove Proposition 4.3.2.

Proof. [Proof of Proposition 4.3.2]From Lemma 4.3.3 we have ||Xn(t)−Xn(r)||∞ ≤

C1|t − r|α. By Arzela-Ascoli Theorem, there exits a subsequence of {Xn} that

converges uniformly to some continuous function X on [0, 1]. Moreover we have



CHAPTER 4. ε-STRONG SIMULATION FOR SDES 117

||X(t)−X(r)||∞ ≤ C1|t− r|α and

|Xi(t)−Xi(r)− µi(X(r)−
d′∑
j=1

σi,j(X(r))(Zj(t)− Zj(r))

−
d′∑
j=1

d∑
l=1

d′∑
m=1

∂lσi,j(X(r))σl.m(X(r))Am,j(r, t)| < C2|t− r|3α

Therefore, the limit X is a solution to the SDE.

Let Xn,(s)(t;X(s)) := Xn(t−s)|Xn(0) = X(s). Specifically, we have Xn,(0)(t;X(0)) =

Xn(t) with Xn(0) = X(0), and Xn,(t)(t;X(t)) = X(t). Then we can write

Xn(tnm)−X(tnm) =
m∑
k=1

(
Xn,(tnk )(tnm;X(tnk))−Xn,(tnk−1)(tnm;X(tnk−1))

)
By Lemma 4.3.4, ||Xn,(tnk )(tm;X(tnk)) −Xn,(tnk−1)(tm;X(tnk−1))||∞ ≤ (1 + B)||X(tnk) −

Xn,tnk−1(tnk ;X(tnk−1))||∞. We also have

|Xi(t
n
k)−Xn,(tnk−1)

i (tnk ;X(tnk−1))|

=|Xi(t
n
k)−Xi(t

n
k−1)− µi(X(tnk−1)(tnk − tnk−1)−

d′∑
j=1

σi,j(X(tnk−1))(Zj(t
n
k)− Zj(tnk−1))

−
d′∑
j=1

d∑
l=1

d′∑
m=1

∂lσi,j(X(tnk−1))σl,m(X(tnk−1))Am,j(t
n
k−1, t

n
k)|

≤C3|tnk − tnk−1|3α

Thus,

||Xn(tnm)−X(tnm)||∞ ≤
m∑
k=1

||Xn,(tnk )(tnm;X(tnk))−Xn,(tnk−1)(tnm;X(tnk−1))||∞

≤ m(1 +B)C3∆3α
n

≤ (1 +B)C3∆3α−1
n .

2

Next we turn to the analysis of the error induced by approximating the Lévy area.
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Proposition 4.3.5 Under the conditions of Theorem 4.1.1, we can compute a con-

stant G2 explicitly in terms of M , ||Z||α, ||A||2α and ΓR, such that for n large enough

||X̂n(t)−Xn(t)||∞ ≤ G2∆2α−β
n .

The proof of Proposition 4.3.5 uses a similar technique as the proof of Proposition

4.3.2 and also relies on some auxiliary results. Let

Un
i (s, t) := X̂n

i (t)−Xn,(s)
i (t; X̂n(s)) +

d′∑
j=1

d∑
l=1

d′∑
m=1

∂lσi,j(X̂
n(s))σl,m(X̂n(s))Rn

m,j(s, t).

We first prove the following technical result.

Lemma 4.3.6 Under the conditions of Theorem 4.1.1, there exists a constant C4,

that depends only on M , ||Z||α, ||A||2α and ΓR, such that

||Un(r, t)||∞ ≤ C4|t− r|α+β∆2α−β
n

Proof. For 0 ≤ r < s < t ≤ 1, r, s, t ∈ Dn, we have

Un
i (r, t)

=Un
i (r, s) + Un

i (s, t)

+
[
X
n,(s)
i (t; X̂n(s))−Xn,(r)

i (t; X̂n(r))− (X̂n
i (s)−Xn,(r)

i (s; X̂n(r)))
]

−
d′∑
j=1

d∑
l=1

d′∑
m=1

(
∂lσi,j(X̂

n(s))σl,m(X̂n(s))− ∂lσi,j(X̂n(r))σl,m(X̂n(r))
)
Rn
m,j(s, t)

From Lemma 4.3.4,

|Xn,(s)
i (t; X̂n(s))−Xn,(r)

i (t; X̂n(r))−
(
X̂n
i (s)−Xn,(r)

i (s; X̂n(r))
)
|

≤B|t− s|α||X̂n(s)−Xn,(r)(s; X̂n(r))||∞

From Lemma 4.3.3,∣∣∣(∂lσi,j(X̂n(s))σl,m(X̂n(s))− ∂lσi,j(X̂n(r))σl,m(X̂n(r))
)
Rn
m,j(s, t)

∣∣∣
≤2M2C1|s− r|αΓR|t− s|β∆2α−β

n

≤2M2C1ΓR|t− r|α+β∆2α−β
n
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Therefore,

||Un(r, t)||∞

≤||Un(r, s)||∞ + ||Un(s, t)||∞ +B|t− s|α||X̂n(s)−Xn,(r)(tnp ; X̂n(r))||∞

+ 2d3M2C1ΓR|t− r|α+β∆2α−β
n

≤||Un(r, s)||∞ + ||Un(s, t)||∞ +B|t− s|α||Un(r, s)||∞

+B|t− s|α max
i
{|

d′∑
j=1

d∑
l=1

d′∑
m=1

∂lσi,j(X̂
n(r))σl,m(X̂n(r))Rn

m,j(r, s)|}

+ 2d3M2C1ΓR|t− r|α+β∆2α−β
n

≤(1 +B|t− s|α)||Un(r, s)||∞ + ||Un(s, t)||∞

+ (Bd3M2ΓR + 2d3M2C1ΓR)|t− r|α+β∆2α−β
n (4.26)

Like the proof of Lemma 4.3.3, we divide the proof into two parts. We first prove

that there exist a small enough constant δ > 0 and a large enough constant C4(δ),

both independent of n, such that for |t − r| < δ, |Un(r, t)| ≤ C4(δ)|t − r|α+β∆2α−β
n .

And we prove it by induction. First we have Un
tnk ,t

n
k

= 0 and Un
tnk ,t

n
k+1

= 0. Suppose

the bound holds for all pairs r0, t0 ∈ Dn with |t0 − r0| < |t − r|. We pick s ∈ Dn as

the largest point between r and t such that |s − r| ≤ 1/2|t − r|. Then we also have

|(s+ ∆n)− r| > 1/2|t− r| and |t− (s+ ∆n)| < 1/2|t− r|.

||Un(r, t)||∞ ≤(1 +B|t− s|α)||Un(r, s)||∞ + ||Un(s, t)||∞

+ (Bd3M2ΓR + 2d3M2C1ΓR)|t− r|α+β∆2α−β
n

and

||Un(s, t)||∞

≤(1 +B∆α
n)||Un(s, s+ ∆n)||∞ + ||Un(s+ ∆n, t)||∞

+ (Bd3M2ΓR + 2d3M2C1ΓR)|t− s|α+β∆2α−β
n

≤||Un(s+ ∆n, t)||∞ + (Bd3M2ΓR + 2d3M2C1ΓR)|t− r|α+β∆2α−β
n
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Therefore,

||Un(r, t)||∞

≤(1 +Bδα)||Un(r, s)||∞ + ||Un(s+ ∆n, t)||∞

+ 2(Bd3M2ΓR + 2d3M2C1ΓR)|t− r|α+β∆2α−β
n

≤2 +Bδα

2α+β
C4(δ)|t− r|α+β∆2α−β

n + 2(Bd3M2ΓR + 2d3M2C1ΓR)|t− r|α+β∆2α−β
n .

If we pick δ and C4(δ) such that

Bδα ≤ 2α+β − 2

and

(1− 2 +Bδα

2α+β
)C4(δ) ≥ 2(Bd3M2ΓR + 2d3M2C1ΓR),

Then ||Un(r, t)||∞ ≤ C(δ)|t−r|α+β∆2α−β
n . We next extend the result to the case when

|t− r| > δ. We can always divide the interval [r, t] into smaller intervals of length less

than δ, specifically, for n large enough, we consider r = s0 < s1 < · · · < sk = t where

si ∈ Dn and 1/2δ < |si − si−1| < δ for i = 1, 2, . . . , k. Then k < 2|t− r|/δ ≤ 2/δ and

||Un(r, t)||∞

≤(1 +B|s1 − s0|α)||Un(s0, s0)||∞ + ||Un(s1, s2)||∞

+ (Bd3M2ΓR + 2d3M2C1ΓR)|t− r|α+β∆2α−β
n

≤
k∑
i=1

(1 +Bδα)||Un(si−1, si)||∞ + k(Bd3M2ΓR + 2d3M2C1ΓR)|t− r|α+β∆2α−β
n

≤(1 +Bδα)C4(δ)∆2α−β
n

k∑
i=1

|si − si−1|α+β

+ k(Bd3M2ΓR + 2d3M2C1ΓR)|t− r|α+β∆2α−β
n

≤(1 +Bδα)C4(δ)|t− r|α+β∆2α−β
n +

2

δ
(Bd3M2ΓR + 2d3M2C1ΓR)|t− r|α+β∆2α−β

n

≤C4|m− k|α+β∆2α−β
n

for C4 ≥ (1 +Bδα)C4(δ) + 2(Bd3M2ΓR + 2d3M2C1ΓR)/δ.

2
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We are now ready to prove Proposition 4.3.5.

Proof. [Proof of Proposition 4.3.5]From Lemma 4.3.6, we have

||Un(0, t)||∞ ≤ C4t
α+β∆2α−β

n .

Then

|X̂n
i (t)−Xn

i (t)| ≤ |Un
i (0, t)|+

d∑
j=1

d∑
l=1

d∑
m=1

|∂lσi,j(X(0))σl,m(X(0))||Rn
m,j(0, t)|

≤ C4t
α+β∆2α−β

n + d3M2ΓRt
β∆2α−β

n

≤ (C4 + d3M2ΓR)∆2α−β
n .

2

4.4 Proof of Technical Results

4.4.1 Proof of Technical Results in Section 4.2.3

We now provide the proofs of the results in the order in which they were presented in

the Section 4.2.3. We start by recalling the following algebraic property of the Lévy

areas: for each 0 ≤ r < s < t

Ai,j (r, t) = Ai,j (r, s) + Ai,j (s, t) + (Zi (s)− Zi (r)) (Zj (t)− Zj (s)) . (4.27)

Using this property and a simple use of the Borel-Cantelli lemma we can obtain the

proof of Lemma 4.2.4.

Proof. [Proof of Lemma 4.2.4] We use (4.27) repeatedly. First, note that

Ai,j
(
tnk , t

n
k+1

)
= Ai,j

(
tn+1
2k , tn+1

2k+1

)
+ Ai,j

(
tn+1
2k+1, t

n+1
2k+2

)
+
(
Zi
(
tn+1
2k+1

)
− Zi

(
tn+1
2k

)) (
Zj
(
tn+1
2k+2

)
− Zj

(
tn+1
2k+1

))
.
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We continue, this time splitting Ai,j
(
tn+1
2k , tn+1

2k+1

)
and Ai,j

(
tn+1
2k+1, t

n+1
2k+2

)
, thereby ob-

taining

Ai,j
(
tnk , t

n
k+1

)
=
(
Zi
(
tn+1
2k+1

)
− Zi

(
tn+1
2k

)) (
Zj
(
tn+1
2k+2

)
− Zj

(
tn+1
2k+1

))
+ Ai,j

(
tn+2
22k , t

n+2
22k+1

)
+ Ai,j

(
tn+2
22k+1, t

n+2
22k+2

)
+
(
Zi
(
tn+2
22k+1

)
− Zi

(
tn+2
22k

)) (
Zj
(
tn+2
22k+2

)
− Zj

(
tn+2
22k+1

))
+ Ai,j

(
tn+2
22k+2, t

n+2
22k+3

)
+ Ai,j

(
tn+2
22k+3, t

n+2
22k+4

)
+
(
Zi
(
tn+2
22k+3

)
− Zi

(
tn+2
22k+2

)) (
Zj
(
tn+2
22k+4

)
− Zj

(
tn+2
22k+3

))
.

Iterating m times the previous splitting procedure we conclude that

Ai,j
(
tnk , t

n
k+1

)
=

m∑
h=n+1

2h−n−1∑
l=1

[Zi(t
h
2h−nk+2l−1)− Zi(th2h−nk+2l−2)][Zj(t

h
2h−nk+2l)− Zj(t

h
2h−nk+2l−1)]

+
2m−n−1∑
l=1

Ai,j
(
tm2m−nk+2l−2, t

m
2m−nk+2l−1

)
+

2m−n−1∑
l=1

Ai,j
(
tm2m−nk+2l−1, t

m
2m−nk+2l

)
.

(4.28)

We claim that

2m−n−1∑
l=1

Ai,j
(
tm2m−nk+2l−2, t

m
2m−nk+2l−1

)
+

2m−n−1∑
l=1

Ai,j
(
tm2m−nk+2l−1, t

m
2m−nk+2l

)
→ 0 (4.29)

almost surely as m→∞. To see this note that

P

(∣∣∣∣∣
2m−n−1∑
l=1

Ai,j
(
th2h−nk+2l−2, t

h
2h−nk+2l−1

)∣∣∣∣∣ > 1/m

)

≤ m2

2m−n−1∑
l=1

E(A2
i,j

(
tm2m−nk+2l−2, t

m
2m−nk+2l−1

)
) = m22m−n+1E

∫ ∆m

0

Z2
i (s) ds

= m22m−n∆2
m = 2nm2∆m.
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Since
∑∞

m=1m
2∆m < ∞ we conclude by Borel-Cantelli’s lemma that, almost surely,

for m large enough ∣∣∣∣∣
2m−n−1∑
l=1

Ai,j
(
th2h−nk+2l−2, t

h
2h−nk+2l−1

)∣∣∣∣∣ < 1/m

and thus indeed we have (4.29) holds almost surely and therefore, from (4.28), sending

m→∞ we obtain the conclusion of the lemma. 2

Then we present the proof of Lemma 4.2.5.

Proof. [Proof of Lemma 4.2.5] Define

Cn = {|Lni,j(m)− Lni,j(l)| > (m− l)β∆2α
n for some 0 ≤ l < m < 2n−1}.

We will show that the events {Cn : n ≥ 0} occur finitely many times. Note that

P (Cn) ≤
∑

0≤l<m<2n−1

2P
((
Lni,j(m)− Lni,j(l)

)
> (m− l)β∆2α

n

)
. (4.30)

Also observe that for fixed m and n, Lni,j (m) is the sum of m i.i.d. random variables,

each of which is distributed as (Zi(t
n
1 )−Zi(tn0 ))(Zj(t

n
2 )−Zj(tn1 )) and we easily evaluate

E exp (θ(Zi(t
n
1 )− Zi(tn0 ))(Zj(t

n
2 )− Zj(tn1 ))) =

(
1− θ2∆2

n

)−1/2
.

We apply Chernoff’s bound concluding

P
((
Lni,j(m)− Lni,j(l)

)
> (m− l)β∆2α

n

)
≤ exp

(
−θ (m− l)β ∆2α

n −
1

2
(m− l) log

(
1− θ2∆2

n

))
.

Select θ = θ′ (m− l)−1/2 ∆−1
n for θ′ ∈ (0, 1/4)

P
((
Lni,j(m)− Lni,j(l)

)
> (m− l)β∆2α

n

)
≤ exp

(
−θ′ (m− l)β−1/2 ∆2α−1

n + 1
)
.

Hence,

P (Cn) ≤
∑

0≤l<m≤2n−1

2 exp
(
−θ′ (m− l)β−1/2 ∆2α−1

n + 1
)
≤ 22n exp

(
−θ′2n(1−2α)

)
.
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Since 2α < 1 we clearly have that

∞∑
n=1

P (Cn) <∞

and by Borel-Cantelli’s lemma we conclude that P (Cn infinitely often) = 0 which in

turns yields the existence of such N2. 2

The proof of Corollary 4.2.6 follows directly from Lemma 4.2.4 and Lemma 4.2.5.

Proof. [Proof of Corollary 4.2.6] Using Lemma 4.2.4 we obtain that

Rn
i,j(t

n
l , t

n
m) =

m∑
k=l+1

∞∑
h=n+1

(Lhi,j(2
h−n(k + 1))− Lhi,j(2h−nk)). (4.31)

On the other hand, due to Lemma 4.2.5 if n ≥ N2

m∑
k=l+1

∞∑
h=n+1

|Lhi,j(2h−n(k + 1))− Lhi,j(2h−nk)|

≤
m∑

k=l+1

∞∑
h=n+1

(2−n(k + 1)− 2−nk)β∆2α−β
h <∞

because β < 2α. Thus (by Fubini’s theorem) the order of the summations in (4.31)

can be exchanged and we obtain the result. 2

Finally, the last proof of the section.

Proof. [Proof of Lemma 4.2.7]We start by showing the bound on ΓR. By the defini-

tion of N2 and ΓL, for any n

|Lni,j(m)− Lni,j(l)| ≤ ΓL(m− l)β∆2α
n .

Consequently, for any 0 ≤ l < m ≤ 2n−1,

|Rn
i,j(t

n
l , t

n
m)| ≤

∞∑
h=n+1

∣∣Lhi,j(2h−nm)− Lhi,j(2h−nl)
∣∣

≤
∞∑

h=n+1

ΓL(m− l)β2(h−n)β∆2α
h = ΓL(m− l)β∆β

n

∞∑
h=n+1

∆2α−β
h

= ΓL(tnl − tnm)β∆2α−β
n

2−(2α−β)

1− 2−(2α−β)
.
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Therefore, we conclude that

ΓR := max
1≤i,j≤d′

sup
n≥0

sup
0≤s<t≤1,s,t∈Dn

|Rn
i,j(s, t)|

|t− s|β∆2α−β
n

≤ ΓL
2−(2α−β)

1− 2−(2α−β)
.

Let r = min{h : |tnm−tnl | ≥ ∆h}. For simplicity of notation, we define the following

sequence of operators of time:

sh(tnl ) = min{thk : thk ≥ tnl }

s̄h(tnm) = max{thk : thk ≤ tnm}

for r ≤ h ≤ n.

Then

|Ai,j(tnl , tnm)|

≤|Ai,j(tnl , sn−1(tnl ))|+ |Ai,j(sn−1(tnl ), s̄n−1(tnm))|+ |Ai,j(s̄n−1(tnm), tnm)|

+ |Zi(sn−1(tnl ))− Zi(tnl )||Zj(s̄n−1(tnm))− Zj(sn−1(tnl ))|

+ |Zi(s̄n−1(tnm))− Zi(tnl )||Zj(tnm)− Zj(s̄n−1(tnm))|

By iterating the above procedure up to level r, we have

|Ai,j(tnl , tnm)|

≤
n∑

h=r+1

|Ai,j(sh(tnl ), sh−1(tnl ))|+ Ai,j(s
r(tnl ), s̄r(tnm)) +

n∑
h=r+1

|Ai,j(s̄h(tnm), s̄h−1(tnm))|

+
n∑

h=r+1

|Zi(sh(tnl ))− Zi(sh−1(tnl )||Zj(s̄h−1(tnm))− Zj(sh−1(tnl ))|

+
n∑

h=r+1

|Zi(s̄h−1(tnm))− Zi(sh(tnl ))||Zj(s̄h(tnm))− Zj(s̄h−1(tnm))|

We make the following important observations,

sh−1(tnl )− sh(tnl ) =

0 if sh−1(tnl ) = sh(tnl )

∆h otherwise
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s̄h(tnm)− s̄h−1(tnm) =

0 if sh−1(tnm) = s̄h(tnm)

∆h otherwise

s̄r(tnm)− sr(tnl ) =

0 if sr(tnl ) = s̄r(tnm)

∆r otherwise.

Then

|Ai,j(tnl , tnm)|
(tnm − tnl )2α

≤
n∑

h=r+1

ΓR
∆2α
h

∆2α
r

+ ΓR +
n∑

h=r+1

ΓR
∆2α
h

∆2α
r

+
n∑

h=r+1

||Z||2α
∆α
h

∆α
r

+
n∑

h=r+1

||Z||2α
∆α
h

∆α
r

≤ΓR
2

1− 2−2α
+ ||Z||2α

21−α

1− 2−α
.

Therefore,

||A||2α := max
1≤i≤j≤d′

sup
n≥1

sup
0≤s<t≤1;s,t∈Dn

|Ai,j (s)|
|t− s|2α

≤ ΓR
2

1− 2−2α
+ ||Z||2α

21−α

1− 2−α
.

2

4.4.2 Proof of Technical Results in Section 4.2.4

4.4.2.1 Proof of Technical Results in Section 4.2.4.1

We first provide the following auxiliary result which summarizes basic computations

of moment generating functions of quadratic forms of bivariate Gaussian random

variables.

Lemma 4.4.1 Suppose that Y and Z are i.i.d. N (0, 1) random variables, then for

any numbers a1, a2, b, c1, c2 ∈ R define

φ (a, b, c) := E exp
(
a1Y + a2Z + bY Z + c1Y

2 + c2Z
2
)
,
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then we have that if |2ci| < 1 for i = 1, 2, and |b| < (1− 2c1) (1− 2c2)

φ(a, b, c) = (1− 2c1)−1/2 (1− 2c2)−1/2
(

1− (b (1− 2c1)−1/2 (1− 2c2)−1/2)2
)−1/2

× exp

(
a2

1(1− 2c1)−1 + a2
2(1− 2c2)−1 + 2a1a2b(1− 2c1)−1(1− 2c2)−1

2(1− b2(1− 2c1)−1(1− 2c2)−1)

)
Moreover, if we let

P ′ (Y ∈ dy, Z ∈ dz) = P (Y ∈ dy, Z ∈ dz)
exp (a1y + a2z + byz + c1y

2 + c2z
2)

φ (θ; a, b, c)
,

then under P ′ (·) we have that (Y, Z) are distributed bivariate Gaussian with covari-

ance matrix

Σ (a, b, c)

=
1

1− b2 (1− 2c1)−1 (1− 2c2)−1

×

 (1− 2c1)−1 b (1− 2c1)−1 (1− 2c2)−1

b (1− 2c1)−1 (1− 2c2)−1 (1− 2c2)−1

 ,

and mean vector

µ (a, b, c) = Σ (a, b, c)

 a1

a2

 .

Proof. First it follows easily that E exp (c1Y
2 + c2Z

2) = (1 − 2c1)−1/2(1 − 2c2)−1/2,

and under the probability measure

P1 (Y ∈ dy.Z ∈ dz) =
exp (c1y

2 + c2z
2)

E exp (c1Y 2 + c2Z2)
P (Y ∈ dy)P (Z ∈ dz)

Y and Z are independent with distributions N(1, (1− 2c1)−1) and N(1, (1− 2c2)−1),

respectively. Therefore,

φ (a, b, c) =(1− 2c1)−1/2(1− 2c2)−1/2E1 exp (a1Y + a2Z + bY Z)

=(1− 2c1)−1/2(1− 2c2)−1/2

× E exp
(
a1Y (1− 2c1)−1/2 + a2Z(1− 2c2)−1/2

+b(1− 2c1)−1/2(1− 2c2)−1/2Y Z
)
.
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Now, given |θ| < 1 define P2 (·) via

P2 (Y ∈ dy, Z ∈ dz) =
P (Y ∈ dy, Z ∈ dz) exp (χyz)

E exp (χY Z)
.

Observe that

P (Y ∈ dy, Z ∈ dz) exp (χyz) =
1

2π
exp

(
−y2/2− z2/2 + χyz

)
and

−y2/2− z2/2 + χyz = −(y, z)Σ−1

(
y

z

)
/2,

where

Σ−1 =

 1 −χ

−χ 1

 ,

and thus

Σ =
1

1− χ2

 1 χ

χ 1

 .

Therefore, under P2(·), (Y, Z) is distributed bivariate normal with mean zero and

covariance matrix Σ, with

χ = b(1− 2c1)−1/2(1− 2c2)−1/2

and we also must have that if |χ| < 1,

E exp (φY Z) =
(
1− χ2

)−1/2
=
(

1− (b (1− 2c1)−1/2 (1− 2c2)−1/2)2
)−1/2

.

Consequently, we conclude that

φ (a, b, c) = (1− 2c1)−1/2 (1− 2c2)−1/2
(

1− (b (1− 2c1)−1/2 (1− 2c2)−1/2)2
)−1/2

× E2 exp(a1Y (1− 2c1)−1/2 + a2Z(1− 2c2)−1/2).

The final expression for φ (a, b, c) is obtained from the fact that

E2 exp(a1Y (1− 2c1)−1/2 + a2Z(1− 2c2)−1/2)

= exp
(
V ar2(a1Y (1− 2c1)−1/2 + a2Z(1− 2c2)−1/2)/2

)
.
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And P ′ (·) is equivalent to a standard exponentially tilting to the measure P2(·) using

as the natural parameter the vector(
a1(1− 2c1)−1/2, a2(1− 2c2)−1/2

)
,

and thus under P ′ (·) the covariance matrix is the same as under P2(·) and the mean

vector is equal to µ (a, b, c). 2

We now are ready to provide the proof of Corollary 4.2.8.

Proof. [Proof of Corollary 4.2.8] Let us examine a term of the form Λn+m
i

(
tn+m
2r−1

)
Λj

(
tn+m
2r

)
,

Λn+m
i

(
tn+m
2r−1

)
Λj

(
tn+m
2r

)
= (Λn+m−1

i (tn+m−1
r )/2 + ∆

1/2
n+mW

n+m
i,r )(Λn+m−1

j (tn+m−1
r )/2−∆

1/2
n+mW

n+m
j,r )

= Λn+m−1
i (tn+m−1

r )Λn+m−1
j (tn+m−1

r )/4−∆n+mW
n+m
i,r W n+m

j,r

+ ∆
1/2
n+mW

n+m
i,r Λn+m−1

j (tn+m−1
r )/2−∆

1/2
n+mW

n+m
j,r Λn+m−1

i (tn+m−1
r )/2.

Then, we have that Corollary 4.2.8 follows immediately from Lemma 4.4.1. 2

Finally, we provide the proof of Corollary 4.2.9.

Proof. [Proof of Corollary 4.2.9] Recall that for each r ∈ {1, 2, ..., 2n},

Λn
i (tnr ) := (Zi(t

n
r )− Zi(tnr−1)).

So

Λn
i (tn2r−1) = Λn

i (tn−1
r )/2 + ∆1/2

n W n
i,r,

Λn
i (tn2r) = Λn

i (tn−1
r )/2−∆1/2

n W n
i,r.

We perform the first iteration in full detail, the rest are immediate just adjusting the

notation. From Corollary 4.2.8 we obtain that

En+m−1 exp
(
θ0[Ln+m

i,j (k′)− Ln+m
i,j (k)]

)
= exp(

1

2

k′∑
r=k+1

θ2
0∆n+m

4 (1− θ2
0∆2

n+m)
Λi

(
tn+m−1
r

)2
+

1

2

k′∑
r=k+1

θ2
0∆n+m

4 (1− θ2
0∆2

n+m)
Λj

(
tn+m−1
r

)2
)

× exp(
k′∑

r=k+1

θ0∆n+m

4 (1− θ2
0∆2

n+m)
Λi

(
tn+m−1
r

)
Λj

(
tn+m−1
r

)
)× (1− θ2

0∆2
n+m)−(k′−k)/2.
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Using the definitions in (4.16) we have that

1

2

k′∑
r=k+1

θ2
0∆n+m

4 (1− θ2
0∆2

n+m)
Λi

(
tn+m−1
r

)2
+

1

2

k′∑
r=k+1

θ2
0∆n+m

4 (1− θ2
0∆2

n+m)
Λj

(
tn+m−1
r

)2

+
k′∑

r=k+1

θ0∆n+m

4 (1− θ2
0∆2

n+m)
Λi

(
tn+m−1
r

)
Λj

(
tn+m−1
r

)
is equal to

2n+m−2∑
r=1

(η1

(
tn+m−1
2r−1

)
Λi

(
tn+m−1
2r−1

)2
+ η1

(
tn+m−1
2r

)
Λi

(
tn+m−1
2r

)2
)

+
2n+m−2∑
r=1

(η1

(
tn+m−1
2r−1

)
Λj

(
tn+m−1
2r−1

)2
+ η1

(
tn+m−1
2r

)
Λj

(
tn+m−1
2r

)2
)

+
2n+m−2∑
r=1

(θ1

(
tn+m−1
2r−1

)
Λi

(
tn+m−1
2r−1

)
Λj

(
tn+m−1
2r−1

)
+ θ1

(
tn+m−1
2r

)
Λi

(
tn+m−1
2r

)
Λj

(
tn+m−1
2r

)
).

We now expand each of the terms; to simplify the notation write

x = W n+m−1
i,r and y = W n+m−1

j,r .

Define
√

∆ = ∆
1/2
n+m−1, put u = Λi (t

n+m−2
r ) and v = Λj (tn+m−2

r )

Λi

(
tn+m−1
2r−1

)
= u/2 +

√
∆x, Λi

(
tn+m−1
2r

)
= u/2−

√
∆x,

Λj

(
tn+m−1
2r

)
= v/2 +

√
∆y, Λj

(
tn+m−1
2r

)
= v/2−

√
∆y.

Now, for brevity let us write ηo = η1

(
tn+m−1
2r−1

)
and ηe = η1

(
tn+m−1
2r

)
(‘o’ is used for

odd, and ‘e’ for even)(
η1

(
tn+m−1
2r−1

)
Λi

(
tn+m−1
2r−1

)2
+ η1

(
tn+m−1
2r

)
Λi

(
tn+m−1
2r

)2

+η1

(
tn+m−1
2r−1

)
Λj

(
tn+m−1
2r−1

)2
+ η1

(
tn+m−1
2r

)
Λj

(
tn+m−1
2r

)2
)

=

(
ηo

(
u/2 +

√
∆x
)2

+ ηe

(
u/2−

√
∆x
)2

+ ηo

(
v/2 +

√
∆y
)2

+ ηe

(
v/2−

√
∆y
)2
)

=
1

4
u2(ηe + ηo) +

1

4
v2(ηe + ηo) + u(ηo − ηe)

√
∆x+ v(ηo − ηe)

√
∆y

+ (ηe + ∆ηo)∆x
2 + (ηe + ηo)∆y

2.
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Likewise, put θo = θ1

(
tn+m−1
2r−1

)
and θe = θ1

(
tn+m−1
2r

)
(θ1

(
tn+m−1
2r−1

)
Λi

(
tn+m−1
2r−1

)
Λj

(
tn+m−1
2r−1

)
+ θ1

(
tn+m−1
2r

)
Λi

(
tn+m−1
2r

)
Λj

(
tn+m−1
2r

)
)

=θo

(
u/2 +

√
∆x
)(

v/2 +
√

∆y
)

+ θe

(
u/2−

√
∆x
)(

v/2−
√

∆y
)

=
1

4
uv(θe + θo) + (θe + θo)∆xy +

1

2
v(θo − θe)

√
∆x+

1

2
u(θo − θe)

√
∆y

We then collect the terms free of x and y and obtain

u2

4
(ηe + ηo) +

v2

4
(ηe + ηo) +

uv

4
(θe + θo).

Now the coefficients of x, y, x2, y2, and xy

{u(ηo − ηe) +
1

2
v(θo − θe)}

√
∆x+ {v(ηo − ηe) +

1

2
u(θo − θe)}

√
∆y

+ (ηe + ηo)∆x
2 + (ηe + ηo)∆y

2

+ (θe + θo)∆xy.

And finally we can apply Lemma 4.4.1 to get the corresponding results. 2

4.4.2.2 Proof of Technical Results in Section 4.2.4.2

We now provide the proof of Lemma 4.2.10.

Proof. [Proof of Lemma 4.2.10] Recalling expression (4.17), we establish the bound

for

En exp
(
θ0{Ln+1

i,j (k′)− Ln+m
i,j (k)}

)
by controlling the contribution of the term

m∏
l=2

2n+m−l∏
r=1

C
(
tn+m−l
r

)
. (4.32)

and the exponential term

exp

(
2n∑
r=1

θm(tnr )Λi(t
n
r )Λj(t

n
r ) +

2n∑
r=1

ηm(tnr )
(
Λi(t

n
r )2 + Λj(t

n
r )2
))

(4.33)
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separately.

We start by analyzing θl and ηl. From Corollary 4.2.8, we have

θ1 =
θ0

4 (1− θ2
0∆2

n+m)
and η1 =

θ2
0∆n+m

8 (1− θ2
0∆2

n+m)
.

We notice that 2η1 ≤ θ2
1∆n+m ≤ (5/2)η1.

Let

u = max{h : k′ − k > 2h}.

We also denote

b := min{r : θl(t
n+m−l
r ) > 0}

and

b̄ := max{r : θl(t
n+m−l
r ) > 0}.

The strategy throughout the rest of the proof proceeds as follows. We have that

the θl(t
n+m−l
r )’s and ηl(t

n+m−l
r )’s, r = 1, 2, . . . , 2n+m−l, are nonnegative. We also have

that for l ≤ u ∧ m, the number of positive θl(t
n+m−l
r )’s and ηl(t

n+m−l
r )’s reduces by

about a half at each step l and also the actual value of the positive θl(t
n+m−l
r )’s and

ηl(t
n+m−l
r )’s shrinks by at least 1/2. We will establish that if m > u, for u < l ≤ m,

there are at most two positive θl(t
n+m−l
r )’s and two positive ηl(t

n+m−l
r )’s and at each

step l, their values shrink by more than 2−3/2. Using these observations we will es-

tablish some facts and then use them to estimate (4.32) and finally (4.33). We now

proceed to carry out this strategy.

We first verify the following claims.

Claim 1: For l ≤ u, we claim that θl(t
n+m−l
r ), ηl(t

n+m−l
r ) ≥ 0 for all r = 1, 2, . . . , 2n+m−l

and θl(t
n+m−l
r )’s are equal for r ∈ (b, b̄) and we denote their values as θl. So, follow-

ing the recursion in (4.16) we have that θl = ∆l−1θ1. If θl(t
n+m−l
b ) 6= θl(t

n+m−l
b+1 ),

then θl(t
n+m−l
b ) < θl(t

n+m−l
b+1 ) = θl, and if θl(t

n+m−l
b̄

) 6= θl(t
n+m−l
b̄−1

), then θl(t
n+m−l
b̄

) <
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θl(t
n+m−l
b̄−1

) = θl.

Likewise, ηl(t
n+m−l
r )’s are equal for r ∈ (b, b̄); we denote their common values

as ηl and we have from (4.16) that ηl = ∆l−1η1. If ηl(t
n+m−l
b ) 6= ηl(t

n+m−l
b+1 ), then

ηl(t
n+m−l
b ) < ηl(t

n+m−l
b+1 ), and if ηl(t

n+m−l
b̄

) 6= ηl(t
n+m−l
b̄−1

), then ηl(t
n+m−l
b̄

) < ηl(t
n+m−l
b̄−1

).

In other words, at each step, l for l < u, θl(t
n+m−l
r ) and ηl(t

n+m−l
r ) decay at rate 1/2

if it is not at the boundary (r ∈ (b, b̄)), and the boundary ones (θl(t
n+m−l
b ), θl(t

n+m−l
b̄

)

and ηl(t
n+m−l
b ), ηl(t

n+m−l
b̄

)), may decay at a faster rate.

We now prove the claim by induction using the recursive relation in (4.16).

The claim is immediate for θ1 and η1. Now suppose it holds for θl(t
n+m−l
r ) and

ηl(t
n+m−l
r ), r = 1, 2, . . . , 2n+m−l. We next show that the claim holds for θl+1(tn+m−l−1

r ),

r = 1, 2, . . . , 2n+m−l−1, as well. We omit the proof of ηl+1(tn+m−l−1
r ) here, as it follows

exactly the same line of analysis as θl+1(tn+m−l−1
r ).

We next divide the analysis into five cases.

Case 1. θl
(
tm+n−l
2r−1

)
= θl

(
tm+n−l
2r

)
and ηl

(
tm+n−l
2r−1

)
= ηl

(
tm+n−l
2r

)
. Then θl+1

+

(
tm+n−l
r

)
=

2θl
(
tm+n−l+1
2r−1

)
and θl+1

−
(
tm+n−l
r

)
= 0. Likewise ηl+1

+

(
tm+n−l
r

)
= 2ηl

(
tm+n−l+1
2r−1

)
and

ηl+1
−
(
tm+n−l
r

)
= 0. From (4.16), we have θl

(
tm+n−l−1
r

)
= θl−1

(
tm+n−l+1
2r−1

)
/2 and

ηl
(
tm+n−l−1
r

)
= ηl−1

(
tm+n−l+1
2r−1

)
/2.

Case 2. θl
(
tm+n−l
2r−1

)
= 0, θl

(
tm+n−l
2r

)
> 0 and ηl

(
tm+n−l
2r−1

)
= 0, ηl

(
tm+n−l
2r

)
>

0. Then we know that 2r = b. We also have θl+1
+

(
tm+n−l−1
r

)
= θl

(
tm+n−l
2r

)
and

θl+1
−
(
tm+n−l−1
r

)
= −θl

(
tm+n−l
2r

)
. Likewise, ηl+1

+

(
tm+n−l−1
r

)
= ηl

(
tm+n−l
2r

)
and ηl+1

−
(
tm+n−l−1
r

)
= −ηl

(
tm+n−l
2r

)
. We rewrite the expression for θl+1(tn+m−l−1

r ) in
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(4.16) as

θl+1

(
tm+n−l−1
r

)
=θl+1

+ (tm+n−l−1
r )

1

4
+ |θl+1

− (tm+n−l−1
r )|{hl+1(tm+n−l−1

r )|ηl+1
− (tm+n−l−1

r )|

+
1

4
hl+1(tm+n−l−1

r )|θl+1
− (tm+n−l−1

r )|ρl+1(tm+n−l−1
r )

+ hl+1(tm+n−l−1
r )ηl+1

− (tm+n−l−1
r )2 ρl+1(tm+n−l−1

r )

|θl+1
− (tm+n−l−1

r )|
}

=θl(t
m+n−l
2r ){1

4
+ hl+1(tm+n−l−1

r )ηl(tm+n−l
2r )

+
1

4
hl+1(tm+n−l−1

r )θl(t
m+n−l
2r )ρl+1(tm+n−l−1

r )

+ hl+1(tm+n−l−1
r )ηl(t

m+n−l
2r )2ρl+1(tm+n−l−1

r )

θl(t
m+n−l
2r )

}

As

θl∆n+m−l ≤ θ1∆n+m−1 ≤
1

4

and

ηl∆n+m−l ≤ η1∆n+m−1 ≤
1

48
,

it is then easy to check that

1

4
θl
(
tm+n−l
2r

)
< θl+1

(
tm+n−l−1
r

)
<

3

10
θl ≤

3

5
θl+1.

Case 3. θl
(
tm+n−l
2r−1

)
> 0, θl

(
tm+n−l
2r

)
= 0 and ηl

(
tm+n−l
2r−1

)
> 0, ηl

(
tm+n−l
2r

)
= 0. Then

we know that 2r − 1 = b̄. Following the same line of analysis as in Case 2, we have

1

4
θl
(
tm+n−l
2r

)
< θl+1

(
tm+n−l−1
r

)
<

3

10
θl ≤

3

5
θl+1.

Case 4. 0 < θl
(
tm+n−l
2r−1

)
< θl

(
tm+n−l
2r

)
and 0 < ηl

(
tm+n−l
2r−1

)
< θl

(
tm+n−l
2r

)
. Then we

know that 2r − 1 = b. There exist ξ < 1, such that θl
(
tm+n−l
2r−1

)
≤ ξθl

(
tm+n−l
2r

)
=
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ξ∆l−1θ1 and ηl
(
tm+n−l
2r−1

)
≤ ξηl

(
tm+n−l
2r

)
= ξ∆l−1η1. From (4.16), we have

θl+1

(
tm+n−l−1
r

)
≤θl+1

+ (tm+n−l−1
r )

{
1

4
+ hl+1(tm+n−l−1

r )ηl+1
− (tm+n−l−1

r )2ρl+1(tm+n−l−1
r )

θl+1
+ (tm+n−l−1

r )

}
+ |θl+1

− (tm+n−l−1
r )|{hl+1(tm+n−l−1

r )|ηl+1
− (tm+n−l−1

r )|

+
1

4
hl+1(tm+n−l−1

r )|θl+1
− (tm+n−l−1

r )|ρl+1(tm+n−l−1
r )}.

As |θl+1
− (tm+n−l−1

r )| ≤ θl and |ηl+1
− (tm+n−l−1

r )| ≤ ηl, it is easy to check that

θl+1

(
tm+n−l−1
r

)
< θl+1

+ (tm+n−l−1
r )

(
1

4
+ 0.01

)
+ |θl+1

− (tm+n−l−1
r )| × 0.05.

Since θl+1

(
tm+n−l−1
r

)
+ |θl+1

− (tm+n−l−1
r )| = θl, we have

θl+1

(
tm+n−l−1
r

)
< θl

((
1

4
+ 0.01− 0.05

)
(1 + ξ) + 0.05

)
=

1

2
θl

(
1

2
+ 0.02 + 0.42ξ

)
<
θl
2

= θl+1.

Case 5. θl
(
tm+n−l
2r−1

)
> θl

(
tm+n−l
2r

)
> 0 and 0 < ηl

(
tm+n−l
2r−1

)
> θl

(
tm+n−l
2r

)
> 0. Then

we know that 2r = b̄. Following the same line of analysis as in Case 4, we have

θl+1

(
tm+n−l−1
r

)
< θl+1.

We thus prove that the claim holds for θl+1(tm+n−l−1
r ), r = 1, 2, . . . , 2n+m−l−1, as well.

We have established Claim 1. We now continue with a second claim.

Claim 2: For u < l < m, we have at most two positive θl(t
m+n−l
r )’s, namely

θl(t
m+n−l
b ) and θl(t

m+n−l
b̄

). Notice that it is possible that b = b̄. We then claim

that if b 6= b̄,θl(t
m+n−l
b ) ≤ ∆l−1θ12−(l−u−1)/2 and θl(t

m+n−l
b̄

) ≤ ∆l−1θ12−(l−u−1)/2. Sim-

ilarly ηl(t
m+n−l
b ) ≤ ∆l−1η12−(l−u−1)/2 and ηl(t

m+n−l
b̄

) ≤ ∆l−1η12−(l−u−1)/2. If b = b̄,

θl(t
m+n−l
b ) ≤ ∆l−1θ12−(l−u−2)/2, θl(t

m+n−l
b̄

) ≤ ∆l−1θ12−(l−u−2)/2 and ηl(t
m+n−l
b ) ≤
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∆l−1η12−(l−u−2)/2, ηl(t
m+n−l
b̄

) ≤ ∆l−1η12−(l−u−2)/2.

We prove the claim by induction. We shall give the proof of θl(t
m+n−l
r ) only, as

the proof of ηl(t
m+n−l
r ) follows exactly the same line of analysis. For l = u, we have

the following cases.

i) b̄ = b+ 2, b is odd. In this case, θl+1(tm+n−l−1
(b+1)/2 ) < ∆lθ1, which follows from the

analysis in Case 4 for l ≤ u. And θl+1(tm+n−l−1
(b̄+1)/2

) < (3/5)∆lθ1, following the analysis

in Case 3 for l ≤ u.

ii) b̄ = b + 2, b is even. In this case, θl+1(tm+n−l−1
b/2 ) < (3/5)∆lθ1, which follows

from the analysis in Case 2 for l ≤ u. And θl+1(tm+n−l−1
b̄/2

) < ∆lθ1, following the

analysis in Case 5, for l ≤ u.

iii) b̄ = b + 1, b is odd. In this case, let θ̄l = max{θl(tm+n−l
b ), θl(t

m+n−l
b̄

)}, Then

following the same analysis as in Case 4 or Case 5 for l ≤ u (depending on which one

of θl(t
m+n−l
b ) and θl(t

m+n−l
b̄

) is smaller), we have θl+1(tm+n−l−1
b̄/2

) < θ̄l/2 ≤ ∆lθ1.

iv) b̄ = b + 1, b is even. In this case, θl+1(tm+n−l−1
b/2 ) < (3/5)∆lθ1, which follows

from the analysis in Case 2 for l ≤ u. And θl+1(tm+n−l−1
(b̄+1)/2

) < (3/5)∆lθ1, following the

analysis in Case 3 for l ≤ u.

Therefore, the claim holds for u+ 1. Suppose the claim holds for l ≥ u+ 1. Then

when moving from level l to level l + 1, one of the following three cases can happen.

a) b̄ = b+ 1 and b is even. In this case, following the analysis in Case 2 and Case

3 for l ≤ u, we have

θl+1(tm+n−l−1
b/2 ) ≤ 3

10
θl(t

m+n−l
b ) ≤ ∆lθ12−(l−u)/2
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and

θl+1(tm+n−l−1
(b̄+1)/2

) ≤ 3

10
θl(t

m+n−l
b̄

) ≤ ∆lθ12−(l−u)/2.

b) b̄ = b. In this case, following the analysis in Case 2 or Case 3 for l ≤ u

(depending on whether b is odd or even), we have

θl+1(tm+n−l−1
db/2e ) ≤ 3

10
θl(t

m+n−l
b ) ≤ ∆lθ12−(l−u−1)/2.

c) b̄ = b + 1 and b is odd. In this case, we let θ̄l = max{θl(tm+n−l
b ), θl(t

m+n−l
b̄

)},

Then we can use the same analysis as in Case 4 or Case 5 for l ≤ u (depending on

which one of θl(t
m+n−l
b ) and θl(t

m+n−l
b̄

) is smaller) to conclude that

θl+1(tm+n−l−1
b̄/2

) <
1

2
θ̄l ≤ ∆lθ12−(l−u−1)/2.

We notice that case c) can happen only once.

We are now ready to control the contribution of the term (4.32). As

∆n+m−l+1η
l
+(tn+m−l

r ) ≤ 1/30

and

ρl(t
n+m−l
r ) < 1/7,

we have when m ≤ u

m∏
l=2

2n+m−l∏
r=1

C(tn+m−l
r )

≤
m∏
l=2

2n+m−l∏
r=1

exp
(
4∆n+m−l+1η

l
+(tn+m−l

r ) + ρl(t
n+m−l
r )2

)
≤

m∏
l=2

exp

((
16∆n+mη1 +

(4∆n+mθ1)2

(1− 8∆n+mη1)2

)
((k′ − k)∆l + 2)

)
≤

m∏
l=2

exp

((
11

5

γ2

k′ − k
∆1−2α′

n +
6

5

γ2

k′ − k
∆2−4α′

n

)
((k′ − k)∆l + 2)

)
.

The last inequality follows from Corollary 2 that θ1 = θ0/4(1 − θ2
0∆2

n+m), η1 =

θ2
0∆n+m/2(1 − θ2

0∆2
n+m), and our choice of θ0 = γ/((k′1/2∆2α′

n ∆m). Then, as (k′ −
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k)−1 ≤ 2−m,

m∏
l=2

2n+m−l∏
r=1

C(tn+m−l
r )

≤ exp

(
11

5
γ2

(
m∑
l=2

∆l + 2(m− 1)∆m

)
+

6

5
γ2

(
u∑
l=2

∆l + 2(m− 1)∆m

))

≤ exp

(
8

25

)
.

When m > u,

m∏
l=2

2n+m−l∏
r=1

C(tn+m−l
r )

≤
m∏
l=2

2n+m−l∏
r=1

exp
(
4∆n+m−l+1η

l
+(tn+m−l

r ) + ρl(t
n+m−l
r )2

)
≤

u∏
l=2

exp

((
11

5

γ2

k′ − k
∆1−2α′

n +
6

5

γ2

k′ − k
∆2−4α′

n

)
((k′ − k)∆l + 2)

)
×

m∏
l=u+1

exp

(
11

5

γ2

k′ − k
∆1−2α′

n ∆
1/2
l−u−2 +

6

5

γ2

k′ − k
∆2−4α′

n ∆l−u−2

)
.

As (k′ − k)−1 ≥ 2−u,

m∏
l=2

2n+m−l∏
r=1

C(tn+m−l
r )

≤ exp

(
11

5
γ2

(
u∑
l=2

∆l + 2(u− 1)∆u +
m∑

l=u+1

∆
1/2
l−2

)

+
6

5
γ2

(
u∑
l=2

∆l + 2(u− 1)∆u +
m∑

l=u+1

∆l−2

))

≤ exp

(
1

2

)
.

For (4.33), we notice that under condition (4.19) and (4.20), we have∣∣∣∣∣
2n∑
r=1

θm(tnr )Λi(t
n
r )Λj(t

n
r )

∣∣∣∣∣ ≤ θ1∆m−1ε0((k′ − k)∆m)β∆2α′

n + 2θ1∆m−1∆2α′

n

≤ ε0γ(k′ − k)β−1/2 + 2γ,



CHAPTER 4. ε-STRONG SIMULATION FOR SDES 139

and ∣∣∣∣∣
2n∑
r=1

ηm(tnr )
(
Λi(t

n
r )2 + Λj(t

n
r )2
)∣∣∣∣∣ ≤ ((k′ − k)∆m + 2) η1∆m−12∆2α′

n

≤ 2γ2.

Combining the analysis for (4.32) and (4.33), we have

En exp(θ0{Ln+m
i,j (k′)− Ln+m

i,j (k)})

≤ exp

(
θ2

0∆2
n+m(k′ − k) +

1

2
+ ε0γ(k′ − k)β−1/2 + 2γ + 2γ2

)
≤4 exp

(
ε0γ(k′ − k)β−1/2

)
.

2
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Part II

Load-Dependent Slowdown

Services
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Chapter 5

Introduction to Part II

A central assumption in the operations management literature is that service times are

independent of the load of the system. However, empirical and anecdotal evidence

suggest that in many service systems the two are correlated (see for example [44;

45; 46] and [47]). Depending on the service environment, heavily-loaded systems

may experience service speedups or slowdowns. While speedup was theoretically

investigated in [48], slowdown was so far been neglected.

Slowdown of service rate, when the system is congested, is a widely spread phe-

nomenon, which is contributed to several psychological, physiological and techni-

cal reasons.High congestion levels may induce pressure on agents, which accord-

ing to the psychology literature (see for example [49]) may impact human percep-

tion, information processing and decision making. All of these aspects may influ-

ence operational performance. While a relatively low level of arousal may increase

productivity, high levels of pressure hurt performance [50]. High congestion levels

may also require individuals to conduct multiple tasks in parallel which involves a

cognitive switching cost [44]. At the same time, high congestion levels may lead

staff to work longer hours without proper rest, causing fatigue. Empirical stud-

ies provide evidence that fatigue leads to deterioration in productivity (e.g. [46;

51]). Service rate may also deteriorate due to external capacity limitations, for exam-
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ple, IT systems perform slower when heavily loaded, and hence, the service times of

the workers who use them may increase [44]. On the customer side, it is well estab-

lished that patients’ condition may deteriorate if treatment is delayed in health care

facilities, causing a service slowdown [52]. Customers may also demand a longer and

more personalized service following a long wait. For example, agents might need to

take some extra time to mollify irritated customers who experience long waits. In call

centers, the service time could notably increase when the system is congested. This

is illustrated by Figure 5.1, where the average service time of service type 1 doubles

itself from 40 to 80 seconds [47]. Changes of service rate in such a manner have a

significant influence on the companies’ revenue.

Figure 5.1: Service time as a function of waiting time in a call center of an Israeli

Bank (by service type)

Motivated by these empirical findings, we investigate how the dependence between

service rate and workload affects the operational performance of the system measured

by delay and abandonment, and how service providers can cope with the consequences

of this dependence by adjusting staffing or routing.

Generally, there are two objectives that play opposing roles in the design of service

systems. On one hand, to increase efficiency and reduce operational costs, system

designers aim to increase resource utilization. On the other hand, high utilization

leads to increased level of delay and abandonment, thereby reducing quality of service.
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A common approach to design a service system is to balance the tradeoff between

system performance, measured by the probability of waiting and the probability of

abandonment experienced by customers, and resource utilization, measured by the

fraction of time an agent or a resource is occupied. The Quality-and-Efficiency-Driven

(QED) regime in a many-server asymptotic analysis suggests a Square-Root Staffing

(SRS) rule to balance this tradeoff. According to the SRS rule the number of servers,

s, is set such that s = R + β
√
R, where R = λ/µ is the offered load of the system,

and β, the SRS parameter, is set to achieve certain performance measures. For

the SRS rule in an exponential type multi-server queueing model with abandonment

(commonly referred to as the Erlang-A model), β is determined using the Garnett

functions [53]. Applying the SRS rule to the Erlang-A model implies that a significant

proportion of customers (e.g. 30%–80%) gets served immediately upon arrival and

the probability of abandonment is small (e.g. < 5%) [53]. Other operating regimes

considered in the literature include Efficiency-Driven (ED) regime and Quality-Driven

(QD) regime, where the staffing level and the offered load grow in fixed proportion.

ED staffing is used when the staffing cost is very high. In this case the staffing level

is set to s = R−αR for 0 < α < 1, where α is typically selected in the range 0.1–0.25

[54]. This results in 100% occupancy, probability of waiting close to 1 and very high

abandonment rate (5%–30%) [53]. A QD regime is used when the system requires a

very high level of service quality. In this case, the staffing level is set to s = R + αR

for α > 0, where the typical range of α is as in the ED regime. This staffing level

results in very low abandonment (almost 0) and negligible waiting, but also in an

agent occupancy which is far below 100% [53].

In this part of the dissertation, we modify the Erlang-A model to account for

the slowdown effect and analyze the performance of the modified Erlang-A model

when staffing according the SRS rule. We use the term load sensitivity to describe

the rate of service rate deterioration as a response to increased workload. We show

that staffing to operate in the QED regime may not be a good enough solution in
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some systems with load-sensitive service rates. Depending on the model parameters,

we observe that systems designed to operate in the QED regime may have unstable

performance, alternating between being overloaded and underloaded, or even end up

being constantly heavily overloaded. This results in a very high probability of waiting

(close to 1) and a significant proportion of customer abandonment (e.g. 10%–20%).

Hence, a QED regime staffing rule, or even a QD regime staffing rule, may result in

an undesirable performance, typically found when using ED regime staffing rules. We

therefore propose alternative staffing rules and admission control policies that can be

applied in the presence of service slowdowns.

5.1 Literature Review

Palm [55] introduced the Erlang-A (M/M/s+M) model to incorporate abandonment

in the traditional Erlang-C (M/M/s) queue. [56] showed that abandonment is a

significant factor in modeling service systems and making staffing decisions. [53]

conducted a heavy traffic asymptotic analysis of the Erlang-A model in the QED

regime. They derived approximations for the probability of waiting and abandonment

and provided guidance for the design of large service systems. In this part, we study

a modified Erlang-A model that accounts for a load-dependent service rates.

A few papers consider state-dependent service rates but most of them are in the

single server queue setting without abandonment. [57] and [58] study the steady-state

behavior of the delay process (waiting time distribution) of a G/G/1 queue, where

both the service rate and the arrival rate depend linearly on the delay process. [59]

derived the fluid and diffusion limits of a network of single server queues with state-

dependent arrival rate, service rate and routing probability. [60] studies the fluid

and diffusion approximation of G/M/n + GI queues with state-dependent service

rate, but under a different scaling on the effect of workload (queue length process) on

the service rate function. The bi-stability phenomenon that does not arise in their
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models.

The bi-stability phenomenon is studied in different contexts: ICU flows [48], com-

munication networks [61], multi-class stochastic networks [62] and retrials [63]. The

phenomenon is also studied in Statistical Physics (e.g. [64] [65]). The conjectured tra-

jectory of the system under bi-stability is that it fluctuates within one stable region

for a long time and then, due to some rare event it reaches the other stable region and

remains there for a while [62]. In this paper, we study the bi-stability phenomenon

through asymptotic analysis of the stationary distribution and sensitivity analysis of

system parameters (§6.4). We impose exponential assumptions on the service time

and patience time distributions for tractability reasons. More general service time

and patience time distributions would require a different set of analysis. However, it

is known from the statistical physics literature that a rigorous characterization of the

dynamics of systems with bi-stability is in general very difficult to obtain unless we

assume some very specific system structures (e.g. reversibility of the Markov process)

[65].

In order to avoid bi-stability, we propose in §6.3 three policies based on adjusting

staffing, abandonment, and arrival according to system state respectively. Indeed,

the state-dependent abandonment rate has similar effect on the queue length process

as the state-dependent service rate studied in this paper. Motivated by the way that

delay announcements and observable queues change customer patience, there have

also been works that study state-dependent abandonment rate [66]. They considered

delay announcements as a control policy in the ED regime, while we show its potential

advantages for stabilizing system performance in the QED regime. Our work is also

different from [67] and [68] who analyzed how delay announcements affect system

performance by changing the strategic behavior of customers. This was done by

combining game theory with queueing models.

In terms of staffing and admission control policies, [69] studied the optimal ad-

mission control of an M/G/1 queue with service rate that is first increasing and then
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decreasing as a function of the workload. Their objective is to optimize throughput

and they show that under certain conditions a threshold policy is optimal. Likewise,

in §6.4.3, we also consider a threshold admission control policy, but our objective

is to maintain a certain performance level. Admission control in the QED regime

has also been studied in [70], [71] and references therein. We also consider adjust-

ing the staffing level as a possible solution to stabilize system performance. A few

papers considered dynamic staffing (e.g., [72], [73]) to cope with time-varying ar-

rivals. They allow the staffing level to change over time according to a predictable

offered load function. In our model, the fluctuations in performance arise because

of the bi-stability phenomenon. The system alternates between two equilibria in an

unpredictable stochastic way. Therefore, we cannot propose a predetermined policy

whereby the staffing levels change in a predictable fashion. Instead, we propose static

policies that mitigate the effect of the unpredictable system behavior.

5.2 Main Contributions

We make the following key contributions:

1) We show that the effect of load sensitivity on system performance is nonlin-

ear. Systems with low sensitivity may exhibit only a modest deterioration in

performance, whereas when the sensitivity increases beyond a threshold, the

performance deteriorates drastically. We prove that the threshold that sepa-

rates the two cases is derived from the relative relation between the service rate

sensitivity level around zero and the abandonment rate (§6.2.2).

2) When the load sensitivity is relatively low (i.e., the service rate does not de-

crease significantly with the load placed on the system), the SRS rule leads to

a QED performance. However, for a fixed square-root staffing parameter, β,

the performance deteriorates with the load sensitivity level. We develop new

approximation functions in the presence of load sensitivity, which can be used
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when making staffing decisions (§6.3). To derive these approximations, it is

sufficient to accurately estimate the service rate function around zero.

3) When the load sensitivity is relatively high, the system alternates between two

performance levels, a phenomenon we refer to as bi-stability: one provides a

QED performance while the other has an ED performance (§6.2). Therefore,

in such cases, applying the SRS rule does not consistently result in QED per-

formance. We investigate how the system scale and other parameters influence

the occurrence of bi-stability, and the proportion of time the system spends

around each performance level (§6.4). We show that while a higher load sen-

sitivity increases the occurrence of ED performance, a higher abandonment

rate decreases such occurrences. We also show that large systems converge to

the ED performance with an exponential rate; sensitivity increases the rate of

convergence, and abandonment rate decreases this rate of convergence. Two in-

teresting observations follow from our analysis. Firstly, the modified Erlang-A

queue exhibits unusual dis-economies-of-scale effect. In particular, as the sys-

tem scale grows, the system performance deteriorates dramatically. Secondly,

firms should encourage customers to abandon when having load-sensitive ser-

vice rate. This can be done by, for example, providing delay announcements.

To overcome the bi-stability phenomenon, we propose three operational solu-

tions: increasing staffing, increasing abandonment rate, and admission control

(§6.4.3).

4) We show, using numerical examples (§6.5), that the bi-stability phenomenon

remains when considering a large class of models. This includes settings in which

the service rate deterioration is customer-driven (i.e., longer waiting results in

longer service requirement for that customer), in which it is agent-driven (i.e.,

agents change their service rate according to queue length), or in situations

where there is a delay in the slowdown effect on service rate (e.g., slowdown is
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caused by agent fatigue).
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Chapter 6

Slowdown Services: Potential

Failures and Proposed Solutions

6.1 Model Setup

6.1.1 Load dependent Erlang-A model

We analyze a modified Erlang-A (M/M/s + M) model which incorporates the de-

pendence of service rate on workload through the queue length process. Specifically,

we consider an M/MQ/s + M queue, with s identical servers. Each server can serve

only one customer at a time. Customers arrive to the system according to a Poisson

process with rate λ. If a customer arrives and finds a server free, she starts service

with that server immediately. Otherwise, she waits in the queue. Customers are

served on a First-Come-First-Served basis. The service requirement is exponentially

distributed with a state-dependent rate function µ(·) ∈ C2. We assume customers

have finite patience. The patience time of each customer is exponentially distributed

with rate θ, which we refer to as the abandonment rate. If a customer does not get

into service before her patience time expires, she abandons the queue.

We denote the queue length process by Q ≡ {Q(t) : t ≥ 0}, where Q(t) counts the
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number of customers in the system (waiting and in service) at time t. Motivated by

the empirical findings on slowdowns, we assume that the service rate of each server is a

function of the scaled queue length process (as denoted by “MQ” in our model), µ((Q−

s)+/s), where (x)+ max{0, x}. This scaling makes the workload process ((Q(t) −

s)+/s) of the same order as the delay process (waiting time of an imaginary arrival

at time t) [54]. It is essential when considering scaling for approximations.

We are interested in service systems in which the service rate deteriorates as

the congestion level grows. We measure the level of load sensitivity by µ′(x) and let

µ(i)(0) := limx→0+ µ
(i)(x) for i = 1, 2. We further assume that the service rate function

exhibits a diminishing decreasing rate and a minimum positive level. Formally:

Assumption 6.1.1 µ′(x) ≤ 0 and µ′′(x) ≥ 0 for all x ≥ 0. limx→∞µ(x) = µ(∞) >

0.

In our numerical demonstrations, we use a specific form of the service rate function:

µ(x) = c+ a exp(−bx) with parameters a, b, c > 0, which clearly satisfies Assumption

6.1.1. To demonstrate changes in load sensitivity, we change the values of b while

keeping all other parameters fixed. We refer to b as the load sensitivity parameter.

Under our assumptions on the service rate function, Q(t) is a Markov jump pro-

cess. More specifically, Q(t) is a Birth-and-Death (B&D) process with birth rate λ and

state dependent death rate µ((Q−s)+/s)(Q∧s)+θ(Q−s)+, where x∧y = min{x, y}.

As θ > 0, Q(t) admits a unique steady-state distribution. We denote

π(q) := P (Q(∞) = q).

π(q) measures the long run average amount of time the system spends at q.

6.1.2 The QED heavy-traffic regime

To balance the quality of service with system efficiency, we aim to operate the queue in

the QED regime. For an M/M/s+M queue, the QED regime is obtained by holding
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the service rate and abandonment rate fixed while letting the aggregate arrival rate

λ and number of servers s grow to infinity in such a way that the utilization rate ρ =

λ/(sµ) approaches 1 with a certain rate. Specifically, consider a sequence M/M/n+M

queue indexed by n with arrival rate λn → ∞ as n → ∞. Set ρn := λn/(nµ). It is

assumed that

√
n(1− ρn)→ β as n→∞ (6.1)

for some β ∈ R, or equivalently, that the number of servers is set by the square root

formula – n = Rn + β
√
Rn, where Rn = λn/µ.

Garnett et. al. [53] proved that when a sequence of Erlang-A systems satisfies

Equation (6.1) (i.e., operates in the QED regime), The probability of waiting, P (W ),

is non-degenerate and the probability of abandonment, P (Ab), converges to zero at

rate 1/
√
n. Thus, systems that operate in this regime achieve both good performance

and high efficiency. However, as Figure 6.1 illustrate, in the modified Erlang-A model,

SRS does not guarantee similar performance.

In the absence of workload sensitivity, (i.e., b = 0), the system with the same

parameters as in Figure 6.1 operates in the QED regime, with β = 0.3, P (W ) = 0.1882

and P (Ab) = 0.0018. Figure 6.1 illustrates that this is not necessarily the case

when the systems exhibit load sensitivity. In the first case (b = 1), the system still

operates in the QED regime with low probability of waiting, P (W ) = 0.2050, and

abandonment, P (Ab) = 0.0023. But the performance is worse than the one obtained

without sensitivity. In the second case (b = 2), we observe the phenomenon of bi-

stability. There are two peaks in the stationary distribution: a lower level where the

performance is good (P (W ) ≈ 0.2 and P (Ab) ≈ 0.02), and a high leveler where the

service level is poor (P (W ) ≈ 1 and P (Ab) ≈ 0.2). The average performance yields

P (W ) = 0.9090 and P (Ab) = 0.2008.

Figure 6.2 shows how the probability of waiting and the probability of abandon-

ment change as functions of the load sensitivity parameter, b. We observe that the
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Figure 6.1: Sample path and stationary distribution of the number of people in the

system for M/MQ/s + M queues with different load sensitivity parameter values, b

(s = 512, λ = 500, µ = 0.6 + 0.4 exp(−b(q − s)+/s) and θ = 0.3)
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effect of load sensitivity is nonlinear. The performance deteriorates drastically as the

sensitivity parameter grows beyond a certain level (e.g., at around b = 1.5 for the

parameters in Figure 6.2).

These demonstrations imply that it is SRS may not be enough to achieve QED

regime performance in service systems with load-sensitive slowdown effect. In the

next section, we use the many-server heavy traffic analysis to analyze the dynamics

of such systems.
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Figure 6.2: Performance measures for M/MQ/s+M queues as a function of the load

sensitivity parameter, b (s = 512, λ = 500, µ = 0.6 + 0.4 exp(−b(q − s)+/s) and

θ = 0.5)
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6.2 Fluid analysis

In this section, we establish the fluid limit of the queue length process of the mod-

ified Erlang-A model. This deterministic model serves as an approximation for the

corresponding stochastic system when the system scale is large. We then conduct an

equilibrium analysis of the fluid model. That provides important characterization of

the stationary performance of the original system.

6.2.1 Fluid approximation

To develop the fluid limit, we consider a sequence of M/MQ/n + M queues indexed

by n, where the arrival rate λn → ∞ as n → ∞. For the n-th system, we denote

Qn ≡ {Qn(t) : t ≥ 0} as the queue length process (number of people in the system).

The abandonment rate does not scale with n and the service rate function takes the

same form when applied to the scaled queue length process. As we are interested in

the QED asymptotic regime, we assume that there exists a β such that limn→∞
√
n(1−

λn/(nµ(0))) = β.
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Let A ≡ {A(t) : t ≥ 0}, S ≡ {S(t) : t ≥ 0} and R ≡ {R(t) : t ≥ 0} be three

independent Poisson processes, each with unit rate. A, S and R generate the arrival,

service completion and abandonment processes, respectively. Then, the pathwise

construction of Qn is:

Qn(t) = Qn(0) + A(λnt)− S
(∫ t

0

µ

(
(Qn(u)− n)+

n

)
(Qn(u) ∧ n) du

)
−R

(∫ t

0

θ(Qn(u)− n)+du

)
.

We define the fluid-scaled process

Q̄n(t) =
Qn(t)

n

Let D := D([0,∞),R) denote the function space of all right-continuous real-valued

functions on the interval [0,∞) with left limit everywhere in (0,∞), endowed with

Skorohod (J1) topology.

Theorem 6.2.1 If Q̄n(0) ⇒ Q̄(0) in R, then Q̄n ⇒ Q̄ in D as n → ∞. The limit

process Q̄ is the unique solution satisfying the following integral equation

Q̄(t) = Q̄(0) + µ(0)t−
∫ t

0

µ
((
Q̄(u)− 1

)+
) (
Q̄(u) ∧ 1

)
du−

∫ t

0

θ
(
Q̄(u)− 1

)+
du.

The proof of Theorem 6.2.1 and all subsequent results can be found in Appendix

6.7.

Let f(q) be the flow rate function of the fluid system at state q. That is f(q) =

λ− µ((q − s)+/s)(q ∧ s)− θ(q − s)+. Then we can write Q̄(t) as the solution to the

following autonomous differential equation with initial value Q̄(0):

˙̄Q = f(Q̄) (6.2)

where ˙̄Q denotes the derivative of Q̄ with respect to t.
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6.2.2 Equilibrium analysis

Next, we analyze the long term behavior of the fluid model, i.e., the state of the

system as t → ∞. To make the dependence of the flow, Q̄(t), on its initial value,

Q̄(0), explicit, we write Φ(q0, t) = Q̄(t) with an initial value q0.

Definition 6.2.2 (Equilibrium) A point q̄ is an equilibrium of the dynamic sys-

tem (6.2) if

Φ(q̄, t) = q̄, for all t ≥ 0.

By Definition 6.2.2, q̄ is an equilibrium of a system if when the trajectory of the

flow defined by (6.2) starts at q̄, it stays there. In our model, q̄ can be computed by

solving f(q) = 0. However, it is unclear where the trajectories of the flow converge

to if the initial value q0 6= q̄. We therefore analyze the stability of the equilibrium

points.

Definition 6.2.3 (Stability of equilibrium) Let q̄ be an equilibrium point of the

dynamic system. q̄ is said to be stable if for any ε > 0, there exist δ > 0, such that

if |q − q̄| < δ, |Φ(q, t) − q̄| < ε for any t ≥ 0. Otherwise, q̄ is unstable. If δ can be

chosen such that not only q̄ is stable, but also limt→∞Φ(q, t) = q̄ for |q− q̄| < δ, then

q̄ is said to be asymptotically stable.

By Definition 6.2.3, q̄ is asymptotically stable if starting close enough to q̄, trajectories

defined by (6.2) converge to q̄ as t → ∞. An equilibrium may also be semistable.

In a semistable equilibrium, trajectories that start on one side of the equilibrium

converge to it, whereas trajectories that start on the other side do not. Note that a

semistable equilibrium is unstable by Definition 6.2.3.

To characterize the equilibria of the fluid model in (6.2), we analyze the function

f(q). When q ≤ 1, f(q) = µ(0)−µ(0)q is a linearly decreasing function that starts at

f(0) = µ(0) > 0 and ends at f(1) = µ(0)−µ(0) = 0. When q ≥ 1, under Assumption

6.1.1 f ′(q) = −µ′(q − 1)− θ and f ′′(q) = −µ′′(q − 1) ≤ 0. Therefore, f(q) is concave
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on [1,∞). Let q̂ = arg maxq∈[s,∞) f(q). We refer to q̂ as the critical point of the

system. Depending on the actual form of f(q), we distinguish between the following

two cases (as shown in Figure 6.3):

Case I (Low Sensitivity): −µ′(0) ≤ θ.

Case II (High Sensitivity): −µ′(0) > θ.

Under Case I, the case with low sensitivity, we have q̂ = 1 and under Case II, the

case with high sensitivity, q̂ is the root of f ′(q) = 0 for q ≥ 1. The following theorem

summarizes the stability analysis of the equilibria for the two cases.

Figure 6.3: Flow rate function under two cases

(a) Case I—Low sensitivity

f (q)

q q̂ = 1

µ(0)

(b) Case II—High sensitivity

q q̂1

µ(0)

f (q)

Theorem 6.2.4 Assume λ = sµ(0) and Assumption 6.1.1.

(i) If −µ′(0) ≤ θ (Low Sensitivity), there is a unique equilibrium, q̄, with q̄ = 1.

Furthermore, q̄ is asymptotically stable.

(ii) If −µ′(0) > θ (High Sensitivity), there are two equilibria, q̄1 and q̄2, with q̄1 = 1

and q̄2 > q̂. q̄1 is a semistable equilibrium and q̄2 is an asymptotically stable

equilibrium.

In the low sensitivity case, q̄ = 1 is the unique and asymptotically stable equilib-

rium of the fluid model. Therefore, the fluid model will converge to that value. In
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the stochastic level, we sill see the trajectory of the queue length process fluctuates

around n for the n-th system. We analyze its performance in more details in §6.3.

In the high sensitivity case, there are two equilibria, q̄1 and q̄2. The fluid model

may converge to either one, depending on the starting point. In the stochastic

level, the queue length process may alternate between the two equilibrium levels.

This drives the bi-stability phenomenon observed in Figure 6.1c. However, q̄1 is a

semistable equilibrium. Therefore, in the stochastic level, we expect the queue length

process to eventually spend most of the time around the higher equilibrium level as

the system scale grows large. We explore how the scale parameter n and other system

parameters affect the bi-stability phenomenon under High Sensitivity in §6.4.

6.3 Performance Analysis under Low Sensitivity

In this section, we conduct asymptotic analysis for the modified Erlang-A model

under low load sensitivity (−µ′(0) < θ). We establish closed-form approximations for

the performance measures (P (W ) and P (Ab)), which can be used to determine the

corresponding square-root staffing parameters. We then present numerical results to

demonstrate the quality of the approximations.

Let Yn denote the normalized steady-state queue length process. In particular,

Yn =
Qn(∞)− n√

n
.

We then have the following result about the limiting distribution of Yn.

Theorem 6.3.1 Under low sensitivity (−µ′(0) < θ) and SRS with parameter β, Yn

converges weakly to a distribution with the following probability density function

g(y) =


C1√
2π

exp
(
− (y+β)2

2

)
if y ≤ 0

C2√
2πσ2

exp
(
− (y+βσ2)2

2σ2

)
if y > 0,

where

σ =

√
µ(0)

µ′(0) + θ
, C1 =

h(βσ)

σφ(β)

(
1 +

h(βσ)

σh(−β)

)−1

, C2 =
h(βσ)

φ(βσ)

(
1 +

h(βσ)

σh(−β)

)−1



CHAPTER 6. SLOWDOWN SERVICES QED 158

and h(·) denotes the hazard rate function of the standard normal distribution. Specif-

ically, h(z) = φ(z)/Φ̄(z), where φ(z) = (2π)−1/2 exp(−z2/2) and Φ̄(z) =
∫∞
z
φ(z)dz

is the complementary cumulative distribution function.

Theorem 6.3.1 shows that the limiting distribution of the scaled process has normal

tails but it is not symmetric around zero unless (µ′(0) + θ)/µ(0) = 1, and the left tail

decays slower as the sensitivity level |µ′(0)| increases.

From Theorem 6.3.1, we have the following asymptotic results about the perfor-

mance measures.

Corollary 6.3.2 Under low sensitivity (−µ′(0) < θ) and SRS with parameter β,

lim
n→∞

Pn(W ) =

(
1 +

h (βσ)

σh(−β)

)−1

and

lim
n→∞

√
nPn(Ab) =

(
h(βσ)

σ
− β

)(
1 +

h(βσ)

σh(−β)

)−1
θ

µ′(0) + θ
,

where σ =
√
µ(0)/(µ′(0) + θ).

Corollary 6.3.2 implies that the performance measures deteriorate with the load

sensitivity level µ′(0), and it leads to the following approximations of the system

performance measures:

Pn(W ) ≈
(

1 +
h (βσ)

σh(−β)

)−1

(6.3)

and

Pn(Ab) ≈
(

1− h(βσ)

h(βσ + 1/(σ
√
n))

)(
1 +

h (βσ)

σh(−β)

)−1
θ

µ′(0) + θ
. (6.4)

Figure 6.4 demonstrates the quality of these approximations (denoted by dashed

lines) compared to the actual performance measures (marked by ‘+’ signs), derived

by simulation for different system parameters. Specifically, we choose three evenly

spaces values of load sensitivity, measured by µ′(0), and the values of the square-root

staffing parameter β between −3 to 3.

We observe that (6.3) provides a good approximation for P (W ) for a wide range

of load sensitivity levels and β values. On the other hand, (6.4) provides a good
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Figure 6.4: Approximations for P (W ) and P (Ab) at three different load sensitivity

levels: a: µ′(0) = 0, b: µ′(0) = −0.3, c: µ′(0) = −0.6
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approximation of P (Ab) for only lower levels of load sensitivity (|µ′(0)| ≤ 0.3). In

other words, the quality of (6.4) deteriorates as the load sensitivity level approaches

abandonment rate, |µ′(0)| → θ; in that case the approximation tends to overestimate

the system performance measures. Practically speaking, however, because the QED

regime aims for less than 10% abandonments, we can restrict attention to the range

of β’s which result in P (Ab) < 10%. For example, β > −1 when µ′(0) = −0.6. In

that range, (6.4) works as a good approximation for the probability of abandonment,

where the maximum gap between the two is 0.025.

We also observe that for a fixed β, system performance (P (W ) and P (Ab)) dete-

riorates with the load sensitivity level µ′(0). Therefore, neglecting to account for load

sensitivity would underestimate system performance. Put differently, fixing a target

system performance, a load sensitive service system requires more staffing to achieve

the same level of performance. One can use (6.3) and (6.4) to find the appropriate

square-root staffing parameter to achieve certain performance measures in the QED

regime.

Remark 6.3.1 We conclude this section by drawing some connections to the ordinary
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Erlang-A model. We notice that the limiting distribution of Yn, in Theorem 6.3.1,

is the same as the limiting distribution of the normalized queue length process of a

sequence of ordinary Erlang-A model with the same arrival rate λn, constant service

rate µ(0) and reduced abandonment rate µ′(0)+θ in stationarity [53]. This is because,

under the low sensitivity conditions, the two systems have the same arrival rates and

very similar death rates. When q < n, the death rates of the two systems are equal;

when q > n, the death rate of the modified Erlang-A queue is:

µ

(
q − n
n

)
n+ θ(q − n)

= µ(0)n+ (µ′(0) + θ)(q − n) + µ′′(η)
(q − n)2

n

for some η ∈ (0, (q − n)/n)

≈ µ(0)n+ (µ′(0) + θ)(q − n)

when (q − n)2/n is small, i.e. when q − n = O(
√
n).

The reduced abandonment rate in the corresponding ordinary Erlang-A model suggests

that the load sensitivity effectively lessens the stabilizing effect of abandonment. We

also notice that as µ′′(·) ≥ 0, µ( q−n
n

)n + θ(q − n) ≥ µ(0)n + (µ′(0) + θ)(q − n), the

ordinary Erlang-A model with reduced abandonment rate is stochastically larger than

the modified model (Lemma 6.4.6). Therefore, the stationary queue length process,

Qn(∞), of our modified model is within n±O(
√
n) with high probability.

6.4 Bi-Stability Analysis: Performance Analysis

under High Sensitivity

In this section, we analyze the system dynamics when sensitivity is high and in

particular, the factors that affect the bi-stability phenomenon. We start with the scale

parameter n. We then keep n fixed and analyze the effect of other system parameters,

specifically, the square-root staffing parameter β, the sensitivity of the service rate
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function and the abandonment rate θ. We also propose some staffing and admission

control policies to eliminate the bi-stability effect and avoid ED performance.

6.4.1 The effect of the scale parameter n

We begin by characterizing the local maximums of the stationary distribution, i.e.,

its peaks. When bi-stability occurs there are two peaks, as was shown in Figure 6.1d.

Naturally, there is a one-to-one correspondence between these peaks and the (semi-

)stable equilibria of the fluid model. Recall that Qn = {Qn(t) : t ≥ 0} is a B&D

process with birth rate λn and state-dependent death rate µ((q − n)+/n)(q ∧ n) +

θ(q − n)+, where Qn(t) = q. Let πn(·) denote the steady-state distribution of Qn.

From the detailed balance equation

λnπn(q) =
(
µ((q − n)+/n)(q ∧ n) + θ(q − n)+

)
πn(q + 1),

we get

πn(q + 1)− πn(q) =

(
λn

µ((q − n)+/n)(q ∧ n) + θ(q − n)+
− 1

)
πn(q).

As a result, when λn ≥ µ((q−n)+/n)(q∧n)+θ(q−n)+, πn(q+1) ≥ πn(q); otherwise,

πn(q + 1) < πn(q). Hence, we find the value of peaks of πn(·) by analyzing the sign

of fn(q) := λn − µ((q − n)+/n)(q ∧ n)− θ(q − n)+. When q < n, fn(q) = λn − µ(0)q

is a linearly decreasing function. When q ≥ n, if we let xn = (q−n)/n, then we have

fn(q)

n
=
λn
n
− µ(xn)− θxn.

To simplify notation, let ν(x) := µ(x) + θx for x ≥ 0 and x̂ > 0 denote the root of

ν ′(x) = 0. Under Assumption 6.1.1 and High Sensitivity, ν(·) is convex and attains

its minimum at x̂. We also denote x̄n as the root of λn/n− ν(x) = 0 on (x̂,∞). The

next theorem characterizes the peaks of πn(·).

Theorem 6.4.1 Let Rn = λn/µ(0). Under High Sensitivity (−µ′(0) > θ) and for

n = Rn + β
√
Rn (SRS):
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i) when β < 0, πn(·) has a unique peak, q̄n,2 = b(x̄n + 1)nc;

ii) when β > 0,

(a) if λn/n ≤ ν(x̂), πn(·) has a unique peak, q̄n,1 = bλn/µ(0)c;

(b) if λn/n > ν(x̂), πn(·) has two peaks, q̄n,1 = bλn/µ(0)c and q̄n,2 = b(x̄n +

1)nc.

As limn→∞ λn/n = µ(0), when β > 0, the stationary distribution, πn(·), may have

a unique peak for small values of n, but will eventually have two peaks as n grows

large.

Let x̄ be the root of µ(0)− ν(x) = 0 on (x̂,∞). As ν(·) is continuously increasing

on (x̂,∞), x̄n → x̄ as n→∞. It is also easy to check that x̄ = q̄2− 1, i.e. x̄ measures

the distance between the two fluid equilibria. The next theorem characterizes the

relative magnitude of the two peaks.

Theorem 6.4.2 Under High Sensitivity (−µ′(0) > θ) and SRS with β > 0

lim
n→∞

1

n
log

πn(q̄n,2)

πn(q̄n,1)
= I(x̄),

where

I(x̄) =

∫ x̄

0

log
µ(0)

ν(x)
dx ≥ 0.

Theorem 6.4.2 indicates that πn(q̄n,2) ≈ πn(q̄n,1) exp(nI(x̄)). This means that the

difference in magnitude between the two peaks (πn(q̄n,1) and πn(q̄n,2)) grows expo-

nentially in n. Figure 6.5 demonstrates how the stationary distribution of the system

with β > 0 evolves with the scale parameter, n. For small values of n (n ≤ 200),

πn(·) has a unique peak (q̄n,1). As n increases, a “second peak” (q̄n,2) emerges and its

magnitude compared to the first peak increases. For very large n, only q̄n,2 remains

effective.

Remark 6.4.1 Theorem 6.4.2 suggests that systems with high service rate sensitivity

will have the dis-economies-of-scale effect. Unlike traditional Erlang-A model using
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SRS, where larger system provide better performance levels, the performance of our

modified model deteriorates as the system scale grows.

Figure 6.5: Approximated stationary distribution of the number of people in the

system for M/MQ/n + M queues with scale parameter values n (n = dRn +
√
Rne,

µ = 0.6 + 0.4 exp(−1.5(q − n)+/n) and θ = 0.3).
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We next analyze factors that affect the value of I(x̄). To facilitate the comparison,

we restrict our analysis to the following ordering of load sensitivity.

Definition 6.4.3 For two service rate function µ1(·) and µ2(·), with µ1(0) = µ2(0),

we say that µ2 is more load-sensitive than µ1, if µ2(x) ≤ µ1(x) for all x > 0.

The next lemma looks on the effect of the system parameters on the value of the

higher level fluid equilibrium, q̄2.

Lemma 6.4.4 Under High Sensitivity (−µ′(0) > θ) and SRS with β > 0

i) the more load-sensitive the service rate function , the larger the value of q̄2;

ii) the larger the abandonment rate θ, the smaller the value of q̄2.
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Based on Lemma 6.4.4, the next lemma summarizes the effect of the load sensi-

tivity of the service rate function and the abandonment rate on the value of I(x̄).

Lemma 6.4.5 Under High Sensitivity (−µ′(0) > θ) and SRS with β > 0

i) the more load-sensitive the service rate function, the larger the value of I(x̄);

ii) the larger the abandonment rate θ, the smaller the value of I(x̄).

Remark 6.4.2 Lemmas 6.4.4 and 6.4.5 indicate that as load sensitivity increases the

distance between the two equilibria increases, and with it the rate of convergence to

the upper equilibria (I(x̄)). Hence, we will observe bi-stability for smaller systems

only. Abandonment rate has the opposite effect—as θ increases, the convergence to

the upper equilibria is slower, hence, we will observe bi-stability in larger systems.

6.4.2 The effect of other system parameters

For a fixed system scale parameter, n, in this section, we analyze the effect of the

square-root staffing parameter, β, the service rate sensitivity and the abandonment

rate, θ, on the bi-stability phenomenon (the magnitude of the two peaks). Theorem

6.4.1 shows that bi-stability (the existence of the two peaks) only arises for β > 0

and large n. We therefore concentrate on these parameter ranges.

We start by giving a formal definition for the time around the lower/upper equi-

librium level by defining the threshold point q̃n. This threshold outlines the re-

gion around the lower equilibrium level as [0, q̃n] and the region around the upper

equilibrium level as (q̃n,∞). Let x̃n be the root of λn/n − ν(x) = 0 on [0, x̂) and

q̃n := b(x̃n + 1)nc. As fn(q) < 0 for q ∈ (q̄n,1, q̃n), q ∈ Z+, πn(q) is decreasing on

(q̄n,1, q̃n); and as fn(q) > 0 for q ∈ (q̃n, q̄n,2), q ∈ Z+, πn(q) is increasing on (q̃n, q̄n,2).

Thus, q̃n is the valley of πn(q) (see for example the valley around 600 in Figure 6.5f),

and hence a good threshold to outline the two regions.
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The next lemma provides the basis for the main comparison results (Theorem

6.4.7) in this subsection.

Lemma 6.4.6 For two positive recurrent B&D processes, Y (1) and Y (2), defined on

the same state space Z+, denote γi and ξi(·) as the birth rate and state-dependent

death rate of Y (i), for i = 1, 2. If γ1 = γ2 and ξ1(y) ≥ ξ2(y) for every y ∈ Z+, then

P (Y (1)(∞) > y) ≤ P (Y (2)(∞) > y).

From Lemma 6.4.6, we have the following theorem that studies the effect of the

system parameters on the proportion of time the system spends around each equilib-

rium level.

Theorem 6.4.7 Under High Sensitivity (−µ′(0) > θ) and square-root Staffing with

β > 0,

i) if µ(∞) ≥ θ, then the proportion of time the system spends around the upper

equilibrium decreases with the square-root staffing parameter, β;

ii) under Definition 6.4.3, the more load-sensitive the service rate function, the

larger proportion of time the system spends around the upper equilibrium;

iii) the proportion of time the system spends around the upper equilibrium decreases

with the abandonment rate, θ.

Figure 6.6 demonstrates how the value of the peaks and proportion of time the

system spends around each peak changes with the square-root staffing parameter β,

the sensitivity parameter, b, and the abandonment rate, θ. We notice that the value

of the second peak (the larger one) increases with the load sensitivity parameter b and

decreases with the abandonment rate θ, as was proved in Lemma 6.4.4. In addition,

we notice that the value of the second peak decreases with the square-root staffing

parameter β, but the difference is much smaller when compared to the effect of b and

θ. (This change is not apparent in the fluid level and, hence, less significant.)
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Figure 6.6: Approximated stationary distribution of the number of people in the

system for M/MQ/n + M queues with different system parameters (n = λ + β
√
λ,

λ = 500, µ = 0.6 + 0.4 exp(−b(q − s)+/s) and θ).
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The effect of β on the performance measures of our load-sensitive model is similar

to that of the traditional/nonsensitive Erlang-A model; P (W ) and P (Ab) both de-

crease with β. The effect of load sensitivity, is also straightforward. The system with

a less sensitive service rate function has on average a higher service rate. The per-

formance measures hence improve. In contrast, the effect of the abandonment rate,

θ, is quite counterintuitive. In the traditional Erlang-A model, it is well established

if customers are less patient (i.e., θ increases), P (W ) decreases but P (Ab) increases

[53], while in our modified Erlang-A model with high sensitivity, both the probability

of waiting and the probability of abandonment decrease with θ. This is because the

load-sensitive system reaches the high equilibrium less frequently as θ increases.

The analysis implies that the abandonment rate and the load sensitivity of the

service rate function affect system performance differently when service rates exhibit

slowdowns due to congestion. While a high load sensitivity level negatively affects

system performance, a high abandonment rate may actually improve performance by

alleviating the deterioration in service rate. Hence, managers are advised to encourage

customers to abandon in a load-sensitive environment. This can be done, for example,

by providing delay announcements when the system is loaded, as it is known that

announcements increase abandonment rate [56; 66].
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6.4.3 Policies to avoid bi-stability under High Sensitivity

We next propose and analyze three policies to eliminate the bi-stability phenomenon

and avoid ED regime performance under High Sensitivity. The first approach, Policy

A, is to increase the staffing level sufficiently so that the stationary distribution has

only one peak around the lower level. The second approach, Policy B, is to adjust

the abandonment rate once a threshold is reached so that the stationary distribution

again has only one peak around the lower level. The third approach, Policy C,

is to block the incoming arrivals or reroute them to other service facilities once a

threshold is reached, thereby preventing the system from reaching the higher level

peak (equilibrium). In the remaining part of this section, we expand on each policy.

A) Increase staffing. In this policy, we eliminate the higher-level equilibrium by

increasing staffing level. The new staffing level, n̄, should be such that λn/n̄ ≤

ν(x̂). Suppose we set n̄ = λn/ν(x̂). Then we have

n̄− n
n

=
λn/n

ν(x̂)
−

(
λn/n

µ(0)
+

β√
n

√
λn/n

µ(0)

)
→ λ

ν(x̂)
− λ

µ(0)
as n→∞.

This implies that we need to increase staffing by O(n) servers. Thus, a potential

drawback of this approach is that by raising the staffing level to n̄, a service

provider may “overstaff” the system to operate in the QD regime.

B) Increase abandonment. Under this policy, we eliminate the higher level equi-

librium by adjusting the abandonment rate. This is doable using, for example,

delay announcement [66]. In what follows, we consider a special intervention,

under which we increase the abandonment rate to θ̄ when the queue length pro-

cess pass a certain threshold hn. The hn and θ̄ need to be choose appropriately,

such that under the Policy B, the stationary distribution has only one peak

around the lower level. Interestingly, the value of theses parameters could be

derived from our bi-stability analysis earlier.
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Recall that x̃n is the root of λn/n − ν(x) = 0 on (0, x̂). From the proof of

Theorem 6.4.1, to eliminate the higher level peak (equilibrium), we need to set

hn ∈ (n, (x̃n + 1)n] and the corresponding θ̄ ≥ |µ′((hn − n)/n)|. This means

that for this approach to be effective the delay announcement has to increase

customer impatience by at least |µ′((hn − n)/n)| − θ at the threshold level hn.

We also have the following asymptotic characterization of x̃n.

Lemma 6.4.8 Assume that
√
n(1 − ρn) → β as n → ∞ with β > 0. Under

High Sensitivity

lim
n→∞

√
nx̃n = − βµ(0)

µ′(0) + θ
.

We notice from Lemma 6.4.8 that x̃n = O(
√
n), thus hn − n = O(

√
n) and

|µ′((hn − n)/n)| = µ′(0) + O(1/
√
n). We also note that the increased level of

abandonment rate only need to hold for hn < q < q̄n,2; it can go back to θ for

higher values of queue length.

C) Admission Control. In a different approach, Policy C avoids bi-stability by

constraining demand for services. Here we block customers (or reroute them to

a different service group/facility) once a certain threshold, c, is reached. Under

Policy C, the system becomes an M/MQ/n/c + M queue. To implement this

policy, the system provider needs to characterize the appropriate threshold level,

and the cost that such a policy entails on the system in terms of the proportion

of customers blocked/rerouted. The “right” threshold could again be chosen

based on our bi-stability analysis.

From the proof of Theorem 6.4.1, any choice of cn, satisfying n < cn ≤ (x̃n +

1)n, eliminates bi-stability, but the choice presents a tradeoff between the level

of performance and the proportion of customers blocked: Setting a small cn

improves performance (P (W ) and P (Ab) are low), but increases the proportion

of customers that are blocked (P (Bl)). To find the optimal threshold within
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this range, a service provider should evaluate the costs associated with each

performance measure and strike a balance between them.

To gain more insight on the performance of this policy, we consider a sequence

of M/MQ/n/cn +M queues indexed by n. System n has arrival rate λn, state-

dependent service rate µ((q − n)+/n), abandonment rate θ and a finite system

capacity cn, so that incoming customers are blocked once the number of cus-

tomers in the system reaches cn. We denote the queue length process of the

n-th system by Qc
n(·).

We next develop diffusion approximations for Qc
n for cn ≤ (x̃n + 1)n. The

pathwise construction of Qc
n is

Qc
n(t) = Qc

n(0) + A(λnt)− S
(∫ t

0

µ

(
(Qc

n(u)− n)+

n

)
(Qc

n(u) ∧ n)du

)
−R

(
θ

∫ t

0

(Qc
n(u)− n)+du

)
− Ln(t),

where Ln(t) =
∫ t

0
1{Qc

n(s) = cn}dA(λnt). Ln counts the number of arrivals that

are blocked from the system in [0, t]. We define the diffusion-scaled process

Q̂c
n(t) :=

Qc
n(t)− n√

n
.

Theorem 6.4.9 Assume
√
n(1− ρn) → β as n → ∞, where ρn = λn/(nµ(0))

and cn/
√
n → c ≤ −βµ(0)s/(µ′(0) + θ) as n → ∞. If Q̂c

n(0) ⇒ Q̂c(0) in R as

n → ∞, then Q̂c
n ⇒ Q̂c in D as n → ∞. The limit process Q̂c is the unique

process satisfying the stochastic integral equation:

Q̂c(t) = Q̂c(0)− βµ(0)t+
√

2µ(0)B(t)

−
∫ t

0

[
µ(0)(Q̂c(u) ∧ 0) + (µ′(0) + θ)Q̂c(u)+

]
du− L̂(t), (6.5)

where {B(t) : t ≥ 0} is a standard Brownian motion. L̂ is the unique nonde-

creasing nonnegative process in D satisfying equation (6.5) and∫ ∞
0

1
{
Q̂c(t) < c

}
dL̂(t) = 0.
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Qc
n is an irreducible Markov chain with a finite state space. Thus, Q̂c admits a

unique stationary distribution, π. As Eπ[Qn(t)] = Eπ[Qn(0)], by Theorem 6.4.9

and the Basic Adjoint Relation [74],

Eπ[L̂(t)] =
(
−βµ(0)− µ(0)Eπ[Q̂c(0) ∧ 0]− (µ′(0) + θ)Eπ[Q̂c(0)+]

)
t

and the proportion of customers that are blocked from the n-th system, Pn(Bl),

satisfies

Pn(Bl) ≈
√
nEπ[L̂(t)]

λnt

=
1√
n

(
−βµ(0)− µ(0)Eπ[Q̂c(0) ∧ 0]− (µ′(0) + θ)Eπ[Q̂c(0)+]

)
µ(0)

.

The probability of blocking is of O(1/
√
n). This implies that for large systems,

the proportion of customers blocked and the proportion of time the system is

blocked are very small. As the system is restricted to fluctuate around the

lower equilibrium q̄1, we expect QED regime performance for P (W ) and P (Ab),

i.e. non-degenerate probability of waiting and O(1/
√
n) probability of abandon-

ment.

We next compare the performance of the three policies numerically. Specifically,

we compare how each policy improves the service level for different load sensitivity

parameter values, and report on the implementation “cost” of each policy, i.e., the

amount of added staffing or the proportion of customers abandoned/blocked. In

Table 6.1, we compare three modified Erlang-A models with different levels of the load

sensitivity parameter, b. In the Base Case table we present the performance measures

of the load-sensitive system. In the Policy A table, we present the performance

measures that correspond to an increased staffing level of n̄ = λ/ν(x̂). We denote

by ∆n the percentage increase in staffing. In the Policy B table, we present the

performance measures of the system that operates under the policy of increasing the

abandonment rate to θ̄ = −µ′(0) once the queue length process pass the threshold
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level hn = q̃n. Finally, in the Policy C table, we present the performance measures of

the system that operates under the threshold control policy with the threshold level

cn = q̃n.

For Policy A, as the sensitivity increases, to eliminate bi-stability, the additional

staffing required increases. In particular, the percentage of extra staffing needed, ∆n,

increases from 3.89% (for b = 1.25) to 17.53% (for b = 2.75). These levels of extra

staffing yield a QD regime performance for highly sensitive systems (e.g. b ≥ 1.75).

While the policy results in very good performance, adding so much extra staffing (as

high as 17.53%) may lead to low server utilization, and can potentially be a costly

solution. Alternatively, under Policy B, while the performance measures deteriorate

with the sensitivity parameter, the performance remains within the QED regime. The

column, P (Q(∞) > hn), represents the proportion of time the increased abandon-

ment intervention is active. We observe that it is small and increasing with the load

sensitivity. This is consistent with our previous analysis, as the proportion of time

the system is pushed towards the upper equilibrium increases with the load sensi-

tivity. Lastly, under Policy C, the proportion of customers blocked is relatively low

(at most 1.51% for the parameters in Table 6.1). The admission control policy keeps

the performance measures within the QED regime characteristics for all sensitivity

parameters tested. Hence, Policy B & C achieve a good service level while keeping

the staffing according to the SRS rule.

6.5 Extensions

The model in Section 6.1 is the most befitting to explain agent-driven slowdowns,

where the effect of the load of the system on service rates is applied instantly and

to all agents simultaneously. Such a model fits situations where agents observe the

current load and adjust their working rates accordingly. The exact same model cannot

be directly applied to capture all various sources of the slowdown effect described in
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the introduction. In this section, we modify the base model to better fit other sources

of slowdown effects. In particular, we analyze: a) Customer-driven slowdowns, where

each customer’s waiting time affects only her own service rate, and b) Agent-driven

slowdowns with a time lag, which can explain slowdowns caused by fatigue and hence

takes time to take effect. Utilizing numerical approaches, we find that the primary

insights (the existence of the two equilibria and the stochastic fluctuations between

them) from our original model remain.

6.5.1 Customer-driven slowdown

In this section, we assume that a customer’s service time is positively correlated with

his own waiting time. In particular, the service rate of customer i is a function of

her waiting time (not the queue length): µi = µ(wi) where wi is the waiting time

of customer i. [75] developed a performance approximation for this model based on

theoretical bounds, a method which did not detect bi-stability in performance levels.

Figure 6.7 demonstrates that the bi-stability phenomenon still exists in this setting

and the system spends a larger proportion of time around the higher equilibrium level

as the sensitivity parameter increases.

Figure 6.7: Sample paths of the number of people in the system with different sensi-

tivity parameters, b (n = 214, λ = 200, θ = 0.3 and µi = 0.6 + 0.4 exp(−bwi).)
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6.5.2 Agent-driven slowdown effect with delay

Another possible cause for the slowdown effect is due to fatigue of agents. Under high

congestion levels, agents are working under pressure and without proper rest, which

may eventually lead to deterioration in productivity. One way to model a slowdown

effect caused by fatigue is to incorporate a time lag between the occurrence of high

congestion levels and the deterioration in productivity. To capture this, we set the

service rate as a function of the average queue length process over a time interval of

length l. Specifically, the service rate at time t is

µ

(∫ t

t−l

(Q(u)− n)+

n
du

)
.

We observe that bi-stability still exists in this case. We find that the length of the

time lag, l, affects the frequency at which the system moves between the two equilibria.

If l is of the same order as the service time, the system moves “easily” from one

equilibria to the other; as the time lag increases, it becomes “harder” for the system to

transfer between them. Figure 6.8 illustrates how the bi-stability phenomenon evolves

as the sensitivity parameter, b, increases, for a relatively small time lag (e.g., l = 5).

As before, the proportion of time the system spends around the higher equilibrium

level grows with b. In contrast, for a large time lag (e.g., l = 30), the trajectory of

the system depends largely on its initial position, and tends to stay around the initial

equilibrium level for a very long period of time (potentially forever), regardless of the

value of b. Figure 6.9 demonstrates the sample paths commonly observed in this case.

If the system starts around the lower equilibrium, it keeps fluctuating around that

level, whereas if the system starts around the higher equilibrium, then it stays there.

These observations has operational implications—whereas systems with short l will

move from the upper equilibrium to the lower equilibrium by itself, systems with long

l may need external intervention to move from the upper equilibrium to the lower

one.
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Figure 6.8: Sample paths of the number of people in the system with time lag of

length l = 5 and different levels of the sensitivity parameter, b (n = 214, λ = 200,

θ = 0.3 and µ
(∫ t

t−l(Q(u)− n)+/n du
)

= 0.6 + 0.4 exp
(
−b
∫ t
t−l(Q(u)− s)+/sdu

)
.)
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6.6 Concluding Remarks

Motivated by empirical findings in service systems, we modified the Erlang-A model

to account for the effect of the workload-dependent service rate. When the load sensi-

tivity is low, with relation to the abandonment rate, we observe a small gap between

the performance of the standard Erlang-A model and the load-sensitive model. The

latter has lower quality of service. We show that this reduction in quality measures

can be fixed by adjusting the square-root staffing rule parameter. When the load

sensitivity is high, we observe a bi-stability phenomenon where the system alternates

between two equilibria: one equilibrium results in a QED performance and another

equilibrium results in an ED performance. We conduct a sensitivity analysis of the

proportion of time the system spends around each equilibrium and propose three

policies to avoid the occurrence of bi-stability: A) a permanent increase of staffing,

B) increasing the abandonment rate once the queue length reaches a certain threshold

and C) admission control, where customers are blocked as soon as the queue length

reaches the threshold level. Policy A may “overstaff” to a QD performance while

Policy B & C provide a QED performance at a “low cost”. Lastly, we illustrate via

numerical experiments that the bi-stability phenomenon remains in a larger class of
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Figure 6.9: Sample paths of the number of people in the system with time lag of

length l = 30 and different initial queue lengths (s = 214, λ = 200, θ = 0.3 and

µ
(∫ t

t−l(Q(u)− s)+/sdu
)

= 0.6 + 0.4 exp
(
−2
∫ t
t−l(Q(u)− s)+/sdu

)
.)
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load-sensitive service systems with different sources of the slowdown effect.

We would like to conclude with some remarks regarding the construction of the

model. First, for the sake of simplicity, throughout the manuscript, we assume a

decreasing and convex service rate function and a constant abandonment rate. The

former derived the bi-stability results. We notice that meta-stability (multiple (semi-

)stable equilibria) can arise for more general forms of the service rate function and

load-dependent abandonment rate. However, most of the analyses in this paper (the

fluid analysis and the asymptotic analysis of the stationary distribution) can be ap-

plied to the more general cases as well. Our second remark is on the practical esti-

mation of the service rate function. From our analyses, it is apparent that to design

service systems with a load-dependent slowdown effect, it is sufficient to accurately

estimate the service rate function around zero, for most purposes. The derivative of

the service rate function at zero is all that is needed to distinguish between the low

and the high sensitivity cases, and to approximate the performance measures in the

low sensitivity case. To implement Policy B and Policy C in the high sensitivity case,
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it is sufficient to estimate the service rate function up to O(1/
√
n).

6.7 Proofs of the technical results

Proof.[Proof of Theorem 6.2.1.] The proof follows from the method outlined in [76].

We write

Qn(t) = Qn(0) + A(λnt)− S
(∫ t

0

µ

(
(Qn(u)− n)+

n

)
(Qn(u) ∧ n)du

)
−R

(
θ

∫ t

0

(Qn(u)− n)+du

)
= Qn(0) +Mn,1(t)−Mn,2(t)−Mn,3(t)

+λnt−
∫ t

0

µ

(
(Qn(u)− n)+

n

)
(Qn(u) ∧ n)du− θ

∫ t

0

(Qn(u)− n)+du

where

Mn,1 = A(λnt)− λnt

Mn,2 = S

(∫ t

0

µ

(
(Qn(u)− n)+

n

)
(Qn(u) ∧ n)du

)
−
∫ t

0

µ

(
(Qn(u)− n)+

n

)
(Qn(u) ∧ n)du

Mn,3 = R

(
θ

∫ t

0

(Qn(u)− n)+du

)
− θ

∫ t

0

(Qn(u)− n)+du.

Let Q̄n(t) = Qn(t)/n and M̄n,i = Mn,i/n for i = 1, 2, 3. Then

Q̄n(t) = Q̄n(0) + M̄n,1(t)− M̄n,2(t)− M̄n,3(t)

+
λn
n
t−
∫ t

0

µ
(
(Q̄n(u)− 1)+

) (
Q̄n(u) ∧ 1

)
du− θ

∫ t

0

(
Q̄n(u)− 1

)+
du.

Let d(q) = −µ((q − 1)+)(q ∧ 1)− θ(q − 1)+. As µ′(·) ≤ 0 and µ′′(·) ≥ 0, |µ′(x)| ≤

|µ′(0)|. It is easy to check that

|d(q1)− d(q2)| ≤ max{µ(0), |µ′(0)|+ θ}|q1 − q2|.

Thus d(·) is Lipschitz. This implies that

q(t) = b+ x(t) +

∫ t

0

d(q(u))du
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has a unique solution and constitutes a function φ : D × R → D that is continuous

(see Theorem 4.1 in [76]).

Let η(t) ≡ 0. We next show that M̄n,i → η in D w.p. 1 as n→∞ for i = 1, 2, 3.

Applying the Functional Strong Law of Large Numbers to Poisson processes, we have

sup0≤t≤T

{
A(nt)
n
− t
}
→ 0, sup0≤t≤T

{
S(nt)
n
− t
}
→ 0 and sup0≤t≤T

{
R(nt)
n
− t
}
→ 0

w.p. 1 as n→∞ for any T > 0. We thus have

M̄n,1 → η in D w.p. 1 as n→∞.

As Qn(t) < Qn(0) + A(λnt),
∫ t

0
Qn(u)du ≤ t (Qn(0) + A(λnt)). This implies that for

any fixed T > 0 there exists τ > 0, such that

P

(
µ(0)

n

∫ T

0

Qn(u)du > τ

)
→ 0 as n→∞.

Then,

P
(∥∥M̄n,2

∥∥
T
> ε
)
≤ P

(
µ(0)

n

∫ T

0

Qn(u)du > τ

)
+ P

(∥∥∥∥S(nt)

n
− t
∥∥∥∥
τ

>
ε

2

)
.

This leads to

M̄n,2 → η in D w.p. 1 as n→∞.

Similarly we can show that

M̄n,3 → η in D w.p. 1 as n→∞.

By the Continuous Mapping Theorem (CMT) we have the fluid limit in Theorem

6.2.1. 2

Proof.[Proof of Theorem 6.2.4.] We prove asymptotic stability by the Lyapunov

method. Specifically, a function V (q) : R+ → R+ is called a Lyapunov function

of (6.2) about its equilibrium q̄ if V (q̄) = 0 and V (q) > 0, 0 < |q − q̄| < δ for

some δ > 0. We denote V̇ as the derivative of V (·) with respect to q. q̄ is locally

asymptotically stable, if there exists a Lyapunov function V (q), such that V̇ (q) < 0

for all 0 < |q − q̄| < δ for some δ > 0. q̄ is globally asymptotically stable, if the

locally asymptotically stable conditions hold for all δ ∈ R+.
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For the low sensitivity case, we use the following Lyapunov function

V (q) = |q − q̄|,

where q̄ is the specified equilibrium. Hence,

V̇ (q) = sign(q − q̄)f(q).

Recall that f(q) = µ(0)− µ((q − 1)+)(q ∧ 1)− θ(q − 1)+.

Under Assumption 6.1.1 and the assumptions of the low sensitivity case, f(·) is de-

creasing. q̄ = µ(0)/µ(0) = 1 and

V̇ (q) =

 −µ(0) + µ(0)q < −µ(0) + µ(0)q̄ = 0, q < q̄;

µ(0)− µ(q − 1)− θ(q − 1) < µ(0)− µ(0) = 0, q > q̄.

Therefore, q̄ is a globally asymptotically stable equilibrium.

Under Assumption 6.1.1 and the assumptions of the high sensitivity case, f(1) = 0;

thus q̄1 = 1. f(q) is increasing on [q̄1, q̂) and decreasing on [q̂,∞). Since f(q̂) > 0

and limq→∞ f(q) = −∞, there exists q̄2 > q̂ such that f(q̄2) = 0.

As f(q) > 0 for q < 1 and f(q) > 0 for 1 < q < q̂, q̄1 is semistable.

Let

V2(q) = |q − q̄2|.

For q ∈ (q̄1,∞),

V̇2(q) =



−µ(0) + µ(q − 1) + θ(q − 1) < −µ(0) + µ(0)q̄1 = 0,

when q̄1 < q ≤ q̂;

−µ(0) + µ(q − 1) + θ(q − 1) < −µ(0) + µ(q̄2 − 1) + θ(q̄2 − 1) = 0,

when q̂ < q < q̄2;

µ(0)− µ(q − 1)− θ(q − 1) < µ(0)− µ(q̄2 − 1)− θ(q̄2 − 1) = 0,

when q > q̄2.

Therefore, q̄2 is a locally asymptotically stable equilibrium. 2

In order to prove Theorem 6.3.1, we start with the following lemma.
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Lemma 6.7.1 Assume
√
n(1− λn/(nµ(0)))→ β as n→∞. For any 0 < y1 < y2 <

∞,

lim
n→∞

log
πn(bn+

√
ny2c)

πn(bn+
√
ny1c)

= −
∫ y2

y1

β +
µ′(0) + θ

µ(0)
y dy

and

lim
n→∞

log
πn(bn−

√
ny1c)

πn(bn−
√
ny2c)

= −
∫ −y1
−y2

β + y dy.

Proof. From the detailed balance equation of the B&D process, we have

πn(bn+
√
ny2c)

πn(bn+
√
ny1c)

=

bn+
√
ny2c∏

k=bn+
√
ny1c+1

λn
µ ((k − n)/n)n+ θ(k − n)

.

Then,

log
πn(bn+

√
ny2c)

πn(bn+
√
ny1c)

= b(y2 − y1)
√
nc log ρn −

b
√
ny2c∑

k=b
√
ny1c+1

log

(
1 +

µ( k
n
)− µ(0) + θ k

n

µ(0)

)

= −b(y2 − y1)
√
nc(1− ρn)−

b
√
ny2c∑

k=b
√
ny1c+1

µ′(0) + θ

µ(0)

k√
n

1√
n

+O

(
1

n

)

→ −(y2 − y1)β −
∫ y2

y1

µ′(0) + θ

µ(0)
ydy.

Likewise,

log
πn(bn−

√
ny1c)

πn(bn−
√
ny2c)

= b(y2 − y1)
√
nc log ρn −

b
√
ny2c∑

k=b
√
ny1c+1

log(1− k

n
)

= −b(y2 − y1)
√
nc(1− ρn)−

b
√
ny2c∑

k=b
√
ny1c+1

− k√
n

1√
n

+O

(
1

n

)
→ −(y2 − y1)β −

∫ y2

y1

−ydy.

2

Proof.[Proof of Theorem 6.3.1.] The technique used in this proof follows from [77].

We denote Gn as the cumulative distribution function (CDF) of the scaled process
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Yn. We first prove the relative compactness of Gn by a sandwich argument using

stochastic comparison.

Let {Ql
n(t)} and {Qu

n(t)} denote the queue length processes of two sequences of ordi-

nary Erlang-A queues: both have n servers and arrival rate λn, which are the same

as the original process Qn(t). We keep the service rate and the abandonment rate

fixed regardless of the system scale. The service rates of both systems are fixed at

µ(0). The abandonment rate of Ql
n(t) is θ whereas the abandonment rate of Qu

n(t) is

θ + µ′(0).

As

µ

(
q − n
n

)
n+ θ(q − n) ≤ µ(0)n+ θ(q − n)

and

µ

(
q − n
n

)
n+ θ(q − n)

= µ(0)n+ (µ′(0) + θ)(q − n) + µ′′(η)
(q − n)2

n
for some η ∈ (0, (q − n)/n)

≥ µ(0)n+ (µ′(0) + θ)(q − n),

based on Lemma 6.4.6, we have

P (Qn(∞) > q) ≥ P (Ql
n(∞) > q)

and

P (Qn(∞) > q) ≤ P (Qu
n(∞) > q).

Following the definition of Yn, we let Y l
n := (Ql

n(∞) − n)/
√
n and Y u

n := (Qu
n(∞) −

n)/
√
n. We also denote Gl

n and Gu
n as the CDFs of the scaled processes X l

n and Xu
n ,

respectively. Then both Gu
n and Gl

n converge uniformly to some limiting distributions

[77]. We denote their limits as Gl and Gu respectively. Since Gu
n(y) ≤ Gn(y) ≤ Gl

n(y),

we have that for any ε > 0, there exists a small enough y such that

lim sup
n→∞

Gn(y) ≤ lim
n→∞

Gl(y) < ε
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and

1 ≥ lim
y→∞

lim inf
n→∞

Gn(y) ≥ lim
y→∞

lim
n→∞

Gu
n(y) = 1.

Thus, Gn is relatively compact. The limit of Gn exists and is a well-defined CDF.

From Lemma 7.2.3, the distribution G is absolutely continuous with probability den-

sity function of the form

g(y) =


C1√
2π

exp
(
− (y+β)2

2

)
if y < 0,

C2√
2πσ2

exp
(
− (y+βσ2)2

2σ2

)
if y ≥ 0,

where σ =
√
µ(0)/ (µ′(0) + θ), and C1 and C2 are the normalizing constants. Using

the fact that
∫∞
−∞ g(y) dy = 1 and g(y) is continuous at 0, we have

C1 =
h(βσ)

σφ(β)

(
1 +

h(βσ)

σh(−β)

)−1

,

and

C2 =
h(βσ)

φ(βσ)

(
1 +

h(βσ)

σh(−β)

)−1

.

2

Proof.[Proof of Corollary 6.3.2.] As Pn(W ) = P (Qn(∞) ≥ n) = P (Yn ≥ 0), and

lim
n→∞

P (Yn ≥ 0) = C2Φ̄(βσ) =

(
1 +

h(βσ)

σh(−β)

)−1

,

where σ =
√
µ(0)/ (µ′(0) + θ). We thus have the desired limit for Pn(W ).

For Pn(Ab), we have

√
nPn(Ab) = E[(Qn(∞)− n)+]

θ
√
n

λn

= E[Yn|Yn ≥ 0]Pn(W )
θn

λn
.

As limn→∞E[Yn|Yn ≥ 0] = σh(βσ)− βσ2,

lim
n→∞

√
nPn(Ab) =

(
σh(βσ)− βσ2

)(
1 +

h(βσ)

σh(−β)

)−1
θ

µ(0)

=

(
h(βσ)

σ
− β

)(
1 +

h(βσ)

σh(−β)

)−1
θ

µ′(0) + θ
.
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2

Proof.[Proof of Theorem 6.4.1.] We first analyze the roots of fn(q) = λn − µ((q −

n)+/n)(q ∧ n) − θ(q − n)+ = 0. We divide the analysis into two regions: [0, n] and

[n,∞). fn(q) is linearly decreasing on [0, n] with fn(0) = λn > 0, fn(n) = λn−µ(0)n.

When β < 0, fn(n) > 0. When β > 0, fn(n) < 0 and fn(q̄n,1) = 0, where q̄n,1 =

λn/µ(0) < n. For q > n, we analyze the scaled function

fn(q)

n
=
λn
n
− ν(xn)

where ν(xn) = µ(xn) + θxn, and xn = (q − n)/n. Recall that ν(·) is convex and

attains its minimum at x̂. Specifically, ν(·) is decreasing on [0, x̂] and increasing on

(x̂,∞) with ν(x) → ∞ as x → ∞. When β < 0, as ν(0) < λn/n, there exists a

unique x̄n > x̂, such that λn/n = ν(x̄n). This implies that fn((x̄n + 1)n) = 0. When

β > 0, since ν(0) > λn/n, we have two cases: if ν(x̂) > λn/n, then fn(q) < 0 for

all q > n; otherwise, ν(x̂) < λn/n and there exists a unique 0 < x̃n < x̂, such that

λn/n = ν(x̃n), and a unique x̄n > x̂, such that λn/n = ν(x̄n). This implies that

fn((x̃n+1)n) = fn((x̄n+1)n) = 0. See Figure 6.10 for a graphical illustration. Based

Figure 6.10: fn(q) with positive or negative βs
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qn q
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_

n,2
0

on the above analysis, we have:

1. When β < 0, fn(q) ≥ 0 for q ≤ (x̄n + 1)n, and fn(q) < 0 for q > (x̄n + 1)n.

Therefore, πn(·) has only one peak, q̄n,2 = b(x̄n + 1)nc.

2. When β > 0 and ν(x̂) > λn/n, fn(q) > 0 for q ≤ λn/µ(0), and fn(q) < 0 for

q > λn/µ(0). Therefore, πn(·) has only one peak, q̄n,1 = bλn/µ(0)c.
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3. When β > 0 and ν(x̂) < λn/n: a.) fn(q) ≥ 0 on [0, λn/µ(0)], fn(q) < 0 on

(λn/µ(0), (x̂n+1)n), therefore, πn(·) has the first peak at q̄n,1 = bλn/µ(0)c; and

b.) as fn(q) ≥ 0 on [(x̂n + 1)n, (x̄n + 1)n], fn(q) ≥ 0 on ((x̄n + 1)n,∞), πn(·)

has the second peak at q̄n,2 = b(x̄n + 1)nc.

2

Proof.[Proof of Theorem 6.4.2.] We first establish some asymptotic results about the

value of the peaks, q̄n,1 and q̄n,2. From Theorem 6.4.1, we have

n− q̄n,1√
n

=
√
n

(
1− λn

nµ(0)

)
+O

(
1√
n

)
→ β as n→∞.

As limn→∞ λn/n = µ(0) and ν(x) is continuously decreasing on (x̂,∞),

q̄n,2 − n
n

= x̄n +O(
1

n
)→ x̄ as n→∞.

Using the detailed balance equation of the B&D process, we have

πn(q̄n,2)

= πn(q̄n,1)

q̄n,2∏
k=q̄n,1+1

λn
µ((k − n)+/n)(k ∧ n) + θ(k − n)+

= πn(q̄n,1) exp

(q̄n,2 − q̄n,1) log
λn
n
−

n−1∑
k=q̄n,1+1

log

(
µ(0)

k

n

)
−

q̄n,2∑
k=n

log ν

(
q − n
n

) .

Then,

1

n
log

πn(q̄n,2)

πn(q̄n,1)

=
q̄n,2 − q̄n,1

n
log

λn
n
− n− q̄n,1

n
log µ(0) +O

(
1√
n

)
− n

n

x̄nn∑
k=0

log ν(
k

n
)
1

n

→ x̄ log µ(0)−
∫ x̄

0

log ν(x)dx.

2

Proof.[Proof of Lemma 6.4.4.] By Theorem 6.2.4, under high sensitivity conditions,

q̄2 > 1 is the unique root of f(q) = µ(0) − µ((q − 1)+) − θ(q − 1)+ on (1,∞) . We
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establish the results of this lemma by comparing pairs of systems, (1) and (2); we

denote the higher level equilibrium as q̄
(1)
2 and q̄

(2)
2 for the two systems, respectively.

For each part of the lemma we differ the two systems by two values of a specific

system parameter.

i) Keep all other system parameters equal and vary the service rate function µ(·),

such that µ(2)(·) is more sensitive than µ(1)(·). Then, we have

0 = µ(1)(0)−µ(1)

(
q̄

(1)
2 − 1

)
−θ
(
q̄

(1)
2 − 1

)
≤ µ(2)(0)−µ(2)

(
q̄

(1)
2 − 1

)
−θ
(
q̄

(1)
2 − 1

)
.

As µ(2)(0)−µ(2)(q−1)− θ(q−1) is nonnegative on [1, q̄
(2)
2 ] and strictly negative

on (q̄
(2)
2 ,∞), q̄

(2)
2 ≥ q̄

(1)
2 .

ii) Keep all other system parameters equal and vary the abandonment rate θ, such

that θ(1) < θ(2). Then,

0 = µ(0)−µ
(
q̄

(2)
2 − 1

)
− θ(2)

(
q̄

(2)
2 − 1

)
< µ(0)−µ

(
q̄

(2)
2 − 1

)
− θ(1)

(
q̄

(2)
2 − 1

)
.

Following the same rationale as in part i), we have q̄
(1)
2 > q̄

(2)
2 .

2

Proof.[Proof of Lemma 6.4.5.] The proof of Lemma 6.4.5 follows the same strategy

as the proof of Lemma 6.4.4. Specifically, we compare pairs of systems, (1) and (2).

For each part of the lemma, we differ the two system by two values of a specific system

parameter.

i) Keep all other system parameters equal and vary the service rate function µ(·),

such that µ(2)(·) is more sensitive than µ(1)(·). From Lemma 6.4.4, we have

x̄(1) ≤ x̄(2). As µ(1)(x) ≥ µ(2)(x),

I(1)(x̄
(1)) =

∫ x̄(1)

0

log
µ(1)(0)

µ(1)(x) + θx
dx ≤

∫ x̄(2)

0

log
µ(2)(0)

µ(2)(x) + θx
dx = I(2)(x̄

(2))
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ii) Keep all other system parameters equal and vary the abandonment rate θ, such

that θ(1) < θ(2). From Lemma 6.4.4, we have x̄(1) > x̄(2). Then we have

I(1)(x̄
(1)) =

∫ x̄(1)

0

log
µ(0)

µ(x) + θ(1)x
dx >

∫ x̄(2)

0

log
µ(0)

µ(x) + θ(2)x
dx = I(2)(x̄

(2)).

2

Proof.[Proof of Lemma 6.4.6.] We prove the theorem by first introducing a coupling,

under which the entire sample path of Y (1) and Y (2) are ordered, i.e.

P (Y (1)(t) ≤ Y (2)(t) for all t ≥ 0) = 1.

Fix Ỹ (1)(0) = Ỹ (2)(0) = y0 for any y0 ∈ Z+. The coupling argument uses the thinning

property of Poisson process and goes as follows. When (Ỹ (1)(t), Ỹ (2)(t)) = (y1, y2)

We generate the next potential transition by an exponential random variable with

rate γ1 + ξ1(y1)∨ ξ2(y2). We then generate a uniform random variable independent of

everything else. If U ≤ γ1/(γ1 + ξ1(y1)∨ ξ2(y2)), we treat it as an arrival to both Ỹ (1)

and Ỹ (2); else if U ≤ (γ1+ξ1(y1)∧ξ1(y2))/(γ1+ξ1(y1)∨ξ2(y2)), we treat it as a departure

for both processes; else we impose a departure on Ỹ (i) with the larger departure

rate only. As when y1 = y2, we always have ξ1(y1) ≥ ξ2(y2), under this coupling

Ỹ (1)(t) ≤ Ỹ (2)(t), for all t ≥ 0, path by path. Let Py0(·) := P (·|Y (1) = y0, Y
(2) = y0).

Then we have

Py0(Y
(1)(t) > y) = Py0(Ỹ

(1)(t) > y, Ỹ (1)(t) < Ỹ (2)(t))

≤ Py0(Ỹ
(2)(t)) > y) = Py0(Y

(2)(t) > y)

for any t ≥ 0.

As limt→∞ Py0(Y
(i)(t) > y) = P (Y (i)(∞) > y),i = 1, 2, for all y0 ∈ Z+, is well-defined,

and Y (1) and Y (2) live on the same state space, P (Y (1)(∞) > y) ≤ P (Y (2)(∞) > y).

2

Before we prove Theorem 6.4.7, we first prove the following lemma as a prepara-

tion.
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Lemma 6.7.2 Under High Sensitivity and SRS with β > 0,

i) the larger the value of the SRS parameter β is, the larger the value of q̃n;

ii) under Definition 6.4.3, the more load sensitive the service rate function is, the

smaller the value of q̃n;

iii) the larger the abandonment rate θ is, the smaller the value of q̃n.

Proof. The proof of Lemma 6.7.2 follows the same strategy as the proof of Lemma

6.4.4. Specifically, we compare pairs of systems, (1) and (2). For each part of the

lemma, we differ the two system by two values of a specific system parameter.

i) Keep all other system parameters equal and vary the staffing parameter β, such

that β(1) < β(2). Denote n(1) = Rn + β(1)

√
Rn and n(2) = Rn + β(2)

√
Rn. Then

n(1) < n(2) and

0 = λn/n(1) − µ(x̃(1)
n )− θx̃(1)

n > λn/n(2) − µ(x̃(1)
n )− θx̃(1)

n .

As λn/n(2) − µ(x) − θx is increasing on [0, x̂] and is nonpositive on [0, x̃
(2)
n ],

x̃
(2)
n > x̃

(1)
n . Thus, q̃

(2)
n = b(x̃(2)

n + 1)n(2)c > q̃
(1)
n = b(x̃(1)

n + 1)n(1)c

ii) Keep all other system parameters equal and vary the service rate function µ(·),

such that µ(2)(·) is more sensitive than µ(1)(·). Then, we have

0 =
λn
n
− µ(2)

(
x̃(2)
n

)
− θx̃(2)

n ≥
λn
n
− µ(1)

(
x̃(2)
n

)
− θx̃(2)

n .

Following the same rationale as in part i), we have q̃
(1)
n ≥ q̃

(2)
n .

ii) Keep all other system parameters equal and vary the abandonment rate θ, such

that θ(1) < θ(2). Then,

0 =
λn
n
− µ

(
x̃(1)
n

)
− θ(1)x̃

(1)
n >

λn
n
− µ

(
x̃(1)
n

)
− θ(2)x̃

(1)
n .

Following the same rationale as in part i), we have q̃
(2)
n > q̃

(1)
n .
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2

Proof.[Proof of Theorem 6.4.7.] We prove Theorem 6.4.7 by comparing the death

rates of pairs of systems denoted by Q(1) and Q(2).

i) Keeping all other parameters equal, for β(1) < β(2), we denote n(1) = R+β(1)

√
R,

n(2) = R + β(2)

√
R where R = λ/µ(0). Then when q ≤ n(1), the death rates of

the two systems are equal; when n(1) < q ≤ n(2),

µ(0)q −
(
µ

(
q

n(1)

− 1

)
n(1) + θ(q − n(1))

)
≥ (µ(0)− θ)(q − n(1)) ≥ 0;

when q > n(2)(
µ

(
q

n(2)

− 1

)
n(2) + θ(q − n(2))

)
−
(
µ

(
q

n(1)

− 1

)
n(1) + θ(q − n(1))

)
=

(
µ

(
q

n(2)

− 1

)
− µ

(
q

n(1)

− 1

))
n(2)

+µ

(
q

n(1)

− 1

)
(n(2) − n(1))− θ(n(2) − n(1))

≥ −µ′
(

q

n(1)

− 1

)
(n(2) − n(1))q

n(1)

+ (µ(∞)− θ)(n(2) − n(1)) ≥ 0.

Then

P (Q(1)(∞) > q̃(1)
n ) ≥ P (Q(2)(∞) > q̃(1)

n ) ≥ P (Q(2)(∞) > q̃(2)
n ),

where the first inequality follows from Lemma 6.4.6 and the second inequality

follows from Lemma 6.7.2.

ii) Keeping all other parameters equal, for system (2) more sensitive than system

(1), we have µ(1)((q−n)+/n)(q∧n)+θ(q−n)+ ≥ µ(2)((q−n)+/n)(q∧n)+θ(q−n)+

for all q ≥ 0. Then P (Q(1)(∞) > q̃
(1)
n ) ≤ P (Q(2)(∞) > q̃

(1)
n ) ≤ P (Q(2)(∞) >

q̃
(2)
n ).

iii) Keeping all other parameters equal, for θ(1) < θ(2), we have µ((q − n)+/n)(q ∧

n) + θ(1)(q − n)+ ≤ µ((q − n)+/n)(q ∧ n) + θ(2)(q − n)+ for all q ≥ 0. Then

P (Q(1)(∞) > q̃
(1)
n ) ≥ P (Q(2)(∞) > q̃

(1)
n ) ≥ P (Q(2)(∞) > q̃

(2)
n ).
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2

Proof.[Proof of Lemma 6.4.8.] Let ψn(x) = λn/n − µ(x) − θx for x ≥ 0. Then x̃n

is the unique root of ψn(x) = 0 on [0, x̂]. Since λn/n → µ(0) as n → ∞ and ψn(·)

is continuous and monotonically increasing on [0, x̂], x̃n → 0 as n → ∞. Applying

Taylor expansion to µ(·), we have

ψn(x̃) = λn/n− µ(0)− (µ′ + θ)x̃n +O(x̃2
n) = 0.

Then
µ(0)− λn/n

x̃n
→ −µ′(0) + θ as n→∞.

As
√
n(1− λn/(nµ(0)))→ β, x̃n = O(1/

√
n). We then have

√
nx̃n = −

√
n(µ(0)− λn/n)

µ′(0) + θ
+O

(
1√
n

)
.

Thus,
√
nx̃n → −µ(0)β/(µ′(0) + θ) as n→∞. 2

Proof.[Proof of Theorem 6.4.9.] The proof of Theorem 6.4.9 also follows from the

method outlined in [76]. We use both the Functional Central Limit Theorem (FCLT)

and CMT. We again write

Qc
n(t) = Qc

n(0) + A(λnt)− S
(∫ t

0

µ

(
(Qc

n(u)− n)+

n

)
(Qc

n(u) ∧ n)du

)
−R

(
θ

∫ t

0

(Qc
n(u)− n)+du

)
− Ln(t)

= Qc
n(0) +Mn,1(t)−Mn,2(t)−Mn,3(t)− Ln(t)

+λnt−
∫ t

0

µ

(
(Qc

n(u)− n)+

n

)
(Qc

n(u) ∧ n)du− θ
∫ t

0

(Qc
n(u)− n)+du

where

Mn,1 = A(λnt)− λnt

Mn,2 = S

(∫ t

0

µ

(
(Qc

n(u)− n)+

n

)
(Qc

n(u) ∧ n)du

)
−
∫ t

0

µ

(
(Qc

n(u)− n)+

n

)
(Qc

n(u) ∧ n)du

Mn,3 = R

(
θ

∫ t

0

(Qc
n(u)− n)+du

)
− θ

∫ t

0

(Qc
n(s)− n)+du.
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Let Q̂c
n(t) = (Qn(t)−n)/

√
n, Ŷn(t) = Yn(t)/

√
n and M̂n,i = Mn,i/

√
n for i = 1, 2, 3.

As Q̂c
n(·) < cn, Q̂c

n(t) = O(
√
n). Applying Taylor expansion, we have

Q̂c
n(t) = Q̂c

n(0) + M̂n,1(t)− M̂n,2(t)− M̂n,3(t)− Ln(t)

+
λn − µ(0)n√

n
t−
∫ t

0

µ(0)(Q̂c
n(u) ∧ 0)du−

∫ t

0

µ′(0)Q̂c
n(u)+du

−
∫ t

0

θQ̂c
n(u)+du+O

(
1√
n

)
.

Let d(q) = −µ′(0)(q ∧ 0)− (µ′(0) + θ)q+. Consider the integral representation

q(t) = b+ x(t) +

∫ t

0

d(q(s))ds− l(t), (6.6)

where l(t) is a nondecreasing nonnegative function in D such that (6.6) holds and∫∞
0

1{q(t) < c}dl(t) = 0. As d(·) is Lipschitz, the integration (6.6) has a unique

solution (q, y) and it constitutes a Bonafide function (φ1, φ2) : D × R → D × D

mapping (b, x) into (q, y). Moreover (φ1, φ2) is continuous (see Theorem 7.3 in [76]).

M̂n,i are square-integrable martingales with respect to the filtration

Fn,t := σ{ Qn(0), A(λns), S

(∫ s

0

µ

(
(Qc

n(u)− n)+

n

)
(Qc

n(u) ∧ n)du

)
,

R

(
θ

∫ t

0

(Qc
n(u)− n)+du

)
: 0 ≤ s ≤ t}

augmented by including all null sets. Also

〈Mn,1〉(t) =
λnt

n

〈Mn,2〉(t) =

∫ t

0

µ

(
(Qc

n(u)− n)+

n

)
Qc
n(u) ∧ n
n

du

〈Mn,3〉(t) =
θ

n

∫ t

0

(Qc
n(u)− n)+du.

As
λnt

n
→ µ(0)t as n→∞ w.p. 1,

{〈Mn,1〉} is stochastically bounded. By the crude bound Qc
n(s) < Qc

n(0) +A(λnt), we

have ∫ t

0

µ

(
(Qc

n(u)− n)+

n

)
Qc
n(u) ∧ n
n

du ≤ µ(0)t

(
Qc
n(0)

n
+
A(λnt)

n

)
.
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Since {Qc
n(0)/n} and {A(λnt)/n} are stochastically bounded, {〈Mn,2〉} is stochasti-

cally bounded.

Similarly, we can show that {〈Mn,3〉} is also stochastically bounded. This implies

that {Mn,i}’s for i = 1, 2, 3 are stochastically bounded, which in turn implies the

stochastic boundedness of {Q̂c
n} in D. Thus,

Q̂c
n/
√
n⇒ η in D as n→∞

where η is the zero function defined above.

By FCLT for Poisson processes and CMT with composition map, we have

(Mn,1,Mn,2,Mn,3)⇒ (B1 ◦ λω,B2 ◦ sµ(0)ω,B3 ◦ η)

where ω(t) ≡ 1 for any t.

Finally, applying the CMT with the integral representation (6.6), we get the result

in Theorem 6.4.9. 2
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Table 6.1: Performance comparison of systems with different load sensitivity param-

eter, b.

(µ(q) = 0.6 + 0.4 exp(−bi(q − s)+/s), λ = 500, n = 511 and θ = 0.3)

(a) Base Case

b P (W ) P (Ab)

1.25 0.9830 0.2021

1.75 1 0.3199

2.25 1 0.3562

2.75 1 0.3718

(b) Policy A - Increase staffing

b Staffing level (∆n) P (W ) P (Ab)

1.25 520 (3.89%) 0.4102 0.0234

1.75 546 (9.09%) 0.0295 0.0003

2.25 569 (13.66%) 0.0016 0

2.75 588 (17.53%) 0.0001 0

(c) Policy B - Increase abandonment

b hn θ̄ P (W ) P (Ab) P (Q(∞) > hn)

1.25 579 0.5 0.2408 0.0043 0.0260

1.75 541 0.7 0.2712 0.0069 0.0399

2.25 530 0.9 0.3098 0.0109 0.0591

2.75 525 1.1 0.3577 0.0170 0.0849

(d) Policy C - Admission control

b cn P (W ) P (Ab) P (Bl)

1.25 579 0.4873 0.0090 0.0057

1.75 541 0.3426 0.0031 0.0107

2.25 530 0.2583 0.0016 0.0135

2.75 525 0.2056 0.0010 0.0151
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Chapter 7

Bi-stability Analysis of the

Modified Erlang-A Model in the

Quality-Driven Regime

This chapter is a short extension of the bi-stability analysis in Chapter 6 for Quality-

and-Efficiency Driven regime to Quality Driven (QD) regime.

7.1 Fluid analysis in QD regime

We denote the queue length process by Q ≡ {Q(t) : t ≥ 0}, where Q(t) counts the

number of customers in the system (waiting and in service) at time t.

Assumption 7.1.1 µ ∈ C2 with µ′(x) ≤ 0 and µ′′(x) ≥ 0 for all x ≥ 0. limx→∞µ(x) =

µ(∞) > 0.

To conduct the heavy-traffic analysis, we consider a sequence of systems indexed

by n, where both the arrival rate and the number of servers grows with n. For the

n-th system, we denote Qn ≡ {Qn(t) : t ≥ 0} as the queue length process (number of

people in the system). We denote the arrival rate as λn and the number of servers is
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n. The abandonment rate does not scale with n and the service rate function takes

the same form when applied to the scaled queue length process, (Qn − n)+/n. We

consider the QD asymptotic regime. Without loss of generality, we assume µ(0) = 1

and λn = ρn for ρ < 1.

Let A ≡ {A(t) : t ≥ 0}, S ≡ {S(t) : t ≥ 0} and R ≡ {R(t) : t ≥ 0} be three

independent Poisson processes, each with unit rate. A, S and R generate the arrival,

service completion and abandonment processes, respectively. Then, the pathwise

construction of Qn is:

Qn(t) = Qn(0) + A(λnt)− S
(∫ t

0

µ

(
(Qn(u)− n)+

n

)
(Qn(u) ∧ n) du

)
−R

(∫ t

0

θ(Qn(u)− n)+du

)
,

where (x)+ = max(0, x) and (x ∧ y) = min(x, y).

We define the fluid-scaled process

Q̄n(t) =
Qn(t)

n

Theorem 7.1.2 If Q̄n(0) ⇒ q(0) in R, then Q̄n ⇒ q in D as n → ∞. The limit

process q is the unique solution satisfying the following integral equation

q(t) = q(0) + ρt−
∫ t

0

µ
(
(q(u)− 1)+

)
(q(u) ∧ 1) du−

∫ t

0

θ (q(u)− 1)+ du.

The proof or Theorem 7.1.2 follows from the Proof of Theorem 6.2.1 in Chapter

6.

Let f(q) = ρ − µ (q − 1)+) (q(u) ∧ 1) − θ(q − 1)+, be the flow rate function of

the fluid system at state q. Then we can write q(t) as the solution to the following

autonomous differential equation with initial value q(0),

q̇ = f(q)

Let ν(x) = µ(x) + θx for x ≥ 0 and x̂ = arg maxx{ν(x)} on [0,∞). To enforce bi-

stability, we impose the following assumptions on the service rate function in addition

to Assumption 7.1.1.
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Assumption 7.1.3 −µ′(0) > θ and ρ > µ(x̂) + θx̂.

Under Assumption 7.1.3, x̂ is the root of ν ′(x) = 0 on (0,∞). Let q̂ = x̂+ 1. q̂ is

the point where f(q) attains its maximum on [1,∞).

Lemma 7.1.4 Under Assumption 7.1.1 and 7.1.3, the fluid model has three equilib-

rium points, denoted as q̄1, q̄2, and q̄3, with q̄1 = ρ,1 < q̄2 < q̂ and q̄3 > q̂. q̄1 and q̄2

are asymptotically stable, while q̄2 is unstable.

The proof of Lemma 7.1.4 follows exactly the same line of analysis as Theorem 6.2.4

in Chapter 6. We shall omit it here.

ρ

f (q)

qq1 q2 q3

Figure 7.1: Flow rate function

7.2 Analysis of stationary distribution

Let πn denote the stationary distribution of the n-th system, then we have the fol-

lowing detailed balance equation for Birth-and-Death process.

λnπn(q − 1) =

(
µ

(
(q − n)+

n

)
((q) ∧ n) + θ(q − n)+

)
πn(q)

Then we have when λn ≥ µ ((q − n)+/n) (q∧n)+θ(q−n)+, πn(q) ≥ πn(q−1). Under

Assumption 7.1.3, let x̃ denote the root of ρ − ν(x) = 0 on (0, x̂) and x̄ denote the

root of ρ− ν(x) = 0 on (x̂,∞). Then we have
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Lemma 7.2.1 Under Assumption 7.1.3, πn(·) has two peaks, one at q̄n,1 = bλnc, the

other at q̄n,2 = b(x̄ + 1)nc. The minimum point between the two peaks (valley) is,

q̃n = b(x̃+ 1)nc.

Proof. Let fn(q) = λn − µ ((q − n)+/n) (q ∧ n) + θ(q − n)+. For q < λn, fn(q) =

λn − µ(0)q > 0. For λn < q < n, fn(q) = λn − µ(0)q < 0. When q > n, let

xn = (q − n)/n. Then fn(q)/n = ρ − ν(xn). As ρ − ν(xn) < 0 for 0 ≤ xn < x̃,

ρ − ν(x) ≥ 0 for x̃ ≤ xn ≤ x̄ and ρ − µ(x) < 0 for xn > x̄, we have fn(q) < 0

for sn ≤ q < (x̃ + 1)n, fn(q) ≥ 0 for (x̃ + 1)n ≤ q ≤ (x̄ + 1)n and fn(q) < 0 for

q > (x̄+ 1)n. 2

The following theorem characterize the relationship among the values of q̄n,1, q̄n,2

and q̃n.

Theorem 7.2.2
1

n
log

πn(qn,1)

πn(q̃n)
= I1

and
1

n
log

πn(qn,2)

πn(q̃n)
= I2

where

I1 = (1− ρ) log µ(0) +

∫ 1

ρ

log x dx+

∫ x̃

0

log ν(x) dx− (x̃+ 1− ρ) log ρ.

and

I2 = −
∫ x̄

x̃

log ν(x) dx+ (x̄− x̃) log ρ.

Proof. As

πn(q̄n,1)

=

q̃n∏
q=q̄n,1+1

µ ((q − n)+/n) (q ∧ n) + θ(q − n)+

λn
πn(q̃n)

= exp

 n∑
q=q̄n,1+1

log(µ(0)
q

n
) +

q̃n∑
q=n+1

log ν

(
q − n
n

)
− (q̃n − q̄n,1) log

λn
n

 πn(q̃n),
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then under our scaling parameters (n = n, λn = ρn), we have

1

n
log

πn(q̄n,1)

πn(q̃n)

=
n− ρn
n

log µ(0) +
1

n

n∑
q=ρn+1

log
( q
n

)
+

1

n

x̃n∑
k=1

log

(
ν

(
k

n

))
−(x̃+ 1)n− ρn

n
log ρ

→ (1− ρ) log µ(0) +

∫ 1

ρ

log(x)dx+

∫ x̃

0

log ν(x)dx− (x̃+ 1− ρ) log ρ

as n→∞. Likewise, we have

πn(q̄n,2) = exp

(
−

q̄n,2∑
q̃n+1

log ν

(
q − n
n

)
+ (q̄n,2 − q̃n) log

λn
n

)
.

Then

1

n
log

πn(q̄n,2)

πn(q̃n)
= − 1

n

x̄n∑
x̃n+1

log ν

(
k

n

)
+

(x̄+ 1)n− (x̃+ 1)n

n
log ρ

→ −
∫ x̄

x̃

log ν(x) dx+ (x̄− x̃) log ρ.

2

Lemma 7.2.3 For any fixed 0 < y1 < y2 <∞

lim
n→∞

log
πn(bρn+

√
ny2c)

πn(bρn+
√
ny1c)

= −
∫ y2

y1

1

ρ
y dy

and

lim
n→∞

log
πn(bρn−

√
ny1c)

πn(bρn−
√
ny2c)

= −
∫ −y1
−y2

1

ρ
y dy

Proof. We prove the first equation only, as the proof of the second equation follows

exactly the same line of analysis.

log
πn(bρn+

√
ny2c)

πn(bρn+
√
ny1c)

= −
b
√
ny2c∑

k=b
√
ny1c+1

log(1 +
1

ρ

k

n
)

= −
b
√
ny2c∑

k=b
√
ny1c+1

1

ρ

k√
n

1√
n

+O(
1√
n

)

→ −
∫ y1

y2

1

ρ
y dy.
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2

Lemma 7.2.4 Recall that x̄ > 0 is the strictly positive root of ρ − µ(x) − θx = 0.

For any fixed 0 < y1 < y2 <∞,

lim
n→∞

log
πn(b(x̄+ 1)n+

√
ny2c)

πn(b(x̄+ 1)n+
√
ny1c

= −
∫ y2

y1

µ′(x̄) + θ

ρ
x dx

and

lim
n→∞

log
πn(b(x̄+ 1)n−

√
ny1c)

πn(b(x̄+ 1)n−
√
ny2c)

= −
∫ −y2
−y1

µ′(x̄) + θ

ρ
x dx

Proof. We prove the first equation only, as the proof of the second equation follows

exactly the same line of analysis.

log
πn(b(x̄+ 1)n+

√
ny2c)

πn(b(x̄+ 1)n+
√
ny1c)

= −
b
√
ny2c∑

k=b
√
ny1c+1

log

(
1 +

1

ρ

(
µ

(
x̄+

k

n

)
− µ(x̄) + θ

k

n

))

= −
b
√
ny2c∑

k=b
√
ny1c+1

µ′(x̄) + θ

ρ

k√
n

1√
n

+O(
1√
n

)

→ −
∫ y1

y2

µ′(x̄) + θ

ρ
y dy.

2
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