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ABSTRACT

Analysis oftranseSNPs infers regulatory network architecture

Anat Kreimer

eSNPs are genetic variants associated with trgotsexpression levels. The characteristics of
such variants highlight their importance and préserunique opportunity for studying gene
regulation. eSNPs affect most genes and theirtgp# specificity can shed light on different
processes that are activated in each cell. Theyidmmtify functional variants by connecting
SNPs that are implicated in disease to a moleamachanism. Examining eSNPs that are
associated with distal genes can provide insigtgeinding the inference of regulatory networks
but also presents challenges due to the high tatatisourden of multiple testing. Such
association studies allow: simultaneous investgatof many gene expression phenotypes
without assuming any prior knowledge and identtima of unknown regulators of gene

expression while uncovering directionality.

This thesis will focus on such distal eSNPs to megulatory interactions between different loci
and expose the architecture of the regulatory nétwefined by such interactions. We develop
novel computational approaches and apply them tetges-genomics data in human. We go
beyond pairwise interactions to define network fsoincluding regulatory modules and bi-fan
structures, showing them to be prevalent in redéh @ad exposing distinct attributes of such
arrangements. We project eSNP associations ontot@ip-protein interaction network to expose
topological properties of eSNPs and their targetid &ighlight different modes of distal

regulation. Overall, our work offers insights comirg the topological structure of human

regulatory networks and the role genetics playshiaping them.
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Chapter 1: Introduction

In the last decade many genetic variants (eSNR®) Ib@en reported as associated with
expression of transcripts, holding the promisefdoictional dissection of regulatory structure of
human transcription. There are several approacheslch eSNPs can be explored. First, they
can be characterized by different categories: tq@nomic location, functional role, distance
from associated transcripti¢/transeSNPs), and similarities and differences acrassiéis, cells
and conditions. Second, eSNPs can be integratédr@stilts from genome-wide association
studies (GWAS) to predict their specific regulatanle in disease and human traits. Third, their
analysis with respect to gene networks and funatiannotations addresses questions regarding
the organization of transcription, the causalitagsociation and can pinpoint the regulatory

mechanisms through which eSNPs act.

eSNPs are found to effect the expression of masgElL], stressing the importance of studying
and characterizing such variants. eSNPs can dffeaxpression of a close, usually defined as
up to 1MB €is), or a distaltfans) gene. For example, a synonymous SNP may haveah lo
effect on the expression level of its host genalendanon-synonymous SNP in a transcription
factor may have a distal effect on its targ€is.eSNPs are enriched in exons comparing to
introns [2]. A large fraction ofis eSNPs are found in close proximity of the transmn start

site (TSS), approximately 50kb on either sidehefTSS [3] and are enriched in promoters and
transcription factor binding sites, suggesting thahy directly impact protein-DNA interactions
[3]. There are significantly lesss-eSNPs that affect central and critical genes,@leith a

trend of reduced effect sizes as variant frequemmygases, providing evidence that purifying



selection and buffering have limited the deletesioupact of regulatory variation on the cell [4].
Finally, there is a significant overlap between SNt are associated with gene expression
levels and essential epigenetic marks, i.e., matioyl, [5] DNase | sensitivity [6] and histone

marks [7] levels, as well as miRNA expression Is\8l.

eSNPs are cell [9-11] and tissue [12-14] type $methus they can be telling regarding different
mechanisms that are distinct or shared. This phenomis stronger fdranseSNPs [9] and can
be used to detect different pathways and intenastibat could suggest functional processes that
are common or specific for pairs of cell types. Ewample when comparirigans associations
between B-cells and monocytes, Fairéal.find LYZ as a monocyte-specific master regulator
of a large gene set. Although in general, sharedSNPs have the same directional effect on the
gene expression in each analyzed cell type [18}fetis an enrichment for shareid eSNPs with
opposing directional effects in each cell, i.ell tge—specific directionality [9]. eSNPs are
condition-specific and they depend on the time dun@tion of the stimulus [15]. These
condition-specific eSNPs were found to be moreatlist the transcriptional start site and, in
some cases, showed reversal of effect betweentaomsliMoreover, stimulation reveals novel

trans-eSNPs with simultaneous effects involving many gdi#].

Although genome wide association studies (GWAS) [ieve linked numerous genetic loci to
various human diseases and traits, pinpointing#usal variants and understanding the
underlying mechanisms of these phenotypes idigtiled. Since GWAS SNPs are known to be
statistically enriched in eSNPs [17], one apprdactaddressing these challenging questions is

to integrate these two types of data while usiByle data to interpret GWAS signals [18, 19].



This approach has been validated by several stueélesexample, Duboist al.[20] found that

20 of the 38 loci that had associated risk variémtgeliac disease are also correlated with
variation in the expression of a nearby gene. laralysis of the genetics of migraine, genotypic
correlation to expression of a candidate gene sig@eregulatory basis for this trait [21]. An
approach combining eSNPs in metabolically actissuges with pathways enriched for relevant
GWAS SNPs provided a potential powerful framewarkiflentifying biological mechanisms
underlying GWAS findings [22]. Finally, expressiqoantitative trait loci (eQTL) meta-analysis
that was performed in peripheral blood samples ftloonsands of individuals identified and
replicatedranseQTLs that were previously associated with complaits at genome-wide
significance. The observed regulation patternscateid that such approach provides insight into

the downstream effects of many trait-associatents [23].

Integrating GWAS SNP data with biological netwodss illuminate mechanisms underlying
disease. Studies that project GWAS SNPs on theiprptotein interaction (PPI) network
conclude that disease associated loci encode l¢itatgracting proteins beyond chance
expectation, suggesting that risk variants mayaduites of proteins involved in the same
process [24-26]. Previous works that integrate@xoression networks with disease variants,
found enrichment of these variants in their co-espion modules, implicating that these
modules represent causal effects [27]. This apprbaghlights the potential use in network
analyses to reconstruct molecular phenotypes @idintification of the genetic association
signal derived from pathways, rather than sma#a# from individual genes [28]. Overall,

examining genetic variants that are associated aviipecific disease unravels functional gene



networks [29-33]. Ultimately, the goal is to pinpbthe causal variants for human traits and

provide a functional explanation to how they exkese phenotypical changes.

There is a high statistical burden of multiple itggtvhen considering associationtians,
therefore most of the studies still focusamassociation. Whileis regulation is extremely
important in understanding the mechanisms of trgptsan, it is limited, by its local nature, in
the insights it can provide regarding interactiqgrathways and the overall architecture of gene
regulation [34]. Constructing regulatory networlesed on eSNP data in different biological
contexts (e.g., specific cell type or disease)stad light on questions regarding the role of
genetics in shaping the organization of gene reigmahow it changes under different
environments and conditions and by which mechanisfutiple studies that have taken this
approach report intriguing finding§ranseSNPs seem to be organized in a modular fashion,
when a single variant is associated with the exgiwasof multiple genes [4, 9, 35, 36]. This
single variant usually hascss effect on the expression of a gene, which in has aranseffect
on the gene set [4, 36]. These co-regulated gaaeaseenriched in functional annotations and
correspond to known pathways [15], they are c@letgpecific [9] and condition dependent [15],
highlighting processes that are relevant undereaip biological setting. For example, Fairfax
et al.report findings of coding polymorphisms in CYP1PRRY11, and IDO2 that modulate

activity and developrans network effects that can be observed only upanugétion[15].

In the following chapters, | will describe our wask eSNPs itrans, which aims at providing
insight on regulatory interactions between diffédesi and the architecture of the regulatory

network that such interactions define.



In chapter 2 we present a computational framewuak goes beyond pairwise interactions to
define network motifs [36]. We show that considgriranscripts, each weakly associated to a
single ‘main’ SNP, exposes high confidence regujatoodules structures. We represent the
dependencies between the transcripts in the mashadléhe main SNP by a graphical model.
When applied to genetics-genomics data in the liwerobserve that the modules are prevalent
in real data and exhibit unique characteristicehapter 3, we extend this framework to
combine every two basic module structures, i.edules composed of two genes, that share the
same gene pairs, exposing a bi-fan structure ildin@an regulatory network [22]. This structure
is a known building block of model organisms’ reagoly networks [37]. In chapter 4 we take a
step forward and integrate eSNP associations witRlanetwork. We show that projecting these
interactions onto the PPI network exposes topofdgimperties of eSNPs and their targets,
unravels different modes tfansregulation and highlights a mechanism by whichgeee
expression is altered [38]. In chapter 5, we sunmaayur main findings and discuss the

limitations of our approaches and future directions

There is a very large number of eSNP studies hgénfprmed in human cohorts and the vast
majority of their analyses are based on considaaiamgle SNP associated with a single
transcript and mainly inis[1, 6, 39, 40] While this analysis only captures a fractioriref
complexity of genetics of regulation, the advantsgdat these approaches provide some
statistical guarantees on the associations disedverhere is a smaller number of studies that
build networks from eSNP dal4, 9, 34, 35] While these papers provideuch more

comprehensive modelthe main issue is that they do not provide timeesatrength of statistical



assurance in their findings. The main advantagaiofipproach [22, 41] is that it provides a
framework for analysis of eSNP data which is vaffedent from the typical analyses and
bridges these two approaches wieitgablishing statistical guarantees on our inferesdlts

using permutations.

There are number of works integrating SNP data hiblogical networks. Many of these works
focus on GWAS SNPs [24-26] while some of them mlyco-expression networks [38], that are
derived from gene expression data, the same dattésthsed for finding eSNPs. Our approach
[38] utilizes two independent sources of informatieSNP associations, derived from
sequencing-ascertained variardsd an established PPI network [42], aiming taesklthegap
between association, causality and mechanism. @wewawork offers insights concerning the

architecture of the human regulatory network amdrtdte genetics plays in shaping it.



Chapter 2: Inference of modules associated to

eQTLs

SummaryCataloging the association of transcripts to genetriants in recent years holds the
promise for functional dissection of regulatoryusture of human transcription. Here, we present
a novel approach, which aims at elucidating thetjmlationships between transcripts and
single-nucleotide polymorphisms (SNPs). This estddtection and analysis of modules of
transcripts, each weakly associated to a singletgewvariant, together exposing a high
confidence association signal between the modudetaa ‘main’ SNP. To explore how
transcripts in a module are related to causatigiefto that module, we represent such

dependencies by a graphical model.

We applied our method to the existing data on gemef gene expression in the liver. The
modules are significantly more, larger and densan found in permuted data. Quantification of
the confidence in a module as a likelihood scdiewa us to detect transcripts that do not reach
genome-wide significance level. Topological anaysfieach module identifies novel insights
regarding the flow of causality between the mairPSMd transcripts. We observe similar
annotations of modules from two sources of inforaratthe enrichment of a module in gene
subsets and locus annotation of the genetic varidinis and further phenotypic analysis provide

a validation for our methodology [36].



2.1 Introduction

Variation in genomic DNA can affect function in rtiple ways, most typically by alteration of
the expressed quantity or sequence content of tcaradcripts. This premise motivated extensive
studies over the last decade, cataloging the infle®f human genetic variants on gene
expression, most often s [43, 44]. Local gene expression level is formalbysidered as a
guantitative trait that is directly modified byelic variation in regulatory elements [45, 46].
Such modifications of transcriptional regulatiorvédgeen documented to affect health-related

traits as diverse as asthma [47] and low dengitpliotein (LDL) cholesterol concentration [48].

Yet, for large fraction of single-nucleotide polyrmpbhisms (SNPs) with well supported
associations to disease phenotypes [49] whicheitkar coding, nor linked to coding SNPs in
cis, nocis-regulatory effect have been reported in studieslaoted thus far. A compelling
biological hypothesis is that such a SNP does ahémg transcriptome state or program in order
to exert its phenotypic impact, and this regulateomediated by a transcript @ms, but in the
particular tissue examined, the changes to trgptsani level of the mediator gene are too minute
to guarantee detection in small association cohdhis hypothesis leads to an approach for
mapping expression quantitative trait loci (eQTitst is focused on downstream effects of a
regulatory SNP across multiple genesrams rather than theis-transcript that may
mechanistically mediate the effect. A related apphohad been successful in simpler organisms

[50], motivating this work.

Data on both gene expression and SNP variatiorsacnaltiple individuals, often termed

genetic genomics have facilitated identificatiorttadusands of expression single-nucleotide



polymorphisms (eSNPs) [17, 51]. Approaches thatliomthese two types of data along with
additional factors including the previously infetrieiological network structure [52], modularity
of gene expression [53], pathway analysis [54] emymatic activity [55] had been proposed.

However, tying genetic variation in specific locigghenotypes is still an active field of research.

In this study, we focus on the modularity of geegulatory networks, a major organizing
principle of biological systems [56]. A module fetfundamental unit of a biological network
that consists of a set of elements (e.g. genejimgpjointly to fulfill a distinct function. Sevelta
studies have used this property to gain better nstaleding of the regulatory mechanisms [57]
that are affected by genetic variation. Litvin {80] characterize how genetic variants in
multiple loci combine to influence the expressidmclosters of co-expressed genes in yeast.
Ghazalpour et al. [53] used co-expression netwtirlstudy the genetics of complex
physiological traits that are relevant to the meligbsyndrome. Schadt et al. [52] used
previously reconstructed regulatory networks ofegeim mouse and human [58] to support the
existing Genome Wide Association Studies (GWASIted16]. Known pathways from Kyoto
Encyclopedia of Genes and Genomes (KEGG) [59] wseel by Zhong et al. [54] for the same
purpose. Common to all these studies are thres.siéye first two are independent: (i)
construction of a network from gene expression;datd (ii) detection of association between
genetic variants and expression traits; the fitep & (iii) integration of genetic associationaint

the network.

However, it is artificial to separate the stageseativork construction based on expression data

only from a single SNP—transcript association magpideally, one would combine information
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from multiple transcripts with genetics in a unifianalysis. This motivates complementary
approaches to analysis of eSNPs. Specificallypoeimise is that the modular organization of
gene regulation can be used to pinpoint eSNPsaffeadt multiple, rather than single genes.
Therefore, we developed a method that focusesaupgrof transcripts (modules) that are each

associated with a single genetic variant.

We present a novel approach that entails analyniodules of transcripts, each associated to a
single genetic variant. These modules are conswuzased on both available types of data:
transcript expression and genotypes. We combirsettianscripts into modules that each share
an associated SNP, which we denote as the ‘mai? &Nhat module. This step utilizes the
modular organization of gene regulation. We fitteg modules according to a confidence score.
This score allows us to identify groups of transtxithat are associated to a SNP even if their
individual association is not genome-wide significaVe examine the topology of modules,
accounting for independent co-association, whialtotsmerely the result of co-expression. This
step allows us to infer the flow of causality beénwehe main SNP and the transcripts in the
module. We distinguish direct versus indirect SNianscript associations through another
intermediate transcript whose expression levebiagsociated to the same SNP. The main SNP
can possibly haveis- or trans-effects on the transcripts in the module. A laasleffect on a
transcript that is either included or excluded frammodule can in turn have a modulans
regulatory effect on the other transcripts in tredoie by virtue of its changed expression levels

or altered produced protein (e.g. a mutation indcaiption factor).
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Regulatory effects can be categorizectlsy andtrans-effects. Thecis-effects of eSNPs are

often due to changes within the promoter, enhaocether regulatory regions of a gene that
may change the expression of that gdmanseffects of the main SNP on module transcripts
can be the outcome of two potentially overlappiognarios: First, ais main SNP that is located
within or close by the coding region of one of genes in the module can alter the produced
protein. The altered protein may then haveasregulatory effect on the other transcripts in the
module by virtue of its differential expressiondédespite the protein itself being potentially
unmodified. Second, Bans main SNP that is located within or close by thdieg region of a
gene that is not a part of the module can alteptbduced protein. This distant altered protein
may then have @ans-effect on the other transcripts in the module injue of its modified

sequence, despite potentially maintaining its esgiomn level.

All methods previously introduced group transcripysa shared associated marker and
determine intra-cluster interactions by using tbeelation of gene expression levels. To our
knowledge, this is the first work where a confidesscore is assigned to each module and direct/
indirect interactions are determined between pHitganscripts within a module illustrating the
dependence/independence of their expression legaliitioned on the main SNP. We are thus
able to go beyond traditional clustering-relatedhnds that are based on expression only, and in
fact, examine the joint association and the topplaighe modules and not merely their content.
For completion, we further search for regulatomrarchical structure within each module: we
examine SNPs whose association to transcript lewelsnodule is conditioned on the main

SNP, and denote those as ‘secondary’ SNPs. Tlpugsstustrated as a decision tree where

samples in each module are split, first by the ggreoof the main SNP and then by the genotype
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of the secondary SNP. We applied our method to r@gfarding genotype and gene expression in
the liver across 371 samples. This data had bemnqusly analyzed in other means [52]. We
observe known relationships from the literaturedeein a module and its associated genetic

variants, thereby providing support to our methodyl
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2.2 Results

2.2.1 Computational framework for detecting trangational modules

We set out to develop a statistical-computatiorsah&work to elucidate the regulatory structure
by which genetic variants affect transcription. peally, we aim to examine the hypothesis
that SNPs can have a modular effect on gene expne3ur method detects transcriptional
modules, each including transcripts that are aasadtiwith the same main SNP. It is important
to distinguish the modules that we find from co+@gsion clusters. Specifically, we represent
each module as a graph, where nodes are transematg$or each possible pair of transcripts an
edge correspond to a scenario where at least athe tfanscripts remains significantly

associated to the SNP when conditioned on its eopatt.

An initial step of detecting association pairs dff5and transcript, showed as many such pairs as
expected under the null hypothesis of no suchdeseciation. However, we were still motivated
to search for modules, as the same associated 8&Bshared by many transcripts. Briefly, we
collated association pairs that share a SNP iiglets and larger modules. Such modules are
more numerous, bigger, denser in association and fuactionally enriched than expected by

chance.

In detail, we devised a three-step procedure ftealimg the modules regulated by eQTLs.
The first step detects 67,540 association paiss®NPs and a transcrigtwhose expression
level is putatively associated wigh{nominal associatioR<10°, see Materials and Methods
section 2.4.2 for details). The distribution of thember of pairs in the permuted data (Figure 2-

la) demonstrates that the observed number of as®wcpairs is consistent with the null
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expectation®P=0.07). We eliminate 623 pairs that include trarmgsrivhose association statistic
is strongly distorted, as observed by permutatsee Materials and Methods section 2.4.2 for

details). We proceed with analyzing the remaini6@&7 association pairs.

Association pairs are binned by SHFRand give rise to 10,354 modules (see Materials an
Methods section 2.4.3), ranging in size from 2 Idr@nscripts who are associated to the same
main SNP of the module (Figure 2-2). Only 518 medudre large, i.e. with 10 or more
transcripts. There are significantly more module$,3%4 (Figure 2-1b) than those found in the
permuted data (average 2,322 across permutatiin208). Specifically, there are significantly
more large modules—518 (Figure 2-1c) than thosedon the permuted data (average 220; SD
42). While the observed number of significantlyaesated pairs of transcript and SNP is
consistent with the null expectation, we find ttiegre are significantly more modules than those
found in the permuted data. This finding is comsisith the premise that gene regulation is

modularly organized.
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2.2.2 Modules’ topology

The set of pairs includes 137,889 possible trigetst’) where §,1) and §,t’) are association
pairs. Focusing on co-associated pairs of transgnye find that for 129,130 of these triplets,
association for at least one of the paiss) (emains significantR<0.05) even upon conditioning
on the transcript level df (see Materials and Methods section 2.4.5). Thrggets are further
sub-divided into the 101,762 ‘bi-directional’ trgté versus the remaining 27,368 ‘uni-

directional’ (for definitions see Materials and Metls section 2.4.5).

We describe independence of associations in eadule as a grap®(M) (see Materials and
Methods section 2.4.5), when examining the topolaigyhe modules, we notice that for most

modules, nearly all association pairs are mutuatigpendent (Figure 2-3 and Figure 2-4).
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Furthermore, considering gdbssible pairs of transcts in a module, the fraction them which
were conneted by edges is 87.7% (averaccross all modules; SD 13.3%hig is
significantly more thamthose found in permuted dé¢(average 12.5%; SB.2%). Specifically
both bidirectional (average 79.4%, SD 18.9% velaverage 2.3%5D 3.1%), as well auni-
directional edge (average 8.3%; SD 6.3% verd10.2%; SD 5.2%)r& enriched in re¢
compared with permuted daf@dure :-3). This is consistent with the main S affecting
expression levels ahost transcripts in itmodule in a simultaneous ratltban a cascade
manner.This also addresses concernartifactual modules that are pdslyijust clusters oco-

expressed genes rathernheuly independent associatito the main SNP.
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Figure 2-3.The distribution of the number of modules with different fractions of edges
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Figure 2-4.The average fraction of edges.
Sum of directed and bidirectional out of all possidges, for 518 modules with 10 or more transerip
100 permutations.

2.2.3 Module’s score and filtering

To establish a measure of confidence in the reguttiodules, we assign a score to each module,
considering the module size and the strength aaasons between the main SNP and each of
the transcripts in the module. This score is jiestifis a log-likelihood-ratio that compares two
hypotheses (see Materials and Methods section)2\We provide an empirical P-value
interpretation by scaling the scores of modulethéreal data, compared with the average score
of the modules in permutations. We further prureelinge modules, defining a subset of 114

high confidence modules with FDR<0.02 (Figure 2-5).
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Figure 2-5.Scaling score for modules.
For 518 modules with more than 10 transcripts. rEteline indicates the FDR threshold of 0.02.

We notice that in most of the modules there aretfawnscripts that are expressed in an opposite
direction to the majority of transcripts in the nodel This suggests that the main SNP affects the
majority of transcripts in the same direction. Weify this observation by quantifying the
percentage of positive and negative correlatiothefmain SNP with the transcripts in each

module (Figure 2-6).
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Figure 2-6.Direction of effect the main SNP has on transcripté the module.
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(red) correlated transcript levels to the main StiReach one of the 114 modules.

2.2.4 Cisltrans-effects

Some of the previous studies have optimized powdetectis-regulatory variation by using
different P-value threshold for definirmgs eSNPs [49], based on strong priors in their f4¥@t.
Here, we set a fixed threshold of 2Lfor bothcis, andtrans association, putting them on equal

footing for the detection of modules.

There are 110 modules wittans main SNP, the remaining 4 modules haigmain SNP (see
Materials and Methods section 2.4.6 for definitioMge systematically sought potenttas-

effects of main SNPs that were not strong enoudtetoaptured by our first-pass analysis. To
examine this, we record the gene closest (see Mitand Methods section 2.4.6) to each main
SNP. In two modules, the main SNPs did not hadeseaene from our data. The main SNPs of
the remaining 112 modules have 94 unique closesgyevhich we call ‘main genes’. Out of all

main SNPs, 88 are at least 1Mb apart from one an¢siee Materials and Methods section 2.4.7
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for additional details). We record the P-valuetfoe linear regression between each main SNP
and the expression levels of its closest genethl, 124 main SNPs were nominalR<0.05)cis
associated to their respective closest gene, wWithnlque associated gen&-1.76x10", see
Materials and Methods section 2.4.8) and with 1iQum associated SNPs that are at least 1Mb
apart from one anotheP£8.1x10°, see Materials and Methods section 2.4.8). Thesa BNPs

aretransmain SNPs. These results support our suggéstedeffect model.

2.2.5 Independent cross validation by similar anatbns from two sources of information

and phenotypic analysis

We characterized high confidence modules by consigléwo sources of information:

() the enrichment of transcripts in a module fa@mbership in gene-sets from the Gene
Ontology [60], NCBI Gene and KEGG [59] databases.

Of the 114 modules, 26 (22.8%) were reported aslezut in any category. This contrasts with
modules in 100 permuted data sets, where 12.8+8f#ie modules show any functional
enrichment (Figure 2-7) and

(i) locus annotation of the main and secondary $SNfReach module, as reflected in the existing
literature, Ensembl [61] and wikigenes [62].

These sources are independent for modulestvetis main SNP. We observe similar
annotations of modules from the two sources ofrmftdion. This independent cross validation
provides support for our methodology.

Additional support comes from intersecting the Sinroci with the 2,626 unique genes (2,212

among the 18,873 transcripts available for analysikis work) reported to house GWAS SNPs
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[16]. We find an overlap of 21 genes (hypergeométsil.1x10%. We discard 19 modules
whose set of transcripts have a 90% overlap whisronodules, resulting in 95 distinct modules
(see Materials and Methods section 2.4.7 and Tablesand 2-1b for full listing of all 95
modules). We present details of the annotationyarsafor three modules: the largest with an

annotatedis-SNP, and two of the four largest modules overall.

Real data:
0.228

15+

Number of permutations
=

0 0.05 0.1 0.15 0.2
Percentage of enriched modules

Figure 2-7. The percentage of enriched (large) modies in real data compared to 100 permuted
datasets.

Table 2-1. Modules’ annotations (separate file).

File: Table5a-Filtered_modules GO _enrichment.x@xmodules full information: module number
(decreasing size), #transcripts and Entrez IDgréajscripts’ enrichment, main SNP number and iposit
(a) Closest gene to main SNP: hame, position ascdrigigion, secondary SNPs and number of correlated
transcripts (a) Closest gene to secondary SNP: naoséion and description and the fraction of exige
We indicate the enrichment of the big module whine@lomodules are included within it. Biological
information regarding transcripts, was extractedrfigenecards [62]. SNPs locations were extracted fr
Ensebml [61]. We represent a group of similar mediily one module that is highly enriched in gene
sets. We denote the Entrez Ids, main SNP anddraofiedges for all similar modules in the group.
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2.2.6 Comparison with standard approach to modudamstruction

We implemented the standard approach of groupinggeaccording to their associated SNP. We
used a standard, stricter FDR cutoff of 10% fooasgion—pairs [52]. We show this approach to
produce fewer modules, smaller modules, limitisguise for finding modules. Moreover, our
approach finds modules that are more enrichedufoectional annotation categories, compared

with the standard approach, supporting our modubesg genuine.

Specifically, the standard approach produced 22z3%6ciation pairs, 3,387 modules, 75 with
10 transcripts or more (Figure 2-8). The largestlat® has 27 transcripts. We examine the
enrichment of these modules in GO categories an@&Ipathways: 4 out of the 75 modules had
significant biological enrichment in at least oregory (5.3% comparing with 22.8%

functional enrichment in our modules).

Support for modules filtering stepll four modules that were found by the standawethodand
were functionally enriched are contained in onewffinal 95 modules. This provides a support

for our modulescoring and filtering step.
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Figure 2-8. Modules sizes distribution using the standard apprach for modules
reconstruction.

2.2.7 Analysis of specific modules

We present a positive control for our method usiaglule #29 with 16 transcripts aog main
SNP. The main SNP rs9267658 partitions the sanpieshree groups: 277 samples that are
homozygous C (C/C), 89 C/T samples and 5 T/T sasnplee secondary SNP for the C/T
subgroup of samples is rs4902609 and is assoaciatectight transcripts. This module is
enriched for Major histocompatibility Complex (MHG@gnes (FDR 0.0049), with related
annotation for relevant KEGG pathways (allograjecéon—FDR 0.0046, antigen processing
and presentation—FDR 0.0041, cell adhesion moleeakeDR 0.0088) and autoimmune
diseases (graft-versus-host disease—FDR 0.002¢ | tyiabetes mellitus—FDR 0.0021, thyroid
disease—FDR 0.0023, viral myocarditis—FDR 0.003® asthma— FDR 0.045). The main
SNP resides within the MHC region [63]. The moduldudes three transcripts ais to the

main SNP that play a central role in the immuneesys HLA-DRB5, HLA-DRB4 are MHC
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class Il and HLAG is MHC class The closest gene to rs490268#RD51L1 is a tumo
suppressor gene, whosans-associatiorto the MHC trascripts may relate to fvious reports

on links betveen autoimmunity and can64] (Figure 2-9).

rsY267658 chr 6

MHC cis: HLA-DRB25/5, HLA-G

154902609 chr 14

| RADSILI

Figure 2-9. Module of size 1@ranscripts and their expression levels over 371 saples.

The heatmap of expression levels (red/black/graergss samples (columns) and genes (row
segmented (top) into SNRenotype spli—light, medium and dark blue represent carriers, df Or -
minor alleles, respectively. Closest genes to thimrand secondary SNP are lis

The largest module ¢ has 91 transcripts. The m:SNP rs10818053 padtibns the sample
into 303 T/Tsamples, 65 T/C samplend 3 C/C samples. The second8iyPsare rs6433115
for the majorallele homozygoteand rs2122013 for heterggotes. This module is enrichfor
transcripts involed in oxidation reduction (FD5.9x10"), lipid metabolic processes (FC
1.9x10°) and genes expressed ile mitochondrion (FDR 0.015). kerms of pathways, it |
enriched for drug metabolispathways (FDR 7x10°) and primary bile acid biosynthe (FDR
3.4x10% that occurs in the liver. Ttclosest gene to the main SNP, TL&sbperates tmediate
the innate immune responseb@acterial lipopolysacclride (LPS). TLR4 activiion mediates
liver inflammatory response [§and is responsible for oxidized phospholimediatec

inhibition of TLR signaling [66]Secondary SNP rs6433115 for the T/T gnaloip isassociated
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with 26 transcripts and is within thpan of LRP2. Secondary SNR2122013 for the T/(
subgroup isassociated with 35 transcripts and is closest tX®RIgene(Figure -10). LRP2 is a
lipoprotein that is also involved the cellular uptake of drugs, including lipbdsec
formulations [67]. MTX2 is inelved in the import of proteirinto the mitochondriol[62]. This
module may be relatdd the effect of drugsn lipid metabolism [68] and thgossible role of th

mitochondrion in such pathwa[69].

rs1 0818053 chr 9

| TLR4

rs6433115 chr 2:1 70190965 rs2122013 chr 2:1773655949

Figure 2-10. The largest module of 91 transcripts and theiexpressionlevels over 371 sample
See Figure & legend for further detalil

Since mutations in TLRédre associated with lividamage, we investigate the main Ss
association to drug sensity. Data for lver risk in the 371 samples [52Jenotype of te main
SNP rs10818053 and livesk in 371 samples aretailed in Table 2-2The clinicaldata

presented by Schadt et al. [3@8t liver risk, arebinary entries describing (according
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clinicians’ diagnosis) if there is a risk to thetipat's liver if treated by drugs. We present
preliminary analysis showing that these minor—mied major—minor allele samples are
enriched for liver risk more than is expected bgrate (Hypergeometrie<0.012) which implies
that individuals carrying C/C or T/C alleles in timain SNP’s locus may be prone to liver
sensitivity for drug treatment. This analysis po®s the first support for our method from non-

expression traits.

rs10818053 | Minor—minor C/C Major—minor T/C | Major—major T/T | Total no.
genotype of samples
Liver risk

Positive 2 13 39 54
Negative 1 52 264 317

Total no. 3 65 303 371

of samples

Table 2-2. Data for liver risk in 371 samples.
Separated by minor— minor, major—minor and majojenellele samples, respectively and genotype of
rs10818053.

Module #4 has 50 transcripts. The main SNP rs14Y pattitions the samples into 288 T/T
samples, 76 T/G samples and 7 G/G samples. Thad&goSNPs are rs6464842 for the first
subgroup and rs861508 for the second subgroupraresaociated with 7 and 9 transcripts,
respectively (Figure 2-11). This module is enrichettanscripts that regulate cellular (FDR
0.0036) and metabolic processes (FDR 0.013), spaltyf cell proliferation and differentiation
(FDR 5.2x10). It is enriched for ErbB (FDR 1.5xEpand Mitogen activated protein kinase
(MAPK) signaling pathways (FDR 5.2x2p The closest gene to the main SNP, STK11IP
interacts with LKB1 which regulates cell polaritychfunctions as a tumor suppressor [62].

LKB1 is a serine/threonine kinase which is inadidaby mutation in the Peutz— Jeghers
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polyposis and cancer predisposition srome (PJS) [70], with correlan to the putative
function ofthe module. We obrve a significant P-value (<0.03hg¢tween the expressilevels
of LKB1 and the genotypef rs1477'11. Mutations in CNTNAP2, whems646484 resides,
have been implicated in multiple neurodevelopm: disordes, including attention defic
hyperactivity disorde(ADHD) and schizophrenia. Witcorrelation to CNTNA2 function, the
ErbB signalingvas suggested to imir working memory and executifanctions that ar:
affected in schizophrenia, ADHD & other psychiatric disorders [ZI3PANXC which is th
closest gene to rs861508sides in a region that confesusceptibility to prostaicancer. ErbB

and MAPK signaling argnown to have an iportant role in cancer [72, 73].

rs1477511 chr 2

STK111P

rs6464842 chr 7 rs861508 chr X
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Figure 2-11. Module of size 5@ranscripts and their expression levels over 371 saples.
See Figure ® legend for further detalil
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Finally, we present a second support for our methma non-expression traits. Module #101
with 10 transcripts is the only module where them&NP maps to a locus associated with
oxidative damage control: rs1453226 at OXR1 in@dab be involved in protection from
oxidative damage [62]. The transcripts in this medare slightly enriched for oxoacid metabolic
process (FDR 0.04). Therefore, we decided to inyat its association to alcohol risk. Data for
alcohol risk in the 371 samples [52], genotypehefmain SNP rs1453226 and alcohol risk in
minor—minor allele samples are detailed in Tabk &-is challenging to provide clinical
support, since the clinical data presented by Sabtzal. [52] is very sparse. We present
preliminary analysis showing that these sampleariehed for alcohol risk more than is
expected by chance (HypergeomeR#0.03483), which implies that individuals carryiAgA

alleles in the main SNP’s locus may be prone taisigity for alcohol use.

rs1453226 Minor—minor A/A Major—major G/G Total no.
genotype and Major—minor G/A of samples
Alcohol risk

Positive 4 15 19
Negative 4 93 97
Unknown 28 227 255
Total no. 36 335-195 and 140, 371

of samples respectively

Table 2-3. Data for alcohol risk in the 371 samples
Genotype of rs1453226 and alcohol risk in minor-anallele samples.
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2.3 Discussion

We presented a three-step approach to the analys8NPs and their relation to phenotypes that
goes beyond documenting associations of each t@gsipn levels, by applying a module score
filtering procedure, and complements co-expressaiworks by unraveling module topology.

As a first step, we assemble transcripts assoctatdte same main eSNP into the modules. We
then filter the reported modules by a confidena#escand finally associate subgroups of
transcripts within a module with additional varigebnditioned on the genotype of the main

SNP.

We apply our method to data on human liver expoesand SNP genotypes [52]. We find that
the number of association pairs of eSNP and trgstgsrconsistent with the null expectation,
whereas assembled modules are significantly mamemus, bigger and denser than those
observed in the permuted data. This indicates nesdarle not random clusters of correlated-
expression genes, but rather show truly indeperatsdciation to their main SNP. We compare
our results with a standard approach that mapsdrgnt-eQTL pairs with a standard FDR (e.g.
10%) and forms groups consisting of transcripts share an eQTL. We observe smaller number

of modules, smaller in size and significantly lessiched in Biological categories.

Our method detects 95 distinct modules; out oféhosly one has a main SNP in cis to module
transcripts. Among the remaining 8dns main eSNPs, we observe enrichment for milder, not
genome-wide significartdis-effects that explain thieans-effect of the main SNPs on transcripts
in the associated modules. We characterize motyléso sources of information that are

independent for modules withttns main SNP: enrichment in subsets of genes and locus
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annotation of the main and secondary SNPs. We @bsanilar annotations from both sources
of information. Thus, providing support for our met. We present detailed analysis of four
modules: annotation analysis for three of the foodules: one with ais main SNP and two

with transmain SNPs, and phenotypic analysis for two offthue modules.

This study holds the promise for extension beyesdurrent limitations. The current analysis
focuses on transcripts that are directly reguléted variant. Mining the data for additional
transcripts that are downstream along the samevaatbf regulation, e.g. by consideration of
co-expressed genes with milder association to thie ®NP can complement reverse
engineering of the regulatory program [50]. Funthere, both the raw data sets [52] and
supporting databases [59-61] in this work are naisy limited. Potential increase in sample size
for eQTL data may enable detection of eSNP assoogat more significant P-values for even
milder effects. Likewise, as the functional annietatcontinues to build up, better understanding

of modules would be facilitated.

Future studies could extend the approach presémstiedto investigate how modules correlate
with phenotype, for example, using the data on evatic activity that was presented by Yang et
al. [55]. As data becomes available, comparisomadular structure between healthy and
affected samples, as well as across differentdiggues is likely to improve understanding of
disease and developmental regulatory processesnéins a significant challenge to validate the
results presented here by experimental means,raalygsés of independent data may provide

such validation by replication.
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2.4 Materials and Methods

2.4.1 Data details and processing

The DelLiver data set by Merck had been describsslndiere [52]. Briefly, the raw data set
consists of 653,894 SNPs and 25,917 expressiorepridg-transformed values) with an Entrez
gene ID assayed for 385 samples. We remove 99 ssipreprobes that are mapped to the Y
chromosome. Multiple probes that are mapped tcdnee gene had been averaged if correlated
(r>0.75) or discarded otherwise, resulting in 18,88nes with unique Entrez IDs. 5,055 genes
had variable levels of liver expression acrosdndeviduals (SD>0.2). Standard filters have
been applied to the SNP data: Minor allele freqye@d5, SNP missingness rate <0.1 and
individual missingness rate <0.1 [74]. After filteg, the data for analysis consists of 371

samples (200 males, 171 females) with 557,456 SMB$,055 genes.

For each individual, we denote the expression levels of each trartddoipX(i,t), and the

genotype for each SN&by G(i,s).

2.4.2 Step 1—nominal association testing

We test for association between pagd) ©f any SNFs and transcript using linear regression
and record the results between ever pair with nominaP<10°. To eliminate transcripts
whose association statistic is strongly distorteel repeated the analysis 1,000 times with
permuted data, obtained by randomly switching #rees’ labels, discarding recurrently
observed transcripts as follows. A small fractidoloserved association pairs tend to recur in
permuted data sets more than expected (Table@péyifically, 2,979 of the observed

association pairs detected in the real data appesantly once in the 1,000 permuted data sets



(<676 expected), and 520 recur twice (<7 expecidus suggests a bias in the test statistic for

these pairs, and we discard all 623 pairs thatappewo permutations or more from

subsequent analysis.

#permutations

Number of pairs

Expected #permutatson

1 2,979 <676
2 520 <7
3 87 <1
4 14 <1
5 2 <1

Table 2-4. Distribution of observed and expected asciation pairs in 1000 permutations.

When considering association pairs detected imghkand permuted data, we note that over
dispersion of the test-statistic exists in boththia real data, 16 of (s, pairs attain a test
statistic theoretically corresponding t®al0° (Figure 2-12), whereas in the 100 permutations
using all SNPs in the data, only™4 of such pairs attain this level. We use the notfd 0°

as a threshold, keeping in mind that this P-vadugoit genome-wide significant, and 69,172
random association pairs are expected to pasthtieishold by chance alone. This justifies the
use of such a threshold, as our methodology rehdsaving a variety of association pairs, that

only when cross-compared across transcripts waeld g meaningful result.
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Figure 2-12. QQ plot for association pairs in reatlata.

X-axis denotes -log 10 of the expected p-valuexié-denotes -log10 of the observed p-value which
represent 100 transcripts that were sampled raryd@mél 1/100 of each p-value range was sampled.
Also, out of allp-values better than £01/100 were sampled randomly.

2.4.3 Step 2—module construction, scoring and filtey

The putatively associated transcripts are binnethbly SNPs, each bin hereby referred to as a
module. This associated SNP s is denoted as tha®EP. We consider each module in turn.
Let M be a module of size with a set of transcriptdy . . . .,i} and a main SNR. For each
transcriptt; we consider the P-value denoted Pyjadf the association test between the main
SNPs and its expression level. We compute the empifalak positive rate (EFPR) for each
such P-value by permutation: We use 100 permutatiotally the average number of P-values
better than Pvati] across the permuted data sets divided by th@goas number in the real
data. This ratio is the EFPR corresponding to Byal{/e follow a similar procedure to calculate

the analogous ratio for module size k: EFIORE defined as the ratio of the average number of
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modules with size bigger th&macross the permuted data sets and the analogmizenin the

real data. The sco®M)of the moduleM

k
S(M) = — Z log(EFPR(pval(t;))) —log(EFPR(k))

i=1

is justified as a log-likelihood-ratio that compsitero hypotheses

Likelihood(H,) _ PrPe™ (k) g Prrerm(pval(t,))

Likelihood_ratio = = '
ikelihood_ratio Likelihood(H,) _ Prdata(j) " | ] Prdata(pyql(t;))
L=

Ho denotes the null hypothesis that a module sizethadstrength of associations within the
module follow the same distribution in the real getmuted data. Hdenotes the alternative
hypothesis, i.e. that a module size in the rea daduld be larger than in the permuted data, as

well as the strength of the associations within it.

In order to assign significance to the obtainedesgove again use 100 permutations. We score
each of the modules in the permuted data setsstghmother 99 (a ‘leave one out’ procedure)
in a similar process to the one described for cdmguhe scores of modules in the real data. We
thereby provide an empirical P-value interpretabgrscaling the scores of modules in the real
data, compared with the average score of modulpsrimutations, i.e. the true positive rate

(TPR) of the score of a module.
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2.4.4 Step 3—finding secondary SNPs

We split the samples by the genotype of the maiR 81b three subsets of samples with
genotypes AA, Aa and aa, respectively (where Aaade the major and minor alleles,
respectively). AA and Aa are the two larger subsésamples. In each of those two subsets, we
then turn to find the corresponding two subset-$jge8NPs that best explain the expression of
the largest group of genes in each subset, andeldémese ‘secondary’ SNPs [50, 75]. To search
for secondary SNPs, we test each SNP for assatiafily to the transcripts within the module,
and only within the current subset of samples. 8eadd pairs of transcript and SNP in
recurrently observed association pairs by usin@@ @ermutations and removing all association
pairs that appear in one permutation or more (aoghiFDR<0.001). We consider all SNPs that
comply with three criteria: (i) maximal-size subgpoof transcripts (with minimum of five
transcripts), (i) F-test for independent assoorabf transcript pairs and (iii) minimal product of
association P-values. More specifically: For eacdute, and each genotype group we first list
all SNPs that achieve an association nominal Pevaful0° or better with a large subgroup of
transcripts (five transcripts or more). We consioigly those whose subgroup is maximal as
candidate secondary SNPs. We test all possible patranscripts in the subgroup for
conditional association (see Materials and Mettsmat$ion 2.4.5), and discard a candidate
secondary SNP if any pair fails the test. Out ¢ list, we seek the SNP with the minimal
product of association P-values with its subgrolfpamscripts. These steps control for false

discovery, because the phenomena of big and edwe aeodules does not exist in permutations.
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2.4.5 Analysis of dependencies within modules
For each module, we consider all possible ordatpkkts ¢,t’,s) of two transcripts, ' whose
levels are significantly associated with the sanagnSNPs. We define bi-directional triplets
where association is mutually independent, i.ebfith association pairs remain nominally
significant given the respective other transcrigtsus ‘uni-directional’ triplets where association
is directionally independent (Figure 2-13a). Folgale test whether the association model
provides significantly better fit to the data thithe null model.

Null Model: X(i,t) =apg+ ay - X(i,t")+&

Association Model: X(i,t) = By + B1 - XA, t") + L, - G(i,5) + &
We use the F-test for better fit symmetricallyeatpting to explain the expression levels of
eithert byt’ or the converse, with or without genotypes (tgstire significance g8, being non-
zero coefficient would yield the same results). #éscribe independence of associations in each
moduleM as a grapli(M), whose vertices correspond to transcripts. A tia¥bidirectional
edge connects transcripts with directionally/mutusldependent association with the main SNP

(Figure 2-13b).
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Figure 2-13. Graphicalrepresentation ofmodules.
(a) Graphical illustration of a triplet with two transc ripts t andt' and a main SNPs. The dashed/full

black line represents dependdntdependent association between a SNP and a tiathsespectively
The uni/bidirectional pink/purple line represents an edgé ¢tbanect transcripts witt
directionally/mutually independent associationtte main SNP (i) unidirectional trip—the association
pair (8, ) remains significantR<0.05) even upon conditioning on the transcripelt’, but not vice
versa. (ii) unidirectional triplets(t’) remains significant even ug conditioning on the transcript lewt,
but not vice versa. (iii) balirectional triplet s, remains significant even upon conditioning on
transcript levet’ and §, t') remains significant even upon conditioning onttla@script levet. (iv)
dependent triplets() and §,t") are insignificantP>0.05)when conditioning on the transcript let’ and
t respectively.(b) Graphical representation of intra-module interactions.We consider a module w
three transcriptds, t,, t3 and a main SNis. A bi-directional dashed purple edge is placed bety
transcriptd; andt,, representing the mutua independent association of batlandt, with the main SNF
s. A directed solid pink edge is placed betweenstaptst, andts, representing thderendent
association ofg, §) on the transcript levels t,. No edge is placed between transctt; andts,
representing the mutually depenc association of both andt; with the main SNIR.
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2.4.6 Module annotation

The enrichment of a module in gene subsets fronGdree Ontology (GO) [60], and KEGG [59]
databases was calculated using DAVID [76, 77]. @mechment of real and permuted modules
in gene subsets from the NCBI gene database wasla@d using LitVAn [75]. We report only
modules with annotations that have a significanRF 0.05 or better. Depending on context,
we discuss the proximity of a gene to a SNP inisg¢weays: A SNP may be ‘in the span of the
gene’, i.e. the SNP resides between the ENSEMBLtf@hscription start site and stop codon of
the gene; ‘closest to the gene’, i.e. this genaespiae closest among all spanned sites on either
direction; or ‘close to the gene’—means the SNWiikin 1Mb of a site spanned by the gene.
We define acis main SNP when the main SNP is within 1Mb of onenore transcripts in the
module. We define mansmain SNP when the main SNP is 1Mb or further bfred transcripts

in the module.

2.4.7 Filtering modules using different criteria

There are 94 main SNPs have a close gene withgai@iiintrez ID and 88 main SNPs that are at
least 1MB apart from one another (Table 2-5). Werfall modules that have minimum of 90%

overlap with another module, resulting in 95 distimodules (Table 2-6).

Table 2-5. Distance filters anctis effects (separate file).

File: Table2-5.xIsx. Presents for each module ét$a number, rs#, size, chromosome, SNP position,
group according to rs location, closest gene Eniitez a zero entry means there is no closest gene,
transcription start site, transcription end sitbether the SNP is located within the transcriptaiegnd
thecis effect p-value.

Table 2-6. The percentage of overlap between eveltyo modules (separate file).
File: Table2-6.txt. The percentage is calculatedobthe number of transcripts in the smaller medul
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2.4.8 Enrichment of cis-effects for main SNPs

We model the examination ois-effects for main SNPs as a binomial experiment.gazh main
SNP, we record one closest gene. Conservativelguargenes are tested for association to
exactly one main SNP, a binomial experiment Bin@maber of unique geneB=0.05) with
significant number of successes. We then record BbiPs that are at least 1Mb apart from one
another and test them for association to exacttyaosest gene, a binomial experiment
Bin(n=number of main SNPs that are at least 1Mbtdpam one anothe?=0.05) with

significant number of successes (Table 2-5 andse2t2.4 in Results).
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Chapter 3: Co-regulated transcripts associated to
cooperating eSNPs define bi-fan motifs in human

gene networks

Summary:Associations between the level of single transsrgstd single corresponding genetic
variants, eSNPs, have been extensively studiedepuited. However, most expression traits are
complex, involving the cooperative action of mukifsNPs at different loci affecting multiple

genes. Finding these cooperating eSNPs by exhausgarch has proven to be statistically

challenging.

In this paper we utilized availability of sequergidata with transcriptional profiles in the same
cohorts to identify two kinds of usual suspectsNES that alter coding sequences or eSNPs
within the span of transcription factors (TFs). Weglize a computational framework for
considering triplets [36], each comprised of a SiviE two associated genes. We examine pairs
of triplets with such cooperating source eSNPs #natboth associated with the same pair of
target genes. We characterize such quartets thrthejh genomic, topological and functional

properties.

We establish that this regulatory structure of @yapng quartets is frequent in real data, but is
rarely observed in permutations. eSNP sources astlyrlocated on different chromosomes and
away from their targets. In the majority of quasteéSNPs affect the expression of the two gene
targets independently of one another, suggestingwaually independent rather than a
directionally dependent effect. Furthermore, theaions in which the minor allele count of the
SNP affects gene expression within quartets arsistamt, so that the two source eSNPs either
both have the same effect on the target genestbrabiect one gene in the opposite direction to
the other. Same-effect eSNPs are observed more tiftn expected by chance. Cooperating
guartets reported here in a human system mighésppond to bi-fans, a known network motif of
four nodes previously described in model organis@serall, our analysis offers insights
regarding the fine motif structure of human reguigtetworks [22].
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3.1 Introduction

Markers associated with changes in gene expressiaied eSNPs have been extensively
mapped using high throughput genomic data [1, 36,54, 71, 78-80]. They allow effectively

delineating regulatory associations between ea®PeSource and each of its regulated target
transcripts. Taken together, these source-tanges Gomprise a regulatory network that abstracts

both the genes at source loci as well as theietargs nodes.

Regulatory networks have been characterized aarfegtspecific motifs as their fundamental
building blocks [37, 81]. These motifs occur sigzahtly more than expected by chance and
suggest respective functional mechanisms. Speltyficiudies in model organisms highlighted
the bi-fan motif which consists of two regulatoegulating two genes as having a functional
role, e.g. of a filter and synchronizer of feedb&mbp signals [37, 82]. While previously studied
networks are often derived from TF-DNA or protemogein binding experiments, this work

utilizes genetics-genomics data to study the birfaif across a human regulatory network.

Model organisms, amenable to pervasive experimemngdhods, suggest regulatory networks to
commonly include structures more complex than sirgiNP — single gene links, e.g. mapping
genetic interactions in yeast [83, 84]. In humanbgere experimental approaches are more
limited, eSNPs provide natural perturbations thdbrim us of similar regulatory links and
systems. Concerted analysis of a multitude of eSHIRsvs better understanding of the
interactions that establish their network struct@matistically, epistatic interaction is definesl a

the deviation from additivity in a linear model wolving two or more loci [85, 86].
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Unfortunately, finding such association signal $tatistical interaction between a pair of SNPs
in even a single phenotype has proven computatioddficult [84, 87-89]. Association analysis

across all pairs of SNPs vs. all transcripts exzates this tractability problem.

While structures of multiple eSNPs to one trangasffer one lens for genetic-genomic analysis,
a complementary perspective is provided by regwyatoodules, where a single eSNP is
associated to multiple genes [4, 9, 36]. Modulasitgene regulatory networks was shown to be
a major organizing principle of biological systefdd], with modules often defining functional

units of a biological network: each such units ¢st3sof a set of elements (e.g. genes) working

jointly to perform a distinct function.

Analysis of single eSNP-single transcript interacs indicates that variation in genomic DNA
can affect transcription in multiple ways. Leveltocdnscriptsin cis of an eSNP may be altered
due to allelic variation iris-regulatory elements [90], whileans association can, for example,
be the result of an eSNP in a transcription fathat regulates the expression of its distal targets
transcripts. Associations iris are easier to detect because of favorable tediunglen.
Unfortunately, such associations are limited inrtbapacity to inform us regarding the network
of regulatory interactions between one gene anthanoas both the eSNP and the transcript are
from the same locus. In contraitans eSNPs can identify downstream effects and prelyous
un-annotated regulatory pathways. Moreover, whemsidering independent association
between more than a single eSNP and more thamgke si1ene, the genomic distances between
eSNP sources and their gene targets require sgteation.In the case of examining a pair of

proximal eSNPs, their frequent co-inheritance woudduce statistical dependence (linkage



44

disequilibrium) between them. Thus, for most indefent pairs of eSNPs that cooperate in

regulating the same transcript, at least one ohthwl have atrans effect.

In our previous work [36], we studied eSNPs assediavith simplest modular unit of two
transcripts, together creatingtrgplet. We focus on mutually independent triplets, wherdisy
eSNP association with either of the two transcrgshains nominally significant given the
respective other transcript, as well as and dweelly independent triplets, where only one of
these association signals remains nominally sicgmfi given the level of the other transcript.
We established the occurrence of such tripleteat data significantly more than expected by

chance.

In this study, we devise a computational framewforkexamining pairs of triplets that share the
same associated two genes. We hypothesize thatesNP-transcriptjuartetswill highlight

true eSNP associations, and demonstrate that blyzama their distinct topological and
functional properties. These properties differ gigantly from those of spurious quartets with
candidate association signals. Moreover, we reglitthose properties in an independent dataset
with a larger number of samples [1], supportingrbleustness of our findings. In particular, the
two eSNPs in a quartet tend to have independehicdnsistent effect on the pair of genes they

co-regulate.
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3.2 Results

3.2.1 Computational framework for associating paio$ SNPs with pairs of genes

Definition and discovery of quartets

We used a publicly available classic dataset ofuli sequenced Yoruban samples [91] along
with their transcription profiles from RNA-seq dg#0], bearing in mind that such available
cohorts are limited in size. Due to this small sErgze, we have limited power in detecting
association. Therefore, most candidate eSNPs dgrberdesignated as such with various levels
of uncertainty. We demonstrate the ability to rettdgte the observed phenomena in a larger

dataset [1] using the same method.

We evaluated two categories of candidate eSNPsréilsade within regions along the genome
with known regulatory potential, i.e., within th@asm of known exons and TFs (including
introns) (Figure 3-1; see Materials and Methodgiced.4.2). These eSNPs can be associated
with the expression of both local and distal ge¥s. consider all mutually independent and
directionally independent triplets (Figure 3-2a,e sg6] for details). Going beyond the
associations of a single eSNBurcerequires the examination of pairs of triplets thlaare the
sametarget transcripts. We call this arrangementaartet (Figure 3-2b). We aim to study
guartets withcooperatingeSNPsources i.e. SNPs that carry independent information trolsa
predicting the level of each one of the two traimgsr and no third intermediate SNP can explain
the expression to either gene better (Figure 38e;Materials and Methods section 3.4.4). We
note that sucltooperating quartetsnay overlap in their genes, introducing doublertmg of

the same effect in different quartets. To ensure analysis involves quartets with distinct

targets, we filtered this set of cooperating quarterther and focused on the quartets that have
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two unique gene targets. In this workflow, no -filter quartet has the same pair of gene tar

as any other (Figure 3-2c).

Exon/TF

N .
SNP

eSNP

Associated gene

Figure 3-1. Association testing.

lllustrating the association testing between paiiSNPs within known regulatory regis and genes. If
the regulatory element has a SNP within the boueslaf an exon or a TF then we check for assodci:
(P < 10" denoted by a red edge) using linear regressiondeetthe minor allele count of the SNFd

any gene.
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Figure 3-2 A diagram explaining the framework for creating and filtering quartets.

(a) We include mutually independent and directipnéépendent triplets. A solid line represents ralijL
independent association. A dashed line repres@etstidnally independent association. (b) Quarset
assembled from triplets in (a) with trame associated gene targets. Quartets are assegithkrdrom
two directionally independent triplets (red undesi, two mutually independent triplets or ¢
directionally independent triplet and one mutualligependent triplet. (c) We filter the qiets using
three criteria: (1) Restricting our analysis to iets with cooperating eSNPs sources, i.e., SN
carry independent information towards predicting éixpression of each one of the two genes
Removing quartets where a third intermee SNP can explain the expression to either trgptsioétter.
(3) Focus on quartets that have two unique gegetsri.e., after filtering, no quartet has the sgair of
gene targets.
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Evidence for the validity of quartets

We choose an association testing threshold 6f (Fdgure 3-3) by the number of quartets
produced, aiming at FDR < 5% when comparing toniln@ber of quartets in permutations. We
examined the number of triplets in real data v& gérmuted data sets where sample labels had
been switched. In permuted data sets, an averagberwf 33,329 triplets exceeded association
p-value threshold of ID(Figure 3-4). We therefore considered a comparséleof triplets, the
same number of top results in real data, whichesponded to an association p-value threshold
of 10*°? (Figure 3-4). This step creates an equal stagivigt for permuted vs. real datasets
when approaching further analysis. We next examthednumber of quartets formed by such
triplets in real vs. permuted datasets. We obstraethe number of 47,006 quartets in real data
is consistent with chance expectations (empiricablpe = 0.07, Figure 3-5). Out of 47,006

quartets, there are 4,009 quartets with unique tggets.

# Permutations
=)

2.06 2.08 24 212 2.14 2.16
# Association pairs at p-value 1074 x10°

Figure 3-3. Histogram of the number of associatiopairs in 100 permutations for a p-value cutoff
10*
The red line indicates this number in the real data
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Figure 3-4. Histogram of the number of triplets in100 permutations, at association p-value of 10
The red line indicates the observed number ofetspin real data at association p-valué-*n

# Permutations
@ =

N

8
o

Figure 3-5. Histogram of the number of quartets infl00 permutations, at association p-value of 70
The red line indicates the observed number of gtsim real data at association p-valu& %0
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Interestingly, when examining cooperating quartets,observe 374 such quartets in real data
(0.8%) comparing to a mean of 19.18 in permutat{@@63% out of a mean of 30,250 quartets)
(Figure 3-6). These results establish that thelag¢gry structure of cooperating quartets is nearly
exclusive to real data, as it is rarely emergeparmutations. Out of 374 cooperating quartets
with cooperating eSNP sources we focus on the &2tefis that have two unique gene targets
(Table 3-1). These include 2.05% of the total @09, quartets with unique gene targets. Such
unique cooperating quartets are more common indagal than in permuted data both in absolute
number as well as in their relative fraction: petations include only 3.71 such quartets on
average (empirical FDR < 5% , Figure 3-7) 0.097%mfaverage of 3,819 quartets with unique

gene targets.

#Permutations
[8%)
(o]
|

| | | | |
0 50 100 150 200 250 300 350 400
# Filtered quartets

Figure 3-6.Histogram of the number of filtered quartets in 100permutations, at association p-value
of 10%.
The red line indicates the observed number ofrétlequartets in real data at association p-valife?.0
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Table 3-1. A comprehensive description of 82 coopeting quartets (separate file).
File Table3-1.xls 3000000000 correspond to diffeddmomosomes.

20 .

# Permutations

| | | | | | |
0 10 20 30 40 50 60 70 80 a0
# Filtered quartets with unique gene targets

Figure 3-7. Histogram of the number of filtered quartets with unique gene targets in 100

permutations.
The red line indicates the observed number ofrétlequartets with unique gene targets in real data

(empirical FDR < 5%).

Cooperating quartets are a motif of the human e¢goy network analogous to the bi-fan motif
found ine.coli [37, 82]. We set out to characterize these cooipgrauartets and study their
functional, genomic and topological properties.te next section we compare such quartet
properties to permuted data, highlighting the catartobserved in real data as a true

phenomenon, as opposed to quartets observed bgechan
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Quartets in real data have distinct properties

Since the number of quartets in each permutatidaws(Figure 3-7), we combine all quartets
across all permutations and treat them as a “peuinsiet” of 342 quartets. From this point we
compare the 82 quartets in real data vs. thoskermpérmuted set to uncover properties that are

unique to real structures.

3.2.2 Distribution of genomic properties of eSNPusces and their gene targets

We first record genomic annotation categories ddleSources (Figure 3-8). eSNP sources tend
to be one in exon and one in TF (Figure 3-8a uppeel; Fisher's exagqt < 1.9x10° compared

to the permuted set, see Figure 3-8a lower paoelpoth in exons (Fisher's exapt< 0.013
compared to permuted set). We notice that most eSbiHces are located on different
chromosomes (74% Figure 3-8b upper panel). For eoisym, there are only 3.8% of eSNP
sources on different chromosomes in the permute@l8eout of 342; Figure 3-8b lower panel).
An eSNP is said to be icis of a target if it resides within the span of theget, and irtrans
otherwise. We characterize thes/transregulation of the four pairs of eSNP sources duai t
gene targets in each quartet by binning quartet oid threecis/trans categories: (1) twais
relationships (2) oneis relationship (3) twdransrelationships. We notice that only a fraction of
guartets involvesis regulation (Figure 3-8c upper panel), comparedadioe in the permuted set
(Figure 3-8c lower panel). The target genes aratéatmostly (83%) on different chromosomes
which is consistent with empirical expectation lsthea permutation. They are observed to be
co-expressed significantlyP(< 4x10™) more often than in real data when comparing the

absolute value of the correlation coefficient.
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These results highlight unique properties of coapeg eSNF and their distances from targ

transcripts. Specifically, we show that pairs ofN&S sources are located on differ

chromosomes.
a b ¢
Distances between eSNP sources and
eSNPs genomic annotations eSNPs genomic locations target genes

2% 6%

M Different
chromosomes m two cis relationships
W Exon-Exon N
m Same chromosome
M Exon-TF arme gene M one cis relationship
= TF-TF &
B Same chromosome M trans relationships
-different genes

Distances between eSNP sources and
eSNPs genomic annotations perm eSNPs genomic locations perm target genes perm
4%

m Different w two cis relationships
W Exon-Exon chromosomes
m Same chromosome - . . )
w Exon-TF same gene M one cis relationship
= TE-TF W Same chromosome -
different genes m trans relationships

Figure 3-8.Distribution of genomic properties of eSNP source

Upper panel: real data. Lower panel: permuted By (a) genomic annotation (b) relative genol
location (c) distances between them and their targen eSNP is said to lin cisif it resides within the
span of the target gene aindransotherwise.

2%

3.2.3Characterizing dependencies within cooperatiquartets

We examine the dependency across association sifpraéach quartet source, i.e., whether
effect is mutually independent or directionally dedent. Dependencies within a quartet
therefore either (1) pair of mutually independessaxitions (2) one directionally depende
association and one mutually independent assogjatio (3) a pair of directionally dependt
associations. We observe that 82% (67 out of 82Zhefquartets are composed of a pai

mutually independent associats (Figure 39a). This is significantly more than expec
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according to the permuted set, that includes mosgtlgrtets with a pair of directional
dependent associations (Fisher's esP < 2.3x10%, Figure 39b). These results suggest that

eSNP souwes affect the expression levels of both transtiipta mutually independent mani

rather than through directional depende

a

b

WopTiiviTiivy JiiWWiWi o iiil [uGivCio piiii

[w]
(

m mutually independent/

girectionaiiy aependent

Figure 3-9.Dependency structures in quartets

In (a) real data (b) permutatiar@@uartets are either comprised of a jof mutually independet
association signals, one directionally dependesd@ation and one mutually independent associatic
a pair of directionally dependent association dt

3.2.4ldentifying direction of effect between eSNP souscand geneargets

We were interested in examining the direction ofPSBffects on gene expression. Wit
quartets we orient all SNP effects by using theveation of up (down) regulation to me
positive (negative) correlation between the numifecopies of theminor SNP allele and tF
expression level of the associated gene. Out of2*=16 up/down configurations that &
theoretically possible between two sources andtangets, we observe only eight configurati
in real data the ones with an even numkof “up” effects (Figure 3-10)Consideration of th

symmetry between the two sources, as well as tadetween the two targets, highlights a s¢
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in which these eight categories involconsistentdirections of effect, as we now explain. Ii
natural b classify the categories into four pairs, eachngef by two binary criteria. The fir.
criterion considers whether the two source SNP¢g ltla® same directions of effect on one ¢
as they do on the other or whether directions fefceéon the seconcene are opposite to the fil
one. The second criterion distinguishes whetheeffext of one SNP on the two target gene

in the same direction as the effect the other SB¥dm them, or whether directions of effec

the second SNP are oppositegflitie -10).

Effect of a SNP on both genes is

Gy ) ) (52) \5)
a; { &1 j | 92 | 4
Effects
;N;E ona

gene are

8 Y <= = \ 4 Y A 4 ~
E g: 9 9: g, 9 g, 9 9
Q

Figure 3-10. Categories fodirection of effect between eSNP sources and gergets.

The effect of a SNP on both genes can be the sauge lfoth genes upregulated) or opposite (i.@
gene is upregulated and one downregulated).effect of both SNPs on a gene can be the same
both downregulate the gene) or opposite (i.e.,.2ME upregulate the gene and the other
downregulate it).

In contrast to the real data, where all quartedscansister (Figure 3-113)30% (101 0342) of

guartets in the permuted set inconsistenquartets (Figure 3-1}pmeaning that the effects
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the two SNPs on one of the targets go in the saraetidn, while their effects on the other target

are opposite (Figure 3-12).

We hypothesized that quartets in real data mayrhetipally forced to be consistent due to
correlation patterns across the expression levelthar targets. Specifically, a source SNP
would the same (opposite) effect on both targeegeatue to their expression being correlated
(anti-correlated). Indeed, we observe this patterross all quartets in the real data but not

always in the permuted set.

There are a couple of statistical challenges irelin comparison of real quartets to those
observed in permutations (see Materials and MetBedtson 3.4.5). When these are addresses,
specifically by analyzing eSNPs sources from thmesguartet but from different chromosomes,
we observe them to be enriched for same-directitects compared to their permuted set
counterparts (Figure 3-11c and 3-11d) and the gemgets to be located on different

chromosomes. We listed all characterizing featofemoperating quartets (Table 3-1).
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down reguiated

inconsistent

Figure 3-11.Direction of effect for eSNF sources association with gene targets express.

In (a) real data (b) permutations real data when the eSNP sources are located @metif
chromosomes (d) permutations when the eSNP soaredscated on different chromosomBoth SNPs
can have ither the same or opposite effect on gene targéis effect of a SNP on both genes is eithe

same or opposite.
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inconsistent quartets

eJo¥clo¥oloo
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Figure 3-12.All eight patterns of inconsistent quartets.

3.2.4 HLA quartet

A particularly illustrative sub-group of 7 quartetgludes those with eSNP sources and gene
targets along the MHC region of chromosome 6 (T&k19. This is significantly more (Fisher’'s
exactP < 0.0014) than 4 out 342 (~1%) in the permuted Be eSNP sources collapse to
reference alleles of rs9274634, rs1129740, rs11428P274389 and rs2808143 and non-
reference alleles of rs1130034, rs8227, rs1130htbre9272851 downregulating HLA-DQAL1
and HLA-DQB1 and upregulating HLA-DQA2 and HLA-DQBZhese common variants are
shared by specific assembled sequences and am@atsdonith co-expression of DQA1-DQB1
and anti-correlated to DQA2-DQB2. All the genestaoring eSNP sources and target genes are
collapsed into the following four HLA genes: HLA-BQ, HLA-DQA1, HLA-DQB2 and HLA-

DQA2 (Figure 3-13). All four genes are involved kwithe MHC class Il receptor activity
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(enrichment FDR < 1:40"%), and serve as an example how quartet structueagecfunctiona

units.

DQA1l

DQB1

DQA2

6/@%3\@

DQB2

Figure 3-13. HLA quartet.
An example of examiningSNP sources and gene targets on the same chror togethe. Assembled
guartets at the HLA locus highlight -SNP haplotype associated with egpression of DQA-DQB1
and anti-correlated to DQARQB2. 5, $, &, & and g (yellow circles) correspond 18280814,
rs1129740, rs9274634, rs92743881rs1142334 respectivelys, S, $ and g (orange circlescorrespond
tors8227, rs1130034, rs92728a1drs1130116 respectively. Red edges indicateagpHdion, green
edges indicate down-regulation.
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3.2.5 Functional enrichment of quartets

We perform a gene set enrichment analysis to exaiithe pair of gene targets shares a GO
category significantly more than pairs in the peteduset. In this case we observe a higher
number of shared descriptors which is not significa this dataset (Fisher exact p-value <
0.14). Interestingly, when we focus the enrichmanalysis on pairs of genes that harbor
cooperating SNP sources, we observe a significéierence (Fisher exact p-value < 1.5%)0
This supports our ability to detect SNPs that coafgetogether to perform a joint function. We
were intrigued to examine if our approach coulddpplied to understand gene regulatory
networks underlying complex diseases. We thereaiftiiged the GWAS catalog [16] to find all
genes that harbor a GWAS SNPs in our dataset. @feitttersected this list with the genes that
harbor cooperating SNPs in real data and compargubtmutations. We observe a significant
overlap of GWAS loci with at least one eSNP soufoe,quartets with sources that reside on
different genes (Fisher exact p-value < 0.017)sTindicates that our approach could shed light
on regulatory circuits that are involved in comptBgease. For example, in quartet #35 (Table 3-
1) eSNP sources rs16877111 and rs7925000 are &nactak chrll respectively. The eSNP
sources reside in genes CMYA5 and RPL27A whichadresity GWAS loci. The gene targets

HIST1H1D and HIST1H2AH are part of a histone cluste chr 6

3.2.6 Replication of quartet properties in a largdataset

Since our initial study was underpowered, we attexhpo replicate the discovered properties of
cooperating quartets in a larger, more recent dat&ge hypothesized that the fraction of true
positives among signals of association to be highexuch a dataset, thereby pointing to true

characteristics of quartets, rather than poteatifacts of false positive signals. We repeat our
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analysis in the Geuvadis [80] dataset for eachtofiive populations: Utah European (CEU;
n=91), Finnish (FIN, n=95), British (GBR; n=94)alian (TSI; n=93) and Yoruban (YRI; n=89)
as well as on the combined set of all European Emn{p=373). We observe that the number of
association signals achieving p-value 21§ enriched in true positive associations (~5 folofe
associations than expected). Overall, we replieditgoroperties (Same effect of both eSNPs,
distal regulation, eSNP sources on different ch®onwes, gene targets on different
chromosomes and consistency of quartets) that fearel in the smaller dataset, most of them at
higher frequencies (Table 3-2). This provides adiitawhal support from an independent dataset

to the validity of quartets and their charactecssti

Pop #assocl #expected | #filtered | Same effect Distal S -S| Gi-G, | Consiste

ations | association| quartets | of both | regulation | diff chr | diff chr | ncy

10° s at 10 eSNPs (%64) (92%) (75%) | (83%) | (100%)
EUR | 50048 | 10287 21674 82% 78% 88% 89% 99.3%
CEU | 54232 | 10155 43341 99% 88% 7% 92% 99.9%
FIN |[43111 | 10334 16663 90% 82% 88% 84% 99.7%
GBR | 43396 | 10267 18398 98% 84% 92% 82% 99.9%
TSI 44562 | 10251 16171 93% 86% 93% 90% 100%
YRl | 94671 | 14698 51115 96% 85% 87% 91% 99.9%

Table 3-2: Replication of quartets’ properties in he Geuvadis dataset [1].
For each property in the first row we indicate peecentage in the original, smaller dataset.
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3.3 Discussion

Discovering the building blocks of regulatory netiwdias been an active field of research in the
last decade [37, 92]. Specifically, the human ratguyy network was the focus of a multiple
recent studies involving diverse data types [8], 88this work we devised a computational
framework to study characteristics of cooperatingrtets comprised of a pair of cooperating
eSNP sources that reside either in exons or irsplam of TFs, and a pair of associated target

transcripts.

Our results establish that the regulatory structireooperating quartets is nearly exclusive to
real data, and exhibits unique functional, genoard topological characteristics. Cooperating
guartets reported here in a human system mighégpoond to bi-fans, a known network motif of

four nodes, previously described in model organif3is

Most cooperating quartets involve pairs of eSNPraesailocated on different chromosomes,

away from their targets, which are themselves midstiated on different chromosomes. These
guartets typically comprise of a pair of mutualyglépendent association signals. All quartets are
consistent in terms of the direction of eSNP effemt correlated and anti-correlated transcripts.
We identify a separate sub-group of quartets wiN sources and gene targets all involving 4
MCH Class Il genes from chromosome 6, highlightenfunctional unit built from the quartet

motif.

This study holds the promise for extension beydadcurrent limitations. First, our focus on
causal variants localized to the single-base résolumposed relying on a dataset of fully
sequenced individuals along with their transcriptirofiles. Such cohort sizes are limited in

size, reducing the power to detect association alwmving us to observe only the strongest
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effects. Potential increase in sample size for eQEta would enable detection of eSNP
associations and regulatory motifs at greater Bggmce and confidence. Second, the current
analysis focuses on discovering a network motif hmairs of transcripts are co-regulated by a
pair of variants. Mining the data for additional tifeocan elucidate other structures in the human
regulatory network. Overall, both the raw data$éds 91] and supporting databases [47, 50, 54,
62] in this work were noisy and limited. As functad annotation continues to build up, better

understanding of motifs would be facilitated.

In this and in our previous work [36] we definewetk motifs showing them to be prevalent in
real data, explaining the organizationti@ins regulation. Comparison of such structures between
healthy and affected samples and across differssuds is likely to improve understanding of
disease and developmental regulatory processesteFstudies could expand this approach to
focus on complex disease circuits by using thism&aork on a dataset that is focused on GWAS

SNPs and find quartets where the eSNP sourcedsar&rown GWAS loci.

The vast majority of eQTL studies involve analyest are based on considering a single SNP
associated with a single transcript, primariycis [1, 6, 39, 40]. While these analyses capture
only a fraction of genetic contribution to changeshe regulatory landscape, the advantage is
high statistical power for detecting associatiods.complementary effort focuses on building
networks from eSNP data [4, 9, 34, 35]. While ¢hstdies provide much more comprehensive
models, they lack the same strength of statisisalirance in their findings. The main advantage
of our approach is that it provides a unique framwor analyzing eSNP data by bridging these
two approaches, establishing statistical guarant@esur inferred results using permutations.
Applying such analysis to different datasets caedslght on the architecture of the human

regulatory network and the role genetics playshepig it.
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3.4 Materials and Methods

3.4.1 Data details and processing

We analyze a cohort of 50 Yoruban samples, for Wwhgenotypes of SNVs that are fully
ascertained from sequencing data [91] along withARKEQ data[40] are publicly available.
Briefly, the raw dataset consists of 10,553,953otyged SNVs and expression measurements
(quantile-quantile normalized values) of 18,147 egewith Ensembl gene ID across these 50
samples. Standard filters have been applied t@émetic data: Minor allele frequency > 0.05,
SNP missingness rate < 0.1 and individual missisgmate < 0.1 [74]. After filtering, data for
analysis consists of 50 samples with 7,206,056 SNRs Geuvadis [80] dataset that we use for
replication consists of five populations: Utah Epgan (CEU; n=91), Finnish (FIN, n=95),
British (GBR; n=94), Italian (TSI; n=93) and Yorub&YRI; n=89) as well as on the combined
set of all European samples (n=373). After filtgradl SNPs with Minor allele frequency < 0.05
and focusing only on SNPs in exons and TFs, thexel2,810, 43,561, 43,279, 43,214, 61,960

and 43,365 for CEU, FIN, GBR, TSI, YRI and EUR resjvely.

3.4.2 Association testing

For association analysis, we consider only SNPsrésde within candidate regulatory regions
along the genome. In Kreimer et al. [38] we detutichment intrans association signals for
eSNPs in exons and in TFs in this dataset. For thespumber of multiple associated transcripts
is significantly higher for TFs in the real datag®in in permuted data sets. For exons, there is an
excess of the number of eSNPs within exons indigatrue positive results. We test for

association between a SNP and every gene; we @rSNIPs within the span of known exons
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and TFs (including introns) [94]. We test for agsation using linear regression performed by the

--assoc command in PLINK [74] .

3.4.3 Obtaining a random distribution of associatidest-statistics

Examining the random distribution of associatiostgeis helpful in evaluating the empirical
significance of results. This is achieved by getiegal00 permutations that shuffle the sample
IDs. This allows repeating the analysis of genasyps. expression on permuted data while
maintaining the correlation structure among theogyre profiles and among the expression

profiles, separately.

3.4.4 Creating and filtering quartets

We assemble quartets from directionally and mwualliependent triplets that consist of a SNP
and two associated genes. A mutually independgiéttis when both of the association pairs
remain nominally significant given the respectivber gene and a directionally independent
triplet is where only one of the association pagsiain nominally significant given the other

gene. Two triplets that share the same associaadsgdefine a quartet. We then filter these
quartets further using the following rules:

1. We are only interested in quartets where both Stdéidy significant information in
predicting the expression of gene 1 and genee2a4, a, ;, f, should be significantly
different than zero.

01 — represents the expression of gene 1.
02 — represents the expression of gene 2.
s, — represents the minor allele count SNP 1.

S, — represents the minor allele count SNP 2.
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g1=0(0+a1-51+0(2-82+61

g2=PBo+P1-s1+P2-s: &
2. Moreover, we are interested in examining quartes lhave no intermediate third SNP

(s3) that can explain the expression better.

The third intermediate SNP should satisfy the fwitay:

1. On the same chr

2. 12%(sq,83) = 0.5 andr?(s,, s3) = 0.5
3. szshould be in a triplet with the two genes.
4.

gi1=ay+ay; s+ P1-S,+y1-S3+&

g2=Potaz-s;+Pr-S;tVy2-535+&

YuY2 #0

3.4.5 Statistical challenges in comparing real y@rmuted quartets.

There are a couple of statistical challenges irewlin comparison of real quartets to those
observed in permutations. One bias is that of pnakieSNP sources in permutations. This leads
for example to the artifact of enrichment of opp®silirection eSNP sources in real data,
comparing to the proximal, hence correlated ef@&&NPs in permutations (Figures 3-11a and 3-
11b). A second challenge is due to the rarity oNRSsources on different chromosomes in
permutations. This makes it statistically hard faymparing characteristics of sub-groups

between real and permuted data (Figures 3-11d).
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Chapter 4: Variants in exons and in transcription

factors affect gene expressioim trans

Summary:ln recent years many genetic variants (eSNPs) haee reported as associated with
expression of transcripts ittans However, the causal variants and regulatory mashes
through which they act remain mostly unknown. Irs thaper we follow two kinds of usual
suspects: SNPs that alter coding regions or trgtgor factors, identifiable by sequencing data
with transcriptional profiles in the same cohorte how these interpretable genomic regions are
enriched for eSNP association signals, therebyralffudefining source-target gene pairs. We
map these pairs onto a protein-protein interac{idRl) network and study their topological

properties.

For exonic eSNP sources, we report source-targedmity and high target degree within the
PPI network. These pairs are more likely to be xjoressed and the eSNPs tend to hages a
effect, modulating the expression of the sourceegém contrast, transcription factor source-
target pairs are not observed to have such pregefbut instead a transcription factor source
tends to assemble into units of defined functionéds along with its gene targets, and to share

with them the same functional cluster of the PRWwvoek.

Our results suggest two modestians regulation: transcription factor variation freqtigracts
via a modular regulation mechanism, with multiplegets that share a function with the
transcription factor source. Notwithstanding, exariation often acts by a locals effect,
delineating shorter paths of interacting proteinsgs functional clusters of the PPl network
[38].
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4.1 Introduction

Creating the complete human regulatory map is éimeatield of study. Many previous studies
have used genomic analyses of gene expressionnginubtifs, epigenetic marks and other local
features to infer regulatory interactions [73, $-9n recent years it has been established that
genetic variation can contribute an additional antg this investigation [45, 57, 78, 79].
Formally, transcription level is considered as argitative trait that is altered by allelic varati
with thousands of single nucleotide polymorphisiNPS) reported as associated with changes in
gene expression [36, 45, 71, 80]. Such markerseccaxpression SNPs (eSNPs) are further
found to contribute to variation of disease phepesyand other clinically relevant traits [17, 36,

48].

Variation in genomic DNA can affect transcriptiam ultiple ways. Most intuitively perhaps,
level of transcriptsin cis of an eSNP may be altered due to allelic variaiiorregulatory
elements [90]. Alternatively, such levels may béoaegulated by changes in protein structure
that reflect variation of the sequence contenboél transcripts. Thereforeis eSNPs have been
studied extensively. Howevetis associations are limited in their ability to inmfomus regarding
the network of regulatory interactions between geme and another. This motivates more
focused study of the effects of genetic variants expression of distal transcript$rans
associations). Unfortunately, whiteans eSNPs can identify downstream effects and prelyous
un-annotated regulatory pathways, they are haadstatistically and biologically justify thasis
eSNPs. From a statistical perspective, sitta@s eSNPs can be associated with any distal
transcript, the multiple testing burden dramaticaicreases, thus only a small number of results

is detected. From a biological perspective, momagex mechanisms are needed to explain
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trans associations. An example of such a mechanism sSNP with locatis effect on a gene
which codes for a transcription factor known toulage other genem trans Indeed, across
multiple eSNP studies [10, 57], even when staafijic significant trans or cis eSNPs
associations are detected aplenty, the regulatechanisms by which they alter gene expression

remain mostly unknown.

A large fraction of SNPs identified by genome-watsociation studies (GWAS) [45] have been
reported to be associated with disease phenotyFéslgspite being neither coding, nor linked to
coding SNPsin cis. Furthermore, since large-scale genetic studie® Heeen predominantly
based on SNP arrays, SNP alleles that are repastadsociated, in studies of either disease [45]
or gene expression [57], are often merely tagsémsal variants, whose identity is challenging
to track down. More generally, the multitude of pbg/pes for eSNPs represents an opportunity

for tackling the central question of causationssaxiation.

Protein-protein interaction (PPI) networks captuaeous experimental data, such as from yeast
two-hybrid systems [99], regarding the physicaldong of proteins, and are often used to
examine how these interactions are involved in acifig biological function. Recently,
improved data on signal transduction and metalawict molecular networks have contributed to
the fidelity and accuracy of the reconstructed R&tivorks. However, the data represented by
these networks can sometimes be partial and néi§y. networks have been modeled as
theoretical graphs and their topological properéggensively studied [100-102]. This provided
insights pertaining to functional, structural analationary characterization of these networks,

primarily in model organisms. Genetic interactiomyeast were studied in the context of protein
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complexes network [103], motivating the investigatiof genetic variants that alter gene
expression (as interactions) with respect to thmdruPPI network[26]. Studies of PPl networks
in the context of genetic variation have thus facused on GWAS-detected SNPs that are
associated with common traits and disease, repgattigt genes that harbor such SNPs frequently
code for interacting proteins [24, 26, 104-106¢t, such studies only considered the PPI-
network nodes that correspond to the associated $MNRout a PPl network node that would

correspond to the phenotype.

Here, we perform a comprehensive studytraihs genetic associations and their large-scale
properties as manifested on a PPl network. We desSrom sequencing data [91] that are
candidates to be causal based on their genomitidacand then project their association to
gene expression on a PPl network. We hypothesihatl genes involved in true eSNP
associations have distinct PPI-network properties differ significantly from spurious genes
with candidate association signals. To addresshypmthesis, we focus dmans association of
eSNPs in exons and transcription factors (TFs)lyaimey their properties as reflected on the
PPI-network topology and annotations of the gen@solved. Our focus on expression
guantitative traits allows consideration of patteng the PPI network, whose links with genetic
variation had previously only been studied withpeg to SNPs, rather than the transcripts they

modulate.

Our results suggest that a significant fractioe®NPs in exons aat transthrough mild effects
in cis, with a regulation mechanism that is mediated BY paths that are shorter than expected

by chance and tend to traverse across functionstess of the PPl network. These paths



71

highlight zinc ion binding genes as a possible madm of transcript-eSNP feedback across the
PPI network. In comparison to such coding eSNPsphserve that TFs harboring eSNPs and
their associated genes create units of genes tleatfusmctionally enriched for biological

annotations. This suggests a different, modulauledgry mechanism for such TF eSNPs.
Altogether, our analysis offers insights concernmgariety of mechanisms by which genetic

variation at functional loci shapes the structurbuman regulatory networks.
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4.2 Results

4.2.1 Computational framework for mapping trans assations onto the PPI network

We were interested in pinpointing directly assamatvariants rather than indirectly imputed
ones. We thus used a publicly available dataséiOofully sequenced Yoruban samples [91]
along with their transcription profiles from RNAegencing data [40], bearing in mind that such
available cohorts are limited in size. Due to thisall sample size, we have limited power in
detecting association. Therefore, most candidatéPeScan only be designated with various

levels of uncertainty.

We were intrigued to examirteanseSNPs interactions with respect to an indepensigsate of
interactions, that is, a PPl network. Therefore,evaluated two categories of candidate eSNPs
that reside within regions along the genome witbvkm regulatory potential and can be mapped
onto a PPI network, that is, exons and TFs (seeféds and Methods section 4.3.2). Examining
the distribution ofP-values across these two categories of candidats-eSNPs , we observed
that candidate eSNPs within exons show evidendeabfiding true positive eSNPs (Figure 4-
la), as been previously shown [2]. By contrast, R$Bndidates in TFs show association signal
distributions consistent with random expectatiomgyfe 4-1b). We further examine if TF
candidate eSNPs exhibit qualities that are diffefeam random. We hypothesized that a single
TF will be associated with multiple transcripts @@NPs. To address this hypothesis, we created
1,000 permuted sets of pairs of TF and transcsg¢ (Materials and Methods section 4.3.3). We
observed that the number of multiple associatedstnépts is significantly higher (Wilcoxon
rank sum tesP <0.05) in the real dataset (973 out of 1,000 p¢echsets, empiricdP-value =

0.027). Following these two observations, we foduse eSNPs within exons as the first subject
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of our investigationand compared them to eSNPs within the span ofdrgnt®n factor genes

We set out to characterize and compare these tvdesnaitrans regulation.

]
[~

~logl Qobserved p-value)

5 3] 7 8 g i0

-log10(expected p-value) -log10(expected p-value)

Figure 4-1. QQ plot for association pairs of SNPs within knen regulatory regions and genes
(a)eSNPs in exons and (b) eSNPs in TF-axis denotes -log 10 of the expectedgiue. Y-axis denotes
-log10 of the observed yalue. The red line denotes expectation by charieX).

For each candidate eSNP that is associated witislef a transcripin trans we denoted thi
transcript as thearget’ of the eSN. When this eSNP was located witldin exon or in the spe
of a TF, we defined this gene asource! We attempted to characterize eSNPs interactior
the molecular level by mapping thesers of source-target genestora PPI networkFigure 4-

2) and studied their functional annotations and togickd properties
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Figure 4-2.trans associationn a protein-protein interaction network.

Transassociation marked by solid and dashed red stramgbivs.An eSNP (red tick mark) that resic
within a known exon (left) or TF (middle) maps tetPPI network (right). The source gene (blue
associated in trans with the levels of a targetsitipt (green t). PP network edges are denoted ickb
and define the shortest path between the exonsamd its target (solid red curved arrow).
association between an eSNP within a TF sourcétauiggne target is denoted by a dashed red ct
arow. eSNP, expression single nucleotide polymomhRPI, protei-protein interaction; Tl
transcription factor.

4.2.2 ldentifying topological properties of exonic eSNRteractions

We first considered pairs ekon eSNP source and target that demonstratassociation signe
which was significant exomeide for a particular transcript (associatP <1C”). We observed
such pairs to be significantly closeP = 0.03) on the PPI network when compared \
randomly permuted candidate eSNPs (Materials and Methodsection 4.3.). Beyond
pairwise properties of sources and targets, wehdurattempted to characterize each by t
singlenode features. Specifically, the targets of exoNRShad significantly higheP = 0.003)

degree than expected based (ndom pairs.
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We reasoned that the cutoff of associat®walue we usedR <10') was in many ways
arbitrary, as we were interested in the statistiraberties of the set of results rather than the
significance of a particular result amid the tegtburden. We therefore considered multiBte
value thresholds of eSNP association and at eaeshbld evaluated topological properties of
eSNP source and target pairs, while assessindfisamie vis-a-vis randomly permuted sets of
candidate eSNPs in exons (see Materials and Meswd®n 4.3.4). We observed that the lower
the associatiorP-values for source-target pairs, the more theiolmgical properties differed
compared with random pairs (Table 4-1). For exapiplesource-target pairs of exon eSNP, the
average target degree among the 52 pairs exceadimgsociatiofP-value cutoff of 16> was
16.42, but it reached as much as 22.22 among the fooused set of 22 pairs that exceeded
associationP-value cutoff 10%. These averages were each significaht=(0.02 and 0.006,
respectively) when compared with permuted pairexain eSNPs, whose target degree was only
9.36 on average. These trends are consistent wabegies of true positives being diluted by
false positives at less significaRtvalue thresholds. We quantified such trends byesging
each topological property on the negative loglahaf associatiorP-value (Figure 4-3). We
confirmed that for exonic source-target pairs, mekndistance decreased and the target degree
increased with the significance of association ém@an rank correlation coefficients r = -0.98
and 0.97, respectively; permutati®wvalue P = 0.001 and 0.002, respectively - see Materials

and Methods section 4.3.4).

Table 4-1. Topological properties and statistical fferences of exonic eSNPs on the PPI network in
real and permuted data (separate file).

File Table4-1.xIsx. Exon source with their corresgiog eSNP targets, for each P-value smaller tidan 1
6 where a source-target pair on the PPI networkasagd, we recorded the differences between
topological properties of random and real pairagisVilcoxon rank sum test. The table includes for
each P-value the number of unique pairs on thenBflork, the rank sum test P-values and the mean
value for each one of the topological propertiestéce and source and target degrees) for real and
random pairs.
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Figure 4-3. Topological properties on a proteirprotein interaction network versus exonic sourc-
target association significance.

Averages for (a) distance between source and tglgetource degree and (c) target degree areated
across source-target pairscaindidate exon eSNPs at varying associat-value thresholds (+). Tt
average of randomly permuted pairs (dasheczontal line) is shown for permuted pairs and Spears
rank correlation coefficient (denoted r) is listeden significant at P <0.05 (denotec
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These results highlight unique properties of pathe transcripts whostans regulation is due
to coding variation. Specifically, we show thatiloaplicated by eSNPs encode for proteins that
physically interact in a non-random fashion. Fumth@re, target proteins are likely to interact

with significantly more nodes of the PPI networkrlexpected by chance.

4.2.3 Characterization of exon and transcriptionder sources and targets

Based on these results, for further analysis, waged on the maxim&-value cutoff of 13-4

for which all topological properties showed sigeaiint difference between true source-target
pairs of exon eSNPs and random ones (Wilcoxon sank tesP <0.05), (Figure 4-4 and Tables

4-2 and 4-1).

0.45 T 1 .

lreal - exons
04 __Ipermutations|

0.35F A

0.3
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1 2 3 4 5 6 7 8 9 10 11 12 not connected

Figure 4-4. Histogram in percentage for the distanes between pairs of exon source and target.
In real (red) and permuted (grey) data, for p-valg*®
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Distance btw. pairs Real — 59 pairs Random — 18,pé@bs
2 2 431

3 18 3,701

4 22 7,723

5 10 4,308

6 2 1,118

7 1 212

28 (not connected) 4 1,092

Table 4-2. Distances between real exon source araddet and between random pairs.

There were 343 pairs of source and target and B&fue pairs, 59 of them on the network. Of
these pairs, 318 (92.71%) were on different chrames and 25 (7.29%) were on the same
chromosome, at least 1 Mb apart. At this cutoffréeheere 333 unique eSNPs in exons, 286
unique gene sources and 267 unique gene targdite(4¢8). When comparing the effect sizes
(absolute values of betas in the linear regressubrf29 previously publishedis expression
quantitative trait loci (eQTLs) [40] with the didiution of exonic and TRrans eSNPs effect
sizes, we found that thteans effect sizes (mean 1.198) were significantly hrgtian those of
correspondingis effects (mean 0.964; Wilcoxon rank sum testalue <2.25 x 18° and 3.56 x
10°* for exonic and TF eSNPs, respectively; Figure .48 binned eSNPs and SNPs in exons
by first, middle and last exons (Figure 4-6). Wsoaéxamined the position of the eSNP along
the transcript and compared these results to SNEgdns (Figure 4-7). We observed that these
trans exonic eSNPs tended to be located along middi@sxather than in first or last exons
(Fisher's exact tedP-value <0.009). We further observed that they tenidelie farther away
down the transcript (Wilcoxon rank sum test 0.0058). These results were different from what
was observed faris eQTLs. Montgomergt al [39] reported that eQTLs with higher confidence

were located in the first and last exons signifitamore than in middle exons.
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Table 4-3. Genomic description of eSNPs in exons@iFs (separate file).
File Table4-3.xIsx. For all TF and exonic sourceyéh pairs we give the eSNP rs number, eSNP

chromosome, eSNP location, source gene ID, talges §D, target chromosome and association P-value.
For eSNPs in TF, we indicate whether they are witni exon.

0.25 : 1 : : .
i 929 cis eQTLs

343 trans exonic eSNPs

G| [ 1370 trans TF eSNPs ]
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0 010203040506070809 1 1112131415161.71819 2 2122
Absolute value of betas

Figure 4-5. Comparing effect sizes.

(absolute value of betas) between previously phbti929 cis eQTLs and 343 and 370 exonic and TF
trans eSNPs respectively.
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Figure 4-7. Cumulative fraction of the position of exonic eSRs (red) and SNPs (blue) on th
transcript.
Wilcoxon rank sum test palue between the position of exonic eSNPs and SMRsanscript < 0.00¢
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The combined set of exon sources was enriched &ommhistocompatibility complex protein
genes (false discovery rate (FDR) <0.046) with codance to findings in previous studies,
indicating human leukocyte antigen SNPs were 10-fhriched fortranseSNPs [34]. We
further observed that the set of target genes washed for multitude functional processes (see
Table 4-4 for full list of annotations). The thrbghest scoring functional annotations of the
target set, macromolecule modification, phosphéhdgitol-3,5-bisphosphate binding and
protein modification process, provide additiongport for the role of exonic eSNP targets as
network hubs [107].

Table 4-4. Functional enrichment analysis of combied sets of exon sources, exon targets and TF
targets (separate file).
File: Table4-4.xIsx. Gene sets include only gehesap to an Entrez ID.

For further investigation and comparison, we com®d source-target pairs of TF candidate
eSNPs, a set with similar order of magnitude, gpoading to association signals passing®he
value cutoff of 10. There were 370 such pairs of TF source-targe, df@hem unique, 58 of
which were on the network. Of these pairs, 3590%%) were on different chromosomes and 11
(2.97%) were on the same chromosome, at least hdit. There were 358 unique eSNPs in
TFs, 77 unigue TF sources and 192 unique targetisl€T4-3). Out of the 358 unique eSNPs in
TFs, 15 were in exons, significantly more than exge by chance (hypergeometRevalue
<1.8x10%. When we examined the combined set of TF targetspbserved that this gene set

was enriched for various annotation categories Tsdxe 4-4 for full list of annotations).
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4.2.4 Co-expression of targets and cis-effects lo@ $ource gene

To further establish the association between thecsoand target genes, we examined the co-
expression between eSNP source and target foraatlidate pairs of associated genes in this
dataset by evaluating Spearman’s rank-correlatomfficientr. For pairs of exon-source eSNPs
and their corresponding targets, the absolute vafuewas significantly higher than expected
from the entire distribution of co-expression meaments in this dataset (Wilcoxon rank sum
test P <5.4x10°; Materials and Methods section 4.3.6). By contrést, pairs of TF-source
eSNPs and their corresponding targets, there wasigroficant difference in terms of co-
expression. We observed the fraction of non-synamugySNPs to be 0.082 out of exon eSNPs,
which was higher than their overall fraction 0.Gdfhong all exonic SNPs [108] (Fisher exact P
approximately 0.1). For each eSNP we examitis@ffects that were too mild to be detected at
genome-wide significance threshold by testing tsr association with the expression of its
source gene (see Materials and Methods sectioif)418. total, 50 pairs of exonic eSNP and
source gene were nominalll €0.05)cis associated, out of 286 such unique sourBes 8.6 x
10%%). We estimated how many of the SNPs in exons haigeffect (linear regressioR-value
<0.05) on the expression of their host gene. Wedothat out of 97,135 exonic SNPs, 9,661
showedcis-effect on their host gene at the nominal signifa level P <0.05). Compared to
this background distribution, the observed 50 du286 trans eSNPs having suatis-effects is
significantly more than expected by chance (Fishezkact testP-value< 9.6x108). This
provides additional support for tlues-effect phenomena. For comparison, we did not ofesar
nominally significantcis effect between TF eSNP and its source gene mare ¢Rpected by

chance (3 out of the 66 TF sources in this data3égse results suggest a mechanism where
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exonic variation often operates tirans eSNPs via alteration of gene expressiogig) and the

sourceand target genes have correlated expression.

4.2.5 Modular organization of eSNPs in TFs

TFs are known to control the transcription of npléi genes; we were therefore interested in
whether we observed the same phenomena in TFieari&ach TF source forms, along with its
targets, a set of genes that we called a unit. Béermved that these units tended to be enriched
for functional annotation categories. Specificafty, the 33 TF sources with two target genes or
more (Tables 4-5 and 4-6), 26 out of 33 defineaittiat are functionally enriched (two or more
annotated genes, FDR <0.05; Materials and Methedsos 4.3.8) [13] in KEGG [47] and GO
[62] categories (Table 4-7). Interestingly, eSNP targkts not tend to share exon sources.
Specifically, out of 286 unique sources, 278 hathgle target, 7AKNA CDK7, BLK, ATP5G1
RPL8 TRAPPC12MUC?2) of the remaining ones had two, and oHeA-C) had three (Table 4-
3). The difference between the number of associtdegkts in TF and exon variation was
statistically significant (Wilcoxon rank sum teBt < 3.4x10%. These results support the
hypothesis that TF variation frequently acts vimadular regulation mechanism, with multiple

targets that share a function with the TF source.



Unit size Number of units
2 35

3 16

4 8

5 2

6 2

8 1

10 2

11 1

17 1

Table 4-5: Units size distribution of TF source andheir gene targets.

Uunits include only genes that map to an EntreAA@.include the TF in the module.

Unit Unit | TF source Genes in the unit

number | size

1 3 RUNX1 CLN5, TCL1A

2 3 DMRT1 EIF3H, GPATCHS

3 3 GTF2F2 GOLGB1, ATP2C1

4 3 HSF2 ABCC1, CCDC102A

5 3 NFIX ORC2, CCDC91

6 3 TCF4 PNMT, PPHLN1

7 3 TCF12 1-Dec, AZI2

8 3 TFDP2 SEMAG6B, EXOC3L4

9 3 MBTPS1 SOCS2, PPAN

10 3 MTF2 DNAH17, BTG3

11 3 ATF7IP UNC13A, RILP

12 3 PHTF2 PPP1R16B, OTOGL

13 3 TFB2M ZNHIT1, CAMKK1

14 3 TCF7L1 KCNQ4, SETDB2

15 3 GABPB2 PSMC6, ABHD5

16 3 NFXL1 HIST1H2BB, CHEK?2

17 4 ATF3 NR3C1, SNORD26, INPP5E

18 4 NFYC RBM5, CACNG4, STARD9

19 4 GTF2A1L CUL1, RNF24, LAMP3

20 4 CNOT1 PSMC2, PCGF6, THAP3

21 4 WWTR1 NFYB, FAM118B, FAM78B

22 4 TRERF1 ADPRH, DNAJC5, NBPF23

23 4 BACH2 MYO7A, SNRPD1, SIRT7

24 4 TFAP2D PLA2G6, C8orf55, TMEM159

25 5 BRF1 WWC1, GRHL1, DDX54, DDX51
26 5 AKNA TCFL5, CCT5, SLC25A39, ALGS
27 6 MITF NEDD9, ARHGAP11A, TMEM51, MAGOHB, MIR589
28 6 TCF7L2 BOK, TLE4, NOP58, NAT10, TORS3A,
29 8 TEAD1 ST3GAL3, DYNLT1, DBNL, GCNT4,

HNRNPA1L2, BTBD19

4
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30 10 STAT4 ACO1, GNRHR, GYPC, PTRH2, MBOAT7, OBE(C1l
CORO6, UHMK1, PPTC7

31 10 TCERGI1L SLC25A20, GATA2, ZNF3, LRPPRC, ABCAl2
PCYOXIL, LBH, C160rf74, MIR1909

32 11 MYT1L APBB2, CDC25A, COL1A2, MMP7, SH3BP2, &7,
NCAPH2, HNRPLL, ZMAT2, RPS26P6

33 17 CAMTA1 NFKBIE, QDPR, SKP1, CDK2AP1l, TAOK2, @S,
NECAP1, TMBIM4, PTRH2, VASH2, TMEM121, ZFP91,
NHLRC2, H3F3C, Clorf190, SNORA81

Table 4-6: TF units’ content and sizes.
TF source and gene targets (two or more).

Table 4-7. TF units' functional enrichment (separag file).
File Table4-7.xIsx. Gene sets include only genasriap to an Entrez ID.

4.2.6 Support for eSNPs in TFs from different dasaurces

We systematically looked for pairs of TF sourceyédrthat were experimentally validated as
binding. We found such enrichment, with 6 out ofT34source-target pairs compared to 551 out
of 6,904 random pairs (Fisher’'s exact #8st0.05, see Materials and Methods section 4.3.9) in
database reporting binding of TFs to DNA, basedlmmmatin immunoprecipitation (ChlIP)-X
experiments [109]. We used the data in [6] to fimel closest DNasel hypersensitive site (DHS)
window to the gene target, and examined whetheMth@SNP was associated with the DHS
levels in this window. We found that 33 of 370 symirs of TF eSNP and gene target were
significantly associated (P<0.05) indicating siggaft enrichment (P < 5.5x1p of this
phenomenon. This enrichment was not an artifacTlefeSNP ascertainment: we tested the
association of 29,212 TF SNPs to DHS levels inraloaly picked DHS window; as expected
by chance, 1,400 of these SNPs showed such assocaétthe nominal significance leve®,
<0.05. Compared to this background distributioe, ehserved set of 33 out of 3f&ns eSNPs

having such association was significantly largemtlexpected by chance (Fisher’s exact Rest
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value < 6x10). This shows that even in a small sample size evtfez number of true positives

is diluted with false positives, we still recovetrae signal.

4.2.7 Distribution of TF sources and targets in PRInctional clusters

We were intrigued by potential connections betwsaurce-target pairs and cluster properties in
the PPI network. Therefore, we partitioned the iRWork into clusters of genes, optimizing the
modularity measure [110] (see Materials and Methramigion 4.3.10). Out of the resulting 249
PPI clusters with two genes or more, 225 (90%) detmated functional enrichment for a
biological category (Table 4-8). TF source-targatpwere found in the same PPI clusters more
than expected by chance: 26 out of 58 TF pairs emegpwith 26,966 out of 100,000 random

pairs (Fisher’s exact teBt<0.0043; see Materials and Methods section 4.3.11).

Table 4-8. Functional enrichment analysis of clusts in the PPI network (separate file).
File Table4-8.xIsx. Gene sets include only genasriap to an Entrez ID.

4.2.8 Specific example of TF eSNP

As an illustration for our results, we show an egéen(Figure 4-8a) of a specific source and its
gene target, examining transcription factor 7-ker-cell specific, HMG-boxTCF7L2 and its
transcript target transducin-like enhancer of spifTLE4). There was a significarmis effect
<0.012) of the associated intronic eSNP rs70870id6 the expression of CF7L2 but the co-
expression correlation of the source and target medsstatistically significant in this dataset.
TCF7L2and its five targets (unit number 28, Table 4-@nprise a unit that was enriched (two
out of six) for cell proliferation (FDR <0.03; TabK-7). This TF plays a key role in the Wnt
signaling pathway, activating v-myc avian myeloeytdosis viral oncogene homoloiy1{C)

expression in the presence of catenin (cadherioeagsd protein), beta 1, 88kDE&TNNBJ.
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The gene targeTLE4 within the PPI network is a transcriptional cosegsor that represses
transactivation mediated BYCF7L2 and CTNNB1 These annotations implicate thBECF7L2
TLE4 andMYC act as the network motif incoherent type-1-feedvBod loop (a pulse generator
and response accelerator) [92] where the two arfnkeofeed-forward loop act in opposition:
TCF7L2activatesMYC (in the presence cETNNB2J but also repressedYC by activating the
repressoifLE4 (via an eSNP). We note th&@CF7L2 harbors the common allele most strongly
associated with increased risk of type 2 diabetésrrespondingly, TLE4 was recently
discovered as a T2D locus [81]. Specificall{,E4 encodes a protein that forms complexes with
TCF proteins, includingrCF7L2 to modulate transcription at target sites [1Ttje source and
target are part of the same PPI network clusteichwis enriched (1,257 out of 4,627) for
regulation of transcription (FDR <2.4 x %) Table 4-8; Figure 4-8a). This demonstrates a case

of shared function between a source TF and itetarg

4.2.9 Distribution of exonic sources and targetsil functional clusters

By contrast, only 19 (32%) of exon eSNP sourcesvi@und in the same PPI network cluster as
their respective single targets, consistent witancie expectation (see Materials and Methods
section 4.3.11). Yet, as such pairs were linkedelatively shorter paths (Figure 4-3a), it follows
that coding variants affect transcriptiam trans not in a modular way but rather in a linear
fashion that defines shorter paths than expectezhbyce. We recorded the proteins along such
paths (Table 4-9) and evaluated the enrichmentimétfonal annotation for each path (Table 4-

10).

Path number Path length | Genes in path (from sourcetarget)

1 3 HLA-C, LILRB1, HLA-A

2 3 HLA-C, LILRB1, HLA-G

3 4 CYBA, 4687, CSNK2A1, HNRNPC
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4 4 DVL3, PPP2CA, TP53, DAXX

5 4 GATAS, ETS1, NR3C1, COPS6

6 4 HLA-DQB1, CD4, PIK3R1, AKT1

7 4 PITX2, KATS, CDK1, AMPH

8 4 PTPRA, KCNA2, DLG1, PAX6

9 4 RPS14, SMAD2, TSC2, MAPKAPK?2

10 4 TPI1, CFL1, ATXN1, KIAA2026

11 4 SIP1, SNRPD2, EGFR, MET

12 4 MAP4K4, ITGB1, CRKL, EPOR

13 4 ERC1, YWHAG, LUC7L2, UNC119

14 4 CLASP2, FEZ1, PRKCZ, GSK3A

15 4 GGA3, TSG101, NR3C1, SUMO4

16 4 TES, ACTN1, GRIN2A, PTPN4

17 4 PSMC3IP, NR3C1, PRKDC, EIF252

18 4 PIDD, EFEMP2, TP53, PLK3

19 4 MIF4GD, UBQLN4, IMPDH2, SUMO4

20 4 STK11IP, SMAD4, MAPK13, MAPKAPK3

21 5 BLK, BCL2, CDK2, PRKAR1A, C20rf88

22 5 DYNC1H1, YWHAG, ARAF, TH1L, FRMD5

23 5 STX2, STXBP1, PRKCA, TIAM1, MAPKS8IP1

24 5 RBPJ, HMGB1, C14orfl, NSF, NAPG

25 5 MUC4, ERBB2, PTPN18, GAB1, MAPK4

26 5 MYO5A, DYNLL1, MTA1, CCNH, CDK2

27 5 PIN1, CHPF, SMAD9, LNPEP, TNKS2

28 5 RAB5A, TSC2, SMAD2, HDAC1, DNMT3B

29 5 RAC2, CUL1, SMAD3, GGA1, M6PR

30 5 ENC1, TGFBR1, FBX034, SKP1, FBXL8

31 5 MADD, PIDD, CRADD, LRIF1, RNF10

32 5 NRXN1, SYT1, GOLM1, NIPSNAP3A, EPHX2

33 5 PRDX6, RARA, COPS2, COPS6, WIPI2

34 5 CAMKK2, CALM1, CAMK2G, GRIN2B, AP4M1

35 5 MASTS3, PTEN, CSNK2A2, SMURF1, NAA16

36 5 PPIL2, HSP90AA1, WASL, SH3GL3, C11orf68

37 5 PTRH2, AES, AR, CDC25A, PIM1

38 5 DNAJB11, PTN, BCCIP, RAD51, DMC1

39 5 KLHDCS5, COIL, SMN1, BCL2, PPP3CA

40 5 HIF3A, HIF1A, CREBBP, MED25, MED15

41 5 COL18A1, KDR, SRC, PRKACA, TPH1

42 5 IQCG, BAG6, SMN1, KPNB1, UBR5

43 6 CSF3, CSF3R, GRB2, EPHB6, SAT1, SAT2

44 6 MUC2, PLEKHM1, EIF2S2, CSNK2A1, CDK1, NES
45 6 CLIP2, DYNLL1, TP53BP1, EP300, MYBL2, ZNF622
46 6 PRPF4B, YWHAG, PRKCA, ITGB2, HP, C1RL

47 6 BRE, GFI1B, PSMA3, CDKN1A, RAB1A, ZNF593
48 6 EDEM1, CANX, SMURF2, NEK6, CDK7, GTF2H2
49 6 MAML1, CREBBP, EWSR1, RALYL, ZNF408, ZNF330
50 6 SEC23B, SEC24D, LMO4, MERTK, BMPR2, PDZRN3
51 6 CECR2, UXT, AR, RB1, TRIM27, FXYD6

52 6 FBXO30, SMAD1, MAPK1, NEK2, NDC80, SPC25
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53 7 EIFAEBP2, EIF4E, PML, RELA, BRCA1, PSAP, CELISR
54 7 TNKS1BP1, TNKS, FNBP1, CDC42, WAS, CIB1, IFI6,
55 8 IRAK4, TRAF6, TRAF2, TCEA2, CENPT, PPCDC, DBKPO

Table 4-9. Exon paths lengths and genes in path frosource to target.

Table 4-10. Functional enrichment of exon paths, Ib&een source and target (separate file).
File Table4-10.xIsx. Gene sets include only gehasmap to an Entrez ID.

4.2.10 Specific example of exonic eSNP

We show an example (Figure 4-8b) of exon source ingene target, examining the path
between gene source p53-induced death domain pr@EdD) and gene target polo-like kinase
3 (PLK3); path number 18, Tables 4-9 and 4-10). This maik enriched for the p53 signaling
pathway (FDR <0.01, Table 4-10RIDD promotes apoptosis downstream of the tumor
suppressor as a component of the DNA damage/stespsnse pathway that connects p53 to
apoptosis. The gene tard@tK3is a serine/threonine kinase that plays a rolegulation of cell
cycle progression and potentially in tumorgeneSgdermal growth factor-containing fibulin-
like extracellular matrix protein 2ZEFEMP2and tumor protein p53TP53 reside along the
shortest path betwedPIDD and PLK3 (Figure 4-8b). There is evidence from ChIP-ChI@ an
ChiP-seq experiments thd@tP53 has binding sites in the promoter RIfK3 [109] and it is
annotated as a zinc ion binding protein. Furtheanttre combination of a pair of genes with TF-
DNA and PPI edge between them is a known networkif nfimixed-feedback loop) [82],
suggesting a mechanism by which the expressioheofarget gene is altered. In support of this,
the co-expression correlation of the source angetagenes was significant (Spearman rank-

correlation test = 0.3223,P <0.02). The exon gene source and target residbfferent PPI
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network clustersPIDD resides in a clustethat is enriched for regulation ekll death (FDR
<4.5x10°, Table 4-8) andPLK3resides in a cluster thas enriched for regulion of

transcription (FDR <2.4x1#, Table4-8).

a

Regulation of transcription

TF eSNP

Regulation of

Regulation of

Proteasome

cell death transcription
PIDD EFEMP2 - TP53 PLK3
Exon \ Chrilp/ = \chr 11q / \ chr 17 chr 1
Coding eSNP

Figure 4-8. Examples of transcription factors and exon soug-target pairs.

An eSNP (red tick mark) along a source gene (biateg, either in an exon or TF (blue rectangle
associated (solid red line for exon, dashed forwiH) levels of transcription of the target genesém
circle). The source and target geinteract via nodes (black circles) and edges (bémtkl lines) in the
PPI network. Each node belongs to a PPI clustepl@eloud) with a functional annotation. (a) Netw
motif 11-FFL [92]: TCF7L2 activates MYC (in the presence of CTNNBMW} also represses MYC |
activating the repressor TLE4 (via an eSNP) . (i® $hortest path on the PPI network between F
source and its gene target PLK3. Binding sitesR&3 were found in the promoter of PLK3. TP5
annotated as a zinc ion binding protein. Thereavsigiificant correlation between the expression of
source and target genes. TCF7L2, transcriptiomofa-like 2; T-cell specific; TLE4 transduc-like
enhancer of split 4; MYC, myc avian myelocytomatosis viral oncogene; catéranlherii-associated
protein), beta 1, 88kDa (CTNNB1); PIDD, - induced death domain protein; PLK3, f-like kinase 3;
EFEMP2, Epidermal growth fact@ontaining fibulinlike extracellular matrix protein 2; TP53, tun
protein p53.
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4.2.11 Mechanistic interpretation of exonic eSNPs

These results beg a mechanistic explanation thatdixaarify how the network interaction at the
protein level is leading to the observed changedsainscript levels. Fortunately, examination of
the genes along the reported paths provides aiplawswer, as they are strongly enriched for
zinc ion binding proteins. Specifically, when weaexned the enrichment for annotations of
genes along shortest paths in the real datasetps&rved 410 enriched categories (minimum of
10 genes from a category, FDR <0.05; Table 4-11tehtls and Methods section 4.3.12). For
comparison, across 1,000 permuted datasets wevelsartotal of 1,870 categories satisfying
the same enrichment criteria. We focus on the aiggories that were enriched in real data and
not in permutations: ion binding, metal ion bindirggtion binding and intracellular, zinc ion
binding and transition metal ion binding (Table ¥:1We compared two properties in real
versus permuted datasets: first, the number of gyémwen each category (empiricRtvalues
0.005 and 0.014 for zinc ion binding and transitimatal ion binding respectively); and second
the number of paths where we observed at leasg@me from each category (empiri€alalues
0.016 and 0.038 for zinc ion binding and transitio@tal ion binding respectively). These results
were replicated in a second permuted dataset. droparison, only 7 and 10 out of the 404 joint
categories achieve an empirid&value lower than 0.05 for these two propertiepeesvely.
These results indicate that the genes in real paéne enriched for zinc ion binding, which is
associated with regulation of transcription, sugjggsa possible mechanism by which the

expression level of the target transcript is medifi
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Table 4-11. Enriched annotations (minimum 10 genesi-DR <0.05) of genes along real and

permuted data shortest paths, and gene names for ghsix categories that were enriched in real
shortest paths (separate file).

File Table4-11.xlIsx.
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4.3 Discussion

We present a computational approach to study theacteristics oftrans regulation. We
observed that candidate eSNPs within exons exHibdaa overabundance of significant
association signals. We consequently focused orPeS3hat resided within an exon of a source
gene, and were associated with the expression éd\eldifferent gene target. We observed that
candidate eSNPs within TFs were associated witlglaeh number of transcripts than expected
by chance. We subsequently examined eSNPs thaledesiithin the span of source TFs. We
mapped these pairs of source and target onto anétlork and analyzed their topological

properties.

We applied our approach to publicly available geseand genomics [40] data from the same
samples. We demonstrated that, by combining assmtidata with information on PPI, it is
possible to unravel topological properties for thwe trans association types. We found that for
an eSNP exon source and its gene target, the sirtimg association, the closer the source-target
distance and the higher the target degree in then@€t®ork. Expression analysis showed these
source-target pairs to be frequently co-expressad] that these exon eSNPs often had
significant cis effects on the expression of the source genes.observed phenomenon of
exonic variation leaving a signature on PPI pathisess speculations regarding the mechanisms
of transcription regulation. Previous studies hianbrectly tackled these speculations regarding
the connection between eSNP regulation and thespatie. Specifically, Rosset al found that

PPl connections between loci defined in GWAS ofpacdic disease were more densely
connected than chance expectation [26], and Nicelaa. [17] observed that SNPs found in

GWAS were more likely to be eSNPs. The comprehensss of our work relied on combining
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eQTL data with the PPI network and not merely GWdea, as described in previous studies
[105]. This allowed us to examine source-targetneations across the network, rather than be
limited to studying the source nodes as in GWAS-#&Rillyses. The novel observation is that the
genetic variation that modifies PPl network projsrtis associated with a normal expression

landscape and not only with extreme cases of diseas

We attempted to go beyond topological results dreti dight on the regulatory mechanism by
which gene expression of the target gene is alteretiese shorter paths. We systematically
compared genes along real and permuted shortes$ paid found enrichment for ion zinc

binding proteins, suggesting a plausible mecharignwhich the expression level of the target
transcript is modified. More generally, the patHsirderacting protein pairs, from a source

protein to the target protein, were consistent wibhcatenation of two pathways (Figure 4-9).
The prefix of the path was consistent with a reuia pathway, leading to some regulatory
protein (TF or other) that affects expression eftdrget. The suffix of the path may match a self

feedback loop in reverse: from the target proteiokito the same regulatory protein [37].
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trans

association
Regulatory
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hetwork
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Figure 4-9. Mechanistic interpretation of exonic eSNPs.

A path of interacting protein pairs (black circksd connectors) along the PPI networkm a source
protein (blue) to the target transcript and profgireen), is consistent with concatenation of
pathways: the prefix of the path is consistent witiegulatory pathway (red), leading to some reguy:
protein (purple node), that (directly indirectly) affects expression of the targetrfyye arrow), thut
being observed as a trae®TL signal. The suffix of the path may match d feeddback loop in revers
from the target protein back to the same regulgbooyein (orange arrov

We demonstrated it is possible to characterize laggy variation in TFs. We observed tl
eSNP TF sources and their gene targets create aingsnes that are enriched for functio
annotations. When decomposing the PPI network ustets, we obserd that these sour-

target pairs tend to reside within the same clu

The design choices for a study of this kind coneefew methodological limitations. Fir:
because we were interested in detecting putativ@lgal variants based on their exeenomic
location, we used a dataset of fully sequencedriddals along with their transcription profile
Such cohort sizes are limited in size, reducingpibwer to detect association and allowing u

see only the strongest effects. Second, we weterested in understanding the mechani
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underlying eSNPs interactions. This required the afsa well-established interaction network.
We examined our results on a PPI network, rathan th TF-DNA interaction network or co-
expression network derived from this dataset, tabdish a broad and independent network of
interactions. Overall, both the raw datasets [4),add supporting databases [42, 47, 50, 54, 62,
109] in this work were noisy and limited. That weserved statistically significantly plausible
results in such a small dataset combined with ndmyabases is encouraging. Potentially, an
increase in sample size may enable detection oPe&3dociations at more significdvalues

for even milder effects.

Over the last decade, causal interpretation oftgeassociation signals for common variants and
common traits had been impeded by two hurdlest,Firany of the signals had been obtained as
indirect association to proxy genetic markers, witth access to the directly and causally
associated variant. Second, often the trait undeestigation was not understood at the
molecular mechanistic level well enough to decipbi® connection between variant and
phenotype. This work bridges the gap between associ and causality by considering both
direct association to sequencing-ascertained uarias well as expression quantitative traits.
The ability to tie together these loose ends ofetjenassociation using an interaction map
constitutes a notable stride towards understanitieghousands of such connections that recent

genetics have discovered.

Our main findings suggest two modedrains regulation via genetic variation in exons and TFs.
Exonic variation possibly acts through mités effects that alter the expression of the source

gene and delineates shorter paths between funtthrsters (Figure 4-10a), and exonic eSNP
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targets might play an important role in the PPinmek as hubs. TF variation frequently acts

a modular regulation mechanism, with multiple tésgbat share a function with the TF soL

(Figure 4-10b).

a
FunctionY
Codipg eSNP

Function X

TF eSNPs

Figure 4-10. Summary illustration - two suggested modes d@fans regulation.

(a) Exon variation often acts by a local cis effectjramting shorter paths of interacting proteinoas
functional clusters of the PPI network. (b) TF a#ion frequently acts via a modular regulat
mechanism, with multiple targets that share a fon with theTF source. (See Figure«8 legend for

further details).
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Future studies could extend the approach presdmexito investigate how genetic variation in
different meaningful genomic locations (for exammehancers, insulators, miRNAs) correlates
with gene targets. Datasets that combine sequerar@hts coupled with gene expression and
phenotypic traits are limited in human, but avdagafor other model organisms [112, 113]. It
would be insightful to combine this type of studythwphenotypic data, to see howans
association tracks with phenotypes. Specificalbplgng our approach to samples under various
conditions (for example, disease), could improvdeaustanding of condition-specific regulatory
processes [26]. Moreover, considering genetics-Hgrsdata across different tissues along with
a tissue-specific PPl network [114] could be tgllinegarding the underlying regulatory

mechanisms characterizing these tissues.
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4.4 Materials and Methods

4.3.1 Data details and processing

We analyzed a cohort of 50 Yoruban samples, forciwtgenotypes of SNPthat are fully
ascertained from sequencing data [91] along withARMquencing data [40] are publicly
available. Briefly, the raw dataset consists 0f553,953 genotyped SNPs and expression
measurements (quantile-quantile normalized vale#s)8,147 genes with Ensembl gene ID
across these 50 samples. Standard filters have d@aied to the genetic data: minor allele
frequency >0.05, SNP missingness rate <0.1 anditheil missingness rate <0.1 [46]. After

filtering, data for analysis consist of 50 sampléth 7,206,056 SNPs.

4.3.2 Association testing

For association analysis, we considered only SNis itesided within candidate regulatory
regions along the genome. Roans association, we tested for association betweehR &d
every gene; we considered SNPs within the spamofk exons and TFs (including introns)

[94]. We tested for association using linear regjoes

4.3.3 Obtaining a random distribution of associatidest statistics

Examining the random distribution of associatiostgewvas helpful in evaluating the empirical
significance of results. This was achieved by gatireg 100,000 random pairs of sources and
targets for exonic and TF variation separately. Wed a strict randomization process of edges
switching. We picked a source gene from all souinethe real data; we then picked a target

gene from all targets in the real data witR-galue cutoff of 10. When evaluating the number
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of targets per TF source, we created 1,000 setsnofom TF source and gene target pairs; each
set contained 370 such pairs corresponding to 3780lrce-target pairs atFavalue cutoff of

10°% in the real data.

4.3.4 Identifying topological trends across assdma P-values

For exons, we observed the emergence of true p@sissociations betweéhvalues 17 and
107 (Figure 4-1). Therefore, we focused Brvalues <10 and sorted all source-target pairs
according to the significance of their associastmal. We considered each prefix of this list,
that is, each subset of source-target pairs excgedliparticular threshold, for significance of
association signal. For each such subset, we exp@ach one of the topological properties
defined above averaged over the subset. We cadcul8pearman’s correlation coefficient
between significance thresholds and each of theseilative averages. In a similar process, we
randomly chose an equal number of arbitrary sotamget pairs on the PPl network. Adding
these pairs one by one created a distribution afogous cumulative averages for permuted
pairs. We recorded the Spearman correlation caoefiic for these 100,000 permuted
distributions. We calculated the empiricRvalue for the significance of the observed
correlation coefficients by counting the numbertiofes when permuted r > real r and divided

this by the number of permutations.

4.3.5 Identifying topological properties of sourdarget pairs projected on the PPI network

We used the PPI network provided by the Human RroReference Database [42]. The

undirected network contains 9,671 nodes and 37diltfes. For each node, we calculated its
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degree: the number of edges incident on the node d&éined a distance between every two
nodes as the number of edges on the shortest patiedn them. All pair-wise shortest paths
were determined using the Floyd-Warshall algorifi®l. In cases where the network had more
than one connected component, nodes from two diffecomponents were defined to have a

distance of twice the maximal distance obtainethiwithe components.

4.3.6 Expression analysis

We calculated all pairwise co-expression correfegidor all gene pairs in the dataset using
Spearman rank-correlation test, and therefore wétaithe distribution of the correlation

coefficientr. To determine whether the distribution obetween source-target pairs differed

from its background distribution, we employed théddkon ranked-sum test.

4.3.7 Enrichment of eSNPs for cis effects

We examined whether eSNPs that were associatedavidlget’'s expression level also affected
expression levels of the corresponding source. &8ted this by considering, for each source-
target pair, the one eSNP most associated to fession for the target. We tallied the source-
target pairs for which this eSNP was also signifigaassociatedR <0.05) with the expression
level of the source. Under the null, the numbersoth pairs is a random variable that is

binomially distributed. Bin (n = number ofuniqueusce genes? =0.05).

4.3.8 Unit and path annotation
We defined units of genes by considering a TF soard its gene targets. We examined shortest
paths within the PPI network between eSNP exonceoand its gene target. The enrichment of

units and paths with gene subsets from the Genel@yt [62], and KEGG [47] databases was
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calculated by Genatomy [13]. We reported only umitspaths with annotations that had a
significant FDR of 0.05 or better. The descriptimngenes in units or paths is cited from the

National Center for Biotechnology Information Geta#abase and GeneCards [115].

4.3.9 Finding transcription factor source-target pa in the experimental database

The ChIP Enrichment Analysis (ChEA) database [1@@resents a collection of interactions
describing the binding of transcription factordXNA, collected from ChIP-X (ChIP-chip, ChIP-
sequencing, ChlIP-positron emission tomography anBNA Dadenine methyltransferase
identification) experiments. For each TF source tamndet, we examined if they were present in
ChEA. We repeated the same procedure for 100,000yped pairs of a random TF source and a
random gene target. We then compared, using Fssk&gct test, the number of pairs in ChEA
between real and permutation pairs, out of allgpaihere the TF source was included in the

database.

4.3.10 Finding PPI network decomposition to clusser

The decomposition of the PPI network to clusters e@mputed by using the Louvain algorithm
presented inM95]. This is a heuristic method that is based on nardyl optimization. The
method consists of two phases and partitions tiarnk into clusters such that the number of
edges between clusters is significantly less thgree&ed by chance. The method provides a
mathematical measure for modularity with networzesnormalized values, ranging from O (low
modularity) to 1 (maximum modularity). This methbds been previously applied to various

biological networkg116] and specifically to a PPI netwojk17].
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4.3.11 Significance of source and target residingthe same PPI cluster

For each exon and TF source-target pair, we redondether both source and target resided in
the same PPI cluster. We repeated the same precedtr 100,000 permuted unigue source-
target pairs from nodes on the PPI network. We tbempared the number of cluster co-

occurrences between real data and permutationg trenFisher exact test.

4.3.12 Comparing shortest paths annotation content

We recorded all genes along the shortest pathseleetwxonic sources and targets, both in real
and permuted data. We then looked for enrichmerthig set of genes (at least 10 genes per
category, FDR <0.05). We created sets of 1,000 pein55 shortest paths (from the 17,564
shortest paths in permutations) that followed tkace length distribution of the 55 real paths.
For each one of the six categories that was nathed in permutations, we performed two
analyses: first, we counted how many genes frorh eategory appeared in the real paths (with
repetitions, that is if gene X from category Y aggal in two shortest paths we counted it twice);
and second, we counted how many of the 55 pathathigést one gene from this category. We
repeated the same procedures for the 1,000 permsatedFor each category, we then counted
how many of the 1,000 permutations achieved equare@ater numbers than seen for the real

data (empiricaP-value).
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Chapter 5: Conclusions

Variants that are associated with changes in gepeession (eSNPs) are known to play a role in
many human traits [17], making them the subjectecent research efforts. Here, we focus on
eSNPs intrans as they provide insight on regulatory interactidetween different loci and the

structure of the regulatory network that such ext&ons define. First, we present a novel
approach for defining network maotifs, including uéafory modules [36]. Second, we extend this
approach to discover bi-fan structures [22]. Thwe, devise a computational framework where
we project eSNP associations onto a PPI netwodh&vacterize properties of eSNPs and their
targets [38] . Overall, our work offers insightsncerning the topological structure of human

regulatory networks and the effect genetic varrahias on shaping them.

We assemble modules of transcripts each associatéde same main SNP; then assign a
confidence score to each module, lastly we determimra-module topology from the
dependencies between the transcripts in the maahdethe main SNP [36]. We show these
modules to be high confidence structures. We apply method to data on human liver
expression and SNP genotypes [52] and find titaats regulation exhibits a modular structure
with a single variant that is associated with a gegenes and shares the same annotation
descriptors with them. This regulation structureissially mediated by ais effect of the main
SNP on the expression of a close gene, and thetidimeof effect on the genes in the module is
mostly consistent (either up or down regulatiorfjefe are significantly more modules, and they
are bigger, denser and more enriched in annotatlwars those observed in the permuted data,

providing support for our methodology.
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We extend this approach to define quartet strustooenprised of a pair of two main SNPs that
are associated to the same pair of transcripts Y¥2]uncover a bi-fan motif in the human
regulatory network [22], which was previously déised as a building block of model
organisms’ regulatory networks [37]. This regulststructure is nearly exclusive to real data,
and exhibits unique characteristics. Most humatabs involve pairs of eSNPs located on
different chromosomes, away from their targets Wiae likewise located on different
chromosomes. All quartets are consistent in teritiseodirection of eSNP effects on correlated
and anti-correlated transcripts and there is enreait for eSNPs with the same-direction effects,
i.e., the directional effect of both eSNPs on adcaaipt is the same. We replicate these

characteristics in a larger dataset [1].

Finally, we present a computational framework tinéégrates eSNPs within exons with a PPI
network [38]. We then compare eSNPs in exons W#NRs in TFs to uncover characteristics of
trans regulation. We applied our approach to publiclitable genetics and genomics [40, 91]
data from the same samples. Our findings suggestlistinct modes dransregulation:

Exon variation possibly acts through mdid effects that alter the expression of the source ge
The exonic source and target, which are frequethexpressed, seem to be connected by
shorter paths between functional clusters and d&hget degree is higher. Moreover, we find
enrichment for ion zinc binding proteins, suggestia plausible mechanism by which the
expression level of the target transcript is medifiTF variation frequently acts via a modular

regulation mechanism, with multiple targets thatrsha function with the TF source.
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The advances in sequencing and RNA-seq technolagig$he drop of prices make this an
exciting time for genetics-genomics research, beite are still some substantial limitations to
overcome. First, the traditional use of SNP arfaygenotyping in large scale genetic studies is
limiting to findings that are predominantly tags tmusal variants. Cohorts that include both
RNA-seq for gene expression and sequencing-aseedtaariants for genotyping are still
limited in size [1, 39, 40], reducing power for éSkssociations discovery. Second, findings in
eSNPs studies are commonly supported by annotdéitanbases [42, 47, 54, 62] that are noisy,
partial and in many cases publication biased. énréfitent ENCODE effort [118] it was
established that most of disease associated vaaaaiocated within regulatory regions [119],
highlighting the importance of improving whole gem® annotation and not merely focusing on
the coding regions. Finally, statistical and comapiohal approached are helpful in shortlisting
candidate loci that have high susceptibility teeatfphenotypes. Such findings should be

accompanied by experimental validations, whichcasly and time consuming.

A recent conference | attended “The biology of geas” provided a good snapshot of the field
and where it is headed. There is an effort to pcecand make publicly available datasets with
large number of samples. A good example is the Gaisvdataset [1] which includes RNA-seq
and genotyping data for more than 450 samples tiffierent populations. The GTEXx
consortium [13] is collecting and producing RNA-sewl genotype data across multiple tissues.
This resource will provide insights into tissue @pe regulatory mechanisms. Another
important question would be to characterize eQTlikiva specific tissue but in different cell
types. A natural extension to the study of eSNRs fecus on SNPs that are associated with

other cellular phenotypes, e.g., long intergenie-noding RNAs (lincRNAS) expression [120]
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and protein levels [121] or focusing on differeyyié of variants that are associated with gene
expression, e.g., Short Tandem Repeat (STR) [1214.findings from such studies will
complement and extend the understanding of biokbgimcesses. The future goal of this field
would be to find and characterize causal variamsdgrstand the mechanisms through which

they act and ultimately move from bench to bedsaiu@ develop personalized treatment.

The code for all methods presented in this themisbe found in the following link:

http://www.columbia.edu/~ak2996/Software.htm
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