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ABSTRACT 

Analysis of trans eSNPs infers regulatory network architecture  

Anat Kreimer 

eSNPs are genetic variants associated with transcript expression levels. The characteristics of 

such variants highlight their importance and present a unique opportunity for studying gene 

regulation. eSNPs affect most genes and their cell type specificity can shed light on different 

processes that are activated in each cell. They can identify functional variants by connecting 

SNPs that are implicated in disease to a molecular mechanism. Examining eSNPs that are 

associated with distal genes can provide insights regarding the inference of regulatory networks 

but also presents challenges due to the high statistical burden of multiple testing. Such 

association studies allow: simultaneous investigation of many gene expression phenotypes 

without assuming any prior knowledge and identification of unknown regulators of gene 

expression while uncovering directionality.  

This thesis will focus on such distal eSNPs to map regulatory interactions between different loci 

and expose the architecture of the regulatory network defined by such interactions. We develop 

novel computational approaches and apply them to genetics-genomics data in human. We go 

beyond pairwise interactions to define network motifs, including regulatory modules and bi-fan 

structures, showing them to be prevalent in real data and exposing distinct attributes of such 

arrangements. We project eSNP associations onto a protein-protein interaction network to expose 

topological properties of eSNPs and their targets and highlight different modes of distal 

regulation. Overall, our work offers insights concerning the topological structure of human 

regulatory networks and the role genetics plays in shaping them. 
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Chapter 1: Introduction 

In the last decade many genetic variants (eSNPs) have been reported as associated with 

expression of transcripts, holding the promise for functional dissection of regulatory structure of 

human transcription. There are several approaches by which eSNPs can be explored. First, they 

can be characterized by different categories: their genomic location, functional role, distance 

from associated transcript (cis/trans eSNPs), and similarities and differences across tissues, cells 

and conditions. Second, eSNPs can be integrated with results from genome-wide association 

studies (GWAS) to predict their specific regulatory role in disease and human traits. Third, their 

analysis with respect to gene networks and functional annotations addresses questions regarding 

the organization of transcription, the causality in association and can pinpoint the regulatory 

mechanisms through which eSNPs act.  

 

eSNPs are found to effect the expression of most genes [1], stressing the importance of studying 

and characterizing such variants. eSNPs can affect the expression of a close, usually defined as 

up to 1MB (cis), or a distal (trans) gene. For example, a synonymous SNP may have a local 

effect on the expression level of its host gene, while a non-synonymous SNP in a transcription 

factor may have a distal effect on its targets. Cis eSNPs are enriched in exons comparing to 

introns [2]. A large fraction of cis eSNPs are found in close proximity of the transcription start 

site (TSS), approximately 50kb on either sides of the TSS [3] and are enriched in promoters and 

transcription factor binding sites, suggesting that many directly impact protein-DNA interactions 

[3]. There are significantly less cis-eSNPs that affect central and critical genes, along with a 

trend of reduced effect sizes as variant frequency increases, providing evidence that purifying 
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selection and buffering have limited the deleterious impact of regulatory variation on the cell [4]. 

Finally, there is a significant overlap between SNPs that are associated with gene expression 

levels and essential epigenetic marks, i.e., methylation, [5] DNase I sensitivity [6] and histone 

marks [7] levels, as well as miRNA expression levels [8].  

 

eSNPs are cell [9-11] and tissue [12-14] type specific, thus they can be telling regarding different 

mechanisms that are distinct or shared. This phenomenon is stronger for trans eSNPs [9] and can 

be used to detect different pathways and interactions that could suggest functional processes that 

are common or specific for pairs of cell types. For example when comparing trans associations 

between B-cells and monocytes, Fairfax et al. find LYZ as a monocyte-specific master regulator 

of a large gene set. Although in general, shared cis eSNPs have the same directional effect on the 

gene expression in each analyzed cell type [10], there is an enrichment for shared cis eSNPs with 

opposing directional effects in each cell, i.e., cell type–specific directionality [9]. eSNPs are 

condition-specific and they depend on the time and duration of the stimulus [15]. These 

condition-specific eSNPs were found to be more distal to the transcriptional start site and, in 

some cases, showed reversal of effect between conditions. Moreover, stimulation reveals novel 

trans-eSNPs with simultaneous effects involving many genes [15].  

 

Although genome wide association studies (GWAS) [16] have linked numerous genetic loci to 

various human diseases and traits, pinpointing the causal variants and understanding the 

underlying mechanisms of these phenotypes is still limited. Since GWAS SNPs are known to be 

statistically enriched in eSNPs [17], one approach for addressing these challenging questions is 

to integrate  these two types of data while using eSNP data to interpret GWAS signals [18, 19]. 
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This approach has been validated by several studies. For example, Dubois et al. [20] found that 

20 of the 38 loci that had associated risk variants for celiac disease are also correlated with 

variation in the expression of a nearby gene. In an analysis of the genetics of migraine, genotypic 

correlation to expression of a candidate gene suggests a regulatory basis for this trait [21].  An 

approach combining eSNPs in metabolically active tissues with pathways enriched for relevant 

GWAS SNPs provided a potential powerful framework for identifying biological mechanisms 

underlying GWAS findings [22]. Finally, expression quantitative trait loci (eQTL) meta-analysis 

that was performed in peripheral blood samples from thousands of individuals identified and 

replicated trans eQTLs that were previously associated with complex traits at genome-wide 

significance. The observed regulation patterns indicated that such approach provides insight into 

the downstream effects of many trait-associated variants [23]. 

 

Integrating GWAS SNP data with biological networks can illuminate mechanisms underlying 

disease. Studies that project GWAS SNPs on the protein-protein interaction (PPI)  network 

conclude that disease associated loci encode directly interacting proteins beyond chance 

expectation, suggesting that risk variants may act on suites of proteins involved in the same 

process [24-26]. Previous works that integrated co-expression networks with disease variants, 

found enrichment of these variants in their co-expression modules, implicating that these 

modules represent causal effects [27]. This approach highlights the potential use in network 

analyses to reconstruct molecular phenotypes for the identification of the genetic association 

signal derived from pathways, rather than small effects from individual genes [28]. Overall, 

examining genetic variants that are associated with a specific disease unravels functional gene 
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networks [29-33]. Ultimately, the goal is to pinpoint the causal variants for human traits and 

provide a functional explanation to how they exert these phenotypical changes.  

 

There is a high statistical burden of multiple testing when considering association in trans, 

therefore most of the studies still focus on cis association. While cis regulation is extremely 

important in understanding the mechanisms of transcription, it is limited, by its local nature, in 

the insights it can provide regarding interactions, pathways and the overall architecture of gene 

regulation [34]. Constructing regulatory networks based on eSNP data in different biological 

contexts (e.g., specific cell type or disease) can shed light on questions regarding the role of 

genetics in shaping the organization of gene regulation, how it changes under different 

environments and conditions and by which mechanisms. Multiple studies that have taken this 

approach report intriguing findings. Trans-eSNPs seem to be organized in a modular fashion, 

when a single variant is associated with the expression of multiple genes [4, 9, 35, 36]. This 

single variant usually has a cis effect on the expression of a gene, which in turn has a trans effect 

on the gene set [4, 36]. These co-regulated gene sets are enriched in functional annotations and 

correspond to known pathways [15], they are cell type specific [9] and condition dependent [15], 

highlighting processes that are relevant under a specific biological setting. For example, Fairfax 

et al. report findings of coding polymorphisms in CYP1B1, P2RY11, and IDO2 that modulate 

activity and develop trans network effects that can be observed only upon stimulation [15]. 

 

In the following chapters, I will describe our work on eSNPs in trans, which aims at providing 

insight on regulatory interactions between different loci and the architecture of the regulatory 

network that such interactions define.  
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In chapter 2 we present a computational framework that goes beyond pairwise interactions to 

define network motifs [36]. We show that considering transcripts, each weakly associated to a 

single ‘main’ SNP, exposes high confidence regulatory modules structures. We represent the 

dependencies between the transcripts in the module and the main SNP by a graphical model. 

When applied to genetics-genomics data in the liver, we observe that the modules are prevalent 

in real data and exhibit unique characteristics. In chapter 3, we extend this framework to 

combine every two basic module structures, i.e., modules composed of two genes, that share the 

same gene pairs, exposing a bi-fan structure in the human regulatory network [22]. This structure 

is a known building block of model organisms’ regulatory networks [37].  In chapter 4 we take a 

step forward and integrate eSNP associations with a PPI network. We show that projecting these 

interactions onto the PPI network exposes topological properties of eSNPs and their targets, 

unravels different modes of trans regulation and highlights a mechanism by which the gene 

expression is altered [38]. In chapter 5, we summarize our main findings and discuss the 

limitations of our approaches and future directions. 

 

There is a very large number of eSNP studies being performed in human cohorts and the vast 

majority of their analyses are based on considering a single SNP associated with a single 

transcript and mainly in cis [1, 6, 39, 40].  While this analysis only captures a fraction of the 

complexity of genetics of regulation, the advantage is that these approaches provide some 

statistical guarantees on the associations discovered.  There is a smaller number of studies that 

build networks from eSNP data [4, 9, 34, 35].  While these papers provide much more 

comprehensive models, the main issue is that they do not provide the same strength of statistical 
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assurance in their findings. The main advantage of our approach [22, 41] is that it provides a 

framework for analysis of eSNP data which is very different from the typical analyses and 

bridges these two approaches while establishing statistical guarantees on our inferred results 

using permutations.  

 

There are number of works integrating SNP data with biological networks. Many of these works 

focus on GWAS SNPs [24-26] while some of them rely on co-expression networks [38], that are 

derived from gene expression data, the same data that is used for finding eSNPs. Our approach 

[38] utilizes two independent sources of information: eSNP associations, derived from 

sequencing-ascertained variants, and an established PPI network [42], aiming to address the gap 

between association, causality and mechanism. Overall, our work offers insights concerning the 

architecture of the human regulatory network and the role genetics plays in shaping it. 
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Chapter 2: Inference of modules associated to 

eQTLs 

 

Summary: Cataloging the association of transcripts to genetic variants in recent years holds the 

promise for functional dissection of regulatory structure of human transcription. Here, we present 

a novel approach, which aims at elucidating the joint relationships between transcripts and 

single-nucleotide polymorphisms (SNPs). This entails detection and analysis of modules of 

transcripts, each weakly associated to a single genetic variant, together exposing a high 

confidence association signal between the module and this ‘main’ SNP. To explore how 

transcripts in a module are related to causative loci for that module, we represent such 

dependencies by a graphical model.  

 

We applied our method to the existing data on genetics of gene expression in the liver. The 

modules are significantly more, larger and denser than found in permuted data. Quantification of 

the confidence in a module as a likelihood score, allows us to detect transcripts that do not reach 

genome-wide significance level. Topological analysis of each module identifies novel insights 

regarding the flow of causality between the main SNP and transcripts. We observe similar 

annotations of modules from two sources of information: the enrichment of a module in gene 

subsets and locus annotation of the genetic variants. This and further phenotypic analysis provide 

a validation for our methodology [36]. 
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2.1 Introduction 

Variation in genomic DNA can affect function in multiple ways, most typically by alteration of 

the expressed quantity or sequence content of local transcripts. This premise motivated extensive 

studies over the last decade, cataloging the influence of human genetic variants on gene 

expression, most often in cis [43, 44]. Local gene expression level is formally considered as a 

quantitative trait that is directly modified by allelic variation in regulatory elements [45, 46]. 

Such modifications of transcriptional regulation have been documented to affect health-related 

traits as diverse as asthma [47] and low density lipoprotein (LDL) cholesterol concentration [48]. 

 

Yet, for large fraction of single-nucleotide polymorphisms (SNPs) with well supported 

associations to disease phenotypes [49] which are neither coding, nor linked to coding SNPs in 

cis, no cis-regulatory effect have been reported in studies conducted thus far. A compelling 

biological hypothesis is that such a SNP does change the transcriptome state or program in order 

to exert its phenotypic impact, and this regulation is mediated by a transcript in cis, but in the 

particular tissue examined, the changes to transcription level of the mediator gene are too minute 

to guarantee detection in small association cohorts. This hypothesis leads to an approach for 

mapping expression quantitative trait loci (eQTLs) that is focused on downstream effects of a 

regulatory SNP across multiple genes in trans, rather than the cis-transcript that may 

mechanistically mediate the effect. A related approach had been successful in simpler organisms 

[50], motivating this work.  

 

Data on both gene expression and SNP variation across multiple individuals, often termed 

genetic genomics have facilitated identification of thousands of expression single-nucleotide 
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polymorphisms (eSNPs) [17, 51]. Approaches that combine these two types of data along with 

additional factors including the previously inferred biological network structure [52], modularity 

of gene expression [53], pathway analysis [54] and enzymatic activity [55] had been proposed. 

However, tying genetic variation in specific loci to phenotypes is still an active field of research. 

 

In this study, we focus on the modularity of gene regulatory networks, a major organizing 

principle of biological systems [56]. A module is the fundamental unit of a biological network 

that consists of a set of elements (e.g. genes) working jointly to fulfill a distinct function. Several 

studies have used this property to gain better understanding of the regulatory mechanisms [57] 

that are affected by genetic variation. Litvin et al. [50] characterize how genetic variants in 

multiple loci combine to influence the expression of clusters of co-expressed genes in yeast. 

Ghazalpour et al. [53] used co-expression networks to study the genetics of complex 

physiological traits that are relevant to the metabolic syndrome. Schadt et al. [52] used 

previously reconstructed regulatory networks of genes in mouse and human [58] to support the 

existing Genome Wide Association Studies (GWAS) results [16]. Known pathways from Kyoto 

Encyclopedia of Genes and Genomes (KEGG) [59] were used by Zhong et al. [54] for the same 

purpose. Common to all these studies are three steps. The first two are independent: (i) 

construction of a network from gene expression data; and (ii) detection of association between 

genetic variants and expression traits; the final step is (iii) integration of genetic association into 

the network. 

 

However, it is artificial to separate the stages of network construction based on expression data 

only from a single SNP–transcript association mapping. Ideally, one would combine information 
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from multiple transcripts with genetics in a unified analysis. This motivates complementary 

approaches to analysis of eSNPs. Specifically, our premise is that the modular organization of 

gene regulation can be used to pinpoint eSNPs that affect multiple, rather than single genes. 

Therefore, we developed a method that focuses on groups of transcripts (modules) that are each 

associated with a single genetic variant.  

 

We present a novel approach that entails analyzing modules of transcripts, each associated to a 

single genetic variant. These modules are constructed based on both available types of data: 

transcript expression and genotypes. We combine these transcripts into modules that each share 

an associated SNP, which we denote as the ‘main’ SNP of that module. This step utilizes the 

modular organization of gene regulation. We filter the modules according to a confidence score. 

This score allows us to identify groups of transcripts that are associated to a SNP even if their 

individual association is not genome-wide significant. We examine the topology of modules, 

accounting for independent co-association, which is not merely the result of co-expression. This 

step allows us to infer the flow of causality between the main SNP and the transcripts in the 

module. We distinguish direct versus indirect SNP– transcript associations through another 

intermediate transcript whose expression level is co-associated to the same SNP. The main SNP 

can possibly have cis- or trans-effects on the transcripts in the module. A local cis-effect on a 

transcript that is either included or excluded from a module can in turn have a modular trans-

regulatory effect on the other transcripts in the module by virtue of its changed expression levels 

or altered produced protein (e.g. a mutation in transcription factor). 
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Regulatory effects can be categorized by cis- and trans-effects. The cis-effects of eSNPs are 

often due to changes within the promoter, enhancer or other regulatory regions of a gene that 

may change the expression of that gene. Trans-effects of the main SNP on module transcripts 

can be the outcome of two potentially overlapping scenarios: First, a cis main SNP that is located 

within or close by the coding region of one of the genes in the module can alter the produced 

protein. The altered protein may then have a trans-regulatory effect on the other transcripts in the 

module by virtue of its differential expression level despite the protein itself being potentially 

unmodified. Second, a trans main SNP that is located within or close by the coding region of a 

gene that is not a part of the module can alter the produced protein. This distant altered protein 

may then have a trans-effect on the other transcripts in the module by virtue of its modified 

sequence, despite potentially maintaining its expression level. 

 

All methods previously introduced group transcripts by a shared associated marker and 

determine intra-cluster interactions by using the correlation of gene expression levels. To our 

knowledge, this is the first work where a confidence score is assigned to each module and direct/ 

indirect interactions are determined between pairs of transcripts within a module illustrating the 

dependence/independence of their expression levels conditioned on the main SNP. We are thus 

able to go beyond traditional clustering-related methods that are based on expression only, and in 

fact, examine the joint association and the topology of the modules and not merely their content. 

For completion, we further search for regulatory hierarchical structure within each module: we 

examine SNPs whose association to transcript levels in a module is conditioned on the main 

SNP, and denote those as ‘secondary’ SNPs. This step is illustrated as a decision tree where 

samples in each module are split, first by the genotype of the main SNP and then by the genotype 
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of the secondary SNP. We applied our method to data regarding genotype and gene expression in 

the liver across 371 samples. This data had been previously analyzed in other means [52]. We 

observe known relationships from the literature between a module and its associated genetic 

variants, thereby providing support to our methodology. 
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2.2 Results 

2.2.1 Computational framework for detecting transcriptional modules 

We set out to develop a statistical–computational framework to elucidate the regulatory structure 

by which genetic variants affect transcription. Specifically, we aim to examine the hypothesis 

that SNPs can have a modular effect on gene expression. Our method detects transcriptional 

modules, each including transcripts that are associated with the same main SNP. It is important 

to distinguish the modules that we find from co-expression clusters. Specifically, we represent 

each module as a graph, where nodes are transcripts, and for each possible pair of transcripts an 

edge correspond to a scenario where at least one of the transcripts remains significantly 

associated to the SNP when conditioned on its counterpart.  

 

An initial step of detecting association pairs of SNP and transcript, showed as many such pairs as 

expected under the null hypothesis of no such true association. However, we were still motivated 

to search for modules, as the same associated SNPs were shared by many transcripts. Briefly, we 

collated association pairs that share a SNP into triplets and larger modules. Such modules are 

more numerous, bigger, denser in association and more functionally enriched than expected by 

chance.  

 

In detail, we devised a three-step procedure for detecting the modules regulated by eQTLs. 

The first step detects 67,540 association pairs of a SNP s and a transcript t whose expression 

level is putatively associated with s (nominal association P<10-5, see Materials and Methods 

section 2.4.2 for details). The distribution of the number of pairs in the permuted data (Figure 2-

1a) demonstrates that the observed number of association pairs is consistent with the null 
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expectation (P≈0.07). We eliminate 623 pairs that include transcripts whose association statistic 

is strongly distorted, as observed by permutation (see Materials and Methods section 2.4.2 for 

details). We proceed with analyzing the remaining 66,917 association pairs. 

 

Association pairs are binned by SNP s, and give rise to 10,354 modules (see Materials and 

Methods section 2.4.3), ranging in size from 2 to 91 transcripts who are associated to the same 

main SNP of the module (Figure 2-2). Only 518 modules are large, i.e. with 10 or more 

transcripts. There are significantly more modules—10,354 (Figure 2-1b) than those found in the 

permuted data (average 2,322 across permutations; SD 208). Specifically, there are significantly 

more large modules—518 (Figure 2-1c) than those found in the permuted data (average 220; SD 

42). While the observed number of significantly associated pairs of transcript and SNP is 

consistent with the null expectation, we find that there are significantly more modules than those 

found in the permuted data. This finding is consistent with the premise that gene regulation is 

modularly organized. 



 

 

 
Figure 2-1. Histogram for the number of association pairs, modules and large modules.
The number of (a) association pairs (b) modules and (c
permuted data sets. Although only 93 out of the 100 permutated d
than in the real data, all of them have fewer (large) modules.

 

 

 

Histogram for the number of association pairs, modules and large modules.
The number of (a) association pairs (b) modules and (c) large modules in real data compared with 1

only 93 out of the 100 permutated data sets have fewer association 
than in the real data, all of them have fewer (large) modules.  

15 

Histogram for the number of association pairs, modules and large modules. 
real data compared with 100 

ata sets have fewer association pairs 
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Figure 2-2. modules sizes distribution. 
 

 

2.2.2 Modules’ topology  

The set of pairs includes 137,889 possible triplets (s,t,t’) where (s,t) and (s,t’) are association 

pairs. Focusing on co-associated pairs of transcripts, we find that for 129,130 of these triplets, 

association for at least one of the pairs, (s,t) remains significant (P<0.05) even upon conditioning 

on the transcript level of t’  (see Materials and Methods section 2.4.5). These triplets are further 

sub-divided into the 101,762 ‘bi-directional’ triplets versus the remaining 27,368 ‘uni-

directional’ (for definitions see Materials and Methods section 2.4.5).  

 

We describe independence of associations in each module M as a graph G(M) (see Materials and 

Methods section 2.4.5), when examining the topology of the modules, we notice that for most 

modules, nearly all association pairs are mutually independent (Figure 2-3 and Figure 2-4). 



 

 

Furthermore, considering all possible pairs of transcrip

were connected by edges is 87.7% (averaged 

significantly more than those found in permuted data 

both bi-directional (average 79.4%, SD 18.9% versus 

directional edges (average 8.3%; SD 6.3% versus 

compared with permuted data (Figure 2

expression levels of most transcripts in its 

manner. This also addresses concerns of 

expressed genes rather than truly independent association 

 
 
 

 
Figure 2-3. The distribution of the number of modules with different fractions of edges. 
This figure shows the distribution of 
edges represented in pink, purple and gray, respectively in each one of the 518 large modules.

 

 

possible pairs of transcripts in a module, the fraction of 

ted by edges is 87.7% (averaged across all modules; SD 13.3%). This is 

those found in permuted data (average 12.5%; SD 6.2%). Specifically, 

directional (average 79.4%, SD 18.9% versus average 2.3%; SD 3.1%), as well as 

s (average 8.3%; SD 6.3% versus 10.2%; SD 5.2%) are enriched in real 

Figure 2-3). This is consistent with the main SNP

most transcripts in its module in a simultaneous rather than a cascaded 

This also addresses concerns of artifactual modules that are possibly just clusters of 

n truly independent association to the main SNP. 

The distribution of the number of modules with different fractions of edges. 
This figure shows the distribution of the number of modules with different fractions of uni, bi
edges represented in pink, purple and gray, respectively in each one of the 518 large modules.
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The distribution of the number of modules with different fractions of edges.  
with different fractions of uni, bi- and all 

edges represented in pink, purple and gray, respectively in each one of the 518 large modules.  
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Figure 2-4. The average fraction of edges.                                                                                              
Sum of directed and bidirectional out of all possible edges, for 518 modules with 10 or more transcripts in 
100 permutations.  

 

2.2.3 Module’s score and filtering 

To establish a measure of confidence in the resulting modules, we assign a score to each module, 

considering the module size and the strength of associations between the main SNP and each of 

the transcripts in the module. This score is justified as a log-likelihood-ratio that compares two 

hypotheses (see Materials and Methods section 2.4.3). We provide an empirical P-value 

interpretation by scaling the scores of modules in the real data, compared with the average score 

of the modules in permutations. We further prune the large modules, defining a subset of 114 

high confidence modules with FDR<0.02 (Figure 2-5). 
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Figure 2-5. Scaling score for modules.                                                                                              
For 518 modules with more than 10 transcripts. The red line indicates the FDR threshold of 0.02. 

 

We notice that in most of the modules there are few transcripts that are expressed in an opposite 

direction to the majority of transcripts in the module. This suggests that the main SNP affects the 

majority of transcripts in the same direction. We verify this observation by quantifying the 

percentage of positive and negative correlation of the main SNP with the transcripts in each 

module (Figure 2-6). 
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Figure 2-6. Direction of effect the main SNP has on transcripts in the module.                                                                                             
The distribution of the number of modules with different fractions of positively (blue) and negatively 
(red) correlated transcript levels to the main SNP for each one of the 114 modules. 

 

2.2.4 Cis/trans-effects 

Some of the previous studies have optimized power to detect cis-regulatory variation by using 

different P-value threshold for defining cis eSNPs [49], based on strong priors in their favor [17]. 

Here, we set a fixed threshold of 10-5 for both cis, and trans association, putting them on equal 

footing for the detection of modules. 

 

There are 110 modules with trans main SNP, the remaining 4 modules have cis main SNP (see 

Materials and Methods section 2.4.6 for definitions). We systematically sought potential cis-

effects of main SNPs that were not strong enough to be captured by our first-pass analysis. To 

examine this, we record the gene closest (see Materials and Methods section 2.4.6) to each main 

SNP. In two modules, the main SNPs did not have a close gene from our data. The main SNPs of 

the remaining 112 modules have 94 unique closest genes, which we call ‘main genes’. Out of all 

main SNPs, 88 are at least 1Mb apart from one another (see Materials and Methods section 2.4.7 



21 
 

 
 

for additional details). We record the P-value for the linear regression between each main SNP 

and the expression levels of its closest gene. In total, 24 main SNPs were nominally (P<0.05) cis 

associated to their respective closest gene, with 14 unique associated genes (P=1.76×10-4, see 

Materials and Methods section 2.4.8) and with 10 unique associated SNPs that are at least 1Mb 

apart from one another (P=8.1×10-3, see Materials and Methods section 2.4.8). These main SNPs 

are trans main SNPs. These results support our suggested trans-effect model. 

 

2.2.5 Independent cross validation by similar annotations from two sources of information 

and phenotypic analysis 

 

We characterized high confidence modules by considering two sources of information: 

(i) the enrichment of transcripts in a module for membership in gene-sets from the Gene 

Ontology [60], NCBI Gene and KEGG [59] databases. 

Of the 114 modules, 26 (22.8%) were reported as enriched in any category. This contrasts with 

modules in 100 permuted data sets, where 12.8±2.7% of the modules show any functional 

enrichment (Figure 2-7) and  

(ii) locus annotation of the main and secondary SNPs of each module, as reflected in the existing 

literature, Ensembl [61] and wikigenes [62].  

These sources are independent for modules with trans main SNP. We observe similar 

annotations of modules from the two sources of information. This independent cross validation 

provides support for our methodology. 

Additional support comes from intersecting the 94 main loci with the 2,626 unique genes (2,212 

among the 18,873 transcripts available for analysis in this work) reported to house GWAS SNPs 
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[16]. We find an overlap of 21 genes (hypergeometric P=1.1×10-3). We discard 19 modules 

whose set of transcripts have a 90% overlap with other modules, resulting in 95 distinct modules 

(see Materials and Methods section 2.4.7 and Tables 2-1a and 2-1b for full listing of all 95 

modules). We present details of the annotation analysis for three modules: the largest with an 

annotated cis-SNP, and two of the four largest modules overall. 

 

 

 
Figure 2-7. The percentage of enriched (large) modules in real data compared to 100 permuted 
datasets. 
 
Table 2-1. Modules’ annotations (separate file). 
File: Table5a-Filtered_modules_GO_enrichment.xlsx. 95 modules full information: module number 
(decreasing size), #transcripts and Entrez IDs, (a) transcripts' enrichment, main SNP number and position 
(a) Closest gene to main SNP: name, position and description, secondary SNPs and number of correlated 
transcripts (a) Closest gene to secondary SNP: name, position and description and the fraction of edges. 
We indicate the enrichment of the big module when other modules are included within it. Biological 
information regarding transcripts, was extracted from genecards [62]. SNPs locations were extracted from 
Ensebml [61]. We represent a group of similar modules by one module that is highly enriched in gene 
sets. We denote the Entrez Ids, main SNP and fraction of edges for all similar modules in the group.  
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2.2.6 Comparison with standard approach to module construction 

 

We implemented the standard approach of grouping genes according to their associated SNP. We 

used a standard, stricter FDR cutoff of 10% for association–pairs [52]. We show this approach to 

produce fewer modules, smaller modules, limiting its use for finding modules. Moreover, our 

approach finds modules that are more enriched for functional annotation categories, compared 

with the standard approach, supporting our modules being genuine.  

 

Specifically, the standard approach produced 22,015 association pairs, 3,387 modules, 75 with 

10 transcripts or more (Figure 2-8). The largest module has 27 transcripts. We examine the 

enrichment of these modules in GO categories and KEGG pathways: 4 out of the 75 modules had 

significant biological enrichment in at least one category (5.3% comparing with 22.8% 

functional enrichment in our modules). 

 

Support for modules filtering step: All four modules that were found by the standard method and 

were functionally enriched are contained in one of our final 95 modules. This provides a support 

for our module scoring and filtering step. 
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Figure 2-8. Modules sizes distribution using the standard approach for modules 
reconstruction. 
 

2.2.7 Analysis of specific modules 

We present a positive control for our method using module #29 with 16 transcripts and cis main 

SNP. The main SNP rs9267658 partitions the samples into three groups: 277 samples that are 

homozygous C (C/C), 89 C/T samples and 5 T/T samples. The secondary SNP for the C/T 

subgroup of samples is rs4902609 and is associated with eight transcripts. This module is 

enriched for Major histocompatibility Complex (MHC) genes (FDR 0.0049), with related 

annotation for relevant KEGG pathways (allograft rejection—FDR 0.0046, antigen processing 

and presentation—FDR 0.0041, cell adhesion molecules—FDR 0.0088) and autoimmune 

diseases (graft-versus-host disease—FDR 0.0027, type I diabetes mellitus—FDR 0.0021, thyroid 

disease—FDR 0.0023, viral myocarditis—FDR 0.0036 and asthma— FDR 0.045). The main 

SNP resides within the MHC region [63]. The module includes three transcripts in cis to the 

main SNP that play a central role in the immune system: HLA-DRB5, HLA-DRB4 are MHC 



 

 

class II and HLA-G is MHC class I.

suppressor gene, whose trans-association 

on links between autoimmunity and cancer 

 

Figure 2-9. Module of size 16 transcripts and their expression levels over 371 samples. 
The heatmap of expression levels (red/black/green) across samples (columns) and genes (rows) is 
segmented (top) into SNP– genotype splits
minor alleles, respectively. Closest genes to the main and secondary SNP are listed.
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Figure 2-10. The largest module of 91 transcripts and their expression 
See Figure 2-9 legend for further details. 

 

Since mutations in TLR4 are associated with liver 

association to drug sensitivity. Data for li

SNP rs10818053 and liver risk in 371 samples are de

presented by Schadt et al. [52] for liver risk, are 

 

with 26 transcripts and is within the span of LRP2. Secondary SNP rs2122013 for the T/C 

associated with 35 transcripts and is closest to MTX2 gene (Figure 2

lipoprotein that is also involved in the cellular uptake of drugs, including lipid-based 

olved in the import of proteins into the mitochondrion 

to the effect of drugs on lipid metabolism [68] and the possible role of the 

hondrion in such pathways [69].  

10. The largest module of 91 transcripts and their expression levels over 371 samples.
9 legend for further details.  

are associated with liver damage, we investigate the main SNP’

ivity. Data for liver risk in the 371 samples [52], genotype of th

risk in 371 samples are detailed in Table 2-2. The clinical 

for liver risk, are binary entries describing (according to 

26 

2122013 for the T/C 

(Figure 2-10). LRP2 is a 

based 

into the mitochondrion [62]. This 

possible role of the 

 

levels over 371 samples.  

damage, we investigate the main SNP’s 

, genotype of the main 

. The clinical data 

binary entries describing (according to 



27 
 

 
 

clinicians’ diagnosis) if there is a risk to the patient’s liver if treated by drugs. We present 

preliminary analysis showing that these minor–minor and major–minor allele samples are 

enriched for liver risk more than is expected by chance (Hypergeometric P<0.012) which implies 

that individuals carrying C/C or T/C alleles in the main SNP’s locus may be prone to liver 

sensitivity for drug treatment. This analysis provides the first support for our method from non-

expression traits. 

 
 
 
rs10818053 
genotype 

Minor–minor C/C Major–minor T/C Major–major T/T Total no.  
of samples 

Liver risk 
Positive 2 13 39 54 
Negative 1 52 264 317 
Total no.  
of samples 

3 65 303 371 

 
 
Table 2-2. Data for liver risk in 371 samples.  
Separated by minor– minor, major–minor and major–major allele samples, respectively and genotype of 
rs10818053. 

 

Module #4 has 50 transcripts. The main SNP rs1477511 partitions the samples into 288 T/T 

samples, 76 T/G samples and 7 G/G samples. The secondary SNPs are rs6464842 for the first 

subgroup and rs861508 for the second subgroup and are associated with 7 and 9 transcripts, 

respectively (Figure 2-11). This module is enriched in transcripts that regulate cellular (FDR 

0.0036) and metabolic processes (FDR 0.013), specifically cell proliferation and differentiation 

(FDR 5.2×10-5). It is enriched for ErbB (FDR 1.5×10-3) and Mitogen activated protein kinase 

(MAPK) signaling pathways (FDR 5.2×10-3). The closest gene to the main SNP, STK11IP 

interacts with LKB1 which regulates cell polarity and functions as a tumor suppressor [62]. 

LKB1 is a serine/threonine kinase which is inactivated by mutation in the Peutz– Jeghers 
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Figure 2-11. Module of size 50 transcripts and their expression levels over 371 samples
See Figure 2-9 legend for further details. 

 

 

 

polyposis and cancer predisposition syndrome (PJS) [70], with correlation to the putative 

the module. We observe a significant P-value (<0.031) between the expression 

of rs1477511. Mutations in CNTNAP2, where rs6464842

have been implicated in multiple neurodevelopmental disorders, including attention deficit 

(ADHD) and schizophrenia. With correlation to CNTNAP2 function, the 

was suggested to impair working memory and executive functions that are 

affected in schizophrenia, ADHD and other psychiatric disorders [71]. SPANXC which is the
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transcripts and their expression levels over 371 samples
9 legend for further details.  
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Finally, we present a second support for our method from non-expression traits. Module #101 

with 10 transcripts is the only module where the main SNP maps to a locus associated with 

oxidative damage control: rs1453226 at OXR1 indicated to be involved in protection from 

oxidative damage [62]. The transcripts in this module are slightly enriched for oxoacid metabolic 

process (FDR 0.04). Therefore, we decided to investigate its association to alcohol risk. Data for 

alcohol risk in the 371 samples [52], genotype of the main SNP rs1453226 and alcohol risk in 

minor–minor allele samples are detailed in Table 2-3. It is challenging to provide clinical 

support, since the clinical data presented by Schadt et al. [52] is very sparse. We present 

preliminary analysis showing that these samples are enriched for alcohol risk more than is 

expected by chance (Hypergeometric P<0.03483), which implies that individuals carrying A/A 

alleles in the main SNP’s locus may be prone to sensitivity for alcohol use. 

 

rs1453226 
genotype 

Minor–minor A/A Major–major G/G 
and Major–minor G/A 

Total no.  
of samples 

Alcohol risk 
Positive 4 15 19 
Negative 4 93 97 
Unknown 28 227 255 
Total no.  
of samples 

36 335–195 and 140, 
respectively 

371 

 
 
Table 2-3. Data for alcohol risk in the 371 samples.  
Genotype of rs1453226 and alcohol risk in minor–minor allele samples.  
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2.3 Discussion 

We presented a three-step approach to the analysis of eSNPs and their relation to phenotypes that 

goes beyond documenting associations of each to expression levels, by applying a module score 

filtering procedure, and complements co-expression networks by unraveling module topology. 

As a first step, we assemble transcripts associated to the same main eSNP into the modules. We 

then filter the reported modules by a confidence score, and finally associate subgroups of 

transcripts within a module with additional variants conditioned on the genotype of the main 

SNP. 

 

We apply our method to data on human liver expression and SNP genotypes [52]. We find that 

the number of association pairs of eSNP and transcript is consistent with the null expectation, 

whereas assembled modules are significantly more numerous, bigger and denser than those 

observed in the permuted data. This indicates modules are not random clusters of correlated-

expression genes, but rather show truly independent association to their main SNP. We compare 

our results with a standard approach that maps transcript-eQTL pairs with a standard FDR (e.g. 

10%) and forms groups consisting of transcripts that share an eQTL. We observe smaller number 

of modules, smaller in size and significantly less enriched in Biological categories.  

 

Our method detects 95 distinct modules; out of those, only one has a main SNP in cis to module 

transcripts. Among the remaining 94 trans main eSNPs, we observe enrichment for milder, not 

genome-wide significant cis-effects that explain the trans-effect of the main SNPs on transcripts 

in the associated modules. We characterize modules by two sources of information that are 

independent for modules with a trans main SNP: enrichment in subsets of genes and locus 
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annotation of the main and secondary SNPs. We observe similar annotations from both sources 

of information. Thus, providing support for our method. We present detailed analysis of four 

modules: annotation analysis for three of the four modules: one with a cis main SNP and two 

with trans main SNPs, and phenotypic analysis for two of the four modules.  

 

This study holds the promise for extension beyond its current limitations. The current analysis 

focuses on transcripts that are directly regulated by a variant. Mining the data for additional 

transcripts that are downstream along the same pathway of regulation, e.g. by consideration of 

co-expressed genes with milder association to the main SNP can complement reverse 

engineering of the regulatory program [50]. Furthermore, both the raw data sets [52] and 

supporting databases [59-61] in this work are noisy and limited. Potential increase in sample size 

for eQTL data may enable detection of eSNP associations at more significant P-values for even 

milder effects. Likewise, as the functional annotation continues to build up, better understanding 

of modules would be facilitated. 

 

Future studies could extend the approach presented here to investigate how modules correlate 

with phenotype, for example, using the data on enzymatic activity that was presented by Yang et 

al. [55]. As data becomes available, comparison of modular structure between healthy and 

affected samples, as well as across different tissue types is likely to improve understanding of 

disease and developmental regulatory processes. It remains a significant challenge to validate the 

results presented here by experimental means, and analysis of independent data may provide 

such validation by replication. 
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2.4 Materials and Methods 

2.4.1 Data details and processing 

The DeLiver data set by Merck had been described elsewhere [52]. Briefly, the raw data set 

consists of 653,894 SNPs and 25,917 expression probes (log-transformed values) with an Entrez 

gene ID assayed for 385 samples. We remove 99 expression probes that are mapped to the Y 

chromosome. Multiple probes that are mapped to the same gene had been averaged if correlated 

(r>0.75) or discarded otherwise, resulting in 18,883 genes with unique Entrez IDs. 5,055 genes 

had variable levels of liver expression across the individuals (SD>0.2). Standard filters have 

been applied to the SNP data: Minor allele frequency>0.05, SNP missingness rate <0.1 and 

individual missingness rate <0.1 [74]. After filtering, the data for analysis consists of 371 

samples (200 males, 171 females) with 557,456 SNPs and 5,055 genes. 

 

For each individual i, we denote the expression levels of each transcript t by X(i,t), and the 

genotype for each SNP s by G(i,s). 

2.4.2 Step 1—nominal association testing 

We test for association between pairs (s,t) of any SNP s and transcript t using linear regression 

and record the results between every (s,t) pair with nominal P<10-5. To eliminate transcripts 

whose association statistic is strongly distorted, we repeated the analysis 1,000 times with 

permuted data, obtained by randomly switching the samples’ labels, discarding recurrently 

observed transcripts as follows. A small fraction of observed association pairs tend to recur in 

permuted data sets more than expected (Table 2-4). Specifically, 2,979 of the observed 

association pairs detected in the real data appear exactly once in the 1,000 permuted data sets 
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(<676 expected), and 520 recur twice (<7 expected). This suggests a bias in the test statistic for 

these pairs, and we discard all 623 pairs that appear in two permutations or more from 

subsequent analysis. 

#permutations Number of pairs Expected #permutations 
1 2,979 < 676 
2 520 < 7 
3 87 < 1 
4 14 < 1 
5 2 < 1 
 

Table 2-4. Distribution of observed and expected association pairs in 1000 permutations. 
 
 

When considering association pairs detected in the real and permuted data, we note that over 

dispersion of the test-statistic exists in both. In the real data, 10-4.61 of (s,t) pairs attain a test 

statistic theoretically corresponding to a P=10-5 (Figure 2-12), whereas in the 100 permutations 

using all SNPs in the data, only 10-4.65 of such pairs attain this level. We use the nominal P=10-5 

as a threshold, keeping in mind that this P-value is not genome-wide significant, and 69,172 

random association pairs are expected to pass this threshold by chance alone. This justifies the 

use of such a threshold, as our methodology relies on having a variety of association pairs, that 

only when cross-compared across transcripts would yield a meaningful result. 
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Figure 2-12. QQ plot for association pairs in real data.  
X-axis denotes -log 10 of the expected p-value. Y-axis denotes -log10 of the observed p-value which 
represent 100 transcripts that were sampled randomly, and 1/100 of each p-value range was sampled. 
Also, out of all p-values better than 10-5, 1/100 were sampled randomly. 

 

2.4.3 Step 2—module construction, scoring and filtering  

The putatively associated transcripts are binned by their SNP s, each bin hereby referred to as a 

module. This associated SNP s is denoted as the ‘main’ SNP. We consider each module in turn. 

Let M be a module of size k, with a set of transcripts {t1, . . . .,tk} and a main SNP s. For each 

transcript ti we consider the P-value denoted Pval(ti) of the association test between the main 

SNP s and its expression level. We compute the empirical false positive rate (EFPR) for each 

such P-value by permutation: We use 100 permutations to tally the average number of P-values 

better than Pval(ti) across the permuted data sets divided by the analogous number in the real 

data. This ratio is the EFPR corresponding to Pval(ti). We follow a similar procedure to calculate 

the analogous ratio for module size k: EFPR(k) is defined as the ratio of the average number of 
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modules with size bigger than k across the permuted data sets and the analogous number in the 

real data. The score S(M) of the module M 

���� � � � �	
�EFPR����������� �log�EFPR����
�

���
 

is justified as a log-likelihood-ratio that compares two hypotheses 
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H0 denotes the null hypothesis that a module size and the strength of associations within the 

module follow the same distribution in the real and permuted data. H1 denotes the alternative 

hypothesis, i.e. that a module size in the real data would be larger than in the permuted data, as 

well as the strength of the associations within it. 

In order to assign significance to the obtained scores, we again use 100 permutations. We score 

each of the modules in the permuted data sets against the other 99 (a ‘leave one out’ procedure) 

in a similar process to the one described for computing the scores of modules in the real data. We 

thereby provide an empirical P-value interpretation by scaling the scores of modules in the real 

data, compared with the average score of modules in permutations, i.e. the true positive rate 

(TPR) of the score of a module. 
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2.4.4 Step 3—finding secondary SNPs 

We split the samples by the genotype of the main SNP into three subsets of samples with 

genotypes AA, Aa and aa, respectively (where A and a are the major and minor alleles, 

respectively). AA and Aa are the two larger subsets of samples. In each of those two subsets, we 

then turn to find the corresponding two subset-specific SNPs that best explain the expression of 

the largest group of genes in each subset, and denote these ‘secondary’ SNPs [50, 75]. To search 

for secondary SNPs, we test each SNP for association only to the transcripts within the module, 

and only within the current subset of samples. We discard pairs of transcript and SNP in 

recurrently observed association pairs by using 1,000 permutations and removing all association 

pairs that appear in one permutation or more (empirical FDR<0.001). We consider all SNPs that 

comply with three criteria: (i) maximal-size subgroup of transcripts (with minimum of five 

transcripts), (ii) F-test for independent association of transcript pairs and (iii) minimal product of 

association P-values. More specifically: For each module, and each genotype group we first list 

all SNPs that achieve an association nominal P-value of 10-5 or better with a large subgroup of 

transcripts (five transcripts or more). We consider only those whose subgroup is maximal as 

candidate secondary SNPs. We test all possible pairs of transcripts in the subgroup for 

conditional association (see Materials and Methods section 2.4.5), and discard a candidate 

secondary SNP if any pair fails the test. Out of this list, we seek the SNP with the minimal 

product of association P-values with its subgroup of transcripts. These steps control for false 

discovery, because the phenomena of big and edge dense modules does not exist in permutations. 
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2.4.5 Analysis of dependencies within modules 

For each module, we consider all possible ordered triplets (t,t’,s) of two transcripts t, t’  whose 

levels are significantly associated with the same main SNP s. We define bi-directional triplets 

where association is mutually independent, i.e. for both association pairs remain nominally 

significant given the respective other transcript versus ‘uni-directional’ triplets where association 

is directionally independent (Figure 2-13a). Formally, we test whether the association model 

provides significantly better fit to the data than the null model. 

Null Model:   2��, �� � 4% 5 4� · 2��, �6�57� 

Association Model:  2��, �� � 8% 5 8� · 2��, �6� 5 89 · :��, ;� 5 79 

We use the F-test for better fit symmetrically, attempting to explain the expression levels of 

either t by t’  or the converse, with or without genotypes (testing the significance of 89 being non-

zero coefficient would yield the same results). We describe independence of associations in each 

module M as a graph G(M), whose vertices correspond to transcripts. A directed/bidirectional 

edge connects transcripts with directionally/mutually independent association with the main SNP 

(Figure 2-13b). 



 

 

Figure 2-13. Graphical representation of 
(a) Graphical illustration of a triplet with two transc ripts 
black line represents dependent/ independent association between a SNP and a transcript, respectively. 
The uni/bi-directional pink/purple line represents an edge that connects
directionally/mutually independent association to the main SNP (i) unidirectional triplet
pair (s, t) remains significant (P<0.05) even upon conditioning on the transcript level 
versa. (ii) unidirectional triplet (s,t’) remains significant even upon
but not vice versa. (iii) bi-directional triplet (
transcript level t’  and (s, t’) remains significant even upon conditioning on the transcript level 
dependent triplet (s,t) and (s,t’) are insignificant (
t respectively.  (b) Graphical representation of intra
three transcripts: t1, t2, t3 and a main SNP 
transcripts t1 and t2, representing the mutually
s. A directed solid pink edge is placed between transcripts 
association of (s, t3) on the transcript levels of 
representing the mutually dependent

 

 

representation of modules. 
Graphical illustration of a triplet with two transc ripts t and t’  and a main SNP s

independent association between a SNP and a transcript, respectively. 
directional pink/purple line represents an edge that connects transcripts with 

directionally/mutually independent association to the main SNP (i) unidirectional triplet
<0.05) even upon conditioning on the transcript level t’ , but not vice 

) remains significant even upon conditioning on the transcript level 
directional triplet (s,t) remains significant even upon conditioning on the 
) remains significant even upon conditioning on the transcript level 

) are insignificant (P>0.05) when conditioning on the transcript level 
(b) Graphical representation of intra-module interactions. We consider a module with

and a main SNP s. A bi-directional dashed purple edge is placed between 
, representing the mutually independent association of both t1 and t2 with the main SNP 

. A directed solid pink edge is placed between transcripts t2 and t3, representing the dep
) on the transcript levels of t2. No edge is placed between transcripts 

representing the mutually dependent association of both t1 and t3 with the main SNP s. 
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s. The dashed/full 
independent association between a SNP and a transcript, respectively. 

transcripts with 
directionally/mutually independent association to the main SNP (i) unidirectional triplet—the association 

, but not vice 
conditioning on the transcript level t, 

) remains significant even upon conditioning on the 
) remains significant even upon conditioning on the transcript level t. (iv) 

when conditioning on the transcript level t’  and 
We consider a module with 

directional dashed purple edge is placed between 
with the main SNP 

dependent 
. No edge is placed between transcripts t1 and t3, 
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2.4.6 Module annotation 

The enrichment of a module in gene subsets from the Gene Ontology (GO) [60], and KEGG [59] 

databases was calculated using DAVID [76, 77]. The enrichment of real and permuted modules 

in gene subsets from the NCBI gene database was calculated using LitVAn [75]. We report only 

modules with annotations that have a significant FDR of 0.05 or better. Depending on context, 

we discuss the proximity of a gene to a SNP in several ways: A SNP may be ‘in the span of the 

gene’, i.e. the SNP resides between the ENSEMBL [61] transcription start site and stop codon of 

the gene; ‘closest to the gene’, i.e. this gene spans the closest among all spanned sites on either 

direction; or ‘close to the gene’—means the SNP is within 1Mb of a site spanned by the gene. 

We define a cis main SNP when the main SNP is within 1Mb of one or more transcripts in the 

module. We define a trans main SNP when the main SNP is 1Mb or further of all the transcripts 

in the module. 

 

2.4.7 Filtering modules using different criteria 

There are 94 main SNPs have a close gene with a unique Entrez ID and 88 main SNPs that are at 

least 1MB apart from one another (Table 2-5). We filter all modules that have minimum of 90% 

overlap with another module, resulting in 95 distinct modules (Table 2-6). 

  

Table 2-5. Distance filters and cis effects (separate file).  
File: Table2-5.xlsx. Presents for each module its serial number, rs#, size, chromosome, SNP position, # 
group according to rs location, closest gene Entrez ID – a zero entry means there is no closest gene, 
transcription start site, transcription end site, whether the SNP is located within the transcript region and 
the cis effect p-value. 

 

Table 2-6. The percentage of overlap between every two modules (separate file).  
File: Table2-6.txt. The percentage is calculated out of the number of transcripts in the smaller module.  
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2.4.8 Enrichment of cis-effects for main SNPs 

We model the examination of cis-effects for main SNPs as a binomial experiment. For each main 

SNP, we record one closest gene. Conservatively, unique genes are tested for association to 

exactly one main SNP, a binomial experiment Bin(n=number of unique genes, P=0.05) with 

significant number of successes. We then record main SNPs that are at least 1Mb apart from one 

another and test them for association to exactly one closest gene, a binomial experiment 

Bin(n=number of main SNPs that are at least 1Mb apart from one another, P=0.05) with 

significant number of successes (Table 2-5 and section 2.2.4 in Results).  
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Chapter 3: Co-regulated transcripts associated to 

cooperating eSNPs define bi-fan motifs in human 

gene networks 
 

Summary: Associations between the level of single transcripts and single corresponding genetic 

variants, eSNPs, have been extensively studied and reported. However, most expression traits are 

complex, involving the cooperative action of multiple SNPs at different loci affecting multiple 

genes. Finding these cooperating eSNPs by exhaustive search has proven to be statistically 

challenging. 

In this paper we utilized availability of sequencing data with transcriptional profiles in the same 

cohorts to identify two kinds of usual suspects: eSNPs that alter coding sequences or eSNPs 

within the span of transcription factors (TFs). We utilize a computational framework for 

considering triplets [36], each comprised of a SNP and two associated genes. We examine pairs 

of triplets with such cooperating source eSNPs that are both associated with the same pair of 

target genes. We characterize such quartets through their genomic, topological and functional 

properties. 

We establish that this regulatory structure of cooperating quartets is frequent in real data, but is 

rarely observed in permutations. eSNP sources are mostly located on different chromosomes and 

away from their targets. In the majority of quartets, SNPs affect the expression of the two gene 

targets independently of one another, suggesting a mutually independent rather than a 

directionally dependent effect. Furthermore, the directions in which the minor allele count of the 

SNP affects gene expression within quartets are consistent, so that the two source eSNPs either 

both have the same effect on the target genes or both affect one gene in the opposite direction to 

the other. Same-effect eSNPs are observed more often than expected by chance. Cooperating 

quartets reported here in a human system might correspond to bi-fans, a known network motif of 

four nodes previously described in model organisms. Overall, our analysis offers insights 

regarding the fine motif structure of human regulatory networks [22]. 
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3.1 Introduction 

Markers associated with changes in gene expression, called eSNPs have been extensively 

mapped using high throughput genomic data [1, 36, 45, 57, 71, 78-80]. They allow effectively 

delineating regulatory associations between each eSNP source and each of its regulated target 

transcripts. Taken together, these source-target links comprise a regulatory network that abstracts 

both the genes at source loci as well as their targets as nodes.  

 

Regulatory networks have been characterized as featuring specific motifs as their fundamental 

building blocks [37, 81]. These motifs occur significantly more than expected by chance and 

suggest respective functional mechanisms. Specifically, studies in model organisms highlighted 

the bi-fan motif which consists of two regulators regulating two genes as having a functional 

role, e.g. of a filter and synchronizer of feedback loop signals [37, 82]. While previously studied 

networks are often derived from TF-DNA or protein-protein binding experiments, this work 

utilizes genetics-genomics data to study the bi-fan motif across a human regulatory network. 

 

Model organisms, amenable to pervasive experimental methods, suggest regulatory networks to 

commonly include structures more complex than single SNP – single gene links, e.g. mapping 

genetic interactions in yeast [83, 84]. In humans, where experimental approaches are more 

limited, eSNPs provide natural perturbations that inform us of similar regulatory links and 

systems. Concerted analysis of a multitude of eSNPs allows better understanding of the 

interactions that establish their network structure. Statistically, epistatic interaction is defined as 

the deviation from additivity in a linear model involving two or more loci [85, 86]. 
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Unfortunately, finding such association signal for statistical interaction between a pair of SNPs 

in even a single phenotype has proven computationally difficult [84, 87-89]. Association analysis 

across all pairs of SNPs vs. all transcripts exacerbates this tractability problem. 

 

While structures of multiple eSNPs to one transcript offer one lens for genetic-genomic analysis, 

a complementary perspective is provided by regulatory modules, where a single eSNP is 

associated to multiple genes [4, 9, 36]. Modularity of gene regulatory networks was shown to be 

a major organizing principle of biological systems [44], with modules often defining functional 

units of a biological network: each such units consists of a set of elements (e.g. genes) working 

jointly to perform a distinct function. 

 

Analysis of single eSNP-single transcript interactions indicates that variation in genomic DNA 

can affect transcription in multiple ways. Level of transcripts in cis of an eSNP may be altered 

due to allelic variation in cis-regulatory elements [90], while trans association can, for example, 

be the result of an eSNP in a transcription factor that regulates the expression of its distal targets 

transcripts. Associations in cis are easier to detect because of favorable testing burden. 

Unfortunately, such associations are limited in their capacity to inform us regarding the network 

of regulatory interactions between one gene and another, as both the eSNP and the transcript are 

from the same locus. In contrast, trans eSNPs can identify downstream effects and previously 

un-annotated regulatory pathways. Moreover, when considering independent association 

between more than a single eSNP and more than a single gene, the genomic distances between 

eSNP sources and their gene targets require special attention. In the case of examining a pair of 

proximal eSNPs, their frequent co-inheritance would induce statistical dependence (linkage 
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disequilibrium) between them. Thus, for most independent pairs of eSNPs that cooperate in 

regulating the same transcript, at least one of them will have a trans effect.  

 

In our previous work [36], we studied eSNPs associated with simplest modular unit of two 

transcripts, together creating a triplet. We focus on mutually independent triplets, whereby the 

eSNP association with either of the two transcript remains nominally significant given the 

respective other transcript, as well as and directionally independent triplets, where only one of 

these association signals remains nominally significant given the level  of the other transcript. 

We established the occurrence of such triplets in real data significantly more than expected by 

chance.  

 

In this study, we devise a computational framework for examining pairs of triplets that share the 

same associated two genes. We hypothesize that such eSNP-transcript quartets will highlight 

true eSNP associations, and demonstrate that by analyzing their distinct topological and 

functional properties. These properties differ significantly from those of spurious quartets with 

candidate association signals. Moreover, we replicated those properties in an independent dataset 

with a larger number of samples [1], supporting the robustness of our findings. In particular, the 

two eSNPs in a quartet tend to have independent, but consistent effect on the pair of genes they 

co-regulate.  
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3.2 Results 

3.2.1 Computational framework for associating pairs of SNPs with pairs of genes 

Definition and discovery of quartets 

We used a publicly available classic dataset of 50 fully sequenced Yoruban samples [91]  along 

with their transcription profiles from RNA-seq data [40], bearing in mind that such available 

cohorts are limited in size. Due to this small sample size, we have limited power in detecting 

association. Therefore, most candidate eSNPs can only be designated as such with various levels 

of uncertainty. We demonstrate the ability to recapitulate the observed phenomena in a larger 

dataset [1] using the same method. 

We evaluated two categories of candidate eSNPs that reside within regions along the genome 

with known regulatory potential, i.e., within the span of known exons and TFs (including 

introns) (Figure 3-1; see Materials and Methods section 3.4.2). These eSNPs can be associated 

with the expression of both local and distal genes. We consider all mutually independent and 

directionally independent triplets (Figure 3-2a, see [36] for details). Going beyond the 

associations of a single eSNP source requires the examination of pairs of triplets that share the 

same target transcripts. We call this arrangement a quartet (Figure 3-2b). We aim to study 

quartets with cooperating eSNP sources, i.e. SNPs that carry independent information towards 

predicting the level of each one of the two transcripts, and no third intermediate SNP can explain 

the expression to either gene better (Figure 3-2c; see Materials and Methods section 3.4.4). We 

note that such cooperating quartets may overlap in their genes, introducing double-counting of 

the same effect in different quartets. To ensure our analysis involves quartets with distinct 

targets, we filtered this set of cooperating quartets further and focused on the quartets that have 



 

 

two unique gene targets. In this workflow, no post

as any other (Figure 3-2c). 

Figure 3-1. Association testing. 
Illustrating the association testing between pairs of 
the regulatory element has a SNP within the boundaries of an exon or a TF then we check for association 
(P < 10-4 denoted by a red edge) using linear regression between the minor allele count of the SNP an
any gene. 

 

two unique gene targets. In this workflow, no post-filter quartet has the same pair of gene targets 

Illustrating the association testing between pairs of SNPs within known regulatory region
the regulatory element has a SNP within the boundaries of an exon or a TF then we check for association 

denoted by a red edge) using linear regression between the minor allele count of the SNP an
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filter quartet has the same pair of gene targets 

 

SNPs within known regulatory regions and genes. If 
the regulatory element has a SNP within the boundaries of an exon or a TF then we check for association 

denoted by a red edge) using linear regression between the minor allele count of the SNP and 



 

 

Figure 3-2. A diagram explaining the framework for creating and filtering quartets.
(a) We include mutually independent and directionally dependent triplets. A solid line represents mutually 
independent association. A dashed line represents directionally independent association.   (b) Quartets are 
assembled from triplets in (a) with the s
two directionally independent triplets (red underline), two mutually independent triplets or one 
directionally independent triplet and one mutually independent triplet. (c) We filter the quart
three criteria: (1) Restricting our analysis to quartets with cooperating eSNPs sources, i.e., SNPs that 
carry independent information towards predicting the expression of each one of the two genes. (2) 
Removing quartets where a third intermediat
(3) Focus on quartets that have two unique gene targets, i.e., after filtering, no quartet has the same pair of 
gene targets. 

 

 

 

 

. A diagram explaining the framework for creating and filtering quartets.
(a) We include mutually independent and directionally dependent triplets. A solid line represents mutually 
independent association. A dashed line represents directionally independent association.   (b) Quartets are 
assembled from triplets in (a) with the same associated gene targets. Quartets are assembled either from 
two directionally independent triplets (red underline), two mutually independent triplets or one 
directionally independent triplet and one mutually independent triplet. (c) We filter the quart
three criteria: (1) Restricting our analysis to quartets with cooperating eSNPs sources, i.e., SNPs that 
carry independent information towards predicting the expression of each one of the two genes. (2) 
Removing quartets where a third intermediate SNP can explain the expression to either transcript better. 
(3) Focus on quartets that have two unique gene targets, i.e., after filtering, no quartet has the same pair of 
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. A diagram explaining the framework for creating and filtering quartets.  
(a) We include mutually independent and directionally dependent triplets. A solid line represents mutually 
independent association. A dashed line represents directionally independent association.   (b) Quartets are 

ame associated gene targets. Quartets are assembled either from 
two directionally independent triplets (red underline), two mutually independent triplets or one 
directionally independent triplet and one mutually independent triplet. (c) We filter the quartets using 
three criteria: (1) Restricting our analysis to quartets with cooperating eSNPs sources, i.e., SNPs that 
carry independent information towards predicting the expression of each one of the two genes. (2) 

e SNP can explain the expression to either transcript better. 
(3) Focus on quartets that have two unique gene targets, i.e., after filtering, no quartet has the same pair of 
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Evidence for the validity of quartets 

We choose an association testing threshold of 10-4 (Figure 3-3) by the number of quartets 

produced, aiming at FDR < 5% when comparing to the number of quartets in permutations. We 

examined the number of triplets in real data vs. 100 permuted data sets where sample labels had 

been switched. In permuted data sets, an average number of 33,329 triplets exceeded association 

p-value threshold of 10-4 (Figure 3-4). We therefore considered a comparable set of triplets, the 

same number of top results in real data, which corresponded to an association p-value threshold 

of 10-4.52 (Figure 3-4).  This step creates an equal starting point for permuted vs. real datasets 

when approaching further analysis. We next examined the number of quartets formed by such 

triplets in real vs. permuted datasets. We observe that the number of 47,006 quartets in real data 

is consistent with chance expectations (empirical p-value = 0.07, Figure 3-5). Out of 47,006 

quartets, there are 4,009 quartets with unique gene targets. 

 

 
Figure 3-3. Histogram of the number of association pairs in 100 permutations for a p-value cutoff 
10-4.  
The red line indicates this number in the real data. 
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Figure 3-4. Histogram of the number of triplets in 100 permutations, at association p-value of 10-4. 
The red line indicates the observed number of triplets in real data at association p-value 10-4.52. 

 
 

 

Figure 3-5. Histogram of the number of quartets in 100 permutations, at association p-value of 10-4. 
The red line indicates the observed number of quartets in real data at association p-value 10-4.52. 
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Interestingly, when examining cooperating quartets, we observe 374 such quartets in real data 

(0.8%) comparing to a mean of 19.18 in permutations (0.063% out of a mean of 30,250 quartets) 

(Figure 3-6). These results establish that the regulatory structure of cooperating quartets is nearly 

exclusive to real data, as it is rarely emerges in permutations. Out of 374 cooperating quartets 

with cooperating eSNP sources we focus on the 82 quartets that have two unique gene targets 

(Table 3-1). These include 2.05% of the total of 4,009 quartets with unique gene targets. Such 

unique cooperating quartets are more common in real data than in permuted data both in absolute 

number as well as in their relative fraction: permutations include only 3.71 such quartets on 

average (empirical FDR < 5% , Figure 3-7) 0.097% of an average of 3,819 quartets with unique 

gene targets. 

 

 

Figure 3-6. Histogram of the number of filtered quartets in 100 permutations, at association p-value 
of 10-4.  
The red line indicates the observed number of filtered quartets in real data at association p-value 10-4.52. 
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Table 3-1. A comprehensive description of 82 cooperating quartets (separate file).  
File Table3-1.xls 3000000000 correspond to different chromosomes. 

 

 
Figure 3-7. Histogram of the number of filtered quartets with unique gene targets in 100 
permutations.  
The red line indicates the observed number of filtered quartets with unique gene targets in real data 
(empirical FDR < 5%). 

 

Cooperating quartets are a motif of the human regulatory network analogous to the bi-fan motif 

found in e.coli [37, 82]. We set out to characterize these cooperating quartets and study their 

functional, genomic and topological properties. In the next section we compare such quartet 

properties to permuted data, highlighting the quartets observed in real data as a true 

phenomenon, as opposed to quartets observed by chance.  
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Quartets in real data have distinct properties 

Since the number of quartets in each permutation is low (Figure 3-7), we combine all quartets 

across all permutations and treat them as a “permuted set” of 342 quartets. From this point we 

compare the 82 quartets in real data vs. those in the permuted set to uncover properties that are 

unique to real structures.  

 

3.2.2 Distribution of genomic properties of eSNP sources and their gene targets 

We first record genomic annotation categories of eSNP sources (Figure 3-8). eSNP sources tend 

to be one in exon and one in TF (Figure 3-8a upper panel; Fisher’s exact p < 1.9×10-8 compared 

to the permuted set, see Figure 3-8a lower panel), or both in exons (Fisher’s exact p < 0.013 

compared to permuted set). We notice that most eSNP sources are located on different 

chromosomes (74% Figure 3-8b upper panel). For comparison, there are only 3.8% of eSNP 

sources on different chromosomes in the permuted set (13 out of 342; Figure 3-8b lower panel). 

An eSNP is said to be in cis of a target if it resides within the span of the target, and in trans 

otherwise. We characterize the cis/trans regulation of the four pairs of eSNP sources and their 

gene targets in each quartet by binning quartet data into three cis/trans categories: (1) two cis 

relationships (2) one cis relationship (3) two trans relationships. We notice that only a fraction of 

quartets involves cis regulation (Figure 3-8c upper panel), compared to none in the permuted set 

(Figure 3-8c lower panel). The target genes are located mostly (83%) on different chromosomes 

which is consistent with empirical expectation based on permutation. They are observed to be 

co-expressed significantly (P < 4×10-11) more often than in real data when comparing the 

absolute value of the correlation coefficient.  



 

 

These results highlight unique properties of cooperating eSNPs

transcripts. Specifically, we show that pairs of eSNP sources are located on different 

chromosomes.  

Figure 3-8. Distribution of genomic properties of eSNP sources.
Upper panel: real data. Lower panel: permuted data.
location (c) distances between them and their targets. An eSNP is said to be 
span of the target gene and in trans 

 

3.2.3 Characterizing dependencies within cooperating 

We examine the dependency across association signals for each quartet source, i.e., whether the 

effect is mutually independent or directionally dependent. Dependencies within a quartet are 

therefore either (1) pair of mutually independent associa

association and one mutually independent association, or (3) a pair of directionally dependent 

associations. We observe that 82% (67 out of 82) of the quartets are composed of a pair of 

mutually independent association

 

These results highlight unique properties of cooperating eSNPs and their distances from target 

transcripts. Specifically, we show that pairs of eSNP sources are located on different 

Distribution of genomic properties of eSNP sources.  
Upper panel: real data. Lower panel: permuted data. By (a) genomic annotation (b) relative genomic 
location (c) distances between them and their targets. An eSNP is said to be in cis if it resides within the 

 otherwise. 

Characterizing dependencies within cooperating quartets  

We examine the dependency across association signals for each quartet source, i.e., whether the 

effect is mutually independent or directionally dependent. Dependencies within a quartet are 

therefore either (1) pair of mutually independent associations (2) one directionally dependent 

association and one mutually independent association, or (3) a pair of directionally dependent 

associations. We observe that 82% (67 out of 82) of the quartets are composed of a pair of 

mutually independent associations (Figure 3-9a). This is significantly more than expected 

53 

and their distances from target 

transcripts. Specifically, we show that pairs of eSNP sources are located on different 

 

(a) genomic annotation (b) relative genomic 
if it resides within the 

We examine the dependency across association signals for each quartet source, i.e., whether the 

effect is mutually independent or directionally dependent. Dependencies within a quartet are 

tions (2) one directionally dependent 

association and one mutually independent association, or (3) a pair of directionally dependent 

associations. We observe that 82% (67 out of 82) of the quartets are composed of a pair of 

9a). This is significantly more than expected 



 

 

according to the permuted set, that includes mostly quartets with a pair of directionally 

dependent associations (Fisher’s exact 

eSNP sources affect the expression levels of both transcripts in a mutually independent manner 

rather than through directional dependence.

 

Figure 3-9. Dependency structures in quartets. 
In (a) real data (b) permutations. Quartets are either comprised of a pair 
association signals, one directionally dependent association and one mutually independent association, or 
a pair of directionally dependent association signals. 

 

3.2.4 Identifying direction of effect between eSNP sources and gene t

We were interested in examining the direction of SNP effects on gene expression. Within 

quartets we orient all SNP effects by using the convention of up (down) regulation to mean 

positive (negative) correlation between the number of copies of the 

expression level of the associated gene. Out of the 2

theoretically possible between two sources and two targets, we observe only eight configurations 

in real data – the ones with an even number 

symmetry between the two sources, as well as the one between the two targets, highlights a sense 

 

according to the permuted set, that includes mostly quartets with a pair of directionally 

dependent associations (Fisher’s exact P < 2.3×10-35, Figure 3-9b). These results suggest that the 

ces affect the expression levels of both transcripts in a mutually independent manner 

rather than through directional dependence. 

Dependency structures in quartets.  
Quartets are either comprised of a pair of mutually independent 

association signals, one directionally dependent association and one mutually independent association, or 
a pair of directionally dependent association signals.  

Identifying direction of effect between eSNP sources and gene targets  

We were interested in examining the direction of SNP effects on gene expression. Within 

quartets we orient all SNP effects by using the convention of up (down) regulation to mean 

positive (negative) correlation between the number of copies of the minor SNP allele and the 

expression level of the associated gene. Out of the 24=16 up/down configurations that are 

theoretically possible between two sources and two targets, we observe only eight configurations 

the ones with an even number of “up” effects (Figure 3-10). Consideration of the 

symmetry between the two sources, as well as the one between the two targets, highlights a sense 

54 

according to the permuted set, that includes mostly quartets with a pair of directionally 
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We were interested in examining the direction of SNP effects on gene expression. Within 

quartets we orient all SNP effects by using the convention of up (down) regulation to mean 

minor SNP allele and the 
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theoretically possible between two sources and two targets, we observe only eight configurations 
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in which these eight categories involve 

natural to classify the categories into four pairs, each defined by two binary criteria. The first 

criterion considers whether the two source SNPs have the same directions of effect on one gene 

as they do on the other or whether directions of effect on the second g

one. The second criterion distinguishes whether the effect of one SNP on the two target genes is 

in the same direction as the effect the other SNP has on them, or whether directions of effect of 

the second SNP are opposite (Figure 3

 
Figure 3-10. Categories for direction of effect between eSNP sources and gene targets. 
The effect of a SNP on both genes can be the same (e.g., both genes upregulated) or opposite (i.e., one 
gene is upregulated and one downregulated). The 
both downregulate the gene) or opposite (i.e., one SNP upregulate the gene and the other SNP 
downregulate it). 

 

In contrast to the real data, where all quartets are consistent

quartets in the permuted set are 

 

in which these eight categories involve consistent directions of effect, as we now explain. It is 

o classify the categories into four pairs, each defined by two binary criteria. The first 

criterion considers whether the two source SNPs have the same directions of effect on one gene 

as they do on the other or whether directions of effect on the second gene are opposite to the first 

one. The second criterion distinguishes whether the effect of one SNP on the two target genes is 

in the same direction as the effect the other SNP has on them, or whether directions of effect of 

gure 3-10).  

direction of effect between eSNP sources and gene targets. 
The effect of a SNP on both genes can be the same (e.g., both genes upregulated) or opposite (i.e., one 
gene is upregulated and one downregulated). The effect of both SNPs on a gene can be the same (e.g., 
both downregulate the gene) or opposite (i.e., one SNP upregulate the gene and the other SNP 

In contrast to the real data, where all quartets are consistent (Figure 3-11a), 30% (101 of

quartets in the permuted set are inconsistent quartets (Figure 3-11b), meaning that the effects of 
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effect of both SNPs on a gene can be the same (e.g., 
both downregulate the gene) or opposite (i.e., one SNP upregulate the gene and the other SNP 

, 30% (101 of 342) of 
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the two SNPs on one of the targets go in the same direction, while their effects on the other target 

are opposite (Figure 3-12).  

We hypothesized that quartets in real data may be practically forced to be consistent due to 

correlation patterns across the expression levels of their targets. Specifically, a source SNP 

would the same (opposite) effect on both target genes due to their expression being correlated 

(anti-correlated). Indeed, we observe this pattern across all quartets in the real data but not 

always in the permuted set.  

There are a couple of statistical challenges involved in comparison of real quartets to those 

observed in permutations (see Materials and Methods section 3.4.5). When these are addresses, 

specifically by analyzing eSNPs sources from the same quartet but from different chromosomes, 

we observe them to be enriched for same-direction effects compared to their permuted set 

counterparts (Figure 3-11c and 3-11d) and the gene targets to be located on different 

chromosomes. We listed all characterizing features of cooperating quartets (Table 3-1).  



 

 

Figure 3-11. Direction of effect for eSNP
In (a) real data (b) permutations (c) 
chromosomes (d) permutations when the eSNP sources are located on different chromosomes. 
can have either the same or opposite effect on gene targets. The effect of a SNP on both genes is either the 
same or opposite.  

 

 

Direction of effect for eSNP sources association with gene targets expression
(a) real data (b) permutations (c) real data when the eSNP sources are located on different 

chromosomes (d) permutations when the eSNP sources are located on different chromosomes. 
ither the same or opposite effect on gene targets. The effect of a SNP on both genes is either the 
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sources association with gene targets expression.  
real data when the eSNP sources are located on different 

chromosomes (d) permutations when the eSNP sources are located on different chromosomes. Both SNPs 
ither the same or opposite effect on gene targets. The effect of a SNP on both genes is either the 
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Figure 3-12. All eight patterns of inconsistent quartets. 
 

3.2.4 HLA quartet  

A particularly illustrative sub-group of 7 quartets includes those with eSNP sources and gene 

targets along the MHC region of chromosome 6 (Table 3-1). This is significantly more (Fisher’s 

exact P < 0.0014) than 4 out 342 (~1%) in the permuted set. The eSNP sources collapse to 

reference alleles of rs9274634, rs1129740, rs1142334, rs9274389 and rs2808143 and non-

reference alleles of rs1130034, rs8227, rs1130116 and rs9272851 downregulating HLA-DQA1 

and HLA-DQB1 and upregulating HLA-DQA2 and HLA-DQB2. These common variants are 

shared by specific assembled sequences and are associated with co-expression of DQA1-DQB1 

and anti-correlated to DQA2-DQB2. All the genes containing eSNP sources and target genes are 

collapsed into the following four HLA genes: HLA-DQB1, HLA-DQA1, HLA-DQB2 and HLA-

DQA2 (Figure 3-13). All four genes are involved with the MHC class II receptor activity 



 

 

(enrichment FDR < 1.4·10-12), and serve as an example how quartet structures create functional 

units. 

 
 
Figure 3-13. HLA quartet.   
An example of examining eSNP sources and gene targets on the same chromosome
quartets at the HLA locus highlight a 9
and anti-correlated to DQA2-DQB2
rs1129740, rs9274634, rs9274389 and 
to rs8227, rs1130034, rs9272851 and 
edges indicate down-regulation. 

 

 

 

 

 

), and serve as an example how quartet structures create functional 

eSNP sources and gene targets on the same chromosome together
quartets at the HLA locus highlight a 9-SNP haplotype associated with co-expression of DQA1

DQB2. s1, s2, s3, s4 and s5 (yellow circles) correspond to rs2808143
and rs1142334 respectively. s6, s7, s8 and s9 (orange circles) 

and rs1130116 respectively. Red edges indicate up-regula
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3.2.5 Functional enrichment of quartets 

We perform a gene set enrichment analysis to examine if the pair of gene targets shares a GO 

category significantly more than pairs in the permuted set. In this case we observe a higher 

number of shared descriptors which is not significant in this dataset (Fisher exact p-value < 

0.14). Interestingly, when we focus the enrichment analysis on pairs of genes that harbor 

cooperating SNP sources, we observe a significant difference (Fisher exact p-value < 1.5×10-6).  

This supports our ability to detect SNPs that cooperate together to perform a joint function. We 

were intrigued to examine if our approach could be applied to understand gene regulatory 

networks underlying complex diseases. We therefore utilized the GWAS catalog [16] to find all 

genes that harbor a GWAS SNPs in our dataset. We then intersected this list with the genes that 

harbor cooperating SNPs in real data and compared to permutations. We observe a significant 

overlap of GWAS loci with at least one eSNP source, for quartets with sources that reside on 

different genes (Fisher exact p-value < 0.017). This indicates that our approach could shed light 

on regulatory circuits that are involved in complex disease. For example, in quartet #35 (Table 3-

1) eSNP sources rs16877111 and rs7925000 are on chr5 and chr11 respectively. The eSNP 

sources reside in genes CMYA5 and RPL27A which are obesity GWAS loci. The gene targets 

HIST1H1D and HIST1H2AH are part of a histone cluster on chr 6. 

 

3.2.6 Replication of quartet properties in a larger dataset 

Since our initial study was underpowered, we attempted to replicate the discovered properties of 

cooperating quartets in a larger, more recent dataset. We hypothesized that the fraction of true 

positives among signals of association to be higher is such a dataset, thereby pointing to true 

characteristics of quartets, rather than potential artifacts of false positive signals. We repeat our 
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analysis in the Geuvadis [80] dataset for each of its five populations: Utah European (CEU; 

n=91), Finnish (FIN, n=95), British (GBR; n=94), Italian (TSI; n=93) and Yoruban (YRI; n=89) 

as well as on the combined set of all European samples (n=373). We observe that the number of 

association signals achieving p-value <10-5 is enriched in true positive associations (~5 fold more 

associations than expected). Overall, we replicate all properties (Same effect of both eSNPs, 

distal regulation, eSNP sources on different chromosomes, gene targets on different 

chromosomes and consistency of quartets) that were found in the smaller dataset, most of them at 

higher frequencies (Table 3-2). This provides an additional support from an independent dataset 

to the validity of quartets and their characteristics. 

 

Pop #associ
ations 
10-5 

#expected 
association
s at 10-5 

#filtered 
quartets 

Same effect 
of both 
eSNPs (%64) 

Distal 
regulation 
(92%) 

S1 –S2 
diff chr 
(75%) 

G1-G2 
diff chr 
(83%) 

Consiste
ncy 
(100%) 

EUR 50048 
 

10287 21674 82% 78% 88% 89% 99.3% 

CEU 54232 10155 43341 99% 88% 77% 92% 99.9% 
FIN 43111 10334 16663 90% 82% 88% 84% 99.7% 
GBR 43396 10267 18398 98% 84% 92% 82% 99.9% 
TSI 44562 10251 16171 93% 86% 93% 90% 100% 
YRI 94671 14698 51115 96% 85% 87% 91% 99.9% 
 

Table 3-2: Replication of quartets’ properties in the Geuvadis dataset [1].  
For each property in the first row we indicate the percentage in the original, smaller dataset. 
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3.3 Discussion 

Discovering the building blocks of regulatory network has been an active field of research in the 

last decade [37, 92]. Specifically, the human regulatory network was the focus of a multiple 

recent studies involving diverse data types [81, 93]. In this work we devised a computational 

framework to study characteristics of cooperating quartets comprised of a pair of cooperating 

eSNP sources that reside either in exons or in the span of TFs, and a pair of associated target 

transcripts. 

Our results establish that the regulatory structure of cooperating quartets is nearly exclusive to 

real data, and exhibits unique functional, genomic and topological characteristics. Cooperating 

quartets reported here in a human system might correspond to bi-fans, a known network motif of 

four nodes, previously described in model organisms [37].  

Most cooperating quartets involve pairs of eSNP sources located on different chromosomes, 

away from their targets, which are themselves mostly located on different chromosomes. These 

quartets typically comprise of a pair of mutually independent association signals. All quartets are 

consistent in terms of the direction of eSNP effects on correlated and anti-correlated transcripts. 

We identify a separate sub-group of quartets with eSNP sources and gene targets all involving 4 

MCH Class II genes from chromosome 6, highlighting a functional unit built from the quartet 

motif. 

This study holds the promise for extension beyond its current limitations. First, our focus on 

causal variants localized to the single-base resolution imposed relying on a dataset of fully 

sequenced individuals along with their transcription profiles. Such cohort sizes are limited in 

size, reducing the power to detect association and allowing us to observe only the strongest 
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effects. Potential increase in sample size for eQTL data would enable detection of eSNP 

associations and regulatory motifs at greater significance and confidence. Second, the current 

analysis focuses on discovering a network motif where pairs of transcripts are co-regulated by a 

pair of variants. Mining the data for additional motifs can elucidate other structures in the human 

regulatory network. Overall, both the raw datasets [40, 91] and supporting databases [47, 50, 54, 

62] in this work were noisy and limited. As functional annotation continues to build up, better 

understanding of motifs would be facilitated. 

In this and in our previous work [36] we define network motifs showing them to be prevalent in 

real data, explaining the organization of trans regulation. Comparison of such structures between 

healthy and affected samples and across different tissues is likely to improve understanding of 

disease and developmental regulatory processes. Future studies could expand this approach to 

focus on complex disease circuits by using this framework on a dataset that is focused on GWAS 

SNPs and find quartets where the eSNP sources are also known GWAS loci. 

The vast majority of eQTL studies involve analyses that are based on considering a single SNP 

associated with a single transcript, primarily in cis [1, 6, 39, 40].  While these analyses capture 

only a fraction of genetic contribution to changes in the regulatory landscape, the advantage is 

high statistical power for detecting associations.  A complementary effort focuses on building 

networks from eSNP data [4, 9, 34, 35].  While these studies provide much more comprehensive 

models, they lack the same strength of statistical assurance in their findings. The main advantage 

of our approach is that it provides a unique framework for analyzing eSNP data by bridging these 

two approaches, establishing statistical guarantees on our inferred results using permutations. 

Applying such analysis to different datasets can shed light on the architecture of the human 

regulatory network and the role genetics plays in shaping it. 
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3.4 Materials and Methods 

3.4.1 Data details and processing 

We analyze a cohort of 50 Yoruban samples, for which genotypes of SNVs that are fully 

ascertained from sequencing data [91] along with RNA-seq data[40] are publicly available. 

Briefly, the raw dataset consists of 10,553,953 genotyped SNVs and expression measurements 

(quantile-quantile normalized values) of 18,147 genes with Ensembl gene ID across these 50 

samples. Standard filters have been applied to the genetic data: Minor allele frequency > 0.05, 

SNP missingness rate < 0.1 and individual missingness rate < 0.1 [74]. After filtering, data for 

analysis consists of 50 samples with 7,206,056 SNPs. The Geuvadis [80] dataset that we use for 

replication consists of five populations: Utah European (CEU; n=91), Finnish (FIN, n=95), 

British (GBR; n=94), Italian (TSI; n=93) and Yoruban (YRI; n=89) as well as on the combined 

set of all European samples (n=373). After filtering all SNPs with Minor allele frequency < 0.05 

and focusing only on SNPs in exons and TFs, there are 42,810, 43,561, 43,279, 43,214, 61,960 

and 43,365 for CEU, FIN, GBR, TSI, YRI and EUR respectively. 

3.4.2 Association testing 

For association analysis, we consider only SNPs that reside within candidate regulatory regions 

along the genome. In Kreimer et al. [38] we detect enrichment in trans association signals for 

eSNPs in exons and in TFs in this dataset. For TFs, the number of multiple associated transcripts 

is significantly higher for TFs in the real dataset than in permuted data sets. For exons, there is an 

excess of the number of eSNPs within exons indicating true positive results. We test for 

association between a SNP and every gene; we consider SNPs within the span of known exons 
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and TFs (including introns) [94]. We test for association using linear regression performed by the 

--assoc command in PLINK [74] .  

3.4.3 Obtaining a random distribution of association test-statistics 

Examining the random distribution of association tests is helpful in evaluating the empirical 

significance of results. This is achieved by generating 100 permutations that shuffle the sample 

IDs. This allows repeating the analysis of genotypes vs. expression on permuted data while 

maintaining the correlation structure among the genotype profiles and among the expression 

profiles, separately. 

3.4.4 Creating and filtering quartets 

We assemble quartets from directionally and mutually independent triplets that consist of a SNP 

and two associated genes. A mutually independent triplet is when both of the association pairs 

remain nominally significant given the respective other gene and a directionally independent 

triplet is where only one of the association pairs remain nominally significant given the other 

gene. Two triplets that share the same associated genes define a quartet. We then filter these 

quartets further using the following rules: 

1. We are only interested in quartets where both SNPs carry significant information in 

predicting the expression of gene 1 and gene 2.  i.e. 4�, 49,8�, 89 should be significantly 

different than zero. 

g1 – represents the expression of gene 1. 

g2 – represents the expression of gene 2. 

s1 – represents the minor allele count SNP 1. 

s2 – represents the minor allele count SNP 2. 
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� � 4% 5 4� · ;� 5 49 · ;9 5 7� 


9 � 8% 5 8� · ;� 5 89 · ;9 5 79 

2. Moreover, we are interested in examining quartets that have no intermediate third SNP 

(s3) that can explain the expression better. 

The third intermediate SNP should satisfy the following: 

1. On the same chr 

2. #9�;�, ;<� = 0.5 and #9�;9, ;<� = 0.5 

3. s3 should be in a triplet with the two genes. 

4.  


� � 4% 5 4� · ;� 5 8� · ;9 5 A� · ;< 5 7� 


9 � 8% 5 49 · ;� 5 89 · ;9 5 A9 · ;< 5 79 

 A�, A9 C 0 

3.4.5 Statistical challenges in comparing real vs. permuted quartets.  

There are a couple of statistical challenges involved in comparison of real quartets to those 

observed in permutations. One bias is that of proximal eSNP sources in permutations. This leads 

for example to the artifact of enrichment of opposite direction eSNP sources in real data, 

comparing to the proximal, hence correlated effect eSNPs in permutations (Figures 3-11a and 3-

11b). A second challenge is due to the rarity of eSNP sources on different chromosomes in 

permutations. This makes it statistically hard for comparing characteristics of sub-groups 

between real and permuted data (Figures 3-11d).    
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Chapter 4: Variants in exons and in transcription 

factors affect gene expression in trans 

 

Summary: In recent years many genetic variants (eSNPs) have been reported as associated with 

expression of transcripts in trans. However, the causal variants and regulatory mechanisms 

through which they act remain mostly unknown. In this paper we follow two kinds of usual 

suspects: SNPs that alter coding regions or transcription factors, identifiable by sequencing data 

with transcriptional profiles in the same cohort. We show these interpretable genomic regions are 

enriched for eSNP association signals, thereby naturally defining source-target gene pairs. We 

map these pairs onto a protein-protein interaction (PPI) network and study their topological 

properties. 

 

For exonic eSNP sources, we report source-target proximity and high target degree within the 

PPI network. These pairs are more likely to be co-expressed and the eSNPs tend to have a cis 

effect, modulating the expression of the source gene. In contrast, transcription factor source-

target pairs are not observed to have such properties, but instead a transcription factor source 

tends to assemble into units of defined functional roles along with its gene targets, and to share 

with them the same functional cluster of the PPI network.  

 

Our results suggest two modes of trans regulation: transcription factor variation frequently acts 

via a modular regulation mechanism, with multiple targets that share a function with the 

transcription factor source. Notwithstanding, exon variation often acts by a local cis effect, 

delineating shorter paths of interacting proteins across functional clusters of the PPI network 

[38]. 
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4.1 Introduction 

Creating the complete human regulatory map is an active field of study. Many previous studies 

have used genomic analyses of gene expression, binding motifs, epigenetic marks and other local 

features to infer regulatory interactions [73, 95-98]. In recent years it has been established that 

genetic variation can contribute an additional angle to this investigation [45, 57, 78, 79]. 

Formally, transcription level is considered as a quantitative trait that is altered by allelic variation 

with thousands of single nucleotide polymorphism (SNPs) reported as associated with changes in 

gene expression [36, 45, 71, 80]. Such markers, called expression SNPs (eSNPs) are further 

found to contribute to variation of disease phenotypes and other clinically relevant traits [17, 36, 

48].  

 

Variation in genomic DNA can affect transcription in multiple ways. Most intuitively perhaps, 

level of transcripts in cis of an eSNP may be altered due to allelic variation in regulatory 

elements [90]. Alternatively, such levels may be auto-regulated by changes in protein structure 

that reflect variation of the sequence content of local transcripts. Therefore, cis eSNPs have been 

studied extensively. However, cis associations are limited in their ability to inform us regarding 

the network of regulatory interactions between one gene and another. This motivates more 

focused study of the effects of genetic variants on expression of distal transcripts (trans 

associations). Unfortunately, while trans eSNPs can identify downstream effects and previously 

un-annotated regulatory pathways, they are harder to statistically and biologically justify than cis 

eSNPs. From a statistical perspective, since trans eSNPs can be associated with any distal 

transcript, the multiple testing burden dramatically increases, thus only a small number of results 

is detected. From a biological perspective, more complex mechanisms are needed to explain 
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trans associations. An example of such a mechanism is an eSNP with local cis effect on a gene 

which codes for a transcription factor known to regulate other genes in trans. Indeed, across 

multiple eSNP studies [10, 57], even when statistically significant trans or cis eSNPs 

associations are detected aplenty, the regulatory mechanisms by which they alter gene expression 

remain mostly unknown. 

 

A large fraction of SNPs identified by genome-wide association studies (GWAS) [45] have been 

reported to be associated with disease phenotypes [17] despite being neither coding, nor linked to 

coding SNPs in cis. Furthermore, since large-scale genetic studies have been predominantly 

based on SNP arrays, SNP alleles that are reported as associated, in studies of either disease [45] 

or gene expression [57], are often merely tags for causal variants, whose identity is challenging 

to track down. More generally, the multitude of phenotypes for eSNPs represents an opportunity 

for tackling the central question of causation in association.  

 

Protein-protein interaction (PPI) networks capture various experimental data, such as from yeast 

two-hybrid systems [99], regarding the physical binding of proteins, and are often used to 

examine how these interactions are involved in a specific biological function. Recently, 

improved data on signal transduction and metabolic and molecular networks have contributed to 

the fidelity and accuracy of the reconstructed PPI networks. However, the data represented by 

these networks can sometimes be partial and noisy. PPI networks have been modeled as 

theoretical graphs and their topological properties extensively studied [100-102]. This provided 

insights pertaining to functional, structural and evolutionary characterization of these networks, 

primarily in model organisms. Genetic interactions in yeast were studied in the context of protein 
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complexes network [103], motivating the investigation of genetic variants that alter gene 

expression (as interactions) with respect to the human PPI network[26]. Studies of PPI networks 

in the context of genetic variation have thus far focused on GWAS-detected SNPs that are 

associated with common traits and disease, reporting that genes that harbor such SNPs frequently 

code for interacting proteins [24, 26, 104-106] .Yet, such studies only considered the PPI-

network nodes that correspond to the associated SNP, without a PPI network node that would 

correspond to the phenotype. 

 

Here, we perform a comprehensive study of trans genetic associations and their large-scale 

properties as manifested on a PPI network. We use SNPs from sequencing data [91] that are 

candidates to be causal based on their genomic location, and then project their association to 

gene expression on a PPI network. We hypothesized that genes involved in true eSNP 

associations have distinct PPI-network properties that differ significantly from spurious genes 

with candidate association signals. To address this hypothesis, we focus on trans association of 

eSNPs in exons and transcription factors (TFs), analyzing their properties as reflected on the 

PPI-network topology and annotations of the genes involved. Our focus on expression 

quantitative traits allows consideration of paths along the PPI network, whose links with genetic 

variation had previously only been studied with respect to SNPs, rather than the transcripts they 

modulate. 

 

Our results suggest that a significant fraction of eSNPs in exons act in trans through mild effects 

in cis, with a regulation mechanism that is mediated by PPI paths that are shorter than expected 

by chance and tend to traverse across functional clusters of the PPI network. These paths 
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highlight zinc ion binding genes as a possible mechanism of transcript-eSNP feedback across the 

PPI network. In comparison to such coding eSNPs, we observe that TFs harboring eSNPs and 

their associated genes create units of genes that are functionally enriched for biological 

annotations. This suggests a different, modular regulatory mechanism for such TF eSNPs. 

Altogether, our analysis offers insights concerning a variety of mechanisms by which genetic 

variation at functional loci shapes the structure of human regulatory networks. 
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4.2 Results 

4.2.1 Computational framework for mapping trans associations onto the PPI network  

We were interested in pinpointing directly associated variants rather than indirectly imputed 

ones. We thus used a publicly available dataset of 50 fully sequenced Yoruban samples [91] 

along with their transcription profiles from RNA-sequencing data [40], bearing in mind that such 

available cohorts are limited in size. Due to this small sample size, we have limited power in 

detecting association. Therefore, most candidate eSNPs can only be designated with various 

levels of uncertainty.  

 

We were intrigued to examine trans-eSNPs interactions with respect to an independent space of 

interactions, that is, a PPI network. Therefore, we evaluated two categories of candidate eSNPs 

that reside within regions along the genome with known regulatory potential and can be mapped 

onto a PPI network, that is, exons and TFs (see Materials and Methods section 4.3.2). Examining 

the distribution of P-values across these two categories of candidate trans-eSNPs , we observed 

that candidate eSNPs within exons show evidence of including true positive eSNPs (Figure 4-

1a), as been previously shown [2]. By contrast, eSNP candidates in TFs show association signal 

distributions consistent with random expectation (Figure 4-1b). We further examine if TF 

candidate eSNPs exhibit qualities that are different from random. We hypothesized that a single 

TF will be associated with multiple transcripts via eSNPs. To address this hypothesis, we created 

1,000 permuted sets of pairs of TF and transcript (see Materials and Methods section 4.3.3). We 

observed that the number of multiple associated transcripts is significantly higher (Wilcoxon 

rank sum test P <0.05) in the real dataset (973 out of 1,000 permuted sets, empirical P-value = 

0.027). Following these two observations, we focused on eSNPs within exons as the first subject 



 

 

of our investigation, and compared them to eSNPs within the span of transcription factor genes. 

We set out to characterize and compare these two modes of 

 

 
 
Figure 4-1. QQ plot for association pairs of SNPs within known regulatory regions and genes. 
(a) eSNPs in exons and (b) eSNPs in TFs.  X
-log10 of the observed p-value. The red line denotes expectation by chance (Y=X).
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Figure 4-2. trans associations on a protein
Trans association marked by solid and dashed red straight arrows. 
within a known exon (left) or TF (middle) maps to the PPI network (right). The source gene (blue s) is 
associated in trans with the levels of a target transcr
and define the shortest path between the exon source and its target (solid red curved arrow). The 
association between an eSNP within a TF source and its gene target is denoted by a dashed red curved 
arrow. eSNP, expression single nucleotide polymorphism; PPI, protein
transcription factor. 

 

4.2.2 Identifying topological properties of exonic eSNP interactions 

We first considered pairs of exon eSNP source and target that demonstrated an 

which was significant exome-wide for a particular transcript (association 

such pairs to be significantly closer (

randomly permuted candidate eSNPs (see 

pairwise properties of sources and targets, we further attempted to characterize each by their 

single-node features. Specifically, the targets of exon eSNPs had significantly higher (

degree than expected based on ra

 

on a protein-protein interaction network.  
association marked by solid and dashed red straight arrows. An eSNP (red tick mark) that resides 

within a known exon (left) or TF (middle) maps to the PPI network (right). The source gene (blue s) is 
associated in trans with the levels of a target transcript (green t). PPI network edges are denoted in black, 
and define the shortest path between the exon source and its target (solid red curved arrow). The 
association between an eSNP within a TF source and its gene target is denoted by a dashed red curved 

row. eSNP, expression single nucleotide polymorphism; PPI, protein-protein interaction; TF 

Identifying topological properties of exonic eSNP interactions  

exon eSNP source and target that demonstrated an association signal 

wide for a particular transcript (association P <10

such pairs to be significantly closer (P = 0.03) on the PPI network when compared with 

randomly permuted candidate eSNPs (see Materials and Methods section 4.3.4

pairwise properties of sources and targets, we further attempted to characterize each by their 

node features. Specifically, the targets of exon eSNPs had significantly higher (

degree than expected based on random pairs. 
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An eSNP (red tick mark) that resides 
within a known exon (left) or TF (middle) maps to the PPI network (right). The source gene (blue s) is 

ipt (green t). PPI network edges are denoted in black, 
and define the shortest path between the exon source and its target (solid red curved arrow). The 
association between an eSNP within a TF source and its gene target is denoted by a dashed red curved 

protein interaction; TF 

association signal 

<10-7). We observed 

= 0.03) on the PPI network when compared with 

section 4.3.4). Beyond 

pairwise properties of sources and targets, we further attempted to characterize each by their 

node features. Specifically, the targets of exon eSNPs had significantly higher (P = 0.003) 
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We reasoned that the cutoff of association P-value we used (P <10-7) was in many ways 

arbitrary, as we were interested in the statistical properties of the set of results rather than the 

significance of a particular result amid the testing burden. We therefore considered multiple P-

value thresholds of eSNP association and at each threshold evaluated topological properties of 

eSNP source and target pairs, while assessing significance vis-à-vis randomly permuted sets of 

candidate eSNPs in exons (see Materials and Methods section 4.3.4). We observed that the lower 

the association P-values for source-target pairs, the more their topological properties differed 

compared with random pairs (Table 4-1). For example, for source-target pairs of exon eSNP, the 

average target degree among the 52 pairs exceeding an association P-value cutoff of 10-6.5 was 

16.42, but it reached as much as 22.22 among the more focused set of 22 pairs that exceeded 

association P-value cutoff 10-6.8. These averages were each significant (P = 0.02 and 0.006, 

respectively) when compared with permuted pairs of exon eSNPs, whose target degree was only 

9.36 on average. These trends are consistent with properties of true positives being diluted by 

false positives at less significant P-value thresholds. We quantified such trends by regressing 

each topological property on the negative log10 of the association P-value (Figure 4-3). We 

confirmed that for exonic source-target pairs, network distance decreased and the target degree 

increased with the significance of association (Spearman rank correlation coefficients r = -0.98 

and 0.97, respectively; permutation P-value P = 0.001 and 0.002, respectively - see Materials 

and Methods section 4.3.4).  

 
Table 4-1. Topological properties and statistical differences of exonic eSNPs on the PPI network in 
real and permuted data (separate file).  
File Table4-1.xlsx. Exon source with their corresponding eSNP targets, for each P-value smaller than 10-

6, where a source-target pair on the PPI network was added, we recorded the differences between 
topological properties of random and real pairs using Wilcoxon rank sum test. The table includes for 
each P-value the number of unique pairs on the PPI network, the rank sum test P-values and the mean 
value for each one of the topological properties (distance and source and target degrees) for real and 
random pairs. 



 

 

 
Figure 4-3. Topological properties on a protein
target association significance. 
Averages for (a) distance between source and target, (b) source degree and (c) target degree are evaluated 
across source-target pairs of candidate exon eSNPs at varying association p
average of randomly permuted pairs (dashed hori
rank correlation coefficient (denoted r) is listed when significant at P <0.05 (denoted p).

 

3. Topological properties on a protein-protein interaction network versus exonic source

Averages for (a) distance between source and target, (b) source degree and (c) target degree are evaluated 
candidate exon eSNPs at varying association p-value thresholds (+). The 

average of randomly permuted pairs (dashed horizontal line) is shown for permuted pairs and Spearman’s 
rank correlation coefficient (denoted r) is listed when significant at P <0.05 (denoted p).
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protein interaction network versus exonic source-

Averages for (a) distance between source and target, (b) source degree and (c) target degree are evaluated 
value thresholds (+). The 

zontal line) is shown for permuted pairs and Spearman’s 
rank correlation coefficient (denoted r) is listed when significant at P <0.05 (denoted p). 
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These results highlight unique properties of part of the transcripts whose trans regulation is due 

to coding variation. Specifically, we show that loci implicated by eSNPs encode for proteins that 

physically interact in a non-random fashion. Furthermore, target proteins are likely to interact 

with significantly more nodes of the PPI network than expected by chance. 

4.2.3 Characterization of exon and transcription factor sources and targets  

Based on these results, for further analysis, we focused on the maximal P-value cutoff of 10-6.463, 

for which all topological properties showed significant difference between true source-target 

pairs of exon eSNPs and random ones (Wilcoxon rank sum test P <0.05), (Figure 4-4 and Tables 

4-2 and 4-1).  

 

 

 

Figure 4-4. Histogram in percentage for the distances between pairs of exon source and target.  
In real (red) and permuted (grey) data, for p-value=10-6.463. 
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Distance btw. pairs Real – 59 pairs Random – 18,675 pairs 
2 2 431 
3 18 3,701 
4 22 7,723 
5 10 4,308 
6 2 1,118 
7 1 212 
28 (not connected) 4 1,092 
 
Table 4-2. Distances between real exon source and target and between random pairs. 
 
 

There were 343 pairs of source and target and 295 unique pairs, 59 of them on the network. Of 

these pairs, 318 (92.71%) were on different chromosomes and 25 (7.29%) were on the same 

chromosome, at least 1 Mb apart. At this cutoff there were 333 unique eSNPs in exons, 286 

unique gene sources and 267 unique gene targets (Table 4-3). When comparing the effect sizes 

(absolute values of betas in the linear regression) of 929 previously published cis expression 

quantitative trait loci (eQTLs) [40] with the distribution of exonic and TF trans eSNPs effect 

sizes, we found that the trans effect sizes (mean 1.198) were significantly higher than those of 

corresponding cis effects (mean 0.964; Wilcoxon rank sum test P-value <2.25 × 10-49 and 3.56 × 

10-54 for exonic and TF eSNPs, respectively; Figure 4-5). We binned eSNPs and SNPs in exons 

by first, middle and last exons (Figure 4-6). We also examined the position of the eSNP along 

the transcript and compared these results to SNPs in exons (Figure 4-7). We observed that these 

trans exonic eSNPs tended to be located along middle exons, rather than in first or last exons 

(Fisher’s exact test P-value <0.009). We further observed that they tended to lie farther away 

down the transcript (Wilcoxon rank sum test P = 0.0058). These results were different from what 

was observed for cis eQTLs. Montgomery et al. [39] reported that eQTLs with higher confidence 

were located in the first and last exons significantly more than in middle exons.  
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Table 4-3. Genomic description of eSNPs in exons and TFs (separate file).  
File Table4-3.xlsx. For all TF and exonic source-target pairs we give the eSNP rs number, eSNP 
chromosome, eSNP location, source gene ID, target gene ID, target chromosome and association P-value. 
For eSNPs in TF, we indicate whether they are within an exon. 

 

 

 

Figure 4-5. Comparing effect sizes. 
(absolute value of betas) between previously published 929 cis eQTLs and 343 and 370 exonic and TF 
trans eSNPs respectively. 

 



 

 

Figure 4-6. Distribution of SNPs and trans eSNPs in exons.
 

Figure 4-7. Cumulative fraction of the position of exonic eSNPs
transcript.  
Wilcoxon rank sum test p-value between the position of exonic eSNPs and SNPs on transcript < 0.0058

 

 

 

. Distribution of SNPs and trans eSNPs in exons. 

. Cumulative fraction of the position of exonic eSNPs (red) and SNPs (blue) on the 

value between the position of exonic eSNPs and SNPs on transcript < 0.0058
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(red) and SNPs (blue) on the 

value between the position of exonic eSNPs and SNPs on transcript < 0.0058 
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The combined set of exon sources was enriched for major histocompatibility complex protein 

genes (false discovery rate (FDR) <0.046) with concordance to findings in previous studies, 

indicating human leukocyte antigen SNPs were 10-fold enriched for trans-eSNPs [34]. We 

further observed that the set of target genes was enriched for multitude functional processes (see 

Table 4-4 for full list of annotations). The three highest scoring functional annotations of the 

target set, macromolecule modification, phosphatidylinositol-3,5-bisphosphate binding and 

protein modification process, provide additional support for the role of exonic eSNP targets as 

network hubs [107].  

Table 4-4. Functional enrichment analysis of combined sets of exon sources, exon targets and TF 
targets (separate file).  
File: Table4-4.xlsx. Gene sets include only genes that map to an Entrez ID. 

 

For further investigation and comparison, we considered source-target pairs of TF candidate 

eSNPs, a set with similar order of magnitude, corresponding to association signals passing the P-

value cutoff of 10-6. There were 370 such pairs of TF source-target, 193 of them unique, 58 of 

which were on the network. Of these pairs, 359 (97.03%) were on different chromosomes and 11 

(2.97%) were on the same chromosome, at least 1 Mb apart. There were 358 unique eSNPs in 

TFs, 77 unique TF sources and 192 unique targets (Table 4-3). Out of the 358 unique eSNPs in 

TFs, 15 were in exons, significantly more than expected by chance (hypergeometric P-value 

<1.8×10-4). When we examined the combined set of TF targets, we observed that this gene set 

was enriched for various annotation categories (see Table 4-4 for full list of annotations).  
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4.2.4 Co-expression of targets and cis-effects on the source gene 

 

To further establish the association between the source and target genes, we examined the co-

expression between eSNP source and target for all candidate pairs of associated genes in this 

dataset by evaluating Spearman’s rank-correlation coefficient r. For pairs of exon-source eSNPs 

and their corresponding targets, the absolute value of r was significantly higher than expected 

from the entire distribution of co-expression measurements in this dataset (Wilcoxon rank sum 

test P <5.4×10-5; Materials and Methods section 4.3.6). By contrast, for pairs of TF-source 

eSNPs and their corresponding targets, there was no significant difference in terms of co-

expression. We observed the fraction of non-synonymous SNPs to be 0.082 out of exon eSNPs, 

which was higher than their overall fraction 0.071 among all exonic SNPs [108] (Fisher exact P 

approximately 0.1). For each eSNP we examined cis effects that were too mild to be detected at 

genome-wide significance threshold by testing for its association with the expression of its 

source gene (see Materials and Methods section 4.3.7). In total, 50 pairs of exonic eSNP and 

source gene were nominally (P <0.05) cis associated, out of 286 such unique sources (P = 3.6 × 

10-15). We estimated how many of the SNPs in exons have a cis-effect (linear regression P-value 

<0.05) on the expression of their host gene. We found that out of 97,135 exonic SNPs, 9,661 

showed cis-effect on their host gene at the nominal significance level (P <0.05). Compared to 

this background distribution, the observed 50 out of 286 trans eSNPs having such cis-effects is 

significantly more than expected by chance (Fisher’s exact test P-value< 9.6×10-5). This 

provides additional support for the cis-effect phenomena. For comparison, we did not observe a 

nominally significant cis effect between TF eSNP and its source gene more than expected by 

chance (3 out of the 66 TF sources in this dataset). These results suggest a mechanism where 
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exonic variation often operates in trans eSNPs via alteration of gene expression in cis, and the 

source and target genes have correlated expression. 

4.2.5 Modular organization of eSNPs in TFs  

 

TFs are known to control the transcription of multiple genes; we were therefore interested in 

whether we observed the same phenomena in TF variation. Each TF source forms, along with its 

targets, a set of genes that we called a unit. We observed that these units tended to be enriched 

for functional annotation categories. Specifically, for the 33 TF sources with two target genes or 

more (Tables 4-5 and 4-6), 26 out of 33 define units that are functionally enriched (two or more 

annotated genes, FDR <0.05; Materials and Methods section 4.3.8) [13] in KEGG [47] and GO 

[62] categories (Table 4-7). Interestingly, eSNP targets did not tend to share exon sources. 

Specifically, out of 286 unique sources, 278 had a single target, 7 (AKNA, CDK7, BLK, ATP5G1, 

RPL8, TRAPPC12, MUC2) of the remaining ones had two, and one (HLA-C) had three (Table 4-

3). The difference between the number of associated targets in TF and exon variation was 

statistically significant (Wilcoxon rank sum test P < 3.4×10-4). These results support the 

hypothesis that TF variation frequently acts via a modular regulation mechanism, with multiple 

targets that share a function with the TF source.  
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Unit size Number of units 
2 35 
3  16 
4 8 
5 2 
6 2 
8 1 
10 2 
11 1 
17 1 
  

Table 4-5: Units size distribution of TF source and their gene targets.  
Uunits include only genes that map to an Entrez ID. We include the TF in the module. 

 

Unit 
number 

Unit 
size 

TF source Genes in the unit 

1 3 RUNX1 CLN5, TCL1A 
2 3 DMRT1 EIF3H, GPATCH8  
3 3 GTF2F2 GOLGB1, ATP2C1 
4 3 HSF2 ABCC1, CCDC102A  
5 3 NFIX ORC2, CCDC91  
6 3 TCF4 PNMT, PPHLN1 
7 3 TCF12 1-Dec, AZI2  
8 3 TFDP2 SEMA6B, EXOC3L4 
9 3 MBTPS1 SOCS2, PPAN 
10 3 MTF2 DNAH17, BTG3 
11 3 ATF7IP UNC13A, RILP  
12 3 PHTF2 PPP1R16B, OTOGL 
13 3 TFB2M ZNHIT1, CAMKK1  
14 3 TCF7L1 KCNQ4, SETDB2  
15 3 GABPB2 PSMC6, ABHD5  
16 3 NFXL1 HIST1H2BB, CHEK2  
17 4 ATF3 NR3C1, SNORD26, INPP5E  
18 4 NFYC RBM5, CACNG4, STARD9  
19 4 GTF2A1L CUL1, RNF24, LAMP3 
20 4 CNOT1 PSMC2, PCGF6, THAP3 
21 4 WWTR1 NFYB, FAM118B, FAM78B 
22 4 TRERF1 ADPRH, DNAJC5, NBPF23 
23 4 BACH2 MYO7A, SNRPD1, SIRT7 
24 4 TFAP2D PLA2G6, C8orf55, TMEM159 
25 5 BRF1 WWC1, GRHL1, DDX54, DDX51 
26 5 AKNA TCFL5, CCT5, SLC25A39, ALG8 
27 6 MITF NEDD9, ARHGAP11A, TMEM51, MAGOHB, MIR589 
28 6 TCF7L2 BOK, TLE4, NOP58, NAT10, TOR3A,  
29 8 TEAD1 ST3GAL3, DYNLT1, DBNL, GCNT4, PHF7, 

HNRNPA1L2, BTBD19 
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30 10 STAT4 ACO1, GNRHR, GYPC, PTRH2, MBOAT7, OBFC1, 
CORO6, UHMK1, PPTC7 

31 10 TCERG1L SLC25A20, GATA2, ZNF3, LRPPRC, ABCA12, 
PCYOX1L, LBH, C16orf74, MIR1909 

32 11 MYT1L APBB2, CDC25A, COL1A2, MMP7, SH3BP2, CWC27, 
NCAPH2, HNRPLL, ZMAT2, RPS26P6 

33 17 CAMTA1 NFKBIE, QDPR, SKP1, CDK2AP1, TAOK2, GNB5, 
NECAP1, TMBIM4, PTRH2, VASH2, TMEM121, ZFP91, 
NHLRC2, H3F3C, C1orf190, SNORA81 

 

Table 4-6: TF units’ content and sizes. 
TF source and gene targets (two or more). 

Table 4-7. TF units' functional enrichment (separate file).  
File Table4-7.xlsx. Gene sets include only genes that map to an Entrez ID. 

 

4.2.6 Support for eSNPs in TFs from different data sources 

We systematically looked for pairs of TF source-target that were experimentally validated as 

binding. We found such enrichment, with 6 out of 34 TF source-target pairs compared to 551 out 

of 6,904 random pairs (Fisher’s exact test P <0.05, see Materials and Methods section 4.3.9) in a 

database reporting binding of TFs to DNA, based on chromatin immunoprecipitation (ChIP)-X 

experiments [109]. We used the data in [6] to find the closest DNaseI hypersensitive site (DHS) 

window to the gene target, and examined whether the TF eSNP was associated with the DHS 

levels in this window. We found that 33 of 370 such pairs of TF eSNP and gene target were 

significantly associated (P<0.05) indicating significant enrichment (P < 5.5×10-4) of this 

phenomenon. This enrichment was not an artifact of TF eSNP ascertainment: we tested the 

association of 29,212 TF SNPs to DHS levels in a randomly picked DHS window; as expected 

by chance, 1,400 of these SNPs showed such association at the nominal significance level, P 

<0.05. Compared to this background distribution, the observed set of 33 out of 370 trans eSNPs 

having such association was significantly larger than expected by chance (Fisher’s exact test P-
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value < 6×10-4). This shows that even in a small sample size where the number of true positives 

is diluted with false positives, we still recover a true signal. 

4.2.7 Distribution of TF sources and targets in PPI functional clusters 

We were intrigued by potential connections between source-target pairs and cluster properties in 

the PPI network. Therefore, we partitioned the PPI network into clusters of genes, optimizing the 

modularity measure [110] (see Materials and Methods section 4.3.10). Out of the resulting 249 

PPI clusters with two genes or more, 225 (90%) demonstrated functional enrichment for a 

biological category (Table 4-8). TF source-target pairs were found in the same PPI clusters more 

than expected by chance: 26 out of 58 TF pairs compared with 26,966 out of 100,000 random 

pairs (Fisher’s exact test P <0.0043; see Materials and Methods section 4.3.11).  

 

Table 4-8. Functional enrichment analysis of clusters in the PPI network (separate file).  
File Table4-8.xlsx. Gene sets include only genes that map to an Entrez ID. 

 

4.2.8 Specific example of TF eSNP 

As an illustration for our results, we show an example (Figure 4-8a) of a specific source and its 

gene target, examining transcription factor 7-like 2; T-cell specific, HMG-box (TCF7L2) and its 

transcript target transducin-like enhancer of split 4 (TLE4). There was a significant cis effect (P 

<0.012) of the associated intronic eSNP rs7087006 with the expression of TCF7L2, but the co-

expression correlation of the source and target was not statistically significant in this dataset. 

TCF7L2 and its five targets (unit number 28, Table 4-6) comprise a unit that was enriched (two 

out of six) for cell proliferation (FDR <0.03; Table 4-7). This TF plays a key role in the Wnt 

signaling pathway, activating v-myc avian myelocytomatosis viral oncogene homolog (MYC) 

expression in the presence of catenin (cadherin-associated protein), beta 1, 88kDa (CTNNB1). 
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The gene target TLE4 within the PPI network is a transcriptional co-repressor that represses 

transactivation mediated by TCF7L2 and CTNNB1. These annotations implicate that TCF7L2, 

TLE4 and MYC act as the network motif incoherent type-1-feed-forward loop (a pulse generator 

and response accelerator) [92] where the two arms of the feed-forward loop act in opposition: 

TCF7L2 activates MYC (in the presence of CTNNB1) but also represses MYC by activating the 

repressor TLE4 (via an eSNP). We note that TCF7L2 harbors the common allele most strongly 

associated with increased risk of type 2 diabetes. Correspondingly, TLE4 was recently 

discovered as a T2D locus [81]. Specifically, TLE4 encodes a protein that forms complexes with 

TCF proteins, including TCF7L2, to modulate transcription at target sites [111]. The source and 

target are part of the same PPI network cluster, which is enriched (1,257 out of 4,627) for 

regulation of transcription (FDR <2.4 × 10-88, Table 4-8; Figure 4-8a). This demonstrates a case 

of shared function between a source TF and its target. 

4.2.9 Distribution of exonic sources and targets in PPI functional clusters 

By contrast, only 19 (32%) of exon eSNP sources were found in the same PPI network cluster as 

their respective single targets, consistent with chance expectation (see Materials and Methods 

section 4.3.11). Yet, as such pairs were linked by relatively shorter paths (Figure 4-3a), it follows 

that coding variants affect transcription in trans not in a modular way but rather in a linear 

fashion that defines shorter paths than expected by chance. We recorded the proteins along such 

paths (Table 4-9) and evaluated the enrichment of functional annotation for each path (Table 4-

10). 

 

Path number Path length Genes in path (from source to target) 
1 3 HLA-C, LILRB1, HLA-A 
2 3 HLA-C, LILRB1, HLA-G  
3 4 CYBA, 4687, CSNK2A1, HNRNPC 
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4 4 DVL3, PPP2CA, TP53, DAXX  
5 4 GATA3, ETS1, NR3C1, COPS6  
6 4 HLA-DQB1, CD4, PIK3R1, AKT1  
7 4 PITX2, KAT5, CDK1, AMPH  
8 4 PTPRA, KCNA2, DLG1, PAX6  
9 4 RPS14, SMAD2, TSC2, MAPKAPK2  
10 4 TPI1, CFL1, ATXN1, KIAA2026  
11 4 SIP1, SNRPD2, EGFR, MET  
12 4 MAP4K4, ITGB1, CRKL, EPOR  
13 4 ERC1, YWHAG, LUC7L2, UNC119  
14 4 CLASP2, FEZ1, PRKCZ, GSK3A 
15 4 GGA3, TSG101, NR3C1, SUMO4 
16 4 TES, ACTN1, GRIN2A, PTPN4  
17 4 PSMC3IP, NR3C1, PRKDC, EIF2S2  
18 4 PIDD, EFEMP2, TP53, PLK3  
19 4 MIF4GD, UBQLN4, IMPDH2, SUMO4  
20 4 STK11IP, SMAD4, MAPK13, MAPKAPK3 
21 5 BLK, BCL2, CDK2, PRKAR1A, C2orf88  
22 5 DYNC1H1, YWHAG, ARAF, TH1L, FRMD5  
23 5 STX2, STXBP1, PRKCA, TIAM1, MAPK8IP1  
24 5 RBPJ, HMGB1, C14orf1, NSF, NAPG  
25 5 MUC4, ERBB2, PTPN18, GAB1, MAPK4  
26 5 MYO5A, DYNLL1, MTA1, CCNH, CDK2  
27 5 PIN1, CHPF, SMAD9, LNPEP, TNKS2 
28 5 RAB5A, TSC2, SMAD2, HDAC1, DNMT3B  
29 5 RAC2, CUL1, SMAD3, GGA1, M6PR  
30 5 ENC1, TGFBR1, FBXO34, SKP1, FBXL8  
31 5 MADD, PIDD, CRADD, LRIF1, RNF10  
32 5 NRXN1, SYT1, GOLM1, NIPSNAP3A, EPHX2  
33 5 PRDX6, RARA, COPS2, COPS6, WIPI2 
34 5 CAMKK2, CALM1, CAMK2G, GRIN2B, AP4M1  
35 5 MAST3, PTEN, CSNK2A2, SMURF1, NAA16 
36 5 PPIL2, HSP90AA1, WASL, SH3GL3, C11orf68  
37 5 PTRH2, AES, AR, CDC25A, PIM1  
38 5 DNAJB11, PTN, BCCIP, RAD51, DMC1  
39 5 KLHDC5, COIL, SMN1, BCL2, PPP3CA  
40 5 HIF3A, HIF1A, CREBBP, MED25, MED15 
41 5 COL18A1, KDR, SRC, PRKACA, TPH1  
42 5 IQCG, BAG6, SMN1, KPNB1, UBR5  
43 6 CSF3, CSF3R, GRB2, EPHB6, SAT1, SAT2  
44 6 MUC2, PLEKHM1, EIF2S2, CSNK2A1, CDK1, NES 
45 6 CLIP2, DYNLL1, TP53BP1, EP300, MYBL2, ZNF622 
46 6 PRPF4B, YWHAG, PRKCA, ITGB2, HP, C1RL  
47 6 BRE, GFI1B, PSMA3, CDKN1A, RAB1A, ZNF593  
48 6 EDEM1, CANX, SMURF2, NEK6, CDK7, GTF2H2  
49 6 MAML1, CREBBP, EWSR1, RALYL, ZNF408, ZNF330 
50 6 SEC23B, SEC24D, LMO4, MERTK, BMPR2, PDZRN3 
51 6 CECR2, UXT, AR, RB1, TRIM27, FXYD6  
52 6 FBXO30, SMAD1, MAPK1, NEK2, NDC80, SPC25  
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53 7 EIF4EBP2, EIF4E, PML, RELA, BRCA1, PSAP, CELSR1  
54 7 TNKS1BP1, TNKS, FNBP1, CDC42, WAS, CIB1, IFI6,  
55 8 IRAK4, TRAF6, TRAF2, TCEA2, CENPT, PPCDC, DBI, TSPO 
 

Table 4-9. Exon paths lengths and genes in path from source to target. 
 

 

Table 4-10. Functional enrichment of exon paths, between source and target (separate file).  
File Table4-10.xlsx. Gene sets include only genes that map to an Entrez ID. 

 

4.2.10 Specific example of exonic eSNP 

 

We show an example (Figure 4-8b) of exon source and its gene target, examining the path 

between gene source p53-induced death domain protein (PIDD) and gene target polo-like kinase 

3 (PLK3); path number 18, Tables 4-9 and 4-10). This path was enriched for the p53 signaling 

pathway (FDR <0.01, Table 4-10). PIDD promotes apoptosis downstream of the tumor 

suppressor as a component of the DNA damage/stress response pathway that connects p53 to 

apoptosis. The gene target PLK3 is a serine/threonine kinase that plays a role in regulation of cell 

cycle progression and potentially in tumorgenesis. Epidermal growth factor-containing fibulin-

like extracellular matrix protein 2 (EFEMP2)and tumor protein p53 (TP53) reside along the 

shortest path between PIDD and PLK3 (Figure 4-8b). There is evidence from ChIP-ChIP and 

ChIP-seq experiments that TP53 has binding sites in the promoter of PLK3 [109] and it is 

annotated as a zinc ion binding protein. Furthermore, the combination of a pair of genes with TF-

DNA and PPI edge between them is a known network motif (mixed-feedback loop) [82], 

suggesting a mechanism by which the expression of the target gene is altered. In support of this, 

the co-expression correlation of the source and target genes was significant (Spearman rank-

correlation test r = 0.3223, P <0.02). The exon gene source and target reside in different PPI 



 

 

network clusters: PIDD resides in a cluster 

<4.5×10-6, Table 4-8) and PLK3

transcription (FDR <2.4×10-88, Table 

Figure 4-8. Examples of transcription factors and exon source
An eSNP (red tick mark) along a source gene (blue circle), either in an exon or TF (blue rectangle), is 
associated (solid red line for exon, dashed for TF) with levels of transcription of the target gene (green 
circle). The source and target genes 
PPI network. Each node belongs to a PPI cluster (purple cloud) with a functional annotation. (a) Network 
motif I1-FFL [92]: TCF7L2 activates MYC (in the presence of CTNNB1) but also represses MYC by 
activating the repressor TLE4 (via an eSNP) . (b) The shortest path on the PPI network between PIDD 
source and its gene target PLK3. Binding sites of TP53 were found in the promoter of PLK3. TP53 is 
annotated as a zinc ion binding protein. There was a sign
source and target genes. TCF7L2, transcription factor 7
enhancer of split 4; MYC, v-myc avian myelocytomatosis viral oncogene; catenin (cadherin
protein), beta 1, 88kDa (CTNNB1); PIDD, p53
EFEMP2, Epidermal growth factor-
protein p53. 
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8. Examples of transcription factors and exon source-target pairs.  
An eSNP (red tick mark) along a source gene (blue circle), either in an exon or TF (blue rectangle), is 
associated (solid red line for exon, dashed for TF) with levels of transcription of the target gene (green 
circle). The source and target genes interact via nodes (black circles) and edges (black solid lines) in the 
PPI network. Each node belongs to a PPI cluster (purple cloud) with a functional annotation. (a) Network 

: TCF7L2 activates MYC (in the presence of CTNNB1) but also represses MYC by 
activating the repressor TLE4 (via an eSNP) . (b) The shortest path on the PPI network between PIDD 
source and its gene target PLK3. Binding sites of TP53 were found in the promoter of PLK3. TP53 is 
annotated as a zinc ion binding protein. There was a significant correlation between the expression of the 
source and target genes. TCF7L2, transcription factor 7-like 2; T-cell specific; TLE4 transducin

myc avian myelocytomatosis viral oncogene; catenin (cadherin
ein), beta 1, 88kDa (CTNNB1); PIDD, p53- induced death domain protein; PLK3, polo

-containing fibulin-like extracellular matrix protein 2; TP53, tumor 
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4.2.11 Mechanistic interpretation of exonic eSNPs 

 

These results beg a mechanistic explanation that would clarify how the network interaction at the 

protein level is leading to the observed changes in transcript levels. Fortunately, examination of 

the genes along the reported paths provides a plausible answer, as they are strongly enriched for 

zinc ion binding proteins. Specifically, when we examined the enrichment for annotations of 

genes along shortest paths in the real dataset, we observed 410 enriched categories (minimum of 

10 genes from a category, FDR <0.05; Table 4-11; Materials and Methods section 4.3.12). For 

comparison, across 1,000 permuted datasets we observed a total of 1,870 categories satisfying 

the same enrichment criteria. We focus on the six categories that were enriched in real data and 

not in permutations: ion binding, metal ion binding, cation binding and intracellular, zinc ion 

binding and transition metal ion binding (Table 4-11). We compared two properties in real 

versus permuted datasets: first, the number of genes from each category (empirical P-values 

0.005 and 0.014 for zinc ion binding and transition metal ion binding respectively); and second 

the number of paths where we observed at least one gene from each category (empirical P-values 

0.016 and 0.038 for zinc ion binding and transition metal ion binding respectively). These results 

were replicated in a second permuted dataset. For comparison, only 7 and 10 out of the 404 joint 

categories achieve an empirical P-value lower than 0.05 for these two properties respectively. 

These results indicate that the genes in real paths were enriched for zinc ion binding, which is 

associated with regulation of transcription, suggesting a possible mechanism by which the 

expression level of the target transcript is modified. 
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Table 4-11. Enriched annotations (minimum 10 genes, FDR <0.05) of genes along real and 
permuted data shortest paths, and gene names for the six categories that were enriched in real 
shortest paths (separate file). 
File Table4-11.xlsx. 
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4.3 Discussion 

We present a computational approach to study the characteristics of trans regulation. We 

observed that candidate eSNPs within exons exhibited an overabundance of significant 

association signals. We consequently focused on eSNPs that resided within an exon of a source 

gene, and were associated with the expression level of a different gene target. We observed that 

candidate eSNPs within TFs were associated with a higher number of transcripts than expected 

by chance. We subsequently examined eSNPs that resided within the span of source TFs. We 

mapped these pairs of source and target onto a PPI network and analyzed their topological 

properties.  

 

We applied our approach to publicly available genetics and genomics [40] data from the same 

samples. We demonstrated that, by combining association data with information on PPI, it is 

possible to unravel topological properties for the two trans association types. We found that for 

an eSNP exon source and its gene target, the stronger the association, the closer the source-target 

distance and the higher the target degree in the PPI network. Expression analysis showed these 

source-target pairs to be frequently co-expressed, and that these exon eSNPs often had 

significant cis effects on the expression of the source genes. The observed phenomenon of 

exonic variation leaving a signature on PPI paths raises speculations regarding the mechanisms 

of transcription regulation. Previous studies have indirectly tackled these speculations regarding 

the connection between eSNP regulation and the PPI space. Specifically, Rossin et al. found that 

PPI connections between loci defined in GWAS of a specific disease were more densely 

connected than chance expectation [26], and Nicolae et al. [17] observed that SNPs found in 

GWAS were more likely to be eSNPs. The comprehensiveness of our work relied on combining 
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eQTL data with the PPI network and not merely GWAS data, as described in previous studies 

[105]. This allowed us to examine source-target connections across the network, rather than be 

limited to studying the source nodes as in GWAS-PPI analyses. The novel observation is that the 

genetic variation that modifies PPI network properties is associated with a normal expression 

landscape and not only with extreme cases of disease. 

 

We attempted to go beyond topological results and shed light on the regulatory mechanism by 

which gene expression of the target gene is altered in these shorter paths. We systematically 

compared genes along real and permuted shortest paths and found enrichment for ion zinc 

binding proteins, suggesting a plausible mechanism by which the expression level of the target 

transcript is modified. More generally, the paths of interacting protein pairs, from a source 

protein to the target protein, were consistent with concatenation of two pathways (Figure 4-9). 

The prefix of the path was consistent with a regulatory pathway, leading to some regulatory 

protein (TF or other) that affects expression of the target. The suffix of the path may match a self 

feedback loop in reverse: from the target protein back to the same regulatory protein [37]. 

 



 

 

 

Figure 4-9. Mechanistic interpretation
A path of interacting protein pairs (black circles and connectors) along the PPI network, fro
protein (blue) to the target transcript and protein (green), is consistent with concatenation of two 
pathways: the prefix of the path is consistent with a regulatory pathway (red), leading to some regulatory 
protein (purple node), that (directly 
being observed as a trans-eQTL signal. The suffix of the path may match a self feedback loop in reverse: 
from the target protein back to the same regulatory protein (orange arrow).

 

We demonstrated it is possible to characterize regulatory variation in TFs. We observed that 

eSNP TF sources and their gene targets create units of genes that are enriched for functional 

annotations. When decomposing the PPI network to clusters, we observe

target pairs tend to reside within the same cluster. 

 

The design choices for a study of this kind convey a few methodological limitations. First, 

because we were interested in detecting putatively causal variants based on their exact g

location, we used a dataset of fully sequenced individuals along with their transcription profiles. 

Such cohort sizes are limited in size, reducing the power to detect association and allowing us to 

see only the strongest effects. Second, we were in

 

9. Mechanistic interpretation of exonic eSNPs. 
A path of interacting protein pairs (black circles and connectors) along the PPI network, fro
protein (blue) to the target transcript and protein (green), is consistent with concatenation of two 
pathways: the prefix of the path is consistent with a regulatory pathway (red), leading to some regulatory 

 or indirectly) affects expression of the target (purple arrow), thus 
eQTL signal. The suffix of the path may match a self feedback loop in reverse: 

from the target protein back to the same regulatory protein (orange arrow). 

We demonstrated it is possible to characterize regulatory variation in TFs. We observed that 

eSNP TF sources and their gene targets create units of genes that are enriched for functional 

annotations. When decomposing the PPI network to clusters, we observed that these source

target pairs tend to reside within the same cluster.  

The design choices for a study of this kind convey a few methodological limitations. First, 

because we were interested in detecting putatively causal variants based on their exact g

location, we used a dataset of fully sequenced individuals along with their transcription profiles. 

Such cohort sizes are limited in size, reducing the power to detect association and allowing us to 

see only the strongest effects. Second, we were interested in understanding the mechanisms 
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A path of interacting protein pairs (black circles and connectors) along the PPI network, from a source 
protein (blue) to the target transcript and protein (green), is consistent with concatenation of two 
pathways: the prefix of the path is consistent with a regulatory pathway (red), leading to some regulatory 

or indirectly) affects expression of the target (purple arrow), thus 
eQTL signal. The suffix of the path may match a self feedback loop in reverse: 

We demonstrated it is possible to characterize regulatory variation in TFs. We observed that 

eSNP TF sources and their gene targets create units of genes that are enriched for functional 

d that these source-

The design choices for a study of this kind convey a few methodological limitations. First, 

because we were interested in detecting putatively causal variants based on their exact genomic 

location, we used a dataset of fully sequenced individuals along with their transcription profiles. 

Such cohort sizes are limited in size, reducing the power to detect association and allowing us to 

terested in understanding the mechanisms 
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underlying eSNPs interactions. This required the use of a well-established interaction network. 

We examined our results on a PPI network, rather than a TF-DNA interaction network or co-

expression network derived from this dataset, to establish a broad and independent network of 

interactions. Overall, both the raw datasets [40, 91] and supporting databases [42, 47, 50, 54, 62, 

109] in this work were noisy and limited. That we observed statistically significantly plausible 

results in such a small dataset combined with noisy databases is encouraging. Potentially, an 

increase in sample size may enable detection of eSNP associations at more significant P-values 

for even milder effects.  

 

Over the last decade, causal interpretation of genetic association signals for common variants and 

common traits had been impeded by two hurdles. First, many of the signals had been obtained as 

indirect association to proxy genetic markers, without access to the directly and causally 

associated variant. Second, often the trait under investigation was not understood at the 

molecular mechanistic level well enough to decipher the connection between variant and 

phenotype. This work bridges the gap between association and causality by considering both 

direct association to sequencing-ascertained variants, as well as expression quantitative traits. 

The ability to tie together these loose ends of genetic association using an interaction map 

constitutes a notable stride towards understanding the thousands of such connections that recent 

genetics have discovered. 

 

Our main findings suggest two modes of trans regulation via genetic variation in exons and TFs. 

Exonic variation possibly acts through mild cis effects that alter the expression of the source 

gene and delineates shorter paths between functional clusters (Figure 4-10a), and exonic eSNP 



 

 

targets might play an important role in the PPI network as hubs. TF variation frequently acts via 

a modular regulation mechanism, with multiple targets that share a function with the TF source 

(Figure 4-10b). 

Figure 4-10. Summary illustration 
(a) Exon variation often acts by a local cis effect, delineating shorter paths of interacting proteins across 
functional clusters of the PPI network. (b) TF variation frequently acts via a modular regulation 
mechanism, with multiple targets that share a functi
further details).  

 

targets might play an important role in the PPI network as hubs. TF variation frequently acts via 

a modular regulation mechanism, with multiple targets that share a function with the TF source 

mmary illustration - two suggested modes of trans regulation.  
Exon variation often acts by a local cis effect, delineating shorter paths of interacting proteins across 

functional clusters of the PPI network. (b) TF variation frequently acts via a modular regulation 
mechanism, with multiple targets that share a function with the TF source. (See Figure 4
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targets might play an important role in the PPI network as hubs. TF variation frequently acts via 

a modular regulation mechanism, with multiple targets that share a function with the TF source 

 

Exon variation often acts by a local cis effect, delineating shorter paths of interacting proteins across 
functional clusters of the PPI network. (b) TF variation frequently acts via a modular regulation 

TF source. (See Figure 4-8 legend for 
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Future studies could extend the approach presented here to investigate how genetic variation in 

different meaningful genomic locations (for example, enhancers, insulators, miRNAs) correlates 

with gene targets. Datasets that combine sequenced variants coupled with gene expression and 

phenotypic traits are limited in human, but available for other model organisms [112, 113]. It 

would be insightful to combine this type of study with phenotypic data, to see how trans 

association tracks with phenotypes. Specifically, applying our approach to samples under various 

conditions (for example, disease), could improve understanding of condition-specific regulatory 

processes [26]. Moreover, considering genetics-genomics data across different tissues along with 

a tissue-specific PPI network [114] could be telling regarding the underlying regulatory 

mechanisms characterizing these tissues. 
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4.4 Materials and Methods 

4.3.1 Data details and processing  

We analyzed a cohort of 50 Yoruban samples, for which genotypes of SNPs that are fully 

ascertained from sequencing data [91] along with RNA-sequencing data [40] are publicly 

available. Briefly, the raw dataset consists of 10,553,953 genotyped SNPs and expression 

measurements (quantile-quantile normalized values) of 18,147 genes with Ensembl gene ID 

across these 50 samples. Standard filters have been applied to the genetic data: minor allele 

frequency >0.05, SNP missingness rate <0.1 and individual missingness rate <0.1 [46]. After 

filtering, data for analysis consist of 50 samples with 7,206,056 SNPs.  

 

4.3.2 Association testing  

For association analysis, we considered only SNPs that resided within candidate regulatory 

regions along the genome. For trans association, we tested for association between a SNP and 

every gene; we considered SNPs within the span of known exons and TFs (including introns) 

[94]. We tested for association using linear regression. 

 

4.3.3 Obtaining a random distribution of association test statistics  

Examining the random distribution of association tests was helpful in evaluating the empirical 

significance of results. This was achieved by generating 100,000 random pairs of sources and 

targets for exonic and TF variation separately. We used a strict randomization process of edges 

switching. We picked a source gene from all sources in the real data; we then picked a target 

gene from all targets in the real data with a P-value cutoff of 10-6. When evaluating the number 
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of targets per TF source, we created 1,000 sets of random TF source and gene target pairs; each 

set contained 370 such pairs corresponding to 370 TF source-target pairs at a P-value cutoff of 

10-6 in the real data. 

 

4.3.4 Identifying topological trends across association P-values  

For exons, we observed the emergence of true positive associations between P-values 10-6 and 

10-7 (Figure 4-1). Therefore, we focused on P-values <10-6 and sorted all source-target pairs 

according to the significance of their association signal. We considered each prefix of this list, 

that is, each subset of source-target pairs exceeding a particular threshold, for significance of 

association signal. For each such subset, we reported each one of the topological properties 

defined above averaged over the subset. We calculated Spearman’s correlation coefficient 

between significance thresholds and each of these cumulative averages. In a similar process, we 

randomly chose an equal number of arbitrary source-target pairs on the PPI network. Adding 

these pairs one by one created a distribution of analogous cumulative averages for permuted 

pairs. We recorded the Spearman correlation coefficient for these 100,000 permuted 

distributions. We calculated the empirical P-value for the significance of the observed 

correlation coefficients by counting the number of times when permuted r > real r and divided 

this by the number of permutations. 

 

4.3.5 Identifying topological properties of source-target pairs projected on the PPI network  

 

We used the PPI network provided by the Human Protein Reference Database [42]. The 

undirected network contains 9,671 nodes and 37,041 edges. For each node, we calculated its 
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degree: the number of edges incident on the node. We defined a distance between every two 

nodes as the number of edges on the shortest path between them. All pair-wise shortest paths 

were determined using the Floyd-Warshall algorithm [15]. In cases where the network had more 

than one connected component, nodes from two different components were defined to have a 

distance of twice the maximal distance obtained within the components. 

 

4.3.6 Expression analysis  

We calculated all pairwise co-expression correlations for all gene pairs in the dataset using 

Spearman rank-correlation test, and therefore obtained the distribution of the correlation 

coefficient r. To determine whether the distribution of r between source-target pairs differed 

from its background distribution, we employed the Wilcoxon ranked-sum test. 

4.3.7 Enrichment of eSNPs for cis effects  

We examined whether eSNPs that were associated with a target’s expression level also affected 

expression levels of the corresponding source. We tested this by considering, for each source-

target pair, the one eSNP most associated to the expression for the target. We tallied the source-

target pairs for which this eSNP was also significantly associated (P <0.05) with the expression 

level of the source. Under the null, the number of such pairs is a random variable that is 

binomially distributed. Bin (n = number ofunique source genes, P =0.05).  

 

4.3.8 Unit and path annotation  

We defined units of genes by considering a TF source and its gene targets. We examined shortest 

paths within the PPI network between eSNP exon source and its gene target. The enrichment of 

units and paths with gene subsets from the Gene Ontology [62], and KEGG [47] databases was 
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calculated by Genatomy [13]. We reported only units or paths with annotations that had a 

significant FDR of 0.05 or better. The description of genes in units or paths is cited from the 

National Center for Biotechnology Information Gene database and GeneCards [115].  

 

4.3.9 Finding transcription factor source-target pairs in the experimental database  

The ChIP Enrichment Analysis (ChEA) database [109] represents a collection of interactions 

describing the binding of transcription factors to DNA, collected from ChIP-X (ChIP-chip, ChIP-

sequencing, ChIP-positron emission tomography and DNA adenine methyltransferase 

identification) experiments. For each TF source and target, we examined if they were present in 

ChEA. We repeated the same procedure for 100,000 permuted pairs of a random TF source and a 

random gene target. We then compared, using Fisher’s exact test, the number of pairs in ChEA 

between real and permutation pairs, out of all pairs where the TF source was included in the 

database. 

 

4.3.10 Finding PPI network decomposition to clusters  

The decomposition of the PPI network to clusters was computed by using the Louvain algorithm 

presented in [95] . This is a heuristic method that is based on modularity optimization. The 

method consists of two phases and partitions the network into clusters such that the number of 

edges between clusters is significantly less than expected by chance. The method provides a 

mathematical measure for modularity with network-size normalized values, ranging from 0 (low 

modularity) to 1 (maximum modularity). This method has been previously applied to various 

biological networks [116]  and specifically to a PPI network [117] . 
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4.3.11 Significance of source and target residing in the same PPI cluster  

For each exon and TF source-target pair, we recorded whether both source and target resided in 

the same PPI cluster. We repeated the same procedure with 100,000 permuted unique source-

target pairs from nodes on the PPI network. We then compared the number of cluster co-

occurrences between real data and permutations using the Fisher exact test. 

 

4.3.12 Comparing shortest paths annotation content  

We recorded all genes along the shortest paths between exonic sources and targets, both in real 

and permuted data. We then looked for enrichment in this set of genes (at least 10 genes per 

category, FDR <0.05). We created sets of 1,000 permuted 55 shortest paths (from the 17,564 

shortest paths in permutations) that followed the exact length distribution of the 55 real paths. 

For each one of the six categories that was not enriched in permutations, we performed two 

analyses: first, we counted how many genes from each category appeared in the real paths (with 

repetitions, that is if gene X from category Y appeared in two shortest paths we counted it twice); 

and second, we counted how many of the 55 paths had at least one gene from this category. We 

repeated the same procedures for the 1,000 permuted sets. For each category, we then counted 

how many of the 1,000 permutations achieved equal or greater numbers than seen for the real 

data (empirical P-value).  
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Chapter 5: Conclusions 

Variants that are associated with changes in gene expression (eSNPs) are known to play a role in 

many human traits [17], making them the subject of recent research efforts. Here, we focus on 

eSNPs in trans, as they provide insight on regulatory interactions between different loci and the 

structure of the regulatory network that such interactions define. First, we present a novel 

approach for defining network motifs, including regulatory modules [36]. Second, we extend this 

approach to discover bi-fan structures [22]. Third, we devise a computational framework where 

we project eSNP associations onto a PPI network to characterize properties of eSNPs and their 

targets [38] . Overall, our work offers insights concerning the topological structure of human 

regulatory networks and the effect genetic variation has on shaping them. 

 

We assemble modules of transcripts each associated to the same main SNP; then assign a 

confidence score to each module, lastly we determine intra-module topology from the 

dependencies between the transcripts in the module and the main SNP [36]. We show these 

modules to be high confidence structures. We apply our method to data on human liver 

expression and SNP genotypes [52] and find that trans regulation exhibits a modular structure 

with a single variant that is associated with a set of genes and shares the same annotation 

descriptors with them. This regulation structure is usually mediated by a cis effect of the main 

SNP on the expression of a close gene, and the direction of effect on the genes in the module is 

mostly consistent (either up or down regulation). There are significantly more modules, and they 

are bigger, denser and more enriched in annotations than those observed in the permuted data, 

providing support for our methodology.  
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We extend this approach to define quartet structures comprised of a pair of two main SNPs that 

are associated to the same pair of transcripts [22]. We uncover a bi-fan motif in the human 

regulatory network [22], which was previously described as a building block of model 

organisms’ regulatory networks [37]. This regulatory structure is nearly exclusive to real data, 

and exhibits unique characteristics. Most human bi-fans involve pairs of eSNPs located on 

different chromosomes, away from their targets which are likewise located on different 

chromosomes. All quartets are consistent in terms of the direction of eSNP effects on correlated 

and anti-correlated transcripts and there is enrichment for eSNPs with the same-direction effects, 

i.e., the directional effect of both eSNPs on a transcript is the same. We replicate these 

characteristics in a larger dataset [1]. 

 

Finally, we present a computational framework that integrates eSNPs within exons with a PPI 

network [38]. We then compare eSNPs in exons with eSNPs in TFs to uncover characteristics of 

trans regulation. We applied our approach to publicly available genetics and genomics [40, 91] 

data from the same samples. Our findings suggest two distinct modes of trans regulation:  

Exon variation possibly acts through mild cis effects that alter the expression of the source gene. 

The exonic source and target, which are frequently co-expressed, seem to be connected by 

shorter paths between functional clusters and the target degree is higher. Moreover, we find 

enrichment for ion zinc binding proteins, suggesting a plausible mechanism by which the 

expression level of the target transcript is modified. TF variation frequently acts via a modular 

regulation mechanism, with multiple targets that share a function with the TF source. 
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The advances in sequencing and RNA-seq technologies and the drop of prices make this an 

exciting time for genetics-genomics research, but there are still some substantial limitations to 

overcome. First, the traditional use of SNP arrays for genotyping in large scale genetic studies is 

limiting to findings that are predominantly tags for causal variants. Cohorts that include both 

RNA-seq for gene expression and sequencing-ascertained variants for genotyping are still 

limited in size [1, 39, 40], reducing power for eSNP associations discovery. Second, findings in 

eSNPs studies are commonly supported by annotation data bases [42, 47, 54, 62] that are noisy, 

partial and in many cases publication biased. In the recent ENCODE effort [118] it was 

established that most of disease associated variants are located within regulatory regions [119], 

highlighting the importance of improving whole genome annotation and not merely focusing on 

the coding regions. Finally, statistical and computational approached are helpful in shortlisting 

candidate loci that have high susceptibility to affect phenotypes. Such findings should be 

accompanied by experimental validations, which are costly and time consuming.  

 

A recent conference I attended “The biology of genomes” provided a good snapshot of the field 

and where it is headed. There is an effort to produce and make publicly available datasets with 

large number of samples. A good example is the Geuvadis dataset [1] which includes RNA-seq 

and genotyping data for more than 450 samples from different populations. The GTEx 

consortium [13] is collecting and producing RNA-seq and genotype data across multiple tissues. 

This resource will provide insights into tissue specific regulatory mechanisms. Another 

important question would be to characterize eQTLs within a specific tissue but in different cell 

types. A natural extension to the study of eSNPs is to focus on SNPs that are associated with 

other cellular phenotypes, e.g., long intergenic non-coding RNAs (lincRNAs) expression [120] 
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and protein levels [121] or focusing on different type of variants that are associated with gene 

expression, e.g., Short Tandem Repeat (STR) [122]. The findings from such studies will 

complement and extend the understanding of biological processes. The future goal of this field 

would be to find and characterize causal variants, understand the mechanisms through which 

they act and ultimately move from bench to bedside and develop personalized treatment. 

 

The code for all methods presented in this thesis can be found in the following link:  

http://www.columbia.edu/~ak2996/Software.htm 
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