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ABSTRACT

Multiple Dirichlet Series for Affine Weyl Groups

Ian Whitehead

Let W be the Weyl group of a simply-laced affine Kac-Moody Lie group, excepting Ãn for n

even. We construct a multiple Dirichlet series Z(x1, . . . xn+1), meromorphic in a half-space,

satisfying a group W of functional equations. This series is analogous to the multiple Dirichlet

series for classical Weyl groups constructed by Brubaker-Bump-Friedberg, Chinta-Gunnells,

and others. It is completely characterized by four natural axioms concerning its coefficients,

axioms which come from the geometry of parameter spaces of hyperelliptic curves. The series

constructed this way is optimal for computing moments of character sums and L-functions,

including the fourth moment of quadratic L-functions at the central point via D̃4 and the second

moment weighted by the number of divisors of the conductor via Ã3. We also give evidence to

suggest that this series appears as a first Fourier-Whittaker coefficient in an Eisenstein series on

the twofold metaplectic cover of the relevant Kac-Moody group. The construction is limited to

the rational function field Fq(t), but it also describes the p-part of the multiple Dirichlet series

over an arbitrary global field.



Table of Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1 Introduction 1

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Methods and Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Further Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Background and Notation: Function Field Dirichlet L-Functions . . . . . . . . 10

1.5 Background and Notation: Affine Root Systems . . . . . . . . . . . . . . . . . 12

2 Axioms and Consequences 15

2.1 The Four Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 The Axioms Imply the Functional Equations . . . . . . . . . . . . . . . . . . . 18

3 Consequences of the Functional Equations 24

3.1 The Family of Series Satisfying the Functional Equations . . . . . . . . . . . . 24

3.2 The Chinta-Gunnells Averaged Series . . . . . . . . . . . . . . . . . . . . . . 27

4 Residues of Z(x) 34

4.1 Definition of the Residue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 A Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Proof of the Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Residue Formulas 42

i



5.1 The Off-Diagonal Part R0 of the Residue . . . . . . . . . . . . . . . . . . . . . 42

5.2 The Diagonal Part R1 of the Residue . . . . . . . . . . . . . . . . . . . . . . . 55

6 Computing the Full Residue in Type Ã 58
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Motivations

The goal of this paper is to define and construct multiple Dirichlet series associated to affine

Kac-Moody Lie groups over the rational function field Fq(t). These will be power series in sev-

eral complex variables, with meromorphic continuation to a half-space, and an infinite group of

symmetries isomorphic to the Kac-Moody Weyl group. They generalize the multiple Dirichlet

series for finite Weyl groups which have been thoroughly studied elsewhere. However, there

are important distinctions between the finite and Kac-Moody cases, necessitating a new ap-

proach. This paper tests one such approach, and makes a first foray into new territory for

multiple Dirichlet series.

The original goal of multivariable Dirichlet series is to parametrize a family of L-functions.

The technique of studying L-functions on average across a family has yielded tremendous

progress, from the Bombieri-Vinogradov theorem to recent work of Bhargava and his collabo-

rators. One primary focus has been on rth moment problems, concerning averages (or weighted

averages) of L-functions at the central point

∑
L∈F L(1/2)r∑

L∈F 1
(1.1.1)

considered in limit as the size of the family F approaches infinity. The Katz-Sarnak philosophy,
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CHAPTER 1. INTRODUCTION

that random L-functions are modeled by characteristic polynomials of random matrices, leads

to moment conjectures in a broad variety of cases [14, 28]. There are many approaches to

proving these conjectures, including trace formulas, approximate functional equations, and

multiple Dirichlet series. Typically, the first few moments can be computed, but higher moment

conjectures remain open.

The first example of a multiple Dirichlet series, now understood as the A2 series, is essen-

tially

Z(s, t) =
∑

m,n

(m
n

)
m−sn−t =

∑

m

L(t, χm)m
−s (1.1.2)

where
( )

denotes the quadratic residue symbol, and χm the equivalent quadratic character.

This appears in a different guise in the work of Siegel [32]. Goldfeld and Hoffstein described it

as the Mellin transform of an Eisenstein series of half-integral weight on GL(2), and used it to

compute the first moment in the family of quadratic L-functions [24]. Other series compute the

second [10] and third [17] moments. These moments were originally computed in other ways,

by Jutila for r = 1, 2 [27] and Soundararajan for r = 3 [33]. For other moment computations

via multiple Dirichlet series, see [7], [9], and [11]. However, regardless of the strategy, the

fourth moment seems out of reach. From the multiple Dirichlet series perspective, the difficulty

is transitioning from finite to infinite Weyl groups of functional equations. In [8], Bucur and

Diaconu construct a series with affine Weyl group D̃4 of functional equations, and use it to

compute the fourth moment of quadratic L-functions in the rational function field Fq(t). Theirs

is the only affine Weyl group multiple Dirichlet series currently in the literature, and this paper

generalizes their work. The constructions here are still limited to the rational function field, but

generalized to arbitrary affine Weyl groups, which allow many new moment computations of

equivalent difficulty. These are some of the first applications of Kac-Moody groups to number

theory.

There is now a rich literature that treats multiple Dirichlet series as objects of intrinsic

interest, aside from applications to analytic number theory. To guarantee the desired functional

equations, one must replace certain sums of L-functions with weighted sums; the problem of

choosing weights leads to important questions in combinatorial representation theory. Weyl
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CHAPTER 1. INTRODUCTION

group multiple Dirichlet series are constructed in papers of Brubaker, Bump and Friedberg

[5, 6], and Chinta and Gunnells [12, 13]. The input is a global field k, an integer n, and a root

system with Weyl group W ; the output is a multivariable Dirichlet series constructed out of

Gauss sums for order n characters on k. The series has a finite group of functional equations

isomorphic to W . Its “p-part,” which describes its weighting, can be interpreted as a sum on

a crystal, or as a deformation of the Weyl character formula for W . One hopes that all of this

machinery can eventually be extended to affine and arbitrary Kac-Moody Weyl groups, with

the present work (which has k = Fq(t) and n = 2) as a template.

The Eisenstein conjecture explains the link between multiple Dirichlet series and auto-

morphic forms. It states that each Weyl group multiple Dirichlet series appears as the first

Fourier-Whittaker coefficient in an Eisenstein series on the metaplectic n-fold cover of the al-

gebraic group over k associated to the root system. This is proven for root systems of type A

[5] and B [21]. It is too early to state a generalization of this conjecture to Kac-Moody groups.

Eisenstein series on metaplectic covers of Kac-Moody groups have not yet been constructed.

However, nonmetaplectic Kac-Moody Eisenstein series are now an area of active research. Re-

cent work of Braverman, Garland, Kazhdan, Miller, and Patnaik makes progress constructing

Eisenstein series on affine Kac-Moody algebras over function fields [4, 3, 22, 23]. Completely

understanding one Whittaker coefficient of a conjectural Eisenstein series could shed light on

the series as a whole. For example, the analytic behavior of a Whittaker coefficient models the

behavior of the full Eisenstein series via Maass-Selberg type relations. There is some evidence

to suggest that the series presented here are the correct ones for a hypothetical generalization

of the Eisenstein conjecture.

1.2 Methods and Main Results

Let q be a prime power congruent to 1 modulo 4. Let W be a simply-laced affine Weyl group

represented by one of the Dynkin diagrams:

3



CHAPTER 1. INTRODUCTION

and label the vertices 1 to n + 1. If the root system is type Ãn, then we must assume for

technical reasons that n is odd. Write i ∼ j if vertices i and j are adjacent. Then the quadratic

W multiple Dirichlet series over the rational function field Fq(t) is roughly:

Z(x1, . . . xn+1) =
∑

f1,...fn+1∈Fq [t] monic

(
∏

i∼j

(
fi
fj

))
xdeg f1
1 · · · x

deg fn+1

n+1 (1.2.1)

where we have replaced the usual variable q−si with xi. To make this precise, the product of

residue symbols should be replaced by a certain weighted term in cases where the fi are not

squarefree or coprime. The main theorem of this paper is that the choice of weights and the

resulting series are uniquely determined by four natural axioms (2.1.1, 2.1.2, 2.1.3, 2.1.4). The

series has meromorphic continuation to a half-space, with group of functional equations W . In

the case of Ãn, we prove meromorphicity in the largest possible domain, which corresponds to

the Tits cone of W ; in other types, we only prove meromorphicity in a smaller half space, but

we give a conjecture which implies meromorphic continuation to the optimal domain.

There are other multivariable functions with the same domain of meromorphic continuation

and the same group of functional equations, but the series constructed here is optimal for com-

puting analytic data on character sums and L-functions. Because of its natural axioms, which

arise from algebraic geometry, and because it has certain poles which will be described below,

this series also seems like the correct one to satisfy the Eisenstein conjecture–that is, to be a

Whittaker coefficient in a metaplectic Kac-Moody Eisenstein series. The theorem is limited

to the rational function field Fq(t), but the proof resolves all combinatorial questions involved

in constructing analogous series over any global field; meromorphic continuation is the only

remaining obstacle, and this is known to be an extremely difficult problem.

To contrast this theorem with the case of finite Weyl groups: for finite W , the series Z is

completely determined by its expected functional equations; it has meromorphic continuation

to all of Cn, and in fact is a rational function in the variables xi. For affine Weyl groups, all of

this breaks down. The series cannot be rational because infinitely many functional equations
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CHAPTER 1. INTRODUCTION

mean infinitely many poles; moreover the poles accumulate at essential singularities along the

boundary of the Tits cone. The series is not uniquely determined by its functional equations–

we will show that it is determined up to a meromorphic function of one variable. One needs

a completely new strategy to choose the correction terms in a canonical way. Lee and Zhang

generalize the averaging method of Chinta and Gunnells to construct a series for every sym-

metrizable Kac-Moody algebra [29]. This has the desired functional equations, but it does not

naturally contain character sums or L-functions. Bucur and Diaconu construct their D̃4 series

by making an assumption about its residue at one pole [8]. Their series is closely related to the

one constructed here, and satisfies the first two axioms. However, it does not satisfy the third

axiom, and likely will not fulfill the Eisenstein conjecture.

In order to state the axioms I will use some additional notation. In the definition of the

series (1.2.1), we replace
∏

i∼j

(
fi
fj

)
with H(f1, . . . fn+1) ∈ C, which includes the weights

mentioned above. Let ca1,...an+1(q) ∈ C be a power series coefficient of Z, so that

ca1,...an+1(q) =
∑

fi∈Fq [t] monic,

deg(fi)=ai

H(f1, . . . fn+1). (1.2.2)

The axioms concern the behavior of the weights H and coefficients c as the underlying finite

field Fq varies. The first axiom is twisted multiplicativity for the H terms: if we assume that

gcd(f1 · · · fn+1, f
′
1 · · · f

′
n+1) = 1, then

H(f1f
′
1, . . . fn+1f

′
n+1) = H(f1, . . . fn+1)H(f ′

1, . . . f
′
n+1)

∏

i∼j

(
fi
fj

)
(1.2.3)

so it suffices to describe H(pa1 , . . . pan+1) for p prime. This condition is familiar from the theory

for finite Weyl groups, but the next two axioms are new, hypothesized by Diaconu and Pasol

in a forthcoming paper [18]. They can be proved as propositions in the finite Weyl group case.

The second axiom is a local-to-global property: the terms ca1,...an+1(q) and H(pa1 , . . . pan+1)

are polynomials in q and |p| := qdeg p respectively, and

H(pa1 , . . . pan+1) = |p|a1+···+an+1ca1,...an+1(1/|p|). (1.2.4)

The third axiom is a dominance condition: ca1,...an+1(q) has nonzero terms only in degrees

(a1 + · · ·+ an+1 + 1)/2 < d ≤ a1 + · · ·+ an+1, so the degree of H(pa1 , . . . pan+1) is less than
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CHAPTER 1. INTRODUCTION

(a1 + · · · + an+1 − 1)/2. This means in practice that the contribution of correction factors in

the character sums c is as small as possible. The final axiom is just a normalization condition,

that H(1, . . . 1, f, 1, . . . 1) = 1.

We will briefly outline the geometric meaning of Axioms 2 and 3. For more details, we

refer the reader to the work of Diaconu and Pasol. The sums

∑

fi∈Fq [t] monic, deg(fi)=ai

(
∏

i∼j

(
fi
fj

))
(1.2.5)

count points on a certain variety over Fq; for each i ∈ {1, . . . n + 1}, this variety is a cover

of the parameter space of hyperelliptic curves y2 =
∏

j∼i fj(t). The weights H(f1, . . . fn+1)

are best understood as counting points when this variety is desingularized and compactified.

Axioms 2 and 3 translate into statements about the cohomology of the nonsingular, compact

variety: Axiom 2 is a duality statement, and Axiom 3 is a cohomological purity statement.

Diaconu and Pasol study series corresponding to Dynkin diagrams of the form:

If meromorphically continued, these series would compute the nth moment of quadratic Dirich-

let L-functions over function fields. The diagram gives a Kac-Moody Lie group for n ≥ 4, and

the groups become extremely complicated as n grows. For concreteness, consider the coeffi-

cient c1,...1,3(q) in such a series. This is roughly:

∑

deg f1=...=deg fn=1,deg fn+1=3

(
fn+1

f1 · · · fn

)
=

∑

deg fn+1=3

(
∑

x∈F

χ(fn+1(x)))
n (1.2.6)

or the nth moment of the trace of Frobenius in the family of elliptic curves y2 = fn+1(t) over

the fixed finite field Fq. Birch studies these moments via the Eichler-Selberg trace formula [1].

The first 9 moments are polynomials in q, but the 10th is not–it includes the Ramanujan tau

function. This corresponds to the appearance of higher-dimensional Galois representations in

the cohomology of the underlying variety. In such cases, the axioms must be relaxed so that H

6



CHAPTER 1. INTRODUCTION

and c are no longer polynomials, but still consist of terms which have well-defined degree and

can be evaluated at negative powers of a prime p. For example, the degree of τ is taken to be

11
2

, and we set τ(p−1) = p−11τ(p). The underlying geometry here is not fully understood. For

example, what are the simplest Kac-Moody Weyl groups for which nonpolynomial coefficients

must appear? Polynomial coefficients are sufficient for affine Weyl groups, but this intriguing

question remains unanswered.

The first tool in the proof of the main theorem is a detailed study of the functional equa-

tions of Z(x1, . . . xn+1), which are verified directly from the axioms. The functional equations

induce recursive formulas for the coefficients of the series; this recursion can be solved up to

the choice of a one-parameter family of diagonal coefficients cmα0 , where m ∈ Z≥0 and α0 is

the minimal imaginary root of the affine root system. The diagonal coefficients are analogous

to the central coefficients in function field Dirichlet L-functions; they are the most difficult

character sums to compute by hand. Determining them uniquely requires the full strength of

Axioms 2 and 3. In the diagonal coefficients, it is possible to observe the effect of imaginary

roots on the multiple Dirichlet series, and, one hopes, on the Kac-Moody Eisenstein series.

The second tool in the proof is to take residues of Z(x1, . . . xn+1), setting various coeffi-

cients xi = q−1. Crucially, certain residues of the series are Euler products, with multiplicative

rather than twisted multiplicative coefficients. This simplifies the series enough to be written

down explicitly, as an infinite product of function field zeta functions. The local-to-global prop-

erty leads to a symmetry in the residue, and dominance together with the functional equations

determines it uniquely. We compute the full residue in type Ãn with n odd, and compute the

residue up to a diagonal factor in all types. For example, in the case of Ã3, with the vertices of

7



CHAPTER 1. INTRODUCTION

the Dynkin diagram labeled from 1 to 4 cyclically, we prove the following residue formula:

(−q)(n+1)/2Resx2=x4=q−1Z(x1, x2, x3, x4) =
∞∏

m=0

(1− x2m+2
1 x2m

3 )−1(1− qx2m+2
1 x2m

3 )−1

(1− x2m
1 x2m+2

3 )−1(1− qx2m
1 x2m+2

3 )−1

(1− x2m+2
1 x2m+2

3 )−2(1− qx2m+2
1 x2m+2

3 )−2

(1− x2m+1
1 x2m+1

3 )−1(1− qx2m+1
1 x2m+1

3 )−1

(1.2.7)

The full series can be recovered from the residue.

Let us sketch a possible arithmetic application of this formula. We may interpret the Ã3

series as roughly:

∑

f1,f2,f3,f4

(
f1f3
f2f4

)
x− deg f1
1 · · · x− deg f4

4 =
∑

f2,f4

L(x1, χf2f4)L(x3, χf2f4)x
− deg f2
2 x− deg f4

4 .

(1.2.8)

We set x2 = x4 = x, multiply by x−d−1 and take 1
2πi

∫
|x|=ǫ

. This integral can be evaluated by

expanding the circle |x| = ǫ across the pole x = q−1, where we gain the residue 1.2.7. We

obtain a formula for the sum

∑

deg f=d

σ0(f)L(x1, χf )L(x3, χf ) (1.2.9)

where σ0(f) is the number of divisors of f . Evaluating at x1 = x3 = q−1/2 gives the sec-

ond moment of quadratic L-functions over Fq(t) with conductor of degree d, weighted by the

number of divisors of the conductor. It is possible to sieve for squarefree conductors as well.

The residue also contains evidence related to the Eisenstein conjecture. The first five factors

in (1.2.7) correspond to positive real roots in the Ã3 root system. The last three factors, how-

ever, correspond to imaginary roots. Eisenstein series on Kac-Moody algebras, and hence their

Whittaker functions, are expected to have poles corresponding to all roots, real and imaginary.

The contribution of imaginary roots is subtle and difficult to detect. We cannot completely

determine the poles of Z(x1, . . . xn+1) corresponding to imaginary roots, since some of them

may be canceled out in the residue. However, we can assert that such poles exist. They do

8



CHAPTER 1. INTRODUCTION

not appear in the Bucur-Diaconu D̃4 series. Their presence here suggests that the four axioms

produce series which could fulfill the Eisenstein conjecture.

1.3 Further Directions

The first problem arising from this work is to prove Conjecture 5.2.1, which gives explicit

formulas for the diagonal parts of the residues in all types. Meromorphic continuation of the

series Z(x1, . . . xn+1) to its largest possible half-space will follow immediately. A second

task is to prove the main theorem in type Ãn with n even. The difficulty here is that the

method of studying a residue with an Euler product formula may not apply. This should be an

inconvenience rather than a fundamental obstruction; one can still study a residue whose terms

satisfy a very simple twisted multiplicativity property. A third natural extension of the theorem

is to affine root systems which are not simply-laced: B̃n, C̃n, F̃4, and G̃2.

To generalize further, following the theory for finite Weyl groups, one could replace the

quadratic residue symbols in (1.2.1) with mth power residue symbols, or Gauss sums; in the

Eisenstein conjecture, this means constructing a Whittaker function on the m-fold metaplectic

cover of the Kac-Moody algebra. It remains to be seen whether the four axioms, suitably

modified, still yield a canonical choice for this series. A separate project is to generalize the

construction to arbitrary global fields. In this case the p-parts of the series, i.e. the weights

H(pa1 , . . . pan+1), match the rational function field construction, but the global series is quite

different. The residue formulas should generalize straightforwardly to any global field, with

the Dedekind zeta function of the field replacing the function field zeta function (1 − qx)−1.

One could consider arbitrary function fields, following the work of Hoffstein and Rosen [25]

and Fisher and Friedberg [19, 20]. The multiple Dirichlet series will still be power series,

now with finitely many one-parameter families of undetermined coefficients. It is possible that

meromorphic continuation of the residue is enough to imply meromorphic continuation of the

full series. Unfortunately, this line of reasoning breaks down completely over number fields.

Over Q, for example, meromorphic continuation seems out of reach at present; it may not be

9



CHAPTER 1. INTRODUCTION

proven until the theory of Kac-Moody Eisenstein series is fully developed.

Finally, this work could be generalized towards non-affine Kac-Moody groups. These are

necessary to compute fifth and higher moments of quadratic L-functions. Here the situation is

very complex. The functional equations have even less control over the shape of the series, but

the Diaconu-Pasol axioms should still guarantee uniqueness in many cases. One fundamental

question, discussed above, is to determine when the coefficients of the series will no longer be

polynomials. This would create major obstacles to the methods of this paper. On the other hand,

better-understood Kac-Moody algebras, like hyperbolic ones, may still generate polynomial

coefficients, and could be tractable. One could also attempt to study properties of Kac-Moody

Whittaker functions abstractly–for example, what differential equations must they satisfy?–and

thereby accumulate further evidence for the Eisenstein conjecture without actually constructing

Kac-Moody Eisenstein series.

1.4 Background and Notation: Function Field Dirichlet L-

Functions

Let q be an odd prime power, Fq a finite field, and Fq[t] its polynomial ring.

We will call an element p of Fq[t] prime if it is monic, nonconstant, and irreducible. For

p ∈ Fq[t] prime, and any g ∈ Fq[t] we define the quadratic residue symbol, or quadratic

character modulo p, as

(
p

g

)
= χp(g) :=





1 g square modulo p

−1 g not a square modulo p

0 g ≡ 0 modulo p.

(1.4.1)

For any nonzero f ∈ Fq[t], we define sgn(f) to be 1 if the leading coefficient of f is a square

in F∗
q , and −1 if it is not a square. For f ∈ F∗

q constant, we set

(
f

g

)
= χf (g) := sgn(f)deg g. (1.4.2)

10
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These are multiplicative functions of g; we extend to arbitrary f ∈ Fq[t] by multiplicativity as

well: (
f1f2
g

)
=

(
f1
g

)(
f2
g

)
. (1.4.3)

Then we have the all-important quadratic reciprocity law:

(
f

g

)
= (−1)(q−1)(deg f)(deg g)/2sgn(f)deg gsgn(g)deg f

(
g

f

)
(1.4.4)

or if q ≡ 1 mod 4 (which we will assume below) and f, g monic, simply

(
f

g

)
=

(
g

f

)
. (1.4.5)

Next, we define zeta and L-functions over Fq[t]. These are typically written as series in the

variable q−s to highlight parallels with L-functions over number fields, but for our purposes it

is more convenient to use the variable x. Let

ζ(x) :=
∑

g∈Fq [t] monic

xdeg g =
∏

p∈Fq [t] prime

(1− xdeg p)−1. (1.4.6)

This zeta function may be computed explicitly as ζ(x) = (1− qx)−1, since there are qd monic

polynomials of degree d. Hence we automatically have meromorphic continuation to all x ∈ C,

with a functional equation

(1− x)−1ζ(x) = q−1x−2(1− q−1x−1)ζ(q−1x−1). (1.4.7)

We also have the Riemann hypothesis, trivially, since ζ(x) has no zeroes at all.

For f ∈ Fq[t] squarefree, define the quadratic Dirichlet L-function with conductor f as

L(x, χf ) :=
∑

g∈Fq [t] monic

χf (g)x
deg g =

∏

p∈Fq [t] prime

(1− χf (p)x
deg p)−1. (1.4.8)

If f ∈ F∗
q is constant, then we have L(x, χf ) = ζ(sgn(f)x). Otherwise, L(x, χf ) is a poly-

nomial in x, whose degree is deg f − 1. This follows from the orthogonality relation for the

nontrivial character χf . We have a functional equation as follows: if deg f is odd, then

L(x, χf ) = (q1/2x)deg f−1L(q−1x−1, χf ), (1.4.9)

11
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and if deg f is even, then

(1− sgn(f)x)−1L(x, χf ) = (q1/2x)deg f−2(1− sgn(f)q−1x−1)−1L(q−1x−1, χf ). (1.4.10)

This functional equation is a consequence of the Weil conjectures for curves, since one can

show that ζ(x)L(x, χf ) = ζC(x), where C is the hyperelliptic curve y2 = f(t). We also have

the Riemann hypothesis for L(x, χf ): all roots have |x| = q−1/2. This implies a bound of
(
deg f−1

a

)
q−a/2 on the xa coefficient of L(x, χf ). All these properties are developed in detail in

[31]. For the proof of the Weil conjectures for all varieties over finite fields, see the work of

Deligne [15, 16].

If f ∈ Fq[t] is not squarefree, then the definition (1.4.8) gives only a partial Euler product.

It is more natural to take the L-function of the character χf0 , where f0 is the squarefree part of

f . However, this means that the degree of the L-function is no longer the expected deg f − 1,

and the functional equation is correspondingly different. This motivates the need for weighted

sums of L-functions and weighted sums of quadratic characters, which are introduced below.

1.5 Background and Notation: Affine Root Systems

The representation theory and combinatorics of affine Kac-Moody root systems is a vast and

important subject. We will confine our discussion to properties of the Weyl group and root

system used in this paper. For a more general introduction to the subject, see [26]. For complete

details, see [2]. One particularly beautiful and relevant application of this theory is to the

Macdonald identities for the affine Weyl denominator [30].

We begin with one of the simply-laced affine Dynkin diagrams Ãn, D̃n, Ẽ6, Ẽ7, or Ẽ8, with

vertices labeled from 1 to n+ 1. For convenience, we fix the following labelings:

12
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We regard the labels as integers modulo n + 1 in the Ãn case. Write i ∼ j for adjacent

(distinct) vertices. Then the affine Weyl group associated to the diagram is

W =< σ1, . . . σn+1 : σ2
i = 1, σiσjσi = σjσiσj for i ∼ j, σiσj = σjσi for i 6∼ j > . (1.5.1)

This is a Coxeter group which can be constructed as the semidirect product of a finite Weyl

group with its coroot lattice. For w ∈ W , ℓ(w) is the length of any minimal expression w =

σi1σi2 · · · σiℓ(w).

The Weyl group acts naturally on a vector space spanned by simple roots {e1, . . . en+1}.

The action is defined as follows:

σi(ej) =





−ej j = i

ej + ei i ∼ j

ej i 6∼ j

(1.5.2)

and extended by linearity. One can check that this is a well-defined left action. The set of (real)

roots Φ is the orbit of the simple roots under this action. It is an infinite set, contained in the

root lattice Λ =
⊕n+1

i=1 Zei.

The height of a root α =
∑

aiei is ht(α) =
∑

ai. We have a partial ordering on the roots:

for α =
∑

aiei, β =
∑

biei ∈ Φ, write α ≤ β if all ai ≤ bi. Define the set Φ+ of positive roots

as {α ≥ 0} and the set Φ− of negative roots as {α ≤ 0}. It is a fact that every root is either

positive or negative, and multiplication by −1 is an involution of Φ. Furthermore, for w ∈ W ,

we may define Φ(w) := Φ+ ∩ w−1(Φ−). This is a finite set, whose cardinality is ℓ(w).

There is a unique linear subspace of the root space which is invariant under the action of

the Weyl group. It is possible to find a minimal positive vector of the root lattice, α0, which

13
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lies in this subspace. We refer to α0 as the imaginary root, and the set of integer multiples of

α0 as the set of imaginary roots. The following table gives the coordinates of α0 in each type:

Type α0

Ãn (1, 1, . . . 1)

D̃n (1, 1, 2, 2, . . . 2, 1, 1)

Ẽ6 (1, 2, 1, 2, 1, 2, 3)

Ẽ7 (1, 2, 3, 2, 1, 2, 3, 4)

Ẽ8 (2, 4, 3, 1, 2, 3, 4, 5, 6)

The imaginary roots are analogous to real roots, but there are many distinctions. When we

refer to “roots” below, we mean real roots only. Our convention is that α0 6∈ Φ. The role of

imaginary roots will almost always have to be treated separately.

The following proposition classifies real roots:

Proposition 1.5.1. Let Ψ be the finite set of roots α with 0 ≤ α ≤ α0. Then the full set of roots

is {α +mα0 : α ∈ Ψ,m ∈ Z}.

This proposition is essential to several meromorphic continuation proofs given below. It

demonstrates the importance of the imaginary root to the theory of affine root systems.

Another proposition describes the action of W on Φ more concretely.

Proposition 1.5.2. Let α =
∑

aiei ∈ Φ. Then σj(α) = α±ej if
∑

i∼j aj is odd, and σj(α) = α

if
∑

i∼j aj is even. The only exception is for α = ±ej +mα0: in this case, σj(α) = α∓ 2ej .

Let x = (x1, . . . xn+1) be an n+ 1-tuple of complex numbers. In order to define functional

equations below, we will fix an action of W on x, given by

(σi(x))j =





q−1x−1
i j = i

q1/2xixj i ∼ j

xj i 6∼ j

. (1.5.3)

The action of w ∈ W takes the monomial xα :=
∏

xai
i to q(ht(w(α))−ht(α))/2

x
w(α). It is a

conjugation by q1/2 of the standard action of W on the group ring of the root lattice C[Λ] ∼=

C[x1, . . . xn+1].

14
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Chapter 2

Axioms and Consequences

2.1 The Four Axioms

We will begin by stating the problem in the most general way. Let Γ be a graph with vertices

labeled 1 to n + 1, and write i ∼ j for adjacent vertices. Let Fq be a finite field, with q ≡ 1

mod 4. We would like to define a multiple Dirichlet series, roughly:

∑

f1,...fn+1∈Fq [t] monic

∏

i∼j

(
fi
fj

)
xdeg f1
1 · · · x

deg fn+1

n+1 (2.1.1)

where
( )

denotes the quadratic residue symbol. This series should have a group of functional

equations isomorphic to W , the Weyl or Coxeter group associated to the simply-laced Dynkin

diagram Γ. The situation where Γ corresponds to a finite irreducible root system is well-

understood; we will restrict our attention to the case of affine Kac-Moody root systems below.

In any case, the functional equations derive from those of quadratic Dirichlet L-series for the

function field Fq(t). We expect to have a functional equation in xi 7→ q−1x−1
i based on the

L-function of a quadratic character with conductor
∏
j∼i

fj . However, if the conductor is not

squarefree, the functional equation is different from what we expect; we must remedy this

situation by replacing the sums of residue symbols above with weighted sums. To this end, we
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define a weighting function H : Fq[t]
n+1 → C, and let

Z(x1, . . . xn+1) =
∑

f1,...fn+1∈Fq [t] monic

H(f1, . . . fn+1)x
deg f1
1 · · · x

deg fn+1

n+1 (2.1.2)

=
∑

a1,...an+1≥0

ca1,...an+1(q)x
a1
1 · · · x

an+1

n+1 . (2.1.3)

Here, intuitively, H(f1, . . . fn+1) is the weighted version of
∏
i∼j

(
fi
fj

)
. By definition, we have

ca1,...an+1(q) =
∑

f1,...fn+1∈Fq [t] monic

deg(fi)=ai

H(f1, . . . fn+1). (2.1.4)

When q is fixed, we may simply write ca1,...an+1 .

In the theory for finite Weyl groups, the H(f1, . . . fn+1) can be chosen in an ad-hoc way,

with the goal of making the functional equations true. We will see after Proposition (3.1.1)

below that this leads to a unique construction. For Kac-Moody Weyl groups, however, many

possible choices for H(f1, . . . fn+1) yield the same functional equations. Here we give an ax-

iomatic definition of H(f1, . . . fn+1). The four axioms are due to Diaconu and Pasol [18], who

study certain multiple Dirichlet series associated to moments of quadratic L-functions. Axioms

(2.1.2) and (2.1.3) are consequences of Poincaré duality on parameter spaces of hyperelliptic

curves–the weights H(f1, . . . fn+1) come from compactifying these spaces. Although the most

general geometric context for these axioms is not yet completely understood, they seem to give

the “right” definition for Z(x1, . . . xn+1) in the classical and Kac-Moody cases: right in the

sense of being optimal for computing moments of L-functions and character sums, and, we

conjecture, appearing as Whittaker coefficients in metaplectic Eisenstein series.

The first axiom is familiar from the theory for classical Weyl groups:

Axiom 2.1.1 (Twisted Multiplicativity). For f1 · · · fn+1, g1 · · · gn+1 ∈ Fq[t] relatively prime,

we have

H(f1g1, . . . fn+1gn+1) = H(f1, . . . fn+1)H(g1, . . . gn+1)
∏

i∼j

(
fi
gj

)
. (2.1.5)

Thus it suffices to describe H(pa1 , . . . pan+1) for p ∈ Fq[t] prime. The next two axioms give

a characterization. They describe how the weights H and coefficients c vary as the underlying
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finite field Fq varies. They appear as axioms for the first time in the work of Diaconu and Pasol

[18], but can be proven as propositions in the theory for finite Weyl groups.

Axiom 2.1.2 (Local to Global Principle). The coefficients ca1,...an+1(q) and H(pa1 , . . . pan+1)

are polynomials in q and qdeg p respectively, of degree a1 + · · ·+ an+1. Furthermore,

q(a1+···+an+1) deg pca1,...an+1(q
− deg p) = H(pa1 , . . . pan+1). (2.1.6)

Note that it only makes sense to evaluate ca1,...an+1 at negative powers of q after asserting

that ca1,...an+1(q) is a polynomial.

Axiom 2.1.3 (Dominance). The polynomial H(pa1 , . . . pan+1) has degree less than
a1+···+an+1−1

2
.

Equivalently, ca1,...an+1(q) has nonzero terms only in degrees greater than
a1+···+an+1+1

2
. The

only exceptions are for H(1, . . . 1), H(1, . . . 1, p, 1, . . . 1), c0,...0(q), and c0,...0,1,0,...0(q).

In concrete terms, the Dominance axiom states that the contribution of correction terms

H(pa1 , . . . pan+1) is as small as possible; the weighting affects the computation of moments of

L-functions and character sums as little as possible. The final axiom is essentially a normaliza-

tion assumption, and is of lesser importance:

Axiom 2.1.4 (Initial Conditions). We have H(1, . . . 1, fi, 1, . . . 1) = 1 for all fi ∈ Fq[t], or

equivalently, c0,...0,ai,0,...0(q) = qai .

Let x = (x1, . . . xn+1). The main theorem of this paper is as follows:

Theorem 2.1.5. Suppose that Γ is the Dynkin diagram of a simply-laced affine Kac-Moody

root system:

excepting Ãn for n even. There exists a unique series Z(x) satisfying the four axioms. This

series has meromorphic continuation to |xα0 | < q−ht(α0), where α0 is the imaginary root of the

root system Γ, and group of functional equations isomorphic to W . In the case of Ãn for n odd,

it has meromorphic continuation to |xα0 | < q−ht(α0)/2, which is the largest possible domain.
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We expect meromorphic continuation to |xα0 | < q−ht(α0)/2 to hold in all types, and give a

specific conjecture which implies this. We also expect the same theorem to hold for Ãn with n

even.

We will also give some evidence that the series constructed here are the correct ones for

the Eisenstein conjecture: namely, that they have poles corresponding to imaginary roots in the

root system.

In the case of finite Weyl groups, an analogous theorem holds. The axioms produce the

same series as other known methods of construction; this series has meromorphic continuation

to all of Cn+1, and is in fact a rational function. The Eisenstein conjecture is known in many

cases [5, 21].

In the case of non-affine Kac-Moody Weyl groups, such as those considered by Diaconu

and Pasol, the axioms must be relaxed in a particular way: the coefficients ca1,...an+1(q) and

H(pa1 , . . . pan+1) may not be polynomials, though they consist of terms which have a well-

defined notion of degree and can be evaluated at q−1, for example, the Ramanujan tau function

with degree 11/2, or Fourier coefficients of cusp forms more generally. Diaconu and Pasol

prove the uniqueness, though not necessarily the existence, of series satisfying the relaxed

axioms for an infinite family of Kac-Moody groups.

2.2 The Axioms Imply the Functional Equations

For now, we set aside the more subtle questions of existence, uniqueness of Z(x), and study its

basic properties under the assumption that it exists. Axioms (2.1.2) and (2.1.3) imply that Z(x)

converges absolutely in the domain {(x1, . . . xn+1) ∈ Cn+1 : all |xi| < q−1}, and hence defines

a holomorphic function in this domain. We will meromorphically continue to a larger domain

below. For now, we verify that Z(x) has a group W of functional equations. The crucial fact

is the following:

Proposition 2.2.1. Suppose that we have a choice of weights H(pa1 , . . . pan+1) and coefficients

18
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ca1,...an+1(q) satisfying the axioms. Fix a1, . . . ai−1, ai+1, . . . an+1, and let

λ(xi) =
∞∑

ai=0

ca1,...ai,...an+1(q)x
ai
i (2.2.1)

λp(x
deg p
i ) =

∞∑

ai=0

H(pa1 , . . . pai , . . . pan+1)xai deg p
i . (2.2.2)

If
∑
j∼i

aj is odd, then these series are polynomials of degree
∑
j∼i

aj − 1, satisfying:

(q1/2xi)

∑

j∼i

aj−1

λ(q−1x−1
i ) = λ(xi) (2.2.3)

(q1/2xi)
(
∑

j∼i

aj−1) deg p

λp(q
−1x−1

i ) = λp(xi). (2.2.4)

If
∑
j∼i

aj is even, then these series are rational functions, with denominators 1− qxi, 1− xdeg p
i

respectively and numerators of degree
∑
j∼i

aj , satisfying:

(q1/2xi)

∑

j∼i

aj
(1− x−1

i )λ(q−1x−1
i ) = (1− qxi)λ(xi) (2.2.5)

(q1/2xi)
(
∑

j∼i

aj) deg p

(1− q− deg px− deg p
i )λp(q

−1x−1
i ) = (1− xdeg p

i )λp(xi). (2.2.6)

Proof. First, note that the statements for λ and λp are equivalent, by Axiom (2.1.2). Before

proving these functional equations, we translate them into linear relations on the coefficients

ca1,...an+1(q). If
∑
j∼i

aj is odd, then (2.2.3) implies:

ca1,...ai,...an+1(q) = q
ai−(

∑

j∼i

aj−1)/2

ca1,...
∑

j∼i

aj−1−ai,...an+1(q) (2.2.7)

and if
∑
j∼i

aj is even, then (2.2.5) implies:

ca1,...ai,...an+1(q)− qca1,...ai−1,...an+1(q)

= q
ai−(

∑

j∼i

aj)/2

(ca1,...
∑

j∼i

aj−ai,...an+1(q)− qca1,...
∑

j∼i

aj−ai−1,...an+1(q)). (2.2.8)

In the following chapters, we will very often use the functional equations this way, as linear

recurrences on the coefficients. Of course, it is also possible to write linear recurrences on the

H(pa1 , . . . pan+1).
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We proceed by induction on
∑
j 6=i

aj . When
∑
j 6=i

aj = 0, the proposition follows from Axiom

(2.1.4). For the inductive step, fix f1, . . . fi−1, fi+1, . . . fn+1 of degrees a1, . . . ai−1, ai+1, . . . an+1,

and consider

Lf1,...fi−1,fi+1,...fn+1(xi) =
∑

fi∈Fq [t] monic

H(f1, . . . fi, . . . fn+1)x
deg fi
i

=
∏

j∼k,j,k 6=i
pj 6=pk

pj |fj , pk|fk


 p

vpj (fj)

j

p
vpk (fk)

k




∏

p




∞∑

ai=0

H(pvp(f1), . . . pai , . . . pvp(fn+1))
∏

j∼i
pj 6=p
pj |fj


 pai

p
vpj (fj)

j


xai deg p

i




(2.2.9)

where the products are over p, pj, pk ∈ Fq[t] prime, and vp(f) denotes the multiplicity of the

prime factor p in f . This Euler product formula follows from Axiom (2.1.1). Furthermore, if we

set g as the squarefree part of
∏
j∼i

fj , then the Euler factors differ from those of the L-function

L(xi, χg) =
∏

p

(
1−

(
p

g

)
xdeg p
i

)−1

(2.2.10)

at finitely many places p, namely those dividing
∏
j 6=i

fj . Let us consider how these modified

factors contribute to the product.

First, suppose
∑
j∼i

vp(fj) is odd. Then the modified Euler factor at p is λp(±xdeg p
i ) (where

the sign is determined by the residue of p modulo the part of g coprime to p) instead of 1.

If the inductive hypothesis applies to this factor, then it satisfies equation (2.2.4) above. On

the other hand, if
∑
j∼i

vp(fj) is even, then the modified Euler factor at p is λp(±xdeg p
i ) instead

of (1 ∓ xdeg p
i )−1. Hence the L-series is multiplied by (1 ∓ xdeg p

i )λp(±xdeg p
i ), which satisfies

equation (2.2.6) above if the inductive hypothesis applies.

If deg g is odd, then L(xi, χg) is a polynomial of degree deg g − 1 satisfying

(q1/2xi)
deg g−1L(q−1x−1

i , χg) = L(xi, χg) (2.2.11)

and if deg g is even, then L(xi, χg) is a polynomial of degree deg g − 1 (or if g = 1, it is the

zeta function (1− qxi)
−1), satisfying

(q1/2xi)
deg g(1− x−1

i )L(q−1x−1
i , χg) = (1− qxi)L(xi, χg). (2.2.12)
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The modified factors add
∑
j∼i

vp(fj) − 1 if
∑
j∼i

vp(fj) is odd, or
∑
j∼i

vp(fj) if
∑
j∼i

vp(fj) is even,

to the exponent of q1/2xi. We conclude that, if
∑
j∼i

aj is odd, then Lf1,...fi−1,fi+1,...fn+1(xi) is

a polynomial of degree
∑
j∼i

aj − 1 satisfying the functional equation (2.2.3). If
∑
j∼i

aj is even,

then Lf1,...fi−1,fi+1,...fn+1(xi) is a polynomial of degree
∑
j∼i

aj − 1 (or a rational function with

denominator 1− qxi and numerator of degree
∑
j∼i

aj) satisfying the functional equation (2.2.5).

We may follow this reasoning as long as the inductive hypothesis applies to all the modified

Euler factors. That is, we must have
∑
j 6=i

vp(fj) <
∑
j 6=i

aj . This occurs in all cases except when p

is linear and each fj = paj . We write

λ(xi) =
∑

f1,...fi−1,fi+1,...fn+1

deg fj=aj

Lf1,...fi−1,fi+1,...fn+1(xi)

=
∑

p∈Fq [t] linear

Lpa1 ,...pai−1 ,pai+1 ,...pan+1 (xi)

+
∑

(f1,...fi−1,fi+1,...fn+1)
6=(pa1 ,...pai−1 ,pai+1 ,...pan+1 )

Lf1,...fi−1,fi+1,...fn+1(xi). (2.2.13)

If
∑
j∼i

aj is odd, then Lpa1 ,...pai−1 ,pai+1 ,...pan+1 (xi) = λp(xi). Hence

λ(xi)− qλp(xi) (2.2.14)

satisfies the functional equation (2.2.3). If
∑
j∼i

aj is even, then Lpa1 ,...pai−1 ,pai+1 ,...pan+1 (xi) =

1−xi

1−qxi
λp(xi), and

λ(xi)− q

(
1− xi

1− qxi

)
λp(xi) (2.2.15)

satisfies the functional equation (2.2.5). Let us translate these functional equations into coeffi-

cient relations. If
∑
j∼i

aj is odd, then

ca1,...ai,...an+1(q)− qH(pa1 , . . . pai , . . . pan+1)

= q
ai−(

∑

j∼i

aj−1)/2

(ca1,...
∑

j∼i

aj−1−ai,...an+1(q)− q(H(pa1 , . . . p

∑

j∼i

aj−1−ai
, . . . pan+1)) (2.2.16)
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By Axiom (2.1.3), comparing coefficients with degree greater than
a1+···+an+1+1

2
in q, we re-

cover equation (2.2.7). If
∑
j∼i

aj is even, then

ca1,...ai,...an+1(q)− qca1,...ai−1,...an+1(q)

− qH(pa1 , . . . pai , . . . pan+1) + qH(pa1 , . . . pai−1, . . . pan+1)

= q
ai−(

∑

j∼i

aj)/2
(
ca1,...

∑

j∼i

aj−ai,...an+1(q)− qca1,...
∑

j∼i

aj−ai−1,...an+1(q)

−qH(pa1 , . . . p

∑

j∼i

aj−ai
, . . . pan+1) + qH(pa1 , . . . p

∑

j∼i

aj−ai−1

, . . . pan+1)

)
(2.2.17)

and again, by Axiom (2.1.3) we recover equation (2.2.8).

The functional equations satisfied by the full series Z(x) may be modeled as follows. Let

σi(x) be defined by

(σi(x))j =





q−1x−1
j if j = i

q1/2xixj if j ∼ i

xj otherwise

. (2.2.18)

One can check directly that σ2
i = 1, σiσjσi = σjσiσj if j ∼ i, and σiσj = σjσi if j ≁ i,

to show that the σi satisfy the defining relations of simple reflections generating the Weyl or

Coxeter group W .

Let Z∑

j∼i

aj odd(x), Z∑

j∼i

aj even(x) denote the power series Z restricted to terms where
∑
j∼i

aj

is odd or even respectively. We have the following functional equations:

Z∑

j∼i

aj odd(σi(x)) = q1/2xiZ∑

j∼i

aj odd(x), (2.2.19)

(1− x−1
i )Z∑

j∼i

aj even(σi(x)) = (1− qxi)Z∑

j∼i

aj even(x). (2.2.20)

At present, these functional equations are identities of formal power series only. Their mean-

ing is simply that the coefficient relations (2.2.7) and (2.2.8) hold. In order to interpret the

functional equations as equalities of meromorphic functions, Z must have meromorphic con-

tinuation to neighborhoods of both x and σi(x), which we have not yet shown.

If we define the “p-part” of the multiple Dirichlet series, for p ∈ Fq[t] prime, as

Zp(x) =
∑

a1,...an+1≥0

H(pa1 , . . . pan+1)xa1 deg p
1 · · · x

an+1 deg p
n+1 , (2.2.21)
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then we have the equivalent local functional equations:

Zp,
∑

j∼i

aj odd(σi(x)) = qdeg p/2xdeg p
i Zp,

∑

j∼i

aj odd(x), (2.2.22)

(1− q− deg px− deg p
i )Zp,

∑

j∼i

aj even(σi(x)) = (1− xdeg p
i )Zp,

∑

j∼i

aj even(x). (2.2.23)
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Chapter 3

Consequences of the Functional Equations

3.1 The Family of Series Satisfying the Functional Equations

In this chapter Γ will be the Dynkin diagram of a classical simply-laced root system:

or a simply-laced affine Kac-Moody root system:

with Weyl group W . We have shown that a multiple Dirichlet series Z(x1, . . . xn+1) satisfying

the four axioms must have a group of functional equations isomorphic to W , generated by the

following simple reflections for i = 1, . . . n+ 1:

Z∑

j∼i

aj odd(σi(x)) = q1/2xiZ∑

j∼i

aj odd(x), (3.1.1)

(1− x−1
i )Z∑

j∼i

aj even(σi(x)) = (1− qxi)Z∑

j∼i

aj even(x) (3.1.2)

where

(σi(x))j =

{ q−1x−1
j if j = i

q1/2xixj if j ∼ i

xj otherwise

. (3.1.3)
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The functional equations make sense as relations of formal power series regardless of the an-

alytic behavior of Z. In the following propositions, we do not assume the four axioms–we

only assume the functional equations and study their consequences. First we will prove a result

describing the family of all power series satisfying the functional equations.

Proposition 3.1.1. Suppose that a power series

Z(x1, . . . xn+1) =
∑

a1,...an+1≥0

ca1,...an+1x
a1
1 · · · x

an+1

n+1 (3.1.4)

has group of functional equations W generated by (3.1.1) and (3.1.2). If W is a finite Weyl

group, then Z is unique up to a constant multiple. If W is an affine Weyl group, then Z is

uniquely determined by the one-parameter family of “diagonal” coefficients cmα0 where α0 is

the imaginary root and m ∈ Z≥0.

This theorem is well-known in the classical case, though it is not usually stated this way in

the literature. A proof for the affine Weyl group D̃4 is given in Bucur-Diaconu [8].

Next, we prove the existence of a power series satisfying the functional equations with the

correct analytic behavior.

Proposition 3.1.2. There exists a power series Z(x1, . . . xn+1) with group of functional equa-

tions W generated by (3.1.1) and (3.1.2), which has meromorphic continuation to Cn+1 if

W is finite or |xα0 | < q−ht(α0)/2 if W is affine. Moreover, we have an explicit denominator

D(x1, . . . xn+1) such that D(x1, . . . xn+1)Z(x1, . . . xn+1) is holomorphic in these domains.

This is proven by the averaging construction of Chinta-Gunnells [12, 13]. A proof for

symmetrizable Kac-Moody root systems is given in Lee-Zhang [29], but their formalism is

very different, so we reprove it here. The averaging construction does not give a series which

satisfies the four axioms, but we will modify it in the following chapters.

Proof of Proposition (3.1.1). The proof is based on a detailed examination of the coefficient

relations from Proposition (2.2.1), which we restate here. For
∑
j∼i

aj odd:

ca1,...ai,...an+1 = q
ai−(

∑

j∼i

aj−1)/2

ca1,...
∑

j∼i

aj−1−ai,...an+1 (3.1.5)
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and for
∑
j∼i

aj even:

ca1,...ai,...an+1 − qca1,...ai−1,...an+1 = q
ai−(

∑

j∼i

aj)/2

(ca1,...
∑

j∼i

aj−ai,...an+1 − qca1,...
∑

j∼i

aj−ai−1,...an+1).

(3.1.6)

For any list of indices (a1, . . . an+1), if we can find an i such that ai > 1
2

∑
j∼i

aj , then the

coefficient ca1,...an+1 can be rewritten, via the σi coefficient relation, in terms of coefficients

with smaller ith index. For classical root systems, any coefficient ca1,...an+1 can be reduced in

this way, until we reach c0,...0 (we assume that if any ai is negative, the coefficient is 0). Thus

in the classical case, the series is uniquely determined by c0,...0–that is, it is determined up to a

constant multiple.

In the affine case, any nondiagonal coefficient can be reduced, but the diagonal coefficients

cmα0 cannot. The vector of indices mα0 is invariant under the Weyl group W . It follows imme-

diately that all coefficients of the series are determined by the diagonal coefficients. Further-

more, the monomial xα0 is invariant under all σi, so multiplying Z(x1, . . . xn+1) by any power

series in x
α0 does not affect the functional equations. In this way, we may obtain any possible

family of diagonal coefficients. Hence the series Z(x1, . . . xn+1) is completely determined by

any choice of diagonal coefficients.

This simple argument has many important consequences.

Corollary 3.1.3. In the affine case, the series Z(x1, . . . xn+1) is determined by its functional

equations up to multiplication by a power series in the the invariant monomial xα0 .

Corollary 3.1.4. If the undetermined coefficients cmα0 (or just c0,...0 in the finite case) satisfy

Axiom (2.1.3), then so do all the coefficients.

Proof. Suppose that we have ca1,...an+1 with ai >

∑

j∼i

aj

2
, and we apply the coefficient recurrence

associated to σi. In the relations (3.1.5) and (3.1.6), every term ca1,...a′i,...an+1
is multiplied by a

power of q between
ai−a′i

2
and ai−a′i. Hence if all the lower coefficients satisfy the Dominance

Axiom, then ca1,...an+1 does as well. Repeating this process recursively, we see that dominance

for the undetermined coefficients implies dominance for all coefficients.
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Now we will show in the finite Weyl group case that the unique series Z(x) with c0,...0 = 1

also satisfies the four axioms. We begin by constructing the local coefficients H(f1, . . . fn+1).

Let H(1, . . . 1) = 1. The local functional equations (2.2.22) and (2.2.23) can be used, exactly

as in Proposition (3.1.1), to construct all H(pa1 , . . . pan+1), and then Axiom (2.1.1) gives all

H(f1, . . . fn+1). Set

Z(x1, . . . xn+1) =
∑

f1,...fn+1∈Fq [t] monic

H(f1, . . . fn+1)x
deg f1
1 · · · x

deg fn+1

n+1 (3.1.7)

=
∑

a1,...an+1≥0

ca1,...an+1x
a1
1 · · · x

an+1

n+1 . (3.1.8)

It follows as in the proof of Proposition (2.2.1) that Z(x1, . . . xn+1) satisfies (3.1.1) and (3.1.2).

Hence it is the unique such series with c0,...0 = 1. Because the ca1,...an+1 are all obtained

recursively from c0,...0 and the H(pa1 , . . . pan+1) are all obtained from H(1, . . . 1) by analogous

recurrences, Axiom (2.1.2) is satisfied. By Corollary (3.1.4), Axiom (2.1.3) is satisfied.

One could try to proceed this way in the affine case; the difficulty is that, if we make an

arbitrary choice of diagonal local coefficients H(pmα0), the resulting diagonal global coeffi-

cients cmα0 will not necessarily satisfy Axiom (2.1.2). We will give a different interpretation

of Axiom (2.1.2) in the following section to resolve this problem.

3.2 The Chinta-Gunnells Averaged Series

Before proving Proposition (3.1.2), we introduce some additional notation and explain why the

domains of meromorphic continuation given in the proposition are optimal. If Φ is the root

system corresponding to Γ, we let

D(x1, . . . xn+1) =
∏

α∈Φ+

(1− qht(α)+1
x
2α). (3.2.1)

This is a finite product over positive roots if W is finite, and an infinite product if W is affine.

Each factor corresponds to a polar divisor of Z(x1, . . . xn+1)–it follows from Axiom (2.1.4) or

from the functional equations that Z has poles at xi = q−1 for all i, and translating these poles

by the group W gives a pole at xα = q−(ht(α)+1)/2 for every α ∈ Φ+.
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If W is finite, then D(x1, . . . xn+1) is meromorphic in Cn+1. If W is affine, then

D(x1, . . . xn+1) =
∏

α∈Φ+

α≤α0

∞∏

m=0

(1− qht(α)+mht(α0)+1
x
2α+2mα0). (3.2.2)

Let M(x) = Maxα∈Φ+,α≤α0
|qht(α)+1

x
2α|. Then the absolute value of the product above is

bounded by:
∞∏

m=0

(1 +M(x)qmht(α0)|x2mα0 |)#{α∈Φ+,α≤α0}. (3.2.3)

If |xα0 | < q−ht(α0)/2, we can ignore the finitely many terms where qmht(α0)|x2mα0 | ≥ M(x)−1,

and the logarithm of the remaining terms is bounded by a convergent geometric series. Thus

D(x1, . . . xn+1) converges absolutely to a holomorphic function in this domain.

The transformation σi permutes the factors of D, except for (1 − q2x2
i ), which becomes

(1− x−2
i ), so we have

D(σi(x1, . . . xn+1)) =

(
1− x−2

i

1− q2x2
i

)
D(x1, . . . xn+1) (3.2.4)

or, more generally for any w ∈ W ,

D(w(x1, . . . xn+1)) =




∏

α∈Φ(w)

1− q−ht(α)+1
x
−2α

1− qht(α)+1x2α


D(x1, . . . xn+1) (3.2.5)

where Φ(w) denotes Φ+ ∩ w−1(Φ−).

In the affine case, the poles of Z(x1, . . . xn+1), or zeroes of D(x1, . . . xn+1), accumulate

along the divisor xα0 = q−ht(α0)/2, the boundary of the Tits cone for W . Z(x1, . . . xn+1) has

an essential singularity at this divisor, so meromorphic continuation beyond it is impossible.

Figure 1 shows the zeroes of D(x1, x2, x3, x4) for the Ã3 multiple Dirichlet series, after making

the substitution x1, x3 7→ q−s, x2, x4 7→ q−t. The zeroes appear as lines in the real st plane,

accumulating at s+ t = 1.

D(x1, . . . xn+1) can be viewed as a deformation of the denominator in the Weyl character

formula for W . We will also need a version of this denominator without the deformation:

∆(x1, . . . xn+1) =
∏

α∈Φ+

(1− qht(α)
x
2α). (3.2.6)
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Figure 1: Poles of the Ã3 Multiple Dirichlet Series
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This converges in the same domain as D(x1, . . . xn+1), and satisfies

∆(w(x1, . . . xn+1)) =




∏

α∈Φ(w)

−q−ht(α)
x
−2α


∆(x1, . . . xn+1). (3.2.7)

Proof of Proposition (3.1.2). This proof is modeled upon work of Chinta and Gunnells [12],

who describe an action of finite Weyl groups on rational functions. The generalization to affine

Weyl groups acting on power series is straightforward. We define maps ǫi : C
n+1 → Cn+1 by

(ǫi(x1, . . . xn+1))j =

{
−xj if j ∼ i

xj else
(3.2.8)

so that

Z∑

j∼i

aj odd(x1, . . . xn+1) =
Z(x1, . . . xn+1)− Z(ǫi(x1, . . . xn+1))

2
(3.2.9)

Z∑

j∼i

aj even(x1, . . . xn+1) =
Z(x1, . . . xn+1) + Z(ǫi(x1, . . . xn+1))

2
(3.2.10)

For an arbitrary power series f(x) ∈ C[[x1, . . . xn+1]][x
−1
1 , . . . x−1

n+1], we define

(f |σi)(x) = (1− x−1
i )(1− qxi)

−1f∑

j∼i

aj even(σi(x)) + q−1/2x−1
i f∑

j∼i

aj odd(σi(x)). (3.2.11)

The (1 − qxi)
−1 in this formula is shorthand for its geometric series expansion. Chinta and

Gunnells prove that this definition extends to a C-linear group action of W on rational functions

[12, Lemma 3.2]; the proof carries over to power series without modification. Note that our

definition is slightly different from equation (3.13) of [12], because we are modeling the global,

rather than local, functional equations. Indeed, equations (3.1.1) and (3.1.2) are equivalent to

the statement that (Z|w) = Z for all w ∈ W .

To rephrase, we have

(f |σi)(x) =
x−1
i

2

(
xi − 1

1− qxi

+ q−1/2

)
f(σi(x)) +

x−1
i

2

(
xi − 1

1− qxi

− q−1/2

)
f(ǫiσi(x)).

(3.2.12)

Let us set Ki(x, δ) =
x−1
i

2

(
xi−1
1−qxi

+ (−1)δq−1/2
)

. Then if w ∈ W can be expressed as
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σi1 · · · σiℓ , we have

(f |w)(x) =
∑

δi1 ,...δiℓ∈{0,1}

Kiℓ(x, δiℓ)Kiℓ−1
(ǫ

δiℓ
iℓ
σiℓ(x), δiℓ−1

)Kiℓ−2
(ǫ

δiℓ−1

iℓ−1
σiℓ−1

ǫ
δiℓ
iℓ
σiℓ(x), δiℓ−2

) · · ·

· · ·Ki1(ǫ
δi2
i2
σi2 · · · ǫ

δiℓ
iℓ
σiℓ(x), δi1)f(ǫ

δi1
i1
σi1 · · · ǫ

δiℓ
iℓ
σiℓ(x)) (3.2.13)

In particular, the monomials appearing in the Ki are xiℓ , (σiℓ(x))iℓ−1
, (σiℓ−1

σiℓ(x))iℓ−2
, ...

(σi2 · · · σiℓ(x))i1 . If w = σi1 · · · σiℓ is an expression in reduced form, then these are precisely

q(ht(α)−1)/2
x
α for α ∈ Φ(w).

We will show that Z(x) :=
∑

w∈W ∆(w(x))−1(1|w)(x) is a power series satisfying func-

tional equations (3.1.1) and (3.1.2), with meromorphic continuation to all x if W is finite and

to all |xα0 | < q−ht(α0)/2 if W is affine. First note that, by equation (3.2.7), ∆(w(x))−1 =(∏
α∈Φ(w) q

ht(α)
x
2α
)
∆(x)−1, and ∆(x)−1 is a power series in C[[x]]. On the other hand,

(1|w)(x) is
∏

α∈Φ(w) q
(1−ht(α))/2

x
−α times a power series in C[[x]]. Thus the summand at w,

∆(w(x))−1(1|w)(x) is a power series divisible by q(ℓ(w)+
∑

α∈Φ(w) ht(α))/2
x

∑
α∈Φ(w) α. In par-

ticular, no negative exponents of xi appear in Z(x). Moreover, in the affine case, since
∑

α∈Φ(w) α → ∞ as ℓ(w) → ∞, only finitely many terms in the sum over w contribute to

each coefficient of Z(x), so the sum is a well-defined power series.

To show that Z(x) satisfies the functional equations, we use a simple lemma, also proven

in [12]:

Lemma 3.2.1. If f(x), g(x) are power series with f(x) even in all xi, then

(fg|w)(x) = f(w(x))(g|w)(x). (3.2.14)

Then, since ∆ is even,

(Z|w′)(x) =
∑

w∈W

∆(ww′(x))−1(1|ww′)(x) = Z(x) (3.2.15)

This argument applies whether we consider Z as a formal power series, or a meromorphic

function on a suitable domain.

Next we show that D(x)∆(x)Z(x) converges absolutely in the desired domain. If W is

finite, this is automatic, as D(x)∆(x)Z(x) is a polynomial. If W is affine, recall that we used
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the bound

|1− qht(α)+mht(α0)+1
x
2α+2mα0 | ≤ 1 +M(x)qmht(α0)|x2mα0 | (3.2.16)

for factors of D(x). Furthermore (1 +M(x)qmht(α0)|x2mα0 |)(1 + q−1/2) bounds
∣∣∣∣
(
1− qht(α)+mht(α0)+1

x
2α+2mα0

)(±q(ht(α)+m(ht(α0)−1)/2
x
α+mα0 − 1

1± q(ht(α)+mht(α0)+1)/2xα+mα0
± q−1/2

)∣∣∣∣ . (3.2.17)

Combining these bounds, and using equation (3.2.7), we have:

|D(x)∆(x)Z(x)| ≤

(
∑

w∈W

(1 + q−1/2)ℓ(w)q(ℓ(w)+
∑

α∈Φ(w) ht(α))/2|x
∑

α∈Φ(w) α|

)

(
∞∏

m=0

(1 +M(x)qmht(α0)|x2mα0 |)#{α∈Φ+,α≤α0}

)
(3.2.18)

The second product is independent of w and converges absolutely for |xα0 | < q−ht(α0)/2, so it

suffices to show the convergence of the first sum. Let A = #{α ∈ Φ+, α ≤ α0}. Assuming

that the roots in Φ(w) are as small as possible, we still must have

∑

α∈Φ(w)

α ≥
1

2
A

⌊
ℓ(w)

A

⌋(⌊
ℓ(w)

A

⌋
− 1

)
α0, (3.2.19)

which grows as 1
2
ℓ(w)2 +O(ℓ(w)). We have

∑

w∈W

(1 + q−1/2)ℓ(w)q(ℓ(w)+
∑

α∈Φ(w) ht(α))/2|x
∑

α∈Φ(w) α|

≤
∑

w∈W

(q1/2 + 1)ℓ(w)M(x)ℓ(w)|qht(α0)/2x
α0 |

1
2
ℓ(w)2+O(ℓ(w))

≤
∞∑

ℓ=0

(n+ 1)ℓ(q1/2 + 1)ℓM(x)ℓ|qht(α0)/2x
α0 |

1
2
ℓ2+O(ℓ) (3.2.20)

where the last inequality follows from the weak bound #{w ∈ W : ℓ(w) = ℓ} ≤ (n + 1)ℓ.

Hence the sum converges for |xα0 | < q−ht(α0)/2.

Finally we show that D(x)Z(x) is also holomorphic, by proving that D(x)∆(x)Z(x) van-

ishes at all the zeroes of ∆(x), i.e. at xα = ±q−ht(α)/2 for all α ∈ Φ+. For any root α we can

find w ∈ W mapping α to the simple root ei, and the w-functional equation allows us to express

D(x)∆(x)Z(x) with x
α = ±q−ht(α)/2 in terms of various D(x)∆(x)Z(x′) with x′

i = ±q1/2.

Thus it suffices to show that D(x)∆(x)Z(x) vanishes at all x with xi = ±q1/2.
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We will decompose W into two parts: the set {w : ei ∈ Φ(w)}, or elements with a reduced

expression ending in σi, and its complement. Multiplication by σi gives a bijection between

these sets. We may write D(x)∆(x)Z(x) as

D(x)




∑

w∈W
ei 6∈Φ(w)

(−1)ℓ(w)(1|w)(x)
∏

α∈Φ(w)

qht(α)
x
2α +

∑

w∈W
ei∈Φ(w)

(−1)ℓ(w)(1|w)(x)
∏

α∈Φ(w)

qht(α)
x
2α




(3.2.21)

and the latter sum is

∑

w∈W
ei 6∈Φ(w)

(−1)ℓ(wσi)(1|wσi)(x)
∏

α∈Φ(wσi)

qht(α)
x
2α

= −
∑

w∈W
ei 6∈Φ(w)

(−1)ℓ(w)((1|w)|σi)(x)qx
2
i

∏

α∈Φ(w)

qht(α)(σi(x))
2α. (3.2.22)

At xi = ±q−1/2, we have (σi(x))
2α = x

2α, and also (f |σi)(x) = f(x) for any f . In this case

the two sums cancel, giving the desired result.

This completes the proof of Proposition (3.1.2).

We will denote the series constructed above as Zavg in the sequel. A direct computation of

a few power series coefficients is sufficient to show that Zavg cannot satisfy the four axioms

in the affine case. However, by Corollary (3.1.3), a series Z(x) satisfying the axioms must be

Zavg multiplied by a power series in one variable. We cannot obtain the ratio explicitly, because

we do not have enough information about the zeroes of Zavg, but we can still obtain analytic

information about Z from Zavg.

Corollary 3.2.2. If the series Z(x) satisfies the four axioms, then it has meromorphic continu-

ation to |xα0 | < q−ht(α0).

Proof. By Axiom (2.1.3), Z(x) is absolutely convergent if all xi < q−1 Hence the ratio

Z(x)/Zavg(x) is a meromorphic function in the same domain. By Proposition (3.1.3), this

ratio is a power series in the variable x
α0 , so it must be meromorphic for |xα0 | < q−ht(α0).

Multiplying it by Zavg(x) again proves the corollary.
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Chapter 4

Residues of Z(x)

4.1 Definition of the Residue

In this section, we restrict to affine Kac-Moody Weyl groups W . We make an additional as-

sumption for technical reasons, that the Dynkin diagram Γ of W is two-colorable: we have a

partition of the vertices {1, . . . n + 1} = S ∐ T such that any two adjacent vertices belong

to opposite sets. This only rules out Ãn for n even. We will abbreviate the restriction of an

n+ 1-tuple to one set or the other–for example, if x = (x1, . . . xn+1), then xS = (xi)i∈S .

Let Z(x1, . . . xn+1) be a series satisfying the four axioms. Then Z(x) has a polar hyper-

plane along each xi = q−1. We will study the behavior of a particular residue of Z, namely

R(xS) := (−q)|T |Res
xT=(q−1,...q−1)Z(x). (4.1.1)

This residue exists and is meromorphic for |x
α0|S
S | < q−ht(α0|S), by Corollary (3.2.2). However,

we will approach the residue as another formal power series. Taking a residue may not be a

well-defined operation on an arbitrary formal power series in several variables. However, we

may multiply our series Z(x) by 1−qxi and then evaluate it at xi = q−1. By Proposition (2.2.1),

this evaluation only requires taking finite sums of series coefficients, so it is well-defined. This

is the meaning of −qResxi=q−1 .

The series Z(x) can be recovered from R(xS), but R(xS) has properties which make it
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more amenable to computation. In particular, the coefficients of R are multiplicative, not

twisted multiplicative, so R has an Euler product expression. We will identify a symmetry

in this expression which corresponds to Axiom (2.1.2). The Euler product for R(xS) can be

separated into a diagonal and an off-diagonal factor. Assuming that the off-diagonal factor is

fixed, and using the local-global symmetry, we will prove Theorem (2.1.5), that Z(x) exists

and is uniquely characterized by the four axioms. We will explicitly compute the off-diagonal

factor in the following section.

First let us verify the statement that Z(x) can be recovered from R(xS), using only the

functional equations. Indeed, if Z(x) and Z ′(x) are two series satisfying the functional equa-

tions (3.1.1) and (3.1.2), then Corollary (3.1.3) gives

Z(x)

Z ′(x)
= F (xα0), (4.1.2)

a power series in one variable. The ratio of the corresponding residues R(xS) and R′(xS) must

be essentially the same:

R(xS)

R′(xS)
= F (q−ht(α0|T )

x
α0|S
S ), (4.1.3)

where α0|S denotes the projection of the root α0 onto the space spanned by simple roots in S.

If we compare diagonal parts of all these series, the result is the same. Let Zdiag(x), Z
′
diag(x)

denote the diagonal parts of the series Z, Z ′, with x substituted for the variable x
α0 , and

similarly let Rdiag(x), R
′
diag(x) be the diagonal parts of R, R′, with x substituted for x

α0|S
S .

Then
Zdiag(x)

Z ′
diag(x)

=
Rdiag(q

ht(α0|T )x)

R′
diag(q

ht(α0|T )x)
(4.1.4)

or, equivalently,

G(x) =
Rdiag(q

ht(α0|T )x)

Zdiag(x)
(4.1.5)

is a one-variable power series depending only on the functional equations, not on the choice of

Z(x). It can be thought of as the Rdiag(q
ht(α0|T )x) if we choose c0,...0(q) = 1 and cmα0(q) = 0

for all other diagonal coefficients of Z(x). Starting with Rdiag(q
ht(α0|T )x) and multiplying by

G(x)−1 gives Zdiag(x), which is known by Proposition (3.1.1) to determine Z(x).
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4.2 A Symmetry

Next we prove a proposition relating the coefficients of R(xS) to those of Z(x). Given a list of

indices a1, . . . an+1, let A(i) denote
∑
j∼i

aj . Let N(i) denote #{j ∼ i}.

Proposition 4.2.1. Suppose that Z(x) =
∑

a1,...an+1

ca1,...an+1(q)x
a1
1 · · · x

an+1

n+1 . Then the coefficient

of
∏

i∈S x
ai
i in R(xS) is ca′1,...a′n+1

(q)q−
∑

i∈S aiN(i) where

a′i =

{
ai i ∈ S

A(i) i ∈ T
. (4.2.1)

In particular, only terms with A(i) even for all i ∈ T appear in R(xS).

Proof. Fix all indices except one ai for i ∈ T . Proposition (2.2.1) implies that the series in xi,
∞∑

ai=0

ca1,...an+1(q)x
a1
1 · · · x

an+1

n+1 , can be written as





A(i)−1∑
ai=0

ca1,...an+1(q)x
a1
1 · · · x

an+1

n+1 A(i) odd

A(i)−1∑
ai=0

ca1,...an+1(q)x
a1
1 · · · x

an+1

n+1 +
ca1,...A(i),...an+1

(q)x
a1
1 ···x

A(i)
i ···x

an+1
n+1

1−qx
A(i) even

. (4.2.2)

Then taking −qResxi=q−1 gives 0 if A(i) is odd, and ca1,...A(i),...an+1(q)x
a1
1 · · · q−A(i) · · · x

an+1

n+1 if

A(i) is even. Repeating this process for all i ∈ T gives

R(xS) =
∑

(ai)i∈S

ca′1,...a′n+1
(q)q−

∑
i∈T A(i)

∏

i∈S

xai
i

=
∑

(ai)i∈S

ca′1,...a′n+1
(q)q−

∑
i∈S aiN(i)

∏

i∈S

xai
i (4.2.3)

where a′i are as in the statement of the proposition. The rearrangements of power series implicit

in this proof are only reorderings of finite sums, by Proposition (2.2.1). They can also be

justified by the absolute convergence of Z(x) for all xi < q−1.

Since we have shown that

(−q)|T |Res
xT=(q−1,...q−1)Z(x) = (−q)|T |Res

xT=(q−1,...q−1)ZA(i) even(x) (4.2.4)
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for all i ∈ T , we may apply the even σi functional equations to the residue. By equation (3.1.2),

we have:

R(xS) = (−q)|T |Res
xT=(q−1,...q−1)

∏

i∈T

1− x−1
i

1− qxi

ZA(i) even ∀i∈T ((
∏

i∈T

σi)(x))

= (1− q)|T |ZA(i) even ∀i∈T (x
′
1, . . . x

′
n+1) (4.2.5)

where

x′
i =





q−N(i)/2xi if i ∈ S

1 if i ∈ T
. (4.2.6)

Multiplying the series Z(x) by (1− qxi) and evaluating at xi = 1 is a well-defined operation–

again, by Proposition (2.2.1), it only involves taking finite sums of coefficients. This allows us

to prove the following alternate formula for R(xS):

Proposition 4.2.2. We have

R(xS) =
∑

(fi)i∈S

fi∈Fq [t] monic

H(f ′
1, . . . f

′
n+1)

∏

i∈S

(q−N(i)/2xi)
deg fi (4.2.7)

where

f ′
i =





fi i ∈ S
∏

j∼i fj i ∈ T
. (4.2.8)

In particular, only |S|-tuples of polynomials with
∏

j∼i fj a perfect square for all i ∈ T con-

tribute to this sum.

Proof. First, we observe that if (f ′
1, . . . f

′
n+1) has this form, then

H(f ′
1, . . . f

′
n+1) =

∏

p|f ′

1···f
′

n+1

H(pvp(f
′

1), . . . pvp(f
′

n+1)) (4.2.9)

as all the quadratic residue symbols in Axiom (2.1.1) multiply to 1. For i ∈ T , we see that

vp(f
′
i) =

∑
j∼i vp(f

′
j). By Proposition (2.2.1), this means that H vanishes unless

∑
j∼i vp(f

′
j)

is even for all i ∈ T , i.e. unless all the
∏

j∼i fj are perfect squares.

Fix all polynomials except one fi for i ∈ T . We assume that
∑

j∼i deg fj = A(i) is even,

and we write
∏

j∼i fj as g0g
2
1 for g0 squarefree of even degree. As in the proof of Proposition
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(2.2.1), the series
∑

fi
H(f1, . . . fn+1)x

deg fi
i matches L(xi, χg0) up to multiplication by a poly-

nomial. In particular, if g0 6= 1, then the series has a trivial zero at xi = 1. If g0 = 1, i.e.
∏

j∼i fj is a perfect square, then the series
∑

fi
H(f1, . . . fn+1)x

deg fi
i matches the zeta function

(1− qxi)
−1 up to multiplication by a correction polynomial of the form:

∏

p|g1

(
H(pvp(f1), . . . pvp(

∏
j∼i fj), . . . pvp(fn+1))x

vp(
∏

j∼i fj) deg p

i + (1− xdeg p
i )(. . .)

)
(4.2.10)

Multiplying the series by 1 − qxi and evaluating at xi = 1 gives H(f1, . . .
∏

j∼i fj, . . . fn+1).

Repeating this process for all i ∈ T verifies the proposition. The rearrangements of power

series implicit in this computation are again only reorderings of finite sums.

The first part of this proof indicates that the function (fi)i∈S 7→ H(f ′
1, . . . f

′
n+1) with

f ′
i defined by equation (4.2.8) is multiplicative, not just twisted multiplicative: that is, if

gcd(
∏

i∈S fi,
∏

i∈S gi) = 1, then

H(f ′
1g

′
1, . . . f

′
n+1g

′
n+1) = H(f ′

1, . . . f
′
n+1)H(g′1, . . . g

′
n+1). (4.2.11)

This, together with Proposition (4.2.2), gives R(xS) an Euler product expression:

R(xS) =
∏

p∈Fq [t]
prime




∑

(ai)i∈S

ai≥0

H(pa
′

1 , . . . pa
′

n+1)
∏

i∈S

(q−N(i)/2xi)
ai deg p


 (4.2.12)

where the a′i are as in equation (4.2.1).

Indeed, if we take the formula for R(x) of Proposition (4.2.1):

R(xS) =
∑

(ai)i∈S

ai≥0

ca′1,...a′n+1
(q)

∏

i∈S

(q−N(i)xi)
ai (4.2.13)

and make the substitution q 7→ q− deg p, xi 7→ (q1−N(i)/2xi)
deg p, by Axiom (2.1.2) we obtain the

Euler factor:
∑

(ai)i∈S

ai≥0

H(pa
′

1 , . . . pa
′

n+1)
∏

i∈S

(q−N(i)/2xi)
ai deg p. (4.2.14)

Hence the residue has the following property, which is the analogue of the Local-Global Ax-

iom:
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Property 4.2.3. If (1−qµ
∏
i∈S

xνi
i )

−λ is a factor of R(xS), then (1−q
1−µ+

∑

i∈S

(1−N(i)/2)νi ∏
i∈S

xνi
i )

−λ

is also a factor.

Note that any power series in q, x1, . . . xn+1 can be expressed, at least formally, as a product

of factors of this form.

Moreover, given an arbitrary power series Z(x) =
∑

a1,...an+1

ca1,...an+1(q)x
a1
1 · · · x

an+1

n+1 sat-

isfying the functional equations (3.1.1) and (3.1.2), there exists a choice of local weights

H(f1, . . . fn) which produces this series. Write the residue of Z(x) as a product:

R(xS) =
∞∏

k=1

(1− qµ(k)
∏

i∈S

x
νi(k)
i )−λ(k) (4.2.15)

and use this to define the Euler factor

∑

(ai)i∈S

ai≥0

H(pa
′

1 , . . . pa
′

n+1)
∏

i∈S

(q−N(i)/2xi)
ai deg p =

∞∏

k=1

(1− q(µ(k)−1) deg p
∏

i∈S

x
νi(k) deg p
i )−λ.

(4.2.16)

This series determines Zp(x) =
∑

a1,...an+1

H(pa1 , . . . pan+1)xa1 deg p
1 · · · x

an+1 deg p
n+1 by the local

functional equations just as R(xS) determines Z(x). Then H(f1, . . . fn+1) can be evaluated

for all fi ∈ Fq[t] by Axiom (2.1.1). By construction, we have

∑

f1,...fn+1

H(f1, . . . fn+1)x
deg f1
1 · · · x

deg fn+1

n+1 =
∑

a1,...an+1

ca1,...an+1(q)x
a1
1 · · · x

an+1

n+1 . (4.2.17)

Axiom (2.1.1) will be satisfied, but Axioms (2.1.2) and (2.1.3) may not. In fact, Axiom (2.1.2)

is equivalent to Property (4.2.3). This is because Proposition (4.2.1), which uses only the

functional equations, can be applied to R(x), and if the residue coefficients satisfy the local-

global property, then all coefficients do.

4.3 Proof of the Main Theorem

Since R(xS) is determined by functional equations up to a power series in the variable x
α0|S
S , it

is natural to factor it into diagonal and off-diagonal terms. Write R(xS) as a product of factors

39



CHAPTER 4. RESIDUES OF Z(X)

(1 − qµ
∏
i∈S

xνi
i )

−λ, and let R(xS) = R0(xS)R1(xS), where R1(xS) collects the factors where

(νi) is a multiple of α0|S , and R0(xS) collects the others. The off-diagonal factor R0(xS) is the

same for every series satisfying the functional equations, but the diagonal factor R1(xS) may

vary. In the next section, we will give an explicit formula for R0(xS), which satisfies Property

(4.2.3).

For now, let us assume that R0(xS) is fixed; let R0, diag(x) denote its diagonal part, with x

substituted for x
α0|S
S . As in equation (4.3.1), we have:

G(x)R0, diag(q
ht(α0|T )x)−1Zdiag(x) = R1(q

ht(α0|T )x) (4.3.1)

We will use this equation to show that there is a unique choice of Z(x) satisfying the four

axioms. The series G(x)R0, diag(q
ht(α0|T )x)−1 is fixed. In order for the axioms to be satisfied,

we must have:

Condition 4.3.1. The coefficients of Zdiag(x) satisfy Axiom (2.1.3): the coefficient of xa is divis-

ible by q1+ht(α0)/2. By Corollary (3.1.4), this implies the Dominance Axiom for all coefficients

of Z(x).

Condition 4.3.2. R1(q
ht(α0|T )x) satisfies Property (4.2.3): if (1 − qµxν)−λ is a factor, then

(1 − q1−µ+νht(α0)xν)−λ is also a factor. This, together with the symmetry for R0(xS), implies

Axiom (2.1.2).

Recall that G(x) is essentially the diagonal part of the residue of a series with diagonal

coefficients c0,...0(q) = 1, cmα0(q) = 0 for all nonzero m. These coefficients trivially satisfy

Axiom (2.1.3), so G(x) satisfies a version of Dominance: its xa coefficient is a polynomial

in q, supported in degrees between aht(α0|S)/2 and aht(α0). In fact, it is possible to prove a

stronger lower bound, but for our purposes here the upper bound is sufficient. By the formulas

of the next section, the xa coefficient of R0, diag(q
ht(α0|T )x)−1 is also a polynomial in q of degree

at most aht(α0). Thus we may write

G(x)R0, diag(q
ht(α0|T )x)−1 =

∏

k

(1− qµ(k)xν(k))−λ(k) (4.3.2)
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with 0 < µ(k) < ν(k)ht(α0) in each factor. If we separate the product as

∏

µ(k)≤ν(k)ht(α0)/2

(1− qµ(k)xν(k))−λ(k)
∏

µ(k)>ν(k)ht(α0)/2

(1− qµ(k)xν(k))−λ(k) (4.3.3)

Then the only way to satisfy the two conditions above is to set

R1(q
ht(α0|T )x) =

∏

µ(k)≤ν(k)ht(α0)/2

(1− qµ(k)xν(k))−λ(k)(1− q1−µ(k)+ν(k)ht(α0)xν(k))−λ(k) (4.3.4)

and

Zdiag(x) =
∏

µ(k)≤ν(k)ht(α0)/2

(1− q1−µ(k)+ν(k)ht(α0)xν(k))−λ(k)
∏

µ(k)>ν(k)ht(α0)/2

(1− qµ(k)xν(k))λ(k).

(4.3.5)

This proves the existence and uniqueness of a series Z(x) with R(xS) = R0(xS)R1(xS),

satisfying the four axioms. All that remains is to make the computation of R0(xS).
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Chapter 5

Residue Formulas

5.1 The Off-Diagonal Part R0 of the Residue

In this section, we continue to study the residue R(xS) of a multiple Dirichlet series for an

affine Weyl group W whose Dynkin diagram is two-colorable. We prove an explicit formula

for the off-diagonal factor R0(xS) as a product of function field zeta functions. The proof is

analogous to that of Theorem (3.1.1), relying upon the group of functional equations satisfied

by the residue, which must be studied separately for each affine type. We then give conjectural

formulas for the diagonal factor R1(xS) in each type. These conjectures are supported by

computational evidence. In the following section, we will prove the conjecture for Ãn when n

is odd.

Before stating the formula for R0(xS), let us describe all its possible poles. Recall that the

possible poles of the Chinta-Gunnells averaged series are given by the Weyl denominator

D(x) =
∏

α∈Φ+

(1− qht(α)+1
x
2α)−1. (5.1.1)

Of course, some of these factors may be canceled in the numerator. Z(x) differs from this

series by a power series in one variable xα0 . Hence the possible poles of Z(x) are given by the

same Weyl denominator plus poles of the form x
α0 = c.

It follows that the possible poles of R(xS) either are of the form x
α0|S
S = c, or correspond
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to factors (1− qht(α|S)−ht(α|T )+1
x
2α|S
S )−1 for α ∈ Φ+. In the latter case we consider the orbit of

α under the group < σi : i ∈ T >= (Z/2Z)|T |, which leaves α|S unchanged. Let us denote

this orbit as [α] and its size as 2t(α).

By Proposition (1.5.2), for α ∈ Φ, |σi(α)−α|∞ = 0, 1, or 2, and is only 2 in the case when

α = mα0 ± ei. In the second case, α|S = mα0|S , so these poles correspond to diagonal factors

and can be ignored.

In the first case, t(α) is the size of the set {i ∈ T : |σi(α) − α|∞ = 1}, which is precisely

the set of i ∈ T where
∑

j∼i(α)j is odd. In the orbit [α], ht(α|T ) varies around the mean

value
∑

i∈T

∑
j∼i(α)j/2 =

∑
j∈S N(j)(α)j/2 by increments of 1/2. More precisely, we have

a product formula describing all possible off-diagonal poles of R(xS):

∏

[α]α∈Φ+

α 6=mα0±ei for i∈T

t(α)∏

u=0

(1− q
∑

j∈S(1−N(j)/2)(α)aj−t(α)/2+u+1
x
2α|S
S )−(

t(α)
u ). (5.1.2)

Notice that this product does not satisfy Property (4.2.3), though it does have a similar sym-

metry. We will see that many of the possible poles of the residue are canceled by zeroes in the

numerator. The correct formula is as follows:

Proposition 5.1.1. We have

R0(xS) =
∏

[α], α∈Φ+, t(α)=0

(1− q(
∑

j∈S(1−N(j)/2)(α)j+1)/2
x
α|S
S )−1

∏

[α], α∈Φ+, t(α)>0
α 6=mα0±ei for i∈T

t(α)−1∏

u=0

(1− q
∑

j∈S(1−N(j)/2)(α)j−t(α)/2+u+1
x
2α|S
S )−(

t(α)−1
u ). (5.1.3)

The residue of any power series Z(x) satisfying functional equations (3.1.1) and (3.1.2) is

R0(xS) multiplied by a series in one variable x
α0|S
S .

Before proving this proposition, a few comments: first, R0(xS) has half of its possible

poles in any given orbit [α], and it does satisfy the symmetry (4.2.3). It can be directly verified

that the x
aα0|S
S coefficient of R0(q

ht(α0|T )
xS) is a polynomial in q of degree at most aht(α0)

as asserted in the previous section. We may extend R0(xS) to a meromorphic function for
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|x
α0|S
S | < q(ht(α0|T )−ht(α0|S))/2, which is compatible with the maximal domain of meromorphic

continuation for Z(x). The proof or meromorphicity is the same as the proof for D(x) in

Section (3). Finally, note that the formula (5.1.3) may include some diagonal factors; this is

purely a matter of notational convenience, and the statement remains true if these factors are

removed, but we will assume they are included.

Proof. The strategy of the proof is to give a group of functional equations which the residue

must satisfy, and which determine it up to a power series in one variable. We can then check

that the residue formula (5.1.3) satisfies these functional equations. The proof also implicitly

uses Proposition (3.1.2) to assert that some residue of a series satisfying the functional equa-

tions exists, which must then match R0(xS) multiplied by a diagonal series. There is not, for

example, an extra functional equation with no solutions.

The functional equations of the residue all correspond to elements w of the normalizer of

< σi : i ∈ T > in W . Therefore, they permute the orbits [α] of this group, and map orbits

of the form [mα0 + ei] for i ∈ T to orbits of the same form. All but finitely many orbits

of positive roots map to orbits of positive roots. From this we will see that R0(xS) has a w

functional equation with a scalar cocycle which is a product over orbits [α] for α ∈ Φ(w). We

must directly compute the cocycle given by the functional equation for w acting on an arbitrary

residue R(xS), and verify that it matches the cocycle on R0(xS).

The group of functional equations is type-dependent, so the proof has several cases, involv-

ing long, repetitive calculations. We will only give complete details in the first few cases. The

most complicated formulas were verified in Mathematica.

The simplest examples of functional equations satisfied by the residue come from vertices

i ∈ S with N(i) = 2. We will label the adjacent vertices are i−1 and i+1. Then the functional

equation of R(xS) is derived from σiσi−1σi+1σi.
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In the notation of Proposition (3.1.2), we have

Z(x) = (Z|σiσi−1σi+1σi)(x)

=
1

16

∑

δ1,δ2,δ3,δ4∈{0,1}

(−1)δ2+δ3q−2x−4
i x−2

i−1x
−2
i+1

(
xi − 1

1− qxi

+ (−1)δ4q−1/2

)

(
(−1)δ4q1/2xi−1xi − 1

1− (−1)δ4q3/2xi−1xi

+ (−1)δ3q−1/2

)(
(−1)δ4q1/2xixi+1 − 1

1− (−1)δ4q3/2xixi+1

+ (−1)δ2q−1/2

)

(
(−1)δ2+δ3qxi−1xixi+1 − 1

1− (−1)δ2+δ3q2xi−1xixi+1

+ (−1)δ1q−1/2

)
Z(ǫδ1i σiǫ

δ2
i−1σi−1ǫ

δ3
i+1σi+1ǫ

δ4
i σi(x))

(5.1.4)

where

(ǫδ1i σiǫ
δ2
i−1σi−1ǫ

δ3
i+1σi+1ǫ

δ4
i σi(x))j =





(−1)δ2+δ3q−2x−1
i−1x

−1
i x−1

i+1 j = i

(−1)δ1+δ2+δ3+δ4xi∓1 j = i± 1

(−1)δ2qxixi−1xj j ∼ i− 1, j 6= i

(−1)δ3qxixi+1xj j ∼ i+ 1, j 6= i

xj otherwise

.

(5.1.5)

If we now take the residue, only terms with (−1)δ1+δ2+δ3+δ4 = 1 will contribute at all, and by

Proposition (4.2.1), all powers of −1 in Z will cancel out. We define the resulting transforma-

tion as τi(xS), given by

(τi(xS))j =





x−1
j j = i

xixj j ∼∼ i

xj otherwise

(5.1.6)

where ∼∼ denotes vertices of distance two apart in the Dynkin diagram. The result is that

R(xS) has a functional equation with scalar cocycle:

R(xS) = (∗)R(τi(xS)) (5.1.7)

45



CHAPTER 5. RESIDUE FORMULAS

where

(∗) =
1

16

∑

δ2,δ3,δ4∈{0,1}

(−1)δ2+δ3q−6x−4
i

(
xi − 1

1− qxi

+ (−1)δ4q−1/2

)

(
(−1)δ4q−1/2xi − 1

1− (−1)δ4q1/2xi

+ (−1)δ3q−1/2

)(
(−1)δ4q−1/2xi − 1

1− (−1)δ4q1/2xi

+ (−1)δ2q−1/2

)

(
(−1)δ2+δ3q−1xi − 1

1− (−1)δ2+δ3xi

+ (−1)δ2+δ3+δ4q−1/2

)

=
(1− x−2

i )(1− qx−2
i )

(1− x2
i )(1− qx2

i )
. (5.1.8)

We now check that R0(xS) as defined in formula (5.1.3) satisfies this functional equation.

Because σiσi−1σi+1σi lies in the normalizer of < σi : i ∈ T >, it permutes the orbits [α],

mapping each [α] to τi[α] := [σiσi−1σi+1σiα], with t(α) = t(σiσi−1σi+1σiα). Orbits [mα0+ei]

for i ∈ T map to orbits of the same form. Furthermore, for each [α] with t(α) = 0, we have

(1− q(
∑

j∈S(1−N(j)/2)(α)j+1)/2τi(xS)
α|S)−1 = (1− q(

∑
j∈S(1−N(j)/2)(τi(α))j+1)/2

x
τi(α)|S
S )−1

(5.1.9)

and for each [α] with t(α) > 0, we have

t(α)−1∏

u=0

(1− q
∑

j∈S(1−N(j)/2)(α)j−t(α)/2+u+1τi(xS)
2α|S)−(

t(α)−1
u )

=

t(τi(α))−1∏

u=0

(1− q
∑

j∈S(1−N(j)/2)(τi(α))j−t(τi(α))/2+u+1
x
2τi(α)|S
S )−(

t(α)−1
u ) (5.1.10)

so τi permutes the factors of R0(xS). The only exception is the orbit [ei], with t(ei) = 2, which

maps to [−ei]. No other positive orbit appearing in R0(xS) becomes negative under τi. To

account for the factors gained and lost from this orbit, we have

R0(xS) =
(1− x−2

i )(1− qx−2
i )

(1− x2
i )(1− qx2

i )
R0(τi(xS)) (5.1.11)

which indeed matches the functional equation (5.1.7) above.

With this functional equation in hand, we can prove the proposition in type Ãn, n odd. Let

us label the vertices of the Dynkin diagram from 1 to n+ 1 modulo n+ 1, as shown,
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and without loss of generality let S be the set of odd-numbered vertices, and T the set of even-

numbered vertices. For each odd i, we have a functional equation τi as above. These generate

a group of symmetries isomorphic to the Weyl group of Ã(n−1)/2.

Suppose R(xS) and R′(xS) are two residues satisfying these functional equations. Then

because the cocycle is scalar, the ratio of the two residues is invariant under all the transforma-

tions τi. If we write

R(xS)

R′(xS)
=

∑

a1,a3,...an≥0

da1,a3,...anx
a1
1 xa3

3 · · · xan
n (5.1.12)

then the τi functional equation yields a coefficient relation

d...ai−2,ai,ai+2,... = d...ai−2,ai−2+ai+2−ai,ai+2,... (5.1.13)

Any non-diagonal coefficient da1,a3,...an can be reduced repeatedly by such relations, so it must

be 0. Hence the ratio
R(xS)
R′(xS)

is a power series in the variable x1x3 · · · xn.

For n = 3, the the argument must be modified slightly. Here τi is the transformation:

(τi(xS))j =





x−1
j j = i

x2
ixj j 6= i

(5.1.14)

which induces the coefficient relations da1,a3 = d2a3−a1,a3 = da1,2a1−a3 . The rest of the proof is

similar.

In the remaining types, the residue R(xS) will have a somewhat more complicated func-

tional equation for each vertex i ∈ S with N(i) = 3. If we label the adjacent vertices i − 1,

i + 1, and i + 2 then this functional equation is induced from the Weyl group element given

by σiσi−1σi+1σi+2σiσi−1σi+1σi+2σi. After a computation similar to the one above, we find a

transformation τi(xS) given by

(τi(xS))j =





x−1
j j = i

x2
ixj j ∼∼ i

xj otherwise

(5.1.15)
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and a functional equation as follows:

R(xS) =
(1− x−2

i )(1− qx−2
i )3(1− q2x−2

i )

(1− q−1x2
i )(1− x2

i )
3(1− qx2

i )
R(τi(xS)). (5.1.16)

The cocycle is originally a sum of 256 terms, but there are many cancellations.

To verify that R0(xS) satisfies this functional equation, we use the fact that the trans-

formation σiσi−1σi+1σi+2σiσi−1σi+1σi+2σi normalizes < σi : i ∈ T >, and hence per-

mutes all but finitely many factors of R0(xS). The only orbits [α] of positive roots which

map to orbits of negative roots are [ei] with t(ei) = 3 and [2ei + ei−1 + ei+1 + ei+2] with

t(2ei + ei−1 + ei+1 + ei+2) = 0. We see that [ei] contributes
(1−x−2

i )(1−qx−2
i )2(1−q2x−2

i )

(1−q−1x2
i )(1−x2

i )
2(1−qx2

i )
to the

cocycle, and [2ei + ei−1 + ei+1 + ei+2] contributes
1−qx−2

i

1−x2
i

, so equation (5.1.16) is satisfied.

We now prove the proposition for the case of D̃n. We label the vertices of the Dynkin

diagram as follows:

Suppose n is even and S = {3, 5, . . . n − 1}. Let da3,a5,...an−1 denote a coefficient of the ratio

of two residues. The τi invariance yields relations d...ai−2,ai,ai+2,... = d...ai−2,ai−2+ai+2−ai,ai+2,...,

da3,a5,... = d2a5−a3,a5,..., and d...an−3,an−1 = d...an−3,2an−3−an−1 . If an−1 > an−3, a3 > a5, or any

other ai > (ai−2 + ai+2)/2, these relations allow the coefficient da3,a5,...an−1 to be reduced re-

peatedly, until it is 0. Hence the ratio must be a diagonal series in the variable x3x5 . . . xn−1. We

have already shown that R0(xS) satisfies the correct τi functional equations, so the proposition

is verified.

In the remaining cases of type D̃, we require an additional functional equation, which will

be denoted τ1,2 or τn,n+1. The transformation τ1,2 derives from σ1σ2σ3σ1σ2, and τn,n+1 derives

from σnσn+1σn−1σnσn+1. We will describe the functional equation for τ1,2 only, because τn,n+1
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is similar. Assume that 1, 2 ∈ S. As in the cases above, we compute

(τ1,2(xS))j =





x−1
2 j = 1

x−1
1 j = 2

x1x2x4 j = 4

xj otherwise

(5.1.17)

and the functional equation

R(xS) =
(1− x−2

1 )(1− x−2
2 )(1− x−1

1 x−1
2 )

(1− qx2
1)(1− qx2

2)
3(1− qx1x2)

R(τ1,2(xS)). (5.1.18)

We see that R0(xS) satisfies this functional equation because σ1σ2σ3σ1σ2 normalizes < σi :

i ∈ T >, and permutes the orbits [α] of positive roots, except for [e1] and [e2], and [e1+e2+e3],

which map to [−e2], [−e1], and [−e1 − e2 − e3] respectively.

For D̃n with n even and S = {1, 2, 4, 6, . . . n − 2, n, n + 1}, the functional equations τ1,2,

τ4, τ6,... τn−2, τn,n+1 are not quite sufficient to determine the residue up to a diagonal series.

If da1,a2,a4,...an−2,an,an+1 is a nonzero coefficient of the ratio of two residues, then the functional

equations give relations which imply that a1 + a2 = a4 = a6 = · · · = an − 2 = an + an + 1,

but not that a1 = a2 = an = an + 1. We require supplemental functional equations, valid in

this case only.

For i ∈ {1, 2} and j ∈ {n, n+ 1}, the extra functional equation corresponds to

(σiσ3σ4 · · · σn/2)(σjσn−1σn−2 · · · σ2+n/2)

(σ1+n/2)

(σ2+n/2σ3+n/2 · · · σn−1σj)(σn/2σn/2−1 · · · σ3σi). (5.1.19)

It induces a transformation τi,j(xS) given by

(τi,j(xS))k =





x−1
4 x−1

6 · · · x−1
n−2x

−1
j k = i

x−1
i x−1

4 x−1
6 · · · x−1

n−2 k = j

x1x2x4x6 · · · xn−2xj k ∈ {1, 2}, k 6= i

x4x6 · · · xn−2xnxn+1 k ∈ {n, n+ 1}, k 6= j

xk otherwise

. (5.1.20)
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The functional equation is

R(xS) = (∗)R(τi(xS)) (5.1.21)

with the scalar cocycle

(∗) =

(
1− x−2

i

1− qx2
i

)(
1− x−2

j

1− qx2
j

)(
1− (xix4x6 · · · xn−2xj)

−1

1− qxix4x6 · · · xn−2xj

)

∏

4≤k≤n−2
k even

(
1− (xix4x6 · · · xk)

−2

1− q(xix4x6 · · · xk)2

)(
1− (xkxk+2 · · · xn−2xj)

−2

1− q(xkxk+2 · · · xn−2xj)2

)
. (5.1.22)

R0(xS) satisfies this functional equation because, as always, the underlying transformation

normalizes < σi : i ∈ T >, and permutes the orbits [α]. The orbits of positive roots which map

to negative roots are: [ei], [ei+e3+e4], . . . [ei+e3+ · · ·+en−2], [ej], [ej+en−1+en−2], . . . [ej+

en−1+ · · ·+e4], [ei+e3+ · · ·+en−1+ej], and their images are [−ej −en−1−· · ·−e4], [−ej −

en−1 − · · · − e6], . . . [−ej], [−ei − e3 − · · · − en−2], [−ei − e3 − · · · − en−4], . . . [−ei], [−ei −

e3 − · · · − en−1 − ej] respectively.

The extra functional equation τ1,n gives rise to a coefficient relation which allows us to

reduce da1,a2,a4,...an−2,an,an+1 if a1 + an > a2 + an+1, and the other τi,j have similar results.

The full group of functional equations determines the residue up to a series in the variable

x1x2x
2
4x

2
6 · · · x

2
n−2xnxn+1.

For D̃n with n odd, we may take S = {1, 2, 4, 6, . . . n− 1} without loss of generality. The

functional equations τ1,2, τ4, τ6, ... τn−2 imply that a1 + a2 = a4 = a6 = · · · = an−1 for

any nonzero coefficient da1,a2,a4,a6,...an−1 in the ratio of two residues. Again, we require extra

functional equations, valid only in this case, to show that a1 = a2.

For i ∈ {1, 2}, a functional equation comes from σiσ3 · · · σn−1σnσn+1σn−1 · · · σ3σi. We set

(τi(xS))j =





x−1
i x−2

4 x−2
6 · · · x−2

n−2 j = i

x2
ixjx

2
4x

2
6 · · · x

2
n−2 j ∈ {1, 2}, j 6= i

xj otherwise

(5.1.23)

and compute the functional equation:

R(xS) = (∗)R(τi(xS)) (5.1.24)
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where

(∗) =

(
1− x−2

i

1− qx2
i

)(
1− qx−2

i x−2
4 x−2

6 · · · x−2
n−1

1− x2
ix

2
4x

2
6 · · ·

2
n−1

)

∏

4≤k≤n−1
k even

(
1− x−2

i x−2
4 x−2

6 · · · x−2
k

1− qx2
ix

2
4x

2
6 · · · x

2
k

)(
1− qx−2

i x−2
4 x−2

6 · · · x−2
k−2x

−4
k x−4

k+2 · · · x
−4
n−1

1− x2
ix

2
4x

2
6 · · · x

2
k−2x

4
kx

4
k+2 · · · x

4
n−1

)
.

(5.1.25)

The orbits of positive roots which map to negative roots under this transformation are [ei], [ei+

e3 + e4], . . . [ei + e3 + · · ·+ en−1], [ei + e4 + · · ·+ en−2 + 2en−1 + en + en+1], . . . [ei + 2e3 +

· · ·+ 2en−1 + en + en+1], all of which have t = 1 except for [ei + e3 + · · ·+ en−1] with t = 2.

Hence R0(xS) satisfies this functional equation.

If, for example, a1 > a2, then the τ1 relation reduces da1,a2,a4,a6,...an−1 . It follows that R(xS)

is determined up to a diagonal series.

For type Ẽ6, we label the vertices of the Dynkin diagram:

Let S = {2, 4, 6}. Then the τ2, τ4, τ6 functional equations of (5.1.7) generate a group isomor-

phic to the Weyl group Ã2. If da2,a4,a6 is a coefficient in the ratio of two residues, we have

da2,a4,a6 = da4+a6−a2,a4,a6 = da2,a2+a6−a4,a6 = da2,a4,a2+a4−a6 (5.1.26)

and so any coefficient without a2 = a4 = a6 can be reduced to 0. Hence the functional

equations determine the residue up to a diagonal series.

On the other hand, if S = {1, 3, 5, 7}, then we need supplemental functional equations. We

will define transformations τ1, τ3, τ5 corresponding to σ1σ2σ7σ4σ6σ7σ2σ1, σ3σ4σ7σ2σ6σ7σ4σ3,

σ5σ6σ7σ2σ4σ7σ6σ5 respectively, given by

(τi(xS))j =





x−1
i x−2

7 j = i

xjxix7 j 6= i, 7

xj j = 7

. (5.1.27)
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Then the functional equations are

R(xS) =
(1− x−2

i )(1− x−2
i x−2

7 )(1− qx−2
i x−2

7 )(1− qx−2
i x−4

7 )

(1− qx2
i )(1− qx2

ix
2
7)(1− x2

ix
2
7)(1− x2

ix
4
7)

R(τi(xS)). (5.1.28)

The positive orbits which map to negative orbits are [ei], with t = 1 [ei+ ei+1+ e7], with t = 2,

and [ei + e2 + e4 + e6 +2e7], with t = 1. From this, we see that R0(xS) satisfies the functional

equation.

These extra functional equations, together with τ7 as in equation (5.1.16), determine the

residue up to a series in x1x3x5x
3
7. The relation given by the τ1 functional equation, for ex-

ample, is da1,a3,a5,a7 = da3+a5−a1,a3,a5,a7+a3+a5−a1 , which allows any coefficient with a1 >

(a3 + a5)/2 to be reduced.

For type Ẽ7, we label the Dynkin diagram:

If S = {2, 6, 8}, then the functional equations τ2, τ6 as in (5.1.7) and τ8 as in (5.1.16) determine

the residue up to a diagonal series in x2x6x
2
8.

If S = {1, 3, 4, 5, 7}, then we need four extra functional equations. First, for i ∈ {1, 5}, let

τi,4 correspond to σiσi+1σi+2σ4σ8σ4σi+2σi+1σi. We set

(τi,4(xS))j =





x−1
i+2x

−1
4 j = i

x−1
i+2x

−1
i j = 4

xjxixi+2x4 j ∈ {1, 5}, j 6= i

xj j = 3, 7

(5.1.29)

and obtain the functional equation:

R(xS) =
(1− x−2

i )(1− x−2
4 )(1− x−2

i x−2
i+2)(1− x−2

i+2x
−2
4 )(1− x−1

i x−1
i+2x

−1
4 )

(1− qx2
i )(1− qx2

4)(1− qx2
ix

2
i+2)(1− qx2

i+2x
2
4)(1− qxixi+2x4)

R(τi(xS)).

(5.1.30)

R0(xS) satisfies this functional equation. The positive orbits which map to negative orbits are

[ei], [e4], [ei + ei+1 + ei+2], [ei+2 + e8 + e4], [ei + ei+1 + ei+2 + e8 + e4].
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Next, we have τ1,5 corresponding to σ1σ2σ3σ5σ6σ7σ8σ7σ6σ5σ3σ2σ1, given by

(τ1,5(xS))j =





x−1
3 x−1

5 x−1
7 j = 1

x−1
1 x−1

3 x−1
7 j = 5

x1x3x4x5x7 j = 4

xj j = 3, 7

(5.1.31)

yielding the functional equation:

R(xS) = (∗)R(τi(xS)). (5.1.32)

with

(∗) =

(
1− x−2

1

1− qx2
1

)(
1− x−2

5

1− qx2
5

)(
1− x−2

1 x−2
3

1− qx2
1x

2
3

)(
1− x−2

5 x−2
7

1− qx2
5x

2
7

)

(
1− x−2

1 x−2
3 x−2

7

1− qx2
1x

2
3x

2
7

)(
1− x−2

3 x−2
5 x−2

7

1− qx2
3x

2
5x

2
7

)(
1− x−1

1 x−1
3 x−1

5 x−1
7

1− qx1x3x5x7

)
. (5.1.33)

R0(xS) satisfies this functional equation. The positive orbits which map to negative orbits are

[e1], [e1 + e2 + e3], [e5], [e5 + e6 + e7], [e1 + e2 + e3 + e8 + e7], [e5 + e6 + e7 + e8 + e3], [e1 +

e2 + e3 + e5 + e6 + e7 + e8].

Finally, τ4 corresponds to σ4σ8σ3σ2σ7σ6σ8σ3σ4σ7σ8σ3σ4σ7σ8σ2σ3σ6σ7σ8σ4, and is given

by

(τ4(xS))j =





x−2
3 x−1

4 x−2
7 j = 4

xjx
2
3x

2
4x

2
7 j = 1, 5

xj j = 3, 7

. (5.1.34)

The functional equation is

R(xS) = (∗)R(τi(xS)). (5.1.35)

with

(∗) =

(
1− x−2

4

1− qx2
4

)(
1− x−2

3 x−2
4

1− qx2
3x

2
4

)(
1− x−2

4 x−2
7

1− qx2
4x

2
7

)

(
1− qx−2

3 x−2
4 x−2

7

1− x2
3x

2
4x

2
7

)(
1− x−2

3 x−2
4 x−2

7

1− qx2
3x

2
4x

2
7

)3 (
1− q−1x−2

3 x−2
4 x−2

7

1− q2x2
3x

2
4x

2
7

)

(
1− x−4

3 x−2
4 x−2

7

1− qx4
3x

2
4x

2
7

)(
1− x−2

3 x−2
4 x−4

7

1− qx2
3x

2
4x

4
7

)(
1− x−4

3 x−2
4 x−4

7

1− qx4
3x

2
4x

4
7

)
(5.1.36)
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The positive orbits which map to negative orbits under τ4 are [e4], [e4 + e7 + e8], [e3 + e4 +

e8], [e3 + e4 + e7 + e8], [e2 + 2e3 + e4 + e7 + 2e8], [e3 + e4 + e6 + 2e7 + 2e8], [e2 + 2e3 + e4 +

e6 +2e7 +2e8], [e2 +2e3 +2e4 + e6 +2e7 +3e8], so R0(xS) satisfies this functional equation.

If we have a nonzero coefficient da1,a3,a4,a5,a7 of the ratio of two residues, the τ3 and τ5

relations imply 2a3 ≤ a1 + a4 + a7 and 2a7 ≤ a3 + a4 + a5. The τ1,4 and τ7,4 relations imply

a1 + a4 ≤ a7 and a4 + a5 ≤ a3. The τ1,5 relation implies a1 + a5 ≤ a4. The τ4 relation implies

a4 ≤ a1 + a5. Together, these prove that (a1, a3, a4, a5, a7) is proportional to (1, 3, 2, 1, 3).

The final case is Ẽ8, where we label the vertices of the Dynkin diagram:

If S = {1, 5, 7, 9}, then we have functional equations τ5, τ7 as in (5.1.7) and τ9 as in (5.1.16).

We also have a functional equation τ1 derived from σ1σ2σ9σ3σ8σ9σ2σ1, which is analogous

to τ1 in the case of Ẽ6. The computation of the functional equation and the proof that R0(x)

satisfies it are identical to the argument in the Ẽ6 proof above. If da1,a5,a7,a9 is a nonzero

coefficient in the ratio of two residues, τ5 implies that 2a5 ≤ a7, τ7 implies that 2a7 ≤ a5 + a9,

τ9 implies that a9 ≤ a1 + a7, and τ1 implies that 2a1 ≤ a7. Hence, (a1, a5, a7, a9) must be

proportional to (1, 1, 2, 3).

If S = {2, 3, 4, 6, 8}, then we have functional equations τ2, τ6, τ8 as in (5.1.7). We also will

use two supplemental functional equations. The first, τ3, corresponds to the Weyl group ele-

ment σ3σ9σ2σ1σ8σ7σ9σ2σ3σ8σ9σ2σ3σ8σ9σ7σ8σ1σ2σ9σ3, and is analogous to τ4 in the Ẽ7 case.

The second, τ3,4 corresponds to σ3σ4σ5σ6σ7σ8σ9σ8σ7σ6σ5σ4σ3. It defines a transformation

(τ3,4(xS))j =





x−1
4 x−1

6 x−1
8 j = 3

x−1
3 x−1

6 x−1
8 j = 4

x2x3x4x6x8 j = 2

xj j = 6, 8

(5.1.37)

and a functional equation

R(xS) = (∗)R(τi(xS)). (5.1.38)
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with

(∗) =

(
1− x−2

3

1− qx2
3

)(
1− x−2

4

1− qx2
4

)(
1− x−2

4 x−2
6

1− qx2
4x

2
6

)(
1− x−2

3 x−2
8

1− qx2
3x

2
8

)

(
1− x−2

4 x−2
6 x−2

8

1− qx2
4x

2
6x

2
8

)(
1− x−2

3 x−2
6 x−2

8

1− qx2
3x

2
6x

2
8

)(
1− x−1

3 x−1
4 x−1

6 x−1
8

1− qx3x4x6x8

)
(5.1.39)

R0(xS satisfies this functional equation. The positive orbits which map to negative orbits are

[e3], [e4], [e3 + e8 + e9], [e4 + e5 + e6], [e3 + e6 + e7 + e8 + e9], [e4 + e5 + e6 + e7 + e8], [e3 +

e4 + e5 + e6 + e7 + e8 + e9].

If da2,a3,a4,a6,a8 is a nonzero coefficient in the ratio of residues, then we have 2a2 ≤ a3+ a8,

a3 ≤ a6, a3 + a4 ≤ a2, 2a6 ≤ a4 + a8, and 2a8 ≤ a2 + a3 + a6. We leave it as an exercise to

show that (a2, a3, a4, a6, a8) is proportional to (4, 3, 1, 3, 5).

This completes the computation in all simply-laced affine types.

With this proposition, our main theorem (2.1.5) is also completely proven.

5.2 The Diagonal Part R1 of the Residue

We now state conjectures for the diagonal part of the residue, R1(xS). This is a power series

in one variable x
α0|S
S , which, like R0(xS), can be written as an infinite product of function field

zeta functions. The exact form of R1(xS) depends on the type and on the set S.

Conjecture 5.2.1. We have

R1(xS) =
∞∏

m=0

(1− q(m+1)(ht(α0|S)−ht(α0|T ))
x
(2m+2)α0|S)−|T |

(1− q(m+1)(ht(α0|S)−ht(α0|T ))+1
x
(2m+2)α0|S)−|T |

(1− q(m+1/2)(ht(α0|S)−ht(α0|T ))
x
(2m+1)α0|S)−λ

(1− q(m+1/2)(ht(α0|S)−ht(α0|T ))+1
x
(2m+1)α0|S)−λ. (5.2.1)

The values of λ are given in the following table:
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Type S λ

Ãn, n odd - 1

D̃n, n odd - 1

D̃n, n even {1, 2, 4, 6, . . . n− 2, n, n+ 1} 0

D̃n, n even {3, 5, 7, . . . n− 1} 3

Ẽ6 {1, 3, 5, 7} 0

Ẽ6 {2, 4, 6} 1

Ẽ7 {1, 3, 4, 5, 7} 0

Ẽ7 {2, 6, 8} 2

Ẽ8 {1, 5, 7, 9} 1

Ẽ8 {2, 3, 4, 6, 8} 0

This conjecture is based upon computational evidence in all types. In the following section,

we will prove it for type Ãn, but the other cases remain open. To conclude this section, we

make several remarks.

The formula (5.2.1) is an eta-product–that is, a product of four Dedekind eta functions.

The classification of all roots in an affine root system as mα0 + α for α in a finite set implies

that (5.1.3) is an eta-product as well. The full residue R(xS) = R0(xS)R1(xS) is strongly

reminiscent of formulas appearing in the MacDonald identities for affine Weyl groups [30].

One might hope that these identities furnish a more straightforward proof of Proposition (5.1.1),

or any proof of Conjecture (5.2.1).

If Conjecture (5.2.1) is verified, then the residue is meromorphic in the domain |x
α0|S
S | <

q(ht(α0|T )−ht(α0|S))/2. The proof of meromorphicity for R0(x) is the same as the proof for D(x)

given in Chapter (3), and the proof for R1(x) is even more straightforward. This implies

the meromorphic continuation of the full multiple Dirichlet series Z(x) to its largest possible

domain |xα0 | < q−ht(α0)/2. We see this as follows: let Zavg(x) denote the multiple Dirichlet

series constructed by averaging over the group of functional equations in Proposition (3.1.2),

and let Ravg(xS) denote its residue. Zavg(x) is known to be meromorphic in the largest possible

domain. Recall from the previous section that the ratio of Z to Zavg is essentially the same as
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the ratio of R to Ravg: if

R(xS)

Ravg(xS)
= F (q−ht(α0|T )

x
α0|S
S ), (5.2.2)

then we also have

Z(x)

Zavg(x)
= F (xα0). (5.2.3)

Since R and Ravg are meromorphic, F (q−ht(α0|T )
x
α0|S
S ) must be meromorphic for x

α0|S
S <

q(ht(α0|T )−ht(α0|S))/2. Therefore, Z(x) = Zavg(x)F (xα0) is meromorphic for |xα0 | < q−ht(α0)/2.

Diaconu and Bucur in the D̃4 case construct a series whose residue is assumed to be solely

the R0 we have computed above, without the R1. Under this assumption, they obtain mero-

morphic continuation to the optimal domain.

One brief comment on the Eisenstein conjecture: Eisenstein series on Kac-Moody Lie

groups are expected to have poles corresponding to all roots, real and imaginary. This phe-

nomenon should be visible in the Whittaker coefficient Z(x). The poles corresponding to real

roots are those which can be deduced from the functional equations alone–they are the poles of

D(x). The averaged series Zavg has only these poles. The series Z(x) satisfying the axioms, on

the other hand, must have poles corresponding to imaginary roots. This follows from Conjec-

ture (5.2.1). The first factor of equation (5.2.1) comes from real roots, but the other factors do

not. We cannot describe the full family of poles of Z(x) coming from imaginary roots, because

some of them may be canceled in the residue, but we can assert that such poles do exist. This

is a piece of evidence that the series Z(x) is the correct one for the Eisenstein conjecture.
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Chapter 6

Computing the Full Residue in Type Ã

6.1 Restatement of Results in Type Ã

Let W be the Weyl group of a simply laced affine root system Ãn, with n odd. Label the

vertices of the Dynkin diagram 1 to n+ 1 modulo n+ 1:

Let Z(x1, . . . xn+1) be the Ãn multiple Dirichlet series satisfying the four axioms. In this

chapter we prove Conjecture (5.2.1) for this series. That is, we prove the following residue

formula.

R(x1, x3, . . . xn) := (−q)(n+1)/2Resx2=x4=···=xn+1=1/qZ(x1, . . . xn+1)

=
∞∏

m=0

(1− (x1x3 · · · xn)
2m+1)−1(1− q(x1x3 · · · xn)

2m+1)−1

(
∏

i,j odd, i 6≡j+2

(1− (x1x3 · · · xn)
2m(xixi+2 · · · xj)

2)−1(1− q(x1x3 · · · xn)
2m(xixi+2 · · · xj)

2)−1

)

(1− (x1x3 · · · xn)
2m+2)−(n+1)/2(1− q(x1x3 · · · xn)

2m+2)−(n+1)/2 (6.1.1)

A priori, we know that this residue is meromorphic for |x1x3 · · · xn| < q−(n+1)/2, but by this
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formula, it is actually meromorphic for |x1x3 · · · xn| < 1. It follows that Z(x) is meromorphic

for |x1 · · · xn+1| < q−(n+1)/2.

Let us recall the results of the previous two chapters, specialized to type Ã. We gave a

formula (4.2.1) for R in terms of the coefficients ca1,...an+1 of the original power series Z,

namely:

R(x1, x3, . . . xn) =
∑

a1,a3,...an

ca1,a1+a3,a3,a3+a5,...,an,an+a1

q2(a1+a3+...+an)
xa1
1 xa3

3 · · · xan
n . (6.1.2)

In particular, the nonvanishing coefficients must have a1, a3, . . . an all odd or all even, since if

ai + ai+2 is odd, then c...ai,ai+ai+2,ai+2,... = 0.

In Proposition (5.1.1) of the previous chapter, we gave a formula for the off-diagonal factors

of the residue, which in this case match the factors in the third line of (6.1.1).

R0(x1, . . . xn) =
∞∏

m=0

∏

i,j odd,
i 6≡j+2

(1− (x1 · · · xn)
2m(xi · · · xj)

2)−1(1− q(x1 · · · xn)
2m(xi · · · xj)

2)−1

(6.1.3)

Any residue of a series satisfying the functional equations matches this one up to a diagonal

power series in x1x3 · · · xn; we must show that the correct diagonal series is given by the second

and fourth lines of (6.1.1).

Recall equation (4.3.1) of chapter 4, which was used in the proof of the main theorem. This

equation is equivalent to the following:

G(q−(n+1)/2x)Zdiag(q
−(n+1)/2x) = Rdiag(x) (6.1.4)

Here Zdiag and Rdiag denote the diagonal parts of series and its residue, with x substituted

for x1x2 · · · xn+1 and x1x3 · · · xn respectively. G(q−(n+1)/2x) is what the diagonal part of

the residue would be in a series satisfying the functional equations with diagonal coefficients

c0,...0(q) = 1 and cm,...m(q) = 0 for all m > 0. Its coefficients are q−a(n+1)ca,2a,a,2a,...a,2a(q),

again under this assumption about the diagonal coefficients. To avoid confusion with the cor-

rect coefficients, we will write q−a(n+1)pa(q) for a coefficient of G(q−(n+1)/2x).
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Now we will employ the other axioms. The dominance axiom states that ca,a,...a is a poly-

nomial in q, divisible by qa(n+1)/2+1 except when a = 0; hence Zdiag(q
−(n+1)/2x) = 1 + O(q).

Define

R♭(x1, x3, . . . xn) :=
∞∏

m=0

(1− (x1x3 · · · xn)
2m+1)−1

(
∏

i,j odd, i 6≡j+2

(1− (x1x3 · · · xn)
2m(xixi+2 · · · xj)

2)−1

(1− (x1x3 · · · xn)
2m+2)−(n+1)/2

and let R♭
diag(x) denote the diagonal part of the series R♭. By Property (4.2.3), the local-

global axiom is equivalent to the statement that the factors of R(x1, x3, . . . xn) come in pairs:

(1 − qbxa1
1 xa3

3 · · · xan
n )−1 with (1 − q1−bxa1

1 xa3
3 · · · xan

n )−1. Therefore, if we can show that

R(x1, x3, . . . xn) = R♭(x1, x3, . . . xn)(1 + O(q)), we will verify all of equation (6.1.1). More-

over, since we have already determined the off-diagonal factors of R, it suffices to show that

Rdiag(x) = R♭
diag(x)(1 +O(q)). By equation (4.3.1), this means

∑

a

pa(q)

qa(n+1)
xa = R♭

diag(x)(1 +O(q)). (6.1.5)

6.2 A Combinatorial Proof

More concretely, we must prove the following:

Proposition 6.2.1. The lowest term in pa(q) has degree a(n + 1) and coefficient equal to the

coefficient of xa in R♭
diag(x).

Proof. The proof requires closely examining the combinatorics of the recurrences on coeffi-

cients of Z. Recall the statement of the recurrence associated to functional equation σi: if

ai−1 + ai+1 is odd, then

c...ai,... = qai−(ai−1+ai+1−1)/2c...ai−1+ai+1−1−ai,... (6.2.1)

and if ai−1 + ai+1 is even, then

c...ai,... = qc...ai−1,... + qai−(ai−1+ai+1)/2(c...ai−1+ai+1−ai,... − qcai−1+ai+1−ai−1) (6.2.2)
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or, by applying this recurrence repeatedly,

c...ai,... = qai−(ai−1+ai+1)/2(c...(ai−1+ai+1)/2,... +

(ai−1+ai+1)/2−1∑

a′i=ai−1+ai+1−ai

(c...a′i,... − qc...a′i−1,...)). (6.2.3)

Starting with ca1,...an we will apply the recurrences in the following order: first, reduce as

far as possible with the even σi, then reduce the result as far as possible with the odd σi, then

reduce that result as far as possible with the even σi, and so on. Any coefficient will eventually

be reduced to a linear combination of diagonal coefficients in this way. The lowest term in pa(q)

represents the number of paths from ca,2a,a,2a,...,a,2a to c0,0,...0 via these recurrences, gaining as

small a power of q as possible.

Given any ca1,...an+1 , assuming without loss of generality that
∑
i even

ai ≥
∑
i odd

ai, we apply

the recurrences σi for i even to reduce as far as possible. Any coefficient ca1,a′2,...an,a′n+1
in

the resulting expression now has
∑
i even

a′i ≤
∑
i odd

ai, and is multiplied by a factor of at least

q

∑

i even

ai−
∑

i odd

ai
. If we continue reducing this way until we reach c0,0,...0, it will be multiplied by a

factor of at least q
Max(

∑

i even

ai,
∑

i odd

ai)
. In particular, pa(q) = O(qa(n+1)). This is the correct order

since one possible path is ca,2a,a,2a,...a,2a → qa(n+1)/2ca,0,a,0,...a,0 → qa(n+1)c0,0,...0.

Because we are only considering the lowest term in pa(q), we can discard all terms in

the σi recurrence with a factor greater than qai−(ai−1+ai+1)/2. This leads to greatly simplified

recurrences: if ai−1 + ai+1 is even, then

c...ai,... = qai−(ai−1+ai+1)/2

(ai−1+ai+1)/2∑

a′i=ai−1+ai+1−ai

c...a′i,... (6.2.4)

and if ai−1 + ai+1 is odd, then

c...ai,... = 0. (6.2.5)

Given ca1,...an+1 with
∑
i even

ai ≥
∑
i odd

ai, suppose for some even i we have ai < (ai−1 + ai+1)/2.

Then this index cannot be reduced via the recurrences, and reducing the other even indices

will add a power of q greater than q

∑

i even

ai−
∑

i odd

ai
. Thus such terms ca1,...an+1 can be discarded.

Moreover, suppose for some i we have ai < ai−1. We must have ai+1 < ai or discard this term.

We reduce all even indices via the simplified recurrences. Then any coefficient ca1,a′2...an,a′n+1
in
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the resulting expression will have a′i+2 < ai+1 < a′i. Any coefficient ca′′1 ,a′2...a′′n,a′n+1
in the next

step will have a′′i+3 < a′i+2 < a′′i+1, and so on. In particular, we cannot find a path to c0,...0 this

way. Hence ca1,...an+1 can be discarded. This leads to a further simplification of the recurrence

for ai−1 + ai+1 even:

c...ai,... = qai−(ai−1+ai+1)/2

Min(ai−1,ai+1)∑

a′i=ai−1+ai+1−ai

c...a′i,... (6.2.6)

It would be interesting to know whether the simplified recurrences (6.2.5) and (6.2.6) somehow

correspond to simplified functional equations.

We have now reduced the problem of computing the first coefficient in pa(q) to counting

chains of indices:

a1, a2, a3, a4, . . . an, an+1

a′1, a′2, a′3, a′4, . . . a′n, a′n+1

a′′1, a′′2, a′′3, a′′4, . . . a′′n, a′′n+1

· · · · · · · · · · · · · · · · · · · · ·

a
(ℓ)
1 , a

(ℓ)
2 , a

(ℓ)
3 , a

(ℓ)
4 , . . . a(ℓ)n , a

(ℓ)
n+1

such that:

Condition 6.2.2. we have the boundary conditions (a1, a2, . . . an, an+1) = (a, 2a, . . . a, 2a)

and (a
(ℓ)
1 , a

(ℓ)
2 , . . . a

(ℓ)
n , a

(ℓ)
n+1) = (0, 0 . . . 0, 0)

Condition 6.2.3. a
(j)
i = a

(j+1)
i if i is odd and j is even, or if i is even and j is odd.

Condition 6.2.4. a
(j)
i + a

(j)
i+2 is even for all i, j.

Condition 6.2.5. For i odd and j even, or i even and j odd, a
(j−1)
i−1 + a

(j−1)
i+1 − a

(j−2)
i ≤ a

(j)
i ≤

Min(a
(j−1)
i−1 , a

(j−1)
i+1 ).

Note that the indices i are still numbered modulo n+ 1 here.
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We will rephrase this counting problem once before solving it. For i modulo n + 1 odd,

and 1 ≤ j ≤ ℓ, let d
(j)
i = a

(j−1)
i+j+1 − a

(j)
i+j . Condition (6.2.5) implies that all d

(j)
i are nonnegative

and d
(j+1)
i ≤ d

(j)
i . Thus a chain of indices as above gives rise to an (n + 1)/2-tuple of integer

partitions d
(1)
i ≥ d

(2)
i ≥ · · · ≥ d

(ℓ)
i ≥ 0. By condition (6.2.4), we have d

(j)
i + d

(j)
i+2 even for all

i, j. Condition (6.2.2) is equivalent to
ℓ∑

j=1

d
(j)
i−2j = a for all i.

We can reconstruct the chain of indices a
(j)
i from the partitions d

(j)
i : for i odd and j even

or vice versa, a
(j)
i =

ℓ∑
k=j+1

d
(k)
i+j−2k. The only condition we need to verify is that a

(j)
i ≤ a

(j−1)
i−1 .

This can be shown by induction on ℓ − j: if j = ℓ, then a
(j)
i = 0 ≤ d

(ℓ)
i−ℓ−2 = a

(j−1)
i−1 . For

arbitrary j, we assume inductively that a
(j+1)
i−1 ≤ a

(j)
i−2. We know that d

(j+1)
i−j−2 ≤ d

(j)
i−j−2, and

adding these inequalities gives a
(j)
i ≤ a

(j−1)
i−1 .

Hence it suffices to count (n+ 1)/2-tuples of integer partitions

δi : d
(1)
i ≥ d

(2)
i ≥ d

(3)
i · · · (6.2.7)

for i modulo n+ 1 odd, with
∑
i,j

d
(j)
i = a(n+ 1)/2, such that:

Condition 6.2.6. For fixed j, the d
(j)
i are either all even or all odd.

Condition 6.2.7.
∑
j

d
(j)
i−2j is the same for all i.

We will use the notation λ+ µ for adding two partitions entry-by-entry, cλ for multiplying

all entries by a constant, ℓ(λ) for the length of a partition, and λ∗ for the conjugate partition.

First I claim that there exists a unique strictly decreasing partition γ such that for all i, there

exists a partition δ̃i with δi = 2δ̃i+γ∗. We may take γ to be the set {j : d
(j)
i odd}, in decreasing

order. If γ1 and γ2 have this same property, then γ∗
1 + γ∗

2 has all even entries, and, since γ1 and

γ2 are strictly decreasing, this implies that they are equal.

Since the generating function of strictly decreasing partitions is the same as the generating

function of odd partitions,
∞∏
k=0

(1 − x2k+1)−1, the first factor of R♭
diag(x) will account for the

choice of γ.

Now it suffices to count (n + 1)/2-tuples of integer partitions δ̃i : d̃
(1)
i ≥ d̃

(2)
i ≥ d̃

(3)
i · · ·

satisfying condition (6.2.7). I claim that any partition δ̃i can be written uniquely as
(n+1)/2∑
k=1

δ̃∗i,k
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where δ̃i,k is a partition all of whose entries are congruent to k modulo (n + 1)/2. If k′ ≡ k

mod (n+ 1)/2, then the multiplicity of the entry k′ in the partition δ̃i,k will be d̃
(k′)
i − d̃

(k′+1)
i .

Under this decomposition, we consider the contribution of some fixed δ̃∗i0,k to each sum
∑
j

d
(j)
i−2j in condition (6.2.7). δ̃∗i0,k is constructed to contribute the same amount to each sum,

except for an additional ℓ(δ̃i0,k) if i − i0 is between 2 and 2k modulo n + 1. Thus condition

(6.2.7) means that
(n+1)/2∑

k=1

∑

i−2k≤i0≤i−2
i0 odd

ℓ(δ̃i0,k) (6.2.8)

is the same for all i.

Now let us examine the remaining factors of R♭. For simplicity I will temporarily replace

x2
i with xi and rewrite these remaining factors as

∞∏

m=0

(n+1)/2∏

k=1

∏

i0 mod n+1
i0 odd

(1− (x1x3 · · · xn)
m(xi0+2xi0+4 · · · xi0+2k))

−1 (6.2.9)

We think of the factor
∞∏

m=0

(1− (x1x3 · · · xn)
m(xi0+2xi0+4 · · · xi0+2k))

−1 as generating the par-

titions δ̃i0,k. If we expand this factor as a power series, the coefficient of a term

(xi0+2xi0+4 · · · xi0+2k)
ℓ(x1x3 · · · xn)

w (6.2.10)

counts the number of partitions δ̃i0,k of ℓk+w(n+1)/2 with length ℓ and all entries congruent

to k modulo (n+1)/2. The exponent of the variable xi in this term is the same for all i, except

for an additional ℓ(δ̃i0,k) if i − i0 is between 2 and 2k modulo n + 1. Thus a diagonal term in

the power series of (6.2.9) represents a set of δ̃i0,k satisfying the condition (6.2.7).

It follows that the generating function of (n+ 1)/2-tuples of partitions

(δi) = (γ∗ + 2δ̃i) = (γ∗ +

(n+1)/2∑

k=1

2δ̃∗i,k) (6.2.11)

is precisely R♭
diag(x).

This completes the verification of equation (6.1.1).
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