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ABSTRACT 

Grouping Gestures Promote Children’s Effective Counting Strategies by Adding a Layer 
of Meaning Through Action 

 
Azadeh Jamalian 

 
Preschoolers can often rattle off a long sequence of numbers in order, but have problems 

in reporting the exact number of objects even in a small set, and have trouble in 

comparing numerical relation of two sets that differ by exactly 1 item. The present study 

showed that representing and highlighting sets by showing a circular, enclosed diagram 

around them with or without a grouping gesture helps children to enhance their 

understanding of cardinality and to improve their overall math competence. Nighty-three 

preschool students, ages ranging from 3years-10 months to 4 years-9months (M= 51.82 

months, SD= 3.56 months), from three public schools in Harlem, New York participated 

in this study. Children from each school were ranked based on their pre-test score on the 

Test of Early Mathematics Ability (TEMA-3), and were then assigned randomly to one of 

the three math comparison groups or the reading control group. Children in diagram-plus-

gesture math group, were asked to draw a bubble by making a grouping gesture around 

each of the two sets on a touch screen device, indicate the number of fish in each bubble, 

and judge whether there were the same number of fish in each bubble, and in case the 

number was not the same, indicate which set had more fish. Children in the diagram only 

condition simply saw bubbles around sets without the need to do a grouping gesture 

around them. Children in the no diagram- no gesture condition neither saw a bubble nor 

did a grouping gesture. All participants played on the software for 4 sessions within a 

two-week time period and the data were examined microgenetically. Results showed that 

all children in the math comparison groups improved in their math scores during the 



game-play and improved in their overall math competence from pre- to post-test, unlike 

the children in the reading control group. More importantly, children who saw the 

circular diagram (bubbles) around sets with or without the grouping gesture outperformed 

children who never saw bubbles nor made a grouping gesture in their accuracy, 

understanding of cardinality, and overall math competence from pre to post. Further, 

children with lower executive functioning skills benefitted from performing the grouping 

gesture in addition to seeing the circular diagram. Gestures can have the same form as 

diagrams, and hence, they may carry information that is redundant with diagrams. Such 

redundancy reinforces the message by presenting information in two modalities— a 

redundancy that may not be necessary for some, but beneficial to others (i.e. children 

with low executive functioning skills). Finally, over the course of game-play children 

who did the grouping gesture never counted the two sets together as one set when asked 

to compare their numerical relation— a mistake many preschoolers make; children in the 

other groups made that mistake occasionally. Because gestures are actions and dynamic 

by nature, they appear to be especially suited for changing actions and promoting early 

counting skills.  
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CHAPTER 1: THEORETICAL BACKGROUND 

Introduction 

Parents, and teachers too, are always surprised when their children can rattle off a long 

sequence of numbers in order, but have problems in reporting the number of objects even in a 

small set, like the number of fingers on one of their hands. Knowing the order of numbers is not 

the same as knowing how many, and knowing how many is not the same as knowing if two sets 

are equal in number. Children may first engage in counting as a rhythmic routine, more like a 

purposeless activity, and only gradually learn how it is related to enumeration and cardinality 

(Fuson, 1988, Wynn, 1990). It may even take longer for them to learn that counting is useful 

when comparing sets and when creating new sets to match existing ones (Michie, 1984; Sophian, 

1987, 1995), and once they notice that counting is a useful strategy, it may be challenging for 

them to use it effectively. The present study investigated whether set representation through 

gestures and diagrams help children to relate counting to cardinality and to use their counting 

skills effectively when comparing numerical relation of two sets.  

Counting Principles and Cardinality 

An extensive body of literature (see for ex. Fuson, 1988; Wynn, 1990, 1992; Gallistel & 

Gelman, 1992; Gelman, 1993; Schaeffer, Eggleston, & Scott, 1974) has shown that the task of 

enumeration is substantially more complex than reciting the counting words and requires the 

understanding of several underlying principles. Gelman and Gallistel (1978) propose three 

principles that underline counting and enumeration: (1) stable order principle, stating that 

symbols have a consistent order across counting occurrences, (2) the one-to-one correspondence 

principle, stating that for every object in the counting set only one and only one counting symbol 

is applied and each counting symbol is only applied to one object, and (3) the cardinal principle, 
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referring to the point that the last symbol of a count represents number of objects in the set that 

has been counted. Gelman (1993) argues that mastering these non-verbal counting principles 

precedes children’s acquisition of verbal counting skills. Evidence for this proposal comes from 

the finding that children are often good at detecting a puppet’s counting mistakes even when the 

puppet miscounts sets with cardinal values beyond their counting range (Gelman, 1993; Gelman 

and Meck, 1983, 1992). Further evidence for the “principles-before-skill” proposal comes from 

the observations that children sometimes come up with their own counting routines, different 

from the typical counting procedures adopted by their parents (Gelman & Gallistel, 1978).  For 

example, they sometimes use lists other than numbers, such as alphabets, to count things, or they 

use a count list with numbers ordered differently (but with stable order) than the established 

count list. This evidence leads Gelman to argue that children may have difficulty in using 

counting effectively to recognize cardinal value of sets because of their limited understanding of 

what they are being asked to do (i.e. “utilization skills”), and/or their limited ability to plan and 

execute counting procedures to solve problems (i.e. “procedural skills”) (Greeno, Riley, & 

Gelman, 1984). 

However, there is a counterargument that children’s difficulty in using counting to 

identify cardinality of sets is due to their inadequate knowledge of the actual meaning of the 

number words, as well as their limited conceptual understanding of counting as a possible 

strategy to solve problems. For example, Schaeffer, Eggleston, and Scott (1974) found that many 

children (mean age 3.5 years) who can successfully count arrays of 5 to 7 objects nevertheless 

failed to indicate the cardinal value of the set when the set was covered and asked how many 

objects there were hidden. Wynn (1990, 1992) also found that for about a year after children 

memorized a short count list, they rarely used counting to solve problems that required 



 3 

determination of the cardinality of a set, and that they only knew the exact meaning of a subset 

of the number words in their count list. For example, in Wynn’s “Give a Number Task” (GN) 

children were asked to give a puppet one, two, three, five, or six toys from a pile. Wynn found 

that only older children (mean age 3:6) counted the objects and were able to give the puppet the 

exact number of toys he had asked for. Wynn called this group of children “Cardinality Principle 

knowers”. Younger children, on the other hand, rarely used counting and were able to only give 

a subset of items in their counting list. Wynn called this group of children “sub-set knowers.” In 

a more recent study, Le Corre, Van de Walle, Brannon, and Carey (2006), showed that 

“Cardinality Principle knowers” spontaneously counted more frequently than the sub-set 

knowers when asked to give a set of items, and that sub-set knowers were more likely to count 

when asked for small numbers than when asked for the larger numbers (4 or more). Interestingly, 

“one”- and “two”-knowers who sometimes counted never ended their counts at the target. 

Further, when asked to “fix” their sets with incorrect number of objects, “Cardinality Principle 

knowers” were able to do so by matching it with the exact requested number, while  “sub-set 

knowers” sometimes left their set unchanged or changed them in the wrong direction. They also 

found similar results when they tested same children with a simpler task, namely “What’s on this 

card?” (WOC) task adopted from Gelman (1993). In the WOC task children were probed to 

respond with both counting and a cardinal value when asked to indicate what they see on the 

shown card; of interest is whether children indicate the numerosity of the items on the card rather 

than other properties such as color. Gelman (1993) had previously argued that the WOC task is 

less taxing on children’s performance skills and is more true to children’s earlier numerical 

competence than Wynn’s GN task. However, when Le Corre et al (2006), examined children’s 

performance on the WOC task as a function of their Wynn stage, they found that although the 
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WOC task demanded less procedural skill, sub-set knowers still engaged in spontaneous 

counting less frequently than the cardinality principle knowers when shown cards with larger 

number of items.  

Thus, there is evidence that children have difficulty in using counting for numerical 

reasoning such as responding with a cardinal answer in the WOC task, or producing a set with a 

given numerosity in the GN task; this difficulty may be due to children’s limited understanding 

of counting as a useful strategy to evaluate cardinality of a set and/or due to their limited 

procedural skills. In a different paradigm, researchers have also found that children are often 

reluctant to count spontaneously when they compare the numerical relation of two sets. For 

example, Sophian (1987) found that 3.5 year-olds rarely counted spontaneously when they were 

shown a set of balloons and a set of clowns in separate trays and were asked, “Are there enough 

balloons for every clown to get one?” In a second experiment, similar hesitation to counting was 

found when 3.5 year-olds were asked to put just enough balloons onto a round tray so that every 

clown on a rectangular tray could get one, although they readily count when asked to determine 

how many objects there were on a tray. Sophian also noticed that use of counting increased 

significantly between 3.5 and 4.5 years. Similarly, Michie (1984) found that unless children were 

specifically asked to count, they rarely used counting to compare the numerical relation between 

two rows of red and blue dots, presented to children as buttons belonging to two dolls; instead 

they relied on perceptual cues such as relative length of the rows to make their judgment. 

However, when they were asked to count, both 3- and 4- year olds became more accurate in their 

judgments, implying that they actually used information derived from counting to compare 

numerical equivalence of the two sets. Similarly, Mix (1999) found that children are significantly 

less accurate in matching two equal but spatially different sets than matching two sets with 
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congruent numerical and spatial properties. In fact, we see similar trend in Piaget’s classical 

numerical conservation task. Four and even five year olds, including those who can count, 

typically fail in conserving number when the spatial arrangement of a set changes, even in the 

child’s view (Piaget, 1952).  

Michie (1984) argued that preschoolers’ preference to rely on length cues as opposed to 

counting to compare numerical relation of two sets is due to their belief that length is a more 

reliable cue than counting, rather than their limited understanding of counting as a useful strategy 

for number comparison. She based her argument on the evidence that four year olds engaged in 

more spontaneous counting when they were given feedback on the correctness of their 

judgments. From Siegler’s (1987) research on children’s strategy use, we know that children 

adopt more efficient, faster strategies when they yield accurate solutions and only adopt slower 

strategies if they significantly increase accuracy. Since counting is a slower strategy than visual 

comparison, children may adopt the advanced but slower counting strategy only if they know 

counting actually increases their accuracy.   

However, we know children are also reluctant to count even when visual cues are absent, 

as is the case in the WOC task or the GN task; thus, it seems that a number of different 

mechanisms may underlie their failure to count when they compare sets: (1) limited conceptual 

understanding of exact numbers and of cardinality as a property of a set rather than an individual 

item, (2) ignorance of the link between counting and cardinality, (3) their limited procedural 

skills, (4) and their belief that spatial properties are better cues for comparison than counting.  

Core Systems for Mathematical Cognition 

An extensive body of literature (see Feigenson, Dehaene, & Spelke, 2004; Spelke, 2011 

for reviews) suggests that the human numerical cognition is supported by two innate core 
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systems: the Approximate Number System (ANS) for comparing and combining the analog 

magnitude or approximate cardinal values of sets, and the attentive object tracking system for 

tracking small numbers of distinct units. These core systems are innate, shared with our 

mammalian ancestors, and are automatically engaged in domain specific contexts— each with 

certain limitations.  

Studies of common laboratory animals, such as the pigeon, the rat, and the monkey, 

suggest that these animals can estimate and remember continuous quantities by mental 

magnitudes that are not exact (King, McDonald, & Gallistel, 2001). Moyer and Landauer (1967; 

1973) were the first to suggest that humans, similar to the laboratory animals, represent integers 

(discrete quantities) with mental magnitudes (continuous quantities). In a series of studies they 

asked adults to judge the numerical order of two Arabic numerals as fast as they can. They found 

that it takes more time for an adult to judge the order of two numbers, the less the distance 

between the two numbers is. For example, it takes more time to order 100 and 101 than 50 and 

100. This effect has come to be known as the symbolic distance effect and has been replicated by 

many other researchers since then (Dehaene, 1997; Gallistel & Gelman, 2005). Studies on 

newborn infants also show that they can reliably discriminate between two sets that differ by a 

ratio of 3 but are far less accurate when comparing sets that differ by a ratio of 2 (Izard, Sann, 

Spelke, & Streri, 2009). Six-month infants are reliable in discriminating sets by a ratio of 2 

(Lipton & Spelke, 2003; Lipton & Spelke, 2004; Xu, Spelke, & Goddard, 2005), and ten-month 

olds can discriminate sets by a ratio of 1.5 (Xu & Arriaga, 2007). Although this critical ratio 

drops as infants develop, it never reaches 1. Even when adults are asked to compare two large 

sets quickly without counting (Dehaene, 1997), their discrimination accuracy decreases as the 

numeric ratio between the two sets approaches 1, and the variability of their estimation of 
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magnitude increases as the cardinality of the set increases.  This is known as Weber’s fraction 

limit.  

Not only can infants compare the approximate magnitude of large numbers, but they can 

also combine and manipulate approximate quantities. In one study, McCrink and Wynn (2004) 

grouped nine-month old infants into two conditions, “addition” and “subtraction.” Infants in the 

addition condition saw an array of 5 objects on screen, moving towards a white computerized 

occluder and covered behind it. They then saw another array of 5 objects appearing on screen 

and getting hidden behind the white occluder, which then moved off the screen to reveal either 5 

or 10 objects. Infants in the subtraction condition saw an array of 10 objects being covered 

behind the white occluder, and then 5 objects emerged from behind the white occulder, which 

then moved off the screen to reveal either 5 or 10 objects. Interestingly, infants in the addition 

condition looked longer at the array of 5 objects (incorrect outcome) than at the array of 10 

objects (correct income) and infants in the subtraction condition looked longer at the array of 10 

objects (incorrect outcome) then at the array of 5 objects (correct income). These results indicate 

that nine-month old infants have some form of intuitive understanding of adding and subtracting 

approximate magnitudes.  

The evidence thus suggests that an innate system that operates on approximate 

representation of quantities is responsible for comparing and combining large sets-- a system that 

is called the Approximate Number System (ANS). ANS represents and operates based on 

approximate numerical magnitude of sets, is subject to Weber’s fraction limit, and fails to make 

explicit individual items within the set that it enumerates; thus it fails to support representations 

such as exactly six. In fact, research shows that when individual items are shown to an infant 

(instead of the whole set at once), their numerical discrimination is impaired or eliminated, 



 8 

perhaps because of inhibition of the operation of ANS (Feigenson, Carey, & Hauser, 2002). 

Feigenson et al (2002) had ten- and 12-month old infants see crackers sequentially placed into 

two containers and then crawl towards a container of their choice. Infants crawled towards the 

container containing 2 crackers but not 1, and towards the container with 3 crackers but not 2. 

However, they failed to discriminate between containers with 4 versus 3 or 6 versus 3 crackers. 

This finding is surprising given that even six-month olds are shown to be able to spontaneously 

discriminate between 6 and 3 (Lipton & Spelke, 2003).  Feigenson et al explain that presenting 

items one by one in a sequential manner inhibits operation of the ANS and instead activates 

another core system that attends to individual items- a system called “parallel individuation” 

with a structure similar to working memory.  

The “parallel individuation” system is exact and attends to the individual items within a 

set, but it only represents sets of up to three to four numerically distinct individuals (Carey & Xu, 

2001; Feigenson & Carey, 2003, 2005; Hauser & Carey, 2003). Children and adults can 

recognize a set of 2 or 3 items (and in some cases sets of 4) without the need to count them, but 

when presented with a set of 5 or 6 items, to evaluate the exact cardinal value of the set they 

need to count the items in the set otherwise they can only approximate the cardinal value of sets; 

hence, engaging their ANS system. Thus, the exact “parallel individuation” system is activated 

under conditions complementary to the conditions that activate the ANS. In cases where small 

number of objects are attentively tracked, ANS is inhibited but “parallel individuation” system is 

activated, and cases in which sets of large items are presented at once (without the chance to 

count them) exhaust the size limitation of the “parallel individuation” system but elicit activity of 

the ANS system.  



 9 

Conceptualization of Exact Large Numbers 

If our mathematical cognition is based on these two core systems, one with a ratio limit 

on the representation of cardinal values and the other with a set size limit on the representation of 

individuals, then how can we conceptualize more advanced math concepts such as exact 

quantities of large sets or discriminating between sets with 100 and 101 items?  

One view is that children acquire the counting principles (or cardinality) by gradually 

mapping numbers in their count list to their approximate analog magnitudes and hence 

associating numerical meaning to their otherwise meaningless count list (Dehaene, 1997; Wynn, 

1992). Although the analog magnitudes are approximate, they can highlight an important 

property of the count list, namely that “later in the list means larger set” (Wynn, 1992) which 

could lead to the acquisition of the successor function-- any natural number, n, is followed by 

another natural number, n + 1. Evidence for this view comes from the observations that adults’ 

estimation of large sets have the properties of the ANS system such as the Weber fraction limit 

and scalar variability (Dehaene, 1997; Izard & Dehaene, 2008; Whalen, Gallistel, & Gelman, 

1999), and that even preschoolers who count up to 100, can also estimate the numerical value of 

sets of 100 objects, an estimate that linearly relates to the numerosity of the set, (Lipton & 

Spelke, 2005), confirming that they have mapped numbers in their count list to their approximate 

analog magnitudes.  

Other scholars agree that we eventually map numbers to their analog magnitudes, but 

argue that such mapping is not the key in acquiring the counting principles (Carey, 2004), and 

some even argue that the mapping only comes after children become cardinality knowers (Le 

Corre & Carey, 2007). Carey (2004), for example, explains that children acquire counting 

principles by initially mapping numbers in their count list to the representations that arise from 
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the “parallel individuation” core system and “set-based quantification.” Based on this view, 

children first map number “one” to the representation of exactly 1 object, and then number “two” 

to the representation of any sets containing exactly 2 objects, and so on. In one study, Le Corre 

and Carey (2007) showed that children map numbers beyond 4 to their approximate magnitudes 

about six months after acquisition of counting principles. They asked 3 and 4 year olds to 

estimate the cardinality of sets of 1-10 items and realized that they could group cardinality 

knowers based on their accuracy of estimation into two groups: “non-mappers” who could 

successfully pass the Wynn task but could not map numbers beyond 4 to their analog 

magnitudes, and “mappers” who could reliably map numbers beyond 4 to their analog 

magnitudes. Mappers had an average age of 4.6, about six months older than the non-mappers. In 

another study, Le Corre (2013) directly asked children who have recently become cardinality 

knowers to compare numbers on the basis of verbal information alone. He asked these children, 

“Which box has more fish inside; this one with ten fish or this one with six fish?” and found out 

that “non-mappers” who have recently acquired counting principles can reliably compare one 

versus eight and two versus three but when comparing six versus ten or eight versus ten their 

accuracy was close to chance. On the other hand, “mappers” could reliably compare “eight” 

versus “ten” suggesting that they have mapped all numbers in their count list to analog 

magnitudes.  

A third view (Feigenson, Dehaene, & Spelke, 2004; Hauser & Spelke, 2004; Spelke 

2011) argues that counting principles arise when the representations from the two core systems 

could be productively combined. If children could systematically combine representations of sets 

and their cardinal values (representations from ANS system) with representations of numerically 

distinct individuals (representation from parallel individuation system) they could overcome the 
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limitations of these two sets and hence be able to conceptualize ideas such as “exact quantities” 

and compare sets based on their exact cardinal values. Further, they argue that language plays a 

key role in combining the core systems to overcome their limitations. Spelke (2011), for 

example, explains that children combine the two systems when they begin to use number words 

in their everyday language and when they count. As suggested by many researchers (Fuson, 

1988; Wynn, 1990, 1992; Sarnecka & Carey, 2008; Spelke, 2011), initially these number words 

seem to have little numerical meaning attached to them, but they are simply elicited by the 

presence of a collection of objects and are accompanied by pointing gestures to individual 

objects. Collection of objects activates representations of approximate cardinal values (i.e. ANS 

core system), and the pointing gestures are likely dependent on the attentive object tracking 

system.  

For children who are learning to count, gestures play an important role in their counting 

proficiency. Preschoolers count objects most accurately when they gesture as they count 

(Carlson, Avraamides, Cary, & Strasberg, 2007; Fuson & Hall, 1983; Gelman & Meek, 1983; 

Saxe & Kaplan, 1981; Schaeffer, Eggleston, & Scott, 1974). For example, Alibali and DiRusso 

(1999) found that preschoolers were more accurate in counting sets of 7 to 17 objects when they 

gestured or when a puppet gestured for them, than when they were prohibited to gesture. Further, 

when children gestured, they were more likely to make errors in keeping track of the objects, but 

when the puppet gestured they made more errors in coordinating saying the number words with 

tagging the items to be counted. Thus, pointing gestures help children to limit two distinct 

difficulties associated with counting: keeping track of individual objects while counting them 

and coordinating saying the number words with the action of tagging items (Alibali & DiRusso, 

1999).  
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However, it is possible that repeated pointing gestures accompanying counting impede 

children’s understanding of the cardinality concept. Children typically produce pointing gestures 

to indicate objects in the environment (Bates, 1976; Bates, Benigni, Bretherton, Camaioni, & 

Volterra, 1979) and there is a strong association between pointing gesture and acquisition of new 

vocabulary for objects (Iverson & Goldin-Meadow, 2005). In fact, preschoolers may interpret 

pointing gestures accompanying counting as suggesting the need to name some property of the 

individual objects rather than tagging them to evaluate the numerosity of the whole set. For 

example, a child counting five apples may point one by one to each of the apples, recite number 

words one to five, interpret the pointing gesture as a way of reciting property of the individual 

apples as one, two, three, four, five, and fail to realize that five refers to the cardinality of the 

whole set rather than a particular apple. Further, pointing gestures individuate items in a 

collection and are likely to be dependent on the attentive object tracking system (Spelke, 2011). 

Therefore, although pointing gestures may assure an accurate counting, they fail to represent sets 

as a collection with abstract properties such as a cardinal value.  

Representing Sets Through Gestures and Diagrams 

Feigenson (2011) argues that set representations play a critical role in representing the 

concept of cardinality, among many other numerical processes. Indeed, a recent study (Sarnecka, 

2007) shows that children who learn languages that explicitly distinguish between singular and 

plurals seem to learn the cardinal meaning of the number word “one” much earlier than children 

who learn classifier languages such as Japanese. In fact, the current study makes an emphasis on 

set representation and argues that highlighting sets and at the same time attending to individual 

objects within that set help children to learn cardinality. More specifically, we investigate 

whether representing sets through gesture and diagram help children to learn about cardinality 
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and to compare equivalence of two sets that are different by only 1.   

While pointing gestures help keeping track of individual items, other gestures such as a 

single pointing gesture to the set or a grouping gesture around the whole set may help to 

represent sets and assist in conceptualizing cardinality of sets. Interestingly, Fuson (1988) used 

the grouping gesture as part of an intervention she did with children struggling to indicate “How 

Many” items are indicated by a count. After three trials of training, in which she instructed 

children saying, “When you count, the last word you say tells you how many things there are. 

Watch me, one, two, three, four, five, six. Six, there are six blocks” [she made a circling or 

grouping gesture when saying the final statement], 8 out of 13 children succeeded in answering 

the “how many” question. Although the results are promising, many confounding factors may 

contribute to that result. In fact, it is not clear whether the grouping gesture per se had a 

facilitating function in the development of children’s understanding of cardinality. Instead, the 

first statement “When you count, the last word you say tells you how many things there are” may 

suggest that children attend to a rule rather than truly comprehend the meaning of cardinality. In 

other words, children may simply repeat the last word they counted when responding to the “how 

many” question without knowing that the last word actually indicated the cardinality of the 

whole set. Further, the modeling of accurate counting and repeating the last count word that 

accompanied the grouping gesture may have helped children with their knowledge of cardinality 

and not the grouping gesture itself.  

In a more recent study, Suriyakham (2007) compared effects of the pointing + grouping 

gesture and pointing gesture alone on the development of children’s cardinality knowledge. 

Surprisingly, she did not find any significant differences between the two kinds of gestures in 

improving children’s performance on either the GN task or the WOC task, both measuring 
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children’s understanding of cardinality of a set. Different factors may have contributed to this 

finding. First, the variability in her dataset was large, and that may have impeded detecting a 

significant difference between the two conditions. Second, children in the pointing condition 

may have learned the abstract rule of repeating the last word of their count as a response to the 

cardinality tests without knowing the actual meaning of cardinality as a property of sets. 

Therefore, the measures used by Suriyakham (2007) may have not been sensitive enough to 

detect the benefits of the grouping gesture over the pointing gesture alone in facilitating 

children’s understanding of cardinality as a feature of the set. Third, very few children engaged 

in overt counting behavior in Suriyakham’s study, and as she suggested, strategy probes such as 

“How did you know to give Elmo X toys?” or “Show me how did you know when Elmo had X 

toys?” may have yielded more insight on children’s mental representation of what the task entails 

(see Ginsburg, 1997, on the importance of follow up questions in the spirit of the clinical 

interview).	
  	
  	
  	
  

In a previous study (Jamalian, 2013), we asked children to show how they know their 

answers once they indicated if two sets with cardinal values between 5 to 9 were equal in 

number; however, even with the strategy probe, only half of the preschoolers (17 out of 36) used 

counting properly to compare the sets at pre-test. Other students either never counted or only 

counted one of the two sets or counted both sets together as one whole set. On the other hand (so 

to speak), three sessions of intervention in which children viewed a grouping gesture around the 

items in each set after repeated pointing gestures one by one to the items in the sets promoted 

effective use of counting. During the intervention, children were asked to compare the number of 

eggs of two hens displayed on a computer screen, and were given feedback on their responses. 

At the beginning of each trial, the experimenter asked the child if the two hens have the same 
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number of eggs, and while asking, either pointed to the two hens (i.e. point to owner gesture), 

pointed to the eggs one by one, (i.e. pointing gesture only), or made a grouping gesture around 

each set after pointing to the eggs in each set one by one (i.e. pointing + grouping gesture). 

Children also saw the experimenter modeling two questions and performing the corresponding 

gestures at the beginning of the second and third sessions. The results demonstrated that children 

who saw the pointing + grouping gesture were more likely to use counting effectively when 

comparing cardinal values of two sets in a paper and pencil task at post-test than students who 

only saw the pointing gesture or point to the hens gesture. Children in the pointing + grouping 

gesture condition were also more likely to successfully use counting to make two sets equal at 

post-test.  

Why is the grouping gesture effective? A grouping gesture has a different form than the 

counting pointing gestures, and this differentiation in form makes a distinction between counting 

as a repeated one-to-one tagging process and evaluating the cardinal value of the whole set, the 

group of items, as the result of that counting process. Importantly, the grouping gesture does not 

have an arbitrary form; it is an enclosed circle, like a container with an interior and an exterior 

putting a border around the items of the set. Lakoff and Nunez (2000) argue that we often 

conceptualize sets as containers, as if they contain their items in them. The “container” image 

schema is an everyday primitive spatial relation concept that links our everyday visual-motor 

experiences to the conceptualization of many mathematics concepts. For example, Tversky 

(2011) argues that bars in a bar graph are containers that contain similar instances, separating 

their content from dissimilar instances in other bars. Box tool in the MathemAntics’ “How 

Many” software activity are containers, holding counted animals inside them, separating them 

from the ones to be counted (Ginsburg, Carpenter, Labrecque, & Pagar, 2013). Classes are 
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perceived as containers; sets are perceived as containers; the Cartesian plane is a container, 

containing figures, lines, and points in it. Talmy (1983) prefers to use the term “surround” to 

label the literal and metaphoric meaning of the linguistic proposition in, but agrees that that these 

fine linguistic structures, such as in, on, out, over, across, provide a systematic framework that 

schematizes space and uses spatial relations to convey meaning. Schematization, he explains, “is 

a process that involves the systematic selection of certain aspects of a referent scene to represent 

a whole, while disregarding the remaining aspects” (p.225, italics added). For example, we, as 

adults, select interior, exterior, and boundary aspects of a container and disregard its size or 

volume to conceptualize a group of items as a whole set, an object in itself that may have distinct 

properties such as a cardinal value. Like language, gestures schematize and abstract; unlike 

language, gestures represent and organize information directly through actions in space, in space, 

using relations in space. Natural mapping between meaning and the representation of the 

meaning promotes thought (Tversky, Kugelmass, and Winter, 1991; see also Tversky, 2011a). A 

grouping gesture represents sets by grouping things and putting a border around them separating 

them from other things that are not part of the set.  The representation naturally maps to the 

container schema.  

Diagrams too use space (of a paper or of the computer screen), position, and form in 

space to represent meaning, to “visualize thought” as Tversky (2011) puts it. For example, a 

circular diagram around items of a set represents the container schema, putting a boundary 

around members of the set, separating the interior from the exterior, and from other items that do 

not belong to the set. Tversky (2011) explains that diagrams can be seen as the consequence of 

gestures, the drawing actions. Enfield (2003) argues that gestures establish “virtual diagrams” in 

space. Gestures as virtual diagrams or diagrams as crystalized gestures, share representative 



 17 

features like position and form in space to convey meaning. However, diagrams are static, while 

gestures are dynamic; they have an added channel to represent meaning through action (Tversky, 

Jamalian, Giardino, Kang, & Kessel, 2013).  

Present Study 

Does this added layer of action help children to better learn about cardinality? In our 

previous study, we demonstrated that viewing a grouping gesture promotes effective counting 

strategy to compare numerical relation of two sets.  Would viewing a circular diagram be just as 

effective? In the present study, we test this by having children either see a circular diagram 

around the sets or make a grouping gesture around the set to form and see a circular diagram 

when asked to compare the numerical relation between the two sets. Using pre-test post-test 

comparisons, we investigate whether either of these manipulations is more effective in enhancing 

children’s understanding of cardinality.  We use several measures: the GN task; their accuracy 

and effective use of counting when judging numerical equivalence of two sets, measured by an 

Equivalence Judgment (EJ) task; when producing a set equal in number with another give set, 

measured by the Give the Same (GS) task; and when making two sets equal by adding or 

removing items from them, measured by the Make the Same (GS) task.   

In addition to enhancing meaning through action, gestures may play a special procedural 

role. In our previous study, we noticed that children who engaged in counting to compare 

numerical equivalence of two sets, often counted the two sets together as one whole set. Such 

error may be due to their limited understanding of the link between counting and evaluating 

cardinality of sets, and/or it may be due to their limited procedural skills. Children need to be 

able to count one set, stop, and start from the number 1 to count the other set; however, due to 

their limited inhibitory skills, children may find it difficult to interrupt their counting routine and 
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start from number 1. Their failure to stop counting and start from 1 for the second set may also 

be due to their limited cognitive flexibility: they may find it difficult to think about the concept 

of sets while counting at the same time. In other words, they may be aware that counting is a 

good strategy to compare sets, but find it difficult to use their counting skills purposefully. A 

grouping gesture may help children to focus on items in only one set at a time and interrupts their 

counting routine by performing an action that has a form different than the repeated pointing 

gestured often used in the counting process. If that is the case, then the grouping gesture may be 

more beneficial to children with lower executive function skills than those with higher skills. We 

test this hypothesis by analyzing children’s improvement in accuracy and strategy use as a 

function of their executive function skills, measured by the Head-Toes-Knees-Shoulder task 

(HTKS)- HTKS task (Ponitz, McClelland, Matthews, & Morrison, 2009). 

As Tversky (2011) nicely points out, “before page [or a computer screen] there was space 

itself.”  We group similar things in space in close proximity to each other, away from dissimilar 

ones, a “separated spatial grouping” that indicates different categories and themes. For example, 

we separate the pile of unwashed laundry from the clean ones; the pile of read papers from the 

unread ones; and private things from public ones. Similarly, items in a set may be grouped by 

placing them close to each other further away from other things. By grouping items of a set in 

space using proximity, we reflect the Gestalt laws of perception, representing a whole, that is, the 

set, which is greater than or different from its parts, the members of the set. Thus, using spatial 

proximity may be just enough of a manipulation to help children to conceive items as a set. We 

test this by adding a third condition to the present study, in which children never see a circular 

diagram around the sets nor do they make a grouping gesture around the sets, but the items of 

each set are spatially arranged in close proximity of each other away from the items in the other 
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set.  

In summary, the present study tests whether the spatial schema of a container as a 

representation of sets, represented visually by a circular diagram around the set and tangibly by 

performing a grouping action around the items in the set, can help children to (1) conceive of 

cardinal values as an emergent property of a set rather than a property of the last counted item in 

the set, (2) perceive counting as a useful strategy when comparing sets and creating equal sets, 

and (3) use their counting skills more effectively to judge numerical equivalence of two sets, to 

create a set matching in number with a given set, and to make two sets equal in number by 

adding or removing items from them. We test whether the grouping gesture enhances 

effectiveness of the intervention beyond the visual circular diagrams around the sets by adding a 

layer of meaning through action and/or by enhancing children’s procedural skills. Finally, we 

examine whether spatially grouping items in each set using proximity is as effective as enclosing 

them in a circular diagram with or without a grouping gesture.  

Children often express ideas in their gestures prior to expressing them in their language 

(see Golden-Meadow & Alibali, 2013, and also McNeill, 1992), and those gestures may have a 

causal role in their language development (Rowe & Goldin-Meadow 2009; Rowe, Özçalişkan, 

Goldin-Meadow, 2008). If children can show ideas in their gestures before they are ready to 

express them in their speech, maybe bringing new gestures into their “gesture vocabulary” helps 

them to learn about complex concepts before they are ready to learn about them through 

language input. In fact, we may be able to introduce children to complex ideas through gesture 

before we can discuss those ideas with them in words. Thus, studying effects of gesture on 

thought is particularly important for early childhood education as it may open new possibilities 
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for introducing concepts to young children at a stage when they are not ready yet to comprehend 

them through symbolic language, or perhaps through diagrams. 
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CHAPTER 2: METHODS 

Participants 

 One hundred-twenty-three pre-school students (56 girls) mostly from low socioeconomic 

status (SES) African American and Latino families, ages ranging from 3years-10 months to 4 

years-9 months (M= 51.82 months, SD= 3.56 months) were recruited to participate in the study. 

All children were recruited from three public pre-schools in Harlem, New York. Fifty-six 

students were recruited from school A, 48 from school B, and 19 from school C. A total of 21 

students (8 from school A, 9 from school B, and 4 from school C) were screened out of the study 

due to language issues, behavior problems, or the child’s resilience to participate. Moreover, 7 

students (3 from school A, 1 from school B, and 3 from school C) had perfect scores for all the 

pre-test measures and did not participate in the intervention. Thus, in total 93 students 

participated in the intervention. Participants were recruited through fliers sent home by their 

teachers and through parent meetings at schools that researchers attended. As part of the consent 

forms, parents were asked to check off whether they consent to their children being video and 

audio taped, and whether their videos could be used in an educational setting. 

Tasks 

Pre-test Tasks 

Head-Toes-Knees-Shoulder task (HTKS)- The HTKS task (Ponitz, McClelland, Matthews, & 

Morrison, 2009) was administered to measure children’s behavioral regulations. The task has 

been shown to be a reliable and valid measure of children’s behavioral regulation skills, 

involving multiple components of executive functions including attentional focusing, working 

memory, and inhibitory control (Ponitz et al., 2009). Two forms of the task, form A and B, were 

used.  
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Test of Early Mathematics Ability, Third Edition (TEMA-3) – The TEMA-3 (Ginsburg & 

Baroody, 2003) is a standardized test of children’s general mathematical abilities, normed for use 

with children from 3 to 8 years of age. Two forms of the test, form A and B, were used. Stimuli 

included picture books, Examiner Record Booklets, Worksheets, 5" x 8" Cards, and 20 Blocks 

(see Figure 1).  

	
  

Figure 1: Standard Test of Early Mathematics Ability, Third Edition (TEMA-3) 

Give a Number (GN) task- The GN task, adapted from Wynn (1992), was administered to 

measure children’s understanding of the cardinality principle. Stimuli consisted of a set of 15 

blocks and a puppet to request “candies” (i.e. blocks).  

Give the same (GS) task- The GS task was a researcher created measure. The task was 

administered to measure children’s ability to produce a set of candies equal in number with 

another given set. Stimuli consisted of a set of 15 blocks and two cards. Two forms of the task 

were used. Form A consisted of a card with a picture of a boy with 1 to 7 candies printed on the 

card, and a card with a picture of a girl with no candies. Form B consisted of a card with a 

picture of a girl with 1 to 7 candies printed on the card, and a card with a picture of a boy with no 

candies. Figure 2 shows an example of the cards from form A in which the boy has 6 candies.  
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Figure 2: Give the Same Task 

Make the same (MS) task-The MS task was a researcher created measure. The task was 

administered to measure children’s ability to produce two equal sets by adding or removing 

items from the sets. Stimuli consisted of a set of 15 blocks, a card with a picture of a boy, and a 

picture of a girl (see Figure 3).    

	
  

Figure 3:  Make the Same Task  

 

The MS task had a total of 6 trials in addition to a practice trial. Table 1 shows number of 

candies for the boy and for the girl in each the 6 trials of the MS task. 
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Table 1: Number of Candies for the Boy and the Girl in each the 6 trials for the MS task 

Trial# Boy’s # of candies Girl’s # of candies 
P 2 3 
1 2 4 
2 5 3 
3 4 5 
4 7 4 
5 7 6 

 

Equivalence Judgment (EJ) task- Stimuli consisted of 16 cards with a picture of a boy or a 

picture of a girl, each with some number of candies (see Figure 4). 

 

 

The EJ task had total of 6 testing trials in addition to two practice trials. In each of the 

testing trials the number of candies for the boy and the girl ranged between 4 to 7. The candies 

were positioned randomly (but fixed) on the cards. The ratio between the boy’s and the girl’s set 

of candies was kept close to 1:1, and the relative area occupied by the candies in each set was 

incongruent with their relative numerical size; for example, if the boy had more candies than the 

girl, the girl’s candies were more spread out on the card or were spread out equally the same as 

the boy’s candies. The number of candies for the boy and the girl, as well as the relative area for 

the two sets in each of trial is shown in Table 2. 

 

Figure 4: First card in the Judgment Task 
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Table 2: Number of candies on each card in each trial for the EJ Task 

Card# Boy’s # of 
candies 

Girl’s # of 
candies 

Area 

P1 2 2 Boy > Girl 
P2 2 3 Boy = Girl 

Form A 
1 4 4 Boy > Girl 
2 4 5 Same 
3 6 5 Boy < Girl 
4 5 5 Boy < Girl 
5 6 6 Boy > Girl 
6 7 6 Same 

Form B 
1 5 4 Same 
2 4 4 Boy > Girl 
3 5 5 Boy > Girl 
4 6 5 Boy < Girl 
5 6 7 Same 
6 6 6 Boy < Girl 

 

Training Tasks 

Pop the Bubble activity- The Pop the Bubble activity is one of the MathemAntics software’s 

activities for preschoolers. The activity is designed to help children learn about numerical 

relations between two sets while encouraging them to compare the sets by counting.  

Noodle Words app- The Noodle Words app Version 1.3 is a published app on iTunes by 

NoodleWorks Interactive LLC. The app is designed to help children improve their language 

acquisition and word comprehension. 

Post-test Tasks 

Post-test measures were identical to the pre-test measures with the exception of the 

HSKT task, which was administered only at pre-test. 

Design 

The experiment used a between subject design with condition (diagram only, diagram + 
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gesture, no diagram/no gesture, and control) as between subject factor, and had three parts: (1) 

pre-test, (2) four sessions of training, (3) post-test. 	
  

Procedure 

The study was conducted in pre-schools where students were attending. Children were 

pulled out of their classrooms and worked with trained examiners in one-on-one settings, away 

from their classroom in a hallway or a room assigned to the research group by the school 

administrators. Data for the study was collected during Fall 2012.  

At pre-test, children were tested on six measures: Head Shoulders Knees Toes task 

(HSKT), Standard Test of Early Mathematics Ability (TEMA), Give a Number task (GN), Give 

the Same task (GS), Make the Same task (MS), and Equivalence Judgment task (EJ). In the first 

week of the study, students were tested on the HSKT task. In the second week of the study 

students were tested on the TEMA and the GN tasks, in a counterbalanced order. During the 

third week of the study students were tested on the GS, MS, and EJ tasks in a counterbalanced 

order in two sessions. 

Four training sessions were conducted over two weeks, twice a week, for a total of 4 

sessions for each child. Children were blocked by their normed pre-test TEMA results into 4 

blocks (poor, below average, average, above average) and by their schools (A, B, C), and then 

randomly assigned to one of the four conditions: three math conditions and one reading condition 

(i.e. control). All students in the three math conditions— diagram only, diagram + gesture, and 

no diagram/no gesture— played the Pop the Bubble activity from the MathemAntics software. 

Students in the control reading condition played the Noodle Words app by NoodleWorks 

Interactive, LLC.  

Post-test measures were conducted after completion of the four training sessions. In the 
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first week of post-testing children were tested on the TEMA and the GN task in a 

counterbalanced order. During the second week of the post-testing students were tested on the 

GS, MS, and EJ tasks in a counterbalanced order over two sessions. 

The pre-test, post-test, and intervention sessions were video recorded. In addition, video 

records of the computer screen and front views of participants were captured with Silverback © 

software. Figure 5 summarizes the overall design and procedure.  

 

Figure 5: Design of the Study 

Pre- and Post-test Tasks 

Head-Toes-Knees-Shoulder task (HTKS)- Examiners followed original scripts used by Ponitz et 

al. (2009). The HTKS task included 20 test trials. The experimenter started by saying, “Now 

we’re going to play a game. The game has two parts. First, I want you to copy what I do. Touch 

your head”. She then waited for the child to put both his/her hands on head, and said, “Good! 

Now touch your toes.” Once the child put his/her hands on toes, experimenter said, “Good!”. The 

two commands were repeated with motions until the child imitated them correctly. The child was 

Pre-test 
Measures 

• Head Shoulders 
Knees Toes (HSKT) 

• Standard Test of 
Early Mathematics 
Ability (TEMA) 

• Give a Number 
Task (GN) 

• Give the Same Task 
(GS) 

• Make the Same 
Task (MS) 

• Equivalence 
Judgment Task (EJ) 

Training  Post-test 
measures 

• Standard Test of 
Early Mathematics 
Ability (TEMA) 

• Give a Number 
Task (GN) 

• Give the Same Task 
(GS) 

• Make the Same 
Task (MS) 

• Equivalence 
Judgment Task (EJ) 

Reading condition No visual/ No gesture 

Diagram only  Diagram + gesture 
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then told, “Now we’re going to be a little silly and do the opposite of what I say. When I say to 

touch your head, instead of touching your head, you touch your toes. When I say to touch your 

toes, you touch your head. So you’re doing something different from what I say. What do you do 

if I say touch your head?” Children who hesitated or responded incorrectly, were told, 

“Remember, when I say to touch your head, you touch your toes, so you are doing something 

different from what I say. Let’s try another one.” Children who responded correctly were told, 

“That’s exactly right”, and proceeded to the next trial. There were a total of two training trials 

and 4 practice trials. Experimenters could re-explain up to three times in the training and practice 

sections. If the child could not do the task after the third explanation, the test items were 

administered anyway. Part I of the testing included 10 trials. Experimenter started the test trials 

by saying, “We’re going to keep playing this game, and you keep doing the opposite of what I 

say.” Part II of the testing was administered only if child responded correctly (including self-

corrects) to 5 or more items on Part I. An item was marked as “self-correct” if the child made 

any discernible motion toward the incorrect answer, but then changed his/her mind and made the 

correct response.	
   

Experimenter started Part II by saying, “Ok, now that you’ve got that part, we’re going to 

add a part. Now, you’re going to touch your shoulders and your knees. First, touch your 

shoulders.” Part II had only one training question and children received only two explanations if 

they made mistakes— one explanation during training and one explanation during the practice. 

They, then, proceeded to 10 testing trials.  

Correct responses earned 2 points; incorrect responses earned 0 points; self-correct 

responses earned 1 point. Scores ranged from 0 to 40. Commands were given in a consistent, 

nonrandom order following the ordered specified in the original scripts. Higher scores indicated 
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higher levels of behavioral regulation. Two forms of the task were used, counterbalancing the 

commands used on the first 10 trials (heads/toes vs. knees/shoulders). No significant form 

differences in overall scores have emerged in previous studies (Ponitz et al., 2009). Children 

were randomly assigned to either of the two forms.  

Test of Early Mathematics Ability (TEMA)- Examiners followed the exact script and procedures 

listed in the manual of the test. Examiners started with an item that was appropriate for the 

child’s age at the time of testing: three-years old started with item 1, and four-years old started 

with item 6. Examiners continued testing until child answered 5 consecutive questions 

incorrectly. Once ceiling point was established, examiners checked if child answered 5 

consecutive questions correctly to establish Basal. If a child had not answered 5 consecutive 

questions correctly, examiners started at item 5 and went backwards until Basal was established 

or all items were tested. Children did not receive any feedback on their accuracy for any of the 

items. To encourage children to continue testing, examiners praised their effort by saying phrases 

like, “You’re working really hard!”, “Good listening", "You seemed to like that," or "I see you 

are trying really hard", but avoided comments that appeared to reflect on the accuracy of their 

responses, such as "very good" or "that's right".  

 At pre-test, children were randomly tested with either Form A or B of TEMA-3. At post-

test the assignment switched.  

Give a Number (GN) task- Children were asked to give 1, 2, 3, 4, 5, 6, or 7 candies to a puppet. 

The task was adopted from Wynn’s task but added numbers 4 and 7, which were not part of the 

original Wynn's task. To begin, experimenter placed 15 blocks on the table in front of child and 

said, “Let’s pretend these are candies [pointing to the blocks]”. She then introduced the child to a 

Puppet and said, ‘‘Puppy wants to have some number of candies; he’s going to ask you for the 



 30 

number he wants. You see if you can help him.” Experimenter then made the puppet act and 

asked, “give me 1 candy. Put it right here, just one candy! [pointing to a place in front of puppet, 

within easy reach of the child]”. If child did not provide a response or gave a number other than 

1, experimenter prompted with phrases like, “he only wants 1 candy,” and “can you pick out 1 

candy for Puppy?”. If child yet failed to give 1 candy, experimenter put 1 candy in front of the 

puppet and said, “Here is 1 candy for the puppy”, then placed the candy back in the pile, and 

made the puppet to ask again, “give me 1 candy? Put it right here, just one candy!’’. If child 

successfully placed 1 candy in front of the puppet, experimenter continued with the next trial; 

otherwise, stopped the task.  

For the remaining trials, if child was successful in providing X candies, experimenter 

asked for X + 1 candies, and if child failed to give X candies, experimenter asked for X – 1 

candies. In the event when child was successful in giving 7 candies, experimenter asked for 7 

candies again until child successfully gave 7 candies twice out of three times. At the end of each 

trial, when child provided a set of any number of candies, puppet said, “Yay, I like my candies!”, 

and experimenter put all the blocks together back in the pile.  

After responding, children were given “follow-up” questions. They were asked to “check 

and make sure” that they had given the correct number, and were reminded how many had been 

asked for. Any child who did not spontaneously count the objects, regardless of the number 

he/she had given, was prompted to count them, saying, ‘‘Puppy wants X candies. Count and 

make sure you gave Puppy X candies?’’ If children did not count in fixing the set, experimenter 

prompted them once more, saying “Count and make sure Puppy has X candies”. Children who 

count and obtained a different number than what they had been asked for were then prompted, 

‘‘But Puppy wanted X candies—can you fix it so that there are X?’’ The experimenter stopped 
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prompting if child clearly had difficulty understanding the question or failed three times in 

providing a correct answer. Testing was stopped if child provided two incorrect responses for 

any number. Children were allowed a single counting error in each trial, so they were given 

credit even when they had actually given X ± 1 but counted the number that they were asked for.  

Give the same (GS) task- At pre-test half of the students were randomly tested with Form A, and 

the other half with Form B. At post-test the assignment switched. In what follows, we will 

outline the script used for Form A. To begin, experimenter placed the card with the picture of the 

Boy with 1 candy on the table, introduced the child to the Boy and said, “Here is Charlie and he 

has some candies [Pointed to the boy’s candies]. Then, child was introduced to the Girl, “Here is 

Sarah, Sarah wants to have the same number of candies as Charlie has; give her the same 

number of candies as Charlie has” [emphasis on “the same”]. Experimenter, then, placed 15 

blocks on the table within reach of the child. Children who did not respond, were prompted by 

the phrases like “Sarah wants to have the same number of candies as Charlie has; can you give 

her the same number of candies”. If a child yet failed to give 1 candy to Sarah, experimenter put 

1 candy on Sarah’s card and said, “Here is 1 candy for Sarah. Now they have the same. Charlie 

has 1 and Sarah has 1.” Then placed the candy back in the pile, and repeated the question, “give 

Sarah the same number of candies as Charlie has”. If child successfully gave 1 candy, the 

experimenter continued to the next trial; otherwise, the experimenter stopped testing.  

For the remaining trials, if child was successful in providing X candies, experimenter 

asked for X + 1 candies (i.e. used the card with X + 1 candies), and if child failed to give X 

candies, experimenter asked for X – 1 candies. In the event when child was successful in giving 

7 candies, experimenter asked for 7 candies again until child successfully gave 7 candies twice 

out of three times. At the end of each trial, when child provided a set of any number of candies, 
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experimenter said, “Yay, Sarah likes her candies!”, and put all the blocks together back in the 

pile.  

After responding, children were given “follow-up” questions. Children who counted both 

sets, but the last number of their count for the two sets did not match, were probed with, ‘‘But, 

Sarah wants to have the same number of candies— Fix it so that they have the same.’’ Children 

who counted only one of the two sets, or those who did not show any visible strategies  (i.e. 

counting, matching, visual pattern) were probed with, “Check and make sure Sarah has the same 

number of candies as Charlie has.” Testing was stopped if child provided two incorrect responses 

for any number. Children were allowed a single counting error in each trial, and were given 

credit even when they had actually given X ± 1 but they have counted both sets and their count 

result indicated that the two sets are equal.  

Make the same (MS) task- The experimenter started with one practice trial. In this practice trial, 

she first put 3 candies on girl’s card, and 2 candies on the boy’s card attending to the random 

spatial arrangement modeled on their recording sheets. To begin, experimenter introduced child 

to the boy and the girl, saying, “Here are Charlie and here is Sarah. They both have some candies 

[Pointed to the boy’s and the girl’s candies]. Charlie and Sarah want to have the same number of 

candies. Let’s see if you can help them. Make it so that they have the same number of candies 

[emphasis on the word “same”].” She then placed 11 blocks on the table, and gave scaffold, 

“You can give them candies [pointing to pile of extra candies on the table] or take away their 

candies [making a gesture of taking away], make them to have the same number of candies”. In 

response, if child was successful in making the two sets equal, experimenter said, “Excellent, 

they now both have X candies [X denotes number of candies in the two sets]. On the other hand, 

if child failed to make the two sets equal, experimenter said, “Let me show you how I do that”. 
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She then either removed one of Sarah’s candies, or gave a candy to Charlie and said, “Now they 

both have X candies.” 

 At the beginning of the testing trials, experimenter cleared the two cards and placed 

blocks (i.e. “candies”) on each card in the order specified on their recording sheet, and then put 

11 extra blocks on the table. Once, child indicated that she/he is done making changes, if it was 

not clear which candies belonged to which card, experimenter asked child to put Sarah’s candies 

on Sarah’s cards, and Charlie’s candies on Charlie’s card. Child who did not use any visible 

strategies (i.e. counting, matching, visual pattern, splitting in half), were probed with, ‘‘Check 

and make sure Sarah and Charlie have the same number of candies”. If child counted both sets, 

and the last number of their count for the two sets did not match, experimenter probed with, “But 

Sarah and Charlie want to have the same number of candies—fix it so that they have the same”.  

If child counted only one of the two sets, experimenter probed with, “Check and make sure Sarah 

and Charlie have the same number of candies?”. For any trial, if child was clearly playing around 

and not attending to the task, experimenter proceeded to the next trial. At the end of each trial, 

experimenter said, “Yay, Sarah and Charlie like their candies!” irrespective of the response 

accuracy. 

While testing, experimenters recorded children’s observed and expressed strategies as 

well as the type of mistakes they made on each trial on a recording sheet.  

Equivalence Judgment (EJ) task- Experimenter started with two practice trials. In the first 

practice trial, she placed the card with the picture of the boy with 2 candies on the table in front 

of child and said, “Here is Charlie and he has some candies [pointed to the boy’s candies one by 

one]”. She then placed the card with the picture of the girl with 2 candies on the table and said, 

“Here is Sarah and she has some candies [pointed to the girl’s candies one by one]. Check and 
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tell me if they have the same number of candies [emphasis on the word “same”]. Children who 

counted both sets and said they have the same were praised, “Excellent! Charlie has 2 and Sarah 

has 2. They both have the same number of candies, let’s try another one.” Children who did not 

count and simply said they have the same, were encouraged to show their work, “Yes you’re 

right. But remember we have to check. Show me how you know they have the same?” If a child 

failed to do anything or did not provide a relevant answer, experimenter said, “ok! Let me check. 

Charlie has 1, 2; 2 candies all together, and Sarah has 1, 2; 2 candies all together [pointed to their 

candies one by one while counting them]. They both have the same number of candies, let’s try 

another one.” Experimenter, then, proceeded to the second practice questions. On the other hand, 

if child answered incorrectly (i.e. said they do not have the same), experimenter said,  “Let me 

check. Actually, Charlie has 1, 2; 2 candies all together, and Sarah has 1, 2; 2 candies all together 

[pointed to their candies one by one while counting them]. They both have the same number of 

candies, let’s try another one.” 

 For the second practice trial, she showed the card with the picture of the girl with 3 

candies and the card with the picture of the boy card with 2 candies and asked, “Check and tell 

me if they have the same number of candies [emphasized on the word “same”]. Children who 

counted both sets and said they don’t have the same, were praised, “Yes you’re right! Charlie has 

2 and Sarah has 3. They don’t have the same number of candies. Now tell me, which one has 

more?” In response, if child said “Sarah” has more, experimenter said, “Great Job!”, but if child 

said “Charlie”, experimenter corrected him by saying, “hum… Actually, Sarah has 3 and Charlie 

has only 2 candies. Sarah has more”. Children who did not count the sets and just said they don’t 

have the same, were encouraged to show their work, “Yes you’re right! But remember we have 

to check! Show me how you do know they don’t have the same?”. If child yet failed to show his 
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work or did not provide a relevant answer, experimenter said, “ok! Let me check. Sarah has 1, 2, 

3; 3 candies all together, and Charlie has 1, 2; 2 candies all together [pointed to their candies one 

by one while counting them]. Sarah has 3 but Charlie has 2. They don’t have the same number of 

candies, Now tell me, which one has more?”. On the other hand, children who answered 

incorrectly (i.e. said they have the same), received scaffolding,  “Actually, Sarah has 1, 2, 3; 3 

candies all together, and Charlie has 1, 2; 2 candies all together [pointed to their candies one by 

one while counting them]. Sarah has 3 but Charlie has only 2 candies. They don’t both have the 

same, Sarah has more”. 

For the test trials, experimenter showed the cards in the order specified in Table 2. At the 

beginning of each trial, experimenter asked, “Check and tell me if they have the same number of 

candies”. Children who answered with no visible strategy were prompted to check their answer 

and were told, “Remember, you don’t have to answer quickly. Check and then answer me. Check 

and tell me if they have the same number of candies”. For children who answered based on the 

color of candies or used relative words such as too much, a lot, a little, experimenter repeated the 

question and emphasized on “the same number”. Once children provided their answer, the 

experimenter asked, “Check, and show me how you know that?”, unless they have already 

counted the two sets separately and answered the question correctly. For the trials in which 

children said the boy and the girl do not have the same number of candies, experimenter asked, 

“which one has more?”  

Previous studies suggest that preschoolers, when asked yes/no questions, have a “yes” 

bias in answering those questions (Steffensen, 1978) and that they tend to answer quickly 

without showing a strategy (Jamalian, 2013). To prevent these issues, in the current study, the 

experimenters avoided asking yes/no questions and encouraged children to “check and tell”. 
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While testing, experimenters recorded children’s observed and expressed strategies as 

well as the type of mistakes they made on each trial on a recording sheet.  

Training conditions 

Pop the Bubble activity, diagram + gesture condition- Experimenter started the session by 

saying, “Today, we are going to play the pond and the fish game.” Children played the activity 

on an iPad. Activity started with a farmer greeting children, “Wow! What a nice day! Let’s make 

bubbles with the fish in the pond. Oh! This will be fun”. Farmer then asked the child to draw a 

bubble around the first set of fish, by saying, for example, “Make a bubble around the pink 

jellyfish”. Children then drew a bubble around the set of fish by making a circular gesture around 

the set. If help was needed, experimenters explained to children to “Make a big circle around all 

the green fish” (for example) and if necessary they held the child’s finger and drew bubbles 

together.  

Once the bubble was made, farmer asked, “How many pink jellyfish are in the bubble?”. 

Numbers from 0 to 10 appeared on the screen and child entered her answer by touching one of 

the numbers on the screen (see Figure 6). Experimenters provided scaffolding for finding 

numbers to children who had difficulty reading numbers; in these cases, they simply helped the 

child to find the number that he/she wanted to respond with, without making any correction in 

their counting, and reported in their recording sheet that the child needed help finding numbers. 

When a child counted above 10, the experimenter gave the scaffold: “… is too high. Try again. 

How many fish are in the bubble?” 

Once children touched a number, the farmer repeated that number aloud and gave 

feedback on their accuracy of response. Children who accurately answered the how many 

question received feedback, “excellent counting”, and the cardinality number appeared on top of 
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the bubble and remained there for the remaining of the trial. They were then asked to make a 

bubble around the second set of fish and say how many fish are in that set. Children who made a 

mistake in answering the how many question were given a second chance and were told by the 

farmer, “Count again. How many yellow jellyfish are in the bubble?”. If child made a mistake in 

his second attempt, farmer corrected him by saying, for example, “That’s not right! Let me show 

you how I know that. There are 1, 2, 3, 4; 4 yellow jellyfish in this bubble.” Each fish got 

highlighted one by one when counted and remained highlighted to distinguish the counted items 

from uncounted ones. Once all items in the set were counted, their highlights were removed; 

farmer repeated the last counting word (ex. “4 pink jellyfish in this bubble”) and all the fish in 

the bubble got highlighted together.  

When bubbles were made around the two sets and their cardinal values appeared on top 

of them, farmer asked the child, “do the two bubbles have the same number of fish in them?” A 

green checkmark and a red cross appeared on the screen. If needed, experimenter explained to 

the child that ✓ means “yes”, and x means “no”. Children received feedback on the accuracy of 

their response. Those who responded correctly were told, “Awesome! The two bubbles don’t 

have the same (or have the same) number of fish in them” and proceeded to the next question. 

Children who responded incorrectly were give instructive feedback, for example, “Oh! Oh! The 

two bubbles have the same (or don’t have the same) number of fish in them. Let me show you 

how I know that. There are 1, 2, 3; 3 yellow fish in the bubble. And there are 1, 2, 3; 3 yellow 

clams in the other bubble. The two bubbles have the same number of fish in them.” Children 

played a total of 5 trials in each session. Number of fish in each set in each trail for each session 

is reported in Table 3. Order of questions was set randomly by computer for each child in each 

session. The two sets of fish were spatially separated, and the items is each set was arranged 
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unsystematic and randomly by computer. The particular type of fish in each set was also chosen 

randomly by the computer from possible choices of Yellow Fish, Green Fish, Pink Jellyfish, and 

Yellow Clam. All the items in each set were similar in type and color, but items in the two sets 

were always different from each other.   

Table 3: Session Trials 

Session # First Set 
Cardinal Value 

Second Set 
Cardinal Value 

1 3 3 
1 2 3 
1 5 5 
1 4 5 
1 4 3 
2 5 5 
2 5 6 
2 6 6 
2 6 7 
2 7 7 

3, 4 5 6 
3, 4 6 6 
3, 4 6 7 
3, 4 7 7 
3, 4 7 8 

 
In sessions 3 and 4, if the two sets were not the same in their cardinal value, children 

were asked to indicate which set has more fish in it. After child had responded whether the two 

bubbles have the same number of fish in them and had received feedback on the accuracy of her 

response, Farmer asked the child, “Pop the Bubble that has more fish in it”. If child chose the 

correct bubble, the bubble popped and farmer said, “You are right! You popped the bubble that 

had more fish in it”. If child chose the wrong bubble, the bubble changed color to orange, and 

farmer counted the two sets and explained the other bubble has more fish in it.  

During the session and while children were playing, experimenters recorded children’s 

observed strategies as well as the type of mistakes they made on each trial on a recording sheet.  
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On average each trial lasted 118.83 seconds (SD= 56.35). The exact duration of trial 

depended on how fast children drew the bubbles, how fast they responded to the “how many” 

and equivalence judgment questions, and whether they made a mistake in their responses in 

which case counting feedback was provided to them.   

  

	
  

Figure 6: Pop the Bubble Activity with Bubbles 

Pop the Bubble activity, diagram only condition- The only difference between this condition 

and the diagram + gesture condition was that bubbles appeared automatically around the two sets 

and children were not asked to make bubbles.  

On average each trial lasted 84.70 seconds (SD= 58.57). The exact duration of trial 

depended on how fast children responded to the “how many” and equivalence judgment 
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questions, and whether they made a mistake in their responses in which case counting feedback 

was provided to them.   

Pop the Bubble activity, no diagram/ no gesture condition- Children in this condition never saw 

bubbles nor were asked to make bubbles nor heard the word “bubble”. Instead of asking, “How 

many yellow clams are in the bubble?”, the farmer asked, “How many clams are there?”. Instead 

of asking, “do the two bubbles have the same number of fish in them?”, the farmer asked, “Are 

there the same number of yellow clams as there are pink jellyfish?”. In sessions 3 and 4, instead 

of asking “Pop the Bubble that has more fish in it,” the farmer asked, “show me which group has 

more.” Figure 7 shows two screenshots of the game in this condition. 

On average each trial lasted 86.90 seconds (SD= 43.08). The exact duration of trial 

depended on how fast children responded to the “how many” and equivalence judgment 

questions, and whether they made a mistake in their responses in which case counting feedback 

was provided to them.   

  

Figure 7: Pop the Bubble Activity with no Bubbles 

Reading condition- Experimenter started the session by saying, “Today, we are going to play a 

reading game.” Children played the NoodleWords app on an iPad. The game started with a bee 
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saying, “Hi! Welcome to Noodle Words! These are my friends. This is “Stretch” and that’s 

“Squish” [referring to two bugs on the screen]. Here is how you play. We’ve got a box of words 

for you. Tap on the box to get a word, you can tap the word too, and you can press and hold to 

move it around. Tap the bugs, tap the words, and anywhere else you want.” When child tapped 

on the box, a new action verb from a set of 18 possible choices (listed in Table 4) would appear 

in the middle of the screen, and the two bugs acted the action through an animation (see Figure 

8). Children could also tap on the word to see the word in animation, for example, by tapping on 

the word “spin” the word would spin and a narrator would read out the word “spin”.  

Experimenters recorded the verbs children saw when interacting with the app on a 

recording sheet.  

Table 4: Set of Verbs Available in the Noodle Words App 

Set of Verbs in the Noodle Words App 

Spin Sparkle Stretch Laugh Pop Drop  

Dance Grow Blow Bubble Bump Jump  

Pump Surprise Shake Eat Run Wave 

	
  	
  	
  	
  	
  

 	
   	
    

Figure 8: Examples of animations in the Noodle Words App 
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CHAPTER 3: DATA ANALYSIS 

The results are reported in three main sections. In the first section, pre-test performance 

will be described and changes from pre- to post-test will be analyzed. The goal is to provide an 

overview of the amount of learning that occurred as a result of the intervention— learning both 

in terms of accuracy and in terms of strategy use. Another goal is to examine the paths that led to 

some children’s learning and improvement of strategy use and others not, that is, to examine 

individual differences in the overall amount of learning or achievement. In the second section, 

children’s changing performance and their strategy use during the four sessions of the math 

intervention will be analyzed. Here, the first goal is to provide a precise depiction of children’s 

progress in learning and strategy use throughout the sessions. The second goal is to analyze the 

individual differences within this progression— some children may learn more quickly than 

others or show different learning progressions to the same end-state. In the third section, 

children’s performance in the post-test standardized test will be compared to their performance 

during the last session of the intervention. The goal is to examine transfer of skills from the 

intervention to the post-test standardized test.     

Changes from Pre-test to Post-test 

Head-Toes-Knees-Shoulder task (HTKS)- To determine any possible group differences in 

executive functioning skills, a 3 x 2 x 3 three-way analysis of covariance (ANCOVA) with 

condition (diagram only, diagram + gesture, no diagram/no gesture, reading group), gender, and 

school as between subject variables, age (number of months as a continuous variable) as a 

covariate, and HTKS scores as dependent variable, was conducted. Results confirmed that there 

were no significant group differences in children’s executive functioning skills, F (3, 92)= 0.731, 
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p= 0.537. There were also no significant differences between girls and boys in their executive 

functioning skills, F (1, 93)= 0.244, p= 0.623.  

Test of Early Mathematics Ability (TEMA)- To examine group differences in TEMA scores at 

pre-test, a 3x2x3x2 univariate analysis of covariance (ANCOVA) with condition, gender, and 

school as between subject variables, HTKS scores and age (number of months as a continuous 

variable) as a covariate variables, and TEMA pre-test scores as dependent measures was 

conducted. Results confirmed that there were no significant group differences in TEMA scores at 

pre-test, F(3, 93)= 1.978, p= 0.125). However, there was a significant difference between the 

three schools in their pre-test TEMA scores, F(2, 92)= 5.401, p= 0.007. Post hoc Tukey’s 

Honestly Significant Difference (HSD) pairwise comparison showed that on average children 

from school C (M= 13.929, SE= 1.657) outperformed children from school A (M= 8.023, SE= 

0.755), p= 0.005, and children from school B (M= 8.346, SE= 0.836), p= 0.029. There was no 

significant difference between school A and B on TEMA performance.   

To examine effects of condition (diagram only, diagram + gesture, no diagram/no 

gesture, reading group) on TEMA score gains, a 3x2x3x2 repeated measure of covariance with 

condition, gender, and school as between subject variables, HTKS scores and age (number of 

months as a continuous variable) as covariate variables, time of testing (pre- test vs. post-test) as 

within subject variable, and TEMA raw scores as dependent measures, was conducted. All the 

non-significant interactions were removed from the model.  

 Results confirmed that there was a significant interaction effect of condition and time of 

testing on TEMA raw scores, F(3, 92)= 2.949; p= 0.037. Post-hoc sequential Bonferroni pairwise 

analysis with time as the contrast field, showed that on average children in the three math 

conditions improved in their TEMA scores from pre- to post-test, while children in the reading 
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condition did not improve significantly from pre- to post-test. Children in the gesture + diagram 

condition had an average score of 14.241 (SE= 1.27) at post-test which was significantly more 

than their average at pre-test (M= 10.341, SE= 1.039), t(175)= 2.676, p= 0.008. Similarly, on 

average children in the diagram only condition scored higher at post-test (M= 15.861, SE= 

1.202) than at pre-test, (M= 10.409, SE= 0.984), t(175)= 3.770, p<0.001; and children in the no-

diagram/no-gesture condition had a higher average at post-test (M= 12.151; SE= 1.202), than at 

pre-test (M= 8.559, SE= 1.04), t(175)= 2.469, p= 0.014. On the other hand children in the 

reading condition did not significantly improve in their TEMA scores at post-test (M=12.270, 

SE= 1.258), comparing to their pre-test (M= 10.344, SE= 1.03), t(175)= 1.323, p=0.188.  

Further, post-hoc sequential Bonferroni pairwise analysis with condition as the contrast field, 

showed that children in the diagram-only condition outperformed children in the no-gesture/no-

diagram condition at post-test, t(175)= 2.506, p= 0.013, but not at pre-test, t(175)= 1.277, p= 

0.203, and children in the reading condition at post-test, t(175)= 2.435, p= 0.016, but not at pre-

test, t(175)= 0.052, p= 0.958. No other pairwise comparisons were significant. Table 5 

summarizes pre- and post-test performances in TEMA for each of the three conditions.  

Table 5: Pre- and Post-test TEMA results 

Condition Time Mean Standard Error 
    
Gesture + Diagram Pre-test 10.341 1.039 
 Post-test 14.241 1.27 
Diagram only Pre-test 10.409 0.984 
 Post-test 15.861 1.202 
No-gesture/no-diagram Pre-test 8.559 1.04 
 Post-test 12.151 1.271 
Reading Pre-test 10.344 1.03 
 Post-test 12.270 1.258 
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Figure 9: Average TEMA Scores Across the Four Condition at Pre- and Post-test 

Age (number of months as a continuous variable), F(1, 93)= 20.514, p<0.001, and HTKS 

scores, F(1, 93)= 3.747, p= 0.056, explained a significant proportion of variance in TEMA 

scores. Age was significantly correlated with TEMA scores at pre-test, r(92)= 0.422, p<0.000, 

and at post-test, r(92)= 0.445, p< 0.001. Similarly, HTKS scores were positively correlated with 

pre-test TEMA scores, r(92)= 0.349, p= 0.001, and marginally correlated with post-test TEMA 

scores, r(92)= 0.198, p= 0.056. 

	
  

Figure 10: Average TEMA scores versus Participant's age 
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Figure 11: Average TEMA Scores versus HTKS (Measure of Executive Functioning Skills) 

Further, there was a significant main effect of school on TEMA scores, F(2, 93)= 3.568, 

p=0.033. Post hoc Tukey’s Honestly Significant Difference (HSD) pairwise comparison showed 

that on average children from school C (M= 15.857, SE= 1.771), outperformed children from 

school A (M= 9.880, SE= 0.807), p= 0.010, and children from school B (M= 10.193, SE= 

0.894), p= 0.034. There was no significant difference between school A and B on TEMA 

performance.   

Table 6 summarizes results from the repeated measure ANCOVA analysis. In summary, 

children in the three mathematics comparison groups significantly improved in TEMA scores 

from pre-test to post-test, while children in the reading condition did not improve significantly. 

Children in the diagram-only condition outperformed children in the no-gesture/no-diagram 

condition and children in the reading condition. There was no significant difference between 

children in the gesture + diagram condition and children in the diagram-only condition. Further, 

age and executive functioning skills explained a significant proportion of variance in TEMA 

scores. 
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Table 6: Summary of ANCOVA analysis on TEMA scores 

 
Source 

Type III Sum 
of Squares 

 
df 

Mean 
Square 

 
F 

 
Sig 

      
Between Subject Effect      
Intercept 425.191 1 425.191 9.885 0.002 
HKTS 161.177 1 161.177 3.747 0.056 
Age 882.359 1 882.359 20.514 0.000 
Condition 199.686 3 66.562 1.548 0.208 
School 306.972 2 153.486 3.568 0.033 
Gender 4.053 1 4.053 0.094 0.760 
      
Within Subject Effects      
Time 13.939 1 13.939 1.694 0.197 
Time * HSKT 19.412 1 19.412 2.359 0.128 
Time * Age 30.23 1 30.23 3.673 0.059 
Time * Condition 72.81 3 24.27 2.949 0.037 
Time * School 1.21 2 0.605 0.073 0.929 
Time * Gender 2.829 1 2.829 0.344 0.559 

 

Next, we focused our analysis on the specific TEMA items that measured skills directly 

related to the intervention. Table 7 lists the items along with a description for each. These items 

measured children’s skills in recognizing written numerals, reciting the counting numbers, 

enumerating sets of objects, and comparing quantities.  

For each item, a score of 1 was assigned for correct response, and score of 0 was assigned 

for incorrect responses as determined by the criteria given in the TEMA handbook (also outlined 

in Table 7). To examine whether condition had an effect on children’s likelihood of correct 

responses to these items, a linear binary logistic regression mixed model analysis with score of 

each item as the dependent variable, condition, gender, and school as between subject variables, 

item number as within subject variables, and HTKS score and age as covariant variables was 

conducted. 

 



 48 

Table 7: TEMA Items Directly Related to the Math Intervention 

Item number Item Name Stimulus 
   
4 Perception of More: Up to 10 Items Which side has more? 

Form A- p: 10 or 2; a: 7 or 3, b: 2 
or 8; c: 1 or 6; d: 9 or 4  
Form B- p: 9 or 1; a: 8 or 2, b: 3 or 
7; c: 2 or 6; d: 9 or 3 
 

5 Nonverbal Production: 1 to 4 items Make yours just like mine.  
Form A- a: 2; b: 4; c: 3 
Form B- a: 3; b: 2; c: 4 
 

6 Enumeration: 1 to 5 items You count the stars. 
Form A- p: 2; a: 4; b: 5 
Form B- p: 2; a: 3; b: 5 
 

7 Cardinality Rule How many stars did you count? 
Form A- p: 2; a: 4; b: 5 
Form B- p: 2; a: 3; b: 5 
 

9 Number Constancy How many tokens are there?  
Form A- a: 3; b: 5; c: 4 
Form B- a: 3; b: 5; c: 4 
 

10 Produce sets up to 5 items Give me … tokens.  
Form A- a: 3; b: 5 
Form B- a: 2; b: 5 
 

12 Verbal counting by ones: 1 to 10 1, 2, 3, now count by yourself.  
 

14 Reading numerals: Single digit 
numbers 

What number is this? 
Form A- a: 2; b: 5; c: 6 
Form B- a: 3; b: 7; c: 9 

 
 Results of the analysis on specific TEMA items were fairly similar to those on the overall 

TEMA scores. There was a significant interaction effect of condition and time of testing on the 

likelihood of correct responses to the specific TEMA items, F(3, 1452)= 4.647, p= 0.003. Post-

hoc sequential Bonferroni pairwise analysis contrasting with respect to time, showed that on 

average, children in the gesture + diagram condition were more likely to respond correctly to 

these items at post-test (M= 0.848, SE= 0.848) than at pre-test (M= 0.669, SE= 0.32), t(1452)= 
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4.299, p< 0.001; similarly, on average children in the diagram only condition were more likely to 

respond correctly to these items at post-test (M= 0.859, SE= 0.175) than at pre-test (M= 0.612, 

SE= 0.343), t(1452)= 5.501, p<0.001; and children in the no-diagram/no-gesture condition had a 

higher likelihood of correct responses at post-test (M= 0.707; SE= 0.299), than at pre-test (M= 

0.581, SE= 0.352), t(1452)= 2.306, p= 0.021. On the other hand, children in the reading 

condition were not significantly more likely to respond correctly at post-test (M= 0.702, SE= 

0.302) as they were in pre-test (M= 0.668, SE= 0.32), t(1452)= 0.659, p= 0.510. Further, post-

hoc sequential Bonferroni pairwise analysis contrasting with condition showed that children in 

the diagram + gesture condition significantly outperformed children in the no-gesture/no-

diagram condition at post-test, t(1452)= 3.425, p= 0.001, but not at pre-test, t(1452)= 1.548, p= 

0.122, and children in the reading condition at post-test, t(1452)= 3.596, p< 0.001, but not at pre-

test, t(1452)= 0.022, p= 0.983. Similarly, children in the diagram-only condition significantly 

outperformed children in the no-gesture/no-diagram condition at post-test, t(1452)= 3.797, p< 

0.001, but not at pre-test, t(1452)= 0.526, p= 0.599, and children in the reading condition at post-

test, t(1452)= 3.897, p< 0.001, but not at pre-test, t(1452)= -1.001, p= 0.317. No other pairwise 

comparisons were significant. Table 8 summarizes average likelihood of correct responses to the 

specific TEMA items in each condition at pre- and post-test.  

Table 8: Likelihood of Correct Response to Specific TEMA Scores Across the Four Conditions 

Condition Time Mean Standard Error 
    
Gesture + Diagram Pre-test 0.669 0.32 
 Post-test 0.848 0.186 
Diagram only Pre-test 0.612 0.343 
 Post-test 0.859 0.175 
No-gesture/no-diagram Pre-test 0.581 0.352 
 Post-test 0.707 0.299 
Reading Pre-test 0.668 0.32 
 Post-test 0.702 0.302 
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To summarize, post-hoc analysis showed that on average children in the three math 

conditions were significantly more likely to respond correctly to the specific TEMA items at 

post-test than at pre-test, but children in the reading condition were not significantly more likely 

to respond correctly at post-test as they were in pre-test. Further, at post-test children in the 

diagram + gesture and in diagram-only conditions were more likely to respond correctly to the 

specific TEMA items than children in the no-gesture/no-diagram and reading conditions. There 

was no significant difference between children in the gesture + diagram condition and children in 

the diagram only conditions.  

Give a Number (GN) task- Children were categorized based on the highest number of objects 

they could give. I adopted Wynn’s criteria to determine the highest number word “N” each child 

knew the exact meaning of: 

1) Give N objects at least two out of three times when asked for than number, 

2) Give N objects no more than half as often when asked for a different number, 

3) Satisfy conditions 1 and 2 for all numbers less than N. 

Following Wynn’s criteria, children who made one counting mistake were considered to be 

accurate. For example, a child who gave 5 candies when asked for 6 candies but counted the set 

as 6 was considered to be correct.  Based on the above criteria children were categorized as 1-

knower, 2-knowers, 3-knowers, 4-knowers, 5-knowers, 6-knowers, and 7-knowers. Following 

Wynn (1990, 1992), children who knew exact meaning of number 5 and above were categorized 

at cardinality-knowers. To reduce number of categories for simpler interpretation, one-, two-, 

three-, and four-knowers were combined as sub-knowers.  

At pre-test, twelve children in the gesture + diagram condition (total n= 24), sixteen children 

in the diagram-only condition (total n= 24), eleven children in the no-gesture/no-diagram 
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condition (total n= 23), and ten children in the reading condition (total n= 23) already knew 

cardinality. Number of cardinality-knowers was not significantly different in each of the four 

conditions at pre-test, Χ2 (3, 94)= 2.903, p= 0.553. 

At post-test 73% of children in the gesture + diagram condition (8 out of 11), 75% of 

children in the diagram condition (6 out of 8), and 58% of children in the no-gesture/no diagram 

condition who did not know cardinality at pre-test, became cardinality-knowers at post-test, 

while only 20% of children in the reading condition who did not know cardinality at pre-test, 

became cardinality-knowers at post-test. To examine whether the math intervention, and in 

particular performing grouping gesture and observing enclosed diagram around sets, promoted 

understanding of the cardinality principle, a 3x2 likelihood ratio chi square was conducted with 

condition (diagram only, diagram + gesture, no diagram/no gesture, reading group) and 

cardinality category (cardinality-knower and sub-knowers) as main effect, and number of 

children in each category at post-test as the dependent variable. Children who already knew 

cardinality at pre-test were excluded from the analysis. Analysis showed significant interaction 

effect between condition and cardinality groups, Χ2 (3, 43)= 8.617, p= 0.035. Children who were 

sub-knowers at pre-test were more likely to become cardinality-knowers at post-test if they were 

in the gesture + diagram condition, Χ2 (1, 43)= 61.66, p= 0.013, or if they were in the diagram-

only condition, Χ2 (1, 43)= 5.725, p= 0.017, than if they were in the reading condition. Table 9 

shows number of sub-knowers and cardinality knowers in each of the conditions at pre- and post-

test.  
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Table 9: Sub-knowers and Cardinality-knowers in Each of the Four Conditions 

Condition Time #of Sub-knowers #of cardinality knowers 
    
Gesture + Diagram Pre-test 11 12 
 Post-test 2 21 
Diagram only Pre-test 8 16 
 Post-test 2 22 
No-gesture/no-diagram Pre-test 12 11 
 Post-test 5 18 
Reading Pre-test 10 10 
 Post-test 8 12 

 

Therefore, we can conclude that observing the enclosed diagram around the sets with or 

without the grouping gesture helped children to improve their understanding of cardinality.  

	
  

Figure 12: % of Sub-knowers and Cardinality Knowers in Each of the Four Conditions at Post-
test (excluding children who already knew cardinality at pre-test) 

	
  
Give the same (GS) task- Similar to the GN task, in GS task students were asked to produce sets; 

however, the two tasks differed in two major ways. (1) In GN task students were told to give “N 

candies”, so they needed to know the meaning of each word number to succeed in the task. On 

the other hand, in GS task they were asked to produce a set with the same number of candies 
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comparing to another set. Thus, in order to succeed in the task, children did not need to know the 

meaning of the number words but they needed to know the meaning of the word “same”. (2) To 

solve problems in the GS task, children could engage in visual inspection or matching strategy in 

addition to the counting strategy, but the only applicable strategy to solve GN problems was 

counting.  

Children were categorized based on the highest set number they could produce. I followed 

similar criteria to the Wynn’s criteria to determine the highest set number “N” each child could 

produce: 

1) Give N objects at least two out of three times when asked to match that number, 

2) Give N objects no more than half as often when asked for a different number, 

3) Satisfy conditions 1 and 2 for all numbers less than N. 

Following Wynn’s criteria, children were allowed to make one counting mistake to be 

considered accurate. For example, a child who gave 5 candies to Sarah when shown the card 

with Charlie’s picture with 6 candies, but counted both sets as 6 was considered to be correct. 

Children were also given credit if they solved the problems with strategies other than counting— 

strategies such as one-to-one matching or visual matching. Based on the above criteria children 

were categorized as 1-matcher, 2-matcher, 3-matcher, 4-matcher, 5-matcher, 6-matcher, and 7-

matcher. To reduce number of categories for simpler interpretation, one-, two-, three- and four-

matchers were combined as sub-matchers, five-, six-, and seven-matchers were combined as 

matchers. Table 10 shows number of matcher and non-matchers in each condition at pre- and 

post-test.  
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Table 10: Matchers and Non-matchers in Give the Same Task across the Four Conditions 

Condition Time of testing # of matchers # of non-matcher 
    
Gesture + Diagram Pre-test 17 6 
 Post-test 19 4 
    
Diagram only Pre-test 11 13 
 Post-test 17 7 
    
No-gesture/ No-diagram Pre-test 11 12 
 Post-test 15 8 
    
Reading  Pre-test 12 11 
 Post-test 19 4 

 

To examine whether the math intervention, and in particular performing grouping gesture 

and observing enclosed diagram around sets, helped children’s performance in this task, a 3x2x2 

likelihood ratio chi square was conducted with condition (diagram only, diagram + gesture, no 

diagram/no gesture, reading group), time of testing (pre- and post-test), and matching category 

(matcher versus non-matcher) as main effect, and number of children in each category as the 

dependent variable. Result showed that significantly more children were able to match a set with 

the given set at post-test than at pre-test X2(1, 93)= 8.411, p= 0.004. Condition did not have an 

effect on children’s performance.  

Equivalence Judgment (EJ) task- Following, children’s accuracy and strategy use when 

comparing numerical relation of two sets will be analyzed. 

Accuracy of Equivalence Judgment: A binary score for every trial at pre- and post-tests 

was given: children received a score of 1 for every trial in which they compared the numerical 

relation of two sets correctly, and a score of 0 for the trials in which they provided an incorrect 

answer. Next, an overall score was computed for each child at pre-test and at post-test. Four 

children from gesture + diagram condition, three from diagram-only condition, one from no-
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gesture/no-diagram condition, and two from the reading condition scored perfectly at pretest and 

were removed from the analysis. A 2x4x2x3x2 repeated analysis of variance (repeated ANOVA) 

with time of testing (pre- or post-test) as the within subject variable; condition, gender, school, 

and cardinality category at pre-test (cardinality-knower or subset-knower) as fixed factors; age 

and HTKS scores as covariates; and average accuracy as the dependent variable was conducted. 

On average, children significantly improved from pre-test to post-test in comparing numerical 

relation of two sets, F (1, 83)= 5.258, p= 0.025. Further, on average children who knew 

cardinality at pre-test scored significantly higher than did sub-knowers, F(1, 83)= 9.861, p= 

0.002, and they improved more significantly from pre-test to post-test than did sub-knowers, F(1, 

83)= 3.833, p=0.054. Neither condition, nor its interaction with the time of testing, had a 

significant effect on Equivalence Judgment (EJ) task scores. Table 11 summarizes children’s 

performance at pre- and post-test.   

 
Table 11: Performance of Sub-knowers and Cardinality-knowers in Equivalence Judgment Task  

Cardinality category 
(at pre-test) 

 
Time of testing 

Mean of average EJ scores 
(max=6) 

 
Standard Error 

    
Cardinality-knower Pre-test 3.535 0.143 
 Post-test 4.302 0.229 
Sub-knower Pre-test 3.000 0.131 
 Post-test 3.098 0.134 
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Figure 13: Average Equivalence Judgment Task Scores at Pre- and Post-test for Sub-knowers 
and Cardinality knowers 

 Since the two sets to be compared differed in only one item in each trial, to be correct, 

children had to compare the numerical relation between the two sets based on their exact cardinal 

values. Therefore, it is not surprising that children who knew cardinality at pre-test were 

significantly more accurate in judging the numerical equivalence of the two sets in the EJ task.  

 Next, children were categorized as “good judges” and “bad judges” based on their average 

EJ score. Median for pre-test scores and post-test scores was 3.00. Children who scored above 

median were categorized as “good judges” and those who scored equal or below the median were 

categorized as “bad judges”. Table 12 shows number of “good judges” and “bad judges” in each 

condition at pre- and post-test.  

 
Table 12: # of Good Judges and Bad Judges Across the Four Conditions at Pre- & Post-test 

  Gesture + Diagram Diagram only No-gesture/No 
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Reading 

      
Pre-test # of good judges 6 9 9 9 
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 # of bad judges 9 12 15 11 
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A binary logistic regression was conducted on post-test data with binary judging category 

as dependent variable; condition, cardinality category at pre-test, school, and gender as main 

factors; age and HTKS scores as covariates. Children who were already good judges at pre-test 

were removed from the analysis. All non-significant interactions were also removed from the 

model. Condition, Χ2 (3, 60)= 8.136, p= 0.043, and whether or not children knew cardinality at 

pre-test, Χ2 (1, 60)= 7.665, p= 0.006, and age F(1, 59)= 5.180, p= 0.023 had significant effect on 

children’s likelihood of being good judges. Children who were in the gesture+diagram condition 

had a significantly better chance to become better judges comparing to the other conditions.  

Use of Counting to Compare Numerical Relation Between Two Sets: Eight researchers 

were trained to code children’s counting behavior using videotapes from pilot work. All 

researchers scored greater than 90% agreement when coding pilot children’s counting behavior. 

Students’ counting behavior on each trial was classified into one of four categories: (1) No 

Counting: the student responded without any apparent strategy; (2) Count 1-set: the student 

counted only one of the two sets; (3) Count 2 sets separately: the student counted each of the two 

sets separately; (4) Count 2 sets together: the student counted the two sets together as one whole 

set; for example, if one set had 3, and the other had 4 items, they would count 1, 2, 3, 4, 5, 6, 7. 

Since at each trial, the two sets differed only by one item, it was expected that if a child counted 

the two sets separately, he/she would have a higher chance to successfully compare the two sets. 

To examine this conjecture, a linear multinomial logistic regression mixed model analysis with 

counting behavior category (counting one or two sets; counting two sets together, no counting) at 

each trial as the dependent variable; condition, gender, and school as between subject variables; 

time of testing (pre vs. post-test) and trial number as within subject variables; and age and HTKS 

score as covariant variables was conducted. All non-significant interactions were removed from 



 58 

the model. Results confirmed that, in fact, counting behavior had a significant effect on 

children’s likelihood of being correct in a trial, F (3, 1097)= 15.823, p < 0.001. In trials where 

children counted the two sets separately, on average they had a 74.5% (SE= 0.019) chance of 

being correct in comparing the numerical relation of the two sets, which was significantly higher 

than when they counted the two sets together (M= 0.481, SE=0.027), t(1097)= 6.714, p< 0.001, 

or when they did not engage in counting at all (M= 0.540, SE= 0.034), t(1097)= 3.924, p< 0.001. 

Further, when children counted only one of the sets, on average they had a higher chance of 

being correct in comparing the numerical relation of the two sets (M= 0.552, SE= 0.061) than 

when they counted the two sets together, t(1097)= 2.202, p= 0.028.  

	
  

Figure 14: Average Likelihood of Correct Response for Each Counting Behavior 
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Count 2 sets separately, Count 1-set, Count 2 sets together, No Counting. If a child engaged in 
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of the above counting behaviors was calculated, and were averaged over condition at pre- and 

post-test. Table 13 summarizes the average frequency of each counting behavior in each 

condition at pre- and post-test.  

 
Table 13: Counting Behavior Across the Four Conditions at Pre- and Post-test 

 
Condition 

Time of 
testing 

 
No counting 

 
Count 1 set 

Count 2 sets 
Separately  

Count 2 sets 
together 

      
Gesture + Diagram Pre-test M= 0.174, 

SE= 0.068 
M= 0.138, 
SE= 0.057 

M= 0.4861, 
SE= 0.090 

M= 0.203, 
SE= 0.072 

 Post-test M= 0.094, 
SE= 0.051 

M= 0.094, 
SE= 0.040 

M= 0.573, 
SE= 0.089 

M= 0.283, 
SE= 0.079 

      
Diagram Only Pre-test M= 0.153, 

SE= 0.070 
M= 0.035, 
SE= 0.017 

M= 0.451, 
SE= 0.086 

M= 0.361, 
SE= 0.083 

 Post-test M= 0.132, 
SE= 0.060 

M= 0.007, 
SE= 0.007 

M= 0.521, 
SE= 0.089 

M= 0.340, 
SE= 0.084 

      
No Gesture/No 
Diagram 

Pre-test M= 0.160, 
SE= 0.064 

M= 0.109, 
SE= 0.031 

M= 0.420, 
SE= 0.089 

M= 0.311, 
SE= 0.078 

 Post-test M= 0.065,  
SE= 0.041 

M= 0.094, 
SE= 0.034 

M= 0.464, 
SE= 0.095 

M= 0.377, 
SE= 0.090 

      
Reading Pre-test M= 0.138, 

SE= 0.062 
M= 0.167,  
SE= 0.057 

M= 0.5935, 
SE= 0.087 

M= 0.102, 
SE= 0.042 

 Post-test M= 0.138, 
SE= 0.064 

M= 0.044, 
SE= 0.019 

M= 0.645, 
SE= 0.087 

M= 0.174 
SE= 0.06 

 

 It is important to note that many children engaged in variety of counting behavior from 

one trial to the other, and sometimes even in the same trial. At pre-test, forty five children (48%) 

always engaged in the same behavior, twenty nine of them always counted the two sets 

separately, eight of them always counted the two sets together, one of them always counted only 

one of the sets, and seven of them never counted in any of the trials; the rest of the children 

(52%) engaged in variety of counting behaviors from one trial to the next. Similarly, at post-test, 

fifty one children (54%) always engaged in the same behavior, thirty three of them always 
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counted the two sets separately, thirteen of them always counted the two sets together, and five 

of them never counted in any of the trials; the rest of the children (46%) engaged in variety of 

counting behaviors from one trial to the next. Such behavior was in fact expected. From Siegler’s 

(1987) research on children’s strategy use, we know that children often engage in variety of 

strategies until they become proficient in using the more advanced strategies resulting in higher 

accuracy. 

A multivariate repeated analysis of variance with average frequency of counting behavior 

(no-count, count one set, count two sets separately, count two sets together) as dependent 

variables; condition, gender, school, and cardinality category at pretest (cardinality knower vs. 

sub-knower) as dependent variables; age and HTKS score as covariates was conducted. 

Condition did not have a significant effect on children’s counting behavior. On the other hand, 

on average children who knew cardinality at pre-test counted the two sets separately (correct 

strategy) significantly more frequently, both at pre-test and at post-test, than children who did not 

know cardinality at pre-test, F(1, 93)= 14.749, p< 0.001.  

	
  

Figure 15: Frequency of Counting 2 Sets Separately at Pre- and Post-test for Sub-knowers and 
Cardinality Knowers	
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In addition, on average children with higher executive functioning skills counted the two 

sets separately significantly more often than children with lower executive functioning skills, 

F(1, 93)= 4.016, p < 0.048.   

 

	
  

Figure 16: Frequency of Counting 2 Sets Separately with Respect to HTKS scores	
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who did not know cardinality at pre-test counted two sets together significantly more often at 

post-test (M= 0.415, SE= 0.061) than at pre-test (M= 0.265, SE= 0.057), but children who knew 

cardinality at pre-test contend the two sets together significantly less frequently at post-test (M= 

0.199, SE= 0.049) than they did at pre-test (M= 0.231, SE= 0.047).  
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Figure 17: Frequency of Counting 2 Sets Together at Pre- and Post-Test for Sub-knowers and 
Cardinality Knowers 

	
  
This result may seem to be baffling— why did children who did not know cardinality at 

pre-test make the counting mistake more often at post-test after the intervention? One plausible 

explanation is that when children start to use counting as a way to compare the numerical 

relation of two sets, they are not yet proficient enough in using their counting skills flexibly, so 

they may count the two sets together by mistake. Of course, counting two sets together may be a 

plausible strategy when they try to add the two sets together, but it is an ineffective strategy 

when they try to compare numerical relation of two sets. In other words, sub-knowers who were 

not counting at pre-test have started counting at post-test but they sometimes make the mistake 

of counting the two sets together. Figure 18 shows the frequency of each counting behavior at 

pre- and post-test across sub-knowers and cardinality knowers.  
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Figure 18: Frequency of the Four Counting Behaviors in Equivalence Judgment Task at Pre- 
and Post-test for Sub-knowers and Cardinality Knowers 

	
  
As it is evident in this figure, sub-knowers engaged in counting more often at post-test 

and it seems that children who were not counters at pre-test, and have started counting at post-

test, counted the two sets more often together than separately. In fact, data agree with that 

speculation. I categorized sub-knowers who did not count on 50% or more of the questions at 

pre-test, as “non-counters”. Twenty-seven percent (11 out of 41 children) of sub-knowers were 

non-counters at pre-test. These non-counters counted two sets together more often (M= 0.334, 

SD= 0.387) than separately (M=0.227, SD= 0.327) at post-test. Therefore, we can conclude that 

counting two sets together in an intermediate behavior in the course of the path to use counting 

effectively when comparing the numerical relation of two sets.  

Make the same (MS) task- Following, children’s success rate and their counting behavior when 

producing two equal sets will be analyzed.   

Success in Producing Two Equal Sets- A binary score for every trial at pre- and post-tests 
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sets equal, and a score of 0 for the trials in which they failed to make the two sets equal. Next, an 

overall score was computed for each child at pre-test and at post-test. Two children from 

gesture+diagram condition, six from diagram-only condition, seven from no-gesture/no-diagram 

condition, and four from the reading condition scored perfectly at pretest and were removed from 

the analysis. A 2x4x2x3x2 repeated analysis of variance (repeated ANOVA) with time of testing 

(pre- or post-test) as the within subject variable; condition, gender, school, and cardinality 

category at pre-test (cardinality-knower or subset-knower) as fixed factors; age and HTKS scores 

as covariates; and average accuracy as the dependent variable was conducted. On average, 

children who knew cardinality at pre-test became significantly better in making the two sets 

equal at post-test (M= 3.56, SE= 0.191) comparing to pre-test (M= 2.00, SE= 0.221), but sub-

knowers did not perform significantly different at pre-test (M= 1.09, SE= 0.315) and than they 

did at post-test (M= 1.41, SE= 0.32), F (1, 73)= 4.713, p= 0.034.  

	
  

Figure 19: Average Scores in Make the Same Task at Pre- and Post-test for Sub-knowers and 
Cardinality Knowers 

	
  
Further, HTKS scores explained significant variance in children’s MS scores, F (1, 73)= 
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Use of Counting When Making Two Sets Equal: Children engaged in variety of strategies 

when they tried to make the two sets equal. Some relied on visual matching, arranging blocks in 

the same visual pattern in the two sets, for example, they placed all blocks in a row, in a column, 

or based on a dice pattern; some would take away all blocks from both sets and then add the 

same number to both; and some would count the two sets and added or removed blocks from the 

sets. Here we focus on children’s counting behavior to examine whether they engaged in the 

same counting behavior as they did when solving Equivalence Judgment (EJ) problems. As 

mentioned previously, when comparing numerical relation of two sets of candies in the 

Equivalence Judgment (EJ) task, children sometimes counted the two sets together as one whole 

set. In the EJ task, candies were presented as printed red squares on two separate cards— would 

children make the same mistake if they were comparing actual blocks that they could 

manipulate? This analysis will help to understand whether counting-two-sets-together is a task-

specific mistake, or a mistake that children make in different contexts when they are comparing 

numerical relation of two sets.  

Eight researchers were trained to code children’s counting behavior using videotapes 

from pilot work. All researchers scored greater than 90% agreement when coding pilot children’s 

counting behavior. Children’s counting behavior on each trial were classified as one of the three 

categories: (1) No Counting: the student responded without any apparent strategy; (2) Count 1-

set: the student counted only one of the two sets; (3) Count 2 sets separately: the student counted 

each of the two sets separately; (4) Count 2 sets together. In cases where two counting behaviors 

were observed, the most advanced behavior was coded for that trial. Next, percentage of 

questions each child engaged in each of the above counting behaviors was calculated, and was 

averaged over condition at pre- and post-test.  
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A multivariate repeated analysis of variance with average frequency of counting behavior 

(no-count, count one set, count two sets separately, count two sets together) as dependent 

variables, condition, gender, school, and cardinality category at pretest (cardinality knower vs. 

sub-knower) as dependent variables, age and HTKS score as covariates were conducted. 

Condition did not have a significant effect on children’s counting behavior. On the other hand, 

on average children who knew cardinality at pre-test counted the two sets separately (correct 

strategy) significantly more frequently, both at pre-test and at post-test, than children who did not 

know cardinality at pre-test, F(1, 92)= 12.983, p< 0.001, a result similar to what we found in the 

Equivalence Judgment (EJ) task. Also, executive functioning skills measured by HTKS scores 

explained a significant portion of the variance of children’s performance in the MS task, F(1, 

92)= 10.025, p= 0.002, again a result similar to what we found in the Equivalence Judgment (EJ) 

task. Figure 20 shows the frequency of each counting behavior at pre- and post-test.  

	
  

Figure 20: Frequency of the Four Counting Behaviors in Equivalence Judgment Task at Pre- 
and Post-test for Sub-knowers and Cardinality Knowers 
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Changes from Pre-test to Post-test- Summary 

Key findings related to changes from pre- to post-test results are summarized in this 

section. These findings will be discussed in detail in the next chapter. 

• Playing with Pop the Bubble activity helped preschoolers significantly improve their 

math skills. On average children in all three math conditions improved in their TEMA 

scores from pre- to post-test, while children in the reading condition did not 

significantly improve. 

• Playing with Pop the Bubble activity helped preschoolers to improve their skills in 

recognizing written numerals, reciting the counting numbers, enumerating sets of 

objects, and comparing quantities. On average children in all three math conditions 

improved performance in specific TEMA items that were directly related to the above 

mentioned skills, while children in the reading condition did not significantly improve 

in these items from pre- to post-test. 

• Grouping sets in a circular diagram, with or without the grouping gesture, helped 

children to improve their understanding of cardinality measured by Wynn’s Give a 

Number task.  

• Grouping sets in a circular diagram with the grouping gesture helped children who 

were not good judges of numerical relation of two sets at pre-test to become better 

judges at post-test.  

• Executive functioning skills explained significant portions of the variance in all math 

measures.  

• Children sometimes count two sets together as one whole set when they are 

comparing numerical relation of two sets. It seems that this counting behavior is an 
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intermediate stage when children are becoming proficient in using their counting 

skills to compare their two sets’ numerosities. 

• Children who know cardinality count the two sets together significantly less often 

than those who do not know cardinality. 

• Children with higher executive functioning skills engage in the correct strategy of 

counting sets separately significantly more often then those with lower executive 

functioning skills. 

Learning during the Math Intervention  

In this section, I provide a precise depiction of the course of learning and strategy use of 

students in the three math conditions during the intervention. Students in the reading condition 

are excluded from the analysis.  

     Accuracy of judgment- Instead of computing an overall score for each session, trials in each 

session were treated as repeated observations; thus, children were given a binary score for every 

trial in the four intervention sessions. A Score of 1 was given if the child compared the numerical 

size of two sets correctly and a score of 0 was given if the child provided an incorrect answer. To 

examine whether condition had an effect on children’s likelihood of being correct in comparing 

numerical relation of two sets and whether children in a certain condition became more accurate 

in their judgments at a faster pace than students in the other conditions, a linear binary logistic 

regression mixed model analysis with score at each trial as the dependent variable; condition, 

gender, and school as between subject variables; session number (first, second, third, or fourth); 

and question number as within subject variables; age and HTKS score as covariates were 

conducted. All non-significant interactions were removed from the model. The hypothesis was 

that children in all three math conditions improve in their judgment accuracy over time, but 
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children in the diagram+gesture and diagram only conditions improve significantly more than do 

students in the no-diagram/no-gesture conditions. Further, it was expected that children with 

lower HTKS scores benefit from performing the grouping gesture in addition to seeing the 

enclosed diagrams, whereas for children with higher HTKS simply seeing the enclosed diagrams 

would be sufficient.  

 Results of the linear binary logistic regression mixed model analysis are summarized in 

Table 14. 

Table 14: Summary of the Linear Binary Logistic Regression Mixed Model Analysis on the Math 
Intervention Data 

Source F df1 df2 Sig 
     
Condition 12.002 2 1378 0.000 
School 1.736 2 1378 0.117 
Session 5.255 3 1378 0.001 
Question 3.712 4 1378 0.005 
Age 36.122 1 1378 0.000 
HTKS 6.724 1 1378 0.010 
Condition x Session 0.283 6 1378 0.945 
Condition x HSKT 8.916 2 1378 0.000 

 

Condition had a significant main effect on children’s accuracy, F(2, 1378)= 12.002, p< 

0.001. Post-hoc sequential Bonferroni pairwise analysis confirmed that on average, children who 

played the version of the “pop the bubble” activity with enclosed diagrams around the sets, with 

(M= 0.741, SE= 0.020), t(1378)= 2.489, p= 0.026, or without the grouping gesture (M= 0.7305, 

SE= 0.02), t(1378)= 3.146, p= 0.005, were more likely to correctly compare numerical relation 

of the sets than children who played the version of the activity with no-gesture and no-diagram 

(M= 0.6129, p= 0.02).  
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Figure 21: Average Accuracy in the Math Software Across the Three Conditions 

 
Session of the intervention had also a significant main effect on children’s accuracy, F(2, 

1378)= 5.255, p= 0.001. Recall that level of the game was easiest in session one (number of fish 

in each set was between 2 to 5 and children were only asked to judge the equivalence of the two 

sets), harder in session two (each set had 5 to 7 fish, and children were only asked to judge the 

equivalence of the two sets), and hardest in sessions three and four (each set had 5 to 8 fish, and 

children were asked to judge the equivalence of the two sets and in cases the two sets were not 

equal they were asked to indicate which set has more fish). Sessions three and four had the same 

level of difficulty. As expected, post-hoc least significant difference pairwise analysis showed 

that on average, children were more likely to correctly compare the numerical relation of two 

sets in session one (M= 0.7057, SE= 0.024), t(1378)= 2.346, p= 0.019, and in session two (M= 

0.7571, SE= 0.02), t(1378)= 3.923, p< 0.001, than in session three (M= 0.6143, SE= 0.03). 
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difficulty as did session four, t(1378)= 2.436, p= 0.015, indicating that on average children in all 

three conditions were benefitting from the intervention.  

	
  

Figure 22: Average Accuracy in the Math Software Across the Four Sessions of Intervention 

 
Further, children improved within each session from question 1 to question 5, F(4, 

1378)= 3.712, p= 0.005. Post-hoc sequential Bonferroni pairwise analysis showed that on 

average, children were more likely to provide a correct answer in question five (M= 0.7607, SE= 

0.023) than in question one (M= 0.6107, SE= 0.030), t(1378)= 3.738, p=0.002.  

	
  

Figure 23: Average Accuracy in the Math Software in each Trail	
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 Finally, analysis showed a significant interaction effect between condition and HTKS 

scores, F(2, 1378)= 8.916, p< 0.001. Figure 24 shows average accuracy versus HTKS scores for 

each of the three conditions. Post-hoc analysis showed that the slope of line for gesture + 

diagram condition is not significantly different than zero t(460)= 0.259, p= 0.796, whereas  the 

slope of the lines for diagram-only condition, t(475)= 2.715 , p= 0.007, and for no-gesture/ no-

diagram conditions are significantly more than zero t(465)= 4.058, p< 0.001. Therefore, we can 

speculate that children with lower HTKS scores benefited from performing the grouping gesture 

in addition to seeing the enclosed diagrams, whereas for children with higher HTKS, simply 

seeing the enclosed diagrams was sufficient. Future studies with bigger sample sizes are needed 

to specifically investigate possible benefits of gesturing for children with lower executive 

functioning skills.  

	
  

Figure 24: Average Accuracy in the Math Software versus HTKS Scores 
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candies with another set of 4 candies, they count all candies together (1, 2, 3, 4, 5, 6, 7, 8, 9) and 

then make a judgment about the relation between the two sets. Such counting behavior is 

obviously not a correct strategy to judge numerical equivalence of two sets. Here, I asked 

whether seeing enclosed diagram around each set and/or performing grouping gestures around 

them can help to eliminate such counting mistakes. To investigate the above question, I counted 

number of students in each condition who counted the two sets together at least once during each 

session of the intervention. Interestingly, throughout the intervention, none of the children in the 

gesture + diagram condition counted the two sets together. On the other hand, 35% of children (8 

out of 23) in the no-gesture/no-diagram condition and 17% of children (4 out of 24) in the 

diagram-only condition counted the two sets together at least once during session one. A 3x4 

likelihood ratio chi square with condition (diagram only, diagram + gesture, no diagram/no 

gesture) and session number as independent variables, and number of children who made the 

mistake as the dependent variable, showed that in fact, condition had a significant main effect on 

children’s counting behavior, X2 (2, 92)= 31.722, p< 0.001. Further, as the intervention 

proceeded, fewer children made the above mistake, X2(3, 92)= 28.442, p< 0.001, and by session 

four none of the children in the diagram-only condition counted the two sets together.  
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Figure 25: Number of Children who engaged in Counting 2 Sets Together in each of the Math 

Intervention Sessions Across the Three Conditions 

	
  
 It is important to note that children did not make the counting-together mistake as 

frequently as they did during the pre- and post-test Equivalence Judgment (EJ) task. Such 

behavior was in fact expected, as during the game play, children were explicitly asked to indicate 

how many fish are in each set, one after the other, and then were asked to make a judgment about 

the numerical relation between the two sets. By contrast, in the pre- and post-test Equivalence 

Judgment (EJ) task, children were only prompted to “check and tell the [researcher] if the boy 

and the girl have the same number of candies”. In fact, it is surprising that children engaged in 

such behavior during the intervention at all, where fish in each set differed in color from fish in 

the other set and in each trial the farmer explicitly asked, for example, “How many green fish are 

there?” and then “How many blue fish are there?”  
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set of fish on the right side of the screen) as independent variables, and number of times 

counting-together mistake was encountered as the dependent variable, showed that condition had 

a significant main effect on the frequency of the counting-together mistake, X2 (2, 92)= 73.696, 

p< 0.001. As mentioned previously, children in the gesture+diagram condition never made the 

above mistake, whereas, overall children in the no-gesture/no-diagram condition made that 

mistake in 19% of the trials (22 out of 115 [23 students x 5 trails per session]) in session one 

when they were asked to indicate how many fish are in the left set, and in 2% of the trials (2 out 

of 115) when they were asked to indicate how many fish are in the right set. Table 15 

summarizes the frequency of count-together mistake in each condition for each set in each 

session. Children counted two sets together more frequently when they were asked to indicate 

how many fish are in the left set than when they were asked to indicate how many fish are in the 

right set, X2 (1, 92)= 106.904, p< 0.001. Further, they counted the two sets together less 

frequently as the intervention proceeded, (3, 92)= 98.490, p< 0.001.  

	
  

	
  
Figure 26: Frequency of Counting 2 Sets Together in each of the Four Math Intervention 

Sessions Across the Three Conditions	
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Table 15: Frequency of Counting 2 Sets Together in each of the Four Math Intervention Sessions 
Across the Three Conditions	
  

	
  
Condition	
  

	
  
Session	
  

	
  
Set	
  

Frequency	
  of	
  counting	
  
two	
  sets	
  together	
  mistake	
  

    
Gesture + Diagram 1 Left 0 
  Right 0 
 2 Left 0 
  Right 0 
 3 Left 0 
  Right 0 
 4 Left 0 
  Right 0 
Diagram-only  1 Left 6 
  Right 4 
 2 Left 2 
  Right 0 
 3 Left 1 
  Right 0 
 4 Left 0 
  Right 0 
No gesture/ No diagram 1 Left 22 
  Right 2 
 2 Left 10 
  Right 0 
 3 Left 5 
  Right 0 
 4 Left 7 
  Right 1 

	
  
 
From Intervention to Post-Test 

 To determine whether children’s performance during the intervention was related to their 

performance in TEMA test at post-test, a univariate analysis of variance (ANOVA) with post-test 

TEMA scores as dependent variable; condition, school, and gender as fixed factors; age, HTKS 

score, and their average score in session 4 of the game as covariates, was conducted. Results 

showed that in fact performance in the last session of the intervention explained a significant 

portion of the variance in post-test TEMA scores, F(1, 70)= 9.679, p= 0.003.  



 77 

Learning during the Math Intervention- Summary 

Following, key findings related to children’s learning path during the math intervention 

are summarized. These findings will be discussed in detail in the next chapter. 

• All children significantly improved in comparing numerical relation between two sets 

over the course of the intervention. 

• All children improved within each session, as on average they were significantly 

more likely to correctly compare the two sets in the final trial as they were in the 

initial trial of the session. 

• Children who saw sets in a circular diagram, with or without the grouping gesture, 

performed significantly better than children who did not see the diagram. 

• Grouping gesture, in addition to the circular diagram, was beneficial for children with 

lower executive functioning skills, but redundant for children with higher executive 

functioning skills.  

• Grouping sets with gesture prevented children from counting the two sets together.  
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CHAPTER 4: DISCUSSION 

Diagrams and Gestures 

Are Diagrams and Gestures synonyms? 

Preschoolers either saw an enclosed (circular) diagram around sets or they performed a 

grouping gesture around sets as well as seeing the diagrams around them. In a third condition, 

they neither saw a diagram nor performed a grouping gesture. Pre- and post-test results show that 

the circular diagram around sets with or without the accompanying grouping gesture helped 

children to learn cardinality measured by their performance on the Wynn’s “Give a Number” 

task, and helped them to improve their overall math competence measured by their performance 

on the TEMA-3 standardized test of early math. Children who neither saw the circular diagram 

nor performed a grouping gesture around the sets did not benefit from the intervention as much, 

although they outperformed children who did not receive math instruction at all (i.e. children in 

the reading condition). 

 In addition, over the course of the intervention children who saw the circular diagram 

around sets, with or without the accompanying grouping gesture, improved significantly in their 

accuracy of numerical comparison on the “pop the bubble” math activity, more than did children 

who neither saw an enclosed diagram around sets nor performed a grouping gesture around 

them.  

The grouping gesture is similar in form to an enclosed circular diagram— they both put a 

boundary around the items that belong to a set, represent, and highlight sets (rather than 

individual items) by containing items of the set within them. Lakoff and Nunez (2000) argue that 

we often conceptualize sets as containers, as if they contain their items in them. Tversky (2011) 

explains that bars in a bar graph are containers that contain similar instances, separating their 
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content from dissimilar instances in other bars. Talmy (1999) uses the term “surround” to label 

the literal and metaphoric meaning of the linguistic proposition in; and agrees that that these fine 

linguistic structures, such as in, on, out, over, across, provide a systematic framework that 

schematizes space and uses spatial relations to convey meaning. Like language, gestures and 

diagrams schematize and abstract to convey meaning; unlike language, gestures and diagrams 

represent and organize information directly in space using relations in space. The grouping 

gesture and the circular diagram both represent interior, exterior, and boundary aspects of a 

container and disregard its size or volume to conceptualize a group of items as a whole set, an 

object in itself that may have distinct properties such as a cardinal value.  

Unlike most words, diagrams and gestures, specifically iconic gestures, may have 

physical similarities (literal or metaphorical) to the things they refer to, for example, illustrating 

corner of a building by making an L shape gesture or by showing an L shape diagram on the 

paper; or representing sets by making a grouping gesture or by showing a circular diagram 

around them. Tversky (2011) explains that diagrams are the consequence of gestures, the 

drawing actions. Enfield (2003) argues that gestures establish “virtual diagrams” in space. 

Gestures as virtual diagrams or diagrams as crystalized gestures share representative features like 

position and form in space to convey meaning— and when they both have the same form they 

can be regarded as “synonyms”. In fact, we tend to replace gestures for diagrams when we 

cannot draw. In one study, participants gestured to solve problems when they did not have access 

to paper and pencil but drew diagrams when they could (Kessell & Tvesrky, 2006). Architects 

gesture to come up with new ideas and to communicate about their ideas when they are refrained 

from sketching, but when they have access to a piece of paper and pencil, they start sketching 
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and gesturing over the sketches to design and to communicate about their designs (Bilda and 

Gero, 2006).  

Thus, gestures and diagrams may convey similar meanings through similar 

representations, visualize and map thought directly in space using relations in space in a similar 

manner, and one could replace the other as synonyms. Grouping gesture and circular diagrams 

are synonyms in representing sets and either one may be enough to help children improve their 

understanding of cardinality. In the current study, we learned that the circular gesture alone is 

effective in helping children to improve mathematical thinking; future studies are necessary to 

test whether a grouping gesture alone is as effective.  

Gestures accompanying speech, too, sometimes convey the same information as it is 

conveyed in the speech (McNeil, 1992). However, these redundant gestures help both the 

speakers in finding words (Krauss & Hadar, 2001), and the listener in comprehending the speech 

(Goldin-Meadow & Sandhofer, 1999). Children instructed in mathematical equivalence 

problems (e.g., 3 + 4 + 5 = __ + 5) are more likely to learn when the instruction includes speech 

and gesture than when it includes only speech (Cook & Goldin-Meadow, 2006, Perry, Berch, & 

Singleton, 1995; Singer & Goldin-Meadow, 2005). This has also been found with preschoolers 

instructed in symmetry (Valenzeno, Alibali, & Klatzky, 2003) and mental rotation tasks (Enrlich, 

Levine, & Goldin-Meadow, 2006), and with non-conservers instructed in Piaget’s liquid 

conservation task (Ping & Goldin-Meadow, 2008). Language conveys meanings indirectly 

through symbols, but gestures (as well as diagrams) represent information directly by mapping 

them in space. Hence they may be easier to interpret and easier to remember (Jamalian, Giardino, 

& Tversky, 2013; Tversky et al., 2013). Whereas redundant speech accompanying gestures helps 
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thinking, learning, and communicating, redundant diagrams accompanying gestures may not add 

much— at least in the case of representing sets through grouping gestures and circular diagrams.  

An important conclusion from the study is that representing sets through enclosed 

diagrams with or without accompanying grouping gesture helps preschoolers learn about 

cardinality and helps them to better judge numerical relation of two sets that differ by only one 

item. Our findings agree with Feigenson (2011) that set representation plays a critical role in 

representing the concept of cardinality.  

Gestures benefit learning by adding a layer of meaning through action 

Diagrams are static, but gestures are dynamic; they have an added channel to represent 

meaning through action (Tversky et al., 2013). In fact, there are many situations in which we rely 

on both diagrams and gestures to think, learn, and communicate. Collaborators often gesture over 

maps when they try to find routes (Heiser & Tvesrky, 2004). People gesture over diagrams when 

they try to assemble a piece of furniture (Tversky, Heiser, Lee, & Daniel 2009). Participants 

animate diagrams using gestures when explaining how a lock works (Engle, 1998).  

Diagrams are effective in conveying structures, but they are not the best tools in 

representing action, change, and process (e. g., Heiser and Tversky, 2006; Tversky, Morrison, 

and Betrancourt, 2002). Gestures, however, are actions in space and can directly represent action 

and process. When participants see action gestures in addition to a diagram of the structure of 

complex engine along with verbal explanation, they gain a deeper understanding of the behavior 

(i.e. action and process) of the engine than participants who saw the same structure diagram and 

heard the same exact verbal explanation but with structure gesture (Kang, Tversky, Black, 2012). 

Thus, gestures provide a rich source of information about structure and action (e. g., Beattie & 
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Shovelton, 1999; Becvar, Hollan, & Hutchins, 2008), and due to their dynamic nature they can 

transmit information about behavior and process better than static diagrams.  

That was exactly what we found in this study-– that gestures have more influence on 

actions than do diagrams. Results from the game sessions reveal that children who were asked to 

make a grouping gesture to make bubbles around each set never counted the two sets together to 

compare their numerical relation; on the other hand children who only saw bubbles around the 

sets (without the need to make the bubbles with grouping gestures) and children who never saw 

the diagram nor made a grouping gesture occasionally made the mistake of counting the two sets 

together. Counting two sets together as one set is a counting mistake that preschoolers make 

when they try to judge the numerical equivalence of the two sets (Jamalian, 2013). In the current 

study, we observed the same trend-– about one-third of our participant preschoolers counted the 

two sets together as one set when asked to compare the numerical relation of the two; some of 

them counted the two sets together at all times they engaged in counting; and some other counted 

the two sets together in one trial, and counted them separately (the correct behavior) in another. 

Performing the grouping gesture around sets helped them to completely eliminate this mistake 

while playing on the software activity. Counting is strongly linked to pointing actions, and 

grouping gesture helped to alter the counting action but the diagram with the same form did not 

have the same effect.  

Individual Differences 

Gestures can have the same form as diagrams, and hence, they may carry information that 

is redundant with diagrams. Such redundancy reinforces the message by presenting information 

in two modalities— a redundancy that may not be necessary for some, but beneficial to others. In 

the current study, we observed that, on average, preschoolers benefited the same from the 



 83 

intervention when they saw a circular enclosed diagram around the sets with or without a 

grouping gesture.  That is children who saw the circular diagram with or without the grouping 

gesture improved the same in their overall math competence and their understanding of 

cardinality from pre to post-test and they improved in their accuracy of comparing numerical 

relation of two sets over the course of intervention. Further, both groups improved more than 

children who never saw the circular diagram nor were asked to make a grouping gesture. 

However, we realized that over the course of intervention, the grouping gesture helped children 

with lower executive functioning skills perform similarly to children with higher executive 

functioning skills. 

Executive functioning skills have been defined as cognitive control functions involved in 

planning and organizing thought, remembering and attending to rules, focusing on one’s 

behavior and inhibiting initial false impulses when performing a certain task (Diamond & Lee, 

2011). Core to executive functioning skills are working memory, flexibility in thinking, and 

inhibition— involving self-control and self-regulation (Miyake, et al, 2000). In a previous study, 

researchers investigated the role of gesturing in young children’s executive function by analyzing 

children’s gestures during a sorting task of executive functioning skills (O’Neil & Miller, 2013). 

Results of the study show that preschoolers (ages 2.5 to 6 year old) tend to spontaneously gesture 

more when the task becomes more difficult and that children who gesture more perform better in 

the sorting task. Based on these results, they concluded that gestures might play a role in the 

development of executive functioning skills by helping working memory and/or by providing 

additional representation of information. In addition, it has been suggested that gestures lighten 

working memory load when explaining math solutions (Cook, Yip, & Goldin-Meadow, 2012; 

Goldin-Meadow & Beilock, 2010), and when solving problems that exceed working memory 
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limit (Kessell & Tversky, 2006). 

In the current study, we hypothesized that grouping gesture may help children to focus on 

items in only one set at a time and interrupts their counting routine by performing an action that 

has a form different than the repeated pointing gesture often used in the counting process; hence, 

grouping gesture may be beneficial for children with lower executive functioning skills. If that is 

the case, then performing grouping gesture in addition to seeing an enclosed diagram should 

have benefited children with lower executive functioning skills but for children with higher 

executive functioning skills such redundancy would not be necessary. We tested this hypothesis 

by analyzing children’s accuracy in the game as a function of their executive function skills and 

the format of the game they played (gesture-plus-diagram, diagram only, no-gesture/no-

diagram). Interestingly, we found that the slope between accuracy and executive functioning 

skills was not significantly different than zero for children in the gesture-plus-diagram condition; 

however, the slope was significantly positive for children in the diagram condition and in the no 

diagram/no gesture condition. In other words, in the diagram only and no-diagram/no-gesture 

conditions, children with higher executive functioning skills performed significantly better than 

children with lower functioning skills; whereas, in the gesture-plus-diagram condition children’s 

performance was not a function of their executive functioning skills. Thus, the gesture-diagram 

redundancy benefited children with lower functioning skills but did not make a difference for 

children with higher executive functioning skills.  

Sequential Representation of Diagrams 

Diagrams on a piece of paper are static; diagrams shown in the “pop the bubble” activity 

were sequential, and not truly static. Figure 27 shows the sequence of which the circular 

enclosed diagrams appeared around the sets over the course of the gameplay: 
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Figure 27: Pop the Bubble Math Activity Sequence 

	
  
As it is evident from the figures, bubbles appeared sequentially around each set of fish 

one after the other. The child first saw two sets of fish, then a bubble appeared around the first 

set of fish, and the child was asked to indicate how many fish were in that bubble. Then another 

bubble appeared around the second set, the child was asked to indicate how many fish were in 

the new bubble, and finally the child was asked to judge whether there were the same number of 

fish in each bubble. Children in the diagram + gesture condition made each bubble with a 

grouping gesture; whereas, in the diagram only condition bubbles appeared automatically around 

the sets, but in the exact similar sequence. Such sequencing is not inherent to diagrams— on a 
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piece of paper diagrams are static. In fact, the sequenced representation of bubbles around the 

sets made the two conditions (diagram-only and diagram + gesture) too similar to each other and 

perhaps such representation resulted in somewhat underestimating the effects of gesturing. 

Future studies are needed to compare truly static diagrams to the diagram + gesture condition 

(and to the sequential diagram condition) to further investigate the importance of the dynamic 

nature of gestures.  

In textbooks, circular diagrams are usually presented around every set at the same time in 

cases where they are used to represent sets. Compared to the sequential representation, the all-

show-at-the-time representation may not be as effective in highlighting sets. Obviously, it is 

almost impossible to represent diagrams sequentially on a piece of paper, as one can do in a 

computer activity. Thus, the conclusion that seeing circular diagrams around sets is as effective 

as making those diagrams with a grouping gesture may not be applicable to the diagrams in 

textbooks. We recommend that teachers and parents encourage children to draw circles around 

groups of things and indicate the number of items in the circle. Such intervention has been 

shown to improve children’s understanding of cardinality and their overall math competence; 

showing two circles around two sets of items may not be as effective.  

General Discussions on Diagrams and Gestures 

 Unlike most words, diagrams and gestures, specifically representational gestures, may 

have physical similarities (literal or metaphorical) to the things they refer to, for example, 

illustrating corner of a building by making an L shape gesture or highlighting a set by making a 

grouping gesture around it. Gestures and diagrams tend to convey information more directly than 

the symbolic words and they may be easier to interpret and easier to remember (Jamalian, 

Giardino, & Tversky, 2013; Tversky et al., 2013). Effective diagrams facilitate thinking and 
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learning, in both those who make them and those who use them (Jamalian, 2013; Mayer, 2001; 

Tversky, 2011a). Effective gestures also assist thinking and learning, in both those who perform 

them and those who see them (Goldin-Meadow, 2003; McNeil, 1992).  

When solving complex problems, people draw diagrams and the diagrams help them to 

find solutions (Kessell & Tversky, 2006). When they do not have access to paper and pencil, 

they simply gesture (Kessell & Tversky, 2006; Jamalian, et al., 2013). In one study, a majority of 

participants gestured when they were reading descriptions of new environments on their own 

alone in room (without an access to paper and pencil), and those who gestured were more 

accurate in making inferences about the environments (Jamalian et al., 2013). Gestures create 

“virtual diagrams” in the air, and with the same form, they may be the exact synonyms to 

diagrams; hence, one may replace the other. However, gestures have an added layer of action, 

and can use the action to better represent actions, behaviors, and processes. In the current study, 

we investigated whether asking children to make a grouping gesture in addition to seeing circular 

diagrams around sets helps them to improve their understanding of cardinality and their overall 

math competence. Grouping gesture and the circular diagram have the same form, so in some 

respect they are synonyms; but the grouping gesture has the additional layer of action and that 

layer of action may be more beneficial in representing sets and altering children’s counting 

routine when comparing sets. And that was exactly what we found: seeing the circular gesture 

with or without the grouping gesture was effective in helping children to learn cardinality and to 

improve their math competence. The circular diagram highlighted sets as a whole with certain 

properties and therefore, helping children to conceive of cardinal values as an emergent property 

of a set rather than property of the last counted item in the set. As mentioned previously, the 

above finding is only applicable to the cases where diagrams are presented sequentially around 
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the sets and may not be applicable to static diagrams in a textbook.  

We also found that performing the grouping gesture in addition to seeing the circular 

diagrams is beneficial to children with lower executive functioning skills, perhaps due to the 

added representational power through actions.   

 Finally, in a previous study and in the current study we observed that preschoolers often 

count two sets together as one set when they are comparing the numerical relation of the two 

sets. Interestingly, performing the grouping gesture around sets helped them to completely 

eliminate this mistake while engaging in the software activity. Counting is strongly linked to 

pointing actions, and grouping gesture helped to alter the counting action but the diagram with 

the same form did not have the same effect. 

Implications for teachers and parents 

Diagrams and gestures could be synonyms–- one could replace the other. But sometimes 

gestures could help more by “adding a layer of meaning through action” (Tversky et al 2013). 

We recommend teachers and parents to encourage children to gesture in forms that reflect the 

meaning of the concept to be learned, even in the presence of diagrams. In this study, we 

demonstrated that set-representation through enclosed diagrams and grouping gestures helps 

children to improve their understanding of cardinality and their overall math skills. Presenting 

sets in enclosed diagrams and/or encouraging children to draw circular diagrams around sets is a 

good practice to help preschoolers improve their early mathematical thinking.     

Implication for designers 

The results also have important implications for software designers: by designing gestural 

interactions that are congruent with the concept to be learned, designers can improve the learning 

effects of their software. These gestural interactions may emphasize a visual diagram in the 
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activity and can directly effect the users’ actions. In particular, results of this study demonstrate 

the positive effect of set-representation in a sequential manner through enclosed diagrams, with 

or without a grouping gesture. We encourage software designers to include such set 

representations in their activities when applicable.  

Improvement in the Overall Math Competence  

On average students who played MathemAntics’ “Pop the Bubble” math activity 

improved in their TEMA scores at post-test comparing to pretest. Here, we highlight two 

principles of early mathematics instruction that were shared among all three conditions and 

discuss how each of these principles may have contributed to the preschoolers’ improvement of 

math competency. It is important to highlight that these principles were not directly tested in the 

current study, and therefore, future studies are needed to specifically investigate possible 

effectiveness of these principles. Following, we discuss how each of these instruction principles 

may have benefitted children’s overall math achievement based on findings from previous 

studies.  

Principle #1: Focus on number comparison  

 Many scholars in early mathematics education have advised to focus instructions on 

numerical relations rather than a mere focus on vocabulary and rote memorization of 

mathematical elements (Cross, Woods, & Schweingruber, 2009).  Some have even proposed 

that, “the age-old question, “Who has more?” is foundational to all of mathematics” and have 

suggested that “human fixation on comparison was a fundamental impetus for [the] invention of 

numbers” (Kepner, 2010).  

Some recent experimental studies talk to the same point. In one study, Hyde, Khanum, 

and Spelke (2013) showed that children who briefly practiced tasks that engaged primitive 
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approximate numerical quantities performed better on subsequent exact, symbolic arithmetic 

problems than did children given other tasks involving comparison and manipulation of non-

numerical magnitudes (brightness and length). Children were presented with two arrays of dots, 

one after the other, and were asked whether the second array was more or less numerous than the 

first. In another condition, they were asked to estimate the numerical sum of two sequentially 

presented array of dots and judge whether a third array was more or less than the actual sum. 

Children in both of these conditions outperformed children in a third condition that simply 

compared brightness of two objects. Therefore, the mere practice of numerical comparison can 

help children to improve their symbolic mathematical thinking; a practice that all children in the 

math comparison groups in the current study had.  

The ‘‘RightStart’’ curriculum designed by Griffin et al. (1994; now known as 

‘‘NumberWorlds,’’ Griffin, 2004) also included number comparison, and put an emphasis on the 

relationship between counting and quantity to compensate for a lack of environmental experience 

in early mathematical skills for the children from low SES families. Following the same 

principal, ‘‘The Number Race’’ game designed by Wilson & Dehaene (2007) included number 

comparison as an essential part of the game. Both  ‘‘RightStart’’ and ‘‘The Number Race’’ has 

been shown to be effective in improving children’s early mathematical understanding.  

 Comparing the numerical relation of two sets of items involves many fundamental early 

mathematics thinking processes: engaging primitive approximate numerical quantities, attending 

to sets of items (as opposed to merely focusing on individual items that make up the set), 

relationship between counting and quantity, concept of exact quantity, and order of numbers— 

all of which important in early math competence.    
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Principle #2: Connecting different representations of numbers 

It is important for children to understand the meaning of mathematical symbols, connect 

them to non-symbolic mathematical ideas, and more generally to appreciate that mathematics is 

meaningful (Ginsburg, Jamalian, & Creighan, 2013). Vygotsky (1978) proposed that early 

mathematics education should help children learn to synthesize their “spontaneous concepts” of 

everyday mathematics with “scientific concepts” of the symbolic formal mathematics. “The 

strength of scientific concepts lies in their conscious and deliberate character. Spontaneous 

concepts, on the contrary, are strong in what concerns the situational, empirical, and practical” 

(Vygotsky 1986, p. 194). In other words, early interventions in mathematics should help children 

to mathematize their meaningful everyday mathematics (Ginsburg, Lee, Boyd; 2008).  

Recent studies also emphasize the importance of connecting symbolic and non-symbolic 

representation of numbers (Ginsburg et al, 2013; Mazzocco, 2005; Wilson & Dehaene, 2007). It 

has been even suggested that dyscalculia, or mathematical learning disability presumed to be 

related to impaired brain function, may involve deficiency in the ability to connect non-symbolic 

magnitudes to symbolic representation of numbers (Mazzocco, 2005; Wilson & Dehaene, 2007). 

As noted in chapter 1, much evidence suggests that children start reciting number words without 

an understanding of the actual meaning of these words (Fuson, 1988; Spelke, 2011; Wynn 1990; 

1992) and only after they learn cardinality can they link verbal and symbolic number words to 

non-symbolic representation of magnitudes (Le Corre, 2013; Le Corre & Carey, 2007). Yet, 

whereas the connection between symbolic and non-symbolic representation of numbers is 

automatic in adults (Dehaene & Akhavein, 1995; Naccache & Dehaene, 2001; Pavese & Umilta, 

1998; Rusconi, Priftis, Rusconi, & Umilta, 2006), the process is not spontaneous for young 

children (Girelli, Lucangeli, & Butterworth, 2000; Moyer & Landauer, 1967; Rousselle & Noel, 
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2007). These findings lead to an important instructional principle in early mathematical learning, 

which emphasizes the importance of connecting the links between various representations of 

numbers; as opposed to practices that are merely focused of rote memorization of formal 

mathematics. 

Two important features in the pop of the bubble activity are designed with this 

instructional principle in mind: (1) asking children to respond to the “how many” question by 

choosing a number from a linear array of numbers, and (2) receiving audio and visual feedback 

highlighting individual items while being counted, repeating last counted number word, and 

showing the number word representing cardinality on top of the set. Next we discuss these two 

features in more detail.  

Design feature 1: linear number representation as a response mechanism to the “how many” 

question 

 Playing “Pop the Bubble” activity, children were asked to indicate how many fish are in 

each set by tapping on a number from an ordered list of numbers on a line, albeit not connected 

with a line. Previous studies have shown that linear representation of numbers help preschoolers 

to improve their performance on numerical comparison, counting, numerical identification, and 

numberline estimation tasks (Wilson, Dehaene, Pinel, Revkin, Cohen, & Cohen, 2006; Griffin, 

2004; Siegler & Ramani, 2008; 2009). In one study, Siegler and Ramani (2008) had preschoolers 

play on either a linear number board game with numbers shown on 10 equal-sized squares of 

different colors arranged in a horizontal array increasing in magnitude from left to right, or on a 

circular board with numbers increasing in magnitude in a clock-wise or counter clock-wise 

direction. Children who played on the linear number line improved more significantly on number 

comparison and numberline estimation tasks than children who played on the circular board 
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game. Representing numbers on a horizontal line makes an association between symbols (Arabic 

number digits) and non-symbolic linear space which in turn may help children to improve their 

“number sense access”— defined as the spontaneous conversion of symbols to non-symbolic 

quantities (Rousselle & Noel, 2007; Wilson, Dehaene, Dubois, & Fayol, 2009). Previous 

research suggests that adults and children access the non-symbolic representation of quantities 

when solving symbolic math problems (Gilmore, McCarthy, & Spelke, 2007). Some evidence 

suggests that the conversion between symbolic and non-symbolic representation of numbers has 

become automatic for adults (Dehaene & Akhavein, 1995; Naccache & Dehaene, 2001; Pavese 

& Umilta, 1998; Rusconi, Priftis, Rusconi, & Umilta, 2006), but yet to become automatic for 

young children (Girelli, Lucangeli, & Butterworth, 2000; Moyer & Landauer, 1967; Rousselle & 

Noel, 2007). Thus, exposing children to games that represent numbers on a line may help 

children improve their “number sense access”.  

 Another explanation for the positive effect of linear number representation may be the 

literal ordering of numbers one after the other, from the smallest to the biggest. The visual 

representation of numbers in a linear order provides an additional channel of information for 

children when learning order of numbers in their count list— not only they say number 6 after 

number 5 and before number 7, but also they see the symbol for number 5 before 6 and after 4. 

Much evidence has shown that visualization of information has a positive effect on 

comprehension (Tversky, 2011b) and learning (Mayer, 2001).  

Design feature 2: Counting, highlighting, and repeating last counted number as feedback 

 Children were given two chances to indicate how many fish were in each set. In case they 

made a mistake on their second trial an auditory and visual feedback was given to them, 

modeling the counting procedure and highlighting the cardinality of the set. For example, if there 
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were 6 fish in a set, an audio was played saying, “there are 1, 2, 3, 4, 5, 6; 6 fish all together”. 

Along with the audio, fish were highlighted one by one while being counted, and then highlights 

would turn off and on again on all the fish at the same time, while the audio repeated the 

cardinality phrase, “x fish all together”, x being the cardinality of the set. In addition, the number 

representing the magnitude of the set would appear on top of each set after counting them (See 

Figure 28). 

  

  

Figure 28: Counting and Cardinality Feedback in the Pop the Bubble Math Activity 

	
  
 Highlighting individual fish while being counted helps children to keep track of fish that 

were counted and separate them from the ones to be counted. In addition, highlighting the fish 
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while being counted would help to coordinate saying the number words with tracking the 

individual items and emphasizing the one-to-one correspondence principle- an important 

counting principle noted by Gallistel and Gelman (1992). Therefore, the highlighting feature may 

have helped children to improve their counting skills. Of course, since we did not control for the 

presence of this feature, we cannot come to the conclusion that this feature was definitely 

effective, but we can speculate such conclusion based on prior research.  

 Turning off the individual highlights and having the whole set to be highlighted at once 

when repeating the cardinality number, emphasizes the set an entity and makes a connection 

between the cardinality magnitude and the set as a whole, instead of the last fish that was 

counted. Therefore, in a way all students who played on the software were presented with some 

form of set representation, which may have helped them in understanding the concept of 

cardinality. However, children who saw the bubble diagram around the set benefited more from 

the intervention perhaps because the bubbles were a good representation of an enclosed container 

and a better depiction of the abstract concept of sets. Finally, repeating the last counting word 

along with the phrase “all together” has been suggested to be an effective method to help 

children learn the cardinality principle (Cross et al., 2009).  

Therefore, the audio and visual feedback presented to children in all conditions when 

they made a mistake in answering the “how many” question was probably helpful in improving 

their overall math competency. However, given the fact that children who saw the diagram of 

bubbles around set improved even more than children who did not see the diagram, it is fair to 

conclude that showing an enclosing diagram around sets is a very effective method to help 

preschoolers learn about cardinality and improve their overall math competency.  
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In summary, bubbles and grouping gestures were not the only valuable features of the 

“pop the bubble” activity; the mere practice of number comparison, and connecting different 

representations of numbers through well designed response and feedback mechanisms, presented 

in all three conditions, were helpful in improving children’s overall math competence.  

Implication for teachers and parents  

Early math education goes beyond memorization of counting words in a fixed order and 

using counting skills to answer the “how many” question. We recommend that parents and 

teachers engage children in activities that require them to compare numerical relation of sets, and 

encourage them to use their counting skills when solving math problems, like identifying the set 

with more items. We also highly recommend parents and teachers to connect different 

representation of numbers by asking children, for example, to represent quantities with number 

symbols and/or to indicate their answer to the “how many question” on a number line.  

Implication for designers  

When designing software activities for early mathematics, it is important to focus on 

children’s thinking processes and the substance of the mathematics to be learned rather than on 

mere presentation of mathematical symbols. Designers may rely on the instruction principles 

discussed above as guiding principles when designing early math activities, and may incorporate 

the two design features in their own designs when applicable.    

Executive Functioning Skills and Early Mathematics 

 Executive functioning skills, measured by performance on the Head-Toes-Knees-

Shoulders (HTKS) task, was positively correlated with preschooler’s overall mathematics 

competence, measured by Standard Test of Early Mathematics Ability (TEMA). Executive 

functioning skills was also positively correlated with children’s accuracy in comparing numerical 
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relation of two sets, and their performance on the “Pop the Bubble” software math activity. In 

addition, when comparing the numerical equivalence of two sets, children with higher executive 

functioning skills were more likely to count the two sets separately to make their judgment; this 

shows a positive relation between executive functioning skills and children’s successful use of 

counting to solve relational problems.   

Core to executive functioning skills are working memory, flexibility in thinking, and 

inhibition— involving self-control and self-regulation (Miyake, et al, 2000). Previously, it has 

been shown that working memory predicts school age children’s (between the ages 7 and 14 

years) performance in mathematics (Gathercole, Pickering, Knight, & Stegmann, 2004). Epsy et 

al (2004) have shown that inhibitory skills are strong predictors of children’s early arithmetic and 

overall math skills. Further, in a longitudinal study, Bull, Espy, and Wiebe (2008) found that 

children with higher executive functioning skills have an immediate advantage in their math and 

reading performance, and that they maintain this advantage throughout the first three years of 

primary school.  

Ponitz et al (2009) developed the Head-Toes-Knees-Shoulders (HTKS) task as a direct 

assessment of children’s behavioral regulation-- as an indicator of executive function skills in 

children’s gross motor actions. HTKS task is easy and quick to administer and is suitable for 

evaluating preschool and kindergarten children’s behavioral regulation. Previously, it has been 

shown that gains in behavioral regulation predict gains in mathematics but not in language and 

literacy over the kindergarten year (Ponitz et al, 2009). Current study provides further evidence 

for the importance of behavioral regulations in overall early mathematics competence and also 

specifically in accuracy of numerical equivalence judgment tasks, and in children’s correct use of 

counting strategy when comparing numerical relation of two sets.  
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Counting Sets Together- Task related or a Matter of Maturity? 

An intriguing finding of the study was the insight into the maturity process of 

preschoolers’ counting strategy when they compare two sets of items. In the current study, and 

also in a previous one (Jamalian, 2013), we observed that preschoolers sometimes count both 

sets together when they are asked to judge the numerical relation of two sets. For instance, to 

compare a set of 4 candies with a set of 5 candies, children sometimes counted both sets together 

as 1, 2, 3, 4, 5, 6, 7, 8, 9, and then provided their judgment about the numerical relation between 

the two sets. Interestingly, a majority of children who counted the two sets together made this 

mistake in some trials but not in others. These children counted two sets together in some trials, 

but counted each set separately or counted only one of the sets or none of the sets in other trails. 

Some children counted two sets together in one trial and corrected themselves by recounting the 

sets separately in the same trial. Only a small percentage of children counted the two sets 

together in all trials that they engaged in counting.  

Counting two sets together was not related to problem representation. In our previous 

study, both sets of items were presented to children on one piece of paper, and we speculated that 

perhaps children would not make such mistake if the two sets were presented on two separate 

pieces of papers. However, in the current study, we presented the two sets of items on two 

separate pieces of paper and still we got the same result: quite often children counted the two sets 

together even when they were presented separately. We also observed the same trend in the 

“Make the same” task where children were dealing with real blocks. Therefore, it seems that 

counting-two-set-together mistake is not related to the specific task but it is perhaps part of the 

maturation of their counting skills.  
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We hypothesized that such error may be due to children’s limited understanding of the 

link between counting and evaluating cardinality of sets, and/or it may be due to their limited 

working memory and inhibitory skills. In fact, children who were not cardinality knowers at the 

pre-test did not engage in counting frequently to compare numerical relation of two sets at pre-

test, despite prompting them to count by encouraging them to  “check” and then answer or “to 

show” how they know their answer. At post-test they engaged in counting more frequently, but 

they often counted the two sets together as one set. Children who knew cardinality at pretest, 

engaged in counting more often, and they counted the two sets separately (the correct strategy) 

significantly more frequent at post-test than pretest. Thus, as children improved their counting 

skills, they tended to count the two sets separately more often. From the above observations, we 

can conclude that when children who do not know cardinality engage in counting less often 

when they try to solve math problems, and when they start counting, they have difficulty in using 

their counting skills effectively, and therefore may count sets together when it is not applicable. 

Only after they are advanced in their counting skills, they can engage in counting effectively to 

compare numerical relation of two sets.  

As mentioned above, we hypothesized that the counting-two-sets-together error may be 

due to children’s limited understanding of the link between counting and evaluating cardinality 

of sets, and/or to their limited working memory and inhibitory skills. Children need to be able to 

count one set, stop, and start from number 1 to count the other set. Furthermore, children’s 

failure to stop counting and start from 1 for the second set may also be due to their limited 

cognitive flexibility: they may find it difficult to think about the concept of sets while counting at 

the same time. In other words, they may be aware that counting is a good strategy to compare 

sets, but find it difficult to use their counting skills purposefully. Based on these lines of 



 100 

reasoning, we hypothesized that children with higher executive functioning skills may be more 

likely to count the two sets separately than children with lower executive functioning skills. In 

the current study, we found that, in fact, when asked to compare numerical relation of two sets 

children with higher executive functioning skills were more likely to count the two sets 

separately than children with lower executive functioning skills. 

 When presented with two sets of items, one can compare them, or perhaps add them 

together. To compare the two sets, it is feasible to count each set separately and then compare 

their cardinality values; to add them together, the feasible strategy is to count them together and 

evaluate their sum. In other words, whereas counting two sets together is the correct strategy 

when adding things together, it is not a logical strategy when comparing sets. It may be that 

children who are not proficient in counting are not flexible enough in using their counting skills 

effectively based on the context. As they improve their numerical knowledge (become 

cardinality knowers) and as they improve their executive functioning skills, they become better 

in using their counting skills effectively to solve various types of math problems. 

Limitations 

 There are certain limitations to this study that must be addressed. First limitation is 

related to the usability difficulties some children had in the gesture + diagram condition. 

Occasionally, children in this condition had difficulty in performing the grouping gesture on iPad 

in order to make bubbles around the sets; in these cases, the researcher would help them to 

accomplish the task by holding on their finger and directing their finger movement on the screen. 

It is important to note that children did not have to draw perfect circles around the sets for the 

bubbles to appear, but they had to draw an enclosing diagram; yet, some would take their fingers 

off the screen in the middle of their drawing and the software would require them to restart. One 
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way of eliminating this issue for future studies is to allow children to take their fingers off the 

screen and have the opportunity to continue their drawings from where they have left it off 

within a short pause.  

 The other limitation of the study was the setting in which the pre- and post-tests and the 

intervention sessions were conducted. In a typical setting, three to four researchers worked with 

children on a one-on-one arrangement, all in one hallway or in one classroom. In such setting, 

children could easily hear their classmates counting or making comments about different 

elements in the game. A few children in the no-gesture/no-diagram condition, for example, asked 

about the bubbles and wondered why they do not see any bubbles in their game. In a few 

occasions, some children in the diagram-only condition pretended that they are drawing bubbles 

by chasing their finger around the boundary of the bubbles. Hearing other children counting may 

also have altered other children’s counting behavior. Despite our efforts to make the conditions 

as separate as possible, these issues were inevitable as they may be present in any study done in 

public preschool settings.  

 Another important limitation of the study is the relatively small sample size. Having 

twenty-three to twenty-four children in each condition does not allow making strong claims 

about individual differences and effects of gesturing, per se. The finding of this study suggests 

that gesturing might benefit children with lower executive functioning skills, at least in the 

context of set-representation for learning about cardinality. The relation between gesturing and 

executive functioning skills should be investigated further in future studies with larger sample 

sizes.  

 Finally, there were few limitations to the design of the pre- and post-test tasks. In Give 

the Same (GS) task, children were shown a card with a picture of a boy or a girl having few 
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“candies” (printed on the card) and were asked to give the boy or the girl on a separate card the 

same number of candies (i.e. blocks). To solve the problem, children engaged in variety of 

strategies: some placed blocks on the empty card in the exact visual arrangement of the printed 

candies, which resulted in a correct response. However, it is not clear whether these children 

understood the meaning of “same number” or they simply relied on the visual information to 

make the two sets look similar. Some placed blocks on top of the printed “candies” and then 

moved all the blocks over to the empty card. These children, therefore, relied on one-to-one 

correspondence to make an equal set with the set they were shown. Thus, children could solve 

the task accurately without the need to rely on their counting skills; and perhaps that was the 

reason we did not find any group differences in children’s performance on this task. To 

specifically study children’s using counting skills in solving equivalence problems, the task 

should have been designed in a way to make counting the only feasible strategy for coming up 

with a correct response. For example, the researcher could have hidden the card with the printed 

candies and then ask the child to place the same number of candies on the empty card. In that 

case, it would have been harder for the child to rely on the visual information or to directly 

match one set with the other; instead, to succeed in the task, child would have had to evaluate 

cardinality of the first set and place the same number of blocks on the other set that would match 

the cardinality of the first set.  

 Similarly, in the Make the Same (MS) task, children engaged in variety of strategies to 

make the two sets equal. Some relied on visual matching, arranging blocks in the same visual 

pattern in the two sets. For example, they placed all blocks in a row, in a column, or based on a 

dice pattern; some would take away all blocks from both sets and then add the same number to 

each side; and some would count the two sets and added or removed blocks from the sets. To 
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specifically study children’s proficiency in using their counting skills when producing equal sets, 

the task should have been designed in a way to make counting the only feasible strategy to solve 

the problem. For example, blocks in one set could have been arranged in a circular tray, and in 

the other set, they could have been arranged in a rectangular tray. In that case, it would have 

been harder for children to rely on the visual information or to directly match one set with the 

other to make them equal.  

Future Directions 

 This study demonstrated the positive effects of set-representation through enclosed 

diagrams and grouping gestures on children’s understanding of cardinality and on their 

improvement of overall math skills. The study specifically compared effects of grouping gesture 

accompanying circular diagram with the effects of diagram alone, and results showed that the 

enclosed diagram with or without the grouping gesture is effective in helping preschoolers to 

learn about cardinality and to improve their math proficiency. However, it is not clear whether 

the grouping gesture alone would have similar effects as the enclosed diagram alone. If similar 

forms of diagrams and gestures are synonyms to each other, then perhaps the grouping gesture 

alone will be as effective as the enclosed diagram to represent sets. Future studies are needed to 

compare directly the grouping gesture with or without the enclosed diagram to further investigate 

the role of gesturing in early mathematical thinking.  

 Further, as discussed previously, over the course of the intervention, diagrams appeared 

around the sets in a sequential manner, one after the other. It is not clear whether the visual 

representation of the diagram, per se, was effective or whether the sequential representation of 

diagrams was particularly important in representing sets. Diagrams in textbooks and on paper are 

static, and hence, may essentially not have the same positive effects as of the sequential diagrams 
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used in this study. Future studies are needed to compare effects of sequential representation of 

diagrams in software with that of the static diagrams in textbooks.  

This dissertation also alluded to the possible role of executive functioning skills in 

children’s counting behavior. We observed that children engage in variety of counting behaviors 

when they compare numerical relation of two sets: they may count the two sets together as one 

whole set (incorrect strategy), they may count the two sets separately (correct strategy), or may 

count only one of the sets or none of them at all. Results showed that children with higher 

executive functioning skills tended to engage in the correct counting strategy (i.e. they counted 

the two sets separately) more often than children with lower executive functioning skills to judge 

numerical equivalence of two sets. Future studies with larger sample sizes are needed to further 

investigate the link between executive functioning skills and use of counting skills to solve 

different types of mathematical problems.  

Finally, results of the study suggest a link between executive functioning skills and 

gesturing. Finding of the study imply that children with lower executive functioning skills 

benefit from performing the grouping gesture in addition to seeing the enclosed diagrams around 

the sets, whereas, children with higher executive functioning skills do not need such redundancy. 

Future studies with larger sample sizes should further investigate the possible benefit of 

gesturing for children with lower executive functioning skills.  
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