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ABSTRACT

Statistical Inference and Experimental Design for

Q-matrix Based Cognitive Diagnosis Models

Stephanie S. Zhang

There has been growing interest in recent years in using cognitive diagnosis models

for diagnostic measurement, i.e., classification according to multiple discrete latent

traits. The Q-matrix, an incidence matrix specifying the presence or absence of a

relationship between each item in the assessment and each latent attribute, is central

to many of these models. Important applications include educational and psycho-

logical testing; demand in education, for example, has been driven by recent focus

on skills-based evaluation. However, compared to more traditional models coming

from classical test theory and item response theory, cognitive diagnosis models are

relatively undeveloped and suffer from several issues limiting their applicability. This

thesis exams several issues related to statistical inference and experimental design for

Q-matrix based cognitive diagnosis models.

We begin by considering one of the main statistical issues affecting the practical

use of Q-matrix based cognitive diagnosis models, the identifiability issue. In sta-



tistical models, identifiability is prerequisite for most common statistical inferences,

including parameter estimation and hypothesis testing. With Q-matrix based cog-

nitive diagnosis models, identifiability also affects the classification of respondents

according to their latent traits. We begin by examining the identifiability of model

parameters, presenting necessary and sufficient conditions for identifiability in several

settings.

Depending on the area of application and the researchers degree of control over

the experiment design, fulfilling these identifiability conditions may be difficult. The

second part of this thesis proposes new methods for parameter estimation and respon-

dent classification for use with non-identifiable models. In addition, our framework

allows consistent estimation of the severity of the non-identifiability problem, in terms

of the proportion of the population affected by it. The implications of this measure

for the design of diagnostic assessments are also discussed.
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Chapter 1

Introduction

According to the Oxford English Dictionary, to diagnose a disease is “to distinguish

and determine its nature from its symptoms; to recognize and identify by careful ob-

servation” (OED Online, 2014). In essence, based on the observable symptoms, the

medical practitioner is attempting to arrive at a classification-based decision as to

the underlying cause. In psychometrics, diagnosis follows a similar vein. Diagnostic

measurement is the process of arriving at a classification-based decision about an indi-

vidual’s latent traits, based on the observed responses to the items in a diagnostic as-

sessment. The idea of conducting diagnostic measurement has been gaining increasing

traction, thanks in part to demand from the fields of education and psychology. Both

are traditional psychometric fields, with strong interest in measurement techniques for

psychological constructs such as skills, knowledge, personality traits, or psychological

disorders. While diagnosis has strong medical roots, educational interest in the field

is more recent. A diagnostic, skills-based focus is a key part of recent government

initiatives such as the United States Department of Education’s Race to the Top,

which included “building data systems that measure student growth and success, and
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inform teachers and principals about how they can improve instruction” as one of its

four main goals (U.S. Department of Education 2009). Measuring students’ growth

and success means obtaining diagnostic information about their skill set; this is very

important for constructing efficient, focused remedial strategies for improving student

and teacher results. In the private sector, consider the College Board’s feedback on

the Preliminary SAT/National Merit Scholarship Qualifying Test (PSAT/NMSQT®).

Traditionally the SAT has been a way to rank students according to mathematical

and verbal ability; it was not developed for diagnostic purposes. Diagnostic feedback

has recently become increasingly prevalent, though, and it is especially important for

the PSAT/NMSQT®, since diagnostic feedback from the preliminary exam can help

students target further preparation for the SAT. Thus, beyond the well-know writing,

math, and verbal scores resulting from any such examination, PSAT/NMSQT® score

reports also provide diagnostic skills-based feedback on specific areas such as numbers

and operations, algebra and functions, geometry and measurement, and data, statis-

tics, and probability; in fact, the PSAT/NMSQT is the first nationally standardized

test to give diagnostic skills-based feedback ® (Roussos, Templin, & Henson 2007).

This thesis focuses on statistical inference and experimental design for Q-matrix

based cognitive diagnosis models. Cognitive diagnosis models (CDMs) are a modern

tool for conduction psychometric diagnostic measurement. Though they exhibit much

promise, and have had some success in specific applications, the field is still young

and there are several issues that need to be addressed before techniques involving

CDMs can be reliably applied on a broader scale.

We begin by considering one of the main statistical issues affecting the prac-

tical use of Q-matrixe based CDMs, the identifiability issue. In statistical models,

identifiability is prerequisite for most common statistical inferences, including param-

eter estimation and hypothesis testing. With Q-matrix based CDMs, identifiability
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also affects the classification of respondents according to their latent traits. Yet a

long-standing problem with Q-matrix based CDMs is that the models are often not

identifiable (DeCarlo 2011; DiBello, Stout, & Roussos 1995; G. Maris & Bechger 2009;

C. Tatsuoka 2009; K. K. Tatsuoka 1991). In the first part of this thesis, we provide

the necessary and sufficient conditions for the identifiability of two well-known CDMs.

We also study how these identifiability conditions change under attribute hierarchy,

which limits the appearance of certain latent trait patterns in the population.

Depending on the area of application and the researchers degree of control over

the experiment design, fulfilling these identifiability conditions may be difficult. The

second part of this thesis proposes new methods for parameter estimation and respon-

dent classification for use with non-identifiable models. In addition, our framework

allows the quantification of the severity of the identifiability issue in terms of the

proportion of the population affected by it. A version of this work can be found

in Zhang, DeCarlo, and Ying (2013). We conclude with some guidelines for assess-

ment design, including suggestions on balancing the identifiability issue against other

design concerns.
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Chapter 2

Introduction to Q-matrix based

cognitive diagnostic models

To measure something is to assign it numbers in a systematic way so as to represent

some intrinsic quantitative property (Allen & Yen 1979/2002, p. 2). In the physical

world, measurement can generally be done rather directly: lengths can be measured

by rulers, weights by scales, and time by clocks. On the other hand, psychological con-

structs such as knowledge, skills or personality traits are latent, unobservable traits.

They can be measured indirectly via assesments such as tests or questionnaires, and

the field concerning itself with psychological measurement is known as psychometrics.

Psychometrics, like other branches of measurement theory, concerns itself with the

evaluation of measurement quality, the improvement of measurement accuracy and

interpretability, and the development of newer, better measurement tools for mea-

surement (Allen & Yen 1979/2002, p. 2). These tools include early developments

such as classifcal test theory (CTT) and item response theory (IRT) and more recent

developments such as cognitive diagnosis modeling.
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2.1 Traditional psychometric techniques

2.1.1 Classical test theory

Early developments in measurement theory include the recognition of the presence

of measurement error and its characterization as a random variable, along with the

establishment of correlation as an important statistical concept and recognition of the

effect of measurement error on its estimation (Traub 2005). One of the first formal-

izations of measurement theory for psychometrics was CTT, born from the pioneering

work of Spearman (1904) on correcting correlation coefficients for attenuation due to

measurement error; see also Lord, Novick, and Birnbaum (1968); Novick (1966) for

more details.

In CTT, individuals are assumed to have a true test score, T , that would be

obtained if there were no errors from measurement. The observed score, X , is the

result of incorporating some independent additive error E, i.e.,

X = T + E.

Disentangling the variability in subject ability from other external sources of variabil-

ity is a central concern of CTT; in particular, the reliability

ρ2XT =
σ2
T

σ2
X

=
σ2
T

σ2
T + σ2

E

of a test, defined as the ratio between the variance of the true score and the observed

score, can be considered CTT’s most important concept.

One of the shortcomings of CTT is that it in no way separates the characteristics

of the test from the characteristics of the individual; they come together in one

quantity of interest, the ‘true score’ T . This leaves psychometricians with what is

still quite an indirect measure of any psychological constructs of interest (Hambleton,
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Swaminathan, & Rogers 1991). Later developments in psychometrics, such as IRT

and cognitive diagnosis modeling, have been able to overcome this shortcoming, at

the cost of stronger model assumptions.

2.1.2 Item response theory

Item response theory (IRT) was developed in the 1950s and 1960s by researchers such

as Frederic M. Lord of the Educational Testing Service and Danish mathematician

Georg Rasch. In IRT, the binary responses to the questions, or items, in an assess-

ment depend on a unidimensional continuous latent trait θ representing, for instance,

the respondent’s ability. Given the latent trait θ, responses are assumed to be condi-

tionally independent following some distribution p(θ) := Pr(Xj = 1|θ); this property

is known as local independence (Lord 1980). The function p(θ) is known as the item

response function, item characteristic curve (Lord 1952), or item curve (Tucker 1946).

The item response function is generally taken to be monotonically increasing in θ, so

that increasing ability levels correspond to larger probabilities of correct responses.

In particular, logistic and normal ogive models are popular. A popular IRT model is

the Rasch model, also known as the one-parameter logistic IRT model (Rasch 1960;

1961). The item response function for the i-th item is

pi(θ) =
1

1 + exp[−(θ − bi)]
,

where bi is a location parameter representing the item’s difficult; it is also the nominal

‘one parameter.’ A high ability θ increases the probability of correct response pi(θ),

but a high item difficulty bi decreases that same probability. The Rasch model is

mathematically convenient to work with, but imposes strong assumptions. In par-

ticular, it assumes that all items discriminate between subjects in a similar way.
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Birnbaum’s two parameter logistic (2-PL) model generalizes the Rasch model by in-

cluding an item discrimination parameter that affects the slope of the logistic curve

(Lord et al. 1968). Under this model, the i-th item has item response function

pi(θ) =
1

1 + exp[−ai(θ − bi)]
,

where ai is the new item discrimination parameter and bi still represents the item’s

difficulty. The 2-PL model can be further generalized to the three-parameter logistic

(3-PL) model, which includes item guessing parameters affecting the lower asymptotic

limit of the item response function, i.e., the ‘guessing’ probability of correct response

for an individual with no ability θ = −∞ (Lord 1980; Lord et al. 1968).

2.2 Cognitive diagnosis modeling

Traditional psychometric approaches such those mentioned above generally focus on

scaling and ranking individuals along some latent continuum. However, in diagnostic

classification, the aim is instead to detect the presence or absence of multiple fine-

grained skills or attributes. This provides more informative feedback on, for example,

student skillsets, and allows for the design of more effective intervention strategies

(Rupp, Templin, & Henson 2010).

Researchers have brought a number of tools to bear on the problem of diagnostic

classification, including multidimensional IRT, factor analysis, the rule-space method,

the attribute hierarchy method, clustering methods, and CDMs; for a recent review,

see Rupp et al. (2010). The last of these approaches, CDMs, shares characteristics

such as local independence with the IRT approach, but in CDMs the latent variables

are multidimensional and discrete. These latent variables may represent mastery of

a finite set of skills in an educational setting, or the state of having a particular
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psychiatric disorder in a psychological testing setting. Statistically speaking, CDMs

can be categorized as latent structure models; in particular, they are restricted la-

tent class models within the broader family of generalized linear and nonlinear mixed

models (von Davier 2009). Analysis of CDMs generally results in a probabilistic at-

tribute profile, which can be parsed into a classification decision for the respondents;

this makes them well-suited to diagnostic classification. Well known models include

the Deterministic Input, Noisy “And” Gate (DINA) model, the Deterministic In-

put, Noisy “Or” Gate (DINO) model, the Noisy Inputs, Deterministic “And” Gate

(NIDA) model, the Noisy Inputs, Deterministic “Or” Gate (NIDO) model, and the

Conjunctive Reparameterized Unified Model (C-RUM), among others (de la Torre

2008; de la Torre & Douglas 2004; Haertel 1989; Junker & Sijtsma 2001; E. Maris

1999; Rupp et al. 2010; Templin 2006; Templin & Henson 2006).

Most diagnostic classification models begin from the same basic setting, in which

subjects known as respondents provide observed responses to the items which make up

the assessment. These responses depend in some way on unobserved latent attributes.

We consider tests consisting of a pre-specified number of items J depending on a

known number of attributes K, given to N subjects.

Some specific terminology and notations are listed below.

Attributes are conceptualizations the respondent’s (unobserved) states of mastery

of certain skills. If we suppose that there are N respondents and K attributes,

let the matrix of attributes be A = (αi,k), where where αi,k ∈ {0, 1} indicates

the presence or absence of the k-th attribute in the i-th respondent. An attribute

profile α = (α1, . . . , αK)
⊤ is the vector of all attributes; note that the super-

script ⊤ denotes the matrix transpose operation. An individual respondent i

will have attribute profile αi such that αi
k = αi,k.
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Responses are the respondent’s binary responses to items. Given N respondents

and J items, the responses can be written as a N ×J matrix X = (Xi,j), where

Xi,j ∈ {0, 1} is the response of the i-th respondent to the j-th item. The i-th

respondent’s responses will be denoted by the vector X i, where the j-th element

X i
j = Xi,j for all i, j.

The Q-matrix , developed by K. K. Tatsuoka (1983), describes the underlying cog-

nitive structure of the assessment; in other words, it provides the link between

the items and attribute. It is a J × K matrix Q = (qj,k), where for each j, k,

qj,k ∈ {0, 1} indicates whether the j-th item requires the k-th attribute. The

set of all attributes linked to a particular item can be considered that item’s

attribute requirement. From the Q-matrix we can extract the attribute require-

ments of an item j as the vector qj , where the k-th element qjk = qj,k for all

j, k.

Note that when unspecified, vectors indexed by α or x will presume the natural

lexicographic (alphabetic) ordering on the indices. For example, in the case of {0, 1}2,

(0, 0) < (0, 1) < (1, 0) < (1, 1).

2.2.1 Types of CDMs

Depending on the parameterization of the model and the interpretation of the Q-

matrix, many different families of models may arise. Generally, CDMs can written

as restricted logistic models with latent classes. In the unrestricted model, pj,α =

Pr(Xi,j = 1|α(i) = α) is a function of the full kernel of 2K terms incorporating all



10

interactions of the K latent attributes:

log

(

pj,α
1− pj,α

)

= λ0 +
K
∑

k=1

λkαk +
∑

1≤k1<k2≤K

λk1,k2αk1αk2 + · · ·+ λ1,...,K

K
∏

k=1

αk

=
K
∑

L=0

∑

1≤k1<···<kL≤K

λk1,...,kL

L
∏

ℓ=1

αkℓ .

The idea of Q-matrix based CDMs being encompassed by the unrestricted latent

class model dates back to von Davier (2005), who coined the term “general diagnostic

model;” Rupp et al. (2010) refers to this as the log-linear cognitive diagnosis model

framework.

Since the Q-matrix indicates the lack of a relationship between certain attributes

and items, at the most general level a Q-matrix based CDM should restrict terms

incorporating attributes that have no relation to the j-th item to zero; mathematically,

λk1,...,kL = 0 when qjk = 0 for some k ∈ {k1, . . . , kL}. When this is the only restriction,

and the model is written with the identity link, we have the G-DINA model of de la

Torre (2008; 2011).

Further restrictions can produce many of the wide variety of CDMs that have

arisen from different applications. Q-matrix based CDMs are often divided into two

major groups, depending how the latent variables interact. In compensatory models,

high values on one trait may compensate for low values on another. For example,

in psychological screening, suppose that the items are symptoms and the attributes

are psychological disorders. If a particular symptom can be the result of one of

multiple disorders, having one disorder will ‘compensate’ for not having another in

terms of the respondent’s chance of expressing that symptom. Other models are

non-compensatory in nature; low values on a particular attribute linked to an item

cannot by compensated by high values in other linked attributes. Non-compensatory

models are often appropriate in educational settings where a combination of skills are
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needed to solve a particular problem, and missing one of the necessary skills cannot

be compensated by having another skill. We now examine two popular CDMs, one

compensatory and one not, that shall be the focus of our work.

2.2.2 The DINA model and its variants

The DINA model is one of the most widely used CDMs, and is particularly popular

in the context of educational testing. Underlying the model is the assumption that,

before randomness in response come into play, a respondent must have mastered all

necessary (as specified by a loading matrix known as the Q-matrix) attributes required

by a particular item in order to answer that item correctly. Missing any attribute

linked to an item by the Q-matrix results in an incorrect answer; thus, the absence of

one attribute cannot be compensated by the presence of another and the DINA model

is non-compensatory. The DINA model is well-suited to educational assessments in

areas such as mathematics where correct answers are obtained by correctly employing

all of an item’s required skills together. It has been frequently employed in the

analysis of assessments, including the widely analyzed fraction subtraction data set

of K. K. Tatsuoka (1990). See de la Torre (2009); de la Torre and Douglas (2004;

2008); DeCarlo (2011); Henson, Templin, and Willse (2009); Templin, Henson, and

Douglas (2006) for examples.

Under the DINA model, given an attribute profile α and a Q-matrix Q, we can

define the quantity

ξj(Q,α) =
K
∏

k=1

(αk)
qj,k = I(αk ≥ qj,k : k = 1, . . . , K), (2.1)

which indicates whether a respondent with attribute profile α possesses all the at-

tributes required for item j. If we suppose no uncertainty in the response, then
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a respondent i with attribute profile αi will have responses Ri
j = ξj(Q,αi) for

each i ∈ {1, . . . , N}, j ∈ {1, . . . , J}. Thus, the vectors ξ = (ξ1, . . . , ξJ)
⊤ for each

α ∈ {0, 1}K are known as ideal response vectors.

In the DINA model, uncertainty is incorporated at the item level, using the slip-

ping and guessing parameters s and g; the names “slipping” and “guessing” arise

from the educational applications. For each item j = 1, . . . , J , the slipping parameter

sj = Pr(Xj = 0|ξj = 1) denotes the probabilitiy of the respondent making an incor-

rect response despite mastering all necessary skills and having a correct ideal response;

similarly, the guessing parameter gj = Pr(Xj = 1|ξj = 0) denotes the probability of a

correct response despite an incorrect ideal response. In the technical development, it

is more convenient to work with the complement of the slipping parameter, referred

to as c = 1− s; this alternative parameterization is used throughout the paper.

Conditional on Q,α, c, g, an individual’s responses Xj are jointly independent

Bernoullis with success probabilities

Pr(Xj = 1|Q,α, c, g) = c
ξj(Q,α)

j g
1−ξj(Q,α)

j . (2.2)

Thus, the probability of a particular response vector x ∈ {0, 1}J given Q,α, c, g is

p(x|Q,α, c, g) =

J
∏

j=1

c
ξjxj

j g
(1−ξj)xj

j (1− cj)
ξj(1−xj)(1− gj)

(1−ξj)(1−xj), (2.3)

where ξj is shorthand for ξj(Q,α).

In addition to c and g, the response distribution also depends on the distribution

of attribute profiles, i.e. their prevalence. We assume that the respondents are a

random sample of size N from a designated population so that their attribute profiles

αi, i = 1, ..., N are i.i.d. random variables following a multinomial distribution with

probabilities

Pr(αi = α) = πα,
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where πα ∈ [0, 1] ∀ α ∈ {0, 1}K and
∑

α πα = 1. The prevalence of the attribute

profiles is thus characterized by the column vector π = (πα : α ∈ {0, 1}K). Given

π, it is possible to calculate the marginal probabilities of each response, rather than

the conditional probabilities given the latent variables α. Specifically, conditional on

Q, c, g,π, the response vectors are i.i.d. random variables following a multinomial

distribution with probabilities

p(x|Q, c, g,π) =
∑

α∈{0,1}K

p(x|Q, c, g,α)πα (2.4)

for each x ∈ {0, 1}J . The conditional probabilities p(x|Q, c, g,α) are calculated as

in (2.3).

Several variants of the DINA can be constructed by either restricting π to some

lower-dimensional subspace or putting a prior on it. For example, assuming indepen-

dence among the attributes so that

πα =

K
∏

k=1

p(αk)

reduces the 2K−1-dimensional parameter space of all p ∈ [0, 1]2
K

such that
∑

πα = 1

to the K-dimensional one of (p(α1), . . . , p(αK)) ∈ [0, 1]K . We refer to this restriction

as the independent DINA (ind-DINA) from hereon. It is convenient to model each

αk with a logistic link, so that

p(αk) = exp(αkbk)/[1 + exp(bk)],

where bk denotes the attribute’s ‘difficulty.’

Another alternative is the higher-order DINA (HO-DINA) model (de la Torre &

Douglas 2004; Templin, Henson, Templin, & Roussos 2008). This model assumes

that the probability of possessing a skill is dependent on a continuous skill factor θ
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following the standard normal distribution, so that

πα =

∫

θ

p(α|θ)p(θ)dθ.

Each individual attribute is assumed to be conditionally independent given θ, so that

p(α|θ) =
K
∏

k=1

p(αk|θ).

Finally the individual probabilities p(αk|θ) can be modeled with a logistic link,

p(αk|θ) = exp(αk(bk + akθ))/[1 + exp(bk + akθ)],

where bk denotes the attribute’s ‘difficulty,’ and ak is the attribute discrimination

parameter. It is also possible to fit a restricted version of this model, for which all

the ak must be equal, as in de la Torre and Douglas (2004). This is referred to as the

restricted higher order DINA (RHO-DINA) model (DeCarlo 2011).

2.2.3 The DINO Model

The DINO model also specifies item and attribute relationships using a Q-matrix, but

it is the compensatory analog of the DINA model. Instead of an “and” relationship

between the required attributes, the DINO model interprets attribute requirements

with an “or” relationship. Consider applications in psychological clinical screening,

where items may be symptoms of certain psychogical disorders and attributes are the

disorders themselves. When observed symptoms may be the result of either (or both)

disorders, the compensatory “or” relationship of the DINO model may be appropriate

for modeling the item-attribute relationships. In the DINO model, the ideal responses

are calculated as

ξj(Q,α) = 1−
K
∏

k=1

(1− αk)
qj,k = 1(αk = qj,k = 1 for some k).
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As in the DINA model, the response probabilities are functions of item parameters

sj = Pr(Xj = 0|ξj = 1) and gj = Pr(Xj = 1|ξj = 0), and the marginal response

probabilities depend on the prevalence parameter π. It is intereting to note that

under the DINA model, ideal responses are correct when the respondent possesses all

required attributes; under the DINO model, ideal responses are incorrect when the

respondent does not possess all required attributes. Thus, for responses X following

the DINO model, the reversed responses 1−X follow the DINA model, with a reversed

interpretation of the attribute profile vectors.
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Chapter 3

The Identifiability of Q-matrix

based CDMs

3.1 Introduction

The study of identifiably dates back to Koopmans (1950); Koopmans and Reiersøl

(1950). The key issue is the feasibility of recovering the model parameters based on

the observed data. Identifiability is a prerequisite for statistical inferences such as pa-

rameter estimation and hypothesis testing. Moreover, it is also essential to the correct

interpretation of model parameters. In this chapter, we focus on the identifiability of

the parameters in cognitive diagnosis models. In particular, we propose sufficient and

necessary conditions under which the slipping, guessing, and population parameters

are estimable from the data under the DINA model assumption. The analysis here is

based on the theoretical framework in Liu, Xu, and Ying (2012; 2013), and is generic

in the sense that it can be employed for the analysis of other diagnostic classification

or latent class models.
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3.2 Identifiability of CDMs

Although CDMs have many attractive traits for practitioners looking to perform

diagnostic classification and are a fertile area of active research, several persistent

statistical issues limit their practical use. One of the most troubling is model iden-

tifiability. Identifiability is based on the idea that, in order to obtain reasonable

statistical inferences, different models should correspond to different response distri-

butions. With parametric models such as the DINA, we say that a set of parameters

θ for a family of distributions {f(x|θ) : θ ∈ Θ} is identifiable if distinct values of

the parameter θ correspond to distinct probability density functions, i.e., for any θ

there is no θ̃ ∈ Θ\{θ} such that f(x|θ) = f(x|θ̃). In addition, we say that a set

of parameters θ is locally identifiable if there exists a neighborhood of θ, Nθ ∈ Θ,

such that there is no θ̃ ∈ Nθ\{θ} such that f(x|θ) = f(x|θ̃). Local identifiability is a

weaker form of identifiability, which ensures that the model parameters are identifi-

able in a neighborhood of the true parameter values. Both the identifiability and the

local identifiability of latent class models are well-established concepts in latent class

analysis (e.g. Goodman 1974; McHugh 1956).

Definition 1 (identifiability) A a set of parameters θ for a family of distributions

{f(x|θ) : θ ∈ Θ} is identifiable if distinct values of θ correspond to distinct pdfs, i.e.,

for any θ there is no θ̃ ∈ Θ\{θ} for which f(x|θ) ≡ f(x|θ̃).

Definition 2 (local identifiability) We say a set of parameters θ is locally identi-

fiable if there exists a neighborhood N ∈ Θ such that there is no θ̃ ∈ N\{θ} for which

f(x|θ) ≡ f(x|θ̃).

Researchers have long been aware of the fact that Q-matrix based CDMs are gen-

erally not identifiable (DeCarlo 2011; DiBello et al. 1995; G. Maris & Bechger 2009;
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C. Tatsuoka 2009; K. K. Tatsuoka 1991), though there is a tendency to gloss over the

issue in practice due to a lack of theoretical development on the topic (de la Torre &

Douglas 2004). Identifiability issues lead to problems in estimation and classification,

and unprincipled use of standard CDMs may lead to misleading conclusions about the

respondents’ latent traits (G. Maris & Bechger 2009; C. Tatsuoka 2009). Let us con-

sider the DINA model as an example. Estimation of the parameters has been studied

extensively in the literature and different estimation procedures have been proposed.

de la Torre (2009) uses the EM algorithm and the MCMC method to estimate the

slipping and guessing parameters in the DINA model. Identifiability is important

no matter what estimation method is used; it is necessary for the consistency of the

EM algorithm and for the interpretability and convergence of the estimates generated

by the MCMC method. However, the identifiability of the parameters in the DINA

model is quite difficult to address, and in fact the necessary and sufficient conditions

for identifiability are as of yet unknown.

The earliest work on the identifiability of the DINA model concerns the identifia-

bility of ideal response vectors. This is related to the identifiability of the parameters

in that, when multiple attribute profiles lead to identical ideal response vectors, it

is impossible to tell responses from one profile from those from another. Then the

prevalence parameter π is not identfiable; transfering weight between indistinguish-

able attribute profiles gives a set of distinct parameters associated with only one

response distribution. This type of identifiability depends solely on theQ-matrix.

Chiu, Douglas, and Li (2009) calls Q-matrices under which ξ(Q,α) 6= ξ(Q,α′) for all

α 6= α′ complete. The mathematical requirements on the Q-matrix for completeness

are well known (Chiu et al. 2009; DeCarlo 2011; DiBello et al. 1995; K. K. Tat-

suoka 1991), and we use these requirements to create a mathematical definition of

completeness:
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Definition 3 A Q-matrix is said to be complete if {e⊤
j : j = 1, ..., K} ⊂ RQ; other-

wise, we say that Q is incomplete.

To interpret, for each attribute there must exist an item requiring that and only that

attribute. The Q-matrix is complete if there exist K rows of Q that can be ordered

to form the K-dimensional identity matrix IK . A simple (and minimal) example

of a complete Q-matrix is the K × K identity matrix. Past this point, theoretical

understanding of the identifiability of the DINA model has been sorely lacking.

3.3 The identifiability of the DINA model

Here we consider the identifiability of the DINA model under several different set-

tings, depending on which parameters are considered known or unknown. We derive

necessary and sufficient conditions for identifiability in all cases except the most dif-

ficult one, where all the parameters s, g, and c are unknown; in this case a small gap

between the necessary and sufficient conditions yet remains, and is potential avenue

of future research.

Before we begin, please note that for the rest of the chapter, we will be employing

the following notation. The following list summarizes some general notation used

throughout the rest of the discussion.

• For a matrix M , let Mi denote the i-th row of M . This may be extended to

M1:n, which denotes the sub-matrix containing the first n rows of M .

• Let RM = {M⊤
i : i = 1, . . . , d1} denote the set of row vectors of a d1×d2 matrix

M .

• The matrix Id is the d× d identity matrix.
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• The column vector ei is a standard basis vector; its i-th element is one and the

rest are zero.

• The symbols 0 and 1 denote the zero and one column vectors, i.e., (0, ..., 0)⊤

and (1, ..., 1)⊤, respectively.

• Given d-dimensional vectors u and v, let u ≻ v if the entries ui > vi for all

i ∈ {1, . . . , d}. Similarly define the operations ≺, �, and �.

3.3.1 Conditions

Through this paper, we assume that c ≻ g, that π ≻ 0, and that the Q-matrix

is pre-specified and correct. In addition, we list below five conditions that will be

used in the upcoming identifiability theorems. It will be shown under various model

assumptions that certain specific combinations of these conditions are either necessary

and/or sufficient for the identifiability of the unknown parameters.

(C1) Q is complete. When this holds, we assume WLOG that the Q-matrix takes

the following form:

Q =





IK

Q′



 . (3.1)

(C2) Each attribute is required by at least two items.

(C3) Each attribute is required by at least three items.

(C4) Suppose Q has the structure defined in (3.1). For each k ∈ {1, . . . , K}, there

must exist subsets S+
k , S

−
k of the items inQ′ such that the attribute requirements

of S+
k and S−

k are identical except in the k-th attribute, which is required by at

least one item in S+
k but not by any in S−

k . Here, the ‘attribute requirements’



21

of a set of items is the set of attributes required to have correct ideal responses

to all items in that set.

Note that the null set is also a valid subset, with no required attributes. Then

Condition C4 is satisfied if, for example, the Q-matrix contains two copies of the

identity matrix. When

Q′ =





IK

Q′′



 ,

for every k ∈ {1, . . . , K}, S+
k = {K + k} requires solely the k-th attribute, while

S−
k = ∅ requires no attributes. Alternatively, letting Q′ = 1 − IK would also fulfill

Condition C4. For the k-th attribute, let S+
k = {K + 1, . . . , 2K} be the set of all

items in Q′; it requires all attributes. Let S−
k = {K + k} include only the k-th item

in Q′; it requires all attributes except the k-th one. Thus, the attribute requirements

of S+
k and S−

k are identical except in the k-th dimension and Condition C4 has been

fulfilled.

The following is an equivalent method of writing Condition C4, which can be used

directly to check whether a Q-matrix fulfills it or not. For each k ∈ {1, . . . , K}, let

S−
k = {ℓ : ∃ j > K s.t. qj,k = 0, qj,ℓ = 1} be the set of attributes required by some

item j in Q′ not requiring the k-th attribute. If there exists some item j > K in Q′

requiring the k-th attribute and no attributes not in S−
k for every k ∈ {1, . . . , K},

then Condition C4 is fulfilled.

3.3.2 Theorems

We start with the simplest case, in which both the slipping and the guessing param-

eters are known.
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Theorem 1 Prevalence parameters π are identifiable only if Condition C1 is satis-

fied. Moreover, Condition C1 is sufficient when both the slipping and the guessing

parameters are known.

Theorem 1 states that when s and g are known, the completeness of the Q-matrix is a

sufficient and necessary condition for the identifiabilitye of π. Completeness ensures

that there is enough information in the response data for each attribute profile to

have its own distinct ideal response vector. When a Q-matrix is incomplete, we can

easily construct a non-identifiable example. For instance, consider the incomplete

Q-matrix

Q =





1 1

0 1



 .

The population parameter π is non-identifiable in this case even when s and g are

known. Subjects with attribute profiles α1 = (1, 0)⊤ and α2 = (0, 0)⊤ have the

same conditional response probabilities p(x|Q, c, g,α), so weight can be transferred

between πα1 and πα2 with no effect on the marginal probabilities p(x|Q, c, g,π), and

thus no effect on the likelihood.

We now weaken our assumptions by taking only the guessing parameter g as

known. Then stronger conditions are needed for identifiability; the necessary and

sufficient conditions are given in Theorem 2 below.

Theorem 2 Under the DINA model with known guessing parameter g, the slipping

parameter s and the prevalence parameter π are identifiable if and only if Condi-

tions C1 and C2 hold.
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Consider the Q-matrices

Q1 =











1 0

0 1

1 0











, Q2 =











1 0

0 1

1 1











. (3.2)

From Theorem 2, we can see that when the guessing parameter g is known Q1 de-

scribes a non-identifiable model while Q2 describes an identifiable one.

In the most difficult setting, neither the slipping nor the guessing parameters are

known. Then we have the following two results.

Theorem 3 (Necessary Conditions) Under the DINA model, s, g and π are locally

identifiable only if conditions C1 and C3 hold.

Theorem 4 (Sufficient Conditions) Suppose conditions C1 and C3 hold. Then s =

(s1, · · · , sJ), g∗ = (gK+1, · · · , gJ) are identifiable. Moreover, if Condition C4 also

holds, then the model is fully identifiable.

According to Theorem 3, neither Q1 nor Q2 from (3.2) describe identifiable DINA

models when s, g, and π are all unknown. In order for the model to be identifiable,

at the very least Conditions C1 and C3 must hold. Consider the following four Q-

matrices where both conditions hold:

Q3 =











I2

I2

1⊤











, Q4 =





I3

1− I3



 ,

Q5 =























I4

1 1 1 0

1 1 0 1

1 0 1 1

0 0 0 1























, Q6 =

















I3

I3

1⊤

1⊤

















.
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The first two Q-matrices, Q3 andQ4, fulfill Condition C4 in addition to Conditiona C1

and C3 and describe identifiable models. Note that there is a gap between the suffi-

cient and necessary conditions since Condition C4 is not necessary, but Conditions C1

and C3 are not sufficient. The Q-matrix Q5, which describes an identifiable model

but does not fulfill Condition C4, is an example of the former; the Q-matrix Q6, which

fulfills both Conditions C1 and C3 but represents a non-identifiable model, is an ex-

ample of the latter. More specifically in regards to Q6, the first part of Theorem 4

applies and s, g7, and g8 are identifiable, while (g1, . . . , g6) and π are not.

3.4 Identifiability under attribute hierarchy

Attribute hierarchies are an active area of research in diagnostic assessment where

cognitive theory is used to specify attribute dependencies within the population

(Leighton, Gierl, & Hunka 2004; Rupp et al. 2010; Su, Choi, Lee, Choi, & McAninch

2013). These dependencies translate into hypotheses about the prevalence of certain

profiles; to be specific, certain attribute profiles α will be disallowed and πα = 0. For

example, suppose an educator hypothesizes that no one learns multiplication without

first knowing addition. We say that addition is a prerequisite for multiplication, and

an attribute profile denoting mastery of multiplication without mastery of addition

would be excluded from the population.

The structure of attribute hierarchies can vary. The simplest structure is the

linear hierarchy, where the skills are fully ordered and can be put in a sequence

such that each skill cannot be mastered without mastery of the previous skill. In

Figure 3.1, the linear hierarchy on the left shows that Attribute D requires Attribute

C, which requires Attribute B, which requires Attribute A. A reasonable set of skills

for which such a hierarchy may be constructed is the set of four simple operations



25

of addition, subtraction, multiplication, and division. The linear hierarchy imposes a

strong structure on the attributes; all attributes must be learned in the given order.

In contrast, the rightmost hierarchy in Figure 3.1 represents a relatively unstructured

hierarchy; although all other attributes require the first one, there are no structural

requirements amongst the later attributes. Hierarchies may also be described as

convergent, when multiple attributes are required by another, or divergent, when one

attribute serves as prerequisite for multiple others. Of course, mixtures of these types

are also possible (Leighton et al. 2004).

A

B

C

D

A

B C

D E

A

B C

D

E

A

B C D E

Figure 3.1: Examples of attribute hierarchies

Mathematically, an attribute hierarchy can be characterized as a list of prerequi-

sites describing a strict partial order. When the k1-th attribute is a prerequisite for

the k2-th attribute, we denote the relation with by k1 ⊳ k2. This relation is

• irreflexive: k 6⊳ k. An attribute cannot be its own prerequisite.

• transitive: k1 ⊳ k2, k2 ⊳ k3 ⇒ k1 ⊳ k3. If one attribute is a prerequisite for

a second, and that second attribute is a prerequisite for a third, then the first

attribute is also a prerequisite for the third attribute.
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• asymmetric: k1 ⊳ k2 ⇒ k2 6⊳ k1. If one attribute is a prerequisite for another,

the latter attribute cannot be a prerequisite for the first. Note this property

can be derived from the first two properties.

Thus, it describes a strict partial order. For convenience, we also define the non-strict

partial order induced by the strict ordering. Let k1 E k2 if k1 ⊳ k2 or k1 = k2, i.e., if

k1 is a prerequisite for or equal to k2.

3.4.1 Conditions

Since attribute hierarchies reduce the parameter space by disallowing certain profiles,

and identifiability in Q-matrix based CDMs is often an issue of making sure that

distinct attribute profiles result in distinct responses, one may suspect that having

an attribute hierarchy may allow a relaxation of the identifiability conditions. This is

indeed the case. We have necessary and sufficient conditions for identifiability both

when the item parameters are known and when only g is known. We will use the

following two conditions:

(D1) Every attribute is measured by at least one item that measures only that at-

tribute and, possibly, a subset of its prerequisites. Mathematically, for each

k ∈ {1, . . . , K}, there exists j ∈ {1, . . . , J} s.t. qj,k = 1 and qj,k′ = 1 ⇒ k′ E k.

When this holds, we assume WLOG that the k-th item fulfills the condition for

the k-th attribute.

(D2) Each terminal attribute in the hierarchy is required by at least two items. Here,

a terminal attribute is one which does not serve as a prerequisite for any others.

Mathematically, for every k ∈ {1, . . . , K} s.t. {k′ : k ⊳ k′} = ∅,
∑J

j=1 qj,k ≥ 2.
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Conditions D1 and D2 are analogs of Conditions C1 and C2, respectively. We are able

to relax both of the original conditions. In the case of Condition D1, it is no longer

necessary to have items measuring each attribute in isolation. When attributes have

prerequisites, these attributes can be measured together with their prerequisites in

an item that helps fulfill Condition D1. In the case of Condition D2, only terminal

attributes need to be measured by two items. In a linear hierarchy, for example,

that would be only the final attribute. Note that when there is no hierarchy, the

new conditions are equivalent ot the old ones. Since no attributes have prerequisites,

Condition D1 is equivalent to completeness, and since every attribute is terminal,

Condition D2 is equivalent to Condition C2.

3.4.2 Theorems

The corresponding identifiability theorems are as follows, and are analogs of the

identifiability theorems in Section 3.3.2. Recall that the default assumptions now

are that πα > 0 for all attribute profiles allowed by the attribute hierarchy and that

c > g.

Theorem 5 Consider the DINA model with an attribute hierachy limiting the set

of possible attribute profiles. Prevalence parameters π are identifiable only if Condi-

tion D1 is satisfied. Moreover, Condition D1 is sufficient when both the slipping and

the guessing parameters are known.

Theorem 6 Consider the DINA model with an attribute hierarchy and known guess-

ing parameter g. The slipping parameter s and the prevalence parameter π are iden-

tifiable if and only if Conditions D1 and D2 hold.

These relaxed requirements can be very useful in assessment design. For instance,

it can sometimes be difficult to create items measuring advanced skills without mea-
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suring any basic skills.

3.5 Simulations

In this section, we conduct simulation studies to illustrate the results in Section 3.3.

We generate data from the DINA model under different Q-matrices and check the

parameter estimators ŝ, ĝ, and π̂. All Q-matrices are designs for K = 3 attributes.

In total there are three different simulation settings, each of which is detailed below:

Setting A We begin with the complete Q-matrix QA = I5. This is the minimal

Q-matrix necessary for completeness. The item parameters are

s =
(

0.08, 0.15, 0.23, 0.25, 0.20
)⊤

and

g =
(

0.08, 0.22, 0.16, 0.19, 0.14
)⊤

.

The population parameter is

π = (0.018, 0.028, 0.025, 0.033, 0.039, 0.025, 0.072, 0.026,

0.037, 0.019, 0.042, 0.021, 0.025, 0.042, 0.067, 0.042,

0.025, 0.059, 0.024, 0.034, 0.043, 0.013, 0.024, 0.029,

0.019, 0.028, 0.016, 0.019, 0.062, 0.020, 0.015, 0.012)⊤

.

Setting B The second Q matrix is

QB =





I5

11×5



 .

It fulfills both Condition C1 and Condition C2. The population parameter is

the same as in Setting 1, as are the item parameters for the first five items. The

sixth item has item parameters s6 = 0.18 and g6 = 0.11.
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Setting C The third Q-matrix is

QC =





I5

1− I5



 .

It fulfills Conditions C1, C3, and C4. The population parameter is the same as

in Setting 1, as are the item parameters for the first five items. The last five

items have slipping and guessing parameters

(s6, . . . , s10) = (0.21, 0.09, 0.27, 0.24, 0.14)

and

(g6, . . . , g10) = (0.23, 0.13, 0.18, 0.13, 0.11).

For examples of the non-identifiability of π when s and g are known, we refer

to the simulations conducted on incomplete Q-matrices in Zhang et al. (2013). By

Theorem 1, the model in Setting 1 is identifiable if s and g are known. Figure 3.2 plots

the L2 error of the maximum likelihood estimates of π as the sample size N grows.

The L2 error is the Euclidean distance between the estimate and the true value. The

consistency of the estimator π̂ is an important consequence of the identifiability of

the model.

As stated in Theorem 2, QA is associated with a model that is non-identifiable

when only g is known. Then, even for very large sample sizes parameter estimates

will converge to the truth. This occurs because multiple sets of parameters maximize

the same marginal likelihood. Shown below are two distinct sets of parameters that

both maximize the likelihood for a random response matrix generated under Setting

A for 500,000 individuals. They were obtained by running multiple repetitions of the
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Figure 3.2: L2 error for estimates of π under Setting A, when s and g are known.
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EM-algorithm in order to obtain true global maximizers. For the first set of estimates,

π̂ = (0.013, 0.014, 0.045, 0.044, 0.011, 0.010, 0.095, 0.030

0.021, 0.014, 0.080, 0.034, 0.004, 0.021, 0.100, 0.051

0.019, 0.037, 0.039, 0.040, 0.025, 0.000, 0.034, 0.028

0.021, 0.018, 0.029, 0.025, 0.052, 0.012, 0.020, 0.015)⊤

and

ŝ =
(

0.03, 0.19, 0.17, 0.42, 0.11
)⊤

.

In the second set,

π̂ = (0.009, 0.007, 0.005, 0.016, 0.024, 0.018, 0.030, 0.007

0.039, 0.027, 0.034, 0.019, 0.002, 0.055, 0.037, 0.035

0.015, 0.122, 0.015, 0.046, 0.041, 0.024, 0.013, 0.031

0.040, 0.079, 0.015, 0.035, 0.085, 0.048, 0.011, 0.018)⊤

and

ŝ =
(

0.34, 0.26, 0.13, 0.05, 0.35
)⊤

.
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Neither estimate is close to the true parameters. Both sets of parameters give the

same loglikelihood of −1.7181 × 106 and produce identical response probabilities.

In fact, the proof of Theorem 2 shows that there are and infinite number of such

parameters. Moreover, no matter how large the sample size may grow, the estimates

will never converge to the true value.

The DINA model is identifiable when only g is known only if Condition C2 is

filled, in addition to Condition C1. The Q-matrix QB from Setting B fulfills both

conditions, and when g is known, the maximum likelihood estimates of both s and

π will be consistent. The L2 error of both estimates is plotted in Figure 3.3. When

Figure 3.3: L2 error for estimates of π (left) and s (right) under Setting B, with g

known.
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g is unknown then non-identifiability occurs and the maximum likelihood estimates

are not guaranteed to converge. Two distinct sets of parameters that both maximize

the likelihood for a random set of responses generated for N = 500, 000 individuals
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are displayed below. For the first set of estimates,

π̂ = (0.017, 0.019, 0.017, 0.015, 0.048, 0.019, 0.068, 0.006,

0.060, 0.014, 0.045, 0.015, 0.067, 0.057, 0.124, 0.019,

0.022, 0.039, 0.012, 0.010, 0.048, 0.006, 0.011, 0.018,

0.025, 0.037, 0.016, 0.011, 0.114, 0.008, 0.001, 0.013)⊤

ŝ =
(

0.15, 0.01, 0.08, 0.28, 0.28, 0.11
)⊤

.

and

ĝ =
(

0.09, 0.17, 0.25, 0.26, 0.20, 0.22
)⊤

.

In the second set,

π̂ = (0.016, 0.034, 0.032, 0.061, 0.026, 0.020, 0.074, 0.035,

0.029, 0.014, 0.045, 0.028, 0.004, 0.028, 0.041, 0.043,

0.026, 0.079, 0.038, 0.083, 0.032, 0.000, 0.032, 0.028,

0.012, 0.017, 0.019, 0.023, 0.037, 0.019, 0.018, 0.010)⊤

ŝ =
(

0.04, 0.33, 0.30, 0.04, 0.04, 0.11
)⊤

.

and

ĝ =
(

0.09, 0.17, 0.26, 0.26, 0.21, 0.00
)⊤

.

Neither estimate is close to the true parameters. Note that since there are only two

items measuring each attribute, Condition C3 does not hold. The simulation does

not fulfill even the first set of sufficiency conditions in Theorem 4, and neither s nor

g6 are estimated consistently. Both sets of parameters give the same loglikelihood of

−1.8961× 106 and produce identical response probabilities.

When the Q-matrix fulfills Condition C4, parameters can be estimated consis-

tently, as shown in the last set of simulations. The Q-matrix QC from Setting C
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fulfills Condition C4, in addition to Conditions C1 and C3. The plots in Figure 3.4

show the convergence of the maximum likelihood estimates of π, s, and g under

Setting C.

3.6 Discussion

Identification is a serious problem in cognitive diagnosis modeling; in almost all sta-

tistical analyses,identifiability is essential in ensuring proper statistical inference and

interpretable parameters. The work here lays out some relatively simple conditions

to check the identifiability of the DINA model. In particular, the final sufficiency

conditions are less restrictive than those suggested by the conventional wisdom that

requires, for each attribute, three items devoted solely to measuring that attribute.

The results can be easily extended to the DINO (deterministic input; noisy “or”

gate) model (Templin & Henson 2006) through the duality of the DINA and DINO

models (Zhang et al. 2013). All the theorems apply directly, except for Theorem 4,

which a requires slight modification. Since a DINO model with Q-matrix Q and

item parameters s and g corresponds to a DINA model with the same Q-matrix but

slipping parameter 1 − g and guessing parameter 1 − s, in the DINO model g and

s∗ = (sK+1, . . . , sJ) are identifiable when Conditions C1 and C3 are fulfilled.

As far as other cognitive diagnosis models are concerned, identifiability remains

an important issue. This is especially true with respect to broader models such as

the General Diagnostic Model (von Davier 2005), the Log-Linear Cognitive Diagnosis

Model (Henson et al. 2009), or the Generalized DINA Model (de la Torre 2011). The

sets of models which generate identically distributed data grows with the number of

parameters, making such general models particularly difficult to work with. The exact

identifiability requirements of these models remains a topic of study, though they are
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likely quite onerous in the most general models. In such cases, a useful alternative

to simultaneous parameter estimation and respondent classification would involve

separate rounds of item calibration and diagnostic testing.

Work on identifiability conditions is helpful in pointing out potentially unknown

problems with statistical inference. It is also useful as a guide for designers of diag-

nostic assessments, who should attempt to fulfill identifiability conditions if possible.

However, non-identifiability in Q-matrix based CDMs is a common issue not sim-

ply because of a lack of precise identifiability conditions. Obtaining an assessment

that fulfills even the basic completeness condition may be difficult, either because

of lack of control over the design or practical issues in creating items that fulfill the

condition. Although attribute hierarchies may relax the identifiability conditions, a

well-developed cognitive theory upon which to base the hierarchy may not be avail-

able, or the researcher may be reluctant to make such assumptions. In the next

chapter, we move on to a somewhat unusual problem in statistics, as we consider the

issue of statistical inference for non-identifiable models.
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Figure 3.4: L2 error for estimates of π (top), s (middle), and g (bottom) under
Setting C, when all parameters are unknown.
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Chapter 4

Methods for non-identifiable

models

As seen in the previous chapter, under the DINA model, Q-matrices where some

attributes are required by items solely in conjunction with other attributes lead to

identifiability issues (DeCarlo 2011; C. Tatsuoka 2009). Unfortunately, the issue is

quite well-spread. Even well-studied datasets like Tatsuoka’s fraction subtraction

dataset lack identifiability, and the consequences include analyses where respondents

who answer all items incorrectly are classified as having most of the skills (DeCarlo

2011). Some of this is a result of a lack of awareness of the precise conditions needed

for the identifiability of the DINA model. Furthermore, researchers analyzing datasets

oftentimes have no control over the design of the assessment and must make do with

what they have. This issue becomes especially severe when diagnostic models are

applied to assessments that were not meant to be diagnostic in the first place; see

Su et al. (2013)’s Q-matrix for the 2003 Trends in International Mathematics and

Science Study (TIMSS) for an example. Even when those involved in assessment
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design wish to follow identifiability conditions, this may be practically infeasible. For

instance, it is often difficult to measure mathematical skills without simultaneously

measuring some basic ones. In addition, items measuring only one attribute at the

time, though desirable from an identifiability standpoint, require sacrifices in other

areas of concern in assessment design, such as efficiency and test length.

In this chapter we present contributions to the field of statistical inference under

conditions of non-identifiability for Q-matrix based CDMs. We propose methods for

both parameter estimation and respondent classification. In addition, we are able to

quantify the severity of the identifiability issue in terms of the proportion of the popu-

lation affected by it. We conclude with some more nuanced guidelines for assessment

design. Together, the ability to measure the severity of non-identifiability and a full

understanding of the mechanism behind the problem suggest that, rather than in-

sist on fulfilling identifiability conditions, it may be possible to balance identifiability

concerns with other design issues.

4.1 Completeness and identifiability

We begin with a deeper examination of the intuition behind the why a complete Q-

matrix is necessary for identifiability. Diagnostic assessments are meant to provide

detailed information about respondents’ possession of a variety of traits. Preferably,

a well-designed exam will be able to provide information about each trait for every

respondent. However, recovering information about the latent variables from a ‘0’

response may be difficult when an item measures too many attributes simultaneously;

in comparison to a ‘1’ response, which suggests that a respondent is more likely to

possess each attribute associated with that item, a ‘0’ response may indicate the

failure to master any one or several of the required attributes. Consider the following
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two simple Q-matrices for the DINA model:

Q1 =





1 0

0 1



 , Q2 =





1 0

1 1



 . (4.1)

In assessments based on the Q-matrix Q1, a correct response to each item gener-

ally indicates a higher probability that the respondent possesses the corresponding

attribute, while an incorrect response indicates a lower probability of the same. How-

ever, with Q2, an incorrect response to the second item only implies that at least one

of the attributes is probably missing. In fact, given that a student does not possess

Attribute 1, Item 2 provides no information about his or her mastery of Attribute 2,

and so respondents with attribute profiles (0, 0) and (0, 1) have statistically identical

responses. Thus, the assessment as a whole is incapable of differentiating between the

two profiles, and any classification decision between them will solely be a reflection

of the prior information.

A slightly more complicated situation appears if we add a third attribute to the

example above. Consider an assessment following the DINA model with Q-matrix

Q3, where

Q3 =











1 0 0

1 1 0

0 1 1











. (4.2)

The attribute requirements of the first two items match those of the items correspond-

ing to Q2. Now, however, the proportion of individuals for whom Attribute 2 is not

identifiable is smaller. Of those who do not possess Attribute 1, some will possess At-

tribute 3. Then Attribute 2 is identifiable because of differing response distributions

on Item 3. However, response distributions for those with attribute profiles (0, 1, 0)

and (0, 0, 0) are still indistinguishable. Thus, although the assessment provides no



39

information about Attribute 2 for a smaller part of the population, the issue has not

been completely resolved.

4.1.1 Partitioning the Attribute Profile Space

We begin with an intuitive criterion for deciding whether an assessment has the ability

to differentiate between two attribute profiles.

Definition 4 Two attribute profiles are separable if they lead to different response

distributions.

The differing response distributions of separable attribute profiles imply that the data

will favor one profile or the other; there is some differential effect on the likelihood and

thus the posterior. Profiles that are not separable are statistically identical, with the

same likelihood functions, making any differences in their posteriors simply artifacts

of the prior.

Determining whether attributes are separable can be done without the full re-

sponse distribution;in fact, only the ideal responses ξ(Q,α) are necessary.

Proposition 7 Given a Q-matrix Q and slipping and guessing parameters s and g,

two attribute profiles α1 and α2 can be separated if and only if they produce ideal

response vectors ξ1 = ξ(Q,α1) and ξ2 = (Q,α2) such that for some j ∈ {1, . . . , J},

ξ1
j 6= ξ2

j and 1− sj 6= gj.

Throughout the rest of this paper we assume that 1 − sj 6= gj for each j = 1, . . . , J ,

which simplifies Proposition 7 into Corollary 8. Should such an item indeed be

present, then it has no discriminating power and may be omitted.
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Corollary 8 If every item j has different success probabilities given ξj = 1 or given

ξj = 0, i.e. 1 − sj 6= gj for j = 1, . . . , J , then two attribute profiles can be separated

if and only if they produce different ideal response vectors.

Lastly, it is also of interest whether an attribute profile can be separated from all

other attribute profiles, and is thus identifiable. This definition of identifiability will

be tied to the general statistical concept in Section 4.2.

Definition 5 An attribute profile α is identifiable when it can be separated from any

other attribute profile α′ 6= α.

4.1.1.1 Complete Separation of Attribute Profiles

The first step in understanding the identifiability issue is determining under what

circumstances all attribute profiles are identifiable. This depends on the Q-matrix,

which is called complete when it each attribute profile produces a distinct ideal re-

sponse vector Chiu et al. (2009). Formally, we have the following definition:

Definition 6 (Chiu et al. 2009, Definition 1) Under a complete Q-matrix, all at-

tribute profiles are identifiable, i.e. ξ(Q,α) 6= ξ(Q,α′) iff α 6= α′.

The requirements for completeness have long been known Chiu et al. (2009); DiBello

et al. (1995); C. Tatsuoka (2009); K. K. Tatsuoka (1991). In essence, the assessment

must contain at least one item devoted solely to each attribute. In terms of the Q-

matrix, this means that for each k ∈ {1, . . . , K}, there should be at least one row

with an entry of ‘1’ solely in the k-th position.

Proposition 9 (Chiu et al. 2009, Lemma 1) Let XQ be the set of row vectors of

Q-matrix Q. Then Q is complete iff {ek : k = 1, . . . , K} ⊂ XQ, where ek is a vector

such that the k-th element is one and all other elements are zero.
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4.1.1.2 Partial Separation of Attribute Profiles

While a complete Q-matrix is necessary for identifiability, the requirement can be

quite onerous, and many of the Q-matrices used in practice are unfortunately incom-

plete. This is especially true under circumstances where the researcher has no control

over the design of the assessment; consider the typical Q-matrix that results from

attempts to retrofit cognitive diagnosis models onto data from the usual standardized

tests Su et al. (2013). Furthermore, in certain cases designing items measuring only

one attribute may be infeasible; this will generally occur for more ‘advanced’ skills,

which may be difficult to dissociate from the basic skills they build on.

The partition is a standard mathematical construct that separates a set of objects

into groups of ‘equivalent’ objects. It is a natural tool for exploring latent structures

in which multiple latent classes produce the same response distribution; Goodman

(1974); C. Tatsuoka (1996; 2009); C. Tatsuoka and Ferguson (2003) have also dis-

cussed the use of partitions in similar settings.

Before forming a partition, one must define the notion of equivalence. Recall

the standard mathematical notion of the equivalence relation, a relation ‘∼’ that is

reflexive (a ∼ a), symmetric (a ∼ b iff b ∼ a), and transitive (a ∼ b and b ∼ c ⇒ a ∼

c).

Proposition 10 Let ‘∼’ denote the binary relation ‘cannot be separated,’ where α1 ∼

α2 when ξ(Q,α1) = ξ(Q,α2). Then ‘∼’ is an equivalence relation.

Putting profiles into groups, commonly known as equivalence classes, based on an

equivalence relation results in a partition; in this case, any two attribute profiles in

the same equivalence class cannot be separated, while any two in different classes can

be. We denote a particular equivalence class by [α], where α may be any attribute
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profile in the class; literally, [α] can be read as “the set of attribute profiles equivalent

to α.”

The most direct way of determining the partition would be to calculate the ideal

response vector of each of the 2K attribute profiles and then sort them lexicographi-

cally. Both steps are simple and run quickly; see Table 4.1 for the detailed algorithm.

C. Tatsuoka’s algorithm performs the same task in an iterative fashion, refining the

partition as it considers the ideal responses to each item C. Tatsuoka (1996); C. Tat-

suoka and Ferguson (2003). For another alternative based in Boolean algebra, see

K. K. Tatsuoka (1991).

Table 4.1: Algorithm for partitioning an attribute profile space

Step Procedure

Input: A J ×K Q-matrix Q.

(0) (optional) Remove items with duplicate attribute requirements
(1) List all 2K attribute profiles α.
(2) Find the ideal response vector ξ(Q,α) for each α.
(3) Do a lexicographic (alphabetic) sort of the ideal response vectors.
(4) Check whether each successive profile has the same ideal response

vector as the previous profile. If so, α is the first member of a new
equivalence class [α]. Else, α is part of the current equivalence
class.

Output: A list of equivalence classes [α] and their members.

Note that our algorithm results in equivalence classes labeled by their smallest

member, which shall be called the minimal representative. The minimal representa-

tive has additional meaning as the attribute requirements of the corresponding ideal

response vector and is therefore convenient label for each equivalence class.

As seen in Table 4.2, performing the algorithm on the 3 × 3 Q-matrix Q3 from
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(4.2) results in five different equivalence classes, each of which is labeled with by its

minimal representative: [000] = {000, 010, 001}, [011] = {011}, [100] = {100, 101},

[110] = {110}, and [111] = {111}. Note that since the bracket notation may be

read as ‘the equivalence class containing,’ it is possible to change the labeling of each

equivalence class by choosing any other member as the titular profile: [000], [010],

and [001] all refer to the same equivalence class, for example.

Table 4.2: Generating the partition associated with the Q-matrix Q3.

Q3 α ξ(Q3,α) α ξ(Q3,α) [α]





1 0 0
1 1 0
0 1 1



 (1),(2)
−−−−→

000 000

(3)
−→

000 000

(4)
−→

[000]
100 100 010 000
010 000 001 000
001 000 011 001 [011]
110 110 100 100 [100]
101 100 101 100
011 001 110 110 [110]
111 111 111 111 [111]

Steps from Table 4.1 labeled (1), (2), (3), and (4).

4.2 Parameter estimation

We now consider the problem of parameter estimation, specifically that of πα, the

proportion of the population possessing each attribute profile α. Unless π is as-

sumed known, its consistent estimation has important consequences for respondent

classification and exam validity. Unfortunately, when an assessment’s Q-matrix is

incomplete, it is impossible to consistently estimate π.

Essentially, non-identifiability is the problem of distinct parameters mapping to



44

identical likelihoods. A natural solution to the problem of a many-to-one mapping

is to turn each “many” into a “one” by way of equivalence relation. Suppose two

distinct parameters are equivalent θ ∼ θ′ if their likelihoods are equal L(θ) ≡ L(θ′).

The equivalence classes [θ] map to likelihoods L([θ]) in a one-to-one fashion, solving

the identifiability issue. However, in most problems, the mapping from the param-

eter space to the likelihood is very complicated, and the reverse mapping is quite

intractable. The equivalence classes [θ] can be difficult to calculate and impossible to

interpret. Fortunately, this is not the case for our specific problem. For each equiv-

alence class [α], let π[α] be the proportion of the population possessing an attribute

profile within that equivalence class. Then,

π[α] =
∑

α′∈[α]

πα′, (4.3)

i.e., the probability of a respondent belonging to a particular equivalence class is the

sum of probabilities for each attribute profile within that class. We will discover that

the desired equivalence classes on the prevalence parameter have a natural interpre-

tation:

[π] = {π′ : π[α] = π′
[α]∀[α]}.

Then estimating the problem of estimating the πα, which is impossible, has become

the problem of estimating [π], which is intractable, and that has become the problem

of estimating the π[α], which is very simple.

It is very easy to see that one can do no better than estimating the π[α]. The

probability of observing any particular set of data depends only on π[α], since the

probability of any response depends only on equivalence class membership, not on

the respondent’s possession of a specific profile. With an incomplete Q-matrix it

is possible to observe populations with different distributions π1 6≡ π2 over the at-

tribute profile space that have identical distributions over the equivalence classes [α],
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i.e., p1[α] = p2[α] for all α ∈ {0, 1}K, and thus identical response distributions. The

phenomenon where different parameter values lead to identical response distributions

is generally known as non-identifiability, and it destroys the ability of likelihood-based

estimation methods to achieve consistency.

While consistent estimation of πα cannot be achieved, it is possible to consistently

estimate the proportion of individuals within each equivalence class [α].

Theorem 11 Suppose an assessment follows the DINA model, with known Q-matrix

Q and item parameters s and g. Let π[α], representing the proportion of the population

possessing an attribute profile α′ ∈ [α], be defined as in (4.3), and let the population

parameter π be the vector of all π[α]. We may write its likelihood as

L(π) = p(X|π) =
N
∏

i=1

p(xi|π) =
N
∏

i=1

∑

[α]

p(xi|[α])π[α].

Then the maximum likelihood estimate π̂ of π is consistent as N → ∞.

Consistent estimation of the π[α] is an important result, justifying the results of the

following sections. To emphasize the differences in parameter space and procedure,

work based on equivalence classes [α] rather than profiles α will from hereon be

referred to under the name of the Non-Identifiability Adjusted DINA (NIAD-DINA)

model.

4.3 Respondent classification

Non-identifiability has potentially serious effects on respondent classification. Clas-

sification is generally conducted based on the posterior distribution using the Bayes

rule, p(α|x) ∝ p(x|α)πα. Under L2 loss, where we sum the squared errors in our
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estimate α̂ across the K dimensions, the optimal estimator is the posterior mean

E[αk|x].

When πα is unknown and must be estimated, the classification algorithm becomes

empirical Bayes. The effect of non-identifiability then becomes two-fold. First, flat-

ness in the likelihood increases dependence on the prior. In the DINA model, profiles

in the same equivalence class have the same likelihood. Thus, within the equiva-

lence class, the posterior will simply be a reflection of the prior, without any added

information from the data DeCarlo (2011). Given a prior p(α), for any α1,α2 ∈ [α],

p(α1|x)

p(α2|x)
=

p(x|α1|)p(α1)

p(x|α2)p(α2)
=

p(x|[α])p(α1)

p(x|[α])p(α2)
=

p(α1)

p(α2)
,

and the posterior ratio between attribute profiles is identical to the prior one. Second,

the prior π that has now become extremely important can no longer be consistently

estimated. In combination, the double effect of non-identifiability on empirical Bayes

classification completely destroys the reliability of our classifier.

Despite the serious effects of non-identifiability on our ability to classify respon-

dents under the DINA model, it is still possible to classify respondents when the Q-

matrix describes a non-identifiable model. We describe such a classification method

below.

4.3.1 Marginal Separability

Before arriving at the classification algorithm, let us first extend the concept of identi-

fiability, which has heretofore been focused on the multidimensional attribute profiles,

to each attribute individually. This is motivated by the marginal nature of the L2

loss function that penalizes each incorrect attribute separately, and the fact that,

though the presence of multiple profiles in the same equivalence class signals non-

identifiability, some individual attributes may still be identifiable within the class. To
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illustrate, consider the the Q-matrix Q3 from (4.2) and one of its equivalence classes,

[000] = {000, 010, 001}. If a profile α ∈ [000], then its first component α1 = 0, but

the values of α2 and α3 are uncertain. Thus, posterior weight p([000]|x) on this class

counts as positive evidence that α1 = 0, but does not help in deciding α2 or α3. This

observation motivates the following definition:

Definition 7 An attribute is marginally separable within an equivalence class when

either all members of that class possess that attribute or none of them do.

Define the marginal separability indicator δ[α],k as follows:

δ[α],k =
∏

α′∈[α]

α′
k +

∏

α′∈[α]

(1− α′
k). (4.4)

Then, δ[α],k = 1 when Attribute k is marginally separable within equivalence class

[α]. Posterior weight on a class [α] only provides information about the k-th attribute

when δ[α],k = 1; otherwise, there is no information beyond the prior.

4.3.2 Classification algorithm

In empirical Bayes for the DINA model, posteriors are often calculated by maximizing

the marginal maximum likelihood L(π, s, g) via the E-M algorithm de la Torre (2009);

Haertel (1989); Rupp et al. (2010). Then, since all vectors π with identical weights on

each class π[α] have identical likelihoods, any π achieving the maximizing π[α] may

result. The values chosen are determined by the starting values, which have little

validity for classification.

Since the posterior is sensitive to the prior, it is important to work with p([α]),

which can be estimated consistently, rather than p(α). Thus classification here will

be conducted based on p([α]|x ∝ p(x|[α])p([α]) instead of the usual posterior. This
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calculation does not require a separate fitting of the model, since

p([α]|x) =
p(x|[α])π[α]

p(x)
=

p(x|[α])
∑

α′∈[α] πα′

p(x)
=
∑

α′∈[α]

p(α′|x) (4.5)

From this posterior, we then define

πmin
k (x) =

∑

[α]:αk=1,d[α],k=1

p([α]|x), (4.6)

πmax
k (x) = πmin

k (x) +
∑

[α]:d[α],k=0

p([α]|x), (4.7)

where δ[α],k is the marginal separability indicator defined in (4.4). Classification fol-

lows from the fact that, depending upon the specific hyperprior on π or starting point

of the E-M algorithm, the DINA model may produce marginal posterior probabilities

of mastery Pr(αk = 1|x) anywhere in the range [πmin
k (x), πmax

k (x)]. Thus, it is only

appropriate to conclude that αk = 1 when πmin
k (x) is high, or that αk = 0 when

πmax
k (x) is low. A natural cutoff for both is 0.5, but it may be adjusted as necessary,

depending on the amount of classification error that can be tolerated. This classifi-

cation method, from hereon referred to as the NIAD-DINA classification algorithm,

accounts for both uncertainty in the prior and uncertainty caused by slipping and

guessing. It is a conservative algorithm that identifies for which attributes a respon-

dent may be misclassified due to non-identifiability by the usual classification methods

and instead leaves the respondent unclassified for those attributes. The algorithm is

summarized in Table 4.3.
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Table 4.3: NIAD-DINA classification algorithm

Step Procedure q.v.

Input: Q-matrix Q = (qj,k)J×K , data X = (xi,k)N×J .

(1) Fit the model to produce p(α|x).
(2) Partition the attribute profile space. Table 4.1
(3) Calculate the marginal separability vector δ[α]. (4.4)
(4) Sum posteriors p(α|x) for p([α]|x). (4.5)
(5) Calculate πmin

k (x) and πmax
k (x) for every k,x. (4.6), (4.7)

(6) Classify:
If πmin

k > 0.5, then α̂k = 1.
If πmax

k < 0.5, then α̂k = 0.
Else, α̂k = ∗ (unclassified).

Output: Classifications α̂i
k ∈ {0, 1, ∗} for all i, k.

4.4 Measuring the impact of nonidentifiability: the

marginal separability rate

Since non-identifiability is frequently unavoidable with Q-matrix based CDMs, it is

important to measure its extent. For a more nuanced view, this is done on a marginal,

basis.

Given the prevalence πα of each attribute profile α, the proportion of the popula-

tion for which the k-th attribute is marginally separable can be quantified by ζk, as

follows:

ζk =
∑

{α:δ[α],k=1}

πα. (4.8)

Let ζ be the vector of all ζk. Then ζ is the proportion of the population for which

each attribute is marginally separable, i.e., the marginal separability rate.

Oftentimes πα, and thus ζ, is unknown. Under the conditions of Theorem 11, ζ
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can be consistently estimated by its maximum likelihood estimator ζ̂.

Proposition 12 Suppose an assessment follows the DINA model, with known Q-

matrix Q and item parameters s and g. Let π̂[α] be the MLE estimate of π[α]. Then

ζ̂k =
∑

{[α]:δ[α],k=1}

π̂[α], k = 1, . . . , K. (4.9)

is consistent as N → ∞.

The consistency of ζ̂ is a direct consequence of the consistency of π̂[α] in Theorem 11.

We thus obtain a very reasonable measure of exam quality, in terms of the proportion

of the population for which each attribute is marginally separable.

4.5 Results

4.5.1 Simulation Results

We first demonstrate the procedures on simulated data. Responses are generated for

N = 5000 resondents taking an assessment with J = 6 items measuringK = 3 distinct

attributes. The respondents’ mastery or nonmastery of the measured attributes is

randomly generated according to the probability πsim(α) of each profile α ∈ {0, 1}3,

as listed in Table 4.4. The population vector itself was generated randomly from the

uniform distribution over the set of all π ∈ [0, 1]2
K

summing to one.

Table 4.4: Prevalence of each attribute profile

α

000 001 010 011 100 101 110 111

πsim
α 0.27 0.00 0.01 0.04 0.10 0.16 0.20 0.21
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The responses themselves follow the DINA model according to the Q-matrix Qsim

with slipping ssim and guessing gsim as shown in Table 4.5.

Table 4.5: Q-matrix, slipping, and guessing for simulated data.

Item (j) Attribute vector (qj) Slipping (sj) Guessing (gj)

1. 100 0.14 0.10
2. 110 0.12 0.15
3. 011 0.18 0.18
4. 100 0.17 0.18
5. 110 0.08 0.06
6. 011 0.05 0.06

The Q-matrix Qsim is incomplete, and the resulting instability in the posterior

becomes clear once the data is fitted multiple times. As an example, the posterior

probabilities of each attribute profile given the zero response vector 0 = (0, 0, . . . , 0)

are summarized in Table 4.6. Here, the DINA, HO-DINA, and RHO-DINA all have

identifiability issues; as a result, marginal maximum likelihood via the EM algorithm

may randomly produce a wide range of results for Profiles [000], [001], and [010]. The

slight variability in the ind-DINA estimates is a numerical artifact. While the ind-

DINA does not suffer from non-identifiability, it still does not give accurate estimates

in this case since the model assumptions are incorrect.

Partitioning the attribute profile space as directed by Table 4.1 produces the five

equivalence classes listed in Table 4.7, two of which have multiple members. The table

also reports the marginal separability vector δ[α] for each class. Note that since Items

1 and 4 are devoted to Attribute 1, it is always marginally separable and δ[α],1 ≡ 1.

It is also clear that non-identifiability most seriously affects Attribute 3, which is

marginally non-identifiable for members of both [000] and [100]. Finally, Table 4.7

also reports E-M estimates of the proportion of respondents in each class under the

DINA and several variants, along with the true prevalence. Note the accuracy of the
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Table 4.6: Posterior probabilities given zero correct responses, p(α|x = 0)

α

000 001 010 011 100 101 110 111

truth
0.91 0.02 0.05 0.00 0.01 0.01 0.00 0.00

minimums
DINA 0.01 0.02 0.03 0.00 0.00 0.00 0.00 0.00
HO-DINA 0.13 0.09 0.03 0.00 0.01 0.01 0.00 0.00
RHO-DINA 0.55 0.11 0.29 0.00 0.02 0.01 0.00 0.00
ind-DINA 0.29 0.24 0.37 0.00 0.02 0.02 0.00 0.00

maximums
DINA 0.71 0.86 0.56 0.00 0.02 0.03 0.00 0.00
HO-DINA 0.62 0.81 0.71 0.00 0.02 0.02 0.00 0.00
RHO-DINA 0.58 0.13 0.30 0.00 0.02 0.01 0.00 0.00
ind-DINA 0.31 0.28 0.40 0.01 0.03 0.02 0.00 0.00

Note: Minimum and maximum values of the posterior p(α|x = 0), as generated
over ten runs of the (random start) E-M algorithm.

DINA estimates, which are consistent, and the inaccuracy of the ind-DINA estimates

due to model misfit.

We now consider variability in the marginal posterior probabilities Pr(αk = 1|x).

Table 4.8 gives the sample range of Pr(αk = 1|x) after ten runs of the E-M algorithm,

in addition to the theoretical range. Note the large theoretical ranges for Pr(αk =

1|x = 0), k = 2, 3.

Classification was conducted on a marginal basis, based on Pr(αk = 1|x), under

each of the models. In addition, NIAD-DINA classification was performed (see Ta-

ble 4.3). Marginal misclassification rates Pr(α̂k 6= αk) are compared in Table 4.9.

Note that NIAD-DINA classification results in unclassified individuals; for example,

α̂ = (0∗∗) for those with the zero response vector. This proportion of respondents left
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Table 4.7: Equivalence classes, along with their class sizes, true and maximum likeli-
hood probabilities, and marginal separability vectors.

π[α]

[α] Size True DINA HO-DINA RHO-DINA ind-DINA δ[α]

[000] 3 0.29 0.30 0.29 0.29 0.22 100
[100] 2 0.26 0.26 0.27 0.26 0.31 110
[011] 1 0.04 0.04 0.04 0.04 0.08 111
[110] 1 0.20 0.20 0.19 0.20 0.20 111
[111] 1 0.21 0.21 0.21 0.21 0.18 111

Table 4.8: Variability in Pr(αk = 1|x = 0), the marginal posterior given the zero
response vector.

k

1 2 3

sample min 0.03 0.03 0.04
πmin
k (0) 0.03 0.00 0.00

sample max 0.03 0.56 0.89
πmax
k (0) 0.03 0.97 1.00

Note: Probabilities calculated by fitting the DINA model over ten runs of E-M
algorithm with random starts.

unclassified by the NIAD-DINA algorithm is listed within parentheses in Table 4.9.

The DINA and HO-DINA are overparameterized and the misclassification rate for

Attribute 3 may reach over 40% in both models. The ind-DINA also performs poorly,

but due to an overly restricted parameter space rather than nonidentifiability; the

set of population parameters π allowed under the ind-DINA does not contain the

true population parameter, or even something close to it. Adjusting classification

under the DINA to account for nonidentifiability according to the method described

in Section 4.3.2 solves both these issues. It may leave a large proportion of individuals
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unclassified, but this is a necessary consequence of the assessment design. Classifying

these individuals would require further assumptions beyond the model.

Table 4.9: Marginal misclassification rates under a variety of models.

Model

k DINA HO-DINA RHO-DINA ind-DINA NIAD-DINA

1 0.07 0.07 0.07 0.09 0.07 (0.00)
2 0.07-0.32 0.07-0.32 0.07 0.26 0.04 (0.32)
3 0.19-0.44 0.19-0.43 0.20 0.21 0.04 (0.56)

Note: Range over 10 runs reported for overparameterized models. All cut-offs equal
to 0.5. The proportion of respondents left unclassified under the NIAD-DINA is
displayed within parentheses.

In addition to controlling misclassification errors, we may also evaluate the qual-

ity of the assessment by measuring the marginal separability rate ζ defined in (4.8).

Table 4.10 shows both true and estimated values for ζ. Note once again that non-

identifiability affects Attribute 3 more severely than it does Attribute 2. In addition,

estimates are generally accurate, except in the case of the ind-DINA, which suffers

from lack of fit.

Table 4.10: True and estimated values for ζ, marginal separability rate.

Model

k true DINA HO-DINA RHO-DINA ind-DINA

1 1.00 1.00 1.00 1.00 1.00
2 0.71 0.70 0.71 0.71 0.78
3 0.44 0.45 0.45 0.45 0.47

In terms of model selection, reducing the number of parameters for the DINA

model to 2M + L from the original 2M + 2K reduces the comparative advantage of
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the restricted models. In Table 4.11, the AIC value of the RHO-DINA barely edges

out that of the DINA with identifiability adjustment.

Table 4.11: AIC and BIC for the DINA, RHO-DINA, and ind-DINA.

parameters AIC BIC

NIAD-DINA 17 32862.8 32973.6
RHO-DINA 16 32861.2 32965.5
ind-DINA 15 32995.9 33093.6

4.5.2 A mixed fraction subtraction dataset example

We now turn to the widely analyzed fraction subtraction data set of K. K. Tatsuoka

(1990). It is composed of the twenty items listed in Table 4.12. The Q-matrix in

Table 4.12: Items from the fraction subtraction data set K. K. Tatsuoka (1990).

No. Item No. Item No. Item No. Item

1. 5/3 − 3/4 6. 6/7 − 4/7 11. 4 1/3 − 2 4/3 16. 4 5/7 − 1 4/7
2. 3/4 − 3/8 7. 3− 2 1/5 12. 11/8 − 1/8 17. 7 3/5 − 4/5
3. 5/6 − 1/9 8. 2/3 − 2/3 13. 3 3/8 − 2 5/6 18. 4 1/10 − 2 8/10
4. 3 1/2 − 2 3/2 9. 3 7/8 − 2 14. 3 4/5 − 3 2/5 19. 4− 1 4/3
5. 4 3/5 − 3 4/10 10. 4 4/12 − 2 7/12 15. 2− 1/3 20. 4 1/3 − 1 5/3

Table 4.13 comes from de la Torre and Douglas (2004), and specifies the following

eight attributes: α1 = convert a whole number to a fraction; α2 = separate a whole

number from a fraction; α3 = simplify before subtracting; α4 = find a common

denominator; α5 = borrow from whole number part; α6 = column borrow to subtract

the second numerator from the first; α7 = subtract numerators; and α8 = reduce

answers to simplest form.
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Table 4.13: Q-matrix from de la Torre and Douglas (2004).

Item Attributes (qj) Item Attributes (qj) Item Attributes (qj)

1. 00010110 8. 00000010 15. 10000010
2. 00010010 9. 01000000 16. 01000010
3. 00010010 10. 01001011 17. 01001010
4. 01101010 11. 01001010 18. 01001110
5. 01010011 12. 00000011 19. 11101010
6. 00000010 13. 01011010 20. 01101010
7. 11000010 14. 01000010

As pointed out by DeCarlo (2011), this assessment exemplifies the identifiability

issues of the DINA model. While Attributes 2 and 7 have items dedicated solely

to them, all other attributes appear only in combination. In fact, Attribute 3 only

appears in Item 4, in conjunction with Attributes 2, 5, and 7. Attribute 7 is required

for all items except one, making it difficult to draw conclusions about other attributes

when it has not been mastered. Table 4.14 displays the marginal posterior proba-

bilities of mastery for each attribute, given the zero response vector. The posterior

displayed for the DINA is just one possible output of the E-M algorithm for this

data; meanwhile, note the high probabilities of mastery under the ind-DINA model.

Common sense dictates that something is out of place when the analysis states that

students with a score of zero cannot subtract numerators, but can do everything else,

from finding a common denominator to borrowing to reducing to simplest form.

With eight attributes in the Q-matrix, there are a total of 256 possible attribute

profiles. They can be divided into just 58 different equivalence classes by the partition-

ing algorithm, 32 of them containing a single identifiable element. The 26 multiple-

profile equivalence classes are listed in Table 4.15, which also displays their class

sizes, maximum likelihood probabilities, and marginal separability vectors. Within

these multiple-profile equivalence classes, Attributes 2 and 7 are always marginally

separable, while Attribute 3 is never so; this is natural considering our previous obser-
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Table 4.14: Marginal posterior probabilities of mastery given the zero response vector,
Pr(αk = 1|x = 0)

k

1 2 3 4 5 6 7 8

DINA 0.50 0.08 0.50 0.52 0.53 0.41 0.00 0.59
HO-DINA 0.00 0.13 0.31 0.05 0.02 0.30 0.00 0.25
RHO-DINA 0.02 0.13 0.12 0.05 0.02 0.25 0.00 0.18
ind-DINA 0.74 0.86 0.96 0.86 0.75 0.98 0.00 0.94

vations about the Q-matrix. Profiles within the largest classes contain many zeroes,

since under the DINA model attributes are not marginally separable for respondents

who do not possess the other attributes that are measured simultaneously. For ex-

ample, given mastery of Attribute 7, it becomes much easier to determine mastery of

other attributes. When Attribute 7 has not been mastered, only mastery of Attribute

2 can be determined; this results in the two largest equivalence classes of attribute

profiles, with sixty-four members each, [00000000] and [01000000]. Also note that

the ind-DINA shows signs of model misspecification, since its estimates π̂[α] deviate

strongly from the estimates derived from the other models.

Table 4.16 shows the estimated marginal separability rates, ζ̂. At the low end,

ζ̂3 = 0.48, bringing into question the ability of this assessment to measure mastery of

Attribute 3 for a large proportion of the population. Attribute 6 does only slightly

better, with ζ̂6 = 0.64. Note that, like Attribute 3, Attribute 6 is seldom measured.

It is only utilized in Items 1 and 18; in both cases it appears in conjunction with at

least two other attributes.

The NIAD-DINA classification algorithm corrects for non-identifiability as a source

of classification error and leaves individuals unclassified on certain attributes if not
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Table 4.15: Multiple-member equivalence classes, along with their class sizes, maxi-
mum likelihood probabilities, and marginal separability vectors.

π[α]

[α] #[α] DINA HO-DINA RHO-DINA ind-DINA δ[α]

[00000000] 64 0.15 0.12 0.12 0.02 01000010
[01000000] 64 0.04 0.06 0.06 0.31 01000010
[00000010] 8 0.01 0.02 0.03 0.00 11010011
[10000010] 8 0.00 0.00 0.00 0.00 11010011
[00000011] 8 0.02 0.03 0.02 0.00 11010011
[10000011] 8 0.00 0.00 0.00 0.00 11010011
[01000010] 4 0.03 0.04 0.04 0.00 11011011
[01000011] 4 0.11 0.09 0.08 0.00 11011011
[11000010] 4 0.00 0.00 0.00 0.00 11011011
[11000011] 4 0.01 0.01 0.02 0.01 11011011
[00010010] 4 0.00 0.00 0.00 0.00 11010111
[10010010] 4 0.00 0.00 0.00 0.00 11010111
[00010011] 4 0.00 0.00 0.00 0.00 11010111
[10010011] 4 0.00 0.00 0.00 0.00 11010111
[00010110] 4 0.02 0.00 0.00 0.00 11010111
[10010110] 4 0.00 0.00 0.00 0.00 11010111
[00010111] 4 0.00 0.01 0.01 0.01 11010111
[10010111] 4 0.00 0.00 0.00 0.03 11010111
[01010010] 2 0.00 0.00 0.00 0.00 11011111
[11010010] 2 0.00 0.00 0.00 0.00 11011111
[01010011] 2 0.01 0.01 0.00 0.00 11011111
[11010011] 2 0.00 0.00 0.00 0.00 11011111
[01010110] 2 0.00 0.01 0.01 0.00 11011111
[11010110] 2 0.00 0.00 0.00 0.01 11011111
[01010111] 2 0.05 0.06 0.06 0.03 11011111
[11010111] 2 0.06 0.06 0.06 0.09 11011111

enough information can be found in the assessment to classify them. Consider the

results of NIAD-DINA classification displayed in Table 4.17. Individuals with zero

response patterns x = 0, who may be erronously classified as possessing any of the

attributes other than Attributes 2 and 7 by traditional methods, are left unclassified

in those dimensions by the NIAD-DINA since the range [πmin
k , πmax

k ] stretches across

the boundary value of 0.5 for those k. Note that uncertainty due to non-identifiability

does not have to result in leaving an individual unclassified. In the second example
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Table 4.16: Estimated marginal separability rates ζk.

k

1 2 3 4 5 6 7 8

DINA 0.81 1.00 0.48 0.81 0.75 0.64 1.00 0.81
HO-DINA 0.82 1.00 0.47 0.82 0.75 0.64 1.00 0.82
RHO-DINA 0.82 1.00 0.48 0.82 0.75 0.63 1.00 0.82
ind-DINA 0.66 1.00 0.47 0.66 0.62 0.64 1.00 0.66

in that table, the posterior expectation of α3 has a range of [0.18, 0.29]. Since πmax
3 is

low, we can classify individuals with the second response pattern as needing work on

Attribute 3 with some confidence, despite not being able to obtain a precise posterior

expectation. Note that answering more questions correctly has put more posterior

weight on classes [α] where the respondent possesses more skills. These classes tend

to have fewer members, improving our ability to classify.

Table 4.17: NIAD-DINA classification for two response patterns

k
1 2 3 4 5 6 7 8

Items correct: none
πmin
k 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00

πmax
k 1.00 0.08 1.00 1.00 1.00 1.00 0.00 1.00

α̂k ∗ 0 ∗ ∗ ∗ ∗ 0 ∗
Items correct: 6, 11, 12, 14, 17, 18
πmin
k 0.00 0.97 0.18 0.00 0.89 0.88 0.99 0.98

πmax
k 0.01 0.97 0.29 0.00 0.92 0.99 0.99 0.99

α̂k 0 1 0 0 1 1 1 1

‘∗’ denotes that the respondent remains unclassified for that k.
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Table 4.18 compares the NIAD-DINA classification decisions for three different

response patterns. The first and last patterns represent the two extremes, when re-

spondents answer either none or all of the questions correctly. The second pattern

was chosen as one of the most common response patterns amongst those sufficiently

different from the none correct or all correct patterns to be useful for illustration. We

use this table to show that the classification decisions reached by the NIAD-DINA

classification algorithm make sense, unlike those potentially reached by traditional

approaches. We have already mentioned that respondents answering all items incor-

rectly are no longer classified as having any skills. Because most of the posterior

weight is in large classes where α7 = 0, however, the algorithm is unable to make

decisions for most of the skills. Increasing the number of correct responses in the

second pattern allows us to decide the respondent has mastered Attributes 2, 7, and

8. These are relatively easy skills such as separating a whole number from a fraction,

simple subtraction of numerators, and reducing answers to simplest form. We are

also able to decide that the respondent has not mastered several difficult skills; At-

tributes 1, 4, and 5 concern converting whole numbers into fractions, finding common

denominators, and borrowing from the whole number part. The respondent remains

unclassified for fewer attributes with the increasing number of correct responses; he

or she remains unclassified for the third and sixth attributes. This fits with the low

marginal separability rates for those attributes. Finally, the response pattern where

all items have been answered correctly allows for the easiest classification, and the

respondent is classified as having mastered all the skills. The good news from this

comparison of NIAD-DINA classifications for different response patterns is that the

results make sense; the bad news is that, depending on the prevalence on the various

attribute profiles, potentially many individuals may remain unclassified for several

attributes at the end of the day. No further improvements can be made solely based
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Table 4.18: Comparison of NIAD-DINA classifications for three response patterns

Items answered correctly Skills mastered Need work No decision
j : rj = 1 α̂k = 1 α̂k = 0 α̂k = ∗

none none 2,7 1, 3-6, 8,9
6,8,9,12,14,16 2,7,8 1,4,5 3,6

all all none none

on data collected during the assessment; however, a researcher willing to make further

assumptions may be able to further classify individuals. For example, an attribute

hierarchy that disallows mastery of any skill without mastery of simple subtraction

would allow a classification of non-mastery on all skills for individuals with the zero

response pattern.

On a final, minor note, we take a look at how the reduction of the parameter

space for the DINA model, based on identifiability, affects model selection by AIC

and BIC. The nomial number of parameters in the DINA model is incorrect if there

is non-identifiability; the number of parameters when the πα has been collapsed into

π[α] counts the parameters correctly. The adjusted values for the AIC and BIC in

Table 4.19 show that, in particular, the AIC no longer prefers the ind-DINA to the

full DINA model once the reduced parameter space has been applied. The BIC, which

will generally choose sparser models than the AIC, still reports lower values for the

ind-DINA, but the comparison is much tighter.

4.6 Discussion

The issue of identifiability is a serious one for cognitive diagnosis models, with con-

sequences for both parameter estimation and respondent classification. The impos-
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Table 4.19: AIC and BIC for the DINA, RHO-DINA, and ind-DINA.

parameters AIC BIC

DINA 296 9397.0 10665.2
NIAD-DINA 98 9001.0 9420.9
HO-DINA 56 8959.7 9199.6
RHO-DINA 49 8961.9 9171.9
ind-DINA 48 9208.3 9413.9

sibility of learning certain types of information under non-identifiability leaves both

procedures highly sensitive to the prior placed on the data; in fact, diagnostic assess-

ments can easily contain no information differentiating certain types of profiles. This

is especially true for large-scale assessments that were not created with cognitive di-

agnosis in mind. Attempting to diagnose overly fine-grained attributes also tends to

make avoiding non-identifiability difficult, as does attempting to diagnose too many

attributes with too few items. The proposed Q-matrix for the TIMSS 2003 Mathe-

matics in Su et al. (2013), for example, has all of these failings. Diagnostic decisions

based on such assessments should be made with great caution and must account for

identifiability issues in some way.

Some methods currently in use may resolve identifiability issues by enforcing re-

strictions on the attribute profile space. Variants of the DINA such as the ind-DINA,

HO-DINA, and RHO-DINA accomplish this by specifying a structure and a prior

on the probabilities πα. Although this may eliminate non-identifiability and create a

unique global maximum for the likelihood, inappropriate priors and model misspecifi-

cation becomes a risk. Thus, careful comparison of these variants to the NIAD-DINA

becomes important. Similarly, assuming attribute hierarchies may alleviate the issue

of identifiability by restricting the parameter space, but misspecification of attribute

hierarchies may cause issues.
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Using the tools discussed in this paper, it is possible to determine the extent to

which non-identifiability affects classification and estimation under the DINA model.

Marginal separability rates ζ, which can be estimated consistently, provide an overall

measure of the extent of non-identifiability; meanwhile, NIAD-DINA classification

should be used to control classification errors that are otherwise quite sensitive to the

prior information. The results here suggest that when all items testing a particular

attribute also test other attributes, non-identifiability may not be such a serious

issue of the other attributes are ‘basic’ ones mastered by a large proportion of the

population. After all, it is only impossible to recover information about a particular

attribute when the respondent does not possess one or more of the other attributes

tested by the same item. This statement reverses itself for the DINO model; while

multi-attribute items are just as problematic, but the attribute profiles that non-

identifiability affects the most are those where many skills are in the ‘mastered’ state.

This observation has important applications to experiment design. Identifiability

can often be difficult to achieve; for example, it may be difficult to create items

measuring advanced skills without including basic ones. In addition, the design of

educational assessment often balances a variety of concerns, and items measuring only

one attribute may be less desirable for efficiency reasons, for instance. The results

from this paper can guide a practioner in balancing concerns about identifiability

and efficiency. The impact of non-identifiability depends on the prevalence of certain

attribute profiles in the population. When the proportion of the population possessing

certain basic skills is very high, measuring more advanced skills with these basic skills

will seldom lead to issues with statistical inference. The prevalence πα will have a very

small range, and classification on advanced skills will only be difficult for the small

number of individuals who do not possess the basic skills. It then becomes reasonable

to push for an efficiency gain in measuring these basic skills together, for example, and
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items can measure advanced skills together with these basic skills with little loss of

information. Interestingly enough, relaxing the identifiability conditions of the DINA

model through attribute hierarchy brings similar lessons in assessment design. Recall

that under attribute hierarchy, an item measuring the k-th attribute in combination

with its prerequisites could replace the item measuring solely the k-th attribute in our

original requirements for completeness. In other words, when the attribute hierarchy

pushes the prevalence of profiles where the basic skills are unknown and the advanced

skills are known to zero, identifiability can be achieved even with items requiring a

combination of these skills. Thus, again, measuring advanced skills in combination

with basic skills does not lead to much of a loss due to non-identifiability.

This thesis addresses the identifiability issue for the DINA and its variants, includ-

ing its dual, the DINO model, but identifiability is a major concern for most Q-matrix

based cognitive diagnosis models. This is especially true for larger models such as

the General Diagnostic Model von Davier (2005), the Log-Linear Cognitive Diagnosis

Model Henson et al. (2009), and the Generalized DINA Model de la Torre (2011),

where the situation is even worse because of the larger number of parameters. The

exact identifiability requirements of these models remains a topic of study that must

be tackled before they can be rigorously applied to real data. In the most difficult

cases, simultaneous parameter estimation and respondent classification may be inad-

visable; separate rounds of item calibration and diagnostic testing can be conducted

for better results.
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Appendix A

Proofs

A.1 The T-matrix

The T-matrix is a central construct in proving results about identifiability; in particu-

lar, it sets up a linear dependence between the attribute distribution and the response

distribution. The T-matrix was central to the theory of Q-matrix estimation in Liu

et al. (2013).

The T-matrix specifies the probability that an individual with attribute profile

α will answer all items in some subset of the items S ⊆ {1, . . . , J} correctly. The

subsets S may be indexed by response vectors x ∈ {0, 1}J with exactly the items in S

correct, i.e., xj = 1 iff j ∈ S. Then the T-matrix T (Q, c, g) is a matrix of conditional

survival probabilities Pr(X � x|Q, c, g,α) written as a function of Q, c, and g. Thus

its entries, indexed by x and α, are

tx,α(Q, c, g) = Pr(X � x|Q, c, g,α)

=
∑

x′�x

p(x′|Q, c, g,α) =
∏

j:xj=1

c
ξj(Q,α)

j g
1−ξj(Q,α)

j
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for all x 6= 0. Note that t0,α(Q, c, g) = Pr(X � 0) = 1 for all Q, c, g,α.

By definition, multiplying the T-matrix by the the distribution of attribute profiles

π results in a vector containing the marginal survival probabilities Pr(X ≥ x|Q, c, g)

of successfully answering each subset of items correctly. The x-th entry of this vector

is

Tx(Q, c, g)⊤π =
∑

α

tx,α(Q, c, g)πα

=
∑

x′�x

p(x′|Q, c, g,π) = Pr(X � x|Q, c, g,π).

Thus, T (Q, c, g) describes the linear dependence between the distribution of attribute

profiles π and the response distribution:

T (Q, c, g)π =



































1

Pr(X1 = 1|Q, c, g,π)
...

Pr(XJ = 1|Q, c, g,π)

Pr(X1 = 1, X2 = 1|Q, c, g,π)
...

Pr(Xj = 1 for j = 1, . . . , J |Q, c, g,π)



































.

When referring to the ideal situation, where s = g = 0, we may omit the second and

third arguments of T (·) to write T (Q) = T (Q, 1, 0).

A.2 Two useful propositions

We begin with two important propositions necessary to prove the main results; their

own proofs are postponed to the end of this section.
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Recall from Definitions 1 and 2 that identifiability and local identifiability depend

on the probability density function f(x; θ), which, when written as a function of the

parameters θ becomes the likelihood L(θ).

Under the DINA model specified in Section 2.2.2, given the full set of observations

X = {X i : i = 1, . . . , N} and a Q-matrix Q, the likelihood of any set of parameters

c, g,π can be written as

L(c, g,π;R) =

n
∏

i=1

p(X i|Q, c, g,π) =
∏

x∈{0,1}J

p(x|Q, c, g,π)Nx (A.1)

where Nx = |{i ∈ {1, . . . , N} : X i = x}| is the number of observations X i equal to

a particular response vector x and

p(x|Q, c, g,π) =
∑

α

πα

J
∏

j=1

Pr(Xj = xj |Q, cj, gj,α) (A.2)

is the probability of observing x given Q, c, g,π. The conditional probability Pr(Xj =

xj |Q, cj, gj,α) may be expressed as

c
xjξj(Q,α)

j g
xj(1−ξj(Q,α))

j (1− cj)
(1−xj)ξj(Q,α)(1− gj)

(1−xj)(1−ξj(Q,α)).

Defining the likelihood leads to the first of the two propositions, which ties the

T-matrix to the likelihood:

Proposition 13 For two sets of parameters (ĉ, ĝ, π̂) and (c̄, ḡ, π̄),

L(ĉ, ĝ, π̂;R) = L(c̄, ḡ, π̄;R)

for all observation matrices X if and only if the following equation holds:

T (Q, ĉ, ĝ)π̂ = T (Q, c̄, ḡ)π̄. (A.3)
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Proof. The observations follow a multinomial distribution over the set of possible

responses x ∈ {0, 1}J , with probabilities πx as defined in (A.2). Consider a P -matrix

P (Q, c, g) indexed like the T-matrix by response vectors x ∈ {0, 1}J and attribute

profiles α ∈ {0, 1}K. The entries of P (Q, c, g) are

px,α(Q, c, g) = Pr(X = x|Q, c, g,α).

For a particular (ĉ, ĝ, π̂) and (c̄, ḡ, π̄),

L(ĉ, ĝ, π̂;R) =
∏

x∈{0,1}J

(Px(Q, ĉ, ĝ, π̂))Nx

=
∏

x∈{0,1}J

(Px(Q, c̄, ḡ, π̄))Nx = L(c̄, ḡ, π̄;R)

for all observation matrices X iff Px(Q, ĉ, ĝ, π̂) = Px(Q, c̄, ḡ, π̄) for all x ∈ {0, 1}J .

In matrix notation as P (Q, ĉ, ĝ)π̂ = P (Q, c̄, ḡ)π̄. Since

tx,α(Q, c, g) = Pr(X � x|Q, c, g) =
∑

x�x

px,α(Q, c, g)

there is a one-to-one linear transformation between P (Q, c, g) and T (Q, c, g) that is

not dependent on (Q, c, g), and

P (Q, ĉ, ĝ)π̂ = P (Q, c̄, ḡ)π̄ ⇔ T (Q, ĉ, ĝ)π̂ = T (Q, c̄, ḡ)π̄.

The second proposition describes the linear relationship between certain pairs of

T -matrices.

Proposition 14 There exists a matrix D(g∗) depending solely on g∗ = (g∗1, ..., g
∗
J),

such that for any g∗ ∈ R
J ,

T (Q, c− g∗, g − g∗) = D(g∗)T (Q, c, g).
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The matrix D(g∗) is always lower triangular with diagonal diag(D(g∗)) = 1, and thus

invertible.

Proof. In what follows, we construct such aD matrix satisfying the conditions in the

proposition, i.e., D(g∗) is a matrix only depending on g∗ such that Dg∗T (Q, c, g) =

Tc−g∗,g−g∗(Q) for any Q, c, g. Recall that for any Q, c, g,

tx,α(Q, c, g) =
∏

j∈S

c
ξj(Q,α)

j g
1−ξj(Q,α)

j ∀ x ∈ {0, 1}J ,α ∈ {0, 1}K.

We may extend this definition to include c, g 6∈ [0, 1]M , though in such cases the tx,α

will no longer correspond to probabilities. Then for any g∗ ∈ R,

tx,α(Q, c− g∗, g − g∗) =
∏

j:xj=1

(cj − g∗j )
ξj(Q,α)(gj − g∗j )

1−ξj(Q,α) =
∏

j:xj=1

(bj − g∗j ),

where bj = c
ξj(Q,α)

j g
1−ξj(Q,α)

j = tej ,α(Q, c, g). By polynomial expansion,

tx,α(Q, c− g∗, g − g∗) =
∑

x′�x

(−1)
∑J

j=1 xj−x′

j

∏

j:xj−x′

j=1

g∗j
∏

k:x′

k
=1

bk.

Define the entries dx,x′(g∗) of D(g∗) as

dx,x′(g∗) =



























0 x′ 6� x

(−1)
∑J

j=1 xj−x′

j
∏

j:xj−x′

j=1 g
∗
j x′ ≺ x

1 x′ = x.

Then

T (Q, c− g∗, g − g∗) = D(g∗)T (Q, c, g),

where D(g∗) is a lower triangular matrix depending solely on g∗ with eigenvalues

equal to its diagonal. Since diag(D(g∗)) = 1, D(g∗) is invertible.
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A.3 Proofs for Chapter 3

Proof. [Theorem 1] The case where s = g = 0 was shown by (Chiu et al. 2009).

For general known s and g, by Proposition 13, π is nonidentifiable when Q, c, g are

known iff there exists π̂, π̄ ∈ R
2K

+ such that

T (Q, c, g)π̂ = T (Q, c, g)π̄.

This occurs iff T (Q, c, g) is not a full-rank matrix.

Suppose that the Q-matrix is not complete. WLOG, we assume that the row

vector corresponding to the first attribute is missing, i.e., e⊤
1 6∈ RQ. Then, in the

T-matrix, the columns corresponding to attribute profiles 0 and e1 are both equal to

(1, g1, . . . , gJ , g1g2, . . . , g1 · · · gj)
⊤ ,

and rank(T (Q, c, g)) < 2K .

When Q is complete, assume WLOG that Q1:K = IK . The matrix T (Q, c, g)

is full-rank iff T (Q, c − g, 0) is full-rank, since, by Proposition 14, T (Q, c − g, 0) =

D(g)T (Q, c, g) andD(g) is invertible. Consider the rows of T (Q, c−g, 0) correspond-

ing to combinations of the first K items, i.e. x ∈ {0, 1}J s.t. xj = 0 for all j > K.

This constitutes an upper-triangular sub-matrix of size 2K ×2K with diagonal entries
∏

j:xj=1(cj − gj) 6= 0. Thus, T (Q, c− g, 0) is full-rank, and π is identifiable.

Proof. [Theorem 2] When g is known, we may combine Propositions 13 and 14 to

show that two sets of parameters (ĉ, g, π̂) and (c̄, g, π̄) produce equal likelihoods iff

T (Q, ĉ− g, 0)π̂ = D(g)T (Q, ĉ, g)π̂

= D(g)T (Q, c̄, g)π̄ = T (Q, c̄− g, 0)π̄.



76

Note that cj ∈ (gj, 1] ⇔ cj − gj ∈ (0, 1− gj].

Sufficiency. For each item j ∈ {1, . . . , J}, Condition C2 implies that there exists

some set of items Sj ⊂ {1, . . . , J} s.t. j 6∈ Sj and the attributes required by item j

are a subset of the attributes required by the items in Sj ; then the sets of attributes

required by items in Sj and by items in Sj ∪{j} are identical. Mathematically, there

exists xj ∈ {0, 1}J s.t. rjj = 0 and

Txj (Q, 1, 0) = Txj+ej (Q, 1, 0).

To find xj for each item j, first suppose that j ∈ {1, . . . , K}. Then Qj = e⊤
j and

there is some j′ ∈ {K + 1, . . . , J} s.t. qj′j = 1. Let xj = ej′. Otherwise, when

j ∈ {K + 1, . . . , J}, let xj =
∑

{ℓ:qj,ℓ=1} eℓ.

Then given any two sets of parameters (ĉ, 0, π̂) and (c̄, 0, π̄) s.t. T (Q, ĉ, 0)π̂ =

T (Q, c̄, 0)π̄,

ĉj =
Tej+xj(Q, ĉ, 0)π̂

Txj(Q, ĉ, 0)π̂
=

Tej+xj (Q, c̄, 0)π̄

Txj(Q, c̄, 0)π̄
= c̄j .

Thus, ĉ = c̄; then, by Theorem 1, π̂ = π̄.

Necessity. By Theorem 1, Condition C1 is necessary. Suppose Condition C2

fails to hold. WLOG, it fails to hold for the first attribute and qj,1 = 0 for all j 6= 1.

Consider any set of parameters (ĉ, π̂) s.t. ĉj ∈ (gj, 1] for all j ∈ {1, . . . , J} and

π̂ ∈ (0, 1)2
K

,
∑

α πα = 1. There exists c̄1 close enough to ĉ1 so that c̄1 ∈ (g1, 1] and

π̄α ∈ (0, 1) for all α ∈ {0, 1}K , where

π̄α =











(ĉ1/c̄1)π̂α α1 = 1

π̂α + π̂α+e1(1− ĉ1/c̄1) α1 = 0.
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Then, for any x ∈ {0, 1}J s.t. x1 = 0, Tx(Q, ĉ, 0) = Tx(Q, c̄, 0) and

Tx(Q, ĉ, 0)π̂ =
∑

{α:α1=0}

tx,α(Q, ĉ, 0)(π̂α + π̂α+e1)

=
∑

{α:α1=0}

tx,α(Q, c̄, 0)(π̄α + π̄α+e1) = Tx(Q, c̄, 0)π̄.

Otherwise, x1 = 1 and

Tx(Q, ĉ, 0)π̂ =
∑

α:α1=1

tx−e1,α(Q, ĉ, 0)ĉ1π̂α

=
∑

α:α1=1

tx−e1,α(Q, c̄, 0)c̄1π̄α = Tx(Q, c̄, 0)π̄.

Thus we have found distinct sets of parameters satisfying (A.3), and shown that

Condition C2 is necessary.

Proof. [Theorem 3] Thanks to Theorems 1 and 2, Conditions C1 and C2 are neces-

sary for identifiability. We now show the necessity of Condition C3. Suppose C3 does

not hold, but C1 and C2 do. Then all attributes are required by at least two items

and there exists an attribute such that it is only required by two items. WLOG, this

is the first attribute.

When both items requiring the first attribute require only the first attribute, the

Q-matrix can be written WLOG as

Q =











1 0⊤

1 0⊤

0 Q′











.

As was done for x1 in the proof of necessity for Theorem 2, consider each possible

value of (x1, x2) ∈ {0, 1}2 to conclude that, for any distinct sets of parameters (ĉ, ĝ, π̂)
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and (c̄, ḡ, π̄), T (Q, ĉ, ĝ, )π̂ = T (Q, c̄, ḡ)π̄ if for every α ∈ {0, 1}K s.t. α1 = 0,






































π̂α + π̂α+e1 = π̄α + π̄α+e1 (x1, x2) = (0, 0)

ĉ1π̂α+e1 + ĝ1π̂α = c̄1π̄α+e1 + ḡ1π̄α (x1, x2) = (1, 0)

ĉ2π̂α+e1 + ĝ2π̂α = c̄2π̄α+e1 + ḡ2π̄α (x1, x2) = (0, 1)

ĉ1ĉ2π̂α+e1 + ĝ1ĝ2π̂α = c̄1c̄2π̄α+e1 + ḡ1ḡ2π̄α (x1, x2) = (1, 1).

(A.4)

Otherwise, the Q-matrix can be written WLOG as

Q =











1 0⊤

1 v⊤

0 Q′











,

where v is a (K − 1)-dimensional nonzero vector. Then T (Q, ĉ, ĝ, )π̂ = T (Q, c̄, ḡ)π̄

if






































π̂α + π̂α+e1 = π̄α + π̄α+e1 ∀ α : α1 = 0

ĉ1π̂α+e1 + ĝ1π̂α = c̄1π̄α+e1 + ḡ1π̄α ∀ α : α1 = 0

ĉ2π̂α+e1 + ĝ2π̂α = c̄2π̄α+e1 + ḡ2π̄α ∀ α : α1 = 0,α � (0 v⊤)

ĉ1ĉ2π̂α+e1 + ĝ1ĝ2π̂α = c̄1c̄2π̄α+e1 + ḡ1ḡ2π̄α ∀ α : α1 = 0,α � (0 v⊤).

(A.5)

Since the equations in (A.5) are a subset of the equations in (A.4), finding sets of

parameters (ĉ, ĝ, π̂) and (c̄, ḡ, π̄) fulfilling (A.4) completes the proof for both types

of Q-matrics.

Choose a valid set of parameters (ĉ, ĝ, π̂) s.t. π̂α/π̂α+e1 = ρ is constant over all

α ∈ {0, 1}K s.t. α1 = 0. Then, for any ḡ ∈ R
J , setting

c̄j =



























ḡ1 +
(ĉ1−ḡ1)(ĉ2−ḡ2)+ρ(ĝ1−ḡ1)(ĝ2−ḡ2)

(ĉ2−ḡ2)+ρ(ĝ2−ḡ2)
, j = 1

ḡ2 +
(ĉ1−ḡ1)(ĉ2−ḡ2)+ρ(ĝ1−ḡ1)(ĝ2−ḡ2)

(ĉ1−ḡ1)+ρ(ĝ1−ḡ1)
, j = 2

ĉj , j = 3, . . . , J
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and setting

π̄α+e1 =
((ĉ1 − ḡ1) + ρ(ĝ1 − ḡ1))((ĉ2 − ḡ2) + ρ(ĝ2 − ḡ2))

(ĉ1 − ḡ1)(ĉ2 − ḡ2) + ρ(ĝ1 − ḡ1)(ĝ2 − ḡ2)
π̂α+e1 ,

π̄α = π̂α + π̂α+e1 − π̄α+e1

for every α ∈ {0, 1}K s.t. α1 = 0 results in a solution to (A.4). By continuity, there

is ḡ sufficiently close to ĝ so that c̄, ḡ ∈ [0, 1]J , c ≻ g, and π̄ ≻ 0. Thus, the model

is non-identifiable when Condition C3 fails, making it a necessary condition.

Proof. [Theorem 4] Suppose that Conditions C1 and C3 hold, and let (ĉ, ĝ, π̂) and

(c̄, ḡ, π̄) be two sets of parameters solving equation (A.3). According to Condition C1,

there is an item requiring solely the k-th attribute for each k ∈ {1, . . . , K}. Moreover,

by Condition C3, there are also least two additional items requiring the k-th attribute.

We begin the proof of sufficiency by showing that for every k, there exists an item j

requiring the k-th attribute s.t. ĝj = ḡj. The case where all these items require solely

the k-th attribute and the case where at least one requires multiple attributes are

treated separately.

Case 1 All items requiring the k-th attribute require solely the k-th attribute. WLOG,

k = 1 and the first three rows of Q are as follows:

Q1:3 =











1 0⊤

1 0⊤

1 0⊤











.

By Proposition 14, T (Q, ĉ, ĝ)π̂ = T (Q, c̄, ḡ)π̄ iff

T (Q, ĉ− ĝ, 0)π̂ = T (Q, c̄− ĝ, ḡ − ĝ)π̄.
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Then, since

Te1+e3(ĉ− ĝ, 0)π̂

Te1(ĉ− ĝ, 0)π̂
= ĉ3 − ĝ3 =

Te1+e2+e3(ĉ− ĝ, 0)π̂

Te1+e2(ĉ− ĝ, 0)π̂
,

we may conclude that

Te1+e3(c̄− ĝ, ḡ − ĝ)π̄

Te1(c̄− ĝ, ḡ − ĝ)π̄
=

Te1+e2+e3(c̄− ĝ, ḡ − ĝ)π̄

Te1+e2(c̄− ĝ, ḡ − ĝ)π̄
.

Let c̃ = c̄− ĝ and let g̃ = ḡ − ĝ. In addition, let π̄i =
∑

α:α1=i πα for i = 0, 1.

Then the previous equation may be written as

g̃1g̃3π̄0 + c̃1c̃3π̄1

g̃1π̄0 + c̃1π̄1
=

g̃1g̃2g̃3π̄0 + c̃1c̃2c̃3π̄1

g̃1g̃2π̄0 + c̃1c̃2π̄1

and

g̃1c̃1(c̃2 − g̃2)(c̃3 − g̃3)π̄0π̄1 = 0.

By assumption, π̄ ≻ 0, c̃ ≻ g̃, so ĝ1 = ḡ1 or c̄1. By symmetry, ḡ1 = ĝ1 or ĉ1. If

ĝ1 6= ḡ1, then ĉ1 = ḡ1 and c̄1 = ĝ1. This contradicts the assumption that ĉ ≻ ĝ

and c̄ ≻ ḡ. Thus ĝ1 = ḡ1.

Case 2 At least one item requiring the k-th attribute requires multiple attributes.

WLOG, k = 1 and

Q1:3 =











1 0 0⊤

1 1 v⊤

0 1 0⊤











,

for some vector v ∈ {0, 1}K−2. We will show that ĝ2 = ḡ2.

Since
Te1+e2(ĉ− ĝ, 0)π̄

Te2(ĉ− ĝ, 0)π̄
= ĉ1 − ĝ1 =

Te1+e2+e3(ĉ− ĝ, 0)π̄

Te2+e3(ĉ− ĝ, 0)π̄
,

we know that

Te1+e2(c̄− ĝ, ḡ − ĝ)π̄

Te2(c̄− ĝ, ḡ − ĝ)π̄
=

Te1+e2+e3(c̄− ĝ, ḡ − ĝ)π̄

Te2+e3(c̄− ĝ, ḡ − ĝ)π̄
.
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Thus,

g̃1g̃2π̄0,0 + c̃1g̃2π̄1,0 + g̃1g̃2π̄0,1 + c̃1c̃2π̄1,1

g̃2π̄0,0 + g̃2π̄1,0 + g̃2π̄0,1 + c̃2π̄1,1

=
g̃1g̃3g̃2π̄0,0 + c̃1g̃3g̃2π̄1,0 + g̃1c̃3g̃2π̄0,1 + c̃1c̃3c̃2π̄1,1

g̃3g̃2π̄0,0 + g̃3g̃2π̄1,0 + c̃3g̃2π̄0,1 + c̃3c̃2π̄1,1
,

where π̄i,j =
∑

α:(α1,α2)=(i,j) π̄α for (i, j) ∈ {0, 1}2, g̃j = ḡj − ĝj for j = 1, 2, 3,

c̃j = c̄j − ĉj for j = 1, 3, and

c̃2 =
(c̄2 − ĉ2)

∑

α:α�Q2
πα + (ḡ2 − ĝ2)

∑

α:α1=α2=1,α 6�Q2
π̄α

π̄1,1
.

Cross-multiply and cancel to obtain that

π̄0,1π̄1,0(c̃1 − g̃1)g̃
2
2(c̃3 − g̃3) = π̄0,0π̄1,1(c̃1 − g̃1)c̃2g̃2(c̃3 − g̃3)

Now suppose that ĝ2 6= ḡ2. Since c̃j > g̃j for j = 1, 2, 3,

π̄1,0π̄0,1(ḡ2 − ĝ2) = π̄0,0π̄1,1(c̄2 − ĝ2). (A.6)

In addition, by symmetry,

π̂1,0π̂0,1(ĝ2 − ḡ2) = π̂0,0π̂1,1(ĉ2 − ḡ2), (A.7)

where π̂i,j =
∑

α:(α1,α2)=(i,j) π̂α for (i, j) ∈ {0, 1}2.

Taken together, (A.6) and (A.7) imply that either ĉ3 > ĝ3 > c̄3 > ḡ3 or c̄3 >

ḡ3 > ĉ3 > ĝ3. However, since Te2
(ĉ, ĝ)π̂ = Te2(c̄, ḡ)π̄,

ĝ2(π̂0,0 + π̂1,0 + π̂0,1) + ĉ2π1,1 = ḡ2(π̄0,0 + π̄1,0 + π̄0,1) + c̄2π1,1.

This is a contradiction; thus ĝ2 = ḡ2.
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WLOG, the Q-matrix can be written as

Q =





IK

Q′



 .

We have shown that for each k ∈ {1, . . . , K}, there exists some item jk > K requiring

the k-th attribute s.t. ĝjk = ḡjk . For each item j > K, let xj =
(

Q⊤
j 0

)

be the

response vector selecting those among the first K items requiring attributes required

by the j-th item. Then xj and xj + ej denote distinct sets of items with identical

attribute requirements and

ĉj − ĝj =
Txj+ej (Q, ĉ− ĝ, 0)π̂

Txj (Q, ĉ− ĝ, 0)π̂
=

Txj+ej (Q, c̄− ĝ, ḡ − ĝ)π̄

Txj (Q, c̄− ĝ, ḡ − ĝ)π̄
. = c̄j − ĝj

Thus, ĉj = c̄j if ĝj = ḡj; by the proof of Case 2, this includes all items j requiring

multiple attributes. Otherwise, Qj = ek for some k ∈ {1, . . . , K}, and the response

vectors ej + ejk and ejk represent distinct combinations of items with identical at-

tribute requirements, so that

ĉj =
Tej+ejk

(Q, ĉ− ĝjkejk , ĝ − ĝjkejk)π̂

Tejk
(Q, ĉ− ĝjkejk , ĝ − ĝjkejk)π̂

=
Tej+ejk

(Q, c̄− ĝjkejk , ḡ − ĝjkejk)π̄

Tejk
(Q, c̄− ĝjkejk , ḡ − ĝjkejk)π̄

= c̄j .

Thus, ĉj = c̄j for every j ∈ {1, . . . , J}, i.e., ĉ = c̄.

We now consider the identifiability of the remaining gj. For each j > K s.t.

Qj = ek for some k ∈ {1, . . . , K}, let c∗ = ĉkek + ĉjej . Then

ĝk − ĉk =
Tek+ej(ĉ− c∗, ĝ − c∗)π̂

Tek(ĉ− c∗, ĝ − c∗)π̂
=

Tek+ej(c̄− c∗, ḡ − c∗)π̄

Tek(c̄− c∗, ḡ − c∗)π̄
= ḡk − ĉk

and ĝk = ḡk. Thus gj is identifiable for all j > K.

To show the identifiability of g1, . . . , gK , for each k ≤ K let

xk =
J
∑

j=K+1

ej(1− qj,k)
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represent the set of items in Q′ not requiring the k-th attribute. When Condition C4

holds, there is some item ℓ > K requiring the k-th attribute and no other attributes

not required by the set of items denoted by xk. Let g∗ = (ĉ1, . . . , ĉk, ĝK+1, . . . , ĝJ)
⊤.

Then, for any set of parameters (c, g,π) s.t. gj = ĝj for all j > K,

Tx(Q, c− g∗, g − g∗)π =

(

J
∏

j=K+1

(cj − ĝj)
xj

)

∑

α∈{0,1}K

παtx,α(Q)

for all response vectors x s.t. xj = 0 for all j ≤ K. Since ĉ = c̄ and ḡj = ĝj for all

j > K, this implies that

∑

α∈{0,1}K

π̂αtx,α(Q) =
∑

α∈{0,1}K

π̄αtx,α(Q) (A.8)

for all such x. Consider the row of T (Q, c−g∗, g−g∗) corresponding to the combina-

tion of the k-th item with all the items denoted by xk. The entries of this row-vector

are non-zero only for attribute profiles denoting mastery of the skills required by xk

and non-mastery of the k-th attribute. Thus,

Tek+xk(Q, c− g∗, g − g∗)π

= (gk − ĉk)

(

J
∏

j=K+1

(cj − ĝj)
xk
j

)

∑

α∈{0,1}K

πα(txk ,α(Q)− tek+xk,α(Q)).

When Condition C4 holds, there is some x s.t. xj = 0 for all j ≤ K and Tek+xk(Q) =

Tx+xk(Q). Then, by (A.8)

∑

α∈{0,1}K

π̂α(txk(Q)− tek+xk,α(Q)) =
∑

α∈{0,1}K

π̄α(txk(Q)− tek+xk ,α(Q)).

Since Tek+xk(Q, ĉ− g∗, ĝ − g∗)π̂ = Tek+xk(Q, c̄− g∗, ḡ − g∗)π̄, it must be true that

ĝk = ḡk. Thus, g is fully identifiable and by Theorem 1 so is π.
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Proof. [Theorem 5] By Proposition 13, π is nonidentifiable when Q, c, g are known

iff there exists π̂, π̄ ∈ R
2K

+ such that

T (Q, c, g)π̂ = T (Q, c, g)π̄.

Attribute hierarchy forces some entries of π to zero. By assumption, for all α allowed

under the attribute hierarchy, πα > 0. It is possible to find valid π̂ 6= π̄ iff the reduced

T-matrix T ∗(Q, c, g), which only contains columns corresponding to attribute profiles

allowed by the attribute hierachy, is not a full column rank matrix.

Suppose that the identifiability condition does not hold. WLOG, we assume that

it fails for the first attribute, i.e., all items measuring the first attribute also measure

at least one attribute that is not a prerequisite of the first attribute. Consider the

attribute profile α(1), defined by α
(1)
k = I(k E 1), k = 1, . . . , K; the profile α(1)

represents possession of the first attribute and all its prerequisites. Compare to α(2),

defined by α
(2)
k = I(k ⊳ 1), k = 1, . . . , K, the profile representing possession of all

the first attribute’s prerequisites, but not the first attribute itself. By the transitivity

property of partial orders, α(1) and α(2) are both valid attribute profiles under the

attribute hierarchy. To elaborate for α(2), if α
(2)
k1

= 1 for some k1 6= 1, then for

any prerequisite Attribute k2 of Attribute k1, we need to show that α
(2)
k2

= 1. By

transitivity k2 ⊳ k1, k1 ⊳ 1 ⇒ k2 ⊳ 1. Then α
(2)
k2

= 1 by construction.

We show that the ideal response vectors of α(1) and α(2) are identical by contra-

diction. Suppose there is some item j s.t. ξj(Q,α(1) > ξj(Q,α(2)). Then qj1 = 1.

Since the identifiability condition does not hold, qk1 = 1 for some k ∈ {2, . . . , K} s.t.

k 6⊳ 1. Then by construction ξj(Q,α(1)) = 0, which is a contradiction. Now, since the

ideal responses are identical, the columns of the reduced T-matrix T ∗ corresponding

to α(1) and α(2) are identical and the T ∗ is not full column rank.

Suppose Q fulfills the identifiability condition. WLOG, for items j = 1, . . . , K, the
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j-th item requires only the j-th attribute and, possibly, a subset of its prerequisites.

Mathematically, qjj = 1 and qj,k = 0 for all k s.t. k 6E j. Now the ‘key item’ measuring

the k-th attribute is precisely the k-th item; we have ‘matched’ the k-th item and k-th

attribute for k = 1, . . . , K. Next, recall that the columns of the reduced T-matrix T ∗

are lexicographically ordered and correspond to the attribute profiles allowed by the

attribute hierarchy. We find a square sub-matrix T ∗∗ by selecting only the rows of T ∗

corresponding to combinations of items that ‘match’ those attribute profiles. If we

suppose the ℓ-th column of T ∗ corresponds to profile α(ℓ), then the ℓ-th row of T ∗∗

corresponds to the set of items {j : α(ℓ)
j = 1}.

We show that T ∗∗(Q, c − g, 0) is upper triangular, and that thus, by way of

Proposition 14, T ∗(Q, c, g) is full column rank. Consider the diagonal entries of

T ∗∗(Q, c−g, 0). Since c ≺ g, the entries of diag(T ∗∗(Q, c−g, 0)) are nonzero iff α(ℓ)

fulfills the attribute requirements of the ℓ-th row of T ∗∗. Let Sℓ = {k : α
(ℓ)
k = 1}.

It is both the set of attributes indicated by the ℓ-th column and the set of items

indicated by the ℓ-th row. For any item j ∈ Sℓ, qj,k = 1 ⇒ k E j ⇒ α
(ℓ)
k = 1.

Then ξj(Q,α(ℓ)) =
∏

k∈Sj
α
(ℓ)
k = 1 for all j ∈ Sℓ and t∗∗ℓ,ℓ(Q, c − g, 0) > 0. Below

the diagonal, consider the entry at the ℓ1-th column and ℓ2-th row, with ℓ1 < ℓ2.

The items indicated by the ℓ2-th row require all attributes k s.t. α
(ℓ2)
k = 1. Since

the columns are ordered lexicographically, ∃k ∈ Sℓ2 s.t. 1 = α
(ℓ2)
k > α

(ℓ1)
k = 0. Then

ξk(Q,α
(ℓ1)
1 = 0 ⇒ t∗∗ℓ2,ℓ1(Q, c− g, 0) = 0. So T ∗∗(Q, c− g, 0) is upper triangular and

T ∗(Q, c, g) is full column rank.

Proof. [Theorem 6]

Sufficiency. Suppose Conditions D1 and D2 hold. Recall that WLOG, we assume

the first K items fulfill Condition D1 for the K attributes, specifically with the k-th

item measuring the k-th attribute and perhaps a subset of its prerequisites. For any
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item j∗ > K, let x(j∗) be a J-dimensional vector indicating the items amongst the

first K corresponding to j∗-th item’s required, so that for j ≤ K, x
(j∗)
j = I(qj∗,j = 1).

Then, for any two sets of parameters (ĉ, π̂) and (c̄, π̄) s.t. T (Q, ĉ, g)π̂ = T (Q, c̄, g)π̄,

ĉj∗ − gj∗ =
Tx(j∗)+ej∗

(Q, ĉ− g, 0)π̂

Tx(j∗)(Q, ĉ− g, 0)π̂
=

Tx(j∗)+ej∗
(Q, c̄− g, 0)π̄

Tx(j∗)(Q, c̄− g, 0)π̄
= c̄j∗ − gj∗.

This holds because for any (x, c,π),

Tx,c,π(Q, c− g, 0)π =
∏

j:xj=1

(cj − gj)
∑

α:ξj(Q,α)=1∀j:xj=1

πα,

and by construction of x(j∗), ξj(Q,α) = 1 ∀j : x(j∗) = 1 ⇒ ξj∗(Q,α) = 1. Then,

∑

α:ξj(Q,α)=1∀j:x
(j∗)
j =1

πα =
∑

α:ξj(Q,α)=1∀j:x
(j∗)
j +ej=1

πα

and the conclusion follows.

For items j∗ ≤ K, there must be some item j∗∗ 6= j∗ measuring either the j-th

attribute or an attribute requiring the j-th attribute. For terminal attributes, this

follows from Condition D2. For non-terminal attributes, this is a consequence of Con-

dition D1. Then, for any two sets of parameters (ĉ, π̂) and (c̄, π̄) s.t. T (Q, ĉ, g)π̂ =

T (Q, c̄, g)π̄,

ĉj∗ − gj∗ =
Tej∗∗+ej∗ (Q, ĉ− g, 0)π̂

Tej∗∗ (Q, ĉ− g, 0)π̂
=

Tej∗∗+ej∗ (Q, c̄− g, 0)π̄

Tej∗∗ (Q, c̄− g, 0)π̄
= c̄j∗ − gj∗.

We need to check that prevalence of profiles α fulfilling the attribute requirements of

the j∗∗-th item but not the j∗-th item is zero. Suppose that for some α, ξj∗(Q,α) = 0

and ξj∗∗(Q,α) = 1. Since ξj∗(Q,α) = 0, αk1 = 0 for some k1 s.t. k1 E j. Since

ξj∗∗(Q,α) = 1, αk2 = 1 for some k2 s.t. j E k2. By transitivity, k1 E k2. Then, by

the rules of attribute hierarchy, 0 = αk1 < αk2 = 1 ⇒ πα = 0.

To finish, now that ĉj = c̄j for all items j, Condition D1 implies that π̂ = π̄.
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Necessity. We have shown that Condition D1 is necessary. Suppose it is fulfilled,

but Condition D2 is not for some terminal attribute. WLOG let this attribute be

the first one. Given any (ĉ, π̂) s.t. ĉ > g and π̂α = 0 iff α is disallowed by the

attribute hierarchy, it is possible to find (c̄, π̄) fulfilling the same restrictions s.t.

T (Q, ĉ, g)π̂ = T (Q, c̄, g)π̄. To show this, we first set ĉj = c̄j for all j ≥ 2. Divide the

set of attribute profiles into A0 = {α : α1 = 0} and A1 = {α : α1 = 1}. Given any

c̄1 ∈ (g1, ĉ1), let

π̄α =











ĉ1
c̄1
π̂α α ∈ A1

π̂α +
(

1− ĉ1
c̄1

)

π̂α+e1 α ∈ A0.

Note that attribute profiles α disallowed by the hierarchy still have prevalence π̄α = 0.

For α ∈ A1 disallowed by the hierarchy, this follows easily from π̂α = 0. For α ∈ A0

disallowed by the hierarchy, α + e1 must also be disallowed by the hierarchy since

the first attribute is terminal and not a prerequisite for any other attributes. Then,

π̂α = π̂α+e1 = 0 ⇒ π̄α = 0. As for the profiles allowed under the hierarchy, there is

c̄1 close enough to ĉ1 so that π̄α ∈ (0, 1) for all such α.

We need to check that Tx(Q, ĉ−g, 0)π̂ = Tx(Q, c̄−g, 0)π̄ for all rows x ∈ {0, 1}J .

If x1 = 0, then the first attribute is not required by any of the items denoted by x.

Then, for α ∈ A0, ξj(Q,α) = 1∀j s.t. xj = 1 iff ξj(Q,α + e1) = 1∀j s.t. xj = 1. In

addition,

π̂α + π̂α+e1 = π̄α + π̄α+e1 ∀α ∈ A0

by construction. Thus,

Tx(Q, ĉ− g, 0)π̂ =
∏

j:xj=1

(ĉj − gj)
∑

α∈A0:ξj(Q,α)=1∀j:xj=1

(π̂α + π̂α+e1)

=
∏

j:xj=1

(c̄j − gj)
∑

α∈A0:ξj(Q,α)=1∀j:xj=1

(π̄α + π̄α+e1)

= Tx(Q, c̄− g, 0)π̄.
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For x s.t. x1 = 1, tx,α(Q, c− g, 0) > 0 only for α ∈ A1.

Tx(Q, ĉ− g, 0)π̂ = (ĉ1 − g1)
∏

j≥2:xj=1

(ĉj − gj)
∑

α∈A1:ξj(Q,α)=1∀j:xj=1

π̂α

= (c̄1 − g1)
∏

j≥2:xj=1

(ĉj − gj)
∑

α∈A1:ξj(Q,α)=1∀j:xj=1

ĉ1
c̄1
π̂α

= (c̄1 − g1)
∏

j≥2:xj=1

(c̄j − gj)
∑

α∈A1:ξj(Q,α)=1∀j:xj=1

π̄α

= Tx(Q, c̄− g, 0)π̄.

This finishes our proof.

A.4 Proofs for Chapter 4

Proof. [Proposition 7] Suppose ξ1j = ξ2j for all j such that 1− sj 6= gj. If 1− sj = gj,

then the response distribution for item j does not depend on ξ:

p(xj |ξ, s, g) =(1− sj)
ξjxjg

(1−ξj)xj

j s
ξj(1−xj)

j (1− gj)
(1−ξj)(1−xj )

=(1− sj)
xjs

1−xj

j = g
xj

j (1− gj)
1−xj .

Thus, for every x ∈ {0, 1}J ,

p(x|ξ1, s, g) =
m
∏

j=1

p(xj|ξ
1
j , sj, gj)

=
∏

{i:1−sj=gj}

p(xj |ξ
1
j , sj, gj)

∏

{i:1−sj 6=gj}

p(xj |ξ
1
j , sj, gj)

=
∏

{i:1−sj=gj}

p(xj |ξ
2
j , sj, gj)

∏

{i:1−sj 6=gj}

p(xj |ξ
2
j , sj, gj) = p(x|ξ2, s, g)

and α1 cannot be separated from α2.
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Now suppose that ξ1j 6= ξ2j for some j such that 1− sj 6= gj. Then

Pr(xj = 1|ξ1, s, g) = (1−sj)
ξ1jg

1−ξ1j
j 6= g

ξ1j
j (1−sj)

1−ξ1j = g1−ξ2

j (1−sj)
ξ2j = Pr(xj = 1|ξ2, s, g),

so the response distributions differ.

Proof. [Proposition 9] Suppose that Q is complete. WLOG, for j = 1, . . . , K let

qj = ej . Then, for j = 1, . . . , K, ξj(Q,α) = αj and given any two attribute profiles

α1 6= α2,

ξ1:K(Q,α1) = α1 6= α2 = ξ1:K(Q,α2)

By Proposition 7, Q separates any α1 6= α2.

Now suppose that ∃k∗ ∈ {1, . . . , K} such that ek∗ 6∈ RQ. WLOG, suppose k∗ = 1.

Consider profiles α = e1 and α′ = 0, the zero column-vector. For each item j =

1, . . . , J , if qj,1 = 0 then

ξj(Q, e1) =
(

10
)

∏

k 6=1

0qj,k =
(

00
)

∏

k 6=1

0qj,k = ξj(Q, 0).

Else, qj,1 = 1 and there exists some k∗∗ 6= 1 such that qj,k∗∗ = 1 and

ξj(Q, e1) =
(

01
)

∏

k 6=k∗∗

[1(k = 1)]qj,k = 0 =
(

01
)

∏

k 6=k∗∗

0qj,k = ξj(Q, 0).

Thus, ξ(Q, e1) = ξ(Q, 0) and by Proposition 7, attribute profiles e1 and 0 cannot be

separated.

Proof. [Theorem 11] We can write the likelihood

L(π) = p(X|π) =
N
∏

i=1

p(xi|π)
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and the log-likelihood as

ℓ(π) =
N
∑

i=1

log p(xi|π) =
∑

x∈{0,1}J

Nx log





∑

[α]

p (x |[α] ) π[α]



 ,

where Nx = #{i : xi = x}.

Suppose there are a total of L distinct equivalence classes partitioning the at-

tribute profile space. Rather than indexing the column vectors of the T-matrix by

the attribute profiles α, we index by the attribute profile equivalence classes [α].

Then the T-matrix is the 2J ×L matrix T = (tx,[α]), indexed over all response vectors

x and equivalence classes [α], such that tx,[α] = Pr(X ≥ x|[α]). This is well defined,

since tx,α is constant over α in the same equivalence class. The survival probabilities

for each vector x can be calculated via matrix multiplication as T (Q, c, g)π, and we

have identifiability iff T (Q, c, g)π̂ = T (Q, c, g)π̄ ⇒ π̂ = π̄. Then identifiability is

equivalent to T being a rank L matrix.

First, suppose that g ≡ 0. WLOG, it can be assumed that the L equivalence

classes [α1], . . . , [αL] are ordered lexicographically by their minimal representatives,

α1∗, . . . ,αL∗. Thus, if αk∗ ≥ αℓ∗, then k ≥ ℓ. Also, let xℓ = ξ(Q, [αℓ]) for ℓ ∈

{1, . . . , L}. Define T ∗ = (t∗k,ℓ, where t∗k,ℓ = txk,[αℓ]. Then T ∗ is an L × L sub-matrix

of T , containing the specified rows x1, . . . ,xL. Moreover, T ∗ is an upper triangular

matrix. This is a consequence of the fact that for any k > ℓ, αℓ∗ 6≥ αk∗. Thus,

there must be some item j ∈ {1, . . . , J} for which individuals with profiles α ∈ [αk]

possess the necessary attributes, but individuals with profiles α ∈ [αℓ] do not. Then

Pr(Xj = 1|[αℓ]) = gj = 0 ⇒ txk,[αℓ] = t∗k,ℓ = 0. In addition, on the diagonal,

t∗ℓ,ℓ =
∏

{i:xℓ
j=1}(1− sj) 6= 0. Thus, T ∗ is a rank L matrix, as is T .

Next suppose that g 6≡ 0. Consider the T matrix as a function of the item

probabilities of obtaining a correct answer given sufficient knowledge, c = 1 − s
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and the probabilities given insufficient knowledge, also known as the guessing vector

g. Then the T-matrix T (c, g) can be written as a linear transformation of another

T-matrix T (c− g, 0). For any subset of the items S and any constants bj ,

∏

j∈S

(bj − gj) =
∏

j∈S

bj −
∑

j∈S

gj
∏

k 6=j

bk +
∑

k 6=j∈S

gjgk
∏

ℓ 6=j,k

bℓ − · · ·+ (−1)#S
∏

j∈S

gj

In the case of the entries of the T-matrix, the bj will correspond to either cj or gj,

depending on the value of ξj(Q, [α]). Using this relationship, it is possible to write

T (c − g, 0) = D(g) · T (c, g), where the transformation matrix D(g) is a 2J × 2J

matrix depending solely on g. Since the rows of T are ordered lexicographically by x,

D(g) is a lower triangular matrix with diagonal diag(D) ≡ 1. Thus, D is a full-rank

matrix and rank(T (c, g)) = rank(T (c− g, 0)) = L. The identifiability condition has

been fulfilled, and all other conditions for the consistency of the maximum likelihood

estimator are clearly evident.

Proof. [Proposition 12] Since

∑

{α:δ[α],k=1}

πα =
∑

{[α]:δ[α],k=1}

∑

α′∈[α]

πα =
∑

{[α]:δ[α],k=1}

π[α],

ζk can be written in terms of π[α] as

ζk =
∑

{[α]:δ[α],k=1}

π[α].

By Theorem 11, the MLE π̂[α] is consistent as N → ∞ under the conditions of the

proposition. Thus, ζ̂k is consistent as N → ∞.
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