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ABSTRACT 
 

Investigating the Effects of the MathemAntics Number Line Activity on Children’s Number 
Sense 

 
Samantha Creighan 

 
Number sense, which can broadly thought of as the ability to quickly understand, approximate, 

and manipulate numerical quantities, can be a difficult construct for researchers to operationally 

define for empirical study. Regardless, many researchers agree it plays an important role in the 

development of the symbolic number system, which requires children to master many tasks such 

as counting, indentifying numerals, comparing magnitudes, transforming numbers and 

performing operations, estimating, and detecting number patterns, skills which are predictive of 

later math achievement. The number line is a powerful model of symbolic number consistent 

with researchers’ hypotheses concerning the mental representation of number. The 

MathemAntics Number Line Activity (MANL) transforms the number line into a virtual 

manipulative, encourages estimation, provides multiple attempts, feedback, and scaffolding, and 

introduces a novel features where the user can define his own level of risk on the number line. 

The aim of the present study was to examine how these key features of MANL are best 

implemented to promote number sense in low-income second-graders. Sixty-six students from 

three schools were randomly assigned to one of three conditions; MANL User-Defined Range 

(UDR), and MANL Fixed Range (FR), and a Reading comparison condition and underwent a 

pretest session, four computer sessions, and a posttest session. During the computer sessions, 

researchers coded a child’s observed strategy in placing targets on the number line. The results 

showed that children with higher number sense ability at pretest performed better on a posttest 

number line estimation measure when they were in the UDR condition than in the FR condition. 

Conversely, children with low number sense ability at pretest performed better on the number 



	
  

	
  

line estimation posttest measure when they were in the FR condition than UDR. Although in 

general, all children improved over time, children with low number sense ability at pretest were 

more likely to use the UDR tool ineffectively, thus negatively impacting performance. When 

children were not coded as responding quickly, target number significantly impacted 

performance in the computer sessions. Finally, children in the UDR condition utilized better 

expressed strategies on the number line estimation posttest than children in the Reading 

comparison group. These findings indicate that prior number sense ability plays a role in how 

children engage with MANL, which in turn affects the learning benefits the child receives. 

Implications for researchers, software designers, and math educators, as well as limitations are 

discussed. 
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Chapter 1 

INTRODUCTION 

The Nature of Number Sense 

 Number Sense allows us to make quick and intuitive judgments about the relations 

among numbers. For example, it helps us use basic ideas to avoid drudgery (such as the 

commutative principle, which teaches us that 5 + 4 is the same as 4 + 5, thus eliminating the 

need to calculate or remember the second sum if you already know the first), quickly break 

numbers into convenient parts, and have a general “feel” for numbers, such as knowing 185 + 

141 cannot be smaller than 200. It’s easy to recognize number sense at work when you see it. 

Imagine enjoying dinner at a restaurant with a group of friends. When the bill comes, the group 

must calculate the tip and divide the bill evenly among the group. While some are still reaching 

for their smartphones or scribbling the formal algorithm on paper, someone has already figured it 

out mentally, perhaps by using a rounding strategy.  

 Although researchers agree that number sense exists and is important, the difficulty rises 

in operationally defining it in a way that allows it to be measured and studied empirically (Berch, 

2005; Siegler, 2004). Brain imaging, comparative, and psychophysical data have lead some 

numerical cognition researchers to adopt a strict definition of number sense as purely non-

symbolic quantity representation, and thus argue it utilizes the approximate number system 

(ANS).  

Mathematical thinking develops well before a child even learns to speak. Preverbal 

infants and nonhuman animals can represent and identify exact quantities of up to 3 or 4 quickly 

and accurately, a phenomenon known as subitizing (Feigenson, Dehaene & Spelke, 2004). 

Infants also possess the ability to recognize simple number transformations (Wynn, 1995). This 
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exact small number system is paired in both humans and non-human animals with an 

approximate number system (ANS) that can represent larger quantities, allowing for approximate 

magnitude comparisons and calculations (Xu & Spelke, 2000; McCrink & Wynn, 2004; 

Gallistel, 1990).  These two preverbal systems develop naturally without explicit training, and 

involve individual differences (Dehaene, 1997; Halberda & Feigenson, 2008).  

The Development of Understanding Symbolic Number 

Children begin to learn basic ideas about number in infancy and continue to develop this 

understanding throughout the elementary years (Mix, Huttenlocher, & Levine, 2002; Starkey, 

Spelke et al. 1990; Xu & Spelke, 2000). The concept of number is at the crux of many 

mathematical abilities for children. It is no surprise that the Common Core Standards (National 

Governors Association Center for Best Practices and Council of Chief State School Officers 

2010), most curricula, and most educators (Cross, Woods, & Schweingruber, 2009) emphasize 

the importance of number in their mathematics standards and learning materials. Fortunately, the 

field of cognitive psychology has shed light on the complex cognitive processes involved in the 

development of the understanding of number, and stresses that a sophisticated concept of number 

requires the development of many systems, as I now describe.  

Preverbal non-symbolic number competencies such as being able to identify small 

numbers and compare larger quantities, when the difference is larger than a specific ratio, 

provide the foundation for learning the symbolic number system, the ability to identify and 

represent exact quantities. In fact, many (Butterworth & Reeve, 2008; LeCorre, Van de Walle, 

Brannon, & Carey 2006; Dehaene, 1997; Gallistel & Gelman, 2005) argue that it is this 

conception of exact quantities that makes us mathematically superior to our ancestor and non-

human mammal counterparts. Moyer and Landauer (1967; 1973) famously posited that humans 
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mentally represent exact quantities as magnitudes on a mental number line. In a series of studies 

they asked adults to quickly judge the numerical order of two Arabic numerals, and found 

evidence for what they termed the distance and size effects. That is, adults take longer to judge 

the order of two numbers when these values are closer together (the distance effect), and they 

exhibit more difficulty with judgments for larger numbers than smaller (see also Dehaene, 1997; 

Gallistel et al.; 2005). This, coupled with recent findings that direct training on the ANS can 

improve performance on later symbolic number tasks (Hyde, Khanum, & Spelke, 2014) suggest 

that the ANS plays a role in mastering the symbolic number system.  

Although the basis for many important mathematical ideas (such as more and less, one-

to-one correspondence, and rudimentary approximation) occurs without the knowledge of the 

formal symbolic number system, humans must use symbolic number words to keep track of 

exact quantity. Knowledge of number words and the ability to use them for counting sets of 

objects is arguably an essential skill for daily navigation of adult human life in developed 

countries.  

Counting and enumeration are early mathematical activities that expose children to this 

symbolic number system.  In a seminal publication and book, Gelman and Gallistel (1986, 2005) 

outlined five basic counting principles: (1) the stable order principle, emphasizing the 

consistency of the number sequence, (2) the one-to-one correspondence principle, in which every 

object in the counting set is tagged with only one counting symbol,  (3) the cardinal principle, 

which states that the number of the last object counted represents the total set value, (4) the 

abstraction principle, or the concept that one can count various types of entities as part of the 

same set, and (5) the order-irrelevance principle, which states that objects can be counted in any 

order. While some have argued these principles do not need to be mastered in order to enumerate 
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(LeCorre et al., 2006), repeated experience with counting is valuable and adds to children’s 

development of understanding of precise number and cardinality, which is cognitively 

challenging for young children. 

As children become better at enumerating larger sets, they must also begin to understand 

the base ten structure of the symbolic number system. Rather than counting by ones, a child is 

taught to group by tens, and must learn that numbers are comprised of tens and ones (Nuerk & 

Williams, 2005). Understanding the base-ten system and place value is an important 

mathematical acquisition for children, and this understanding lays the foundation for more-

advanced topics such as multi-digit operations (Baroody, 1990).  Despite its importance, many 

children struggle to master place value in the early elementary years.  In particular, English-

speaking children struggle with the numbers 11-19 due to the numbers’ linguistic opacity (Li, 

2002; Sun & Zhang, 2010). For example, the number word “twelve” gives no indication that it is 

comprised of one ten and two ones. Conversely, the Chinese word for twelve literally translates 

to “one ten and two ones”, leading to better understanding of the teens. 

Not only must children use preverbal number abilities to aid in mastering the symbolic 

number system, and integrate single-digit and multi-digit numbers to a unified base-ten 

conceptual system, but they must also utilize domain-general cognitive skills. As with any other 

fundamental and broad set of concepts, mathematical abilities do not develop independently 

from other cognitive functions. Cognitive researchers have discovered positive relationships 

between math abilities and literacy and language (Duncan, et al., 2007; Blair & Razza, 2007), 

executive functioning (Bull & Scerif, 2001), and spatial abilities (Tversky, 2011; Cook, Yip, 

Goldin-Meadow, 2012). The findings have also been supported by neuroscience research 

showing that although very basic number competencies occur in a separate area of the brain, 
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advanced mathematical problem solving (e.g., word problems, abstract calculations) includes 

areas of the brain typically associated with higher order cognitive skills (Dehaene, Piazza, Pinel, 

& Cohen, 2003).  

As discussed, understanding of number requires the integration of the preverbal and 

complex symbolic number systems, and integration with domain-general cognitive skills. 

Children must master many skills such as counting, indentifying numerals, comparing 

magnitudes, transforming number and performing operations, estimating, and detecting number 

patterns, (Ginsburg, 1989; Jordan, Kaplan, Oláh, & Locuniak, 2006.) These basic number 

competencies are predictive of later mathematics achievement, further highlighting the 

importance of fundamental mathematical concepts for young children (Dyson & Jordan, 2011; 

Libertus, Fiegenson, & Halberda, 2011). It is easy to conceptualize how a strong number sense, 

or better number sense access, the ability to quickly and often automatically mentally map 

symbolic number representations to a non-symbolic quantity, can aid in mathematical problem 

solving in many of these competencies in children as young as kindergarten (Dehaene & 

Akhavein, 1995; Gilmore et al., 2007; Wilson, Dehaene, Pinel, Revkin, Cohen, L, & Cohen, D., 

2006). Stronger number sense access facilitates quick judgments about numbers and their 

relationships. For example, a child with strong number sense or number sense access can quickly 

determine that 9 is larger than 4 by five units, and can quickly estimate the sum of 34 and 57 to 

be somewhere close to 90. A child lacking this number sense and number sense access may rely 

more heavily on the formal algorithms and procedures, while lacking a strong conceptual 

understanding of why the algorithms work. Thus, many researchers have adopted a much 

broader definition of number sense as the “ability to quickly understand, approximate, and 

manipulate quantities” (Wilson, Dehaene, Dubois, & Fayol, 2006) without specifying the 
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specific cognitive systems involved. Researchers have found that number sense defined by this 

broad definition is predictive of later math achievement (Jordan et al., 2006).  

The lack of a consistent operational definition of number sense has resulted in some 

researchers developing and studying separate, but often related constructs (Dehaene, 1997; 

Jordan et al., 2006; Siegler & Booth, 2004). One common thread throughout many of the 

existing definitions is that number sense (or number sense access) involves knowledge of 

numbers, their magnitudes, and how their magnitude relates to other numbers. Thus, much of 

Siegler’s work has focused on the study of “numerical magnitude representation,” or how we 

mentally represent numerical magnitudes.  

He (as well as others) argues that we represent numerical magnitudes on a series of 

mental number lines that are compressed logarithmically (e.g., more space on our mental number 

line is devoted to smaller numbers and larger numbers are compressed closer together). With 

further exposure to larger numbers and enumeration, the mental number line- that is, the 

mapping of quantities to a mental spatial continuum- becomes more accurate (Siegler & Booth, 

2004). The number line estimation task, in which a child is given a blank number line with the 

endpoints marked and asked to place various target numbers on the line, is used to quantify 

participants’ mental representation of number and has inspired a large body of research (Barth & 

Paladino, 2011; Booth & Siegler, 2006; Laski & Siegler, 2007; Moeller, Pixner, Kaufmann & 

Nuerk, 2008). By plotting the actual number versus the participant’s response and determining 

the function of best fit, researchers can determine whether a participant is utilizing a logarithmic 

or linear representation of number for the given range (see Figure 1).  



	
  

7	
  

 

Figure 1: Demonstrates the log to linear shift in the number line estimation task (from Siegler & 

Booth, 2004) 

 

Instruction and exposure to larger numbers, and feedback on performance at critical 

number values, help children shift from a logarithmic representation to a more accurate linear 

mental number line. Siegler & Booth (2004) found that instruction of this type may have long-

term benefits; the likelihood of using a linear representation of number is highly predictive of 

later mathematical achievement (Jordan et al., 2006). Although there is some recent work 

suggesting that the number line task may not reflect a fundamental conceptual shift (Barth & 

Paladino, 2011, Opfer, Siegler, & Young, 2011), its usefulness as a practical tool for assessment 

and instruction, as well as the link between number line representations and later ability, are well 

documented.  

Petitto (1990) examined the strategies children use in the number line estimation task. 

She found that typically, children begin from zero and count with an inaccurate unit (e.g., using a 
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very tiny unit to count from zero to find 9 on a number line marked from 0-10), to counting 

forward with an accurate unit, to counting forward or backward depending on the target number 

(e.g., backward for targets closer to the right endpoint as the nine example), to abandoning 

counting strategies for partitioning strategies, often splitting the number line at the midpoint to 

find the target. In addition to accuracy, children’s strategy use can reveal useful insights into 

their number sense abilities.   

  As well as assisting with the log to linear shift in numerical magnitude representation, the 

number line estimation task also involves estimation, which has also been linked to later math 

achievement (Jordan, et al., 2006). The log to linear shift has also been demonstrated when 

participants must estimate length, area, and volume (Booth & Siegler, 2006). Given the every-

day frequency of approximation (e.g, estimating how much of my salary I spend on groceries or 

quickly guessing how long it will take me to drive from New York City to Pittsburgh), it is no 

surprise that Nancy Jordan and colleagues have clearly defined estimation as a critical 

component of number sense (Jordan, et al., 2006). Unfortunately, Dowker (2003) found that 

despite being an important skill for mathematical achievement, children are often poor estimators 

and estimation in the classroom typically consists of computing a formal algorithm and then 

rounding, rather than using approximation in meaningful ways.  

 The Problem. Despite efforts to reform education in the United States, children from East 

Asia outperform their American counterparts in mathematics achievement, and this is especially 

true for children from low-SES families (Ramani & Siegler, 2008; Sun & Zhang, 2010). Besides 

various school factors such as large class sizes, poorly prepared teachers, and fewer resources, 

some factors contributing to low performance occur well before a child enters school. 

Unfortunately, children from low SES backgrounds typically do not receive the same 
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environmental exposure to early number activities, mathematical materials (such as board 

games), and language, and rarely catch up to their middle- and higher-SES counterparts in 

mathematical achievement (Ramani & Siegler, 2008; Levine, Suriyakham, Rowe, Huttenlocher, 

& Gunderson, 2010). This gap appears in children as young as preschool-age and widens with 

age (Clements & Sarama, 2007).  

Low-SES children enter kindergarten behind middle-SES peers in various aspects of 

number sense, are less likely to utilize an accurate linear representation of number, which is a 

strong predictor of later achievement in mathematics, and show little growth in number sense 

into the beginning of first grade (Baroody, Lai, & Mix, 2006). Starting at such a disadvantage 

makes it extremely challenging to learn formal mathematics procedures or algorithms, or master 

more-advanced content like number combinations and multi-digit operations. It is no surprise 

that by grade 2 or 3 many children (particularly those who are low-SES) dislike and even fear 

mathematics (McLeod, 1992).  

The Use of Models and Manipulatives. A powerful way for children to learn about 

abstract mathematical ideas is through models and manipulatives embodying various kinds of 

representations. The thought is that models and manipulatives- objects that can be seen, touched, 

moved, or felt—can serve as a concrete representation of an abstract concept, which in turn helps 

students to create mental representations of mathematical ideas and procedures (Mix, 2009). Mix 

(2010) discusses several mechanisms through which manipulatives can enhance learning, 

including by generating action, by acting as a conceptual metaphor, by offloading intelligence, 

and/or by focusing attention. Base-ten blocks, Cuisinaire Rods, Unifix cubes, an abacus, and 

other physical manipulatives have been used to teach about symbolic number concepts such as 

the base-ten system (Mix, 2009).  
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However, research regarding the effectiveness of manipulatives shows that simply 

employing their use does not guarantee a child will gain deep understanding of the underlying 

concepts (Mix, 2010; Moyer-Packenham, Salkind, & Bolyard, 2008). Clearly, the fundamental 

question is not whether or not manipulatives are effective, but rather in determining the specific 

circumstances in which particular models and manipulatives can be used most effectively for 

certain purposes. Moreover, children need enough time with a particular manipulative or 

representation to fully understand the underlying mathematical content. New representations 

must be carefully introduced with adequate scaffolding to connect multiple representations in 

meaningful ways (Sarama & Clements, 2009; Mix, 2010).  

The value of technology to foster learning. The world is experiencing a major shift in 

education and learning. Particularly, the technological tools that children have at their disposal 

with which to work, play, and learn are significantly different than the pencil and paper and 

physical manipulatives of years passed. Technology shows the promise of enabling children to 

learn in the ways that researchers have found most effective. The following is a sampling of how 

technology can incorporate best practices suggested by learning theory:  

• Make difficult abstract concepts visual and concrete 

• Allow for repetition  

• Provide consistent and appropriate feedback 

• Modify content for varying developmental needs 

• Personalize content 

• Allow for practice and failure (without the feeling of disappointing a teacher or 

parent) 

• Provide opportunities for success. 
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• Be engaging, appealing, and motivating  

• Assist educators in assessing student progress  

With the plethora of technological tools available at increasingly lower cost, including 

hardware such as handheld-devices, tablets, Smart Boards, computers TVs, cameras, and gaming 

consoles, as well as software such as applications (apps), games, virtual manipulatives, and 

digital curricula it is no surprise that children’s access to technology has increased, even in low-

income schools (Warschauer & Matuchniak, 2010).  

Virtual tools (such as manipulatives and models) can visually represent mathematical 

ideas and relationships (Mix, 2010). Indeed computer technology can be used to create virtual 

manipulatives that in some ways may be more powerful than their concrete counterparts. For 

example, children can transform 100 virtual blocks into one hundred-block with the click of a 

mouse rather than by physically connecting each block one-by-one, which could be cognitively 

or even physically challenging (read, boring). The computer allows the child to focus on the 

relevant concept of base-ten rather than becoming distracted with the physical act of connecting 

the blocks, and may provide adaptive feedback in real-time.  

However, the wide variety of technology available has translated into a dangerously wide 

variety of quality and use (Ginsburg, Carpenter, Labrecque, & Pagar, in press; Warschauer, 

Knobel, & Stone, 2004; Warschauer & Matuchniak, 2010). Although access to technology is 

becoming more equitable, teachers in low SES schools use the software in narrow ways, such as 

for drill practice of math facts, rather than for inquiry projects or building conceptual 

understanding of a topic (Clements & Sarama, 2008; Warschauer & Matuchniak, 2010). 

Additionally, low SES schools lack resources— including specialized technology personnel or 

professional development--  to support the teachers’ use of technology. Despite such issues, 
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technology can enable children to learn in the ways that researchers have found they learn best 

(Anderson & Kirkorian, in preparation) when it is well designed (Ginsburg, et al., in press) and 

implemented.  

MathemAntics 

MathemAntics (MA) is a computer-based software program designed to supplement math 

curriculum and teach children from age three to grade three about various number concepts in a 

playful and antic way. MA is divided into seven learning environments that address a different 

topics: Enumeration, Equivalence, Early Addition and Subtraction, Multiplication and Division, 

Written Calculation, Negative Number, and Estimation, each of which includes several game-

like learning activities with the goals of elaborating and mathematizing a child’s everyday 

mathematics (Baroody, Lai, & Mix, 2006; Ginsburg et al., 2006; Sarama & Clements, 2009), 

promoting integration between the child’s informal everyday math with formal math knowledge, 

meaningful synthesis between formal mathematical representations (Vygotsky, 1986), and 

encouraging conceptual understanding.  

The development of high quality math educational technology requires knowledge of a 

coherent theory of mathematics cognition and learning trajectories (Clements & Sarama, 2007; 

Ginsburg, 1989; Ginsburg, Jamalian, & Creighan, 2013), pedagogy, mathematics content, 

technological affordances, and game development. However, designing based on a strong 

theoretical framework does not ensure the technology will be effective at promoting learning. 

Formative usability research, which has historical origins in radio and television production, is a 

critical step in the development process, and can provide initial insight into whether or not the 

child can use the technology as intended, as well as assist in answering critical questions about 

the child’s engagement with and learning from the technology (Flagg, 1990; Ginsburg et al., in 
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press). Formative research drives necessary revisions to the software and can assist researchers in 

planning for formal learning studies that utilize traditional empirical research methods to study 

the effectiveness of the technology. The present study describes a coherently designed activity 

within MA that previously underwent formative usability research testing. (Creighan, in 

preparation; Ginsburg, Jamalian, & Creighan, 2013). In the formative usability testing, two 

researchers worked with a small sample of first and second graders on various activities from the 

Estimation Environment. Researchers observed as the children interacted with the activities, 

asked clinical interview questions to probe into the child’s thinking, and took detailed field notes 

related to the child’s motivation, usability of the software, and initial evidence for learning. 

Findings from the formative research inspired revisions to the software, including implementing 

control over the score-keeping algorithm and adding additional data captured in the computer log 

file.   

Key Features of MANL. Here, I will elaborate on five key features of the Number Line 

activity within MathemAntics (MANL): (1) Content, (2) Multiple attempts, feedback, 

scaffolding of the midpoint, (3) Placing a range on the line rather than a single point, and (4) A 

meaningful reward system  

(1) Content. As discussed, although difficult to define and measure, number sense is an 

important topic for the intended age group. Many successful interventions, including board 

games, computer-based software, and number lines together with physical manipulatives aim at 

improving various aspects of number sense in young children (4-5 years old) (Dyson & Jordan, 

2011; Saxe, Earnest, Sitabkhan, Halder, Lewis, & Zheng, 2010; Griffin, 2004; Wilson et al., 

2006; Ramani & Siegler, 2008; Ramani, Siegler, & Hitti, 2012).  My goal is to explore whether 

MathemAntics can be used to improve number sense in low-SES second-grade children.  
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The number line is a model of symbolic number, and MANL requires children to directly 

interact with and place targets on a number line, thus making the number line a powerful virtual 

manipulative. Through interacting with the number line in this way, children can learn about 

numerical magnitudes and their relationships without mastering formal mathematical procedures 

or algorithms.   

(2) Multiple attempts and scaffolded feedback. Multiple attempts and scaffolded 

feedback, where incremental hints are given to guide the child to the correct answer, transform 

incorrect answers into additional opportunities for learning (Malone & Lepper, 1987; Gee, 

2005). As previously discussed, Petitto (1990) found that the most advanced strategy children 

used during number line estimation was the midpoint strategy, meaning the child mentally 

partitioned the line in half and placed the estimate using the midpoint as a reference. To 

encourage this strategy and discourage counting-based strategies, we show the child the midpoint 

after an incorrect first attempt.   

(3) Placing a range of acceptable approximation or margin of error on the line rather than 

a single point. The traditional number line estimation task has a child mark a single point on 

number line to indicate his answer. When designing MANL, I wanted to focus on the idea of 

approximation. Therefore, the child is given a range to place on the line, rather than a single 

point. This feature was also implemented to discourage counting-based strategies.  

(4) Meaningful reward system tied to user defined range mode. To make sure the 

educational technology is engaging, designers may draw from game theory. Gee (2005) states 

that a meaningful reward system can be a powerful motivator. To integrate the reward system 

into the activity, I (a) created a mode of the game in which rather than being given a FR to place 

on the line, the user has control over the size of his range (User-Defined Range mode) and (b) 
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tied the reward system to the size of the user’s range, such that a child who is correct with a 

range of 5 units will receive significantly more points than a child who is correct with a range of 

15. Clearly, it is more difficult to be accurate with a smaller range, causing a trade-off for the 

user between potential points and likelihood of being correct. Essentially, the child has control 

over how large or small to set the range of acceptable accuracy.  

Beyond being motivational, the user-defined range mode functions both as a research tool 

and as a learning experience that introduces other important advanced math concepts and 

constructs. For example, the user-defined range feature can be used to investigate the psychology 

of risk-taking in mathematics, which has been subject to gender differences (Fennema, 

Carpenter, Jacobs, Franke, & Levi, 1998), and further emphasize the idea of estimation and 

approximation by allowing the child to demonstrate confidence in their estimates (Byrnes, 

Miller, & Schafer, 1999; Clifford, 1991; Foersterling, 1980). It also introduces the idea of 

approximation in a very deliberate way. Finally, with some additional instruction this feature can 

also introduce basic ideas about statistics such as confidence intervals and variance. Because of 

the importance of this feature, we chose to conduct a between-subjects manipulation of this 

feature with two different experimental conditions. All other key features were constant in both 

experimental conditions, described below.  

Findings from formative usability research with MANL interestingly revealed that when 

using the User-Defined Range mode of the activity, some children would stretch the range the 

entire length of the number line in order to be correct. Because of the small number of 

participants and flexible nature of formative research, conclusive inferences cannot be drawn 

from this observation. However, despite still receiving feedback on each trial, it is reasonable to 

assume that children who engage in “stretching” will not achieve the same learning gains as 
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children who do not stretch. Formative research also revealed that contrary to Petitto’s (1990) 

progression from counting-based strategies to partitioning strategies like the midpoint strategy, 

some children always answered quickly (and often accurately), without any visible strategy. The 

present study will follow up on these findings empirically, examining the stretching phenomenon 

and the quick response strategy.  

 The Present Study. The aim of the present study was to investigate how MANL can 

promote number sense skills in second-graders based on pretest and posttest measures and based 

on microgenetic data collected during the child’s computer sessions. Secondly, I wanted to 

investigate whether the User-Defined Range manipulation impacts number sense differently than 

children who used a FR.  

 Research Questions. With regards to the overall effectiveness of MANL, 

(1) Do children who play MANL outperform the Reading comparison group on a paper and 

pencil number line estimation measure at posttest? (2) Do children who play MANL utilize 

better expressed strategies at posttest than the Reading comparison group at posttest? (3) Do 

MANL conditions improve on standardized math measures? (4) Do children improve on MANL 

over time? (5) What features in the computer log file can be used to predict accuracy within 

MANL? (6) Are the accuracy and strategy effects of the User-Defined Range different from 

those of using a Fixed Range? 
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Chapter 2 

METHOD 

Design 

 This study utilized a unique methodology combining aspects of mixed pretest-posttest 

designs (including a combination of between and within-subjects variables) and microgenetic 

research. For pretest and posttest analyses, condition served as a between-subjects factor, and 

gender and school were controlled for. Although gender differences are not a primary focus of 

this study, there is evidence to suggest boys have a small advantage on estimation tasks and 

engage in more mathematical risk-taking, making it important to control for  (Fennema, et al., 

1998). 

Participants 

 Participants were recruited from three schools in New York City serving primarily 

students from low-SES backgrounds were recruited as part of a larger pilot study of achievement 

for MathemAntics by fliers sent home to parents. On the consent form, parents could indicate 

whether they gave consent for their child to participate in the study, whether they would allow 

the sessions to be video or audio-taped, and whether they permitted the videos to be used in 

future educational settings.  

Of the seventy-one students who returned signed consent forms, five were dropped 

throughout the course of the study, one because she did not speak English, two due to excessive 

absences, and two due to technical issues with the computer software, resulting in a final sample 

of sixty-six second-graders, 34 females, ranging from 6.53 to 8.72 years old (M = 7.33, SD = 

.045). Table 1 illustrates demographic characteristics of the three schools. Ethnic and socio-

economic demographics were not collected from individual participants. 
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School 

% Free and 
Reduced Price 

Lunch 
Total 

Enrollment Participants 
% 

ELL 
% 

Asian 
% 

Black 
% 

Hispanic 
% 

White 

A 84.9 539 20 7.4 1 79 19 1 

B 73.3 623 11 11.6 1 54 44 1 

C 66.5 785 35 20.0 53 8 25 14 

Table 1: Demographic information of the three schools. 

It is worth noting that even though all schools serve similar socio-economic status 

populations as evidenced by the percent of students who qualify for free and reduced-price 

lunches, School C, which accounts for more than half the sample, was quite different in terms of 

ethnic demographics. Research has shown that there are cultural differences regarding beliefs 

about education and mathematics specifically, with Asian parents valuing the importance of 

early academic training in mathematics more than do parents from Euro-American backgrounds 

(Parmar, Harckness, & Super, 2004).  

Participants within each school were randomly assigned to one of three conditions: MA-

User-Defined Range (UDR), MA-FR, or Reading Comparison (n = 23, 25, and 18, respectively). 

The two MA conditions were identical except for whether the range the child placed on the 

number line was a fixed width or was able to be defined by the user.  

Procedure 

 Researchers worked one-on-one with all participants for six sessions: pretest, four 

computer sessions, and posttest. All researchers were blind to the study goals and hypotheses, 

and a different set of researchers blind to condition conducted all pretest and posttest sessions. In 

general, the child had one session per week unless he was absent on a particular day, in which 

case the following week he may be seen twice. During the computer sessions, the children in the 
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two MA conditions (MA UDR and MA Fixed) played either MANL or another MA activity on 

13- or 15- inch MacBookPro or MacBookAir laptops resulting in two sessions of each activity as 

the researcher coded observed strategies. The order of activities was counterbalanced across all 

participants. For the present study, I was only interested in the data from the two MANL 

sessions.  

The two MANL sessions each consisted of one demo and 15 scored trials (resulting in 30 

total scored trials) with these instructions playing on the first three trials of each session: “Here is 

a number line marked from zero [zero simultaneously pulses] to 100 [100 simultaneously 

pulses]. Where should we place [target number]? Use the mouse or arrow keys, and then press 

the space bar to submit your answer.” For all trials, the child could take up to two attempts to 

answer correctly and received audio and visual feedback on all attempts. For correct answers, the 

target number appeared in the correct position on the number line while the audio recited, “Great 

estimate!” and the child’s points earned for that trial were added to his score. For incorrect first 

attempts, a small gray arrow preserved the child’s incorrect answer while the audio recited, 

“Oops, try again, your estimate was too high/low.” For incorrect second attempts, a small gray 

arrow preserved the child’s incorrect answer, the target number appeared in the correct position 

on the line as a labeled tick mark while the audio recited, “Oops,” and the child’s points were 

added to his score. The child then pressed the “next” button to proceed to the next trial.  

Target numbers on both sessions were 50, 79, 92, 21, 77, 24, 61, 91, 79, 42, 9, 59, 61, 86, 

and 42. Because one of the observed strategies researchers coded for was the use of a Landmark 

(described below), the order of the targets was constant for all participants. For example, if the 

target numbers were randomized across participants and one child saw 91 and then 92, they 

might be more likely to use the landmark strategy compared to a child who sees 24 then 92.   
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Although the algorithm for the point system was different for both of the MathemAntics 

conditions, pilot work revealed that mean scores were similar for each condition. For the MA FR 

condition, the child received 10 points for correct responses, and 5 for incorrect responses. For 

the MA UDR condition, the score was calculated as an area under a curve (Base Score * (range 

of the NL)/Score Modifier) * (1-(sigma divisor), where base score was 5, score modifier was 10, 

and sigma divisor was 10, see Figure 2 for details.      

 

Figure 2: The score-keeping algorithm used in the User-Defined Range Condition. The area 

under the curve is the child’s score, which decreases as the size of the range increases.  

The reading comparison group, which controlled for working on a computer for 10-15 

minutes with a researcher, played Reader Rabbit: I Can Read with Phonics (The Learning 

Company, 2006) reading software. Reader Rabbit has a similar format in that a child plays mini-

activities with many trials. Because it is designed for first- and second-graders, we allowed the 

children to play up to three activities to ensure they stayed engaged for the same length of time 

as the MA groups.  

Measures – Pretest/Posttest 

Standardized Curriculum-based Measures (CBMs) 

Whether the child saw the CBMs or the two Number Line tasks first was counterbalanced 

across all participants. Pretest/posttest sessions lasted approximately 15-20 minutes. Children 
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were given four curriculum-based measures (CBMs) from mCLASS Math (Ginsburg, Pappas, 

Lee, & Chiong, 2011). The CBMs are two-minute timed paper-and-pencil measures used for 

screening at the beginning, middle, and end of the school year, or to monitor progress in key 

skills. They can be given frequently (weekly) and are designed to capture growth over time. 

Computation (solving multi-digit addition and subtraction problems) and Number Facts (one-

digit addition and subtraction problems) are designed to tap into formal math knowledge, 

whereas Missing Number (completing a number pattern) and Quantity Discrimination (circling 

the larger of two numbers) are designed to measure number sense.  

The CBMs come with standard instructions and prompts for each measure, and include a 

demo problem the researcher completes with the child. For Computation, the child receives a 

point for each correct digit in his answer, for Quantity Discrimination, the child receives a point 

for each correct answer and loses a point for each incorrect answer, and for Missing Number and 

Number Facts the child receives a point for each correct answer with no penalty for incorrect 

responses.  

The CBMs were used to establish equivalence between conditions at pretest. To examine 

if prior number sense ability impacts the effectiveness of MANL, I calculated a categorical 

variable indicating whether or not the child scored above the median on the two number sense 

CBMs (Missing Number and Quantity Discrimination) to be used in data analyses. Additionally, 

I hypothesized that children in both MANL conditions would outperform the Reading 

comparison group on Missing Number and Quantity Discrimination at posttest. Since improved 

number sense could indirectly impact Computation and Number Facts, it is conceivable that 

children in the MANL groups could see gains in these measures as well.  

Mental Number Line Task (MNL) 
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The MNL task was taken directly from items on the Test of Early Mathematics Ability 

(TEMA-3) (Ginsburg & Baroody, 1990), where the child is shown three numbers, and must 

verbally indicate which of the second two is closer to the first one, for example, “what number is 

closer to 4, 5, or 6?" In this adapted task, there were two demonstration items and six scored, and 

the child received a point for each correct response, thus receiving a score from 0-6. I 

hypothesized that children in both MathemAntics conditions would outperform the reading 

comparison group at posttest.  

Number Line Estimation Task (NLE) - Accuracy 

The Number Line Estimation Task (NLE) consisted of 1 demo and 9 scored trials where 

the child had to mark with a pencil where a target number belongs on a number line marked from 

0-100 without feedback. All items were different target numbers than used in the computer 

sessions. To score this measure, I calculated a Percent Absolute Error (PAE) for each trial.  

PAE = (Actual Value – Observed Value) / Scale  

I calculated the Median PAE for each child at both pretest and posttest. Because MANL was 

designed based on this task, I expected that on average, children from both MathemAntics 

conditions would have a lower Median PAE than children from the reading comparison group.    

Number Line Estimation (NLE) - Expressed Strategy 

For the last two trials of the NLE measure, target numbers 36 and 57, the child was also 

asked for an expressed strategy and the researcher recorded the child’s response verbatim, 

resulting in two items at pretest and two items at posttest. I developed a coding scheme with a 

researcher who assisted with planning and data collection in the formative usability research, but 

did not assist with data collection of the current study. We began by examining the observed 

strategies coded for during the computer sessions (described below). Because in general, I was 
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interested in counting-based strategies compared to number sense-based strategies, we started 

with four high-level categories: counting, number relationships, combination, and other. Then, 

using a random sample of fifty items (18% of the total number of items) from the study, 

developed sub-categories within the high level categories (see Table 2) that would also allow us 

to capture if the child described what they did and how they did it.  

Category Code Definition Example 

Counting Count-Simple 
No detail about what was counted or 
how "I counted" 

 Count-Other Detail provided, but not clear "Counting the numbers" 
 Count-Ones* References counting by ones "I counted 1, 2, 3, 4, all the way to 36" 
 Count-Tens* References counting by tens "I counted 10, 20, 30" 

 
Count-
Multistep* 

Combination of counting by tens and 
ones 

"I counted 10, 20, 30, and then 6 more to 
36" 

Number 
Relations NR-Simple 

No detail about what or how 
comparisons were used "It's bigger" 

 NR-Other Detail provided, but not clear "Because 3 is bigger than 2" 

 
NR-
Sophisticated* 

Mentions specific landmarks and 
how they were used 

"I remembered 21 went here, so I moved 
up a little for 36" 

 
NR-
Midpoint* Used the midpoint as a landmark  

"Because 50 is in the middle, so go up a 
little for 57" 

Combination 
Combo-
Simple Lacking clarity 

"I counted again but it was too close to 100 
so I moved it to the middle" 

 
Combo-
Sophisticated* 

Clearly states what landmarks were 
used and what was counted 

"Because 20 goes here, then after 20 is 30, 
move up a little for 36" 

Other Other 
Cannot be classified by any other 
code 

"I just knew" / "I thought about it." / "It 
just goes there." / "I don't know." 

 

Table 2: Coding scheme for NLE expressed strategy items.  *Denotes explicit explanation 

   

The additional researcher and I then used this coding scheme to code the sample of 50 

expressed strategy items. The few discrepancies that arose were discussed and resolved. An 

independent coder blind to the study goals and condition and time point (pre or post) of all 

expressed strategies was trained on the strategy subcategories and given examples of each 

strategy. She then coded the sample of expressed strategies and had high internal consistency 
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with the master coders (K = 0.897). She then coded all of the expressed strategies (including re-

coding the sample).  

Because MANL is designed to encourage number sense, I hypothesized children in both 

MathemAntics conditions would utilize fewer counting-based (and alternately more number 

relations) explanations at posttest compared to the reading control. Additionally, I hypothesized 

children in both MathemAntics conditions would be more explicit in their explanations than 

children in the reading control.  

Based on the codes, I created three binary contrasts to test my hypotheses: whether or not 

the child utilized a counting-based explanation, number relations explanation, and explicit 

explanation (comparing the strategy codes labeled with an asterisk in Table 2 versus all other 

strategies) on at least one of the two items at pretest and posttest. An explicit explanation was 

defined as any strategy in which the child described what was done to solve the problem and 

provided details about how the problem was solved. It is important to emphasize this is not a 

measure of whether or not the child is using an advanced strategy, because clearly counting by 

ones to either of the target numbers (36 or 57) is less efficient than many of the other strategies. 

However, I felt that explaining, “I counted 1, 2, 3, 4, all the way to 36” indicated more proficient 

expression than a child who simply stated, “I counted.”  

Measures – Session Data (MA groups only) 

For the MA groups, pretest and posttest scores were supplemented with session data 

consisting of computer log files, observed strategy for each trial, and Silverback (Clearleft Inc., 

2012) video recordings of each computer session, which is a screen capture software that 

simultaneously records (with parental consent) video and audio of the child with the laptop’s 

built in web-cam. Computer log files captured data about the overall session such as child ID, 
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session timestamp, activity played, and configuration settings used, as well as detailed 

information for each trial such as trial number, target number, trial percent absolute error (PAE), 

size of the range used in the user-defined range condition, and latency. The recording sheet was 

developed using strategies noted by Petitto (1990) and results from our own formative usability 

research. Table 3 defines all strategies coded by researchers. All session data allowed for a 

microgenetic analysis of important factors contributing to a child’s performance (as measured by 

trial PAE). 

Strategy Definition 
Count Forward Counting up from zero 
Count Backward Counting back from 100 
Count on Counting from another number besides the endpoint 
Midpoint Clear evidence the child used the midpoint to 

partition the line and find the target number 
Landmark Child references another landmark (besides the 

midpoint) used to help find the target 
Quick Answers within 4 seconds 
Other No clear evidence of a strategy and answers after 4 

seconds 
 

Table 3: Definitions of observed strategies coded during computer sessions 



	
  

26	
  

Chapter 3 

RESULTS 

Pretest Analysis 

 I first established that conditions were equivalent at pretest using a MANOVA with 

Missing Number, Quantity Discrimination, Computation, Number Facts, Mental Number Line, 

and Number Line Estimation pretest scores as outcomes and condition as a factor, controlling for 

gender. Since children were blocked by school, it was not included in the pretest model. There 

were no significant differences between conditions, although I did see a significant effect of 

gender, Wilks’ λ = .791, F(5, 58) = 3.07, p = .015. The univariate tests reveal that boys did 

significantly better than girls on Number Facts, F(1,62)  = 4.08, p = .048, Quantity 

Discrimination, F(1,62) = 11.87, p = .001 and Computation, F(1,62) = 6.51, p = 0.13. Boys were 

marginally better than girls on Missing Number, F(1,62)  = 3.02, p = 0.087. There were no 

differences on the Mental Number Line task.   

 Female Male 
  Mean St. Dev. Mean St. Dev. 
Number Facts 9.15 5.56 12.16 7.00 
Missing Number 4.29 2.84 5.34 2.99 
Quantity Discrimination 4.91 4.74 8.81 4.53 
Computation 4.74 3.26 7.66 6.40 

 

Table 4: Gender differences in scores on Curriculum Based Measures at pretest 

 

To determine that all three conditions were equivalent on the expressed strategy measure, 

I conducted chi-squared analyses on three pretest binary variables: counting, number relations, 

and explicit explanations. All three were non-significant, indicating that all three conditions were 
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similar at pretest, χ2 (1, N = 66) = 0.24, p = 0.89, χ2 (1, N = 66) = 0.35, p = 0.84, χ2 (1, N = 66) = 

1.64, p = 0.44, respectively.  

Question 1: Do both MA conditions outperform the Reading comparison condition at posttest on 

the Number Line Estimation (NLE) measure? 

Because I did not block by pretest, I first ensured all three conditions had roughly 

equivalent numbers of participants who scored below the median on the two Number Sense 

CBMs (Quantity Discrimination and Missing Number), so that it could be included in the 

analysis as a factor. Indeed, chi-square tests revealed no significant effect of condition.  

An Analysis of Covariance using posttest Median PAE as the outcome, condition and 

whether the child scored above or below the median on the two number sense CBMs (Quantity 

Discrimination and Missing Number) as factors, controlling for gender and school location 

(Chinatown or Harlem), and pretest NLE score as covariates was conducted starting with the full 

factorial model and utilizing stepwise removal of non-significant interactions. A significant 

interaction between Condition and Number Sense ability remained significant in the final model, 

F(2, 56) = 6.44, p = 0.003 (see Figure 3). Post hoc analyses using the Tukey’s HSD procedure 

revealed that when children scored below the median on the number sense CBMs at pretest, they 

did worse in the MA UDR condition than the MA FR condition as evidenced by a higher average 

Median PAE at posttest t(56) = 2.93, p = .005. Conversely, when children scored above the 

median on the number sense CBMs at pretest, they did significantly better in the MA UDR 

condition than the MA FR condition at posttest t(56) = -2.12, p = .0381. This seems to indicate 

that children with low number sense ability at pretest benefit more from the MA FR condition 

rather than the MA UDR condition. Conversely, children with high number sense ability at 

pretest benefit more from the MA UDR condition than the MA FR condition.  
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Figure 3: Average scores on the Number Line Estimation posttest by condition and pretest 

number sense ability. 

Question 2: Do both MA conditions outperform the Reading comparison group on expressed 

strategy items on the Number Line Estimation posttest? 

A Chi-Squared analysis comparing whether or not the child used a Counting-based 

expressed strategy on at least one of the two posttest items revealed a significant effect of 

condition, χ2 (2, N = 66) = 10.247, p = .006. Table 5 shows that children in the MA UDR 

condition are using counting-based expressed strategies much less than expected by chance, 

whereas children in the Reading comparison condition are using counting-based expressed 

strategies more frequently than expected. In the MA UDR condition, of the 15 children who 

counted at least once at pretest, four exhibited no counting at posttest (a 26% decrease) and no 

children who did not count at pretest counted at posttest.  
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 MA UDR  MA Fixed  Reading  
 (n = 23) (n = 25) (n = 18) 
 Observed  Expected  Observed  Expected   Observed  Expected   

No  23 18.1 18 19.7 11 14.2 
Yes  0 4.9 7 5.3 7 3.8 

Table 5: Observed versus expected counts of using Counting-based explanations on at least one 

of the two posttest expressed strategy items.  

 

  A chi-squared analysis comparing whether or not the child used a Number Relations 

expressed strategy at least once at posttest revealed a marginally significant effect of condition, 

χ2 (2, N = 66) = 5.83, p = .054. Looking at the observed versus expected counts shows MA UDR 

counting significantly less than expected by chance and reading counting more than expected, 

but no effect within MA Fixed (See Table 6). Within the MA UDR condition, 11 children who 

did not use Number Relations strategies at pretest used Number Relations strategies at least once 

at posttest (a 47% increase) compared to only four children in the Reading Comparison group (a 

22% increase).2  

 MA UDR  MA Fixed  Reading  
 (n = 23) (n = 25) (n = 18) 
 Observed  Expected  Observed  Expected   Observed  Expected   

No  8 12.2 14 13.3 13 9.5 
Yes  15 10.8 11 11.7 5 8.5 

Table 6: Observed versus expected counts of using Number Relations on at least one of the two 

posttest expressed strategy items.  

 Therefore, we have evidence to suggest that children in MA UDR are counting less and using 

number relations more than the reading comparison in their expressed strategies at posttest.  

 Similarly, there is a significant effect of condition, χ2 (2, N = 66) = 7.39, p = .025 for 

whether or not children utilized an explicit explanation at least once at posttest. Looking at the 

observed versus expected counts, MA UDR results in using explicit explanations more 
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frequently than expected, whereas the reading comparison is using explicit explanations less 

frequently than expected (see Table 7). Within the MA UDR condition, 14 children went from 

not using an explicit explanation at pretest to using an explicit explanation at least once at 

posttest, or a 60% increase, compared to only five children in the Reading comparison group, or 

a 27% increase. Children in the MA UDR condition are using more explicit explanations at 

posttest than children in the Reading comparison condition. A simple explanation for the 

differences between the MA UDR condition and the MA FR condition could be that the extra 

step in the MA UDR condition provides children with more time on task. To test this, I 

conducted an analysis of variance using trial time as the outcome, condition, session, and 

question as factors, student ID as a random factor, and controlling for gender and school location 

revealed no significant effect of condition, F(1, 1,408) = 1.05, p = 0.31.  

 MA UDR  MA Fixed  Reading  
 (n = 23) (n = 25) (n = 18) 
 Observed  Expected  Observed  Expected   Observed  Expected   

No  7 11.8 14 12.9 13 9.3 
Yes  16 11.2 11 12.1 5 8.7 

 

Table 7: Observed versus expected counts of using an explicit explanation on at least one of the 

two posttest expressed strategy items. 

 

Question 3: Do children in the two MA conditions outperform the reading comparison condition 

on mCLASS CBMs and the MNL task at posttest? 

 To examine whether MA positively impacted CBMs or MNL, I ran a MANCOVA with 

Missing Number, Quantity Discrimination, Computation, Number Facts, and Mental Number 

Line posttest scores as outcomes and condition, gender, and school location (Chinatown or 

Harlem) as factors. There were no significant effects of condition or gender, but there was a 
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significant main effect of school location, Wilks’ λ = .70, F(5, 52) = 4.46, p = .002. Univariate 

tests show that on average, children from the Chinatown school are outperforming children from 

the Harlem schools on Number Facts, F(1, 56) = 12.51, p = 0.001, and marginally on Quantity 

Discrimination, F(1, 56) = 3.92, p = 0.056. Pretest gender differences are no longer significant at 

posttest. Therefore, there is no evidence to suggest that condition impacted scores on any of the 

CBMs or the MNL task.  

Question 4: Do children improve on MANL over time? 

 Using the computer log files, I calculated a Median PAE score for each child for MANL 

Session 1 and MANL Session 2. I conducted a repeated measures Analysis of Covariance using 

Median PAE as the outcome, Time (MANL Session one or two) as a within-subjects factor, 

Condition as a between-subjects factor, controlled for Gender and School location, and added 

Missing Number and Quantity Discrimination pretest scores as covariates to determine whether 

median PAE decreased from Session 1 to Session 2. Regardless of other factors, there was a 

significant effect of time, F(1, 44) = 12.83, p = 0.001 (see Figure 4). Interestingly, pretest NLE 

score is not predictive of Median PAE at Session 1. Similarly, Median PAE at session 2 is not 

predictive of posttest NLE score. In general, PAEs are much lower during the computer session 

than on the pretest and posttest, which may be a result of receiving feedback during the computer 

sessions.  
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Figure 4. Median Percent Absolute Error by session. 

 To further answer this question, I investigated how observed strategies changed from 

session 1 to session 2. Children’s observed strategies consisted primarily of quick and other, with 

very few instances of counting, midpoint, or landmark strategies. Counting occurred only on 

4.96% of trials, but a Chi-squared analysis showed that by Session 2, children were counting less 

frequently than expected, χ2 (1, N = 719) = 9.56, p = 0.002. Based on the chi-squared 

distribution, it is expected that children will count on 15.5 trials at session one, and 15.5 trials at 

session 2, but the observed data show children count on 24 trials at session one and 7 trials at 

session 2.  

 At session 1, children in the MA UDR group are answering quickly less frequently than 

children in the MA Fixed group, but that difference is eliminated by session 2. To test this 

empirically, I ran a I conducted a Generalized Linear Mixed Effects Model with whether or not 

the child was coded as answering Quick as the outcome variable and with Student ID as a 

random factor, condition as a between-subjects fixed factor, and session as a within-subjects 

fixed factor. I controlled for gender and school differences, beginning with a full factorial model 

and stepwise removing non-significant interactions. An interaction between condition and 
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session remained in the model, F(1, 1,413) = 5.377, p = .012. Post hoc analyses using the 

Bonferroni correction reveal that MA UDR participants answer more quickly in session 2 than in 

session 1 t (1,423) = 5.69, adjusted p < .0001. Indeed, the data supports my hypothesis that 

children would improve on MANL over time.  

Question 5: What factors of the computer log file and observed strategies predict trial accuracy? 

 To determine which features best predict trial Percent Absolute Error (PAE), I conducted 

a Generalized Linear Mixed Effects Model with trial PAE as the outcome variable and with 

Student ID as a random factor, condition as a between-subjects fixed factor, and session, trial 

number, target number, and whether or not the researcher coded them as answering quickly as 

within-subjects fixed factors. I controlled for gender and school differences, beginning with a 

full factorial model and stepwise removing non-significant interactions. For significance tests, I 

conducted pairwise contrasts using the Bonferroni correction.  

 The final model included a significant interaction between target number and whether or 

not the child answered quickly on that trial, F(11, 1,412) = 2.49, p = 0.004, (see Figure 5) and a 

significant main effect for MANL Session, F(1, 1,412) = 14.873, p < 0.001. A post hoc analysis 

using the Bonferroni correction revealed that when the trial was coded as a quick response, PAE 

was significantly higher than when the trial was not coded as a quick response for target numbers 

21, 79, and 91, t(1,409) = -2.09, 3.31, and 4.08, p = 0.037, 0.001, and 0.000, respectively, and 

marginally significantly lower when the target number was 92, t (1,409) = -1.816, adjusted p = 

0.07. When a trial is coded as a quick response, target number does not impact trial PAE, but 

conversely, when a trial is not coded as a quick response, target number significantly impacts 

trial PAE. Out of the 66 post-hoc comparisons, Table 8 shows only the twelve significant 
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differences for ease of interpretation. In general, if a trial is not coded as quick, trial PAE is more 

likely to be higher when the target number is below 21 and above 79. 

 

Figure 5: Average Trial PAE by Target number. Target number impacts PAE when a child is not 

coded as answering quickly.  

 

Pairwise 
Comparison    

Target Number t df adj. p 
21-24 3.36 1,409 0.04 
21-42 3.59 1,409 0.02 
21-50 3.79 1,409 0.01 
24-79 -3.59 1,409 0.02 
24-91 -4.28 1,409 0.00 
42-79 -3.94 1,409 0.01 
42-91 -4.57 1,409 0.00 
50-79 -4.07 1,409 0.00 
50-91 -4.69 1,409 0.00 
59-79 -3.45 1,409 0.03 
59-91 -4.15 1,409 0.00 
77-91 -3.89 1,409 0.01 

Table 8: For trials not coded as quick: significant differences between trial PAE based on target 

number 
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A post hoc analysis using the Bonferroni correction reveals that trial PAE is lower for 

session two than session one, t(1,412) = 3.857, adjusted p < .001. Above and beyond other 

factors captured from the computer log file, whether or not the child was coded as answering 

quickly for a given trial significantly impacts Trial PAE. Further, when a trial is not coded as a 

quick response, target number plays an important role in predicting Trial PAE. Specifically, 

children who do not answer quickly tend to have a higher Trial PAE when the target number is 

21, 79, 91, and 92.  

Question 6: Are the effects of MANL different for MA UDR than MA FR condition? 

 Because the User Defined Range is a key feature of MANL, I used the additional data 

from the log files about the size of the range the child used on each trial to conduct analyses for 

the MA UDR condition only. I began with an exploratory analysis examining what children did 

with the UDR. Figure 6 shows a box plot of each child’s ranges used across all 30 trials of 

MANL. From this figure, it is clear that there are two children who stretched the range the entire 

length of the number line for the majority of trials. Additionally, there are three children (Student 

ID 305, 351, and 382) who never manipulated the range at all and left it the default size of ten 

units, and several other children who kept it the default size for the majority of trials, as their box 

plots are represented by a line or a line with a few outliers.  
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Figure 6: Box plots of each child’s ranges used within the MA UDR condition. 

I calculated each child’s average range size and variance in range sizes used across all 30 

trials and correlated it with their Median Computer Session PAE to investigate the relationship. 

After removing the two stretchers and three children who never manipulated the range, Median 

Computer Session PAE is moderately correlated with average range size r(16) = 0.42, p = 0.08, 

and is significantly correlated with variance in ranges used r (16) = .51, p = 0.03. This indicates 

that variance in ranges used is slightly more predictive of performance than average range size 

used,.  Thus, a child who is consistent in the size of ranges used across trials (low variance) is 

more likely to do better in the activity (low PAE). Further, a child who is inconsistent with the 

size of ranges used (high variance) is more likely to have a higher average range, r (16) = .95, p 

< 0.001, with stretchers and default-only children excluded, r (21) = .72, p < 0.001, with the full 

sample.  
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Next, I examined whether or not number sense ability as measured by the sum of scores 

on Missing Number and Quantity Discrimination measures at pretest predicted the child’s 

variance in ranges used within MA UDR. A regression using variance in ranges used as the 

outcome, pretest number sense score as a numeric predictor revealed that when controlling for 

gender and school location, pretest number sense score significantly predicts variance in ranges 

used t (21) = -2.91, p = 0.008, such that the higher the child’s number sense score at pretest, the 

more likely the child is consistent with ranges used (lower variance).  

Finally, to examine whether range size affects trial PAE beyond additional factors from 

the GLM model using log files from both MA conditions, I conducted a regression analysis with 

trial PAE as the outcome, range size, initial number line click value, and initial number line click 

time3 as continuous predictors, and MANL Session as a categorical predictor.  Because the target 

number significantly impacted trial PAE in the previous model with children doing particularly 

worse when the target number was 21 and below and 79 and above, I also included whether or 

not the question was less than 21, and whether or not the question was greater than 79 as 

categorical predictors, controlling for school location and gender, and including Student ID as a 

random factor. The omnibus test for the analysis was significant, F(9, 671) = 71.56, p < 0.001, 

with whether or not the question was greater than 79 (Question = High), Range Size, Initial 

number line click value, initial number line click time, and MANL Session all significantly 

predicting trial PAE (see Table 9).  

Variable B St. Error ß t Sig. (p) 

(Constant) 0.15 0.05  3.16 0.00 
School Location 0.00 0.01 -0.01 -0.31 0.76 
Question = Low -0.01 0.01 -0.02 -0.61 0.54 
Question = High 0.06 0.01 0.22 6.63 0.00 

Range Size 0.00 0.00 0.59 18.97 0.00 
Initial Click Value 0.00 0.00 -0.26 -6.55 0.00 
Initial Click Time 0.00 0.00 0.08 2.72 0.01 
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MANL Session -0.02 0.01 -0.06 -2.26 0.02 
Gender 0.01 0.01 0.02 0.83 0.41 

Student ID 0.00 0.00 -0.03 -1.06 0.29 
 

Table 9: Regression model predicting Trial PAE using factors from the computer log files.  

Using the additional data of the child’s range size, I was able to further explore the 

relationship between number sense and MANL within the MA UDR condition. Specifically, the 

data shows that children with low number sense abilities at pretest are more likely to utilize 

larger ranges on average and less consistent ranges from trial to trial, and have higher Trial 

PAEs. Other features from the log file that significantly predicted Trial PAE when looking 

across both MA conditions remain important when looking specifically within the MA UDR 

condition, like how quickly a child is answering, MANL session number, and when the target 

number is equal to or greater than 79. 
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Chapter 4 

DISCUSSION 

Overview of Findings 

 In general, this study examined the success of MANL in improving second-graders’ 

number sense.  

(1) Number sense ability at pretest impacts the effectiveness of condition 

Children with low number sense ability at pretest (as measured by scoring below the 

median on Quantity Discrimination and Missing Number) did significantly worse on the paper-

and-pencil number line estimation posttest measure when they were in the MA UDR condition 

than the MA FR condition. On the contrary, children with high number sense ability at pretest 

did significantly better on the paper-and-pencil number line estimation posttest measure when 

they were in the MA UDR condition than the MA FR condition. The hypothesis that children in 

both MA groups would outperform the reading comparison group at posttest on the paper-and-

pencil number line estimation measure is not confirmed. Rather, it seems as though prior number 

sense ability impacts the effectiveness of the MA conditions.  

When children with low number sense do not have the freedom to set their own range as 

in the MA FR condition, they outperform children with low number sense in the MA UDR 

condition on the paper and pencil posttest. Although this result was unanticipated, the computer 

log files from both MA conditions allowed me to investigate this further. As discussed in more 

detail below, children with low number sense ability at pretest are less likely to utilize the MA 

UDR feature efficiently, as evidenced by their use of larger and more varied ranges. By contrast,, 

children with high number sense ability performed better on the number line estimation posttest 

when they were in the MA UDR condition than the MA FR condition. A possible explanation is 
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that the MA FR condition was not challenging enough for children who already have strong 

number sense abilities. Research has shown that the appropriate level of challenge promotes 

learning and improved performance (Gee, 2005). The extra step in the MA UDR condition may 

require the child to think more deeply about estimation or reflect on how confident he is in his 

estimate, thus making the child perceive the task as more challenging. However, more research is 

needed to investigate this claim more thoroughly.   

(2) Children in the MA UDR condition used better expressed strategies at posttest 

Another major finding is that children in the MA UDR condition (but not the MA FR 

condition) used fewer counting-based expressed strategies, more number relations expressed 

strategies, and more explicit explanations at posttest than the Reading comparison group. This is 

promising, although unanticipated because I expected both MA conditions to see the benefits. 

Why does the effect only hold for the MA UDR condition? A simple explanation could be that 

the extra step in MA UDR gave these children significantly longer time on task. However, trial 

average trial time does not differ by condition. Another possible explanation is that the ability to 

manipulate the range in MA UDR increases metacognitive awareness for the activity, and 

metacognitive awareness is required for the expressed strategy measure. Although this 

explanation is plausible, more research is needed to investigate the role of metacognition in the 

expressed strategy measure, or other potential mechanisms through which MA UDR is positively 

affecting children’s expressed strategies. 

(3) Children in the MA conditions did not outperform the Reading comparison on standard 

measures 

Although I anticipated children in both of the MA conditions to outperform children in 

the Reading comparison condition on the two Number Sense Curriculum-Based Measures and 
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the Mental Number Line task at posttest, the data from this study does not support that claim. 

Similarly, there were no differences on the CBMs of formal math abilities (Computation and 

Number Facts). There are several explanations to account for this result. Firstly, these children 

only had four computer sessions lasting 10-12 minutes, or less than 45 total minutes of 

intervention. It is reasonable to speculate that the limited dosage was unable to influence 

performance on these measures above and beyond the child’s standard math curriculum. Future 

research is needed to investigate the effects of playing MANL regularly over a longer time span.  

The Mental Number Line task only contained six items each of which the child had a 

50% chance of getting the correct answer, and thus we encountered a ceiling effect. An improved 

measure with more items that also captures response time should be used in future research as a 

better measure of number sense. Future studies may also consider incorporating different 

measures of Number Sense than the Quantity Discrimination and Missing Number CBM. Both 

of these measures involve symbolic number, which may in fact be measuring number sense 

access rather than pure number sense, and some problems involve mathematical symbols (e.g., in 

Quantity Discrimination, choosing between 50+2 and 60+2). Although strong number sense may 

aid a child in realizing the +2 is the same in both problems and thus can be ignored, many 

children saw the math symbols and immediately began solving the algorithms by a learned 

procedure. It is difficult to attribute this to poor number sense alone, as children may have 

thought that was how the problems “had” to be solved. Incorporating measures of non-symbolic 

quantity discrimination, non-symbolic estimation (where a child must quickly estimate the 

number of dots on the screen), or non-symbolic to symbolic mapping (where a child is given a 

non-symbolic representation of dots on the screen and must choose between two symbolic 
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numerals that matches the quantity or vice versa) may help further unpack the relationship 

between MANL and number sense (Brankaer, Ghesquière, & De Smedt, 2014).  

(4) Children improve on MANL over time 

In general, children improve on MANL over time, regardless of condition, as evidenced 

by Average Median PAE decreasing from session 1 to session 2. This is not surprising, as 

repeated practice with an activity with feedback typically leads to improved performance over 

time (Gee, 2005). Although Median PAE is typically used for the number line estimation 

measure, the computer log files allowed me to examine children’s performance over time 

microgenetically.  

In general, the most frequently coded strategies were Quick and Other, with very few 

instances of Counting, Midpoint, and Landmark strategies. In contrast to Petitto’s (1990) 

findings, I did not see children progress from counting-based strategies to partitioning-based 

strategies like the midpoint strategy. This could be due to the children in this study being older 

than her sample and thus already surpassing her proposed trajectory of strategy development, or 

suggest that some children answer quickly without needing to utilize a strategy due to strong 

number sense or number sense access. Alternatively, it is possible that children in this study did 

begin to utilize partitioning strategies more often over time, but a lack of clear behavioral 

evidence that the child was using such strategies could have resulted in the trial being coded as 

Quick or Other.  

Despite seeing few instances of counting across both sessions, by their second session 

children are abandoning inefficient counting strategies by session 2, providing evidence they are 

improving on MANL over time. It is not surprising that the extra step in the MA UDR condition 

requires makes it less likely they will be coded as having a quick response. It is interesting to 
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note that by session 2 these children begin answering quickly just as often as children in the MA 

Fixed condition. Children in this condition may just be getting faster at setting the size of their 

range, or may less likely to manipulate the range at all during session 2. Although not a goal of 

the current study, future analyses using this data set could attempt to disambiguate this finding 

by examining whether or not use of the default range size significantly increases from session 1 

to session 2.  

(5) Factors from session data can predict trial PAE 

When looking at the log files and observed strategy data from both MA conditions to see 

which factors best predict trial PAE, whether or not a response is coded as quick determines 

whether or not target number significantly impacts trial PAE more so than other factors such as 

trial number. NL session is another significant predictor, with trial PAE being significantly lower 

for session 2 than session 1, providing further evidence to support improvements over time.  

It is not surprising that overall, when children answer quickly they are more likely to 

have a lower PAE than when they are if not coded as answering quickly. A reasonable 

explanation is that children who answer quickly are utilizing their strong number sense or access 

to it while playing MANL. Children without strong number sense may be resorting to alternative 

mechanisms or strategies like counting to find the target number, potentially explaining why 

when a child does not answer quickly, target number is an important predictor of trial PAE. The 

fact that when children do not answer quickly, they are more likely to have a higher PAE when 

the target number is high (=>79) is consistent with the literature that suggests these children may 

be utilizing a logarithmic representation rather than a linear representation of number, and are 

thus devoting more space on the number line for smaller target numbers and placing larger target 

numbers close together. To investigate individual differences in the number line estimation task, 
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researchers plot a participant’s actual responses against the target number and plot a best-fit 

function. Perfect performance on the number line estimation task (no error on any trial) would fit 

the linear function x = y, meaning the participant marked the target number in its exact position. 

Therefore it is optimal that a linear function fit the data. However, kindergartners’ and first-

graders’ plots typically fit a logarithmic function (see Figure 1). Although by second grade most 

children are utilizing a linear representation of number, a similar method could investigate 

whether children who typically do not answer quickly are still utilizing a logarithmic 

representation of number.  

However, it is interesting to note that when not answering quickly, children were also 

more likely to have a higher PAE when the target number was low (<=21). This suggests that 

something besides a logarithmic representation of number may be accounting for this finding. It 

could be that when a child does not answer quickly for these lower target numbers, he is 

resorting to counting from zero to find the target number. Although not a goal of this study, 

analyses investigating whether trials in which the researcher coded the child as using a counting 

strategy occur more frequently with specific target numbers could shed further light onto this 

finding. Future studies using improved methods of determining whether or not a child is 

counting could also investigate these claims.  

It is also interesting to note that trial PAE was significantly lower when the target number 

was 24 than when it was 21, despite the two numbers being only three units apart. It is possible 

that since it is framed as an estimation task, children weight the tens and ones digits differently 

for different target numbers. For example, 21 is close to a decade number, and thus the child may 

be ignoring the ones digit altogether and aiming for “somewhere close to 20.” Whereas when the 

target number is 24, the ones digit plays a more important role in determining the target 
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number’s position in relation between the decades. As this was not the primary goal of this study, 

I did not look at how the data could support this claim. However, using the current data set, one 

could investigate whether average trial time is higher for target numbers that fall between 

decades than target numbers close to decades. However, future research using a wide variety of 

target numbers is needed to provide more conclusive evidence for this claim.  

(6) Data from the ranges children use within the MA UDR condition can predict trial PAE 

The most interesting findings come from taking a closer look within the MA UDR 

condition. There were clear individual differences on what children did with the ranges, with two 

children engaging in “stretching” on the majority of trials, three children leaving the range the 

default size on every trial, and several others leaving the range the default on many trials. Indeed, 

the data revealed that children who scored lower on the two number sense CBMs at pretest were 

more likely to be inconsistent with the sizes of ranges used from trial to trial, utilized larger 

ranges, and had higher trial PAEs.  

This, coupled with the previous finding of pretest number sense ability impacting the 

effect of condition on posttest number line estimation scores, indicates that children with low 

number sense are not using the user-defined range feature as an effective learning tool, and are 

thus not seeing significant learning gains over time. Conversely, children with high number 

sense at pretest saw significant learning gains in the MA UDR condition over children with high 

number sense in the MA FR condition.  

Future research is needed determine why children with low number sense are using the 

tool ineffectively. It is possible that these children are more likely to have low math self-efficacy 

or it could be explained by a motivational construct like goal orientation, the purposes for 

engaging in achievement behavior and signify a standard by which the individual judges his/her 
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performance and attributes the cause of success or a failure of an outcome (Pintrich, 2003), or 

mindset (Dweck & Legget, 1998). Children with low number sense may be utilizing a 

performance goal orientation, or making the range large to ensure they will get the answer 

“right,” whereas children with high number sense may be more likely to utilize a mastery goal 

orientation or mastery mindset and try to challenge themselves by using smaller ranges at the 

expense of getting the answer correct. Alternately, children with low number sense may not be 

using the UDR as a learning tool, but simply playing with adjusting the range as a fun feature. 

Unfortunately, nothing within the current data can provide insight into this issue, and thus 

additional data with measures of these and potentially other constructs are needed.  

Implications 

 The findings from this study have implications for researchers, educational technology 

designers, and math educators, which are discussed in detail.  

 The findings from this study are consistent with other number line estimation research 

that shows children improve with the task over time with repeated practice and feedback and 

research that suggests number sense is subject to individual differences (Hyde, Khanum, & 

Spelke, 2014; Jordan et al., 2006). Although we found promising evidence of MANL improving 

number sense as measured by improved performance on MANL over time and results from the 

number line estimation measure of accuracy and expressed strategy, data from this study did not 

clearly explicate the extent to which second-grader’s number sense abilities are malleable. In 

addition to the avenues of future research discussed above, a necessary next step for researchers 

will be to further investigate the mechanisms through which MANL impacts number sense, and 

effects of children using MANL over a longer period of time.  
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 The findings from this study also have important implications for the design of 

educational technology. MANL was designed based on cognitive psychology literature on the 

development of the understanding of number and number sense, theories of children’s learning in 

general, and game theory. However, it is interesting to note that often children in the MA FR 

condition did not see the same learning benefits as children, particularly with high number sense, 

in the MA UDR condition. This seems to indicate that providing feedback and multiple attempts 

alone is not always sufficient in transforming a task used in psychological research into a 

meaningful learning activity. Although children with low number sense benefited more from the 

MA FR condition as evidenced by lower Median PAE on the number line estimation posttest 

than did low number sense children in the MA UDR condition, children with high number sense 

did not benefit from the MA FR condition as measured by the same number line estimation task. 

In addition, children in the MA FR condition did not see the same benefits on the expressed 

strategy measure at posttest as did children in the MA UDR condition. This suggests that the 

UDR feature adds something extra to the task that enhances learning, whether it is by increasing 

metacognitive awareness, increasing the perceived level of challenge for the activity, or through 

an alternative mechanism. Many activities based on number line estimation have been 

developed, often times requiring the child to complete multiple trials of the task situated within a 

narrative. For example, a fisherman in a boat is trying to catch a fish, and the user must put the 

fisherman’s boat in the correct position to find the fish. It may be that repeated trials with 

feedback within a narrative version of the activity is enough to promote learning above and 

beyond a version of the activity lacking narrative.  

However, the implementation of the UDR feature added an extra step, which when used 

effectively shows positive effects on learning beyond using MA FR, despite both conditions 
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sharing all other key features such as feedback and multiple attempts. Although I hypothesize 

that this extra step is encouraging the child to think about the task more deeply and deal with the 

concept of approximation, risk taking, and confidence in estimates very explicitly, more research 

is needed to explore the mechanisms through which MA UDR is positively affecting 

performance within the computer sessions and long term effects on other mathematical abilities. 

Future research may also investigate how manipulating various aspects of MA UDR impact the 

way in which children interact with the tool. For example, the score-keeping algorithm could be 

changed so as to punish a child for an incorrect response or for stretching the UDR too large. For 

the present study, I did not want to subject any possible poor estimators to negative scores. 

Alternatively, I set the default range size of the MA UDR condition to be the same size as the 

MA FR condition. However, there were very few instances of children making the UDR smaller 

than the default. Future studies could examine how varying the default range size impacts 

children’s behavior in interacting with it.  

This study also demonstrated how well designed educational software provides 

meaningful data to researchers. Although this study showed which factors from the computer log 

file and observed strategies successfully predict Trial PAE, there are many additional analyses 

that can be conducted utilizing this data. For example, this study only examined data from the 

child’s first attempt. Different factors may be important in predicting trial PAE for the second 

attempt.   There may be different learning implications for children who require both attempts on 

the majority of trials. For example, a child who is consistently incorrect on the first attempt gains 

scaffolded feedback and more practice on the activity than children who are typically correct on 

the first attempt. The child’s incorrect answer is preserved on the number line and the midpoint 

is labeled, which may not only provide scaffolding for the current trial, but may impact the 



	
  

49	
  

child’s response to subsequent trials. Although outside the realm of the present study, future 

analyses could examine the impact of utilizing two attempts on performance on subsequent trials. 

This highlights how looking at the data microgenetically at the trial level provides much more 

detailed and useful information than simply looking at the child’s median PAE at each session.  

The current study may serve as a model for how researchers and game designers alike 

should approach the evaluation of educational technologies. MANL was developed based on 

sound principles from cognitive psychology and game design, and underwent several rounds of 

formative evaluation before the present study. Although I hypothesized that both the MA UDR 

and the MA FR conditions would see learning gains, results showed MA UDR to be much more 

promising for promoting learning. By designing the study in an empirical way to carefully 

compare the two groups, I saw explicitly that simply manipulating one feature of an activity can 

have powerful effects on learning.  

Just as designers can benefit from incorporating psychological research methods to 

evaluate their designs, researchers can learn from the benefits of conducting research in real 

world settings instead of laboratories. Although this study benefited from having researchers 

work one-on-one with the child, something unlikely to happen in a classroom setting, I dealt with 

many of the challenges that face schools today. Several of the classrooms had large class-sizes 

(>25), making teachers sacrifice instruction time to classroom management. Children coming 

from classrooms lacking structure were often rowdy, requiring the researcher to attempt to 

manage the child’s behavior during the sessions. All three schools lacked a completely quiet 

workspace for our data collection, leading to us work with children in libraries being shared with 

several other groups or cafeterias for small windows of time between breakfast and lunch 

service. And finally, Hurricane Sandy occurred three weeks into data collection, causing all three 
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schools to close for a week, one of which reopened without heat. Although the data would have 

been cleaner and may have revealed stronger findings if collected in a lab setting, these are 

challenges facing schools, and the fact that these children still saw learning benefits despite these 

challenges is promising.  

Finally, the study findings are important for math educators. These computer sessions 

were short, allowed children to practice estimation in a meaningful way not typically addressed 

in the classroom, had promising effects on children’s learning, and were inherently engaging for 

the children, thus making the activity a great option to supplement the teacher’s current math 

curriculum. Teachers should actively seek educational technology that is designed based on 

cognitive theories and encourage deep thinking rather than drill.  

Videos from the computer sessions show every single child’s face light up in a smile 

when their answer is right on or nearly right on the target number. Similarly, when children just 

barely find the target number within their range, it was not uncommon for the child to tap the 

researcher to show her how close he was or let out a sigh of relief. Structuring it as an estimation 

task also impacted children’s perceptions of the activity. While walking one girl back to her 

classroom after her final computer session, the researcher asked, “Do you ever play any other 

math games on the computer?” to which the child laughed and replied, “Well, this isn’t really a 

math game.” Curious, the researcher asked why not and the child responded with, “In math you 

can only get the right answer, but in this game there isn’t really a right answer. Well, there is a 

right answer but you don’t have to get it exactly.” Although this is anecdotal, it illustrates how 

the estimation task can engage children to explore important ideas about numbers and their 

magnitudes outside of the realm of “formal” mathematical concepts and algorithms.  

Next Steps 
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 In addition to avenues for future research discussed above, findings from this study can 

be used to improve the design of MANL. Firstly, using the data from this study, it may be 

possible to use Educational Data Mining or Learning Analytics methods to program MANL to 

detect children who are using the UDR tool ineffectively, and who are thus at risk for not seeing 

learning benefits from the activity (Baker & Yacef, 2009). After successful detection, the 

computer can take away the UDR feature and require the child to use a FR until reaching a level 

of mastery with the task before then moving back to UDR or provide additional instructions or 

scaffolding to help the child use the activity effectively. Identifying these children will be 

important for teachers as well, since this study found evidence to suggest that the children who 

are most likely to use the tool ineffectively have low number sense.  

 Another important next step to advance the effectiveness of MANL will be to explore 

how to harness the learning benefits to aid children in formal math abilities. Teachers can do this 

simply by encouraging approximation in classroom math activities in addition to formal 

algorithms. Because this study, as well as others, showed clear benefits to explaining one’s 

thinking in mathematical problem solving, teachers could have groups of students discuss how 

they used approximation to solve specific problems. Using our earlier example, there are many 

methods to approximate quickly determining a tip (moving the decimal over one place and 

doubling it, doubling the sales tax and adding a bit more, or tipping one dollar for every seven of 

the bill) and dividing a restaurant bill among friends. Although the adults at the table may not 

appreciate the different problem solving strategies or see serious learning games from the 

practice, it is easy to imagine how a similar scenario could work in a formal classroom setting.  

Limitations 
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 Despite attempts to carefully design the study, there are certain limitations to address. 

Firstly, as discussed, improvements to the measures by including a non-symbolic quantity 

discrimination measure, adding more items and capturing response time in the Mental Number 

Line Task, collecting observed as well as expressed strategy on the Number Line estimation 

posttest, would have helped better explain the relationship between MANL and number sense. 

Secondly, although I wanted the research sessions to be relatively short, many of the children’s 

second MANL session was less than ten minutes. Therefore, I could have required children to 

complete more trials, and ideally more sessions, which would have shed more light on the effect 

of target number on Trial PAE and potentially deepened the impact of MANL on number sense.  

 It could be argued that Trial PAE is not the best outcome variable to use as a measure of 

success on MANL, particularly for the MA UDR condition. Children in this condition could be 

focusing less on the placement of the line in the middle of their range (despite the fact that 

children are told to try to place as close to the target number as they can) because they know as 

long as the target falls anywhere within their range, they will be considered correct. Although 

this kind of approach is possible, I correlated the child’s first click on the number line with the 

target number and found a strong positive correlation, indicating that children were at least partly 

attempting to place the middle line close to the target number. Luckily, the detailed log files will 

allow further examination of this concern.  

 Finally, one could argue that the Reading comparison group was not an appropriate 

control and I should have opted instead for another math software. The goal of this study was to 

explore the relationship between number sense and MANL, while utilizing the reading 

comparison group to control for the experience of working one-on-one with a researcher. 

Although our data cannot say conclusively how MANL stacks up against other existing math 
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interventions, it showed that MANL provides promising learning opportunities to second-graders 

from schools serving low-income populations that are typically at risk for low math achievement.  
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Footnotes 

1When running the same model without the Number Sense pretest factor, a significant interaction 
between Condition and whether the school was located in Chinatown or Harlem remained 
significant in the model, F(2,51) = 3.41, p = .041. Pairwise comparisons using Tukey’s HSD 
reveal that in Harlem schools, children in the MA UDR condition are doing significantly better 
than children in the reading comparison group (adjusted p  = 0.039), whereas condition has no 
effect within the Chinatown school.) 
 
2I also ran all three analyses as binary logistic regressions using the appropriate outcome 
(Counting at least once at posttest, Number Relations at least once at posttest, Explicit 
explanation at posttest as the outcome) with condition as a factor, controlling for school location 
and gender, with stepwise removal of non-significant interactions. Even controlling for other 
factors, condition remained significant in the counting and explicit analyses. For Number 
Relations, although the main effect of condition is N.S., pairwise comparisons using the 
Bonferroni procedure show that children in the MA UDR condition are more likely to utilize the 
Number Relations strategies than the reading comparison group (adjusted p = .017). 
 
3This was used as a measure of response time rather than the categorical researcher codes of 
quick or not, as regression is better suited for continuous variables. While the categorical 
variable of whether the trial was coded as quick or not significantly predicts Trial PAE in the 
regression model, using the continuous variable has several benefits. The beta coefficient gives 
more evidence to how response time impacts Trial PAE, and as it comes directly from the log 
file rather than researcher codes, it is a more reliable measure.  
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