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ABSTRACT

Sequential Optimization in Changing Environments:
Theory and Application to Online Content

Recommendation Services

Yonatan Gur

Recent technological developments allow the online collection of valuable information that can

be efficiently used to optimize decisions “on the fly” and at a low cost. These advances have

greatly influenced the decision-making process in various areas of operations management, in-

cluding pricing, inventory, and retail management. In this thesis we study methodological as well

as practical aspects arising in online sequential optimization in the presence of such real-time

information streams. On the methodological front, we study aspects of sequential optimization

in the presence of temporal changes, such as designing decision making policies that adopt to

temporal changes in the underlying environment (that drives performance) when only partial in-

formation about this changing environment is available, and quantifying the added complexity

in sequential decision making problems when temporal changes are introduced. On the applied

front, we study practical aspects associated with a class of online services that focus on creating

customized recommendations (e.g., Amazon, Netflix). In particular, we focus on online content

recommendations, a new class of online services that allows publishers to direct readers from ar-

ticles they are currently reading to other web-based content they may be interested in, by means

of links attached to said article.

In the first part of the thesis we consider a non-stationary variant of a sequential stochastic

optimization problem, where the underlying cost functions may change along the horizon. We

propose a measure, termed variation budget, that controls the extent of said change, and study how

restrictions on this budget impact achievable performance. As a yardstick to quantify performance

in non-stationary settings we propose a regret measure relative to a dynamic oracle benchmark.



We identify sharp conditions under which it is possible to achieve long-run-average optimality and

more refined performance measures such as rate optimality that fully characterize the complexity

of such problems. In doing so, we also establish a strong connection between two rather disparate

strands of literature: adversarial online convex optimization; and the more traditional stochastic

approximation paradigm (couched in a non-stationary setting). This connection is the key to

deriving well performing policies in the latter, by leveraging structure of optimal policies in the

former. Finally, tight bounds on the minimax regret allow us to quantify the “price of non-

stationarity,” which mathematically captures the added complexity embedded in a temporally

changing environment versus a stationary one.

In the second part of the thesis we consider another core stochastic optimization problem

couched in a multi-armed bandit (MAB) setting. We develop a MAB formulation that allows

for a broad range of temporal uncertainties in the rewards, characterize the (regret) complexity

of this class of MAB problems by establishing a direct link between the extent of allowable

reward “variation” and the minimal achievable worst-case regret, and provide an optimal policy

that achieves that performance. Similarly to the first part of the thesis, our analysis draws

concrete connections between two strands of literature: the adversarial and the stochastic MAB

frameworks.

The third part of the thesis studies applied optimization aspects arising in online content

recommendations, that allow web-based publishers to direct readers from articles they are cur-

rently reading to other web-based content. We study the content recommendation problem and

its unique dynamic features from both theoretical as well as practical perspectives. Using a large

data set of browsing history at major media sites, we develop a representation of content along

two key dimensions: clickability, the likelihood to click to an article when it is recommended; and

engageability, the likelihood to click from an article when it hosts a recommendation. Based on

this representation, we propose a class of user path-focused heuristics, whose purpose is to simul-

taneously ensure a high instantaneous probability of clicking recommended articles, while also

optimizing engagement along the future path. We rigorously quantify the performance of these

heuristics and validate their impact through a live experiment. The third part of the thesis is

based on a collaboration with a leading provider of content recommendations to online publishers.
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Chapter 1

Introduction

1.1 Sequential optimization in changing environments

In the presence of uncertainty and partial feedback, an agent that faces a sequence of decisions

needs to judiciously use information collected from past observations when trying to optimize

future actions. This fundamental paradigm is present in a variety of applications in dynamic

pricing, inventory control, retail management, and assortment selection: an online retailer that

launches a new product needs to set a price to maximize profits but does not know the demand

curve; that retailer may also need to select an assortments of products to suggest an arriving

customer, but does not know the preferences of that customer over available products; other web-

based companies may try to suggest articles, music, or videos to individual consumers whose tastes

are a-priori not known; as well as many other instances. In all the above examples decisions can be

adjusted on a weekly, daily or hourly basis (if not more frequently), and the history of observations

may be used to optimize current and future performance. Two widely studied paradigms that

capture sequential decision-making in the presence of uncertainty and partial feedback are the

Stochastic approximation (SA) formulation that is typically applied when the available action

set is continuous (such as in dynamic pricing problems), and the Multi-armed bandit (MAB)

formulation, typically applied when that action set is discrete (such as in assortment selection).

While in many application domains (such as the ones noted above) temporal structural changes

may be an intrinsic characteristic of the problem, these potential changes are largely not dealt

with in the traditional SA and (stochastic) MAB literature streams.
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Stochastic approximation. In the prototypical setting of sequential stochastic optimiza-

tion, a decision maker selects at each epoch t ∈ {1, . . . T} a point Xt that belongs (typically)

to some convex compact action set X ⊂ Rd, and incurs a cost f(Xt), where f(·) is an a-priori

unknown convex cost function. Subsequent to that, a feedback φt (Xt, f) is given to the decision

maker; representative feedback structures include a noisy realization of the cost and/or the gra-

dient of the cost. When the cost function is assumed to be strongly convex, a typical objective

is to minimize the mean-squared-error, E ‖XT − x∗‖2, where x∗ denotes the minimizer of f(·) in

X . When f(·) is only assumed to be weakly convex, a more reasonable objective is to minimize

E [f (XT )− f (x∗)], the expected difference between the cost incurred at the terminal epoch T and

the minimal achievable cost. (This objective reduces to the MSE criterion, up to a multiplicative

constant, in the strongly convex case.) The study of such problems originates with the pioneering

work of Robbins and Monro (1951) which focuses on stochastic estimation of a level crossing, and

its counterpart studied by Kiefer and Wolfowitz (1952) which focuses on stochastic estimation of

the point of maximum; these methods are collectively known as stochastic approximation (SA),

and with some abuse of terminology we will use this term to refer to both the methods as well

as the problem area. Since the publication of these seminal papers, SA has been widely studied

and applied to diverse problems in a variety of fields including Economics, Statistics, Operation

Research, Engineering and Computer Science; cf. books by Benveniste et al. (1990) and Kushner

and Yin (2003), and a survey by Lai (2003).

A fundamental assumption in SA which has been adopted by almost all of the relevant litera-

ture (exceptions to be noted in what follows), is that the cost function does not change throughout

the horizon over which we seek to (sequentially) optimize it. Departure from this stationarity as-

sumption brings forward many fundamental questions. Primarily, how to model temporal changes

in a manner that is “rich” enough to capture a broad set of scenarios while still being mathemat-

ically tractable, and what is the performance that can be achieved in such settings in comparison

to the stationary SA environment. Chapter 2 of this thesis is concerned with these questions.

The non-stationary SA problem. Consider the stationary SA formulation outlined above

with the following modifications: rather than a single unknown cost function, there is now a

sequence of convex functions {ft : t = 1, . . . , T}; like the stationary setting, in every epoch
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t = 1, . . . , T the decision maker selects a point Xt ∈ X (this will be referred to as “action” or

“decision” in what follows), and then observes a feedback, only now this signal, φt (Xt, ft), will

depend on the particular function within the sequence. In chapter 2 we consider two canonical

feedback structures alluded to earlier, namely, noisy access to the function value f(Xt), and

noisy access to the gradient ∇f(Xt). Let {x∗t : t = 1, . . . , T} denote the sequence of minimizers

corresponding to the sequence of cost functions.

In this “moving target” formulation, a natural objective is to minimize the cumulative counter-

part of the performance measure used in the stationary setting, for example,
∑T

t=1 E [ft (Xt)− ft (x∗t )]

in the general convex case. This is often referred to in the literature as the regret. It measures

the quality of a policy, and the sequence of actions {X1, . . . , XT } it generates, by comparing its

performance to a clairvoyant that knows the sequence of functions in advance, and hence selects

the minimizer x∗t at each step t; we refer to this benchmark as a dynamic oracle for reasons that

will become clear soon.1

To constrain temporal changes in the sequence of functions, in chapter 2 we introduce the

concept of a temporal uncertainty set V, which is driven by a variation budget VT :

V := {{f1, . . . , fT } : Var(f1, . . . , fT ) ≤ VT } .

The precise definition of the variation functional Var(·) will be given in chapter 2; roughly speak-

ing, it measures the extent to which functions can change from one time step to the next, and adds

this up over the horizon T . As will be seen in chapter 2, the notion of variation we propose allows

for a broad range of temporal changes in the sequence of functions and minimizers. Note that the

variation budget is allowed to depend on the length of the horizon, and therefore measures the

scales of variation relative to the latter.

For the purpose of outlining the flavor of our main analytical findings and key insights, let us

further formalize the notion of regret of a policy π relative to the dynamic oracle:

Rπφ(V, T ) = sup
f∈V

{
Eπ
[

T∑
t=1

ft(Xt)

]
−

T∑
t=1

ft(x
∗
t )

}
.

1A more precise definition of an admissible policy will be advanced in the next section, but roughly speaking, we

restrict attention to policies that are non-anticipating and adapted to past actions and observed feedback signals,

allowing for auxiliary randomization; hence the expectation above is taken with respect to any randomness in the

feedback, as well as in the policy’s actions.
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In this set up, a policy π is chosen and then nature (playing the role of the adversary) selects

the sequence of functions f := {ft}t=1,...,T ∈ V that maximizes the regret; here we have made

explicit the dependence of the regret and the expectation operator on the policy π, as well as

its dependence on the feedback mechanism φ which governs the observations. The first order

characteristic of a “good” policy is that it achieves sublinear regret, namely,

Rπφ (V, T )

T
→ 0 as T →∞.

A policy π with the above characteristic is called long-run-average optimal, as the average cost

it incurs (per period) asymptotically approaches the one incurred by the clairvoyant benchmark.

Differentiating among such policies requires a more refined yardstick. Let R∗φ (V, T ) denote the

minimax regret: the minimal regret that can be achieved over the space of admissible policies

subject to feedback signal φ, uniformly over nature’s choice of cost function sequences within the

temporal uncertainty set V. A policy is said to be rate optimal if it achieves the minimax regret

up to a constant multiplicative factor; this implies that, in terms of growth rate of regret, the

policy’s performance is essentially best possible.

A discrete action set. A widely studied paradigm that captures the tension between the

acquisition cost of new information (exploration) that may be used to improve future decisions

and rewards, and the generation of instantaneous rewards based on the existing information (ex-

ploitation) is that of multi armed bandits (MAB), originally proposed in the context of drug

testing by Thompson (1933), and placed in a general setting by Robbins (1952). The original

setting has a gambler choosing among K slot machines at each round of play, and upon that se-

lection observing a reward realization. In this classical formulation the rewards are assumed to be

independent and identically distributed according to an unknown distribution that characterizes

each machine. The objective is to maximize the expected sum of (possibly discounted) rewards

received over a given (possibly infinite) time horizon.

Since the set of MAB instances in which one can identify the optimal policy is extremely

limited, a typical yardstick to measure performance of a candidate policy is to compare it to a

benchmark: an oracle that at each time instant selects the arm that maximizes expected reward.

The difference between the performance of the policy and that of the oracle is called the regret.

When the growth of the regret as a function of the horizon T is sub-linear, the policy is long-run
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average optimal : its long run average performance converges to that of the oracle. Hence the

first order objective is to develop policies with this characteristic. The precise rate of growth of

the regret as a function of T provides a refined measure of policy performance. Lai and Robbins

(1985) is the first paper that provides a sharp characterization of the regret growth rate in the

context of the traditional setting (stationary random rewards) that is often referred to as the

stochastic MAB problem. Most of the literature has followed this path with the objective of

designing policies (often referred to as rate optimal policies) that exhibit the “slowest possible”

rate of growth in the regret.

In chapter 3, following the meta-principle introduced in chapter 2, we show that in a broad

class of stochastic non-stationary MAB problems one may achieve rate optimal performance by

adapting policies from the adversarial MAB setting. Interestingly, we show that one may obtain

a rate optimal performance with respect to all three parameters that characterize non-stationary

stochastic MAB settings: not only the horizon length and the variation in the rewards, but also

the number of available arms.

1.2 Online content recommendation services

Diversity and sheer number of content sites on the world wide web has been increasing at an

extraordinary rate over the past years. One of the great technological challenges, and a major

achievement of search portals, is the ability to successfully navigate users through this complex

forest of information to their desired content. However, search is just one route for users to seek

content, and one that is mostly relevant when users have a fairly good idea of what they are

searching for. Recent years have witnessed the emergence of dynamically customized content

recommendations, a new class of online services that complement search and allows publishers

to direct users from articles they are currently reading to other web-based content they may be

interested in consuming. Chapter 4 focuses on performance assessment and optimization for this

new class of services.

Brief overview of the service. When a reader arrives to an online article (for example,

from the publisher’s front page), a customized recommendation is generated at the bottom of the

article (Figure 1.1 depicts such an example). The recommendation typically contains 3 to 12 links
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Figure 1.1: Online content recommendation. (Left) The position of the recommendation, at the

bottom of a CNN article. (Right) The enlarged recommendation, containing links to recommended articles.

The right side of this recommendation contains internal links to other articles on CNN’s website, or CNN

owned blogs. The left side of the recommendations contains external (sponsored) links to articles from

other media sites.

that point readers to recommended articles. The links specify the title of the recommended article.

By clicking on one of these links the reader is sent to the recommended article, at the bottom of

which a new recommendation is provided, etc. These recommendations are typically generated

by a service provider (not the media site), and recommended articles may be internal (organic),

leading readers to other articles published in the host media site, or external (sponsored), in

general leading readers to other publishers. While internal recommendations are typically given as

a service to the host publisher, external links are sponsored (either by the site on the receiving end

of the recommendation, or by a third party that promotes the content) based on a fee-per-click,

which is split between the service provider and the publisher that hosts the recommendation.

This simple revenue share business model is predicated on the service’s success in matching

users with customized content that is relevant for them at the time of their visit. The dynamic

matching problem between users and content lies at the heart of both the service provider’s and

online publishers’ revenue maximization problems, and determines the value of the service to the

publishers and their readers.

At a high level, the process of matching a reader with a bundle of recommended articles takes
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the following form. When a reader arrives to an article, a request for a recommendation is sent

by the host publisher. This request may include some information regarding the host article as

well as the reader. The service provider also has access to a database of feasible articles with

information such as topic classification, publish date, and click history. The available information

is processed by several competing and complementary algorithms that analyze different aspects

of it: the contextual connection between the host article and the recommendation candidates;

the reading behavior and patterns associated with articles; and additional information such as

the popularity of articles (and general traffic trends in the content network). These inputs are

combined to generate a content recommendation.

Salient features. While the problem of recommending articles to readers shares similar fea-

tures with the ones faced by more traditional product recommendation services (such as Amazon

or Netflix), it has several unique characteristics. Such features include the rate at which new

“products” (articles) are added to the system (roughly 1M daily), the typical short shelf life of

many articles (in many cases these may lose relevancy in a matter of hours/days after publica-

tion), as well as rapid fluctuations of interest levels associated with different topics, driven by the

evolving trends and buzz in the content world. These salient features introduce challenges that go

beyond the traditional product recommendation problem (e.g., the need to base recommendations

on dynamic and relatively limited information).

A key feature defining the content recommendation service, is that it stimulates ongoing user

engagement in each interaction. While many online services are terminated after a single click,

the content recommendation service is dynamic, as each successful recommendation leads to a

new opportunity for interaction: following the first click, the user arrives to a new article, at the

bottom of which a new recommendation is generated, and so on. Thus, content recommendations

often serve as a navigation tool for readers, inducing a chain of discovered articles. In such

an environment, a central question is how to measure (and optimize) the performance of the

recommendation service?

The key performance indicator that is currently used to evaluate various articles as candidates

for recommendation is the click through rate (CTR): the number of times a link to an article was

clicked, divided by the number of times the link was shown. The CTR performance indicator
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is adopted by many online services that have the objective of generating a single click per user.

Under such a myopic approach, optimization techniques typically focus on integrating the prob-

ability to click on a recommendation with the potential revenue generated by a click (see Jansen

and Mullen (2008) and Feng et al. (2007) for an overview). Following this common approach,

content recommendation algorithms used in current practice are designed to maximize the in-

stantaneous CTR (or alternatively, the instantaneous revenue) of the generated recommendation.

While high CTR signals that the service is frequently being used and that revenue is generated by

the service provider, CTR also has an important limitation: it measures the probability to click

at the current step, but does not account for interactions that may come after the click, and in

particular, future clicks along the potential visit path of the reader.

1.3 Overview of main contributions

1.3.1 Non-stationary stochastic optimization

The main results and key qualitative insights of Chapter 2 can be summarized as follows.

Necessary and sufficient conditions for sublinear regret. We first show that if the

variation budget VT is linear in T , then sublinear regret cannot be achieved by any admissible

policy, and conversely, if VT is sublinear in T , long-run-average optimal policies exist. So, our

notion of temporal uncertainty supports a sharp dichotomy in characterizing first-order optimality

in the non-stationary SA problem.

Complexity characterization. We prove a sequence of results that characterizes the order

of the minimax regret for both the convex as well as the strongly convex settings. This is done

by deriving lower bounds on the regret that hold for any admissible policy, and then proving that

the order of these lower bounds can be achieved by suitable (rate optimal) policies. The essence

of these results can be summarized by the following characterization of the minimax regret:

R∗φ(V, T ) � V α
T T

1−α,

where α is either 1/3 or 1/2 depending on the particulars of the problem (namely, whether the

cost functions in V are convex/strongly convex, and whether the feedback φ is a noisy observation

of the cost/gradient); see below for more specificity.
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The “price of non-stationarity.” The minimax regret characterization allows, among

other things, to contrast the stationary and non-stationary environments, where the “price” of

the latter relative to the former is expressed in terms of the “radius” (variation budget) of the

temporal uncertainty set. The table below summarizes our main findings. Note that even in

Setting Order of regret

Class of functions Feedback Stationary Non-stationary

convex noisy gradient
√
T V

1/3
T T 2/3

strongly convex noisy gradient log T
√
VTT

strongly convex noisy function
√
T V

1/3
T T 2/3

Table 1.1: The price of non-stationarity. The rate of growth of the minimax regret in the stationary

and non-stationary settings under different assumptions on the cost functions and feedback signal.

the most “forgiving” non-stationary environment, where the variation budget VT is a constant

and independent of T , there is a marked degradation in performance between the stationary and

non-stationary settings. (The table omits the general convex case with noisy cost observations;

this will be explained later in chapter 2.)

A meta principle for constructing optimal policies. One of the key insights we wish

to communicate in chapter 2 pertains to the construction of well performing policies, either long-

run-average, or rate optimal. The main idea is a result of bridging two relatively disconnected

streams of literature that deal with dynamic optimization under uncertainty from very different

perspectives: the so-called adversarial and the stochastic frameworks. The former, which in our

context is often refereed to as online convex optimization (OCO), allows nature to choose the worst

possible function at each point in time depending on the actions of the decision maker, and with

little constraints on nature’s choices. This constitutes a more pessimistic environment compared

with the traditional stochastic setting where the function is picked a priori at t = 0 and held fixed

thereafter, or the setting we propose here, where the sequence of functions is chosen by nature

subject to a variation constraint. Because of the freedom awarded to nature in OCO settings, a

policy’s performance is typically measured relative to a rather coarse benchmark, known as the

single best action in hindsight; the best static action that would have been picked ex post, namely,

after having observed all of nature’s choices of functions. While typically a policy that is designed
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to compete with the single best action benchmark in an adversarial OCO setting does not admit

performance guarantees in our stochastic non-stationary problem setting (relative to a dynamic

oracle), we establish an important connection between performance in the former and the latter

environments, given roughly by the following “meta principle”:

If a policy has “good” performance relative to the single best action in the adversarial

framework, it can be adapted in a manner that guarantees “good” performance in the

stochastic non-stationary environment subject to the variation budget constraint.

In particular, according to this principle, a policy with sublinear regret in an adversarial

setting can be adapted to achieve sublinear regret in the non-stationary stochastic setting, and in

a similar manner we can port over the property of rate-optimality. It is important to emphasize

that while policies that admit these properties have, by and large, been identified in the online

convex optimization literature2, to the best of our knowledge there are no counterparts to date

in a non-stationary stochastic setting.

1.3.2 Multi-armed bandit problems with non-stationary rewards

At a high level, the main contribution of chapter 3 lies in fully characterizing the (regret) com-

plexity of a broad class of MAB problems with non-stationary reward structure by establishing a

direct link between the extent of reward “variation” and the minimal achievable worst-case regret.

More specifically, the contributions of chapter 3 are along three dimensions.

Modeling a broad class of MAB problems with non-stationary rewards. We formu-

late a class of non-stationary reward structures that is quite general, and hence can be used to

realistically capture a variety of real-world type phenomena, yet remain mathematically tractable.

The main constraint that we impose on the evolution of the mean rewards is that their variation

over the relevant time horizon is bounded by a variation budget VT . This limits the power of

nature compared to the adversarial setup discussed above where rewards can be picked to max-

imally damage the policy at each instance within {1, . . . , T}. Nevertheless, this constraint still

allows for a very rich class of temporal changes. This class extends most of the treatment in the

2For the sake of completeness, to establish the connection between the adversarial and the stochastic literature

streams, we adapt, where needed, results in the former setting to the case of noisy feedback.
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non-stationary stochastic MAB literature which mainly focuses on a finite (known) number of

changes in the mean reward values, see, e.g., Garivier and Moulines (2011) and references therein

(see also Auer, Cesa-Bianchi, Freund and Schapire (2002) in the adversarial context), and is con-

sistent with more extreme settings, such as the one treated in Slivkins and Upfal (2008) where

reward distributions evolve according to a Brownian motion and hence the regret is linear in T .

(We will explain these connections in more detail in chapter 3.)

Characterizing complexity and designing a near-optimal policy. For the class of non-

stationary reward distributions described above, we establish lower bounds on the performance

of any non-anticipating policy relative to the dynamic oracle, and show that these bounds can

be achieved, uniformly over the class of admissible reward distributions, by a suitable policy

construction. The term “achieved” is meant in the sense of the order of the regret as a function

of the time horizon T , the variation budget VT , and the number of arms K. Thus, up to a

logarithmic scale of the number of arms our policies are shown to be minimax optimal. The regret

is sublinear and is of the order of (KVT )1/3 T 2/3. Auer et al. (2002), in the adversarial setting, and

Garivier and Moulines (2011) in the stochastic setting, considered non-stationary rewards where

the identity of the best arm can change a finite number of times; the regret in these instances

(relative to a dynamic oracle) is shown to be of order
√
T . Our analysis complements these results

by treating a broader and more flexible class of temporal changes in the reward distributions, yet

still establishing optimality results and showing that sublinear regret is achievable. When VT

increases with the time horizon T , our results provide a spectrum of minimax regret performance

between order T 2/3 (when VT is a constant independent of T ) and order T (when VT grows linearly

with T ), and by that, map the allowed variation to the best achievable performance.

Identifying and optimizing salient tradeoffs. With the analysis described above we shed

light on the exploration-exploitation trade off that is a characteristic of the non-stationary reward

setting, and the change in this trade off compared to the stationary setting. In particular, our

results highlight the tension that exists between the need to “remember” and “forget.” This is

characteristic of several algorithms that have been developed in the adversarial MAB literature,

e.g., the family of exponential weight methods such as EXP3, EXP3.S and the like; see, e.g., Auer,

Cesa-Bianchi, Freund and Schapire (2002), and Cesa-Bianchi and Lugosi (2006). In a nutshell, the

fewer past observations one retains, the larger the stochastic error associated with one’s estimates
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of the mean rewards, while at the same time the more past observations are used, the higher the

risk of these being biased. One interesting observation, that is formalized as one of our main

theorems, is that an optimal policy in the sense of performance relative to a static oracle in the

adversarial setting can be used to construct a policy that achieves optimal performance relative

to the more ambitious dynamic oracle that we employ in our setting. We leverage this to show

that the EXP3 type algorithms can be properly customized to our stochastic non-stationary MAB

setting and yield rate optimal performance.

1.3.3 Optimization in online content recommendation services

Chapter 4 studies theoretical properties and practical real-time optimization of the content rec-

ommendation service. We develop a predictive analytics model of clicks that enables to identify

click drivers along the path of readers, which in turn gives rise to concrete and implementable

insights that lead to recommendations that account for the future path of readers. Furthermore,

we conduct a controlled experiment to validate the value of the proposed prescription. In more

detail, the contribution of chapter 4 can be described along the following four components.

Diagnostic. We formulate the optimal content recommendation problem and show that it is

NP-hard. We then formalize the myopic heuristic that is used in practice, and whose objective is

to maximize CTR, namely, maximizing the probability to click on the current recommendation.

We establish that the gap between the performance of optimal recommendations and that of the

myopic heuristic may be arbitrarily large. In that sense, theoretically, myopic recommendations

may have poor performance. Analyzing the data, we provide empirical evidence that indeed there

might be significant room for improvement over the myopic heuristic of maximizing CTR.

Introducing and validating the notion of engageability. We analyze the click behavior

of users by introducing and estimating a choice model. In particular, we model the characteristics

of the articles and those of the displayed recommendation box that impact the “content path” of

a reader within the recommendation network. We calibrate this model based on a large data set,

in a manner that accounts for the evolution of articles’ relevancy over time. Based on our model,

we develop a representation of content along two key dimensions: (1) clickability, the likelihood

to click to an article when it is recommended; and (2) engageability, the likelihood to click from

an article when it hosts a recommendation; the full meaning of this terminology will become
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apparent in what follows. Our suggested “space of articles” is compact, but captures a key new

dimension (engageability) and is therefore significantly richer than the one adopted by current

practice (which, as we explain later, may be interpreted as focusing on clickability alone). This

new space quantifies both the likelihood to click on each candidate article, and the likelihood to

continue using the service in the next step, if this article is indeed clicked and becomes the host

of a recommendation.

Leveraging engageability. Based on the aforementioned content space representation, we

propose an efficient one-step look-ahead heuristic that balances clickability and engageability. We

then demonstrate that by accounting for engageability, this heuristic yields performance that is

close to the one of the optimal (and computationally intractable) recommendation policy.

Validating key ideas through a live controlled experiment. We study the implemen-

tation of a new class of one-step look-ahead recommendation policies, balancing clickability and

engageability using proxies that are observed in real time throughout the recommendation process,

without increasing the complexity of the existing practice. Together with our industry partner,

we design and implement a controlled experiment that measures the impact of lookahead recom-

mendations (that are based on the above representation) compared to myopic ones, validating the

potential of the proposed approach.

1.4 Related Literature

Stochastic approximation. The use of the cumulative performance criterion and regret,

while mostly absent from the traditional SA stream of literature, has been adapted in several

occasions. Examples include the work of Cope (2009), which is couched in an environment where

the feedback structure is noisy observations of the cost and the target function is strongly convex.

That paper shows that the estimation scheme of Kiefer and Wolfowitz (1952) is rate optimal and

the minimax regret in such a setting is of order
√
T . Considering a convex (and differentiable)

cost function, Agarwal et al. (2013) showed that the minimax regret is of the same order, building

on estimation methods presented in Nemirovski and Yudin (1983). In the context of gradient-type

feedback and strongly convex cost, it is straightforward to verify that the scheme of Robbins and

Monro (1951) is rate optimal, and the minimax regret is of order log T .
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While temporal changes in the cost function are largely not dealt with in the traditional sta-

tionary SA literature (see Kushner and Yin (2003), chapter 3 for some exceptions), the literature

on OCO, which has mostly evolved in the machine learning community starting with Zinkevich

(2003), allows the cost function to be selected at any point in time by an adversary. As dis-

cussed above, the performance of a policy in this setting is compared against a relatively weak

benchmark, namely, the single best action in hindsight; or, a static oracle. These ideas have

their origin in game theory with the work of Blackwell (1956) and Hannan (1957), and have since

seen significant development in several sequential decision making settings; cf. Cesa-Bianchi and

Lugosi (2006) for an overview. The OCO literature largely focuses on a class of either convex or

strongly convex cost functions, and sub-linearity and rate optimality of policies have been studied

for a variety of feedback structures. The original work of Zinkevich (2003) considered the class of

convex functions, and focused on a feedback structure in which the function ft is entirely revealed

after the selection of Xt, providing an online gradient descent algorithm with regret of order
√
T ;

see also Flaxman et al. (2005). Hazan et al. (2007) achieve regret of order log T for a class of

strongly convex cost functions, when the gradient of ft, evaluated at Xt is observed. Additional

algorithms were shown to be rate optimal under further assumptions on the function class (see,

e.g., Kalai and Vempala 2005, Hazan et al. 2007), or other feedback structures such as multi-point

access (Agarwal et al. 2010). A closer paper, at least in spirit, is that of Hazan and Kale (2010).

It derives upper bounds on the regret with respect to the static single best action, in terms of a

measure of dispersion of the cost functions chosen by nature, akin to variance. The cost functions

in their setting are restricted to be linear and are revealed to the decision maker after each action.

It is important to draw attention to a significant distinction between the framework we pursue

in this study and the adversarial setting, concerning the quality of the benchmark that is used

in each of the two formulations. Recall, in the adversarial setting the performance of a policy

is compared to the ex post best static feasible solution, while in our setting the benchmark is

given by a dynamic oracle (where “dynamic” refers to the sequence of minima {ft(x∗t )} and

minimizers {x∗t } that is changing throughout the time horizon). It is fairly straightforward that

the gap between the performance of the static oracle that uses the single best action, and that

of the dynamic oracle can be significant, in particular, these quantities may differ by order T .

Therefore, even if it is possible to show that a policy has a “small” regret relative to the best static
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action, there is no guarantee on how well such a policy will perform when measured against the

best dynamic sequence of decisions. A second potential limitation of the adversarial framework

lies in its rather pessimistic assumption of the world in which policies are to operate in, to wit,

the environment can change at any point in time in the worst possible way as a reaction to the

policy’s chosen actions. In most application domains, one can argue, the operating environment

is not nearly as harsh.

Key to establishing the connection between the adversarial setting and the non-stationary

stochastic framework proposed herein is the notion of a variation budget, and the corresponding

temporal uncertainty set, that curtails nature’s actions in our formulation. These ideas echo,

at least philosophically, concepts that have permeated the robust optimization literature, where

uncertainty sets are fundamental predicates; see, e.g., Ben-Tal and Nemirovski (1998), and a

survey by Bertsimas et al. (2011).

A rich line of work in the literature considers concrete sequential decision problems embedded

in an SA setting (namely, noisy observations of the cost or the gradient, where the underlying

cost function is unknown). Several papers study dynamic pricing where the demand function

is unknown, and noisy cost observations are obtained at each step (see, e.g., Broder and Rus-

mevichientong (2012), den Boer and Zwart (2014), and Harisson et al. (2014)). Other studies

consider a problem of inventory control with censored demand, where noisy observations of the

gradient can be obtained in each step (see Huh and Rusmevichientong (2009), Besbes and Muhar-

remoglu (2013), and references therein). Other applications arise in queueing networks, wireless

communications, and manufacturing systems, among other areas (see Kushner and Yin (2003) for

an overview).

Most of the studies in the literature focus on a setting in which the underlying environment

(while unknown) is stationary. While several papers have considered settings where changes in the

governing environment may occur, these papers typically assume a very specific structure on said

changes (for example, considering dynamic pricing in the absence of capacity constrains, Keller

and Rady (1999) study a setting where demand is switching between two known demand functions

according to a known Markov process; Besbes and Zeevi (2011) consider a similar problem in a

setting where the timing of a single (known) change in the demand function is unknown). The

current study suggests a general framework to study problems such as the ones mentioned above,
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while assuming a broad array of changes in the underlying environment. By introducing and

characterizing the regret with respect to a dynamic oracle we map the extent of environmental

changes to the best achievable performance, and provide a general approach of designing rate-

optimal policies.

Multi-armed bandits. Since their inception, MAB problems with various modifications

have been studied extensively in Statistics, Economics, Operations Research, and Computer Sci-

ence, and are used to model a plethora of dynamic optimization problems under uncertainty;

examples include clinical trials (Zelen 1969), strategic pricing (Bergemann and Valimaki 1996),

investment in innovation (Bergemann and Hege 2005), packet routing (Awerbuch and Kleinberg

2004), on-line auctions (Kleinberg and Leighton 2003), assortment selection (Caro and Gallien

2007a), and on-line advertising (Pandey et al. 2007), to name but a few. For overviews and

further references cf. the monographs by Berry and Fristedt (1985), Gittins (1989) for Bayesian

/ dynamic programming formulations, and Cesa-Bianchi and Lugosi (2006) that covers recent

advances in the machine learning literature and the so-called adversarial setting.

While temporal changes in the structure of the reward distribution are ignored in the tradi-

tional stochastic MAB formulation, there have been several attempts to extend that framework.

The origin of this line of work can be traced back to Gittins and Jones (1974) who considered a

case where only the state of the chosen arm can change, giving rise to a rich line of work (see,

e.g., Gittins 1979, and Whittle 1981). In particular, Whittle (1988) introduced the term restless

bandits; a model in which the states (associated with the reward distributions) of the arms change

in each step according to an arbitrary, yet known, stochastic process. Considered a notoriously

hard class of problems (cf. Papadimitriou and Tsitsiklis 1994), this line of work has led to various

approximation approaches, see, e.g., Bertsimas and Nino-Mora (2000), and relaxations, see, e.g.,

Guha and Munagala (2007) and references therein.

Departure from the stationarity assumption that has dominated much of the MAB literature

raises fundamental questions as to how one should model temporal uncertainty in rewards, and

how to benchmark performance of candidate policies. One extreme view, is to allow the reward

realizations of arms to be selected at any point in time by an adversary. These ideas have their

origins in game theory with the work of Blackwell (1956) and Hannan (1957), and have since seen
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significant development; Foster and Vohra (1999) and Cesa-Bianchi and Lugosi (2006) provide

reviews of this line of research. Within this so called adversarial formulation, the efficacy of a

policy over a given time horizon T is often measured relative to a benchmark which is defined by

the single best action one could have taken in hindsight (after seeing all reward realizations). The

single best action benchmark represents a static oracle, as it is constrained to a single (static)

action. For obvious reasons, this static oracle can perform quite poorly relative to a “dynamic

oracle” that follows the optimal dynamic sequence of actions, as the latter optimizes the (ex-

pected) reward at each time instant over all possible actions.3 Thus, a potential limitation of the

adversarial framework is that even if a policy has a “small” regret relative to a static oracle, there

is no guarantee with regard to its performance relative to the dynamic oracle.

Online content recommendation services. At the technical level, the service provider’s

main problem is to dynamically select a set of recommended links for each reader. This has some

similarities to the assortment planning problem studied in the operations management literature

under various settings and demand models (see Kök et al. (2009) for a comprehensive review).

When assortment selection is dynamic, Caro and Gallien (2007b) have studied the tradeoff between

exploration and exploitation (when demand is unknown); see also Rusmevichientong et al. (2010),

Alptekinoglu et al. (2012), and Saure and Zeevi (2013). A paper that studies dynamic assortment

selection in an environment that is closer to the one of content recommendations is that of Caro

et al. (2013), that considers a problem in which the attractiveness of products decay with time

once they are introduced in the selected assortment. In their formulation, one needs to decide in

advance the timing at which different products are introduced in the selected assortment, when

each product can be introduced only once, and there are no inventory or capacity constraints.

The current study also relates to studies that focus on performance metrics and heuristics

in online services (see, e.g., Kumar et al. (2006) and Araman and Fridgeirsdottir (2011) in the

context of online advertising); the main distinction is driven by the dynamic nature that governs

the content recommendation service, and thus, as we will see, calls for performance metrics (and

3Under non-stationary reward structure it is immediate that the single best action may be sub-optimal in a large

number of decision epochs, and the gap between the performance of the static and the dynamic oracles can grow

linearly with T .
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appropriate heuristics) that account for the future path of users. In that respect, our study also

relates to papers that study operational challenges of using path data to model and analyze con-

sumers’ behavior in various markets, such as retail, e-commerce, and advertising; for an overview

cf. the survey by Hui et al. (2009).

An active stream of literature has been studying recommender systems, focusing on the tac-

tical aspects that concern modeling and establishing connections between users and products,

as well as implementing practical algorithms based on these connections (see the book by Ricci

et al. (2011) and the survey by Adomavicius and Tuzhilin (2005) for an overview). A typical

perspective that is taken in this rich line of work is that of the consumer, focusing on the main

objective of maximizing the probability to click on a recommendation. Common approaches that

are used for this purpose are nearest neighbor methods, relevance feedback methods, probabilistic

(non-parametric or Bayesian) learning methods, and linear classification methods (see Pazzani

and Billsus (2007) and references therein). Another common class of algorithms focuses on col-

laborative filtering; see the survey by Su and Khoshgoftaar (2009) and references therein, as well

as the industry report by Linden et al. (2003) on Amazon’s item-based collaborative filtering

approach. The current study does not focus on these tactical questions, but rather on the higher

level principles that guide the design of such algorithms when one accounts for the path of a user.

By doing so, to the best of our knowledge the current paper is the first to focus on the perspective

of the recommender system (the service provider), in a context of a multi-step service in which

the system’s objective is not necessarily aligned with that of the consumer.

1.5 Conclusions

In this thesis we study methodological as well as practical aspects arising in online sequential

optimization in the presence of online partial feedback and a changing environment. On the

methodological front, we study aspects of sequential optimization in the presence of temporal

changes, such as designing decision making policies that adopt to temporal changes in the under-

lying environment when only partial feedback is available. In doing so we focus on two widely

studied paradigms of sequential optimization: the stochastic approximation (SA) formulation,

and the multi-armed bandit (MAB) formulation, when couched in a non-stationary setting.
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In the first part of the thesis we consider a non-stationary variant of the SA problem, where

the underlying cost functions may change along the horizon. In the second part of the thesis we

consider a multi-armed bandit (MAB) formulation that allows for a broad range of temporal un-

certainties in the rewards. Both of these sequential optimization settings, that are widely applied

in the Operations Research, Economics, Statistics, and Computer Science literature. In both

the SA and the MAB settings we establish tight bounds on the regret relative to the dynamic

oracle, characterizing the complexity of these classes of problems in terms of the best achievable

performance. These bounds maps the extent of allowable “variation” to the best achievable perfor-

mance. Our analysis quantifies the “price of non-stationarity”: the added complexity embedded

in a temporally changing environment versus a stationary one. Our analysis also suggests key

ingredients in polices that are designed to “perform well” in non-stationary environments, such as

the the balance of “remembering and forgetting”, captured by the restarting property of our sug-

gested near-optimal policies. Our study draws a strong and concrete connection between rather

disparate strands of literature: connecting the adversarial online convex optimization literature

stream with that of the more traditional stochastic approximation paradigm; and connecting the

adversarial MAB framework with the stochastic MAB one. These connections are the key in

designing “well performing” policies in stochastic, non-stationary environments, by leveraging the

structure of optimal policies in adversarial settings.

On the applied front, in the third part of the thesis we study practical aspects arising in

online content recommendations, a new class of online services that allows web-based publishers

to direct readers from articles they are currently reading to other web-based content. We study

the dynamic optimization problem faced by the service provider, focusing on the salient features of

that problem: the short time frames in which decisions are taken, the short shelf life of products,

and the path-based structure of the service. Using a large data set of browsing history at major

media sites, we develop a representation of content along two key dimensions: clickability, the

likelihood to click to an article when it is recommended; and engageability, the likelihood to click

from an article when it hosts a recommendation. Based on this representation, we propose a class

of user path-focused heuristics, and validate their impact through theoretical bounds, simulation,

and a live experiment.
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All together, our thesis provide both theoretical as well as practical aspects that are faced in

rapidly emerging application domains, such as online dynamic pricing and online assortment se-

lection. On the methodological level our formulation allows significant departure from stationary

assumptions that have governed most of stochastic optimization models, by introducing the vari-

ation budget and the dynamic oracle. On the applied level, collaborating with a major supplier

of online content recommendations to web-based publishers, we were able to complete a cycle,

from identifying a performance gap in current practice, through model and problem formulation,

empirical analysis that lead to the design of improved heuristics, that in turn were validated

by theoretical bounds and a simulation, and finally, an implementation study and a validation

through a controlled experiment.
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Chapter 2

Non-stationary Stochastic

Optimization

The material presented in this chapter is based on Besbes, Gur and Zeevi (2014a).

In this chapter we consider a non-stationary variant of a sequential stochastic optimization prob-

lem, where the underlying cost functions may change along the horizon. §2.1 contains the problem

formulation, where we propose a measure, termed variation budget, that controls the extent of said

change, and in the following sections we study how restrictions on this budget impact achievable

performance. In §2.2 we identify sharp conditions under which it is possible to achieve long-

run-average optimality and more refined performance measures such as rate optimality that fully

characterize the complexity of such problems. In doing so, we also establish a principle connect-

ing two rather disparate strands of literature: adversarial online convex optimization; and the

more traditional stochastic approximation paradigm (couched in a non-stationary setting). This

connection is the key to deriving well performing policies in the latter, by leveraging structure

of optimal policies in the former. §2.3 and §2.4 present the main rate optimality results for the

convex and strongly convex settings, respectively. The tight bounds on the minimax regret that

are established in §2.3 and §2.4 allow us to quantify the “price of non-stationarity,” which mathe-

matically captures the added complexity embedded in a temporally changing environment versus

a stationary one. Finally, §2.5 presents concluding remarks. Proofs can be found in Appendix A.
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2.1 Problem Formulation

Having already laid out in the previous section the key building blocks and ideas behind our

problem formulation, the purpose of the present section is to fill in any gaps and make that

exposition more precise where needed; some repetition is expected but is kept to a minimum.

Preliminaries and admissible polices. Let X be a convex, compact, non-empty action

set, and T = {1, . . . , T} be the sequence of decision epochs. Let F be a class of sequences

f := {ft : t = 1, . . . , T} of convex cost functions from X into R, that submit to the following two

conditions:

1. There is a finite number G such that for any action x ∈ X and for any epoch t ∈ T :

|ft(x)| ≤ G, ‖∇ft(x)‖ ≤ G. (2.1)

2. There is some ν > 0 such that{
x ∈ Rd : ‖x− x∗t ‖ ≤ ν

}
⊂ X for all t ∈ T , (2.2)

where x∗t := x∗t (ft) ∈ arg minx∈X ft(x). Here ∇ft(x) denotes the gradient of ft evaluated at point

x, and ‖ · ‖ the Euclidean norm. In every epoch t ∈ T a decision maker selects a point Xt ∈ X

and then observes a feedback φt := φt(Xt, ft) which takes one of two forms:

• noisy access to the cost, denoted by φ(0), such that E[φ
(0)
t (Xt, ft) |Xt = x] = ft(x);

• noisy access to the gradient, denoted by φ(1), such that E[φ
(1)
t (Xt, ft) |Xt = x] = ∇ft(x),

For all x ∈ X and ft, t ∈ {1, . . . , T}, we will use φt(x, ft) to denote the feedback observed at

epoch t, conditioned on Xt = x, and φ will be used in reference to a generic feedback structure.

The feedback signal is assumed to possess a second moment uniformly bounded over F and X .

Example 2.1. (Independent noise) A conventional cost feedback structure is φ
(0)
t (x, ft) =

ft(x)+εt, where εt are, say, independent Gaussian random variables with zero mean and variance

uniformly bounded by σ2. A gradient counterpart is φ
(1)
t (x, ft) = ∇ft(x) + εt, where εt are inde-

pendent Gaussian random vectors with zero mean and covariance matrices with entries uniformly

bounded by σ2.
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We next describe the class of admissible policies. Let U be a random variable defined over

a probability space (U,U ,Pu). Let π1 : U → Rd and πt : R(t−1)k × U → Rd for t = 2, 3, . . . be

measurable functions, such that Xt, the action at time t, is given by

Xt =

 π1 (U) t = 1,

πt (φt−1 (Xt−1, ft−1) , . . . , φ1 (X1, f1) , U) t = 2, 3, . . . ,

where k = 1 if φ = φ(0), namely, the feedback is noisy observations of the cost, and k = d if φ =

φ(1), namely, the feedback is noisy observations of the gradient. The mappings {πt : t = 1, . . . , T}

together with the distribution Pu define the class of admissible policies with respect to feedback φ.

We denote this class by Pφ. We further denote by {Ht, t = 1, . . . , T} the filtration associated with

a policy π ∈ Pφ, such that H1 = σ (U) and Ht = σ
(
{φj(Xj , fj)}t−1

j=1 , U
)

for all t ∈ {2, 3, . . .}.

Note that policies in Pφ are non-anticipating, i.e., depend only on the past history of actions and

observations, and allow for randomized strategies via their dependence on U .

Temporal uncertainty and regret. As indicated already in the previous section, the class

of sequences F is too “rich,” insofar as the latitude it affords nature. With that in mind, we

further restrict the set of admissible cost function sequences, in particular, the manner in which

its elements can change from one period to the other. Define the following notion of variation

based on the sup-norm:

Var(f1, . . . , fT ) :=

T∑
t=2

‖ft − ft−1‖, (2.3)

where for any bounded functions g and h from X into R we denote ‖g−h‖ := supx∈X |g(x)− h(x)|.

Let {Vt : t = 1, 2, . . .} be a non-decreasing sequence of real numbers such that Vt ≤ t for all t,

V1 = 0, and for normalization purposes set V2 ≥ 1. We refer to VT as the variation budget over

T . Using this as a primitive, define the corresponding temporal uncertainty set, as the set of

admissible cost function sequences that are subject to the variation budget VT over the set of

decision epochs {1, . . . , T}:

V =

{
{f1, . . . , fT } ⊂ F :

T∑
t=2

‖ft − ft−1‖ ≤ VT

}
. (2.4)

While the variation budget places some restrictions on the possible evolution of the cost functions,

it still allows for many different temporal patterns: continuous change; discrete shocks; and a non-

constant rate of change. Two possible variations instances are illustrated in Figure 3.1.
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Figure 2.1: Variation instances within a temporal uncertainty set. Assume a quadratic cost of the

form ft(x) = 1
2x

2−btx+1. The change in the minimizer x∗t = bt, the optimal performance ft(x
∗
t ) = 1− 1

2b
2
t ,

and the variation measured by (2.3), is illustrated for cases characterized by continuous changes (left), and

“jump” changes (right) in bt. In both instances the variation budget is VT = 1/2.

As described in §1, the performance metric we adopt pits a policy π against a dynamic oracle:

Rπφ(V, T ) = sup
f∈V

{
Eπ
[

T∑
t=1

ft(Xt)

]
−

T∑
t=1

ft(x
∗
t )

}
, (2.5)

where the expectation Eπ [·] is taken with respect to any randomness in the feedback, as well as in

the policy’s actions. Assuming a setup in which first a policy π is chosen and then nature selects

f ∈ V to maximize the regret, our formulation allows nature to select the worst possible sequence

of cost functions for that policy, subject to the variation budget1. Recall that a policy π is said to

have sublinear regret if Rπφ (V, T ) = o (T ), where for sequences {at} and {bt} we write at = o(bt)

if at/bt → 0 as t→∞. Recall also that the minimax regret, being the minimal worst-case regret

that can be guaranteed by an admissible policy π ∈ Pφ, is given by:

R∗φ (V, T ) = inf
π∈Pφ

Rπφ (V, T ) .

We refer to a policy π as rate optimal if there exists a constant C̄ ≥ 1, independent of VT and T ,

such that for any T ≥ 1,

Rπφ (V, T ) ≤ C̄ · R∗φ (V, T ) .

Such policies achieve the lowest possible growth rate of regret.

1In particular, while for the sake of simplicity and concreteness we use the above notation, our analysis applies to

the case of sequences in which in every step only the next cost function is selected, in a fully adversarial manner that

takes into account the realized trajectory of the policy and is subjected only to the bounded variation constraint.
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Contrasting with the adversarial online convex optimization paradigm. An OCO

problem consists of a convex set X ⊂ Rd and an a-priori unknown sequence f = {f1, . . . , fT } ∈ F

of convex cost functions. At any epoch t the decision maker selects a point Xt ∈ X , and observes

some feedback φt. The efficacy of a policy over a given time horizon T is typically measured

relative to a benchmark which is defined by the single best action in hindsight : the best static

action fixed throughout the horizon, and chosen with benefit of having observed the sequence

of cost functions. We use the notions of admissible, long-run-average optimal, and rate optimal

policies in the adversarial OCO context as defined in the stochastic non-stationary context laid out

before. Under the single best action benchmark, the objective is to minimize the regret incurred

by an admissible online optimization algorithm A:

GAφ (F , T ) = sup
f∈F

{
Eπ
[

T∑
t=1

ft(Xt)

]
−min

x∈X

{
T∑
t=1

ft(x)

}}
, (2.6)

where the expectation is taken with respect to possible randomness in the feedback and in the

actions of the policy (We use the term “algorithm” to distinguish this from what we have defined

as a “policy,” and this distinction will be important in what follows)2. Interchanging the sum

and min {·} operators in the right-hand-side of (2.6) we obtain the definition of regret in the

non-stationary stochastic setting, as in (2.5). As the next example shows, the dynamic oracle

used as benchmark in the latter can be a significantly harder target than the single best action

defining the static oracle in (2.6).

Example 2.2. (Contrasting the static and dynamic oracles) Assume an action set X =

[−1, 2], and variation budget VT = 1. Set

ft(x) =

 x2 if t ≤ T/2

x2 − 2x otherwise,

for any x ∈ X . Then, the single best action is sub-optimal at any decision epoch, and

min
x∈X

{
T∑
t=1

ft(x)

}
−

T∑
t=1

min
x∈X
{ft(x)} =

T

4
.

2We note that most results in the OCO literature allow sequences that can adjust the cost function adversarially

at each epoch. For the sake of consistency with the definition of (2.5), in the above regret measure nature commits

to a sequence of functions in advance.
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Hence, algorithms that achieve performance that is “close” to the static oracle in the adversar-

ial OCO setting may perform quite poorly in the non-stationary stochastic setting (in particular

they may, as the example above suggests, incur linear regret in that setting). Nonetheless, as the

next section unravels, we will see that algorithms designed in the adversarial online convex opti-

mization context can in fact be adapted to perform well in the non-stationary stochastic setting

laid out in this chapter.

2.2 A General Principle for Designing Efficient Policies

In this section we will develop policies that operate well in non-stationary environments with

given budget of variation VT . Before exploring the question of what performance one may aspire

to in the non-stationary variation constrained world, we first formalize what cannot be achieved.

Proposition 2.1. (Linear variation budget implies linear regret) Assume a feedback struc-

ture φ ∈
{
φ(0), φ(1)

}
. If there exists a positive constant C1 such that VT ≥ C1T for any T ≥ 1,

then there exists a positive constant C2, such that for any admissible policy π ∈ Pφ,

Rπφ (V, T ) ≥ C2T.

The proposition states that whenever the variation budget is at least of order T , any policy

which is admissible (with respect to the feedback) must incur a regret of order T , so under such

circumstances it is not possible to have long-run-average optimality relative to the dynamic oracle

benchmark. With that in mind, hereon we will focus on the case in which the variation budget is

sublinear in T .

A class of candidate policies. We introduce a class of policies that leverages existing

algorithms designed for fully adversarial environments. We denote by A an online optimization

algorithm that given a feedback structure φ achieves a regret GAφ (F , T ) (see (2.6)) with respect

to the static benchmark of the single best action. Consider the following generic “restarting”

procedure, which takes as input A and a batch size ∆T , with 1 ≤ ∆T ≤ T , and consists of

restarting A every ∆T periods. To formalize this idea we first refine our definition of history-

adapted policy and the actions it generates. Given a feedback φ and a restarting epoch τ ≥ 1, we
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define the history at time t ≥ τ + 1 to be:

Hτ,t =

 σ (U) if t = τ + 1,

σ
(
{φj (Xj , fj)}t−1

j=τ+1 , U
)

if t > τ + 1.
(2.7)

Then, for any t we have thatXt isHτ,t-measurable. In particularXτ+1 = A1(U), Xt = At−τ (Hτ,t)

for t > τ + 1, and the sequence of measurable mappings At, t = 1, 2, . . . is prescribed by the al-

gorithm A. The following procedure restarts A every ∆T epochs. In what follows, let d·e denote

the ceiling function (rounding its argument to the nearest larger integer).

Restarting procedure. Inputs: an algorithm A, and a batch size ∆T .

1. Set j = 1

2. Repeat while j ≤ dT/∆T e:

(a) Set τ = (j − 1) ∆T

(b) For any t = τ + 1, . . . ,min {T, τ + ∆T }, select the action Xt = At−τ (Hτ,t)

(c) Set j = j + 1, and return to step 2.

Clearly π ∈ Pφ. Next we analyze the performance of policies defined via the restarting procedure,

with suitable input A.

First order performance. The next result establishes a close connection between GAφ (F , T ),

the performance that is achievable in the adversarial environment by A, and Rπφ (V, T ), the

performance in the non-stationary stochastic environment under temporal uncertainty set V of

the restarting procedure that uses A as input.

Theorem 2.1. (Long-run-average optimality) Set a feedback structure φ ∈
{
φ(0), φ(1)

}
. Let

A be an OCO algorithm with GAφ (F , T ) = o(T ). Let π be the policy defined by the restarting

procedure that uses A as a subroutine, with batch size ∆T . If VT = o(T ), then for any ∆T such

that ∆T = o(T/VT ) and ∆T →∞ as T →∞,

Rπφ (V, T ) = o(T ).
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In other words, the theorem establishes the following meta-principle: whenever the variation

budget is a sublinear function of the horizon length T , it is possible to construct a long-run-

average optimal policy in the stochastic non-stationary SA environment by a suitable adaptation

of an algorithm that achieves sublinear regret in the adversarial OCO environment. For a given

structure of a function class and feedback signal, Theorem 2.1 is meaningless unless there exists

an algorithm with sublinear regret with respect to the single best action in the adversarial setting,

under such structure. To that end, for the structures
(
F , φ(0)

)
and

(
F , φ(1)

)
an online gradient

descent policy was shown to achieve sublinear regret in Flaxman et al. (2005). We will see in

the next sections that, surprisingly, the simple restarting mechanism introduced above allows to

carry over not only first order optimality but also rate optimality from the OCO paradigm to the

non-stationary SA setting.

Key ideas behind the proof. Theorem 2.1 is driven directly by the next proposition that

connects the performance of the restarting procedure with respect to the dynamic benchmark in

the stochastic non-stationary environment, and the performance of the input subroutine algorithm

A with respect to the single best action in the adversarial setting.

Proposition 2.2. (Connecting performance in OCO and non-stationary SA) Set φ ∈
{
φ(0), φ(1)

}
.

Let π be the policy defined by the restarting procedure that uses A as a subroutine, with batch size

∆T . Then, for any T ≥ 1,

Rπφ (V, T ) ≤
⌈
T

∆T

⌉
· GAφ (F ,∆T ) + 2∆TVT . (2.8)

We next describe the high-level arguments. The main idea of the proof lies in analyzing the

difference between the dynamic oracle and the static oracle benchmarks, used respectively in the

OCO and the non-stationary SA contexts. We define a partition of the decision horizon into

batches T1, . . . , Tm of size ∆T each (except, possibly the last batch):

Tj = {t : (j − 1)∆T + 1 ≤ t ≤ min {j∆T , T}} , for all j = 1, . . . ,m, (2.9)

where m = dT/∆T e is the number of batches. Then, one may write:

Rπφ(V, T ) = sup
f∈V


m∑
j=1

Eπ
∑
t∈Tj

ft(Xt)

−min
x∈X

∑
t∈Tj

ft(x)




︸ ︷︷ ︸
J1,j

+
m∑
j=1

min
x∈X

∑
t∈Tj

ft(x)

−∑
t∈Tj

ft(x
∗
t )


︸ ︷︷ ︸

J2,j


.
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The regret with respect to the dynamic benchmark is represented as two sums. The first,∑m
j=1 J1,j , sums the regret terms with respect to the single best action within each batch Tj ,

which are each bounded by GAφ (F ,∆T ). Noting that there are dT/∆T e batches, this gives rise to

the first term on the right-hand-side of (2.8). The second sum,
∑m

j=1 J2,j , is the sum of differences

between the performances of the single best action benchmark and the dynamic benchmark within

each batch. The latter is driven by the rate of functional change in the batch. While locally this

gap can be large, we show that given the variation budget the second sum is at most of order

∆TVT . This leads to the result of the proposition. Theorem 2.1 directly follows.

Remark (Alternative forms of feedback) The principle laid out in Theorem 2.1 can

also be derived for other forms of feedback using Proposition 2.2. For example, the proof of

Theorem 2.1 holds for settings with richer feedback structures, such as noiseless access to the full

cost function (Zinkevich 2003), or a multi-point access (Agarwal et al. 2010).

2.3 Rate Optimality: The General Convex Case

A natural question arising from the analysis of §2.2 is whether the restarting procedure introduced

there enables to carry over the property of rate optimality from the adversarial environment to the

non-stationary stochastic environment. We first focus on the feedback structure φ(1), for which

rate optimal polices are known in the OCO setting (as these will serve as inputs for the restarting

procedure).

Subroutine OCO algorithm. As a subroutine algorithm, we will use an adaptation of the

online gradient descent (OGD) algorithm introduced by Zinkevich (2003):

OGD algorithm. Input: a decreasing sequence of non-negative real numbers {ηt}Tt=2.

1. Select some X1 = x1 ∈ X

2. For any t = 1, . . . , T − 1, set

Xt+1 = PX

(
Xt − ηt+1φ

(1)
t (Xt, ft)

)
,

where PX (y) = arg minx∈X ‖x− y‖ is the Euclidean projection operator on X .
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For any value of τ that is dictated by the restarting procedure, the OGD algorithm can be defined

via the sequence of mappings {At−τ}, t ≥ τ + 1, as follows:

At−τ (Hτ,t) =

 x1 if t = τ + 1

PX

(
Xt−1 − ηt−τφ(1)

t−1

)
if t > τ + 1,

for any epoch t ≥ τ + 1, where Hτ,t is defined in (2.7). For the structure
(
F , φ(1)

)
of convex cost

functions and noisy gradient access, Flaxman et al. (2005) consider the OGD algorithm with the

selection ηt = r/G
√
T , t = 2, . . . , T , where r denotes the radius of the action set:

r = inf
{
y > 0 : X ⊆ By(x) for some x ∈ Rd

}
,

where By(x) is a ball with radius y, centered at point x, and show that this algorithm achieves a

regret of order
√
T in the adversarial setting. For completeness, we prove in Lemma A.7 (given in

Appendix A.2) that under Assumption 2.1 (a structural assumption on the feedback, given later

in this section), this performance is rate optimal in the adversarial OCO setting.

Performance analysis. We first consider the performance of the OGD algorithm without

restarting, relative to the dynamic benchmark. The following illustrates that this algorithm will

yield linear regret for a broad set of variation budgets.

Example 2.3. (Failure of OGD without restarting) Consider a partition of the horizon T

into batches T1, . . . Tm according to (3.2), with each batch of size ∆T . Consider the following cost

functions:

g1(x) = (x− α)2, g2(x) = x2; x ∈ [−1, 3] .

Assume that nature selects the cost function to be g1(·) in the even batches and g2(·) in the odd

batches. Assume that at every epoch t, after selecting an action xt ∈ X , a noiseless access to the

gradient of the cost function at point xt is granted, that is, φ
(1)
t (x, ft) = f ′t(x) for all x ∈ X and

t ∈ T . Assume that the decision maker is applying the OGD algorithm with a sequence of step

sizes {ηt}Tt=2, and x1 = 1. We consider two classes of step size sequences that have been shown

to be rate optimal in two OCO settings (see Flaxman et al. (2005), and Hazan et al. (2007)).

1. Suppose ηt = η = C/
√
T . Then, selecting a batch size ∆T of order

√
T , and α = 1 +

(1 + 2η)∆T , the variation budget VT is at most of order
√
T , and there is a constant C1 such

that Rπφ(V, T ) ≥ C1T .
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2. Suppose that ηt = C/t. Then, selecting a batch size ∆T of order T , and α = 1, the variation

budget VT is a fixed constant, and there is a constant C2 such that Rπφ(V, T ) ≥ C2T .

In both of the cases that are described in the example, we analyze the trajectory of determin-

istic actions {xt}Tt=1 that is generated by the OGD algorithm, and show that there is a fraction of

the horizon in which the action xt is not “close” to the minimizer x∗t , and therefore linear regret is

incurred. At a high level, this example illustrates that, not surprisingly, OGD-type policies with

classical step size selections do not perform well in non-stationary environments.

We next characterize the regret of the restarting procedure that uses the OGD policy as an

input.

Theorem 2.2. (Performance of restarted OGD under noisy gradient access) Consider

the feedback setting φ = φ(1), and let π be the policy defined by the restarting procedure with a batch

size ∆T =
⌈
(T/VT )2/3

⌉
, and the OGD algorithm parameterized by ηt = r

G
√

∆T
, t = 2, . . . ,∆T as

a subroutine. Then, there is some finite constant C̄, independent of T and VT , such that for all

T ≥ 2:

Rπφ(V, T ) ≤ C̄ · V 1/3
T T 2/3.

Recalling the connection between the regret in the adversarial setting and the one in the

non-stationary SA setting (Proposition 2.2), the result of the theorem is essentially a direct

consequence of bounds in the OCO literature. In particular, Flaxman et al. (2005, Lemma 3.1)

provide a bound on GA
φ(1)

(F ,∆T ) of order
√

∆T , and the result follows by balancing the terms in

(2.8) by a proper selection of ∆T .

When selecting a large batch size, the ability to track the single best action within each

batch improves, but the single best action within a certain batch may have substantially worse

performance than that of the dynamic oracle. On the other hand, when selecting a small batch

size, the performance of tracking the single best action within each batch gets worse, but over the

whole horizon the series of single best actions (one for each batch) achieves a performance that

approaches the dynamic oracle.

A lower bound on achievable performance. We introduce the following technical as-

sumption on the structure of the gradient feedback signal (a cost feedback counterpart will be

provided in the next section).
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Assumption 2.1. (Gradient feedback structure)

1. φ
(1)
t (x, ft) = ∇ft(x) + εt for any f ∈ F , x ∈ X , and t ∈ T , where εt, t ≥ 1, are iid random

vectors with zero mean and covariance matrix with bounded entries.

2. Let G(·) be the cumulative distribution function of εt. There exists a constant C̃ such that

for any a ∈ Rd,
∫

log
(

dG(y)
dG(y+a)

)
dG(y) ≤ C̃ ‖a‖2.

Remark. For the sake of concreteness we impose an additive noise feedback structure, given

in the first part of the assumption. This simplifies notation and streamlines proofs, but otherwise

is not essential. The key properties that are needed are: P
(
φ

(1)
t (x, ft) ∈ A

)
> 0 for any f ∈ F ,

t ∈ T , x ∈ X , and A ⊂ Rd; and that the feedback observed at any epoch t, conditioned on

the action Xt, is independent of the history that is available at that epoch. Given the structure

imposed in the first part of the assumption, the second part implies that if gradients of two cost

functions are “close” to each other, the probability measures of the observed feedbacks are also

“close”. The structure imposed by Assumption 2.1 is satisfied in many settings. For instance, it

applies to Example 1 (with X ⊂ R), with C̃ = 1/2σ2.

Theorem 2.3. (Lower bound on achievable performance) Let Assumption 2.1 hold. Then,

there exists a constant C > 0, independent of T and VT , such that for any policy π ∈ Pφ(1) and

for all T ≥ 1:

Rπ
φ(1)

(V, T ) ≥ C · V 1/3
T T 2/3.

The result above, together with Theorem 2.2, implies that the performance of restarted OGD

(provided in Theorem 2.2) is rate optimal, and the minimax regret under structure
(
V, φ(1)

)
is:

R∗
φ(1)

(V, T ) � V
1/3
T T 2/3.

Roughly speaking, this characterization provides a mapping between the variation budget VT and

the minimax regret under noisy gradient observations. For example, when VT = Tα for some

0 ≤ α ≤ 1, the minimax regret is of order T (2+α)/3, hence we obtain the minimax regret in a full

spectrum of variation scales, from order T 2/3 when the variation is a constant (independent of

the horizon length), up to order T that corresponds to the case where VT scales linearly with T

(consistent with Proposition 2.1).
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Key ideas in the proof of Theorem 2.3. For two probability measures P and Q on a

probability space Y, let

K (P‖Q) = E
[
log

(
dP {Y }
dQ {Y }

)]
, (2.10)

where E [·] is the expectation with respect to P, and Y is a random variable defined over Y. This

quantity is is known as the Kullback-Leibler divergence. To establish the result, we consider

sequences from a subset of V defined in the following way: in the beginning of each batch of

size ∆̃T (nature’s decision variable), one of two “almost-flat” functions is independently drawn

according to a uniform distribution, and set as the cost function throughout the next ∆̃T epochs.

Then, the distance between these functions, and the batch size ∆̃T are tuned such that: (a)

any drawn sequence must maintain the variation constraint; and (b) the functions are chosen to

be “close” enough while the batches are sufficiently short, such that distinguishing between the

two functions over the batch is subject to a significant error probability, yet the two functions

are sufficiently “separated” to maximize the incurred regret. (Formally, the KL divergence is

bounded throughout the batches, and hence any admissible policy trying to identify the current

cost function in a given batch can only do so with a strictly positive error probability.)

Noisy access to the function value. Considering the feedback structure φ(0) and the class

F , Flaxman et al. (2005) show that in the adversarial OCO setting, a modification of the OGD

algorithm can be tuned to achieve regret of order T 3/4. There is no indication that this regret rate

is the best possible, and to the best of our knowledge, under cost observations and general convex

cost functions, the question of rate optimality is an open problem in the adversarial OCO setting.

By Proposition 2.2, the regret of order T 3/4 that is achievable in the OCO setting implies that a

regret of order V
1/5
T T 4/5 is achievable in the non-stationary SA setting, by applying the restarting

procedure. While at present, we are not aware of any algorithm that guarantees a lower regret

rate for arbitrary action spaces of dimension d, we conjecture that a rate optimal algorithm in

the OCO setting can be lifted to a rate optimal procedure in the non-stationary environment by

applying the restarting procedure. The next section further supports this conjecture by examining

the case of strongly convex cost functions.
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2.4 Rate Optimality: The Strongly Convex Case

Preliminaries. We now focus on the class of strongly convex functions Fs ⊆ F , defined such

that in addition to the conditions that are stipulated by membership in F , for a finite number

H > 0, the sequence {ft} satisfies

HId � ∇2ft(x) � GId for all x ∈ X , and all t ∈ T , (2.11)

where Id denotes the d-dimensional identity matrix. Here for two square matrices of the same

dimension A and B, we write A � B to denote that B − A is positive semi-definite, and ∇2f(x)

denotes the Hessian of f(·), evaluated at point x ∈ X .

In the presence of strongly convex cost functions, it is well known that local properties of the

functions around their minimum play a key role in the performance of sequential optimization

procedures. To localize the analysis, we adapt the functional variation definition so that it is

measured by the uniform norm over the convex hull of the minimizers, denoted by:

X ∗ =

{
x ∈ Rd : x =

T∑
t=1

λtx
∗
t ,

T∑
t=1

λt = 1, λt ≥ 0 for all t ∈ T

}
.

Using the above, we measure variation by:

Vars(f1, . . . , fT ) :=
T∑
t=2

sup
x∈X ∗

|ft(x)− ft−1(x)| . (2.12)

Given the class Fs and a variation budget VT , we define the temporal uncertainty set as follows:

Vs = {f = {f1, . . . , fT } ⊂ Fs : Vars(f1, . . . , fT ) ≤ VT } .

We note that the proof of Proposition 2.2 effectively holds without change under the above

structure. Hence first order optimality is carried over from the OCO setting, as long as VT is

sublinear. We next examine rate-optimality results.

2.4.1 Noisy access to the gradient

For the strongly convex function class Fs and gradient feedback φt (x, ft) = ∇ft(x), Hazan et al.

(2007) consider the OGD algorithm with a tuned selection of ηt = 1/Ht for t = 2, . . . T , and

provide in the adversarial OCO framework a regret guarantee of order log T (with respect to the

34



single best action benchmark). For completeness, we provide in Appendix A.2 a simple adaptation

of this result to the case of noisy gradient access. Hazan and Kale (2011) show that this algorithm

is rate optimal in the OCO setting under strongly convex functions and a class of unbiased gradient

feedback.3

Theorem 2.4. (Rate optimality for strongly convex functions and noisy gradient ac-

cess)

1. Consider the feedback structure φ = φ(1), and let π be the policy defined by the restarting

procedure with a batch size ∆T =
⌈√

T log T/VT

⌉
, and the OGD algorithm parameterized

by ηt = (Ht)−1, t = 2, . . . ,∆T as a subroutine. Then, there exists a finite positive constant

C̄, independent of T and VT , such that for all T ≥ 2:

Rπφ(Vs, T ) ≤ C̄ · log

(
T

VT
+ 1

)√
VTT .

2. Let Assumption 2.1 hold. Then, there exists a constant C > 0, independent of T and VT ,

such that for any policy π ∈ Pφ(1) and for all T ≥ 1:

Rπφ(Vs, T ) ≥ C ·
√
VTT .

Up to a logarithmic term, Theorem 2.4 establishes rate optimality in the non-stationary SA

setting of the policy defined by the restarting procedure with the tuned OGD algorithm as a

subroutine. In §2.5 we show that one may achieve a performance of O(
√
VTT ) through a slightly

modified procedure, and hence the minimax regret under structure
(
Fs, φ(1)

)
is:

R∗
φ(1)

(Vs, T ) �
√
VTT .

Theorem 2.4 further validates the “meta-principle” in the case of strongly convex functions and

noisy gradient feedback: rate optimality in the adversarial setting (relative to the single best action

benchmark) can be adapted by the restarting procedure to guarantee an essentially optimal regret

rate in the non-stationary stochastic setting (relative to the dynamic benchmark).

3In fact, Hazan and Kale (2011) show that even in a stationary stochastic setting with strongly convex cost

function and a class of unbiased gradient access, any policy must incur regret of at least order log T compared to a

static benchmark.
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The first part of Theorem 2.4 is derived directly from Proposition 2.2, by plugging in a bound

on GA
φ(1)

(Fs,∆T ) of order log T (given by Lemma A.5 in the case of noisy gradient access), and

a tuned selection of ∆T . The proof of the second part follows by arguments similar to the ones

used in the proof of Theorem 2.3, adjusting for strongly convex cost functions.

2.4.2 Noisy access to the cost

We now consider the structure
(
Vs, φ(0)

)
, in which the cost functions are strongly convex and the

decision maker has noisy access to the cost. In order to show that rate optimality is carried over

from the adversarial setting to the non-stationary stochastic setting, we first need to introduce

an algorithm that is rate optimal in the adversarial setting under the structure
(
Fs, φ(0)

)
.

Estimated gradient step. For a small δ, we denote by Xδ the δ-interior of the action set X :

Xδ = {x ∈ X : Bδ(x) ⊆ X} .

We assume access to the projection operator PXδ (y) = arg minx∈Xδ ‖x− y‖ on the set Xδ.

For k = 1, ..., d, let e(k) denote the unit vector with 1 at the kth coordinate. The estimated

gradient step (EGS) algorithm is defined through three sequences of real numbers {ht}, {at}, and

{δt}, where4 ν ≥ δt ≥ ht for all t ∈ T :

EGS algorithm. Inputs: decreasing sequences of real numbers {at}T−1
t=1 , {ht}T−1

t=1 , {δt}T−1
t=1 .

1. Select some initial point X1 = Z1 in X .

2. For each t = 1, . . . , T − 1:

(a) Draw ψt uniformly over the set
{
±e(1), . . . ,±e(d)

}
(b) Compute unbiased stochastic gradient estimate ∇̂htft(Zt) = h−1

t φ
(0)
t (Xt + htψt)ψt

(c) Update Zt+1 = PXδt

(
Zt − at∇̂htft(Zt)

)
(d) Select the action Xt+1 = Zt+1 + ht+1ψt

4For any t such that ν < δt, one may use the numbers h′t = δ′t = min {ν, δt} instead, with the rate optimality

obtained in Lemma A.4 remaining unchanged.
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For any τ value dictated by the restarting procedure, the EGS policy can be defined by

At−τ (Hτ,t) =

 some Z1 if t = τ + 1

Zt−τ + ht−τψt−τ−1 if t > τ + 1.

Note that E[∇̂hft(Zt)|Xt] = ∇ft(Zt) (cf. Nemirovski and Yudin 1983, chapter 7), and that

the EGS algorithm essentially consists of estimating a stochastic direction of improvement and

following this direction. In Lemma A.4 (Appendix A.2) we show that when tuned by at = 2d/Ht

and δt = ht = a
1/4
t for all t ∈ {1, . . . , T − 1}, the EGS algorithm achieves a regret of order

√
T compared to a single best action in the adversarial setting under structure

(
Fs, φ(0)

)
. For

completeness, we establish in Lemma A.6 (Appendix A.2), that under Assumption 2.2 (given

below) this performance is rate optimal in the adversarial setting.

Before analyzing the minimax regret in the non-stationary SA setting, let us introduce a

counterpart to Assumption 2.1 for the case of cost feedback, that will be used in deriving a lower

bound on the regret.

Assumption 2.2. (Cost feedback structure)

1. φ
(0)
t (x, ft) = ft(x) + εt for any f ∈ F , x ∈ X , and t ∈ T , where εt, t ≥ 1, are iid random

variables with zero mean and bounded variance.

2. Let G(·) be the cumulative distribution function of εt. Then, there exists a constant C̃ such

that for any a ∈ R,
∫

log
(

dG(y)
dG(y+a)

)
dG(y) ≤ C̃ · a2.

Theorem 2.5. (Rate optimality for strongly convex functions and noisy cost access)

1. Consider the feedback structure φ = φ(0), and let π be the policy defined by the restarting

procedure with EGS parameterized by at = 2d/Ht, ht = δt = (2d/Ht)1/4, t = 1, . . . , T − 1,

as subroutine, and a batch size ∆T =
⌈
(T/VT )2/3

⌉
. Then, there exists a finite constant

C̄ > 0, independent of T and VT , such that for all T ≥ 2:

Rπφ(Vs, T ) ≤ C̄ · V 1/3
T T 2/3.

2. Let Assumption 2.2 hold. Then, there exists a constant C > 0, independent of T and VT ,

such that for any policy π ∈ Pφ(0) and for all T ≥ 1:

Rπφ(Vs, T ) ≥ C · V 1/3
T T 2/3.
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Theorem 2.5 again establishes the ability to “port over” rate optimality from the adversarial

OCO setting to the non-stationary stochastic setting, this time under structure
(
Fs, φ(0)

)
. The

theorem establishes a characterization of the minimax regret under structure
(
Vs, φ(0)

)
:

R∗
φ(0)

(Vs, T ) � V
1/3
T T 2/3.

2.5 Concluding Remarks

Batching versus continuous updating. While the restarting procedure (together with

suitable balancing of the batch size) can be used as a template for deriving “good” policies in the

non-stationary SA setting, it is important to note that there are alternative paths to achieving

this goal. One of them relies on directly re-tuning the parameters of the OCO algorithm. To

demonstrate this idea we show that the OGD algorithm can be re-tuned to achieve rate optimal

regret in a non-stationary stochastic setting under structure
(
Fs, φ(1)

)
, matching the lower bound

given in Theorem 2.4 (part 2).

Theorem 2.6. Consider the feedback structure φ = φ(1), and let π the OGD algorithm with

ηt =
√
VT /T , t = 2, . . . , T . Then, there exists a finite constant C̄, independent of T and VT , such

that for all T ≥ 2:

Rπφ(Vs, T ) ≤ C̄ ·
√
VTT .

The key to tuning the OGD algorithm so that it achieves rate optimal performance in the

non-stationary SA setting is a suitable adjustment of the step size sequence as a function of the

variation budget VT : intuitively, the larger the variation is (relative to the horizon length T ), the

larger the step sizes that are required in order to “keep up” with the changing environment.

On the transition from stationary to non-stationary settings. Throughout this chap-

ter we address “significant” variation in the cost function, and for the sake of concreteness assume

VT ≥ 1. Nevertheless, one may show (following the proofs of Theorems 2-5) that under each of the

different cost and feedback structures, the established bounds hold for “smaller” variation scales,

and if the variation scale is sufficiently “small,” the minimax regret rates coincide with the ones

in the classical stationary SA settings. We refer to the variation scales at which the stationary

and the non-stationary complexities coincide as “critical variation scales.” Not surprisingly, these
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transition points between the stationary and the non-stationary regimes differ across cost and

feedback structures. The following table summarizes the minimax regret rates for a variation

budget of the form VT = Tα, and documents the critical variation scales in different settings.

Setting Order of regret Critical variation scale

Class of functions Feedback Stationary Non-stationary

convex noisy gradient T 1/2 max
{
T 1/2, T (2+α)/3

}
T−1/2

strongly convex noisy gradient log T max
{

log T, T (1+α)/2
}

(log T )2 T−1

strongly convex noisy function T 1/2 max
{
T 1/2, T (2+α)/3

}
T−1/2

Table 2.1: Critical variation scales. The growth rates of the minimax regret in different settings for

VT = Tα (where α ≤ 1) and the variation scales that separate the stationary / non-stationary regimes.

In all cases highlighted in the table, the transition point occurs for variation scales that dimin-

ish with T ; this critical quantity therefore measures how “small” should the temporal variation

be, relative to the horizon length, to make non-stationarity effects insignificant relative to other

problem primitives insofar as the regret measure goes.

Adapting to an unknown variation budget. The policies introduced in the current chap-

ter rely on prior knowledge of the variation budget VT . Since there are essentially no restrictions

on the rate at which the variation budget can be consumed (in particular, nature is not constrained

to sequences with epoch-homogenous variation), an interesting and potentially challenging open

problem is to delineate to what extent it is possible to design adaptive policies that do not have

a-priori knowledge of the variation budget, yet have performance “close” to the order of the

minimax regret characterized in this study.
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Chapter 3

Multi-Armed-Bandit Problems with

Non-stationary Rewards

The material presented in this chapter is based on Besbes, Gur and Zeevi (2014b).

In this chapter we consider a Multi-armed bandit (MAB) formulation which allows for a broad

range of temporal uncertainties in the rewards, while also being mathematically tractable. §3.1

introduces the basic formulation of stochastic non-stationary MAB with a variation budget. In

§3.2 we provide a lower bound on the regret that any admissible policy must incur relative to a

dynamic oracle. §3.3 introduces a policy that achieves that lower bound. Together, these results

fully characterize the regret complexity of this class of MAB problems, establishing a direct link

between the extent of allowable reward “variation” and the minimal achievable worst-case regret.

The analysis in this chapter draws concrete connections between two rather disparate strands

of literature: the adversarial and the stochastic MAB frameworks. §3.4 briefly discusses some

concluding remarks. Proofs can be found in Appendix B.

3.1 Problem Formulation

Let K = {1, . . . ,K} be a set of arms. Let T = {1, 2, . . . , T} denote the sequence of decision

epochs faced by the decision maker. At any epoch t ∈ T , a decision-maker pulls one of the K

arms. When pulling arm k ∈ K at epoch t ∈ T , a reward Xk
t ∈ [0, 1] is obtained, where Xk

t is a
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random variable with expectation

µkt = E
[
Xk
t

]
.

We denote the best possible expected reward at decision epoch t by µ∗t , i.e.,

µ∗t = max
k∈K

{
µkt

}
.

Changes in the expected rewards of the arms. We assume the expected reward of each arm

µkt may change at any decision point. We denote by µk the sequence of expected rewards of arm

k: µk =
{
µkt
}T
t=1

. In addition, we denote by µ the sequence of vectors of all K expected rewards:

µ =
{
µk
}K
k=1

. We assume that the expected reward of each arm can change an arbitrary number

of times, but bound the total variation of the expected rewards:

T−1∑
t=1

sup
k∈K

∣∣∣µkt − µkt+1

∣∣∣ . (3.1)

Let {Vt : t = 1, 2, . . .} be a non-decreasing sequence of positive real numbers such that V1 = 0,

KVt ≤ t for all t, and for normalization purposes set V2 = 2 ·K−1. We refer to VT as the variation

budget over T . We define the corresponding temporal uncertainty set, as the set of reward vector

sequences that are subject to the variation budget VT over the set of decision epochs {1, . . . , T}:

V =

{
µ ∈ [0, 1]K×T :

T−1∑
t=1

sup
k∈K

∣∣∣µkt − µkt+1

∣∣∣ ≤ VT} .
The variation budget captures the constraint imposed on the non-stationary environment faced

by the decision-maker. While limiting the possible evolution in the environment, it allows for

many different forms in which the expected rewards may change: continuously, in discrete shocks,

and of a changing rate (for illustration, Figure 3.1 depicts two different variation patterns that

correspond to the same variation budget). In general, the variation budget VT is designed to

depend on the number of pulls T .

Admissible policies, performance, and regret. Let U be a random variable defined over

a probability space (U,U ,Pu). Let π1 : U → K and πt : [0, 1]t−1 × U → K for t = 2, 3, . . . be

measurable functions. With some abuse of notation we denote by πt ∈ K the action at time t,

that is given by

πt =

 π1 (U) t = 1,

πt
(
Xπ
t−1, . . . , X

π
1 , U

)
t = 2, 3, . . . ,
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Figure 3.1: Two instances of variation in the expected rewards of two arms: (Left) Continuous variation

in which a fixed variation budget (that equals 3) is spread over the whole horizon. (Right) “Compressed”

instance in which the same variation budget is “spent” in the first third of the horizon.

The mappings {πt : t = 1, . . . , T} together with the distribution Pu define the class of admissible

policies. We denote this class by P. We further denote by {Ht, t = 1, . . . , T} the filtration

associated with a policy π ∈ P, such that H1 = σ (U) and Ht = σ

({
Xπ
j

}t−1

j=1
, U

)
for all

t ∈ {2, 3, . . .}. Note that policies in P are non-anticipating, i.e., depend only on the past history

of actions and observations, and allow for randomized strategies via their dependence on U .

We define the regret under policy π ∈ P compared to a dynamic oracle as the worst-case differ-

ence between the expected performance of pulling at each epoch t the arm which has the highest

expected reward at epoch t (the dynamic oracle performance) and the expected performance

under policy π:

Rπ(V, T ) = sup
µ∈V

{
T∑
t=1

µ∗t − Eπ
[

T∑
t=1

µπt

]}
,

where the expectation Eπ [·] is taken with respect to the noisy rewards, as well as to the policy’s

actions. In addition, we denote by R∗(V, T ) the minimal worst-case regret that can be guaranteed

by an admissible policy π ∈ P:

R∗(V, T ) = inf
π∈P
Rπ(V, T ).

R∗(V, T ) is the best achievable performance. In the following sections we study the magnitude of

R∗(V, T ). We analyze the magnitude of this quantity by establishing upper and lower bounds; in

these bounds we refer to a constant C as absolute if it is independent of K, VT , and T .
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3.2 Lower bound on the best achievable performance

We next provide a lower bound on the the best achievable performance.

Theorem 3.1. Assume that rewards have a Bernoulli distribution. Then, there is some absolute

constant C > 0 such that for any policy π ∈ P and for any T ≥ 1, K ≥ 2 and VT ∈
[
K−1,K−1T

]
,

Rπ(V, T ) ≥ C (KVT )1/3 T 2/3.

We note that when reward distributions are stationary, there are known policies such as

UCB1 and ε-greedy (Auer, Cesa-Bianchi and Fischer 2002) that achieve regret of order
√
T in

the stochastic setup. When the environment is non-stationary and the reward structure is defined

by the class V, then no policy may achieve such a performance and the best performance must

incur a regret of at least order T 2/3. This additional complexity embedded in the stochastic

non-stationary MAB problem compared to the stationary one will be further discussed in §3.4.

Remark 3.1. (Growing variation budget) Theorem 3.1 holds when VT is increasing with

T . In particular, when the variation budget is linear in T , the regret grows linearly and long

run average optimality is not achievable. This also implies the observation of Slivkins and Upfal

(2008) about linear regret in an instance in which expected rewards evolve according to a Brownian

motion.

The driver of the change in the best achievable performance (relative to the one established

in a stationary environment) is the optimal exploration-exploitation balance. Beyond the tension

between exploring different arms and capitalizing on the information already collected, captured

by the “classical” exploration-exploitation trade-off, a second tradeoff is introduced by the non-

stationary environment, between “remembering” and “forgetting”: estimating the expected re-

wards is done based on past observations of rewards. While keeping track of more observations

may decrease the variance of mean rewards estimates, the non-stationary environment implies

that “old” information is potentially less relevant and creates a bias that stems from possible

changes in the underlying rewards. The changing rewards give incentive to dismiss old informa-

tion, which in turn encourages enhanced exploration. The proof of Theorem 3.1 emphasizes these

two tradeoffs and their impact on achievable performance. At a high level the proof of Theorem

3.1 builds on ideas of identifying a worst-case “strategy” of nature (e.g., Auer, Cesa-Bianchi,
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Freund and Schapire 2002, proof of Theorem 5.1) adapting them to our setting. While the proof

is deferred to the appendix, we next describe the key ideas.

Selecting a subset of feasible reward paths. We define a subset of vector sequences

V ′ ⊂ V and show that when µ is drawn randomly from V ′, any admissible policy must incur

regret of order (KVT )1/3 T 2/3. We define a partition of the decision horizon T into batches

T1, . . . , Tm of size ∆̃T each (except, possibly the last batch):

Tj =
{
t : (j − 1)∆̃T + 1 ≤ t ≤ min

{
j∆̃T , T

}}
, for all j = 1, . . . ,m, (3.2)

where m = dT/∆̃T e is the number of batches. In V ′, in every batch there is exactly one “good”

arm with expected reward 1/2 + ε for some 0 < ε ≤ 1/4, and all the other arms have expected

reward 1/2. The “good” arm is drawn independently in the beginning of each batch according

to a discrete uniform distribution over {1, . . . ,K}. Thus, the identity of the “good” arm can

change only between batches. See Figure 3.2 for a description and a numeric example of possible

realizations of a sequence µ that is randomly drawn from V ′. Since there are m batches we obtain

Figure 3.2: (Drawing a sequence from V ′.) A numerical example of possible realizations of expected

rewards. Here T = 64, and we have 4 decision batches, each contains 16 pulls. We have K4 possible

realizations of reward sequences. In every batch one arm is randomly and independently drawn to have

an expected reward of 1/2 + ε, where in this example ε = 1/4. This example corresponds to a variation

budget of VT = ε∆̃T = 1.

a set V ′ of Km possible, equally probable realizations of µ. By selecting ε such that εT/∆̃T ≤ VT ,

any µ ∈ V ′ is composed of expected reward sequences with a variation of at most VT , and therefore

V ′ ⊂ V. Given the draws under which expected reward sequences are generated, nature prevents

any accumulation of information from one batch to another, since at the beginning of each batch

a new “good” arm is drawn independently of the history.
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Countering possible policies. For the sake of simplicity, the discussion in this paragraph

assumes a variation budget that is fixed and independent of T (the proof of the theorem details

the more general treatment for a variation budget that depends on T ). The proof of Theorem

3.1 establishes that under the setting described above, if ε ≈ 1/
√

∆̃T no admissible policy can

identify the “good” arm with high probability within a batch. Since there are ∆̃T epochs in each

batch, the regret that any policy must incur along a batch is of order ∆̃T ·ε ≈
√

∆̃T , which yields

a regret of order
√

∆̃T · T/∆̃T ≈ T/
√

∆̃T throughout the whole horizon. Selecting the smallest

feasible ∆̃T such that the variation budget constraint is satisfied leads to ∆̃T ≈ T 2/3, yielding a

regret of order T 2/3 throughout the horizon.

3.3 A near-optimal policy

In this section we apply the ideas underlying the lower bound in Theorem 3.1 to develop a

rate optimal policy for the non-stationary MAB problem with a variation budget. Consider the

following policy:

Rexp3. Inputs: a positive number γ, and a batch size ∆T .

1. Set batch index j = 1

2. Repeat while j ≤ dT/∆T e:

(a) Set τ = (j − 1) ∆T

(b) Initialization: for any k ∈ K set wkt = 1

(c) Repeat for t = τ + 1, . . . ,min {T, τ + ∆T }:

• For each k ∈ K, set

pkt = (1− γ)
wkt∑K

k′=1w
k′
t

+
γ

K

• Draw an arm k′ from K according to the distribution
{
pkt
}K
k=1

• Receive a reward Xk′
t

• For arm k′ set X̂k′
t = Xk′

t /p
k′
t , and for any k 6= k′ set X̂k

t = 0. For all k ∈ K

update:

wkt+1 = wkt exp

{
γX̂k

t

K

}
(d) Set j = j + 1, and return to the beginning of step 2
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Clearly π ∈ P. The Rexp3 policy uses Exp3, a policy introduced by Freund and Schapire (1997)

for solving a worst-case sequential allocation problem, as a subroutine, restarting it every ∆T

epochs.

Theorem 3.2. Let π be the Rexp3 policy with a batch size ∆T =
⌈
(K logK)1/3 (T/VT )2/3

⌉
and with γ = min

{
1 ,
√

K logK
(e−1)∆T

}
. Then, there is some absolute constant C̄ such that for every

T ≥ 1, K ≥ 2, and VT ∈
[
K−1,K−1T

]
:

Rπ(V, T ) ≤ C̄ (K logK · VT )1/3 T 2/3.

Theorem 3.2 is obtained by establishing a connection between the regret relative to the single

best action in the adversarial setting, and the regret with respect to the dynamic oracle in non-

stationary stochastic setting with variation budget. Several classes of policies, such as exponential-

weight policies (including Exp3) and polynomial-weight policies, have been shown to achieve

regret of order
√
T with respect to the single best action in the adversarial setting (see Auer,

Cesa-Bianchi, Freund and Schapire (2002) and chapter 6 of Cesa-Bianchi and Lugosi (2006) for a

review). While in general these policies tend to perform well numerically, there is no guarantee for

its performance with respect to the dynamic oracle studied here (see also Hartland et al. (2006)

for a study of the empirical performance of one class of algorithms), since the single best action

itself may incur linear (with respect to T ) regret relative to the dynamic oracle. The proof of

Theorem 3.2 shows that any policy that achieves regret of order
√
T with respect to the single best

action in the adversarial setting, can be used as a subroutine to obtain near-optimal performance

with respect to the dynamic oracle in our setting.

Rexp3 emphasizes the two tradeoffs discussed in the previous section. The first tradeoff,

information acquisition versus capitalizing on existing information, is captured by the subroutine

policy Exp3. In fact, any policy that achieves a good performance compared to a single best action

benchmark in the adversarial setting must balance exploration and exploitation, and therefore

the loss incurred by experimenting on sub-optimal arms is indeed balanced with the gain of

better estimation of expected rewards. The second tradeoff, “remembering” versus “forgetting,”

is captured by restarting Exp3 and forgetting any acquired information every ∆T pulls. Thus, old

information that may slow down the adaptation to the changing environment is being discarded.
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Taking Theorem 3.1 and Theorem 3.2 together, we have characterized the minimax regret (up

to a multiplicative factor, logarithmic in the number of arms) in a full spectrum of variations VT :

R∗(V, T ) � (KVT )1/3 T 2/3.

Hence, we have quantified the impact of the extent of change in the environment on the best

achievable performance in this broad class of problems. For example, for the case in which

VT = C · T β, for some absolute constant C and 0 ≤ β < 1 the best achievable regret is of order

T (2+β)/3.

3.3.1 Numerical Results

We illustrate the upper bound on the regret by a numerical experiment that measures the average

regret that is incurred by Rexp3, in the presence of changing environments.

Setup. We consider instances where two arms are available: K = {1, 2}. The reward Xk
t

associated with arm k at epoch t has a Bernoulli distribution with a changing expectation µkt :

Xk
t =

 1 w.p. µkt

0 w.p. 1− µkt

for all t = 1, . . . , T , and for any pulled arm k ∈ K. The evolution patterns of µkt , k ∈ K will be

specified below. At each epoch t ∈ T the policy selects an arm k ∈ K. Then, the binary rewards

are generated, and Xk
t is observed. The pointwise regret that is incurred at epoch t is Xk

t −X
k∗t
t ,

where k∗t = arg maxk∈K µ
k
t . We note that while the pointwise regret at epoch t is not necessarily

positive, its expectation is. Summing over the whole horizon and replicating 20,000 times for each

instance of changing rewards, the average regret approximates the expected regret compared to

the dynamic oracle.

First stage (Fixed variation, different time horizons). The objective of the first part

of the simulation is to measure the growth rate of the average regret incurred by the policy, as

a function of the horizon length, under a fixed variation budget. We use two basic instances. In

the first instance (displayed on the left side of Figure 3.1) the expected rewards are sinusoidal:

µ1
t =

1

2
+

1

2
sin

(
VTπt

T

)
, µ2

t =
1

2
+

1

2
sin

(
VTπt

T
+ π

)
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for all t = 1, . . . , T . In the second instance (depicted on the right side of Figure 3.1) similar

sinusoidal evolution of the expected reward is “compressed” into the first third of the horizon,

where in the rest of the horizon the expected rewards remain fixed:

µ1
t =


1
2 + 1

2 sin
(

3VT πt
T + π

2

)
if t < T

3

0 otherwise
µ2
t =


1
2 + 1

2 sin
(

3VT πt
T − π

2

)
if t < T

3

1 otherwise

for all t = 1, . . . , T . Both instances describe different changing environments under the same

(fixed) variation budget VT = 3. While in the first instance the variation budget is spent through-

out the whole horizon, in the second one the same variation budget is spent only over the first

third of the horizon. For different values of T (between 3000 and 40000) and for both variation

instances we estimated the regret through 20,000 replications (the average performance trajectory

of Rexp3 for T = 5000 is depicted in the upper-left and upper-right plots of Figure 3.3).

Discussion of the first stage. The first part of the simulation illustrates the decision

process of the policy, as well as the order T 2/3 growth rate of the regret. The upper parts of

Figure 3.3 describe the performance trajectory of the policy. One may observe that the policy

identifies the arm with the higher expected rewards, and selects it with higher probability. The

Rexp3 policy adjusts to changes in the expected rewards and updates the probabilities of selecting

each arm according to the received rewards. While the policy adapts quickly to the changes in

the expected rewards (and in the identity of the “better” arm), it keeps experimenting with

the sub-optimal arm (the policy’s trajectory doesn’t reach the one of the dynamic oracle). The

Rexp3 policy balances the remembering-forgetting tradeoff using the restarting points, occurring

every ∆T epochs. The exploration-exploitation tradeoff is balanced throughout each batch by the

subroutine policy Exp3. While Exp3 explores at an order of
√

∆T epochs in each batch, restarting

it every ∆T (VT is fixed, therefore one has an order of T 1/3 batches, each batch with an order of

T 2/3 epochs) yields an exploration rate of order T 2/3.

The lower-left and lower-right parts in Figure 3.3 show plots of the natural logarithm of the

averaged regret as a function of the natural logarithm of the the horizon length. All the standard

errors of the data points in these log-log plots are lower than 0.004. These plots detail the linear

dependence between the natural logarithm of the averaged regret, and the natural logarithm of T .

In both cases the slope of the linear fit for increasing values of T supports the T 2/3 dependence

of the minimax regret.
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Figure 3.3: Numerical simulation of the performance of Rexp3, in two complementary instances: (Upper

left) The average performance trajectory in the presence of sinusoidal expected rewards, with a fixed

variation budget VT = 3. (Upper right) The average performance trajectory under an instance in which

the same variation budget is “spent” only over the first third of the horizon. In both of the instances the

average performance trajectory of the policy is generated along T = 5, 000 epochs. (Bottom) Log-log plots

of the averaged regret as a function of the horizon length T .

Second stage (Increasing the variation). The objective of the second part of the simula-

tion is to measure how the growth rate of the averaged regret (as a function of T ) established in

the first part changes when the variation increases. For this purpose we used a variation budget

of the form VT = 3T
β
. Using first instance of sinusoidal variation, we repeated the first step for

different values of β between 0 (implying a constant variation, that was simulated at the first

stage) and 1 (implying linear variation). The upper plots of Figure 3.4 depicts the average per-

formance trajectories of the Rexp3 policy under different variation budgets. The different slopes,

representing different growth rate of the regret for different values of β appear in the table and

the plot, at the bottom of Figure 3.4.
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Figure 3.4: Variation and performance: (Upper left) The averaged performance trajectory for VT = 1,

and T = 5000. (Upper right) The averaged performance trajectory for VT = 10, and T = 5000. (Bottom)

The slope of the linear fit between the data points of Table 3.1 imply the growth rate V
1/3
T .

Discussion of the second stage. The second part of the simulation illustrates the way vari-

ation affects the policy decision process and the minimax regret. Since ∆T is of order (T/VT )2/3,

holding T fixed and increasing VT affects the decision process and in particular the batch size

of the policy. This is illustrated at the top plots of Figure 3.4. The slopes that were estimated

for each β value (in the variation structure VT = 3T β) ranging from 0.1 to 0.9 describing the

linear log-log dependencies (the case of β = 0.0 is already depicted at the bottom-left plot in

Figure 3.3) are summarized in Table 3.1. The bottom part of Figure 3.4 show the slope of the

linear fit between the data points of Table 3.1, illustrates the growth rate of the regret when the

variation (as a function of T ) increases, supports the V
1/3
T dependence of the minimax regret, and

emphasizes the full spectrum of minimax regret rates (of order V
1/3
T T 2/3) that are obtained for

different variation levels.
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β value Estimated slope

0.0 0.6997

0.1 0.7558

0.2 0.7915

0.3 0.8421

0.4 0.8801

0.5 0.9210

0.6 0.9519

0.7 0.9813

0.8 0.9942

0.9 1.0036

Table 3.1: Estimated slopes for growing variation budgets. The estimated log-log slopes obtained

for different β values in the variation structure VT = 3T β .

3.4 Concluding remarks

A continuous near-optimal policy. To achieve rate-optimal regret rate one may use the

restarting procedure with any policy which is rate optimal in the adversarial setting relative to

the static oracle as a subroutine. Nevertheless, it is notable that one may adopt rate optimal

policies from the adversarial setting to obtain near optimal regret rate in a continuous fashion

(without restarting). To illustrate this, we use the Exp3.S policy, provided in Auer et al. (2002).

Policy Exp3.S. Inputs: positive numbers γ, α.

1. Initialization: for any k ∈ K set wk1 = 1

2. Loop: for each t = 1, 2, . . .

• Set

pkt = (1− γ)
wkt∑K

k′=1w
k′
t

+
γ

K
for all k ∈ K

• Draw an arm k′ from K according to the distribution
{
pkt
}K
k=1

• Receive a reward Xk′
t
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• For the drawn arm k′, set X̂k′
t = Xk′

t /p
k′
t , and for any k 6= k′ set X̂k

t = 0. Then, for all

k ∈ K update:

wkt+1 = wkt exp

{
γX̂k

t

K

}
+
eα

K

K∑
k=1

wki

3. Repeat (2) until there are no more pulls

Exp3.S is itself an adaptation of the Exp3 policy. Given a finite number S of times in which

the identity of the best arm changes, this adaptation allows it, using the right tuning parameters

(α ∼ 1/T , γ ∼
√
SK/T ), to achieve regret of order S

√
KT log(KT ) compared to a dynamic

benchmark (Theorem 8.1 in Auer, Cesa-Bianchi, Freund and Schapire 2002). Nevertheless, this

policy can be further adopted to achieve a near optimal performance compared to the dynamic

oracle in our setting.

Theorem 3.3. Let π be the Exp3.S policy with α = 1
T , and γ1 = min

{
1 , 3

√
2VTK log(KT )

(e−1)2T

}
. Then,

there exists some absolute constant C̄ such that for every T ≥ 1, K ≥ 2, and TK−1 ≥ VT ≥ K−1:

Rπ (V, T ) ≤ C̄ (VTK log (KT ))1/3 · T 2/3.

When Exp3.S is tuned by α and γ1, it achieves the minimax regret rate up to a logarithmic

factor. Nevertheless, simulating the policy’s performance in several instances did not show any

observable difference in the growth rate of the regret compared to the restarting procedure, with

the Exp3 as a subroutine. Figure 3.5 shows the average performance trajectory of the tuned

Exp3.S under the variation instances that where used in the first stage of the simulation described

in §3.3.1.

Nevertheless, while the restarting procedure can be used as a “black box” mechanism to adopt

policies from the adversarial setting, and requires no knowledge of the policy other than the regret

rate it guarantees compared to the single best action, a continuous (epoch-by-epoch) adoption

of a policy is done by changing the policy, its parametric values, or both. Therefore, it requires

technical knowledge about the policy that is not required by the restarting procedure.

Knowledge of problem parameters. We have characterized the minimax regret for different

non-stationary MAB environments as a functions of the number of arms K, the variation budget

VT , and the horizon length T . In that respect, the tuning parameter γ0 (of Exp3) used by in
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Figure 3.5: Average performance trajectories of Exp3.S(α, γ1). (Left) Time-homogenous variation in-

stance. (Right) Time-heterogenous variation instance. In both instance T = 5000, and VT = 3.

Theorem 3.2, and the parameters α and γ1 (of Exp3.S ) used by in Theorem 3.3 require knowledge

of T , K and VT . While K is typically known, the number of pulls T and the variation budget

VT may be unknown. It is in general possible to adjust for the lack of knowledge of T by a

classical “doubling trick” (The proof of Theorem 3.3 ends with a procedure that uses Exp3.S as a

subroutine to achieve the same order of regret when T is unknown). However, VT , and specifically

the dependence of VT in T needs to be known. One way to estimate VT from historical data, given

T̃ data points for each arm (when such historical data about the rewards generated by all arms

is available), is to assume the structure VT = T β and regressing log VT on log T̃ to recover an

estimator β̂ from the regression slope. Nevertheless, it remains an open problem to design a policy

that can adjust to the extent of variation in an online fashion.

Contrasting with traditional (stationary) MAB problems. The tight bounds that were

established on the minimax regret in our stochastic non-stationary MAB problem allows one to

quantify the “price of non-stationarity,” which mathematically captures the added complexity

embedded in changing rewards versus stationary ones. While Theorem 3.1 and Theorem 3.2

together characterize minimax regret of order V
1/3
T T 2/3, the characterized minimax regret in the

stationary stochastic setting is of order log T in the case where rewards are guaranteed to be “well

separated” one from the other, and of order
√
T when expected rewards can be arbitrarily close

to each other (see Lai and Robbins (1985) and Auer, Cesa-Bianchi and Fischer (2002) for more

details). Contrasting the different regret growth rates quantifies the “price,” in terms of best
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achievable performance, of non-stationary rewards compared to stationary ones, as a function

of the variation that is allowed in the non-stationary case. Clearly, this comparison shows that

additional complexity is introduced even when the allowed variation is fixed and independent of

the horizon length.

Contrasting with other non-stationary MAB instances. The class of MAB problems with

non-stationary rewards that is formulated in the current chapter extends other MAB formulations

that allow rewards to change in a more structured manner. We already discussed in Remark 3.1

the consistency of our results (in the case where the variation budget grows linearly with the time

horizon) with the setting treated in Slivkins and Upfal (2008) where reward evolve according to

a Brownian motion and hence the regret is linear in T . Two other representative studies are

those of Garivier and Moulines (2011), that study a stochastic MAB problems in which expected

rewards may change a finite number of times, and Auer, Cesa-Bianchi, Freund and Schapire (2002)

that formulate an adversarial MAB problem in which the identity of the best arm may change

a finite number of times. Both studies suggest policies that, utilizing the prior knowledge that

the number of changes must be finite, achieve regret of order
√
T relative to the best sequence

of actions. However, the performance of these policies can deteriorate to regret that is linear

in T when the number of changes is allowed to depend on T . When there is a finite variation

(VT is fixed and independent of T ) but not necessarily a finite number of changes, we establish

that the best achievable performance deteriorate to regret of order T 2/3. In that respect, it is

not surprising that the “hard case” used to establish the lower bound in Theorem 3.1 describes

a nature’s strategy that allocates the allowed variation over a large (increasing function of T )

number of changes in the expected rewards.

Estimation in a changing environment. Our work demonstrates the effect a changing envi-

ronment has on the exploration-exploitation balance, and on the incurred regret. When estimating

vector of fixed expected rewards by T noisy observations that are iid, the calculated estimators

have a stochastic error term (a) of order 1/
√
T , that stems from estimating with noisy obser-

vations. The way in which exploration affects the quality of the estimators is clear: the longer

we experiment the smaller this stochastic term turns to be, and the better our estimator gets

(See Figure 3.6). However, when the true values of the expected rewards evolve, and observa-
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Figure 3.6: (Left) Estimating a fixed expected rewards: stochastic error term a which is decreasing with T

the number of observations. (Right) Estimating evolving expected rewards: stochastic error term a which

is decreasing with T and deterministic error term g which is increasing with T

.

tions are not identically distributed anymore. To the stochastic error term (a) we have to add

a deterministic error term (g) that of order VT that stems from the dynamic environment, and

reflects the possible way in which expected rewards may change. In addition to the introduced

“remembering” versus “forgetting” tradeoff, the exploration-exploitation balance may be affected

as well. The tension between these two error terms is illustrated on the right side of Figure 3.6:

Intuitively, focusing on exploration, the decision-maker would like to minimize the surface of the

larger ellipsoid, considering both (a) and (g).
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Chapter 4

Optimization in Online Content

Recommendation Services

The material presented in this chapter is based on Besbes, Gur and Zeevi (2014c). It

is based on a collaboration with Outbrain, a leading provider of customized content

recommendations to online publishers. Outbrain’s recommendations appear in over

100,000 media sites, including many premium online publishers. These recommen-

dations exhibit extraordinary exposure, and millions of articles are read on a daily

basis via Outbrain’s recommendations. The research in this chapter is based on a

large data set (of 15 tera-bytes), including billions of recommendations generated for

various online publishers, as well as data from a controlled experiment.

This chapter studies online content recommendations, a new class of online services allows pub-

lishers to direct readers from articles they are currently reading to other web-based content they

may be interested in. In §4.1 we formulate and provide a diagnostic of the content recommenda-

tion problem. In §4.2, using a large data set of browsing history at major media sites, we develop

a representation of content along two key dimensions: clickability, the likelihood to click to an

article when it is recommended; and engageability, the likelihood to click from an article when it

hosts a recommendation. Based on this representation, in §4.3 we propose a class of user path-

focused heuristics, whose purpose is to simultaneously ensure a high instantaneous probability of

clicking recommended articles, while also optimizing engagement along the future path. Using a
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simulation study as well as supporting theoretical bounds, we rigorously quantify the gap between

performance of the optimal recommendation policy and the one of myopic policies that are used

in practice, and estimate the fraction of this gap that may be captured by our one-step look-ahead

heuristic. To validate the impact of our proposed heuristics, we study in §4.4 an implementa-

tion (a controlled “live” experiment) of a practical class of one-step look-ahead recommendations,

and studies its impact relative to current practice. In §4.5 we provide some concluding remarks.

Auxiliary results as well as details on the estimation procedure can be found in Appendix C.

4.1 The content recommendation problem

The content recommendation problem (CRP) is faced by the recommendation service provider

when a reader arrives to some initial (landing) article, typically by clicking on a link placed on the

front page of the publisher. Then, the provider needs to plan a schedule of T recommendations

(each recommendation being an assortment of links) to show the reader along the stages of her

visit, according to the path the reader takes by clicking on recommended links. The reader can

terminate the service at any stage, by leaving the current article she reads through any mean

other than clicking on a content recommendation (e.g., closing the window, clicking on a link

which is not a content recommendation, or typing a new URL). The objective of the provider is

to plan a schedule of recommendations to maximize the value generated by clicks along the path

of the reader before she terminates the services.

A model for recommending content. The CRP is formalized as follows. Let 1, . . . , T

be the horizon of the CRP throughout a visit of a single reader. We denote by ` the number of

links that are introduced in each recommendation. We denote by xt−1 the article that hosts the

recommendation at epoch t (for example, x0 denotes the article that hosts the recommendation

at t = 1; the article that the reader starts her journey from). We denote by Xt the set of articles

that are available to be recommended at epoch t. X0 is the initial set of available articles, and

we assume this set is updated at each epoch by Xt = Xt−1 \ {xt−1} (for example, at t = 1 all

the articles that are initially available can be recommended, except for x0, that hosts the first

recommendation). We assume T ≤ |X0| − `.
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We denote by U the set of reader (user) types. We denote by u0 the initial type of the

reader. This type may account for various ways by which a reader can be characterized, such

as geographical location, as well as her reading and clicking history. We assume the type of the

reader to be updated at each epoch according to ut = ft(ut−1, xt−1). This update may account

for articles being read, as well as for epoch-dependent effects such as fatigue (for example, u1,

the type at t = 1, may account for the initial type u0, the initial article x0, and the fact that

the reader sees the recommendation after she already read one article). We do not specify here

a concrete structure of the functions ft(·, ·); a special case of this update rule will be introduced

and used in §4.2.1.

A recommendation assortment is an ordered list of ` links to articles that are available for

recommendation. We denote by A`(Xt) the set of all possible assortments at epoch t. At each

epoch t = 1, . . . , T the recommendation provider selects a recommendation assortment At ∈

A`(Xt) to present the reader with. For a given user type u, a host article x and a recommendation

assortment A, we denote by Pu,x,y(A) the click probability to any article y ∈ A. With some abuse

of notation we sometimes denote assortments as sets of links, and note that the probability to

click on a link that belongs to an assortment depends on all the links in the assortment as well

as on the way they are ordered.1 Finally, we denote by w(x) the value (for the service provider)

generated by a click on article x.

The structure described above assumes Markovian dynamics, that are used in the following.

Given an initial reader type u0, an initial set of articles X0, and a host article x0, the CRP of

maximizing the value generated by clicks throughout the visit is defined by the following Bellman

equations:2

V ∗t (ut,Xt, xt−1) = max
A∈A`(Xt)

{∑
xt∈A

Put,xt−1,xt(A)
(
w(xt) + V ∗t+1(ut+1,Xt+1, xt)

)}
, (4.1)

1Therefore, y ∈ A and y ∈ A′ does not imply Pu,x,y(A) = Pu,x,y(A′). Similarly, A and A′ containing the same

articles does not imply
∑
y∈A Pu,x,y(A) =

∑
y∈A′ Pu,x,y(A′), as articles may be ordered differently.

2We assume that the value of clicking on each article is known to the provider. This value can represent actual

revenue (in the case of sponsored links), or tangible value (in the case of organic links that drive publishers to

partner with the provider). While in practice there may be constrains on the number of organic/sponsored links,

in our model we only limit the overall number of links in each assortment.
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for t = 1, . . . , T , where V ∗T+1(uT+1,XT+1, xT ) = 0 for all uT+1,XT+1, and xT . Since the CRP

accounts for the future path of readers, the computational complexity that is associated with

finding its optimal solution increases rapidly when the set of available articles gets large.

Theoretical observation 1. The content recommendation problem defined by (4.1) is NP-hard.

For further details see Proposition C.1 in Appendix B.1; we establish that the Hamiltonian

path problem, a known NP-hard problem (Gary and Johnson 1979), can be reduced to a special

case of the CRP, and therefore, even when the click probabilities between hosting articles and

recommended articles are known for each arriving reader, the CRP is NP-hard.3 Given the large

amount of available articles, and the high volume of reader arrivals, this result implies that it is

impractical for the service provider to look for an optimal solution for the CRP for each arriving

reader. This motivates the introduction of customized recommendation algorithms that, although

lacking performance guarantees for arbitrary problem instances, perform well empirically given

the special structure of the problem at hand.

The myopic heuristic. One class of such algorithms is the one used in current practice,

with the objective of recommending at each epoch t (until the reader terminates the service) an

assortment of links that maximizes the instantaneous performance in the current step, without

accounting for the future path of the reader. We refer to this approach as the myopic content

recommendation problem (MCRP), and formally define the value associated with it by:

V m
t (ut,Xt, xt−1) =

∑
xt∈Amt

Put,xt−1,xt(A
m
t ) (w(xt) + V m

t (ut+1,Xt+1, xt)) ; t = 1, . . . , T, (4.2)

where

Amt ∈ arg max
A∈A`(Xt)

{∑
xt∈A

Put,xt−1,xt(A)w(xt)

}
; t = 1, . . . , T,

and where V m
T+1(uT+1,XT+1, xT ) = 0 for all uT+1, XT+1, and xT . The MCRP can be solved at

each epoch separately, based on the current host article, reader type, and set of available articles

(where the host article is the one that was clicked at the previous epoch).

3Various relaxation methods as well as approximation algorithms that have been suggested in order to deal with

the intractability of the Hamiltonian path problem appear in Uehara and Uno (2005), and Karger et al. (1997).

59



The sub-optimality of myopic recommendations. While recommending articles myopi-

cally is a practical approach that is currently implemented in content recommendation services,

simple problem instances reveal that myopic recommendations may generate poor performance

compared to the optimal schedule of recommendations. In one such instance that is depicted in

Figure 4.1, myopic recommendations generate only two thirds of the expected clicks generated

by optimal recommendations. While Figure 4.1 provides a single instance in which there is a

Arriving user  
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Starlet  
arreSted  
again !!! 
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haS new 
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(new) 

(1 month old) 
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Figure 4.1: Sub-optimality of myopic recommendations. A content recommendation instance, with

` = 1 (single-link assortments), T = 2, X0 = {x0, A,B}, and uniform click values. x0 is the initial host.

The click probabilities (accounting for evolution of user type and available article set) illustrate a scenario

where article B has attractive title but irrelevant content that drives users to terminate the service. Myopic

schedule first recommends B and then A, generating a single click. An optimal schedule first recommends

A and then B, generating 0.75 + 0.75× 1 = 1.5 expected clicks.

significant gap between the performance of myopic recommendations and that of optimal recom-

mendations, such a performance gap appears in many simple instances. Moreover, theoretically,

this performance gap can be very large.

Theoretical observation 2. The performance gap between myopic recommendations and optimal

recommendations can be arbitrarily large when the set of articles is large.

For a precise statement and details see Proposition C.2 in Appendix B.1.
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Empirical insights. While a descriptive discussion on the available data is deferred to §4.2,

we wish to bring forward at this point a preliminary empirical observation that supports the

existence of such a performance gap in practice, and to verify our premise that the content

recommendation service is more than a one-click service. We construct the visit paths of readers,

from arrival to some host article through a sequence of clicks (if such clicks take place) on internal

links. The distribution of clicks along visit steps in two representative media sites is shown on the

left part of Figure 4.2. We observe that a significant portion of the service is provided along the
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Figure 4.2: Aggregate analysis of clicks along the visit path. (Left) The distribution of clicks along

visit steps in two representative media sites (A and B). (Right) The distribution of the probability to click

again among articles to which readers arrived after their first click (in media site A).

visit path: between 15% and 30% of clicks were generated in advanced stages of the visit, namely

after the first click (this range is representative of other publishers as well).4 Next, consider the

set of links that were clicked in the first step. The right part of Figure 4.2 depicts the distribution

of the probability to click on a recommendation again, from articles to which readers arrived after

clicking at the first step. While this conditional probability is relatively high for some articles, it

is relatively low for others. This points out that the recommendation that is selected at the first

step clearly affects clicks generated along the future path of readers. Moreover, we observe that

4It is important to note that the portion of clicks along the path is significant even though the future path is

not accounted by the first recommendation. One can only expect this portion of the business volume to grow if

recommendations account for the future path of readers.
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the average CTR to articles along this distribution is similar, ranging from 0.7 to 0.85 percent (in

particular, the probability to click to articles at both the third and the fifth columns is ∼ 0.78

percent). This suggests that myopic recommendations might be “leaving clicks on the table.”

This observation leads to the following question: are some articles more “engaging” than

others, in the sense that readers are more likely to continue the service after clicking to these

articles? In the next section we will see that “engageability” is indeed an important characteristic

of articles, and is a significant click driver along the path of readers.

4.2 Identifying click drivers along a visit

In this section we estimate a choice model that aims to capture click drivers using a large data

set, in a manner that accounts for potential changes in articles’ features along time. Our model

leads to a new representation of the value of articles along two key dimensions: clickability and

engageability. We begin by describing our data set.

Available (and unavailable) data. Our database includes access to over 5 billion internal

recommendations that were shown on various media sites, including anonymous information about

articles, readers, recommendations, as well as observed click/no-click feedback. Every article that

was visited or recommended in the database has a unique id. This id is linked to the publish

date of the article, and the main topic of the article, which is classified into 84 topic categories

(for example, representative categories include “sports: tennis,” “entertainment: celebrities,” and

“health: fitness”). Every event of a reader arriving to an article is associated with a unique

recommendation id, reader id, and host article id. Each recommendation id is linked to:

• the list of internal articles that were recommended (ordered by position),

• the time at which the recommendation was created,

• the time spent by the reader on the host article before leaving it (for some media sites),

• the recommendation id that the reader clicked on to arrive to the current page (if the reader

arrived by clicking on an internal Outbrain recommendation).

Our data does not include information about additional article features such as length, appearance

of figures/pictures, links presented in the article, or display ads. We also do not have access to
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the sponsored links that were shown, nor to clicks on them.

Main click drivers along the path. As the recommendation service aims to suggest at-

tractive links, one of the important parameters on which recommendation algorithms focus is the

id of recommended articles. Other potential drivers include the position of links within recom-

mended assortments, the topics of candidate articles, and the extent to which a user is familiar

with the service.5 These elements are typically taken into account throughout the recommenda-

tion process. In what follows we add a new click driver that has been overlooked so far: the id of

the article that hosts the recommendation. While content recommendations aim to match readers

with attractive links, the id of the host article describes the environment in which this match-

ing is taking place (recommendations are placed at the bottom of host articles), and therefore

potentially impacts the likelihood to click on a recommendation.

4.2.1 Choice model

To capture main key drivers, we propose to estimate a multinomial logit model. Given a reader

type u ∈ U and an assortment A that is placed at the bottom of a host article x, we define:

Pu,x,y(A) =


φu,x,y(A)

1+
∑
y′∈A φu,x,y′ (A) if y appears in A

0 otherwise.
(4.3)

Whenever y appears in A, we define:

φu,x,y(A) = exp
{
α+ βx + γy + µx,y + θu + λp(y,A)

}
, (4.4)

where p : (y,A) → {0, . . . , 5} denotes the position of article y in the assortment (p(y,A) = 0

implies that y is placed at the highest position in A). Using the model above we aim to show

that there is potential value in accounting for the host effect (β), in addition to the link effect (γ)

on which current recommendations focus. As we further discuss in §5, this model is selected with

the prospect of implementing practical algorithms that account for the host effect (in addition

to the link effect) of candidate articles via proxies that are observable in real time throughout

5Due to technical reasons (for example, the content recommendation service is not subscription-based), infor-

mation on the preferences of readers is typically limited (and in particular, does not appear in our data set).
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the recommendation process. In what follows we focus on the pair of parameters γ and β that

describe each article, but first we briefly discuss the control parameters (a thorough description

of these parameters is given in Appendix C.2).

λ1 . . . , λ5 are position parameters that capture the effect of different positions links may take

within the recommended assortment, compared to the highest position. θu is a dummy variable

that separates readers that are familiar with internal content recommendations from users that

are not.6 µx,y is the contextual relation between the host article and the recommended ones. We

use a single parameter that flags cases in which the recommended article directly relates to the

topic discussed in the host article.7

Host effect (engageability). The parameter β is associated with the likelihood to click

from an article whenever it hosts a recommendation, and is driven by the actual content of the

article. We refer to β as the engageability of an article. Under our model, the engageability of

an article may account for two potentially different effects. The first one is “homogeneous” with

respect to all recommended links that may be placed at the bottom of it. Intuitively, when an

article is well-written, interesting, relevant, and of reasonable length, the reader is more likely to

read through it, arrive to the recommendation at the bottom of it in an engaging mood, as well as

more likely to click on a recommendation. On the other hand, when content is poor or irrelevant,

a reader is more likely to terminate the service rather than scrolling down reading the article,

and therefore she is less likely to see the recommendation and click on it. Engageability of an

article may also capture in an aggregate manner an effect which is “heterogeneous” with respect

to different potential links: the extent to which it encourages readers to continue and read specific

other articles that may be recommended.8 We note that the engageability of a given article may

6As described in Appendix C.2, we use the first 10 days of the data to identify experienced readers. Then, during

the 30 days over which the model was estimated we update reader types from “inexperienced” to “experienced”

once they click on an internal recommendation. This update rule is a special case of the one given in §4.1:

u0 ∈ {uexp, uinexp} is set according to whether or not the reader has clicked a link in the first 10 days. Whenever

u0 = uexp one has ut = u0 for all t, and whenever u0 = uinexp one has u1 = u0 and ut = uexp for all t ≥ 2.

7Approaches such as a matrix that describes relations between all combinations of article or topics are impractical

for estimation, due to the limited number of observations, as well as the dynamic nature of these connections (driven

by the introduction of new articles and the aging of old ones) that necessitates estimating them repeatedly.

8Theoretically, such connections between articles may potentially be separated from the first, “homogeneous”
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change with time, along with the relevancy of its content.

Link effect (clickability). The parameter γ is associated with the likelihood to click to an

article whenever it is recommended, and is driven by the title of the article (which is typically

the only information given on the link itself). We refer to γ as the clickability of an article. Like

engageability, the clickability of articles may change with time.

Model limitations. As discussed, our data does not include access to factors that may

affect the likelihood to click on internal recommendations. These would be crucial if our objective

would be to quantify the magnitude of the different effects. Instead, we aim to identify main click

drivers (and in particular, the impact of engageability) by testing out-of-sample the ability to use

the estimated model parameters to predict which assortments are eventually clicked. By doing

so, in §4.2.3 we quantify the predictive power of the model, and by comparing it to the ones of

alternative models we validate that accounting for engageability is key to maximizing the number

of clicks along a visit path.

Estimation process. A description of the estimation process is given in Appendix C.2.

The model was estimated using a database that includes 40 days of internal recommendations

presented on articles of one media site. Since clickability and engageability of articles may be time-

varying, the model was estimated independently over 360 batches of two hours. In each such batch

approximately 500 different articles hosted recommendations, and a similar number of articles

were recommended (approximately 90 percent of host articles were also recommended in the

same batch, and vice versa). Along each batch approximately 1,000 parameters where estimated

(including the control parameters). Estimation in each batch was based on approximately 2M

recommendations (of 6 links each) and 100,000 clicks.

4.2.2 Content representation

We use the clickability and engageability estimates to represent articles in a two-dimensional

content space. Figure 4.3 depicts the representation of articles in that space. The dimensions of

engageability effect, using a complex description of contextual relations between articles/topics, but such approaches

significantly increase the number of estimated parameters and are impractical. In this study we do not aim to

separate between the two, but rather focus on the value of recommending articles with higher engageability, in the

sense that lead to future clicks, independently of the underlying reason for these clicks.
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Figure 4.3: Articles in the content space. Every article is positioned in the content space according to

its two estimates, β (engageability) and γ (clickability). The 5012 articles that appear in the plot have at

least 500 appearances as a host and as a recommended link during the estimation segment. The estimated

values in the figure range from −3 to 3 along both axes.

the content space have meaningful interpretation for the service provider, when examining articles

as candidates for recommendations: it captures not only the likelihood to click on an article when

it is recommended, but also the likelihood of readers to continue using the service if this article

is indeed clicked, and thus hosts the recommendation in the following step.

One clear observation from Figure 4.3, is that engageability and clickability (and intuitively,

their main drivers: the title attractiveness and the actual content) are content features that repre-

sent fundamentally different click drivers. In fact, the correlation between the two characteristics

is 0.03. A potential benefit of our content representation (compared with the current practice,

which focuses only on clickability/CTR), is that it allows one to differentiate between articles

that have similar clickability. In particular, one may use this framework to tune recommendation

algorithms to select articles that have not only high clickability (generating high instantaneous

CTR), but also high engageability (guaranteeing high CTR in the next step). We note that the

space of articles also allows one to study the dynamics of articles’ relevancy from the time they

are published and on. In §6 we further discuss this “aging process” of articles, and the way it can

be tracked in terms of clickability and engageability.

We turn to specify representative classes of articles (illustrated in Figure 4.4). We refer to
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articles with high clickability and high engageability as “good articles”: readers are likely to click

on them, and are also likely to click from them and continue the service. On the other hand,

the class of “bad articles” is characterized by low clickability and low engageability. We refer to

Niche  
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Articles 

Bad  
Articles 

Traffic  
Traps 

High  
Engageability 

Low  
Engageability 

Low  
Clickability 

High  
Clickability 

β
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Figure 4.4: The content matrix.

articles with high clickability but low engageability as “traffic traps”: these articles attract a lot

of readers, but these readers tend to terminate the service upon arrival. Unlike bad articles, that

are naturally screened out of the recommendation pool due to their low clickability, traffic traps

represent a threat to the service provider: since they are being clicked on, algorithms that focus

on clickability keep recommending them despite potentially poor content that harms the service

performance in the short term (along the path of readers) and in the long term (decreasing the

value of the service in the eyes of readers).

Finally, we refer to articles with low clickability and high engageability as “niche opportuni-

ties”. Readers do not tend to click on these articles, but those who do click on them tend to

continue the service afterwards. These articles often deal with more “professional” topics such as

architecture, arts, fitness, and health. Interestingly, we observe that these articles tend to stay

relevant (and maintain high engageability) much longer than other articles, and therefore there

is a long-term opportunity in identifying them and recommending them to appropriate readers.

With that in mind, the engageability dimension suggests a practical approach to separate traffic

traps from good articles and niche opportunities from bad articles.

4.2.3 Validating the notion of engageability

In-sample testing. In each estimation batch we perform a likelihood ratio test with the null

hypothesis being that click observations follow a link-focused model, that is a special case of the
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model we describe in §3.1. The link-focused model follows the one in (4.3) with φu,x,y(A) being:

φlfu,x,y(A) = exp
{
α+ γy + µx,y + θu + λp(y,A)

}
, (4.5)

where the control parameters µx,y, θu, and λp(y,A) are defined as in §3.1. In the link-focused model

engageability is always constrained to be zero. For each two-hour batch we measure

R = −2 ln

[
likelihood for link-focused model

likelihood for full model

]
,

which is approximately distributed according to a chi-squared distribution with the number of

degrees of freedom being the number of engageability parameters (which is the number of articles,

roughly 500 in each batch). The obtained p-values of the various batches were all smaller than

0.05, implying the significance of host engageability. We next turn to establish a stronger notion

of validation through out-of-sample testing and predictive analysis.

Out-of-sample testing. We use each set of estimates generated over a batch to predict

click/no-click outcomes for impressions in the following batch. We test the ability to predict a

click on the whole recommendation, rather than on a specific link, focusing only on impressions

in which all the recommended articles were estimated in the following batch. The procedure of

testing the predictive power of the model is as follows.

Testing procedure. Input: δ ∈ [0, 1]

1. For each 2-hour data batch 1 ≤ j ≤ 359:

(a) Estimate model parameters according to §4.2.1, using the data set of segment j.

(b) Test predictive power in the following 2-hour batch: for any recommended assortment

A in batch j + 1, calculate the assortment click probability according to the estimates

of batch j:
Pu,x(A) =

∑
y∈A

Pu,x,y(A),

where Pu,x,y(A) is defined according to (4.3) and φu,x,y(A) according to (4.4). Then,

classify:

Cδ(A) =

 1 if Pu,x(A) ≥ δ

0 if Pu,x(A) < δ

2. Using the click/no-click reader’s feedback, calculate throughout the entire data horizon:
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(a) the false positive rate:

Rfpδ =
# {A : not clicked, Cδ(A) = 1}

# {A : not clicked}

(b) the true positive rate:

Rtpδ =
# {A : clicked, Cδ(A) = 1}

# {A : clicked}

Benchmarks. We compare the predictive power of the model to those calculated for the

following benchmark models.

1. Random click probabilities. The first one is a random classifier, in which Pu,x(A) is an

independent uniform distribution over [0, 1].

2. Link-focused model. We estimated the model in (4.3) with φu,x,y(A) defined by:

φlfu,x,y(A) = exp
{
α+ γy + µx,y + θu + λp(y,A)

}
, (4.6)

where the control parameters µx,y, θu, and λp(y,A) are defined as in §3.1.

3. Host-focused model. We estimated the model in (4.3) with φu,x,y(A) defined by:

φhfu,x,y(A) = φhfu,x(A) = exp {α+ βx + θu} , (4.7)

where θu is defined as in §4.2.1. The host-focused model accounts only for the engageability

of the host, and the experience level of readers.

We repeat the above testing procedure for our model as well as for the three benchmarks for

various values of δ ∈ [0, 1]. To put the predictive power of our model in perspective, we compared

with the three benchmarks in the receiver operating characteristic (ROC) space, in which the true

positive rate is presented as a function of the false positive rate (for a spectrum of δ values).

Predictive power. Figure 4.5 details the ROC curve of our model, compared to that of the

link-focused and the host-focused benchmarks, as well as the random classification diagonal. The

large gap between the ROC curve of the full model and the one of the link-focused model implies

the decisiveness of the host effect in generating a successful recommendation assortment. The

importance of the host is also implied by a relatively small gap between the ROC curve of the full

model and that of the host-focused model. Indeed, the predictive power of a model that accounts
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Figure 4.5: Quantifying predictive power in the ROC space. The plot shows the ROC curve

generated by our model, together with 3 benchmarks: the link-focused model, the host-focused model, and

the random classification model. The area under each curve (AUC) appears in parentheses. All standard

errors (with respect to both axes) are smaller than 0.02; three illustrative examples are depicted in the

“full model” curve.

only for the host effect, as well as the level of the reader’s familiarity with the recommendation

service, significantly exceeded that of the much richer link-focused model, that does not account

for host engageability. Comparing the predictive power of the host-focused model with that of

the link-focused model indicates, among other things, that while elements such as clickability and

position are controlled for and taken into account by the service provider in the recommendation

process (and thus a model that does not account for such elements may successfully predict click

behavior), the host engageability is not taken into account by the current process.

Discussion on potential over-fitting. Since in each two-hour batch we estimate approxi-

mately 1,000 parameters, a natural issue to be concerned of is the one of over-fitting. To verify

that this is not the case, we tested the predictive power of the full model in sample as well (that

is, tested each set of estimators along the batch over which these estimators were produced. The

in sample ROC of the full model is similar to the one generated by the out-of-sample test. The

area under this curve (AUC) is 0.78. This gap between the in-sample AUC and the out-of-sample
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AUC (that would be much larger in the case of significant over-fitting) should be analyzed by

accounting for three factors: first, the in-sample predictive power of any model is expected to

be higher than an out-of-sample one; second, clickability and engageability are time varying, and

therefore predictive power may be lost as time goes by; finally, there is some potential over-fitting

caused by articles that appeared only a few times during an estimation batch. However, since

typically these articles rarely appear in the following test batch, these articles have a limited

impact on the estimation of the control parameters, and on the predictive power of the model.

4.3 Leveraging engageability

Having established the importance of engageability in predicting click behavior, we next turn to

leverage engageability for the purpose sof recommending articles. We propose a heuristic that

accounts for one step forward in a reader’s path when creating each recommendation. We asses

the impact of these one-step look-ahead recommendations, compared to the optimal schedule of

recommendations as well as to the myopic schedule of recommendations.

One-step look-ahead heuristic. We suggest recommending articles with the objective of

solving the one-step look-ahead recommendation problem, defined by the following equations:

V one
t (ut,Xt, xt−1) =

∑
xt∈Aonet

Put,xt−1,xt(A
one
t )

(
w(xt) + V one

t+1 (ut+1,Xt+1, xt)
)
, (4.8)

for t = 1, . . . , T − 1, where

Aonet ∈ arg max
A∈A`(Xt)

∑
xt∈A

Put,xt−1,xt(A)

w(xt) + max
A′∈A`(Xt+1)

 ∑
xt+1∈A′

Put+1,xt,xt+1(A′)w(xt+1)


 ,

for t = 1, . . . , T − 1, where V one
T (uT ,XT , xT−1) = V m

T (uT ,XT , xT−1) for all uT , XT , and xT−1,

that is, in the last time slot one-step lookahead recommendations are simply myopic.

4.3.1 Simulation

To estimate the relation between the optimal, myopic, and one-step look-ahead performances

based on our data, we conduct the following simulation based on our model estimates.

Setup. Our estimates include approximately 500 articles in each of the 360 two-hours esti-

mation batches. We assume ` = 5, that is, each assortment contains exactly five links. For each
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of the batches, we simulated the performance of different recommendation approaches using the

following procedure:

Simulation procedure. Inputs: k ∈ {5, 10, 25, 50, 75, 100}, and a reader type u0 ∈ {uexp, uinexp}

1. Set batch index j = 1

2. Repeat from τ = 1 to τ = 1, 000:

• Construct X0 by randomly drawing k articles (uniformly) out of those appear in batch

j (with the corresponding estimates).

• Assign a uniform price, w(·) = 1, for any article.

• From the set of available article draw randomly one article (uniformly) to be the landing

article x0.

• Set T = k − 1. For all t = 1, . . . , T follow the update rules: Xt = Xt−1 \ {xt−1};

ut = uinexp if u0 = uinexp and t ≤ 1, otherwise ut = uexp. Based on the model

estimation output in batch j, calculate recommendation schedules that solve: the

content recommendation problem9 (4.1), the myopic content recommendation problem

(4.2), and the one-step lookahead content recommendation problem (4.8), obtaining:

V ∗j,τ = V ∗1 (u1,X1, x0); V m
j,τ = V m

1 (u1,X1, x0); V one
j,τ = V one

1 (u1,X1, x0).

3. Update batch index j → j + 1, and while j ≤ 360 go back to step 2.

4. Calculate average clicks-per-visit performances:

V̄ ∗ =

360∑
j=1

1,000∑
τ=1

V ∗j,τ ; V̄ m =

360∑
j=1

1,000∑
τ=1

V m
j,τ ; V̄ one =

360∑
j=1

1,000∑
τ=1

V one
j,τ .

We repeated the simulation procedure for combinations of k ∈ {5, 10, 25, 50, 75, 100} and

u0 ∈ {uexp, uinexp}. The average performances for different numbers of available articles are

depicted in Figure 4.6.

Discussion. Figure 4.6 shows that while optimal recommendations that account for the

whole future path of readers may generate an increase of approximately 50 percent in clicks per

9The optimal recommendation schedule was determined by exhaustively comparing all the possible recommen-

dation schedules. To reduce the computation time we used the monotonicity of the value function in (4.1) with

respect to the engageability and clickability values of recommended articles to dismiss suboptimal schedules.
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Figure 4.6: The near-optimality of one-step look-ahead recommendations. (Left) The average

performance, in clicks-per-visit, of optimal, one-step lookahead, and myopic recommendations, for readers

that recently clicked on internal recommendations. (Right) The average performances for readers that did

not click recently on an internal recommendation.

visit compared to myopic recommendations, the major part of this performance gap may be

captured by one-step lookahead recommendations. While readers that are familiar with internal

recommendations and have clicked on those before tend to generate approximately twice as many

clicks per visit compared to readers that did not click on internal recommendations recently, the

significant impact of one-step look-ahead recommendations is robust over both “experienced” as

well as “inexperienced” readers. The near optimality of one-step look-ahead recommendation can

be backed up by theoretical bounds.

Theoretical observation 3. Under mild structural assumptions the performance gap between

the one-step look-ahead policy and that of the optimal recommendation policy is suitably small.

The formal result, which quantifies the structural assumptions as well as the notion of “small”

for the performance gap, is given in Proposition C.3 in Appendix B.1. At a high level, we

show that whenever there is a continuum of available articles (intuitively, when enough articles

are available), the performance of one-step look-ahead recommendations can be guaranteed to

approach the one of optimal recommendations when the (optimal) click probabilities are small,

and when the efficient frontier set of available articles correspond to a mild tradeoff between

engageability and clickability.
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4.4 Implementation Study: A Controlled Experiment

The analysis presented in §4.3.1 implies that there might be significant value in departing from

myopic recommendations towards recommendations that account for a single future step in the

potential path of readers. In collaboration with Outbrain, we have designed an implementation

of a simple class of one-step look-ahead recommendation policies, and tested the impact of such

recommendations in cooperation with a publisher that has agreed to take part in a planned pilot

experiment. The objective of the experiment is to measure the change in the performance (in

clicks on internal recommendations per reader’s visit) when accounting for the engageability of

recommended articles, relative to the performance of current practice (that myopically accounts

only for clickability). An important part of the implementation study that is described below was

to adjust the approach that is described in §4.3 to fit the limitations of the operating recommen-

dation system.

4.4.1 Methodology

An adjusted-myopic proxy for the one-step look-ahead heuristic. Finding a solution

for the one-step look-ahead problem involves computational complexity of order |X |2, compared

to order |X | that is required in order to find the best myopic recommendation. Since the set of

available articles is typically very large, a first step towards implementation was to find a proxy

for the one-step look-ahead policy that requires computational complexity of order |X |, and that

follows a procedure which is similar to the one currently in place.

Recommendation algorithms that are currently being used, at a high level, operate as index

policies that assign grades to candidate articles. In general, the grades generated by algorithms

on which we focus in the experiment do not account for a reader type or the contextual connection

between the host article and the recommended article.10 Moreover, once grades are assigned to

candidate articles, the recommended assortment typically includes the articles with the highest

grades, in a manner that does not account for position effects. Finally, since the clickability

and the engageability of articles (the sequences of γ and β estimates) are obtained by an off-line

10While some classes of recommendation algorithm are based on collaborative filtering or similarity ideas that

may account for a reader type as well as the context of candidate articles, these algorithms are not modified in the

experiment.
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estimation and currently are not available online, we use proxies that are collected and measured

in an online fashion throughout the recommendation process. An intuitive proxy for probability

to click to an article is the CTR of the article, defined by

CTR(x) =
# {clicks to x}

# {times x is recommended }
,

for any article x. The CTR of each article is calculated over some time window along which

offerings and click observations are documented. We found the correlation between the values

of Put,xt−1,xt(A), when constructed by our estimators (considering the recommended article (xt),

the host article (xt−1), the reader type (ut) and the whole assortment that was offered), and the

values of CTR(xt) (of the recommended article, xt) that were calculated based on observations

documented in the same estimation batch to be 0.29. In a similar manner, a potential proxy for

probability to click from an article is the exit-CTR of an article, defined by

exit-CTR(x) =
# {events of at least one additional page-view after reading x}

# {times x was viewed}
.

The exit-CTR above accounts not only for clicks on organic links, but also for other events, such

as clicks on links in the text of x that lead to an additional article in the same media site, or an

additional article that was read at the same publisher shortly after visiting article x, for example,

after a short visit in the front page of the media site. We found the correlation between the values

of maxA′∈A`(Xt+1)

{∑
xt+1∈A′ Put+1,xt,xt+1(A′)

}
, when constructed by our estimators (considering

the recommended article (xt), the host article (xt−1), the reader type (ut), the whole assortment

that was offered, as well as the set of articles that were available for recommendation at the

following step), and the values of exit-CTR(xt) (of the host article, xt) that were calculated based

on observations documented in the same estimation batch to be 0.25.

Based on these findings, and assuming a uniform article value w(·) = 1, we suggest the

following adjusted-myopic recommendation policy that recommends the ` articles with the highest

index value:

Index(y) = CTR(y) [1 + exit-CTR(y)] .

Recalling the one-step look-ahead heuristic in (4.8), the adjusted myopic policy uses observable

proxies of the elements of that heuristic to recommend articles based on a proxy of their one-step

look-ahead value. This policy accounts for the potential future path of the reader upfront, without

increasing the computational complexity of index policies that are currently used by the system.

75



Current practice: click-based policies. Whenever a reader arrives to an article the

recommended list of links that appears at the bottom of the web-page consists of links that may

be generated by different classes of algorithms, each of these may use different methods and inputs

in the process of evaluating candidate articles. In the designed experiment (which is described

below) we focus on an important class of algorithms that directly use observed CTR values of

candidate articles. At a high level, the class of algorithms on which we focus operates as follows.

CTR-based recommendation procedure P. Inputs: a set X of available articles, and a time

window τ of recent observations.

1. For each candidate article x ∈ X calculate CTR(x) along a window of recent observations.

2. For each x ∈ X assign a weight

q(x) = ψ [CTR(x)]

where ψ : R→ R is some strictly increasing mapping.

3. For each x ∈ X assign a probability

p(x) =
q(x)∑

x′∈X q(x
′)
.

4. Draw an article to recommend according to the distribution {p(x)}x∈X .

We note that the set X considers some system constraints (for example, the article that currently

hosts the recommendation cannot be recommended). The class of algorithms that follow proce-

dure P is typically used in approximately 30% of the organic links that are generated in each

recommendation.

Accounting for the engageability of candidate articles. As an alternative to the pro-

cedure P we suggest a class of recommendation policies that account for the engageability of

candidate articles.

A simple lookahead procedure P̃. Input: a set X of available articles, and a time window of

recent observations.

1. For each candidate article x ∈ X calculate CTR(x) and exit-CTR(x) along a window of

recent observations.
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2. For each x ∈ X assign a weight

q̃(x) = ψ [CTR(x) · (1 + exit-CTR(x))] ,

where ψ [·] is the same mapping as in the procedure P.

3. For each x ∈ X assign a probability

p̃(x) =
q̃(x)∑

x′∈X q̃(x
′)
.

4. Draw an article to recommend according to the distribution {p̃(x)}x∈X .

4.4.2 Experiment Setup

In the experiment each reader is assigned either to a test group or to a control group based

on their unique user id, a number that is uniquely matched with the reader and typically does

not change over time. As a result, each reader is assigned to the same group (test or control)

with each arrival throughout the entire time over which the experiment takes place. Whenever

a reader arrives to an article, the number of links (out of the organic links) that are generated

by the algorithm class described above is determined by a mechanism that is independent of the

group the user belongs to. When the reader belonged to the control group, links were generated

based on the procedure P, that is, considering the CTR of candidate articles. When the reader

belonged to the test group, links were generated based on the procedure P̃, that is, considering

both the CTR and the exit-CTR of candidate articles. The group to which a reader belongs did

not impact the sponsored links that were offered.

The experiment focused on active readers that have just clicked on an organic recommended

link (a special subset of experienced readers). A reader “entered” the experiment after the first

click, and we do not differentiate with respect to the algorithm that generated the first clicked

link. From that point, we tracked the path of the reader throughout organic recommendations

that were generated by the described algorithm class, and compared the performance of that

class of algorithms in the test group relative to the control group. In both test and control groups

CTR and exit-CTR values were updated every 3 hours, based on observations documented in the

previous 3 hours. The experiment took place over 56 consecutive hours in a single media site,

beginning on midnight between Monday and Tuesday.
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Performance indicators. We follow the number of consecutive clicks made by each active

reader (after the first click) on links that were generated by the algorithm class on which we focus.

When the reader clicks on a sponsored link or an organic link that was not generated by that

class, or when the reader terminates the session in any way without clicking on a recommended

link, the path of the reader ends. We partition the experiment period into 14 batches of four

hours each. Along each batch we calculate, in both test and control groups, the average clicks per

active reader’s visit (not counting the first click after which the reader “entered” the experiment).

We denote by νcontrol(t) the average clicks per visit in the control group along batch t, and by

νtest(t) the average clicks per visit in the test group along batch t. We further denote by r(t) the

relative difference in performance in the test group compared to the control group in batch t:

r(t) = 100 · νtest(t)− νcontrol(t)
νcontrol(t)

.

4.4.3 Results

Throughout the experiment 58,116 visits of “active” readers were documented in the control group,

and 13,155 visits were documented in the test group. The results represent a 7.7% improvement

in clicks per visit in the test group compared to the control group. The volume of visits and the

documented clicks per visit values in the two groups along different batches are depicted in Figure

4.7. The absolute and relative differences in clicks per visit appear in Table 4.1.

Discussion. Since the experiment took place with a publisher that is characterized by a

relatively low volume of readers and since it took place over a relatively short time period, some

of the differences in the performance are not statistically significant. Nevertheless, the results are

encouraging: in most of the batches there was an improvement in the test group relative to the

control group; in three batches (4, 11, and 12, in which the number of visits was relatively large)

this performance improvement is statistically significant.

It is worthwhile to to note that these improvements are witnessed despite the fact that: i)

only one class of algorithms is adjusted in the experiment; ii) the exit-CTR proxy accounts not

only for clicks on Outbrain’s links but also on for other events of future page views; and iii) the

adjusted myopic policy may be fine-tuned to enhance performance. Other proxies that have higher

correlation with elements of the one-step look-ahead heuristic may yield better performance. One
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Figure 4.7: Clicks per visit, test versus control. Number of visits recorded along each 4-hour batch

(left) and the average number of clicks per visit observed in each batch (right) in the test group and in the

control one. Due to Non-disclosure agreement with Outbrain the clicks per visit units have been removed

from the plot.

example, is the following measure of exit-CTR that accounts only for clicks on the recommendation

that is hosted by the article:

exit-CTR′(x) =
# {clicks from x when hosts a recommendation}

# {times x hosts a recommendation along τ}
.

We found the correlation between the values of maxA′∈A`(Xt+1)

{∑
xt+1∈A′ Put+1,xt,xt+1(A′)

}
, and

the values of the above exit-CTR(xt) values that were calculated based on observations docu-

mented in the same estimation batch to be 0.36. The availability of a proxy with such correlation

suggests that the results above represent a lower bound on the potential improvement.

4.5 Concluding remarks

Engageability and quality. In this chapter we identify the notion of engageability and

validate its significance as a click driver along the path of a reader. Intuitively, engageability may

be driven by various article features, one of which is the quality of the content, as implied in

§3. To examine the connection between engageability and quality we compared the β estimates

of articles with the average time that was spent by readers in these articles during the batch of

data in which these estimates were generated (average time spent is an independent and common

measure of quality and user engagement in online services). While both engageability and time
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Batch Visits (control) Visits (test) νtest(t)− νcontrol(t) r(t)

1 2329 532 0.052 23.4%

2 1449 321 −0.016 −11%

3 4977 1085 −0.001 0.6%

4 7487 1740 0.038* 21.2%*

5 6551 1439 0.012 5.5%

6 5024 1151 0.007 3.3%

7 2227 523 0.046 22.3%

8 1345 301 0.037 27.0%

9 5868 1308 −0.014 −9.3%

10 6649 1422 −0.029 −16.2%

11 5484 1189 0.063** 35.5%**

12 5018 1246 0.063** 35.6%**

13 2370 569 0.004 2.0%

14 1347 329 0.003 1.8%

** At confidence level p < 0.05

* At confidence level p < 0.1

Table 4.1: Absolute and relative improvement, test compared to control.

spent potentially indicate quality, these notions may capture different aspects of it. For example,

while engageability may undervalue the quality of long and deep articles (by the end of which the

reader may be unwilling to continue reading an additional article), time spent may undervalue the

quality of artistic photos. Nevertheless, the correlation between the sequence of β estimates and

the sequence of average time spent is 0.28; considering the noisy online environment this indeed

provides further validation for the relation between the two. We note that the interpretation of

engageability as content quality is given only for the sake of intuition (to establish such a relation

one needs to begin with providing a proper definition of content quality, which is beyond the

scope of the present study). Nevertheless, one potential way to define quality for a broad range

of sequential services is through the likelihood of a user to continue using it at the next step.
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Engageability and content aging. The space of articles developed in §3 also allows one

to track the manner in which clickability and engageability of articles vary with time. Having

estimated the model parameters separately every two hours allows one to track clickability and

engageability of articles from the time they are published. We refer to the way these properties

vary along time as the aging process of articles. Since most of the articles lose relevancy at a

rapid pace from the time they are published, tracking the aging process of articles is crucial for

the provider’s ability to screen out articles that became non-relevant, and to keep recommending

articles that maintain their relevancy in the long term. Indeed, tracking the varying clickability

and engageability shows that most of the articles exhibit a decreasing trend in both dimensions

from the time they are published, and until they are not recommended anymore, due to their

declining clickability. However, some of the articles exhibit a decrease in engageability along time

while maintaining high clickability. One potential interpretation of this observation is that these

articles lose relevancy, but such loss is not reflected in the attractiveness of their title (this drives

readers to click to it when it is recommended, but also to terminate the service rather then to

click from it when it hosts a recommendation, due to poor user experience). Two instances that

correspond to two representative aging processes appear in Figure 4.8.

Figure 4.8: Two instances of content aging processes. Each point describes the estimated clickability

and engageability in different ages (in hours since the time in which the articles were published). Article

A exhibits decreasing clickability and engageability until it is screened out after 36 hours, and is not

recommended later on. Article B exhibits decreasing engageability but maintains high clickability and as

a result continues to be recommended.
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Future research. We are currently in the process of designing, together with our industry

collaborators, a second experiment that will take place throughout a longer period of time, with

the collaboration of a larger media site (with a larger volume of readers). The objective of

this experiment will be dual. On the one hand we aim to refine the analysis of the impact of

accounting for exit-ctr in recommendations on the length of paths of users, by testing different

combinations of CTR end exit-CTR. On the other hand, we aim to disentangle short time and

longer impacts of such recommendations on the service performance: recommending articles with

higher engageability may lead not only to more clicks in the short run but also to more frequent

use of the service in the future.
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Appendix A

Appendix to Chapter 2

A.1 Proofs of main results

Proof of Proposition 2.1. The proof of the proposition is established in two steps. In the first

step, we limit nature to a class of function sequences V ′ where in every epoch nature is limited

to one of two specific cost functions, and show that V ′ ⊂ V. In the second step, we show that

whenever φ ∈
{
φ(0), φ(1)

}
, any admissible policy must incur regret of at least order T , even when

nature is limited to the set V ′.

Step 1. Let X = [0, 1] and fix T ≥ 1. Let VT ∈ {1, . . . , T} and assume that C1 is a constant

such that VT ≥ C1T . Let C = min
{
C1,

(
1
2 − ν

)2}
where ν appears in (2.2), and we assume

ν < 1/2. Consider the following two quadratic functions:

f1(x) = x2 − x+
3

4
, f2(x) = x2 − (1 + 2C)x+

3

4
+ C.

Denoting x∗k = arg minx∈[0,1] f
k(x), we have x∗1 = 1

2 , and x∗2 = 1
2+C. Define V ′ =

{
f ; ft ∈

{
f1, f2

}
∀t ∈ T

}
.

Then, for any sequence in V ′ the total functional variation is:

T∑
t=2

sup
x∈X
|ft − ft−1| ≤

T∑
t=2

sup
x∈X
|2Cx− C| ≤ CT ≤ C1T ≤ VT .

For any sequence in V ′ the total functional variation (2.3) is bounded by VT , and therefore V ′ ⊂ V.

Step 2. Fix φ ∈
{
φ(0), φ(1)

}
, and let π ∈ Pφ. Let f̃ to be a random sequence in which in each

epoch ft is drawn according to a discrete uniform distribution over
{
f1, f2

}
(f̃t is independent

of Ht for any t ∈ T ). Any realization of f̃ is a sequence in V ′. In particular, taking expectation
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over f̃ , one has:

Rπφ(V ′, T ) ≥ Eπ,f̃
[

T∑
t=1

f̃t(Xt)−
T∑
t=1

f̃t(x
∗
t )

]

= Eπ
[

T∑
t=1

(
1

2

(
f1(Xt) + f2(Xt)

)
− 1

2

(
f1(x∗1) + f2(x∗2)

))]

≥
T∑
t=1

min
x∈[0,1]

{
x2 − (1 + C)x+

1

4
+
C

2
+
C2

2

}
= T · C

2

4
,

where the minimum is obtained at x∗ = 1+C
2 . Since V ′ ⊆ V, we have established that

Rπφ(V, T ) ≥ Rπφ(V ′, T ) ≥ C2

4
· T,

which concludes the proof.

Proof of Theorem 2.1. Fix φ ∈
{
φ(0), φ(1)

}
, and assume VT = o(T ). Let A be a policy such

that GAφ (F , T ) = o(T ), and let ∆T ∈ {1, . . . , T}. Let π be the policy defined by the restarting

procedure that uses A as a subroutine with batch size ∆T . Then, by Proposition 2.2,

Rπφ(V, T )

T
≤
GAφ (F ,∆T )

∆T
+
GAφ (F ,∆T )

T
+ 2∆T ·

VT
T
,

for any 1 ≤ ∆T ≤ T . Since VT = o(T ), for any selection of ∆T such that ∆T = o(T/VT ) and

∆T → ∞ as T → ∞, the right-hand-side of the above converges to zero as T → ∞, concluding

the proof.

Proof of Proposition 2.2. Fix φ ∈
{
φ(0), φ(1)

}
, T ≥ 1, and 1 ≤ VT ≤ T . For ∆T ∈ {1, . . . , T},

we break the horizon T into a sequence of batches T1, . . . , Tm of size ∆T each (except, possibly

the last batch) according to (3.2). Fix A ∈ Pφ, and let π be the policy defined by the restarting

procedure that uses A as a subroutine with batch size ∆T . Let f ∈ V. We decompose the regret

in the following way: Rπ(f, T ) =
∑m

j=1R
π
j , where

Rπj := Eπ
∑
t∈Tj

(ft(Xt)− ft(x∗t ))


= Eπ

∑
t∈Tj

ft(Xt)

−min
x∈X

∑
t∈Tj

ft(x)

︸ ︷︷ ︸
J1,j

+ min
x∈X

∑
t∈Tj

ft(x)

−∑
t∈Tj

ft(x
∗
t )︸ ︷︷ ︸

J2,j

. (A.1)

92



The first component, J1,j , is the regret with respect to the single-best-action of batch j, and

the second component, J2,j , is the difference in performance along batch j between the single-

best-action of the batch and the dynamic benchmark. We next analyze J1,j , J2,j , and the regret

throughout the horizon.

Step 1 (Analysis of J1,j). By taking the sup over all sequences in F (recall that V ⊆ F)

and using the regret with respect to the single best action in the adversarial setting, one has:

J1,j ≤ sup
f∈F

Eπ
∑
t∈Tj

ft(Xt)

−min
x∈X

∑
t∈Tj

ft(x)


 ≤ GAφ (F ,∆T ) , (A.2)

where the last inequality holds using (2.6), and since in each batch decisions are dictated by A,

and since in each batch there are at most ∆T epochs (recall that GAφ is non-decreasing in the

number of epochs).

Step 2 (Analysis of J2,j). Defining f0(x) = f1(x), we denote by Vj =
∑

t∈Tj ‖ft − ft−1‖ the

variation along batch Tj . By the variation constraint (2.3), one has:

m∑
j=1

Vj =
m∑
j=1

∑
t∈Tj

sup
x∈X
|ft(x)− ft−1(x)| ≤ VT . (A.3)

Let t̃ be the first epoch of batch Tj . Then,

min
x∈X

∑
t∈Tj

ft(x)

−∑
t∈Tj

ft(x
∗
t ) ≤

∑
t∈Tj

(
ft(x

∗
t̃
)− ft(x∗t )

)
≤ ∆T ·max

t∈Tj

{
ft(x

∗
t̃
)− ft(x∗t )

}
. (A.4)

We next show that maxt∈Tj

{
ft(x

∗
t̃
)− ft(x∗t )

}
≤ 2Vj . Suppose otherwise. Then, there is some

epoch t0 ∈ Tj at which ft0(x∗
t̃
)− ft0(x∗t0) > 2Vj , implying

ft(x
∗
t0)

(a)

≤ ft0(x∗t0) + Vj < ft0(x∗
t̃
)− Vj

(b)

≤ ft(x
∗
t̃
), for all t ∈ Tj ,

where (a) and (b) follows from the fact that Vj is the maximal variation along batch Tj . In

particular, the above holds for t = t̃, contradicting the optimality of x∗
t̃

at epoch t̃. Therefore,

one has from (A.4):

min
x∈X

∑
t∈Tj

ft(x)

−∑
t∈Tj

ft(x
∗
t ) ≤ 2∆TVj . (A.5)
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Step 3 (Analysis of the regret over T periods). Summing (B.6) over batches and using

(A.3), one has

m∑
j=1

min
x∈X

∑
t∈Tj

ft(x)

−∑
t∈Tj

ft(x
∗
t )

 ≤ m∑
j=1

2∆TVj ≤ 2∆TVT . (A.6)

Therefore, by the regret decomposition in (B.3), and following (A.2) and (A.6), one has:

Rπ (f, T ) ≤
m∑
j=1

GAφ (F ,∆T ) + 2∆TVT .

Since the above holds for any f ∈ V, and recalling that m =
⌈
T

∆T

⌉
, we have

Rπφ(V, T ) = sup
f∈V

Rπ (f, T ) ≤
⌈
T

∆T

⌉
· GAφ (F ,∆T ) + 2∆TVT .

This concludes the proof.

Proof of Theorem 2.2. Fix T ≥ 1, and 1 ≤ VT ≤ T . For any ∆T ∈ {1, . . . , T}, let A be the

OGD algorithm with ηt = η = r
G
√

∆T
for any t = 2, . . . ,∆T (where r denotes the radius of the

action set X ), and let π be the policy defined by the restarting procedure with subroutine A and

batch size ∆T . Flaxman et al. (2005) consider the performance of the OGD algorithm relative to

the single best action in the adversarial setting, and show (Flaxman et al. 2005, Lemma 3.1) that

GA
φ(1)

(F ,∆T ) ≤ rG
√

∆T . Therefore, by Proposition 2.2,

Rπ
φ(1)

(V, T ) ≤
(
T

∆T
+ 1

)
· GA

φ(1)
(F ,∆T ) + 2VT∆T ≤

rG · T√
∆T

+ rG
√

∆T + 2VT∆T .

Selecting ∆T =
⌈
(T/VT )2/3

⌉
, one has

Rπ
φ(1)

(V, T ) ≤ rG · T
(T/VT )1/3

+ rG

((
T

VT

)1/3

+ 1

)
+ 2VT

((
T

VT

)2/3

+ 1

)
(a)

≤ (rG+ 4) · V 1/3
T T 2/3 + rG ·

(
T

VT

)1/3

+ rG

(b)

≤ (3rG+ 4) · V 1/3
T T 2/3, (A.7)

where (a) and (b) follows since 1 ≤ VT ≤ T . This concludes the proof.
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Proof of Theorem 2.3. Fix T ≥ 1 and 1 ≤ VT ≤ T . We will restrict nature to a specific class

of function sequences V ′ ⊂ V. In any element of V ′ the cost function is limited to be one of two

known quadratic functions, selected by nature in the beginning of every batch of ∆̃T epochs, and

applied for the following ∆̃T epochs. Then we will show that any policy in Pφ(1) must incur regret

of order V
1/3
T T 2/3.

Step 1 (Preliminaries). Let X = [0, 1] and consider the following two functions:

f1(x) =


1
2 + δ − 2δx+

(
x− 1

4

)2
x < 1

4

1
2 + δ − 2δx 1

4 ≤ x ≤
3
4

1
2 + δ − 2δx+

(
x− 3

4

)2
x > 3

4

; f2(x) =


1
2 − δ + 2δx+

(
x− 1

4

)2
x < 1

4

1
2 − δ + 2δx 1

4 ≤ x ≤
3
4

1
2 − δ + 2δx+

(
x− 3

4

)2
x > 3

4 ,

(A.8)

for some δ > 0 that will be specified shortly. Denoting x∗k = arg minx∈[0,1] f
k(x), one has x∗1 = 3

4+δ,

and x∗2 = 1
4 − δ. It is immediate that f1 and f2 are convex and for any δ ∈ (0, 1/4) obtain a

global minimum in an interior point in X . For some ∆̃T ∈ {1, . . . , T} that will be specified below,

define a partition of the horizon T to m =
⌈
T/∆̃T

⌉
batches T1, . . . , Tm of size ∆̃T each (except

perhaps Tm), according to (3.2). Define:

V ′ =
{
f : ft ∈

{
f1, f2

}
and ft = ft+1 for (j − 1)∆̃T + 1 ≤ t ≤ min

{
j∆̃T , T

}
− 1, j = 1, . . . ,m

}
.

(A.9)

In every sequence in V ′ the cost function is restricted to the set
{
f1, f2

}
, and cannot change

throughout a batch. Let δ = VT ∆̃T /2T . Any sequence in V ′ consists of convex functions, with

minimizers that are interior points in X . In addition, one has:

T∑
t=2

‖ft − ft−1‖ ≤
m∑
j=2

sup
x∈X

∣∣f1(x)− f2(x)
∣∣ =

(⌈
T

∆̃T

⌉
− 1

)
· 2δ ≤ 2Tδ

∆̃T

≤ VT ,

where the first inequality holds since the function can only change between batches. Therefore,

V ′ ⊂ V.

Step 2 (Bounding the relative entropy within a batch). Fix any policy π ∈ Pφ(1) .

At each t ∈ Tj , the decision maker selects Xt ∈ X and observes a noisy feedback φ
(1)
t (Xt, ft).

For any f ∈ F : denote by Pπf the probability measure under policy π when f is the sequence of

cost functions that is selected by nature, and by Eπf the associated expectation operator; For any

τ ≥ 1, A ⊂ Rd×τ and B ⊂ U , denote Pπ,τf (A,B) := Pπf
{{

φ
(1)
t (Xt, ft)

}τ
t=1
∈ A,U ∈ B

}
. In what

follows we make use of the Kullback-Leibler divergence defined in (2.10).
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Lemma A.1. (Bound on KL divergence for noisy gradient observations) Consider the

feedback structure φ = φ(1) and let Assumption 2.1 holds. Then, for any τ ≥ 1 and f, g ∈ F :

K
(
Pπ,τf ‖P

π,τ
g

)
≤ C̃Eπf

[
τ∑
t=1

‖∇ft(Xt)−∇gt(Xt)‖2
]
,

where C̃ is the constant that appears in the second part of Assumption 2.1.

The proof of Lemma A.1 is given later in the Appendix. We also use the following result for

the minimal error probability in distinguishing between two distributions:

Lemma A.2. (Theorem 2.2 in Tsybakov (2008)) Let P and Q be two probability distributions

on H, such that K(P‖Q) ≤ β <∞. Then, for any H-measurable real function ϕ : H → {0, 1},

max {P(ϕ = 1),Q(ϕ = 0)} ≥ 1

4
exp {−β} .

Set ∆̃T = max

{⌊(
1

4C̃

)1/3 (
T
VT

)2/3
⌋
, 1

}
, (where C̃ is the constant that appears in part 2

of Assumption 2.1). We next show that for each batch Tj , K
(
Pπ,τ
f1
‖Pπ,τ

f2

)
is bounded for any

1 ≤ τ ≤ |Tj |. Fix j ∈ {1, . . . ,m}. Then:

K
(
Pπ,|Tj |
f1
‖Pπ,|Tj |

f2

) (a)

≤ C̃Eπf1

∑
t∈Tj

(
∇f1

t (Xt)−∇f2
t (Xt)

)2
= C̃Eπf1

∑
t∈Tj

16δ2X2
t

 ≤ 16C̃∆̃T δ
2

(b)
=

4C̃V 2
T ∆̃3

T

T 2

(c)

≤ max

{
1,

2C̃VT
T

}
(d)

≤ max
{

1, 2C̃
}
,

where: (a) follows from Lemma A.1; (b) and (c) hold given the respective values of δ and ∆̃T ;

and (d) holds by VT ≤ T . Set β = max
{

1, 2C̃
}

. Since K
(
Pπ,τ
f1
‖Pπ,τ

f2

)
is non-decreasing in

τ throughout a batch, we deduce that K
(
Pπ,τ
f1
‖Pπ,τ

f2

)
is bounded by β throughout each batch.

Then, for any x0 ∈ X , using Lemma A.2 with ϕt = 1{Xt ≤ x0}, one has:

max
{
Pf1 {Xt ≤ x0} ,Pf2 {Xt > x0}

}
≥ 1

4eβ
for all t ∈ T . (A.10)

Step 3 (A lower bound on the incurred regret for f ∈ V ′). Set x0 = 1
2 (x∗1 + x∗2) = 1

2 . Let f̃

be a random sequence in which in the beginning of each batch Tj a cost function is independently
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drawn according to a discrete uniform distribution over
{
f1, f2

}
, and applied throughout the

whole batch. In particular, note that for any 1 ≤ j ≤ m, for any epoch t ∈ Tj , ft is independent

of H(j−1)∆̃T+1 (the history that is available at the beginning of the batch). Clearly any realization

of f̃ is in V ′. In particular, taking expectation over f̃ , one has:

Rπ
φ(1)

(
V ′, T

)
≥ Eπ,f̃

[
T∑
t=1

f̃t(Xt)−
T∑
t=1

f̃t(x
∗
t )

]
= Eπ,f̃

 m∑
j=1

∑
t∈Tj

(
f̃t(Xt)− f̃t(x∗t )

)
=

m∑
j=1

1

2
· Eπf1

∑
t∈Tj

(
f1(Xt)− f1(x∗1)

)+
1

2
· Eπf2

∑
t∈Tj

(
f2(Xt)− f2(x∗2)

)
(a)

≥
m∑
j=1

1

2

∑
t∈Tj

(
f1(x0)− f1(x∗1)

)
Pπf1 {Xt > x0}+

∑
t∈Tj

(
f2(x0)− f2(x∗2)

)
Pπf2 {Xt ≤ x0}


≥

m∑
j=1

δ

4

∑
t∈Tj

(
Pπf1 {Xt > x0}+ Pπf2 {Xt ≤ x0}

)

≥
m∑
j=1

δ

4

∑
t∈Tj

max
{
Pπf1 {Xt > x0} ,Pπf2 {Xt ≤ x0}

}
(b)

≥
m∑
j=1

δ

4

∑
t∈Tj

1

4eβ
=

m∑
j=1

δ∆̃T

16eβ

(c)
=

m∑
j=1

VT ∆̃2
T

32eβT
≥ T

∆̃T

·
VT ∆̃2

T

32eβT
=

VT ∆̃T

32eβ
,

where (a) holds since for any function g : [0, 1]→ R+ and x0 ∈ [0, 1] such that g(x) ≥ g(x0) for all

x > x0, one has that E [g(Xt)] = E [g(Xt)|Xt > x0]P {Xt > x0}+E [g(Xt)|Xt ≤ x0]P {Xt ≤ x0} ≥

g(x0)P {Xt > x0} for any t ∈ T , and similarly for any x0 ∈ [0, 1] such that g(x) ≥ g(x0) for all

x ≤ x0, one obtains E [g(Xt)] ≥ g(x0)P {Xt ≤ x0}. In addition, (b) holds by (A.10) and (c) holds

by δ = VT ∆̃T /2T . Suppose that T ≥ 25/2
√
C̃ · VT . Applying the selected ∆̃T , one has:

Rπ
φ(1)

(
V ′, T

)
≥ VT

32eβ
·

⌊(
1

4C̃

)1/3( T

VT

)2/3
⌋

≥ VT
32eβ

·

((
1

4C̃

)1/3( T

VT

)2/3

− 1

)

=
VT

32eβ
·

T 2/3 −
(

4C̃
)1/3

V
2/3
T(

4C̃
)1/3

V
2/3
T

 ≥ 1

64eβ
(

4C̃
)1/3

· V 1/3
T T 2/3,

where the last inequality follows from T ≥ 25/2
√
C̃ · VT . If T < 25/2

√
C̃ · VT , by Proposition 2.1
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there exists a constant C such that Rπ
φ(1)

(V, T ) ≥ C · T ≥ C · V 1/3
T T 2/3. Recalling that V ′ ⊆ V,

we have:

Rπ
φ(1)

(V, T ) ≥ Rπ
φ(1)

(
V ′, T

)
≥ 1

64eβ
(

4C̃
)1/3

· V 1/3
T T 2/3.

This concludes the proof.

Proof of Theorem 2.4. Part 1. We begin with the first part of the Theorem. Fix T ≥ 1,

and 1 ≤ VT ≤ T . For any ∆T ∈ {1, . . . , T} let A be the OGD algorithm with ηt = 1/Ht for any

t = 2, . . . ,∆T , and let π be the policy defined by the restarting procedure with subroutine A and

batch size ∆T . By Lemma A.5 (see Appendix A.2), one has:

GA
φ(1)

(Fs,∆T ) ≤
(
G2 + σ2

)
2H

(1 + log ∆T ) . (A.11)

Therefore, by Proposition 2.2,

Rπ
φ(1)

(Vs, T ) ≤
(
T

∆T
+ 1

)
·GA
φ(1)

(Fs,∆T )+2VT∆T ≤
(
T

∆T
+ 1

) (
G2 + σ2

)
2H

(1 + log ∆T )+2VT∆T .

Selecting ∆T =
⌈√

T/VT

⌉
, one has:

Rπ
φ(1)

(Vs, T ) ≤

(
T√
T/VT

+ 1

) (
G2 + σ2

)
2H

(
1 + log

(√
T

VT
+ 1

))
+ 2VT

(√
T

VT
+ 1

)
(a)

≤

(
4 +

(
G2 + σ2

)
2H

(
1 + log

(√
T

VT
+ 1

)))
·
√
VTT +

(
G2 + σ2

)
2H

(
1 + log

(√
T

VT
+ 1

))
(b)

≤

(
4 +

(
2G2 + 2σ2

)
H

)
· log

(√
T

VT
+ 1

)√
VTT ,

where (a) and (b) hold since 1 ≤ VT ≤ T .

Part 2. We next prove the second part of the Theorem. The proof follows along similar steps

as those described in the proof of Theorem 2.3, and uses the notation introduced in the latter.

For strongly convex cost functions a different choice of δ is used in step 2 and ∆̃T is modified

accordingly in step 3. The regret analysis in step 4 is adjusted as well.

Step 1. Let X = [0, 1], and consider the following two quadratic functions:

f1(x) = x2 − x+
3

4
, f2(x) = x2 − (1 + δ)x+

3

4
+
δ

2
(A.12)
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for some small δ > 0. Note that x∗1 = 1
2 , and x∗2 = 1+δ

2 . We define a partition of T into batches

T1, . . . , Tm of size ∆̃T each (perhaps except Tm), according to (3.2), where ∆̃T will be specified

below. Define the class V ′s according to (A.9), such that in every f ∈ V ′s the cost function is

restricted to the set
{
f1, f2

}
, and cannot change throughout a batch. Note that all the sequences

in V ′s consist of strongly convex functions (Condition (2.11) holds for any H ≤ 1), with minimizers

that are interior points in X . Set δ =
√

2VT ∆̃T /T . Then, one has:

T∑
t=2

sup
x∈X ∗

|ft(x)− ft−1(x)| ≤
m∑
j=2

sup
x∈X ∗

∣∣f1(x)− f2(x)
∣∣ ≤ T

∆̃T

· δ
2

2
= VT ,

where the first inequality holds since the function can change only between batches. Therefore,

V ′s ⊂ Vs.

Step 2. Fix π ∈ Pφ(1) , and let ∆̃T = max

{⌊
1√
2C̃
·
√

T
VT

⌋
, 1

}
(C̃ appears in part 2 of

Assumption 2.1). Fix j ∈ {1, . . . ,m}. Then:

K
(
Pπ,|Tj |
f1
‖Pπ,|Tj |

f2

) (a)

≤ C̃Eπf1

∑
t∈Tj

(
∇f1(Xt)−∇f2(Xt)

)2
≤ C̃∆̃T δ

2 (b)
=

2C̃VT ∆̃2
T

T
(c)

≤ max

{
1,

2C̃VT
T

}
(d)

≤ max
{

1, 2C̃
}
, (A.13)

where: (a) follows from Lemma A.1; (b) and (c) hold by the selected values of δ and ∆̃T respec-

tively; and (d) holds by VT ≤ T . Set β = max
{

1, 2C̃
}

. Then, for any x0 ∈ X , using Lemma A.2

with ϕt = 1{Xt > x0}, one has:

max
{
Pf1 {Xt > x0} ,Pf2 {Xt ≤ x0}

}
≥ 1

4eβ
∀t ∈ T . (A.14)

Step 3. Set x0 = 1
2 (x∗1 + x∗2) = 1/2 + δ/4. Let f̃ be a random sequence in which in the

beginning of each batch Tj a cost function is independently drawn according to a discrete uniform
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distribution over
{
f1, f2

}
, and applied throughout the batch. Taking expectation over f̃ one has:

Rπ
φ(1)

(
V ′s, T

)
≥

m∑
j=1

1

2
· Eπf1

∑
t∈Tj

(
f1(Xt)− f1(x∗1)

)+
1

2
· Eπf2

∑
t∈Tj

(
f2(Xt)− f2(x∗2)

)
≥

m∑
j=1

1

2

∑
t∈Tj

(
f1(x0)− f1(x∗1)

)
Pπf1 {Xt > x0}+

∑
t∈Tj

(
f2(x0)− f2(x∗2)

)
Pπf2 {Xt ≤ x0}


≥

m∑
j=1

δ2

16

∑
t∈Tj

(
Pπf1 {Xt > x0}+ Pπf2 {Xt ≤ x0}

)

≥
m∑
j=1

δ2

16

∑
t∈Tj

max
{
Pπf1 {Xt > x0} ,Pπf2 {Xt ≤ x0}

}
(a)

≥
m∑
j=1

δ2

16

∑
t∈Tj

1

4eβ
=

m∑
j=1

δ2∆̃T

64eβ
(b)
=

m∑
j=1

VT ∆̃2
T

32eβT
≥ VT ∆̃T

32eβ
,

where: the first four inequalities follow from arguments given in step 3 in the proof of Theorem

2.3; (a) holds by (A.14); and (b) holds by δ =
√

2VT ∆̃T /T . Given the selection of ∆̃T , one has:

Rπ
φ(1)

(
V ′s, T

)
≥ VT

32eβ
·

⌊
1√
2C̃
·
√

T

VT

⌋
≥ VT

32eβ
·

(√
T −

√
2C̃VT√

2C̃VT

)
≥ 1

64eβ
√

2C̃
·
√
VTT ,

where the last inequality holds if T ≥ 8C̃VT . If T < 8C̃VT , by Proposition 2.1 there exists a

constant C such that Rπ
φ(1)

(Vs, T ) ≥ CT ≥ C
√
VTT . Then, recalling that V ′s ⊆ Vs, we have

established that

Rπ
φ(1)

(Vs, T ) ≥ Rπ
φ(1)

(
V ′s, T

)
≥ 1

64eβ
√

2C̃
·
√
VTT .

This concludes the proof.

Proof of Theorem 2.5. Part 1. Fix T ≥ 1, and 1 ≤ VT ≤ T . For any ∆T ∈ {1, . . . , T},

consider the EGS algorithm A given in §5.2 with at = 2/Ht and δt = ht = a
1/4
t for t = 1, . . . ,∆T ,

and let π be the policy defined by the restarting procedure with subroutine A and batch size ∆T .

By Lemma A.4 (see Appendix A.2), we have:

GAφ (Fs,∆T ) ≤ C1 ·
√

∆T , (A.15)

with C1 = 2G+
(
G2 + σ2 +H

)
d3/2/

√
2H. Therefore, by Proposition 2.2,

Rπ
φ(0)

(Vs, T ) ≤
(
T

∆T
+ 1

)
· GA

φ(0)
(F ,∆T ) + 2VT∆T

(a)

≤ C1 ·
T√
∆T

+ C1 ·
√

∆T + 2VT∆T ,

100



where (a) holds by (A.15). By selecting ∆T =
⌈
(T/VT )2/3

⌉
, one obtains

Rπ
φ(0)

(Vs, T ) ≤ C1 ·
T

(T/VT )1/3
+ C1 ·

((
T

VT

)1/3

+ 1

)
+ 2VT

((
T

VT

)2/3

+ 1

)
(b)

≤ (C1 + 4)V
1/3
T T 2/3 + C1 ·

(
T

VT

)1/3

+ C1

(c)

≤ (3C1 + 4)V
1/3
T T 2/3,

where (b) and (c) hold since 1 ≤ VT ≤ T .

Part 2. The proof of the second part of the theorem follows the steps described in the proof of

Theorem 2.3, and uses notation introduced in the latter. The different feedback structure affects

the bound on the KL divergence and the selected value of ∆̃T in step 2 as well as the resulting

regret analysis in step 3. The details are given below.

Step 1. We define a class V ′s as it is defined in the proof of Theorem 2.4, using the quadratic

functions f1 and f2 that are given in (A.12), and the partition of T to batches in (3.2). Again,

selecting δ =
√

2VT ∆̃T /T , we have V ′s ⊂ Vs.

Step 2. Fix some policy π ∈ Pφ(0) . At each t ∈ Tj , j = 1, . . . ,m, the decision maker selects

Xt ∈ X and observes a noisy feedback φ
(0)
t (Xt, f

k). For any f ∈ F , τ ≥ 1, A ⊂ Rτ and B ⊂ U ,

denote Pπ,τf (A,B) := Pf
{{

φ
(0)
t (Xt, ft)

}τ
t=1
∈ A,U ∈ B

}
. In this part of the proof we use the

following counterpart of Lemma A.1 for the case of noisy cost feedback structure.

Lemma A.3. (Bound on KL divergence for noisy cost observations) Consider the feedback

structure φ = φ(0) and let Assumption 2.2 holds. Then, for any τ ≥ 1 and f, g ∈ F :

K
(
Pπ,τf ‖P

π,τ
g

)
≤ C̃Eπf

[
τ∑
t=1

(ft(Xt)− gt(Xt))
2

]
,

where C̃ is the constant that appears in the second part of Assumption 2.2.

The proof of this lemma is given later in the Appendix. We next bound K
(
Pπ,|Tj |
f1
‖Pπ,|Tj |

f2

)
throughout an arbitrary batch Tj , j ∈ {1, . . . ,m}, for a given batch size ∆̃T . Define:

Rπj =
1

2
Eπf1

∑
t∈Tj

(
f1(Xt)− f1(x∗1)

)+
1

2
Eπf2

∑
t∈Tj

(
f2(Xt)− f2(x∗2)

) .
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Then, one has:

K
(
Pπ,|Tj |
f1
‖Pπ,|Tj |

f2

) (a)

≤ C̃Eπf1

∑
t∈Tj

(
f1(Xt)− f2(Xt)

)2 = C̃Eπf1

∑
t∈Tj

(
δXt −

δ

2

)2


= C̃Eπf1

δ2
∑
t∈Tj

(Xt − x∗1)2

 (b)
= 2C̃δ2Eπf1

∑
t∈Tj

(
f1(Xt)− f1(x∗1)

)
(c)

≤ 8C̃∆̃TVT
T

·Rπj (A.16)

where: (a) follows from Lemma A.3; (b) holds since

f1(x)− f1(x∗1) = ∇f1(x∗1)(x− x∗1) +
1

2
· ∇f1(x∗1)(x− x∗1)2 =

1

2
(x− x∗1)2,

for any x ∈ X ; and (c) holds since δ =
√

2VT ∆̃T /T , and Rπj ≥ 1
2E

π
f1

[∑
t∈Tj

(
f1(Xt)− f1(x∗1)

)]
.

Thus, for any x0 ∈ X , using Lemma A.2 with ϕt = 1{Xt > x0}, we have:

max
{
Pπf1 {Xt > x0} ,Pπf2 {Xt ≤ x0}

}
≥ 1

4
exp

{
−8C̃∆̃TVT

T
·Rπj

}
for all t ∈ Tj , 1 ≤ j ≤ m.

(A.17)

Step 3. Set x0 = 1
2 (x∗1 + x∗2) = 1/2 + δ/4. Let f̃ be the random sequence of functions that is

described in Step 3 in the proof of Theorem 2.4. Taking expectation over f̃ , one has:

Rπ
φ(0)

(
V ′s, T

)
≥

m∑
j=1

1

2
· Eπf1

∑
t∈Tj

(
f1(Xt)− f1(x∗1)

)+
1

2
· Eπf2

∑
t∈Tj

(
f2(Xt)− f2(x∗2)

) =:
m∑
j=1

Rπj .

In addition, for each 1 ≤ j ≤ m one has:

Rπj ≥ 1

2

∑
t∈Tj

(
f1(x0)− f1(x∗1)

)
Pπf1 {Xt > x0}+

∑
t∈Tj

(
f2(x0)− f2(x∗2)

)
Pπf2 {Xt ≤ x0}


≥ δ2

16

∑
t∈Tj

(
Pπf1 {Xt > x0}+ Pπf2 {Xt ≤ x0}

)

≥ δ2

16

∑
t∈Tj

max
{
Pπf1 {Xt > x0} ,Pπf2 {Xt ≤ x0}

}
(a)

≥ δ2

16

∑
t∈Tj

1

4
exp

{
−8C̃∆̃TVT

T
·Rπj

}
=

δ2∆̃T

64
exp

{
−8C̃∆̃TVT

T
·Rπj

}

(b)
=

∆̃2
TVT

32T
exp

{
−8C̃∆̃TVT

T
·Rπj

}
,
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where: the first three inequalities follow arguments given in step 3 in the proof of Theorem 3; (a)

holds by (A.17); and (b) holds by δ =
√

2VT ∆̃T /T . Assume that
√
C̃ · VT ≤ 2T . Then, taking

∆̃T =

⌈(
4
C̃

)1/3 (
T
VT

)2/3
⌉

, one has:

Rπj ≥ 1

32
·
(

4

C̃

)2/3( T

VT

)1/3

exp

{
−8C̃VT

T
·

((
4

C̃

)1/3( T

VT

)2/3

+ 1

)
·Rπj

}

≥ 1

32
·
(

4

C̃

)2/3( T

VT

)1/3

exp

{
−16C̃2/3 · 41/3 ·

(
VT
T

)1/3

Rπj

}
,

where the last inequality follows from
√
C̃ · VT ≤ 2T . Then, for β = 16

(
4C̃2 · VTT

)1/3
, one has:

βRπj ≥
32T

∆̃2
TVT

≥ exp
{
−βRπj

}
. (A.18)

Let y0 be the unique solution to the equation y = exp {−y}. Then, (A.18) implies βRπj ≥ y0.

In particular, since y0 > 1/2 this implies Rπj ≥ 1/ (2β) = 1

32(2C̃)
2/3

(
T
VT

)1/3
for all 1 ≤ j ≤ m.

Hence:

Rπ
φ(0)

(Vs, T ) ≥
m∑
j=1

Rπj ≥
T

∆̃T

· 1

32
(

2C̃
)2/3

(
T

VT

)1/3

(a)

≥ 1

64 · 24/3C̃1/3
· V 1/3

T T 2/3,

where (a) holds if
√
C̃ · VT ≤ 2T . If

√
C̃ · VT > 2T , by Proposition 2.1 there is a constant C such

that Rπ
φ(0)

(Vs, T ) ≥ CT ≥ CV 1/3
T T 2/3, where the last inequality holds by T ≥ VT . This concludes

the proof.

Proofs of Lemma A.1 and Lemma A.3. We start by proving Lemma A.1. Suppose that

the feedback structure is φ = φ(1). In the proof we use the notation defined in §4 and in the proof

of Theorem 3. For any t ∈ T denote Yt = φ(1)(Xt, ·), and denote by yt ∈ Rd the realized feedback

observation at epoch t. For convenience, for any t ≥ 1 we further denote yt = (y1, . . . , yt). Fix

π ∈ Pφ. Letting u ∈ U , we denote x1 = π1(u), and xt := πt
(
yt−1, u

)
for t ∈ {2, . . . , T}. For any

f ∈ F and τ ≥ 2, one has:

dPπ,τf {y
τ , u} = dPf

{
yτ−1, u

}
dPπ,τ−1

f

{
yτ−1, u

}
(a)
= dPf {yτ |xτ} dPπ,τ−1

f

{
yτ−1, u

}
(b)
= dG (yτ −∇f(xτ )) dPπ,τ−1

f

{
yτ−1, u

}
, (A.19)
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where: (a) holds since by the first part of Assumption 2.1 the feedback at epoch τ depends on

the history only through xτ = πτ
(
yτ−1, u

)
; and (b) follows from the feedback structure given in

the first part of Assumption 2.1. Fix f, g ∈ F and τ ≥ 2. One has:

K
(
Pπ,τf ‖P

π,τ
g

)
=

∫
u,yτ

log

(
dPπ,τf {y

τ , u}
dPπ,τg {yτ , u}

)
dPπ,τf {y

τ , u}

(a)
=

∫
u,yτ

log

(
dG (yτ −∇f(xτ )) dPπ,τ−1

f

{
yτ−1, u

}
dG (yτ −∇g(xτ )) dPπ,τ−1

g {yτ−1, u}

)
dG (yτ −∇f(xτ )) dPπ,τ−1

f

{
yτ−1, u

}
where (a) holds by (A.19). We have that K

(
Pπ,τf ‖P

π,τ
g

)
= Aτ +Bτ , where:

Aτ :=

∫
u,yτ

log

(
dPπ,τ−1

f

{
yτ−1, u

}
dPπ,τ−1

g {yτ−1, u}

)
dG (yτ −∇f(xτ )) dPπ,τ−1

f

{
yτ−1, u

}
=

∫
u,yτ−1

log

(
dPπ,τ−1

f

{
yτ−1, u

}
dPπ,τ−1

g {yτ−1, u}

)[∫
yτ

dG (yτ −∇f(xτ ))

]
dPπ,τ−1

f

{
yτ−1, u

}
=

∫
u,yτ−1

log

(
dPπ,τ−1

f

{
yτ−1, u

}
dPπ,τ−1

g {yτ−1, u}

)
dPπ,τ−1

f

{
yτ−1, u

}
= K

(
Pπ,τ−1
f ‖Pπ,τ−1

g

)
,

and

Bτ :=

∫
u,yτ

log

(
dG (yτ −∇f(xτ ))

dG (yτ −∇g(xτ ))

)
dG (yτ −∇f(xτ )) dPπ,τ−1

f

{
yτ−1, u

}
=

∫
u,yτ−1

∫
yτ

[
log

(
dG (yτ −∇f(xτ ))

dG (yτ −∇g(xτ ))

)
dG (yτ −∇f(xτ ))

]
dPπ,τ−1

f

{
yτ−1, u

}
(b)

≤ C̃

∫
u,yτ−1

‖∇fτ (xτ )− gτ (xτ )‖2 dPπ,τ−1
f

{
yτ−1, u

}
= C̃Eπf ‖∇fτ (xτ )− gτ (xτ )‖2 ,

where (b) follows the second part of Assumption 2.1. Repeating the above arguments, one has:

K
(
Pπ,τf ‖P

π,τ
g

)
≤ K

(
Pπ,1f ‖P

π,1
g

)
+ C̃Eπf

[
τ∑
t=2

‖∇ft(xt)− gt(xt)‖2
]
.

From the above it is also clear that:

K
(
Pπ,1f ‖P

π,1
g

)
=

∫
u,y1

log

(
dPπ,1f {y1, u}
dPπ,1g {y1, u}

)
dPπ,1f {y1, u}

=

∫
u

[∫
y1

log

(
dG (y1 −∇f(x1))

dG (y1 −∇g(x1))

)
dG (y1 −∇f(x1))

]
dPu {u}

≤ C̃

∫
u
‖∇f1(x1)−∇g1(x1)‖2 dPu {u} = C̃Eπf ‖∇f1(x1)−∇g1(x1)‖2 .
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Hence, we have established that for any τ ≥ 1:

K
(
Pπ,τf ‖P

π,τ
g

)
≤ C̃

τ∑
t=1

Eπf ‖∇ft(xt)− gt(xt)‖
2 .

Finally, following the steps above, the proof of Lemma A.3 (for the feedback structure φ = φ(0))

is immediate, using the notation introduced in the proof of Theorem 5 for cost feedback structure,

along with Assumption 2.2. This concludes the proof.

Proof of Theorem 2.6. Fix T ≥ 1, and 1 ≤ VT ≤ T . Let π be the OGD algorithm with

ηt = η =
√
VT /T for any t = 2, . . . , T . Fix ∆T ∈ {1, . . . , T} (to be specified below), and define

a partition of T into batches T1, . . . , Tm of size ∆T each (except perhaps Tm) according to (3.2).

We note that the partition and the selection of ∆T are only for analysis purposes, and do not

affect the policy.

Fix f ∈ Vs. Following the proof of Proposition 2.2, we have for C = max
{
G
2 , 2
}

,

Eπ
[

T∑
t=1

ft(Xt)

]
−

T∑
t=1

ft(x
∗
t ) ≤

m∑
j=1

Eπ
∑
t∈Tj

ft(Xt)

− inf
x∈X

∑
t∈Tj

ft(x)


+ C ·∆TVT

(a)

≤ 1

2

m∑
j=1

∑
t∈Tj

(
Eπ ‖Xt − x∗‖2

(
1

ηt+1
− 1

ηt
−H

)
+
(
G2 + σ2

)
ηt+1

)
+ C ·∆TVT

(b)

≤ 1

2

m∑
j=1

(G2 + σ2
)∑
t∈Tj

√
VT
T

+ C ·∆TVT

≤
(
G2 + σ2

)
2

·
(
T

∆T
+ 1

)(
∆T ·

√
VT
T

)
+ C ·∆TVT

=

(
G2 + σ2

)
2

·
√
VTT +

(
G2 + σ2

)
·∆T

2
·
√
VT
T

+ C ·∆TVT

for any 1 ≤ ∆T ≤ T , where (a) follows the proof of Lemma A.5 (Appendix C, see equation (A.29)),

and (b) follows since ηt =
√
VT /T for any t = 2, . . . , T , and H > 0. Taking ∆T =

⌊√
T/VT

⌋
we

have:

Eπ
[

T∑
t=1

ft(Xt)

]
−

T∑
t=1

ft(x
∗
t ) ≤

((
G2 + σ2

)
2

+ C

)
·
√
VTT +

(
G2 + σ2

)
2

≤
(
G2 + σ2 + C

)
·
√
VTT ,

where the last inequality follows form 1 ≤ VT ≤ T . Since the above holds for any f ∈ Vs, we
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established:

Rπ
φ(1)

(Vs, T ) ≤
(
G2 + σ2 + max

{
G

2
, 2

})
·
√
VTT .

This concludes the proof.

Proof of claims made in Example 2.3. Fix T ≥ 1. Let X = [−1, 3] (we assume that ν,

appearing in (2.2), is smaller than 1) and consider the following two functions: g1(x) = (x− α)2,

and g2(x) = x2. We assume that in each epoch t, after selecting an action xt, there is a noiseless

access to the gradient of the cost function, evaluated at point xt. The the deterministic actions

are generated by an OGD algorithm:

xt+1 = PX
(
xt − ηt+1 · f ′t(xt)

)
, for all t ≥ 1,

with the initial selection x1 = 1. In the first part we consider the case of ηt = η = C/
√
T , and in

a second part we consider the case of ηt = C/t. The structure of both parts is similar: first we

analyze the variation of the instance, showing it is sublinear. Then, by analyzing the sequence

of decisions {xt}Tt=1 that is generated by the Online Gradient Descent policy, we show that in

a linear portion of the horizon there is a constant C2 such that |xt − x∗t | > C2, and therefore a

linear regret is incurred.

Part 1. Assume that ηt = η = C/
√
T ≤ 1/2. Select ∆T =

⌊
1 + 1

2η

⌋
, and set α = 1 +

(1− 2η)∆T (note that 1 ≤ α ≤ 2). We assume that nature selects the cost function to be g1(·)

in the even batches and g2(·) in the odd batches. We start by analyzing the variation along the

horizon:

T∑
t=2

sup
x∈X
|ft(x)− ft−1(x)| ≤

(⌈
T

∆T

⌉
− 1

)
· sup
x∈X
|g2(x)− g1(x)|

≤ T

∆T
· sup
x∈X

∣∣α2 − 2αx
∣∣

(a)

≤ 8T

∆T
=

8T⌊
2 + 1

2η

⌋
≤ 16Tη = 16C ·

√
T ,

where (a) follows from 1 ≤ α ≤ 2 and −1 ≤ x ≤ 3. Next, we analyze the incurred regret. We

start by analyzing decisions generated by the OGD algorithm throughout the first two batches.

106



Recalling that x1 = 1 and that g2(·) is the cost function throughout the first batch, one has for

any 2 ≤ t ≤ ∆T + 1:

xt = xt−1 − η · f ′(xt−1)

= xt−1 − η · 2xt−1 = xt−1 (1− 2η)

= x1 (1− 2η)t−1 = (1− 2η)t−1

= exp {(t− 1) ln (1− 2η)}
(a)

≥ exp
{

(t− 1)(−2η − 2η2)
}

(b)

≥ exp {−1− η}
(c)
>

1

e2
,

where: (a) follows since for any −1 < x ≤ 1 one has ln(1 + x) ≥ x − x2

2 ; (b) follows from

t ≤ ∆T ≤ 1 + 1
2η ; and (c) follows from η ≤ 1

2 < 1. Since x∗t = 0 for any 1 ≤ t ≤ ∆T , one has:

xt − x∗t >
1

e2
,

for any 1 ≤ t ≤ ∆T . At the end of the first batch the cost function changes from f(·) to g(·). Note

that the first action of the second batch is x∆T+1 = (1− 2η)∆T . Since g1(·) is the cost function

throughout the second batch, for any ∆T + 2 ≤ t ≤ 2∆T + 1 one has:

xt = xt−1 − η · g′(xt−1)

= xt−1 − η · 2 (xt−1 − α) .
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Using the transformation yt = xt − α for all t, one has:

yt = yt−1 − η · 2yt−1 = yt−1 (1− 2η)

= y∆T+1 (1− 2η)t−∆T−1

= x∆T+1 (1− 2η)t−∆T−1 − α (1− 2η)t−∆T−1

= (1− 2η)t−1 − (1− 2η)t−∆T−1 − (1− 2η)t−1

= − (1− 2η)t−∆T−1

= − exp {(t−∆T − 1) ln (1− 2η)}
(a)

≤ − exp
{

(t−∆T − 1)(−2η − 2η2)
}

(b)

≤ − exp {−1− η}
(c)
< − 1

e2
,

where: (a) holds since for any −1 < x ≤ 1 one has ln(1 + x) ≥ x − x2

2 ; (b) follows from

t ≤ 2∆T ≤ 1 + 1
2η + ∆T ; and (c) follows from η ≤ 1

2 < 1. Finally, recalling that x∗t = α and using

the transformation yt = xt − α, one has for any ∆T + 1 ≤ t ≤ 2∆T :

x∗t − xt = yt < −
1

e2
.

In the beginning of the third batch g2(·) becomes the cost function once again. We note that the

first action of the third batch is the same as the first action of the first batch:

x2∆T+1 = α+ y2∆T+1 = α− (1− 2η)2∆T+1−∆T−1 = α− (1− 2η)∆T = 1 = x1,

and therefore the actions taken in the first two batches are repeated throughout the horizon. We

conclude that for any 1 ≤ t ≤ T ,

|xt − x∗t | >
1

e2
.

Finally, we calculate the regret incurred throughout the horizon. Using Taylor expansion, one has

T∑
t=1

(ft(xt)− ft(x∗t )) =

T∑
t=1

(xt − x∗t )
2 >

T∑
t=1

1

e4
=

T

e4
.

Part 2. For concreteness we assume in this part that T is even and larger than 2. We show

that linear regret can be incurred when ηt = C
t . Set α = 1 and ∆T = T/2 (therefore we have

two batches). Assume that nature selects g1(·) to be the cost function in the first batch, g2(·) to
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be the cost function in the second batch. We start by analyzing the variation along the horizon.

Recalling that there is only one change in the cost function, one has:

T∑
t=2

sup
x∈X
|ft(x)− ft−1(x)| = sup

x∈X
|g2(x)− g1(x)|

= sup
x∈X

∣∣α2 − 2αx
∣∣ = sup

x∈X
|1− 2x| (a)

= 5,

where (a) holds because −1 ≤ x ≤ 3. Since x1 = 1, and g′1(1) = 0, one obtains xt = 1 for all

1 ≤ t ≤
⌈
T
2

⌉
+ 1. After dT/2e epochs, the cost function changes from g1(·) to g2(·), and for all⌈

T
2

⌉
+ 2 ≤ t ≤ T one has:

xt = xt−1 − ηt · g′2(xt−1)

= xt−1 − ηt · 2xt−1 = xt−1 (1− 2ηt)

= xT
2

+1

t∏
t′=T

2
+1

(1− 2ηt′) =

t∏
t′=T

2
+1

(1− 2ηt′)

(a)

≥
(

1− 2ηT
2

+2

)t−T
2
−1

=

(
1− 4C

T + 4

)t−T
2
−1

= exp

{(
t− T

2
− 1

)
ln

(
1− 4C

T + 4

)}
(b)

≥ exp

{(
t− T

2
− 1

)(
− 4C

T + 4
− 8C

(T + 4)2

)}
(c)

≥ exp

{
−4C − 8C2

T + 4

}
> exp

{
−4C − 2C2

}
,

where: (a) holds since {ηt} is a decreasing sequence; (b) holds since ln(1 + x) ≥ x − x2

2 for any

−1 < x ≤ 1; and (c) is obtained using t < T + T
2 + 5. Since x∗t = 0 for any T

2 + 1 ≤ t ≤ T , one

has:

xt − x∗t >
1

e2C(2+C)
,

for all T2 + 1 ≤ t ≤ T . Finally, we calculate the regret incurred throughout the horizon. Recalling

that throughout the first batch no regret is incurred, and using Taylor expansion, one has:

T∑
t=1

(ft(xt)− ft(x∗t )) =
T∑

t=T
2

+1

(f(xt)− f(x∗t )) =
T∑

t=T
2

+1

(xt − x∗t )
2 ≥

T∑
t=T

2
+1

1

e4C(2+C)
=

T

2e4C(2+C)
.

This concludes the proof.
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A.2 Auxiliary results for the OCO setting

A.2.1 Preliminaries

In this section we develop auxiliary results that provide bounds on the regret with respect to the

single best action in the adversarial setting. As discussed in §1, the OCO literature most often con-

siders few different feedback structures; typical examples include full access to the cost/gradient

after the action Xt is selected, as well as a noiseless access to the cost/gradient evaluated at Xt.

However, in this section we consider the feedback structures φ(0) and φ(1), where noisy access to

the cost/gradient is granted.

We define admissible online algorithms exactly as admissible policies are defined in §2.1 More

precisely, letting U be a random variable defined over a probability space (U,U ,Pu), we let

A1 : U → Rd and At : R(t−1)k × U → Rd for t = 2, 3, . . . be measurable functions, such that Xt,

the action at time t, is given by

Xt =

 A1 (U) t = 1,

At (φt−1 (Xt−1, ft−1) , . . . , φ1 (X1, f1) , U) t = 2, 3, . . . ,

where k = 1 if φ = φ(0), and k = d if φ = φ(1). The mappings {At : t = 1, . . . , T} together with

the distribution Pu define the class of admissible online algorithms with respect to feedback φ,

which is exactly the class Pφ. The filtration {Ht, t = 1, . . . , T} is defined exactly as in §2. Given

a feedback structure φ ∈
{
φ(0), φ(1)

}
, the objective is to minimize the regret compared to the

single best action:

GAφ (F , T ) = sup
f∈F

{
EA
[

T∑
t=1

ft(Xt)

]
−min

x∈X

{
T∑
t=1

ft(x)

}}
.

We note that while most results in the OCO literature allow sequences that can adjust the cost

function adversarially at each epoch, we consider the above setting where nature commits to a

sequence of functions in advance. This, along with the setting of noisy cost/gradient observations,

is done for the sake of consistency with the non-stationary stochastic framework we propose in

chapter 2.

1We use the different terminology and notation only to highlight the different objectives: a policy π is designed

to minimize regret with respect to the dynamic oracle, while an online algorithm A is designed to minimize regret

compared to the static single best action benchmark.
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A.2.2 Upper bounds

The first two results of this section, Lemma A.4 and Lemma A.5, analyze the performance of the

EGS algorithm (given in §5) under structure (Fs, φ(0)) and the OGD algorithm (given in §4) under

structure (Fs, φ(1)), respectively. To the best of our knowledge, the upper bound in Lemma A.4

is not documented in the Online Convex Optimization literature2. Lemma A.5 adapts Theorem 1

in Hazan et al. (2007) (that considered noiseless access to the gradient) to the feedback structure

φ(1).

Lemma A.4. (Performance of EGS in the adversarial setting) Consider the feedback

structure φ = φ(0). Let A be the EGS algorithm given in §5.2, with at = 2d/Ht and δt = ht = a
1/4
t

for all t ∈ {1, . . . , T − 1}. Then, there exists a constant C̄, independent of T such that for any

T ≥ 1,

GAφ (Fs, T ) ≤ C̄
√
T .

Proof. Let φ = φ(0). Fix T ≥ 1 and f ∈ Fs. Let A be the EGS algorithm, with the selection

at = 2d/Ht and δt = ht = a
1/4
t for all t ∈ {1, . . . , T − 1}. We assume that δt ≤ ν for all t ∈ T ;

in the end of the proof we discuss the case in which the former does not hold. For the sequence

{δt}Tt=1, we denote by Xδt the δt-interior of the action set X : Xδt = {x ∈ X | Bδt(x) ⊆ X}. We

have for all ft ∈ Fs:

E
[
φ

(0)
t (Xt, ft) |Xt = x

]
= ft(x) and sup

x∈X

{
E
[(
φ

(0)
t (x, ft)

)2
]}
≤ G2 + σ2, (A.20)

for some σ ≥ 0. At any t ∈ T the gradient estimator is:

∇̂htft(Xt) =
φ

(0)
t (Xt + htψt, ft)ψt

ht
,

for a fixed ht > 0, and where {ψt} is a sequence of iid random variables, drawn uniformly over

the set
{
±e(1), . . . ,±e(d)

}
, where e(k) denotes the unit vector with 1 at the kth coordinate. In

particular, we denote ψt = YtWt, where Yt and Wt are independent random variables, P {yt = 1} =

P {yt = −1} = 1/2, and Wt = e(k) with probability 1/d for all k ∈ {1, . . . , d}. The estimated

gradient step is

Zt+1 = PXδt

(
Zt − at∇̂htft(Zt)

)
, Xt+1 = Zt+1 + ht+1ψt,

2The feasibility of an upper bound of order
√
T on the regret in an adversarial setting with noisy access to the

cost and with strictly convex cost functions was suggested by Agarwal et al. (2010) without further details or proof.
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where PXδt denotes the Euclidean projection operator over the set Xδt . Note that Zt ∈ X , Xt ∈ X ,

and Xt + htψt ∈ X for all t ∈ T . Since ‖ψt‖ = 1 for all t ∈ T , one has:

E
[∥∥∥∇̂htft(Zt)∥∥∥2

|Zt = z

]
=

E
[(
φ

(0)
t (z + htψt, ft)

)2
]

h2
t

≤ G2 + σ2

h2
t

for all z ∈ X , (A.21)

using (A.20). Then,

E
[
∇̂htft(Zt) |Zt = z, ψt = ψ

]
=

E
[
φ

(0)
t (Zt + htψt, ft)ψt |Zt = z, ψt = ψ

]
ht

=
ft (z + htψ)ψ

ht
.

Therefore, taking expectation with respect to ψ, one has

E
[
∇̂htft(Zt) |Zt = z

]
= EY,W

[
ft (z + htψ)ψ

ht

]
=

1

d

d∑
k=1

(
ft(z + hte

(k))− ft(z − hte(k))
)
e(k)

2ht

(a)

≥ 1

d

d∑
k=1

(
∇ft(z − hte(k)) · e(k)

)
e(k)

(b)

≥ 1

d

d∑
k=1

(
∇ft(z) · e(k) −Hht

)
e(k) =

1

d
∇ft(z)−

Hht
d
· ē,

where ē denotes a vector of ones. The equalities and inequalities above hold componentwise,

where (a) follows from a Taylor expansion and the convexity of ft: ft(z+hte
(k))−ft(z−hte(k)) ≥

∇ft(z−hte(k))·
(
2hte

(k)
)
, for any 1 ≤ k ≤ d, and (b) follows from a Taylor expansion, the convexity

of ft, and (2.11):

∇ft(z − hte(k)) · e(k) ≥ ∇ft(z) · e(k) −
(
he(k)

)
·
(
∇2ft

)
e(k) ≥ ∇ft(z) · e(k) −Ght,

for any 1 ≤ k ≤ d. Therefore, for all z ∈ X and for all t ∈ T :∥∥∥∥1

d
∇ft(z)− E

[
∇̂htft(Zt) |Zt = z

]∥∥∥∥ ≤ Ght√
d
. (A.22)

Define x∗ as the single best action: x∗ = arg minx∈X

{∑T
t=1 ft(x)

}
. Then, for any t ∈ T , one has

ft(x
∗) ≥ ft(Zt) +∇ft(Zt) · (x∗ − Zt) +

1

2
H ‖x∗ − Zt‖2 ,

and hence:

ft(Zt)− ft(x∗) ≤ ∇ft(Zt) · (Zt − x∗)−
1

2
H ‖Zt − x∗‖2 . (A.23)
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Next, using the estimated gradient step, one has

‖Zt+1 − x∗‖2 =
∥∥∥PXδt (Zt − at∇̂htft(Zt))− x∗∥∥∥2

(a)

≤
∥∥∥Zt − at∇̂htft(Zt)− x∗∥∥∥2

= ‖Zt − x∗‖2 − 2at (Zt − x∗) · ∇̂htft(Zt) + a2
t

∥∥∥∇̂htft(Zt)∥∥∥2

= ‖Zt − x∗‖2 −
2at
d
· (Zt − x∗) · ∇ft(Zt) + a2

t

∥∥∥∇̂htft(Zt)∥∥∥2

+ 2at (Zt − x∗) ·
(

1

d
∇ft(Zt)− ∇̂htft(Zt)

)
≤ ‖Zt − x∗‖2 −

2at
d
· (Zt − x∗) · ∇ft(Zt) + a2

t

∥∥∥∇̂htft(Zt)∥∥∥2

+ 2at ‖Zt − x∗‖ ·
∥∥∥∥1

d
∇ft(Zt)− ∇̂htft(Zt)

∥∥∥∥ ,
where (a) follows from a standard contraction property of the Euclidean projection operator.

Taking expectation with respect to ψt and conditioning on Zt, we follow (A.21) and (A.22) to

obtain

E
[
‖Zt+1 − x∗‖2 |Zt

]
≤ ‖Zt − x∗‖2−

2at
d
·(Zt − x∗)·∇ft(Zt)+

a2
t

(
G2 + σ2

)
h2
t

+
2Gatht√

d
·‖Zt − x∗‖ .

Taking another expectation, with respect to Zt, we get

E
[
‖Zt+1 − x∗‖2

]
≤ E

[
‖Zt − x∗‖2

]
−2at

d
·E [(Zt − x∗) · ∇ft(Zt)]+

a2
t

(
G2 + σ2

)
h2
t

+
2Gatht√

d
·E ‖Zt − x∗‖ ,

and therefore, fixing some γ > 0, we have for all t ∈ {1, . . . , T − 1}:

E [(Zt − x∗) · ∇ft(Xt)] ≤
d

2at

(
E
[
‖Zt − x∗‖2

]
− E

[
‖Zt+1 − x∗‖2

])
+

(
G2 + σ2

)
atd

2h2
t

+γ · 1

γ
·Ght

√
d · E ‖Zt − x∗‖

(a)

≤ d

2at

(
E
[
‖Zt − x∗‖2

]
− E

[
‖Zt+1 − x∗‖2

])
+

(
G2 + σ2

)
atd

2h2
t

+
γ2

2
· E
[
‖Zt − x∗‖2

]
+
G2h2

td

2γ2
, (A.24)

where (a) holds by ab ≤
(
a2 + b2

)
/2, and by Jensen’s inequality. In addition, one has for any
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t ∈ T :

E [ft(Xt)] = E [E [ft(Xt)|Zt]] = E
[

1

2
(ft(Zt + ht) + ft(Zt − ht))

]
≤ 1

2
E
[
2ft(Zt) + ht (∇ft(Zt + ht)−∇ft(Zt − ht))−Hh2

t

]
≤ E

[
ft(Zt) +

1

2
Hh2

t

]
. (A.25)

The regret with respect to the single best action is:

T∑
t=1

EA [ft(Xt)− ft(x∗)] ≤ 2G+
T−1∑
t=1

Eπ
[
ft(Zt)− ft(x∗) +

1

2
Hh2

t

]
(a)

≤ 2G+
T−1∑
t=1

E
[
∇ft(Zt) · (Zt − x∗)−

1

2
H ‖Zt − x∗‖2 +

1

2
Hh2

t

]
(b)

≤ E

[
T−1∑
t=1

(
d

2at

(
‖Zt − x∗‖2 − ‖Zt+1 − x∗‖2

)
+

(
γ2 −H

)
2

· ‖Zt − x∗‖2
)]

+ 2G+

(
G2 + σ2

)
2

T−1∑
t=1

(
atd

h2
t

+
h2
td

γ2

)
+
H

2

T−1∑
t=1

h2
t

(c)
=

1

2
· E


T∑
t=2

‖Zt − x∗‖2
(
d

at
− d

at−1
+
(
γ2 −H

))
︸ ︷︷ ︸

It

+ ‖Z1 − x∗‖2
(

d

2a1
+
γ2 −H

2

)
︸ ︷︷ ︸

I1

−‖ZT − x∗‖2
d

2aT−1
+ 2G+

(
G2 + σ2

)
2

T−1∑
t=1

(
atd

h2
t

+
h2
td

γ2

)
+
H

2

T−1∑
t=1

h2
t ,

where (a) holds by (A.23), (b) holds by (A.24), and (c) holds by rearranging the summation. By

selecting γ2 = H
2 , at = d

(H−γ2)t
, and ht = δt = a

1/4
t , we have It = 0 for all t ∈ T , and:

EA
[

T∑
t=1

ft(Xt)

]
− inf
x∈X

{
T∑
t=1

ft(x)

}
≤ 2G+

(
G2 + σ2 +H

)
d3/2

√
2H

·
√
T .

Since the above holds for any f ∈ Fs, we conclude that

GA
φ(0)

(Fs, T ) ≤ 2G+

(
G2 + σ2 +H

)
d3/2

√
2H

·
√
T .

Finally, we consider the case in which there exists at least one time epoch t such that δt > ν.

Then, for any such time epoch we select h′t = δ′t = min {ν, δt}. We note that the sequence {δt} is

converging to 0, and therefore for any number ν there is some epoch tν , independent of T , such

114



that δt ≤ ν for any t ≥ tν . Therefore there can be no more than tν such epochs. In particular, it

follows that such a case could add to the regret above no more than a constant (independent of

T ), that depends solely on ν, the dimension d, and the second derivative bound H. This concludes

the proof.

Lemma A.5. (Performance of OGD in the adversarial setting) Consider the feedback

structure φ = φ(1). Let A be the OGD algorithm given in §4, with the selection ηt = 1/Ht for

t = 2, . . . T . Then, there exists a constant C̄, independent of T such that for any T ≥ 1,

GAφ (Fs, T ) ≤ C̄ log T.

Proof. We adapt the proof of Theorem 1 in Hazan et al. (2007) to the feedback φ(1). Fix

φ = φ(1), T ≥ 1, and f ∈ Fs. Selecting ηt = 1/Ht for any t = 2, . . . T , one has that for any x ∈ X

and ft,

E
[
φ

(1)
t (Xt, ft) |Xt = x

]
= ∇ft(x), and E

[∥∥∥φ(1)
t (x, ft)

∥∥∥2
]
≤ G2 + σ2, (A.26)

for some σ ≥ 0. Define x∗ as the single best action in hindsight: x∗ = arg minx∈X

{∑T
t=1 ft(x)

}
.

Then, by a Taylor expansion, for any x ∈ X there is a point x̃ on the segment between x and x∗

such that:

ft(x
∗) = ft(x) +∇ft(x) · (x∗ − x) +

1

2
(x∗ − x) · ∇2ft(x̃)(x∗ − x)

(a)

≥ ft(x) +∇ft(x) · (x∗ − x) +
H

2
‖x∗ − x‖2 ,

for any t ∈ T , where (a) holds by (2.11). Substituting Xt in the above and taking expectation

with respect to Xt, one has:

E [ft(Xt)]− ft(x∗) ≤ E [∇ft(x) · (x∗ −Xt)] +
H

2
E ‖x∗ −Xt‖2 , (A.27)

for any t ∈ T . By the OGD step,

‖Xt+1 − x∗‖2 =
∥∥∥PX (Xt − ηt+1φ

(1)
t (Xt, ft)

)
− x∗

∥∥∥2 (a)

≤
∥∥∥Xt − ηt+1φ

(1)
t (Xt, ft)− x∗

∥∥∥2
,

where (a) follows from a standard contraction property of the Euclidean projection operator.

Taking expectation with respect to Xt, one has:

E ‖Xt+1 − x∗‖2 ≤ E ‖Xt − x∗‖2 + η2
t+1E

∥∥∥φ(1)
t (Xt, ft)

∥∥∥2
− 2ηt+1E

[(
φ

(1)
t (Xt, ft)

)
· (Xt − x∗)

]
(a)

≤ E ‖Xt − x∗‖2 + η2
t+1

(
G2 + σ2

)
− 2ηt+1E [(∇ft(Xt)) · (Xt − x∗)] ,
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where (a) follows from (A.26). Therefore, for any t ∈ T , we get:

E [∇ft(Xt) · (Xt − x∗)] ≤
E ‖Xt − x∗‖2 − E ‖Xt+1 − x∗‖2

2ηt+1
+
ηt+1

2

(
G2 + σ2

)
. (A.28)

Summing (A.27) over the horizon and using (A.28), one has:

T∑
t=1

(E [ft(Xt)]− ft(x∗)) ≤ 1

2

T∑
t=1

E ‖Xt − x∗‖2
(

1

ηt+1
− 1

ηt
−H

)
+

(
G2 + σ2

)
2

T∑
t=1

ηt+1(A.29)

(a)
=

(
G2 + σ2

)
2

T∑
t=1

1

Ht
≤
(
G2 + σ2

)
2H

(1 + log T ) ,

where (a) holds using ηt = 1/Ht. Since the above holds for any sequence of functions in Fs we

have that

GA
φ(1)

(Fs, T ) ≤
(
G2 + σ2

)
2H

(1 + log T ) ,

which concludes the proof.

A.2.3 Lower bounds

The last two results of this section, Lemma A.6 and Lemma A.7, establish lower bounds on

the best achievable performance in the adversarial setting, under the structures (Fs, φ(0)), and

(F , φ(1)), respectively. Lemma A.6 provides a lower bound that (together with the upper bound in

Lemma A.4) establishes that the EGS algorithm is rate optimal in a setting with strongly convex

cost functions and noisy cost observations. Lemma A.7 provides a lower bound that matches the

upper bound in Lemma 3.1 in Flaxman et al. (2005), establishing that the OGD algorithm (with

a careful selection of step-sizes), is rate optimal in a setting with general convex cost functions

and noisy gradient observations.

Lemma A.6. Let Assumption 2.2 hold. Then, there exists a constant C, independent of T such

that for any online algorithm A ∈ Pφ(0) and for all T ≥ 1:

GA
φ(0)

(Fs, T ) ≥ C
√
T .

Proof. Let X = [0, 1]. Consider the quadratic functions f1 and f2 in (A.12), used in the proof

of Theorems 2.4 and 2.5. (note that δ will be selected differently). Fix some algorithm A ∈ Pφ(0) .

Let f̃ be a random sequence where in the beginning of the horizon nature draws (according to
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a uniform discrete distribution) a cost function from
{
f1, f2

}
, and applies it throughout the

horizon. Taking expectation over the random sequence f̃ one has

GA
φ(0)

(Fs, T ) ≥ 1

2
EAf1

[
T∑
t=1

(
f1(Xt)− f1(x∗1)

)]
+

1

2
EAf2

[
T∑
t=1

(
f2(Xt)− f2(x∗2)

)]
,

where the inequality follows as in step 3 of the proof of theorem 2.3. In the following we use

notation described at the proof of Theorem 2.5, for the online algorithm A. We start by bounding

the Kullback-Leibler divergence between PA,τ
f1

and PA,τ
f2

for all τ ∈ T :

K
(
PA,T
f1
‖PA,T

f2

) (a)

≤ C̃EAf1

[
T∑
t=1

(
f1(Xt)− f2(Xt)

)2]
= C̃EAf1

[
T∑
t=1

(
δXt −

δ

2

)2
]

= C̃EAf1

[
δ2

T∑
t=1

(Xt − x∗1)2

]
(b)
= C̃EAf1

[
2δ2

T∑
t=1

(
f1(Xt)− f1(x∗1)

)] (c)

≤ 4C̃δ2GA
φ(0)

(Fs, T ), (A.30)

where: (a) follows from Lemma A.3; (b) holds since

f1(x)− f1(x∗1) = ∇f1(x∗1) · (x− x∗1) +
1

2
· ∇f1(x∗1) · (x− x∗1)2 =

1

2
(x− x∗1)2

for any x ∈ X ; and (c) holds by

GA
φ(0)

(Fs, T ) ≥ 1

2
EAf1

[
T∑
t=1

(
f1(Xt)− f1(x∗1)

)]
+

1

2
EAf2

[
T∑
t=1

(
f2(Xt)− f2(x∗2)

)]

≥ 1

2
EAf1

[
T∑
t=1

(
f1(Xt)− f1(x∗1)

)]
. (A.31)

Therefore, for any x0 ∈ X , by Lemma A.2 with ϕt = 1{Xt > x0}, we have:

max
{
PAf1 {Xτ > x0} ,PAf2 {Xτ ≤ x0}

}
≥ 1

4
exp

{
−4C̃δ2GA

φ(0)
(Fs, T )

}
for all τ ∈ T .

(A.32)
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Set x0 = 1
2 (x∗1 + x∗2) = 1/2 + δ/4. Then, following step 3 in the proof of Theorem 2.5, one has:

GA
φ(0)

(Fs, T ) ≥ 1

2

T∑
t=1

(
f1(x0)− f1(x∗1)

)
PAf1 {Xt > x0}+

1

2

T∑
t=1

(
f2(x0)− f2(x∗2)

)
PAf2 {Xt ≤ x0}

≥ δ2

16

T∑
t=1

(
PAf1 {Xt > x0}+ PAf2 {Xt ≤ x0}

)
≥ δ2

16

T∑
t=1

max
{
PAf1 {Xt > x0} ,PAf2 {Xt ≤ x0}

}
(a)

≥ δ2

16

T∑
t=1

1

4
exp

{
−4C̃δ2GA

φ(0)
(Fs, T )

}
=

δ2T

16
exp

{
−4C̃δ2GA

φ(0)
(Fs, T )

}
where (a) holds by (A.32). Set δ =

(
4
C̃T

)1/4
. Then, one has for β = 8

√
C̃/T :

βGA
φ(0)

(Fs, T ) ≥ exp
{
−βGA

φ(0)
(Fs, T )

}
. (A.33)

Let y0 be the unique solution to the equation y = exp {−y}. Then, (A.33) implies βGA
φ(0)

(S, T ) ≥

y0. In particular, since y0 > 1/2 this implies

GA
φ(0)

(Fs, T ) ≥ 1/ (2β) =
1

16
√
C̃
·
√
T .

This concludes the proof.

Lemma A.7. Let Assumption 2.1 hold. Then, there exists a constant C, independent of T , such

that for any online algorithm A ∈ Pφ(1) and for all T ≥ 1:

GA
φ(1)

(F , T ) ≥ C
√
T .

Proof. Fix T ≥ 1. Let X = [0, 1], and consider functions f1 and f2 that are given in (A.8),

and used in the proof of Theorem 2.3 (note that δ will be selected differently). Let f̃ be a random

sequence of cost functions, where in the beginning of the time horizon nature draws (from a

uniform discrete distribution) a function from
{
f1, f2

}
, and applies it throughout the horizon.

Fix A ∈ Pφ(1) . In the following we use notation described in the proof of Theorem 2.3, as well

as in Lemma A.6. Set δ = 1/
√

16C̃T , where C̃ is the constant that appears in Assumption 2.1.

Then:

K
(
PA,T
f1
‖PA,T

f2

) (a)

≤ C̃EAf1

[
T∑
t=1

(
∇f1(Xt)−∇f2(Xt)

)2]

= C̃EAf1

[
T∑
t=1

16δ2X2
t

]
≤ 16C̃T δ2

(b)

≤ 1, (A.34)
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where (a) follows from Lemma A.1, and (b) holds by δ = 1/
√

16C̃T . Since K(PA,τ1 ‖PA,τ2 ) is non-

decreasing in τ throughout the horizon, we deduce that the Kullback-Leibler divergence is bounded

by 1 throughout the horizon. Therefore, for any x0 ∈ X , by Lemma A.2 with ϕτ = 1{Xτ ≤ x0}

and β = 1, one has:

max
{
PAf1 {Xτ ≤ x0} ,PAf2 {Xt > x0}

}
≥ 1

4e
for all τ ∈ T . (A.35)

Set x0 = 1
2 (x∗1 + x∗2) = 1

2 . Taking expectation over f̃ and following step 3 in the proof of

Theorem 2.3, one has:

GA
φ(1)

(F , T ) ≥ 1

2
EAf1

[
T∑
t=1

(
f1(Xt)− f1(x∗1)

)]
+

1

2
EAf2

[
T∑
t=1

(
f2(Xt)− f2(x∗2)

)]

≥ 1

2

T∑
t=1

(
f1(x0)− f1(x∗1)

)
PAf1 {Xt > x0}+

1

2

T∑
t=1

(
f2(x0)− f2(x∗2)

)
PAf2 {Xt ≤ x0}

≥
(
δ

4
+
δ2

2

) T∑
t=1

(
PAf1 {Xt > x0}+ PAf2 {Xt ≤ x0}

)
≥

(
δ

4
+
δ2

2

) T∑
t=1

max
{
Pπf1 {Xt > x0} ,PAf2 {Xt ≤ x0}

}
(a)

≥
(
δ

4
+
δ2

2

) T∑
t=1

1

4
exp {−1} ≥ δT

16e

(b)
=

1

64e
√
C̃
·
√
T ,

where (a) holds by (A.35), and (b) holds by δ = 1/
√

16C̃T . This concludes the proof.
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Appendix B

Appendix to Chapter 3

B.1 Proofs

Proof of Theorem 3.1. At a high level the proof adapts a general approach of identifying a

worst-case nature “strategy” (see proof of Theorem 5.1 in Auer et al. (2002) which analyze the

worst-case regret relative to a single best action benchmark in a fully adversarial environment),

extending these ideas appropriately to our setting. Fix T ≥ 1, K ≥ 2, and VT ∈
[
K−1,K−1T

]
.

In what follows we restrict nature to the class V ′ ⊆ V that was described in §3, and show that

when µ is drawn randomly from V ′, any policy in P must incur regret of order (KVT )1/3 T 2/3.

Step 1 (Preliminaries). Define a partition of the decision horizon T to m =
⌈
T

∆T

⌉
batches

T1, . . . , Tm batches of size ∆̃T each (except perhaps Tm) according to (3.2). For some ε > 0 that

will be specified shortly, define V ′ to be the set of reward vectors sequences µ such that:

• µkt ∈ {1/2, 1/2 + ε} for all k ∈ K, t ∈ T

•
∑

k∈K µ
k
t = K/2 + ε for all t ∈ T

• µkt = µkt+1 for any (j − 1)∆̃T + 1 ≤ t ≤ min
{
j∆̃T , T

}
− 1, j = 1, . . . ,m, for all k ∈ K

For each sequence in V ′ in any epoch there is exactly one arm with expected reward 1/2+ε where

the rest of the arms have expected reward 1/2, and expected rewards cannot change within a

batch. Let ε = min
{

1/4, VT ∆̃T /T
}

. Then, for any µ ∈ V ′ one has:

T−1∑
t=1

sup
k∈K

∣∣∣µkt − µkt+1

∣∣∣ ≤ m−1∑
j=1

ε =

(⌈
T

∆̃T

⌉
− 1

)
· ε ≤ Tε

∆̃T

≤ VT ,
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where the first inequality follows from the structure of V ′. Therefore, V ′ ⊂ V.

Step 2 (Single batch analysis). Fix some policy π ∈ P, and fix a batch j ∈ {1, . . . ,m}. We

denote by Pjk the probability distribution conditioned on arm k being the “good” arm in batch

j, and by P0 the probability distribution with respect to random rewards (i.e. expected reward

1/2) for each arm. We further denote by Ejk[·] and E0[·] the respective expectations. Assuming

binary rewards, we let X denote a vector of |Tj | rewards, i.e. X ∈ {0, 1}|Tj |. We denote by N j
k the

number of times arm k was selected in batch j. In the proof we use Lemma A.1 from Auer et al.

(2002) that characterizes the difference between the two different expectations of some function

of the observed rewards vector:

Lemma B.1. Let f : {0, 1}|Tj | → [0,M ] be a bounded real function. Then, for any k ∈ K:

Ejk [f(X)]− E0 [f(X)] ≤ M

2

√
−E0

[
N j
k

]
log (1− 4ε2).

Let kj denote the “good” arm of batch j. Then, one has

Ejkj [µπt ] =

(
1

2
+ ε

)
Pjkj {πt = kj}+

1

2
Pjkj {πt 6= kj} =

1

2
+ εPjkj {πt = kj} ,

and therefore,

Ejkj

∑
t∈Tj

µπt

 =
|Tj |
2

+
∑
t∈Tj

εPjkj {πt = kj} =
|Tj |
2

+ εEjkj
[
N j
kj

]
. (B.1)

In addition, applying Lemma B.1 with f(X) = N j
kj

(clearly N j
kj
∈ {0, . . . , |Tj |}) we have:

Ejkj
[
N j
kj

]
≤ E0

[
N j
kj

]
+
|Tj |
2

√
−E0

[
N j
kj

]
log (1− 4ε2).

Summing over arms, one has:

K∑
kj=1

Ejkj
[
N j
kj

]
≤

K∑
kj=1

E0

[
N j
kj

]
+

K∑
kj=1

|Tj |
2

√
−E0

[
N j
kj

]
log (1− 4ε2)

(a)

≤ |Tj |+
|Tj |
2

√
− log (1− 4ε2) |Tj |K

(b)

≤ ∆̃T +
∆̃T

2

√
− log (1− 4ε2) ∆̃TK, (B.2)

for any j ∈ {1, . . . ,m}, where: (a) holds since
∑K

kj=1 E0

[
N j
kj

]
= |Tj |, and thus by Cauchy-Schwarz

inequality
∑K

kj=1

√
E0

[
N j
kj

]
≤
√
|Tj |K; and (b) holds since |Tj | ≤ ∆̃T for all j ∈ {1, . . . ,m}.
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Step 3 (Regret along the horizon). Let µ̃ be a random sequence of expected rewards

vectors, in which in every batch the “good” arm is drawn according to an independent uniform

distribution over the setK. Clearly, every realization of µ̃ is in V ′. In particular, taking expectation

over µ̃, one has:

Rπ(V ′, T ) = sup
µ∈V ′

{
T∑
t=1

µ∗t − Eπ
[

T∑
t=1

µπt

]}
≥ Eµ̃

[
T∑
t=1

µ̃∗t − Eπ
[

T∑
t=1

µ̃πt

]]

≥
m∑
j=1

∑
t∈Tj

(
1

2
+ ε

)
− 1

K

K∑
kj=1

EπEjkj

∑
t∈Tj

µ̃πt


(a)

≥
m∑
j=1

∑
t∈Tj

(
1

2
+ ε

)
− 1

K

K∑
kj=1

(
|Tj |
2

+ εEπEjkj
[
N j
kj

])
≥

m∑
j=1

∑
t∈Tj

(
1

2
+ ε

)
− |Tj |

2
− ε

K
Eπ

K∑
kj=1

Ejkj
[
N j
kj

]
(b)

≥
m∑
j=1

(
|Tj | ε−

ε

K

(
∆̃T +

∆̃T

2

√
− log (1− 4ε2) ∆̃TK

))
(c)

≥ Tε− Tε

K
− Tε

2K

√
− log (1− 4ε2) ∆̃TK

(d)

≥ Tε

2
− Tε2

K

√
log (4/3) ∆̃TK,

where: (a) holds by (B.1); (b) holds by (B.2); (c) holds since
∑m

j=1 |Tj | = T and since m ≥ T/∆̃T ;

and (d) holds since 4ε2 ≤ 1/4, and since − log(1−x) ≤ 4 log(4/3)x for all x ∈ [0, 1/4], and because

K ≥ 2. Set ∆̃T =

⌈
K1/3

(
T
VT

)2/3
⌉

. Recall that ε = min
{

1/4, VT ∆̃T /T
}

. Suppose first that

VT ∆̃T /T ≤ 1/4. Then, ε = VT ∆̃T /T ≥ (KVT /T )1/3, and one has

Rπ(V ′, T ) ≥ 1

2
· (KVT )1/3 T 2/3 −

√
log(4/3) · (KVT )1/3 T 2/3 ≥ 1

8
· (KVT )1/3T 2/3.

On the other hand, if VT ∆̃T /T ≥ 1/4, one has ε = 1/4, and therefore

Rπ(V ′, T ) ≥
T (KVT )1/3

4 − T 4/3
√

log(4/3)

16

(KVT )1/3
≥ T 4/3

8(KVT )1/3
≥ 1

8
· (KVT )1/3T 2/3,

where the last two inequalities hold by T ≥ KVT . Thus, since V ′ ⊂ V, we have established that:

Rπ(V, T ) ≥ Rπ(V ′, T ) ≥ 1

8
· (KVT )1/3T 2/3.

This concludes the proof.
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Proof of Theorem 3.2 The structure of the proof is as follows. First, breaking the decision

horizon to a sequence of batches of size ∆T each, we analyze the difference in performance between

the the single best action and the performance of the dynamic oracle in a single batch. Then,

we plug in a known performance guarantee for Exp3 relative to the single best action in the

adversarial setting, and sum over batches to establish the regret of Rexp3 with respect to the

dynamic oracle.

Step 1 (Preliminaries). Fix T ≥ 1, K ≥ 2, and VT ∈
[
K−1,K−1T

]
. Let π be the Rexp3

policy described in §4, tuned by γ = min
{

1 ,
√

K logK
(e−1)∆T

}
and a batch size ∆T ∈ {1, . . . , T} (to

be specified later on). We break the horizon T into a sequence of batches T1, . . . , Tm of size ∆T

each (except, possibly Tm) according to (3.2). Let µ ∈ V, and fix j ∈ {1, . . . ,m}. We decompose

the regret in batch j:

Eπ
∑
t∈Tj

(µ∗t − µπt )

 =
∑
t∈Tj

µ∗t − E

max
k∈K

∑
t∈Tj

Xk
t




︸ ︷︷ ︸
J1,j

+E

max
k∈K

∑
t∈Tj

Xk
t


− Eπ

∑
t∈Tj

µπt


︸ ︷︷ ︸

J2,j

.

(B.3)

The first component, J1,j , corresponds to the expected loss associated with using a single action

over the batch. The second component, J2,j , corresponds to the expected regret with respect to

the best static action in batch j.

Step 2 (Analysis of J1,j and J2,j). Defining µkT+1 = µkT for all k ∈ K, we denote by

Vj =
∑

t∈Tj maxk∈K
∣∣µkt+1 − µkt

∣∣ the variation in expected rewards along batch j. We note that

m∑
j=1

Vj =
m∑
j=1

∑
t∈Tj

max
k∈K

∣∣∣µkt+1 − µkt
∣∣∣ ≤ VT . (B.4)

Let k0 by an arm with the best expected performance (the best static strategy) over batch Tj ,

i.e., k0 ∈ arg maxk∈K

{∑
t∈Tj µ

k
t

}
. Then,

max
k∈K

∑
t∈Tj

µkt

 =
∑
t∈Tj

µk0t = E

∑
t∈Tj

Xk0
t

 ≤ E

max
k∈K

∑
t∈Tj

Xk
t


 , (B.5)

and therefore, one has:

J1,j =
∑
t∈Tj

µ∗t − E

max
k∈K

∑
t∈Tj

Xk
t


 (a)

≤
∑
t∈Tj

(
µ∗t − µ

k0
t

)
≤ ∆T max

t∈Tj

{
µ∗t − µ

k0
t

} (b)

≤ 2Vj∆T , (B.6)
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for any µ ∈ V and j ∈ {1, . . . ,m}, where (a) holds by (B.5) and (b) holds by the following

argument: otherwise there is an epoch t0 ∈ Tj for which µ∗t0 − µk0t0 > 2Vj . Indeed, let k1 =

arg maxk∈K µ
k
t0 . In such case, for all t ∈ Tj one has µk1t ≥ µk1t0 − Vj > µk0t0 + Vj ≥ µk0t , since Vj

is the maximal variation in batch Tj . This however, implies that the expected reward of k0 is

dominated by an expected reward of another arm throughout the whole period, and contradicts

the optimality of k0 .

In addition, Corollary 3.2 in Auer et al. (2002) points out that the regret with respect to

the single best action of the batch, that is incurred by Exp3 with the tuning parameter γ =

min
{

1 ,
√

K logK
(e−1)∆T

}
, is bounded by 2

√
e− 1

√
∆TK logK. Therefore, for each j ∈ {1, . . . ,m}

one has

J2,j = E

max
k∈K

∑
t∈Tj

Xk
t

− Eπ
∑
t∈Tj

µπt

 (a)

≤ 2
√
e− 1

√
∆TK logK, (B.7)

for any µ ∈ V, where (a) holds since within each batch arms are pulled according to Exp3(γ).

Step 3 (Regret throughout the horizon). Summing over m = dT/∆T e batches we have:

Rπ(V, T ) = sup
µ∈V

{
T∑
t=1

µ∗t − Eπ
[

T∑
t=1

µπt

]}
(a)

≤
m∑
j=1

(
2
√
e− 1

√
∆TK logK + 2Vj∆T

)
(b)

≤
(
T

∆T
+ 1

)
· 2
√
e− 1

√
∆TK logK + 2∆TVT .

=
2
√
e− 1

√
K logK · T√
∆T

+ 2
√
e− 1

√
∆TK logK + 2∆TVT .

where: (a) holds by (B.3), (B.6), and (B.7); and (b) follows from (B.4). Selecting ∆T =⌈
(K logK)1/3 (T/VT )2/3

⌉
, we establish:

Rπ(V, T ) ≤ 2
√
e− 1 (K logK · VT )1/3 T 2/3 + 2

√
e− 1

√(
(K logK)1/3 (T/VT )2/3 + 1

)
K logK

+2
(

(K logK)1/3 (T/VT )2/3 + 1
)
VT

(a)

≤
(
6
√
e− 1 + 4

)
(K logK · VT )1/3 T 2/3,

where (a) follows from K ≥ 2 and VT ∈
[
K−1,K−1T

]
. This concludes the proof.

Proof of Theorem 3.3 The structure of the proof is follows: First, we follow the proof of

Theorem 3.2, breaking the decision horizon to a sequence of decision batches and analyzing the
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difference in performance between the sequence of single best actions and the performance of the

dynamic oracle. Then, we analyze the regret of the Exp3.S policy when compared to the sequence

of single-best-actions which is composed of the single best action of each batch (this part of the

proof roughly follows the proof lines of Theorem 8.1 of Auer, Cesa-Bianchi, Freund and Schapire

(2002), while considering a possibly infinite number of changes in the identity of the best arm.

Finally, we select tuning parameters that minimize the overall regret.

Step 1 (Preliminaries). Fix T ≥ 1, K ≥ 2, and TK−1 ≥ VT ≥ K−1. Let π be the Exp3.S

policy (the tuning parameters with be set later). We define a partition of the decision horizon T

to batches T1, . . . , Tm of size ∆T each (except perhaps Tm), according to (3.2).

Step 2. Let µ ∈ V. We follow the proof of Theorem 3.2 (see the beginning of step 3) to

obtain:

Eπ
∑
t∈Tj

(µ∗t − µπt )

 =
∑
t∈Tj

µ∗t −max
k∈K

∑
t∈Tj

µkt

+ max
k∈K

∑
t∈Tj

µkt

− Eπ
∑
t∈Tj

µπt


≤ 2Vj∆T + max

k∈K

∑
t∈Tj

µkt

− Eπ
∑
t∈Tj

µπt

 , (B.8)

for each j ∈ {1, . . . ,m} and for any µ ∈ V. Fix j ∈ {1, . . . ,m}. We next bound the difference

between the performance of the single best action in Tj and that of the policy, throughout Tj .

Let tj denote the first decision index of batch j, that is, tj = (j − 1)∆T + 1. We Wt denote the

sum of all weights at decision t: Wt =
∑K

k=1w
k
t . Following the proof of Theorem 8.1 in Auer et

al. (2002), one has:

Wt+1

Wt
≤ 1 +

γ/K

1− γ
Xπ
t +

(e− 2)(γ/K)2

1− γ

K∑
k=1

X̂k
t + eα. (B.9)

Taking logarithms on both sides of (B.9) and summing over all t ∈ Tj , we get

log

(
Wtj+1

Wtj

)
≤ γ/K

1− γ
∑
t∈Tj

Xπ
t +

(e− 2)(γ/K)2

1− γ
∑
t∈Tj

K∑
k=1

X̂k
t + eα |Tj | (B.10)

(for Tm set Wtm+1 = WT ). Let kj be the best single action in Tj : kj ∈ arg maxk∈K

{∑
t∈Tj X

k
t

}
.
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Then,

w
kj
tj+1

≥ w
kj
tj+1 exp

 γ

K

tj+1−1∑
tj+1

X̂
kj
t


≥ eα

K
Wtj exp

 γ

K

tj+1−1∑
tj+1

X̂
kj
t

 (a)

≥ α

K
Wtj exp

 γ

K

∑
t∈Tj

X̂
kj
t

 ,

where (a) holds since γX̂
kj
t /K ≤ 1. Therefore,

log

(
Wtj+1

Wtj

)
≥ log

wkjtj+1

Wtj

 ≥ log
( α
K

)
+
γ

K

∑
t∈Tj

Xπ
t . (B.11)

Taking (B.10) and (B.11) together, one has

∑
t∈Tj

Xπ
t ≥ (1− γ)

∑
t∈Tj

X̂
kj
t −

K log (K/α)

γ
− (e− 2)

γ

K

∑
t∈Tj

K∑
k=1

X̂k
t −

eαK |Tj |
γ

.

Taking expectation with respect to the noisy rewards and the actions of Exp3.S we have:

max
k∈K

∑
t∈Tj

µkt

− E

∑
t∈Tj

µπt

 ≤
∑
t∈Tj

µ
kj
t +

K log (K/α)

γ
+ (e− 2)

γ

K

∑
t∈Tj

K∑
k=1

µkt +
eαK |Tj |

γ
− (1− γ)

∑
t∈Tj

µ
kj
t

= γ
∑
t∈Tj

µ
kj
t +

K log (K/α)

γ
+ (e− 2)

γ

K

∑
t∈Tj

K∑
k=1

µkt +
eαK |Tj |

γ

(a)

≤ (e− 1) γ |Tj |+
K log (K/α)

γ
+
eαK |Tj |

γ
, (B.12)

for every batch 1 ≤ j ≤ m, where (a) holds since
∑

t∈Tj µ
kj
t ≤ |Tj | and

∑
t∈Tj

∑K
k=1 µ

k
t ≤ K |Tj |.

Step 3. Taking (B.8) together with (B.12), and summing over m = dT/∆T e batches we have:

Rπ(V, T ) ≤
m∑
j=1

(
(e− 1) γ |Tj |+

K log (K/α)

γ
+
eαK |Tj |

γ
+ 2Vj∆T

)

≤ (e− 1) γT +
eαKT

γ
+

(
T

∆T
+ 1

)
K log (K/α)

γ
+ 2VT∆T . (B.13)

Setting the tuning parameters to be α = 1
T and γ = min

{
1,
(

2VTK log(KT )
(e−1)2T

)1/3
}

, and selecting a

batch size ∆T =

⌈
(log (KT )K)1/3 ·

(
T

2VT

)2/3
⌉

one has:

Rπ(V, T ) ≤ 8(e− 1) (KVT log (KT ))1/3 · T 2/3.
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Finally, whenever T is unknown, we can use Exp3.S as a subroutine over exponentially in-

creasing pulls epochs T` = 2`, ` = 0, 1, 2, . . ., in a manner which is similar to the one de-

scribed in Corollary 8.4 in Auer, Cesa-Bianchi, Freund and Schapire (2002) to show that since

for any ` the regret incurred during T` is at most C (KVT log (KT`))
1/3 · T

2/3
` (by tuning

α and γ according to T` in each epoch `), and for some absolute constant C̃, we get that

Rπ(V, T ) ≤ C̃ (log (KT ))1/3 (KVT )1/3 T 2/3. This concludes the proof.
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Appendix C

Appendix to Chapter 4

C.1 Theoretical results

This section provides three theoretical results that support ideas described in §4.1, §4.2, and §4.3.

Proposition C.1. The CRP given by (4.1) is NP-hard.

Proof. We establish that the CRP is NP-hard by showing that the Hamiltonian path problem

(HPP), a known NP problem (Gary and Johnson 1979) can be reduced to a special case of the

CRP. We denote by G(V, E) a directed graph, where V is the set of nodes and E is the set of arcs.

An arc connecting one node v with another node v′ is denoted by ev,v′ . When v ∈ V is connected

to v′ ∈ V, one has ev,v′ ∈ E . Given a graph G(V, E), the HPP is to determine whether there exists

a connected path of arcs in E , that visits all the vertices in V exactly once.

We next show that the HPP can be reduced to a special case of the CRP. Fix a general,

directed graph G(V, E), and consider the following special case of the CRP, with a fixed x0, in

which:

• T = |X0| − `.

• X1 = V, with w(x) = 1 for each article in x ∈ X1.

• ut = u0 = u for all t = 1, . . . , T (the reader type is fixed, and in particular, independent of

the length of her path and on the articles she visits along her path).
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• ` = 1, i.e., every recommendation consists of a single link. Whenever a recommendation

A includes the link to article y that is placed at the bottom of an article x, we denote for

simplicity Pu,x,y(A) = Pu,x(y).

• Pu,x(y) ∈ {0, 1} for all y ∈ Xt, for all t = 1, . . . , T (the click probabilities for any potential

recommended link are binary at any epoch). In particular, for any x, y ∈ X1 we set:

Pu,x(y) =

 1 if ex,y ∈ E

0 otherwise.

• Pu,x0(y) = 1 for all y ∈ X1 (the first link is clicked, regardless of the selected recommenda-

tion).

Then, given the landing article x0 ∈ X0, the CRP takes the following form:

V ∗t (u,Xt, xt−1) = max
xt∈Xt

{
Pu,xt−1(xt)

(
1 + V ∗t+1(u,Xt+1, xt)

)}
,

for t = 1, . . . , T − 1, and

V ∗T (u,XT , xT−1) = max
xT∈XT

{
Pu,xT−1(xT )

}
.

To complete the reduction argument, we observe that there exists a connected path of arcs in

E that visits any vertex in V exactly once if and only if V ∗t (u,X1, x0) = T , and therefore, by

obtaining a solution to the CRP one solves the HPP. Since the HPP is NP-hard, the CRP must

be NP-hard as well. This concludes the proof.

We next analyze the performance gap between an optimal schedule of recommendation, and

a sequence of myopic recommendations. To do so we focus on a special case of the CRP in which:

• T = |X0| − `.

• ut = u0 = u for all t = 1, . . . , T (the reader type is fixed, and in particular, independent of

the length of her path and on the articles she visits along her path).

• ` = 1, i.e., every recommendation consists of a single link. Whenever a recommendation A

placed at he bottom of an article x includes the link to article y, we denote for simplicity

Pu,x,y(A) = Pu,x(y).

129



• w(x) = 1 for any available article x.

Recall the definition of the CRP in (4.1), in this case it can be written as:

V ∗t (u,Xt, xt−1) = max
xt∈Xt)

{
Pu,xt−1(xt)

(
1 + V ∗t+1(u,Xt+1, xt)

)}
,

for t = 1, . . . , T − 1, and

V ∗T (u,XT , xT−1) = max
xT∈XT

{
Pu,xT−1(xT )

}
.

Given a reader type u, initial set of available articles X0, and a landing article x0 ∈ X0, we define

the fraction of optimal performance recovered by the myopic policy as:

∆T (u,X1, x0) =
V m

1 (u,X1, x0)

V ∗1 (u,X1, x0)
.

We note that ∆T (u,X1, x0) ∈ [0, 1] for any problem primitives u, X0, and x0 ∈ X0. Let GT+1

denote the class of all sets of initial articles that includes T + 1 articles. The following result

shows that myopic recommendations may yield arbitrarily poor performance compared to optimal

recommendations when the size of the network and the problem horizon grow.

Proposition C.2.

inf
X0∈GT+1,x0∈X0,u∈U

∆T (u,X1, x0) −→ 0 as T →∞

Proof. Fix u ∈ U and ε ∈ (0, 1/2). Consider the next construction of a set of available articles

X0 ∈ GT+1, with a selection x0 ∈ X0, in which there exists a sequence of articles x0, . . . , xT , such

that:

Pu,x(y) =



1/2− ε if x = x0 and y = x1

1 if x = xt−1 and y = xt for some t ∈ {2, . . . , T}

1/2 + ε if x = x0 and y = xT

0 otherwise.

Then, the optimal schedule of recommendation is to recommend article xt at epoch t, generating

(1/2− ε)T expected clicks. Moreover, any myopic schedule of recommendation will begin with

recommending xT at epoch t = 1, generating (1/2 + ε) expected clicks. Therefore, one has:

inf
X0∈GT+1,x0∈X0,u∈U

∆T (u,X1, x0) ≤ ∆T (u,X1, x0) =
1
2 + ε(

1
2 − ε

)
T
−→ 0 as T →∞,

which concludes the proof.
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The final result of this section analyzes the performance of the best one-step look-ahead

recommendations (that solve (4.8)), compared to optimal recommendations (that solve (4.1)).

For simplicity we focus on a special case of the CRP in which:

• T = |X0| − `.

• ut = u0 = u for all t = 1, . . . , T .

• ` = 1, i.e., every recommendation consists of a single link. Whenever a recommendation A

includes link to article y that is placed at the bottom of an article x, we denote for simplicity

Pu,x,y(A) = Pu,x(y).

• w(x) = 1 for any available article x.

We further assume the set of available articles X to be continuous and convex (and therefore it

is not updated throughout the problem horizon). Specifically, we assume the set X is defined by

X = {(γ, β) : −1 ≤ γ ≤ 1, −1 ≤ β ≤ 1, β ≤ 2− ε− γ} ,

for some ε ∈ [0, 1]. The set X is depicted in Figure C.1.

1 

1 

ε

ε y

εyχ

β

γ

(engageability) 

(clickability) 

χ* 

Figure C.1: Convex set of available articles. The optimal recommendation schedule is dominated

by a policy that recommends ȳ at any epoch (if ȳ was an available article). The best one-step look-ahead

schedule dominates a policy that recommends yε at each epoch.

Proposition C.3. Let X be the set of available articles, and assume that Pu,x(y) ≤ p̄ for all

x ∈ X , y ∈ X , and u ∈ U . Then,

V one
1 (u,X , x0)

V ∗1 (u,X , x0)
≥ e−2ε

(
1 + e−2εp̄

1 + p̄

)T−1

,
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for any u ∈ U and x0 ∈ X .

Proof. Let X ∗ be defined as:

X ∗ = {(γ, β) : −1 ≤ γ ≤ 1, −1 ≤ β ≤ 1, β = 2− ε− γ} .

The set X ∗ is depicted in Figure C.1. Consider the one-step look-ahead policy, defined by

V one
t (u,X , xt−1) = Pu,xt−1(xt)

(
1 + V one

t+1 (u,X , xt)
)
,

for t = 1, . . . , T − 1, where

xt ∈ arg max
y∈X

{
Pu,xt−1(y)

(
1 + max

xt+1∈X
{Pu,y(xt+1)}

)}
,

for t = 1, . . . , T −1, and where the last recommendation is simply myopic. For each t ∈ {1, . . . , T}

we denote by γt and βt the clickability and the engageability values of xt, the article which is

recommended at step t. We denote the point (1− ε, 1− ε) by yε (see Figure C.1). Since for any

u ∈ U , V one
t (u,X , xt−1) is increasing in γt and βt for all t ∈ {1, . . . , T}, any point that is selected

by the one-step lookahead policy belongs to the set X ∗. Moreover,

V one
1 (u,X , x0) ≥ Pu,x0(yε)

T∏
t=2

(1 + Pu,yε(yε)) ,

for any u ∈ U and x0 ∈ X . In words, the one-step look-ahead policy performs at least as well as

a policy that selects yε at each epoch.

Next, consider the optimal recommendation schedule, defined by

V ∗t (u,X , xt−1) = max
y∈X

{
Pu,xt−1(xt)

(
1 + V ∗t+1(u,X , xt)

)}
,

for t = 1, . . . , T − 1, where the last recommendation is myopic. We denote the point (1, 1) by ȳ

(see Figure C.1). Clearly, ȳ does not belong to X . Moreover, since V ∗1 (u,X , x0) is increasing in

γt and βt for all t ∈ {1, . . . , T}, one has that

V ∗1 (u,X , x0) ≤ Pu,x0(ȳ)
T∏
t=2

(1 + Pu,ȳ(ȳ)) ,

for any u ∈ U and x0 ∈ X . In words, the optimal recommendation schedule performs at most as

well as a policy that selects ȳ at each epoch. Moreover, one has:

Pu,x0(yε)

Pu,x0(ȳ)
=

eα+θu+βx0+1−ε

1 + eα+θu+βx0+1−ε ·
1 + eα+θu+βx0+1

eα+θu+βx0+1

= e−ε · 1 + eα+θu+βx0+1

1 + eα+θu+βx0+1−ε ≥ e−ε, (C.1)
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for any u ∈ U and x0 ∈ X . In addition, we have:

Pu,yε(yε)
Pu,ȳ(ȳ)

=
eα+θu+2−2ε

1 + eα+θu+2−2ε
· 1 + eα+θu+2

eα+θu+2

= e−2ε · 1 + eα+θu+2

1 + eα+θu+2−2ε
≥ e−2ε, (C.2)

for any u ∈ U . Therefore, one has for any u ∈ U , x0 ∈ X , and δ ≥ δε:

V one
1 (u,X , x0)

V ∗1 (u,X , x0)
≥

Pu,x0(yε)
∏T
t=2 (1 + Pu,yε(yε))

Pu,x0(ȳ)
∏T
t=2 (1 + Pu,ȳ(ȳ))

(a)

≥ e−2ε ·
T∏
t=2

(
1 + Pu,yε(yε)
1 + Pu,ȳ(ȳ)

)
(b)

≥ e−2ε ·
T∏
t=2

(
1 + e−2εPu,ȳ(ȳ)

1 + Pu,ȳ(ȳ)

)
(c)

≥ e−2ε ·
T∏
t=2

(
1 + e−2εp̄

1 + p̄

)
= e−2ε ·

(
1 + e−2εp̄

1 + p̄

)T−1

,

where: (a) holds by (C.1); (b) holds by (C.2); and (c) holds since Pu,ȳ(ȳ) ≤ p̄ for all u ∈ U . This

concludes the proof.

C.2 Choice model and estimation

In this section we detail the estimation process described in §3. We start by a description of the

control parameters that were used.

Given an assortment A, and an article y that appears in A, let p : (y,A) → {0, . . . , `− 1}

denote the position of article y in the assortment A. If p(y,A) = 0, then y is recommended in the

highest position in A, and if p(y,A) = `− 1, y is recommended in the lowest position in A. Then,

given a user u ∈ U and an assortment A placed at a host article x ∈ X we define:

Pu,x,y(A) =


φu,x,y(A)

1+
∑
y′∈A φu,x,y′ (A) if y appears in A

0 otherwise.

Whenever y appears in A, we define:

φu,x,y(A) = exp
{
α+ θu + βx + γy + µx,y + λp(y,A)

}
.

The host effect and the link effect are discussed in §4.2.1.
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User effect. The parameter θu captures the effect of the user type, and in particular, of

experienced users. We differentiate between two types of users: experienced users (that have

clicked on an Outbrain recommendation before) and inexperienced users. Thus, we have θu ∈

{θexp, θinexp} for each u ∈ U , where we normalize by setting θinexp = 0 (treating unexperienced

users as a benchmark) and estimate θexp from the data. Experienced readers were defined as ones

that clicked on a recommendation during an initial period of of 10 days. The main motivation

for distinguishing between experienced and inexperienced users is implied by an aggregated data

analysis summarized in Table C.1, indicating that while most of the users are inexperienced,

experienced users visit the publisher more than twice the times inexperienced ones visit it on

average, and on average an experienced user clicks more than twice the times (per visit) an

inexperienced one does .

User type Population share Visits share Clicks per visit

Experienced 8.2% 16.9% 0.23

Inexperienced 91.8% 83.1% 0.10

Table C.1: Experienced vs. Inexperienced users. The table summarizes the differences between

inexperienced users and experienced users, as was observed along the 30 days that followed the initial

period.

Contextual relation effect. To formulate the effect of contextual connection between the

host article and a recommended article we distinguished between cases in which the host and

the recommended article are from the same topic category (using the classification to 84 topic

categories), from cases in which the two articles are from different categories. Thus, we have

µx,y ∈ {µrelated, µunrelated} for each x, y ∈ X , where we normalize by letting µunrelated = 0

(treating recommendations in which both articles are not in the same category as a benchmark)

and estimate µrelated from the data. We note that the contextual connection effect may be

formulated in many different ways. One alternative that we addressed is a more general approach

of estimating the entries of the 84 by 84 (non-symmetric) matrix that describes the explicit

connection between each pair of topic categories. This clearly increases the number of model

parameters, and by doing so we observed no improvement over the predictive power of the model

(through the approach detailed in §4.2.3). Another potential approach is to use an alternative
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classification to topics; testing a coarser classifications to 9 categories showed no improvement in

the prediction power of the model.

Position effect. This effect is captured by the variables λp ∈ {λ0, . . . , λ5}, that correspond

to recommendations that list 6 internal recommendations, as in the data set that was used to

estimate the model. We set λ0 = 0 (treating the highest position as a benchmark), and estimate

the other 5 parameters from the data to measure the effect of lower positions.

The estimation process. The model was estimated in each two-hour batch by applying

a Newton step method to maximize the log-likelihood of the model. The estimation results in

all 360 estimation batches were consistent. The values of the control parameters received from

the estimation over the first batch is presented in Table C.2. The estimate of θexp quantifies the

Effect Parameter Estimate Standard error

Intercept α −4.45 3.9 · 10−6

User θexp 1.13 1.7 · 10−3

Contextual relation µrelated −0.10 0.02

Position

λ1 −1.10 4.9 · 10−4

λ2 −1.71 1.4 · 10−5

λ3 −2.03 1.9 · 10−5

λ4 −2.28 2.1 · 10−5

λ5 −2.29 2.1 · 10−5

Table C.2: Estimation of auxiliary parameters. The estimated values and standard errors for the

control parameters over the first estimation batch. All estimates are at significance level p < 0.01.

positive effect of previous user experience on the likelihood to click. It is in tune with the statistics

presented in Table 1: users that are aware of and familiar with the recommendation service tend

to use it more often than inexperienced users do. The estimate of µrelated quantifies the effect of

contextual relation between the host and recommended articles. Interestingly, it suggests that on

average, users tend to click less when the recommended article directly relates to the article they

just finished reading, relative to cases in which such direct relation does not exist. One potential

bias here, is that links that directly relate to the host article are typically generated by a class

of contextual-focused algorithms, that may be less successful than other classes of algorithms, for
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example, behavior-focused ones. The estimates of λ1, . . . , λ5 quantify the “cost of lower position”

in the recommendation box, relative to the highest position. Not surprisingly, the lower the link

is, the smaller is the likelihood of a reader to click on that link.
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