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ABSTRACT

Network Resource Allocation Under Fairness
Constraints

Shyam S Chandramouli

This work considers the basic problem of allocating resources among a group of agents in a net-

work, when the agents are equipped with single-peaked preferences over their assignments. This

generalizes the classical claims problem, which concerns the division of an estate’s liquidation value

when the total claim on it exceeds this value. The claims problem also models the problem of

rationing a single commodity, or the problem of dividing the cost of a public project among the

people it serves, or the problem of apportioning taxes. A key consideration in the claims problem

is equity: the good (or the “bad,” in the case of apportioning taxes or costs) should be distributed

as fairly as possible. The main contribution of this dissertation is a comprehensive treatment of a

generalization of this classical rationing problem to a network setting.

Bochet et al. recently introduced a generalization of the classical rationing problem to the

network setting and designed an allocation mechanism—the egalitarian mechanism—that is Pareto

optimal, envy free and strategyproof. In chapter 2, it is shown that the egalitarian mechanism is in

fact group strategyproof, implying that no coalition of agents can collectively misreport their infor-

mation to obtain a (weakly) better allocation for themselves. Further, a complete characterization

of the set of all group strategyproof mechanisms is obtained.

The egalitarian mechanism satisfies many attractive properties, but fails consistency, an im-

portant property in the literature on rationing problems. It is shown in chapter 3 that no Pareto

optimal mechanism can be envy-free and consistent. Chapter 3 is devoted to the edge-fair mech-

anism that is Pareto optimal, group strategyproof, and consistent. In a related model where the

agents are located on the edges of the graph rather than the nodes, the edge-fair rule is shown to

be envy-free, group strategyproof, and consistent.

Chapter 4 extends the egalitarian mechanism to the problem of finding an optimal exchange in

non-bipartite networks. The results vary depending on whether the commodity being exchanged

is divisible or indivisible. For the latter case, it is shown that no efficient mechanism can be



strategyproof, and that the egalitarian mechanism is Pareto optimal and envy-free. Chapter 5

generalizes recent work on finding stable and balanced allocations in graphs with unit capacities

and unit weights to more general networks. The existence of a stable and balanced allocation is

established by a transformation to an equivalent unit capacity network.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

The problem of dividing an amount of a resource when the total claim on it exceeds its supply is

thousands of years old. Many allocation problems are solved by a pricing resources: high energy

prices induce consumers to conserve energy, high salaries attract workers to particular occupations

etc. A theme common to all the models discussed in this dissertation is that prices are not allowed

for legal or ethical reasons. This is true in many public decision making problems such as allocating

students to public schools, exchanging organs among patients, etc. Furthermore, there are many

markets where there is lack of perfect competition either due to the connectivity constraints or the

indivisiblity of the good and the markets become thin. How these thin markets allocate resources

depends primarily on the institutions that govern these transactions. The goal of the study here is

to identify mechanisms with attractive efficiency, fairness and incentive properties in a variety of

problems.

The “claims problem” is the most thoroughly studied formal model of distributive justice in a

moneyless market. It is equivalent to the problems of rationing a commodity among its consumers

or dividing a tax or the cost of a public project among a group of citizens. It was formalized by

O’Neill [46] and Aumann and Maschler [5] who propose many allocation rules. A feature unifying

its classical solutions is that they can all be obtained by maximizing an additive measure of welfare

over the possible divisions of the resource [63]. We find that this insight is more general. It extends

to a network-constrained resource allocation problem encompassing division with single-peaked

preferences [56], random matching under dichotomous preference [13] and a version of the kidney

exchange problem [49].

Concretely, we consider the problem of matching the supplies of a resource with competing
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demands when side payments or price adjustments are not possible. The key constraint is that

the supplies of the resource can only flow from suppliers to demanders through connections in a

network which is a modeling tool used to encode diverse operational constraints:

• In a networked market for a commodity under fixed prices, a supplier is connected to de-

manders she has signed supply contracts with, or to whose specifications she is tailoring the

commodity, etc.

• In the kidney exchange model, a supplier is connected to a demander if there are no blood

type or immunological incompatibilities between them.

• In matching problems, the network encodes preferences deeming agents acceptable or unac-

ceptable: a supplier is connected to a demander if they find each other mutually acceptable.

The claims problem can be thought of as a special case in which a single supplier is connected

to each demander and the total demand exceed supply. In the claims or matching problems,

preferences are assumed to be increasing over the amounts received or the probability of being

matched respectively. In contrast, we consider the possibility of agents having satiated preferences

over these amounts: each supplier and demander has a unique preferred transfer or peak; more

is preferred to less up to that point, and less to more beyond it. Such preferences are known as

“single peaked”. They arise from the convexity of preferences over an underlying consumption or

production space.1.

Recently, ideas from combinatorial optimization have played an important role in policy making.

In the healthcare sector, the work of Roth et al. [47, 49] has had an enormous impact. Their

work gained popularity among transplant surgeons led to the amendment of the National Organ

Transplant Act (NOTA) of 1984 to allow for kidney exchange or kidney paired donations, thereby

saving a lot of lives. The follow up work of Roth et al. [48, 50] made further progress in exchanging

kidneys among patients by allowing for multi way exchanges. In the context of school choice,

Sonmez et al. [1] study a student optimal stable mechanism (SOSM) which is a variant of the

1For instance, if suppliers have strictly convex production sets and prices are fixed, their profits are single-peaked

in their output. Alternatively, if an employee is paid an hourly wage and her disutility of labor is a convex function

of labor supplied, her preferences over time worked are single-peaked
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deferred -acceptance algorithm of Gale and Shapley [29]. Major school districts including Boston,

Denver and New York City have already adopted versions of SOSM advocated in their work. In

the context of cadet branching, the low retention rates of junior officers has been a major issue

for the U.S. army since the late 1980’s. Sonmez and Switzer [55] study a matching with contracts

model that could potentially improve the retention among junior officers.

As mentioned earlier, the problems discussed in this chapter have a network structure and

feasible flows in this network determine the allocations to the agents in the problem. Efficiency

and/or design constraints forces us to focus on allocation for agents that is induced by a maximum

flow in the underlying network. The existing work in operations research and computer science

regarding the study of maximum flows is quite rich: we know algorithms with good running times

for computing a maximum flow, we understand the structure of flow polytopes, connections with

linear programming etc. However, this literature generally does not distinguish between different

maximum flows.

From an economic perspective, some of these solutions can be unacceptable based on fairness

considerations. When two nodes are connected identically but treated differently in regard to

their final allocation, it might imply an unfair treatment by the central planner. Also, indifference

between different solutions can lead to strategic manipulation by agents. Thus these considerations

force us to choose particular subsets of solutions (mostly a unique maximum flow). As we see shall

see later, in many networks an efficient allocation is one that is induced by a maximum flow.

The mechanisms and structural properties that we study in this work are particularly interesting

when multiple units of the good are available. In the applications discussed earlier agents are

typically endowed with a unit quantity of a good, so the strategic behavior of the agents are limited

to their connectivity. Whereas in our problems, the agents may report their ideal demand/supply,

called their “peak” to the central planner. So they may have an incentive to misreport this value

as well as to improve their allocation.

The rest of the dissertation is stuctured as follows: We start by summarizing the results of

Sprumont [56] for the case of a unit supplier/demander. The uniform rule of Sprumont obtains an

allocation that is Pareto optimal, consistent, envy free and strategyproof with respect to the peaks

of the agents in the network. An immediate complication arises when the network structure is
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bipartite with agents on either side of the network and arbitrary connectivity. The notion of envy

freeness is no longer compatible with that of consistency in the set of Pareto optimal solutions.

This creates a dichotomy in the study of allocation mechanisms when the network structures are

complex. Hence, a mechanism planner has to choose between envy freeness and consistentcy.

In Chapter 2, the focus is on obtaining envy free allocation for agents in a supply/demand

bipartite network (The agents control the nodes in this chapter)2. Bochet et al. [11, 12] introduce

two different models when the network structure is bipartite. In the two sided model of Bochet

et al. [12], the suppliers and demanders are in either side of the bipartite network. In the one

sided model of Bochet et al. [11] only one side of the network has agents and the other side of

the network has goods to be rationed to these agents. Each good can be allocated to any agent

that has a connection to it. The agents in these models do not care as to whom they supply

or receive the goods from. They derive their utility from the total net allocation. Agents have

single peaked preferences over their allocation. They have an ideal quantity that they would like to

receive. Bochet et al. introduce the egalitarian mechanism as a generalization of uniform rule for

both these problems. The egalitarian mechanism is Pareto optimal, envy free, strategyproof with

respect to the peaks in both these models. Our main contribution to this literature is a proof that

the egalitarian mechanism is in fact peak group strategyproof in both these models i.e. it is robust

against coordinated misreporting by a groups of agents. We identify the structural properties

that makes a mechanism peak groupstrategyproof. We show that any mechanism that is Pareto

optimal and strongly invariant is peak group strategyproof and vice-versa. This not only helps us

understand the structure of peak groupstrategyproof mechanisms but also makes it easier to verify

if a mechanism is in fact robust against coordinated misreports. Moreover, our technique simplifies

the existing proofs of strategyproofness.

In the model of Sprumont [56] an agent does not have any incentive to misreport his link. A

misreporting agent gets disconnected from the network thereby receiving zero utility. But when

the network structure is bipartite it is possible for agents have the possibility to misreport their

connectivity to improve their allocation on other connected edges. We show that in the two sided

model, the egalitarian mechanism is link groupstrategyproof if the coalition is restricted to agents

2In chapters 2-4, the utility of an agent i is the total amount of flow that the agent shares or sends to his neighbors

in the network
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on one side of the network only. Finally, we extend these results to the case of a capacitated network

as weall as to the case of indivisible goods.

In Chapter 3, we shift the focus to studying rules that are consistent. In recent work, Moulin and

Sethuraman [43] study consistent rules and their extensions to bipartite networks, establishing that

the uniform gains and uniform losses methods have infinitely many consistent extensions whereas

the propotional method has only one. In their follow up work, Moulin and Sethuraman [44] study

loss calibrated rationing methods that are consistently extendable to bipartite networks. They

show that most standard parametric methods do not admit such consistent extensions. They do

not model the strategic behavior of the agents and assume the peak of the agents to be known or

observable. We ask if then an efficient mechanism that are both consistent and strategyproof.

In the first part of the chapter, we still assume that the agents are on the nodes. We introduce

the edge fair mechanism and show that its outcome can be found by solving to a sequence of

linear programming problems. The edge fair mechanism is Pareto optimal, consistent and peak

groupstrategyproof. In essence, it retains many of the attractive properties of the egalitarian

mechanism and is a sound alternative when consistency is important. In the second part of the

chapter, we assume that the agents are on the edges, and that the nodes are simply transshipment

points. Such a model is know in the literature as a flow game. We continue to study the edge fair

algorithm when the agents are on the edges. We show that the allocation is Pareto optimal, envy

free, consistent and group strategyproof 3. Moreover, the allocation induced by the edge fair rule

is still a core allocation.

In Chapter 4, we extend many of the familiar rules to general non-bipartite networks. In

these problems, agents are on the nodes and they own a specified quantity of a homogeneous

good. Each agent derives utility when he/she exchanges or shares the good with the neighbors, the

utility increasing in the amount shared. We find fair allocation rules on these general non-bipartite

networks by suitably transforming it to bipartite networks, both for divisible and indivisible goods.

Note that when the goods are indivisible and agents own exactly one unit of a good, it boils down

to the well-known pairwise kidney exchange problem of Roth et al. [49] for which we know that

the egalitarian lottery mechanism has very attractive properties. When the goods are indivisible,

3Note that in this model, agents report the capacity of their edge
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we obtain a similar egalitarian lottery mechanism for the agents on the nodes that is Lorenz

dominant and is also envy free. This egalitarian mechanism can be seen as an extension of the

probabilistic egalitarian rule discussed earlier for bipartite networks. The egalitarian mechanism is

weakly link group strategyproof for the agents and it is impossible for any mechanism to be peak

groupstrategyproof in this model.

Finally, in Chapter 5, we study stable and balanced allocations for flows in networks. In

Chapters 2-4, the amount of commodity that an agent sends/receives directly contributes to his

utility for the good. In contrast, in the current model the flow fij is the surplus created when

i and j are involved in a partnership, and this surplus fij has to be shared between these two

agents. The central planner decides the share of the surplus that each agent receives. The planner

wishes to find solutions that are stable and balanced. The study of stable solutions dates back to

the work of Gale and Shapley [29] where they study the problem of matching medical students to

residency programs. They do so by a deferred-acceptance algorithm and prove that the outcome

of their algorithm is a stable solution4. Later, Shapley and Shubik [53] study assignment games in

which nodes are still unit capacitated and agents are preference homogeneous. They obtain stable

solutions and establish the equivalence between core solutions and stable solutions.

The recent literature on network bargaining by Kleinberg and Tardos [38], Bateni et al. [9]

and Koenmann et al. [27] all study extensions of the Shapley and Shubik model to more general

networks with arbitrary capacities. They also study the notion of balanced outcomes: in every

pairwise contract, the allocation of an agent with respect to his best outside option is the same.

In some sense, this treats every agent in a fair way i.e. an agent with relatively a better allocation

inherently has better bargaining power in the network. All the aforementioned literature restrict

their attention to strictly integral contracts. Since the focus of the dissertation has been on flows in

networks, we relax the model to allow for fractional exchanges. We show that when such exchanges

are allowed, we can always find a stable outcome in contrast to the integral case where stable

solutions may not exist [38]. We also try to find balanced outcomes in these fractional exchange

case by reducing to simpler networks. Again, it is impossible to find a strategyproof mechanism

that selects a stable and balanced outcomes.

4Agents have strict preferences in the Gale and Shapley student assignment model
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Chapter 2

The Egalitarian Mechanism

2.1 Introduction

Motivated by applications in diverse settings, Bochet et al. [11, 12] study a model in which a single

commodity is reallocated between a given set of agents with single-peaked preferences. In this

environment, each agent is endowed with a certain quantity of the commodity and has an ideal

consumption level (his peak) of that commodity. An agent who is endowed with more than his

ideal consumption level can thus be thought of as a supplier, and an agent who is endowed with

less than his ideal consumption level can be thought of as a demander. Furthermore, transfers are

possible only between certain pairs of agents, represented by a graph. The goal is to reallocate

the commodity to balance supply and demand to the extent possible. The key difference from

conventional economic models on this topic is the inability to use money: motivating applications

include assigning (or reassigning) patients to hospitals, assigning students to schools, and allocating

emergency aid supplies. On the other hand, it is easy to see that the resulting problem is essentially

a transportation problem in a (bipartite) network. The distinguishing feature here is that the

preferences of the agents (such as their peaks) and the other agents they are linked to is typically

private information, so the agents must be given an incentive to report this information truthfully.

Bochet et al. [12] propose a clearinghouse mechanism (a centralized organization of the market)

that prescribes an allocation that is efficient with respect to (reported) preferences and (reported)

feasible links between agents. They identify a unique egalitarian allocation—so named because of
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the intimate connection with the egalitarian solution of an associated supermodular game—that

Lorenz dominates and “envy free” among all Pareto efficient allocations for this problem.

Furthermore, they show that the egalitarian mechanism is strategyproof with respect to both

links and peaks: no individual agent can strictly benefit by misreporting his peak or the set of

agents he is linked to. In a companion paper, Bochet et al. [11] consider a “one-sided” model where

the demanders are not strategic, and their demands have to be met exactly. For this model, they

propose an egalitarian mechanism that is strategyproof with respect to peaks, but not with respect

to links.

Our main result is that the egalitarian mechanism is group strategyproof with respect to peaks

in both the one-sided and two-sided models of Bochet et al. Furthermore, we show that under

the egalitarian mechanism it is a weakly dominant strategy for any coalition of suppliers (or any

coalition of demanders) to truthfully report their links. These results thus properly generalize the

corresponding (individual) strategyproofness results of Bochet et al. Our proofs result in an im-

proved understanding of the two models and simpify some of the earlier proofs of strategyproofness.

The models of Bochet et al. [12, 11] generalize many well-known and well-understood models in

the literature; If there is a single demander (or a single supplier), the problem reduces to a classical

rationing problem of the sort considered by Sprumont [56]. The egalitarian rule then reduces to the

“uniform” rule, and admits many characterizations [56, 18, 54]. If the peaks are all identically 1, the

problem reduces to a matching problem with dichotomous preferences, discussed in Bogomolnaia

and Moulin [13]: in this case, the flow between a supplier-demander pair can be thought of as the

probability that this pair is matched. Some of the negative results related to link strategyproofness

discussed later are true even in this restricted setting as has already been observed there; we mention

these results in the appropriate sections for the sake of completeness. Finally, Megiddo [41, 42]

considered the problem of finding an “optimal” flow in a multiple-source, multiple-sink network,

and proposed an algorithm to find a lexicographically optimal flow. The egalitarian algorithm

described in Bochet et al. [12, 11] is essentially Megiddo’s algorithm to compute a lexicographically

optimal flow. An implication of our result is that Megiddo’s algorithm is group strategyproof with

respect to the source and sink capacities, that is, if the agents are located on the edges incident

to sources and sinks, and all other edge-capacities are common knowledge, then no coalition of
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agents have an incentive to misreport their capacities. This observation is useful in settings in

which equitably sharing resources is important, such as the sharing problem of Brown [14].

The rest of the chapter is organized as follows: In section 2.2 we describe the uniform rule and

summarize other results that are most relevant to the rest of the chapter, in section 2.3 we describe

the two sided model of Bochet et al. [12] and survey their main results about the Egalitarian

Mechanism. We conclude with our contribution on the strategic issues related to the Egalitarian

Mechanism. In section 2.5 we discuss the one sided extension of the Sprumont model, discuss the

egalitarian mechanism and related strategic issues. Finally, in section 2.4.1 and section 2.4.2, we

generalize the Egalitarian Mechanism when the goods are indvisible and when the connections are

capacity constrained.

2.2 Uniform Rule

2.2.1 Model

The resource allocation problem discussed in this section originated from the claims problem of

O’Neill [46]. The claims problem concerns the division of an estate’s liquidation value when claims

on it exceed this value. It is equivalent to the problem of rationing a commodity among its

consumers or dividing a tax or the cost of a public project among a group of citizens.

More formally, an amount K ∈ R+ has to be divided among a set N of agents with claims

adding up to more than K. For each i ∈ N , let ci ∈ R denote agent i’s claim, and c = (ci), i ∈ N

denote the vector of claims (
∑

i∈N ci ≥ K). In the bankruptcy application, K is the liquidation

value of a bankrupt firm, the members of N are creditors, and ci is the claim of creditor i against

the firm. A closely related application is to estate division: a man dies and the debts he leaves

behind, written as the coordinates of c, are found to add up to more than the worth of his estate,

K. How should the estate be divided? Alternatively, each c could simply be an upper bound on

agent i’s consumption. When a pair (c,K) is interpreted as a tax assessment problem, the members

of N are taxpayers, the coordinates of c are their incomes, and they must cover the cost K of a

project among themselves. The inequality ci ≥ K indicates that they can jointly afford the project.

In this context, ci could also be seen as the benet that consumer i derives from the project. See
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Thomson [60] for a brief survey of research on the claims problem.

O’Neill [46] considers strategic manipulations where agents can merge with other agents to

form a bigger agent or split themselves into duplicate copies each with lesser capacity. He shows

that proportional rule is the only mechanism that is merge or split proof. The seminal paper by

Sprumont [56] considers a similar model in which agents can even misreport their claims. In this

model, there is an infinitely divisible good that must be divided (no-free disposal) among a set

of agents with single-peaked preferences. Agents report their claim profiles (preferences) to the

mechanism designer and an allocation vector x is determined by the mechanism. The uniform

rule of Sprumont allocates to each agent either his peak or a common amount, in such a way that

the total quantity is fully distributed to agents whether they collectively over-demand or under-

demand shares of the quantity. The Uniform rule strives to be as egalitarian as possible, under the

restriction that the division of the quantity must be Pareto efficient.

Typical everyday applications include: a manager wanting to allocate an amount of overtime

hours among a given set of employees, and there is a fixed hourly wage; government wanting to

allocate a public good to the demanding participants, etc. If agents have a concave utility function,

they then have single-peaked preferences over shares of the good.

The uniform rule is uniquely characterized by Pareto efficiency, envy freeness and peak strate-

gyproofness. We describe the model and the rule below.

We follow the description and notation as in the original work of Sprumont [56]. There is a

one (normalized) unit of a divisible good with a supplier that has to allocated among a set of

N = {1, 2, ...N} agents. The preference relations are assumed to be single peaked, denoted by Ri:

i.e. there exists a si ∈ [0, 1] (the peak of Ri) such that for any two possible allocations xi, x
′
i:

x′i < xi ≤ si =⇒ xiPix
′
i (2.1)

si ≤ xi < x′i =⇒ xiPix
′
i (2.2)

where Pi denotes the strict preference relation over Ri. The set of single peaked preferences will

be denoted by R.

A division problem is the report (Ri)i∈N of the preference profile and the number of units K

that is to be allocated (In our current description of the model, K = 1; generalization to arbitrary
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Figure 2.1: Sprumont Model

value of K follows directly)

A feasible allocation x = (xi)i∈N ∈ RN+ such that
∑

i∈N xi = 1. Denote the set of feasible

allocation profiles by F .

A Mechanism or Rule is a function ϕ : RN → F such that it maps each input preference profile

R to a feasible allocation profile in F . The allocation of agent i under profile R by a mechanism ϕ

is given by xi = ϕi(R) .

We are interested in finding a unique feasible allocation which is efficient, fair and strategyproof

allocation for all the agents. We define these economic constraints more mathematically below and

also discuss their importance in fair allocation literature.

Efficiency: A mechanism or rule is ϕ is efficient if for all R ∈ RN ,

[
∑

i∈N si(Ri) ≤ 1] =⇒ [φi(R) ≥ si(Ri) for all i ∈ N ], and (2.3)

[
∑

i∈N si(Ri) ≥ 1] =⇒ [φi(R) ≤ si(Ri) for all i ∈ N ] (2.4)

If an allocation is efficient, then there does not exist another allocation which is weakly better

for all the agents and strictly better for at least one agent. Hence, it is a Pareto optimal allocation.

In the current context, efficiency simply requires that if the preferred shares add up to more (less)

than the amount required, then no agent should get more (less) than his preferred share.

Envy Freeness: For all R ∈ RN and i, j ∈ N , ϕi(R)Riϕj(R). In an envy free mechanism, any agent

i ∈ N prefers his allocation over all other agents for all preference profiles in RN .
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Strategy-proofness: A mechanism ϕ is strategyproof if for all R ∈ RN , all i ∈ N and all R′i ∈

R, ϕi(Ri, R−i)Riϕi(R′i, Ri). That is, in a strategy proof mechanism it is a dominant strategy for

the agents to reveal their preferences truthfully.

Sprumont [56] showed that the properties of strategy proofness, efficiency and envy freeness

characterize an allocation rule that he called the uniform rule.

2.2.2 Sprumont’s Uniform Rule

Definition 1 (Sprumont[ [56]]) The Uniform Rule φ∗ is defined as follows:

φ∗i (R) =


min{si(Ri), λ(R)},

∑
i∈N si(Ri) ≥ 1

max{si(Ri), µ(R)},
∑

i∈N si(Ri) ≤ 1

for all i ∈ N , where λ(R) solves the equation
∑

i∈N min{si(Ri, λ(R)} = 1 and µ(R) solves the

equation
∑

i∈N min{si(Ri, µ(R)} = 1

The uniform rule gives to each agent his most preferred share, as long as it falls within certain

bounds which are the same for everyone and chosen so as to satisfy the feasibility condition.

The uniform rule applied to the network 2.1 above splits the unit good in the following way:

(s1, s2, s3) = (2/7, 5/14, 5/14). Agent s1 receives his peak and does not envy other agents; Agents

s2, s3 are symmetric and receive the same fraction. Any increase in the allocation of agents s2, s3

violates feasibility or envy freeness. We will define these properties in later sections. The rest of this

chapter is related to generalizing the Sprumont’s model and uniform rule to a bipartite network.
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2.3 Two Sided Model (Divisible Goods)

2.3.1 Transfers with bilateral constraints

We have a set S of suppliers with generic element i, and a set D of demanders with generic

element j. A set of transfers of the single commodity from suppliers to demanders results in a

vector (x, y) ∈ RS+ × RD+ where xi (resp. yj) is supplier i’s (resp. demander j’s) net transfer, with∑
S xi =

∑
D yj .

The commodity can only be transferred between certain pairs of supplier i, demander j. The

bipartite graph G, a subset of S ×D, represents these constraints: ij ∈ G means that a transfer is

possible between i ∈ S and j ∈ D. We assume throughout that the graph G is connected, else we

can treat each connected component of G as a separate problem.

We use the following notation. For any subsets T ⊆ S, C ⊆ D the restriction of G is G(T,C) =

G ∩ {T × C} (not necessarily connected). The set of demanders compatible with the suppliers in

T is f(T ) = {j ∈ D|G(T, {j}) 6= ∅}. The set of suppliers compatible with the demanders in C is

g(C) = {i ∈ S|G({i}, C) 6= ∅}. For any subsets T ⊆ S, C ⊆ D, xT :=
∑

i∈T xi and yC :=
∑

j∈C yj .

A transfer of goods from S to D is realized by a G-flow ϕ, i.e., a vector ϕ ∈ RG+. We write

x(ϕ), y(ϕ) for the transfers implemented by ϕ, namely:

for all i ∈ S : xi(ϕ) =
∑
j∈f(i)

ϕij ; for all j ∈ D : yj(ϕ) =
∑
i∈g(j)

ϕij (2.5)

We say that the net transfers (x, y) are feasible if they are implemented by some G-flow. We write

Φ(G) for the set of feasible flows, and A(G) for the set of feasible net transfers. We define similarly

A(G(S′, D′)) for any S′ ⊆ S, D′ ⊆ D. These sets are described as follows.

Lemma 1: For any S′ ⊆ S, D′ ⊆ D the three following statements are equivalent:

i) (x, y) ∈ A(G(S′, D′))

ii) for all T ⊆ S′, xT ≤ yf(T ) and xS′ = yD′

iii) for all C ⊆ D′, yC ≤ xg(C) and yD′ = xS′

Proof: This is a standard application of the Marriage Lemma, see, e.g., [2].
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The two sided model arise in many practical scenarios. The applications include matching

call center employees to customers, hospitals sharing/diverting patients, service providers sharing

customers like in airline or hotel industry, matching organ or blood donors with recipients, etc.

2.3.2 Maximal flow under capacity constraints

Assume, in this section only, that each supplier i ∈ S has a (hard) capacity constraint si, i.e.,

cannot send more than si units of the commodity. Similarly each demander j ∈ D cannot receive

more than dj units.

We write Φ(G, s, d) for the set of feasible flows ϕ such that x(ϕ) ≤ s, and y(ϕ) ≤ d, and

A(G, s, d) for the corresponding set of feasible constrained transfers.

The problem of finding the maximal feasible flows between suppliers and demanders thus con-

strained, is well understood. We can apply the celebrated max-flow/min-cut theorem to the oriented

capacity graph Γ(G, s, d) obtained from G by adding a source σ connected to all suppliers, and

a sink τ connected to all demanders; by orienting the edges from source to sink; by setting the

capacity of an edge in G to infinity, that of an edge σi, i ∈ S, to si, and that of jτ, τ ∈ D, to dj .

A σ-τ cut (or simply a cut) in this graph is a subset X of nodes that contains σ but not τ . The

capacity of a cut X is the total capacity of the edges that are oriented from a node in X to a node

outside of X (such edges are said to be “in the cut”).

We illustrate next this construction.

Example 3: Canonical flow representation

Figure 2.3 shows the canonical flow representation of Example 2.2. The maximum flow from σ to

τ is bounded by the capacity of any σ-τ cut, in particular the minimum capacity σ-τ cut. The

max-flow/min-cut theorem says that the maximum σ-τ flow has value equal to the capacity of the

minimum σ-τ cut. Agents in the minimum cut are in the market segment with long supply; agents

outside the minimum cut belong to the segment with long demand. In Figure 2.3 , the minimum

capacity cut contains supplier 1 and demander 1 only (and σ) and has a capacity of 24 which is

the value of a maximum flow. Note that in the subset of efficient allocations where the long side



CHAPTER 2. THE EGALITARIAN MECHANISM 15

10 s1

6 s2

4 s3

8 s4

6d1

12d2

24d3

Figure 2.2: A two sided network with suppliers (on the left) and demanders (on the right)
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Figure 2.3: The max-flow problem for the above network
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gets always rationed, any allocation will involve a net transfer of 24. This implies that supplier 1

will send only 6 units on demander .

These observations are summarized as follows: if we fix a maximum flow from σ to τ and a

minimum-capacity σ-τ cut, then every edge in the cut must carry a flow equal to its capacity;

moreover every edge that is oriented from a node outside of the cut to a node in the cut should

carry zero flow. This leads to a key decomposition result.

Lemma 1 i) There exists a partition S+, S− of S, and a partition D+, D− of D, where at most

one of S+ = D− = ∅, or S− = D+ = ∅ is possible, with the following properties:

G(S−, D−) = ∅, D+ = f(S−), S+ = g(D−)

sS′ ≤ df(S′)∩D− for all S′ ⊆ S+; dD′ ≤ sg(D′)∩S− for all D′ ⊆ D+ (2.6)

ii) The maximal flow is sS+ + dD+. The flow ϕ ∈ Φ(G, s, d), with net transfers x, y is maximal if

and only if

ϕ = 0 on G(S+, D+), x = s on S+, y = d on D+

iii) The profile of transfers (x, y) ∈ A(G, s, d) is achieved by a maximal flow if and only if

xS = yD = sS+ + dD+ (2.7)

Proof. Refer to the Appendix.

The inequalities (2.6) express that the supply from S+ is short with respect to the demanders

in D−, whereas the demand in D+ is short with respect to the supply in S−.

Example 4: Several possible decompositions

In general, the decomposition is not unique as there are several minimum cuts, all with identical

capacities. If there is a unique min-cut, for instance as in Figure 3, the decomposition of the market

in two segments is unique too (this holds true for an open and dense set of vectors (s, d)). If it is

not unique, there is a partition S+, S− (resp. D+, D−) where S− (resp. D−) is the largest possible,
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Figure 2.4: Decomposition with a balanced subgraph

and one where it is smallest. In Figure 2.4, there are two ways to decompose the demand and the

supply sides. One possible decomposition is D− = {1, 2}, D+ = {3, 4}, S+ = {1, 2}, S− = {3, 4}.

The other is D′− = {1}, D′+ = {2, 3, 4}, S′+ = {1}, S′− = {2, 3, 4}.

In contrast, a familiar graph-theoretical result, the Gallai-Edmonds decomposition (see Lovasz

and Plummer [40]), determines a unique partition of the market but in up to three segments. In

one segment supply is overdemanded and the corresponding demanders must be rationed; in the

second segment supply is underdemanded, and these suppliers transfer less than their ideal share;

and in the third segment supply exactly balances demand. In Figure 4 the three segments of this

decomposition are depicted as (S+, D−), (S−, D+) and (S0, D0) respectively.

2.3.3 The Egalitarian mechanism

Definition: Given the agents (S,D), a rule ψ selects for every economy (G,R) ∈ 2S×D ×RS∪D

a feasible allocation ψ(G,R) ∈ A(G).

We give two definitions of our egalitarian solution. The first one is a constructive algorithm.

The second one is based on the fact that, within the subset of Pareto optimal allocations, this

allocation equalizes individual shares in the strong sense of Lorenz dominance defined later.

We fix a problem (G, s, d) such that si, dj > 0 for all i, j (clearly if si = 0 or dj = 0 we can
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ignore supplier i or demander j altogether). We define independently our solution for the suppliers

and for the demanders.

The definition for suppliers is by induction on the number of agents |S| + |D|. Consider the

parameterized capacity graph Γ(λ), λ ≥ 0: the only difference between this graph and Γ(G, s, d) is

that the capacity of the edge σi, i ∈ S− is min{λ, si}, which we denote by λ ∧ si. (In particular,

the edge from j to τ still has capacity dj). We set α(λ) to be the maximal flow in Γ(λ). Clearly α

is a piecewise linear, weakly increasing, strictly increasing at 0, and concave function of λ, reaching

its maximum when the total σ-τ flow is dD+ . Moreover, each breakpoint is one of the si (type 1),

and/or is associated with a subset of suppliers X such that

∑
i∈X

λ ∧ si =
∑

j∈f(X)

dj (2.8)

Then we say it is of type 2. In the former case, the associated supplier reaches his peak and so

cannot send any more flow. In the latter case, the group of suppliers in X is a bottleneck, in the

sense that they are sending enough flow to satisfy the collective demand of the demanders in f(X)

and these are the only demanders they are connected to; any further increase in flow from any

supplier in X would cause some demander in f(X) to accept more than his peak demand.

If the given problem does not have any type-2 breakpoint, then the egalitarian solution is

obtained by setting each supplier’s allocation to his peak value. Otherwise, let λ∗ be the first

type-2 breakpoint of the max-flow function; by the max-flow min-cut theorem, for every subset

X satisfying (2.25) at λ∗ the cut C1 = {σ} ∪ X ∪ f(X) is a minimal cut in Γ(λ∗) providing a

certificate of optimality for the maximum-flow in Γ(λ∗). If there are several such cuts, we pick the

one with the largest X∗ (its existence is guaranteed by the usual supermodularity argument). The

egalitarian solution is obtained by setting

xi = min{λ∗, si}, for i ∈ X∗, yj = dj , for j ∈ f(X∗),

and assigning to other agents their egalitarian share in the reduced problem (G(S�X∗, D�f(X∗)), s, d).

That is, we construct ΓS�X
∗,D�f(X∗)(λ) for λ ≥ 0 by changing in Γ(G(S�X∗, D�f(X∗)), s, d) the

capacity of the edge σi to λ ∧ si, and look for the first type-2 breakpoint λ∗∗ of the corresponding

max-flow function. An important fact is that λ∗∗ > λ∗. Indeed there exists a subset X∗∗ of S�X∗
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such that ∑
i∈X∗∗

λ∗∗ ∧ si =
∑

j∈f(X∗∗)�f(X∗)

dj

If λ∗∗ ≤ λ∗ we can combine this with equation (2.25) at X∗ as follows

∑
i∈X∗∪X∗∗

λ∗ ∧ si ≥
∑
i∈X∗

λ∗ ∧ si +
∑
i∈X∗∗

λ∗∗ ∧ si =
∑

j∈f(X∗∪X∗∗)

dj

contradicting our choice of X∗ as the largest subset of S− satisfying (2.25) at λ∗.

The solution thus obtained recursively is the egalitarian allocation for the suppliers. A similar

construction works for demanders: We consider the parameterized capacity graph ∆(µ), µ ≥ 0,

with the capacity of the edge τj, j ∈ D set to µ ∧ dj . We look for the first type-2 breakpoint µ∗ of

the maximal flow β(µ) of ∆(µ), and for the largest subset of demanders Y such that

∑
j∈Y

µ ∧ dj =
∑
i∈g(Y )

si

etc.. Combining these two egalitarian allocations yields the egalitarian allocation (xe, ye) ∈ RS∪D+

for the overall problem.
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Two simple examples
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Figure 2.5: Short supply and short demand co-exist

Example 1: Short supply and short demand coexist

Short supply and short demand typically coexist in two independent segments of the market.

This is illustrated in Figure 2.5. Supplier 1 can only transfer to demander 1, whose demand is

short against 1’s long supply. The two demanders 2, 3 are similarly captive of suppliers 2, 3, 4,

whose supply is short against their long demand. Note that decentralized trade may fall short of

efficiency. Indeed demander 1 and supplier 2 achieve their ideal consumption by a bilateral transfer

of 6 units. However after this transfer supplier 1 is unable to trade, and demanders 2, 3 have to

share a short supply of 12 against their long demand of 36. It is more efficient to transfer 6 units

from supplier 1 to demander 1 and let suppliers 2, 3, 4 send their 18 units to demanders 2, 3.

The first market segment contains the long supplier 1 and the short demander 1. On the other

hand, demanders 2,3 compete for transfers from suppliers 2,3,4. These agents form the short

supply/long demand segment. Our egalitarian solution rations the long side of the market in each

of the two segments. Consider the efficient profile of net transfers (x, y) = ((6, 6, 4, 8), (6, 8, 10))

(x for suppliers, y for demanders). Here demanders 2,3 split equally the transfer from supplier 3,

their only common link. However the profile ((6, 6, 4, 8), (6, 9, 9)) is feasible and Lorenz dominates

(x, y), it is our egalitarian solution.
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Figure 2.6: Agents on the short side are not treated identically

There is a unique min cut given by C1 = {σ} ∪ {X} ∪ {f(X)} where X = {supplier 1}.

Agents in the minimum cut form the partition (S−, D+) whereas S+ = {suppliers 2,3,4} and D− =

{demanders 2,3}. We start with (S−, D+). The algorithm looks for λ1 such that min{s1, λ1} =

6, giving λ1 = 6. For the other segment, the egalitarian algorithm stops at λ2 = 9. Indeed

min{d2, λ2}+ min{d3, λ2} = s2 + s3 + s4.

Another implication of the bilateral constraints is that agents with identical preferences cannot

always be treated equally.

Example 2: Identical preferences, different transfers

This is illustrated in Figure 2.6. There is a single market segment with a long demand, so the

suppliers unload their peak transfer. The bilateral constraints, restrict the (non negative) transfers

yi to the four demanders as follows:

10 ≤ y1 ≤ 12; 6 ≤ y2 ≤ 12; y3 ≤ 7

4∑
1

yi = 28; y1 + y2 ≥ 18⇔ y3 + y4 ≤ 10

Without the bilateral constraints, we can achieve yi = 7, i = 1, 2, 3, 4. Under these constraints,

the most egalitarian profile is y1 = 10, y2 = 8, y3 = y4 = 5. We now illustrate the algorithm by
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revisiting the examples of Section 2.

Recall that there is a single segment in which the demand is long. The algorithm first stops at

λ1 = 10. Indeed min{d1, λ1} = s1. The algorithm next stops at λ2 = 8 since min{d2, λ2} = s2.

Finally, the algorithm stops at λ3 = 5 since min{d3, λ3}+ min{d4, λ3} = s3 + s4.

In the next few subsections, we briefly summarize the results of Bochet et al. [12]. Refer to the

work of Bochet et al. for a more detailed exposition.

2.3.4 Pareto optimality and the Core

We now have a bipartite graph G between S and D as before, but we replace the hard capacity

constraint of the previous section by a soft ideal consumption. Each supplier i has single-peaked

preferences1 Ri (with corresponding indifference relation Ii) over her net transfer xi, with peak si,

and each demander j has single-peaked preferences Rj (Ij) over her net transfer yj , with peak dj .

We write R for the set of single peaked preferences over R+, and RS∪D for the set of preference

profiles.

The feasible net transfer (x, y) ∈ A(G) is Pareto optimal if for any other (x′, y′) ∈ A(G) we

have

{for all i, j: x′iRixi and y′jRjyj} ⇒ {for all i, j: x′iIixi and y′jIjyj}

We write PO(G,R) for the set of Pareto optimal net transfers.

Proposition 1:

Fix the economy (G,R), and two partitions S+, S− and D+, D− corresponding to the profile of

peaks (s, d) at R (as in Lemma 1).

i) if the G-flow ϕ implements Pareto optimal net transfers (x, y), then transfers occur only between

S+ and D−, and between S− and D+:

ϕij > 0⇒ ij ∈ G(S+, D−) ∪G(S−, D+)

1Writing Pi for agent i’s strict preference, we have for every xi, x
′
i: xi < x′i ≤ si ⇒ x′iPixi, and si ≤ xi < x′i

⇒ xiPix
′
i.
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ii) (x, y) ∈ PO(G,R) if and only if (x, y) ∈ A(G) and

x ≥ s on S+, y ≤ d on D−, and xS+ = yD−

x ≤ s on S−, y ≥ d on D+ and xS− = yD+

An important feature of the Pareto set is that it only depends upon the profile of peaks s, d, and

not upon the full preference profile R. The same is true of our egalitarian solution. To emphasize

this important simplification, we speak of a transfer problem (S,D,G, s, d) or simply (G, s, d),

keeping in mind the underlying single-peaked preferences.

The following subset of PO(G,R) will play an important role:

PO∗(G, s, d) = PO(G,R) ∩ {(x, y)|x ≤ s; y ≤ d}

By Proposition 1, this is the set of efficient allocations where the short side gets its optimal transfer:

x = s on S+, y ≤ d on D−, and yD− = sS+

x ≤ s on S−, y = d on D+ and xS− = yD+

Moreover by Lemma 2, the net transfers in PO∗(G, s, d) are precisely those implemented by all the

maximal flows of the capacity graph Γ(G, s, d).

We focus on allocations in PO∗(G, s, d), because under the Voluntary Trade (requiring xiRi0, yjRj0

for all i, j; see Section 8) property, they are the only allocations Pareto optimal for any choice of

preferences in R with peaks (s, d).

We first give an alternative characterization of the Pareto∗ set, critical to the analysis of the

egalitarian solution. Define two cooperative games, (S, v) and (D,w), of which the players are

respectively the suppliers and the demanders:

v(T ) = min
T ′⊆T
{sT ′ + df(T�T ′)} for all T ⊆ S (2.9)

w(E) = min
E′⊆E

{dE′ + sg(E�E′)} for all E ⊆ D (2.10)

Lemma 2 The games (S, v) and (D,w) are submodular. Moreover

v(S) = w(D) = sS+ + dD+ ; v(S−) = dD+ ; w(D−) = sS+ (2.11)
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The core of the game (S, v), denoted Core(S, v), is the set of allocations x ∈ RS+ such that

xT ≤ v(T ) for all T ⊂ S, and xS = v(S); similarly the core of the game (D,w) is the set of

allocations y ∈ RD+ such that yE ≤ w(E) for all E ⊂ D, and yD = w(D). Notice that v(T ) ≤ sT

for all T ⊂ S, therefore x ∈ Core(S, v) implies x ≤ s; similarly y ∈ Core(D,w)⇒ y ≤ d.

Lemma 3 Fix the problem (G, s, d), and two partitions S+, S− and D+, D− as in Lemma 1. Then

the allocation (x, y) is in PO∗(G, s, d) if and only if it satisfies one of the two equivalent properties

i) x ∈ Core(S, v) and y ∈ Core(D,w)

ii) {x = s on S+, and on S−, x ∈ Core(S−, v)} and {y = d on D+, and on D−, y ∈ Core(D−, w)}

For any problem (G, s, d), the allocation xe (resp. ye) is the egalitarian selection in Core(S, v)

(resp. Core(D,w)).

We turn now to the Lorenz dominant position of our solution inside PO∗(G, s, d). For any

z ∈ RN , write z∗ for the order statistics of z, obtained by rearranging the coordinates of z in

increasing order. For z, w ∈ RN , we say that z Lorenz dominates w, written z >LD w, if for all

k, 1 ≤ k ≤ n
k∑
a=1

z∗a ≥
k∑
a=1

w∗a

Lorenz dominance is a partial ordering, so not every set, even convex and compact, admits a Lorenz

dominant element. On the other hand, in a convex set A there can be at most one Lorenz dominant

element. The appeal of a Lorenz dominant element in A is that it maximizes over A, any symmetric

and concave collective utility function.

Theorem 1 The allocation (xe, ye) is the Lorenz dominant element in PO∗(G, s, d) 2.

We introduce the incentives and equity properties which form the basis of the characterization

result in the next section. Those properties bear on the profile of individual preferences R, therefore

instead of a transfer problem (G, s, d), we consider now a transfer economy (G,R). We use the

notation s[Ri], d[Rj ] for the peak transfer of supplier i and demander j.

2Note that this solution is not Lorenz dominant in the entire Pareto set.
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We now turn to equity properties. The familiar equity test of no envy must be adapted to our

model because of the feasibility constraints. If supplier 1 envies the net transfer x2 of supplier 2,

it might not be possible to give him x2 anyway because the demanders connected to agent 1 have

insufficient demands. Even if we can exchange the net transfers of 1 and 2, this may require us to

construct a new flow and alter some of the other agents’ allocations. In either case we submit that

supplier 1 has no legitimate claim against the allocation x. An envy argument by agent 1 against

agent 2 is legitimate only if it is feasible to improve upon agent 1’s allocation without altering the

allocation of anyone other than agent 2.

No Envy: For any preference profile R ∈ RS∪D and any i1, i2 ∈ S such that ψi2(R)Pi1ψi1(R),

there exists no (x, y) ∈ A(G) such that

ψi(R) = xi for all i ∈ S \ {i1, i2}; ψj(R) = yj for all j ∈ D

and xi1Pi1ψi1(R) (2.12)

and a similar statement where we exchange the role of demanders and suppliers.

Note that if i1, i2 have identical connections, i1j ∈ G ⇔ i2j ∈ G, then we can exchange their

allocations without altering any other net transfer, therefore No Envy implies ψi1(R)Ii1ψi2(R).

The familiar horizontal equity property must be similarly adapted to account for the bilateral

constraints on transfers.

Equal Treatment of Equals (ETE): For any preference profile R ∈ RS∪D and any i1, i2 ∈ S

such that Ri1 = Ri2, there exists no (x, y) ∈ A(G) such that

ψi(R) = xi for all i ∈ S \ {i1, i2} ψj(R) = yj for all j ∈ D

|xi1 − xi2 | < |ψi1(R)− ψi2(R)| (2.13)

and a similar statement where we exchange the role of demanders and suppliers.

Again, if i1, i2 have identical connections ETE implies ψi1(R) = ψi2(R). In general ETE requires

the rule to equalize as much as possible the allocations of two agents with identical preferences.

Voluntary trade: For all R ∈ RS∪D, i ∈ S ∪D, we have ψi(R)Ri0.
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Lemma 4 i) Any mechanism that allocates a No Envy solution in the set of Pareto optimality

solutions is also an Equal Treatment of Equals allocation; ii)The egalitarian transfer rule ψe satisfies

No Envy

We turn now to strategic issues related to the Egalitarian Mechanisms. Bochet et al. [12] show

that the egalitarian mechanism is both link strategyproof and peak strategyproof. Here we show

that the egalitarian mechanism is in fact peak groupstrategyproof and link groupstrategyproof

when limited to coalition only among suppliers and demanders.

2.3.5 Strategic Issues

Firstly, we define certain notions that we use in the rest of the section.

Link monotonicity requires that an agent on either side of the market weakly benefits from the

access to new links. This ensures that no agent has an incentive to close a feasible link; equivalently

it is a dominant strategy to reveal all feasible links to the manager.

Link Monotonicity: For any economy (G,R) ∈ 2S×D ×RS∪D, and any i ∈ S, j ∈ D, we have

ψk(G ∪ {ij}, R)Rkψk(G,R), for k = i, j. That is, having an additional link can only improve the

allocation of an agent.

Link Strategyproof : For any economy (G,R) ∈ 2S×D×RS∪D, and any i ∈ S ∪D, let Ai be the

agents compatible with agent i in network G. Suppose agent i misreports his compatible partners,

say A′i and hence network G′ is revealed to the mechanism, then we have ψi(G,R)Riψi(G
′, R).

That is, in a link strategyproof mechanism it is a dominant strategy ro reveal your links truthfully.

Proposition 1 (Bochet et al. [12]) The egalitarian transfer rule is link-monotonic and hence

link strategyproof.

Note that the addition of a link ij may well hurt agents other than i, j. In Figure 2.7, we show

an example with short demand in which our rule picks the allocation x1 = 3 and x2 = 1. Adding

the link between supplier 2 and demander 1 gives x′1 = x′2 = 2.
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5 s1

5 s2

3d1

1d2

Figure 2.7: A new link may hurt non-involved agents

Now, we turn to strategic manipulation of links by groups of agents. In such a coalition group,

each agent has two types of strategies: (i) Shrinking the set of agents to whom he/she is connected

to; (ii) Reporting an agent feasible who is not feasible to begin - hence creating a spurious link.

Link Groupstrategyproof: For any economy (G,R) ∈ 2S×D×RS∪D, and any subset of agentsM ⊆

S∪D, let Ai be the agents compatible with agent i in network G, i ∈M . Suppose agent i misreports

his compatible partners, say A′i, for i ∈ M and hence network G′ is revealed to the mechanism,

then we have ψi(G,R)Riψi(G
′, R), for i ∈M .

1 s1

1 s2

2d1

2d2

1 s1

1 s2

2d1

2d2

Figure 2.8: Egalitarian Mechanism is not link GSP w.r.t. to both suppliers and demanders

That the egalitarian mechanism is not link group strategyproof in the two-sided model is not

difficult to see. Consider the network shown in Figure 2.8. The network (a) represents the true

network, with the peaks shown next to the agent labels. The egalitarian allocation gives 1 unit

to each supplier and to each demander on this example. Suppose however supplier 1 and deman-

der 2 collude, and supplier 1 does not report his link to demander 1. In the resulting network,

shown in (b), each supplier still receives his peak allocation; demander 2 now receives her peak,

and demander 1 receives nothing. Note that both members of the coalition weakly improve, and

demander 2 strictly improves, proving that the egalitarian mechanism is in general not link group
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strategyproof 3. The following result, however, shows that the egalitarian mechanism satisfies a

limited form of link group strategyproofness.

Theorem 1 In the two sided model, the egalitarian mechanism is link group strategy proof when

the coalition is restricted to the set of suppliers only (demanders only).

Proof. We prove the result for an arbitrary coalition of suppliers; the result for the demanders

follow by a similar argument. Let Ai be the set of demanders that supplier i is linked to, and let A′i

be supplier i’s report. We may assume without loss of generality that any given demander finds all

the suppliers acceptable: if demander j finds supplier i unacceptable, then supplier i cannot have

a link to demander j regardless of his report, so clearly i’s manipulation opportunities are more

restricted. Let φ and φ
′

be (any) egalitarian flows when the suppliers report A and A′ respectively,

and let x and x′ be the corresponding allocation to the suppliers. We show that no coalition of

suppliers can weakly benefit by misreporting their links unless each supplier in the coalition gets

exactly their egalitarian allocation.

The proof is by induction on the number of type 2 breakpoints in the algorithm to compute

the egalitarian allocation. Suppose the given instance has n type 2 breakpoints, and suppose

X1, X2, . . . , Xn are the corresponding bottleneck sets of suppliers. If n = 0, every supplier is at his

peak value in the egalitarian allocation, and clearly this allocation cannot be improved. Suppose

n ≥ 1. Define

X̃` = {i ∈ X` |
∑
j∈Ai

φ′ij ≥
∑
j∈Ai

φij},

and

X̂` = {i ∈ X` |
∑
j∈Ai

φ′ij ≤
∑
j∈Ai

φij}.

We shall show, by induction on `, that for each ` = 1, 2, . . . , n:

(a) φ
′
ij = 0 for any i ∈ X̃`′ , j ∈ ∪i′∈X`Ai′ , `′ > `; and

3This example may suggest that if we require each member of the deviating coalition to strictly improve their

allocation, then the egalitarian mechanism may be link group strategyproof. However, this is also false, as shown by

Bogomolnaia and Moulin [13]. They construct an example involving 4 agents on each side with all peaks identically

1 in which a coalition of agents from both sides deviate and all strictly improve.
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(b) X` ⊆ X̂`.

The theorem follows from part (b) above.

Any supplier k ∈ X` \ X̃` must have Ak = A′k as otherwise supplier k is part of the deviating

coalition and does worse. Consider now a supplier i ∈ X̃` with xi < si and a supplier k ∈ X` \ X̃`.

We have the following chain of inequalities:

∑
j∈A′k

φ
′
kj =

∑
j∈Ak

φ
′
kj <

∑
j∈Ak

φkj = xk ≤ xi =
∑
j∈Ai

φij ≤
∑
j∈Ai

φ
′
ij ≤

∑
j∈A′i

φ
′
ij .

To see why, note that as k ∈ X` \ X̃`, the second inequality is true by definition, and also Ak = A′k

(justifying the first equality). Also k, i ∈ X` and xi < si, implies xk < si, as suppliers k and i

both belong to the same bottleneck set and supplier i is below his peak; this justifies the third

inequality. The fourth and fifth inequalities follow from the fact that i ∈ X̃` and the fact that φ
′
ij

must be zero for all j ∈ Ai \ A′i. This chain of inequalities implies that x′k < xk ≤ sk and x′k < x′i.

Therefore, when the suppliers report A′, supplier k must be a member of an “earlier” bottleneck

set than supplier i. An immediate consequence is that demanders in A′k = Ak do not receive any

flow from supplier i when the report is A′.

By the induction hypothesis, supplier i ∈ X` does not send any flow to the demanders in

∪1≤i′≤`−1 ∪k∈X
i
′ Ak′. Therefore

{j | φ′ij > 0, j ∈ Ai} ⊆ {j | φij > 0, j ∈ Ai}.

This observation, along with the fact that every i ∈ X̃` weakly improves, and the fact that X` is

a type 2 breakpoint implies that
∑

j∈Ai φ
′
ij =

∑
j∈Ai φij , establishing (b). Furthermore, in such

a solution, every demander j ∈ Ai for i ∈ X̃` must receive all his flow from the suppliers in

X̃`. In particular, the demanders in X` cannot receive any flow from suppliers in X`′ for `′ > `,

establishing (a). To complete the proof we need to establish the basis for the induction proof, i.e.,

the case of ` = 1. This, however, follows easily: it is easy to verify that the set X1 \ X̃1 must be

empty, so X1 = X̃1. As X1 is a type 2 bottleneck set, it is not possible for every member of X1 to

do weakly better unless the allocation remains unchanged. Thus, both (a) and (b) follow.

In the rest of the section we discuss properties for which the graph G is fixed, so we write a rule



CHAPTER 2. THE EGALITARIAN MECHANISM 30

simply as ψ(R) for R ∈ RS∪D. The next incentive property is the familiar strategyproofness. It is

useful to decompose it into a monotonicity and an invariance condition.

Peak Monotonicity: An agent’s net transfer is weakly increasing in her reported peak: for all

R ∈ RS∪D, i ∈ S, j ∈ D and R′i, R
′
j ∈ R

s[R′i] ≤ s[Ri]⇒ ψi(R
′
i, R−i) ≤ ψi(R)

d[R′j ] ≤ d[Rj ]⇒ ψj(R
′
j , R−j) ≤ ψj(R)

Invariance: For all R ∈ RS∪D, i ∈ S and R′i ∈ R

{s[Ri] < ψi(R) and s[R′i] ≤ ψi(R)} or {s[Ri] > ψi(R) and s[R′i] ≥ ψi(R)} (2.14)

⇒ ψi(R
′
i, R−i) = ψi(R)

and similarly ψj(R
′
j , R−j) = ψj(R) when agent j ∈ D such that ψj(R) 6= d[Rj ] reports R′j ∈ R

with peak d[R′j ] on the same side of ψj(R) as d[Rj ].

Peak Strategyproofness: For all R ∈ RS∪D, i ∈ S, j ∈ D and R′i, R
′
j ∈ R

ψi(R)Riψi(R
′
i, R−i) and ψj(R)Rjψj(R

′
j , R−j)

Each one of Peak Monotonicity or Invariance implies own-peak-only: my net transfer only

depends upon the peak of my preferences, and not on the way I compare allocations across my

peak.

Lemma 5 For any rule that allocates ψ(R) ∈ PO∗, ∀ R ∈ RS∪D, strategyproofness and invariance

are equivalent. (Note: ψ = (x, y))

Proof: First we show that, under PO∗, strategyproofness implies invariance: As the allocation

is in PO∗ we have xi ≤ si. Thus, to prove invariance we need to show that when xi < si, and

s′i ≥ xi we have x′i = xi. Suppose not and we have x′i < xi. Then agent i benefits by misreporting

his peak as si when his true peak is s′i, which violates strategyproofness. Similarly, if x′i > xi, we

can construct a profile R∗ such that x′iPi∗xi. As a PO∗ + Strategyproof rule is peak-monotonic
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and as a consequence own peak only (Bochet et al. [12]), xi(R
∗
i , R−i) = xi(R). Hence, i benefits by

reporting s′i when his true peak is si, which violates strategyproofness again.

We now show the converse. Suppose the rule is invariant but not strategyproof. Under a PO∗

rule, xi = si for every agent i ∈ S+, hence those agents never misreport. Every agent in i ∈ S− is

such that xi ≤ si. So, any agent who deviates and improves his allocation is such that s′i ≥ xi < si

and x′iPixi. But this is not possible under an invariant rule. Hence, the rule is indeed strategyproof.

We prove the following structural lemma before giving a simpler proof of strategy proofness of

the Egalitarian Mechanism.

Lemma 6 For a problem (G, s, d), suppose the decomposition is S+ and S− (with D+, D− defined

as before), and the egalitarian allocation is x. Consider the problem (G, s′, d) with s′j = sj for all

j 6= i, with the decomposition being S′+ and S′−.

(a) If i ∈ S− and s′i ≥ si, S′+ = S+ and S′− = S−.

(b) If i ∈ S+ and s′i ≤ si, S′+ = S+ and S′− = S−.

Proof. By definition, S− is the smallest (both in terms of cardinality and inclusion) min-cut in

the graph G(s) (see §2.5.1 for the definition). For i ∈ S−, the arc (s, i) does not contribute to

the cut-capacity. If s′i ≥ si, the capacity of any cut is weakly greater in (G, s′, d) than in (G, s, d),

whereas the capacity of the cut S− stays the same, so part (a) follows by the minimality of S−.

Similarly, for i ∈ S+, the arc (s, i) contributes to cut-capacity, the capacity of the cut S− is smaller

in (G, s′, d) than in (G, s, d) by exactly si− s′i, whereas the capacity of any cut is weakly smaller in

(G, s′, d) than in (G, s, d) by at most si − s′i. Again, part (b) follows by the minimality of S−.

The egalitarian transfer rule ψe of Bochet et al. [12] is characterized by Pareto optimality,

Strategyproofness, Voluntary Trade, and Equal Treatment of Equals. Bochet et al. also conjecture

that the egalitarian transfer rule is group strategyproof, i.e., robust against coordinated misreport

of preferences by subgroups of agents. We settle this conjecture below.
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Peak Groupstrategyproof: For all R ∈ RS∪D, M ⊆ S ∪D and each agent i ∈M misreport to

R′i ∈ R 4

ψi(R)iψi(R
′
M , R−M ), ∀ i ∈M

i.e. it is dominant strategy for agents to reveal their true peaks even when they can coordinate

with other agents and jointly misreport.

Theorem 2 In the two-sided model, the egalitarian mechanism is peak group strategyproof.

Proof. Suppose not. Focus on a counterexample G with the smallest number of nodes. Suppose

the true peaks of the suppliers and demanders are s and d respectively, and suppose their respective

misreports are s′ and d′. We can assume that dj > 0 for every demander j, as otherwise deleting

j would result in a smaller counterexample. Fix a coalition A of suppliers and a coalition B of

demanders : note that A contains all the suppliers k with s′k 6= sk, and B includes all demanders `

with d′` 6= d`.

Let (x, y) and (x′, y′) be the respective allocations to the suppliers and demanders when they

report (s, d) and (s′, d′) respectively. Let S+, S−, D+, D− be the decompsition when the agents

report (s, d), and let S′+, S
′
−, D

′
+, D

′
− be the decomposition when the agents report (s′, d′). We

shall show that when the agents report (s′, d′) rather than (s, d), the only allocation in which each

agent in A ∪ B is (weakly) better off, then x′k = xk for all k ∈ A and y′` = y` for all ` ∈ B. This

establishes the required contradiction.

Let Y ′ := D+ ∩D′−. Note that g(Y ′) ⊆ S′+, for, otherwise, there will be a supplier in S′− with a

link to a demander in D′−. We now make two simple observations about the suppliers in S−∩g(Y ′):

• For any such supplier k, s′k = x′k and xk ≤ sk. Also, d` = y` and y′` ≤ d′` for any ` ∈ Y ′.

• When the report is s′, every such supplier can send flow only to the demanders in Y ′: this

is because f(S−) ⊆ D+, and each supplier in g(Y ′) can send flow only to the agents in D′−.

Therefore
∑

k∈S−∩g(Y ′) x
′
k ≤

∑
`∈Y ′ y

′
`.

4We allow agents who receive their peak allocation to also misreport, as such a misreport can improve the allocation

of other agents without altering the allocation of these agents; On the contrary, Barbera et al. [7] allows only misreports

of agents who do not receive their peak allocation
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• When the report is s, the demanders in Y ′ can receive flow only from such suppliers: the

demanders in Y ′ can receive flow only from the suppliers in S− and they are connected only

to the suppliers in g(Y ′). Therefore
∑

k∈S−∩g(Y ′) xk ≥
∑

`∈Y ′ y`.

Finally, note that s′k = sk for all k 6∈ A, and d′` = d` for all ` 6∈ B. These observations first lead to∑
k∈S−∩g(Y ′)

k 6∈A

sk +
∑

k∈S−∩g(Y ′)
k∈A

x′k =
∑

k∈S−∩g(Y ′)
k 6∈A

s′k +
∑

k∈S−∩g(Y ′)
k∈A

x′k =
∑

k∈S−∩g(Y ′)

x′k ≤
∑
`∈Y ′

y′`. (2.15)

Note that every demander ` in Y ′ ∩B receives exactly his peak allocation d` for a truthful report,

so for the coalition B of demanders to do weakly better in the (G, s′, d′) problem, y′` = d` for each

such `. Therefore,∑
`∈Y ′

y′` =
∑

`∈Y ′\B

y′` +
∑

`∈Y ′∩B
y′` ≤

∑
`∈Y ′\B

d′` +
∑

`∈Y ′∩B
d` =

∑
`∈Y ′

d`. (2.16)

Finally, ∑
`∈Y ′

d` =
∑
`∈Y ′

y` ≤
∑

k∈S−∩g(Y ′)

xk ≤
∑

k∈S−∩g(Y ′)
k 6∈A

sk +
∑

k∈S−∩g(Y ′)
k∈A

xk. (2.17)

For every supplier in A to be (weakly) better off when reporting s′, we must have x′k ≥ xk for

each k ∈ S− ∩ g(Y ′). Combining this with inequalities (A.1) and (A.3), we conclude that all the

inequalities in (A.1)-(A.3) hold as equations. In particular, x′k = xk for all k ∈ S− ∩ g(D′), and

y′` = y` for ` ∈ Y ′. Therefore, whether the report is s or is s′, the suppliers in S− ∩ g(Y ′) send

all of their flow only to the demanders in Y ′; and that these demanders receive all of their flow

only from the suppliers in S− ∩ g(Y ′). Therefore, removing the suppliers in S− ∩ g(Y ′) and the

demanders in Y ′ does not affect the egalitarian solution for either problem. As we picked a smallest

counterexample, Y ′ must be empty.

We now turn to the other case. Let X̃ := S+ ∩ S′−. Note that f(X̃) ∩D− ⊆ D′+, for otherwise

there will be a supplier in S′− linked to a demander in D′−. Consider the demanders in f(X̃)∩D−:

• For any such demander `, d′` = y′` and y` ≤ d`. Also, sk = xk and x′k ≤ s′k for any k ∈ X̃.

• When the report is s′, every such demander can receive flow only from the suppliers in X̃:

such demanders are linked only to the suppliers in S+ and can receive flow only from the

suppliers in S′−. Therefore
∑

k∈X̃ x
′
k ≥

∑
`∈f(X̃)∩D− y

′
`.
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• When the report is s, the suppliers in X̃ send flow only to the demanders in D−, and they

can send flow only to the demanders they are connected to, so the suppliers in X̃ can send

flow only to the demanders in f(X̃) ∩D−. Therefore
∑

k∈X̃ xk ≤
∑

`∈f(X̃)∩D− y`.

Finally, note that s′k = sk for all k 6∈ A, and d′` = d` for all ` 6∈ B. Putting all this together, we

have: ∑
`∈f(X̃)∩D−)

` 6∈B

d` +
∑

`∈f(X̃)∩D−)
`∈B

d′` =
∑

`∈f(X̃)∩D−

d′` =
∑

`∈f(X̃)∩D−

y′`, (2.18)

and ∑
`∈f(X̃)∩D−

y′` ≤
∑
k∈X̃

x′k ≤
∑

k∈X̃\A

s′k +
∑

k∈X̃∩A

x′k =
∑

k∈X̃\A

sk +
∑

k∈X̃∩A

x′k. (2.19)

Note that every supplier k in X̃ ∩ A receives exactly his peak allocation sk for a truthful report,

so for the coalition A of suppliers to do weakly better in the (G, s′, d′) problem, x′k = sk for each

such k. Thus,

∑
k∈X̃\A

sk +
∑

k∈X̃∩A

x′k =
∑
k∈X̃

sk =
∑
k∈X̃

xk ≤
∑

`∈f(X̃)∩D−

y` ≤
∑

`∈f(X̃)∩D−
` 6∈B

d` +
∑

`∈f(X̃)∩D−
`∈B

y` (2.20)

For every demander in B to be (weakly) better off, we must have y′` ≥ y` for each ` ∈ f(X̃)∩D−.

Combining this with inequalities (A.4)-(A.6), we conclude that all the inequalities in (A.4)-(A.6)

hold as equations. In particular, x′k = xk for all k ∈ X̃, and y′` = y` for ` ∈ f(X̃) ∩D−. Therefore,

whether the report is s or is s′, the suppliers in X̃ send all of their flow only to the demanders

in f(X̃) ∩ D−; and that these demanders receive all of their flow only from the suppliers in X̃.

Therefore, removing the suppliers in X̃ and the demanders in f(X̃) ∩ D− does not affect the

egalitarian solution for either problem. As we picked a smallest counterexample, X̃ must be empty.

We now establish that the decomposition does not change in a smallest counterexample. We

already know that Y ′ = ∅, which implies D′− ⊆ D−. Suppose this containment is strict so that

there is a demander j ∈ D− \D′−. Then, g(j) ⊆ S+. As X̃ = ∅, g(j) ⊆ S′+, which implies demander

j cannot receive any flow when the report is s′ (i.e. x′j = 0). This is a contradiction since, d′(j) > 0,

then the egalitarian solution allocates the Pareto value x′j = d′j for all j ∈ D′+. (w.l.o.g we can skip
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the case d′j = 0 as we can delete such a j to obtain the new decomposition or just place it in D−).

Therefore D′− = D−, which implies D′+ = D+, S′+ = S+, and S′− = S−.

To complete the argument, let A be as defined earlier. Let A+ = A ∩ S+ and A− = A ∩ S−,

B+ = A ∩D+ and B− = A ∩D−. Now, for any j ∈ B+, d′j 6= dj implies y′j = d′j 6= dj causing j

to do worse by reporting d′j . Hence, it follows, ∀j ∈ B+, d′j = dj . By a similar argument, we could

establish s′j = sj ∀j ∈ A+.

For any i ∈ A−, s′i < xi implies x′i ≤ s′i < xi, causing i to do worse by reporting s′i. Likewise,

any i ∈ B−, d′i < yi implies y′i ≤ d′i < yi, causing i to do worse by reporting d′i. So any improving

coalition A must be such that s′i ≥ xi for all i ∈ A− and d′i ≥ yi for all i ∈ B−. But in this case

the egalitarian solution does not change for either problem.

An easy implication is the following result, whose proof is an immediate consequence of the

results we have already established.

Theorem 3 In the two sided model, the egalitarian mechanism is group strategyproof w.r.t. to both

links and peaks when the coalition is restricted to the set of suppliers only (demanders only).

A natural question is if every strategyproof rule in our problem is also group strategyproof5.

As it turns out, the answer is ”no” as shown by the following example. Consider the following

mechanism, if the report of d0 >= 5, then apply the egalitarian mechanism and if the report of

d0 < 5, follow the edge fair mechanism (Increase the flow on all the edges till a point that no edge

can carry more flow in any maximum flow, for a detailed description of this mechanism, refer to

the next chapter).

This rule is clearly strategyproof. But agent d0 and s1 can collude such that agent d0 misreports

his peak as 4 (when his/her true peak is 6). This improves the allocation of agent s1 by 1 unit,

keeping the allocation of d0 to be the same.

We know from Bochet et al. [12] that any rule that is peak monotonic and invariant is strate-

gyproof. From the above discussion, strategyproofness is characterized by PO∗ and invariance. So,

5Barbera et al. [7] study environments where this is indeed the case.



CHAPTER 2. THE EGALITARIAN MECHANISM 36

6 s2

6 s1

4 s0

3d2

3d1

6d0

Figure 2.9: Invariance and GSP are not equivalent

the natural question is what other additional property is needed to make a mechanism groupstrate-

gyproof. Next, we show that any groupstrategyproof mechanism can be characterized by PO∗ and

the following stronger invariance property:

Strong Invariance: For all R ∈ RS∪D, i ∈ S and R′i ∈ R

{s[Ri] < xi(R) and s[R′i] ≤ xi(R)} or {s[Ri] > xi(R) and s[R′i] ≥ xi(R)} (2.21)

=⇒ xj(R
′
i, R−i) = xj(R) ∀j ∈ S and (2.22)

yl(R
′
i, R−i) = yl(R) ∀l ∈ D (2.23)

and a similar strong invariance property can be defined with respect to the demanders.

In other words, while invariance implies that the allocation of a supplier is unchanged whenever

his peak misreport is above his allocation, strong invariance implies that the allocation of every

agent is unchanged when a particular agent misreports his peak over his current allocation.

Theorem 4 Any mechanism ψ = (x, y), that always selects an allocation from PO∗ satisfies strong

invariance if and only if it is group strategy-proof.

Proof: To prove, PO∗ + strong invariance =⇒ Peak group strategyproof, it is enough to

follow the ideas in the proof of Theorem 2. Suppose the mechanism always chooses an allocation

from PO∗ and is Strongly Invariant. Now suppose the mechanism is also not group strategyproof,

then there is a smallest counterexample in which a set of agents misreport and improve their
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allocation. Let the smallest such network be (G, s, d) and the agents misreport to form the network

(G, s′, d′). From Theorem 2, it follows that the Gallai-Edmonds decomoposition doesn’t change.

Within the unchanged decompositions, from the proof idea in theorem 2, strong invariance implies

the bottleneck subsets are the same in both the problems (G, s, d) and (G, s′, d′) and hence the

allocation remain the same in either problem. Thus, we have a contradiction and the mechanism

is indeed group strategyproof.

Now, we turn to prove the other direction of the result i.e. any rule that is PO∗ and peak

GSP is strongly invariant. We discuss the result only for the suppliers, by symmetry a similar

reasoning follows for the demanders. Suppose such a rule is not strongly invariant. Since agents

in S+ receive their peak, strong invariance property needs to be discussed only for the agents in

S− where xi ≤ si. Now, consider an agent i ∈ S− such that xi < si. Consider a report by agent i

such that s′i ≥ xi. From Lemma 5 it follows that PO∗ + strategyproof implies invariance. Hence,

x′i = si. Furthermore, it follows from the earlier discussion that the decomposition and maximum

flow does not change in this new problem. Hence,
∑

k∈S− xk =
∑

k∈S− x
′
k. Suppose x′k = xk ∀

k ∈ S− then we are done. Suppose, x′k 6= xk for some agent k ∈ S−, then there exists at least one

agent j such that sj ≥ x′j > xj (agent j improves the allocation). Thus, the pair of agents i and j

represent a colluding group who can deviate and (weakly) improve the allocation which contradicts

the peak GSP property of the rule.
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Szwagrzak [57] introduces the class of separably convex rules. Each such rule is parametrized

by a profile of real-valued functions, one for each agent. These rules are closely related to the

parametric rules characterized by Young [63] in the context of bankruptcy problems.

We follow the notation and description of Szwagrzak [57] below to describe his main results.

Let H denote the class of strictly convex and differentiable functions h0 : R→ R

Separably Convex Rule: Let h ∈ HN , for each preference profile R ∈ RN ,

ψ(R) = arg min {
∑
i∈N

hi(xi) : x ∈ PO(R)}

where each hi is a convex function. Szwagrzak also notes that the constraint set in the definition of

separably convex rules is a compact and convex set. Thus, by the strict convexity of the objective,

the minimizer is unique.

Minimizing an additively separable strictly convex function over a base polyhedron is an impor-

tant and well studied problem in combinatorial optimization. A number of algorithms to solve this

class of problems can be readily applied to compute the allocations recommended by the separably

convex rules: see Nagano [19], Groenvelt [31], Fujishigee [28]. The egalitarian allocation of Bochet

et al. [12] minimizes any symmetric additively separable convex function over PO(R).

Theorem 5 (Szwagrzak [57]) The separably convex rules are group strategyproof

Karol uses the same proof technique as in Theorem 2 to establish the result. As separably

convex rules pick a solution from the Pareto set, misreports by agents does not change the Gallai-

Edmonds decomposition in the smallest counterexample. Within the original decompositions, the

allocation produced by these separably convex rules remains the same.

Corollary 1 Theorem 4 implies that all the separably convex rules are strongly invariant.
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2.4 Related Extensions

2.4.1 Indivisible Goods

In section 2.3 of this chapter, our study was focused on a two sided model with divisible goods.

The two sided model in section 2.3 was an extension of the model of Sprumont [56] to bipartite

networks. In this section, we study the two sided model with suppliers and demanders on either

side of the network but with indivisible goods. Klaus et al. [25] study a probabilistic version of

the uniform rule 2.2 when the goods are indivisible in the Sprumont’s model. We summarize the

results of Klaus et al. and give a brief description of the probabilistic version of the egalitarian rule

in section 2.3.3.

Probabilistic uniform rule: The main contribution of Klaus et al. [25] is that there is no “utility

gap” when the goods are indivisible. The lorenz dominant uniform allocation of section 2.2 can still

be obtained as an expected utility over all possible random allocations of the probabilistic version

of the uniform rule.6. The mechanism in this model is a lottery which assigns probabilities over the

set of feasible allocations F . Formally, a lottery vector µ is such that |µ| = |F|, µf ∈ [0, 1], ∀ f ∈ F ,∑
f∈F µf = 1. Note each f is a feasible allocation vector for the agents in the network.

The expected utility of an agent i ∈ N is defined as:

xi =
∑
f∈F

µfx
f
i (2.24)

where xfi is the allocation of agent i in a particular allocation f .

Let Ri ∈ R represent the preference profile for agent i, p(Ri) represent the peak of this profile

and xλ be the allocation of agents at a bottleneck point of this allocation rule, k be the total amount

of goods to be rationed. We define the rule for the case of excess demand when
∑

i∈N p(Ri) > k

below; The case of excess supply is similar.

Definition 2 (Probabilistic uniform rule, Klaus et al. [25])

Let N ′ = {i ∈ N |p(Ri) ≥ xλ + 1} = {1, 2, 3....ñ} and Ñ = {i ∈ N |p(Ri) ≤ xλ} = {ñ+ 1, ..., n}. At

6More strongly, every feasible allocation for the agents in the Sprumont’s model can be obtained as a feasible

expected utility for the agents when the goods are indivisible
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the bottleneck, each agent in N ′ receives his peak amount and each agent in Ñ receives either xλ

or xλ + 1. Note that for each i ∈ N ′, (xλ + 1) Pi xλ and that exactly n′(λ − xλ) agents in N’ can

receive xλ + 1.

Lottery µ: We obtain the final allocation by placing equal probability on all allocations where all

agents in Ñ receive their peak amounts, n′(λ− xλ) agents in N ′ receive xλ + 1 and the remaining

agents in N ′ receive xλ. Hence, final allocation is obtained by placing equal probabilities on exactly(
n′

n′(λ−xλ)
)

allocations.

Intuitively, at a bottleneck point, each agent who has not received his peak allocation prefers an

additional unit to be allocated to them. The probabilistic uniform rule assigns each remaining unit

with every agent having equal probability of being assigned. Klaus et al. establish that the Uniform

probabilistic rule is characterized by Pareto efficiency, envy freeness7 and strategyproofness. We

generalize the ideas of Klaus et al. to obtain a probablisitc egalitarian mechanism for agents

rationing indivisible goods on bipartite networks.

Probabilistic egalitarian mechanism: We follow the same model and notation as discussed

earlier in section 2.3 for divisible goods. The only difference is that the goods are indivisible in the

rest of this section.

Recall the discussion on how the breakpoints were obtained in section 2.3.3 for the suppliers.

Each breakpoint is one of the si (type 1), and/or is associated with a subset of suppliers X such

that ∑
i∈X

λ ∧ si =
∑

j∈f(X)

dj (2.25)

Then we say it is of type 2. In the former case the associated supplier reaches his peak and so

cannot send any more flow. In the latter case the group of suppliers in X is a bottleneck, in the

sense that they are sending enough flow to satisfy the collective demand of the demanders in f(X)

and these are the only demanders they are connected to; any further increase in flow from any

supplier in X would cause some demander in f(X) to accept more than his peak demand.

Once a bottleneck point is obtained in the egalitarian rule we construct the lottery as discussed

earlier. Without loss of generality, let X̄ = {i ∈ X∗∗|p(Ri) ≥ xλ + 1} = {1, 2...., n̄} and Ñ = {i ∈

7Unlike earlier, envy freeness and equal treatment of equals are not equivalent when the goods are indivsible
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N |p(Ri) ≤ xλ} = {n̄ + 1, ..., n}. Then in the final allocation each agent in Ñ receives his peak

amount and each agent in N̄ receives either xλ or xλ+1. Note that for each i ∈ N̄ , (xλ+1)Pixλ and

exactly n̄(λ−xλ) agents in N̄ can receive xλ+1. The randomized “lottery” µ places equal probability

on all allocations where all agents in Ñ receive their peak amounts, n̄(λ− xλ) agents in N̄ receive

xλ + 1 and the remaining agents in N̄ receive xλ. Hence, the utility profile is obtained by placing

equal probabilities on exactly
(

n′

n′(λ−xλ)
)

allocations. If p(Ri ≤ xλ), then Ui(R)(p(Ri)) = 1 and if

p(Ri) ≥ xλ+1, then Ui(R)(xλ+1) = λ−xλ and Ui(R)(xλ) = 1− (λ−xλ). We perform this lottery

at each bottleneck point of the egalitarian mechanism. The solution thus obtained recursively is the

probabilistic egalitarian allocation for the suppliers. A similar construction works for demanders.

Combining these two egalitarian allocations yields the egalitarian allocation (xe, ye) ∈ RS∪D+ for

the overall problem.

We conclude this chapter with a simple example of the probabilistic egalitarian rule. In the

following network in figure 2.10, demanders d1, d2 receive their peak allocations in every outcome of

the lottery. The expected outcome for suppliers (s1, s2, s3, s4, s5) is (5/2, 5/2, 8/3, 8/3, 8/3). This

expected utility is obtained through a lottery that assigns a equal probability of 1
6 to the following

allocations: (3, 2, 3, 3, 2), (3, 2, 3, 2, 3), (3, 2, 2, 3, 3), (2, 3, 3, 3, 2), (2, 3, 3, 2, 3), (2, 3, 2, 3, 3).

s1

s2

s3

s4

s5

d1

d2

3

3

4

5

4

5

5

Figure 2.10: An example for the probabilistic egalitarian rule

Note that there is no “utility gap” even when the goods are indivisible if the network is bi-

partite. Hence it follows that the probabilistic egalitarian rule is a Pareto efficient, envy free and

groupstrategyproof mechanism for the agents when the goods are indivisible.



CHAPTER 2. THE EGALITARIAN MECHANISM 42

2.4.2 Capacitated Edges

We study the two sided model in section 2.3 but with capacitated edges. We denote the capacity

of an edge by uij > 0. If uij = ∞, we have the model of Bochet et al. [12]. Hence, the results in

this section generalize the earlier known results on equity and strategic properties of the egalitarian

mechanism to a network with capacity constraints.

Recall our notation from earlier section. For any subset T ⊆ S, the set of demanders compatible

with the suppliers in T is f(T ) = {j ∈ D|(i, j) ∈ E, i ∈ T }. Similarly, the set of suppliers

compatible with the demanders in C ⊆ D is g(C) = {i ∈ S|(i, j) ∈ E, j ∈ C}. We abuse notation

and say f(i) and g(j) instead of f({i}) and g({j}) respectively. For any subsets T ⊆ S, C ⊆ D,

xT :=
∑

i∈T xi and yC :=
∑

j∈C yj .

A transfer of the commodity from S to D is realized by a flow ϕ, which specifies the amount

of the commodity transferred from supplier i to demander j using the edge (i, j) ∈ E. The flow ϕ

induces an allocation vector for each supplier and each demander as follows:

for all i ∈ S : xi(ϕ) =
∑
j∈f(i)

ϕij ; for all j ∈ D : yj(ϕ) =
∑
i∈g(j)

ϕij (2.26)

The flow ϕ is feasible if (i) ϕij ≤ uij for all (i, j) ∈ E and ϕij = 0 for all (i, j) 6∈ E; (ii) xi(ϕ) ≤ si

for all i ∈ S; and (iii) yj(ϕ) ≤ dj for all j ∈ D. Let F(G, s, d, u) be the set of feasible flows for the

problem (G, s, d, u). A feasible flow ϕ∗ is a maximum flow if

ϕ∗ ∈ arg max
ϕ∈F(G,s,d,u)

∑
i∈S

xi(ϕ).

Let F∗(G, s, d, u) be the set of maximum flows for the problem (G, s, d, u). For reasons that will be

clearer later, we shall focus mostly on finding a maximum flow for any given problem. As a result,

it is important to understand the set F∗(G, s, d, u), which we turn to next.

The Gallai-Edmonds Decomposition. The problem under consideration is the well-known

problem of finding a maximum flow in a capacitated bipartite network. The following result char-

acterizes the structure of maximum flows and is essentially a version of the Gallai-Edmonds de-

composition. It can proved by a straightforward application of the max-flow min-cut theorem.
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Lemma 7 There exists a partition S+, S− of S, and a partition D+, D− of D such that the flow

ϕ with net transfers x, y is a maximum flow if and only if

ϕij = uij ∀ij ∈ G(S−, D−), xi = si ∀i ∈ S+, yj = dj ∀j ∈ D+ (2.27)

Proof: Refer to the appendix

The Egalitarian mechanism

From the structural Lemma 7 edges ij such that i ∈ S−, j ∈ D− are saturated. Firstly, set flow

on such edges to uij and remove them from the network and adjust the peaks of the suppliers

and demanders connected to those edges i.e. for every edge ij such that i ∈ S−, j ∈ D−, do

si ← si − ϕij , dj ← dj − ϕij . Since in any maximum flow there is no flow between the agents in

S+ to the agents in D+, the network again is decomposed into two disjoint components. Hence, we

define independently our solution for the suppliers and for the demanders.

The definition for suppliers is by induction on the number of agents |S| + |D|. Consider the

parameterized capacity graph Γ(λ), λ ≥ 0: the only difference between this graph and Γ(G, s, d) is

that the capacity of the edge σi, i ∈ S− is min{λ, si}, which we denote by λ∧si. (In particular, the

edge from j to τ still has capacity dj). We set α(λ) to be the maximal flow in Γ(λ). Clearly α is a

piecewise linear, weakly increasing, strictly increasing at 0, and concave function of λ, reaching its

maximum when the total σ-τ flow is dD+ .

Let b1i , b
2
i denote the type 1 and type 2 bottleneck points respectively for an agent i ∈ S. At

the start of the mechanism, set b1i = b2i =∞, ∀ i ∈ S. We say the breakpoint λ is of type I, when

some agent i is constrained by his/her peak capacity (set b1i = si = λ). A breakpoint λ is of type

II, when for some agent i more flow cannot be supported by the edges incident to it in any other

maximum flow; then set b2i = λ. A breakpoint λ is of type III, if it is associated with a subset of

suppliers X such that

∑
i∈X

λ ∧ b1i ∧ b2i =
∑

j∈f(X)

dj (2.28)
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In type III the group of suppliers in X is a bottleneck, in the sense that they are sending enough

flow to satisfy the collective demand of the demanders in f(X) and these are the only demanders

they are connected to; any further increase in flow from any supplier in X would cause some

demander in f(X) to accept more than his peak demand.

If the given problem does not have any type-2 breakpoint, then the egalitarian solution obtains

by setting each supplier’s allocation to his peak value. Otherwise, let λ∗ be the first type-2 break-

point of the max-flow function; by the max-flow min-cut theorem, for every subset X satisfying

(2.25) at λ∗ the cut C1 = {σ} ∪ X ∪ f(X) is a minimal cut in Γ(λ∗) providing a certificate of

optimality for the maximum-flow in Γ(λ∗). If there are several such cuts, we pick the one with the

largest X∗ (its existence is guaranteed by the usual supermodularity argument). The egalitarian

solution obtains by setting

xi = min{λ∗, b1i , b2i }, for i ∈ X∗, yj = dj , for j ∈ f(X∗),

and assigning to other agents their egalitarian share in the reduced problem (G(S�X∗, D�f(X∗)), s, d).

That is, we construct ΓS�X
∗,D�f(X∗)(λ) for λ ≥ 0 by changing in Γ(G(S�X∗, D�f(X∗)), s, d) the

capacity of the edge σi to λ ∧ si, and look for the first type-2 breakpoint λ∗∗ of the corresponding

max-flow function. An important fact is that λ∗∗ > λ∗.

The solution thus obtained recursively is the egalitarian allocation for the suppliers. A similar

construction works for demanders: We consider the parameterized capacity graph ∆(µ), µ ≥ 0,

with the capacity of the edge τj, j ∈ D set to µ ∧ dj . We look for the first type-3 breakpoint µ∗ of

the maximal flow β(µ) of ∆(µ), and for the largest subset of demanders Y such that

∑
j∈Y

µ ∧ bj1 ∧ b
j
2 =

∑
i∈g(Y )

si

etc.. Combining these two egalitarian allocations yields the egalitarian allocation (xe, ye) ∈ RS∪D+

for the overall problem.

We illustrate below the egalitarian mechanism in a simple capacitated network. In figure 2.11,

the capacity of the edges s3d3, s2d3, s2d2, s1d2, s1d1 are 3,3,2,5 and 5 respectively. The first bot-

tleneck is at λ = 3 when supplier s3 reaches the peak value; The next bottleneck occurs when

λ = 5 when we have a type II bottleneck at supplier node 2. Finally, at λ = 8, we have a
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type III bottleneck involving all the suppliers. The egalitarian allocation for the network is then:

(x1, x2, x3) = (8, 4, 3) and (d1, d2, d3) = (7, 5, 3).

3 s3

7 s2

8 s1

3d3

5d2

7d1

Figure 2.11: An example for the egalitarian rule in a network with capacities

Pareto optimality and the Core

Fix the economy (G,R). Let S+, S− and D+, D− be the Gallai-Edmonds decomposition applied

to the network G with edge capacities given by u, supplies given by the peaks of the suppliers and

the demands given by the peaks of the demanders. Then:

(a) If the flow ϕ implements Pareto optimal net transfers (x, y), then:

ij ∈ G(S−, D−) =⇒ ϕij = uij ; ij ∈ G(S+, D+ ∪ (f(S−) ∩D−)) =⇒ ϕij = 0 (2.29)

(b) The transfers (x, y) induced by a feasible flow ϕ are Pareto optimal if and only if

x ≥ s on S+, y ≤ d on D− and xS+ = yD− − ϕ(S−, D−) (2.30)

x ≤ s on S−, y ≥ d on D+ and xS− = yD+ + ϕ(S−, D−) (2.31)

where ϕ(S−, D−) is the net flow from component S− to D−. From earlier discussions,

ϕ(S−, D−) =
∑

i∈S−,j∈D− uij

The following subset of PO(G,R) will play an important role:

PO∗(G, s, d) = PO(G,R) ∩ {(x, y)|x ≤ s; y ≤ d}
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From the discussion above, this is the set of efficient allocations where the short side gets its optimal

transfer:

x = s on S+, y ≤ d on D−, and yD− = sS+

x ≤ s on S−, y = d on D+ and xS− = yD+

Moreover by Lemma 2, the net transfers in PO∗(G, s, d) are precisely those implemented by all the

maximal flows of the capacity graph Γ(G, s, d).

We focus on allocations in PO∗(G, s, d), because under the Voluntary Trade (requiring xiRi0, yjRj0

for all i, j; see Section 8) property, they are the only allocations Pareto optimal for any choice of

preferences in R with peaks (s, d).

We first give an alternative characterization of the Pareto∗ set, critical to the analysis of the

egalitarian solution. Define two cooperative games, (S, v) and (D,w), of which the players are

respectively the suppliers and the demanders:

v(T ) = min
T ′⊆T
{sT ′ + df(T�T ′)∩D+ +

∑
i/∈T ′,j∈f(T ′)∩D−

uij} for all T ⊆ S (2.32)

w(E) = min
E′⊆E

{dE′ + sg(E�E′)∩S++
∑

j /∈E′,i∈f(E′)∪S−
uji} for all E ⊆ D (2.33)

The games (S, v) and (D,w) are submodular. Moreover

v(S) = w(D) = sS+ + dD+ +
∑

i∈S−,jinD+

uij ; (2.34)

The core of the game (S, v), denoted Core(S, v), is the set of allocations x ∈ RS+ such that

xT ≤ v(T ) for all T ⊂ S, and xS = v(S); similarly the core of the game (D,w) is the set of

allocations y ∈ RD+ such that yE ≤ w(E) for all E ⊂ D, and yD = w(D). Notice that v(T ) ≤ sT

for all T ⊂ S, therefore x ∈ Core(S, v) implies x ≤ s; similarly y ∈ Core(D,w)⇒ y ≤ d.

Fix the problem (G, s, d), and two partitions S+, S− and D+, D− as in Lemma 2. Then the

allocation (x, y) is in PO∗(G, s, d) if and only if it satisfies one of the two equivalent properties

i) x ∈ Core(S, v) and y ∈ Core(D,w)

ii) {x = s on S+, and on S−, x ∈ Core(S−, v)} and {y = d on D+, and on D−, y ∈ Core(D−, w)}

For any problem (G, s, d), the allocation xe (resp. ye) is the egalitarian selection in Core(S, v)

(resp. Core(D,w)).
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Properties of the egalitarian mechanism

Theorem 6 The allocation (xe, ye) is the Lorenz dominant element in PO∗(G, s, d) 8.

Proof: For z, w ∈ RN , we say that z lexicographically dominates w if the first coordinate a

in which z∗ and w∗ are not equal is such that z∗a > w∗a. We show that the egalitarian solution

lexicographically dominates any other solution. Recall that in an arbitrary submodular cooperative

game, the egalitarian core selection introduced in [? ] Lorenz dominates every other core allocation.

As the set PO∗(G, s, d) is the intersection of the cores of two submodular games (Lemma 5), it

has a unique Lorenz dominant element, which must also be lexicographically optimal . As the

lexicographically optimal element is always unique, it must also be Lorenz dominant.

We prove the result for the suppliers by induction on the number of agents. An analogous

argument for the demanders, omitted as usual, completes the proof. The result is clearly true when

there is a single supplier, and when the max-flow function (defined earlier) α(λ) does not have

any type-3 breakpoints. In the latter case, every supplier will be allocated his peak, which clearly

Lorenz dominates every other allocation. Let λ∗ be the first type-3 breakpoint of the max-flow

function α(λ), and let X∗ be the corresponding largest bottleneck set of suppliers (2.25). The

following facts about the egalitarian allocation are clear:

• Each supplier i ∈ X∗ will send b1i or b2i or λ∗, whichever is smaller.

• Each supplier i 6∈ X∗ with b1i , b
2
i ≤ λ∗ will send min(b1i , b

2
i ).

• Each supplier i 6∈ X∗ with min(b1i , b
2
i ) > λ∗ will send a flow that is strictly above λ∗.

(the last statement because the next breakpoint λ∗∗ > λ∗).

Let W be the set of suppliers (both in X∗ and outside) with allocation at or below λ∗. The

allocations of the suppliers in W with allocation such that xi = b1i cannot be improved because

they are already receiving their peak allocation. From construction, the allocation of an agent with

xi = b2i can only be improved if agents with allocation smaller than xi reroute some of the flow

8Note that this solution is not Lorenz dominant in the entire Pareto set.
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through agent i; In which case, the egalitarian mechanism lexicographically dominates the new

allocation. Hence, the allocations of the suppliers in W cannot be improved.

It is also clear that in any other allocation at least one of the suppliers in X∗ \W who is not

constrained by capacities must send at most λ∗. This is because, in the egalitarian allocation, they

split equally the df(X∗) − sX∗∩W units of flow they collectively send. In any other allocation, they

send at most these many units of flow, so the smallest allocation of a supplier in X∗ \W is at

most λ∗. And if this smallest allocation is exactly λ∗, the allocation coincides with the egalitarian

allocation on X∗ ∪W . Thus the egalitarian allocation lex-dominates any allocation that does not

agree with it on the allocations of the suppliers in W∪X∗. We can therefore fix the allocations of the

suppliers in W ∪X∗ to their egalitarian allocation for the purposes of proving lex-dominance. Let

W be the subset of Pareto optimal allocations that gives each supplier in W ∪X∗ their egalitarian

allocation. Note that in every allocation inW, each demander j ∈ f(X∗) receives his peak demand,

all of which flows from the suppliers in X∗. Thus, none of these demanders receives additional flow

from the suppliers in S \X∗ in any allocation in W. By construction, no supplier in X∗ has links

to a demander in D \ f(X∗). Thus proving lex-dominance of the egalitarian allocation for the

original problem is equivalent to proving the following statement: when restricted to the suppliers

in S \ X∗, the egalitarian allocation lexicographically dominates all the allocations in W. The

restriction of the egalitarian allocation to the suppliers in S \ X∗ is identical to the egalitarian

allocation of the subproblem (S \X∗, D \ f(X∗)). This, however, is a smaller problem, so, by the

induction hypothesis, the egalitarian allocation of this subproblem lexicographically dominates any

other Pareto optimal allocation, and, in particular, those in W.�. This proof also implies that the

egalitarian allocation is in the core of the game described earlier.

Theorem 7 The egalitarian transfer rule satisfies No Envy

Proof: Let R be a profile at which supplier 1 envies supplier 2 via (x, y). We have ψe1(R) < s1,

because 1 is not envious if ψe1(R) = s1. Single-peakedness of R1, and the fact that 1 prefers

both x1 and ψe2(R) to ψe1(R), implies ψe1(R) < x1, ψ
e
2(R). As above, conservation of flows implies

x1 + x2 = ψe1(R) + ψe2(R). Therefore x2 < ψe2(R). We see that for ε small enough, the allocation

εx+(1−ε)ψe(R) is in PO∗(G, s, d). It is a Pigou Dalton transfer from 2 to 1 in this set, contradicting

the Lorenz dominance of ψe(R).�
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Theorem 8 A mechanism is peak group strategyproof if and only if it is strongly invariant and

picks an allocation in PO∗; The egalitarian mechanism is peak groupstrategyproof

Proof: Refer to the appendix
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2.5 The One-sided Model (Divisible Goods)

Related extension of Sprumont’s [56] model to bipartite networks is one where agents on one side

of the network have preferences whereas the other side of network consists of goods that must by

fully allocated.

2.5.1 Model

Recall that in the one-sided model, we are given a bipartite graph G with suppliers S indexed by

i and demanders D indexed by j. Demander j has a demand of dj that must be satisfied exactly,

whereas supplier i has single-peaked preferences with peak si; therefore, a supplier may be required

to send more or less than his peak. In addition supplier i is required to send at least `i and at

most ui units of flow; we may assume without loss of generality that `i ≤ si ≤ ui. The peaks of

the demanders, their preferences, and the `i and ui are common knowledge; in contrast, for any

supplier i, his peak si and the set f(i) of demanders he is linked to may be private information

held only by that supplier i and hence must be elicited by the mechanism.

Let λ := (λi)i∈S be non-negative. Construct the following network G(λ): introduce a source s

and a sink t; arcs of the form (s, i) for each supplier i with capacity λi, arcs of the form (j, t) for

each demander j with capacity dj ; an infinite-capacity arc from supplier i to demander j if supplier

i and demander j share a link. Let ` = (`i)i∈S , u = (ui)i∈S , and s = (si)i∈S . It is straightforward

to verify that the given problem admits a feasible solution if and only if the maximum s-t flow in

G(`) and G(u) are, respectively,
∑

i∈S `i and
∑

j∈D dj . Consider now a maximum s-t flow in the

network G(s). By the max-flow min-cut theorem, there is a cut C (a cut is a subset of nodes that

contains the source s but not the sink t) whose capacity is equal to that of the max-flow. If the set

of suppliers in C is X and the set of demanders in C is Y , it is clear that Y = f(X): if Y 6⊆ f(X),

then C has infinite capacity, and if Y ⊃ f(X) then C’s capacity can be improved by deleting the

demanders in Y \ f(X). Bochet et al. [11] show that in any Pareto-optimal allocation x for the

suppliers, xi ≤ si for each i ∈ X and xi ≥ si for each i ∈ S \X.

If the min-cut is not unique, it is again well-known (see [40]) that there is a min-cut with the

largest X (largest in the sense of inclusion), and a min-cut with the smallest X (again in the sense
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of inclusion). Call these sets X and X. It is easy to check that every supplier in X \ X will be at

his peak value in all Pareto optimal solutions. In the notation of Bochet et al. [11], M0 := X \ X,

M− := X, and M+ := S \ X. To keep things simple, however, we shall dispense with M0 and

use the partition M− = X, M+ = S \ X. In this case the partition of the demanders becomes

Q+ = f(M−) and Q− = D \ f(M−). We note that our M− is still uniquely determined for each

problem. In what follows, often it will be important to talk about the set of suppliers involved in

the cut, rather than the cut itself: we abuse notation and talk about the cut X when in fact the

set of nodes in the cut is really s ∪X ∪ f(X).

2.5.2 Egalitarian Mechanism

Suppose (xi)i∈S is a Pareto optimal allocation. From the earlier discussion it is clear that xi ∈ [si, ui]

for every supplier i ∈M+, and xi ∈ [`i, si] for every supplier i ∈M−. Bochet et al. [11] prove that

the egalitarian allocation, which is defined independently for the suppliers in M− and M+, Lorenz

dominates all other Pareto optimal allocations.

For the suppliers in M−, the egalitarian allocation is found by the following algorithm. Let λ

be a parameter whose value is increased continuously from zero, and let mi(λ) = median(`i, λ, si).

Consider the graph G(m(λ)), where the capacity of the arc (s, i) is mi(λ). By the earlier discussion,

we know that each supplier in M− will send at least `i and at most si units of flow in a Pareto

optimal solution, and that every demander j in f(M−) will receive exactly dj units of flow. We now

study the sequence of networks G(m(λ))—specifically the maximum s-t flow in such networks—as

λ is increased from zero. It is not hard to see that the maximum s-t flow in G(m(λ)) is a weakly-

increasing, piecewise linear function of λ with at most 2n breakpoints. Moreover, each breakpoint

is one of the `i, or one of the si (type 1), or is associated with a subset of suppliers X such that∑
i∈X

mi(λ) =
∑

j∈f(X)

dj (2.35)

This we call a type-2 breakpoint. At a type-1 breakpoint, the associated supplier is at his peak

and so will not send any more flow (recall that every supplier i ∈ M− will send flow at most his

peak si); at a type-2 breakpoint, however, the group of suppliers in X are sending enough flow to

satisfy the collective demand of the demanders in f(X), so any further increase in flow from any

supplier in X would cause some demander in f(X) to accept more than his peak demand.
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If the given problem does not have any type-2 breakpoint, then the egalitarian solution obtains

by setting each supplier’s allocation to his peak value. Otherwise, let λ∗ be the first type-2 break-

point of the max-flow function; by the max-flow min-cut theorem, for every subset X satisfying

(2.35) at λ∗ the cut C1 = {s} ∪ X ∪ f(X) is a minimal cut in G(m(λ∗)) providing a certificate

of optimality for the maximum-flow in G(m(λ∗)). If there are several such cuts, we pick the one

with the largest X∗ (its existence is guaranteed by the usual supermodularity argument). The

egalitarian solution is obtained by setting

xi = median(`i, λ
∗, si), for i ∈ X∗, yj = dj , for j ∈ f(X∗),

and assigning to other agents their egalitarian share in the reduced problem involving the suppliers

in M− \X∗ and the demanders in Q+ \ f(X∗). It is straightforward to verify that the first type-2

breakpoint λ∗∗ of this reduced problem will satisfy λ∗∗ > λ∗.

For the suppliers in M+, a similar algorithm is used to determine the egalitarian allocation: here,

each demander j ∈ Q− receives exactly di units of flow, whereas every supplier i ∈ M+ = g(Q−)

sends at least si and at most ui units of flow in a Pareto optimal solution. As before, we consider

the graph G(m(λ)), where the capacity of the arc (s, i) is mi(λ) := median(si, λ, ui). We increase

λ gradually and observe that the maximum s-t flow in G(m(λ)) is a weakly-increasing, piecewise

linear function of λ with at most 2n breakpoints. Moreover, each breakpoint is one of the si, or

one of the ui (type 1), or is associated with a subset of suppliers X such that∑
i∈X

mi(λ) =
∑

j∈f(X)

dj

This we call a type-2 breakpoint. At a type-1 breakpoint, the associated supplier is at his upper

bound and so cannot send any more flow; at a type-2 breakpoint, however, the group of suppliers in

X are sending enough just enough flow to satisfy the collective demand of the demanders in f(X),

so any decrease in flow from any supplier in X would cause some demander in f(X) to receive an

amount strictly below his peak demand. As before, if the given problem does not have any type-2

breakpoint, then the egalitarian solution obtains by setting each supplier’s allocation to his upper

bound. Otherwise, let λ∗ be the first type-2 breakpoint of the max-flow function, and let X∗ be

the (largest) associated bottleneck set of suppliers (as before). The egalitarian solution is obtained

by setting

xi = median(si, λ
∗, ui), for i ∈ X∗, yj = dj , for j ∈ f(X∗),
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and assigning to other agents their egalitarian share in the reduced problem involving the suppliers

in M+ \X∗ and the demanders in Q− \ f(X∗). This completely defines the egalitarian solution.

2.5.3 Strategic Issues

We turn now to strategic aspects of the rationing problem with constraints. In the one-sided model,

only the suppliers are modeled as “agents,” who possess potentially two pieces of information

that could be modeled as private: the set of demanders they are compatible with, and their own

preference over allocations 9. As the egalitarian mechanism is “peak-only” [11], it is sufficient for

the suppliers to report only their peaks, rather than their entire preference ordering.

It is a simple matter to verify that the egalitarian mechanism is not link strategyproof. Consider

a supplier with a peak of 1, connected to two demanders, each with a demand of 1, see Figure 2.12.

If the supplier reveals both links, his egalitarian allocation is 2, whereas by suppressing one of the

links, his egalitarian allocation improves to 1. Therefore in the rest of this section we focus only

on peak strategyproofness.

s1

d1

d2

1

1

1

s1

d1

d2

1

1

1

Figure 2.12: Counterexample for Link SP

Bochet et al. [11] show that the egalitarian mechanism, is peak strategyproof. Our main result

in this section is that, in fact, the egalitarian mechanism is peak groupstrategyproof. To set the

stage for this, we use Lemma 6 from the previous section to give an alternative proof that the

9The set of demanders, their individual demands, as well as the the lower and upper bounds on arc-flows are

assumed to be common knowledge.
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egalitarian mechanism is strategyproof. We note that this is a much simpler proof in comparison

to the original proof that appears in Bochet et al. [11]

Theorem 9 The egalitarian mechanism is peak strategyproof.

Proof. For the problem (G, s, d) let x be the egalitarian allocation, and let M+ and M− be

defined as before. Consider the problem (G, s′, d) with sk = s′k for all k 6= i. Suppose i ∈ M−.

If s′i ≥ si, Lemma 6 proves that the decomposition does not change; it is easy to see that the

egalitarian allocation is unaffected as well, because the algorithm to compute operates identically

in the problems (G, s, d) and (G, s′, d). Similarly, if i ∈ S+ and s′i ≤ si, the decomposition does not

change (by Lemma 6), and the egalitarian allocation is unaffected as well. Suppose agent i reports

s′i as his peak and the allocation changes to x′i. To prove strategyproofness, it suffices to show that

any i ∈M− (weakly) prefers xi to x′i for all s′i < si, and that any i ∈M+ (weakly) prefers xi to x′i

for all s′i > si.

Fix an i ∈ M−, and suppose that i reports a peak of s′i < si. In this case the decomposition

may change; let M ′− and M ′+ be the new decomposition. If i ∈M ′−, an application of Lemma 6 to

the problem (G, s′, d) shows that the decomposition does not change, and that x′i = xi. Suppose

i ∈M ′+. Let D′ := Q+ ∩Q′−, and X ′ := M− ∩M ′+, and note that by our supposition X ′ 3 i. Note

also that g(D′)∩M− ⊆ X ′, as no agent in M ′− has a link to any demander in Q′−. Furthermore, if

i 6∈ g(D′), x′i = 0, and again the result follows: recall that f(i) ⊆ Q+; and if i 6∈ g(D′), f(i) ⊆ Q′+,

and the links fromM ′+ toQ′+ do not carry any flow. So we may assume that i ∈ g(D′). We now make

two simple observations about the agents in X ′ ∩ g(D′) in the problem (G, s′, d): first every such

agent sends flow only to the demanders in D′, and therefore
∑

k∈X′∩g(D′) x
′
k ≤

∑
j∈D′ dj . Also, as

every agent in X ′ ∩ g(D′) is (weakly) above his reported peak, x′k ≥ sk for every k ∈ X ′ ∩ g(D′),

k 6= i, and x′i ≥ s′i. This implies

∑
k∈X′∩g(D′),k 6=i

sk + x′i ≤
∑
j∈D′

dj . (2.36)

We next claim that in the problem (G, s, d),
∑

k∈X′∩g(D′) xk =
∑

j∈D′ dj . To see why, observe that

the demands of D′ are covered in the problem (G, s, d) by the suppliers in M− ∩ g(D′); but every

demander in D′ moves from Q+ to Q′−, so every supplier in M− ∩ g(D′) must move to M ′+ (as
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there cannot be an edge between a supplier in M ′− and a demander in Q′−). This implies that

any supplier supplying a positive amount to a demander in D′ in the problem (G, s, d) must be in

X ′ ∩ g(D′). Note also that for each k ∈ X ′ ∩ g(D′), xk ≤ sk. These, along with X ′ ∩ g(D′) ⊆M−,

imply ∑
k∈X′∩g(D′),k 6=i

sk + xi ≥
∑
j∈D′

dj . (2.37)

Inequalities (2.36) and (2.37) imply x′i ≤ xi, as required.

Now fix an i ∈M+, and suppose that i reports a peak of s′i < si. In this case the decomposition

may change; let M ′− and M ′+ be the new decomposition. If i ∈ M ′+, as before, an application of

Lemma 6 to the problem (G, s′, d) shows that the decomposition does not change, and that x′i = xi.

Suppose i ∈ M ′−. Let D′ := Q− ∩ Q′+, and X ′ := M+ ∩M ′−, and note that by our supposition

X ′ 3 i. Note also that f(X ′) ∩ Q− ⊆ D′, as no agent in M ′− can have a link to any demander

in Q′+. We now make two simple observations about the demanders in f(X ′) ∩D′ in the problem

(G, s′, d): first every such demander can receive flow only from the agents in X ′, and therefore∑
k∈X′ x

′
k ≥

∑
j∈f(X′)∩D′ dj . Also, as every agent in X ′ is (weakly) below his reported peak (in

the new problem), x′k ≤ sk for every k ∈ X ′, k 6= i, and x′i ≤ s′i. This implies∑
k∈X′,k 6=i

sk + x′i ≥
∑

j∈f(X′)∩D′
dj . (2.38)

We next claim that in the problem (G, s, d),
∑

k∈X′ xk =
∑

j∈f(X′)∩D′ dj : in (G, s, d) the suppliers

in X ′ send flow only to the demanders in f(X ′) ∩D′, who receive flow only from these suppliers.

Furthermore, xk ≥ sk for each k ∈ X ′. In particular,∑
k∈X′,k 6=i

sk + xi ≤
∑

j∈f(X′)∩D′
dj . (2.39)

Inequalities (2.38) and (2.39) imply x′i ≥ xi, as required.

In fact, the ideas in the proof of Theorem 9 can be used to prove the following result, which

weakens the conditions under which the decomposition is guaranteed not to change.

Lemma 8 For a problem (G, s, d), suppose the decomposition is M+ and M− (with Q+, Q− defined

as before), and the egalitarian allocation is x. Consider the problem (G, s′, d) with s′j = sj for all

j 6= i, with the decomposition being M ′+ and M ′−.
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(a) If i ∈M− and s′i > xi, M
′
+ = M+ and M ′− = M−.

(b) If i ∈M+ and s′i < xi, M
′
+ = M+ and M ′− = M−.

Proof. By definition, M− is the smallest (both in terms of cardinality and inclusion) min-cut in the

graph G(s) (see §2.5.1 for the definition). For i ∈M−, the arc (s, i) does not contribute to the cut-

capacity. If s′i ≥ si, the capacity of any cut is weakly greater in (G, s′, d) than in (G, s, d), whereas

the capacity of the cut M− stays the same, so the result follows. Suppose now that xi < s′i < si,

the max s-t flow in G(s′) is weakly below that of G(s), but the egalitarian allocation x is still

feasible, so x continues to be a max-flow, so M− continues to be a min-cut in G(s′). We need to

show that it remains the minimal min-cut. First observe that M ′− ⊆ M−, as M ′− is the minimal

min-cut in G(s′) whereas M− is a min-cut for G(s′). If i ∈M ′−, then the capacity of the cut M ′− is

the same in G(s) and G(s′), so the minimality of M− in the problem (G, s, d) implies M ′− = M−.

Suppose i 6∈ M ′−. Let X = M− \M ′−, and note that i ∈ X. Note also that Q+ = f(M−) and

Q′+ = f(M ′−), so that the net change in the cut capacity when the suppliers in X move from M−

to M ′+ is precisely
∑

k∈X s
′
k −

∑
j∈Q+\Q′+

dj . In the problem (G, s, d), however, the demanders in

Q+ \ Q′+ receive flow only from the suppliers in X, each of whom sends no more than his peak:

thus,
∑

k∈X xk ≥
∑

j∈Q+\Q′+
dj , and sk ≥ xk for each k. An easy implication is that s′k ≥ xk for

each k ∈ X, k 6= i, and s′i > xi. Thus the net change in cut capacity in moving from M− to M ′− is

strictly positive, which implies M ′− cannot be a min-cut. A similar argument establishes part (b).

We conclude this section with a proof that the egalitarian mechanism is, in fact, group strate-

gyproof.

Theorem 10 The egalitarian mechanism is peak groupstrategyproof.

Proof. Suppose not. Focus on a counterexample G with the smallest number of nodes. Suppose

the true peaks of the suppliers are s and suppose they misreport their peaks to be s′. Fix a coalition

A of agents: note that this coalition includes all the agents k with s′k 6= sk. Let x and x′ be the

respective allocations to the agents when they report s and s′ respectively. As with the earlier proof,

let M+,M− be the decompsition when the agents report s, and let M ′+,M
′
− be the decomposition
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when the agents report s′. We shall show that when the agents report s′ rather than s the only

allocation in which each agent in A is (weakly) better off is one in which x′k = xk for all k ∈ A,

establishing the required contradiction.

Let D′ := Q+∩Q′−. Note that g(D′) ⊆M ′+, for otherwise there will be a supplier in M ′− with a

link to a demander in Q′−. We now make two simple observations about the agents in M− ∩ g(D′):

• When the report is s′, every such agent can send flow only to the demanders in D′: this

is because f(M−) ⊆ Q+, and each agent in g(D′) can send flow only to the agents in Q′−.

Therefore
∑

k∈M−∩g(D′) x
′
k ≤

∑
j∈D′ dj .

• When the report is s, the demanders in D′ can receive flow only from such agents: the

demanders in D′ can receive flow only from the suppliers in M− and they are connected only

to the suppliers in g(D′). Therefore
∑

k∈M−∩g(D′) xk ≥
∑

j∈D′ dj .

Note also that s′k ≤ x′k and xk ≤ sk for any k ∈M− ∩ g(D′), and that s′k = sk for all k 6∈ A. These

observations lead to

∑
k∈M−∩g(D′)

k 6∈A

sk +
∑

k∈M−∩g(D′)
k∈A

x′k =
∑

k∈M−∩g(D′)
k 6∈A

s′k +
∑

k∈M−∩g(D′)
k∈A

x′k ≤
∑

k∈M−∩g(D′)

x′k ≤
∑
j∈D′

dj ,

(2.40)

and ∑
j∈D′

dj ≤
∑

k∈M−∩g(D′)

xk ≤
∑

k∈M−∩g(D′)
k 6∈A

sk +
∑

k∈M−∩g(D′)
k∈A

xk. (2.41)

For every agent in A to be (weakly) better off when reporting s′, we must have x′k ≥ xk for

each k ∈ A. Combining this with inequalities (2.40) and (2.41), we conclude that x′k = xk for

each k ∈ M− ∩ g(D′) ∩ A. Moreover, these inequalities also imply that x′k = xk = sk for each

k ∈M− ∩ g(D′), k 6∈ A. Thus, x′k = xk for all k ∈M− ∩ g(D′). Also, whether the report is s or is

s′, the suppliers in M− ∩ g(D′) send all of their flow only to the demanders in D′; and that these

demanders receive all of their flow only from the suppliers in M− ∩ g(D′). Therefore, removing the

suppliers in M− ∩ g(D′) and the demanders in D′ does not affect the egalitarian solution for either

problem. As we picked a smallest counterexample, D′ = ∅.
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We now turn to the other case. Let X̃ := M+ ∩M ′−. Note that f(X̃)∩Q− ⊆ Q′+, for otherwise

there will be a supplier in M ′− linked to a demander in Q′−. Consider the demanders in f(X̃)∩Q−:

• When the report is s′, every such demander can receive flow only from the suppliers in X̃:

such demanders are linked only to the suppliers in M+ and can receive flow only from the

suppliers in M ′−. Therefore
∑

k∈X̃ x
′
k ≥

∑
j∈f(X̃)∩Q− dj .

• When the report is s, the suppliers in X̃ send flow only to the demanders in Q−, and they

can send flow only to the demanders they are connected to, so the suppliers in X̃ can send

flow only to the demanders in f(X̃) ∩Q−. Therefore
∑

k∈X̃ xk ≤
∑

j∈f(X̃)∩Q− dj .

Note also that s′k ≥ x′k and xk ≥ sk for any k ∈ X̃, and that s′k = sk for all k 6∈ A. Putting all this

together we have:∑
k∈X̃\A

sk +
∑

k∈X̃∩A

x′k =
∑

k∈X̃\A

s′k +
∑

k∈X̃∩A

x′k ≥
∑
k∈X̃

x′k ≥
∑

j∈f(X̃)∩Q−

dj , (2.42)

and ∑
j∈f(X̃)∩Q−

dj ≥
∑
k∈X̃

xk ≥
∑

k∈X̃\A

sk +
∑

i∈X̃∩A

xi. (2.43)

For every agent in A to be (weakly) better off when reporting s′, we must have xk ≤ x′k for

each k ∈ A. Combining this with inequalities (2.42) and (2.43), we conclude that x′k = xk for each

k ∈ X̃ ∩ A. Moreover, these inequalities also imply that x′k = xk = sk for each k ∈ X̃ \ A. Thus,

x′k = xk for all k ∈ X̃. Note that the suppliers in X̃ send all of their flow flow to the demanders

in f(X̃) ∩Q−, whether the report is s or s′; also the demanders in f(X̃) ∩Q− receive all of their

flow from the suppliers in X̃, whether the report is s or s′. Therefore, removing the suppliers in

X̃ and the demanders in f(X̃)∩Q− does not affect the egalitarian solution for either problem. As

we picked a smallest counterexample, X̃ = ∅.

We now establish that the decomposition does not change in a smallest counterexample. We

already know that D′ = ∅, which implies Q′− ⊆ Q−. Suppose this containment is strict so that there

is a demander j ∈ Q− \ Q′−. Then, g(j) ⊆ M+. As X̃ = ∅, g(j) ⊆ M ′+, which implies demander

j cannot receive any flow when the report is s′. Therefore Q′− = Q−, which implies Q′+ = Q+,

M ′+ = M+, and M ′− = M−.
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To complete the argument, let A be as defined earlier. Let A+ = A ∩M+ and A− = A ∩M−.

For any i ∈ A−, s′i < xi implies x′i ≤ s′i < xi, causing i to do worse by reporting s′i. Likewise, any

i ∈ A+, s′i > xi implies x′i ≥ s′i > xi, causing i to do worse by reporting s′i. So any improving

coalition A must be such that s′i ≥ xi for all i ∈ A− and s′i ≤ xi for all i ∈ A+. But in this case

the egalitarian solution does not change for either problem.
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2.6 Further Work

• As we have discussed before, the egalitarian mechanism is uniquely characterized by Pareto

optimality, strategyproof and equal treatment of equals. It will be interesting to see if group

strategyproofness and any other additional property can characterize the egalitarian mecha-

nism.

• We prove in Theorem 4 that strong invariance and Pareto optimality characterizes the set

of all peak groupstrategyproof mechanisms. Is there a similar notion to characterize the link

groupstrategyproof mechanisms?

• A mechanism is said to be “bossy” if an agent can worsen the allocation of another agent

without actually improving his own allocation (strictly utility). That, the egalitarian mecha-

nism is “bossy” is clearly seen from the following example. The open question is, is it possible

to construct a non bossy mechanism for these problems discussed here?

s1 d1

s2 d2

4

4

5

5

s1 d1

s2 d2

4

4

5

5

Figure 2.13: Bossiness of the egalitarian rule

• In section 2.4.2 we discussed the egalitarian mechanism for a network with capacities. When

we allow for agents to report these finite capacities, agents can be strategic with respect to

these capacity reports. It will be interesting to see if the egalitarian mechanism is robust

against coordinated misreports of the capacities.
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Chapter 3

The Edge Fair Mechanism

3.1 Introduction

We study the problem of fair division of a maximum flow in a capacitated bipartite network.

This model generalizes a number of matching and allocation problems that have been studied

extensively over the years, motivated by applications in school choice, kidney exchange, etc. The

common feature in these application contexts is that the associated market is moneyless, so that

fairness is achieved by equalizing the allocation as much as possible. This last caveat is to account

for additional considerations, such as Pareto efficiency and strategyproofness, that may be part of

the planner’s objective.

Specifically, we are given a bipartite network G = (S ∪D,E), and we think of S as the set of

supply nodes and D as the set of demand nodes. Each arc (i, j) ∈ E connects a supply node i to

a demand node j, and has capacity uij ≥ 0. There is a single commodity (the resource) that is

available at the supply nodes and needs to be transferred to the demand nodes: we assume that

supply node i has si units of the resource, and demand node j requires dj units of it. The capacity

of an arc (i, j) is interpreted as an upper bound on the direct transfer from supply node i to demand

node j. The goal is to satisfy the demands “as much as possible” using the available supplies, while

also respecting the capacity constraints on the arcs.

A well-studied special case of our problem is that of allocating a single resource (or allocating the

resource available at a single location) amongst a set of agents with varying (objectively verifiable)
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claims on it. This is the special case when there is a single supply node that is connected to every

one of the demand nodes in the network by an arc of large-enough capacity. If the sum of the claims

of the agents exceeds the amount of the resource available, the problem is a standard rationing

problem (studied in the literature as “bankruptcy” problems or “claims” problems). There is an

extensive literature devoted to such problems that has resulted in a thorough understanding of many

natural methods including the proportional method, the uniform gains method, and the uniform

losses method. A different view of this special case is that of allocating a single resource amongst

agents with single-peaked preferences over their net consumption. Under this view, studied by

Sprumont [56], Thomson [60], and many others, the goal is to design a mechanism for allocating the

resource that satisfies appealing efficiency and equity properties, while also eliciting the preferences

of the agents truthfully. The uniform rule, which is essentially an adaptation of the uniform gains

method applied to the reported peaks of the agents, occupies a central position in this literature:

it is strategy-proof (in fact, group strategy-proof), and finds an envy-free allocation that Lorenz

dominates every other efficient allocation; furthermore, this rule is also consistent. (We will define

consistency, Lorenz dominance, etc. precisely in Section 3.2.) A natural two-sided version of

Sprumont’s model has agents initially endowed with some amount of the resource, so that agents

now fall into two categories: someone endowed with less than her peak is a potential demander,

whereas someone endowed with more than her peak is a potential supplier. The simultaneous

presence of demanders and suppliers creates an opportunity to trade, and the obvious adaptation

of the uniform rule gives their peak consumption to agents on the short side of the market, while

those on the long side are uniformly rationed (see [37], [8]). This is again equivalent to a standard

rationing problem because the nodes on the short side of the market can be collapsed to a single

node. The model we consider generalizes this by assuming that the resource can only be transferred

between certain pairs of agents. Such constraints are typically logistical (which supplier can reach

which demander in an emergency situation, which worker can handle which job request), but could

be subjective as well (as when a hospital chooses to refuse a new patient by declaring red status).

This complicates the analysis of efficient (Pareto optimal) allocations, because short demand and

short supply typically coexist in the same market.

The general model we consider in this paper has been the subject of much recent research and

was first formulated by Bochet et al. [11, 12]. The authors work with a bipartite network in both
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papers and assume that each node is populated by an agent with single-peaked preferences over his

consumption of the resource: thus, each supply node has an “ideal” supply (its peak) quantity, and

each demand node has an ideal demand. These preferences are assumed to be private information,

and Bochet et al. [11, 12] propose a clearinghouse mechanism that collects from each agent only their

“peaks” and picks Pareto-optimal transfers with respect to the reported peaks. Further, they show

that their mechanism is strategy-proof in the sense that it is a dominant strategy for each agent to

report their peaks truthfully. While the models in the two papers are very similar, there is also a

critical difference: in [12], the authors require that no agent be allowed to send or receive any more

than their peaks, whereas in [11] the authors assume that the demands must be satisfied exactly

(and so some supply nodes will have to send more than their peak amounts). The mechanism of

Bochet et al.—the egalitarian mechanism—generalizes the uniform rule, and finds an allocation that

Lorenz dominates all Pareto efficient allocations. Later, Chandramouli and Sethuraman [15] show

that the egalitarian mechanism is in fact group strategyproof: it is a dominant strategy for any

group of agents (suppliers or demanders) to report their peaks truthfully 1. Szwagrzak [57, 59, 58]

expands the study of allocation rules in these networked economies by introducing broader class of

mechanisms with various fairness properties. His work also develops alternative characterizations

of these mechanisms (in particular, the egalitarian mechanism) and provides a unified view of the

allocation problem on networks. Szwagrzak [57] studies the property of contraction invariance of

an allocation rule: when the set of feasible allocations contracts such that the optimal allocation is

still in this smaller set, then the allocation rule should continue to select the same allocation. He

shows that the egalitarian rule is contraction invariant. These results suggest that the egalitarian

mechanism may be the correct generalization of the uniform rule to the network setting. However, it

is fairly easy to show that the egalitarian mechanism is not consistent: if the link from a supply node

i and demand node j is dropped, and si and dj are adjusted accordingly, applying the egalitarian

mechanism to the reduced problem will not necessarily give the same allocation to the agents.

Motivated by this observation, Moulin and Sethuraman [43, 44] study rules for network rationing

problems that extend a given rule for a standard rationing problem while preserving consistency

and other natural axioms. In particular, they propose a family of rules that generalize the uniform

1Szwagrzak [57] genrealize the proof methodology of Chandramouli and Sethuraman [15] to establish that all

separably convex rules are group strategyproof
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rule to the bipartite network setting. While they are able to show that their extension satisfies

consistency, it is not known if any of these rules is strategyproof.

Our main contribution in this paper is a new group strategy-proof mechanism (the “edge-fair”

mechanism) that is a consistent extension of the uniform rule. Our proof shows that for any

Pareto efficient mechanism, group strategyproofness is equivalent to a property that we call strong

invariance that is often straightforward to verify. (In particular, the group strategy-proofness of

the egalitarian mechanism also follows immediately, even if one works with a capacitated model.)

Along the way we show that consistency imposes very severe restrictions: for instance, no consistent

rule can find allocations that are envy-free, even in the limited sense introduced by Bochet et al. [12]

for such problems. The mechanism we propose does not find the Lorenz optimal allocation, but we

show that no consistent mechanism can.

In the second part of the chapter, we consider a model where the supplies and demands at

the nodes are given, but that each edge is controlled by an independent agent with single-peaked

preferences on the amount transferred along that edge. The planner still wishes to implement a

maximum flow (it is now a design constraint), and the goal is to divide this reasonably among the

edges of the network. For this model we show that a Lorenz optimal allocation need not exist,

but that our mechanism can still be applied and finds a division of the max-flow that is envy free,

consistent and group strategyproof.

The rest of the paper is organized as follows: in Section 3.2 we consider the standard model

of maximizing the total flow in a capacitated bipartite network. We state the well-known Gallai-

Edmonds decomposition, and describe the edge-fair algorithm that selects a particular max-flow

for any given problem. An easy argument shows that the edge-fair algorithm makes a consistent

selection of max-flows across related problems. Section 3.3 considers the model in which agents are

located on the nodes of the network and have single-peaked preferences over their allocations—the

equivalence of group strategy-proofness and strong invariance, and the fact that the edge-fair rule

satisfies strong invariance are the key results in this section. In section 3.4 we turn to the problem

in which agents are on the edges of the network, and study the implications of consistency.
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3.2 Maximum Flows Review and Consistency

We consider the problem of transferring a single commodity from a set S of suppliers to a set D

of demanders using a set E of edges. Supplier i has si ≥ 0 units of the commodity, and demander

j wishes to consume dj ≥ 0. Associated with each edge is a distinct supplier-demander pair: the

edge e = (i, j) links supplier i to demander j, and has a non-negative, possibly infinite, capacity

uij . Transfer of the commodity is allowed between supplier i and demander j only if (i, j) ∈ E,

in which case at most uij units of the commodity can be transferred along this edge2. The goal

is to find an “optimal” transfer of the commodity from the suppliers to the demanders. We let

G = (S ∪D,E) be the natural bipartite graph and we speak of the problem (G, s, d, u).

We use the following notation. For any subset T ⊆ S, the set of demanders compatible with the

suppliers in T is f(T ) = {j ∈ D|(i, j) ∈ E, i ∈ T }. Similarly, the set of suppliers compatible with

the demanders in C ⊆ D is g(C) = {i ∈ S|(i, j) ∈ E, j ∈ C}. We abuse notation and say f(i) and

g(j) instead of f({i}) and g({j}) respectively. For any subsets T ⊆ S, C ⊆ D, xT :=
∑

i∈T xi and

yC :=
∑

j∈C yj .

A transfer of the commodity from S to D is realized by a flow ϕ, which specifies the amount

of the commodity transferred from supplier i to demander j using the edge (i, j) ∈ E. The flow ϕ

induces an allocation vector for each supplier and each demander as follows:

for all i ∈ S : xi(ϕ) =
∑
j∈f(i)

ϕij ; for all j ∈ D : yj(ϕ) =
∑
i∈g(j)

ϕij (3.1)

The flow ϕ is feasible if (i) ϕij ≤ uij for all (i, j) ∈ E and ϕij = 0 for all (i, j) 6∈ E; (ii) xi(ϕ) ≤ si

for all i ∈ S; and (iii) yj(ϕ) ≤ dj for all j ∈ D. Let F(G, s, d, u) be the set of feasible flows for the

problem (G, s, d, u). A feasible flow ϕ∗ is a maximum flow if

ϕ∗ ∈ arg max
ϕ∈F(G,s,d,u)

∑
i∈S

xi(ϕ).

Let F∗(G, s, d, u) be the set of maximum flows for the problem (G, s, d, u). For reasons that will be

clearer later, we shall focus mostly on finding a maximum flow for any given problem. As a result,

it is important to understand the set F∗(G, s, d, u), which we turn to next.

2Equivalently, we could assume that an edge exists between every supplier i and every demander j, but that

uij = 0 for all (i, j) 6∈ E.
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The Gallai-Edmonds Decomposition. The problem under consideration is the well-known

problem of finding a maximum flow in a capacitated bipartite network. The following result char-

acterizes the structure of maximum flows and is essentially a version of the Gallai-Edmonds de-

composition. It can proved by a straightforward application of the max-flow min-cut theorem.

Lemma 9 There exists a partition S+, S− of S, and a partition D+, D− of D such that the flow

ϕ with net transfers x, y is a maximum flow if and only if

ϕij = uij ∀ij ∈ G(S−, D−), xi = si ∀i ∈ S+, yj = dj ∀j ∈ D+ (3.2)

Proof: Refer to the appendix

We briefly describe some key axioms that we want our rules to satisfy.

Edge consistency. The key axiom in our paper is edge consistency (or simply consistency, here-

after). Suppose we have a rule ϕ that picks a flow z for a given problem (G, s, d, u). Fix an edge

(i, j) ∈ G connecting supply node i and demand node j, and define the reduced problem as follows:

the new graph is G′ = G \ {e}; the supplies and demands of all the nodes other than i and j stay

the same, s′i = si − zij and d′j = dj − zij ; and the capacities on the edges that remain stay the

same. Let z′ be the flow picked by the rule ϕ for the reduced problem (G′, s′, d′, u). The rule ϕ is

edge-consistent if z = z′ for every reduced problem G′ that can be obtained from G by omitting

an edge. Observe that z restricted to the edges in G′ is a max-flow for the reduced problem, and

edge-consistency requires that the rule not “reallocate” the flow amongst the remaining edges if

some edge is dropped from the problem and the corresponding supplies and demands are adjusted

in the obvious way.

Continuity. The mapping ϕ : (G, s, d, u) → R|E| is jointly continuous in s, d, and u. Roughly

speaking, this simply says that a rule is continuous only if small changes in supplies, demands or

edge-capacities result in small changes on the edge-flows picked by the rule.

Symmetry. Consider any permutation π of the supply nodes and a permutation σ of the demand

nodes. Define the graph G′ as follows: (i, j) ∈ G if and only if (π(i), σ(j)) ∈ G′. The supplies s′
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and demands d′ are defined analogously by permuting the original supplies and demands according

to the respective permutations. A rule ϕ is symmetric if and only if for every π and every σ, zij =

z′π(j),σ(j) where z and z′ are the outcomes of the rule for the problems (G, s, d, u) and (G′, s′, d′, u′)

respectively.

Individual rationality from equal division requires all agents to be at least as well off when the good

is evenly distributed

One-sided resource-monotonicity requires that all agents gain upon an increase in the commodity

if (i) initially there is not enough of the commodity and (ii) after the increase there is not enough

of the commodity; and gain upon a decrease in the commodity if (i) initially there is too much of

the commodity and (ii) after the decrease there is still too much of the commodity.

Connection to literature: The uniform rule of Sprumont [56] as described in section 2.2 is a con-

sistent rule. Consider the example in figure 2.1, suppose we allocate 5/14 units to agent s3 and

remove him from the network and adjust the peak of d1 to 9/14(1−5/14). The uniform rule on the

reduced network allocates for agents s1, 2/7 units and for s2, 5/14 units which coincides with the

uniform rule allocation in the original network. Sonmez [54] show that consistency along with one

sided resouce monotonicity and individual rationality from equal division characterize the uniform

rule.

More recently, Moulin and Sethuraman [43] study consistent rules and their extensions to bi-

partite networks. Their main contribution is that (i) uniform gains and uniform losses method have

infinitely many consistent extensions whereas the propotional method has only one. In their follow

up work, Moulin and Sethuraman [44] study loss calibrated rationing methods that are consistently

extendable to bipartite networks. They also show that these are the only methods that meet this

property whereas most standard parametric methods do not admit such consistent extensions.

3.2.1 The Edge Fair Rule

Given two max-flows ϕ and ϕ′ sorted in increasing order we say that ϕ lexicographically dominates

ϕ′ if the first coordinate k in which ϕ and ϕ′ are not equal is such that ϕk > ϕ′k. (Note that the

k-th smallest entry in the flows ϕ and ϕ′ may be on different edges.) The max-flow ϕ is lex-optimal

if it lexicographically dominates all other max-flows F∗(G, s, d, u). It is clear that a lex-optimal
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flow exists and is unique.3 The edge-fair algorithm, formally described next, finds this lex-optimal

flow by solving a sequence of linear programming problems.

We fix a problem (G, s, d) such that si, dj > 0 for all i, j (clearly, if si = 0 or dj = 0 we can

ignore supplier i or demander j altogether). Let E0 := E and F0 := F∗(G, s, d, u), the set of all

max-flows for the given problem. The edge-fair algorithm (or rule) proceeds iteratively, solving

a linear programming problem in each step. In any iteration t, it starts with a candidate set of

max-flows Ft, and a set of active edges Et, and solves the following linear programming problem:

max
ϕ∈Ft

{
λt+1

∣∣∣∣ ϕe ≥ λt+1, ∀e ∈ Et
}
.

Suppose λ∗t+1 is the optimal value of this linear programming problem. Then,

Ft+1 =

{
ϕ ∈ Ft | ϕe ≥ λ∗t+1 ∀e ∈ Et

}
,

and

Et+1 =

{
e ∈ Et | ϕe > λ∗t+1 for some ϕ ∈ Ft+1

}
.

The edges in Et\Et+1 are declared inactive, and the algorithm proceeds to the next value of t if any

active edges remain. As at least one edge becomes inactive in each step, the algorithm terminates

in O(|E|) steps.

It is often useful to think about this algorithm in a different, but equivalent way. First, observe

that any edge whose flow is fixed in every max-flow will carry exactly this amount in the outcome

of the edge-fair algorithm as well. Thus, we focus only on those edges (i, j) with the property that

0 < ϕij < uij for some flow ϕ ∈ F∗(G, s, d, u). In particular, from the observations in Proposition 2

on the set of Pareto Optimal solutions, we could fix zij = uij for ij ∈ G(S−, D+) and zij = 0 for

ij ∈ G(S+, D−) and remove these edges from the network. The reduced problem now decomposes

into 2 disjoint components: one in which the suppliers are rationed (and every demander gets

what they ask for), and the other in which the demanders are rationed, but each supplier sends

his entire supply. As the algorithm is completely symmetric, we simply describe it for the case of

rationed demanders. In this case each supplier will be allocated his peak in every max-flow; and

3The term lex-optimal flow is also used to mean a flow whose induced allocation for the suppliers (or demanders)

lex-dominates the induced allocation for the suppliers in any other flow [41, 42].
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any flow that respects edge-capacities while allocating each supplier his peak, while allocating each

demander no more than his peak is a max-flow. Thus, the linear programming problem that must

be solved in each step can be explicitly described: the only edges that need to be considered are

those between S+ and D−.

Maximize λt+1

subject to∑
j z
′
ij = si, ∀ {i ∈ S+, ij ∈ Et}∑

i z
′
ij ≤ dj , ∀ {j ∈ D−, ij ∈ Et}

λt+1 ≤ z′ij , ∀ {ij ∈ Et}

uij ≥ z′ij ≥ 0

Initially, every such edge is active, and the algorithm tries to maximize the minimum amount

carried by an active edge in any max-flow.

Theorem 11 The edge fair rule is symmetric, continuous, and consistent.

Proof: Symmetry follows because the rule is invariant, by definition, to permutations of supply

nodes, demand nodes, and edge-capacities. Continuity is equally clear. Consistency is also immedi-

ate by the definition of the algorithm: we may assume that the edge (i, j) that is dropped to obtain

the reduced problem is still present but carries a constant flow zij , where z is the outcome chosen

by the rule for the original problem. Thus, the set of feasible solutions to the reduced problem is

a subset of the set of feasible solutions to the original problem at every stage of the algorithm: As

the outcome z for the original problem is a member of both sets, it will be chosen in both cases.

Example. We illustrate the algorithm on the problem shown in Figure 3.1 with 8 supply nodes

and 8 demand nodes. All edges have infinite capacity except for the edges (s7d3) and (s8d4), which

have capacity 0.5 each. It is clear that these two capacitated edges must carry 0.5 unit of flow
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12d1

Figure 3.1: Gallai-Edmonds Decomposition and the Edge Fair Allocation

each in every max-flow, so their flow can be fixed; by consistency, we could omit these edges from

further consideration, and adjust the supplies at s7 and at s8 and the demands at d3 and at d4

down by 0.5 unit each. Similarly, the edges (s3d5) and (s4d6) carry no flow in any max-flow, and

so can be omitted as well. The problem now decomposes into two components: one involving the

first 4 supply and demand nodes, where the demand nodes are rationed in any max-flow; and the

other involving the last 4 supply and demand nodes, where the supply nodes are rationed in any

max-flow.

First consider the problem involving the first four supply and demand nodes. Each supply

node sends all its supply, whereas each demand node receives at most what it wants. The edge-fair

algorithm applied to this problem gives the following flow: first z21 = 2; then z32 = z33 = z34 = 7/3;

then z44 = 3, after which z22 = 6, and finally z12 = 10. The resulting allocation for the demanders in

this problem is (12, 25/3, 7/3, 16/3); recall that demand nodes 3 and 4 also get 0.5 units of flow from

suppliers s7 and s8 respectively, so the final allocation for the demand nodes is (12, 25/3, 17/6, 35/6).
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Now consider the edge-fair algorithm applied to the last 4 supply and demand nodes. Here the

supply nodes are rationed whereas the demand is exactly met. It is easy to check that the the

edge-fair rule sends a flow of 2/3 on each edge in this component so that the resulting allocation

for the supply nodes is (2, 2, 4/3, 4/3); as the last 2 supply nodes also send 0.5 units of flow to the

other component, the final allocation for these supply nodes is (2, 2, 11/6, 11/6).

To summarize, the edge-fair algorithm applied to this example results in an allocation of

(10, 8, 7, 3, 2, 2, 11/6, 11/6) for the supply nodes and (12, 25/3, 17/6, 35/6, 4/3, 4/3, 2, 2) for the de-

mand nodes. In contrast, it can be verified that the egalitarian allocation results in an allocation of

(10, 8, 7, 3, 23/12, 23/12, 23/12, 23/12) for the supply nodes, and (10, 8, 11/2, 11/2, 4/3, 4/3, 2, 2) for

the demand nodes. This also highlights an important distinction between the edge-fair allocation

and the egalitarian one: in our example, demand nodes 3 and 4 have identical demands, and it is

possible to give them the same allocation, as shown by the Egalitarian allocation; the edge-fair rule,

however, treats these demand nodes differently. In particular, demand node 4 is better off under

the edge-fair rule because of its improved connectivity.

3.3 Model 1: Agents on nodes

In this section we consider the version of the problem where the nodes of the network are populated

by agents. Specifically, each supply node i is occupied by a supplier i and each demand node j is

occipied by a demander j. Thus, we our problem becomes one of transferring a single commodity

from a set S of suppliers to a set D of demanders using the set E of edges. The edge e has a

capacity ue that is known to all the agents. A transfer of the commodity from S to D is realized

by a flow ϕ, which specifies the amount of the commodity transferred from supplier i to demander

j using the edge (i, j) ∈ E. The flow ϕ induces an allocation vector for each supplier and each

demander as follows:

for all i ∈ S : xi(ϕ) =
∑
j∈f(i)

ϕij ; for all j ∈ D : yj(ϕ) =
∑
i∈g(j)

ϕij (3.3)

As we shall see in a moment, suppliers and demanders only care about their net transfers, and not

on how these transfers are distributed across the agents on the other side.
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Each supplier i has single-peaked preferences4 Ri (with corresponding indifference relation Ii)

over her net transfer xi, with peak si, and each demander j has single-peaked preferences Rj (Ij)

over her net transfer yj , with peak dj . We write R for the set of single peaked preferences over R+,

and RS∪D for the set of preference profiles.

We think of the graph G as fixed, and focus our attention on mechanisms that elicit preferences

from the agents and maps the reported preference profile to a flow. For reasons that will be clear

later, we focus on allocation rules that are peak only: the flow (and hence the induced allocation

vector for the suppliers and demanders) depends on the reported preference profile of the agents

only through their peaks. Thus it makes sense to talk of the problem (s, d): this emphasizes the

fact that the peaks of the agents are private information whereas the other part of the problem

(specifically, the graph G and the edge capacities u) are known. To summarize: suppliers and

demanders report their peaks; the allocation rule is applied to the graph G with edge-capacities

u, and the data (s, d) where s and d are the reported peaks of the suppliers, and demanders. Our

focus will be on mechanisms in which no agent has an incentive to misreport his peak.

A mechanism is said to be strategyproof if for any graph G it is a weakly dominant strategy for

an agent to truthfully report their peak. It is group strategyproof if for any graph G it is a weakly

dominant strategy for any coalition of agents to truthfully report their peaks.

3.3.1 Efficiency and Equity

Pareto Optimality: A feasible net transfer (x, y) as defined in the previous section is Pareto

Optimal if there is no other allocation (x′, y′) such that every agent is weakly better off and atleast

one agent is strictly better off in it. In mathematical terms, if Ri and Ii denote the preference and

indifference relations respectively for agent i, then

{∀ i, j : x′iRixi and y′jRjyj} =⇒ {∀ i, j : x′iIixi and y′jIjyj} (3.4)

The following result shows that set of Pareto optimal transfers for peak-only rules is intimately

related to the set of max-flows.

4Writing Pi for agent i’s strict preference, we have for every xi, x
′
i: xi < x′i ≤ si ⇒ x′iPixi, and si ≤ xi < x′i

⇒ xiPix
′
i.
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Proposition 2 Fix the economy (G,R). Let S+, S− and D+, D− be the Gallai-Edmonds decom-

position applied to the network G with edge capacities given by u, supplies given by the peaks of the

suppliers and the demands given by the peaks of the demanders. Then:

(a) If the flow ϕ implements Pareto optimal net transfers (x, y), then:

ij ∈ G(S−, D−) =⇒ ϕij = uij ; ij ∈ G(S+, D+ ∪ (f(S−) ∩D−)) =⇒ ϕij = 0 (3.5)

(b) The transfers (x, y) induced by a feasible flow ϕ are Pareto optimal if and only if

x ≥ s on S+, y ≤ d on D− and xS+ = yD− − ϕ(S−, D−) (3.6)

x ≤ s on S−, y ≥ d on D+ and xS− = yD+ + ϕ(S−, D−) (3.7)

where ϕ(S−, D−) is the net flow from component S− to D−. From earlier discussions,

ϕ(S−, D−) =
∑

i∈Si,j∈D− uij

We are particularly interested in Pareto optimal flows and transfers in which no supplier or

demander is allocated more than their peak: such solutions are Pareto optimal for any single-

peaked preferences of the agents as long as the peaks are s and d respectively. Following Bochet et

al., we call this set PO∗ and note that (x, y) ∈ PO∗ if and only if (x, y) is Pareto optimal, x ≤ s,

and y ≤ d. In particular, (x, y) ∈ PO∗ if and only if

x = s on S+, y ≤ d on D− and xS+ = yD− − ϕ(S−, D−) (3.8)

x ≤ s on S−, y = d on D+ and xS− = yD+ + ϕ(S−, D−) (3.9)

In the rest of the section, by a Pareto optimal solution we mean a flow inducing net transfers

(x, y) ∈ PO∗. We proceed now to discussions related to fairness.

Ranking: One notion of fairness is that suppose two agents with different peaks have identical

connections, then the agent with higher peak should have higher net allocation. This is true for the

uniform rule where there is only 1 type of divisible good. This can be formalized in the following

way for a general bipartite graph discussed here: ( A similar statement can be made about the

demanders)
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1. Ranking (RK) : si ≤ sj =⇒ xi ≤ xj∀ i, j such that f(i) = f(j)

2. Ranking* (RK*): si ≤ sj =⇒ si − xi ≤ sj − xj ∀i, j such that f(i) = f(j)

We start with a proof of statement (i). Suppose xi > xj , we show a transfer from agent i to

agent j is possible and contradicts the lexicographic solution on the edges. Construct a new solution

x′ such that z′kl = zkl ∀ k ∈ S\{i, j}, l ∈ f(k), z′il = z′jl =
zil+zjl

2 ∀ l ∈ f(i). The allocation x′

is clearly feasible and x does not lexicographic dominate x′. Hence, we arrive at a contradiction.

Using the similar idea of routing the flows from agent i to agent j and by contradiction we can

prove statement (ii).

Connectivity Fairness: As discussed earlier in section 3.2, by construction edge fair algorithm

increases flow on every edge until there is an edge which cannot send more flow. This intuitively

is giving more preference to nodes with better connectivity. Review the example in figure 3.1 and

the discussion following it, inspite of the peaks of agents d3 and d4 being identical, the allocation

of d3 is better because of having better connectivity.

No Envy: A rule (x, y) ∈ F(G, s, d, u) satisfies No Envy if for any preference profile R ∈ RS∪D

and i, j ∈ S such that xjPixi, there exists no (x′, y′) such that

xk = x′k for all k ∈ S\{i, j}; yl = y′l for all l ∈ D and (3.10)

x′iPixi (3.11)

and a similar statement when we interchange the role of suppliers and demanders.

Equal Treatment of Equals: A rule (x, y) ∈ F(G, s, d, u) satisfies Equal Treatment of Equals if

for any preference profile R ∈ RS∪D and i, j ∈ S such that si = sj , if xj 6= xi then there exists no

(x′, y′) such that

xk = x′k for all k ∈ S\{i, j}; yl = y′l for all l ∈ D and (3.12)

|x′i − x′j | < |xj − xi| (3.13)

and a similar statement when we interchange the role of suppliers and demanders.

If an allocation rule always results in a Pareto optimal allocation and satisfies No Envy, then it

also satisfies Equal Treatment of Equals (Refer to Proposition 5 in Bochet et al. [12]).
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The egalitarian rule of Bochet et al. [12] is a selection from the Pareto set PO∗ as is the edge-fair

allocation rule. They also show that the egalitarian rule is envy free but not consistent as show in

the following example: In figure 3.2 where we remove the node d2 from the network on the left.

The egalitarian allocation on the reduced network improves the allocation of s2 by sending 1 unit

of flow on the edge s2 − d2

3 s2

3 s1

2d2

2d1z11 = 2

z22 = 2

3 s1

1 s2

2d1z11 = 1

z21 = 1

Figure 3.2: Inconsistency of the egalitarian rule and envy of edge fair rule

We have already seen that the edge-fair rule is also consistent. But here is an example where

the edge-fair rule has envy. But one can show that no consistent rule is envy-free (under PO∗)

using the same example.

Lemma 10 There is no Pareto optimal (PO∗) mechanism which is simultaneously envy free for

agents and edge consistent

Consider the network in figure 3.2. Suppose the mechanism is envy free: Any envy free solution

should allocate 2 units to each supplier 1 and 2. This establishes a unique edge flow: (z11, z21, z22) =

(2, 0, 2). Lets remove the edge s2 − d2 with z22 = 2 units allocation. If this mechanism was also

consistent, then on this reduced network the mechanism should have an allocation (z11, z21) = (2, 0)

on the edges. But the no-envy solution on this reduced graph would allocate (z11, z21) = (1, 1)

Now, suppose the given mechanism is edge consistent and also (z11, z21, z22) = (2, 0, 2) is an

allocation given by edge consistent rule. Removing the edge s2 − d2, in the reduced graph the

allocation from the edge consistent rule should be (z11, z21) = (2, 0) but this is not an envy free

allocation in the reduced graph. As a consequence, if the mechanism is edge consistent it cannot

allocate (z11, z21, z22) = (2, 0, 2) in the original network but this is the only envy free solution on

that network. The same example also shows that any edge consistent mechanism violates the equal

treatment of equals property.
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These results imply that no rule can be Pareto efficient, Envy-free and Consistent. Both the

egalitarian and edge-fair rules find Pareto efficient allocations; where they differ is that the egali-

tarian rule relaxes consistency but is envy-free, but the edge-fair rule relaxes envy-freeness but is

consistent. The egalitarian rule is peak group strategyproof. A natural question is if the edge-fair

rule satisfies this property as well. We answer this question in the affirmative in the next section.

3.3.2 Strategic Issues

Peak Groupstrategyproof: For all R ∈ RS∪D, M ⊆ S ∪D and each agent i ∈M misreport to

R′i ∈ R

ψi(R)iψi(R
′
M , R−M ), ∀ i ∈M

i.e. it is dominant strategy for agents to reveal their true peaks even when they can coordinate

with other agents and jointly misreport.

Theorem 12 The edge fair rule is strongly invariant and hence peak group strategyproof

Proof. When the edges are uncapacitated (uij = ∞, ∀ ij ∈ E(G)): From the discussion in

section 3.3 it is clear that the edge fair rule always picks a Pareto optimal allocation from PO∗. In

chapter 2, Theorem 4, we proved that any peak group strategyproof rule is characterized by PO∗

and strong invariance. Hence, it is enough to prove the strong invariance property of the edge fair

rule to establish its peak group strategyproofness. Consider an agent i with xi < s[Ri] and suppose

the new report of agent i is such that s[R′i] ≥ xi(R). In the original network, the edge fair rule

identifies bottleneck points (λ1, λ2...., λn) and allocates flow on them progressively till we identify

a maximum flow. As described in section 3.2, the edge flow induced by the edge fair rule identifies

a lexicographic optimal flow i.e. it lexicographically dominates every other edge flow which is

a maximum flow. Thus, the bottleneck points obtained in either problem coincide, otherwise it

contradicts this lex-optimal property of the edge fair rule. Consequently, the corresponding node

allocations remains the same in either problem implying the edge fair rule is strongly invariant.

When the edges ij, i ∈ S, j ∈ D have finite capacities: the discussion in chapter 2, Theorem 8

any peak GSP mechanism is still characterized by PO∗ and strong invariance. Hence, following
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the same discussion as the uncapacitated case, we conclude that the edge fair rule is strongly

invariant.�

3.4 Model 2: Agents on edges

As in Section 3.3, we consider the problem of transferring a single commodity from the set S of

suppliers to the set D of demanders using a set E of edges: each edge e = (i, j) links a distinct

supplier-demanded pair. However, here we think of the supplier and demander nodes as passive,

whereas each edge e is controlled by a distinct agent who has single-peaked preferences Re over the

amount of flow on edge e. We think of the “peak” ue of his preference relation as the capacity of

the associated edge. We write R for the set of single peaked preferences over R+, and RE for the

set of preference profiles. Transfer of the commodity is allowed between supplier i and demander j

only if (i, j) ∈ E. We let G = (S ∪D,E) be the natural bipartite graph.

As before we focus our attention on peak only mechanisms: in a such a mechanism, the flow

depends on the preferences of the agents only through their peaks, so we could simply ask each

agent e to report their peak ue. We assume that the supplies si and demands dj are fixed, and the

only varying quantity are the reported peaks (equivalently, edge-capacities).

Pareto flows. The set of Pareto efficient allocations can be complicated because of the peaks

of the edge-agents. For example, consider the network in figure 3.3 with two suppliers {s1, s2},

two demanders {d1, d2}, and edges {(s1, d1), (s2, d2), (s1, d2), (s2, d1)}. Suppose all the peaks are 1.

Then the flow given by sending z12 = 1 unit of flow along the edge (s1, d2) is Pareto optimal; as is

the flow given by sending a unit along each of the edges (s1, d1) and (s2, d2). In the latter flow 2

units are sent from the supply to demand nodes whereas only 1 unit is transferred in the former.

In contrast to model 1, therefore, it is possible that a Pareto optimal flow does not result in

a maximum-flow from supply to demand nodes. For that reason, we assume that the planner

implements a max-flow in the given problem (G, s, d, u), and we consider the question of how this

max-flow is distributed across the edge-agents. In other words, we focus on the fair division of a

max-flow, interpreting max-flow as a design constraint. Let F be the set of max-flows.
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1 s2

1 s1

1d2

1d1

z12 = 1

1 s2

1 s1

1d2

1d1z11 = 1

z22 = 1

Figure 3.3: Every Pareto flow does not allocate a maximum flow

Restricting ourselves only to max-flows, it is easy to see that the Pareto set is convex: the

average of any two max-flows is itself a max-flow. In contrast to model 1, any change in flow along

an edge affects the agent’s utility directly; in model 1, because the agents were located at the nodes,

it is possible for different edge-flows to give the same allocation to the set of agents.

It is natural to try to formulate this “edge”-flow problem as a bipartite rationing problem on an

auxiliary graph. For example, consider the Gallai-Edmonds decomposition for the given network

(G, s, d, u), and suppose the partitions are S+, S− for the suppliers, and D+, D− for the demanders.

From the GE decomposition, every edge between S− and D− carries flow equal to capacity, so their

allocation if fixed in all solutions in F ; likewise for all edges between S+ and D+. This suggests

the following idea: create a bipartite graph with one node on the left for each edge, and one node

on the right for each element of S+ ∪D+; each edge that still remains is incident to either S+ or

D+, but not both; moreover, the given problem is a rationing problem in the sense that the nodes

on the right must be fully allocated. Thus it appears that we have rewritten the flow problem as a

bipartite rationing problem of the sort considered in Section 3.3. That this analogy must be wrong

is implied by the following result.

Proposition 3 There is no Lorenz Dominant allocation among the edge flows in the set F

Proof. Consider the network of Figure 3.4. The actual network is shown in Figure (a) and

the lexicographic solution is shown in (b). However, the solution φc := {z11 = 1.4, z12 = 1.6, z21 =

3, z22 = 3.1} is also a maximum-flow; the lex-solution does not dominate this flow, nor is it domi-

nated by this one.

Remark. If we draw the bipartite graph suggested in the discussion before the statement of
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6.1 s2

3 s1

6.6d2

4.4d1

6.1 s2

3 s1

6.6d2

4.4d1z11 = 1.5

z12 = 1.5

z22 = 3.2

z21 = 2.9

Figure 3.4: Absence of Lorenz Dominance element in Model 2

the proposition, and treat it as a bipartite rationing problem, we find that edges (1, 1) and (2, 1)

will carry a flow of 1.5 and 3.05 units each, and this exceeds the total demand at d1. These implied

“side-constraints” are not accounted for in translating the given problem to a bipartite rationing

problem.

Allocation Rules. We can apply the edge-fair rule discussed earlier on this model as well. The

edge-fair rule finds a lex-optimal max-flow. It is clear that the rule is also edge consistent. Our

next result shows that every edge-consistent rule is also group strategyproof.

Theorem 13 Fix a graph G with the supply vector s and demand vector d. Suppose we have an

allocation rule that maps reports of edge-capacities to a flow. Every edge-consistent allocation rule

is group strategyproof.

Proof. Consider a coalition of agents A = {e ∈ E|u′e 6= ue}, i.e., they misreport their true peaks.

Let the misreported profile be denoted by R′ ∈ R|E| and the resulting network by G′. Note that the

edge-fair rule always results in an allocation z ≤ u, hence any agent e ∈ A should report u′e ≥ ze;

otherwise, z′e ≤ u′e < ze and the agent e is worse off in profile R′. Let B := {e ∈ A|ze = ue}. The

agents in B should have the allocation z′e = ue when the reports are R′ as every such agent received

their peak allocation in profile R. Consider the graph G \B by removing the agents in B to form

the reduced graph (G \B, sG\B, dG\B, u′), where sG\B, dG\B are the adjusted peaks of supply and

demand nodes respectively after fixing the flow on the agents in B.

By edge-consistency of the rule, the allocation z′e = z′e(−B) for all e ∈ G\B. From the discussion

above, the report of every agent e ∈ G\B is such that u′e ≥ ze. Also, note that ze < ue ∀ e ∈ G\B.
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By increasing the capacity of an unsaturated edge, the total value of the maximum flow does not

change and the bottleneck points remain the same when the edge fair rule is applied to components

(G\B, sG\B, dG\B, c′) and (G\B, sG\B, dG\B, c). Hence, every agent e ∈ A receives the allocation

z′e = ze.

We next turn to equity properties of allocations and allocation rules. Given that different edges

may connect possibly different suppliers and demanders who may have supply or demand different

amounts of the commodity, one has to be careful in formulating these notions. Following Bochet

et al. [12], we formulate these properties for a pair of agents (equivalently, edges). In general these

properties take the following form: Fix a problem (G, s, d, u), and consider the allocation z given

by a rule ϕ. For every pair of edges e and e′, fix the flows on all edges other than e and e′ and ask

if there is a “better” feasible flow in F .

An allocation is envy-free if whenever e prefers ze′ to ze (for some agents e and e′), there is no

other allocation ẑ ∈ {z′ ∈ F | z′f = zf , ∀f 6= e, e′ } such that e prefers ẑ to z. An allocation

z satisfies equal treatment of equals (ETE) if for each e and e′ with ue = ue′ , there is no other

allocation ẑ ∈ {z′ ∈ F | z′f = zf , ∀f 6= e, e′ } with |ẑe − ẑe′ | < |ze − ze′ |.

The following result shows the relationship between these two properties.

Proposition 4 Consider the problem (G, s, d, u) and an allocation rule z that makes a selection

from the Pareto set F . If z is envy-free it satisfies ETE.

Proof. Suppose the rule z violates ETE, we would like to show it violates No Envy or the flow is

/∈ PO∗. Fix a profile RE and two edge agents e and e′ such that ue[Re] = ue′ [Re′ ] = c∗ and suppose

there exists z′ satisfying the definition above . Now, we have that, z′e + z′e′ = ze + ze′ because z

and z′ coincide on E\{e, e′}. Assume without loss ze(R) < ze′(R), then only two cases are possible:

ze(R) < z′e ≤ z′e′ < ze′(R) or ze(R) < z′e′ ≤ ze < ze′(R). Assume first case: c∗ ≥ ze′(R) implies a

violation of No Envy. Now in case (ii), the allocation z′′e = ze+z′e
2 ∀ij ∈ E is such that z′′e ∈ PO∗

and we are in case (i) again.

By construction, the edge-fair rule selects a maximum flow allocation from the Pareto set. The

edge-fair rule also finds an envy-free allocation. Define the set of agents A := {e|e ∈ E, ze > 0},
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B := {e|e ∈ E, ze = 0}, E = A ∪ B. If ze > 0 under the edge fair rule, then the agent e carries

a positive flow in some maximum flow solution. Similarly, e ∈ B do not carry a positive flow in

any maximum flow solution. So even if zeRe′ze′ for some e′ ∈ B, e /∈ B, there is no maximum

flow solution in which ze′ > 0 to possibly redistribute and improve the allocation of agent e′. On

the other hand, e′, e ∈ A implies e is in a higher bottleneck set than e′ since the allocation rule is

monotone. Suppose, there is envy through the solution z′, consider the solution z′+z
2 , which is still

feasible because the set F is convex. This is a contradiction to the earlier obtained solution of the

LP at the step when e′ was a bottleneck. Hence, the edge fair rule satisfies no envy in this model

and thus treats equals equally.
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3.5 Further Work

• Extending the Uniform Rule: In the language of Moulin and Sethuraman [43], an allo-

cation rule ϕ on a bipartite network (G,V,E) is said to be an extension of the Sprumont’s

Uniform rule if ϕ coincides with the allocation of uniform rule if G is a network with unit

demander (supplier) connected to multiple suppliers (demanders).

The notion of “extending a rule” is such that we are not compromising on properties of

existing fair allocation mechanisms. Instead, we are actually generalizing them in a suitable

way to more general network structures. Moulin and Sethuraman [43] study a broad class of

extensions of well known basic rules but they do not consider strategic issues.

Both Egalitarian and Edge fair are extensions of the uniform rule whereas edge fair is a consis-

tent extension of the uniform rule. The edge fair mechanism is also peak group strategyproof.

It will be an interesting to understand the structure of mechanisms which are peak group

strategyproof, consistent and also extends the uniform rule.

• The egalitarian mechanism is link groupstrategyproof w.r.t. to coordinated misreport among

agents on the same side. We conjecture here that the edge fair mechanism might also be

attractive as a link groupstrategyproof mechanism.

• Does the properties discussed in this work about the edge fair mechanism characterize it? If

not, what are the other interesting properties of this mechanism that makes it unique?
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Chapter 4

General Networks

4.1 Introduction

The study of fair allocation on economic networks has gained a lot of importance in recent years

with growing applications in many public policy domains like fair exchange of kidneys among

patients [49], matching students to public schools [1], matching cadets in ROTC [55] etc. The

common theme in all these problems is that participating agents supply/demand a single unit of

an indivisible good and the set of agents with whom they can exchange or transact this good is

modeled by a link. The focus is to identify fair and strategyproof allocation mechanisms for the

agents in the network and thus is in very similar spirit of the classical marriage problem of Gale

and Shapley [29].

On the other hand, Bochet et al. [11, 12] study the problem of fair division of a maximum

flow in a capacitated bipartite network. Their model generalizes and studies the exchange of

divisible goods on a economic networks when agents have arbitrary supply/demand constraints.

The aforementioned problems were typically unit supply/demand model. The common feature in

all these models is that the associated market is moneyless, so that fairness is achieved by equalizing

the allocation as much as possible. This last caveat is to account for additional considerations, such

as Pareto efficiency and strategyproofness, that may be part of the planner’s objective.

A special case of the problem studied by Bochet et al. [11, 12] problem is that of allocating a

single resource (or allocating the resource available at a single location) amongst a set of agents with
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varying (objectively verifiable) claims on it. This is the special case when there is a single supply

node that is connected to every one of the demand nodes in the network by an arc of large-enough

capacity. If the sum of the claims of the agents exceeds the amount of the resource available, the

problem is a standard rationing problem (studied in the literature as the “bankruptcy” problems

or the “claims” problems). There is an extensive literature devoted to such problems that has

resulted in a thorough understanding of many natural methods including the proportional method,

the uniform gains method, and the uniform losses method. A different view of this special case

is that of allocating a single resource amongst agents with single-peaked preferences over their net

consumption. Under this view, studied by Sprumont [56], Thomson [60] and many others, the goal

is to design a mechanism for allocating the resource that satisfies appealing efficiency and equity

properties, while also eliciting the preferences of the agents truthfully. The uniform rule, which is

essentially an adaptation of the uniform gains method applied to the reported peaks of the agents,

occupies a central position in this literature: it is strategy-proof (in fact, group strategy-proof), and

finds an envy-free allocation that Lorenz dominates every other efficient allocation; furthermore,

this rule is also consistent. A natural two-sided version of Sprumont’s model has agents initially

endowed with some amount of the resource, so that agents now fall into two categories: someone

endowed with less than her peak is a potential demander, whereas someone endowed with more than

her peak is a potential supplier. The simultaneous presence of demanders and suppliers creates an

opportunity to trade, and the obvious adaptation of the uniform rule gives their peak consumption

to agents on the short side of the market, while those on the long side are uniformly rationed (see

[37], [8]). This is again equivalent to a standard rationing problem because the nodes on the short

side of the market can be collapsed to a single node. The model we consider generalizes this by

assuming that the resource can only be transferred between certain pairs of agents. Such constraints

are typically logistical (which supplier can reach which demander in an emergency situation, which

worker can handle which job request), but could be subjective as well (as when a hospital chooses

to refuse a new patient by declaring red status). This complicates the analysis of efficient (Pareto

optimal) allocations, because short demand and short supply typically coexist in the same market.

As mentioned earlier, Bochet et al. [11, 12]. work with a bipartite network in both papers and

assume that each node is populated by an agent with single-peaked preferences over his consumption

of the resource: thus, each supply node has an “ideal” supply (its peak) quantity, and each demand
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node has an ideal demand. These preferences are assumed to be private information, and Bochet et

al. [11, 12] propose a clearinghouse mechanism that collects from each agent only their “peaks” and

picks Pareto-optimal transfers with respect to the reported peaks. Further, they show that their

mechanism is strategy-proof in the sense that it is a dominant strategy for each agent to report

their peaks truthfully. While the models in the two papers are very similar, there is also a critical

difference: in [12], the authors require that no agent be allowed to send or receive any more than

their peaks, whereas in [11] the authors assume that the demands must be satisfied exactly (and so

some supply nodes will have to send more than their peak amounts). The mechanism of Bochet et

al.—the egalitarian mechanism—generalizes the uniform rule, and finds an allocation that Lorenz

dominates all Pareto efficient allocations. Later, Chandramouli and Sethuraman [15, 16] show that

the egalitarian mechanism is in fact strongly invariant, peak and link group strategyproof: it is a

dominant strategy for any group of agents (suppliers or demanders) to report their peaks truthfully.

Szwagrzak [57] studies the property of contraction invariance of an allocation rule: when the set of

feasible allocations contracts such that the optimal allocation is still in this smaller set, then the

allocation rule should continue to select the same allocation. Szwagrzak shows that the egalitarian

rule is contraction invariant. These results suggest that the egalitarian mechanism may be the

correct generalization of the uniform rule to the network setting.

The egalitarian rule of Bochet et al. [11, 12] constructs a fair allocation for the agents in a bipar-

tite network with divisible goods. This rule is a generalization of the well known Sprumont’s [56]

uniform rule. On the other hand, when the goods are, Klaus et al. [25] proposed the probablistic

uniform rule in the single agent model. Their main contribution is the fact that there is no net

utility loss for agents in both divisible/indivisible models. The fractional part of an agents allo-

cation (expected utility from this mechanism) is the probability with which he has a claim on an

extra unit of good. The mechanism of Klaus et al. [25] mechanism is based on a simple idea that at

each bottleneck point of the Sprumont’s model, we randomize over all possible feasible allocations.

Similarly, we define an egalitarian mechanism for indivisible goods. The idea is to randomize over

all possible feasible flows at each bottleneck. The expected utility from the indivisible goods case

is exactly the same as in the divisible goods case. Our research is motivated by these results. From

the results above, the generalized model of allocation of divisible goods on bipartite networks is well

understood. This result can be viewed as a generalization of identifying a fair maximum matching
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on general networks to that of identifying a fair maximum b-matching problem on non-bipartite

networks. Our contributions parallel the contribution of Bochet et al. [11, 12] in generalizing unit

capacity models.

Specifically, we are given a non-bipartite network G = (N,E), and we think of N as the set

of agents involved in this network. Each arc (i, j) ∈ E connects two participating agents and has

capacity uij ≥ 0. There is a single commodity (the resource) that is available at each node and

needs to be exchanged with the neighbors on the network: we assume that node i has bi units of the

resource. The capacity of an arc (i, j) is interpreted as an upper bound on the direct transfer from

agent i to agent j. The agents derive utility whenever they exchange a good with their neighbors.

The goal is to find a maximum “fair” exchange among participating agents, while also respecting

the capacity constraints on the arcs.

The rest of the paper is organized as follows: in Section 3.3 we consider the divisible goods case

and in Section 3.4 we consider the indivisible goods case.

4.2 Egalitarian Mechanism (Divisible goods)

In this section we consider the version of the problem where the nodes of the network are populated

by agents. Each node has a specific number of units of a particular good that it can exchange with

the agents it is connected to. Thus, our problem becomes one of exchanging a single commodity

among the set of agents V using the set E of edges.

An exchange of the commodity among the agents is realized by a flow f , which specifies the

amount of the commodity exchanged among the agents i and j using the edge (i, j) ∈ E. The flow

f induces an allocation vector for each agent as follows:

for all i ∈ V : xi(f) =
∑
j∈N(i)

fij ; (4.1)

where N(i) is the neighbors of agent i in network G. As we shall see in a moment, agents only care

about their net transfers, and not on how these transfers are distributed across the other agents.

In the following sections, we assume that the peaks of the agents are fixed, and focus our

attention on mechanisms that asked each agent to report the agents they are connected to and
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maps the reports to a profile to a unique b-matching. Our focus will be on mechanisms in which

no agent has an incentive to misreport his compatible neighbors and also efficient.

Allocation Rules

We define an allocation on the edges as fab , ab ∈ E as feasible, if fab = fba ∀ab ∈ E and the flow

induced on the nodes by f (as x defined earlier) and for feasibility, xa ≤ ba ∀a ∈ V . Any rule

which picks an allocation from this set is called a feasible allocation rule. In the rest of the section,

we discuss the egalitarian rule for this model.

Given a network (G,V,E), we make the following transformation to construct the bipartite

network (Gb, Vb, Eb). We represent Vb = A ∪B where A = V and B = V . are the two sides of the

bipartite network. There is an edge between agent i ∈ A and j ∈ B only if there is an edge ij in

the given network G. Connect the agents in A to a supply node s and the agents in B to a sink

node t. We refer to as a flow, any feasible shipment of goods from the source node to the sink node.

5 a2

2 a1

2a4

3a3 2 a1

5 a2

3 a3

2 a4

2 b1

5 b2

3 b3

2 b4

Figure 4.1: Transformation to bipartite network

Lemma 11 Every feasible flow in the modified network Gb corresponds to a feasible allocation

(exchange) in the original network G. BIMS’s Egalitarian rule on the modified network Gb results
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in a Pareto optimal, Lorenz dominant, envy free and peak strategy proof allocation for the agents

in the original network G.

Proof : Consider a solution (ya, yb, gab) for the agents in the modified bipartite network where

ya, yb refers to an allocation for agent a ∈ A and b ∈ B respectively and gab is the flow on the

edge ab. We shall show that every feasible solution in the modified bipartite network maps to a

solution in the original network and vice-versa. The result then follows (As Bochet et al. [11, 12]

have established the fairness properties of egalitarian mechanism in bipartite networks).

Firstly, consider a feasible exchange in the original problem. Let x be the node allocation

induced by the edge f in the original network. In particular, denote the solution by (xa, fab) for

agent a, b in the network. In the modified network, set gaibj = gajbi = faiaj ∀i, j ∈ V . Clearly, this

solution is feasible in the modified network and yai = ybi = xai ∀i ∈ V .

Now, consider a solution (ya, yb, gab) in the modified bipartite network. Construct the following

solution, faiaj = (gajbi + gaibj )/2 ∀i, j ∈ V . This also defines a node allocation in the original

network with xai = (yai + ybi)/2 ∀i ∈ V . This is a feasible allocation since, fij = fji ∀ij ∈ E and

xi ≤ bi ∀i ∈ V .

The mechanism is also peak strategyproof if the preference profiles are private information of

the agents. In the next section, we discuss the case of exchanging indivisible goods among agents

in a network. We show that there is no mechanism that is peak strategyproof but we design a

mechanism which is egalitarian in nature and retains many other attractive properties.

4.3 Egalitarian Mechanism (Indivisible goods)

In this section, we focus on allocation rules that are required to use only integral amounts on all the

edges in the network i.e. we aim to identify a integer flow in the network. If the network is bipartite

then there always exists an integer maximum flow. But when the network is non-bipartite there

is a gap between an integer and fractional maximum flow. For an example, consider the triangle

network with nodes (a, b, c) each with peak = 1; In the divisible goods case, a Pareto allocation
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would assign 1 unit to each node (0.5 units on each edge). The net social utility is 3 units in this

case. If the goods are indivisible, only 1 of the 3 edges can be picked in any maximal allocation

(Pareto). The net social utility is 2 units. In a fair allocation, we would pick each edge with equal

probability, giving an allocation of 2/3 for each agent. Thus in non-bipartite networks there is a

gap in the achievable utility between divisible and indivisible goods.

In this section we identify an egalitarian mechanism when the agents can exchange only integral

quantities of the goods between themselves. We reduce it to an equivalent bipartite network and

apply the well-known fair allocation rules on this modified network.

Given a network G and a positive integer bi for each node i ∈ V and a integral capacity uij for

each edge ij ∈ E, a u-capacitated b-matching or (b, u) matching is a vector x ∈ ZV such that

xi =
∑

j∈N(i)

fij for all i ∈ V (4.2)

xi ≤ bi for all i ∈ V (4.3)

0 ≤ fij ≤ uij for all ij ∈ E (4.4)

The case when bi = 1, ∀ i ∈ V, is the usual matching problem. Let X denote the set of all x

satisfying the equations (4.2-4.4) (this is the set of all feasible b-matchings). Clearly, a given graphG

can have more than one b-matching and our interest is in finding a maximum cardinality b-matching

that satisfies additional properties. A maximum weight u-capacitated b-matching problem can be

found in strongly polynomial time by a reduction to the maximum weight b-matching problem.

Following is a linear programming formulation of the maximum weight u-capacitated b-matching

problem:

Max
∑

i xi (4.5)

subject to (4.6)

xi ≤ bi, ∀i ∈ V (G) (4.7)

xi =
∑

j∈N(i)

fij ∀i ∈ V (G) (4.8)

fij ≤ uij , ∀ij ∈ E(G) (4.9)

fij ∈ Z (4.10)
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We restrict our attention to the case uij = ∞ in the rest of the thesis but the results can be

easily extended to general capacity case. Given a network, a b-matching with maximum weight

can be identified in polynomial time. Algorithms for finding such maximum weight b-matchings

are discussed in Cook and Cunningham [22]. They also describe a matroid formulation of the

b-matching problem.

We briefly summarize some of the main ideas below that are useful to our work. The pair,

(V,X) := M is a matroid. We will refer to it as the b-matching matroid. A base in M is a vector

x that is generated by some maximum b-matching of G.

The “rank” function : 2V → Z+ ∪ {0} of the matroid M is defined for every S ⊆ V as

rank(S) := max
I⊂S,I∈I

|I|

The rank function is submodular and in our context rank(S) can be interpreted as the size of a

maximum b-matching restricted to the set S. Prank refers to the polymatroid associated with this

particular rank function and is given by

Prank = {x ∈ RV |x ≥ 0, x(S) ≤ f(S), ∀ S ⊆ V } (4.11)

where x(S) =
∑

i∈S xi

Our focus is on selecting a maximum b-matching such that the utility of the agents satisfy some

fairness criterion.

• Connection to the kidney exchange problem: The pairwise kidney exchange problem

of [49] and the subsequent related literature study a unit exchange problem between patients

who are connected to their compatible donors through links in the network. Each agent needs

exactly one unit of good (in this case, kidney). Since, not every patient is compatible with

everyone else, we may not able to match every patient with a compatible donor, hence the

goal is to identify maximize the total number of matches.

This problem can be viewed as one of finding a maximum matching on a non-bipartite net-

work. When there are multiple maximum matchings, the mechanism designer has to identify

a particular maximum matching satisfying certain efficiency, fairness and incentive objectives.
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Roth et al. [49] construct the “Egalitarian Mechanism” - which is a lottery mechanism over

the set of maximum matchings. They show that the mechanism is strategyproof and finds a

fair allocation.

In our problem each agent i in the network has bi units and derives utility with every exchange

of that good with his/her neighbors in the network.

• Connection to the ordinal transportation problem: Balinski and Yu [6], studied the

ordinal transportation problem where the goal is to identify a stable b-matching on bipartite

networks. We differ from their study in many ways. Our model is on general non-bipartite

networks, our preference structure is dichotomous (agents have single peaked preferences over

the net amount exchanged) and moreover, we are interested in fairness notions like Pareto

optimality and envy freeness rather than stability.

The utility of an agent i is the number of times an agent is matched in a given b-matching i.e.

xi. A utility profile U ∈ RV is said to be a feasible utility profile if the profile is an outcome of a

feasible b-matching in the network.

Lemma 12 The set of Pareto optimal allocations coincides with the set of maximum b-matchings

Proof: Let x denote the allocation (utility) vector of agents in a network. Then the size of the

b-matching that produced this utility profile is
∑
i∈V xi
2 . As each exchange between 2 agents on a

network adds a utility of one to each of those agents.

Suppose, a flow f associated with a maximum b-matching results in an allocation profile x. As

we have a maximum b-matching, there is no augmenting path (of odd length) with respect to f .

Then, x must be Pareto optimal. For otherwise, there is an allocation y that Pareto dominates x,

(
∑
i∈V yi
2 >

∑
i∈V xi
2 ) contradicting the assumption that x is a maximum cardinality b-matching.

Now, suppose x is a Pareto optimal allocation for the agents in the network induced by a flow

f , Then there exists no other allocation y in the network such that every agent is weakly better off.

This implies, there is no augmenting path and the given solution is a maximum b-matching.

The following generalization of Gallai and Edmonds theorem further helps us understand the

structure of Pareto optimal solutions.
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Partition V as {V U , V O, V P } such that

V U = {i ∈ V : ∃x ∈ X s.t. xi < bi} (4.12)

V O = {i ∈ V \V U : ∃set of agents j̃ ∈ V Us.t.
∑
j∈j̃

fij = bi}, (4.13)

V P = V \(V U ∪ V O) (4.14)

where fij = 1 if i, j are matched in a feasible solution. V U is the set of agents unmatched

(xi < bi) in atleast one maximum b-matching. V O is the set of agents perfectly matched (xi = bi)

in every maximum b-matching and have atleast 1 neighbor in V U . V P is the set of agents who

are again perfectly matched but do not have a link with any agent in V U . In lemma, 13 below, we

discuss precisely how to obtain these components.

s1

s2

s3 s4 s5

s6 s7

s8

2 2

3

4 4

5 2

4
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s10 s11

s12

2

2 2

2
s13

s14 s15

2

2 2

Figure 4.2: GED of a non-bipartite network with arbitrary peaks; In this figure, {s6, s7} ∈

V O, {s1, s2, s3, s4, s5, s8} ∈ V U , {s9, s10, s11, s12, s13, s14, s15} ∈ V P

Let I ⊆ V and N(I) = {j| ij ∈ E, i ∈ I}. Then (I,N(I)) is a reduced sub problem of the

original problem. Define ij := {j|fij > 0}

Lemma 13 Let I = V \V 0 and let f be a Pareto efficient flow for the original problem (µ(i) is the

set of neighbors that is matched to an agent i), Then
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• For any agent i ∈ V 0, ij ⊆ V U

• For any even component1 (J,N(J)) such that J ⊆ V P and for any agent i ∈ J, ij ⊆ J\i

• For any unsaturated component J(|J | ≥ 2), the maximum size of a b-matching within every

unsaturated component is Σ
|J |
j=1bj − 1. Moreover, for any unsaturated component (J,RJ),

either

– exactly one agent k ∈ J sends flow to an agent in V O under the Pareto efficient flow

f whereas all remaining agents in J exchange within themselves: for any other agent

i ∈ J\{k}, ij ⊆ J or

– exactly one agent k ∈ J remains unsaturated under the Pareto-efficient flow f whereas

all the remaining agents in J are saturated so that ij ⊆ J for any agent i ∈ J\k

Proof: Refer to the appendix

A mechanism is deterministic if for a given network, it picks a maximum b-matching as an

outcome from the set of maximum b-matchings. Roth et al. [49] study priority mechanisms in

the context of deterministic mechanisms. They also show establish that the randomized egalitarian

mechanism is superior in the sense that it is not only efficient and strategyproof but it also produces

an outcome that is envy free and strongly efficient in the sense of Lorenz dominance. The mechanism

of Roth et al. is a “lottery” mechanism, that randomly picks a maximum b-matching from the

Pareto optimal set. The distribution or lottery is chosen in such a way that the aforementioned

economic properties are exhibited by the mechanism. We define this more precisely below.

Lottery Mechanism: Let F be the set of feasible flows (recall each flow induces a b-matching)2

in G. A matching lottery l : Pf , f ∈ F is a probability distribution over F . For every flow f ∈ F ,

Pf is the probability of choosing a flow f in lottery l, and
∑

f∈F Pf = 1. A matching lottery l can

be also viewed as a fractional b-matching which is defined to be a convex combination of several

integral b-matchings. Let L be the set of matching lotteries. Given l ∈ L, define the utility xli of

vertex i to be the expected total exchanges that is involving i , i.e., xli =
∑

f∈U lfx
f
i . The expected

1The definition of odd and even components will become more clear in the proof

2Hence depending on the context we will use f to denote either a flow or the corresponding induced b-matching
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utility induced by lottery l to be the vector xl = (xli), i ∈ V . Let P = xl, l ∈ L be the set of all

feasible utility profiles.

It is now clear from our definition that a feasible utility profile can be understood as a fractional

b-matching (a convex combination of integral b-matchings). The Prank polymatroid we defined

earlier is exactly the set of feasible utility profiles.

Roth et al. [49] described the egalitarian Mechanism for the pairwise kidney exchange problem.

Li et al. [39] develop a water filling algorithm which gives a simpler and intuitive proof of the

Roth’s mechanism. Here, we generalize the ideas of Li et al. to our model. The main idea is that

the allocation problem on a general network can be reformulated as an equivalent problem on a

bipartite network. Once this is established, we could use the familiar allocation rules for bipartite

networks to find an allocation for the original non-bipartite network. We describe this procedure

below in more detail.

Step 1: Transformation to an equivalent bipartite network:

Construction of Nodes: Define C = {C1, C2....Ck} as the set of unsaturated components in the

underdemanded component V U where k = |C|. Construct the following bipartite graph GB =

(A,B,E) where each node in A corresponds to a node in V . We use AC1 , ..., ACk to denote k

disjoint sets corresponding to C1, C2, ..Ck respectively. We use ai as a label for node i ∈ A. In

particular, let APO = {ai|ai ∈ V P ∪NO}; AU = {ai|ai ∈ V U}.

The construction of B is as follows. B Can be partitioned into 3 parts: BPO ∪BO ∪BC . Each

node in BPO corresponds to a node in BP ∪BO. We use ci ∈ BPO to denote the node corresponding

to i ∈ BP ∪ BO. Each node in BP corresponds to a node V P . We use c′i ∈ BO to denote the

node corresponding to i ∈ V P . BC consists of k disjoint sets BC1 , BC2 ....BCk , where BCi contains

a node with value Σj∈Cibj − 1 if and only if |BCi | ≥ 2; BCi is empty otherwise3

Construction of Edges: (1) For each i ∈ V P ∪ V O, we have edge (ai, ci) ∈ E where ai ∈ APO

and ci ∈ BPO; (2) For a vertex ai ∈ AC and another vertex c′j ∈ BO we have (ai, c
′
j) ∈ E if ij ∈ E

; (3) For each vertex, a ∈ ACi add an edge to the node in BCi .

3This is the size of a maximum b-matching within a particular odd component
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Step 2: On the transformed network, run the egalitarian mechanism for indivisible goods in chapter

2 [section 2.4.1] to find the final allocation.

Step 3: Construct a randomized mechanism: lottery over b-matchings: The outcome of the egal-

itarian mechanism is a fractional utility profile for the agents. We show later that such a utility

profile can be obtained as a lottery over integral b-matchings. We generate a maximum b-matching

from this probability profile and conduct exchanges on the network.

Example: Consider the original network as given in figure 4.2, The corresponding bipartite trans-

formation outlined in step 1 is shown in figure 4.3. When the egalitarian mechanism is applied to

this bipartite network, we get the following utility profile for the agents: Every agent i ∈ V P ∪ V O

receive their peak allocation. The agents s1, s2, s3 receive 2 units of utility each. The utility of

agents s2, s4, s5 is 7
3 each. This fractional utility is obtained as a lottery over integral b-matchings.

In this case, 2 units of agents s4, s5 are always exchanged with agent s6. Agent s2 has to exchange

2 units within its odd component in every maximum b-matching. Agents s2, s4, s5 compete for the

extra unit of exchange that s6 can do. The egalitarian mechanism picks any of the possibility with

a probability of 1
3 .
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Figure 4.3: Transformation into bipartite network of the original graph in Figure 4.2; ai refers to

si

Next, we describe a more mathematical programming approach of obtaining the Egalitarian

allocation. We do this by representing the model through a sequence of linear programming prob-

lems and solving them iteratively. Such an approach not only builds an alternate framework of

modeling the problem but also sheds insights on many economic properties of the mechanism as

we shall see later.
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Egalitarian Mechanism: A Linear Programming Approach

(1) Step 1. Solve the linear program LP1

Maximize λ1

subject to

xv = λ1,∀v ∈ V,

x ∈ Prank

We call an element v ∈ V a tight element if xv participates in some tight constraint in Prank. Let

D1 be the set of tight elements. In other words, increasing xv would violate some constraint in

Prank when other xu is fixed for u 6= v are fixed. In many linear programming algorithms, we can

easily detect such tight elements. Another way to test the tightness of an element is to solve a

closely related linear program in which we fix other xu and maximize xv.

(2) In general, at step k, we solve the linear program LPk

Maximize λk

subject to

xv = λj , ∀ v ∈ Dj , ∀ j < k,

xv = λk,∀v ∈ V \ ∪j<k Dj ,

x ∈ Prank.

Let Dk be the set of elements that become tight in this step.

(3) The algorithm stops with x = xv = λj for v ∈ Dj if ∪kj=1 Dj = V

Lemma 14 Every feasible maximum flow on the transformed bipartite network is equivalent to a

feasible utility profile in the original network

Proof: A utility profile in the original network is induced by a maximum b-matching f or a

lottery over Fz. It is sufficient to prove the statement only for integral feasible flows as any other

maximum flow can be obtained as a linear combination of these integral flows.
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Given a utility profile x induced by a maximum b-matching, we will construct an equivalent

maximum flow, f ′ in the transformed bipartite network. Since each agent i ∈ NP ∪NO is saturated,

set f ′ij = bi on all edges ij, i ∈ APO, j ∈ BPO. Now, focus on each component Ck: if Ck has only

one node i with utility xi, then this utility is derived only by exchanging with the agents in BO.

Let f ′ij = fij ∀j ∈ N(i) ∩ BO . We know in any Ck, |Ck| − 1 exchanges are made within the same

component, so a flow of |Ck| − 1 can be obtained by sending f ′ij units of flow to the agents in BCk .

From the GED, at most one agent in a particular odd component is matched with an agent in V O.

Also, If fij > 0 for an agent i ∈ V C and j ∈ V O, then the node i is saturated in that particular

b-matching: for such ij ∈ E(G) send a unit flow f ′ij = 1 in the bipartite network. Agent i is also

saturated in the transformed bipartite network.

We now prove that every integral maximum flow in the bipartite network corresponds to a

feasible utility profile in the original network. Consider a maximum flow of |F | in the modified

bipartite network. This is also the size of the maximum b-matching in the original network. For

a given set ACi with |ACi | ≥ 2, there is at most one vertex aj ∈ ACi such that there exists a

vertex c′h ∈ BO with f ′ajc′h
= 1. In this case, we include it in the b-matching fij = 1. In any

maximum flow, for each Ci, agents in ACi send |Ci| − 1 units of flow to BCi . Consequently from

the GED lemma, |Ci| − 1 vertices can be matched among themselves. There are exactly
∑

j∈V O
bj

units exchanged by agents in AC with agents in V O. Each such exchange constitutes one unit flow

to BO. So all vertices in V O are saturated. From GED Lemma, we can match all vertices in V P

among themselves in f . It is easy to see that x is exactly the utility profile corresponding to f ′.

Corollary 1 The outcome of an egalitarian mechanism is a maximum flow allocation f (not nec-

essarily integral). Such a maximum flow can be obtained as a convex combination of integral

maximum flows (f =
∑

f ′∈Fz
λf ′f

′).4 Setting Pf ′ = λf ′ for all f ′ ∈ Fz we obtain a probability distri-

bution over the set of integral b-matchings and a lottery based on λ induces a feasible utility profile

in the original network. This is the familiar Birkhoff - Von Neumann theorem in combinatorial

optimization.5

4Fz is the set of integral maximum flows

5For more details on the Birkhoff - Von Neumann theorem, refer to [2]
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Lorenz Dominance & No Envy: As discussed in Klaus [25], No envy and ETE are not equivalent

here. It follows from the above discussion that the egalitarian mechanism applied to this bipartite

network yields a feasible utility profile. Bochet et al. [12] have established the egalitarian mechanism

is Lorenz dominant among all feasible flows. No Envy also follows from the allocation rule of Bochet

et al. [11, 12]

Consistency and Extension of rules: As discussed in Chandramouli and Sethuraman [16], the egal-

itarian rule is an extension of the uniform rule that is not consistent. They propose the edge fair

rule which is a consistent extension of the uniform rule to bipartite networks. In the previous sec-

tion, if after the transformation into bipartite network, if we apply the edge fair mechanism to that

network, we would have a consistent extension of the uniform rule to the non-bipartite indivisible

goods network.

In the language of Moulin and Sethuraman [43], an allocation rule ϕ on a bipartite network

(G,V,E) is said to be an extension of the Sprumont’s Uniform rule if ϕ coincides with the allocation

of uniform rule if G is a network with one demander (supplier) connected to multiple suppliers

(demanders). i.e.

ϕi = Ui, ∀ i ∈ V (4.15)

where Ui is the utility of agent i under uniform rule.

In this spirit, Bochet et al. [11, 12], Chandramouli and Sethuraman [15, 16] develop mechanisms

that are extensions of the uniform rule. Moulin and Sethuraman [43] study a more general class

of extensions of some basic well known rules. We extend this definition further to general non-

bipartite networks. An allocation rule x on a general network (G,V,E) is said to be an extension

of the egalitarian rule ϕ if x coincides with φ if the network G is bipartite i.e. xi = ϕi, ∀ i ∈ V

Lemma 15 The egalitarian rule described for non-bipartite networks is an extension of the prob-

abilistic egalitarian rule for bipartite networks

Proof: If the network is bipartite, the odd components set, V U forms an independent set. So,

V U is a collection of nodes (with peaks bi) each of which is not saturated in at least one maximum

b-matching. Hence, the set BU is empty and each agent i ∈ V U is only connected to agents in

V O who are completely saturated. In the bipartite context, if i were a supplier then, any agent



CHAPTER 4. GENERAL NETWORKS 100

j ∈ N(i) has xj = bj in all Pareto allocations. It is clear from the analysis in section 2.4.1 that

if the given network G is bipartite, then the Step 1 of our algorithm which transforms the given

network into a equivalent bipartite network, outputs G. As we apply the probabilistic egalitarian

rule in step 2 of our algorithm, the result follows.

Strategic Issues

Peak Strategyproofness: In the discussion so far, we have ignored the possibility of agents

having control over the values bi. Suppose agents report bi to the mechanism designer who then

decides the final allocation, then the agents could misreport the peaks to improve their allocation

which is always ≤ to the reported b. If the agents report b′i > bi, then there is a possibility of

agents having an allocation more than his true bi. In that case, we need to know the full preference

relation of an agent to compare his utilities when his allocations are on either side of his true peak

bi.

Single peaked preferences: In the spirit of Bochet et al. [11, 12], we would like to continue

our assumption of single peaked preferences for the agent allocations. Mathematically, given a

preference profile Ri for agent i and two possible allocations xi, x
′
i then:

x′i < xi ≤ p[Ri] =⇒ xiPix
′
i (4.16)

p[Ri] ≤ xi < x′i =⇒ xiPix
′
i (4.17)

A mechanism is peak strategyproof if it is a dominant strategy for the agents to reveal their

peaks truthfully. Given this preference structure, the following example shows that there is no

peak strategyproof mechanisms in the set of Pareto optimal allocations. Consider agents (a, b, c)

connected to each other and peak bi = 1 for all the agents. If the agents report their true peaks,

then any allocation mechanism is such that {(xa, xb, xc)|xa+xb+xc ≤ 2}. Suppose lets say xa < 1.

Suppose agent a misreports his peak ba = 2, then we have a unique maximum b-matching and the

allocation is (2, 1, 1). If 2Paxa for agent a, he improves his allocation.

Link Strategyproofness: A mechanism is link strategyproof if it is a dominant strategy for

the agents to reveal all of his/her neighbors. Roth et al. [49] established the link strategyproofness

of the egalitarian mechanism in the pairwise kidney exchange problem. The egalitarian mechanism
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is not link group strategyproof even in the kidney exchange problem. To see that, consider the

network in Figure 4.4 where each node has 1 unit of good to exchange. Agent s4 is matched in every

maximum matching, but s7 is missed in some maximum matching and receives a utility strictly

less than 1 in the egalitarian allocation. Now, s4 and s7 can coordinate and not report about the

existence of the link between s4 and s3. If that link is not reported, then, (s4, s5, s6, s7) form a

separate group and all the agents are matched and receive peak utility but agent s7 improves his

allocation. In this case, however, s4 is indifferent.

s1 s2 s3 s4 s5 s6 s7

Figure 4.4: Egalitarian mechanism is not link gsp in the strong sense

Weakly link groupstrategyproof: A mechanism is weakly link group strategyproof if in a

deviating coalition group, every agent strictly improves his/her allocation.

The agents in over demanded and perfectly demanded components can be ignored because they

already receive their peak allocation (xi = bi). The only deviating subsets are those agents in

the odd components. Hence, for the rest of the proof we restrict our attention to coalition groups

which consists only of agents in the odd components. We may assume without loss of generality

that any given agent in V PO finds all the agents in odd components acceptable: if a agent j ∈ V PO

finds an odd component agent i ∈ V U unacceptable, then agent i cannot have a link to demander

j regardless of his report, so clearly i’s manipulation opportunities are more restricted. Recall

that in a bipartite network [chapter 2], we established that the egalitarian mechanism is link group

strategyproof when manipulations are restricted to agents on one side only. The situation here is

similar where only the agents in V U misreport their connectivity to the agents in V PO. Using the

same proof technique as in chapter 2 [refer to theorem 1], it follows that the egalitarian mechanism

is weakly link groupstrategyproof.
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4.4 Further Work

• The main contribution of this work is a generalization of the Roth et al. [49] framework to that

of a network with arbitrary node capacities. It will be interesting to see how much of the rich

literature that followed the work of Roth et al. [49] on matchings would also generalize. Some

possible avenues include the dynamic exchange of multiple objects between agents, ordinal

preferences on the agents/objects, multi-way exchanges etc.

• In the current work, the agents are on the nodes. In contrast, in the model of Kalai and

Zemel [34] the agents are on the edges of s− t flow model and the total surplus if the value of

the maximum s-t flow. The agents wish to share this surplus in a fair way. Kalai and Zemel

construct a surplus sharing rule that is in the core. But in this core, only the agents in a

minimum cut have a positive surplus. Is there a more “fairer” away of sharing the surplus

created by the agents in such a network?

• In Section 4.3 we discussed how there is no peak strategyproof mechanism when the prefer-

ences are single peaked. Are there other preference domains under which one could construct

peak strategyproof mechanisms?
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Chapter 5

Stable and Balanced Maximum Flows

5.1 Introduction

Network exchange theory has long been an important subject of study in economics, operations

research and sociology. The goal is to determine how an agents location in a network influences

his ability to negotiate for resources [21]. Social and economic networks are even more popular

than before with the emergence of online media like Facebook, Twitter etc. Someone who has a

better connectivity has access to more and wider information and enjoys an important presence

in the network. When each connection generates a surplus for the two agents involved, a natural

question is how this surplus is divided between the agents. If the agents are strategic then certain

surplus sharing rules might give some agents an incentive to form their own network. Our goal is to

understand and design surplus sharing rules in which this does not happen. The framework of study

that we follow in this note is that of a bargaining solution. It was initially introduced by Nash [45]

in a multi agent model trying to share a particular resource. In the assignment games model of

Shapley and Shubik [53], the network is bipartite and the agents on the nodes and these agents can

form at most one contract with any of its neighbors. Shapley and Shubik show that (i) Any stable

solution divides a maximum weighted matching in the underlying network; (ii) Stable solutions

can be computed in polynomial time as a set of inequalities; Kleinberg and Tardos(KT) [38],

extended the work to general networks (bipartite or non-bipartite). The capacity of the nodes are

all identically 1 and agents cannot have fractional exchanges. The main contributions of Kleinberg
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and Tardos [38] is that within the set of stable outcomes, a balanced outcome exists and the set of

all balanced solutions can be enumerated in polynomial time.

The model consists of an undirected graph G = (V,E) with edge capacities uij , ij ∈ E(G) and

positive, integral vertex capacities bi, i ∈ V (G). The vertices represent the agents, and the edges

represent the pairwise contracts that the corresponding agents can be involved in. Kleinberg and

Tardos [38] and later Koenemann et al. [27] allow each edge to be picked only once but allow for

each edge to have a weight which represents the total value of the corresponding contract. These

weights might account for the relative importance of a particular connection over an other. In our

model, we allow each agent to share any amount of a divisible homogeneous good on each edge. If

a contract is formed between two vertices, this share (flow) is divided between them, whereas if the

contract is not formed neither vertex receives any profit from that edge. The capacity of each agent

(bi) along with the edge capacity limits the total amount of flow that is shared between the agents

on a network. It is clear from this description, that the amount of flow that an agent can share or

send in the network is limited by his connectivity, his/her vertex capacity and also the capacity of

the edges connected to him. An agent with a better connectivity has a better bargaining power in

the network.

A solution in our model is defined in the following way: First, identify a feasible flow (or

exchange), f , in the given network. A feasible flow is an exchange among the agents in the network

that respects the node and edge capacities. Next, the solution to divide the flow amongst the agents

who contributed to the flow i.e. the flow fij on an edge ij is shared among agents i and j. Since

an agent incident to many edges, his node allocation is obtained by adding his share on every edge.

In the network bargaining literature, fairness is mainly studied by finding a stable and balanced

outcome [38]. A solution is stable if the share an agent earns from a flow on a particular edge

is at least as much as his/her outside option. An agents outside option, in this context, refers to

the maximum profit that the agent can receive by rerouting a fraction of the flow to one of his

neighbors, under the condition that the new flow would benefit both agents involved. The notion

of a balanced outcome as studied by Kleinberg and Tardos [38] generalizes the notion of a Nash

bargaining solution to the network setting. In a balanced solution the value of each contract is split

according to the following rule: both endpoints must earn their outside options, and any remaining
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surplus is to be divided equally among them. This notion of balanced is fair in the sense that

whenever we divide the flow of a particular contract, we make sure both agents receive at least

their outside option. Moreover, the division of surplus is not dictatorial, i.e. it is divided equally

among them. The division of the flow between the agents i and j is such that the quantity1 that i

gets over its outside option is the same as that for agent j.

This model is similar to the ones we considered in the last three chapters of the dissertation.

The agents are again on the vertices of a bipartite network, the edges represent their compatible

partners to whom they can send flow. The main difference is the way we model how the agents

derive utility from the flow they send to their neighbors. Suppose S and D represent either sides

of the bipartite network, and say an edge ij carries a flow fij i.e. agent i ∈ S send fij units of flow

to an agent j ∈ D. In the models of earlier chapters, both the agent i, j derive a utility of fij from

this particular contract (or exchange) between them through edge ij. Such a model is applicable

in those settings where the side S takes the role of a supplier of a particular commodity and the

side D takes the role of a demander of the same commodity. The amount of commodity that an

agent sends/receives directly contributes to his utility for the good. In contrast, in the current

model the flow fij is the surplus created when i and j decide to be involved in a partnership, and

this surplus fij has to be shared between these two agents. The mechanism designer or central

planner decide the share of the flow that each agent receives from a contract. The planner wishes

to find a solution that is stable and balanced (defined more formally later). In turn, the allocation

of a particular agent is governed by his relative position in the network and his bargaining power.

Since we insist on stable and balanced outcomes, we later show that there exists no strategy proof

mechanism that always finds a balanced outcome. Thus, we look for allocations in the core that

are stable and balanced.

5.2 Bipartite Network Model

In this section we consider the version of the problem where the nodes of the network are populated

by agents and edges represent the connectivity between agents. The two agents on the either side of

1When we refer to quantity, we refer to how much an agent receives from a unit value on that edge
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an edge can exchange a positive flow with each other. Thus, our problem becomes one of exchanging

a single commodity among the set of agents V using the set E of edges. For an agent i ∈ V , N(i)

represents the neighbors of agent i in network G. An exchange of the commodity among the agents

is realized by a feasible flow f : fij is the amount of the commodity exchanged by the agents i and j

using the edge (i, j) ∈ E. The net surplus created by their exchange is shared between them. Each

agent i ∈ V has a peak capacity bi which is the maximum amount of flow that agent i can share

with its neighbors. We assume the capacity of an edge ij, uij ≤ min(bi, bj). Otherwise, redefine

uij := min{bi, bj}. Whenever an agent transfers flow to his neighboring agents, the flow on an edge

ij should be less than its edge capacity uij .

In the following sections, we assume that the peaks of the agents and connectivity are fixed,

and focus our attention on proving the existence of a stable and balanced solution. We do this by

transforming to a unit flow network. We define a solution as follows: for a feasible flow f in the

network G and for every edge ij ∈ E(G); also for every edge ij ∈ E(G) with fij > 0, the solution

specifies the fraction of the flow allocated to an agent i denoted by γi←j . Clearly, γi←j + γj←i = 1.

Define for each i ∈ V , γi := minj∈N(i) γi←j , the minimum utility per unit flow that an agent i

receives from all his contracts. The utility for an agent i ∈ V is his/her total share of the flow f

and is given by Ui =
∑

j∈N(i),fij>0 γi←jfij .

Kleinberg and Tardos [38] discuss stable and balanced outcomes in networks with unit node

capacity. In the assignment games model of Shapley and Shubik [53], the network is bipartite and

the agents on the nodes and these agents can form at most one contract with any of its neighbors.

Shapley and Shubik show that (i) Any stable solution divides a maximum weighted matching in the

underlying network; (ii) Stable solutions can be computed in polynomial time as a set of inequalities;

Kleinberg and Tardos(KT) [38], extended the work to general networks (bipartite or non-bipartite).

Even in their model, each agent can form at most one contract with his/her neighbors. In other

words, the capacity of the nodes are all identically 1 and agents cannot have fractional exchanges.

The main contributions of Kleinberg and Tardos [38] is that a balanced outcome exists and the set

of all balanced solutions can be enumerated in polynomial time.

Continuing the study of bargaining solutions on networks, Bateni et al. [9] take a mathematical

programming view to obtaining stable and balanced outcomes. For the KT model they show that



CHAPTER 5. STABLE AND BALANCED MAXIMUM FLOWS 107

the (i) set of stable and balanced outcomes coincides with the core and prekernel respectively of

the corresponding cooperative game; (ii) the nucleolus is a “fair” outcome and can be computed in

polynomial time by adapting the algorithm of Faigle [26]. Finally, they show that in the constrained

bipartite bargaining game (i.e. one side of the bipartite network has arbitrary capacities, whereas

the other side has all agents with unit node capacity) there are solutions in the core that are not

stable. This does not happen in the standard case where all the node capacities are identically 1.

The more recent wok of koenemann et al. [27] is closer to our model. They study the general

bipartite network bargaining game in which both sides of the network have arbitrary node capacities.

They find very restrictive conditions under which a balanced outcome of this bargaining game

coincide with the prekernel. In this case, we can again use the algorithm of Faigle [26] to compute

the entire prekernel in polynomial time. The model of koenemann et al. assumes that each edge

can be picked at most once, and fractional exchanges are disallowed. They prove the existence

of stable and balanced outcomes by transforming any given instance into an equivalent matching

problem of the sort considered in KT.

Our model differs from the aforementioned work in the following way: (i) We allow fractional

exchanges, i.e. we allow agents to share fractional flows in the network; (ii) We allow each edge

to be used more than once as long as the node and edge capacities are respected. In the rest of

the chapter, we describe our model in more detail and adapt some of the proof techniques from

the literature to our model. We start by giving a more precise definition of stable and outcomes in

general networks.

Stable Outcome: An outcome, γ, associated with a feasible flow, f , is set to be stable if:

(a) γi←j + γj←i = 1, ∀ ij ∈ E(G) s.t.fij > 0,

(b) γi + γj ≥ 1, ∀ ij ∈ E(G) s.t. fij < uij

Intuitively, if there is an edge ij that is unsaturated and can carry more flow, then the nodes

connected to it should be sharing fractions in their partnerships such that the minimum fraction

that they get from their partners should sum up to to at least 1. Otherwise, i and j could do better

by sending more flow between each other. For an unsaturated node i, γi = 0 by definition.

Let αij denote the best outside option for an agent i for the edge ij. Then, αij = maxk{1−

γk|k ∈ N(i)\j, fik < uik}. Intuitively, αij is the maximum utility rate agent i can get by reallocating
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an ε units of flow from j to other agents.

Next we discuss the best outside options when the solution γ is a stable solution; There are 2

cases: (a) Agent i is unsaturated (
∑

j∈N(i) fij < bi): Then αij = 0 ∀j ∈ N(i). This is because, for

an unsaturated node i, γi = 0 and stable division implies γk = 1 ∀k s.t.fik < uik. But these are

precisely the set of agents that we could reroute our flow to.

(b) Agent i is saturated (
∑

j∈N(i) fij = bi): Then αij = maxk{1− γk|k ∈ N(i)\j, fik < uik}.

In other words, αij is the maximum fractional share on a flow that an agent can receive in the

current stable solution without j.

Note the difference in the definition of the best outside option α here compared to that of

Kleinberg and Tardos [38] paper. In Kleinberg and Tardos [KT] paper, there is only one value of α

defined for every vertex. Here, we define the outside option α for every edge with a strictly positive

quantity of flow on it.

Balanced Outcome: An outcome γ, is said to be balanced if on any edge ij such that fij > 0,

the surplus fij generated by agents i and j is shared by them in a fair way. A balanced outcome

is one in which the extra utility that each agent (i or j) gets with respect to to his best outside

option remains the same. Mathematically speaking, a balanced outcome is one that satisfies the

following set of equations:

γi←j − αij = γj←i − αji ∀ ij ∈ E(G) s.t. fij > 0 (5.1)

Example:

3 b

3 a

2d

2cfac = 2

fbc = 0

fbd = 2

3 a

1 b

2c

2d

fac = 1

fbc = 1

fbd = 2

Figure 5.1: Example of a balanced outcome

Example: Consider the bipartite network in Figure 5.1 with 4 nodes {a,b,c,d} with node ca-

pacities {2,3,2,2} respectively; The edges {ac,bc,bd}. The maximum flow in which fac = 2, fbc =
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0, fbd = 2, the net split given by (xa, xb, xc, xd) = (0, 1, 2, 1) is a balanced outcome. This outcome

is obtained by setting γa = γb = 0 and γc←a = 1, γd←b = γb←d = 0.5. The best outside option for

agents are: αac = 0, αca = 1, αdb = 0, αbd = 0.

If the maximum flow is rather chosen as fac = 1, fbc = 1, fbd = 2, the solution still by the

definitions above gives (xa, xb, xc, xd) = (0, 1, 2, 1) which is a balanced outcome. The split in this

case is such that γa = γb = 0 and γc←a = 1, γd←b = γb←d = 0.5, γc←b = 1. On edge ac, the

best outside option for agents are αac = 0, αca = 1. On edge bc, αbc = 0, αcb = 1, on edge bd,

αdb = αbd = 0.

Linear Programming Formulation

Consider the linear programming formulation of the maximum flow (primal) and minimum cut

(dual) problems. These formulations along with complementary slackness help us understand the

connection between a stable outcome and a maximum flow.

Let fij be the flow on edge ij ∈ E(G) and yi, vij be the dual variables associated with the node

and edge capacity constraints respectively. Specifically given a solution (f, γ) to the network bar-

gaining game (G, b, u) we can define a corresponding utility vector x, where xi is the net allocation

of agent i ∈ V from all his/her exchanges.

xi =
∑
j∈N(i)

γi←jfij (5.2)

maximize
∑
ij∈E

fij minimize
∑

i∈V (G)

yibi +
∑

ij∈E(G)

vijuij

subject to subject to∑
j∈N(i)

fij ≤ bi, i ∈ V (G) vij + yi + yj ≥ 1, ij ∈ E(G)

fij ≤ uij , ij ∈ E(G) vij ≥ 0, ij ∈ E(G)

fij ≥ 0, ij ∈ E(G) yi ≥ 0, i ∈ V (G)
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The Complementary slackness (CS) conditions imply that a pair of feasible solutions (f∗, y∗, v∗)

are optimal if and only if

• For each ij ∈ E(G), (f∗ij − uij)v∗ij = 0

• For each i ∈ V (G), (
∑

j∈N(i) f
∗
ij − bi)y∗i = 0

• For each ij ∈ E(G), (v∗ij + yi + yj − 1)f∗ij = 0

Theorem 14 There is a stable outcome, γ, of a flow f if and only if f is a maximum flow

Proof: Let A and B be either sides of the bipartite network such that A ∪ B = V . We first

prove that an outcome γ of a flow f , is stable iff f is a maximum flow. Suppose the flow is not

maximum and let γ be a stable solution associated with this flow. Then there is an augmenting

path i1 − i2 − i3 − · · · in where i1 ∈ A and in ∈ B. This means, i1, in are unsaturated and hence

γi1 = γin = 0. Since γ is stable and i1 − i2 is unsaturated, from the definition of stability we

have γi1 + γi2 ≥ 1 which implies γi2 = 1. This also means that i2 is necessarily a saturated node.

Moreover, all the edges connected to i2j and carry positive flow should split the surplus on the

edge such that γi2←j = 1, γj←i2 = 0. Hence, γi3 = 0. Repeating the argument iteratively, the nodes

on the augmenting path have γ value that alternate between 0 and 1 with the first node i1 ∈ A

(γi1 = 0) and the last node in ∈ B has γin = 1, contradicting γin = 0. Thus, if f is not a maximum

flow then the outcome γ cannot be stable.

Now, we prove that given a maximum flow f∗, we construct a stable outcome γ. Let (y∗, v∗)

be an optimal dual solution. Set γi = 0 for all unsaturated nodes. For all edges ij ∈ E such that

f∗ij > 0, assign the following split: (γi←j , γj←i) = (y∗i + rv∗ij , y
∗
j + (1 − r)v∗ij) for any r such that

0 ≤ r ≤ 1. Note that for all edges such that f∗ij > 0, we have (γi←j + γj←i) = 1 (from CS (iii)

statement). In a maximum flow it is not possible for both the nodes connected to an edge to be

unsaturated. Hence, v∗ij = 0 for all edges ij ∈ E(G) such that, f∗ij < uij (from CS (i) statement).

Consequently, γi←j = yi, γj←i = yj . If a node is unsaturated, then γj = yj = 0 from CS (ii)

statement. Since v∗ij ≥ 0 we have, γi + γj = min
k∈N(i)|f∗ik>0

γi←k + min
l:N(j)|f∗jl>0

γj←l ≥ y∗i + y∗j ≥= 1. In

particular, when a node i is unsaturated, we have γi = y∗i = v∗ij = 0 which implies y∗j = 1 and

γj = 1.
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Corollary: If γ is stable with respect to some maximum flow, then it is also stable w.r.t. to any

other maximum flow.

Polytope of Stable Solutions

We turn now to characterize the set of all stable solutions (in the spirit of KT). Once we fix a flow

f . the set of all stable solutions for this flow can be written as:

γi←k + γj←l ≥ 1, ∀ ij ∈ E(G) s.t. fij < uij

γi←j + γj←i = 1, ∀ ij s.t. fij > 0

γi←j ≥ 0, γj←i ≥ 0, ∀ ij s.t. fij > 0

γi←j = 0, γj←i = 0, ∀ ij s.t. fij = 0

As in the KT paper, we have two variables per inequality in the above polytope which describes

the set of all stable solutions. Hence, a feasible solution to the above can be obtained in polynomial

time by the Apsvall-Shiloach [4] procedure.

Transformation to a unit matching network

In this section we show that there exists a balanced solution in any given bipartite network. Instead

of showing that there exists a balanced outcome in the set of all maximum flows, we show that

there is a balanced outcome within the smaller set of all integral maximum flows.2

Identify a particular integral maximum flow f in G(V,E). Denote the set of edges with strictly

positive flow by f0 := {ij ∈ E(G)|fij > 0}. Construct another unit capacity network G′(V ′, E′)

and flow f ′ on G′ such that:

• For each i ∈ V (G), create bi copies of node i in V (G′). Label them i1, i2, ..ibi

2Integral maximum flows in bipartite networks are just the maximum b-matchings



CHAPTER 5. STABLE AND BALANCED MAXIMUM FLOWS 112

• For each ij ∈ E(G)∩f0, pick an unmatched node ik and jl and construct an edge between them

[For convenience, choose k, l as the smallest unmatched copy of nodes i, j respectively]. Assign

unit flow on these edges and split them in the same fraction γik←jl = γi←j , γjl←ik = γj←i.

• For each ij ∈ E(G)\f0, add edges between {ikjl|1 ≤ k ≤ bi, 1 ≤ l ≤ bj} in E(G′)

• For an unsaturated node i ∈ G [xi < bi]: define a set ij in G′ such that, ij := {jl ∈ V (G′) | ij ∈

E(G), fij < uij , ikjl /∈ E(G′) for any 1 ≤ k ≤ bi}. In the graph G′, for every node k ∈ ij

match all the unmatched copies of i to node k.

• The edges such that fij < uij can be used for redirecting the flow even if the node is saturated.

For every edge ij ∈ E(G) such that fij < uij , define ij := {jl|ikjl /∈ E(G′) for any 1 ≤ k ≤

bi} and ji := {ik|jlik /∈ E(G′) for any 1 ≤ l ≤ bj}. Construct an edge between every node

ij and ji.

1 s2

3 s1

1d2

4d1u11 = 3, f11 = 2

u12 = 1, f12 = 1

u21 = 2, f21 = 1

1 s11

1 s21

1 s31

1 s12

1d12

1d11

1d21

1d31

1d41

Figure 5.2: Bipartite transformation: Example 1

As defined earlier, αij is the best outside option for node i w.r.t. to a matched edge j (fij > 0)

in network G. The best outside option αikjl(G
′) in the modified network is defined as the best

outside fraction that node ik can receive from other connected neighbors other than the copies of

node j (jl, 1 ≤ l ≤ bj) in G′.
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1 s2

3 s1

1d2

3d1u11 = 3, f11 = 2

u12 = 1, f12 = 1

u21 = 2, f21 = 1

1 s11

1 s21

1 s31

1 s12

1d12

1d11

1d21

1d31

Figure 5.3: Bipartite transformation: Example 2

Lemma 16 For every ij ∈ E(G) with fij > 0, αij(G) = αikjl(G
′) ∀ k, l such that ik, jl ∈ V (G′)

and fikjl > 0

Proof: From the defintion of best outside option we have, αij = maxv{1− γv|v ∈ N(i)\j, fiv <

uiv}. Define Nij := {v ∈ V (G)|v ∈ N(i)\j, fiv < uiv}. We will prove the result for a particular

ik, jl and by symmetry of construction, the result follows for every copy of i that sends flow to a

copy of node j. Consider this particular node ik that is connected to jl. Hence, this node ik is not

connected to any other copy of node j. From steps (3-5) of the construction of the transformation

network, any node v ∈ Nij such that fiv < uiv will contribute to an edge ikvr in the network G′ for

some r. And also it follows from construction, γi←v for some v ∈ Nij is the same as in γik←vr for

some vr ∈ V (G′).

Theorem 15 The graph G with a flow f has a stable and balanced outcome if and only if G′(V ′, E′)

with a flow f ′ has a stable and balanced outcome

Proof: From Lemma 16 the best outside option of agent i for the edge with j in network G,

αij = αikjl , the best outside option of agent ik for the edge with jl in network G′. Moreover,

we know that balanced outcome can be obtained as a solution to a set of equations of the form,
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γi←j − αij = γj←i − αji ∀ ij ∈ E(G) s.t. fij > 0. But every edge ij such that fij > 0 has a

edge ikjl in G′ carrying a unit flow. For a solution in G′ to be balanced, we would have for those

edges:γik←jl − αikjl = γjl←ik − αjlik . Note that the equations in both networks are identical and

hence a balanced division γik←jl in network G′ maps directly to a balanced division γi←j in network

G.

Generating Balanced Outcomes: Kleinberg and Tardos [38] show how to generate all balanced

solutions in a unit matching network. Moreover, Bateni et al. [9] show that the set of all balanced

solutions coincides with the pre kernel of the game. Faigle et al. [26] design an algorithm that gener-

ates a point in the pre kernel in polynomial time. Since Theorem 15 has established an equivalence

between the original and transformed network, we can use the algorithm of Faigle et al. [26] to ob-

tain a balanced outcome in the transformed network and map it to a solution in the original network.

Strategyproof Mechanisms: Any mechanism that picks a balanced outcome is not strate-

gyproof. Consider a path network (b − a − c) with peaks (2, 4, 2) respectively (only edges in the

network are (ab, ac)). The unique balanced outcome is (2, 1, 1). Suppose the node capacities are

instead (3, 2, 2). Then, given a flow say (fab = 1, fac = 2), the only balanced outcome is (2.5, 0.5, 0).

Hence, if the mechanism always identifies a balanced outcome in a given network and agent a has

the option to report his peak, then in the first network, agent a can misreport to 3 and improve

his allocation.

Core and Prekernel

We discuss a connection between network bargaining games and cooperative game theory. The

vector x can be seen as a solution to a corresponding cooperative game (V, ν) defined as follows:

for every subset S ⊆ N of players, we define its value ν(S) as the maximum flow surplus created by

agents in S alone. This definition is the generalization of the notion used in assignment games [53].

The subsets S ⊆ N can deviate and form coalitions and the value ν(S) of each coalition is inter-

preted as the net surplus that the players in S would receive if they decide to deviate. We haven’t

discussed the exact utility structure for an agent i.
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Any mechanism that attempts to split the surplus among agents (i.e. mechanism identifies the

fraction γi←j for each ij ∈ E such that fij > 0) should split in such a way that no subset of agents

have any incentive to deviate. Hence, the grand coalition is formed with each agent i ∈ V better

off in the grand coalition than any other smaller subset containing i.

An outcome {xi} is in the core if for all subsets S ⊆ N ,
∑

i∈S xi ≥ ν(S), and for the grand

coalition N ,
∑

i∈N xi = ν(N). Given an allocation x, the excess of a coalition S is defined as

ν(S) − x(S). Intuitively, from the discussion above it means, the excess of every coalition should

be non-positive for the grand coalition to form.

The power of agent i with respect to agent j in the outcome x is sij := max{ν(S)−
∑

k∈S xk :

S ⊆ N, i ∈ S, j /∈ S}. The pre kernel is the set of outcomes x that satisfy for every i, j ∈ V ,

sij(x) = sji(x).

The core of a game may be empty but a prekernel exists for every game. In our game, both

core and the pre kernel are non-empty.

Lemma 17 Every stable split of a feasible flow f results in a node utility x which is in the core of

the bargaining game

Consider a dual feasible solution yi, i ∈ V , vij , ij ∈ E and lets say vij = v′ij + v′ji where i gets

the fraction v′ij of the flow between i and j and j gets v′ji fraction of the flow.

Firstly, we show that the core condition holds for the grand coalition V i.e.
∑

i xi = ν(V ).

∑
i∈V

xi =
∑
i∈V

(
∑

k∈N(i)

fikyi +
∑
j∈V

v′ijfij) =
∑
i∈V

biyi +
∑
i,j∈V

vijuij (5.3)

The equality follows as agent i receives yi for unit of every flow it shares and an addition fraction

of v′ij for every unit of flow it shares with an agent j ∈ N(i). The second equation follows from

complementary slackness conditions. If yi > 0 then
∑

j∈N(i) fij = bi and if vij > 0 then the edge ij

is saturated i.e. fij = uij .

which is the value of a dual optimal solution. Hence, by strong duality, it equals the primal

solution which is the value of a maximum flow or in other words, the net surplus created when all

the V agents participate in the game ν(V ).
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Now consider, S ⊂ N . Construct the linear program 5.2 restricted to set S,∑
i∈S

xi =
∑
i∈S

(
∑

k∈N(i)∪S

fikyi +
∑
j∈V

v′ijfij) ≥
∑
i∈S

biyi +
∑
i,j∈S

vijuij (5.4)

which is the value of a dual feasible solution. Hence, by weak duality this is greater than any primal

feasible solution. ν(S) is primal feasible solution obtained by setting fij = 0 if either i or j is not in

S. The flow on the edges ij such that both i, j ∈ S is obtained through complementary slackness

conditions. Hence,
∑

i∈S xi ≥ ν(S)

The converse is not true i.e. there maybe allocations in the core that are not stable. See Bateni et

al. [9] for an example.

Pareto Optimality

A feasible stable division γ (inducing a utility profile x) as defined in the previous section is Pareto

optimal if there is no other division (γ′, x′) such that every agent is weakly better off and atleast

one agent is strictly better off in it. In mathematical terms, if Ri and Ii denote the preference and

indifference relations respectively for agent i, then

{∀ i x′iRixi} and =⇒ {∀ i : x′iIixi } (5.5)

A Pareto solution need not be stable for the same reason that a core solution can be unstable.

Theorem 16 A stable solution is also a Pareto optimal allocation for the agents

Proof: Let F be the value of the maximum flow in the network. From Theorem 14 we know

that every stable solution has to divide a flow of value F among the agents. Hence the correspond-

ing node allocations from a stable split should be such that
∑

i∈V xi = F . If the allocation x is not

Pareto optimal, then there exists an allocation y in which there is at least one agent j such that

yj > xj and yk ≥ xk ∀ k ∈ V \j. But the net surplus that is divided among the agents can never

exceed F . Hence, such a allocation y does not exist.

Generating a Unique Outcome: Bateni et al. [9] choose the nucleolus as a unique allocation

for agents in the network. The nucleolus is a“fair” solution as it lexicographically minimizes the
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excess allocations among a set of agents. As we discussed earlier, a core allocation need not be

stable for the general bipartite bargaining game. So, it is still an open question if the nucleolus of

the general bipartite game is stable and balanced. Meanwhile, we propose a random priority type

mechanism:

Choose an integral maximum flow in the original network. Make the transformation to a unit

matching network. Randomly arrange the agents in V in an order. Choose the balanced outcome

which gives the highest allocation (utility) to the first agent in the list. Keeping the allocation

of first agent fixed, choose the balanced outcome which gives the highest to the second agent in

the list. Repeat the procedure till all the agents are processed. This mechanism is “fair” in the

sense that the agent who is given priority is done through a lottery. Hence, every agent has the

possibility of getting a balanced outcome of his choice in the final solution. Also, the mechanism

produces a stable, balanced solution in the core and is also Pareto optimal.

5.3 Extension to general networks

In bipartite networks, stable and balanced outcomes exist when the exchanges allowed are either

strictly integral or fractional. In general non-bipartite networks this is not the case. There may be

networks where stable outcomes do not exist [38]. Consider a simple network with 3 nodes, (a, b, c)

each with node capacity 1 and every node connected with the other two. The maximum matching

in this network is 1, and any of the three edges can be chosen. Lets say we pick the matching ab and

we share the surplus as fa and fb = 1− fa between agents a and b. Then, γa = fa, γb = fb, γc = 0.

This implies either γa + γc < 1 or γb + γc < 1 or both causing instability. Whereas when we allow

for fractional exchanges, fab = fbc = fca = 0.5 with the surplus on each edge being shared equally

is a stable outcome. Our first result is that when we allow for fractional exchanges (non integral

flows) between nodes, we can always find a stable outcome.

We then use the ideas of Bateni et al. [9] to prove the existence of a balanced outcome when

fractional exchanges are allowed in a unit capacitated non-bipartite network. Then, we transform a

given network into a unit capacity network and solve the fractional matching problem and establish

equivalence between stable and balanced outcomes between both networks.
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A network G is given with node capacities bi for every node i ∈ V (G) and edge capacities

uij , ij ∈ E(G). A fractional matching is one that assigns a flow 0 ≤ fij ≤ uij for every edge

ij ∈ E(G) and xi =
∑

j∈N(i) fij ≤ bi, i ∈ V (G). A maximum fractional matching problem is one

that maximizes
∑

i∈V xi among all fractional matchings. The agents who create the surplus share

the surplus on that edge. The definitions of stable,balanced, core and pre kernel are the same as

in previous sections. We prove the following theorems based on the ideas of Bateni et al. [9]. We

discuss below the connection of stability and core in such problems using a linear programming

formulation. In our discussions, we will restrict our focus to uij = 1. Then we transform a model

with non-unit peaks to a unit peak model to find the stable and balanced outcome in the original

network.

Theorem 17 (i) An outcome (f, x) is stable if and only if the utility vector x is in the core; (ii) A

stable outcome always exists when fractional exchanges are allowed; Such a stable outcome always

splits the surplus created by a maximum fractional matching.

Proof: The proof of the above statement follows easily using the same proof technique as in the

previous section. Observe the linear programming problem in section 5.2 is also the formulation to

find a maximum fractional matching on any network and the rest of the proof follows identically.

Let F be the value of a maximum fractional matching. Consider the following linear programs

where the primal represents the definition of a core and the dual problem represents the maximum

fractional matching:

minimize
∑
i∈V

xi maximize
∑

ij∈E(G)

fij

subject to subject to

xi + xj ≥ 1, ∀ ij ∈ E(G)
∑

k∈N(i)

fik ≤ 1, ∀ i ∈ V (G)

xi ≥ 0, i ∈ V (G) fij ≥ 0, ij ∈ E(G)



CHAPTER 5. STABLE AND BALANCED MAXIMUM FLOWS 119

Since by definition
∑

i∈V xi = F ′, where F ′ =
∑

ik∈E f
′
ik, we need to be prove F ′ = F if (f ′, x)

is a stable outcome. The primal and dual objective function values are same for every fractional

matching but only for maximum fractional matchings, the corresponding primal vector x is feasible.

Hence, by strong duality, stable outcomes correspond to maximum fractional matchings.

Stable =⇒ Core: Consider an edge ij ∈ E(G). For a saturated edge ij (fij = 1) we have xi+xj = 1

by the definition of a stable outcome. For an edge ij such that fij < 1, by the definition of an

outside option, αi ≥ 1− xj and stability implies xi ≥ αi which results in xi + xj ≥ 1.

Core =⇒ Stability: Suppose x is a solution in the core, then xi + xj ≥ 1 for any pair i,j ∈ V (G).

We just need to show xi + xj = 1 for nodes such that fij = 1. Consider any maximum weight

fractional solution f , it is clearly feasible to the dual problem. Since, ν(V ) =
∑

k∈V xk = F . By

strong duality and complementary slackness conditions we have that, fik(xi + xk − 1) = 0 for each

ik ∈ E(G). It means, if fik > 0, then xi + xj = 1, we have indeed proved a stronger result.

Theorem 18 An outcome (f, x) is stable and balanced if and only if the utility vector x is in the

intersection of core and prekernel

Proof: Following Theorem 17 it only remains to prove that the notions of a balanced outcome

and a pre kernel coincide with each other. Note that unlike the earlier section, here the notion of

balancedness has to be satisfied by every pair of agents (i, j) such that fij > 0. Recall that, in

defining αij we just wanted to route ε fraction of the flow fij to a connected agent other than j,

and compute the best utility that agent i can receive. Following the steps in Theorem 4.3 of Bateni

et al. [9] we have the result. Use the algorithm of Faigle et al. [26] to construct a balanced outcome

in polynomial time.

Generating a Unique Outcome: Given a general network and a maximum fractional matching,

make the same transformation as in section 5.2. The only difference here is instead of unit flows on

all matched edges, assign unit flow on every edge except the last edge on which assign the fractional

part of the flow. Alternately, define ij := {j|fikjl<1} for every node and construct the edges

in the transformed network accordingly. In the transformation, only construct balanced outcome

equations for the edges with a unit flow. Establishing equivalence between the two networks follows

from the Theorems 17 and ?? proved earlier. To generate a unique outcome, one could follow the
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random priority mechanism discussed earlier. But the overall process involved in generating a

unique outcome is not polynomial in time. Identifying such polynomial time algorithms is still an

open question.
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5.4 Further Work

• For the networks discussed in this section, does there exist a polynomial time algorithm for

enumerating the set of all balanced outcomes?

• Bateni et al. [9] argue that the nucleolus is a unique fair outcome and prove that the nucleolus

is stable and balanced. Is the nucleolus a stable and balanced outcome for the general bipartite

network bargaining game as well?

• In our current work, we split the entire flow between two agents by the same fraction. In

general, we could allow for the fraction to depend on the total flow that is divided between

them (among other factors). This would generalize the existing models and identify sharing

mechanisms that result in stable and balanced outcomes

• The best outside option of an agent i with respect to an agent j is defined as the maximum

utility agent i receives by routing an ε fraction of the flow on edge ij to another neighbor

of his. In such a situation, we are not considering the complete bargaining power of agent

j. Consider the following example: if fij = 2 and say i can find another neighbor to reroute

ε unit flow but does not have enough connectivity to reroute all the 2 units of flow that he

shares with j. Then j should enjoy more bargaining power in the network as his presence

is important for i to send more flow. One way of modeling it could be by defining the best

outside option of an agent as the utility an agent receives when he reroutes the entire amount

of flow on a particular edge.
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Chapter 6

Conclusions

We consider the problem of fair allocation of resources in a network environment. The current work

addresses a wide range of efficiency, fairness and strategic issues that arise in economic networks

and leads to other interesting questions.

In chapter 2, our contributions generalize many of the results in the standard rationing literature

to bipartite networks. We make a stronger case for the egalitarian mechanism by showing that it is

peak group strategyproof, thus proving a conjecture of Bochet et al. [11, 12]. We also characterize

peak group strategyproof mechanisms using a property that we call strong invariance. As for link

group strategyproofness, we show that the egalitarian mechanism is strategyproof for one-sided

coalitions (i.e., a coalition of suppliers or a coalition of demanders), but not for two-sided ones.

Several open questions remain: In a bipartite network with capacities, is the egalitarian mechanism

strategyproof with respect to the capacity reports of the agents? A proof of this would generalize

link strategyproofness of the egalitarian mechanism to a more general model. Another challenging

open question is to characterize link group strategyproof mechanisms.

Although the egalitarian mechanism appears to be the correct generalization of the uniform rule

to bipartite networks, it fails consistency. For the standard rationing model, the uniform rule is in

fact consistent, but a similar result is impossible for the network model: we show that no envy-free

rule can be consistent. This motivates the need for alternative mechanisms for applications where

consistency is important. Moulin and Sethuraman [43, 44] study consistent extensions of several

rules to bipartite networks, but they work with a model in which the peaks of the agents are
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observable; in particular, they do not prove that any of their rules are strategyproof, if the agents

have single-peaked preferences over their net allocations. In chapter 3, we introduce the edge fair

mechanism as a compelling alternative to the egalitarian mechanism: the edge-fair mechanism

is Pareto efficient, consistent, and strategyproof with respect to peaks. We have been unable

to characterize the edge-fair rule using these properties, but believe that such a characterization

(with perhaps some additional properties) will be insightful. Furthermore, we conjecture that the

edge-fair rule is link group strategyproof. Finally, characterizing the mechanisms that are Pareto

efficient, strategyproof, and consistent in this setting is an interesting open question.

In chapter 4, we extended the study of the egalitarian mechanism to more general non-bipartite

networks by transforming them to equivalent bipartite networks. In these general networks there

is a need to distinguish the case of divisible goods from that of indivisible goods for the simple

reason that the size of a max-cardinality fractional matching in a non bipartite network can be more

than the size of a max-cardinality integer matching. Many (but not all) of the results of Chapter

2 generalize. Several related questions are still open: For example, in the model of Kalai and

Zemel [34] the agents are on the edges of an s-t flow network; assuming that the agents collectively

generate utility equal to the value of a maximum-flow, how should the total utility be divided?

Kalai and Zemel identify an allocation in the core, but in their solution the only agents with a

positive utility are the agents on the edges of a minimum cut. Is there a fairer way of sharing the

surplus?

Finally, in chapter 5, we made a connection with the literature on stable allocations. We show

that when fractional exchanges are allowed, stable and balanced outcomes always exist. It is still

an open question to identify a good rule that always yields a balanced outcome. Bateni et al. [9]

propose the nucleolus as a fair outcome in constrained bargaining games. In general, does the

nucleolus result in a balanced outcome in more general bargaining games? If not, what additional

constraints on the network structure would make the nucleolus a balanced outcome? Also, in our

current work, we split the entire flow between two agents by the same fraction. In general, we

could allow for the fraction to depend on the total flow that is divided between them (among other

factors). This would generalize the existing models and choose “good” functions under which the

networks can have stable and balanced outcomes.
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There are some other general directions for future research that are loosely related to the

research described in this dissertation. For example, there is a growing literature on dynamic kidney

exchange (see Unver [61]) and strategic issues that arise in such settings (see Ashlagi et al. [3]).

When agents have multiple units of a good and also arrive sequentially over time, the problem

becomes more complex. Mechanism design in such complex environments remains a challenging

problem that is well worth addressing. Also, social and economic networks are even more popular

than before with the emergence of online media like Facebook, Twitter etc. Agents with better

connectivity have access to more information and enjoy an important presence in the network. An

empirical study of Cook and Yamagashi [21] determines how an agent’s location in the network

influences his ability to negotiate for resources. It would be interesting to study how our mechanisms

perform in practical settings.
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Appendix A

Related Proofs

Gallai-Edmonds decomposition (GED) for a bipartite network without edge capacities:

Proof of Lemma 1: The max-flow from σ to τ is clearly finite, and so must be the capacity

of a minimum σ-τ cut. Fix a min-cut, and let X and Y be the set of suppliers and demanders

respectively in that min-cut. Then we claim that Y = f(X). If there exists demander j ∈ Y such

that j /∈ f(X), then the cut’s capacity can be reduced by deleting the demander j; if, however,

there exists demander j /∈ Y such that j ∈ f(X), then the cut has infinite capacity.

Set S− = X, D+ = Y , S+ = S \ X, and D− = D \ Y . By construction, G(S−, D−) = ∅,

D+ = f(S−), and S+ = g(D−). The capacity of the cut σ ∪ X ∪ Y is, by definition, sS\X + dY ,

which equals sS+ + dD+ . Moreover, in any maximum-flow, the edges oriented from S+ to D+ are

backward edges in the cut, so they must carry zero flow. The edges from σ to S+ and the edges

from D+ to τ are the edges in the cut, so these edges carry flow equal to their respective capacities.

This establishes (ii) of the lemma. Parts (i) and (iii) follow from Lemma 1.�

Gallai-Edmonds decomposition (GED) for a bipartite network with finite edge capacities:

Proof of Lemmas 7, 9: Let λ := (λi)i∈S be non-negative. Construct the following network

G(λ): introduce a source s and a sink t; arcs of the form (s, i) for each supplier i with capacity λi,

arcs of the form (j, t) for each demander j with capacity dj ; an arc of capacity uij from supplier i

to demander j if supplier i and demander j share a link. Consider now a maximum s-t flow ϕ in
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the network G(s). By the max-flow min-cut theorem, there is a cut C (a cut is a subset of nodes

that contains the source s but not the sink t) whose capacity is equal to that of the max-flow. Let

X be the set of suppliers in C and Y be the set of demanders in C. If the min-cut is not unique,

it is again well-known (see [40]) that there is a min-cut with the largest X (largest in the sense of

inclusion), and a min-cut with the smallest X (again in the sense of inclusion). Call these sets X

and X. Define S− := X and S+ := S \ S−; and define D+ = f(S−)∩ {j|yj(ϕ) = dj , ∀ϕ ∈ F∗} and

D− = D \D+. We note that the partition is uniquely determined for each problem.1

Let C be the cut that has precisely X as its set of suppliers and Y as its set of demanders. We

claim that Y ⊆ f(X). For otherwise, there is a supplier j ∈ Y \ f(X) who contributes dj to the

capacity of the cut C, and omitting j from C would reduce this capacity by dj > 0, resulting in

a smaller capacity cut. Moreover, by the max-flow min-cut theorem, every edge (i, j) with i ∈ C

and j 6∈ C must carry flow equal to its capacity, and that the value of the max-flow is precisely the

sum of the capacites of such edges. Thus, ϕij = uij for every edge (i, j) with i ∈ S− and j ∈ D−;

the edge (s, i) carries a flow of si for each supplier i ∈ S+; and the edge (j, t) carries a flow of dj

for each demander j ∈ D+.�

Gallai-Edmonds decomposition for non-bipartite networks without edge capacities:

Proof of Lemma 13: Let us construct an instance of the given b-matching problem. From the

given graph (G,V,E) construct the following graph (G′, V ′, E′): Create bi duplicate copies of node

i with unit peak each. Label these nodes as (i1, i2....ibi). In the graph G′, nodes ik, (k ∈ 1, 2, ..bi)

and jl, (l ∈ 1, 2, ..bj) are connected by an edge if i and j are connected in the original graph G.

There is no edge between ik and ir, (k, r ∈ (1, 2, ...bi)) in G′. Now, we have a graph with unit

peaks. Applying the GED on this unit graph and merging the duplicate copies back establishes

the decomposition.

The first two statements of the lemma follows from the GED of a unit peak non-bipartite net-

work. For a proof of the unit peak case, refer to Roth et al. [49]. When (|J | = 1) the odd component

has only 1 element, there is no b-matching within that component. In a unit peak network, when

|J | ≥ 2, the size of a maximum matching within every odd component is one less than the number

1It is easy to check that every supplier in X \X will transfer his entire supply in all maximum flows.
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of nodes in the component. By symmetry, all the duplicate (identical) copies of a node will be in

the same odd component. Hence, when we merge these duplicate nodes into a parent node with

original peak in the decomposition above, it follows that the sum of the peaks of the agents in

an odd component is Σ
|J |
j=1bj . Again it follows from the structure of the GED in the unit peak

network that exactly one agent in every odd component sends flow to an agent in V O or remains

unsaturated. �

Peak GSP of egalitarian mechanism in a network with capacitated edges:

Proof of Theorem 8 We follow the proof technique introduced in Chandramouli & Sethura-

man [15] for the first part of the theorem: PO∗, strong invariance =⇒ Peak GSP.

Suppose such a rule is not peak group strategyprof then lets focus on a network G with the

smallest number of nodes. Suppose the true peaks of the suppliers and demanders are s and d

respectively, and suppose their respective misreports are s′ and d′. We can assume that dj > 0

for every demander j, as otherwise deleting j would result in a smaller counterexample. Fix a

coalition A of suppliers and a coalition B of demanders : note that A contains all the suppliers k

with s′k 6= sk, and B includes all demanders ` with d′` 6= d`.

Let (x, y) and (x′, y′) be the respective allocations to the suppliers and demanders when they

report (s, d) and (s′, d′) respectively. Let S+, S−, D+, D− be the decompsition when the agents

report (s, d), and let S′+, S
′
−, D

′
+, D

′
− be the decomposition when the agents report (s′, d′). We

shall show that when the agents report (s′, d′) rather than (s, d), the only allocation in which each

agent in A ∪ B is (weakly) better off, then x′k = xk for all k ∈ A and y′` = y` for all ` ∈ B. This

establishes the required contradiction.

Let Y ′ := D+ ∩ D′−. If Y ′ = {∅}, then consider the set of suppliers S− ∩ S′+. Every supplier

i ∈ S− ∩ S′+ do not send flow to any demander j in D′+. Hence, these suppliers can send flow to

only demanders in f(S− ∩ S′+) ∩D′−. Now observe, zij = uij , z
′
ij ≤ uij when the reports are s and

s′ respectively for every agent i ∈ S−∩S′+, j ∈ f(S−∩S′+)∩D′−. Hence, every supplier i ∈ S−∩S′+
sends weakly less flow to every agent connected to him. Hence, s′i = x′i ≤ xi ≤ si. So, we can

conclude A = {∅} when Y ′ = {∅}.
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We now consider the case Y ′ 6= {∅} and make observations about the suppliers X ′ := g(Y ′) ∩

S− ∩ S′+. Let Y ′′ := f(X ′) ∩D′− ∩D−

• For any such supplier k, s′k = x′k and xk ≤ sk. Also, d` = y` and y′` ≤ d′` for any ` ∈ Y ′.

• When the report is s′, every such supplier can send flow only to the demanders in Y ′∪Y ′′: this

is because no link exists between agents in X ′ and demanders in D′−\{Y ′∪Y ′′} and zij = 0 ∀

ij ∈ G(S′+, D
′
+) in a pareto optimal allocation. Also, observe that zij ≤ uij ∀ ij ∈ G(X ′, Y ′′)

and zij = uij ∀ ij ∈ G(S′−, Y
′). Therefore

∑
k∈X′ x

′
k ≤

∑
`∈Y ′ y

′
` −

∑
ij∈G(S′−,Y

′) uij +∑
ij∈G(X′,Y ′′) uij

• When the report is s, zij = uij ∀ ij ∈ G(X ′, Y ′′). The agents in Y ′ can receive flow only from

agents in X ′ and g(Y ′)∩S′−∩S−. The agents in Y ′ can receive at most
∑

ij∈G(S′−,Y
′) uij units

of flow from the suppliers g(Y ′)∩S′−∩S−. Hence, the remaining allocation has to be supplied

from X ′. Also, note that f(X ′) ⊇ Y ′. Therefore
∑

k∈X′ xk ≥
∑

`∈Y ′ y` −
∑

ij∈G(S′−,Y
′) uij +∑

ij∈G(X′,Y ′′) uij .

Let f(S′−, Y
′) := −

∑
ij∈G(S′−,Y

′) uij +
∑

ij∈G(X′,Y ′′) uij . Finally, note that s′k = sk for all k 6∈ A,

and d′` = d` for all ` 6∈ B. These observations first lead to∑
k∈X′
k 6∈A

sk +
∑
k∈X′
k∈A

x′k =
∑
k∈X′
k 6∈A

s′k +
∑
k∈X′
k∈A

x′k =
∑
k∈X′

x′k ≤
∑
`∈Y ′

y′` + f(S′−, Y
′) (A.1)

Note that every demander ` in Y ′ ∩B receives exactly his peak allocation d` for a truthful report,

so for the coalition B of demanders to do weakly better in the (G, s′, d′) problem, y′` = d` for each

such `. Therefore,∑
`∈Y ′

y′` =
∑

`∈Y ′\B

y′` +
∑

`∈Y ′∩B
y′` ≤

∑
`∈Y ′\B

d′` +
∑

`∈Y ′∩B
d` =

∑
`∈Y ′

d`. (A.2)

Finally, ∑
`∈Y ′

d` + f(S′−, Y
′) =

∑
`∈Y ′

y` + f(S′−, Y
′) ≤

∑
k∈X′

xk ≤
∑
k∈X′
k 6∈A

sk +
∑
k∈X′
k∈A

xk (A.3)

For every supplier in A to be (weakly) better off when reporting s′, we must have x′k ≥ xk for

each k ∈ X ′. Combining this with inequalities (A.1) and (A.3), we conclude that all the inequalities
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in (A.1)-(A.3) hold as equations. In particular, x′k = xk for all k ∈ X ′, and y′` = y` for ` ∈ Y ′.

Therefore, whether the report is s or is s′, the suppliers in X ′ send all of their flow only to the

demanders in Y ′ and Y ′′; Moreover, the edges from X ′ to Y ′′ and S′− to Y ′ are saturated and that

the demanders in Y ′ receive all of their flow only from the suppliers in X ′ and from the saturated

edges from S′− Therefore, removing the suppliers in X ′ and the demanders in Y ′ and the saturated

edges from X ′ to Y ′′ and S′− to Y ′ does not affect the allocation rule for either problem. As we

picked a smallest counterexample, Y ′ must be empty.

We now turn to the other case. Let X̃ := S+ ∩S′−. Define ˜̃Y := f(X̃)∩D− ∩D′− and Consider

the demanders in Ỹ := f(X̃) ∩D− ∩D′+

• For any such demander `, d′` = y′` and y` ≤ d`. Also, sk = xk and x′k ≤ s′k for any k ∈ X̃.

• When the report is s′, every such demander can receive flow from the suppliers in X̃ and

suppliers in g(Ỹ ) ∩ S− ∩ S′−. The supplier i ∈ X̃ send flow zij = uij to every demander

j ∈ Ỹ in the graph G(X̃, ˜̃Y ). Suppliers in S− send at most
∑

ij∈G(S−,Ỹ ) uij units of flow

to Ỹ . But note that f(X̃) ⊇ Ỹ and hence X̃ can send flow to agents in D′+\Ỹ . Therefore∑
k∈X̃ x

′
k ≥

∑
`∈Ỹ y

′
` −

∑
ij∈G(S−,Ỹ ) uij +

∑
ij∈G(X̃, ˜̃Y )

uij .

• When the report is s, the suppliers in X̃ send flow only to the demanders in D−, and they can

send flow only to the demanders they are connected to. so the suppliers in X̃ can send flow

only to the demanders in Ỹ ∪ ˜̃Y . The agents in X̃ can send at most
∑

ij∈G(X̃, ˜̃Y )
uij units of

flow to the agents in ˜̃Y . Also, the agents in Ỹ receive flow
∑

ij∈G(S−,Ỹ ) uij from S− Therefore∑
k∈X̃ xk ≤

∑
`∈Ỹ y` −

∑
ij∈G(S−,Ỹ ) uij +

∑
ij∈G(X̃, ˜̃Y )

uij .

Lets denote f̃(S−, Ỹ ) := −
∑

ij∈G(S−,Ỹ ) uij +
∑

ij∈G(X̃, ˜̃Y )
uij .

Finally, note that s′k = sk for all k 6∈ A, and d′` = d` for all ` 6∈ B. Putting all this together, we

have: ∑
`∈Ỹ
6̀∈B

d` +
∑
`∈Ỹ
`∈B

d′` + f̃(S−, Ỹ ) =
∑
`∈Ỹ

d′` + f̃(S−, Ỹ ) =
∑
`∈Ỹ

y′` + f̃(S−, Ỹ ) (A.4)

and ∑
`∈Ỹ

y′` + f̃(S−, Ỹ ) ≤
∑
k∈X̃

x′k ≤
∑

k∈X̃\A

s′k +
∑

k∈X̃∩A

x′k =
∑

k∈X̃\A

sk +
∑

k∈X̃∩A

x′k. (A.5)
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Note that every supplier k in X̃ ∩ A receives exactly his peak allocation sk for a truthful report,

so for the coalition A of suppliers to do weakly better in the (G, s′, d′) problem, x′k = sk for each

such k. Thus,∑
k∈X̃\A

sk+
∑

k∈X̃∩A

x′k =
∑
k∈X̃

sk =
∑
k∈X̃

xk ≤
∑
`∈Ỹ

y`+f̃(S−, Ỹ ) ≤
∑
`∈Ỹ
`6∈B

d`+
∑
`∈Ỹ
`∈B

y`+f̃(S−, Ỹ ) (A.6)

For every demander in B to be (weakly) better off, we must have y′` ≥ y` for each ` ∈ Ỹ .

Combining this with inequalities (A.4)-(A.6), we conclude that all the inequalities in (A.4)-(A.6)

hold as equations. In particular, x′k = xk for all k ∈ X̃, and y′` = y` for ` ∈ Ỹ . Therefore, whether

the report is s or is s′, the suppliers in X̃ send all of their flow only to the demanders in Ỹ and to

the demanders in ˜̃Y ; Moreover, the edges from X̃ to ˜̃Y are saturated in both problems; So are the

edges S− to Ỹ . and that the demanders in Ỹ receive all of their flow only from the suppliers in X̃

and through the saturated edges from S− in both the problems. Therefore, removing the suppliers

in X̃ and the demanders in Ỹ and the saturated edges from X̃ to ˜̃Y and S− to Ỹ , we do not affect

the allocation rule for either problem. As we picked a smallest counterexample, X̃ must be empty.

We now establish that the decomposition does not change in a smallest counterexample. We

already know that Y ′ = ∅, which implies D′− ⊆ D−. Suppose this containment is strict so that there

is a demander j ∈ D− \D′−. The links from S− to j are completely saturated. As X̃ = ∅, j receives

flow only from the suppliers in S− ∩S′−. Also, the flow on the edges from a supplier i ∈ S− ∩S′− to

j is such that z′ij ≤ uij = zij . Hence, the allocation for agent j is such that, y′j = d′j ≤ yj . But now

note that, if j ∈ B then, d′j ≥ yj or if j /∈ B then y′j = dj ≤ yj ≤ dj . In both the cases, we have

the equality y′j = d′j = yj . This implies, g(j) ∩ S− ∩ S′+ = {∅}; The links from S− to j is saturated

in both the problems (Follows from the fact that the given rule allocates the pareto value to the

agents in both the networks, in particular y′k = d′k when the reports are d′). Hence, we can remove

those saturated edges and adjust the peaks of suppliers and demanders. The adjusted demand of

agent j now is d′j = 0. w.l.o.g we can skip the case d′j = 0 as we can delete such a j to obtain the

new decomposition or just place it in D−. Therefore D′− = D−, which implies D′+ = D+, S′+ = S+,

and S′− = S−.

To complete the argument, let A be as defined earlier. Let A+ = A ∩ S+ and A− = A ∩ S−,

B+ = A ∩D+ and B− = A ∩D−. Now, for any j ∈ B+, d′j 6= dj implies y′j = d′j 6= dj causing j
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to do worse by reporting d′j . Hence, it follows, ∀j ∈ B+, d′j = dj . By a similar argument, we could

establish s′j = sj∀j ∈ A+.

For any i ∈ A−, s′i < xi implies x′i ≤ s′i < xi, causing i to do worse by reporting s′i. Likewise,

any i ∈ B−, d′i < yi implies y′i ≤ d′i < yi, causing i to do worse by reporting d′i. So any improving

coalition A must be such that s′i ≥ xi for all i ∈ A− and d′i ≥ yi for all i ∈ B−.

Now, we use the strong invariance property of the rule to conclude the result. Partition the

agents in A− = As∪Ax where As := {xi = si|i ∈ A−} and Ax := {xi < si|i ∈ A−}. Lets start with

an agent i ∈ As, such an agent reports s′i > xi = si and receives x′i = si. Now, consider the alternate

set of reports such that s′′j = s′j for all agents j 6= i and s′′i = si and denote the corresponding

network by G(S′′, D′′). Strong invariance property implies that when the peak report s′ii ≥ x′i = si

then the allocation profile of the agents remains the same in the networks G(S′, D′) and G(S′′, D′′).

Hence, we can find a smaller counterexample by removing i from A−. Hence, we can remove all

the agents from As and still find a smaller counterexample. Hence, we can assume the smallest

counterexample As = {∅}.

On similar lines, strong invariance property also implies that when an agent i with xi < si

misreports such that s′i > xi then x′i = xi ∀ i ∈ S. Hence, applying this argument for each agent

iteratively, we can conclude that when the set of agents in Ax inflate their peaks, the allocation

does not change i.e. x′i = xi ∀ i ∈ S. Hence, no agent improves his allocation under this rule,

concluding the result.

Now, we turn to prove the other direction of the result i.e. any rule that is PO∗ and peak GSP

is strongly invariant. We discuss the result only for the suppliers, by symmetry a similar reasoning

follows for the demanders. Suppose such a rule is not strongly invariant. Since agents in S+ receive

their peak, strong invariance property needs to be discussed only in the context of the agents in

S− where xi ≤ si. Now, consider an agent i ∈ S− such that xi < si. Consider a report by agent i

such that s′i ≥ xi. From Lemma 5 it follows that PO∗ + strategyproof implies invariance. Hence,

x′i = si. Furthermore, it follows from the earlier discussion that the decomposition and maximum

flow does not change in this new problem. Hence,
∑

k∈S− xk =
∑

k∈S− x
′
k. Suppose x′k = xk ∀

k ∈ S− then we are done. Suppose, x′k 6= xk for some agent k ∈ S−, then there exists at least one

agent j such that sj ≥ x′j > xj (agent j improves the allocation). Thus, the pair of agents i and j
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represent a colluding group who can deviate and (weakly) improve the allocation which contradicts

the peak GSP property of the rule.
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