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ABSTRACT

Population Genetics of Identity By Descent

Pier Francesco Palamara

Recent improvements in high-throughput genotyping and sequencing technologies have af-

forded the collection of massive, genome-wide datasets of DNA information from hundreds

of thousands of individuals. These datasets, in turn, provide unprecedented opportunities to

reconstruct the history of human populations and detect genotype-phenotype association.

Recently developed computational methods can identify long-range chromosomal segments

that are identical across samples, and have been transmitted from common ancestors that

lived tens to hundreds of generations in the past. These segments reveal genealogical relation-

ships that are typically unknown to the carrying individuals. In this work, we demonstrate

that such identical-by-descent (IBD) segments are informative about a number of relevant

population genetics features: they enable the inference of details about past population size

fluctuations, migration events, and they carry the genomic signature of natural selection.

We derive a mathematical model, based on coalescent theory, that allows for a quantitative

description of IBD sharing across purportedly unrelated individuals, and develop inference

procedures for the reconstruction of recent demographic events, where classical methodolo-

gies are statistically underpowered. We analyze IBD sharing in several contemporary human

populations, including representative communities of the Jewish Diaspora, Kenyan Maasai

samples, and individuals from several Dutch provinces, in all cases retrieving evidence of

fine-scale demographic events from recent history. Finally, we expand the presented model

to describe distributions for those sites in IBD shared segments that harbor mutation events,

showing how these may be used for the inference of mutation rates in humans and other

species.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

In a famous paper published in 1965, Gordon Moore, currently co-founder and Chairman

Emeritus of Intel Corporation, predicted that the number of transistors on integrated circuits

would double approximately every two years, as a result of decreased production costs [Moore

and others, 1965]. During the past five decades of technological development, this prediction

has been closely matched by empirical data, and Moore’s law, as the conjecture is often

referred to, is expected to last for a few more years. After the announced completion of the

human genome project, in 2001 [Lander et al., 2001; Venter et al., 2001], the development

of DNA sequencing technologies has followed a similar trend, with the average cost for

obtaining a full human genome DNA sequence dropping exponentially at a rate that closely

matched Moore’s law. With the transition from Sanger-based sequencing technologies to

‘next-generation’ sequencing, in 2008, the cost of DNA sequencing had a further, dramatic

drop, outpacing Moore’s law and bringing the price of a single human genome from 2001’s

∼$3 billion to a few thousand dollars in little more than a decade [NHGRI, 2013].

While the speed at which large volumes of high-resolution DNA sequences are being

produced exacerbates issues related to data handling (e.g. hardware storage, processing

power), the availability of several fully sequenced individuals from multiple populations

worldwide, together with phenotypic information, has enabled data-driven studies of the

origins and diversification of human populations, including genomic signatures of evolution-

ary events [Pool et al., 2010], discovery of genetic markers responsible for the heritability
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CHAPTER 1. INTRODUCTION

of common traits [Hindorff et al., 2009], and the development new tailor-made diagnostic

and therapeutic tools based on an individual’s genetic makeup [Hamburg and Collins, 2010].

Achieving these tasks by analyzing such large volumes of data involves relying on statistical

and computational methods to develop new specific tools that are simultaneously efficient,

making minimal use of computational resources, and effective, successfully extracting and

elaborating information for the question at hand. To this extent, a widespread analysis

paradigm consists in working on specific “features”, or summary statistics obtained from the

DNA sequences of the analyzed cohort. These are chosen to succinctly capture the most

relevant aspects of the data, while allowing efficient downstream analysis. Choosing the

right genomic features is extremely important, as a particular summary statistic may not

carry substantial information to address specific questions, while in other cases the relevant

genomic features may be hard to access, or require intractable computational efforts.

In this thesis, we focus on developing new models and methodologies for genetic analysis

that are based on a specific genomic feature that was recently made available due to techno-

logical and computational advances, namely the sharing of long-range haplotypes across pur-

portedly unrelated individuals from a study cohort. These are chromosomal segments that

are transmitted from the genome of common ancestors to sets of individuals. Such common

ancestors may have lived a large number of generations in the past, so that the co-inheriting

individuals may not be aware of their genetic relationship, being therefore purportedly unre-

lated. Since these segments are copied almost identical from the transmitting common ances-

tors, they are generally referred to as “identical-by-descent” (IBD) segments, although a small

number of mutations and other rare genomic events may occur on the segments during the

transmission process. The detection of IBD segments in large datasets of purportedly unre-

lated individuals (henceforth simply referred to as unrelateds) was recently made possible due

to (1) advances in the resolution and number of genomic sequences that modern technologies

can produce (2) the development of computational methods that are able to phase (i.e. sep-

arate an individual’s maternal and paternal copies of a diploid chromosome into two distinct

sequences) and efficiently locate these IBD segments in a computationally tractable way. A

more detailed introduction of the basic concepts underlying IBD segments is provided in Sec-

2



CHAPTER 1. INTRODUCTION

tion 1.1.4, and recent review on the subject can be found in [Browning and Browning, 2012;

Thompson, 2013].

The reminder of this chapter provides a brief overview of basic definitions and fundamen-

tal concepts of population genetics and identity-by-descent. Chapter 2 reports results of the

analysis of several densely typed human datasets (HapMap 3, Jewish Hapmap), where de-

scriptive statistics of IBD sharing across unrelateds were shown to capture relevant features

of a population’s recent evolutionary and demographic history. This preliminary analy-

sis motivated investigating the formal link between IBD sharing and demographic history,

which is introduced in Chapter 3, and used to infer population size fluctuations in several

synthetic and real populations. In Chapter 4, the framework of Chapter 3 is extended to

allow for inferring recent demographic events in demographic models that include several

demes, and migration across them. This extension is used to analyze recent demographic

events using sequences of 250 families from several Dutch provinces (the Genome of the

Netherlands Project). In Chapter 5, the proposed model is further extended to include the

occurrence of mutation events within IBD segments. These mutations are informative about

the distance to transmitting common ancestors, and can be used in the study of mutation

rates and several other applications. We finally provide a brief discussion of the presented

work in Chapter 6.

1.1 Population genetics

Long before James Watson and Francis Crick presented the double helical structure of DNA

[Watson and Crick, 1953], statisticians of the past century had laid the theoretical founda-

tions of population genetics, which is aimed at providing mathematical support to describing

the dynamics of key genetic quantities resulting from the interbreeding of organisms in a

sexual population. The pioneering work of Sewall Wright, John B. S. Haldane and Ronald

A. Fisher, generally considered the fathers of population genetics, has now been further

developed for more than a century, and theoretical predictions of these models have recently

been extensively validated by empirical evidence in thousands of genome sequences from

3



CHAPTER 1. INTRODUCTION

diverse populations in different species. In this section, we provide a brief introduction of

the basic concepts of population genetics that will be used in the remainder of this the-

sis, namely the coalescent process and identity-by-descent. Comprehensive introductions

to the concepts here briefly illustrated can be found in textbooks such as [Hartl, 1988;

Hartl and Clark, 1997; Hein et al., 2004; Wakeley, 2009]. The presented overview is in some

cases a summary of the material that can be found in these books.

1.1.1 Basic definitions

Deoxyribonucleic acid, or DNA, is hereditary material coded using an alphabet of four

chemical bases: adenine (A), cytosine (C), guanine (G), and thymine (T). Each base couples

with its complement (adenine with thymine and cytosine with guanine), forming base pairs

which are attached to a sugar and a phosphate molecules to form nucleotides. A sequence of

nucleotides is arranged in a double helix structure which coils around proteins called histones

to form chromosomes, basic physical units found in the nucleus of cells. Humans have 23

such chromosomes, of which 22 are of the same kind in males and females (autosomes),

while one, the sex chromosome, may differ. Two copies of each chromosome are stored,

one inherited from each parent, making humans a diploid organism (as opposed to haploid,

where one copy of each chromosome is stored, or polyploid, which may have multiple copies).

Diploid individuals produce gametes (egg and sperm cells) for sexual reproduction. These

contain a single copy of each chromosome formed by mixing the two existing copies during

the process of meiosis. For the purpose of this thesis, two main events occurring during

meiotic division will be discussed: mutation and recombination.

Mutation occurs when errors are randomly made during the copying of genetic material

when the haploid gametes are formed. Mutations involving the change of a single base

pair are called point mutations. While mutations can occur at other stages of the cell

life cycle, those occurred during the production of germ cells, which will be passed down

to offsprings, are called germline mutations. As these mutations are not present in the

parents, they are often referred to as de novo mutations. Point mutations are extremely

rare, with an estimated genome wide rate of ∼ 1.1× 10−8 [Roach et al., 2010] per nucleotide,

4



CHAPTER 1. INTRODUCTION

per generation (with variation that may depend, among other things, on the father’s age

at conception [Kong et al., 2012; Sun et al., 2012]). Since a haploid copy of the genome is

composed of ∼3, 200, 000, 000 bases (or 3.2 giga base pairs), however, the average diploid

genome is expected to harbor around 70 de novo mutations. We note that several other types

of rare alterations may occur during meiosis (e.g. insertion, deletion, inversion of genetic

material), however these are not relevant for this thesis work, and will not be discussed.

Abstracting from biological mechanisms, a germ cell is created during meiosis by copying

consecutive base pairs of a randomly chosen copy of each chromosome (maternal or pater-

nal), until the chromosome end is met or a recombination event occurs. The occurrence

of a recombination event between two adjacent nucleotides interrupts the copying process

of the currently chosen chromosome (maternal/paternal), and starts the copying of DNA

material from the other chromosome of the diploid individual (paternal/maternal) to the

haploid gamete, thus potentially creating a patchwork of the original two chromosomes. In

a population, recombination results in the shuffling of genetic variation which is created by

mutation events. Similarly to mutations, meiotic recombination events are rare, occurring at

an average rate1 of ∼1.3×10−8 between pairs of neighboring nucleotides. The probability of

a recombination event occurring is far from uniform across the genome, as specific genomic

regions may harbor increased recombination rates (hotspots), while others may have little or

no recombination occurring (coldspots). The reconstruction of a mapping between physical

genomic location and recombination probability (genetic map) has been extensively studied

in both families and using population-level datasets of unrelated individuals [Hudson, 2001;

Kong et al., 2002]. The length of genetic maps is measured in Morgans (M), or centimorgans

(cM). A centimorgan is defined as 1% chance of observing a recombination event during a

meiosis (one generation).

In the remainder of this work, a specific genomic location may be referred to as a site

or, equivalently, a locus (plural: loci), or a gene (the latter typically indicating a region

whose DNA content encodes a protein). Due to the occurrence of mutations, different

1average rate computed from autosomal genetic map of the 1, 000 genomes project available at http:

//mathgen.stats.ox.ac.uk/impute/data_download_1000G_phase1_integrated_SHAPEIT2.html
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versions of a locus or of a gene may exist in a population. These are referred to as alleles.

When several loci are simultaneously considered and they all belong to a single chromosome

(e.g. maternal/paternal), these constitute a haplotype. Haplotypes need not be adjacent

sites, and may consist of a sparse subset of loci from a genomic region. Datasets will be

distinguished in SNP array data and whole-genome sequencing data. SNP array data results

from genotyping technologies that do not read the entire genome of the analyzed individuals,

but rather only focus on subsets of genomic sites that are known to harbor single-point

mutations that reached high frequency in certain human populations, and are informative

for medical genetics purposes or to discriminate genomic variation across individuals. These

mutations are called SNPs, short for single nucleotide polymorphisms. In this work, we

will ignore those rare polymorphisms for which more than two alleles are present in the

population. We will only deal with polymorphisms where two alleles are present: the wild

type, or the reference allele, and the mutated allele. Whole-genome sequencing data results

from the more recent high-throughput sequencing technologies, and typically results in the

complete reading of a human genome. It is to be noted that both genotyping and sequencing

technologies typically do not provide information on the maternal/paternal haplotypes of the

analyzed individuals. Rather, for a biallelic locus they provide a genotype, i.e. the count of

nucleotide copies that differ from the human genome reference sequence at a specific location.

For a diploid individual, these counts take values 0, 1 or 2. The process of reconstructing

haplotypes from genotype information is called phasing, or haplotyping. While phasing

approaches are not directly discussed in this work, the ability to correctly phase genotypes

into haplotypes is fairly important for the material presented in this thesis, and a review of

methods for computational phasing can be found in [Browning and Browning, 2011b].

1.1.2 Population models

The distribution of genetic variability found in modern day populations is strongly influ-

enced by demographic history. Events such as migrations and population size fluctuations

determine the rate at which new mutations spread, and the frequencies of these mutations

may differ substantially across different cohorts. Several idealized populations models have
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been developed in order to study quantities such as the frequency and distribution of genetic

variation. In all cases, the goal is to simplify the relevant biological processes to achieve

mathematical tractability while maintaining the highest level of realism.

The Wright-Fisher model [Fisher, 1930; Wright, 1931] is arguably the most important

and widely used population model. A number of assumptions are made in a Wright-Fisher

population:

1. Generations do not overlap. All individuals in the population die at the same time,

and a new generation is created.

2. The population size remains constant in time. At each generation the number of

individuals is the same as in the previous generation.

3. All individuals in a population have a single chromosome, and do not need another

individual to reproduce to the next generation (asexual, haploid).

4. There is no recombination (or only one site is considered). When reproduction occurs,

the entire genetic material is copied to an individual of the next generation.

5. Equality of fitness and lack of population structure. At each generation an individual

may reproduce to the next generation with the same probability of all other individuals.

To create a new generation for a population of size N , an individual is sampled from the

previous generation, with replacement. The sampling is repeated N times, until the new

generation is fully defined, and the previous generation dies. An example of this process is

shown in Figure 1.1. This model allows calculating several quantities of interest. First, it

is possible to compute a distribution for the number of offspring that an individual has in

the following generation. Since all individuals have the same chance 1/N of being chosen at

each draw of a new individual for the next generation, the distribution for the number n of

offspring at the next generation will be binomial, with mean 1/N :

P (n = k|N) =

(
N

k

)(
1

N

)k (
1− 1

N

)N−k
(1.1)
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(a) A genealogy in the Wright-

Fisher model.

(b) Highlighting the ancestry of

three samples.

Figure 1.1: Details from a sample genealogy in a Wright-Fisher model (figures adapted from

[Hein et al., 2004]).

It follows that the expectation and variance for the number of offspring of an individual

are

E[n|N ] = N

(
1

N

)
= 1 (1.2)

Var[n|N ] = N

(
1

N

)(
1− 1

N

)
= 1− 1

N
(1.3)

A multinomial distribution can be used to model the joint distribution for the number

of children of two individuals from a population, and, using standard properties of multino-

mials, we can obtain their covariance as

Cov[n1n2|N ] = −N
(

1

N

)2

= − 1

N
(1.4)

As expected the covariance decreases as N is increased, since an individual that has a

large number of children does not strongly affect the number of children another individual
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may have if the population is not constrained to be small. If an allele is carried by i

individuals in the population, the chance of finding k copies at the next generation can be

computed using analogous reasoning, but the probability of a single draw in the binomial

distribution will now be p = i
N . The expectation and variance will therefore be

E[n|N, i] = N

(
i

N

)
= i (1.5)

Var[n|N, i] = N

(
i

N

)(
1− i

N

)
= i

(
1− i

N

)
(1.6)

One important quantity that may be calculated in this model is the probability that

out of two sampled individuals one carries an allele and the other does not, given that the

population is of size N and that the allele has frequency i. Under the assumption that the

two chromosome copies of a diploid individual are randomly sampled from a population of

haploid individuals, this is the probability of finding a heterozygous site along the genome

of an individual (heterozygosity). Assuming an allele can be of the kinds A or a, and that

there are i copies of the allele A at generation 0, the initial frequency of A is p0 = i/N , and

the chance of sampling (with replacement) two different copies out of N individuals is

H0 = P (A, a|N, i) + P (a,A|N, i) = 2p0(1− p0) (1.7)

Using the random variable P1 to represent the frequency of the allele at generation 1,

the expected heterozygosity at the next generation can be computed using equations 1.5

and 1.6

E[H1|N, i] = E[2P1(1− P1)]

= 2(E[P1]− E[P 2
1 ])

= 2(E[P1]− E[P1]2 −Var[P1])

= 2p0(1− p0)

(
1− 1

N

)
= H0

(
1− 1

N

)
(1.8)
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Indicating that heterozygosity is expected to decrease, and it is expected to do so faster

in small populations. Note that, applying the result of equation 1.8 recursively for g gener-

ations, heterozygosity is expected to have an exponential decay

E[Hg|N, i] = H0

(
1− 1

N

)g
≈ H0 e

−g/N (1.9)

We note that while the Wright-Fisher model is the most widely adopted, other models

have been proposed and are in some cases more convenient in terms of realism or mathe-

matical tractability. One notable example is the Moran model [Moran, 1958; Moran, 1962],

which will be however omitted as not relevant for this work.

1.1.3 The coalescent

In a series of papers published in 1982, Kingman has shown that a stochastic process named

the coalescent is able to describe the genealogical dynamics emerging from several idealized

population models, including the Wright-Fisher model [Kingman, 1982b; Kingman, 1982c;

Kingman, 1982a]. In the coalescent, the ancestral lineages of a set of considered individuals

from a population are traced backwards in time, allowing for a quantitative description of

key genealogical events that only requires keeping track of such subset of lineages.

1.1.3.1 The basic coalescent

If we trace the ancestral lineages of two individuals from a Wright-Fisher population back

in time, repeatedly sampling a random ancestor from the previous generation, a common

ancestor will be found when both individuals happen to sample the same parent (i.e. these

lineages coalesce, as in the example of Figure 1.1b). The chance a parent is chosen by one

of the individuals is N−1, and since both individuals choose independently, the chance both

individuals choose the same parent is N−2. Since there are N parents to choose from, the

chance a common ancestor will be found at a given generation is N × N−2 = N−1. The

waiting time (in generations) to the most recent common ancestor (TMRCA) can therefore

be expressed using a geometric distribution with parameter N−1
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P (g = k|N) =

(
1− 1

N

)k−1 1

N
(1.10)

If we are tracing n individuals from the current generation, a total of
(
n
2

)
pairs of ancestral

lineages are followed, and we are interested in the time to the first coalescence of such

lineages. The chance that no coalescence occurs during one generation is now

N − 1

N

N − 2

N
. . .

N − n+ 1

N
=

n−1∏
i=1

(
1− i

N

)
= 1−

n−1∑
j=1

j

N
+O

(
1

N2

)
(1.11)

If we ignore the term in O
(

1
N2

)
, which is negligible for large population sizes, the

probability of a coalescent event in the previous generation is then
(
n
2

)
1
N and again, using a

geometric distribution

P (g = k|N) ≈
[
1−

(
n

2

)
1

N

]k−1(n
2

)
1

N
(1.12)

Note that we can switch to a continuous time approximation, using the exponential

distribution in lieu of the geometric distribution.

P (T = t|N) ≈
(
n

2

)
1

N
e−(n2)

1
N (1.13)

Simulating the genealogy for a sample of n individuals in a population of size N is easy

using this formulation, and it involves repeatedly sampling coalescent times from exponential

distributions with parameters
(
nt

2

)
1
N , for nt = n, n − 1, . . . , 2, reflecting the decreasing

number of ancestral lineages as pairs of individuals find common ancestors.

Again, a number of relevant genealogical quantities can be expressed in this model. Since

we are using an exponential distribution, the expected time to the first coalescence event

for these samples is E[Tn] =
[(
n
2

)
1
N

]−1
= 2N

n(n−1) , and the variance is Var[Tn] =
[(
n
2

)
1
N

]−2
=

4N2

n2(n−1)2
. We can now compute the expected TMRCA for all these samples by summing

11



CHAPTER 1. INTRODUCTION

the expected times for the occurrence of n− 1 coalescence events, which occur with linearly

decreasing rate as pairs of lineages coalesce

E[T ] =
n∑
i=2

E[Ti] = 2N
n∑
i=2

1

i(i− 1)
= 2N

(
1− 1

n

)
(1.14)

And the variance can be similarly computed by summing the independent variances of

each coalescence event. Using similar principles, we may also compute the expected total

branch length for a tree representing the genealogy of these samples as

E[L] =
n∑
i=2

iE[Ti] = 2N
n−1∑
i=1

1

i
≈ 2N log n (1.15)

1.1.3.2 The coalescent with mutation

The coalescent process is suitable to include mutation events, and therefore study the dis-

tribution of genetic variation in idealized populations. The infinite sites assumption, due to

Motoo Kimura [Kimura, 1969], allows to simplify calculations in this context. Under the

infinite sites assumption, whenever a mutation occurs, it always results in a new mutated

site (i.e. it is impossible that a site that is already mutated in the population mutates again).

Since the chance of two mutations affecting the same site is inversely proportional to the

number of available sites, assuming an extremely large genome results in an infinitesimal

probability for this event. This assumption is justified by the observation that the number of

mutated sites in human populations is relatively small compared to the number of available

sites in the genome (i.e. human DNA sequences are largely identical).

Consider n individuals who have a genome of s sites, and a genealogical tree of total

length L representing the coalescent history of these individuals along their entire sequence

(as later described, the occurrence of recombination events may result in different trees

for different genomic regions, but no recombination is assumed for now). A mutation may

occur independently, with a small probability µ at any meiotic copy of each nucleotide. In

this scenario, the total number of mutation events can be modeled as a Poisson distributed
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random variable, with mean µsL. Furthermore, due to the infinite sites assumption, each

mutation event occurring along the genealogy is harbored by a distinct site. The number

of total mutation events will therefore be equivalent to the number of mutated sites. Using

Equation 1.15 to express the expected volume of the genealogical tree and defining θ = 2Nµ,

the following estimator can be obtained:

θ̂s =
m∑n−1
i=1

1
i

(1.16)

Wherem is the observed number of mutated sites in the analyzed sample. The parameter

θ is referred to as the scaled mutation rate, as it includes the value of the population

size N . Such an estimator, often referred to as Watterson’s estimator, allows inferring

the size of the population based on the observed number of mutated sites in a group of

sequences, assuming a Wright-Fisher population model, and for a given value of µ. Because

a Wright-Fisher model is only approximating the real genealogical process that results in the

observed distribution of mutation events, the recovered population size has to be viewed as

a projection of the true genealogical process onto the idealized Wright-Fisher population. A

population size inferred using similar estimators is generally referred to as effective population

size ([Wright, 1931]). Using classical estimators such as Watterson’s, the effective population

size of all humans has been inferred to be Ne ≈ 20, 000 haploid individuals [Takahata,

1993]. However note that several possible definitions of effective population size exist [Ewens,

2004], depending, among other things, on which summary statistics are used to match real

and idealized populations (e.g. the number of segregating sites in the case of Watterson’s

estimator). Inferring the effective population size will be a central task in the remainder

of this work, and new estimators of Ne will be derived in Chapter 3. The assumption of

constant population size used in the Wright-Fisher population model will often be relaxed

(thereby describing effective population sizes as a function of the considered genealogical

time), and new summary statistics obtained from the genetic data will be employed to

achieve higher resolution into the recent past of a studied cohort.
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1.1.3.3 The coalescent with mutation and recombination

To conclude this overview of the coalescent process, we include the modeling of recombi-

nation events along the sequences during the genealogical process, introduced in [Hudson,

1983]. As in the case of mutations, recombination events may occur between any pair of

sites at any transmission of the genetic material (provided the recombination rate between

these sites is positive). While mutation does not affect the tree structure of the genealogy,

however, recombination does.

Again, consider n sequences of length s sites. Assume recombination occurs at the same

rate for all pairs of sites, and that a sequence has a total chance of recombining of ρ per

generation. Under these conditions, if a recombination event occurs, the exact location

can be randomly sampled along the sequence. It is possible that, for long chromosomal

regions that have high recombination rates, more than one recombination occurs during

one generation. Again, however, we measure time in the continuous space, so that only

one recombination event is allowed to occur at a time, but the number of recombination

events occurring during a unit interval of time may be greater than one. The effect of a

recombination event occurring between the sites si and si+1 is to break one of the ancestral

lineages that we are tracing backwards in time. This creates two lineages, one harboring

the ancestral material in the range [1, si], and the other carrying the ancestral material in

[si+1, s]. After a recombination event occurs, the number of ancestral lineages being traced

increases by one. This turns the genealogical structure representing the cohort’s genetic

history from a tree into a graph, as shown in Figure 1.2. This graph structure, which may

assume very complex forms for large sample sizes and long genomic regions, is called the

ancestral recombination graph (ARG), introduced in [Griffiths and Marjoram, 1997].

While some quantities may still be derived analytically, the ARG is a fairly complex

mathematical object, and it often requires the use of numerical sampling for its use in

quantitative analyses. A possible sampling algorithm for the ancestral recombination graph

operates as follows:

1. Initialize the number of ancestral sequences to k = n, the samples from the current
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Figure 1.2: A sample genealogical history including recombination events (figure adapted

from [Hein et al., 2004]).
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generation.

2. Recombination occurs with rate kρ, while coalescence occurs with rate (k2)
N , and the

time distribution to the first event is exponential in both cases. To sample the time

to the first occurrence of an event (either recombination or coalescence), sample from

an exponential distribution with rate kρ+
(k2)
N .

3. The event is a recombination with probability Nkρ/
(
k
2

)
, a coalescent otherwise. Draw

a uniform value between 0 and 1 to select the type of event.

4. Handle the sampled event: if it is a coalescent, randomly choose two lineages and

merge them; update k = k− 1. If it is a recombination, sample a random lineage and

break it at a uniformly chosen point along the genome; update k = k + 1.

5. If k > 1, go to step 2.

Figure 1.2 shows an example of running such an algorithm. Note that although the

number of traced lineages may grow through recombination events, the algorithm is ex-

pected to converge, since individuals are eliminated through coalescent events at a rate that

is quadratic in k, and created through recombination at a rate that is linear in k. As in

the case of no recombination, sequences can be generated after having sampled an ances-

tral recombination graph, by introducing mutations over the graph edges using the same

procedure that was discussed in Section 1.1.3.2.

1.1.3.4 Approximations of the coalescent

The algorithm shown in the previous section for sampling from the coalescent with recombi-

nation process may be improved in several ways. A first possible improvement follows from

the observation that some lineages that are created and traced during the sampling process

are not affecting the final sequences. Consider for example the ARG of Figure 1.2. The event

marked with the letter “A” is a recombination that creates a lineage that does not contain

any genetic material inherited by present-day individuals. This lineage will increase the co-

alescent rate, and will eventually be absorbed during the coalescent event marked with the
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letter “C”. The creation and the absorption of this lineage have no effect on the genealogy,

and may be omitted. Since the exponential distributions that are used to model the timing

of these events are memoryless, it turns out that omitting these events does not affect the

distribution of the sampled ARG structures. To avoid tracing these lineages, therefore, it is

sufficient to modify the algorithm so that if a recombination would produce a lineage that

carries no ancestral material, no action is taken.

A number of additional improvements can be developed for this basic algorithm, an

extensive discussion is beyond the scope of this work. It is however worth mentioning an

approximation of the ARG generation algorithm that resulted in substantial further de-

velopment. The algorithm described in the previous section operates backwards in time

(“vertical algorithm”), starting from a set of individuals in the present generation and sam-

pling ancestors or splitting recombinant lineages until a single common ancestor is found.

Alternatively, it is possible to sample from the same space of ancestral recombination graphs

by moving along the chromosome (“horizontal algorithm”), rather than backwards in time.

Such horizontal algorithm, which was developed in [Wiuf and Hein, 1999] and is here omit-

ted for brevity, has a computational complexity that is comparable to that of the horizontal

version (depending on which improvements to the basic version are considered). It is how-

ever appealing because several methods in computational genetics analyze DNA sequences

moving from left to right (or right to left), assuming an underlying Markovian process and

relying on computational machinery such as Hidden Markov Models to perform inference

of relevant features. The version introduced in [Wiuf and Hein, 1999], however, violates

Markovian properties, as ARGs are intrinsically not Markovian when analyzed horizontally.

This is due to the presence of nodes such as the one marked with letter “B” in the example

of Figure 1.2, where a lineage with a “gap” is created from the coalescence of two lineages

whose ancestral material does not overlap. The existence of this kind of coalescent events

requires keeping track of the entire history of genealogical events in an algorithm that moves

horizontally across the genome, therefore violating a key Markovian property that requires

the distribution of future states to be only dependent on recent states. In a seminal pa-

per by Gil McVean [McVean and Cardin, 2005], it was noted that the effects caused on
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commonly used summary statistics by the coalescence of lineages that with “gaps” in their

ancestral material are negligible. The sequentially Markovian coalescent (SMC), introduced

in [McVean and Cardin, 2005], provides an approximation of Wiuf and Hein’s horizontal

algorithm that substantially simplifies the computation of ARGs. This approach has been

recently used in a variety of genomic applications, some of which found application in the

reconstruction of demographic events, and will be briefly discussed in Chapter 6. Many

of the methods described in this thesis are related to the SMC model, depending on the

definition of IBD (see Section 1.1.4.1).

We conclude by noting that approximations of the vertical algorithm have also been

developed. In [Parida et al., 2011], for instance, a similar approximation is made to limit

coalescent events to those lineages that have an overlapping region of ancestral material,

preventing the formation of gaps as the one seen in the example of Figure 1.2.

1.1.4 Identity by descent

In this section we will introduce the basic concepts related to the co-inheritance of identical-

by-descent (IBD) haplotypes that are relevant to the development of this work.

Consider the structure represented in Figure 1.3. In this sample pedigree a pair of fourth

degree cousins share two common ancestors that lived five generations in the past. These

diploid ancestors each have two copies of their autosomal chromosomes, represented using

colored bars. At each generation, the offspring inherit a chromosome copy from each of

their two parents. Such inherited copies result from the meiotic events that generate germ

cells, during which recombination may break down and mix the original chromosome copies

present in the diploid parents. In the depicted pedigree, individuals from the population

mate with individuals that are direct descendants of the pair of common ancestors living five

generations in the past. It is assumed that the genetic material of these external individuals

(founders) is unrelated to that of the pair of ancestors. After five generations, the pair of

extant fourth degree cousins happen to both inherit stretches of the colored chromosomes

from their common ancestors. The blue stretch of chromosome, in particular, overlaps in a

region, which constitutes an identical-by-descent segment, or haplotype.
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Figure 1.3: A pedigree structure where two fourth degree cousins co-inherit an IBD segment

from ancestors that lived five generations in the past (figure adapted from [Browning and

Browning, 2012]).

19



CHAPTER 1. INTRODUCTION

Identical-by-descent haplotypes have been extensively studied in the context of pedigree

structures, particularly in early genotype-phenotype association studies, which generally

involved information about the family structure of the analyzed samples ([Spielman et al.,

1993]), therefore several quantities regarding IBD haplotypes can be derived from pedigrees.

Some basic quantities can be easily derived as follows. Consider a pair of siblings sharing

two common ancestors (their parents) one generation in the past, and a single nucleotide

on a haplotype along their genome. Such nucleotide may have been co-inherited by both

individuals from the same copy of their parental genome, with probability 1/2 (if the copies

of the father are, for instance, A and a, the two offspring will co-inherit the same copy if

both choose A, or both choose a, and the same reasoning holds for the copy they inherit

from the maternal side). Now consider a pair of first degree cousins descending from these

siblings. One chromosomal copy for these first degree cousins will be inherited from a

parent chosen from the general population. As previously assumed, these are completely

unrelated individuals, and such chromosome will not harbor an IBD locus. Focusing on

the chromosome that is inherited through the lineage leading the their shared common

ancestors, the probability of being IBD is 1/4. This is due to the fact that each cousin

will inherit one of the four possible copies present in their grand parents, and will choose

the same with probability 1/42 × 4 = 1/4. Recursively computing this probability for

the following generations, we obtain that the chance that two (k − 1)-th degree cousins

that share two diploid common ancestors k generations in the past are IBD at a chosen

genomic location is (1/4)k−1. Due to the linearity of the expectation operator, this also

corresponds to the expected fraction that a pair of (k − 1)-th degree cousins will share

IBD. Note that this quantity decreases exponentially in k, and indeed after a relatively

small number of generations it is very common that no IBD sharing exists at all. If IBD

sharing exists, however, this typically occurs through the sharing of relatively long IBD

haplotypes. If a genomic locus is shared IBD by a pair of individuals, the flanking positions

along the genome are in fact typically also shared IBD, because the haplotypes that are

transmitted from common ancestors are delimited by recombination events. As shown in

the previous section, a recombination event may occur during meiosis between any two
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consecutive nucleotides. These recombination events are rare, and we can modeled their

occurrence using a Poisson process with exponentially distributed waiting times between

arrivals. The length of an IBD haplotype that has been transmitted from common ancestors

that lived k generations in the past is therefore exponentially distributed, averaging 100/(2k)

centimorgans. The number of IBD segments that are expected to be found for (k − 1)-th

degree cousins can be similarly computed. After 2k generations that separate the two cousins

in the pedigree, a chromosome of genetic length l Morgans is expected to be broken into

2lk distinct haplotypes, each representing a potential IBD segment. The probability that

one such segment is co-inherited is (1/4)k−1, resulting in an average of 2lk(1/4)k−1 IBD

segments. Again, their number can be modeled as a Poisson distributed random variable.

1.1.4.1 Definition of IBD

Despite the name, IBD segments need not be identical. Mutations in IBD segments may in

fact arise during transmission from a common ancestor to her descendants, as detailed in

Chapter 5. Because the number of mutations per base pair is proportional to the distance,

in generations, to the common ancestor, the genomic segments transmitted to a set of indi-

viduals from very recent common ancestors will be almost identical, while regions that are

co-inherited from very remote ancestors will tend to have a larger number of differences per

base pair. Analyses of IBD sharing in pedigrees are usually concerned with the transmission

of long IBD segments through common ancestors that span a small number of generations.

These segments are therefore typically long and almost identical, and short IBD segments

transmitted from very remote ancestors from the general population, which are not reported

in the pedigree and are not considered members of the family, are neglected. However, when

IBD sharing is detected in unrelated individuals from a population, as we do in this work,

haplotypes may be co-inherited from common ancestors that lived several generations in the

past, and harbor a relatively higher number of mutations. Based on these considerations,

we may consider several definitions of an IBD segment:

(a) A chromosomal region transmitted from a common ancestor that lived at most t0 gen-

erations in the past (e.g. see [Chapman and Thompson, 2003]).
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(b) A chromosomal region of length at least u cM that is transmitted from a common

ancestor that lived at any time in the past.

(c) A chromosomal region of length at least u cM that is transmitted without recombination

from a common ancestor that lived at any time in the past.

While (a) is suitable in cases where t0 is known (e.g. pedigrees) or where the focus is on

modeling the descent of a known set of individuals founding a population t0 generations in

the past, this definition becomes impractical in the general case of IBD segments detected

in a set of unrelateds. IBD detection in unrelated individuals usually results in a list of

segments that have been discovered with a relatively high level of confidence. Often times

these segments will be detected on the basis of being more similar (e.g. identical by state,

IBS) compared to surrounding genomic regions. These segments will typically be transmitted

from one common ancestor, generally delimited by recombination events, but their length

alone is insufficient to determine the age of these segments, which has large variance for all

but the very long shared haplotypes. Definitions (b) and (c) are therefore more suitable

for the analysis of these segments, as no value of t0 is assumed. In practice, current IBD

detection algorithms are typically only able to reliably detect segments that are longer than

a certain centimorgan length threshold, which can be accommodated in definitions (b) and

(c).

In the remainder of this thesis, we use definition (c), i.e. we require that an IBD segment

is transmitted from a common ancestor and is delimited by any recombination events along

the lineages connecting modern day individuals to the common ancestor. Note, however,

that several neighboring chromosomal regions may be merged together while still being

transmitted from the same common ancestor, in which case definition (b) and (c) may not

entirely overlap, depending on several factors such as population size and distance to the

shared ancestor. When computing distributions of IBD sharing in chapters 3, 4 and 5, we

will rely on definition (c) to derive analytical results. When using coalescent simulations to

create synthetic datasets used to compare predicted and observed IBD values, however, we

will compute IBD segments using definition (b), i.e. we will only require that a chromosomal
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region is co-inherited from the same common ancestor, without restrictions on the occurrence

of recombination along these lineages, unless otherwise specified. It is evident that when

very short IBD segments are considered as defined in (b) or (c), these may have a fairly

large number of differences due to mutations arising along the lineages leading to extant

individuals. We will still refer to these segments as IBD, although the “I” of identical may

be inappropriate in this case. As we consider shared segments that are transmitted from

ancestors that lived a large number of generations ago, it may be more appropriate to refer

to these regions as non-recombinant, when definition (c) is adopted.
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Chapter 2

IBD sharing in contemporary human

populations

As introduced in the previous chapter, the co-inheritance of long IBD haplotypes is usually

a sign of recent genetic relatedness across individuals. If the most recent common ancestor

of a pair of individuals is relatively remote, the chance of finding IBD segments is very small.

A pair of seventh degree cousins, for instance, will typically share no IBD segments at all.

If such sharing occurs, however, the IBD haplotypes tend to be relatively long (for seventh

degree cousins, for instance, IBD segments are expected to be 6.25cM long, or ∼4.8 × 106

base pairs, assuming a recombination rate of ∼1.3cM/Mb). Furthermore, if a large number

of individuals is analyzed, the chance of finding IBD segments may become significant. When

n individuals are analyzed, there are in fact
(
n
2

)
possible pairs of IBD sharing individuals.

This motivated the development of several algorithms that allow detecting IBD haplotypes

in large cohorts of unrelated individuals [Purcell et al., 2007; Gusev et al., 2009; Browning

and Browning, 2010; Browning and Browning, 2011a; Browning and Browning, 2013]. At

the time the work presented in this chapter was developed, a number of large SNP array

datasets comprising individuals from several human populations became available. The goal

this work was to mine the presence of IBD segments in such cohorts, aiming to answer

questions such as
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• Are IBD haplotypes commonly found in purportedly unrelated individuals?

• Does IBD sharing reflect modern day geographic origins, and does it provide more

information than other available summary statistics of genetic similarity?

• Can haplotype sharing be used to investigate a population’s demographic history?

• Is the signature of natural selection visible in the distribution of IBD segments?

As discussed in the remainder of this chapter, IBD sharing was found to be pervasive

in large cohorts of unrelated individuals, and was shown to be informative about both

demographic and evolutionary events in human populations.

2.1 World-wide sharing of IBD segments

This section reports the results of IBD analysis performed on several large SNP array

datasets, namely the HapMap 3 dataset [Frazer et al., 2007], the Hebrew University Genetic

Resource [HUGR, 2013], and the InTraGen Population Genetics Database (Idb, [Mitchell

et al., 2004; Duerr et al., 2006]). Abbreviations for the distinct populations contained in

these datasets can be found in Table 2.1. The results reported in this chapter, together

with additional details on other analyses and the utilized datasets can be found in [Gusev

et al., 2012]. The work reported in this section was performed in close collaboration with

Alexander Gusev.

2.1.1 IBD detection

IBD sharing was detected in the analyzed datasets using the GERMLINE software package

[Gusev et al., 2012]. Before analyzing the available real datasets, we assessed the accuracy of

GERMLINE’s IBD detection using synthetic datasets obtained using the GENOME rapid

coalescent-based whole-genome simulator [Liang et al., 2007]. We measured the accuracy of

GERMLINE’s IBD discovery using standard measures of precision (fraction of discovered

segments that correspond to real IBD segments) and recall (fraction of real IBD segments re-

trieved). A ground-truth set for IBD segments is obtained considering all identical segments
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in the set of simulated haplotypes. Haplotypes were merged to form synthetic genotypes,

discarding phase information. GERMLINE’s haplotype and genotype extension modes were

tested on both perfectly phased and computationally phased data. Discovered segments of 3

cM or longer were reported. To compute recall, GERMLINE’s, IBD discovery was compared

with true segments longer than 3 cM. A measure of false-positive segments was computed

comparing the obtained IBD matches with segments ≥ 1 cM long in the ground-truth set.

Comparing the accuracy of both haplotype and genotype extensions on simulated data,

the haplotype extension mode was found to have extremely good performance on perfectly

phased data, while its recall deteriorated when computational phasing was used, as a result

of unreliably reconstructed haplotypes. The genotype extension mode, on the other hand,

showed a high rate of false positive IBD segment (∼30% of the total) and an almost perfect

recall rate. The genotype extension mode was also found to be robust to variation in the sim-

ulated demographic parameters, which, as further analyzed in Chapter 3, have an impact on

phasing accuracy and therefore on the performance of the haplotype extension mode. Based

on these results, and because the datasets analyzed in this work included individuals from

heterogeneous populations, often with small sample sizes resulting in phasing uncertainty,

GERMLINE’s genotype extension mode was used for IBD detection in all reported results.

2.1.2 IBD-based graph clustering recapitulates populations structure

Although the analyzed datasets were composed entirely of purportedly unrelated individuals,

IBD segments were found to be ubiquitous between and across populations, as shown in Table

2.1. To allow for population-wide analysis of IBD sharing, we built a graph model where each

individual is represented as a vertex, and the amount of IBD sharing between two individuals

corresponds to a single weighted edge. Building such graph for the Idb dataset results in

the formation of a large connected component of individuals. The occurrence of such large

connected component is extremely unlikely to occur by chance, and it indicates the presence

of underlying structure in the graph (p value < 10−100 under a hypergeometric distribution).

The cohort is indeed structured, and the node membership in the connected component is

highly correlated with self identification as Ashkenazi Jews (99.7% of Ashkenazi individuals
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Population Samples
Average shared

genome (%)

Average segment

length (cM)

% of pairs

sharing IBD

Cryptic

relatives

Ashkenazi Jews (AJ) 397 1.73 5.51 96.9 3

(a) Samples in the HUGR dataset.

Population Samples
Average shared

genome (%)

Average segment

length (cM)

% of pairs

sharing IBD

Cryptic

relatives

Ashkenazi Jews (AJ) 389 1.43 5.52 99.3 2

Europeans (EU) 514 0.05 4.11 36.6 3

(b) Samples in the Idb dataset.

Population Samples
Average shared

genome (%)

Average segment

length (cM)

% of pairs

sharing IBD

Cryptic

relatives

African Americans (ASW) 42 0.14 7.08 0.3078 4

Europeans (CEU) 109 0.48 3.77 0.9886 1

Han Chinese (CHB) 82 0.46 3.66 0.9913 0

Metropolitan Chinese (CHD) 70 0.46 3.66 0.9896 2

Gujarati Indians (GIH) 83 0.78 4.26 0.9245 5

Japanese (JPT) 82 0.77 3.71 0.9997 0

Luhya in Kenya (LWK) 83 0.80 4.98 0.9924 11

Mexicans (MEX) 45 0.96 3.87 0.9939 4

Maasai in Kenya (MKK) 143 1.06 8.58 0.9379 94

Tuscans in Italy (TSI) 77 0.4 4.23 0.9679 0

Yoruba in Ibadan (YRI) 108 0.11 4.19 0.6333 2

(c) Samples in the HMP3 dataset.

Table 2.1: Description of the samples contained in the analyzed datasets and summary of

IBD sharing.
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are spanned by the connected component, constituting 91.5% of the component’s nodes).

Overall, the total genome-wide sharing for an average pair of AJ samples (54.25 cM) is

considerably higher than that of EU samples (1.81 cM).

We set out to verify the presence of similar structure in IBD sharing graphs for the HMP3

dataset. The network of shared segments in HM3 (Figure 2.1) is dense within populations

and geographic regions and sparse between them. We can immediately observe an abundance

of recent sharing within the cohorts, particularly in the MKK and LWK Africans; the GIH

Indians. Moreover, this high level of sharing is homogeneous across most of the population

and not suggestive of individual cryptic relatives. Several pairs of close relatives (defined as

pairs of individuals sharing at least 1, 700cM of their genome) are found within the Maasai

sample. This unexpected finding will be further discussed in Chapter 3. Looking across

populations, only the JPT, CHD, and CHB East Asian groups exhibit a large number of

shared segments, particularly between the two Chinese populations. The few remaining

segments are also overwhelmingly within continental groups, particularly between CEU and

TSI.

To investigate the ability to recapitulate population structure using the observed IBD

sharing, we refined the construction of the IBD graph to allow downstream clustering anal-

ysis. In the constructed IBD graph, the weight of an edge between a pair of individuals is

proportional to the sum of the length (in centiMorgans) of the IBD segments shared between

the individuals. To account for the higher informativeness of rarely shared regions, the sum

is normalized by the region-specific frequency of sharing in the entire population. More

formally, given a set of n ordered SNPs s ∈ {1 . . . n}, we define a function to represent the

normalized length of an interval between two SNPs as follows:

F (s) =


l(s,s+1)
π(s,s+1) if π(s, s+ 1) 6= 0,

0 otherwise.

(2.1)

where l(s, s+ 1) is the length of the segment [s, s+ 1], and π(s, s+ 1) is the number of

individuals sharing the segment [s, s+ 1]. The maximum normalized length (all SNPs being

shared by a pair of individuals) is then:
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Figure 2.1: The IBD sharing graph for HMP3 samples.
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Wtot =
n∑
s=1

F (s) (2.2)

For each pair of individuals i and j sharing a set of segments K, we compute a raw edge

weight normalizing the total shared length by the maximum normalized segmental length:

Wij =
1

Wtot

∑
r∈K

ke,r∑
t=ki,r

F (t) (2.3)

Where ki,r and ke,r are the first and the last SNPs in the segment r.

The obtained value is representative of the total sharing between the two individuals and

ranges between 0 (i.e., no sharing) and 1 (i.e., sharing of the whole genome). To account for

the exponential decrease in the segmental length that occurs with the number of meioses,

we use the weight wij = log(Wij) on the edges in our clustering calculations.

After constructing such graph, we performed graph clustering using the Markov Cluster

Algorithm (MCL), detailed in [van Dongen, 2000]. MCL detects clusters based on the

recurrence of a random walk across a weighted graph. We run MCL with default parameters

as well as the force-connected flag which adjusts the output clusters to ensure that they are

connected components. We performed the clustering in an iterative procedure that seeks to

find the underlying population structure as well as identify genetic regions that are shared

between clusters. The procedure starts considering all shared segments longer than 3 cM

and performs the following analysis in each iteration:

1. Compute the sharing graph from the current set of shared segments. This weighted

graph is then provided as input for MCL, which identifies clusters of increased relat-

edness.

2. Calculate the probability that a genomic locus is shared across the identified clusters,

and identify any region enriched for cross-cluster sharing (1 standard deviation above

the genome-wide mean).
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Figure 2.2: Clusters emerging from the IBD sharing graph in the HMP3 dataset

reflect population structure. (A) Initial clusters from unfiltered sharing, where

{GIH},{LWK},{JPT,CHD,CHB},{CEU,TSI} segregate. (B) Final clusters after cross-

cluster edges have been iteratively removed, where {TSI},{CEU} newly segregated.

3. Excise all enriched cross-cluster regions as well as any affected matches that overlapped

these regions and were shortened below 3 cM. The un-excised data are used as input

for the next iteration.

This iterative process eventually converges when no further excision is made. Applying

this procedure to the IBD sharing graph of the HMP3 dataset, we indeed recover under-

lying population structure. The final clusters demonstrate improved resolution between

populations, with six cross-cluster regions remaining, as shown in Figure 2.2.

2.1.3 IBD sharing provides insight into recent demographic history

Further investigating the substantial IBD sharing in the Ashkenazi Jewish cohort, we exam-

ined the frequency distribution of shared IBD segments as a function of their genetic length

(Figure 2.3). Based on simulations, we noticed that the slope of such distribution is not
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Figure 2.3: Frequency of IBD sharing as a function of genetic length in the AJ and CEU

cohorts, and comparison to synthetic datasets.

compatible with the slope obtained in populations of constant size (Wright-Fisher popula-

tions). A population expansion, however, results in a steep exponential decrease compatible

with what is observed in the AJ cohorts.

To obtain an initial rough estimate of an expansion rate that is compatible with the one

observed in the AJ data, we considered an idealized extreme bottleneck-expansion scenario

where a population is formed by one individual G generations before present, and infinite

individuals from generation G to present. In such a scenario, all coalescent events happen

at generation G. For a population that underwent an extreme bottleneck-expansion at

generation G, two contemporary individuals are expected to share a number of segments

of length l proportional to p(1− p)2Gl, where the length is expressed in centiMorgans, and

p = 0.01 represents the chance of a recombination event along one unit of length for a shared

segment at each generation. G can be computed from Nl and Nl+1 as:

Nl+1

Nl
= 0.992G (2.4)

therefore

G =
log(

Nl+1

Nl
)

2 log(0.99)
(2.5)
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The observed exponential decay of 0.671 per cM (std 0.055) is consistent in this model

with a bottleneck-expansion event occurred around 20 generations before present. We refined

this estimate using extensive simulations, performing grid search in a richer parameter space

(timing of the bottleneck, ancestral population size, and current population size) using a

demographic model of exponential expansion (for details on these simulations, see [Gusev

et al., 2012]). We observe the effect of the ancestral population size are mostly noticeable

on the frequency of short IBD segments, whereas the current population size mainly affects

the longer segments. The timing of the bottleneck affects the entire distribution, with

stronger effects on midrange segments. Our grid search suggests a rapid expansion of about

950 diploid individuals 23 generations before present to current hundreds of thousands.

More complex models than those tested in this analysis may be required to explain the

deviation observed for segments shorter than 5 cM (see Chapter 3). The estimated timing is

compatible with a model of AJ population structure inferred from historical data in [Slatkin,

2004] and can be reconciled with previous analysis of rare mutations [Risch et al., 2003] and

mithocondrial data [Behar et al., 2006]. Although significant admixture can be shown to

influence the sharing distributions, our use of a single-population model seems reasonable

due to the limited amount of recent sharing observed between European and Ashkenazi

samples and by the strong similarity of the length distributions for AJ individuals sampled

in Israel and USA (Idb.AJ and HUGR, see Materials and Methods). In other populations,

the number of shared-segment pairs is smaller (Table 2.1) and does not yet allow for robust

inference of demography.

The analysis of demographic events that occurred in the very recent history of the AJ

population suggested that summary statistics of IBD sharing are informative about ex-

tremely recent demographic events. To test whether these insights may also be obtained

using other methods available at the time this study was performed, we simulated a pop-

ulation split occurring 50 generations before present. A population of 50, 000 individuals

splits into two groups of 49, 000 and 1, 000 individuals. The smaller group then exponen-

tially expands to reach size 5, 000 individuals. We sampled 50 diploid individuals from each

of these two modern groups, and analyzed realistic genotype data using several methods
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to investigate population structure (Figure 2.4). When principal component analysis was

used to obtain a lower dimensionality projection of the data ([Price et al., 2006]), little or

no population structure became evident. We subsequently built a matrix representing the

relatedness of individuals based on their identity-by-state (IBS), and performed multidimen-

sional scaling using such matrix. While the subdivision of the two groups starts being visible

in this case, a clear distinction is only obtained when the similarity matrix is built using

IBD sharing, indicating that methods relying on summary statistics of haplotype sharing

may in some cases outperform methods based on other classical genomic features.

2.1.4 Regions of increased IBD sharing are enriched for structural vari-

ation and loci implicated in natural selection

In order to examine locus-specific phenomena, we focus our analysis on local segment sharing

due to intermediate and remote relatedness rather than genome-wide sharing between close

relatives. IBD sharing is detected everywhere along the genome, averaging population-

specific background levels (Figure 2.5). We analyzed the physical distribution of IBD sharing

within and across populations, observing regions with a much higher amount of sharing than

expected. Analyzing AJ samples, the most prominent such region is the human leukocyte

antigen (HLA) locus. The entire segment of chromosome 6, between 25 and 35 Mb, is shared

among individuals unrecombined at least 4-fold more than any other region in the genome

(4.2-fold in Idb, 5.1-fold in HUGR). This is in accordance with previous observations of

complex haplotype structure along the HLA locus [de Bakker et al., 2006].

Examining the regions of intense sharing within HM3 populations, HLA still exhibits a

very high sharing density for some of the populations: Western Europeans (CEU), Gujarati

Indians (GIH), Luhya Kenyans (LWK), and Yoruba Nigerians (YRI). Additional regions

along the genome exhibit notably high sharing densities within populations. Interestingly,

many of these tend to also recur across unrelated individuals of different geographical origin.

Segments at the recurrently shared regions in chromosomes 2, 4, and 8 are shared even across

different continents of origin. Of particular interest may be the most commonly shared

region, on chromosome 8p23.1, overlapping 5 Mb of a common inversion polymorphism, the
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(a) Principal component analysis.

(b) Multidimensional scaling using IBS kernel. (c) Multidimensional scaling using IBD kernel.

Figure 2.4: Comparison of principal component analysis and multidimensional scaling using

IBS and IBD kernels for a recent split of two populations (represented by blue and green

colors).
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Figure 2.5: The physical distribution of IBD sharing along the genome within populations of

the Idb dataset (A), the HMP3 dataset (B) and across continents/populations of the HMP3

dataset (using a different scale).
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third longest reported structural variant in the entire genome [Iafrate et al., 2004].

In total, the 16 cross-population commonly shared regions span only < 35 Mb (< 0.92%)

of the genome but account for 9.6%, 16.1%, and 18.1% of sharing within populations, be-

tween populations, and between continents, respectively. We note that these regions are

not correlated to SNP density and would be unaffected by slight changes in the information

content filtering. Although sharing of a region may indicate recent common ancestry, the

agglomeration of shared segments at 16 loci is highly nonrandom. Biological factors or recent

positive selection are possible causes of the observed reduction in haplotype diversity. Some

of the identified loci correspond to previously reported regions of recent positive selection.

In particular, 8 of the 16 regions were reported: 1p34.3, 2q32.3 [Voight et al., 2006]; 4p15

[Voight et al., 2006; Sabeti et al., 2002; Pickrell et al., 2009]; 4q32.1, 17q22 [Sabeti et al., 2002;

Pickrell et al., 2009]; 10q21.1, 21q21.1, 22q11.22 [Pickrell et al., 2009]; an overlap not ex-

pected by chance (p < 0.0017 based on permutations). Further evidence for biological

retention of unrecombined ancient haplotypes, rather than random retention of new ones,

comes from examining annotation for these 16 commonly shared segments. Seeking com-

monalities, we observe 12 of these segments to overlap structural variants that are common

and long enough to have been detected in the HapMap by CGH ([Iafrate et al., 2004;

Perry et al., 2008]). Such overlap is not expected by chance (p < 0.00052 in 100 longest

based on permutations).

2.2 Reconstructing demographic events of the Jewish diaspo-

ras

The descriptive statistic of IBD sharing and the methods to analyze them that were devel-

oped in the previous section outline the potential of relying on shared haplotypes to gain

insight into recent demographic events. In a series of three papers [Atzmon et al., 2010;

Campbell et al., 2012; Velez et al., 2012], we used these and other methods to study the

signature of recent demographic variation in SNP array datasets comprising individuals from

the Jewish Diaspora. The demographic events that shaped relatedness in these groups are
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expected to have occurred during recent millennia, and individuals from Jewish cohorts are

expected to share increased IBD sharing as a result of cultural isolation following the diaspora

events, motivating this analysis. In this section, we report main results and methodologi-

cal development of these works, limiting the discussion to analyses of IBD sharing in these

datasets. Additional analyses may be found in [Atzmon et al., 2010; Campbell et al., 2012;

Velez et al., 2012].

2.2.1 Jewish communities of the Mediterranean

Participants for this study were recruited from the Iranian (IRN, 28 samples), Iraqi (IRQ,

37 samples), Syrian (SYR, 25 samples), Ashkenazi (ASH, 34 samples), Greek Sephardic

(GRK, 42 samples), Turkish Sephardic (TUR, 34 samples) and Italian (ITJ, 37 samples)

Jewish communities, and included only if all four grandparents came from the same Jewish

community. Subjects were excluded if they were known first- or second-degree relatives

of other participants or were found to have π̂ ≥ .30 by analysis of microarray data using

the PLINK software [Purcell et al., 2007]. Genotyping was performed with the Affymetrix

Genome-Wide Human SNP Array 6.0 (Affy v 6). In addition to these groups, we sometimes

included in the analysis a subset of populations extracted from the Human Genome Diversity

Panel (HGDP), and the PopRes datasets.

IBD segments were detected with the GERMLINE algorithm in Genotype Extension

[Gusev et al., 2012]. The output of GERMLINE was used to detect unreported close rela-

tives, who were omitted from the analysis. Two individuals were considered cryptic relatives

if their total sharing was observed larger than 1, 500 cM and if the average segment length

was more than 25 cM, suggesting an avuncular or closer relationship. The output was also

used to produce sharing densities, sharing graphs, and sharing statistics.

GERMLINE output was filtered to ensure consistency across genotyping platforms and

to remove noise by filtering out regions of low information content. SNP density in sliding,

non-overlapping blocks across the genome was used to filter shared segments that spanned

SNP-sparse regions, particularly the edges of the centromere and telomere. Specifically,

regions that presented less than 100 SNPs per megabase or 100 SNPs per centimorgan were
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identified and excised and, subsequently, shared segments that were shorter than 3 cM were

removed.

The amount of sharing for the analyzed data set was visualized with the ShareViz soft-

ware, developed in [Gusev et al., 2012]. As described in the previous section, individuals

were represented as nodes, grouped into populations of origin. The thickness of the edges

between nodes represent the total amount of sharing (in centimorgans) between each pair

of individuals. For presenting populations geographically, planar quasi-isometric embedding

(ISOMAP [Tenenbaum et al., 2000]) was used, where distances between populations were

defined as inverse of the populations’ pairwise average.

To compute the average total sharing between populations I and J, the following expres-

sion was used:

WIJ =

∑
i∈I
∑

j∈JWij

nm
(2.6)

where Wij is the total sharing between individuals i and j from populations I and J ,

respectively, and n andm are the number of individuals in populations I and J . The average

lengths of the shared segments across populations were computed through the arithmetic

mean of the shared segments for each pair of populations.

IBD between Jewish individuals exhibited high frequencies of shared segments (Table

2.2). The median pair of individuals within a community shared a total of 50 cM IBD

(quartiles: 23.0 cM and 92.6 cM). Such levels are expected to be shared by 4th or 5th

cousins in a completely outbred population. However, the typical shared segments in these

communities were shorter than expected between 5th cousins (8.33 cM length), suggesting

multiple lineages of more remote relatedness between most pairs of Jewish individuals.

Within the different Jewish communities, three distinct patterns were observed. The

Greek and Turkish Jews had relatively modest levels of IBD, similar to that observed in the

French HGDP samples. The Italian, Syrian, Iranian, and Iraqi Jews demonstrated the high

levels of IBD that would be expected for extremely inbred populations. Unlike the other

populations, the Ashkenazi Jews exhibited increased sharing of segments at the shorter end

of the range (i.e., 5 cM length), but decreased sharing at the longer end (i.e., 10 cM) (Figure
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CHAPTER 2. IBD SHARING IN CONTEMPORARY HUMAN POPULATIONS

2.6b).

As expected, the vast majority of long shared segments (89% of 15 cM segments, 78% of

10 cM segments) were shared within communities. However, the genetic connections between

the Jewish populations became evident from the frequent IBD across these Jewish groups

(63% of all shared segments). The web of relatedness between the 27, 966 pairs of individuals

in this study was intricate, even if restricted only to the 2, 166 pairs sharing a total 50 cM

or more, a level of sharing among third cousins (Figure 2.7). When population averages

were examined, this network of IBD was consistent with the geographic distances between

populations, with planar embedding representing 93% of the initial information content

(Figure 2.6c). The notable exception was that of Turkish and Italian Jews who were nearest

neighbors in terms of IBD, but more distant on the geographical map, potentially reflecting

their shared Sephardic ancestry. Jewish populations shared more and longer segments with

one another than with non-Jewish populations, highlighting the commonality of Jewish

origin. Among pairs of populations ordered by total sharing, 12 out of the top 20 were pairs

of Jewish populations, and none of the top 30 paired a Jewish population with a non-Jewish

one (Figure 2.6a).

2.2.2 IBD sharing is enriched for Sephardic ancestry in modern Latino

populations

Modern day Latin America resulted from the encounter of Europeans with the indigenous

peoples of the Americas in 1492, followed by waves of migration from Europe and Africa.

As a result, the genomic structure of present day Latin Americans was determined both

by the genetic structure of the founding populations and the numbers of migrants from

these different populations. In ([Velez et al., 2012]), we analyzed DNA collected from two

well-established communities in Colorado (Hispanos, 33 unrelated individuals) and Ecuador

(Lojanos, 20 unrelated individuals) with a measurable prevalence of the BRCA1 c.185delAG

and the GHR c.E180 mutations, respectively, using Affymetrix Genome-wide Human SNP

6.0 arrays to identify their ancestry. These mutations are found at relatively high fre-

quency in Sephardic Jewish individuals, suggesting they may have been brought to these
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CHAPTER 2. IBD SHARING IN CONTEMPORARY HUMAN POPULATIONS

(a) Cross-population average genome-wide IBD sharing per individual pair. Colors represent

sharing between two Jewish communities (red), between a Jewish community and a non-Jewish

community (yellow) and between non-Jewish communities (blue).

(b) Decay of IBD sharing.

(c) Isomap embedding of IBD sharing.

Figure 2.6: Summary of IBD sharing for Jewish communities.
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Figure 2.7: IBD sharing graph for the Jewish Hapmap groups.
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communities through Jewish migration from the realms that comprise modern Spain and

Portugal during the Age of Discovery. In this work, several analyses identified enrichment

for Sephardic Jewish ancestry. We here report a summary of IBD sharing analysis performed

in this dataset.

For this analysis, the Hispano and Lojano datasets were combined with (1) 237 samples

from the Jewish HapMap Project (Affymetrix 6.0), including Iranian, Iraqi, Syrian, Italian,

Turkish, Greek and Ashkenazi Jews [Atzmon et al., 2010], described in the previous section;

(2) 4 US Hispanic/ Latino populations (27 Dominicans, 26 Colombians, and 20 Ecuadorians,

as well as 27 Puerto Ricans) from Illumina 610 K arrays [Bryc et al., 2010]; (3) 50 US

Mexican samples from HapMap3 (Affymetrix 6.0) [Altshuler et al., 2010]. We phased the

genotype data for each group using the Beagle software package [Browning and Browning,

2007], then detected IBD segments using GERMLINE [Gusev et al., 2009] in Genotype

Extension mode (preferred to the haplotype mode due to heterogeneous sample size and

demographic background of the analyzed groups). The identified segments were used to

exclude close relatives (sharing at least 800 cM and at least ten segments of length ≥ 10

cM ) from the analysis, obtain statistics on the average total IBD sharing within and across

groups and identify cross-population regions of increased sharing. The total sharing between

an average pair of individuals from two different populations was computed summing the

length (in cM) of all IBD segments detected across the two populations and normalizing

by the number of possible pairs of individuals (the product of the cardinality for the two

groups). We normalized by
(
n
2

)
possible pairs when computing the average total sharing

within a population of sample size n.

Identity-by-descent showed elevated cross-population sharing between Hispano, Lojano

and Mexican samples. The frequency of identity-by-descent (IBD) between unrelated indi-

viduals in a population is indicative of effective population size [Wright, 1931]. We therefore

analyzed the average genome-wide levels of IBD sharing within Latino ethnic groups. IBD

sharing within Hispano and Lojano samples was higher than within other populations in

this study, suggesting correspondingly higher levels of endogamy (Table 2.3a). We further

analyzed rates of IBD sharing across different groups to investigate shared ancestry. Ele-
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ASH IRN IRQ SYR ITL GRK TUR HSP LSN MEX TSI CEU CHB YRI

77.0 170.0 152.2 89.8 130.6 50.2 42.2 113.3 131.0 71.3 49.6 59.9 75.2 8.9

(a) IBD sharing within Jewish communities and other populations from the HapMap dataset.

ASH IRN IRQ SYR ITL GRK TUR HSP LSN MEX TSI CEU CHB

IRN 11.92

IRQ 16.02 31.73

SYR 17.96 15.43 31.59

ITL 24.51 15.20 24.59 25.74

GRK 21.35 15.05 24.99 27.00 33.68

TUR 22.93 15.61 26.24 28.72 33.55 33.69

HSP 12.16 10.16 17.41 16.69 18.81 18.96 19.87

LSN 8.36 7.73 12.41 11.62 13.01 12.74 13.57 43.75

MEX 10.34 9.25 14.80 14.74 15.95 15.95 17.15 52.07 53.69

TSI 19.08 17.57 28.17 27.22 30.15 30.13 31.10 26.37 17.80 22.71

CEU 19.69 16.37 25.97 25.42 29.45 29.28 30.83 30.05 20.55 25.75 45.31

CHB 1.88 1.87 3.18 2.42 2.52 2.65 2.69 10.43 10.03 12.15 3.56 3.88

YRI 0.01 0.01 0.03 0.02 0.03 0.02 0.02 0.05 0.02 0.08 0.03 0.02 0.02

(b) IBD sharing across Jewish communities and other populations from the HapMap dataset.

Table 2.3: IBD sharing within and across Jewish communities and other populations from

the HapMap dataset.
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vated cross-population sharing between Hispano, Lojano and Mexican samples (Table 2.3b)

was consistent with shared recent ancestry. When investigating potential shared ancestry

between these groups and other populations, we observed that multiple populations shared

segments IBD with Latinos (Table 2.3b). More specifically, highest rates of such Latino-IBD

sharing were observed in European and Tuscan samples followed by Sephardic and Mizrahi

(Iranian, Iraqi and Syrian) Jewish communities. Lower rates of IBD were observed ver-

sus Ashkenazi samples in the Lojano samples, and to the Chinese group in Hispanos and

Mexicans. Negligible IBD sharing with Yoruba samples was observed for all populations.

Besides detecting IBD sharing, we used the Xplorigin software package [Bonnen et al.,

2009] to investigate the proportion of European, Native American and Jewish ancestry of

Hispano and Lojano samples in comparison to another Hispanic/Latino cohort from Mexico.

Xplorigin builds a database of short haplotype frequencies for three reference populations,

which are assumed to be the source of admixture for a studied group of samples. The

haplotype frequencies are probabilistically used to assign locus-specific ancestry proportions

to the analyzed individuals. Ancestry deconvolution was also applied to investigate the

remote origin of regions shared IBD across populations.

We trained the Xplorigin software using 98 randomly selected phased haplotypes from the

following groups: European Basque and French from the HGDP dataset; Sephardic Italian,

Greek and Turkish from the Jewish HapMap dataset; Native American Pima, Surui and

Maya samples from the HGDP dataset. After pruning some markers during computational

phasing, the number of makers used for this cross-platform analysis was 150, 157 SNPs. For

each of the three reference groups we determined LD blocks and the frequency of haplotypes

and transitions between haplotypes using Haploview [Barrett et al., 2005]. The genome was

then partitioned into short haplotype blocks, and Xplorigin’s hidden Markov model was

used to assign the most likely proportion of ancestry from the three reference populations

to each observed individual.

We analyzed the proportions of ancestry in correspondence of IBD segments within

and across populations. To overcome phase uncertainty for an IBD segment shared by

two individuals, we considered the ancestry of both maternal and paternal chromosomes
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reported by Xplorigin in correspondence of the IBD region. The values reported in Table

2.4 were computed as follows: given a number of IBD segments between individuals of two

populations P1 and P2, we report the average proportion of IBD ancestry of individuals

from P1 in position P1 − P2 of the table, and the average proportion of IBD ancestry of

individuals from P2 in position P2− P1. The ancestry of IBD sharing within a population

(table entries in positions P1 − P1) was computed for both individuals of an IBD sharing

pair. The reported mean ancestry proportion is computed as the genome-wide average

ancestry proportion. To test for significance of the differences between genome-wide ancestry

proportion and IBD ancestry proportions we performed random permutations of the IBD

segments. We randomly shuffled IBD segments between populations P1 and P2, testing

the ancestry proportions for the permuted set of IBD segments. The deviation from the

genome-wide averages in correspondence of IBD segments was never observed for 1, 000

random permutations of each table entry.

Ancestry deconvolution showed sharing compatible with a history of Latino admix-

ture with Europeans, Native Americans and Sephardic Jews. Many Latino populations

are well known to include genetic ancestry components from Native Americans, Europeans

and Africans, all admixed within the last 20 generations. Comparing potential European,

Sephardic Jewish and Native American ancestry, we observed proportions compatible with

a history of Latino admixture from these three ethnicities (Table 2.4). The Hispano samples

showed increased European ancestry, whereas the Lojanos and Mexicans showed increased

Native American ancestry. We further considered the IBD-shared segments among Latino

samples, to explore correlation between the occurrence of such segments and admixture

source population. Interestingly, these segments across all examined Latino populations

were substantially enriched for Native American ancestry. As such segments indicate a

recent common ancestor of the samples who share them. This indicates a small number

of recent Native American founders, relative to other source populations. When consider-

ing IBD sharing in each Latino group separately, we further observed IBD sharing is also

enriched for Sephardic ancestry (p < 0.001) within the Lojano community. The relative

enrichments in Sephardic versus European ancestry in IBD-shared segments proved robust
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MEAN MEX HSP LSN

MEX 0.309 0.206 0.239 0.205

HSP 0.362 0.276 0.344 0.265

LSN 0.312 0.22 0.239 0.291

(a) European ancestry.

MEAN MEX HSP LSN

MEX 0.297 0.177 0.205 0.171

HSP 0.342 0.226 0.327 0.211

LSN 0.305 0.203 0.232 0.342

(b) Sephardic ancestry.

MEAN MEX HSP LSN

MEX 0.394 0.617 0.557 0.624

HSP 0.296 0.498 0.328 0.524

LSN 0.382 0.576 0.53 0.367

(c) Native American ancestry.

Table 2.4: Enrichment of ancestral components in IBD segments (red colors indicate statis-

tically significant enrichment).
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to the choice of a source population, showing similar results when compared to Yoruba, who

likely did not contribute significantly in terms of ancestry (see Table 2S in [Velez et al.,

2012]).

2.2.3 Jewish communities in North Africa

Methods developed in the previous sections for the analysis of IBD sharing and ancestry

deconvolution were adopted to analyze a dataset comprising several North African Jewish

communities, together with samples from the previously described Jewish communities and

several other North African populations, for a total of 509 Jewish samples from 15 pop-

ulations and 114 non-Jewish individuals from seven North African populations [Henn et

al., 2012] (samples listed in Table 2.5). Details of this and other analysis can be found in

[Campbell et al., 2012].

IBD discovery was performed as previously described, although only Jewish samples

and non-Jewish populations from the same geographic regions were analyzed to maintain

high-density of SNP markers in the cross-platform analysis. Ancestry deconvolution using

Xplorigin was run on a subset of the analyzed populations, with respect to their Maghrebi,

Middle Eastern, and European ancestry, using 36 non-Jewish Tunisian Berber, 48 Pales-

tinian, and 48 Basque reference haplotypes, respectively.

As in the previously analyzed Jewish communities, North African Jewish populations

showed a high degree of endogamy and IBD sharing between Jewish groups. We studied the

frequency of IBD haplotypes shared by unrelated individuals within and across the analyzed

groups. When IBD within populations was examined, the non-Jewish Tunisian Berbers

exhibited the highest level of haplotype sharing, suggesting a small effective population

size and high levels of endogamy (Figure 2.8, panel A). With the exception of this Tunisian

cohort, the Jewish populations generally showed higher IBD sharing than non-Jewish groups,

indicating greater genetic isolation.

The relationships of the Jewish communities were outlined further by the IBD shar-

ing across populations (Figure 2.8, panels B and C), because the Jewish groups generally

demonstrated closer relatedness with other Jewish communities than with geographically
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Population ID Female Male Total Population

ALGJ 23 1 24 Algerian Jewish

ASHJ 14 20 34 Ashkenazi Jewish

DJEJ 0 17 17 Djerban Jewish

ETHJ 13 3 16 Ethiopian Jewish

GEOJ 4 9 13 Georgian Jewish

GRKJ 25 29 54 Greek Jewish

IRNJ 22 27 49 Iranian Jewish

IRQJ 25 28 53 Iraqi Jewish

ITAJ 20 19 39 Italian Jewish

LIBJ 31 6 37 Libyan Jewish

MORJ 32 6 38 Moroccan Jewish

SYRJ 15 21 36 Syrian Jewish

TUNJ 24 5 29 Tunisian Jewish

TURJ 24 10 34 Turkish Jewish

YMNJ 36 0 36 Yemini Jewish

ADYG 10 7 17 Adygei

ALGE 9 9 18 Algerian

BASQ 8 16 24 Basque

BEDN 20 27 47 Bedouin

DRUZ 32 13 45 Druze

EGYP 0 19 19 Egyptian

FREN 17 12 29 French

LIBY 1 16 17 Libyan

MORN 0 18 18 N Moroccan

MORS 5 5 10 S Moroccan

MOZA 9 19 28 Mozabite

NITA 7 14 21 N Italian

PALN 34 17 51 Palestinian

RUSS 9 16 25 Russian

SARD 12 16 28 Sardinian

SOCC 0 17 17 Saharan

TUNI 0 15 15 Tunisian

AFRI 1 24 25 Sub-Saharan African

ASIA 10 15 25 Asian

Table 2.5: Analyzed samples from Mediterranean and North African Jewish communities,

and other non-Jewish populations.
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Figure 2.8: IBD sharing in North African communities. (A) Within groups (B) Across

groups (C) Top sharing population pairs .

near non-Jewish populations. In particular, North African Jewish communities showed some

of the highest levels of cross-population IBD sharing for the average pair of individuals. A

strong degree of relatedness was observed across individuals from the Djerban, Tunisian,

and Libyan Jewish communities. Noticeable proximity was also found between Jewish Alge-

rian samples and other North African Jewish cohorts such as Moroccan, Tunisian, Libyan,

and Djerban Jews, and across individuals from the Tunisian and Moroccan Jewish groups.

Among non-Jewish North African groups, Algerians, South Moroccans, and West Saharan

samples were found to share, on average, a smaller proportion of their genome IBD to other

cohorts.

By using Xplorigin to perform ancestry deconvolution for a subset of the populations,

the Maghrebi (Tunisian non-Jewish), European (Basque), and Middle-Eastern (Palestinian)

ancestry components of North African Jewish communities were compared with the corre-

sponding non-Jewish groups (Figure 2.9). A stronger signal of European ancestry was found

in the genomes of Jewish samples, with a decreased fraction of Maghrebi origins, whereas the

Middle Eastern component was comparable across groups. In Jewish groups, geographical
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Figure 2.9: Ancestral deconvolution of Jewish and non-Jewish North African Communities.

proximity to the Iberian Peninsula correlated with an increase in European ancestry and

a decrease in Middle Eastern ancestry, whereas the Maghrebi component was only mildly

reduced. Differences in ancestry proportions were found to be significant (p < 0.05), except

for the Maghrebi component of non-Jewish Northern Moroccan compared with non-Jewish

Algerian samples, and the European component of Jewish Moroccan compared with Jewish

Algerian samples.

In addition to genome-wide proportions, this ancestry painting analysis was intersected

with regions that harbor long-range IBD haplotypes, as done in the analysis of Sephardic

ancestry in Latin American populations. In Jewish populations, the ancestry proportions

in corresponding IBD regions highlighted mild, but in some cases significant, deviations

from genome-wide averages (Table 2.6), whereas stronger differences were observed in the

recent ancestry for the corresponding non-Jewish communities. In these groups, recently

co-inherited regions exhibited significantly increased European ancestry, with significantly

decreased Maghrebi ancestry, compared with genome-wide averages. This phenomenon was

generally stronger for loci shared IBD with individuals from Jewish communities. This

increase in European ancestry and corresponding decrease in Maghrebi ancestry may be
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ALGE LIBY MORN MORS ALGJ LIBJ MORJ TUNJ

ALGE 0.291 0.291 0.292 0.294 0.259 0.268 0.253 0.264

LIBY 0.274 0.249 0.261 0.300 0.241 0.235 0.249 0.247

MORN 0.312 0.295 0.297 0.317 0.263 0.259 0.271 0.275

MORS 0.323 0.349 0.338 0.352 0.345 0.329 0.348 0.312

ALGJ 0.205 0.203 0.207 0.221 0.192 0.194 0.196 0.199

LIBJ 0.200 0.206 0.212 0.215 0.200 0.206 0.199 0.200

MORJ 0.198 0.209 0.202 0.198 0.201 0.198 0.202 0.201

TUNJ 0.218 0.210 0.215 0.222 0.207 0.205 0.203 0.207

(a) Maghrebi ancestry.

ALGE LIBY MORN MORS ALGJ LIBJ MORJ TUNJ

ALGE 0.388 0.392 0.382 0.372 0.386 0.387 0.397 0.383

LIBY 0.401 0.425 0.421 0.405 0.417 0.431 0.419 0.417

MORN 0.368 0.364 0.377 0.361 0.377 0.395 0.375 0.377

MORS 0.371 0.362 0.362 0.367 0.350 0.355 0.344 0.350

ALGJ 0.380 0.406 0.385 0.398 0.405 0.393 0.398 0.391

LIBJ 0.394 0.401 0.395 0.395 0.398 0.410 0.402 0.398

MORJ 0.368 0.372 0.362 0.395 0.391 0.368 0.392 0.391

TUNJ 0.396 0.411 0.407 0.414 0.409 0.420 0.420 0.409

(b) Middle Eastern ancestry.

ALGE LIBY MORN MORS ALGJ LIBJ MORJ TUNJ

ALGE 0.291 0.335 0.326 0.334 0.355 0.345 0.350 0.352

LIBY 0.325 0.326 0.318 0.294 0.342 0.334 0.332 0.342

MORN 0.321 0.341 0.326 0.322 0.360 0.346 0.354 0.360

MORS 0.306 0.289 0.299 0.281 0.305 0.315 0.308 0.305

ALGJ 0.415 0.391 0.409 0.381 0.403 0.414 0.406 0.410

LIBJ 0.406 0.393 0.393 0.390 0.402 0.384 0.399 0.402

MORJ 0.435 0.418 0.436 0.407 0.408 0.435 0.406 0.408

TUNJ 0.386 0.380 0.378 0.365 0.384 0.375 0.378 0.384

(c) European ancestry.

Table 2.6: Enrichment of ancestral components in IBD segments (green color indicates

statistically significant depletion, red indicates enrichment).
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interpreted in several ways: (1) This increase may be due to the inherently higher European

ancestry of Jewish segments planted into the genomes of non-Jewish populations. (2) Al-

ternatively, the difference in genome-wide ancestries between Jewish and non-Jewish groups

alone could explain this observation in the case of recent symmetric gene flow in both direc-

tions. However, this second scenario alone is inconsistent with the data, because it would

imply a comparable decrease of European ancestry in regions IBD to non-Jewish popula-

tions to be observed in Jewish genomes. (3) The observed increase of European ancestry

could be similarly explained by European segments newly planted in both populations. This

explanation is also unlikely, because it would result in a comparable increase of European

ancestry in Jewish genomes, which is instead observed to only mildly increase compared

with genome-wide averages. The increase in European ancestry is stronger in IBD regions

of length between 3 and 4 cM, compared with regions at least 4 cM long (see Supplementary

Table 7 in [Campbell et al., 2012]), which is compatible with European admixture occurring

several generations before present, through ancestors that resided in the Iberian Peninsula.
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Chapter 3

IBD sharing and demography

The results described in Chapter 2 outlined that IBD sharing in purportedly unrelated indi-

viduals does carry information about population-scale features such as demographic history,

population stratification and natural selection. This motivated developing a theoretical

framework that combines coalescent theory and modeling of IBD sharing in pedigree struc-

tures, which enables quantitative approaches to studying hidden relatedness in relation to

these population features. In this chapter, we describe this framework and show its applica-

tion in the inference of recent demographic events in two real populations: Ashkenazi Jewish

and Kenyan Maasai, which were both shown to harbor substantial IBD sharing across pairs

of unrelated individuals, although such sharing seems to be emerging from distinct demo-

graphic backgrounds. The remainder of the text will occasionally refer to supplementary

figures and tables. These can be consulted online1 as supplementary materials of the article

[Palamara et al., 2012], where additional details of the presented analysis can also be found.

1http://www.sciencedirect.com/science/MiamiMultiMediaURL/1-s2.0-S0002929712004727/1-s2.

0-S0002929712004727-mmc1.pdf/276895/FULL/S0002929712004727/524f0ffb44ca9b5087aa3a4c41eb0202/

mmc1.pdf
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3.1 A coalescent-based model for the relationship between de-

mographic events and shared IBD haplotypes

As shown in Chapter 1, coalescent theory [Kingman, 1982b] indicates that, at a specific

locus of their genome, two haploid gametes from a Wright-Fisher population of constant

(haploid) effective population size Ne have a probability of 1/Ne of finding a common an-

cestor at each generation. The time (in generations before present [gbp]) for these two

individual gametes to reach a most recent common ancestor (MRCA) when their lineages

are traced back into the past is geometrically distributed and has an expected value of Ne.

More generally, if a population is composed of N(g) haploid individuals at generation g,

then the chance of finding a common ancestor at that generation is N(g)−1, and the time

distribution to a common ancestor assumes a more complex form. The relationship between

the probability of finding common ancestors and the size of a population is appealing for

demographic reconstruction. One can in fact study the distribution of time to a common

ancestor at the average genomic locus for many pairs of individuals and can therefore gain

information on a population’s size across different time scales. In the proposed methodology,

we rely on haplotype sharing to obtain a probabilistic estimate of the time to coalescence

at any genomic site for any pair of individuals in the population at hand. The extent of a

co-inherited IBD haplotype is probabilistically determined by the generation of the MRCA

for the two individuals at the considered locus. Unfortunately, individual segments carry

little information about specific sites unless the common ancestor is extremely recent (e.g.,

less than 10 gbp [Huff et al., 2011]). However, because we are interested in genome-wide,

population-wide summary statistics, significant information can be gathered from a large

number of segments co-inherited by different pairs of individuals from the analyzed popu-

lation sample. In fact, the number of considered pairs grows quadratically with the sample

size, and the number of expected IBD segments increases as shorter segment lengths are

considered. Leveraging these principles, we derive analytical results for the distribution of

IBD sharing across purportedly unrelated individuals. As detailed below, we express these

quantities as a function of historical demography in the population.
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3.1.1 IBD and demographic history in Wright-Fisher populations

Formally, consider a random pair of haploid individuals sampled from the studied population

and a specific locus along their genome. Note that although we present this analysis in the

context of haploid individuals, the following results are easily adapted to the case of diploid

individuals by the appropriate multiplication or division by a factor of two. We are interested

in modeling the probability that the chosen locus is spanned by a non-recombinant IBD

segment of a specific genetic length. We abstract this length as a continuous random variable

L and denote its probability density function by p(l|θ), where θ encodes a parameterization

of the population’s demographic history. In the simplest case of a constant population

size, θ is only parameterized by the constant population size Ne. We assume neutrality

throughout; therefore, this is a Wright-Fisher population [Wright, 1931], and we employ

the notation θ = θWF = 〈Ne〉. For more complex scenarios, such as an exponentially

expanding population, this parameterization might include the sizes of the ancestral and

current populations, Na and Nc, respectively, and the duration of the exponential expansion

G. In such a case, we write θ = θEXP = 〈Na, Nc, G〉. In the remainder of this work, we

refer to the effective population size in a coalescent model simply as population size. For

practical purposes, we focus on closed intervals R = [u, v] of possible values for L and derive

a closed-form expression for pR(l|θ) =
∫ v
u p(l|θ)dl.

We denote time in generations before the present throughout. The time gmrca of the

individuals’ MRCA at the considered locus is generally unknown. We therefore marginalize

it as ∫ v

u
p(l|θ)dl =

∫ v

u

∞∑
g=1

p(l, gmrca = g|θ)dl. (3.1)

When the time to the MRCA is known, the length of the resulting shared segment is only

dependent on the number of generations separating the two individuals (i.e., l ⊥⊥ θ|gmrca).

Manipulating this expression, we therefore obtain∫ v

u
p(l|θ)dl =

∞∑
g=1

p(gmrca = g|θ)
∫ v

u
p(l|gmrca = g)dl. (3.2)

The distribution of the distance to the first recombination event encountered as we move
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either upstream or downstream of a chosen genomic site is exponentially distributed (it

has a mean of 2g/100 = g/50 centiMorgans, or 2g Morgans) because this is a haplotype

shared by two individuals separated by 2g generations. The total length of the shared

segment is therefore distributed as the sum of two independent exponential random variables

parameterized by their mean of 2g Morgans, resulting in an Erlang-2 distribution with the

same parameter, which has the form Erl2(l; 2t) = l(2t)2e−2tl. We therefore have∫ v

u
p(l|θ)dl =

∫ ∞
0

[
p(tmcra = t|θWF )

∫ v

u
Erl2(l; 2t)dl

]
dt, (3.3)

where we also standardly switch to a continuous time axis [Hudson, 1983] by replacing

the discrete gmrca with a continuous tmrca, still measured in generations. Note that we

are not measuring time in units of Ne generations as it is often done in the coalescent

literature [Griffiths, 1991]. To complete the above formulation, we substitute the distribution

of the time to MRCA for a specific demographic setting θ. In the coalescent framework,

for the simple case of a population of constant size Ne and non-overlapping generations,

the probability of finding a common ancestor at gmrca = g is geometric with parameter

p(gmrca = g|θ) = N−1
e (or exponential at the continuous limit). Substituting this expression

into Equation 3.3, we obtain the desired relationship between sharing of IBD haplotypes

and population size:

pR(l|θWF ) =

∫ ∞
0

[
e−t/Ne

Ne

∫ v

u
Erl2(l; 2t)dl

]
dt

=
4N2

e (v − u)(4Neuv + u+ v)

(2Neu+ 1)2(2Nev + 1)2

(3.4)

3.1.2 Varying population size

When more complex population dynamics are considered, the probability of coalescence

cannot be modeled through a simple geometric distribution. In general, for a population

with demographic history θ, we can define a function N(g, θ) to express the population size
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at generation g. We can then express the chance of coalescence as

p(gmrca = g|θ) =
1

N(g, θ)

g−1∏
j=1

(
1− 1

N(j, θ)

)
. (3.5)

Equation 3.5 is very general and might lead to more complex instantiations for Equation

3.3. However, we consider a special and useful case in which the population history converges

to Na = limg→+∞N(g, θ). By definition, there exists a finite time G before which N(g, θ) =

Na, ∀{g > G}. In practice, we consider G to be the time before the period in history we

aim to describe in detail, and we also note that demographic events preceding a sufficiently

ancient generation G are unlikely to affect the probability of sharing IBD haplotypes longer

than a chosen threshold. We observe that for any such converging history θ, we can always

obtain a closed-form expression regardless of the specific form of N(g, θ) for g ≤ G. For a

population size of N(g, θ), such that N(g, θ) = Na for all g > G, Equation 3.5 can in fact

be rewritten as∫ v

u
p(l|θ)dl = φ1(l, θ, u, v, 1 . . . G) + φ2(l, θ, u, v,G+ 1 . . .∞), (3.6)

where

φ1(l, θ, u, v, 1 . . . G) =
G∑
g=1

g−1∏
j=1

(
1− 1

N(j, θ)

)
1

N(g, θ)

∫ v

u
Erl2 (l; 2t) dl

 , (3.7)

and

φ2(l, θ, u, v,G+ 1 . . .∞) =
1

Na

G∏
j=1

(
1− 1

N(j, θ)

)

×
∞∑

g=G+1

(
1− 1

Na

)g−G−1 ∫ v

u
Erl2(l; 2t)dl.

(3.8)

φ1 adds up to a finite number of summands, and continuous time allows a closed-form

expression for the infinite summation in φ2. Using the coalescent distribution e−t/Ne/Ne,

we can integrate this probability between arbitrary time periods, and for segments longer
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than a threshold u∫ t2

t1

e−t/Ne

Ne

∫ ∞
u

l(2t)2e−2tldl dt =

−e
−t

(
1

Ne
+2u

)
[2tu(2Neu+ 1) + 4Neu+ 1]

(2Neu+ 1)2

∣∣∣∣∣∣
t2

t1

.

(3.9)

Integrating between generation G and infinity using the ancestral population size Na,

and considering segments between u and v Morgans, this expression becomes

∫ ∞
G

1

Na
e−t/Na

∫ v

u
l(2t)2e−2tldl dt =

e
−G

(
1

Na
+2u

)
[2Gu(2Nau+ 1) + 4Nau+ 1]

(2Nau+ 1)2

− e
−G

(
1

Na
+2v

)
[2Gv(2Nav + 1) + 4Nav + 1]

(2Nav + 1)2

(3.10)

The function N(g, θ) can thus be arbitrarily defined to describe different demographic

scenarios. Consider, for instance, the case of an ancestral population of size Na: it ex-

ponentially expands during G generations to reach the current size Nc, parameterized by

θEXP = 〈Na, Nc, G〉 as discussed above. The population size can be modeled (under the

assumption of continuous time) as

N(t, θEXP 〈Na, Nc, G〉) =


Nce

−rt if t ≤ G,

Na otherwise.
(3.11)

where r = [log(Nc) − log(Na)]/G is the population expansion rate. Note that an integra-

tion similar to that of Equation 3.9 may be done for a population that is exponentially

growing/shrinking in a specific time range.

3.1.3 Sharing distribution

In the following section, we present explicit expressions for the case of Wright-Fisher pop-

ulations (i.e., θ = 〈Ne〉). Note, however, that these results are general, and analogous

calculations can be performed for other demographic models.
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Consider a specific site ς and a length range R = [u, v]. We are interested in IBD

segments whose length lies within that interval, spanning the site ς. We consider the event

of such a segment being shared between a randomly chosen pair of individuals from a studied

population, and we define an indicator random variable for such an event as

I(ς, R = [u, v]) =


1 if ς is traversed by a segment of length u ≤ l ≤ v,

0 otherwise.
(3.12)

where we omit the dependence on the demographic model θ to simplify the notation. We

now use these indicator variables to derive the expected fraction of genome spanned by IBD

segments whose length is in this interval. Consider a dense set of sites Γ along the genome.

Assume all sites are at equal genetic distance from adjacent sites. We have that

ER[f |θ] = E

[
1

|Γ|
∑
ς∈Γ

I(ς, R)

]
=

1

|Γ|
∑
ς∈Γ

E[I(ς, R)]

=
1

|Γ|
∑
ς∈Γ

∫ v

u
p(l|θ)dl

=

∫ v

u
p(l|θ)dl.

(3.13)

For given values of the demographic parameters θ, this predicts the fraction f of the

genome shared through segments of length within specific intervals. To obtain the proportion

of segments of a given length l, we divide p(l|θ) by l and multiply by a normalizing constant:

p(s = l|θ) =
p(l|θ)
l
× 1∫∞

0 p(l|θ)/l dl
=

4Ne

(2lNe + 1)3
. (3.14)

The probability of finding a segment within the length range R = [u, v] is thus

p(s ∈ R|θ) =

∫ v

u
p(s = l|θ)dl =

1

(2Neu+ 1)2
− 1

(2Nev + 1)2
. (3.15)

Equations 3.14 and 3.15 allow computing the length distribution of a segment in the

range R,

pR(s = l|θ) =


p(s=l|θ)
p(s∈R|θ) if s ∈ R,

0 otherwise.
(3.16)
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and the expected length of such a segment,

ER[s|θ] =

∫ v
u l × p(s = lθ)dl

p(s ∈ R|θ)
=

u+ v + 4Neuv

2 [1 +Ne(u+ v)]
. (3.17)

We note that for a typical pair of sharing individuals, the number and length of IBD

segments are approximately independent [Huff et al., 2011]. This allows us to express the

expected genome-wide sharing between two individuals as the product of the expected num-

ber of IBD segments, λR, and the expected length of a shared segment in the considered

length range, ER[s|θ]. For a genome of size γ cM, γ ×ER[f |θ] ≈ ER[s|θ]× λR. We can thus

compute the expected number of segments found in the considered length range as

λR ≈ γ ×
ER[f |θ]
ER[s|θ]

= 2γNe

[
1

(2Neu+ 1)2
− 1

(2Nev + 1)2

]
. (3.18)

We model the number of shared segments as a Poisson random variable, pR(s = n|θ) ≈

Poiss(n, λR); thus, the standard deviation for the segment distribution is σR[s|θ] =
√
λR.

If the considered length range is not too wide, the variance of the segment lengths can

be neglected, and we can obtain a simple approximation for the standard deviation of the

fraction of genome shared through segments in the length range R by scaling σR[s|θ] by the

expected length of a segment and by dividing it by the genome size:

σR[f |θ] ≈ ER[s|θ]
√
λR

γ

=

√
ER[f |θ] ER[s|θ]

γ

=
2Ne(4Neuv + u+ v)

(2Neu+ 1)(2Nev + 1)

√
v − u

γ(2Neu+ 2Nev + 2)

(3.19)

Finally, the obtained quantities can be used for expressing the full distribution of the

portion τ of the genome shared through segments of a desired length again under the as-

sumption of independence between number and length of shared segments. Define ln to be

the sum of n segments of length in the range R:

pR(ln = x|θ) =


δ(x) if n = 0,

conv[pR(s = l|θ), n] otherwise.
(3.20)
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where δ(·) is the Dirac delta function and conv[pR(s = l|θ), n] is the n-th convolution

of pR(s = l|θ) (e.g., conv[pR(s = l|θ), 3] = pR(s = l|θ) ∗ pR(s = l|θ) ∗ pR(s = l|θ)). The

probability of sharing a total of x cM through segments of the desired length is then

pR(τ = x|θ) =

∞∑
n=0

pR(s = n, ln = x|θ)

=
∑

n|pR(s=n|θ)6=0

[pR(s = n|θ)pR(ln = x|θ)].
(3.21)

Note that although we have considered the general length range R = [u, v], the interval

R = [u,∞) represents a particular and useful case in which all segments longer than a

detectable threshold u are considered. When v −→∞, the length distribution simplifies to

pR(s = l|θ) =
4Ne(2Neu+ 1)2

(2lNe + 1)3
, for l ∈ R, (3.22)

and the expected length becomes

E[s|θ] =
1

2Ne
+ 2u. (3.23)

Note this becomes 1/(2Ne) for u −→ 0. The expected number of segments is therefore

λR ≈ γ ×
2γNe

(2Neu+ 1)2
. (3.24)

When u −→ 0 the expected number of segments is 2γNe, recovering a previous result

[Hudson and Kaplan, 1985] (the number of segments delimited by recombination events

should be 1+2γNe, but it is reasonable to approximate this as 2γNe). Additional quantities

can be computed from the full sharing distribution of Equation 3.21, including a more precise

expression for the variance of Equation 3.19. Other calculations for higher moments of IBD

sharing in the Wright Fisher model can also be found in [Carmi et al., 2013].

3.1.4 Inference

In the case of Wright-Fisher populations, we can obtain an estimate of the population size

Ne by comparing the sharing observed in a specific length range to Equation 3.4 and by
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solving for Ne. The observed sharing in the length range R = [u, v] can be computed from

the analyzed data as

p̂R =

∑
i|u≤li≤v li

γ
(
n
2

) , (3.25)

where l is the length of a detected IBD segment and n represents the number of haploid

individuals (see above for discussion of the diploid case). A closed-form solution for Ne can

be computed for a given observed value of p̂R. In the particular case of v −→ ∞, where

we consider all segments longer than a detectable threshold u, such a solution assumes a

simpler form. Equation 3.4 becomes∫ v

u
p(l|θWF )dl =

4Neu+ 1

(2Neu+ 1)2
, (3.26)

and an estimate of Ne can be computed as

N̂e =
1− p̂R +

√
1− p̂R

2p̂Ru
. (3.27)

The number of IBD segments can also be used to derive a similar, improved estima-

tor. Assuming all individual pairs are independent, and identically distributed, a Poisson

likelihood for the segment counts can be obtained using the expectation of Equation 3.24.

Setting the derivative w.r.t. Ne of the logarithm of such likelihood to zero, we obtain

N̂e =
1− η +

√
1− 2η

2ηu
, (3.28)

where η = 2ŝRu

γ(n2)
and ŝR are the total number of segments longer than u cM observed for all(

n
2

)
pairs of genomes γ cM long.

For much of the analysis reported in this chapter, we minimized the squared deviation

between the observed IBD sharing and the theoretical expectation (Equation 3.6) for a tested

demographic model. The performance of this approach is comparable to that of estimation

based on segment counts, although the latter may produce more accurate results. Both

optimization methods were implemented in DoRIS, a publicly available software tool2. To

compute a distance between observed and predicted sharing, we thus evaluate

2http://www.cs.columbia.edu/~pier/doris/
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δR = [log(p̂R)− log(ER[f |θ])]2 (3.29)

and average this quantity across a collection of intervals Π = {Rj}1≤j≤|Π|:

δΠ =

√√√√√ 1

|Π|

|Π|∑
j=1

δRj . (3.30)

The transformation to log space in Equation 3.29 has the effect of making the error con-

tributions along the dynamic range of length intervals more uniform than in linear space.

Grid-search minimization of Equation 3.30 can therefore be employed for exploring a large

portion of the parameter space. Upon convergence to a grid point of least deviation from the

theoretical expectation, a full likelihood-based approach can be used for retrieving the most

likely values for the demographic-model parameters in a smaller portion of the parameter

space and can thus allow substantial computational savings. An alternative to the minimiza-

tion of the squared deviation is maximizing a composite likelihood based on Poisson counts

of the observed segments. We have observed comparable performance for either approach.

3.1.5 Evaluation on synthetic data

To evaluate the accuracy of the proposed model and of the inference procedure, we simulated

a large number of synthetic populations by using the GENOME coalescent simulator [Liang

et al., 2007]. We extracted ground-truth information on shared segments to eliminate the

noise introduced by methods for IBD discovery. To this extent, the coalescent simulator was

modified to output shared segments descending from the same ancestor as observed in the

synthetic genealogy (according to definition (b) for IBD segments in Section1.1.4.1). For all

the simulations, we generated a total of 500 diploid samples for a single chromosome made

of 27, 800 non-recombining blocks with an inter-block recombination rate of 104, mimicking

the genetic length of chromosome 1 (∼278 cM). We verified that the use of non-recombining

blocks of 0.01 cM did not introduce significant biases in our analysis (see Supplementary

Figure 1). We simulated 900 synthetic populations that underwent exponential contraction

65



CHAPTER 3. IBD SHARING AND DEMOGRAPHY

and expansion (see Supplementary Table 1 for the range of demographic parameters). We

applied a gradient-driven local-minimization procedure to retrieve the parameter values

that minimize Equation 3.30. In order to avoid local minima, we initially performed a grid

search in a predefined box volume of the parameter space (see Supplementary Table 1 for

the parameters list). We then refined the least-squares solution by using a gradient-based

optimization from the best point on the grid.

The accuracy of our inference procedure depends on the length of the analyzed genomic

region and on the number of samples for which IBD segments are observed. In particular,

it follows from Equation 3.25 that upon fixing p̂R and
∑

i|u≤li≤v li, the result is unchanged

for several values of γ and n. In terms of accuracy of the proposed evaluation, an equivalent

configuration would have been the use of ∼140 diploid individuals for the entire genetic

length of the autosomal genome (∼3, 500 cM for the HapMap 3 genetic map; see Supple-

mentary Figure 2). The choice of length intervals Rj = [uj , vj ] also affects the inference

results: segments of length between 1 and 2 cM, for instance, might have originated from a

wide span of generations in the past, whereas segments of length 10-11 cM tend to have a

more deterministic (and more recent) origin. Frequency bins of different sizes can be used

for focusing on specific time periods. For all the analyses reported in this paper, we adopted

a combination of bins of uniform length and bins of length intervals corresponding to spe-

cific percentiles of the Erlang-2 distribution. In particular, we used length values between

the 21.4th and the 31.4th percentiles of the Erlang-2 distributions with parameter λ = k
50

(the maximum likelihood estimate occurs at the 26.4th percentile) for several consecutive

integral values of k (i.e., k = 2, 3, . . . 43).

3.1.6 Real data analysis

We applied the proposed inference procedure to genotype samples of 500 AJ individuals from

Jerusalem (Israel) and 143 MKK individuals from Kinyawa (Kenya), already analyzed in

Chapter 2. The AJ individuals were typed on the Illumina 1M platform and are self-reported

unrelated individuals. After quality control, a total of 745, 811 autosomal SNPs were used

for the analysis. The MKK samples comprise 56 unrelated trio-phased individuals and 87
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unrelated individuals from the HapMap 3 data set previously introduced. As a result of the

availability of haplotype phase information, we focused our analysis on the 56 trio-phased

samples and used 1, 387, 466 markers for the analysis.

The AJ samples were phased with the Beagle software package [Browning and Browning,

2007], whereas trio-phased MKK individuals were downloaded from the HapMap website3.

IBD sharing was estimated with the GERMLINE software package [Gusev et al., 2009].

We tweaked the parameters of the GERMLINE algorithm to improve the quality of IBD

detection for the specific data set by using the following procedure. Using GERMLINE’s

default haplotype extension parameters, we extracted IBD segments from the real data and

then used the analytical inference procedure to retrieve demographic parameters. We simu-

lated a synthetic population by using the inferred demography and extracted ground-truth

IBD segments. We ran GERMLINE on the synthetic genotypes several times and changed

the err_hom, err_het, bits to find a set of parameters that minimized the deviation of

the genotype-inferred IBD sharing density from that obtained from ground-truth data. We

then used these parameters to extract IBD segments from the real data again and iterated

the procedure until convergence. The GERMLINE parameters to which we converged were

-min_m 1 -err_hom 0 -err_het 2 -bits 25 -h_extend for the Beagle-phased AJ data and

-min_m 1 -err_hom 2 -err_het 2 -bits 60 -h_extend for the trio-phased MKK data.

3.1.6.1 Demographic Model Selection in the AJ Population

We tested increasingly flexible models to infer the demographic history of the AJ popula-

tion. In order to control for potential over fitting, we evaluated the parameters obtained for

different models by using a likelihood approach. To this extent, after optimizing the model

parameters by using the least-squares approach, we used rejection sampling to retrieve pa-

rameters corresponding to a local maximum likelihood for each model. We then used the

Akaike information criterion (AIC, [Akaike, 1974]) to compare models while controlling for

their different degrees of freedom (see the algorithm reported in Supplementary Table 2).

Three models were used for the inference in the AJ population (see Figure 3.1 and an

3http://hapmap.ncbi.nlm.nih.gov

67

http://hapmap.ncbi.nlm.nih.gov


CHAPTER 3. IBD SHARING AND DEMOGRAPHY

Figure 3.1: Demographic Models. (A) Population of constant size. (B) Exponential expan-

sion (contraction for Na > Nc). (C) A founder event followed by exponential expansion.

(D) Two subsequent exponential expansions separated by a founder event.
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additional description in the Results): (1) a model of exponential expansion (ME), (2) a

model including a founder event followed by exponential expansion (MFE), and (3) a model

of two exponential-expansion periods separated by a founder event (MEFE). The ME

model did not provide enough flexibility to fit the IBD-sharing summary extracted for the

AJ population, resulting in a poor fit (particularly for shorter segments) and unrealistically

large values for the recent population size. We therefore excluded this model from further

analysis. For modelsMFE andMEFE , we used the following rejection-sampling approach

to maximize the model likelihood around the least-squares solution obtained in the previous

step. (1) For each model, for each model parameter, we generated a list of neighboring

points by allowing each parameter to vary by ±3% of its current value. (2) For each point

on such a local grid, we sampled several random data sets of sharing individuals by using

the corresponding demographic parameters (details in Supplementary Table 3). We created

each data set by sampling random sharing values for independent individual pairs from the

distribution of Equation 3.21. (3) For each analyzed set of parameter values, we computed

a likelihood as the fraction of data points for which the deviation between AJ and sampled

sharing was smaller than a tolerance threshold δ (δ ≈ 0.089 for MFE and δ ≈ 0.037

for MEFE). (4) We updated the current point to the most likely point in the analyzed

neighborhood, if any, and iterated steps 1-3 until no point with a higher likelihood was

found. (5) We applied the AIC to compare models.

For both models, only one iteration of the above local maximization was required. The

most likely parameter values in the grid matched those obtained with the least-squares

approach, except for the current population size, which increased by 3% for model MFE

and decreased by 3% for model MEFE . When comparing the two models, we used a

tolerance threshold of δ ≈ 0.037 and obtained an AIC value of 19.21 for theMEFE model,

which allows five parameters to vary (such δ results in a likelihood of 0.01 for the MEFE

model). Using the same acceptance threshold, we thus required a log likelihood of at least

−5.6 (a likelihood of ∼3.7×103) for modelMFE , which has four parameters, to be selected.

None of the 105 sampled points were accepted with such a threshold, leading us to choose

theMEFE model. The likelihoods of additional parameter values estimated for theMEFE

69



CHAPTER 3. IBD SHARING AND DEMOGRAPHY

model with the use of a wider grid are reported in Supplementary Table 4.

Note that when sampling from Equation 3.21, we assumed independence of the analyzed

sharing length intervals Ri and of the pairs within a data set, potentially underestimating

the variance of randomly sampled summaries of IBD. To account for the presence of small

correlations, we thus performed full coalescent simulations according to the most likely set

of parameters of each model by only sampling a synthetic chromosome 1 for 500 diploid

individuals. We repeated the rejection-based comparison by using 104 such points for each

model and obtained an equivalent result.

3.1.6.2 Accounting for Phase Errors

The inference procedure described in the previous sections assumes that high-quality IBD

information is available. When real data sets are analyzed, several sources of noise, such as

computational phasing errors, might distort summary statistics of haplotype sharing. In the

absence of reliable probabilistic measures for the quality of shared segments, modeling this

potential bias is complicated. To account for this additional noise, we refined the inferred

AJ demographic model by using simulations that mimic SNP ascertainment, inaccurate

phasing, and IBD discovery in the analyzed data sets. We expected the distortion of IBD

summary statistics in the AJ data set to not be substantial (Supplementary Figure 3). The

preliminary inference based on the assumption of high-quality IBD information therefore

provides an efficient means for exploring large portions of the parameter space and for

performing model comparison. This can be followed by such simulation-based refinement,

which requires considerable computation.

After finding the most likely parameters and selecting model MEFE for the AJ data

as previously described, we refined the obtained solution by using a local-search approach.

We iteratively varied one demographic parameter at a time and kept a tested value if it

resulted in a decreased deviation from the AJ data summary. Note that in order to account

for the stochastic variation observed across multiple independent simulations of the same

demographic history, we would need to generate several synthetic data sets for each tested

set of demographic parameters. However, we did not repeat such simulations multiple times
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as a result of computational constraints.

For all coalescent simulations in real-data inference, we used the GENOME software

package. The simulated chromosomes have the same genetic length as their real-data equiv-

alent and a mutation rate of 1.1 × 108 per site per generation [Roach et al., 2010]. To

reduce the computational burden, we used non-recombining block units of 10 kb for MKK

simulations and 20 kb units for AJ simulations, resulting in an IBD length resolution of

0.01 and 0.02 cM, respectively. Synthetic markers were randomly ascertained to match the

same density of the real data. We matched the spectrum of the real data sets by randomly

selecting the same proportion of variants for each frequency bin and used a bin size of 2%.

No missing genotypes were allowed in simulated data because occasional missing genotypes

in the real data were imputed during Beagle phasing or excluded from the analysis if not

reliably imputed. All simulations were carried out for the entire autosomal genome.

3.2 Results of evaluation and real data analysis

3.2.1 Simulated data

The described methods were implemented in DoRIS, a freely available software tool4. We

tested the accuracy of the proposed model through extensive simulation of synthetic pop-

ulations with known demographic history. For each simulated population, we analyzed a

region of length equivalent to chromosome 1 for 500 diploid samples (see Section 3.1). All

the derived theoretical quantities were found in good agreement with the values obtained

from simulation (see Supplementary Figure 4 for an evaluation summary and Figure 3.2

for examples of total haplotype-sharing distributions). We noted that for populations of

constant size, as expected, a smaller population size causes a larger fraction of the genome

to be shared through IBD segments for the average pair in the population (Figure 3.3).

Furthermore, the frequency of segments at different length intervals is informative of pop-

ulation size at different time scales. Consider the case of an exponential expansion (Figure

3.1.A) with the following parameterization: Na is the size of the ancestral population when

4http://www.cs.columbia.edu/~pier/doris/
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Figure 3.2: Analytical (dots) and empirical (dashed lines) distribution for total IBD (Equa-

tion 3.21) for a constant population of 2, 000 diploid individuals (red, R = [1, 4]) and an

exponentially contracting population (A = 50, 000, C = 500, G = 20, R = [1,∞), in blue).
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exponential expansion began, Nc denotes the population size at the current generation, and

G represents the number of generations during which the exponential expansion took place.

A small ancestral population size Na causes a higher rate of remote coalescent events and a

consequently larger fraction of the genome to be spanned by short segments of IBD. Simi-

larly, a small value of Nc increases the chance of coalescence in the more recent generations,

causing a larger fraction of the genome to be spanned by long segments. For fixed Na and

Nc, variations of the duration of expansion G affect the expansion rate and have a notice-

able effect on the slope of the sharing distribution, i.e., the genome fraction spanned by

mid-length segments.

We used the relationship of Equation 4 to infer the size of a Wright-Fisher population by

using a realistic chromosome 1 simulated for several populations, each with its own constant

size Ne ranging from 500-40, 000 individuals. In the analysis of IBD information for 500

diploid samples in each such synthetic population, the predicted value was highly correlated

with the true size of the synthetic populations (r = 0.9994; Figure 3.4). Across all tested

values of Ne, the ratio between true and estimated population size had a median of 1.00 and

a 95% confidence interval (CI) of 0.97-1.03.

3.2.2 IBD and heterozygosity in an expanding population

To outline IBD’s particular sensitivity to recent demographic variation, we examined the

effects of variable population size on demographic inference conducted either through the

proposed approach based on IBD haplotypes or through a classical approach based on het-

erozygosity. We focused on the scenario in which a population of 3, 000 ancestral individuals

suddenly expands to a size of 25, 000 individuals G generations before the present (Figure

3.4.C). We varied G from 10-400 generations and simulated the ascertainment of IBD hap-

lotypes by extracting information on shared haplotypes along a realistic chromosome 1 for

500 diploid samples. For both IBD-based and heterozygosity-based reconstructions, we as-

sumed and inferred a constant population size Ne. We used the relationship of Equation 3.4

for the IBD model and Watterson’s estimator of Equation 1.16 for the heterozygosity-based

approach (the heterozygosity θ was estimated from the synthetic sequences, and µ matched
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Figure 3.3: Effects of demographic parameters on IBD length distributions. Wright-Fisher

models (A) and exponential population expansion (B).
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Figure 3.4: Performance for constant-size populations (A), expanding and contracting pop-

ulations (B), and a suddenly expanding population (C) studied with a constant-size model

(D).
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the simulated mutation rate). An estimate of Ne was obtained for each data set across

all simulated times of expansion (Figure 3.4.D). As expected, the obtained estimate of Ne

tended to lie in the range between the ancestral and the current size of the population.

Long, recently originated segments provide a better prediction of the current population

size, especially for remote expansions. In contrast, the high frequency of shorter segments

of more remote origins biases the inference toward a smaller population size when these

segments are taken into account. For example, the effects of a small ancestral population

size can be observed on segments between 4 and 5 cM in length only for expansions that

occurred fewer than 120 generations ago; in contrast, when segments between 1 and 2 cM

in length are analyzed, traces of a smaller ancestral population are still notable, even for

expansions that occurred as far back as 400 generations ago. When comparing these results

to population-size estimates obtained with heterozygosity from full synthetic genomic se-

quence, we observed the heterozygosity-based estimates of Ne to be strongly biased toward

the small size of the ancestral population. Although they present less instability than do

the IBD-based estimates, the inferred values approached the ancestral population size, even

for expansions that occurred 400 generations before the present. This analysis outlines the

unique sensitivity of long-range IBD sharing to recent demographic variation.

3.2.3 Evaluation of the inference in populations of varying size

We tested the accuracy of our inference procedure for the cases of either an exponential in-

crease or decrease in population size (expansion or contraction, respectively). We simulated

450 synthetic populations that underwent an exponential expansion and 450 that under-

went exponential contraction. We analyzed the IBD sharing of 500 diploid samples from

each simulated population along a 278 cM chromosome. We evaluated the accuracy of the

inferred demography by using the ratio between true and predicted sizes of each analyzed

population (Figure 3.4.B) for all generations between 1 and 100. We found our inferred

population size to be within 10% of the true value 95% of the time. The population size of

recent generations was harder to infer because of the scarcity of long IBD segments in very

large populations (this scarcity is due to a low chance of recent coalescent events).
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Note that the reconstruction accuracy is influenced by sample size and length of the

analyzed region (see Section 3.1). The rates of expansion and contraction also substantially

affect the ability to recover the correct population size; faster expansion and contraction

rates incur more noisy estimates (the testing reported in Figure 3.4.B included extreme and

possibly unrealistically large rates of expansion and contraction). This was evident when we

classified the synthetic populations as either strong or mild contraction or expansion events

and separately assessed the inference accuracy for each of these classes (see Supplementary

Figure 5).

3.2.4 Two periods of expansion in the Ashkenazi Jewish population

We analyzed the demographic history of the AJ population by applying our method to a real

data set of 500 individuals (segment-length distributions in Figure 3.5). We initially tested

several models by using the proposed procedure. After inferring the most likely parameters

for the chosen model, we used simulations to refine the analytical solution and account for

potential errors in IBD detection (see Supplementary Table 2 for an algorithmic summary

of the analysis).

As a first step, we fitted a simple model of exponential growth (Figure 3.1.B). If only

long (≥ 5 cM) segments are considered, the parameters of this model can be optimized

to provide a good match for the observed sharing. This supports the occurrence of an

expansion event in the recent history of this population, as reported in our previous anal-

ysis using a simpler simulation-based approach [Gusev et al., 2012]. However, exponen-

tial growth alone is unable to provide a good fit for the observed frequency of shorter

segments, suggesting additional demographic dynamics during more ancient AJ history.

The decay in the frequency of medium-length segments, between 2 and 5 cM, was weaker

than that observed for longer ones, suggesting a founder event—a reduction of the ances-

tral population size and subsequent rapid expansion. Indeed, a refined model that allows

such an event to predate exponential expansion (Figure 3.1.C) provides a good fit for the

frequency of all segments of length ≥ 2 cM. We note that such a severe founder event

was also reported in a previous analysis based on lower throughput data [Slatkin, 2004;
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Figure 3.5: AJ inference. Observed distribution of haplotype sharing (green line); exponen-

tial expansion for only long (> 5cM) segments (red line, best fit: Nc = 97, 700, 000, G =

26, Na = 1, 300); founder event-expansion (purple line, best-fit: Nc = 12, 800, 000;G =

35;Na1 = 230;Na2 = 70, 600); exponential expansion-founder event-exponential expan-

sion (orange line, best-fit: Nc = 42, 000, 000;G1 = 33;Na1 = 230;Na2 = 37, 800;Na3 =

1, 800;G2 = 167).
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Atzmon et al., 2010] and is consistent with historical reports of this population [Finkelstein,

1960]. However, this model does not adequately explain why a further change in the slope of

the sharing spectrum was observed for short segments between 1 and 2 cM of length. Such

a steep increase in the frequency of short segments can again support the occurrence of an

exponential growth preceding the observed founder event. We therefore optimized parame-

ters for a model that allows two subsequent exponential-expansion periods separated by a

founder event (Figure 3.1.D). We focused our analysis on generations 1 − 200 (i.e., setting

G1 +G2 = 200 in Figure 3.1.D). The considered model allows Na3 founders to exponentially

expand to a population of Na2 individuals during G2 generations. After a founder event, Na1

individuals are randomly selected and exponentially expand to reach a current population

of Nc individuals during the remaining G1 generations. Using this model, we were able to

obtain a good fit for the entire IBD frequency spectrum, corresponding to the parameter

values Na3 ∼ 1, 800, Na2 ∼ 37, 800, Na1 ∼ 230 ,and G1 = 33 (therefore, G2 = 167) and

Nc ∼ 42, 000, 000. Model comparison based on the AIC supports this model over simpler

demographic scenarios. We note that the most recent expansion period was inferred to have

a considerably high rate (r ∼ 0.37, defined in Equation 3.11). More complex models (e.g.,

inferring the value of G2 and allowing for a founder event predating the remote expansion)

did not significantly improve on the reported demography.

When real data is analyzed, the quality of computational phasing and IBD detection

might affect the reconstruction accuracy. Inaccuracies in the recovery of long-range IBD

haplotypes are reflected in the inferred current size of the AJ population, which is extremely

large. This is most likely due to long IBD segments being shortened to smaller segments

because of switch errors during computational phasing, in addition to greater uncertainty

associated with the inference of recent large population sizes (Figure 3.4.B and Supplemen-

tary Figure 5). We therefore refined inferred parameters to take into account such potential

bias by using realistic coalescent simulations that also reproduce noise due to computa-

tional phasing and IBD discovery. We obtained an improved fit for a population composed

of ∼2, 300 ancestors 200 generations before the present; this population exponentially ex-

panded to reach ∼45, 000 individuals 34 generations ago. After a severe founder event,
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Figure 3.6: Demographic analysis of the Maasai. Observed distribution of haplotype sharing

(red); single-population expansion model (blue); several small demes that interact through

high migration rates (dashed CI obtained through random resampling of 200 synthetic data

sets).

the population was reduced to ∼270 individuals, which then expanded rapidly during 33

generations (rate r ∼ 0.29) and reached a modern population of ∼4, 300, 000 individuals.

3.2.5 IBD in the Maasai: the village model

We additionally investigated the demographic profile of 56 samples of self-reported unrelated

MKK individuals from the HapMap 3 data set. We detected high levels of segmental sharing

across individuals, consistent with recent analysis of hidden relatedness in this sample (see

[Pemberton et al., 2010; Gusev et al., 2012], Chapter 2). Genome-wide IBD sharing was

elevated among all individual pairs, suggesting high rates of recent common ancestry across

the entire group rather than the presence of occasional cryptic relatives due to errors during

sample collection (Supplementary Figure 6). Optimizing a model of exponential expansion

and contraction (Figure 3.1.B), we obtained a good fit to the observed IBD frequency spec-
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trum (Figure 3.6), suggesting that an ancestral population of ∼23, 500 individuals decreased

to ∼500 current individuals during the course of 23 generations (r ∼ −0.17). We note that

this result might not be driven by an actual gradual population contraction in the MKK

individuals, but it most likely reflects the societal structure of this semi-nomadic population.

Although little demographic evidence has been reported, the MKK population is in fact be-

lieved to have a slow but steady annual population growth [Coast, 2001]. We hypothesized

that a high level of migration across small-sized MKK villages (Manyatta) provides a poten-

tial explanation for the observed IBD patterns in this population. In such a model, a small

genetic pool for recent generations gradually becomes larger as a result of migration across

villages as one moves back into the past. To validate the plausibility of this hypothesis,

we simulated a demographic scenario in which multiple small villages interact through high

migration rates. This setting is similar to Wright’s island model [Wright, 1943], and we shall

refer to it as the village model in this case (Supplementary Figure 7). We extracted IBD

information for one of the simulated villages and attempted to infer its demographic history

by using a single-population model of exponential expansion and contraction (Figure 3.1.B).

Indeed, the single-population model provides a good fit for this synthetic sample, and the

severity of the gradual contraction of the population was observed to be proportional to the

simulated migration rate. We thus used the village model to analyze the MKK demography

and relied on coalescent simulations to retrieve its parameters: migration rate, size, and

number of villages that provide a good fit for the empirical distribution of IBD segments.

We observed a compatible fit for this model, in which 44 villages of 485 individuals each

intermix with a migration rate of 0.13 individuals per generation (Figure 3.6).

Note that, although our simulations involved several villages of constant size, adequate

choices of migration rates would result in the signature of a drastic contraction even among

expanding villages (and, therefore, overall expanding population). From a methodological

point of view, we further note that LD might also provide information for inferring such a

“village effect”. However, although current strategies for IBD detection allow finding shared

haplotypes in the presence of computational phasing errors, LD analysis over long genomic

intervals is substantially affected by noisy phase information (Supplementary Figure 8).

81



CHAPTER 4. RECONSTRUCTING RECENT MIGRATION EVENTS

Chapter 4

Reconstructing recent migration

events

In Chapter 3 we introduced a model that allows expressing several relevant quantities of

IBD sharing across purportedly unrelated individuals from a single population. We here

extend this analysis to the case of individuals sampled from a number of different demes, of

which we want to investigate recent demographic events such as population size fluctuation

and migration. Details of this analysis can be found in [Palamara and Pe’er, 2013]. Note

that in the remainder we measure genetic length in Morgans (M).

4.1 IBD distributions in the presence of migration

We begin discussing the case of multiple populations referring to a simple scenario, where

two populations of constant size Ne exchange individuals at a fixed rate m per individual,

per generation (see model in Figure 4.1a). We encode this migration rate using the matrix

Q =

−m m

m −m


We consider two individuals, i and j, each sampled from either population. We trace the

ancestors of these individuals at one genomic site, and encode their state (in terms of popula-

tion their ancestors belong to), using a vector of dimensionality 2. If individual i is sampled

82



CHAPTER 4. RECONSTRUCTING RECENT MIGRATION EVENTS

(a) Constant, symmetric population size and migration rate

(b) Population split followed by size changes and migration

Figure 4.1: Two demographic models that involve two populations and migration between

them. In model 4.1a the populations have the same constant size Ne, and exchange individ-

uals at the same rate m. In model 4.1b, a population of constant ancestral size Natot splits

G generations in the past, resulting in two populations whose sizes independently fluctuate

from Na1 and Na2 individuals to Nc1 and Nc2 individuals during G generations. During this

period, the populations interact with asymmetric migration rates m12 and m21.
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from population 1 and individual j from population 2, for example, the state at generation

0 is known and we write it as vi(0) = (1, 0), vj(0) = (0, 1). If both are sampled from

population 1, vi(0) = (1, 0), vj(0) = (1, 0). After t generations (measured in continuous

time), the probability that the ancestor of individual i at this genomic location belongs to

either population is given by

vi(t) = (1, 0)etQ =

(
e−2mt

2
(1 + e2mt),

e−2mt

2
(e2mt − 1)

)
(4.1)

if individual i was sampled from population 1, or, symmetrically

vi(t) = (0, 1)etQ =

(
e−2mt

2
(e2mt − 1),

e−2mt

2
(1 + e2mt)

)
(4.2)

if it was sampled from population 2. We are interested in expressing the probability that in-

dividuals i and j coalesce at time t. This requires both individuals to be in the same popula-

tion, in which case coalescence happens at rate 1/Ne. Formally p(t|m,Ne) = vi(t)vj(t)
ᵀ/Ne,

which in this setting becomes

p(t|m,Ne) ≈
1 + e−4mt

2Ne
(4.3)

if vi(0) = vj(0), and

p(t|m,Ne) ≈
1− e−4mt

2Ne
(4.4)

otherwise. Note that a Taylor approximation was made in equations 4.3 and 4.4. A more

detailed derivation is reported in the Appendix of this chapter. To compute
∫ v
u p(l|θ) dl,

we plug the coalescence probability in Equation 3.2 (or its continuous version). Also, for

simplicity we take R = [u,∞), obtaining∫ ∞
u

p(l|θ) dl =
1

2Neu
+

m+ u

2Ne(2m+ u)2
(4.5)

if vi(0) = vj(0), and ∫ ∞
u

p(l|θ) dl =
m(4m+ 3u)

2Neu(2m+ u)2
(4.6)

otherwise. Recall that
∫ v
u p(l|θ) dl = fR, which is the expected fraction of genome shared

through segments of length between u and v by an individual pair. To infer N̂ and m̂, we

therefore consider the observed average fraction of genome shared through IBD segments
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longer than a threshold u, for all pairs of individuals sampled from the same population or

from different populations (which we call f̂s and f̂d, respectively, now omitting the depen-

dence on the length range). We then solve the system obtained by equating f̂s and f̂d to

the quantities in (4.5) and (4.6), to obtain the estimators

N̂e =
1

(f̂d + f̂s)u

m̂ =

u

(
3f̂s − 5f̂d −

√
2f̂df̂s − 7f̂2

d + 9f̂2
s

)
8(f̂d − f̂s)

(4.7)

Note that, although computations are not explicitly reported here, a similar derivation may

be obtained for analysis based on the counts of shared segments, as described in Chapter 3.

A simple generalization of the above scenario consists in allowing the two considered

populations to differ in their effective population sizes, Ne1 and Ne2. In this scenario it is

still possible to obtain a closed form expression for
∫ v
u p(l|θ) dl, and a closed form estimator

for N̂e1, N̂e2, m̂, which are reported in the Appendix.

4.1.1 The general case

Although the previously discussed case of constant population sizes and migration rates has

a simple formulation and can be used to gain initial insight into the recent demography of a

study cohort, such population dynamics are oversimplified and generally unrealistic. Luckily,

given a few reasonable assumptions, population sizes and migration rates can be allowed to

arbitrarily fluctuate in time, still permitting a closed form computation of
∫ v
u p(l|θ) dl.

Consider two populations whose sizes at generation g are expressed as N1(g) and N2(g).

The rate at which these two populations exchange individuals can be encoded in a discrete

migration matrix

M(g) =

1−m12(g) m12(g)

m21(g) 1−m21(g)

 (4.8)

where m12(g) represents the probability of an individual migrating from population 1 to

population 2 at generation g (backwards in time). After g generations, the probability that

the ancestor of individual i at a genomic location belongs to either population is given by the
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vector vi(0)
∏g
k=0 M(k). Define the matrix N(g) to be diagonal with 1/N1(g) and 1/N2(g)

as its diagonal elements. The probability of coalescence from generation g− 1 to generation

g is then

cg =

[
vi(0)

g∏
k=0

M(k)

]
N(g)

[
vj(0)

g∏
k=0

M(k)

]ᵀ
(4.9)

and the probability of the two individuals to coalesce g generations before present is

p(g|M(g),N(g)) = cg

g−1∏
k=1

(1− ck) (4.10)

Equation 4.10 can be used to compute∫ v

u
p(l|M(g),N(g)) dl =

∞∑
g=1

[
cg

g−1∏
k=1

(1− ck)
∫ v

u
p(l|g) dl

]
(4.11)

Note that Equation 4.11 is very general, and we can allow additional demographic

changes to take place. For instance, by setting N2(g) = 0, m12(g) = 0 and m21(g) = 1

for all g > G, we encode a population split that occurred G generations ago. In practice, a

pair of populations will have split a number of generations back in time, and it is therefore

convenient to consider models of the kind depicted in Figure 4.1b. In this model a popula-

tion of constant size Natot splits G generations in the past, forming two populations of size

Na1 and Na2. The size of these two groups then fluctuates in time, to reach a present size of

Nc1 and Nc2. During their separation, the populations exchange individuals at a rate of m12

and m21 per generation, per individual. Of course, other models can be defined, allowing

variable migration rates, and different population size dynamics.

For mathematical convenience, it is safe to assume the ancestral population size becomes

constant a number of generations in the past. Models where the ancestral population size

(Natot in Figure 4.1b) is constant from generation G to infinity allow for a closed form

computation of Equation 4.11, no matter which demographic dynamics take place from

generation 0 to G (Equations 3.9 and 3.10). Furthermore extremely remote demographic

events have negligible impact on shared haplotypes of currently detectable lengths (e.g. > 1

cM).
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4.1.2 Simulations, ancestry deconvolution and real data

We tested our framework using extensive simulation of realistic chromosomes under several

demographic models, using the GENOME coalescent simulator ([Liang et al., 2007]). For

computational convenience, we set the size of the simulator’s non-recombinant segments

between 0.01 and 0.025 cM, always using a recombination rate of 1cM/Mb. A modified

version of the simulator was used to extract ground truth IBD haplotypes from the simulated

genealogies, defined as segments co-inherited by pairs of individuals from their most recent

common ancestor (see definition (b) in Section 1.1.4.1). For some of the simulations we

inferred shared haplotypes using the GERMLINE software package ([Gusev et al., 2009])

on phased genotype data, which was obtained setting GENOME’s mutation rate to 1.1 ×

10−8 per base pair ([Roach et al., 2010]). Genotypes were post-processed to mimic the

information content of array data. To this extent, we computed the allele frequency spectrum

of European individuals from the HapMap 3 dataset ([Frazer et al., 2007]), using frequency

bins of 2%. We then randomly selected the same proportion of alleles from the simulated

genotypes. We obtained an average density of ∼230 single nucleotide polymorphisms/Mb.

In order to compare the proposed IBD-based approach for migration inference to the

approach of [Gravel, 2012], which is based on ancestry deconvolution, we simulated synthetic

datasets under several demographic models, and extracted genotype data as previously

described. We then ran the PCAdmix software ([Brisbin et al., 2012]) with windows of size

0.3cM and the genetic map used in the simulations. The output of PCAdmix was used

to infer migration rates via the Tracts software package ([Gravel, 2012]). IBD information

was computed in the same datasets running the GERMLINE software, and the output

was used to infer migration rates using the DoRIS software package, which implements the

proposed framework. Perfectly phased haplotypes were used in input for both PCAdmix and

GERMLINE. Only migration rates were inferred, while all other demographic parameters

were set to the true simulated values for both Tracts and DoRIS.

To demonstrate the use of the DoRIS framework on real data, we analyzed 56 trio-

phased samples from the HapMap 3 dataset. Phased genotypes were downloaded from the

HapMap 3 web page at http://hapmap.ncbi.nlm.nih.gov. IBD haplotypes were extracted
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using GERMLINE, as previously described in [Palamara et al., 2012].

4.2 Results of evaluation and real data analysis
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Figure 4.2: True vs. inferred parameters for the model in Figure 4.1a.
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4.2.1 Constant size and symmetric migration rates

In order to test the accuracy of demographic inference based on the proposed model, we

initially simulated a number of populations of constant size Ne, which exchange individuals

at a constant, symmetric migration rate m, as depicted in the model of Figure 4.1a. We

simulated 15 possible sizes of synthetic populations, ranging from 2, 000 to 30, 000 haploid

individuals, with increments of 2, 000. For each population size, we simulated 11 possible

migration values, uniformly chosen between 10−4 and 5× 10−2. For a total of 165 datasets,

we simulated a chromosome of 300 centimorgans for 500 haploid individuals from each

subpopulation, and computed IBD sharing within and across populations. The simulations

used non-recombining blocks of 0.02 cM. This resolution may introduce small biases in the

analysis, which we found to be negligible in our previous work. We then used Equation 4.7

to estimate m̂ and N̂e, with results shown in Figure 4.2. To test the model’s accuracy, for

this analysis we only considered ground-truth IBD segments extracted from the synthetic

genealogies.

We obtained a good correspondence between the true population size and the size inferred

via the estimator of Equation 4.7, with almost perfect correlation shown in Figure 4.2a.

Inferred migration rates were also very close to the simulated rates, although a moderate

upward bias and higher estimation variance for large migration rates was observed in this

case (Figure 4.2b). In addition to using the effective population size estimator of Equation

4.7, we used the estimator of Equation 3.27, which assumes constant population sizes and no

migration. As expected, the inferred recent effective population size was in this case inflated

by the presence of migration, as shown in Figure 4.3. When migration rates are increased,

the inferred population size quickly approaches the total population size (in this case 2Ne).

4.2.2 Dynamic size and asymmetric migration rates

We then tested our model’s performance in the more complex demographic scenario depicted

in Figure 4.1b, where a population splits into two subpopulations which grow at different

exponential rates, interacting with asymmetric migration rates. We simulated a chromosome

of ∼275 cM for 500 haploid individuals per subpopulation. Simulated non-recombinant
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Figure 4.3: Inference of recent effective population size using Equation 3.27, which neglects

migration. The ratio between inferred and true population size (y axis) increases as the

migration rate (x axis) is increased, approaching the sum of population sizes for both pop-

ulations (twice the true size).

blocks had size 0.025 cM. In all simulated scenarios, we kept Natot fixed to 10, 000 haploid

individuals, while Na1 and Na2 were kept fixed at 5, 000 individuals. For Nc1 and Nc2 we

simulated all possible combinations of sizes between 5, 000 and 205, 000 haploid individuals,

with increments of 15, 000 (excluding cases where Nc1 = Nc2). Note that on average the

simulated values of Nc1 were smaller, resulting in higher inference accuracy compared to Nc2.

For each pair of population sizes we simulated values of m12 and m21 using all combinations

of the migration rates 0.0001, 0.0167, 0.0334, and 0.5.

A total of 540 synthetic populations were tested. For each synthetic population we

extracted the average fraction of genome shared through haplotypes of different length in-
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Figure 4.4: Results of the evaluation of our method on synthetic populations with demo-

graphic history depicted in the model of Figure 4.1b. Higher variance in the method’s

accuracy is observed due to limited sample sizes and increased population sizes. Higher mi-

gration rates further decrease the rate of coalescent events in the recent generations (Figure

4.4b), resulting in additional uncertainty. However no significant bias is observed in the

inference.
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tervals by pairs of individuals within each population or across populations. As in our

previous work, we used a combination of intervals of uniform length and length intervals

corresponding to quantiles of the Erlang-2 distribution, which is used in p(l|t). Inference per-

formance was tested via minimization of the root mean squared deviation between observed

and predicted average fraction of shared genome. Note that a likelihood based approach

(e.g. considering the number of shared segments) could be used based on the quantities

derived in the previous chapter. We scanned several possible values for one parameter at

a time, performing a line search while fixing the remaining model parameters to the true

simulated value. The results of this analysis are reported in Figure 4.4.

As expected, due to the large recent effective population sizes we simulated, the variance

of the inference accuracy was higher in this scenario, suggesting that more than a single

chromosome for 500 diploid individuals may be required for the analysis of these demogra-

phies. A single chromosome of ∼250 centimorgans sampled in 500 diploid individuals is in

fact equivalent for the purpose of this inference to the analysis of all the autosomal chro-

mosomes for ∼150 diploid samples (see [Palamara et al., 2012]). Larger population sizes

result in lower signal to noise ratio for the estimation of the expected fraction of genome

shared via IBD segments, and increasing sample size or analyzing additional chromosomes is

expected to reduce the variance in the inference performance. Lower accuracy was observed

in the inference of Nc2 since, as previously mentioned, this simulated subpopulation was on

average larger. Inferred population sizes were more accurate in the presence of low migration

rates (represented by colors in figures 4.4a and 4.4b), as high migration further reduces the

chance of early coalescent events, exacerbating the effects of large population sizes. Overall,

no significant bias was observed in the recovered parameter values, suggesting our model

provides a good match for the empirical distributions.

4.2.3 Applicability of the model to genotype data

While the previous analysis was mainly concerned with testing the model’s accuracy, and re-

lied on ground-truth IBD sharing extracted from the simulated genealogies, it is interesting

to ask whether this approach can be used on genotype data. To this extent, we simulated
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genotypes for the demographic model of Figure 4.1a. We set the population sizes to 4, 000

or 12, 000 diploid individuals per population, and extracted 300 diploid sampled from each

group. The migration rate was symmetric, and set to 0.04 per individual, per generation.

Chromosomes of 150 cM were simulated using non-recombinant blocks of size 0.01 cM, and

the synthetic genotypes were post-processed to reproduce the density and allele frequency

spectrum of realistic SNP array data. In addition to extracting the ground truth IBD infor-

mation as previously described, we inferred IBD haplotypes from the simulated genotypes

using the GERMLINE software. The results suggest that when accurate phase informa-

tion is available (e.g. for the X Chromosome, or for trio-phased samples), GERMLINE is

able to recover the IBD sharing distribution across any pair of samples with high fidelity

(Figure 4.5). However, when the samples were computationally phased using the Beagle

software ([Browning and Browning, 2007]), GERMLINE had an inconsistent performance,

accurately recovering the IBD sharing in the case of N = 4, 000, while poorly inferring long

haplotypes in the case of N = 12, 000. This suggests that additional care must be taken

when analyzing computationally phased data, particularly when analyzing cross-population

IBD spectra, were the quality of the inferred IBD haplotypes will likely vary from population

to population, as a result of different underlying demographic histories.

4.2.4 MKK analysis, revisited

To demonstrate the applicability of our method to real data, we analyzed the HapMap 3

Masai dataset, which was already studied in our previous work using a simulation-based

approach. We here revisit this analysis, using the described analytical framework.

Cryptic relatedness across individuals in this dataset is extremely common, and does not

appear to be due to the presence of occasional outliers among the samples. Demographic

reports are not supportive of recent population bottlenecks in this group, which is though

to be slowly but steadily expanding ([Coast, 2001]). The Masai are a semi-nomadic people,

and individuals often reside in small communities (Manyatta) of tens to few hundreds of

members. To study their demography, we therefore use a model where V villages of constant

size N exchange individuals at a constant and symmetric rate m. This model is similar to
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the one depicted in Figure 4.1a, with symmetric migration rates across several populations.

We assumed that all samples were extracted from the same village, and used the model

described in Section 4.1.1 for the analysis. We performed a grid search testing migration

rates from 0.01 to 0.4, with intervals of 0.01, village sizes from 50 to 4, 000 with steps of

10, and number of villages from 3 to 150 with increments of 1. We also obtained 95%

confidence intervals for the inferred values using a bootstrap approach, by creating 400

resamples randomly selecting individuals with replacement, then recomputing the optimal

parameters using a gradient-driven procedure, which was initialized using the parameters

inferred using the original samples (note, however, that small correlations exist for IBD

sharing across individual pairs, and this method may provide optimistic intervals). Using

this approach, we obtained the following estimates: V = 58 (95% CI: 46 to 75), N = 400

(95% CI 360 to 470), and m = 0.1 (95% CI 0.09 to 0.12).

4.2.5 Comparison with existing methods

The structure of long-range haplotypes is known to carry relevant information about recent

population dynamics, but this genomic feature has only recently become observable thanks

to the development of modern high-throughput genomic technologies. As a consequence,

methods that rely on a population’s haplotypic structure to reconstruct demographic events

have only recently arose. A model proposed in [Pool and Nielsen, 2009], and recently

expanded in [Gravel, 2012], provides a way to analyze the distribution of migrant tracts

and infer the timing and intensity of very recent migration events. In order to analyze the

distribution of migrant haplotypes, however, ancestry deconvolution needs to be accurately

performed. This typically requires the availability of two suitable reference populations,

which are required to be sufficiently diverged from each other. The amount of required

divergence depends on the specific method used for the deconvolution, but in general this

poses significant constraints in terms of the demographic scenarios that can be analyzed

using these methods.

To compare our IBD-based approach to methods based on ancestry deconvolution, we

simulated the demographic scenario of Figure 4.6, where two populations splitGs generations
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in the past, and Ga generations in the past contribute a fraction of genomes to the creation

of a group of admixed individuals, with probability m and 1−m, through a unique pulse of

migration. All three population sizes were fixed to either N = 5, 000 or N = 10, 000, m was

set to 0.2, and Ga was 25 in all simulations. We varied Gs from 40 to 600, with increments of

20, and extracted genotype data on a single 400 cM chromosome for 250 diploid samples in

each of the three extant populations. We used the output of the PCAdmix software as input

for the Tracts program ([Gravel, 2012]), and the IBD segments retrieved by GERMLINE as

input for the DoRIS software. Note that for the IBD analysis we only used the 250 admixed

samples and the 250 samples from the population contributing ∼m haplotypes at generation

Ga, while the samples from the third population were ignored. In both cases we inferred the

value of m, setting all other parameters to the true simulated values, with results shown in

Figure 4.7.

DoRIS performed better on average (mean inferred m = 0.205, std 0.025), while provid-

ing slightly noisy results, suggesting the need for a larger sample size and/or the analysis

of additional chromosomes. The migration rate inferred by Tracts (mean m = 0.104, std

0.0233) was strongly biased. We note that in this setting Tracts is essentially used to only

report the proportion of ancestry inferred by the deconvolution method, which is the ac-

tual source of inaccuracy. Even for populations that diverged 600 generations in the past

(∼15, 000 years before present assuming a generation of 25 years), the recovered rate was

substantially lower than the simulated rate. The case of N = 5, 000 yielded better estimates,

due to the higher drift found in smaller populations, which improved the power of PCAd-

mix to call migrant tracts. We additionally run the PCAdmix+Tracts analysis on longer

time scales, simulating values of Gs from 200 to 6, 000, with intervals of 200 generations,

using N = 10, 000. Even for several thousand generations since the split of the reference

populations, a small bias was observed (Figure 4.8).

This analysis suggests that while the methods that rely on ancestry deconvolution are

a useful tool for the specific case of recently admixed groups arising from strongly diverged

populations, they may not be suitable for the analysis of fine-scale migration events, such

as those that occurred across populations that split few tens to hundreds of generations
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Figure 4.5: We simulated a chromosome of 150 cM for 600 individuals using the model in Fig-

ure 4.1a, setting population sizes to 4, 000 and 12, 000 diploid individuals, with a migration

rate of 0.04. IBD sharing was extracted directly from the simulated genealogy (diamonds),

or inferred trough GERMLINE using perfectly phased (circles) or computationally phased

(triangles) chromosomes.

Figure 4.6: The model used to simulate admixed populations.
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Figure 4.7: We created several simulation genotype datasets using the model in Figure

4.6, varying Gs while keeping m = 0.2, Ga = 25, and using constant populations of size

5, 000 or 10, 000 diploid individuals. We inferred the value of m using PCAdmix+Tracts, or

GERMLINE+DoRIS, here reported as a function of Gs.

in the past. It is however possible that adjusting some of the parameters used for the

GENOME simulations and for the PCAdmix software, or using other deconvolution methods,

the obtained accuracy may be increased. Furthermore, the development of methods for

ancestry deconvolution in sequence data, where rare variants are observable, is expected to

substantially increase the power of this analysis, although the effects of limited population

divergence are likely to still affect the accuracy of methods that do not explicitly take

this aspect into account. An additional difference to be noted between the two considered

approaches is that Tracts does not model population size changes in the populations, focusing

on relative migration rates, while DoRIS allows recovering both population size fluctuations

and migration rates, thus providing insights into the magnitude of migration events. This

increased flexibility, however, may complicate the inference, also in light of our observation
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Figure 4.8: We created several datasets using the model in Figure 4.6, varying Gs from 200

to 6, 000, and using m = 0.2, Ga = 25 with population sizes of 10, 000 diploid individuals.

We inferred the value of m using PCAdmix+Tracts from phased genotype data.

that large sample sizes are required for the IBD analysis.

4.3 IBD sharing outlines regional-scale demographic history:

the Genome of the Netherlands

The Genome of the Netherlands (GoNL) Project was established with the goal of character-

izing genomic variation in the Dutch population [Boomsma et al., 2013]. To this extent, 250

trio-families from 11 provinces of the Netherlands were sequenced with an average coverage

of 14-15x. Sequencing data provides a very large number of informative (high frequency)

variants, which added to the trio design of the GoNL project results in reliable inference

of haplotype phase, therefore enabling accurate detection of IBD sharing. Furthermore,

fine-grained information about genomic variation across 11 provinces from a single country

provides the opportunity to demonstrate the methods developed in this and the previous

chapter for the inference of fine-scale demographic history, using the DoRIS software pack-

age. Results presented in this section are described in [The Genome of the Netherlands
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Figure 4.9: A map of the analyzed provinces and the number of collected samples.

Consortium, 2014].

We initially removed all variants with a minimum allele frequency below 1%, and also ex-

cluded from downstream analysis all markers with trio-phasing posterior probability [Menelaou

and Marchini, 2013] below 1.0, obtaining 3, 525, 142 SNPs. We used the genetic map pro-

vided for the Phase I integrated variant set release (v3) of the 1, 000 Genomes Project1

(build 37, hg19 coordinates). For all markers that were not found in the genetic map, we

inferred the genetic distance by linear interpolation assuming uniform recombination rate

between the two closest markers found upstream and downstream in the available map. We

run GERMLINE using the parameters -min_m 1 -err_hom 2 -err_het 0 -bits 75 -haploid,

i.e. requiring a minimum IBD segment length of 1 cM, allowing at most 2 mismatches in

windows of 75 markers, for perfectly phased haploid chromosomes. We excluded regions

with unusual density of IBD sharing, which may be caused by false positive/negative seg-

ments due to low density of markers, deviations from neutrality or presence of common

1http://mathgen.stats.ox.ac.uk/impute/data_download_1000G_phase1_integrated.html
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structural variations that affect recombination. To this extent, we restricted our analysis to

regions with IBD density within 5 standard deviations from the mean genome-wide sharing.

We further required the analyzed regions to be at least 45 cM long, obtaining a total of 26

regions spanning 2, 160.26 cM (Table 4.1), IBD sharing density per site per pair 3.07×10−3,

std 1.35× 10−3).

When we analyzed long IBD segments (at least 7 cM), recently co-inherited within each

province, differences in the inferred effective population sizes (obtained using the methods

of Chapter 3) were substantial (Figure 4.10), reflecting recent differentiation as a result

of heterogeneous growth and migration events that occurred in the past 20-25 generations

(expected time to recent common ancestor based on segment length in a model of exponential

expansion: ∼500 years ago). In particular, Zuid-Holland exhibits an effective population

size of > 100, 000 individuals (eight times that of Overijssel), suggestive of recent expansion

and possibly gene flow from other provinces. The sharing of such long IBD segments (also

across provinces) supports localized recent common ancestry, with all provinces sharing, on

average, the largest number of long IBD segments with other individuals from the same

geographic region (Figure 4.11).

We then considered the fraction of genome shared within each province through short

IBD segments (1 to 2 cM), and thus inferred the ancestral effective population size per

province (Figure 4.12). Although these effective population sizes are rather homogeneous

across the 11 provinces, consistent with common genetic origins, we observed a South to

North gradient of decreasing ancestral population size accompanied by increased homozy-

gosity in the northern provinces (correlation between province latitude and IBD sharing

r = 0.923, p = 5.12 × 10−5). Such gradient has been previously described for average

inbreeding coefficients and similar metrics of genome-wide similarity across Dutch individ-

uals [Lao et al., 2013; Abdellaoui et al., 2013], and interpreted as the signature of remote

northwards migration during early waves of European colonization, although more complex

scenarios involving recent demographic events could not be ruled out. Indeed, a model of

serial founder migrations from the South to the North of the country may produce the ob-

served pattern of increasing homozygosity towards the North, as the results of shrinking
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From Chromosome From (genetic) To (genetic) From (physical) To (physical)

1 97.5 150.5 66,874,699 118,837,888

2 36.5 115 17,246,473 85,384,179

2 209 257.5 193,010,478 235,351,139

3 1 190 678347 176030190

4 101 217.5 85315581 189,657,996

5 38 148 22,657,926 141,420,437

6 54 111 33,954,192 103,983,460

6 150.5 197.3 139,903,959 170,245,872

7 1 63 962,247 38,722,532

7 66.5 172 41,688,961 152,254,508

8 78 166 55,170,178 139,553,601

9 83 158 72,512,292 132,515,730

10 44 181.5 19,570,732 134,866,854

11 5 160.9 2,047,054 134,587,122

12 16.5 90 6,476,123 75,656,510

12 98.5 158.5 82,586,486 128,401,829

13 1.4 128.8 20,518,406 114,094,544

14 1.1 54 20,545,390 59,184,876

14 58 113.5 63,846,103 104,808,535

15 70 149.9 50,284,344 101,969,749

17 1.1 84.5 163,278 55,936,970

18 37.5 84 11,962,813 59,189,703

19 26 105.9 7,857,579 158,513,172

20 19 83 5,649,902 52,818,462

21 1.9 63.7 15,636,220 47,031,048

22 21 74.1 23,874,416 50,493,062

Table 4.1: Regions that passed quality control and were analyzed in the GoNL dataset.

101



CHAPTER 4. RECONSTRUCTING RECENT MIGRATION EVENTS

Figure 4.10: Reconstructed recent population sizes.

Figure 4.11: Sharing of segments of at least 7 cM within and across provinces.

effective population sizes of smaller groups that migrate away from larger populations.

In addition to the observed gradient of increasing haplotypic homozygosity within provinces,

however, we observed that all GoNL samples, regardless of modern-day geographic location,

share on average more IBD segments with other individuals from the North of the country

than with individuals from the same province (Figure 4.13, off-diagonal elements, correlation

between average IBD sharing and average latitude of provinces r = 0.934, p < 10−5). This
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Figure 4.12: Reconstructed ancestral population sizes.

Figure 4.13: Sharing of segments between 1 and 2 cM within and across provinces.

counterintuitive observation was confirmed when we grouped the 11 provinces into three

clusters, North, Center and South, based on hierarchical clustering [Ward Jr, 1963] of the

cross-province IBD matrix for segments of length 1 cM or more, and considered the average

fraction of genome shared through IBD segments of at least 1 cM. Again, higher sharing

between South and North than within the South was observed (and, similarly, more sharing
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across North and Center than within the Center). Consider the model of serial migrations

shown in 4.14, and recall that to compute the fraction of genome shared through IBD seg-

ments of length at least u, we calculate E[f |θ] =
∫∞

0

[
p(tmcra = t|θ)

∫∞
u Erl2(l; 2t)dl

]
dt,

where p(tmcra = t|θ) represents the coalescent distribution for two individuals in a demo-

graphic model defined by θ, and
∫∞
u Erl2(l; 2t)dl represents the probability of a genomic site

being spanned by a segment of length at least u, given coalescence occurs at time t. The

latter probability decreases monotonically for u > 0. If South and North do not exchange

individuals after the initial split, the coalescence rate between present and the split time

is zero, therefore the observation of high sharing across regions compared to within regions

cannot be observed in the absence of subsequent migration.

Figure 4.14: A model of serial migrations from the south to the north.

However, we note that the model of simple northwards serial migrations shown in Figure

4.14 may be enriched to explain the pattern observed in the GoNL data. Figure 4.15 shows

the same simple model of subsequent population subdivisions. Increased sharing from the

South to the Center and the North may be achieved by including migration from the Center

to the South (forward in time) in the period preceding the formation of the Northern group
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Figure 4.15: Simple model of serial migrations and comparison of IBD patterns in GoNL

and expected in this model.
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Figure 4.16: Model of serial migrations that includes remote migrations to the South, and

comparison of IBD patterns in GoNL and expected in this model.

(Figure 4.16). Finally, the increased sharing between Southern and Northern individuals

may be obtained if individuals are allowed to migrate from the South back to the Center in

the period following the creation of the Northern group, as shown in Figure 4.17.

We note that while the inclusion of these two migration rates in the model recapitulates

the observed pattern of IBD sharing, comprehensive demographic analysis should include

further testing of several models, and formal comparison across them. Further note that in

this model a migration rate of 0.02 per individual, per generation, implies the ancestry of an

individual has a relatively high 1/50 chance of moving between regions at each generation.

During the course of 140 generations, this results in 1− (1− 0.02)140 = 0.94 probability of

migration for an ancestral lineage. For the more recent period, the chance of moving to the
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Figure 4.17: Model of serial migrations that includes remote migrations to the South and

subsequent migrations to the Center. Comparison of IBD patterns in GoNL and expected

in this model.
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Center in this model is 1 − (1 − 0.02)40 = 0.55. This model therefore implies substantial

ancestral contribution from the genetic pool currently represented in the north of the country,

rather than a unidirectional colonization from the South.

While a conclusive analysis would imply substantial additional hypothesis testing, possi-

bly involving the inclusion of non-Dutch samples from neighboring regions, the compatibility

of the presented model is in line with the complex fine-grained migratory history expected

in the Netherlands. The Dutch territory was in fact shaped by frequent sea level changes

and flooding events, which caused many parts of the coastal regions to vanish and reappear,

likely resulting in several pulses of colonization and admixture across demes. A notable

event is the occurrence of St. Lucia’s flood in 1, 287 C.E., which separated the provinces

of Noord Holland and Friesland. Interestingly, these two provinces exhibit high sharing for

segments longer than 5cM, suggesting remote genetic links, which may go back to migration

across these geographic regions before the occurrence of flooding.

Finally, we outline that the development of algorithms that detect short IBD segments

in potentially heterogeneous groups is a subject of current research, and improvements

in this direction will facilitate studying cross-population IBD sharing and strengthen the

conclusions of these analyses. While the accuracy of currently available IBD detection

methods in cross-population analysis is not fully understood (e.g. see Figure 4.5), the

observed enrichment for IBD sharing with Northern provinces of the GoNL dataset was also

observed in independent analysis performed using Beagle’s FastIBD method for detecting

haplotype sharing (correlation of within-province sharing and latitude: r = 0.784, p =

4.27 × 10−3, correlation between cross-province sharing and average latitude r = 0.882,

p < 10−5).

4.4 Appendix

4.4.1 Estimators for different Ne1 and Ne1

When the population sizes of Ne1 and Ne2 are allowed to vary, the derivation of Section 4.1

leads to the following closed form estimators
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N̂e1 = {9f̂3
2 + 31f̂3

1 + 128f̂3
d + 4f̂1f̂d(k − 18f̂d)+

−3f̂2
1 (18f̂d + k) + f̂2

2 (49f̂1 − 10f̂d + 3k)+

+f̂2[71f̂2
1 − 64f̂1f̂d − 4f̂d(22f̂d + k)]}×

× 1

2u
[f̂1(f̂2 + f̂1)2(9f̂2 + 11f̂1) + 8f̂2f̂1(f̂2 + f̂1)f̂d+

−4(4f̂2
2 + 19f̂2f̂1 + 13f̂2

1 )f̂2
d − 16f̂2f̂

3
d + 64f̂4

d ]−1

(4.12)

N̂e2 = {31f̂3
2 + 9f̂3

1 + 128f̂3
d − 4f̂1f̂d(22f̂d + k)+

+f̂2
1 (3k − 10f̂d) + f̂2[49f̂2

1 − 64f̂1f̂d+

+4f̂d(k − 18f̂d)] + f̂2
2 [71f̂1 − 3(18f̂d + k)]}×

× 1

2u
[f̂2(f̂2 + f̂1)2(11f̂2 + 9f̂1) + 8f̂2f̂1(f̂2 + f̂1)f̂d+

−4(13f̂2
2 + 19f̂2f̂1 + 4f̂2

1 )f̂2
d − 16f̂1f̂

3
d + 64f̂4

d ]−1

(4.13)

m̂ =
u(k − 3f̂2 − 3f̂1 + 10f̂d)

8(f̂2 + f̂1 − 2f̂d)
(4.14)

where f̂1, f̂2, f̂d are observed within and across populations, and

k =

√
[9(f̂1 + f̂2)− 14f̂d](f̂1 + f̂2 + 2f̂d) (4.15)

4.4.2 Probability of coalescence in a two-population model with migra-

tion

The probability that the two ancestral lineages are found in the same population can be

obtained from the terms specified in equations 4.1 and 4.2. Specifically, the chance of the

two ancestral lineages being in the same population is given by

p(Pi(t) = Pj(t)) = vi(t)vj(t)
T ≈ 1 + e−4mt

2
(4.16)

109



CHAPTER 4. RECONSTRUCTING RECENT MIGRATION EVENTS

If both individuals are sampled from the same population, or

p(Pi(t) = Pj(t)) ≈
1− e−4mt

2
(4.17)

Otherwise. We will focus on the first case, as the derivation in the latter case is analogous.

In order to obtain the full coalescent distribution for the ancestral lineages of the considered

two individuals sampled from one of the extant populations, we need to consider the chance

that their ancestral lineages coalesce while being in the same populations. To do this,

we consider the expected time that these lineages spend in the same population after t

generation (expressed in continuous time). Such quantity can be computed as

E[f |T,m,Ne] =

∫ T
0 p(Pi(t) = Pj(t))dt

T

=

∫ T
0 1− e−4mtdt

2T

=
1− e−4mT + 4mT

8mT

(4.18)

A constant population of effective size Ne has coalescent distribution p(t|Ne) = 1
N e
−t/Ne .

Since the two populations have the same effective population size, Ne, we can obtain the

coalescent distribution in the case of two population model by scaling the time in the distri-

bution of single population model by the expected fraction of time spent in the same deme,

which was computed above:

p(T |m,Ne) =
1

N
e−E[f |T,m,Ne]T/Ne

=
1

N
e−

1−e−4mT+4mT
8mNe

(4.19)

With cumulative distribution

P (T |m,Ne) = 1− e−
1−e−4mT+4mT

8mNe (4.20)
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Note, however, that we are not interested in accurately describing this distribution for

large values of T . In fact, we later introduce the factor p(l|t), which quickly goes to 0

for values of u that are large enough to be practically considered, e.g. above 0.5 cM. For

the purpose of this section, given reasonably large u and Ne (e.g. above 1, 000 effective

individuals), the coalescent distribution can be approximated using a Taylor expansion of

the kind ex ≈ 1 + x. Applying this approximation to the cumulative distribution we just

derived, we get

P (T |m,Ne) = 1− e−
1−e−4mT+4mT

8mNe

≈ 1− 1 +
1− e−4mT + 4mT

8mNe

=
1− e−4mT + 4mT

8mNe

(4.21)

Whose derivative gives the approximate pdf

p(t|m,Ne) ≈
1 + e−4mt

2Ne

(4.22)

111



CHAPTER 5. MUTATION EVENTS AND HAPLOTYPE SHARING

Chapter 5

Mutation events and haplotype

sharing

In chapters 3 and 4, we have introduced a coalescent-based framework that allows computing

several quantities related to haplotype sharing in purportedly unrelated samples as a function

of past demographic events. The presented framework was derived using coalescent theory

to model the occurrence of recombination events at the boundary of IBD segments. We have

thus far entirely neglected the occurrence of mutation in the described ancestral processes,

but as we shall describe in this chapter, the joint consideration of IBD sharing and mutations

may support additional analyses. As mentioned in the Introduction, “identical-by-descent”

segments may not be strictly identical. They may in fact harbor mutations that occurred

along ancestral lineages connecting a pair of individuals to their common ancestor. We here

describe the distribution of these mutations on IBD segments, and discuss applications that

make use of this information. We limit derivations to the case of Wright-Fisher populations.

The extension to arbitrary coalescent distributions is similar to previous chapters.

5.1 The number of mutations on an IBD segment

Suppose a common ancestor that lived t generations (in continuous time) in the past trans-

mits an IBD segment of genetic length l Morgans to a pair of modern day individuals. We
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assume fixed recombination and mutation rates per nucleotide are provided, so that mul-

tiplying genetic length into a constant r returns the number of nucleotides n the segment

spans (i.e. r = ρ−1). The probability that the IBD segment has length l Morgans and

harbors k mutated sites is

p(k, l|t, r, µ) = p(k|l, t, r, µ)× p(l|t), (5.1)

where µ is the mutation rate per generation, per nucleotide, per individual. As previously

described, the distribution of p(l|t) is exponential, with mean 1/(2t). Under the infinite sites

assumption [Kimura, 1969], the probability that a single site mutates during 2t transmission

events may be modeled as 1− e−2tµ. Since the value of µ is in the order of 10−8 [Roach et

al., 2010], the product 2tµ is also expected to be small, and we can use the approximation

1− e−x ≈ x for x −→ 0, to rewrite this probability as 2tµ. Because each site is modeled as

independently mutating, the total number of mutated sites is binomial, with probability 2tµ

and n = lr independent attempts. In addition, because n is large and 2tµ is small, we can

model the distribution for the number of mutations on the segment as Poisson with mean

2lrtµ. It is interesting to note that the number of mutations that are expected to be found

on an IBD segment does not depend on how long ago the common ancestor that transmitted

the segment has lived. Because the mutation process is independent from the recombination

process, the expected number of mutations E[k|t] for an IBD segment transmitted from an

ancestor t generations ago is obtained by taking the number of mutations that is expected

for a segment of length E[l|t] = 1/(2t). Namely

E[k|t] = 2tµr × 1

2t
= µr, (5.2)

where the generation cancels out. This occurs because segments transmitted from a common

ancestor decrease in length at the same rate as mutations accumulate. Substituting the

Poisson and the exponential distributions into Equation 5.1, we obtain

p(k, l|t, r, µ) =
(2lrtµ)ke−2lrtµ

k!
× (2te−2tl) (5.3)

If the IBD segment is allowed to be of any length, we can integrate l out, to obtain the
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distribution for the number of segments found on a segment from generation t

p(k|t, r, µ) =

∫ ∞
0

p(k, l|t, r, µ)dl

=

∫ ∞
0

(2lrtµ)ke−2lrtµ

k!
× (2te−2tl)dl

= (µr)k(1 + µr)−(k+1) ,

(5.4)

which has expectation and variance given by

E[k|t, r, µ] =
∞∑
k=0

k(µr)k(1 + µr)−(k+1) = µr

Var[k|t, r, µ] =
∞∑
k=0

(k − µr)2(µr)k(1 + µr)−(k+1) = µr(1 + µr)

(5.5)

Note that this is a Negative Binomial distribution

NB(k, r, θ) =
Γ(r + k)

k! Γ(r)
θk(1− θ)r , (5.6)

where r = 1 and θ = (µr)/(1 + µr) (or, equivalently, a Geometric distribution with

p = 1 − (µr)/(1 + µr), since r = 1). This distribution occurs as a result of the Gamma-

Poisson mixture described in Equation 5.5, where the rate of the Poisson distribution is a

random variable itself. In particular, it is an exponential random variable, i.e. it is Gamma

distributed with shape parameter k = 1 and scale parameter 1/(2t). Again, note that the

distribution for the number of mutations is independent from when the transmitting com-

mon ancestor has lived, therefore this result extends to arbitrary demographic histories, as

the coalescent distribution becomes irrelevant.

One can now ask what is the distribution for the number of mutations when the IBD seg-

ment can only be longer than a detectable length threshold u. Recall that an exponentially

distributed random variable L enjoys the memorylessness property, i.e. p(L > s + t | L >

s) = p(L > t) for all s, t ≥ 0. This implies that if a segment has length distributed as a

truncated exponential random variable, we can express the distribution of its length as a

constant segment of length u, plus a remaining part that is itself exponentially distributed

with parameter 1/(2t), i.e. L = u + Lτ , where the tip of the segment, Lτ , has exponential

distribution p(lτ |t) = 2te−2tl.
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We have already computed the distribution for the number of mutations on Lτ in Equa-

tion 5.4, and noted it does not depend on t. The distribution of the number of mutations on

the fixed part of length u, however, does depend on t, and can be modeled as a Poisson with

mean λ = 2tµru, as previously motivated. The distribution for the number of mutations on

the entire segment L, therefore, can be expressed as the discrete convolution of this Poisson

distribution and the Negative Binomial (or Geometric) distribution of Equation 5.4, with

expectation and variance given by

E[k|t, r, µ, u] = µr(2tu+ 1)

Var[k|t, r, µ, u] = µr(1 + µr + 2tu)
(5.7)

We have tested these models on empirical distributions obtained via simulations, and

observed a good fit (Figure 5.1).

5.2 Mutations on IBD segments and demographic history

5.2.1 The age of a randomly drawn IBD segment

We now want to move on to computing the distribution for the number of mutations found on

an IBD segment of a given minimum length coming from a population of specific demographic

history, rather than the exact generation of the common ancestor. We will need to express the

distribution for the age of a randomly sampled IBD segment of length l, given the population

has constant size N (simplifying the previous notation, where a contant population size was

indicated as Ne). This quantity can be computed using the results of Chapter 3. Recall that

for a pair of individuals, given a common ancestor that lived t generations in the past, the

probability a genomic site is spanned by a segment of length l is the Erlang-2 distribution

with parameter (2t)−1, multiplied by the chance of coalescence at generation t, which is

p(t|N) = N−1e−tN
−1 . We can divide this expression by l, switching our unit from genomic

site to whole segment, and then divide by a normalizing factor to obtain the segment’s age
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(a) Predicted vs. observed distribution for the “fixed-length” part of

the segments.
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(b) Observed distribution for the “variable-length” part of the seg-

ments, which does not depend on N .

Figure 5.1: Comparison of empirical and analytical distributions for the number of mutations

in the “fixed-" and “variable-length” parts of IBD segments, using SMC simulations.
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distribution as

p(t|l, N) =
4t2le−2tl × l−1 ×N−1e−tN

−1∫∞
0 4t2le−2tl × l−1 ×N−1e−tN−1dt

=
t2(2lN + 1)3e−t(N

−1+2l)

2N3

= t
(
N−1 + 2l

)2
e−t(N

−1+2l) ×
(
N−1 + 2l

) t
2

(5.8)

Note that this is closely related to computing the expected number of segments of length l

for a population of size N , as the expected number of segments of length l is obtained by

summing the contributions of each generation in the considered demographic history, which

for a constant population size is given by γ × p(t|N)p(l|t)/l (see Equation 3.18, which is

averaged over all segments of length at least u). This approach was used in [Ralph and

Coop, 2013] in the more general context of an arbitrary demographic history, although with

a different computation for the expected number of IBD segments.

To get the age of a segment of length greater than u we marginalize the length of the IBD

segment for the given demographic history, using Equation 3.14, normalized in the interval

[u,∞), obtaining

p(t|l ≥ u,N) =

∫ ∞
u

t2(2lN + 1)3e−t(N
−1+2l)

2N3
× 4Ne(2Neu+ 1)2

(2lNe + 1)3
dl

= t× e−t(N−1+2u)
(
N−1 + 2u

)2
,

(5.9)

Note that this is again the Erlang-2 distribution, with parameter N−1 + 2u, and that

limu→0 p(t|l ≥ u,N) = N−2te−tN
−1 .

5.2.2 The number of mutations on an IBD segment with minimum length

To compute the distribution of mutations on a segment of minimum detectable length u in

the population, we again separate the contributions of the segment into its two deterministic

and stochastic parts, now marginalizing the time t of the transmitting common ancestor for

the portion of fixed length u, using Equation 5.9
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p(k|u, r, µ,N) =

∫ ∞
0

p(k, t|u, r, µ,N)dt

=

∫ ∞
0

p(k|t, u, r, µ,N)p(t|l ≥ u,N)dt

=

∫ ∞
0

(2tµru)ke−2tµru

k!
te−t(N

−1+2u)
(
N−1 + 2u

)2
dt

=
2k(1 + k)(µNru)k(1 + 2Nu)2

[1 + 2N(u+ µru)]k+2

(5.10)

The mean for the number of mutations in this portion of the segment is

E[k|t, r, µ, l = u,N ] =
∞∑
k=0

k × 2k(1 + k)(µNru)k(1 + 2Nu)2

[1 + 2N(u+ µru)]k+2

=
4µNru

1 + 2Nu
,

(5.11)

and the variance is

Var[k|t, r, µ, l = u,N ] =

∞∑
k=0

(
k − 4µNru

1 + 2Nu

)2

× 2k(1 + k)(µNru)k(1 + 2Nu)2

[1 + 2N(u+ µru)]k+2

=
4µNru[1 + 2N(u+ µru)]

(1 + 2Nu)2
.

(5.12)

The remaining part of the segment, the “tip”, has variable length, but as we have seen

the number of mutations it harbors (Equation 5.4) does not depend on the time t of the

transmitting common ancestor, and marginalizing it does not affect the resulting distribu-

tion. Putting together the “tip” distribution of Equation 5.4 with the distribution for the

fixed part of the segment (Equation 5.10), we get

p(k|u, r, µ,N) = p(k|l = u, r, µ,N) ∗ p(k|l > 0, r, µ)

=
∞∑

n=−∞
χa(k)

2k(1 + k)(µNru)k(1 + 2Nu)2

[1 + 2N(u+ µru)]k+2
× χ0(n− k)

(µr)n−k

(1 + µr)n−k+1

= (2Nu+ 1)2

{
(µr)n

(µr + 1)n+1
− 2n+1Nu(µNru)n[2N(µru+ u) + n+ 2]

[2N(µru+ u) + 1]n+2

}
,

(5.13)
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where χa(x) is the step function

χa(x) =


1 if x ≥ a,

0 if x < a.

(5.14)

The mean and the variance of this distribution can be obtained summing mean and

variance of the two components of the final distribution, as

E[k|u, r, µ,N ] = µr +
4µNru

1 + 2Nu

Var[k|u, r, µ,N ] = µr(1 + µr) +
4µNru[1 + 2N(u+ µru)]

(1 + 2Nu)2
.

(5.15)

The obtained distribution for the number of mutations on an IBD segment was found to

provide a good fit for empirical distributions obtained from simulations (Figure 5.2). Note

that the distribution is overdispersed, as the variance is always larger than the mean.
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Figure 5.2: Empirical and analytical distributions of mutation counts on IBD segments for

N = 500, using SMC simulations.
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5.3 Using mutations on IBD segments for demographic infer-

ence

We now turn to the problem of using knowledge on the number of mutations on IBD segments

to infer demographic history. We consider the number of segments su that are longer than a

Morgan threshold u, and the number k of mutations found on these segments in a population

of size N . Again, we can write

p(su, k|N)dl = p(k, |su, N)p(su|N) (5.16)

We have previously computed an expression for p(su|N), which is Poisson distributed

with mean described in Equation 3.24, and Equation 5.8 provides the distribution for the

number of mutations coming from a single segment sampled from the population. To com-

pute the distribution for an independent number of segments, we can repeatedly take the

convolution of Equation 5.11. Note, however, that this is computationally unfeasible for

large su, and it is also unnecessary, as we can rely on the Central Limit Theorem and use

the mean and variance of Equation 5.15 in a Normal distribution. Note, furthermore, that

the shape of repeated convolutions of the distribution in Equation 5.11 quickly converges to

a Gaussian distribution (Figure 5.3).

After substituting the previously discussed distributions into Equation 5.16, we tested

the prediction of this expression against several synthetic datasets (Figure 5.6), and we

observed good correspondence between analytical and empirical distributions (note that

some of the approximations done in the GENOME simulator software, e.g. the minimum

size of recombinant blocks, may distort the empirical distribution).

Compared to the distribution for the number of IBD segments (Figure 5.4), the distri-

butions for the number of mutations on IBD segments overlap substantially across different

values of the effective population size N (Figure 5.5), suggesting that knowledge about the

distribution of mutations over IBD segments does not result in substantial improvements

for demographic inference. Inspecting the expression for the mean number of mutations in

an IBD segment in Equation 5.15, it is clear that variations of N , the effective population

size, result in minimal variation, as can be observed in Figure 5.7.
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Figure 5.3: Convergence of the distribution for the number of mutations to a Normal distri-

bution.

5.4 Inferring mutation rates using IBD

The mean and variance of Equation 5.15 show a weak connection between demography and

mutations in IBD segments. While this does not facilitate using this feature for demographic

inference, it does provide support for other analyses. The mean and variance are in fact

strongly influenced by the mutation rate (Figure 5.8), suggesting this parameter may be

inferred based on the derived distributions of mutation on IBD segments. Furthermore, we

note that it is possible to entirely remove the dependence on demographic history through

very simple manipulations of the observed IBD segments. We have previously noted that

due to the memorylessness property of the exponential distribution, the length of a detected

IBD segment longer than a detectable threshold u may be seen as the sum of two parts:

L = u + Lτ , the fixed length, determined by the threshold of detectable IBD segments,

and a stochastic part, Lτ . As previously described, the latter is not affected by coalescent
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Figure 5.4: The distribution of the number of IBD segments does not overlap across different

populations (20 samples, segments of at least 0.5cM in SMC simulations).

times, while the “fixed” portion of the segment is weakly influenced by population size. This

property can be exploited to isolate summary statistics that are informative about mutation

rates, while not being confounded by the presence of latent demographic history. Recall

that the sum of two Poisson random variables is also Poisson distributed, with rate given by

the sum of the addends’ rates. The number of mutations on the segment L = u + Lτ that

are found on the Lτ portion are therefore expected to be a fraction Lτ/L of those observed

on the entire segment. To estimate the total number of such mutations, removing the small

bias introduced by the demographic history, it is therefore sufficient to multiply the number

of mutations observed on each segment of the detected set Su by the factor (l − u)/l.

k̂ =
∑
s∈Su

ks × [(ls − u)/ls] (5.17)

As shown in Equation 5.5, the expected number of mutations occurring in the stochastic

portion of each segment is simply µr. Because the distribution for the number of mutations
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Figure 5.5: Substantial overlap for the distribution of the total number of mutations in

different populations (20 samples, segments of at least 0.5cM in SMC simulations).

found on a large number of segments ns = |Su| is well described by a Normal distribution

with mean nsµr, we can derive the maximum likelihood estimator

µ̂ =
k̂

rns
, (5.18)

which is unbiased under the discussed assumptions. If we denote the set of segments coming

from the discrete generation g as Sug, then
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(a) N = 2, 000, µ = 10−8, r = 108, u = 0.01, genomic region of 10M.

(b) N = 4, 000, µ = 10−8, r = 108, u = 0.01, genomic region of 10M.

Figure 5.6: Comparison of joint distribution for the number of segments and the number of

mutations and empirical distribution obtained from GENOME simulations.
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We tested this estimator on simulated data using the SMC algorithm [McVean and
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Figure 5.8: Number of mutations per IBD segment as a function of mutation rate.

Cardin, 2005], therefore using definition (c) of Section 1.1.4.1 to generate shared segments,

and we observed good performance. By analyzing IBD segments of length at least 1 cM for

only 5 diploid samples in a population of 10, 000 haploid individuals, assuming a genome of

35 Morgans and µ = 1.15, r = 0.83, we attained tight 95% confidence intervals around the

true mutation rate (Figure 5.9a). Variations in the effective population size had a moderate

influence on the width of confidence intervals, as larger population sizes result in fewer IBD

segments. Because a sample of n individuals contains
(

2n
2

)
haploid chromosomes that may

contain IBD segments, there is a quadratic gain of statistical power when more samples are

analyzed (Figure 5.9b). A sample of 50 independent individuals provide extremely tight

confidence intervals in a population of N = 10, 000 effective diploid individuals, using the

above listed parameters.

Back-of-the-envelope calculations suggest that the statistical power of IBD-based infer-

ence of mutation rates is extremely high compared to a trio-based analysis. When mutation

rates are estimated based on observed de-novo mutations in transmitted haplotypes of se-

quenced trio individuals, the number of “effective haplotypes” that are compared is n/3, for

n sequenced individuals, i.e. the two transmitted haplotypes. In a population of diploid
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Figure 5.9: Inference of mutation rates via IBD sharing in SMC simulations.
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effective size 10, 000 (20, 000 haploid individuals), pairs of samples will share on average

(4Nu + 1)/(2Nu + 1)2 ≈ 1/(Nu) = 0.5% of their genome through IBD haplotypes longer

than 1cM. The number of pairs tested for IBD are however
(

2n
2

)
, as previously mentioned,

resulting in
(

2n
2

)
× 0.05 effective comparisons across haplotypes, assuming that ancestral

lineages do not overlap significantly. In this scenario, for a sample of 60 individuals, about(
120
2

)
× 0.005 ≈ 36 haploid genomes are effectively compared to estimate mutation rates us-

ing IBD, against the 40 used in the trio-based approach. However, the number of mutations

found on a nucleotide spanned by these IBD segments is higher than the average number

of mutations for a nucleotide transmitted by a parent in a trio-based analysis. The num-

ber of meioses (generations) separating two IBD individuals from their common ancestor

trasmitting a segment of at least u Morgans is on average 2/(N−1 + 2u) ≈ 1/u (Equation

5.9). The distance, in meioses, between the two individuals is therefore on average 2/u,

or 200 generations for u = 1cM. This results in roughly 36×200
40 = 180 times the statistical

power of a trio-based analysis. If more isolated populations are considered, and shorter

segments can be detected, this gain is further increased. For a population of effective size

N = 1, 000, the fraction of genome shared for segments of at least 1 cM is about 5%, with

a gain of (1202 )×0.05×200

40 = 1, 785, and if segments of 0.5 cM and longer can be detected, the

gain would reach roughly 3, 570.

Such increase in statistical power enables further analyses, such as the inference of locus-

specific mutation rates. Note, however, that some of the assumptions that were made in

this derivation, such as the uniformity of recombination rates and selective neutrality, will

need to be addressed. Furthermore, this analysis relies on accurate IBD detection, and IBD

segments are defined as non-recombinant chromosomal regions transmitted from a common

ancestor (see definition (c) of Section 1.1.4.1). Refinements of these models to account for

mismatches between the described quantities and what is realistically possible to infer using

available IBD detection algorithms will improve this analysis. This approach also assumes

lack of genotyping errors, however note that because IBD detection is feasible using only

high-frequency markers, typically less prone to genotype errors, there is no substantial inter-

ference in using shared haplotypes in this scenario. A related application is the fine-tuning

128



CHAPTER 5. MUTATION EVENTS AND HAPLOTYPE SHARING

of genotype-calling parameters, as prior knowledge on a plausible range for mutation rates

enables detecting a component of error in the inferred mutation parameter. Furthermore,

note that assuming the mutation rate is known, this approach may be used to study recom-

bination rates.

It is interesting to note that this approach measures mutation rates observing mutation

events that potentially occurred several generations in the past. This method can therefore

be used to asses variation in historical mutation rates. A simple test involves obtaining

estimates based on different cutoffs for the minimum length of the observed IBD segments.

Because shorter haplotypes tend to be transmitted from more remote common ancestors,

estimates based on smaller values of u reflect mutation rates at more remote time scales in the

population. If IBD detection is accurate and a demographic model has been reconstructed

(using the methods of Chapter 3 and 4, or others that more suitable for remote time scales

e.g. [Li and Durbin, 2011]), it is possible to estimate the time of these variations using the

described methods in conjunction with the segment age distributions of Equation 5.9.

5.5 Appendix

5.5.1 Efficient computation of mean and variance for the number of mu-

tations in an arbitrary demography

If a population of arbitrary demographic history θ has population size N(g, θ) at discrete

time g, the coalescent distribution is described by

g−1∏
j=1

1− 1

N(j, θ)

 1

N(g, θ)
= C(g, θ). (5.20)

The probability of seeing k mutations on an IBD segment in this population is

p(k|u, r, µ, θ) =

∞∑
g=1

[C(g, θ) Poiss(k, 2µrug)] . (5.21)

For the mean of the constant part:
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E[k|u, r, µ, θ] =
∞∑
k=0

{k p(k|u, r, µ, θ)}

=

∞∑
g=1

{ ∞∑
k=0

[k C(g, θ) Poiss(k, 2µrug)]

}

=

∞∑
g=1

{
C(g, θ)

∞∑
k=0

[kPoiss(k, 2µrug)]

}

=
∞∑
g=1

{2µrug C(g, θ)} .

(5.22)

For the variance of the constant part (using EK = E[k|u, r, µ, θ]):

Var[k|u, r, µ, θ] =
∞∑
k=0

{
(k − EK)2 p(k|u, r, µ, θ)

}
=

∞∑
k=0

(k − EK)2
∞∑
g=1

[C(g, θ) Poiss(k, 2µrug)]


=
∞∑
g=1

{
C(g, θ)

∞∑
k=0

[
(k − EK)2 Poiss(k, 2µrug)

]}

=
∞∑
g=1

{[
(2µrug − EK)2 + 2µrug

]
C(g, θ)

}
.

(5.23)

Where the last step is obtained considering that, for any random variableK with discrete

probability distribution f(k), having defined b = EK −c, where EK is the expectation of the

distribution, then
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∞∑
k=−∞

[
(k − c)2f(k)

]
=

∞∑
k=−∞

[
(k − EK +b)2f(k)

]
=

∞∑
k=−∞

{[
(b2 − 2bEK +2bk) + (k − EK)2

]
f(k)

}
=

∞∑
k=−∞

{[
b2 − 2bEK +2bk

]
f(k)

}
+

∞∑
k=−∞

{
(k − EK)2f(k)

}
= b2 − 2bEK +2b

∞∑
k=−∞

[kf(k)] +
∞∑

k=−∞

{
(k − EK)2f(k)

}
= b2 + VarK = (EK −c)2 + VarK .

(5.24)
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Chapter 6

Conclusions

In this thesis we presented several new methodologies for population genetics analysis based

on the sharing of IBD haplotypes across purportedly unrelated individuals from one or

multiple populations. Specifically,

• In Chapter 2, by analyzing several world-wide populations from the HapMap 3 dataset

and the Jewish Hapmap dataset, we demonstrated that IBD sharing is informative

about demographic events, revealing past migrations and population size fluctuations,

carries the signature of evolutionary events, demonstrating enrichment of loci under

positive selection for commonly shared regions, and reflects recent stratification, in

some cases more accurately than standard methodologies.

• In Chapter 3, motivated by the results of Chapter 2, we used coalescent theory (see

Chapter 1) to derive a theoretical framework that allows quantitatively describing the

relationship between IBD sharing and demography. We demonstrated these methods

by inferring the occurrence of recent demographic events in two populations of dis-

tinctive recent demographic profiles: Ashkenazi Jews, exhibiting evidence for a recent

founder event followed by substantial expansion and isolation, and the Maasai from

Kenya, where haplotype sharing is compatible with a societal structure of several small

demes interacting through high migration rates.

• In Chapter 4, we extended this framework to enable simultaneous analysis of several
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populations, inferring both migration and population size fluctuation. We showed

this approach can be used for the analysis of recently diverged populations, where

state-of-the-art methods based on ancestry deconvolution using a panel of reference

ancestral populations are complicated due to the limiting assumption of strongly di-

verged ancestral groups. We used these models to study recent demographic history

in the Netherlands, showing that IBD-based analysis reveals demographic structure

even at fine-grained geographic scales.

• Chapter 5 discussed utilizing IBD segments in studies where whole sequence informa-

tion is available. We derived distributions for the number of mutated sites on shared

haplotypes, and shown that while this information does not provide substantial im-

provements for demographic inference, it can be used for inferring additional param-

eters, such as mutation rate, increasing the statistical power by orders of magnitude

compared to classical family-based methods. This boost in statistical power enables

further applications, such as the inference of a map of locus-specific mutation rates,

studying recombination rates, and studying historical variations of these quantities.

During the development of this work, several other methodologies related to demographic

inference were published. We here provide a brief overview of their advantages and limita-

tions.

Methods for demographic inference available when this thesis work begun (reviewed in

[Pool et al., 2010]) often relied on the simplifying but limiting assumption of unlinked genetic

markers, or modeled the linkage induced by the lack of historical recombination using mea-

sures of local correlation such as linkage disequilibrium. In the following years, sustained by

the increasingly dense genomic datasets, several haplotype-based methods were proposed.

In [Pool and Nielsen, 2009], subsequently extended by [Gravel, 2012], an approach based on

the frequency and length of migrant tracts was proposed for the inference of migration rates.

While effectively recovering migration rates in several demographic scenarios, however, these

methods do not model population size fluctuations, and are dependent on the possibility of

reliably performing ancestry deconvolution to assign chromosomal tracts to a set of reference
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populations. These populations may not be available and, more importantly, need to be sub-

stantially divergent to attain high-quality deconvolution, as shown in our analysis. Although

whole sequence datasets and methodological developments may improve the performance of

deconvolution methods, this limitation may prevent methods based on migrant tracts from

being effectively employed in the reconstruction of fine-scale migration patterns of the recent

millennia. Methods based on ancestry deconvolution, however, may in some scenarios be

used in concert with methods based on IBD sharing. Knowing whether an IBD tract was

co-inherited from a specific population, in fact, may provide information on the directional-

ity of migration, and also offer further insight into deeper time scales, as shown in [Velez et

al., 2012] and [Campbell et al., 2012] and discussed in Chapter 2. These methods may be

further explored in light of the recently developed analytical model for migrant tracts and

the presented model for IBD. While the methods based on IBD detection, presented in this

work, provide some advantages over ancestry deconvolution, it should be noted that these

involve dealing with increasingly complex demographic models, and because the ancestors

of IBD segments tend to be more remote than those of migrant tracts, larger sample sizes

may be required for this analysis.

As mentioned in the Introduction (Section 1.1.3.4), a recently developed Markovian ap-

proximation of the coalescent process (Sequentially Markovian Coalescent, SMC, [McVean

and Cardin, 2005]) resulted in the development of several new population genetics methods,

including methods for inferring demographic history. We note that because we relied on

definition (c) of Section 1.1.4.1, the methods described in this thesis are also intrinsically

linked to the SMC framework, as IBD segments are defined as being delimited by any re-

combination event. Future developments include dealing with the potential discrepancies

of this definition and the output of IBD detection algorithms, potentially incorporating

these and other calculations in new methods for IBD discovery. In [Li and Durbin, 2011],

a method based on the SMC model studied population size fluctuations affecting human

populations following the out-of-Africa migrations. This approach was limited to pairs of

phased whole-sequence haploid individuals from different populations, or single individu-

als from a population, resulting in limited power for the inference of recent demographic
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events. Recently, these methods have been extended to allow analyzing multiple phased

individuals simultaneously, using a composite likelihood approach [Steinrücken et al., 2012;

Sheehan et al., 2013], thus gaining insight into more recent demographic events. Using simi-

lar techniques, a recently published pre-print relies on approximated extensions of the SMC

to the analysis of multiple individuals, providing insight into the ancestral recombination

graph of groups of individuals [Rasmussen and Siepel, 2013]. These methods are extremely

appealing, as they make use of almost all available genomic information, but may be suffer-

ing from computational limitations. Exploiting the Markovian properties of the SMC model

typically leads to algorithms that scan all s sites for all pairs of n samples resulting in at least

O(n2s) complexity. When the analysis of thousands of samples across millions of markers is

required, these methods scale poorly compared to methods that rely on summary statistics

that can be obtained through methods that are sub-quadratic in the number of samples

and may not require analyzing all available genomic markers. A method recently proposed

in [Harris and Nielsen, 2013] relies on summary statistics of IBS tract length, decreasing

the computational burden but still requiring full pair-wise analysis of sequences to extract

summary statistics, also requiring O(n2s) computation. This method models the length of

haplotypes shared through very remote common ancestors. At these time scales, very short

IBD segments may be joined together, and definition (c) of shared segment used in this work

becomes unrealistic (see Section 1.1.4.1). To work with definition (b), where several short

contiguous IBD segments from a shared ancestor are transmitted to a pair of individuals,

additional modeling was developed. In addition to these methods, work described in [Ralph

and Coop, 2013] infers historical demographic changes from length distributions of IBD seg-

ments, using the principles described in Chapter 3 within a less parametric approach to the

inference of coalescent distributions across different populations, thereby allowing increased

flexibility compared to the model-based inference procedure of Chapter 3, but without pro-

viding explicit inference of migration and population size changes, described in Chapter

4.

The models that we proposed in this thesis assume selective neutrality. Although the dis-

tribution of haplotype sharing is likely to be affected by localized natural selection [Bamshad
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and Wooding, 2003], the extent to which the human genome has been shaped by selective

forces has yet to be quantified [Hernandez et al., 2011]. The proposed model of IBD sharing

can be locally used to test deviations from neutrality and can be improved to explicitly

handle the presence of selective forces. Further enhancements of the proposed methodology

include improved approaches to demographic model optimization and selection, which may

lead to automatic clustering of analyzed individuals into subpopulations. Furthermore, as

described in Chapter 5 the proposed framework allows studying basic biological parameters

such as mutation and recombination rates, potentially providing insights into questions re-

garding locus- or population-specific differences, and historical variation of these quantities

([Scally and Durbin, 2012; Coop and Przeworski, 2007])

The proposed methodology facilitates tackling questions beyond demographic inference

from genotype data; such questions include those that arise when phenotype data are also

considered. A problem that has recently received much attention is that of estimating

heritability with the use of large samples of unrelated individuals. Haplotype sharing across

purportedly unrelated individuals has been used in this context [Zuk et al., 2012; Zaitlen

et al., 2013; Price et al., 2011], and the proposed model for IBD sharing across unrelated

samples can be used for improving such analysis.

On the applied side, genome-wide association studies have taught us the lesson of needing

to know the demographic makeup of a study population. Although linear-trend analysis

has been shown to capture population stratification when common genomic variants are

considered [Price et al., 2006], methods for association of rare variants are an active field of

investigation [Li and Leal, 2008; Madsen and Browning, 2009; Price et al., 2010] in which

recent stratification poses new challenges [Mathieson and McVean, 2012]. The reconstruction

of a fine-grained picture of population stratification thus gains importance in the context of

full sequence data. Stratification might in fact occur at different historical timescales, and

statistical indicators designed to account for ancient diversification trends might not reveal

signatures of recent demographic events.

The reported analysis of HapMap’s MKK samples provides an example of this phe-

nomenon. This sample exhibits high levels of endogamy through ubiquitous shared long-
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range haplotypes, suggesting a small population size, but it appears to have an outbred

profile when the decay of LD is analyzed [McEvoy et al., 2011]. As discussed in Chapter 3,

a plausible reason for the observed data might in this case be found in the societal structure

of the MKK people. We hypothesize that this “village effect” will be established in other

modern populations that are commonly considered outbred on the basis of their ancient-

timescale characteristics. Several genetic surveys have in fact outlined surprisingly high levels

of runs of homozygosity in a number of outbred populations worldwide [Henn et al., 2011;

Henn et al., 2011; Broman and Weber, 1999; Gibson et al., 2006]. When migration events

are included in the model, long runs of homozygous haplotypes in otherwise outbred pop-

ulations are plausibly interpreted as reflecting a genetic pool of several small demes that

slowly but constantly intermix. The ability to reconstruct recent demographic events will

enable the analysis of these phenomena. Combined with prior knowledge of a population’s

history, this analysis will provide a useful tool for describing the fine-grained evolutionary

context in which recent genetic variation arose.
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