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ABSTRACT 

Physiology-based Mathematical Models for the Intensive Care Unit: 

Application to Mechanical Ventilation 

 

Antonio Albanese 



This work takes us a step closer to realizing personalized medicine, complementing 

empirical and heuristic way in which clinicians typically work. This thesis presents 

mechanistic models of physiology. These models, given continuous signals from a patient, 

can be fine-tuned via parameter estimation methods so that the model’s outputs match the 

patient’s. We thus obtain a virtual patient mimicking the patient at hand. Therapeutic 

scenarios can then be applied and optimal diagnosis and therapy can thus be attained. As 

such, personalized medicine can then be achieved without resorting to costly genetics.  

In particular we have developed a novel comprehensive mathematical model of the 

cardiopulmonary system that includes cardiovascular circulation, respiratory mechanics, 

tissue and alveolar gas exchange, as well as short-term neural control. Validity of the model 

was proven by the excellent agreement with real patient data, under normo-physiological as 

well as hypercapnic and hypoxic conditions, taken from literature.  

As a concrete example, a submodel of the lung mechanics was fine-tuned using real 

patient data and personalized respiratory parameters (resistance, Rrs, and compliance, Crs) 

were estimated continually. This allows us to compute the patient’s effort (Work of 

Breathing), continuously and more importantly noninvasively.  

Finally, the use of Bayesian estimation techniques, which allow incorporation of 

population studies and prior information about model’s parameters, was proposed in the 

contest of patient-specific physiological models. A Bayesian Maximum a Posteriori 



 

 

Probability (MAP) estimator was implemented and applied to a case-study of respiratory 

mechanics. Its superiority against the classical Least Squares method was proven in data-poor 

conditions using both simulated and real animal data.  

This thesis can serve as a platform for a plethora of applications for cardiopulmonary 

personalized medicine. 
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Chapter 1: Introduction 

1.1 Motivation 

Medicine is by and large an empirical field. Clinicians make diagnostic and therapeutic 

decisions based on their experience. Evidence-based medicine is the current trend. It consists 

in integrating individual clinical expertise with the best available external clinical evidence 

from systematic research. Recently, strong effort has been put to help clinicians in their 

decision making process via intelligent computerized systems (Clinical Decision Support 

Systems, CDSS). The majority of these systems have focused on simply translating 

clinicians’ current way of thinking into a set of rules (rule-based systems). Others have tried 

to address the problem by exploiting the information contained in the data that are collected 

from patients and looking for patterns or correlations (data mining/machine learning-based 

systems). However, both approaches do not describe a complete picture to improve current 

standard of care. A complementary alternative is to bring a mechanistic understanding of the 

physiology via physiology-based mathematical models into the picture. Model-based 

approaches can be used to: 

1. Understand the cause-effect relationships of diseases and test new physiological 

hypothesis. 

2. Perform generic “what-if” scenarios and predict the effects of new therapies and 

interventions on a generic patient (or class of patients).  

3. Perform personalized ”what-if” scenarios on a specific patient to quantitatively 

predict his/her response to different therapies or interventions. This leads to providing 

optimal and personalized therapy (personalized medicine). To accomplish this, the 

parameters of the physiological model will need to be fine-tuned to the specific 

patient (patient-specific model) via parameter estimation techniques.  
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4. Probe the physiological system under exam and provide noninvasive estimates of 

physiological variables and/or parameters that are otherwise hidden to the clinicians 

due to the invasiveness, cost and patient discomfort that come with their 

measurements. This information can be crucial for the assessment of patients’ health 

status.  

5. Detect and predict specific diseases. 

Figure 1.1 shows a diagram of current standard of diagnostic and therapeutic medicine and 

how different sources of knowledge can be used to build CDSS to improve current standard 

of care. As highlighted in red, mechanistic physiology-based mathematical models can lead 

to personalized medicine as opposed to population-based medicine. Two main advantages of 

physiology-based models: they have the potential for optimizing diagnosis and therapy for 

the individual patient, and they are more readily acceptable in the medical community. The 

above comes with the understanding that a hybrid combination of two or all of the 

approaches shown in Figure 1.1 may be needed for specific applications. 

 

Figure 1.1 – Schematic of the current standard of diagnostic (Dx) and therapeutic (Tx) medicine and source of 

information for CDSS. 
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This thesis is a small step toward reaching personalized medicine. We accomplish this 

goal via advancing physiological modeling and parameter estimation. This work has been 

carried out in the Cardiopulmonary Group led by Dr. Chbat at Philips Research North 

America. The specific therapeutic application we choose is mechanical ventilation (MV). 

MV is a commonly-used life-saving procedure. It is required when a patient is not able to 

achieve adequate ventilation (and thereby gas exchange). This may occur under many 

circumstances, for example in connection with surgery after anesthetics suppress the activity 

of the respiratory muscles, or in acute respiratory failure caused by chronic obstructive 

pulmonary disease (COPD), acute lung injury (ALI) or acute respiratory distress syndrome 

(ARDS). It is estimated that MV is required by nearly 1.5 million patients in the United 

States every year [1] and this number is set to increase. Most patients under MV would die 

without one. Hence, MV is the most viable therapy available today for patients suffering of 

respiratory failure.  

However, since MV is not optimized for the specific patient, it can cause injury (8-10 % 

of the cases, with a 2013 figure placing this range to 10-24%). A main issue with a ventilator 

is that it exposes patients’ lungs to potentially destructive fluid/mechanical energy. As a 

result, if MV is not optimized, ventilator-induced lung injury (VILI) can occur, exacerbating 

existing conditions, prolonging length of stay in the ICU and increasing the risk of infection, 

pneumonia and fatality due to multiple organ failure. Apart from patient safety and clinical 

outcomes related concerns, there are also economic aspects associated with MV. The average 

cost of a day in the ICU is somewhere between $3,518 [2] and $31,574 [3], depending on the 

specific therapy used. Hence, an extra day under MV not only increases the risk of the patient 

developing ventilator-related complications but also increases healthcare cost. 
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Although mechanical ventilation has been used in the ICU for many years, the 

management of the mechanically ventilated patient is still largely based on empirical 

knowledge. Particularly, selecting the best ventilation mode and adjusting the ventilator 

settings as the conditions or the status of the patient change has remained a challenging task 

even for the most experienced clinicians. This is due to the fact that the effects of ventilator 

setting on the patient status are hardly predictable.  The ventilator settings to be adjusted can 

be many and each may have counteracting effects on the patient health. In fact, the degree of 

interaction between the cardiovascular and the respiratory system is so high that often times 

beneficial effects of ventilator resetting on one system are offset by detrimental effects on the 

other system. For these reasons and given the limited time available for making clinical 

decisions, ventilator settings adjustments are mostly driven by intuition or empirical 

knowledge, rather than by quantitative mechanistic arguments. Furthermore, a trial-error 

strategy is typically used when making ventilator settings adjustments. Clearly, this strategy 

is suboptimal and may cause harm to the patient, as the effects of ventilator settings can only 

be evaluated after these have been actually applied to the patient.  

Standardized ventilator management protocols and guidelines do exist. However, these 

are rigid generalized approaches, not tailored to the specific patient’s pathophysiology. As a 

result, a high number of patients are still ventilated with sub-optimal ventilator settings. A 

recent study [4] has shown that during 4 hours of conventional mechanical ventilation 

according to clinical guidelines, only 12% of the times the patients were receiving 

appropriate mechanical ventilation therapy.  

In the ICU only arterial blood pressure (ABP), heart rate (HR), oxygen saturation (SpO2), 

end-tidal CO2 (EtCO2) and very few other variables are monitored. Many other meaningful 

clinical variables/parameters remain hidden, to the clinicians, as their monitoring would 

require invasive procedures or interference with the normal operation of the ventilator. As a 
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result, since clinicians rely on available measurements to make diagnosis and therapeutic 

decisions, their judgment and decisions are based only on a “partial” view of the patient 

status. For instance, in spontaneous modes of MV (where patient can actively breathe), 

quantitative assessment of patient respiratory efforts (Work of Breathing) is crucial in order 

to avoid respiratory muscles atrophy or fatigue, and ultimately lead to liberation (or 

weaning). However, this information (respiratory efforts assessment) can only be obtained 

via invasive procedures, such as pleural pressure or esophageal pressure manometry, and 

hence it is rarely offered at the bedside. Further, assessment of respiratory system’s 

mechanics during MV is typically accomplished by measuring two parameters, termed 

resistance (Rrs) and compliance (Crs). These two describe the resistive and elastic properties 

of the respiratory system comprising airways, lung parenchyma and chest wall assuming a 

simplistic model of the lung mechanics. Knowledge of these parameters allows to optimize 

ventilation strategy or to even decide whether a therapeutic drug treatment is appropriate or 

not for that particular patient. The most accepted technique to measure Rrs and Crs is the end-

inspiratory hold maneuver, which requires a fully relaxed patient. Even though this maneuver 

is not invasive per se, it, however, interferes with the normal operation of the ventilator and 

cannot be applied during spontaneous modalities of MV when the patient is actively 

breathing. In these cases, monitoring of intrapleural pressure is required in order to offset the 

effects of patient inspiratory activity, which comes with the drawback already mentioned 

above. As a result, continuous monitoring of respiratory mechanics is not always done at the 

bedside.  

Physiology-based mathematical models (or physiological models) can help improve this 

standard of MV therapy and can offer a valid tool to address some of the above limitations.  

1. First, they can be used to quantitatively predict the patient response to ventilator 

settings adjustments. Hence, by using patient-specific physiological models of the 
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cardiopulmonary system, the effects of a particular choice of ventilator settings could be 

evaluated in virtual mode, without actually being applied to the patient.  

2. Second, these models can be used to obtain continuous noninvasive estimates of those 

physiological variables and/or parameters (WOB, Rrs, Crs, etc.) that are crucial to the 

assessment of the health status but are not monitored at the bedside. The additional 

information provided by these parameters and variables can be used, along with the already 

available measurements from the patient, to form a ”complete” view of his/her health status. 

This, in turn, provides better guidance for ventilator adjustments. 

3. Third, since physiological models are a mathematical representation of the physical 

system under exam, they can be used with advanced mathematical optimization or control 

theory techniques, so to automatically select (closed-loop modality) ventilation strategy and 

settings that would maximize/minimize an objective function or maintain certain 

physiological variables within specific ranges. The closed-loop modality would also address 

the current shortage of respiratory care practitioners at the bedside. 

This thesis develops methods to promote the use of physiology-based mathematical 

models of the cardiovascular and respiratory systems in order to improve current standard of 

care in mechanical ventilation. In order to be useful in the clinical setting, a mathematical 

model not only has to be accurate enough to capture the physiological mechanisms of the real 

biological system (in our case the cardiopulmary system), but it also needs to become 

“patient-specific” or “personalized”. Two fundamental ingredients are, hence, necessary in 

order to accomplish our goal: 1) an accurate mathematical model of the cardiopulmonary 

system; 2) efficient parameter estimation methods to fine tune the model to the particular 

patient under study, thus making it “patient specific”. For this reason, the aim of this thesis 

will be on both fronts of modeling and parameter estimation.  
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Our conjecture is that by taking full advantage of physiological models, mechanical 

ventilation therapy will no longer be an ”art” dictated by assumptions based on empirical 

knowledge, but rather a ”science” dictated by mechanistic understanding of the system under 

exam and of the underlying physiological processes. The use of physiological model-based 

clinical decision support (CDS) tools, or even closed-loop modalities, will eventually lead to 

a drastic change in MV therapy: from shift-by-shift ventilator adjustments to breath-by-breath 

personalized ventilation therapy - a major change in respiratory medicine.  

 

1.2 Thesis Organization 

The structure of this thesis is as follows:  

Chapter 1 provides the introduction and motivation, and describes the scope, the 

organization of the thesis and its novel contributions. 

Chapter 2 provides a review of existing physiological models of the cardiopulmonary 

system, emphasizing their limitation. It then describes the development and validation of a 

novel comprehensive model that overcomes some of these limitations. 

Chapter 3 provides a description of current techniques for respiratory mechanics and work 

of breathing assessment, emphasizing their limitations. It then describes the development and 

validation of a novel model-based approach for simultaneous estimation of respiratory 

mechanics and work of breathing in spontaneously breathing mechanically ventilated 

patients.  

Chapter 4 provides a comparison between classic and Bayesian parameter estimation 

techniques. It then describes the implementation of a Bayesian Maximum a Posteriori (MAP) 

estimator and its application to a case-study of respiratory mechanics.  
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Chapter 5 concludes the dissertation and details future research directions arising from this 

work. 

1.3 Novel Contributions of the Thesis 

The novel contributions of the thesis are: 

1. Development and validation of a novel comprehensive model of the 

cardiopulmonary system: several key improvements differentiate this model from 

previous wok [5, 6]: 

a. Inclusion of tidal breathing lung mechanics; 

b. Inclusion of respiratory muscle pressure generator; 

c. Inclusion of lung gas exchange model; 

d. Inclusion of  tissue gas exchange and venous blood transport models; 

e. Development and inclusion of a novel respiratory control model; 

f. Validation during hypercapnic, hypoxic and isocapnic hypoxic conditions. 

This work has so far resulted in the following publications: 

Albanese A, Cheng L, Ursino M, Chbat NW. A comprehensive mathematical 

model of the human cardiopulmonary system: Model development, Am J Physiol 

Heart Circ Physiol (submitted)  

Cheng L, Albanese A, Chbat NW. A comprehensive mathematical model of the 

human cardiopulmonary system: Sensitivity analysis and validation, Am J Physiol 

Heart Circ Physiol (to be submitted April 2014)  

Albanese A, Chbat NW, Ursino M. Transient respiratory response to hypercapnia: 

analysis via a cardiopulmonary simulation model, in Proceedings of 33
rd

 Annual 

International Conference of the IEEE EMBS, Boston, USA, 2011  

Albanese A, Cheng L, Chbat NW. Cardiopulmonary simulator and medical devices 

using cardiopulmonary simulator, Philips Invention Disclosure, January 2014 

 



9 

 

2. Development and validation of a novel technique for the assessment of 

respiratory mechanics and patient’s efforts in spontaneously breathing 

mechanically ventilated patients: several key features differentiate this technique 

from existing methods [7, 8, 9] : 

a. Suitable for both active and passive patients; 

b. Noninvasive; 

c. Model-based and hence physiologically interpretable; 

d. Not interfering with normal ventilator operation; 

e. Inclusion of physiologically based constrained; 

f. The use of optimization techniques.   

This work resulted in the following publications: 

Albanese A, Karamolegkos N, Haider SW, Seiver A, Chbat NW. Real-time 

noninvasive estimation of intrapleural pressure in mechanically ventilated patients: a 

feasibility study. in Proceedings of 35
th

 Annual International Conference of the IEEE 

EMBS, Osaka, Japan, 2013  

Albanese A, Karamolegkos N, Haider SW, Seiver A, Chbat NW. Real-time Non-

invasive Pleural Pressure and Work of Breathing Estimation, Philips Technical 

Report, February 2013 

Chbat NW, Albanese A, Karamolegkos N, Haider SW, Seiver A. Real-time Non-

invasive Estimation of Work of Breathing, Patent Pending, February 2013 

Albanese A, Vicario F, Wang D, Karamolegkos N, Chbat NW. Simultaneous 

Estimation of Respiratory Mechanics and Patient’s Effort via Constrained 

Optimization Method, Philips Invention Disclosure, January 2014 
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3. Implementation of a Bayesian MAP estimator for respiratory mechanics: the 

concept of MAP Bayesian estimation is known; however, to the best of our 

knowledge it has never been applied to respiratory mechanics studies.  

A conference and a journal papers are envisioned.  
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Chapter 2: Cardiopulmonary Modeling 
 

2.1 Introduction 

As mentioned in Chapter 1–Introduction, a prerequisite to the development of model-based 

intelligent systems that optimize mechanical ventilation is the development of a 

comprehensive and accurate mathematical model of the cardiovascular and respiratory 

systems.  

Mathematical representation of the mechanistic function of the cardiovascular and 

respiratory systems is a challenging task. These two systems in humans interact via several 

mechanisms, continuously, in a complex and non-linear manner. Oxygen (O2) and carbon 

dioxide (CO2) are exchanged between pulmonary capillary blood and alveolar air, and the 

efficacy of such exchange depends on the success of their coupling. Furthermore, the amount 

of blood pumped by the heart and the degree of vessel vasoconstriction affect the blood gas 

transport delay, which is a key determinant of O2 and CO2 blood contents. These, in turn, 

modulate the depth and frequency of respiratory efforts via the action of specific receptors 

(chemoreceptors), which become active when O2 and CO2 are out of their normal ranges. The 

resulting increased tidal volume is sensed by receptors in the lungs that detects stretch of the 

pulmonary tissues (lung stretch receptors). When activated, these receptors induce peripheral 

vasoconstriction and bradycardia via modulation of the sympathetic and parasympathetic 

(vagal) activities of the autonomic nervous system (ANS). Mechanical interactions also exist 

due to the fact that the chest contains the respiratory system and a significant portion of the 

cardiovascular system. These are particularly important during mechanical ventilation, when 

elevated intra-thoracic pressure could compromise ventricular filling and stroke volume, thus 

reducing arterial blood pressure (ABP). ABP, in turn, modulates the activity of specific 
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cardiovascular receptors (baroreceptors) that induce neural activity changes in both the 

sympathetic and parasympathetic branches of the ANS, ultimately affecting heart rate, 

cardiac contractility and vasomotor tone. Mechanisms outside ANS control also exist. Local 

autoregulation and central nervous system (CNS) ischemic response are such examples. 

These become active in extreme conditions, such as severe hypoxia, to preserve perfusion 

and oxygen supply to vital organs (e.g brain and coronary arteries). 

From the above description, it appears evident that the development of an accurate and 

comprehensive mathematical model that accounts for such complex interactions is a 

challenging task. Several physiological models of the cardiopulmonary system have been 

proposed in the literature, but the majority are primarily either cardiovascular or pulmonary 

and as such do not address their coupling. In this chapter, some of these existing 

cardiopulmonary models are first reviewed, emphasizing their limitations and hence the need 

for a novel integrative cardiopulmonary model. Then, the developed model will be described, 

focusing on the new aspects with respect to previous models. Finally, model validation under 

normal and pathological conditions will be shown via comparison with experimental data 

from humans or animals. 

 

2.2 History and Review of Cardiopulmonary Models 

Pioneering work in cardiorespiratory modeling was started by Grodins and his colleagues in 

the 1950s. To the best of our knowledge, Grodins was the first one to suggest the use of 

control theory to describe the respiratory system and its regulation mechanisms.  In the 

seminal 1954 paper [10], Grodins and colleagues described the respiratory system as a 

closed-loop feedback system (see Figure 2.1) where the controlled system (plant) was 

represented by a combined lung-blood-tissue compartment, the controlled variable was the 
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tissue CO2 concentration, the controlling quantity was the pulmonary ventilation, the 

disturbing quantity was the concentration of CO2 in the inspired air (FiCO2) and the 

controlling system (controller + actuator) was represented by the combination of the  

medullary respiratory centers (including the chemorecptors), the motor nerves to the 

respiratory muscles and the ventilatory pump itself. The equations describing the lung-blood-

tissue compartment were derived based on first principles (conservation of mass), whereas 

the equations describing the controlling system were derived based on empirical 

observations. The resulting model was then described by a set of coupled non-linear 

differential equations, whose solutions (obtained with the aid of an analog computer) yielded 

predictions for the relationship between ventilation and arterial PCO2 that were in agreement 

with the observed physiological responses. 

 

Figure 2.1- Block diagram of the feedback control system described in Grodins et al. [10]  

 

The model was subsequently expanded in 1967 [11] to include a more detailed description of 

the plant and the effects of O2 and hydrogen ions (H
+
) on ventilation. The subsequent model 

is shown in Figure 2.2. The controlled system was then represented by three compartments 

(lung, brain and tissue) connected by the circulating blood. An additional cerebrospinal fluid 

(CSF) compartment was also included in the model, as well as acid-base buffering, gas 

transport delays and the effects of local autoregulation and chemoreceptors on cardiac output. 

The model has formed the basis of much further work [12, 13, 14] and it is considered a 
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landmark achievement in the field.  However, several limitations can be observed: 1) The 

description of the plant is extremely simplified, with only three compartments representing 

the whole system; 2) The events of the respiratory cycle are ignored and the lung is modelled 

as a compartment of constant volume, uniform content, and no deadspace, ventilated by a 

continuous unidirectional flow; 3) Description of the cardiovascular system is completely 

neglected, hence the cardiac output is regarded as a nonpulsatile quantity, which can vary 

only based on the O2 and CO2 blood contents via the action of chemoreceptors and local 

autoregulation mechanisms.   

 

Figure 2.2 - Block diagram of the controlled system used in Grodins et al. [11]. V, flow rate; F, air gas fraction; 

K, volume; Q, blood flow; C, blood gas concentration; MR, metabolic rate; P, partial pressure. Subscripts: I , 

inspiratory ; E , expiratory; j, O2 or CO2; A, alveoli; T, tissue; B, brain; CSF, cerebrospinal fluid; a, arteries; v, 

veins; ao, aorta; aB, brain arteries; aT, tissue arteries; vT, tissue veins; vB, brain veins.    

 

 Another seminal paper in the field was presented by Guyton and his co-workers in 1972 

[15]. It describes the first large-scale integrated cardiovascular model that allowed for the 

dynamic simulation of circulation, arterial pressure control mechanisms and body fluids 

regulation. The description of the model in the original article was not given in terms of 

mathematical equations, but in the form of a single graphical chart showing computing blocks 
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interconnected via wires (see Figure 2.3). The model is constructed around a central 

circulatory dynamics module in interaction with 17 peripheral modules corresponding to 

various physiological functions. The cardiovascular module distinguishes between left heart, 

systemic arteries, systemic veins, right heart and pulmonary circulation (see Figure 2.4).  

 

Figure 2.3- Block diagram of the original Guyton’s 1972 model [15] 

 

 

Figure 2.4 - Block diagram of the cardiovascular module in Guyton’s 1972 model [15]. QLO, cardiac output 

from left heart; QRO, cardiac output from right heart; C, compliance ; SA, systemic arteries; SV, systemic veins; 

RA, right atrium; PA, pulmonary artery; LA, left heart; BFM, muscle blood flow; BFN, non-muscle blood flow; 

RBF, renal blood flow. Figure adapted from [16]. 
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The model includes autonomic regulation via the baroreceptors and chemoreceptors, local 

autoregulation of blood flow, kidney dynamics, fluid shifts among circulation, interstitium 

and cells, and the cardiovascular and renal effects of angiotensin, aldosterone and antidiuretic 

hormone. As described by Thomas et al. [16], from a global standpoint the model is governed 

by conservation relationships concerning sodium, potassium, oxygen, protein, water and 

blood volumes in the circulatory loop. Each conservation relation is expressed by a set of 

ordinary differential equations, which are combined with empirical curve fits of experimental 

data.  Despite the complexity and the high number of different physiological mechanisms 

included, fundamental limitations of the model are: 1) Pulsatility of the heart is not 

considered, hence all the variables computed by the model represent average values over the 

heart cycle; 2) The model of autonomic regulation is not very accurate and because of the 

absence of cardiovascular pulsatility, the model is inadequate to reproduce short-term 

cardiovascular adjustments; 3) The description of gas exchange in the lungs, lung mechanics 

and respiratory control is completely absent; 4) O2 dynamics are included in the model, but 

due to the absence of a respiratory module their description does not obey to physiological 

laws; for instance, O2 saturation is computed as a linear function of pulmonary fluid volume, 

which seems a strong assumption; 5) The dynamics of CO2, which is known to play an 

important role in cardiovascular regulation, are neglected; 6) Finally, the model mostly relies 

on empirical relationships based on common physiological knowledge rather than first-

principles physiological laws. Nevertheless, Guyton’s model has been extensively considered 

in the last decades and is currently used as a base for a number of research studies in the field 

of physiology [16, 17].  

Hence, we can conclude that Grodins and Guyton can be considered the “fathers” of 

the field of cardiouplumonary modeling. However, due to the physiological knowledge and 

limited computational power of the time, the interactions between the cardiovascular and 
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respiratory systems were not completely described in their early models. In the past few 

decades, thanks to the advancement in computational technology, scientific activity in this 

field has notably increased, and modeling complexity presented in the literature has grown to 

more accurately describe physiological mechanisms and their dynamics. However, the 

majority of these models, still remains primarily either cardiovascular or pulmonary and thus 

do not permit a comprehensive exploration of cardiopulmonary response to different acute 

conditions. Very few models have tried to address the strong dynamic interactions between 

the cardiovascular and respiratory systems albeit with some limitations. In the following 

sections, a brief review of some of these more recent models is provided. 

Coleman et al.  The model originally developed by Coleman, disciple of Guyton, in 1979 

[18] and subsequently described by Coleman and Randall in 1983 under the name HUMAN 

[19] is probably considered today the most comprehensive and largest model of physiological 

functions. HUMAN is an extension of the 1972 Guyton’s model [15]  and represents a truly 

integrative simulator of the almost entire human physiology. It includes the circulatory 

system, the respiratory system, the kidneys and body fluid volume control, the autonomic 

nervous system, blood constituents, acid-base balance, thermo-regulation and some 

hormones. A schematic block diagram representing most of these physiological modules is 

shown in Figure 2.5. In HUMAN, some of the above mentioned limitations that characterized 

his predecessor [15] have been overcome. Particularly, ventilation, gas exchange, and O2 and 

CO2 dynamics based on conservation of mass principles have beeen included. However, 

some other linitations have not been addressed: 1) The cardiovascular model is still 

nonpulsatile, hence only average pressures and flows can be computed; 2) The respiratory 

mechanics is not modeled and air flow into and out of the lungs is described using a simple 

sinusoidal input function whose amplitude and frequency are controlled by a chemorceptor 

model.  
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Figure 2.5 - Block diagram of HUMAN model showing the main physiological function modules [18]. Modules’ 

names are as follows: HEART, calculation of blood flows and cardiac output; CARDFUNC, strength of left and 

right heart; CIRC, general circulation; REFLEX-1, sympathetic nerves ; REFLEX-2, parasympathetic nerves; 

TEMP, thermoregulation; EXER, control of exercise;  DRUGS, pharmacology;  O2,oxygen balance;  CO2, 

carbon dioxide balance; VENT, control of ventilation;  GAS, gas exchange; HORMONES, basic renal hormones; 

KIDNEY, kidney function and status; RENEX, kidney excretion; HEMOD, hemodialysis; FLUIDS, fluid 

infusion and loss; WATER, water balance; NA, sodium balance; ACID/BASE, acid-base balance; UREA, urea 

balance; K, potassium balance; PROTEIN, blood protein balance; VOLUMES, blood distribution; BLOOD, 

blood volume and red cell volume.    

Nevertheless, HUMAN has been recognized and used worldwide as an important educational 

tool and, over the years, has been constantly modified to reflect current physiological 

knowledge and to keep up with technological advancement. In 2007, Abram et al. [20] 

described the benefits of using an integrative model of human physiology for medical 

education. The model was called Quantitative Circulatory Physiology (QCP) and represents 

an extension of HUMAN. QCP, which is freely available online [21], was written and 

compiled in C++ and this limited somehow the ability of the users to change or add 

equations. For this reason a further version of the model, called HumMod, in which all the 

model details are described in Extensible Markup Language (XML) files, was recently 

developed by Hester and his collegues [22] and distributed as open source [23].  

Batzel, Kappel and Tmischl:  Cardiopulmonary dynamics and regulation has been the 

object of several models proposed by researchers at the Institute for Mathematics and 
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Scientific Computing of the University of Graz. In 1998, a global model of the cardiovascular 

and respiratory system was proposed by Timischl [24] as the result of her PhD research. The 

model is divided into a respiratory component and a cardiovascular component, whose 

schematic diagrams are shown in Figure 2.6. The respiratory component consists of lung and 

lumped body tissue, connected by the circulating blood. The cardiovascular component 

consists of the series arrangement of systemic and pulmonary circulation and includes the left 

and right ventricles. Each circulation is lumped into 2 compartments, a single elastic artery 

and a single elastic vein, connected by a single resistance vessel, accounting for both 

arterioles and capillaries.  

 

Figure 2.6 - (Left Panel) The respiratory part of the model reported in [24]. Fs and Fp, systemic and peripheral 

blood flow respectively;  ̇ , alveolar ventilation; PiO2 and PiCO2, oxygen and carbon dioxide concentration in 

the i-compartment respectively, i = a,v,T, arteries, veins and tissues; MRO2 and MRCO2, oxygen and carbon 

dioxide metabolic rate respectively. (Right panel) The cardiovascular part of the model as reported in [24]. Ql 

and Qr, left and right cardiac output respectively; Pas and Pvs, systemic arterial and venous pressure 

respectively; Pap and Pvp, pulmonary arterial and venous pressure respectively; cl and cr, left and right ventricle 

compliance respectively; Rl and Rr, left and right ventricle resitance respectively; Sl and Sr, left and right 

ventricle contractility respectively; cas and cav, systemic artery and vein compliance respectively; cps and cpv, 

pulmonary artery and vein compliance respectively; Rs and Rv, systemic and pulmonary resistance respectively. 

 

Gas exchange equations are imposed in the lungs and tissues based on conservation of mass, 

in order to compute gas partial pressures in blood (PaO2, PaCO2, PvO2 and PvCO2). These 

equations represent the linkage between the cardiovascular and respiratory systems and 

assume O2 and CO2 tissue metabolic rates to be functions of workload intensity. The model is 
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used to simulate cardiorespiratory response to exercise. The non-linear system of differential 

equations describing the model is solved at steady-state in resting conditions and for different 

increasing workload levels. Different steady-state solutions correspond to different sets of the 

parameters, which are dependent on the workload intensity. Transition from rest to exercise is 

regulated by an optimal two-inputs/two-outputs controller that drives the system from the 

steady-state characterizing the resting physiological condition to the steady-state 

characterizing the exercise condition. Inputs to the controller are systemic arterial pressure, 

Pas, and carbon dioxide arterial blood partial pressure, PaCO2. Outputs of the controller are 

the changes in heart rate, H, and alveolar ventilation,  ̇ . The transition between states is 

optimal in the sense that the controller minimizes a cost functional in order to stabilize Pas 

and PaCO2 such that deviations from their final steady-state values are as small as possible. 

Hence, the optimal controller accounts for the cardiovascular control mechanism mediated by 

the baroreceptors, and for the respiratory control mechanism mediated by the 

chemoreceptors. The steady-state solution in terms of the main cardiorespiratory variables 

showed a good level of agreement with both physiological and measured data. However, 

despite the introduction of the original concept of optimal control, the model presents some 

strong limitations: 1) The cardiovascular model is nonpulsatile, hence the model cannot 

provide continuous intra-beat values for any of its output variables; 2) The lung is considered 

as a single compartment ventilated by a continuous unidirectional stream of gas; the events of 

the respiratory cycle are ignored and no description of the lung mechanics is included; 3) The 

description of the cardiorespiratory control mechanisms is simplistic: the baroreceptors are 

assumed to affect cardiovascular function only via changes in heart rate; systemic peripheral 

resistance is assumed to be function of the exercise intensity and independent from baroreflex 

stimulation; chemoreceptors are assumed to be acting upon the respiratory system via the 

optimal controller based on PaCO2 values only;  the effects of chemoreflex stimulation on the 
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cardiovascular system are completely neglected. The original model presented in [24] was 

subsequently adapted in several studies. In 2000, Timischl et al. [25] extended the optimal 

controller to account for PaO2 effects on ventilation and applied the model to simulate 

transition from resting awake state to non-REM sleep. In 2005, Batzel et al. [26] further 

revised the model in order to include the effects of transport delays between tissues and lungs 

and vice versa. In 2004, Fink et al. [27] modified the cardiovascular component of the model 

to distinguish between upper and lower compartments and simulate cardiorespiratory 

response to orthostatic stress during head up tilt (HUT) experiments. Finally, in 2007, Kappel 

et al. [28] further extended the model to simulate orthostatic stress induced by lower body 

negative pressure (LBNP). However, despite few improvements in the description of the 

control mechanisms, the limitations due to the absence of cardiovascular pulsatility and tidal 

breathing lung mechanics still remained not addressed.   

Ursino and Magosso:  Several models of the cardiorespiratory system [5, 6, 13, 14] have 

been developed by Ursino and Magosso, from the Department of Electronic Computer 

Science and Systems of the University of Bologna. To the best of our knowledge, these 

models provide the most complete quantitative description of the main physiological 

mechanisms involved in short-term cardiopulmonary regulation. Particularly, the model in [5] 

aims at describing the cardiovascular system and the adjustments involved in the response to 

hypoxia. The model is an extension of a previous baroreflex model [29] developed by the 

same authors, and it includes pulsatile left and right hearts, systemic and pulmonary 

circulations, and some of the most important short term cardiovascular regulatory 

mechanisms. The circulatory portion of the model (shown in Figure 2.7) is quite detailed, 

including a total of 14 different compartments. An interesting feature of this model is that in 

order to account for the differences in the sensitivity of the reflex mechanisms among specific 

vascular districts, the peripheral and venous systemic circulations are divided into 5 different 
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compartments arranged in parallel: brain, skeletal muscle, coronary, splanchnic and 

extrasplanchnic circulation. The cardiovascular control model (see Figure 2.7) is quite 

detailed as well, including arterial baroreceptors, peripheral chemoreceptors and lung stretch 

receptors, along with sympathetic and vagal neural pathways. The effects of the reflex 

mechanisms on the cardiovascular function are mediated by changes in systemic peripheral 

resistance, venous capacity, heart rate and left ventricular contractility. The effects of 

peripheral chemoreceptors on ventilation are also included in the model, even though no 

attempt to model the mechanics of the lung is made. In other terms, the tidal volume, which is 

the input to the lung stretch receptors, is computed in the model as function of the peripheral 

chemoreceptor activity without any description of the mechanical events that characterize the 

respiratory cycle. Moreover, the model includes the local vasodilatory effect of O2 

(autoregulation) on the brain, skeletal muscle and coronary circulation, and the 

cardiovascular effects of CNS hypoxia (CNS ischemic response). The model was further 

extended by the same authors in 2001 [6] to include the effects of CO2 on the cardiovascular 

system and on minute ventilation. These additions allowed the model to simulate the response 

to a variety of cardiovascular and respiratory challenges (hypoxia, hypercapnia, isocapnic 

hypoxia, hemorrhage, etc.), and model predictions were shown to be in good agreement with 

experimental data. However, due to the absence of the mechanical description of the lungs, 

strong limitations can be found in these models: 1) Cardiorespiratory interactions via gas 

exchange are not included; 2) PaO2 and PaCO2 cannot be directly computed and hence 

remain external source inputs to the model, which therefore cannot be considered fully 

closed-loop cardiopulmonary models.  

If the focus of the above models [5, 6] was on cardiovascular regulation with only 

minor details on respiratory control, the opposite is true for the models in [13, 14] developed 
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by the same authors.  These are extensions of Grodins’ 1967 model [11], with additional 

ventilatory control mechanisms, and as such suffer of the same limitations.  

 

Figure 2.7 - (Left panel) Hydraulic analog of the cardiovascular system as reported in [5]. P, pressures; R, 

hydraulic resistances; C, compliances; L, inertances; F, flows; sa, systemic arteries; sp and sv, splanchnic 

peripheral and splanchnic venous circulation; ep and ev, extrasplanchnic peripheral and extrasplanchnic venous 

circulation; mp and mv, peripheral and venous circulation in the skeletal muscle vascular bed; bp and bv, 

peripheral and venous circulation in the brain vascular bed; hp and hv, peripheral and venous circulation in the 

heart (coronary vascular bed); la, left atrium; lv, left ventricle; pa, pulmonary arteries; pp and pv, pulmonary 

peripheral and pulmonary venous circulation; ra, right atrium; rv, right ventricle. (Right Panel) Block diagram 

describing relationships among afferent information, efferent neural activities, and effector responses as reported 

in [5]. Pb, baroreceptor pressure; PaO2, arterial PO2; Vt, tidal volume; fab, fac, and fap, afferent activities from 

arterial baroreceptors, peripheral chemoreceptors, and lung stretch receptors, respectively; θsh and θsp, offset 

terms for the cardiac and peripheral sympathetic neurons describing the effect of the central nervous system 

(CNS) hypoxic response; fsp and fsh, activity in efferent sympathetic fibers directed to the vessels and heart, 

respectively; fv, activity in the vagal efferent fibers; Rbp, Rhp, Rmp, Rsp, and Rep, peripheral resistance in the 

brain, heart, skeletal muscle, splanchnic, and remaining extrasplanchnic systemic vascular beds; Vu,mv, Vu,sv, 

and Vu,ev, unstressed volume in the skeletal muscle, splanchnic, and remaining extrasplanchnic venous 

circulation; Emax,rv and Emax,lv, end-systolic elastance of the right and left ventricle, respectively; T, heart 

period. 

 

Lu et al.:  Another very active group in the field of cardiopulmonary modeling is the 

Dynamical System Group at Rice University, led by John W. Clark. This group has 

developed several mathematical models [30, 31, 32] that, to our opinion, are the most 

exhaustive in terms of gas exchange and cardiorespiratory mechanical interactions. 
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Particularly, the model proposed by Lu and his coworkers in 2001 [30] is an integrated 

cardiopulmonary model aimed at simulating the Valsalva maneuver, an important clinical test 

to assess baroreflex function. The model combines and extends previous models of blood 

circulation [33], airway mechanics [34] and gas exchange [35] by the same group. The 

cardiovascular portion of the model is quite detailed and consists of a lumped parameter 

description of the four heart chambers, the systemic circulation and the pulmonary 

circulation. The electrical analog of the cardiovascular model is shown in Figure 2.8. The 

model of the heart is pulsatile and it includes the interacting ventricular free walls and 

septum, the atria and the pericardium.  The systemic circulation includes proximal and distal 

aorta, proximal and distal arterioles, capillary and venous compartments, and vena cava. 

Coronary and cerebral circulations are also described as purely resistance vessels, departing 

from the aortic root and connecting to the vena cava. The pulmonary circulation is similarly 

described and it also includes a purely resistive compartment mimicking the presence of the 

pulmonary shunts. The cardiovascular control model (see Figure 2.8) includes arterial 

baroreflex and sympathetic and vagal neural pathways. These affect cardiovascular function 

via modifications of heart rate, myocardial contractility and vasomotor tone. The respiratory 

component of the model is quite detailed as well and partition the airways into upper, middle 

and small airways (see Figure 2.9). The upper airways are described as a rigid compartment 

with a nonlinear flow dependent resistance. The middle airways are assumed collapsible and 

are described by means of a nonlinear volume dependent resistance and a nonlinear P-V 

relationship. The small airways, representing the alveoli and the lung tissue, are described as 

a viscoelastic structure composed of a nonlinear compliance in series with the parallel 

arrangement of a linear spring and a linear resistance. The alveolar region and the collapsible 

airways are subjected to intrapleural pressure, which is the resultant of the pressure developed 

by respiratory muscles and the chest wall elastic recoil. The gas exchange portion of the 
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model describes the changes in O2, CO2 and N2 concentrations within three compartments: 

(1) the constant-volume dead space, represented by the rigid upper airways; (2) the variable-

volume mid airways; (3) the variable-volume alveolar compartment. For each species 

considered, conservation of mass laws are imposed at both inspiration and expiration. In 

writing the conservation law for the alveolar compartment, the diffusion of O2, CO2 and N2 

across the alveolar-capillary membrane is considered.  

 

Figure 2.8 - (Left panel) Hydraulic analog of the cardiovascular system according to the model in [30]. (Right 

Panel) Block diagram describing the baroreflex mechanism as reported in [30]. See reference for explanation of 

symbols. 
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Figure 2.9 - (Left panel) Physical model of the respiratory system as reported in [30]. (Right Panel) Pneumatic 

analog of the model as reported in [30]. Patm, atmospheric pressure; Ppl, intrapleural pressure; Pl,dyn, lung tissue 

dynamic elastic recoil pressure; Pc, collapsible airways pressure; Pmus, respiratory muscle driving pressure; Ru, 

upper airways resistance; Rc, collapsible airways resiatnce; Rs, small airways resistance; Rve, lung tissue 

resistance; Cc, collapsible airways compliance; Cl, static lung tissue compliance; Cve, dynamic lung tissue 

compliance; Ccw, chest wall compliance. 

 

The model produces results in agreement with physiological data for a normal resting subject 

in supine position and during Forced Vital Capacity (FVC) and Valsalva maneuvers. In 

comparison to previously described models, Lu’s model includes both a pulsatile cardiac 

model and a tidal breathing lung mechanics with a good level of details in terms of 

cardiopulmonary interactions. However, the model still presents some limitations: 1) The 

description of the cardiovascular control mechanisms is simplistic, with  only cardiovascular 

baroreflex control included; 2) The respiratory control mechanisms are ignored; 3) Gas 

exchange is described only at the alveolar-capillary membrane, neglecting gas exchanges in 

tissues and other organs, and assuming that gaseous partial pressures in pulmonary arterial 

blood (at the inlet of the alveolar-capillary membrane) are constant; 4) Due to the absence of 

respiratory control mechanisms, the respiratory component of the model needs to be driven 

by an external respiratory muscle pressure (or intrapleural pressure) source. In 2003, the 

model was significantly extended by the same group of authors in order to overcome some of 
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these limitations [31]. The main new aspects of the model include the description of a lumped 

peripheral tissue gas exchanger, which is linked to the lung gas exchanger via a circulatory 

loop that incorporates transport delays. Moreover, peripheral chemoreceptors acting on both 

the cardiovascular and respiratory systems have also been included, hence the driving 

respiratory muscle pressure can be internally computed by the model. Finally, the model also 

describes the lung stretch receptors and their effects on cardiovascular control. Despite these 

substantial improvements, however, one fundamental point is still critical from our point of 

view and makes this model unsuitable for studying acute conditions such as those related to 

perturbations of CO2 arterial blood contents. The model, in fact, does not include description 

of the central chemoreceptors, which under hypercapnic conditions play an important role in 

respiratory system regulation. This limit was then eventually overcome in a further extension 

of the model [52] by the same authors. Particularly, the central chemoreflex control of 

respiration was added along with a detailed mathematical description of cerebral circulation, 

cerebrospinal fluid dynamics, brain gas exchange and cerebral blood flow regulation. All 

these modifications, however, were more cerebrovascular oriented, such that the model 

became unnecessarily complex from a cardiopulmonary standpoint. Furthermore, in terms of 

cardiovascular control mechanisms, the model did not reach the same level of details as 

Ursino and Magosso’s model [6].  

Cheng et al.: The department of Biomedical Engineering at the University of Southern 

California, as part of a program dedicated to the advancement of biomedical system modeling 

and simulation techniques (Biomedical Simulations Resource), has developed an integrated 

cardiopulmonary model that takes the form of a software package, called PNEUMA, and that 

is freely available online in its Matlab-SIMULINK implementation [36]. The model was first 

introduced in 2002 [37] and it has been transformed over the years [38] until reaching its final 

current stage described by Cheng et al. in [39]. The model is divided into a pulsatile 
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cardiovascular component, a tidal breathing respiratory component that includes lung gas 

exchange, and a central neural control component, all interacting each other. A schematic 

block diagram of the model highlighting the three different components is shown in Figure 

2.10.  

 

Figure 2.10 - Block diagram of the cardio-respiratory model by Cheng et al. [39]  . 

 

The model was applied to simulate transitions from sleep to awake state in normal and 

disease conditions, hence a sleep mechanism module was also included (see Figure 2.10).  

Both cardiovascular and central neural control components are largely based on Ursino and 

Magosso’s model [6], with modifications that account for the effects of intrathoracic pressure 

on the cardiovascular system and of sleep state on neural sympathetic and vagal activities. 

The gas exchange and transport component is based on a model previously developed by 

Khoo [40], which includes gas transport through the dead space, O2 and CO2 exchange in the 

alveoli, and O2 and CO2 transport in blood. The dead space is modeled using 5 serially rigid 

interconnected perfectly-mixed compartments where no gas exchange takes place. Mass 
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balance equations for O2 and CO2 are imposed during both inspiration and expiration 

allowing for computation of breath by breath variations of O2 and CO2 partial pressures in 

these 5 compartments. The alveoli are modeled as a single compartment whose volume 

changes in synchrony with the breathing cycle. Mass balance equations for both species are 

applied at the alveoli taking into account the amount of gas that is exchanged at the alveoli-

capillary membrane. Differential equations describing mass balance for O2 and CO2 are also 

applied at the tissue level in order to relate gas concentrations in the venous blood to arterial 

blood gas concentrations. The metabolic rate of the body tissues is assumed to be dependent 

on the wakefulness state. The respiratory mechanics model distinguishes between upper 

airways, lung tissues and chest wall dynamics. It is driven by a neuromuscular input that is a 

function of chemoreceptors activation, sleep/awake state and a basal drive. The ventilation 

control model computes the contributions from peripheral and central chemoreceptors to the 

neuromuscular drive, and it is based on previous work by Khoo [40]. An interesting feature 

of the model is that the sleep/awake state affects the upper airway conductance in a such a 

way that during sleep the upper airway can collapse if a critical transmural pressure value is 

reached. This allows the model to simulate obstructive sleep apnea (OSA). Furthermore, the 

model is shown to be able to simulate several other interesting pathophysiological conditions 

such as hypoxia, Cheyne-Stokes respiration and CPAP therapy effects on OSA patients. 

Hence, we can conclude that the model presents several positive characteristics: high 

versatility; pulsatile cardiovascular model and tidal breathing lung mechanics; detailed 

cardiovascular control mechanisms deriving from Ursino and Magosso’s model [6].  

However, despite these advantages, some limitations can be found: 1) Even though a 

physiological model of respiratory mechanics is included, airflow in and out of the lungs is 

computed using an empirical curvilinear equation [41] that relates lung volume to the 

neuromuscular input; this choice seems to be arguable. 2) Gas exchange occurring outside of 
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the lungs (tissue metabolism) is modeled as taking place in a single tissue compartment and 

correspondence with the 5 systemic compartments of the cardiovascular component [6] is 

violated; 3) The inclusion of the interactions between sleep mechanisms and 

cardiorespiratory system appears to be unnecessary for our purposes.   

A summary of the above reviewed models in terms of their main features and limitations is 

provided in Table 2-1 below. It is worth noticing that many other cardiouplmnary models 

exist in the literature and have been applied to mechanical ventilation studies [42, 43, 44]. 

However, none of these models include cardiorespiratory control mechanisms and hence their 

scope remain limited and they have not been considered in our review. Furthermore, other 

models may exist but inevitably remain unknown to the author.  

 

Table 2-1- Summary of existing cardiopulmonary models 
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As outcome of this review, the need for an integrative model of the cardiopulmonary system 

that can overcome the limitations of these existing models becomes evident. This new model 

should possess the following chracateristics: pulsatile cardiovascular and tidal breathing lung 

mechanics components; detailed control mechanisms; detailed cardiorespiratory interactions. 

This is the motivation behind the development of the model that is presented in the following 

sections.  

 

2.3 Model Development 

The present cardiopulmonary model (CP Model) includes cardiovascular circulation, 

respiratory mechanics and gas exchange, along with their main short-term control 

mechanisms. The model incorporates essential features from existing models and represents a 

substantial extension of the models by Ursino and Magosso [5, 6], which where chosen as our 

starting point given their exaustive description of the neural control mechanisms (see Table 

2-1).  As described in the previous section, their models required arterial Po2 and Pco2 as 

external input source, and completely ignored lung mechanics and gas exchange. Here, 

separate sub-models of respiratory mechanics, gas exchange in lungs and tissues, gas 

transport in blood, and respiratory control mechanisms have been added to attain a 

comprehensive cardiopulmonary model that is able to run in closed-loop mode requiring 

inspiratory air gas content (FiO2 and FiCO2) and total blood volume as the only inputs. 

 A schematic block diagram of the model is shown in Figure 2.11, where the 

interconnections among the different subsystems are highlighted. The Cardiovascular System 

and the Respiratory System interact via the Gas Exchange and Transport module. This 

module describes the gas exchange processes that take place in the lungs and in the systemic 

tissues, along with the gas transport throughout the circulatory system. Both the 
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cardiovascular and the respiratory systems are subject to their own specific control 

mechanisms, identified in the block diagram as the Cardiovascular Control System and the 

Respiratory Control System modules, respectively. Particularly, the cardiovascular function is 

regulated by the Autonomic Nervous System (ANS) that integrates the afferent information 

provided by the Baroreceptors, Peripheral Chemoreceptors and Lung Stretch Receptors. 

Local Autoregulation mechanisms are also included along with a central nervous system 

(CNS) mediated response to acute ischemic conditions (CNS Ischemic Response). The 

respiratory function is assumed to be governed by the superposition of control mechanisms 

mediated by both the Peripheral Chemoreceptors and the Central Chemoreceptors, which 

modulates the activity of the Respiratory Muscles acting on the Lung Mechanics module. 

This, in turn, can also be driven by the action of an external Mechanical Ventilator. In the 

following sections, a qualitative description of these different components is provided. 

Following a control-system theory approach, the cardiovascular and the respiratory system 

are first described by the uncontrolled system (plant), in the absence of regulatory actions. 

Description of their feedback control mechanisms is subsequently provided. A complete set 

of equations describing the model is presented in the Appendix section. 
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Figure 2.11  - Block diagram of the CP model.      and      ,    and     gas concentrations in the venous 

blood, respectively;      and      ,    and     arterial blood partial pressures, respectively;    , arterial 

blood pressure;    , pleural pressure;     , respiratory muscle pressure. 

 

2.3.1 The Uncontrolled Cardiovascular System Model 

The cardiovascular component of our CP Model is largely based on the work of Ursino and 

Magosso [5, 6], however, some modifications have been introduced to allow a more detailed 

description of the heart-lung interactions and integration with the lung mechanics and the gas 

exchange modules. As shown in the schematic diagram in Figure 2.12, the model includes a 

pulsating heart, a pulmonary circulation and a systemic circulation. The heart model includes 

both left and right hearts along with their corresponding chambers (atrium and ventricles) and 

valves (mitral, aortic, tricuspid and pulmonary valve). The systemic circulation is subdivided 

into five distinct districts arranged in parallel and describing circulation into the coronary, 

brain, skeletal muscle, splanchnic (comprising the liver, the spleen, and the gastro-intestinal 
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organs) and the remaining extrasplanchnic (kidney, skin, bones, etc.) vascular beds. This 

distinction is necessary since, as it will be described later, autonomic and local cardiovascular 

regulatory mechanisms exert different actions on each compartment. The hemodynamic in 

both systemic and pulmonary circulations distinguish between large arteries, peripheral 

vessels (which combine arterioles and capillaries) and veins. The modifications with respect 

to the original model formulation presented in [5, 6] are the following: 1) A pulmonary shunt 

compartment has been added in parallel to the pulmonary peripheral circulation, between the 

pulmonary artery and the pulmonary veins (anatomical shunting) to account for the normal 

physiological amount of blood that does not pass through the pulmonary capillaries and does 

not participate in gas exchange. We are aware that this is a high simplification as the 

anatomical shunts are mostly due to the bronchial circulation and the thebesian veins, which 

are both not located between the pulmonary arteries and the pulmonary veins. However, our 

representation is not intended to have anatomical correspondence and is only used to include 

a circulatory branch that bypasses pulmonary gas exchange. 2) An additional compartment, 

representing the thoracic veins, which return blood to the right atrium, has been included in 

the systemic circulation. 3) The effects of respiration on venous return and cardiac output 

(respiratory pump) have been modeled by considering intrapleural pressure (   ) as the 

reference extravascular pressure for those compartments that are located inside the thoracic 

cavity (heart, lungs and thoracic veins); all remaining compartments are assumed to be 

subject to extravascular atmospheric pressure (    ). 4) As a consequence of respiration, 

transmural pressure in the systemic veins can become negative at their point of entrance in 

the thoracic cavity; to account for this phenomenon, venous valves have been included by 

inserting an ideal diode both upstream and downstream of each systemic venous 

compartment, thus preventing retrograde blood flow [45]. With these modifications, the 

model includes a total of 20 compartments that are listed in details in Figure 2.12.    
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Figure 2.12 - Schematic diagram of the cardiovascular system.  , pressure;   , blood flow;   , mitral valve;   , 

aortic valve;   , tricuspid valve;   , pulmonary valve. Subscripts:   , left atrium;   , left ventricle;     , left 

ventricle output;   , systemic arteries;   , splanchnic peripheral compartment;   , splanchnic veins;   , 

extrasplanchnic peripheral compartment;   , extrasplanchnic veins;   , skeletal muscle peripheral compartment; 

  , skeletal muscle veins;   , brain peripheral compartment;   , brain veins;   , coronary peripheral 

compartment;   , coronary veins;   , thoracic veins;   , right atrium;   , right ventricle;     , right ventricle 

output;   , pulmonary artery;   , pulmonary peripheral circulation;   , pulmonary shunt;   , pulmonary veins; 

  , pleural space. 

1) The Circulation Model: Each vascular compartment shown in Figure 2.12 is described 

trough traditional windkessel models, i.e. as the arrangement of a hydraulic resistance (  ), 

which accounts for pressure energy losses, and a hydraulic compliance (  ), which 

determines the blood volume stored in each compartment at a given pressure. For those 

compartments where inertial forces in blood are relevant, i.e. large pulmonary and systemic 

arteries, inertance (  ) is also included as a third parameter of the corresponding windkessel-
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type model. The general 3-element windkessel single-compartment model structure is 

illustrated in Figure 2.13.  

 

Figure 2.13 - Single-compartment windkessel-type model.  , intravascular pressure;  , outgoing blood flow rate; 

 , resistance;  , compliance;  , inertance;  ,    ,    , compartment index;     , extravascular pressure 

reference (atmospheric pressure or intrapleural pressure, depending on the value of  ). 

 

Equations relating pressures ( ) and flows ( ) in the vascular system are obtained by 

enforcing conservation of mass principles for each vascular compartment of Figure 2.12. 

Hence, in the general case of a 3-element vascular compartment such as the one of Figure 

2.13, the following two ordinary differential equations (ODEs) hold:  

  
   

  
         

2-1)f 

 

 
   

   

  
               

2-2)f 

where   ,    and    represents volume, outgoing flow and pressure of the  -th compartment, 

respectively (see Figure 2.13 legend for further definitions of subscripts). The two equations 

above need to be combined with the corresponding pressure-volume (  ) relationship of the 

 -th compartment, in order to solve for the pressures   . The typical    relationship of a 

blood vessel (artery or vein) is shown in Figure 2.14 below.  

( 

( 
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Figure 2.14 - Typical    relationship of a blood vessel .   , transmural pressure;   , volume;    , unstressed 

volume. Reproduced with permission from [46]  

 

It is quite linear near the unstressed volume (volume at zero transmural pressure), concaves 

upward, gradually increases in slope at higher volumes, and concaves downward as the 

volume decreases and the vessel collapses. Arteries and capillaries are typically subject to 

high transmural pressure values and the operating point along the    curve is such that a 

linear approximation is valid [47, 48]. Hence, in the model, the    relationships of the 

systemic arterial and peripheral compartments have been assumed linear over the entire 

pressure range examined. This is also the common choice in the majority of the lumped-

parameter models of the circulatory system that have been presented in the literature [49, 50]. 

Analogously, the entire pulmonary circulation (including arteries, peripheral and venous 

compartments) is also assumed to be characterized by linear    relationships. The 

assumption of linear    relationship allows for constant and pressure independent 

compliances   . Hence the volume of each of these compartments is computed as the sum of 

the unstressed volume component (    ) and the excess volume component (    ), which is 

associated with the increase in the transmural pressure:  
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            ⏟    
    

      2-3)f 

where       is the transmural pressure of the  -th compartment. On the contrary, the 

hypothesis of linear    relationship does not always hold for the venous circulation. 

Particularly, while in most of the venous circulation the pressure inside the vessels is greater 

than the external pressure and the operating point on the    curve is such that the linear 

approximation still holds, in the vena cava, and in the thoracic veins in general, the 

transmural pressure is typically small and can become negative under the influence of a 

positive intrathoracic pressure. In these cases, the nonlinear nature of the    relationship 

becomes important [46] (see Figure 2.14). For this reason, the same linear    relationship 

above (Eq. 2-3) has been used for the systemic venous compartments (splanchnic, 

extrasplanchnic, skeletal muscle, brain and coronaries), whereas the thoracic veins have been 

modelled via a non-linear collapsible    relationship. This has been derived by combining 

features of slightly different    curves proposed in the literature for the vena cava 

compartment [39, 30, 51]:  

 

           {
      (         )                    

       
   

                              

              
   
      

 

 2-4) 

 

where        and     are the transmural pressure and the volume of the thoracic veins 

compartment, respectively. Note that   is a curvilinear function that is negligible at volumes 

above     and dominates the    relationship in the region of collapse, when the volume of 

the vessel is very small [51]. Hence, according to Eq. 2-4, the    curve of the thoracic veins 

compartment is characterized by 3 different regions: in the first region, for volumes above the 

unstressed value      , the effect of   is negligible and the curve is essentially linear with    

( 
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( 

and    representing its slope and offset, respectively; in the second region, for volumes 

below       but above    , the effect of   is still negligible and the curve is exponentially 

concave downward with         representing the minimum volume of the compartment and 

   and    being curve-shaping parameters; in the third region, for volumes below    , the 

curve is dominated by   and is tangent to the pressure axis (that is, it goes toward    as     

tends to zero). The    curve corresponding to Eq. 2-4, generated using the parameters in 

Table 3 (see Parameter Assignment section), is shown in Figure 2.15 from which the 

resemblance with the typical    curve of Figure 2.14 can be observed.  

 

Figure 2.15 -    relationship of the thoracic veins compartment according to Eq. 4.       , transmural pressure; 

   , volume;      , unstressed volume;    , volume below which   becomes dominant. 

 

To account for the fact that when the vessel collapses the blood flow toward that 

compartment is extremely reduced, the resistance of the thoracic veins compartment has been 

varies as a function of the volume according to [30]:  

 
       (

       

   
)
 

        
2-5) 

where    is a scaling factor,         is the maximum volume and       is an offset parameter. 

All the remaining resistances of the vascular system have been assumed constant, with the 
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exception of those of the systemic peripheral compartments that are assumed to vary under 

the action of feedback regulatory mechanisms (see Cardiovascular Control Model section). 

The effects of gravity on the cardiovascular system have been neglected. Hence, the 

model is suitable for simulating subjects in the supine position only, when no hydrostatic 

pressure gradient across different compartments is present. Furthermore, since the five 

systemic peripheral vessels are assumed in parallel and no gravitational effects are 

considered, the pressures     inside each compartment are assumed to be equal. Analogous 

reasoning applies to the pulmonary shunt and the pulmonary peripheral compartments (see 

Figure 2.12). Finally, note that in solving the model equations for the pressure variables, 

atmospheric pressure has been assumed to be zero and hence the resulting values of    

represent above-atmospheric and not absolute pressure values. 

2) The Heart Model: The model of the pulsating heart remains unchanged compared 

to that one used in [5, 6], where an accurate description can be found. The only modification 

that has been introduced is the inclusion of the intrapleural pressure as the external reference 

pressure acting outside the heart chambers. Briefly, the models of the left and right heart are 

essentially equivalent with different parameter values. The electrical analog of the heart 

shown in Figure 2.16 pertains to the left heart. Each atrium is described as a passive chamber, 

characterized by a linear PV relationship with constant values of compliance and unstressed 

volume. Hence, the contractility of the atrium is neglected. Blood passes from the atria to the 

ventricles through the atrioventricular valves (mitral valve, MV, and tricuspid valve, TV), 

modelled as ideal unidirectional diodes and connected in series with the corresponding 

constant atrium resistances. The equations relating pressures and flows in the atria are 

obtained by combining mass balance equations, similar to Eq. 2.3, with the corresponding 

linear PV relationship. The activity of the ventricles is modelled by means of a variable-

elastance model, which accounts for the isometric pressure-volume function, and a time-
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varying resistance, which reflects the viscous forces in the ventricle. The elastance varies 

during the cardiac cycle as a consequence of the contractile activity of the ventricle. At 

diastole, the ventricle fills through an exponential pressure-volume function, while at end 

systole the pressure-volume function is linear and its slope (called the end-systolic elastance) 

is denoted by     . Shifting from the end-diastolic to the end-systolic relationship is 

governed by a pulsating activation function      with period HP equals to the heart period. 

The duration of systole is assumed to decrease linearly with the heart period, which in turn is 

modulated by the control action of the ANS (see Cardiovascular Control Model section). 

Finally, blood flow leaving the ventricles depends on the opening of the aortic or pulmonary 

valve and on the difference between the isometric ventricle pressure and the downstream 

pressure (systemic arterial pressure or pulmonary artery pressure, depending on whether right 

or left ventricle is considered). Detailed equations describing the heart model can be found in 

[5] and are also reported in the Appendix section.  

 

Figure 2.16 - Electrical analog of the left heart.    and    represent the mitral and the aortic valve, 

respectively.    ,     and     are instantaneous pressure in the left atrium, left ventricle and systemic arteries, 

respectively;         is the left ventricle pressure in isometric conditions;     is the blood flow at the exit of the 

pulmonary veins, equals to the blood flow entering the left atrium;       and       are blood flow entering the left 

ventricle and blood flow leaving the left ventricle, respectively;     and     are compliance of the left atrium and 

left ventricle, respectively;     and     are resistance of the left atrium and left ventricle, respectively (note the 

transversal arrows in     to indicate the time-varying nature of this parameter);     is the intrapleural pressure, 

acting as reference external pressure on the heart. 

 



42 

 

2.3.2 The Respiratory System Model 

As shown in Figure 2.11, the model of the respiratory system includes description of the lung 

mechanics and of the respiratory muscles. The lung mechanics portion is based on previous 

work by Rideout and Fukui [52, 53] and has been modified to include chest wall and 

intrapleural pressure dynamics.  shows the equivalent pneumatic circuit representing the lung 

mechanics model. It consists of the series arrangements of four segments, namely the larynx, 

the trachea, the bronchea and the alveoli. Each segment has been represented by a linear 

resistance and a linear compliance, which describe the dissipative and the elastic forces that 

act on the respiratory system during normal breathing. Inertial forces have not been 

considered because they have negligible effects within the physiological breathing 

frequencies [54]. The model can be driven by either an external pressure       representing 

the pressure provided by the ventilator, as in the case of mechanically ventilated patients, or 

by an internal generator      representing the pressure generated by the respiratory muscles, 

as in the case of spontaneously breathing patients. Note that      is a fictitious variable that 

does not correspond to a physical quantity. In a spontaneously breathing subject, in fact,      

represents the equivalent pressure that has to be applied outside the thorax if the respiratory 

muscles were paralyzed in order to maintain normal respiratory flow, volume and pressure 

waveforms [55]. The chest wall has been modeled as a passive compliant element whose 

pressure-volume characteristic has been assumed linear and hence described by a constant 

compliance term,    . This is a good approximation in the volume range of quite breathing 

(2.5 to 3 L), according to the typical assumption of sigmoidal    relationship [34]. Chest 

wall viscous resistance to flow has been neglected, as this has typically a small contribution 

to the overall respiratory system resistance in both health and disease states [56, 57]. The 

respiratory muscle generator is connected to the chest wall compliance, which acts on the 
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pleural space whose internal pressure     is transferred to those segments lying within the 

chest cavity, i.e. trachea, bronchea and alveoli. 

 

Figure 2.17 - Lung mechanics model.  , pressure;  , resistance;  , compliance;  ̇, total air flow;  ̇ , alveolar air 

flow. Subscripts:   , airway opening;  , larynx;   , trachea;  , bronchea;  , alveoli;   , pleural space;   , chest 

wall 

 

In the present study, since the model was used to simulate spontaneous breathing 

conditions, the action of the external pressure generator       is nullified and the airway 

pressure     is always assumed to be equal to atmospheric pressure. However, the external 

pressure generator could be restored in order to simulate artificial ventilation conditions, or 

even superimposed to the action of the internal pressure generator to account for 

simultaneously natural and artificial breathing.  

The respiratory muscle pressure (internal pressure generator),     , has been modelled 

based on the average profile proposed by Mecklemberg [58], obtained from experimental 

flow and pressure data collected from a group of 12 adult healthy subjects breathing 

spontaneously from atmosphere. The experimental muscle pressure curve has been 
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reproduced as a piece-wise continuous function consisting of an inspiratory parabolic profile 

and an exponential expiratory profile. Particularly, under the assumption of complete passive 

exhalation with no recruitment of the expiratory muscles (reasonable for minute ventilation 

values up to 40 L/min [59]),      is assumed to decrease from 0 to its minimum end-

inspiratory value during the inhalation phase and to gradually return to 0 during exhalation, 

according to:  
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( 2-6) 

where    and    represent the duration of the inspiratory and expiratory phase, respectively, 

  is the inspiratory period,          is the minimum end-inspiratory pressure value 

representing the amplitude of the inspiratory efforts and   is the time constant of the 

exponential expiratory profile. The inspiratory and the expiratory times are defined with 

respect to the      waveform, rather than with respect to flow rate, and they are considered 

fixed fractions of the respiratory period  :  

              

              

( 2-7) 

where    is the respiratory rate (expressed in breaths/min) and         is the inspiratory-

expiratory time ratio. The muscle pressure waveform is repeated with the respiratory period. 

The expiratory      time constant,  , is assumed to be directly proportional to the espiratory 

time    and the inspiration-expiration time ratio,        , is assumed to be fixed during the 

simulations. Hence, the      profile is fully parameterized via the two quantities    and 

        , whose values are assumed to vary from breath to breath and are computed at the 

( 

( 
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beginning of each respiratory cycle as output of the chemoreceptors module (see Respiratory 

Control Model section). 

Outputs of the lung mechanics model are the instantaneous pressures and volumes of each 

compartment, along with the instantaneous air flow into and out of them. The equations for 

pressures and flows are obtained by solving the electrical circuit shown in Figure 2.17 based 

on conservation of mass principles, similarly to what we have described above for the 

circulatory system. Volumes are then computed taking into account the unstressed 

components (see Eq. 2-3). To allow interaction between the lung mechanics and the gas 

exchange model (see Figure 2.11), the dead space is also considered and its instantaneous 

volume is computed as the sum of the volumes of the three compartments that do not 

participate in gas exchange, i.e. larynx, trachea and bronchea. Hence, differently from the 

majority of the models available in literature [39, 60], dead space is not assumed to be rigid 

but its volume is constantly changing throughout the respiratory cycle. As a consequence of 

the elastic dead space assumption, part of the total air flow entering the lung, denoted as  ̇, is 

spent to inflate the dead space and does not contribute to the effective flow that reaches the 

alveoli, denoted as  ̇ . Furthermore, since the difference between the volumes of    and     

that are exchanged between alveoli and pulmonary capillary over a respiratory cycle is 

typically very small, the net air flow that is transferred from the alveoli to the pulmonary 

blood is neglected and the inhaled tidal volume over a respiratory cycle is assumed exactly 

equal to the corresponding exhaled tidal volume. 

 

2.3.3 The Gas Exchange and Transport Model 

The model of gas exchange and transport describes the oxygen (  ) and carbon dioxide 

(   ) exchange between pulmonary capillaries and lungs and between systemic capillaries 
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and tissues, along with    and     transport by blood throughout the circulatory system. As 

shown in the block diagram in Figure 2.18, the model is made of three components, namely 

the Lung Gas Exchange, the Tissue Gas Exchange and the Venous Pool Gas Transport. 

Venous blood is assumed to have certain gas concentrations,        , where     indicates 

either    or    . Once venous blood enters the pulmonary capillaries, it gets in contact with 

the alveolar space, rich in    and poor in    .    enters the blood from the alveolar 

compartment along its pressure gradient, and similarly,     diffuses into the alveolar 

compartment from blood. The resulting   -rich blood, characterized by certain gas 

concentrations       , is then transported to the peripheral tissues, where    is delivered and 

utilized by the tissue compartments and the     generated by cell metabolism is removed. 

Deoxygenated blood at the outlet of the tissue gas exchanger passes through the venous 

circulation and then returns to the lung thus completing the loop for gas exchange. 

Circulatory transport delays,     and    , are included in the model to account for the time it 

takes to blood to transport gases from the lungs to the systemic tissues and from the thoracic 

veins back to the pulmonary capillaries. Gas transport throughout the venous pool is instead 

explicitly modeled since blood flow in the venous section is typically slow and hence this 

section accounts for the most of the circulatory blood transport delay. Only    and     gas 

species are considered in the model, with nitrogen (  ) and other air gas components being 

neglected. In the following, a detailed description of the three submodels is provided. 
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Figure 2.18 - Schematic diagram of the gas exchange and transport model highlighting the alveolar and tissue 

components, the venous pool gas transport block and the blood transport delays.       , arterial blood gas 

concentrations;       , mixed venous blood gas concentrations;    , transport delay from lungs to systemic 

tissues;    , transport delay from thoracic veins to lungs;  ̃     , gas concentrations in the blood that enters the 

tissue gas exchanger;  ̃     , gas concentrations in the blood that enters the lung gas exchanger;  ̇   and  ̇   ,    

and     gas flow between alveoli and pulmonary capillaries, respectively;     and     , metabolic    

consumption and     production rates in the systemic tissues, respectively. The subscript     indicates either 

   or    . 

 

 

1) The Lung Gas Exchange: The lung gas exchange model includes anatomical dead space, 

alveoli, pulmonary capillaries (also belonging to to the pulmonary peripheral compartment of 

the cardiovascular system model) and right to left pulmonary shunts. A schematic block 

diagram is shown in Figure 2.19. 
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Figure 2.19 - Lung gas exchange model.  ̇, total air flow;  ̇ , alveolar air flow;   , dead space volume;   , 

alveolar volume;       , gas fractions in the inspired air;       , gas fractions in the dead space;       , gas 

fractions in the alveoli;  ̇   and  ̇   ,    and     gas flow between alveoli and pulmonary capillaries, 

respectively;  ̃     , gas concentrations in the blood that enters the pulmonary capillaries;        , gas 

concentrations in the pulmonary capillaries;       , gas concentrations in the arterial blood;    , blood flow from 

the pulmonary arteries;   , shunt percentage;    , blood flow at the exit of the pulmonary capillaries;    , blood 

flow at the exit of the pulmonary shunt compartment. 

    

It receives total airflow ( ̇), alveolar air flow ( ̇ ), dead space (  ) and alveolar volume (  ) 

as inputs from the lung mechanics model, and pulmonary peripheral volume (   ) and blood 

flows through the pulmonary beds as inputs from the cardiovascular model.  Furthermore, the 

model is obviously interconnected to the tissue gas exchange model, as shown in Figure 2.18, 

as it requires the delayed venous gas concentrations  ̃      as input as well. External inputs to 

the model are the gas fractions in the inspired air,       . Outputs of the model are the 

concentrations of gas in the pulmonary capillaries (       ), which are then converted into 

arterial blood gas concentrations (      ). Gas concentrations are computed by applying 

conservation of mass for each gas species to each of the three compartments in Figure 2.19 

(dead space, alveoli and pulmonary capillaries) and assuming that every compartment is 

homogenous and perfectly-mixed. Gases are assumed to be ideal and gas fractions in the 
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lungs are related to their corresponding partial pressures via the ideal gas law. Blood gas 

concentrations are related to their corresponding partial pressures via empirical dissociation 

curves, which are easily invertible and that have been validated and used in previous 

cardiopulmonary models. Finally, equilibrium between pulmonary capillaries and alveoli in 

terms of gas partial pressures is assumed to happen instantaneously. The resulting set of 

equations governing the lung gas exchange model is reported below, while detailed 

mathematical derivation is reported in the Appendix section.  
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where the subscript     indicates either    or    ,   is the Heaviside step function,    

represents the percentage of pulmonary shunt (assumed to be equal to 1.7%, see 

                    section),      is the dissociation curve that relates blood gas 

concentration to partial pressure,     is the water vapor pressure and   is a proportionality 

constant that allows to convert volumes from BTPS (body temperature pressure saturated) to 

STPD (standard temperature pressure dry) conditions. Note that the Eqs. 2-8 – 2-12 above are 

very general, in the sense that they apply to both the inhalation and the exhalation phases, 
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thanks to the use of the step function  , and that they can be specialized for either    or    . 

The dissociation function      deserves few comments. As shown in Eq. 2-10,      is a 

function of both    and     partial pressures. This means that when specializing this 

equation for each gas species, the resulting dissociation functions,    
 and     

, will be 

interdependent. This interdependency, basically, accounts for the Bohr and Haldane effects, 

which are both captured in the mathematical description of the    and     dissociation 

curves (see Appendix section for more details). 

The system of equations above, once solved, provide as output the blood gas 

concentrations (or partial pressures) in the pulmonary capillaries. From these, blood 

concentrations in the arterial blood are finally computed by averaging between blood coming 

from the pulmonary capillaries and blood coming from the pulmonary shunts:  
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( 2-13) 

From the arterial blood gas concentrations,      
 and       

, the corresponding partial 

pressures can be computed by applying the inverse of the dissociation functions    
 and     

. 

Finally, arterial    saturation can also be computed from knowledge of       as:  

 
     

  
     

      
          

        
     

( 2-14) 

where     is the hemoglobin concentration (expressed in   per    of blood), 1.34 is the 

oxygen capacity (expressed in    of    per   of    ) and the term 0.003/100 represents the 

solubility of    in blood (expressed in    of    per    of blood per     ). 

2) The Tissue Gas Exchange and Venous Pool Gas Transport: The tissue gas exchange model 

accounts for the    consumption and     production of tissues and organs at the level of the 

systemic capillaries, whereas the venous pool gas transport model describe    and     

( 

( 
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transport through the systemic and thoracic veins. A schematic diagram of the combined 

model is shown in Figure 2.20. 

 

Figure 2.20 - Tissue gas exchange and venous pool gas transport model.  ̃     , gas concentration at the entrance 

of the systemic peripheral compartments;        , gas concentration in the      combined blood-tissue 

compartment;        , gas concentrations in the      systemic venous compartment;       , gas concentrations 

in the mixed venous blood;    , blood flow at the exit of the systemic arteries;    , blood flow at the exit of the 

     systemic peripheral compartment;    , blood flow at the exit of the      systemic venous compartment; 

   , blood flow at the exit of the thoracic veins;    , blood volume contained in the      systemic peripheral 

compartment;      , blood volume contained in the      tissue compartment;    , blood volume contained in 

the      systemic venous compartment;    , blood volume contained in the thoracic veins;        and        , 

   consumption and     production rates in the      blood-tissue compartment, respectively. 
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The model receives as input the delayed arterial gas concentrations from the lung gas 

exchange module,  ̃     , and provides as output the gas concentrations in the mixed venous 

blood,       , computed at the exit of the thoracic veins compartment. Furthermore, the 

model is interconnected with the cardiovascular module, since it requires blood flows and 

volumes in the different systemic vascular beds as input as well. As shown in Fig. 10, tissue 

gas exchange is assumed to happen at the level of the five systemic peripheral compartments 

(coronary, brain, skeletal muscle, splanchnic and extrasplanchnic compartments). Each 

compartment supplies blood to an organ/tissue (or group of organs/tissues) that is modeled as 

a simple container, characterized by a constant volume      . Blood and tissues are assumed 

to form a combined homogenous blood-tissue compartment, characterized by gas 

concentrations         and total volume given by the sum of the tissue volume       and the 

blood volume     of the corresponding systemic peripheral compartment by which is 

supplied. Oxygen consumption and carbon dioxide production are assumed to happen within 

these combined blood-tissue compartments at constant rates,        and        , 

respectively. Venous blood concentrations are computed based on conservation of mass 

principles, following a similar approach to the one described above for the lung gas exchange 

model. Particularly, conservation of mass is first enforced at each of the five combined blood-

tissue compartments, assuming that       and        are known constants and that each 

compartment is perfectly-mixed. The solution of the resulting set of differential equations 

provides the blood gas concentrations at the exit of the systemic peripheral compartments, 

       . From these, the blood gas concentrations in the mixed venous blood are finally 

obtained by applying conservation of mass to the remaining systemic vascular beds (systemic 

veins and thoracic veins compartments), assuming that the no net gas flow is either generated 

or consumed in these compartments (no       and        are considered in the corresponding 

mass balance equations). The resulting set of equations governing the tissue gas exchange 
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model is reported below, while detailed mathematical derivation is reported in the Appendix 

section.  
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where the subscript     indicates either    or     and        is the blood flow entering the j-

th peripheral compartment (see Figure 2.20 legend for further definition of subscripts).  

 

2.3.4 The Cardiovascular Control Model 

The cardiovascular control model includes the main short-term regulation mechanisms (time 

duration < 1-2 min) that act on the cardiovascular function in response to acute hemodynamic 

and blood gas composition perturbations. Responses in the middle period (5-10 min) cannot 

be simulated due to the existence of slower compensation phenomena (such as hormonal 

regulation, renal blood volume regulation and fluid shift across capillaries) not included in 

the present model. The model is taken from previous work by Ursino and Magosso [5, 6], 

where detailed explanation and mathematical equations can be found. A high level schematic 

block diagram showing the input-output interconnections between the different components 

of the model is shown in Figure 2.21 below. 

( 

( 

( 
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Figure 2.21 - Cardiovascular control model.     , venous    concentration;      , venous     concentration; 

    , arterial    partial pressure;      , arterial     partial pressure;    , systemic arterial pressure;   , tidal 

volume;    ,      and     , afferent firing frequency of barorecptors, peripheral chemoreceptors and lung stretch 

receptors, respectively;    ,     and    , offset terms representing the effect of the CNS ischemic response on the 

sympathetic fibers directed to peripheral circulation, veins and heart, respectively;    ,     and    , activity in the 

efferent sympathetic fibers directed to the peripheral circulation, the veins and the heart, respectively;   , activity 

in the vagal efferent fibers;    ,    ,    ,     and    , systemic peripheral resistance in coronary, brain, 

skeletal muscle, splanchnic and extrasplanchnic vascular beds, respectively;      ,      ,      , venous unstressed 

volume in skeletal muscle, splanchnic and extrasplanchnic vascular bed, respectively;         and        , end-

systolic elastance of the left and right ventricle, respectively; HP, heart period.    

 

Briefly, the model includes the action of carotid sinus baroreceptors, peripheral 

chemoreceptors, lung stretch receptors, autoregulation mechanisms and a CNS directly 

mediated ischemic response. Particularly, the model distinguishes between an afferent 

pathway, represented by the barorecptors, chemoreceptors and lung stretch receptors, and an 

efferent pathway, represented by the autonomic nervous system (ANS) and its sympathetic 
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and parasympathetic neural fibers. Carotid baroreceptors respond to variation in systemic 

arterial blood pressure (   ), peripheral chemoreceptors respond to variations in arterial    

and     partial pressures (     and      , respectively), whereas lung stretch receptors 

respond to variations in tidal volume (  ). The afferent information from baroreceptors (   ), 

peripheral chemoreceptors (    ) and lung stretch receptors (    ) is first processed at the 

level of the ANS, thus modulating sympathetic and parasympathetic activities in the neural 

efferent pathways. Sympathetic and parasympathetic neural fibers, in turn, control the 

cardiovascular system via modifications of both the cardiac and the circulatory functions. 

Particularly, four different classes of effectors are assumed under the control of the ANS: 

heart period (  ), maximum ventricular contractilities (        and        ), resistances of 

the systemic peripheral beds (   ) and systemic venous unstressed volumes (     ). Heart 

period is assumed to be dependent on a balance between sympathetic and parasympathetic 

activities, whereas all other effectors are assumed under control of sympathetic fibers only. A 

distinction between sympathetic fibers directed to the heart (   ), sympathetic fibers directed 

to the arteries (   ) and sympathetic fibers directed to the veins (   ) is also made based on 

the assumption that sympathetic activities in these different neural pathways do not change in 

parallel in response to afferent information from baroreceptors, chemoreceptors and lung 

stretch receptors. Circulation in the most vital vascular beds, i.e, the coronary and the brain 

compartments, is assumed to be independent from the ANS modulation, being only affected 

by local autoregulation mechanisms. These mechanisms respond to acute variations in blood 

gas composition (hypoxia or hypercapnia) of the specific vascular bed and are responsible for 

rapid redistribution of blood flow in order to resume normal gas level in compartments that 

have typically high metabolic needs. Hence, in the model, autoregulation is assumed to be 

triggered by variations in venous gas concentrations of the specific vascular bed (       and 

       ) and to alter blood flow toward that compartment via modifications of its peripheral 
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resistance. As a result, as shown in Figure 2.21, in the case of the brain and coronary 

compartments, peripheral resistances (    and    , respectively) are under the influence of 

autoregulation only, whereas the unstressed volumes (      and      , respectively) are 

assumed to be constant. Autoregulation mechanisms are also assumed to act on the skeletal 

muscle circulation, hence the peripheral resistance of this compartment (   ) is subject to a 

double control action exerted by both the ANS and the autoregulation mechanisms. Finally, a 

CNS ischemic response is also taken into account in the model by assuming that arterial 

blood gas partial pressures (     and      ) can alter the sensitivity of the efferent 

sympathetic fibers to the stimuli coming from the afferent receptors (barorecptors, 

chemoreceptors and lung stretch receptors). 

The mathematical equations governing the model have been taken from [5, 6], but 

some modifications have been introduced. Particularly, the relationship relating peripheral 

chemoreceptor activity      to      and       (see Figure 2.21) presented in [5, 6] has been 

replaced with a more detailed model of the afferent peripheral chemoreceptors pathway [61]. 

This was necessary since the equations proposed in [5, 6] were not able to reproduce the 

overshoot and undershoot characterizing the typical peripheral chemoreceptors activity 

patterns, shown in Figure 2.22, observed in humans in response to a CO2 step input [62]. 
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Figure 2.22 - Diagrams of time-dependent single-fiber responses of perfused carotid chemoreceptors to up and 

down steps of CO2. Adapted from [62]. 

 

Additional details about the peripheral chemoreceptor model are provided in the next section, 

since this model is also used in the respiratory control module. 

2.3.5 The Respiratory Control Model 

Before moving to the description of the respiratory control model, it is worth providing some 

physiological background about the respiratory control system. Breathing is spontaneously 

initiated in the central nervous system. A cycle of inspiration and expiration is automatically 

generated by neurons located in a specific region of the brainstem, called medulla, that serves 

as a central pattern generator. This spontaneously generated cycle can be modified by 

reflexes of different nature (chemical, mechanical, etc.) or even temporarily suppressed by 

influences from higher brain centers (such as the hypothalamus or the cortex) in the case of 

voluntary control. The respiratory centre in the medulla effect the automatic rhythmic control 

of breathing via a final common pathway consisting of the spinal cord, the innervation of the 

muscles of respiration such as the phrenic nerves and the respiratory muscles themselves. 

Among the various reflexes that can modulate the automatic activity of the central pattern 

generator, the chemoreflex is definitely the most important. This reflex is activated by two 

classes of receptors, namely the central chemoreceptors and the peripheral chemoreceptors. 
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Central chemoreceptors are mainly located in a specific area of the brain, called 

chemosensitive area, anatomically separated from the medullary respiratory center and 

situated slightly below the ventral surface of the medulla. The central chemoreceptors are 

surrounded by brain extracellular fluid (ECF) and are especially excited by hydrogen ions 

  . In fact, it is believed that hydrogen ions concentration [  ] may be the only important 

direct stimulus for these neurons. However, hydrogen ions do not easily cross the blood-brain 

barrier and changes in the blood [  ] have considerably less effect in stimulating the 

chemosensitive area than do changes in blood     concentration, even though     is 

believed to stimulate these neurons only indirectly by changing [  ]. The reason for this is 

that being the blood-brain barrier highly permeable to    , whenever the blood      

increases,     diffuses across it into the brain extracellular fluid and the cerebrospinal fluid 

(CSF). There,     immediately reacts with water liberating    ions which stimulate the 

chemoreceptors. Thus, the     level in blood regulates ventilation chiefly by its effect on the 

   of the cerebrospinal fluid. Peripheral chemoreceptors are located in the carotid bodies, at 

the bifurcation of the common carotid arteries, and in the aortic bodies, above and below the 

aortic arch. The chemoreceptors of the carotid bodies are however the most important in 

humans and they account for about 90% of the ventilatory response to hypoxaemia [63]. 

These receptors are especially important in detecting changes in arterial    , although they 

also respond to a lesser extent to changes in arterial    and     . When the oxygen 

concentration in the arterial blood falls below normal, the peripheral chemoreceptors become 

strongly stimulated. Their maximum sensitivity is reached for     values between 30 - 60 

mmHg. The peripheral chemoreceptors are thus responsible for all the increase of ventilation 

that occurs in humans in response to arterial hypoxemia. An increase in arterial carbon 

dioxide concentration also excites the chemoreceptors. Thus, increases in peripheral 

chemoreceptor activity in response to decreases in arterial     are potentiated by increases in 
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arterial      [64, 65]. The opposite is also true, i.e. hypoxia reinforces the peripheral 

chemoreceptors response to hypercapnia [66]. This suggests a multiplicative stimulus 

interaction at the peripheral chemoreceptors site. 

In agreement with the physiological description provided above, the chemoreflex is 

the only control mechanism included in our respiratory control model. Hence, reflexes arising 

from mechanoreceptors, such as the Hering-Breuer reflexes, are not included in the model. A 

schematic block diagram of the model is shown in Figure 2.23.  

 

Figure 2.23 - Schematic block diagram of the respiratory control model.     , arterial    partial pressure;      , 

arterial     partial pressure;     , respiratory muscle pressure driving the lung mechanics model;           and 

   , basal values of respiratory muscle pressure amplitude and respiratory rate, respectively;            and 

    , variations in respiratory rate and respiratory muscle pressure amplitude induced by the central 

chemoreceptors;            and     , variations in respiratory rate and respiratory muscle pressure amplitude 

induced by the peripheral chemoreceptors;     , firing frequency of the afferent peripheral chemoreceptor fibers; 

        and        , nominal value of       and     , respectively;    and   , time delay of the central and 

peripheral chemoreflex mechanisms, respectively;      and     , gain factors for the central regulatory 

mechanism of      amplitude and frequency, respectively;      and     , gain factors for the peripheral 

regulatory mechanism of      amplitude and frequency, respectively;      and     , time constant of the central 

regulatory mechanism of      amplitude and frequency, respectively;      and     , time constant of the 

peripheral regulatory mechanism of      amplitude and frequency, respectively. 

  

The central chemoreceptors are assumed to be sensitive to arterial     , whereas the 

peripheral chemoreceptors are assumed to be sensitive to both arterial     and     . The 

central and peripheral chemoreceptors directly affect the respiratory frequency,   , and the 
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amplitude of the inspiratory muscle pressure generator,          (see The Respiratory System 

Model section). This inclusion is an essential feature that differentiates our integrated 

cardiopulmonary model from others large scale models presented in literature. The majority 

of these models, in fact, assumes that chemoreceptors act on the respiratory system either by 

directly changing minute ventilation    [6, 13, 39, 67, 12] or by modifying tidal volume    

and respiratory rate    [68] hence ultimately affecting minute ventilation. In these models, a 

set of static or dynamic equations coupling      and       (or some surrogates of these 

variables) to    (or    and   ) is used to describe the entire respiratory control system, 

bypassing the physiological link between chemoreceptors and respiratory muscles. Very few 

models account for the relationship between blood gas contents and respiratory efforts [32, 

31, 53] expressed in terms of either intrapleural pressure     or respiratory muscle pressure 

    , and even fewer make a distinction between mechanisms affecting respiratory efforts 

amplitude and mechanisms affecting respiratory rate [32, 31]. 

As supported by experimental studies performed on humans [69], there is no active 

interaction between the two distinct central and peripheral chemoreceptor mechanisms. 

Hence, the central and the peripheral contributions to the ventilation response, in terms of 

variations in    and         , are assumed to be additive. Contributions from the 

chemoreceptors are then added to the basal values of    and          generated by the 

intrinsic respiratory rhythm generator that produces a wakefulness drive when 

chemoreceptors are not stimulated.  

                                          ( 2-18) 

 

                  ( 2-19) 

( 
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where           is the basal value of the respiratory muscle pressure amplitude,     is the 

basal value of the respiratory muscle pressure frequency,      and            are the 

variations in respiratory rate and respiratory muscle pressure amplitude induced by the central 

chemoreceptors, and      and            are the variations in respiratory rate and 

respiratory muscle pressure amplitude induced by the peripheral chemoreceptors.  

 As shown in Figure 2.23, the central chemoreceptor mechanism is described as a first-

order dynamic system with a pure delay, having as input the variation of artrail blood      

with respect to a set-point value         (assuming that variations of      in arterial blood 

and in the medulla are proportional) :  
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( 2-21) 

    

                                

where    is a delay that accounts for the time it takes to blood to travel from the systemic 

arteries to the central chemosensitive area in the brain,      and      are the gains of the      

amplitude and frequency control mechanisms, respectively,      and      are the 

corresponding time constants and         is the arterial    partial pressure set-point value.  

The peripheral chemoreceptors mechanism has been described as a two-stage 

transduction mechanism: in the 1
st
 transduction stage,      and       signals are converted 

into electrical activity of the afferent peripheral chemoreceptors     ; in the 2
nd

 stage, the 

continuous value of      is compared with a reference nominal value and the distance from 

the nominal value is then converted into variations of          and   . The input-output 

( 

( 
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relationship characterizing the 1
st
 stage transduction mechanism has been taken from Ursino 

and Magosso [61]. This relationship is also used in the cardiovascular control module. It 

takes into account the above mentioned multiplicative interaction between    and     at the 

peripheral chemoreceptor level and it has been validated using experimental data from 

animals under a variety of combined    and     stimuli. For sake of brevity, we do not 

report the equations describing this 1
st
 stage transduction mechanism and he interested reader 

can refer to the original publication for further details. As for the 2
nd

 transduction mechanism, 

this has been described via relationships analogous to those used for the central 

chemoreceptors, that is as a first-order dynamic system with a pure delay, the input being the 

variations in      with respect to a set-point value       : 
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( 2-23) 

 

                              

where    is a delay that accounts for the time it takes to blood to travel from the systemic 

arteries to the peripheral chemosensitive area,      and      are the gains of the      

amplitude and frequency control mechanisms, respectively,      and      are the 

corresponding time constants and        is the afferent peripheral chemoreceptor activity set-

point value. 

 

( 

( 
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2.4 Parameter Assignment 

All the parameters of the          have been assigned with reference to a 70-Kg healthy 

subject. Most of them are based on previous studies, but some have been modified or newly 

introduced. They are summarized in Tables 2-2 – 2.9, along with the corresponding literature 

references when applicable. In the following sections, the choice of the parameter values for 

each subsystem will be discussed with particular emphasis on the new parameters and the 

modifications with respect to previous studies.  

 

2.4.1 Vascular System 

The parameters of the uncontrolled vascular system model have been taken from [5, 6], 

where detailed justifications about their values can be found. However, some parameters 

needed to be adjusted or defined to reflect the aforementioned modifications (see Model 

Development section) introduced to the original model presented in these previous work. 

Particularly: 1) The values of resistance and compliance of the pulmonary peripheral and 

pulmonary shunt compartments have been given starting from the assumption that 1.7% of 

the total blood flow coming out of the pulmonary arteries (    in Figure 2.12) enters the 

pulmonary shunts, whereas the remaining 98.3% enters the pulmonary capillaries [70]. 

Particularly, by imposing this condition on the blood flows to be valid at steady state, when 

the compliances     and     do not contribute to the flow entering the two compartments, the 

ratio         is found to be         ; to obtain a value for     and    , it has been assumed 

that the parallel arrangement of pulmonary shunt and pulmonary peripheral compartments 

provides the same resistance value used in [5, 6] for the overall pulmonary peripheral 

compartment. Analogous reasoning was applied to determine the values of the compliances. 

Particularly, by imposing the same          ratio between blood flow entering the 
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pulmonary shunt and blood flow entering the pulmonary peripheral compartment also during 

the transient phase and using the ratio         determined above, it was possible to 

determine a value for the         ratio; finally, assuming that the parallel arrangements of 

pulmonary shunt and pulmonary peripheral compartments provides the same overall 

compliance value used in [5, 6] it was possible to determine the values of     and    . 2) The 

values of the parameters pertaining to the thoracic veins compartment have been given based 

on [39, 51]. 3) As a consequence of the introduction of the thoracic veins compartment, the 

venous compliance in all the parallel systemic district has been reduced by 30% relative to 

the value used in [5, 6] so that the total venous compliance is maintained as per the previous 

studies. 4) To compensate for the added excess volume due to the introduction of the negative 

intrapleural pressure, the basal value of unstressed volume in every vascular compartment 

within the thoracic cavity has been reduced by 12% relative to the values used in the previous 

studies [5, 6]. 5) The compliance of the overall systemic peripheral circulation has been 

redistributed among the five parallel districts in order to guarantee realistic and valid 

simulation results based on literature. All the parameters characterizing the uncontrolled 

vascular system in basal condition (without the action of the regulatory mechanisms) are 

reported in Table 2-2, along with their corresponding reference source.  

 

Table 2-2 – Parameters of the vascular system in basal condition. See Eqs. A.1-A.29 in Appenidx. Note the use of 

subscripts 0 and n in the unstressed volumes and resistances that are subject to control mechanisms. Total blood 

volume (Vtot) is 5,300 mL.  
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Table 2-3 – Parameters of the thoracic veins. See Eqs.2.4 -2.5  in the  Model Development section. See text and 

references for explanation of symbols.  

 

2.4.2 Heart 

The parameters characterizing the heart model have been given the same values as in 

previous studies [5, 6], where motivation for these values is provided based on literature data. 

For the sake of completeness, the parameters of the heart model are listed in  Table 2-4 

below. 

 

Table 2-4 – Parameters of the Heart model. See Eqs. A.30 – A.48 in the Appendix.     
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2.4.3 Lung Mechanics 

The parameters of the lung mechanics model (resistances, compliances and unstressed 

volumes of the four respiratory mechanics compartments) have been assigned starting from 

values reported in [52, 53]. However, some adjustments have been made in order to account 

for the newly introduced pleural pressure and chest wall dynamics and to reproduce realistic 

simulated lung volumes typically observed in normal subjects under quite breathing 

conditions. Particularly: 1) The chest wall compliance    , not included in [52, 53], has been 

assigned a value based on [60];. 2) The amplitude and frequency of the respiratory muscle 

pressure generator      in basal condition (without the action of the respiratory control 

model) have been assigned in order to attain a tidal volume of about 500 mL and a respiratory 

rate of 12 breaths/min [70]. 3) The initial conditions for the five different pressure nodes in 

Fig. 7 (state variables) have been assigned assuming that at time    , corresponding to the 

end exhalation time, all the pressures in the lungs equilibrate to atmospheric pressure whereas 

intrapleural pressure has a subatmospheric value of -5       [70]. 5) The unstressed 

volumes of larynx, trachea and bronchea have been given the same values reported in [52, 

53]. 6) The unstressed volume of the alveolar compartment has been modified in order to 

guarantee an end expiratory lung volume equal to normal functional residual capacity (FRC), 

based on the following equation:  

                                      ( 2-24) 

where        is the pleural pressure value at end exhalation,      ,       and       represent 

the end-expiratory volumes of the larynx, trachea and bronchea, respectively, and FRC is 2.4 

L [70]. 7) Finally, the value of the time constant τ governing the exponential expiratory 

profile has been assumed to be equal to 1/5 of the expiratory time to guarantee enough time 

for lung emptying, and a value of 0.6 has been used for the inspiratory-expiratory time ratio 

( 
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       . All the parameters of the lung mechanics model are reported in Table 2-5, along with 

their corresponding reference source when applicable. 

 

Table 2-5 – Parameters of the lung mechanics model in basal conditions. See Eqs. A.49 – A.60 in the Appendix. 

See text and Figure 2.17 for explanation of symbols and subscripts. Note the use of subscripts 0 for the 

parameters that are subjects to control mechanisms.   

 

2.4.4 Gas Exchange and Transport 

The parameters describing the gas exchange and transport model can be subdivided into 

parameters pertaining to the lung gas exchange model, parameters pertaining to the tissue gas 

exchange model, and parameters pertaining to blood trasnport, i.e. the two circulatory 

transport delays     and    (see Figure 2.18).  

The parameters characterizing the lung gas exchange model can be further divided 

into 3 different groups: 1) parameters pertaining to the environmental conditions, which have 

been assigned based on common knowledge; 2) parameters pertaining to the    and     

dissociation curves, which have been taken from [71]; 3) parameters pertaining to the 

physiological status of the subject (percentage of pulmonary shunts,   , and hemoglobin 

content,    ), which have been chosen to simulate a 70 Kg healthy adult male. The values of 

the parameters are reported in Table 2-8 for each group. 
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As for the tissue gas exchange model, the only parameters involved are the tissue 

volumes (     ) and the    and     metabolic rates (       and        ), where j 

corresponds to the different combined blood-tissue compartments. The values of       have 

been assigned based on literature data [72, 73, 74, 75, 76, 77], whereas the values of the 

metabolic rates have been assigned as follows. First, the values of     for the brain, coronary 

and skeletal muscle compartments have been taken from [5, 6]. Then, the values of     for 

the splanchnic and extrasplanchnic compartments have been given based on the assumption 

that total    consumption rate is 250 mL/min [78] and that the ratio       /       is 7.384 

[79]. Finally, the values of      for the different compartments have been computed by 

assuming that the total     production rate is 210 mL/min [78], corresponding to a 

respiratory quotient of 0.84, and that the      ratio between compartment   and compartment 

  is equal to the corresponding     ratio between the same compartments. 

The values of the two blood transport delays have been assigned from literature. Some 

adjustments were made in order to reflect the fact that part of the circulatory delay has been 

explicitly taken into account in the venous pool transport model. Particularly, the time delay 

from lungs to tissue,    , has been given the same value used in [31] and [80]. As for the 

veins to lungs time delay,    , a value of 10 sec has been chosen considering that a value of 

25 sec has been used in the model by Lu et al. [31] for the overall tissue to lungs delay. This 

choice is then equivalent to the assumption that a time delay of around 15 sec can be 

attributed to the systemic and the thoracic veins compartments. All the parameters of the 

tissue gas exchange model are reported in Table 2-7, along with the corresponding reference 

source. 
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Table 2-6 – Parameters of the lung gas exchange model. See Eqs. A.61 – A.75 in the Appendix.    

 

 

Table 2-7 – Parameters of the tissue gas exchange model. See Eqs. A.76 – A.85 in the Appendix.   

 

2.4.5 Cardiovascular Control 

The parameters characterizing the cardiovascular control model have been taken from [5, 6] 

with exception to those related to the afferent peripheral chemoreceptor model that have been 

taken from [61]. Some of the parameters that describe the integration of the afferent 

information from the different receptors operated by the ANS have been modified with 

respect to their original values presented [5, 6]. This was necessary in order to reproduce the 

typical cardiovascular responses to respiratory challenges (hypercapnia and hypoxia) 

observed in healthy population and reported in literature [81, 82]. The modified parameters 

are reported in Table 2-8, but no attempt to motivate their values is made. The interested 
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reader can refer to the previous publications [5, 6, 61] for a list of the additional unchanged 

parameters. 

 

Table 2-8 – Parameters of the cardiovascular control model modified with respect to [5, 6, 61]. 

 

2.4.6 Respiratory Control 

The choice of the parameters of the respiratory control model, other than the aforementioned 

parameters of the afferent peripheral chemoreceptor model, is now explained. As we 

mentioned in the Model Development section, the majority of the ventilation control models 

presented in literature assume a very simplified structure of the respiratory control system. 

Hence, assignment of the parameters pertaining to the respiratory control model based on 

previous models presented in literature was not possible. The parameters had to then be 

chosen so as to reproduce experimental data [83, 84] obtained from healthy volunteers under 

specific respiratory challenges, while adhering to physiological constraints. Particularly, the 

following parameter assignment process has been followed. 1) The values of the time delays 

of the central and peripheral chemoreflex mechanisms (   and   , respectively) and the set 

point values of       and      have been taken from [6]. 2) Based on the experimental data, 

[83, 84] the time constants for the respiratory rate response were given higher values than the 

corresponding time constants for the      amplitude response. 3) By using experimental data 

from human subjects under isocapnic hypoxic challenges [83], where the contribution of the 

central chemoreceptor to the respiratory response is essentially abolished due to the non 
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hypercapnic condition, it was possible to isolate the peripheral chemoreflex response and 

hence tune its time constants and gains (    ,    ,     and     ). 4) The time constant      of 

the central regulatory mechanism of      amplitude have been taken from [85]. 5) Finally, 

the remaining parameters of the central chemoreceptor mechanism where chosen in order to 

fit the experimental data from hypercapnic experiments [84], and by recognizing that the time 

constants for the central mechanism should always be greater than the corresponding time 

constants of the peripheral mechanism [85]. The parameters of the respiratory control model 

are provided in Table 2-9, along with the corresponding reference source when applicable. 

 

Table 2-9  – Parameters of the respiratory control model. See Eqs. 2.18 – 2.23 in the Model Development section. 

  is spikes/s.    

 

2.5 Model Implementation 

The combined model has 78 differential equations, more than 70 algebraic equations and 240 

parameters associated with its components. Table 2-10 shows the distribution of the state 

variables, the model parameters and the the outputs in the combined cardiopulmonary model.  
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Table 2-10 – Number of state variables, parameters and outputs in the combined CP Model. 

 

The model was programmed in Matlab-Simulink (The Mathworks Inc.) and the numerical 

integration of the differential equations was performed using the 4
th

  order Runge-Kutta 

method with fixed-step size. The higher level Simulink implementation is shown in Figure 

2.24. Each component of the CP Model has a corresponding Simulink block, and according 

to a hierarchical criterion all the equations pertaining to that component are implemented 

inside the block. The different blocks are then linked to each other through their inputs and 

outputs by using tags (to reduce clutter). To facilitate usability of the model and to allow the 

user to change parameter settings and to simulate different disease scenarios and 

interventions, a standalone Graphical User Interface (GUI) was created by members of our 

research group (see Figure 2.25).  
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Figure 2.24 – High level Simulink implementation of the CP Model. 

 

 

Figure 2.25 – GUI of the CP Model; courtesy of Roberto Buizza, Philips Research North America. 
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2.6 Model Validation 

A critical aspect in physiological modeling is model validation, i.e. making sure that model’s 

predictions match the behaviour of the physiological system that is object of the study. A 

typical approach in model validation is to compare the predictions of the model under 

specific conditions with those obtained in-vivo from a group of subjects representative of the 

class of patients that the model is trying to simulate. This process is very demanding and 

often unpractical because of the high variability of responses between different subjects and 

the need for specific experiments. Another possibility is to compare the model predictions 

with those previously obtained by similar mathematical models or with human or animl data 

available in the literature. In the following sections we will show how the CP Model has been 

validated under normal resting conditions, hypercapnia, hypoxia and isocapnic hypoxia, 

using data available in the literature. All the simulations shown in the subsequent sections 

have been obtained using the same set of parameter values reported in Table 2-2 – Table 2-9. 

The literature date used in the validation studies pertained to healthy 70 Kg subjects, hence 

further fine-tuning of the parameters was not needed. Notice that the choice to concentrate on 

these respiratory scenarios (hypoxia, hypercapnia and isocapnic hypoxia) is driven by the 

intended future applications of the model to mechanical ventilation. 

 

2.6.1 Normal Resting Conditions  

A reasonable reproduction of variables typically observed on a general healthy adult 

population is the basis for further applications of our integrated cardiopulmonary model. To 

verify the ability of the present model in these regards, we analyze the model's predicted 

outputs in normal resting conditions and we present a comparison with waveforms or average 

values typically observed in humans. Particularly, our analysis includes the model behavior 
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both in terms of mean-values, i.e. averaged values over a respiratory or cardiac cycle, and 

intra-cycle (respiratory or cardiac cycle) values. In presenting the results, major emphasis is 

put on the new aspects of the model compared to previous work [5, 6].  

Hemodynamics: Table 2-1 summarizes the static values of the relevant clinical 

hemodynamic variables that the CP model generates, and compares them with values 

typically measured on healthy humans in normal resting conditions [86, 49]. The table shows 

that the model predicted outputs are within normal physiological ranges of the general 

population.  

 

Table 2-11- Static values of main hemodynamic variables 

Figure 2.26 shows a representative simulated left ventricle P-V loop, along with the pressure 

and volume time profiles over an entire cardiac cycle. The model is thus able to capture the 

typical features of a realistic P-V loop, both in terms of shape and amplitude. For the specific 
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cardiac cycle shown in the figure, the left ventricular volume ranged from 132 mL (end-

diastolic volume) to 54 mL (end-systolic volume) providing a stroke volume of 78 mL and an 

ejection fraction of 78/132, or 59 %. Note that these values slightly change from one cardiac 

cycle to the next because of variations of intrapleural pressure and the effects of 

cardiovascular control mechanisms that induce cyclic changes in heart rate, ventricular 

contractility and afterload.  

The simulated pressure profiles across the different compartments of the systemic and 

pulmonary circulation are shown in Figure 2.27. Again, model simulation have physiological 

correspondence in the sense that the model correctly predicts a progressive drop in the 

pressure levels and in the degree of pulsatility moving from the big arteries (systemic and 

pulmonary) towards the periphery. 

Figure 2.28 compares model generated left and right ventricular output flows to 

experimental waveforms [30]. Both the amplitude and duration of the simulated flow 

waveforms match experimental data. The left ventricular flow has a higher peak value and 

shorter time duration compared with the right ventricular flow. For the specific cardiac cycle 

shown in the figure, the left ventricle peak flow is 688.5 mL/s and the right ventricle peak 

flow is 484.5 mL/s; the left ventricle ejection phase lasts for 0.192 s, whereas the right 

ventricle ejection phase lasts for 0.252 s. This is due to the greater contractility and higher 

afterload of the left ventricle, as compared to the right. Numerical integration of the flow 

waveforms over the entire cardiac cycle gives the values of left and right ventricular stroke 

volume as 78.6 mL and 82.9 mL, respectively. This proves that, despite the dissimilarities in 

amplitude and time duration, the area enclosed by the two waveforms are essentially the 

same, in agreement with physiology.  
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Figure 2.26- Left ventricle pressure and volume outputs. Left: time patterns of left ventricle pressure (top) and 

volume (bottom). Dotted lines mark the four cardiac phases: a, filling phase; b, isometric contraction phase; c, 

ejection phase; d, isometric relaxation phase. Right: pressure-volume loop of the left ventricle. The four cardiac 

phases (a, b, c and d) are shown along with the stroke volume SV and the opening and closing points of the heart 

valves: 1, mitral valve closing point; 2, aortic valve opening point; 3, aortic valve closing point; 4, mitral valve 

opening point. The two dotted lines tangent to the P-V loop at the point 1 and 3 represent the diastolic and the 

end-systolic pressure/volume functions, respectively.  

 

 

Figure 2.27 - Pressure waveforms at different levels of the circulatory system.Top Left: time patterns of left 

ventricle pressure, systemic arterial pressure and systemic splanchnic peripheral vessels pressure. Bottom Left: 

time patterns of systemic pressure in the splanchnic venous compartment, thoracic veins pressure and right 

atrium pressure. Top Right: time patterns of right ventricle pressure, pulmonary arterial pressure and pulmonary 

peripheral vessels pressure. Bottom Right: time patterns of pulmonary veins pressure and left atrium pressure. 

 



78 

 

 

Figure 2.28 - Model-predicted flows (continuous line) compared with reported experimental data (dashed line). 

Top: left ventricle output flow (     ). Bottom: right ventricle output flow (     ). The experimental data have 

been redrawn from Fig. 7 of [30]. 

 

Respiratory Mechanics: Figure 2.29 shows the pressure and flow waveforms generated by 

the lung mechanics model in normal resting conditions, when the chemoreceptors are silent 

and RR and          are equal to their basal values. At the beginning of inspiration, alveolar 

pressure equals atmospheric pressure, i.e. zero pressure. During inspiration, the negative      

drives pleural pressure to decrease from its resting value of -5       to about -8      , 

which in turn decreases alveolar pressure below atmospheric value and allows air to flow into 

the mouth, trachea, bronchea and alveoli. At the end of inspiration, when the respiratory 

muscles start relaxing, pleural pressure returns to its baseline value and alveolar pressure 

becomes slightly positive allowing air to flow out of the lung. The tidal volume produced by 

the model is approximately 540 mL, 40 mL of which are spent in expanding the dead space 

and the remaining flowing into the alveoli to participate to gas exchange (see Figure 2.29). 
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This is in agreement with normal physiological behavior under quiet breathing conditions 

[70]. Furthermore, both the model generated air flow and pleural pressure waveforms 

resemble in-vivo measurements that are typically obtained from humans or animals, as shown 

in Figure 2.30 and Figure 2.31. Particularly, the inspiratory flow pattern has the typical dome 

shape that has been reported in literature [87], with the rise being slightly more abrupt than 

the fall and the peak flow being reached early in the inspiratory part of the cycle, whereas the 

expiratory flow is less symmetrical and tends to approach zero slowly (see Figure 2.30). 

 

Figure 2.29 – Pressure, volume and flow waveforms generated by the lung mechanics model. (A) From top to 

bottom: Respiratory muscle pressure (    ), pleural pressure (   ), alveolar pressure (  ), and air flow. (B) From 

top to bottom: Lung volume (  ), alveolar volume (  ) and dead space volume (  ). 
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Figure 2.30 – Comparison between simulated and experimental airflow waveforms. Left figure: 

pneumotachogram from a normal subject showing patterns of flow in nasal (both quiet and rapid) and mouth 

breathing; reproduced from [87]. Right figure: model generated airflow. Note that the scales of the two figures 

have been adjusted to allow visual comparison. 

   

 

Figure 2.31 – Comparison between simulated and experimental pleural pressure waveforms. (A) Tracing of 

pleural pressure from a dog in supine position during spontaneous breathing; reproduced from [88]. (B) Model 

generated pleural pressure waveform. Note that the time division in both figures is 1 sec and the scales of the two 

figures have been adjusted to allow visual comparison. 
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Gas Exchange and Transport: The main outputs of the gas exchange and transport model 

are summarized in Table 2-12 in terms of their mean values over one respiratory cycle and 

compared with typical values in resting healthy humans [86, 89, 90]. Furthermore, in Figure 

2.32 - Figure 2.36, the time profiles of partial pressures at different levels throughout the 

cardiopulmonary system are shown.  

 Figure 2.32 shows the variation of arterial    and     partial pressures, along with the 

lung volume waveform. Arterial     and      are relatively constant and oscillate around 

their mean values, 98.9 and 39.55 mmHg respectively (see Table 2-12), in synchrony with the 

respiratory cycle. Arterial     varies from 96.93 to 100.8 mmHg, it increases during 

inhalation and decreases during exhalation. The opposite is valid for      , which oscillates 

between 37.89 and 41.06 mmHg. The mean values of the simulated      and       

waveforms are in agreement with the values typically observed in healthy humans from 

arterial blood gas analysis (ABG test) during normal resting conditions (see Table 2-12). 

Comparison of model generated      and       fluctuations with corresponding human data 

is more difficult to obtain due to the lack of continuous      and       measurements 

available in the literature. However,      fluctuations of   1-4 mmHg in synchrony with the 

respiratory cycle and in the same direction as those generated by the model have been 

reported in animal studies performed on cats and lambs. Furthermore, the magnitudes of the 

model generated fluctuations agree with those reported in previous simulation studies [91, 

92]. It is worth noticing that cardiogenic oscillations are present in the simulated      and 

      profiles, a phenomenon that has been reported by previous investigators as well [91, 

53]. This is essentially due to the coupling between the tidal respiratory model and the 

pulsatile cardiovascular model, which is an essential feature of our integrative modeling 

approach. 
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 Figure 2.33 shows the variations of blood gas composition in the venous section in terms 

of partial pressure. Again, similarly to what observed in the arterial     and      waveforms, 

the variations of      and       are affected by the respiratory cycle events, but the effects of 

blood pulsatility are less evident due to the filtering introduced by the venous circulation. The 

mean values of      and       are also in the typical ranges observed in normal resting 

subjects (see Table 2-12).  

 Figure 2.34 shows the variation in lung gas composition, distinguishing between alveolar 

and dead space region, and compare the model generated outputs with those generated by the 

model of Lu et al. [30] described in section. Notice that in this model, gas exchange was 

described using a 35-segment pulmonary capillaries compartment. The agreement between 

the present model and the model of Lu et al. is remarkable and proves that, despite the 

decreased level of complexity of the present model in terms of gas exchange, the two models 

are comparable at least for what concerns the respiratory gas variables in normal resting 

conditions. Furthermore, by comparing the alveolar and dead space     and      profiles, we 

can observe how the cardiogenic oscillations are so pronounced in the alveolar partial 

pressure curves whereas are lost in the comparatively large variations characterizing the dead 

space partial pressure profiles.  

 Figure 2.35 proves that the intrabreath alveola     and      dynamics predicted by the 

model agree quite well with the expected behaviour reported in the literature and shown in 

several textbook figures [90, 53]. During the very first beginning of the inspiratory phase, 

alveolar      rises to a maximum and     drops to a minimum; this represents the period 

during which dead space air is entering the alveoli. This is followed by a period of rapidly 

increasing     and falling     , which reflects the effects of the introduction of fresh inspired 

air into the alveoli. The maximum     and minimum      are reached toward the end of the 

inspiratory phase, when maximum dilution with fresh air has been achieved. During the 
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expiratory phase, the partial pressures variations change direction, with     progressively 

falling and      progressively rising. This reflects the effects of continued gas exchange 

during a period when no fresh air is supplied to the alveoli.  

 Finally, Figure 2.36 shows a comparison between the model generated dead space      

and a typical time-based capnographic waveform [93] obtained in normal adult patients over 

a single respiratory cycle. The simulated dead space      resembles the capnogram in terms 

of both shapes and amplitude, even though some minor differences can be observed. First, the 

baseline in the simulated dead space      tracing is slightly above zero (see Table 2-12), 

whereas the normal capnogram has a zero baseline value. Second, during the inhalation phase 

the capnographic waveform suddenly reaches the zero baseline value and remains flat until 

early exhalation; this is not the case for the simulated dead space      waveform. These 

differences, however, can be explained considering the fact that the capnographic waveform 

is obtained by sampling the air flow at the mouth, whereas the simulated      waveform is 

representative of a lumped dead space compartment which is anyway in between the 

atmospheric air and the internal alveolar compartment.  
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Table 2-12 – Mean values of the main gas composition variables. 
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Figure 2.32 – Time profiles of model generated arterial    and     partial pressures. From top to bottom: total 

lung volume (  ), partial pressure of oxygen in the arterial blood (    ) and partial pressure of carbon dioxide in 

the arterial blood (     ). 

 

     

 

Figure 2.33 – Time profiles of model generated mixed venous    and     partial pressures. From top to bottom: 

total lung volume (  ), partial pressure of oxygen in the mixed venous blood (    ) and partial pressure of 

carbon dioxide in the mixed venous blood (     ). 
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Figure 2.34 – Time profiles of    and     partial pressures in the dead space and alveolar region. Top figure: CP 

Model outputs; Bottom figure: Lu et al. [30] model outputs. 
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Figure 2.35 – Time profiles of    and     partial pressures in the alveolar space during a respiratory cycle. Top 

figure: model simulations; Bottom figure: expected behaviour from literature [90, 53]. 
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Figure 2.36  – Comparison between model generated     partial pressures in the dead space (Top figure) and a 

representative normal time-based capnogram (Bottom figure) [93]. 

  

Heart-lung interactions: As mentioned in the Introduction section, heart-lung interactions 

take a variety of forms. Mechanical interactions are one of these forms and are mainly due to 

the effects of intrathoracic pressure on venous return and cardiac function. During inhalation, 

venous return (VR) increases due to the decreasing intrapleural pressure that produces a shift 

in blood volume from the systemic to the pulmonary circulation. The variations in VR are 

associated with variations in cardiac performance: the increased VR during inhalation 

improves right ventricular filling and preload, thus generating an increase in right ventricular 

output flow and stroke volume according to the Frank-Starling mechanism. The effects of 

inspiration on the left ventricle are in the opposite direction: the decreasing intrapleural 
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pressure affects the pulmonary vasculature, which acts as a capacitance reservoir that holds 

more blood so that left ventricular filling is reduced with the consequent drop in left 

ventricular output flow and stroke volume via the Frank-Starling mechanism. The situation is 

reversed during expiration, when intrapleural pressure gradually returns to baseline. In this 

case, VR and right ventricular output flow are reduced, whereas more blood is forced from 

the pulmonary vasculature into the left heart and hence left ventricular output flow is 

increased. The variations of intrathoracic pressure associated with the respiratory events have 

also effects on systemic arterial pressure. Systolic, diastolic and pulse arterial pressures are 

lowest during inspiration and highest at the peak of expiration. These variations result in part 

from transmission of intrathoracic pressure to the ascending and thoracic aorta, and in part 

from the respiratory-related changes in left ventricular output flow [94], discussed above. The 

inspiratory drop in systemic arterial pressure has also been ascribed to a delay in transmission 

through the pulmonary vascular bed due to the fall in right ventricular output flow which 

accompanies expiration. Reductions in systolic blood pressure during inhalation of about 4-5 

mmHg have been reported in the literature [94] and variations of more than 5 mmHg are 

considered signs of pathological conditions and are commonly referred to as "pulsus 

paradoxus" [95]. 

The present model is able to account for such mechanical interactions between heart and 

lungs, thanks to the inclusion of the intrapleural pressure as the reference external pressure 

for the vascular compartments that lie within the thoracic cavity (see The Uncontrolled 

Cardiovascular System Model section). Figure 2.37 shows the simulated time profiles of 

venous return (computed in the model as the instantaneous flow entering the right atrium), 

left and right ventricular output flow and stroke volume, along with the pleural pressure 

waveform over few representative respiratory cycles. The model predicted hemodynamic 

changes driven by the respiratory events are indeed qualitatively in agreement with the 
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physiological mechanisms above described: venous return and right ventricular stroke 

volume rise during inspiration and fall during exhalation, whereas left ventricular stroke 

volume variations have opposite direction. The model predicts an inspiratory rise in right 

ventricular stroke volume of about 7 mL, which agrees well with the expected variations in 

normal condition (5 mL according to [94]). On the other hand, the model predicted changes 

in left ventricular stroke volume are slightly underestimated: 1.16 mL inspiratory fall with 

respect to the end-exhalation value, only. This may be due to the fact that the present model 

does not account for ventricular interdependence via the septum, which may play an 

important role in explaining the reduced left ventricular stroke volume during inhalation. The 

left and right ventricles, in fact, share a common pericardial space and are separated by a 

mobile intraventricular septum. When the right ventricular diastolic volume increases during 

inhalation, the septum tends to shift to the left, reducing left ventricular compliance and 

causing a further reduction in stroke volume [96]. 

The effects of respiration are visible in the systemic arterial blood pressure waveform 

(   ) as well, as shown in Figure 2.38 where the systolic and diastolic     values are plotted 

together with the pleural pressure waveform over a few consecutive respiratory cycles. The 

model predicted changes in systolic and diastolic blood pressure are qualitatevily in 

agreement with the expected behaviour: systolic and diastolic blood pressure drop during 

inhalation and rise during exhalation. However, even in this case, the magnitude of the model 

predicted variations is smaller than what is typically observed in normal subjects: 0.6 mmHg 

model predicted reduction in systolic blood pressure, corresponding to about 0.5% of the end-

exhalation value, as compared to 4 mmHg and 3% variation in normal subjects [94]. The 

reason for this discrepancy can partially be attributed to the underestimated inspiratory fall in 

left ventricular output flow, and hence to the unmodeled ventricular septum dynamics, but 

also to the fact that the lumped systemic arterial compartment in the model is not subject to 
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intrapleural pressure, whereas in reality the ascending and the thoracic aorta are within the 

thoracic cavity and hence are directly affected by intrapleural pressure variations. This aspect, 

together with the inclusion of the intraventricular septum, might be the object of further 

expansion of the model. 

 

Figure 2.37 - Mechanical effects of respiration on cardiovascular function. From top to bottom: time profiles of 

intrapleural pressure (   ), venous return (  ), right ventricular output flow (     ), right ventricular stroke 

volume (   ), left ventricular output flow (     ) and left ventricular stroke volume (   ). 
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Figure 2.38 - Mechanical effects of respiration on systemic arterial pressure. From top to bottom: time profiles of 

intrapleural pressure (   ), systemic arterial pressure (   ), systolic blood pressure (   ) and diastolic blood 

pressure (   ). 
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2.6.2 Hypercapnia  

To validate the CP model response to CO2 blood content perturbations, hypercapnic 

conditions were simulated and model predictions, in terms of respiratory, gas exchange and 

cardiovascular variables, were compared against published human data. Simulations were 

performed with the cardiopulmonary model in closed-loop configuration and using the 

inspired gas concentrations FiCO2 and FiO2 as input. Step inputs of various amplitudes were 

applied to FiCO2, whereas FiO2 was kept fixed to its normal room ambient value of 21% (see 

Table 2-6).  

Figure 2.39 shows both the model predicted and experimental responses to a 25 minutes 7% 

CO2 step input in terms of alveolar gas partial pressures (PAO2 and PACO2), tidal volume 

(VT), minute ventilation (Ve) and respiratory frequency (RR). The experimental data have 

been obtained from a group of 15 healthy subjects [84] and represent average values across 

subjects. Model predictions agree quite well with the experimental results both in the steady-

state and transient phases for all the variables under study. The most significant level of 

discrepancy is represented by the pronounced undershoot in the simulated PACO2 waveform. 

This discrepancy, however, could be justified by taking into account the averaging of the 

experimental data. The authors actually reported that the averaging of data over a number of 

subjects tended to smear the undershoot in PACO2 and that natural oscillations in partial 

pressures were observed in individual subjects. The results prove that the model is able to 

explain the ventilatory increase triggered by the hypercapnic stimulus: at the onset of the 

stimulus, PACO2 increases due to FiCO2 increase; hence, tidal volume and respiratory rate 

increase due to activation of the central chemoreceptors, thus, in turn, increasing minute 

ventilation; the increase in minute ventilation generate a concomitant increase in PAO2; at the 

removal of the stimulus, all the variables return to baseline values after a short transient 

phase. Note that in hypercapnic conditions, since PaO2 is above its target value, ventilation is 
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driven by the isolated action of the central chemoreceptors (see 2.3.5 The Respiratory 

Control Model section). Hence, by validating the model under hypercapnic conditions we are 

implicitely validating the central chemoreceptors model.  

 

Figure 2.39 - Respiratory response to a 7% CO2 step input performed at 2 min and lasting 25 min. Continuous 

lines are model results; dashed lines are experimental data redrawn from [84]. Experimental data are means over 

15 subjects. Figure courtesy of Limei Cheng, Philips Research North America 

 

Figure 2.40 shows that the model responses to different CO2 stimulus intenisty levels, ranging 

from 3% to 7%, were also compared with the experimental results from the same study in 
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terms of respirate rate, tidal volume and minute ventilation. For the 3%, 5%, and 6% 

hypercapnic cases, experimental data are means over 10 subjects. Again, the agreement 

between model predictions and experimental data is quite remarkable. This proves that the 

model is able to correctly reproduce the physiological response to a wide range of FiCO2 

values, in terms of respiratory and gas variables, with a single set of unchanged parameters.  

 

Figure 2.40- Respiratory response to 3, 5, 6 and 7% CO2 step input performed at 2 min and lasting 25 min. Left: 

model simulations; Right: experimental data from [84]. Experimental data represent means over 10 subjects 

except for 7% which are means of 14 subjects. Figure courtesy of Limei Cheng, Philips Research North America 

 

 



96 

 

Finally, Figure 2.41 shows the model response to 7% and 8% hypercapnic step inputs in 

terms of the main cardiovascular variables: heart rate (HR), cardiac output (CO), total 

peripheral resistance (TPR), mean arterial pressure (MAP), systolic blood pressure (SBP) and 

diastolic blood pressure (DBP). Comparison against experimental data during the transient 

phase was not performed due to a lack of available literature data. Nevertheless, the model 

predicts a steady-state increase in all the variables except for TPR, which shows almost no 

steady state variations. This behavior is in agreement with experimental observations, as 

summarized in Table 2-13 where the model predicted steady-state variations in HR, CO, 

TPR, MAP, SBP and DBP are compared against human data from two different studies [81, 

82] on 10 and 8 healthy subjects, respectively.  

 

Figure 2.41- Model predicted cardiovascular response to a 7% (red lines) and 8% (blue lines) CO2 step input 

performed at 2 min and lasting 25 min. Figure courtesy of Limei Cheng, Philips Research North America 
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 Model 

(7% CO2) 

Kiely et al (Chest, 

1996) 

Model 

(8% CO2) 

Mengesha (2000) 

Mean HR 

(beat/min) 

13.5 (+20%) 9.8 (+13.1%) 17.7 (+26.5%) 9.7  

Mean CO 

(L/min) 

.6 (+11.4%) 0.8 (+14.3%) .86 (+16.2%)  

Mean 

MAP(mmHg) 

7.9 (+8.5%) 8.5 (+10.6%) 11.0 (+11.8%) 12.5 

Mean 

SBP(mmHg) 

6.9 (+5.6%) 11 (+9.6%) 10.1 (+8.2%)  

Mean DBP 8.4 (+10.8%) 6.4 (+10.1%) 11.4 (+14.6%)  

Mean TPR 0 (0%) ~0 -0.004 (-.44%)  

Table 2-13 – Steady-state changes in heart rate (HR), cardiac output (CO), total peripheral resistance (TPR), 

mean arterial pressure (MAP), systolic blood pressure (SBP) and diastolic blood pressure (DBP), in response to  

7% and 8 % CO2 step input. Experimental data are mean values from 8 subjects for the 7% case and from 10 

subjets for the 8% case . Data courtesy of Limei Cheng, Philips Research North America  

 

2.6.3 Isocapnic Hypoxia 

To validate the CP model response to O2 blood content perturbations, isocapnic hypoxia 

conditions (i.e., hypoxia with constant PaCO2) were simulated. Model predictions, in terms of 

respiratory and gas exchange variables, were compared against published human data. 

Similar to the hypoxia case, simulations were performed with the cardiopulmonary model in 

closed-loop configuration and using the inspired gas concentrations FiCO2 and FiO2 as input. 

Particulalry, FiO2 was decreased to different % values starting from a resting nominal values 

of 21% (room ambient), whereas FiCO2 was dynamically adjusted during the simulations by 

means of an external proportional controller in order to maintain PACO2 constant to its resting 

nominal value. Note that in isocapnic hypoxia conditions, since PaCO2 is essentially constant 

and PaO2 drops, ventilation is driven by the isolated action of the peripheral chemoreceptors 

and the O2-CO2 multiplicative intercation at the peripheral chemoreceptor site (see 2.3.5 The 

Respiratory Control Model section) is abolished. Hence, by validating the model under 

isocapnic hypoxia we are implicitely validating the response of the peripheral 

chemoreceptors model to O2 perturbations. 
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Figure 2.42 shows both the model predicted and experimental responses to 8% O2 in air with 

controlled PACO2. The responses are shown in terms of alveolar gas partial pressures (PAO2 

and PACO2), tidal volume (VT), minute ventilation (Ve) and respiratory frequency (RR). The 

stimulus is applied for 10 minutes. The experimental data have been obtained from a group of 

10 healthy subjects [83] and represent average values across subjects. 

 

Figure 2.42 - Respiratory response to a 8% O2 in air with controlled PACO2. The stimulus is applied at 2 min and 

lasts 10 min. Continuous lines are model results; dashed lines are experimental data redrawn from [83]. 

Experimental data are means over 10 subjects. Figure courtesy of Limei Cheng, Philips Research North America 
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Once again, model predictions agree quite well with the experimental results both in the 

steady-state and transient phases for all the variables under study. The most evident 

discrepancy is represented by a downward spike in the simulated PACO2 waveform upon 

removal of the stimulus. This, however, is due to the controller implementation used to 

mainatin constant PACO2 during the simulation. The results prove that the model is able to 

explain the ventilatory increase triggered by isocapnic hypoxia: at the onset of the stimulus, 

PAO2 dramatically decreases due to the FiO2 decrease, whereas PACO2 remains constant; 

hence, tidal volume and respiratory rate increase due to the activation of the peripheral 

chemoreceptors, thus, in turn, increasing minute ventilation; at the removal of the stimulus all 

the variables return to baseline values after a short transient phase. 

 

2.6.4 Hypoxia 

 

Finally, to further validate the CP model response to O2 blood content perturbations, hypoxia 

conditions with uncontrolled PACO2 were simulated. Model predictions, in terms of 

respiratory and gas exchange variables, were compared against published human data. 

Simulations were performed with the cardiopulmonary model in closed-loop configuration 

and using the inspired gas concentrations FiCO2 and FiO2 as input. FiO2 was decreased to 

different % values starting from a resting nominal values of 21% (room ambient), whereas 

FICO2 was kept fixed to its normal room ambient value of 0.04% (see Table 2-6).  

Figure 2.43 shows both the model predicted and the experimental responses to 8% O2 in air, 

in terms of alveolar gas partial pressures (PAO2 and PACO2), tidal volume (VT), minute 

ventilation (Ve) and respiratory frequency (RR). The stimulus is applied for 10 minutes. The 

experimental data have been obtained from a group of 10 healthy subjects [83] and represent 

average values across subjects. Still, model predictions agree quite well with the experimental 
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results both in the steady-state and transient phases for all the variables under study. The 

results prove that the model is able to explain the ventilatory increase triggered by severe 

hypoxia: at the onset of the stimulus, PAO2 dramatically decreases due to FiO2 decrease, 

whereas PACO2 remains constant; hence, tidal volume and respiratory rate increase due to 

activation of the peripheral chemoreceptors, thus, in turn, increasing minute ventilation; the 

increase in minute ventilation generate a concomitant decrease in PACO2 that inhibits 

peripheral chemoreceptors and limits the ventilatory increases in RR, Vt and Ve to lower 

values compared to the isocapnic hypoxia case; finally, at the removal of the stimulus all the 

variables return to baseline values after a short transient phase. 

 

Figure 2.43 - Respiratory response to  8% inspired O2 in air with uncontrolled PACO2; step input performed at 2 

min and lasting 10 min. Left: model simulations; Right:experimental data from [83]. Experimental data are 

means over 10 subjects. Figure courtesy of Limei Cheng, Philips Research North America 
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Chapter 3: Work of Breathing and Respiratory 
Mechanics Estimation 
 

3.1 Introduction 

Knowledge of the mechanical properties of the respiratory system is of paramount 

importance to the clinicians for the management of mechanically ventilated patients. 

Quantitative determination of respiratory mechanics can aid the clinician to: 1) diagnose the 

disease underlying respiratory failure; 2) assess the status and progress of the disease; 3) 

measure the effects of treatments; 4) tune the ventilator setting to the patient’s specific needs, 

and thus minimize the risk of ventilator-induced complications, such as ventilator-induced 

lung injury (VILI). Methods for the assessment of respiratory mechanics are currently 

available at the bedside but they all present some limitations. Particularly, the majority 

require the patient to be fully passive. Spontaneously breathing patients are much harder to 

“estimate” due to the presence of the additional respiratory muscle pressure source. However, 

in mechanically ventilated patients, spontaneous respiratory activity by the patient is often 

present. One of the main goals of mechanical ventilation is indeed to restore normal 

spontaneous respiratory activity as early as possible in order to discontinue mechanical 

therapy. Hence, there is a need for reliable techniques to characterize the mechanical 

properties of patients’ respiratory system even in the presence of spontaneous respiratory 

efforts. In active patients, quantification of these efforts is also very important in order to 

optimally adjust the respiratory load via the ventilator and maintain the patient in a comfort 

zone, thus avoiding patient’s respiratory muscles atrophy and fatigue. In this chapter we will 

first review the state-of-art of respiratory mechanics assessment and quantification of 

patient’s efforts, then highlight the limitations of the current methods. Then, we will present a 

novel model-based noninvasive technique that overcomes these limitations and allows for 
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simultaneous assessment of patient’s respiratory mechanics and efforts in spontaneously 

breathing subjects. Validation of the proposed technique via simulated and real experimental 

data obtained from animal tests will be shown. The use of a (simplistic) physiological model 

of the patient’s respiratory system coupled with a parameter estimation method, form the core 

of our technique. Hence, this represents a concrete application of the patient-specific 

(personalized) physiological modeling concept that has been introduced in 1.1 Motivation  

section and that constitutes the driving principle behind this research. 

 

3.2 Respiratory Mechanics  

The lungs are completely passive. Forces need to be applied to the respiratory system in order 

to move it from its resting equilibrium position at end exhalation. In spontaneous breathing, 

the respiratory muscles generate the required forces, whereas in mechanical ventilation (MV) 

the forces are externally supplied by the ventilator. In both cases, for a given applied driving 

force, the resulting movement of the lungs depends on the impedance of the lung and chest 

wall, the two components of the respiratory system. The impedance is essentially due to the 

elastic and resistive mechanical properties of the system. The inertial component of gas and 

lung tissue is usually negligible [54]. 

Elastic Properties: Both the lungs and the chest wall can be considered as elastic structures, 

where the transmural pressure gradients correspond to stress, and lung volume corresponds to 

strain. Elasticity of the lungs is essentially due to the elastic properties of the pulmonary 

tissue and to surface tension. Over a certain range of volumes and pressures, lung and chest-

wall structures obey Hooke’s law and the change in the volumes divided by the transmural 

pressures required to produce them defines their compliance (C):  
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Elastance (E), or stiffness, is the reciprocal of the compliance and is usually expressed in 

     

 
. Stiff structures present a high elastance and a reduced compliance. A schematic 

representation of the respiratory system and its structures, highlighting the transmural 

pressure gradients involved, is shown in Figure 3.1.  

 

 

Figure 3.1 – Schematic respresentation of the structures and pressures involved in breathing. Pao, pressure at the 

airway opening; Pbs, body surface pressure (typically equal to atmospheric pressure); Ppl, intrapleural pressure; 

Palv, alveolar pressure; PL, transpulmonary lung pressure;  Pw, chest-wall pressure; Prs, pleural difference across 

the respiratory system.    

 

Under static conditions (i.e., in the absence of flow and air movement) the distending 

pressure of the respiratory system (Prs), lung (PL) and chest wall (Pcw) are given by: 
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where Palv represents the alveolar pressure, Ppl represents the intrapleural pressure and Pbs is 

the body surface pressure (usually barometric pressure). As can be easily observed from the 

equations above, knowledge of the variations in intrapleural pressure during breathing is 

necessary in order to divide respiratory system mechanics into their lung and chest-wall 

components.  

The elastic properties of lungs and chest generate elastic recoil pressures that must be 

overcome in order to breath. These pressures depend on the volume and elastance of the 

particular structures (lung, chest wall, etc.) that generate them and they are purely static in the 

sense that they are independent of the existence of airflow.  

Resistive Properties: When airflow is present, an additional mechanical element must be 

considered: resistance (R). This generates a corresponding resistive pressure that must be 

overcome by the driving force of the system. The resistance can be computed by dividing the 

resistive pressure (    ) by the airflow ( ̇):  

  
    

 ̇
 

Respiratory system resistance can be attributed to the airways, viscosity of the pulmonary 

tissues and partially to the shear forces that develop during movement of the chest-wall 

tissues. 

 

3.2.1 State-of-art of Respiratory Mechanics Assessment 

A well-established technique for assessing respiratory mechanics in ventilated patients is the 

Inspiratory Hold Maneuver, also called Flow Interrupter Technique (FIT) [54] or End 

Inspiratory Pause (EIP) [97]. This technique consists of rapidly occluding the circuit through 

which the patient is breathing (see  

( 
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Figure 3.2) under conditions of constant inspiratory flow, while measuring the pressure in the 

circuit behind the occluding valve. As illustrated in Figure 3.3, under conditions of constant 

inspiratory flow ( ̇), airway opening pressure increases from the positive end-expiratory 

value (PEEP) to peak inspiratory pressure (PIP). When the circuit is occluded, flow is 

stopped temporarily thus eliminating the resistive pressure component and causing airway 

opening pressure to drop from PIP to a plateau pressure value (Pplat). Then the patient is 

allowed to exhale to set PEEP. The gradient between PIP and Pplat allows for calculation of 

airway resistance according to: 

    
         

 ̇
 

 

whereas the value of Pplat reflects the total elastic recoil pressure and hence allows for 

calculation of the respiratory system compliance according to: 

 
    

  

          
 

 

where Vt is the inhaled tidal volume.  

 

Figure 3.2–Schematic representation of mechanical ventilation showing the connection between the patient and 

the ventilator. ET stands for endotracheal tube.  
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Figure 3.3 – Airway opening pressure profile during an Inspiratory Hold Maneuver. PEEP, positive end-

expiratory pressure; PIP, peak inspiratory pressure; Pplat, plateau pressure. 

 

The technique is noninvasive and easy to be performed. Furthermore, the majority of the 

modern commercial ventilators have software that automate the procedure and compute 

resistance and compliance values. However, the maneuver interferes with normal operation 

of the ventilator as it requires constant inspiratory flow and hence can only be applied in 

volume-controlled ventilation (VCV) mode. As a result, it is not suitable for continuous 

monitoring of respiratory mechanics and patient status. This is a severe limitation, as in 

critically ill patients mechanical properties of the respiratory systems can rapidly change, thus 

a continuous monitoring of resistance and compliance would be highly desirable. Moreover, 

the measurements provided by this technique are valid only if the patient is completely 

passive throughout the duration of the inspiratory hold. As shown in Figure 3.4, in fact, if 

spontaneous respiratory activity is present artefacts get generated in the airway pressure 

profile causing erroneous measurements of Pplat. However, the majority of patients receiving 

MV are not completely passive. For instance, spontaneously breathing patients may receive 

pressure support ventilation (PSV) and/or volume-controlled synchronized mandatory 
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ventilation (VC-SIMV). Intermittent applications of the maneuver in these patients will 

interfere with the patient’ breathing, predisposing to patient-ventilator dissynchrony, and 

likely cause the patient to attempt inhaling and exhaling spontaneously during the hold. 

Recently, Al-Rawas and colleagues [97] have reported such phenomenon to happen 

approximately 75% of the time according to their experience.  Hence, it appears evident that 

despite its simplicity, the assessment of respiratory mechanics via the inspiratory hold 

maneuver is far from being optimal.     

 

Figure 3.4 – Examples of a correct EIP (left), when no patient’s respiratory muscles activity is present, and an 

incorrect EIP (right), when patient’s respiratory muscles activity generates artefacts in the airway pressure 

profile. Adapted from [97].  

 

An alternative to the inspiratory hold maneuver consists in using the Least Squares (LS) 

method to fit a mathematical model of the respiratory system to pressure and flow 

measurements obtained noninvasively at the Y-piece of the breathing circuit (see Figure 3.2). 

The model most frequently used is the 1
st
 order single-compartment model [98] that describes 

the respiratory system as an elastic compartment served by a single resistive pathway. The 
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electrical analog of the model is shown in Figure 3.5. Its governing equation, also known as 

the equation of motion of the respiratory system, can be written as: 

             ̇                        
 

3-1)f 

where Pao is the airway opening pressure,  ̇ is the air flow,   is the lung volume above 

functional residual capacity (FRC), Pmus is the pressure generated by the patient respiratory 

muscles (driving source), Rrs is the respiratory system resistance, Ers is the respiratory system 

elastance (inverse of the compliance) and P0 is a constant term added to account for the 

pressure that remains in the lungs at the end of expiration.  

 

Figure 3.5 – Simplified conceptual model of the respiratory system (left) and corresponding electrical analog 

(right). Pao, airway opening pressure; Rrs, respiratory system resistance; Crs, respiratory system compliance; Pmus, 

respiratory muscle pressure. 

In patients who are not breathing spontaneously, the term Pmus in Eq. 3-1 can be removed and 

the resulting equation 

             ̇                     
 

3-2)f 

can be imposed for N different time samples, obtaining:  

( 

( 
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3-3)f 

Note that in Eq. 3-2 an extra term      has been included in order to account for the presence 

of measurements and model errors. Equation 3-3 above represents a standard mathematical 

tractable linear regression problem, where H is the matrix containing the input variables, Z is 

the output vector,   is the parameter vector containing the unknown parameters (Rrs, Ers and 

P0), and N is the number of samples. Hence, in the case of fully passive patients, an estimate 

of the parameter vector  ̂ (containing the estimated resistance and compliance) can be 

obtained via the classical Least Squares (LS) method: 

   ̂             
 

3-4)f 

provided that airway pressure and flow at the patient's mouth are measured (lung volume V is 

typically obtained via numerical integration of the flow signal). This is an ideal non-invasive 

alternative to the end-inspiratory hold maneuver, one that does not interfere with the normal 

operation of the ventilator and hence allows for continuous monitoring of respiratory 

mechanics. The technique has been applied in several respiratory mechanics studies [99, 100] 

and, thanks to the advancement in microprocessor technology, it is implemented in some of 

the modern mechanical ventilators (e.g., V200-Philips Respironics). Note that the LS 

formulation in Eq. 3-4 above assumes that a batch of data (typically covering the entire 

( 

( 
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duration of a breath) is available in order to construct the matrix H and the output vector Z. 

An on-line version of the LS technique, based on the Recursive Least Squares (RLS) 

formulation [101], exists and can be used to avoid the need for data storage. Furthermore, in 

order to cope with time varying parameters, a forgetting factor can be introduced in the RLS 

formulation (RLS with exponential forgetting [101]). This has been proposed in the literature 

[102, 103, 104] in order to track time variations of respiratory mechanics that correlate with 

disease progression. However, the main drawback of this technique is that it can only be 

applied for passive patients. In fact, if the patient is actively contributing to the breath, i.e. 

spontaneously breathing, then the term Pmus in Eq. 3-1 cannot be neglected and the standard 

LS method will provide erroneous results unless Pmus is a known input quantity. To obviate 

for this limitation, a similar approach can be applied to study the lungs without including the 

dynamics of the chest wall. In other words, the 1
st
 order single-compartment model described 

above (Figure 3.5) can be converted into the equivalent model shown in Figure 3.6 and, 

accordingly, the equation of motion of the respiratory system can be converted into the 

equation of motion of the lungs: 

            ̇                      3-5)f 

where RL and EL are lung resistance and elastance. Note the addition of the term Ppl that 

represents the intrapleural pressure.  

( 
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Figure 3.6 – Simplified conceptual model of the respiratory system (left) and corresponding electrical analog 

(right) highlighting both the lung and the chest wall components. 

From Eq. 3-5, the following linear regression problem can be obtained: 
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3-6)f 

and the LS method can be applied to estimate the parameter vector  , provided that 

intrapleural pressure Ppl is known. Note that in this case, the estimated resistance and 

elastance (or compliance) pertain to the lung component only, rather than to the entire 

respiratory system. The clear drawback of this approach is that knowledge of intrapleural 

pressure is required. Direct measurement of Ppl (pleural manometry) requires an invasive 

procedure to place needles, catheters, or transducers. The risk of infection and other 

( 
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complications makes this approach unattractive in the clinical setting. For this reason, the 

pressure into the esophagus (Pes) is typically used as a surrogate to Ppl. The esophageal 

balloon technique is the most popular method for Pes measurement. This technique, however, 

not only requires the patient to swallow a balloon-tipped catheter (see Figure 3.7), but it also 

requires an expert operator for correct placement and inflation of the balloon, special 

equipment and particular attention to avoid errors and artifacts [105]. These drawbacks have 

limited somewhat the use of esophageal manometry as a way of monitoring Ppl and have 

diminished its adoption into standard clinical practice.  

 

Figure 3.7 – The esophageal balloon catheter. The pressure inside a latex balloon on the end of a thin catheter is 

sensed by a pressure transducer connected to the proximal end. A three-way stopcock permits injection of a small 

volume of air into the balloon so that its sides clear the multiple holes in the end of the catheter. 

 

As a result of this review, the need for a robust method to monitor respiratory mechanics in 

spontaneously breathing ventilated patients appears evident.  
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3.3 Work of Breathing (WOB) 

Another very important parameter in MV, in addition to resistance and compliance, is Work 

of Breathing (WOB). WOB is defined as the effort done by the respiratory muscles to breath. 

When the patient is connected to a mechanical ventilator, the work of breathing can be 

divided into 2 major components: the physiologic work of breathing, which is dissipated 

against the resistive and elastic pressures of the respiratory system, and the imposed work of 

breathing due to the breathing apparatus (endotracheal tube and ventilator). The total WOB is 

usually computed at each breath and normalized with respect to tidal volume to give Joule/L. 

Sometimes, in order to account for the respiratory frequency, WOB is also expressed in 

Joule/min to yield Power of Breathing (POB). Real-time measurements of WOB in 

mechanically ventilated patients can be used to assess patient readiness for weaning [106], to 

appropriately select pressure support ventilation (PSV) levels [107], to diagnose and treat 

excessive respiratory muscle loading [108], and to monitor and prevent respiratory muscle 

fatigue or atrophy [109].  

 

3.3.1 State-of-art of WOB Estimation 

The gold standard of WOB computation is the Campbell diagram [110, 111], which is 

constructed by plotting lung volume (V) against intrapleural pressure (Ppl), thus forming the 

so called PV loop, at each breath. The Campbell diagram is an effective tool to evaluate the 

effects of lung mechanics abnormalities on WOB [108] and it allows partitioning of WOB 

into its flow-resistive component (both physiologic and imposed) and elastic component 

[107]. However, as mentioned in the previous section, direct measurement of intrapleural 

pressure is invasive and hence, to construct the Campbell diagram, esophageal pressure (Pes) 

is usually used as a surrogate of Ppl. An example of a typical Campbell diagram is shown in 
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Figure 3.8. In the diagram, lung volume is usually referred to functional residual capacity 

(FRC) whereas esophageal pressure is usually referred to its baseline value, so that the 

breaths start at the origin of the diagram (zero pressure and volume point). During 

spontaneous breathing, the PV loop moves in a clockwise direction and its slope represents 

the dynamic lung compliance (CL). During inhalation (I), esophageal pressure decreases due 

to the movements of the diaphragm (and other additional inspiratory muscles) and lung 

volume increases. Exhalation (E) is normally passive, with both volume and pressure 

returning to zero at the end of the breath (if intrinsic positive end-expiratory pressure, PEEPi, 

is not developed). A line, whose slope is equal to the chest wall compliance (CCW), is also 

drawn on the diagram, usually starting at the zero flow point. WOB is computed as the area 

enclosed within the inspiratory portion of pressure-volume loop and the chest wall 

compliance line. It can be partitioned into an inspiratory flow-resistive component (vertical 

lines area in Figure 3.8) and an elastic component (triangular shaped area with diagonal lines 

in Figure 3.8).  

 

Figure 3.8 – Campbell diagram for a spontaneously breathing patient; reproduced from [107]. 

 

The value of CCW is usually computed by mechanically inflating the patient, provided that the 

patient is completely relaxed. Under this condition, the esophageal pressure increases as the 

lung is inflated and the pressure-volume loop moves in a counterclockwise direction. The 
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slope of this loop is taken as the chest wall compliance. If complete relaxation of the 

inspiratory muscles cannot be achieved, normal values of 0.1 – 0.2 L/cmH2O are used for 

CCW. Commercial devices, such as the Bicore CP100 (Bicore Monitoring Systems, Irvine, 

CA) and the Ventrak 1500 (Novametrix Medical Systems, Wallingford, CT), were designed 

in the 1990s to assess WOB via the Campbell diagram using esophageal pressure 

measurements [112, 113, 114]. However, due to the aforementioned drawbacks associated 

with the esophageal balloon technique, this has not been accepted as a routine clinical 

practice. For these reasons, the popularity of the above mentioned commercial devices have 

progressively declined [11]. At present, WOB computation via esophageal manometry is 

offered only in the AVEA ventilator system (VIASYS Healthcare, CareFusion) using the 

BiCore technology originally implemented in the CP100 monitor. 

Alternative noninvasive methods for WOB computation, that are not based on the Campbell 

diagram and do not require esophageal pressure measurements, have been considered in 

recent years and have contributed to renewed interest in WOB as a meaningful clinical 

parameter. An Artificial Neural Network (ANN) algorithm has been recently proposed [8] to 

estimate POB non-invasively and is currently implemented in the NM3 monitor as part of the 

VentAssist clinical decision support tool (Philips - Respironics). Statistical equivalence 

between non-invasive POB and invasive POB, derived using esophageal pressure 

measurements, has been proved in a group of 45 adult mechanical ventilated patients 

receiving pressure support ventilation (PSV) [8]. The main limitation of this method is the 

inability to explain the underlying physiological mechanisms behind WOB computation. 

ANN, are indeed data-driven (or black-box) approaches and hence do not provide 

quantitative understanding of the underlying input-output relations. As a result, the algorithm 

proposed in [8] receives input data and generates an estimate of POB, but it is not possible to 

correlate this number with the underlying physiological scenario. Furthermore, the 
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performance of ANN-based approaches is typically highly dependent on the training datasets 

and this may represent an additional limitation.      

Others [9, 7, 115] have proposed a model-based approach, where an estimate of Pmus is first 

computed and then WOB is found as: 

 

    ∫          ̇     

  

 

 

3-7)f 

where Ti is the inspiratory time. These methods are all based on the 1
st
 order single- 

compartment model of the respiratory system (see Figure 3.5 and Eq. 3-1) and they rely on a 

two-step approach: 1) Rrs  and Crs  are first estimated; 2) the equation of motion is then 

applied to compute Pmus (t) using the estimated values of Rrs and Crs and the available 

measurements. Estimation of Rrs  and Crs is performed either by applying the inspiratory hold 

maneuver [9], or via Least-Squares fitting of Eq. 3-1 under specific conditions where the term 

Pmus (t) is arguably assumed to be zero [7, 115]. Clear limitations can be found in all these 

approaches. Particularly, the limitations related to the use of the inspiratory hold maneuver 

[9] have been already discussed in the previous section. The method described in [7] requires 

intermittent periods of high level pressure support ventilation (PSV) in order to unload the 

respiratory muscles and legitimately neglect Pmus in the LS fitting procedure. Hence, this 

method still interferes with the normal operation of the ventilator and does not allow for 

continuous monitoring of WOB. Finally, the method described in [115] uses only small 

selected portions of PSV breaths, where the flow signal satisfies specific conditions that are 

compatible with the assumption of negligible Pmus. Hence, it does not exploit all the data 

available and it is prone to errors due to measurement noise.   

 

( 
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3.4 Proposed Method 

In order to overcome the above limitations we propose a method for the assessment of 

respiratory mechanics (Rrs and Crs) and quantification of patient’s efforts (Pmus and WOB) 

with the following characteristics: 

- Completely noninvasive (i.e., no esophageal catheter needed); 

- Maneuver-free (i.e., not interfering with normal ventilator operation); 

- Real-time; 

- Model-based (so as to allow physiological interpretation); 

- Not dependent on training datasets; 

- Continually updated (so as to allow for continuous monitoring of WOB and 

respiratory mechanics);  

- Using readily available data from ventilator or monitoring devices; 

- Applicable in spontaneous as well as passive patients; 

- Independent from ventilator modes; 

- Robust to noise and disturbances in the data (possibly using all measured data points).  

The method is based on the same 1
st
 order single-compartment model of the respiratory 

system shown above (see Figure 3.5).  This model has been chosen, despite its simplicity, as 

it is widely accepted in the clinical community and can be easily interpreted. Our method 

uses pressure and flow data measured non-invasively at the patient airways and estimates the 

resistance Rrs, the compliance Crs as well as the respiratory muscle pressure signal        . 

Once an estimate of Pmus over a respiratory cycle is available, then WOB is computed by 

simply integrating Pmus over volume as shown in Eq. 3-7. 
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To highlight the degree of complexity of the problem at hand, Figure 3.9 shows a block 

diagram representation where the input and output of the system under exam are specified. 

 

Figure 3.9 – Input-output block diagram of the 1
st
 oder single-compartment model of the respiratory system. Pao, 

airway opening pressure; Pmus, respiratory muscle pressure;  ̇, air flow; V, lung volume; t, time. 

 

It is evident that Pmus, which in this case is one of the unknown quantities to be estimated, is 

actually one of the inputs to the system. Hence, the problem we are facing is a combined 

input estimation - system identification problem: using complete knowledge of the output 

signals ( ̇    and     ) and only partial knowledge of the input (      ), we would like to 

identify the system (i.e. estimate the parameters Rrs and Crs) and at the same time recover 

(estimate) the input information that is missing, i.e.        . This is clearly a very 

challenging problem since it poses major technical obstacles. In fact, typical system 

identification techniques require complete knowledge of the input-output signals of the 

system to be identified, and hence cannot be directly applied. Two different algorithms, with 

complementary features, have been developed by our group. In the next section, detailed 

description of both algorithms is provided.  

 

 

 

 



119 

 

3.4.1 Constraint Least-Squares (CLS) Algorithm 

The first algorithm works on breath-by-breath batches of data (made of, say, N recorded time 

samples) and provides simultaneous estimation of average respiratory system resistance Rrs 

and elastance Ers (or compliance Crs), as well as a time-continuous estimated         signal 

pertaining to that particular batch of data (and hence to that particular breath). The starting 

point of the algorithm is the standard LS problem applied to a batch of data corresponding to 

a respiratory cycle. Given measurements of       ,  ̇    and      at N different time 

samples, we want to find the values of Rrs, Ers an         that minimize the residual sum of 

squares between measured and model predicted output:     

  

Note that to simplify notation, in writing the cost function J the term P0 in Eq. 3-1 has been 

absorbed into Pmus. Hence, practically, when solving the LS problem above we would be 

estimating a shifted version of the Pmus waveform: 

    
                

This however, does not affect the resulting WOB computation since when integrating the 

estimated Pmus waveform over volume (see Eq. 3-7) we can account for the offset P0 by 

referring Pmus to its end exhalation value.  

Then, it is realized that simultaneous estimation of Rrs, Crs and         is an underdetermined 

problem, since it requires the computation of N+2 unknowns (N values of         , 1 value 

for Rrs, and 1 value for Crs) from N available equations (1 for each time sample): 
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Hence, to address the issue of underdeterminacy, we introduced inequality and equality 

constraints on the possible values that        , Rrs and Crs can take, thus reducing the space 

of feasible solutions. Particularly, we assumed that over a respiratory cycle,         is a 

piece-wise monotonic function (monotonicity constraints) made of three different regions: 1) 

a region in which Pmus is monotonically decreasing up to a minimum point; 2) a region in 

which Pmus is monotonically increasing; 3) a region in which Pmus is flat. Then we also 

assumed that the values of        , Rrs and Crs are limited within specific physiological 

ranges (domain constraints). These assumptions are mathematically formulated as: 
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where tm represents the time of transition between regions 1 and 2, and tq represents the time 

of transition between regions 2 and 3. 

Note that the monotonicity constraints were obtained from the observation that during a 

spontaneous breath, the respiratory muscles (mainly the diaphragm) first gradually contract 

(Pmus monotonically decreasing), then gradually relax (Pmus monotonically increasing) and 

then finally they become completely silent (Pmus flat). A representative “gold standard” Pmus 

profile was obtained experimentally from a pig by measuring airway pressure (Pao) and 

esophageal pressure (Pes) during an occlusion maneuver (see Figure 3.10). In this condition, 

since the breathing circuit was occluded and no airflow was present, all the pressures in the 

electrical analog of Figure 3.6 are equal and hence the measured variations in Pao and Pes 

correspond to variations in Pmus.     

 

Figure 3.10 – Experimental profile of aiway pressure (Pao) and esophageal pressure (Pes) obtained from a pig 

during an occlusion maneuver. The profile can be assumed as a “gold standard” profile of Pmus. Figure courtesy 

of Francesco Vicario, Philips Research North America 

 

Hence, by combining the aforementioned constraints with the LS type objective function J (to 

be minimized) we obtain a Constraint Least Squares (CLS) problem:  
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The mathematical formulation of the CLS problem to be solved is a quadratic programming 

optimization problem, where the objective function is a quadratic function of the decision 

variables and the constraints are linear: 

 

Note that the monotonicity constraints written above assume knowledge of the transition time 

, tm and tq, between regions with different Pmus monotonicity. However, this is not the case in 

real applications. Therefore, the algorithm should also search for the optimal monotonicity 

transition times. However, since the transition time tm has a more critical effect as it 

determines the time of maximum Pmus, a search is performed only for tm whereas tq is fixed: 

        

 where K is a constant that can be optimized off-line. 

The full algorithm is summarized below and it has been implemented in Matlab using the 

quadprog subroutine (Optimization Toolbox) that solves a standard quadratic programming 

optimization method using the interior point method: 
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where M is the number of possible candidates monotonicity switching time tm. In order to 

reduce computational complexity, since knowledge of the exhalation and inhalation time is 

typically available from the ventilator, the search can be limited to a time window between 

the inhalation and the exhalation time. In fact, it is reasonable to assume that the peak of Pmus 

is always reached before the exhalation starts.    

In conclusion, the algorithm is based on physiological assumptions on the actual Pmus profile 

that are translated into mathematical constraint to reduce the space of possible solutions of 

the LS problem. It accepts as inputs flow ( ̇), pressure (Pao) and volume (V) data pertaining 

to a respiratory cycle and provides as output an estimated single value of Rrs and Ers (or Crs), 

and an estimated         signal for that particular respiratory cycle. From the estimated 

       , then WOB can be computed at each breath. The algorithm requires a batch of data 

and hence it is an off-line algorithm. However, provided that the optimization routine is fast 

enough, it can theoretically provide a value of Rrs and Ers (or Crs) and WOB at every breath 

(with a certain delay) and hence it allows for continuous monitoring of respiratory mechanics 
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and WOB. The drawback of the algorithm is its computational complexity. It currently takes 

about 7 sec to process a 5 sec batch of data on a regular i7 CORE processor laptop.   

 

3.4.2 Modified Kalman Filter (MKF) Algorithm  

This second algorithm works on-line, without requiring a batch of data and provides 

estimation of respiratory system resistance Rrs and elastance Ers (or compliance Crs), as well 

as a time-continuous estimated         signal in real time. It is based a multi-stage process, 

where the elastance Ers is first estimated, then the current estimate of Ers is used as input to a 

second estimator for Rrs, and then finally an estimate of         is computed from the 

equation of motion (Eq. 3-1) using the estimated values of Rrs and Ers. A schematic diagram 

explaining the principles of operation of the algorithm is shown in Figure 3.11. A description 

of the three different estimation stages is provided next. 

 

Figure 3.11- Schematic diagram of the MKF algorithm. Figure courtesy of Dong Wang, Philips Research North 

America. 
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Ers Estimator : The first stage of the proposed algorithm consists in estimating the elastance 

Ers using the available measurements ( ̇, Pao and V). A difference operation is performed on 

the input data and then a Moving Window Least Squares (MWLS) algorithm is applied on 

the differential version of the 1
st
 order single-compartment equation of motion:  

             ̇                      

The difference operation improves the dynamics of the input signals and hence improves the 

performance of the LS estimator. The MWLS estimator works as described hereafter. A 

sliding window of size L is considered. Within that window, the Pmus difference signal, 

        , is assumed to be a constant,      . This means that Pmus is locally approximated 

by a linear function of time within the window. Also, it is assumed that Rrs and Ers are 

constant in a sliding window. Therefore, the above difference equation becomes: 

             ̇                   

At time t, the MWLS algorithm uses the input signals within the sliding window [t-L+1, t] to 

estimate Rrs, Ers, and       jointly based on the classical LS formulation. The output of this 

operation is a vector of parameter estimates for that specific window 

  ̃       ̃        ̃       . Then, the window is shifted one sample ahead and the LS 

computation is repeated obtaining estimates of the parameters for the shifted window 

  ̃         ̃          ̃         . The process is repeated sequentially, as data are 

collected. The concept of MWLS is illustrated in Figure 3.12.  
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Figure 3.12- Schematic illustration of the MWLS algorithm. Figure courtesy of Dong Wang and Francesco 

Vicario, Philips Research North America. 

 

From the MWLS outputs, only the Ers estimate ( ̃  ) is used in the subsequent steps. In fact, 

it has been verified via simulation studies that estimation of Ers is robust and the errors in the 

estimates are absorbed by the resistive and the       terms. Furthermore, the variance 

  ̃  
    of the estimated elastance  ̃   is computed for every window as shown in Figure 3.12, 

where      
is the variance of the noise estimated as the variance of the sum of square 

residuals: 

     
 (      ̃    ̃     ̃    

 )
 
       ̃    ̃     ̃    

     

Since the estimated elastance  ̃   has a high variance, a Kalman filter operator is applied in 

order to filter out artefacts due to noise. The implementation of the Kalman filter is based on 

the following state-space model: 
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Where Ers is modelled as a random walk process, based on the assumption that it can only 

vary slowly in time. The standard formulation of the Kalman filter is shown in Figure 3.13.  

 

Figure 3.13- Standrad formulation of the Kalman filter. Xk, true state varaible at time k; Xk-1, true state variable at 

time k-1; uk, input to the system; zk, observed state at time k; Q, covariance matrix of the process noise; R, 

covariance matrix of the observation noise; Pk, error covariance matrix.   

Hence, we can simply apply it to the above state space model assuming that: 

                                     ̃  
               

where   is the design parameter and   ̃  
    is the variance of the MWLS outputs computed 

for every window as described above.  

Rrs Estimator :  The second stage of the proposed algorithm consists in estimating the 

resistance Rrs using the available measurements ( ̇, Pao and V) and the estimated elastance 

 ̂      from the previous stage. First, the elastic term from the equation of motion is 

cancelled (Ers cancellation) since the elastance is now assumed to be known:  

 ̃              ̂           
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Then, a second MWLS algorithm is used in order to estimate Rrs and Pmus from the resulting 

simplified equation of motion: 

 ̃           ̇            

In this case, since we have seen from simulation studies that estimation of Rrs is very 

sensitive to noise and model errors, a more accurate local approximation of Pmus is used in the 

moving window, as compared to the previous MWLS algorithm (where Pmus was assumed a 

linear function of time within the window). Particularly, based on the same “gold standard” 

Pmus profile shown in the previous section (Figure 3.10), here we assumed that Pmus can be 

locally approximated by a polynomial function of time, from which the name Polynomial 

Mowing Window Least Squares (PMWLS): 

                   
       

  
 

The PMWLS will estimate Rrs and the coefficients              of the polynomial above. 

The degree M of the polynomial used to approximate Pmus will have huge impact on the 

estimator performance. Furthermore, as illustrated in Figure 3.14 it is reasonable to assume 

that the optimal degree of the polynomial will depend on the location of the moving window.  

 

Figure 3.14 – Experimental profile of aiway pressure (Pao) and esophageal pressure (Pes) obtained from a pig 

during an occlusion maneuver. The profile can be assumed as a “gold standard” profile of Pmus. Note the different 

regions where different polynomial orders can be used to locally approximate the actual Pmus profile. Figure 

courtesy of Dong Wang, Philips Research North America. 
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For instance, in the central region a 1
st
 order polynomial seems appropriate, whereas in the 

relaxation region a 0
th

 order polynomial seems more appropriate. Hence, a “dynamic” 

polynomial order optimization scheme is proposed: three MWLS estimations are performed 

in each moving window with the polynomial order of 0, 1, and 2, respectively; the resulting 

Rrs estimates from all the three MWLS estimators are then combined together in such a way 

that the one with the least estimate variance will dominate. Specifically, the three MWLS 

estimations are implemented as below: 

 

The three estimates  ̃    ,  ̃     and  ̃     are combined using a maximal ratio combining 

criteria, where the resulting resistance estimates  ̃   is a combination of the three estimates 

weighted by their corresponding variances ratio: 
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Finally, in order to further filter the noise effects, a Kalman filter is applied similar to what 

described for the previous stage (Ers estimator). 

Pmus Estimator : In the last stage of the proposed algorithm, an estimate of         is first 

computed via the equation of motion, using the available data and the resistance and 

elastance values from the 2 previous stages: 

 ̃               ̂            ̂       ̇    

Then, finally, a low pass filter is used in order to remove artefacts coming from the airway 

pressure signal (e.g., cardiogenic oscillations), resulting in the final estimate  ̃      . From 

the estimated        , then WOB can be computed at each breath. 
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3.5 Algorithm Validation 

The first step in the successful development of any system identification, or parameter 

estimation, algorithm is its validation on synthetic data generated via simulations. Algorithm 

validation on synthetic data offers the advantage of a controlled environment and allows 

reproducibility. Only after validation on synthetic data, will the proposed algorithm be tested 

on real data under desired conditions. Hence, for each of the above mentioned methods, 

extensive validation has been performed using a simulation approach. When using data for 

validation or testing, it is preferable to use data that reflects the actual dynamics of the system 

we are identifying. For this reason, in the 1
st
 verification process, data have been obtained 

using a commercial lung simulator (ASL5000, Ingmar Medical) connected to a real 

mechanical ventilator. After verifying algorithm correctness on these simulated data, both 

algorithms have been validated on real data obtained via a pig test. A detailed description of 

the verification on simulated data, the animal test and the data collection, and the final 

algorithms’ validation on the real data follows. 

  

3.5.1 Verification on Simulated Data 

In the 1
st
 verification stage, data (airway opening pressure, flow and volume) were obtained 

using a commercial breathing simulator (ASL5000, Ingmar Medical) connected to a real 

ventilator (Esprit, Philips-Respironics). The ASL5000 is essentially a physical model of the 

respiratory system that can be connected to a real ventilator as a virtual patient. The simulator 

consists of a mechanically controlled piston-cylinder that behaves as the 1
st
 order single-

compartment model shown above (see Figure 3.5). The simulator can be programmed with 

given profiles of    ,     and      and hence it can be used to simulate spontaneously 

breathing patients. In order to verify the 2 proposed algorithms, simulations were performed 
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using the ASL5000 connected to the ventilator under pressure support ventilation (PSV) 

mode. The ASL5000 was programmed with a nominal realistic      profile that was obtained 

by concatenating the Pmus profile shown in Figure 3.10 over several respiratory cycles. The 

resistance and compliance of the underlying 1
st
 order single-compartment model were set to 

constant, but a step transition in both Rrs and Ers was induced during the simulations. Data 

were collected using a flow and pressure sensor (NM3 monitor, Philips-Respironics) at the Y-

piece of the breathing circuit between the ventilator and the ASL5000 simulator. Both the 

CLS and the MKF algorithms were run on the collected data and the results were compared 

with the nominal values of Rrs, Ers and Pmus. The agreement between the estimated parameters 

and their corresponding nominal values was excellent for both algorithms, even during the 

step transitions in the nominal parameters. Figure 3.15 – 3.18 show examples of such 

validations for both the CLS and the MKF algorithm. From these figures we can see how the 

two algorithms are able to correctly estimate the values of Rrs and Ers and to track their 

variations almost immediately. This is very important in the contest of continuous monitoring 

of respiratory mechanics, where the mechanical properties of the patients’ respiratory system 

can drastically change over time and we want our algorithm to be able to detect those 

changes. Furthermore, as clearly shown in Figure 3.16 and Figure 3.18, which are zoomed 

versions of Figure 3.15 and Figure 3.17, respectively, the estimation of Pmus is also very 

accurate with both algorithms. The proven correctness of the theoretical approach via this 

simulation study gave us confidence about the proposed algorithms, which were then further 

tested on real animal data.  
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Figure 3.15-Results of CLS estimation using the ASL5000 generated data. Figure courtesy of Nikolaos 

Karamolegkos, Philips Research North America.   
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Figure 3.16 -  Zoomed version of Figure 3.15 highlighting the accuracy of the Pmus, Rrs and Crs  estimation 

obtained using the CLS apporach. Figure courtesy of Nikolaos Karamolegkos, Philips Research North America. 
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Figure 3.17 - Results of MKF estimation using the ASL5000 generated data. Figure courtesy of Nikolaos 

Karamolegkos, Philips Research North America.  
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Figure 3.18 - Zoomed version of Figure 3.17 highlighting the accuracy of the Pmus, Rrs and Crs  estimation. Figure 

courtesy of Nikolaos Karamolegkos, Philips Research North America. 
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3.5.2 Pig Test and Data Collection 

 

Because of the similarities between the human and the pig respiratory system, experiments 

for data collection and algorithm testing have been performed on a mechanically ventilated 

adult pig model. The experiments took place at the Pulmonary Research and Animal 

Laboratory of Duke University Medical Center. The experimental protocol was reviewed and 

approved by the local institutional committee, prior to execution of the experiment. The pig 

was anaesthetized, intubated and connected to a commercial mechanical ventilator (AVEA, 

Carefusion). The choice to use this particular ventilator was dictated by the need to compare 

the estimated WOB against a gold standard WOB (the AVEA is the only commercial 

ventilator that computes WOB via esophageal manometry). Airway pressure (      ) and 

flow ( ̇   ) were measured at the Y-piece, between the breathing circuit and the endotracheal 

tube, via sensors connected to the ventilator. The volume signal (    ) was obtained by 

numerical integration of the flow waveform. The esophageal pressure (Pes) was measured 

using an esophageal balloon connected to a pressure transducer embedded in the AVEA 

ventilator. This allows having gold standard Pmus and WOB measurements. All the data were 

acquired and collected at a sampling frequency of at least 100 Hz, using a dedicated system 

for real-time data acquisition. The two algorithms (CLS and MKF) previously described were 

implemented on a real-time platform and run during the experiment to allow for usability 

testing. The test was performed for several hours, during which the pig was subject to 

different ventilator modes and maneuvers, including periods of pressure support ventilation 

(PSV) at variable levels and hipercapnic challenges with variable FiCO2 to induce changes in 

the respiratory muscle drive Pmus.  
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3.5.3 Validation on Real Data 

 

Validation of the two proposed algorithms (CLS and MKF) was performed retrospectively 

using the real data from the pig test, by comparing the estimated Rrs, Crs , Pmus and WOB 

against their corresponding gold standards. The gold standard WOB was computed by the 

ventilator, using the Campbell diagram and the invasive esophageal pressure measurements. 

The gold standard Rrs and Crs were computed as follows: 

1) The 1
st
 order single compartment model of the lung (see Figure 3.6 and Eqs. 3-5 and 

3-6) was fitted via the LS technique to the               signals, providing 

estimates of RL and EL.  

2) The values of Rcw and Ecw (or Ccw) were estimated by applying the LS technique to the 

equation of motion of the chest wall (see Figure 3.6 ) under the assumptions of zero 

respiratory muscle pressure Pmus: 

            ̇                

and using Pes as a surrogate for Ppl. Note that estimation of Rcw and Ecw  was limited to 

specific datasets pertaining to conditions of Volume Controlled Ventilation (VCV), 

during which the absence of Pmus was confirmed by no negative deflections in  the 

esophageal pressure tracing. Since there is no evidence in the literature that chest-wall 

mechanics is flow or volume-dependent, the values of  Rcw and Ecw  computed for the 

VCV  conditions were assumed to be valid for the remaining datasets. 

3) The lung and chest wall parameters were then combined to yield the parameters 

pertaining to the whole respiratory system (lungs+chest wall): 

           

                or                        
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Finally, the gold standard for Pmus was computed from the invasive esophageal pressure 

measurements (Pes) and using the chest wall parameters computed as described above, 

according to (see Figure 3.6): 

                    ̇             

In the following sections, the results of this validation process are summarized for each of the 

two algorithm proposed. In presenting the results, we denoted the gold standards as 

“invasive” measurements, whereas we denoted the results of the proposed algorithms as 

“noninvasive” estimates.  

 

3.5.3.1 CLS Algorithm Validation 

The validation results of the CLS algorithm are summarized in Figure 3.19 - Figure 3.24.  

Figure 3.19 shows the comparison between estimated (noninvasive) and gold standard 

(invasive) Rrs, Crs and WOB under different PSV levels ranging from 20 cmH2O to 0 cmH2O 

(no support from the ventilator). By looking at the invasive gold standard measurements (data 

in red), two interesting phenomenon can be observed as the PSV levels is gradually reduced 

(as indicated in the top Pao waveform plot): 1) The resistance Rrs is gradually reduced 

following the PSV level transitions; this is essentially due to the flow-dependent nature of Rrs 

[116] and to the fact that as PSV is reduced, the flow (not shown in the figure) drops as well. 

2)  The WOB gradually increases in synchrony with the PSV reductions; this is in agreement 

with physiological knowledge [107] and can be explained by the fact that reductions in PSV 

induce increases in the respiratory muscle drive (Pmus) and hence in WOB. The mechanisms 

by which PSV changes alter the respiratory muscle drive are not clearly understood: the 

chemoreflex might certainly be involved if reductions in PSV (and hence in minute 

ventilation) cause an increase in the CO2 and/or a decrease in the O2 arterial blood contents 
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that are sufficient to trigger peripheral and central chemoreceptors, thus increasing respiratory 

muscles drive; additional feedbacks mediated by mechanoreceptors in the lungs might also 

contribute to this phenomenon. By looking at the noninvasive estimated data (in green), we 

can observe that the CLS algorithm is able to estimate fairly accurately Rrs, Crs and WOB up 

to PSV values of 10 cmH2O. Particularly, the algorithm is capable of tracking variations in 

both Rrs and WOB and provide estimates of Crs that matches the gold standard invasive 

measurements. However, as the PSV is further reduced to zero, the estimated Rrs and Crs 

deviate from their corresponding gold standards and the estimated WOB, in turn, becomes 

inaccurate. Figure 3.20 shows how the estimated Pmus compare with the invasive gold 

standard measurements in the three different PSV regions (20, 10 and 0 cmH2O). It confirms 

that the algorithm is able to estimate the Pmus profile with an acceptable level of accuarcy for 

PSV values of 20 and 10 (cmH2O), whereas at 0 PSV the performance of the algorithm are 

compromised.    

Figure 3.21 shows the comparison between estimated (noninvasive) and gold standard 

(invasive) Rrs, Crs and WOB under conditions of constant PSV (5 cmH2O) and variable 

FiCO2 levels (0, 2.5 and 5%). By looking at the invasive gold standard measurements (data in 

red), we can clearly see how the resistance and compliance are not affected by the variations 

in FiCO2, whereas the WOB directly follows the FiCO2 variations. Particularly, as FiCO2 

increases, the WOB rises due to the respiratory drive increase induced by the hypercapnic 

stimulus. The opposite happens when FiCO2 is decreased. This mechanism is in agreement 

with physiological knowledge and can be ascribed to the action of the central chemoreceptors 

(see section 2.6.2 ). By looking at the noninvasive estimated data (in green), we can observe 

that the CLS algorithm is able to estimate fairly accurately the resistance Rrs, whereas Crs and 

WOB estimates present substantial deviations from their corresponding gold standards. 

Particularly, the Crs is overestimated and the WOB is underestimated. Furthermore, the 
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transition from 2.5 to 5% FiCO2, seems to be the most critical: the algorithm essentially 

confounds the variations in Pmus, driven by the hypercapnic stimuli, with increase in the 

compliance Crs. This interpretation is confirmed by the analysis on the Pmus waveforms 

shown in Figure 3.22, from which we can see how the algorithm is not capable to track the 

variations in Pmus amplitude when transitioning from 2.5 to 5% FiCO2.   

As outcome of the above analysis, and as confirmed by additional results that are not shown 

here for the sake of brevity, the CLS algorithm seems to perform quite well when the PSV 

levels are sufficiently high (10-20 cmH2O) and suffereing at lower PSV levels (5-0 cmH2O). 

The regression analysis between estimated (noninvasive) and gold standard (invasive) WOB 

measurements for the high PSV cases is shown in Figure 3.23. The corresponding Bland-

Altman plot in shown in Figure 3.24. This diagram shows the WOB error values as a function 

of the gold standard WOB values. The mean of the error and the ± 1 standard deviation limits 

are also shown in the diagram. Figure 3.24 proves that at high PSV the proposed CLS 

algorithm provides a slightly biased WOB estimate with samll standard deviations: mean 

error of -0.1311 J/L with standard deviation of 0.1277 J/L.    
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Figure 3.19 – Validation results of the CLS algorithm under different PSV levels (20, 10 and 0 cmH2O). Pao, 

airway opening pressure; Rrs, respiratory system resistance; Crs, respiratory system compliance; WOB, work of 

breathing. Data in green are noninvasive estimates provided by the CLS algorithm; data in red are invasive gold 

standard measurements obtained as described above (see 3.5.3 section).   
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Figure 3.20 – Validation results of the CLS algorithm under different PSV levels (20, 10 and 0 cmH2O). Pmus, 

respiratory muscle pressure. Data in green are noninvasive estimates provided by the CLS algorithm; data in red 

are invasive gold standard measurements obtained as described above (see 3.5.3 section).   
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Figure 3.21 – Validation results of the CLS algorithm under 5 PSV level and different FiCO2 levels (0, 2.5 and 

5%). Pao, airway opening pressure; Rrs, respiratory system resistance; Crs, respiratory system compliance; WOB, 

work of breathing. Data in green are noninvasive estimates provided by the CLS algorithm; data in red are 

invasive gold standard measurements obtained as described above (see 3.5.3 section).   
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Figure 3.22 – Validation results of the CLS algorithm under 5 PSV level and different FiCO2 levels (0, 2.5 and 

5%). Pmus, respiratory muscle pressure. Data in green are noninvasive estimates provided by the CLS algorithm; 

data in red are invasive gold standard measurements obtained as described above (see 3.5.3 section).   

 

 



146 

 

 

 

Figure 3.23 – Regression analysis between estimated WOB by the CLS algorithm (y axis) and gold standard 

WOB (x axis) under high PSV level (20-10 cmH2O) conditions. The value of positive end expiratory pressure 

(PEEP) used in the corresponding experimental condition is also reported in the legend.   

 

Figure 3.24 – Bland-Altman plot corresponding to the results in Figure 3.23. The WOB error (y axis) is plotted 

against the gold standard WOB (x axis). Mean (dashed horizontal lines) and  ±1 std limits (solid horizontal lines) 

are also shown.  
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3.5.3.2 MKF Algorithm Validation 

The validation results of the MKF algorithm are summarized in Figure 3.25 - Figure 3.30.  

Figure 3.25 shows the results pertaining to the same dataset in Figure 3.19, 

characterized by the varying PSV levels (20, 10 and 0 cmH2O). By looking at the 

noninvasive estimated data (in green), we can observe that the MKF algorithm is able to 

estimate fairly accurately Rrs, Crs and WOB across the entire PSV range. However, greater 

accuracy is observed for the lower PSV levels (10 and 0 cmH2O). Figure 3.26 shows how the 

estimated Pmus compare with the invasive gold standard measurements in the three different 

PSV regions (20, 10 and 0 cmH2O). It confirms that the algorithm is able to estimate the Pmus 

profile with very high accuarcy at 0 PSV, whereas at higher PSV (10 and 20 cmH2O) the 

performance of the algorithm degrade. Particularly, the presence of artefacts at the beginning 

of the discending phase and at the end of the relaxation phase can be observed in the 

estimated Pmus waveforms, especially at 20 PSV. These artefacts correspond to the triggering 

and cycling-off of the ventilator and may be due to non-linear intrabreath phenomenon (flow-

dependent resistance, inhertance, valves dynamics, etc.) that the current 1
st
 order single-

compartment model does not take into account. Nevertheless, the algorithm is sill able to 

track the average changes of the resistance Rrs, due to the flow-dependency phenomenon, and 

the trend of the estimated WOB is always in agreement with the inavasive measurements 

even if the abosolute values are different.   

Figure 3.27 shows the results pertaining to the same dataset in Figure 3.21, 

characterized by a constant PSV (5 cmH2O) and variable FiCO2 levels (0, 2.5 and 5%). By 

looking at the noninvasive estimated data (in green), we can observe the excellent 

performance of the MKF algorithm in this case: Rrs and Crs are estimated fairly accurately;  

the agreemnt between invasive and noninvasive WOB is quite impressive for the whole range 

of FiCO2. The level of accuracy in the WOB estimation is confirmed by the analysis on the 
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Pmus waveforms shown in Figure 3.28, from which we can see how well the algorithm tracks 

he variations in Pmus amplitude due to the FiCO2 transitions. Furthermore, as opposed to the 

resulst of Figure 3.26, in this case since the PSV level is low (5 cmH2O) the above mentioned 

artefacts at the ventilator triggering and cycling-off are no longer present.  

As outcome of the above analysis, and as confirmed by additional results that are not shown 

here for the sake of brevity, the MKF algorithm seems to perform very well when the PSV 

levels are low (0-5 cmH2O) and suffereing at higher PSV levels (10-20 cmH2O). The 

regression analysis between estimated (noninvasive) and gold standard (invasive) WOB 

measurements for the low PSV cases is shown in Figure 3.29. The corresponding Bland-

Altman plot (see Figure 3.30) shows that at low PSV the proposed MKF algorithm provides 

almost no bias and very samll standard deviations in the noninvasive estimated WOB: mean 

error of -0.0083 J/L with standard deviation of 0.0793 J/L.    
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Figure 3.25 – Validation results of the MKF algorithm under different PSV levels (20, 10 and 0 cmH2O). Pao, 

airway opening pressure; Rrs, respiratory system resistance; Crs, respiratory system compliance; WOB, work of 

breathing. Data in green are noninvasive estimates provided by the MKF algorithm; data in red are invasive gold 

standard measurements obtained as described above (see 3.5.3 section).   
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Figure 3.26 – Validation results of the MKF algorithm under different PSV levels (20, 10 and 0 cmH2O). Pmus, 

respiratory muscle pressure. Data in green are noninvasive estimates provided by the MKF algorithm; data in red 

are invasive gold standard measurements obtained as described above (see 3.5.3 section).   
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Figure 3.27  – Validation results of the MKF algorithm under 5 PSV level and different FiCO2 levels (0, 2.5 and 

5%). Pao, airway opening pressure; Rrs, respiratory system resistance; Crs, respiratory system compliance; WOB, 

work of breathing. Data in green are noninvasive estimates provided by the MKF algorithm; data in red are 

invasive gold standard measurements obtained as described above (see 3.5.3 section).   

\ 
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Figure 3.28  – Validation results of the MKF algorithm under 5 PSV level and different FiCO2 levels (0, 2.5 and 

5%). Pmus, respiratory muscle pressure. Data in green are noninvasive estimates provided by the MKF algorithm; 

data in red are invasive gold standard measurements obtained as described above (see 3.5.3 section).   
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Figure 3.29 – Regression analysis between estimated WOB by the MKF algorithm (y axis) and gold standard 

WOB (x axis) under low PSV level (0-5 cmH2O) conditions. The value of positive end expiratory pressure 

(PEEP) used in the corresponding experimental condition is also reported in the legend.   

 

Figure 3.30 – Bland-Altman plot corresponding to the results in Figure 3.23. The WOB error (y axis) is plotted 

against the gold standard WOB (x axis). Mean (dashed horizontal lines) and  ±1 std limits (solid horizontal lines) 

are also shown.  
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3.6 Conclusion and Future Work 

In this chapter we have first discussed the resistive and elastic properties of the respiratory 

system and showed how determination of such mechanical properties is crucial for clinicians 

in order to optimize mechanical ventilation. We have reviewed the current methods for the 

assessment of resistance (Rrs) and compliance (Crs) in mechanically ventilated patients, and 

we have emphasized their limitations and the need of a novel non-invasive approach for 

continuous monitoring of Rrs and Crs in spontaneously breathing patients. Then, we have 

introduced the concept of work of breathing (WOB), discussed its importance in the clinical 

settings, and reviewed the current available methods for WOB computation. We then stated 

the need for a novel non-invasive method to quantify WOB at the bedside. Hence, we have 

proposed and developed a model-based technique to simultaneously assess patient’s 

respiratory mechanics and WOB noninvasively and continually. The technique is based on 

the 1
st
 order single-compartment model of the respiratory system, whose parameters are 

estimated using pressure and flow signals that are typically readily available at the bedside. 

Particularly, two different algorithms have been proposed: a Constraint Least Squares (CLS) 

method that exploits physiology-based constraint on the parameters to reduce the solution 

space of the otherwise underdetermined LS problem; and a Modified Kalman Filter algorithm 

that uses physiology-based assumptions to locally approximate the respiratory muscle 

pressure profile in order to cope with the issue of underdeterminacy. Via simulation studies 

using a breathing simulator, the feasibility of both algorithms was proven in an ideal noise-

free environment. Then, both algorithms have been implemented in a real-time platform and 

usability has been verified during a pig test. Finally, the two algorithms have been 

retrospectively tested using the data from the pig test and compared against invasive gold 

standard measurements of Rrs, Crs, Pmus and WOB. The validation showed the potential of the 

two algorithms and their limitations. Particularly, the CLS algorithm was proven to have 
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satisfactory performance under high pressure support ventilation (PSV) conditions, whereas 

the MKF was proven to be superior at low PSV settings. As a result, we plan to combine the 

two algorithms based on a PSV threshold criterion, and develop a unified method where the 

two algorithms would complement each other. These aspects will be the object of subsequent 

investigation. In terms of applicability and clinical impact, the proposed technique will allow 

for continuous non-invasive monitoring of WOB and respiratory mechanics in both 

spontaneous and passive patients. The technique will not interfere with normal ventilator 

operation and it will not require any operator intervention. We conjecture that the technique 

can also be used as part of a closed-loop system were the patient WOB is automatically 

maintained within certain ranges based on clinician’s inputs.    
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Chapter 4: Bayesian Parameter Estimation for 
Physiological Models 

 

4.1 Introduction 

As mentioned in Chapter 1 – Introduction, parameter estimation is a fundamental step toward 

the development of patient-specific physiological models that can eventually be applied in the 

ICU environment to help clinicians in the decision making process (e.g., to suggest optimal 

ventilator settings). In the previous chapter, we have seen how a subcomponent of the CP 

Model presented in Chapter 2 can be personalized to a specific patient via parameter 

estimation techniques using real-time measurements that are readily available at the bedside. 

The techniques described in the previous chapter rely on the available data to provide 

estimates of the parameters of the underlying mathematical model. In some cases (Constraint 

Least Square method), we have seen that the inclusion of mathematical constraints that are 

based on physiological knowledge is necessary in order to reduce the parameter space and 

render the estimation problem well-posed. Another additional source of information that can 

potentially be exploited in the parameter estimation process is represented by population 

studies. For instance, given a particular class of patients, it could be possible to consider that 

certain values of a parameter are more likely than others, based on previous studies or 

knowledge. In other words, it is reasonable to assume that certain a-priori knowledge about 

the parameters may be available. Given the uncertainty that characterizes this type of 

knowledge, it is also reasonable to assume that this knowledge is encoded in terms of 

probabilistic concepts, for instance in terms of probability density functions over the 

parameter space. The a-priori knowledge, if available, can (or should) then be used in the 

parameter estimation process with the hope of obtaining more accurate results. The 

estimation methods described in the previous chapter finds it difficult to make use of any 
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prior knowledge in the form of probabilistic concepts. For this reason, in estimation theory a 

distinction is made between Classic (or Fisherian) approaches, which do not use any a-priori 

information and they only rely on the data, and Bayesian approaches, which make use of a-

priori knowledge in addition to the information contained in the data. The mechanism by 

which the a-priori knowledge is incorporated into this class of estimators is a direct 

application of the Bayes’ theorem, from which the name Bayesian estimation originates. 

Given the conceptual appealing simplicity and the computational advances brought by 

Monte-Carlo simulation methods, Bayesian approaches have been recently receiving more 

and more attention, especially in connections with physiological models. For instance, Zenker 

et al. [117] have applied Bayesian inference to a physiological model of the cardiovascular 

system and shown how this probabilistic framework can be used for differential diagnosis of 

hypotensive events. Murley and his colleagues [118] have proposed Bayesian learning to 

estimate two parameters of a physiological model of gas exchange. Yet, Bayesian approaches 

are widely used to estimate parameters of pharmacokinetic-pharmacodynamic (PKPD) 

models and their superiority with respect to classical approaches have been demonstrated in 

data poor conditions by Sparacino and colleagues [119].     

In this chapter, we want to lay down the basis for the application of Bayesian 

estimation to the development of cardiopulmonary patient-specific physiological models. To 

introduce the concept of Bayesian estimation, we will first describe the general parameter 

estimation problem and distinguish between Classical and Bayesian approaches. We will then 

describe one of the most popular Bayesian estimators, the Maximum a Posteriori Probability 

(MAP) estimator, and show some of its properties under Gaussianity assumptions. Finally, as 

a proof-of-concept, we will implement a Bayesian MAP estimator and apply it to identify the 

parameters of the 1
st
 order single-compartment model of the respiratory system described in 

the previous chapter, under the assumption of a passive patient. The performance of the MAP 
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Bayesian estimator will be compared to those of the classic Least Square (LS) method and 

conclusions will be drawn. Finally, some ideas for further extension and possible applications 

of this Bayesian estimation framework in the contest of patient-specific cardiopulmonary 

models will be discussed.    

 

4.2 The General Parameter Estimation Problem 

Consider a generic physiological system (e.g. the respiratory system or the 

cardiovascular system) and let us assume that the system can be described by a model that is 

characterized by P unknown parameters {           }. These parameters can either have a 

physiological interpretation, as in the case of physiology-based, or first-principle type of 

models, such as those described in the previous chapters, or no physical meaning as in the 

case of black-box or I/O models. Let us assume that some signal      related to the system 

under exam can be measured (for the sake of simplicity, we will assume that only one signal 

is measured but our discussion can be extended to multiple signals      ,              ). 

Obviously, the measured signal will contain information about the underlying physiological 

system and hence about the unknown model parameters {           }. In general, by 

assuming an error-free model structure, the measured signal can be expressed as: 

            

where the function g represents the model structure and    [          ]
 
 is the vector of 

model parameters. Say, N samples of the measured signal are collected at each discrete time 

step  {           }, and these sample values are inevitably corrupted by noise. Furthermore, 

the model used is a mathematical representation of a physical process and does not describe 

physics perfectly. Hence, the following equation can relate the i-th measurement    to the 

model parameters: 
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or equivalently:  

               ( 4-1)f 

where                    is a noise vector term which accounts for both the 

measurement and the model errors,                    is the measurement vector,  

and                                      is our model. The parameter estimation 

problem consists in determining an estimate  ̂  [ ̂   ̂      ̂ ]
 
 of the true model 

parameters    [          ]
 
 from the available measurements                     that 

are corrupted with noise.   

 

4.3 Bayesian vs Classical Parameter Estimation 

The parameter estimation problem described above can be tackled by either a 

Classical (or Fisherian) approach or a Bayesian approach.  

Classical Approach: In the classical approach, the parameters   to be estimated are assumed 

deterministic and unknown, and the only information used in the parameter estimation 

process are the available measurements along with their noise characteristics (see Figure 4.1). 

Two of the most popular classical parameter estimation methods are the Least Squares (LS) 

and the Maximum Likelihood (ML) estimators. 

Bayesian Approach: In the Bayesian approach, the parameter vector   is assumed to be a 

random vector whose particular realization we must estimate. Bayesian estimation methods 

assume that a priori information about the unknown parameters is available in the form of a 

probability density function  (p.d.f.)     . The prior p.d.f.      summarizes the available 

knowledge about   before any data is even observed. This information is provided to the 

( 
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estimator in addition to the measurements. In Figure 4.1, the a priori probability distribution 

     is then refined using the measurements in order to compute the so-called posterior 

probability distribution       . This is the probability distribution of the parameters 

conditional on knowing the measurements and it can be used to express the likelihood that 

our parameters have certain values after we have collected the measurements. Computation 

of the posterior distribution        is performed by directly applying Bayes’ theorem:  

 
       

           

    
 

 

     ( 4-2)f 

where        is the conditional p.d.f. of the measurements Z given the parameters  , also 

called “likelihood” function, and      is the p.d.f. of the measurements Z. Note that in the 

Bayesian framework, since the parameters are assumed random variables, the data are 

described by the joint p.d.f.        and the Bayes theorem above can also be rewritten in the 

equivalent form:     

                               

Once        has been computed, an estimate of the parameter vector  ̂ can be obtained 

according to a specific criterion that is related to the distribution       . For instance, the 

Maximum a Posteriori Probability (MAP) and the Minimum Mean Squares Error (MMSE) 

estimators, two of the most widely used Bayesian estimators, select the estimated parameter 

 ̂ as the mode and the mean of the posterior p.d.f.       , respectively.  

Bayesian approaches have the clear advantage of using additional information 

compared to the classical approaches. Hence, when the prior knowledge is available, 

Bayesian estimation methods should provide more accurate results and hence may also allow 

the adoption of more complex models than those determinable by classical approaches. In the 

case of physiological models, prior knowledge on the parameters is often available from 

previous population studies. For this reason, Bayesian methods represent an attractive 

( 
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solution to the often challenging problem of parameter estimation and they have received 

great attention in the last decade, as mentioned in the Introduction section.  

 

 

Figure 4.1 Classical vs Bayesian estimation 

 

 

4.4 Maximum a Posteriori Probability (MAP) Estimator 

Before moving to the mathematical derivation of one of the most popular Bayesian 

estimation methods, the Maximum a Posteriori Probability (MAP) estimator, it is first 

necessary to introduce the concept of risk and cost associated with an estimator. In Bayesian 

estimation, the starting point is to define a cost function C associated with the estimated and 

the true parameters: 

   (   ̂)              

and then introduce the risk function R, defined as the expectation of the cost: 

   [ (   ̂)]  ∬ (   ̂)              

The Bayesian estimator is the one that minimizes the risk: 
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 ̂         
 ̂

{ }   

Now, using the Bayes theorem, the expression of the risk can be rewritten as: 

  ∬ (   ̂)               ∬ (   ̂)                   

 ∫     [∫ (   ̂)          ]    

And      being always positive, we can compute the Bayesian estimator as: 

 
 ̂         

 ̂

{ ∫ (   ̂)           } 

 

     ( 4-3)f 

Depending on the particular type of cost function, we will obtain different Bayesian 

estimators. The MAP estimator is derived by considering the so-called “hit-or-miss” cost 

function, defined as:  

 (   ̂)  {
               ‖ ̂   ‖   

               ‖ ̂   ‖   
 

where the term ‖ ̂   ‖ represents the L
1
 norm of the estimation error    ̂    and in the 

case of a p-dimensional parameter vector it is given by ‖ ̂   ‖  ∑ | ̂    | 
   . A 

graphical representation of the hit-or-miss cost function, sometimes also called uniform cost 

function, is shown in Figure 4.2. Basically, this function assigns a 0 cost if the estimation 

error is within a tolerance range [-Δ, +Δ] and it assigns a 1 cost if the estimation error is 

outside the tolerance range.   

( 
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Figure 4.2 Hit-or-miss cost function 

 

Substituting the above expression for the cost function  (   ̂) into Eq. 4-3 we obtain: 

 ̂           
 ̂

{ ∫            

 ̂  

  

  ∫            

  

 ̂  

}   

        
 ̂

{   ∫            

 ̂  

 ̂  

}                         

        
 ̂

{ ∫          

 ̂  

 ̂  

}                                       

Hence, if Δ is arbitrarily small, the integral is maximized by centering it around the peak of 

the integrand, that is by choosing the estimate as the mode of the posterior p.d.f.       : 

 ̂            
 

{       } 

from which it appears evident that the MAP estimator is the one that maximizes the posterior 

probability density function       .  Now, using the Bayes theorem, the MAP estimator can 

be rewritten as:  

 
 ̂            

 
{ 

           

    
} 

 

     ( 4-4)f 

 

( 
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Observing that the denominator does not depend on  , we obtain: 

  ̂            
 

{             } 

 

     ( 4-5)f 

Note the connection between the MAP estimator above and the Maximum Likelihood (ML) 

estimator, a Fisherian approach that does not use prior information and whose expression is 

given by: 

 ̂           
 

{        } 

The MAP estimator can thus be seen as a regularization of the ML estimator. Typically, 

because the logarithm is a monotonic function, it is mathematically convenient to maximize 

the logarithm and rewrite the MAP estimator in the form: 

 ̂            
 

{                 } 

 From the above expression we can observe that computation of the MAP estimator 

does not actually require the computation of the entire posterior p.d.f.        , but only the 

maximization of the term           . As such, even though the MAP estimator uses the 

Bayesian framework to exploit the available a priori information, it is considered a point 

estimator rather than a full Bayesian inference method. Also, by looking at the above 

expression we notice two terms that the MAP estimator is trying to maximize: the 1
st
 term is 

related to the measurements and represents the likelihood that the data have been generated 

by our parameter  ; the 2
nd

 term is related to the prior information about our parameters and 

it is independent on the data. Hence, the MAP estimator realizes a compromise between a 

priori information and information contained in the measurements. A general closed form of 

the MAP estimator does not exist because the posterior p.d.f.        depends on the specific 

form of      and       . This, in turn, depends on the model structure and on the statistical 

( 
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properties of the noise. A tractable analytical expression for        can only be obtained in 

few cases, one of them is described in the following section. 

  

4.5 MAP Estimator in the Gaussian Case 

Let us consider the model in Eq. 4-1 and let us assume that the noise  and the 

parameter vector   are both normally distributed: 

                                         

where   has been assumed a zero-mean Gaussian noise with covariance matrix   ,    is the 

mean of the parameter vector   and    is its covariance matrix. Then, it can be proven that 

the conditional p.d.f.        is also Gaussian with the mean given by      and the 

covariance matrix equal to    [120]. Hence, we can write: 

     
 

                 
   

 
 
           

         
 

       
 

                 
   

 
 
 (      )

 
   

   (      )  

and hence the MAP estimator will be: 

 ̂            
 

{                 }    

       
 

{(      )
 

   
   (      )            

         } 

From the above expression we can again notice how the MAP estimator is trying to minimize 

the sum of two terms: the 1
st
 term related to the distance of the model predictions      from 

the actual observed data, hence expressing the adherence to the measurements; the 2
nd

 term 

related to the distance between the estimates and their a priori expected values, hence 

expressing the adherence to the prior knowledge. Particularly, we can also observe that if the 
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measurements are very noisy and    grows larger, then the 1
st
 term becomes negligible and 

the parameter estimates converge to their prior mean   . On the other hand, if the prior 

knowledge is weak, i.e. if the prior variances of the parameters are very large, then the 2
nd

 

term becomes negligible and the MAP estimator becomes equivalent to the Least Squares 

estimator (or the Maximum Likelihood estimator): 

 ̂           
 

{(      )
 

   
   (      )}   ̂    ̂   

This is true in general, not only in the case of Gaussian prior and noise. In fact, in the extreme 

case when our prior knowledge is very weak all the parameters tend to be equally probable 

and our prior      becomes equivalent to the uniform distribution. Then, if we consider the 

definition of the MAP estimator (see Eq. 4-5), the term      will not affect the maximization 

and the MAP estimator will be equivalent to the ML estimator. 

 

4.5.1 The Gaussian Case with Linear Model  

When, in addition to the above assumptions, the model is linear in the parameters: 

             ( 4-6)f 

where H is a known deterministic     matrix, and the noise vector W is independent of  , 

the expression of the MAP estimator can further be simplified. In fact, it can be proven [121] 

that the posterior p.d.f.        is Gaussian as well, with mean and covariance matrix given 

by:  

          (  
       

   )
  

    
          

     ( 4-7)f 

    

      (  
       

   )
  

 
     ( 4-8)f 

( 

( 

( 
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Hence, being the mode of the Gaussian p.d.f. equivalent to the mean, the MAP estimator is 

exactly given by Eq. 4-7. It is worth noticing that in this case, not only does the expression of 

the MAP estimator have a closed form, but the entire posterior p.d.f.        can be 

analytically computed as well. 

 

4.6 Bayesian Estimation of Respiratory Mechanics 

Let us now consider the case of the respiratory system and let us focus on the simple 

1
st
 order RC model described in Chapter 3:  

             ̇                        
 

     ( 4-9)f 

where     is the airway opening pressure,  ̇ is the airflow,   is the lung volume above 

functional residual capacity (FRC),      is the pressure developed by the respiratory 

muscles,     and     are the resistance and the elastance of the respiratory system, and    is a 

constant that account for the positive pressure that is present in the lungs at end expiration. 

To simplify the problem, let us assume that the patient is completely passive (sedated and 

paralyzed) and hence the term      in Eq. 4-9 can be omitted. The problem we want to solve 

is the one of estimating the parameter               
  from the available measurements 

       and  ̇    (     is obtained by numerical integration of the flow signal). Obviously, 

the measurements will be affected by noise, hence when trying to fit Eq. 4-9 above to the 

available measurements the presence of noise will have to be accounted for. By looking at 

Eq. 4-9 we can observe that noise can be present in the pressure measurement term       , in 

the flow measurement term  ̇   , or in both. As a first assumption, we will consider that the 

noise is present on the pressure measurements only. We will see later how the assumption of 

noise being present on the flow measurements as well will modify the nature of our problem 

( 
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and will impact the derivation of our parameter estimation approach. Hence, Eq. 4-9 can be 

rewritten as: 

            ̇                     

where      is pressure sensor noise. The equation above can be rewritten in vector form as: 

  

[
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( 4-10) 

 

Our objective is to estimate the parameter vector   via Bayesian techniques. This is the same 

case as the one described above, where the model is linear in the parameters (see The 

Gaussian Case with Linear Model section). Hence, in the case of Gaussian priors and noise, 

an analytical expression for the posterior p.d.f. and for the MAP estimator exist (see Eq. 4-7 

and 4-8). However, since we want our method to be independent from the particular choice of 

the a priori parameter distribution, we will not be using the analytical solutions but we will 

rather compute the posterior p.d.f. numerically in Matlab, by directly applying Bayes’ 

theorem. Particularly, in the following sections we will apply Bayesian MAP estimation to 

both simulated data and experimental data obtained from the animal test described in Chapter 

3 and we will compare the performance of the MAP estimator against the one of the Least 

Squares method. Our conjecture is that in data-poor conditions, i.e. when the noise is high 

( 
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and/or the number of data points used to construct the measurement vector Z is reduced, the 

MAP offers advantages with respect to the LS estimator thanks to the use of prior 

information. We consider three different cases corresponding to different choices of the a 

priori parameter distribution, and in the Gaussian case we will verify correctness of the 

numerical implementation by checking equivalence between the numerical and the analytical 

solutions.  

 

4.6.1 Methods 

We consider a series of respiratory cycles from the datasets collected during the 

animal test described in Chapter 3. The pressure, flow and volume signals corresponding to 

one of these cycles are shown in Figure 4.3. Since we assume that the term      in Eq. 4-9 

can be neglected, the selected respiratory cycles correspond to situations where the animal 

was not spontaneously breathing and the ventilator was set in Volume Control Ventilation 

(VCV), with a constant inspiratory flow. The absence of spontaneous respiratory activity is 

confirmed by the esophageal pressure tracing, that does not present any negative deflections 

from baseline. Hence, given the measurements needed to build the vector Z and the matrix H 

in Eq. 4-10, we are going to apply the Bayes theorem to compute the posterior probability 

density function of the parameter  , according to:.   

       
           

    
 

By looking at the above equation, we can identify three fundamental steps to solve the 

Bayesian estimation problem: 1. Computation of the prior probability density function     ; 

2. Computation of the likelihood function       ; 3. Computation of the posterior probability 

density function       . In the following, these three steps will be described in detail.  
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Figure 4.3 – Experimental dataset from the animal test described in Chapter 3 corresponding to a VCV breath 

with no spontaneous respiratory activity. From top to bottom: Pao is the pressure measured at the airway opening; 

Flow is the air flow at the mouth; V is the volume above FRC obtained by numerical integration of the flow 

signal; Pes is the invasive esophageal pressure, surrogate for the intrapleural pressure.    

 

Prior Probability Density Functions 

The first step in Bayesian estimation is to define the prior p.d.f. of the parameters to be 

estimated. In order to create the prior distributions, the parameters    ,     and    have been 

given a range of possible values and this range has been discretized. Particularly:  
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– 81 values of the resistance     have been given in a range of [0 - 20] 
     

 
     with 

a discretization step of 0.25;  

– 201 values of the elastance     have been given in a range of [0 - 50] 
 

     
 with a 

discretization step of 0.25;  

– 41 values of the constant    have been given a range of [0 - 20]       with a 

discretization step of 0.5;  

These ranges are all in agreement with physiological knowledge. Then, three different 

cases have been considered: 

1. All the parameters (i.e., the a priori p.d.f.) are assumed to be Gaussian distributed. 

The mean of each parameter is selected as half of the corresponding range and the 

standard deviation is set at 10% of the range. This choice of priors corresponds to a 

generic healthy subject. 

2. The resistance is assumed to be distributed according to an “extreme value” 

probability density function, shifted toward the right to indicate a condition of 

obstructive lung disease (e.g., COPD). The remaining parameters (Ers and P0) are 

assumed to be Gaussian distributed, with mean and standard deviation selected as 

described above.  

3. The elastance is assumed to be distributed according to an “extreme value” 

probability density function, shifted toward the right to indicate a condition of 

restrictive lung disease, where the lungs are stiffened. The remaining parameters (Rrs 

and P0) are assumed to be Gaussian distributed, with mean and standard deviation 

selected as described above.  

The prior distributions corresponding to the three above cases are generated in Matlab using 

the pdf command. Figure 4.4 below shows the different parameter priors for each of these 3 
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cases. Note that in a real clinical application scenario, the prior distributions would have to be 

selected based on population studies or based on expert knowledge from the clinician. 

 

Figure 4.4 – A priori probability density functions of the parameters for a general healthy subject. From top to 

bottom: p.d.f. of Rrs; p.d.f. of Ers; p.d.f. of P0. 
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Figure 4.5 – A priori probability density functions of the parameters for an obstructive disease subject. From top 

to bottom: p.d.f. of Rrs; p.d.f. of Ers; p.d.f. of P0. 
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Figure 4.6 – A priori probability density functions of the parameters for a restrictive disease subject. From top to 

bottom: p.d.f. of Rrs; p.d.f. of Ers; p.d.f. of P0. 
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Computation of the Likelihood Function 

In order to compute the likelihood function        we have assumed that the noise terms 

            are independent and Gaussian distributed with zero mean and constant 

variance   
 . In other words, the noise vector   is assumed white Gaussian noise with 

covariance matrix      
    . Hence, using the model equations (see Eq. 4-10): 

   [ ̇         ]       

we can conclude that the random variables      are Gaussian as well, since they are just the 

sum of a deterministic quantity and a Gaussian variable, with mean and variance given by: 

 {    }   {[ ̇         ]      }  [ ̇         ]     {  }  [ ̇         ]    

   {    }   {       {    }  }   {([ ̇         ]       [ ̇         ]   )
 
}    

  {     {  } 
 }    

                                                                  

where E{} represents mathematical expectation. Now,    being independent, it follows that  

   are independent as well and hence they are jointly Gaussian. So, we can conclude that the 

random vector     is a multivariate Gaussian variable with mean equal to     and 

covariance matrix equal to   : 

                

From what we have seen above, the likelihood function can then be easily computed as: 

 
       

 

                 
   

 
 
           

         
 

( 4-11) 

Practically, the above function is numerically evaluated in Matlab for every possible 

parameter combination        [   
      

 
   

 ]
 
within the parameter space, using the available 

measurements Z. By doing so, we generate       values of       , where I, J and K are 

the length of the parameter ranges defined earlier, i.e.           (see Prior Probability 

( 
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Density Functions section). Each term  (          ) will then represent the likelihood that 

the measurements Z have been generated by the parameter vector        .  

 

Computation of the Posterior Probability Density Functions 

The       values of the likelihood function        computed as described above are then 

multiplied by the corresponding values of the prior probability density function     . 

Particularly, under the assumption that the parameters are independent, the joint prior p.d.f. 

     is computed as the product of the individual priors:       

                         

In this way, we are able to map every possible triplet        [   
      

 
   

 ]
 
to its 

corresponding term  (          )   (      ): 

          (          )   (      )   

The last step to compute the full posterior p.d.f.        is to divide each product  (    

      )   (      ) by the normalization factor      (see Eq. 4-2). Note that the term        

     represents the joint p.d.f. of the random vectors Z and  : 

                   

Hence, in order to compute     , we can simply marginalize the joint p.d.f.        that we 

have just computed according to:  

 
     ∫       

 

 

   ∫            
 

 

   
( 4-12) 

 

Practically, a numerical approximation of the above integral is computed in Matlab using a 

summation over the ranges of the parameters: 

( 
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     ∑(∑(∑  (          )   (      )     

 

   

)

 

   

     )      

 

   

 

where     ,       and     are the discretization steps of the parameter ranges described 

earlier (see Prior Probability Density Functions section). In this way, we can link every 

possible triplet        [   
      

 
   

 ]
 
 with its corresponding sample of the posterior 

probability density function        : 

          (        )   

In other words, we have computed a discretization of the posterior p.d.f.       . Finally, in 

order to compute the individual posterior p.d.f.         ,          and        , we can 

marginalize the joint  p.d.f.        according to: 

         ∫ (∫           
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         ∫ (∫       
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        ∫ (∫       
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where, again, a summation is used in order to numerically approximate the above integrals in 

Matlab: 
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Once the posterior p.d.f.         ,          and         have been computed, then an 

estimate of the parameters is found by simply looking for the maximum of the individual 

p.d.f. according to the MAP principle: 

 ̂              
   

{        }  

 ̂              
   

{        } 

 ̂             
  

{       } 

Note: We have mentioned earlier that when we included the noise term in Eq. 4-10 we have 

assumed that the noise was only present in the pressure measurements. This assumption led 

us to conclude that the random vector     was normally distributed with mean equal to     

and covariance matrix equal to    (see Computation of the Likelihood Function section). 

Now we want to examine the case when the noise term is also present in the flow 

measurements and see how this would impact the computation of the conditional p.d.f. 

        So, let’s assume that noise is present in both pressure and flow measurements, hence 

the model equations can be rewritten as: 

   [ ̇                ]          [ ̇         ]                  

where the term      represents the noise of the flow measurement and the term      represents 

the noise of the pressure measurement. Hence, we can notice that, compared to the previous 

case, here there is an extra noise term that is modulated by the parameter    . Let us assume 

that      and      are realizations of zero-mean white Gaussian processes with covariance 

matrices    
    

     and    
    

     , respectively. Then, we can still say that the 

variables      are the sum of two Gaussian variables and a deterministic quantity. Hence, 

under the assumption that the two noise terms      and      are independent (as it seems 
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legitimate to assume), we can conclude that      will still be Gaussian variables, with mean 

and variance given by: 

            {    }   {[ ̇         ]                 }  

 [ ̇         ]     {    }        {    }  [ ̇         ]    

 

          {    }   {       {    }  }  

  {([ ̇         ]                   [ ̇         ]   )
 
}  

  {(             )
 
}       {    

      
     

                 }  

   {    
 }     

    {    
 }          {         }   

   {    
 }     

    {    
 }     

     
                                        

  

where we have used the fact that      and      have zero means and are independent. So, we 

can then conclude that the random vector     is a multivariate Gaussian variable with mean 

equal to     and covariance matrix equal to    
+   

     
: 

       (       
    

     
) 

Hence, the likelihood function would be computed as:  

 

       
 

 
 
 
         (       

     
)
  

       

[        (   
    

     
)]

 
 

 

( 4-13) 

 

In conclusion, by comparing Eq. 4-13 with Eq. 4-11, we can observe that the difference 

between the case with noise on the pressure measurement and the case with noise on both 

pressure and flow measurements would be in the covariance matrix of      Particularly, in 

the first case,     would be given by the covariance matrix of the noise vector and hence it 

( 
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would be independent from the parameter  , whereas in the second case     would be given 

by the sum of the covariance matrix of the pressure noise vector and the  covariance matrix of 

the flow noise scaled by the value of     and it would be dependent on the parameter  . 

Based on these observations, we can conclude that if we consider the noise on both pressure 

and flow measurements, the computational approach described above to derive the posterior 

p.d.f.        would still be valid, provided that the covariance matrix    in Eq. 4-11 is 

replaced by    
    

     
.  

 

4.6.2 Results 

The feasibility of the proposed Bayesian estimation method was investigated via a two-stage 

process and its performance was compared against the classic LS method. In the first stage, 

the performance of both estimation methods were evaluated on simulated data, whereas in the 

second stage real animal data were used. In both cases, the noise was only considered on the 

pressure signal. However, considering the noise to be present on the flow signal as well 

would not change the results, for the reasons mentioned above. 

 

Algorithm Evaluation on Simulated Data – Stage 1 

A simulated airway pressure vector   ̃  

[
 
 
 
 
 
 ̃      

 ̃      
 
 
 

 ̃      ]
 
 
 
 
 

 was first generated by solving Eq. 4-10 

and using the experimental flow and volume data collected during the animal test and shown 

in Figure 4.3. While solving Eq. 4-10 for  ̃, the values of the parameter vector were kept 

constant and fixed to a nominal value  ̅     ̅     ̅      ̅  
 . The nominal values of the 
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parameters were selected as equal to the mean of the corresponding prior Gaussian 

distribution shown in Figure 4.4 plus an offset of      of the parameter range. In other 

words, this choice is equivalent to assuming that when assigning the prior distribution the a 

priori mean will be off with respect to the nominal parameter value by 50% of the entire 

parameter range. The noise term W was generated in Matlab using the randn command as a 

sequence of random variables from a Gaussian distribution with 0 mean and standard 

deviation   
 . The noise was then added to the simulated airway pressure vector  ̃ according 

to: 

 ̅   ̃    

The Bayesian MAP estimation method described above was applied to the simulated noisy 

airway pressure vector  ̅, using the experimental flow ( ̇) and volume     signals to 

construct the input matrix H (see Eq. 4-10). The resulting posterior p.d.f. was then used to 

provide an estimate of the parameters according to the MAP principle and the estimated 

parameters were compared with the corresponding nominal values used to generate the data 

 ̃. To summarize the accuracy of the proposed approach, the residual sum of squares (RSS) 

between the model predicted airway pressure and the original noise-free pressure vectors was 

computed according to: 

    ∑( ̃        ̂      )
 

 

   

 

In order to assess the precision of the proposed approach, the variances of the estimated 

parameters were also computed from the corresponding posterior p.d.f. according to: 

   { ̂      }  ∫       {     ̅}         ̅ 
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   { ̂      }  ∫       {     ̅}         ̅ 
 

   

      

   { ̂     }  ∫      {    ̅}        ̅ 
 

   

          

where, as usual, the integrals have been numerically approximated via summations. The 

estimated variances were then converted into standard deviations, by taking the square root, 

and scaled by the corresponding parameter estimates to yield the coefficients of variation 

(CV) defined as [122]: 

         
 

√   { ̂      }

 ̂      

     

           
√   { ̂      }

 ̂      

     

        
 

√   { ̂     }

 ̂      

     

The coefficient of variation CV (also known as fractional standard deviation FSD) is a 

standardized measure of the estimation accuracy, with values of CV   100% indicating a 

poor accuracy and values   10% indicating an excellent accuracy [123]. 

Analogous metrics for accuracy and precision were also computed for the LS derived 

estimates. In this case, the estimate variance was extracted from the diagonal of the estimate 

covariance matrix computed according to [124]:  

   ̂          
        

 

( 4-14) 

In order to evaluate the effects of noise and number of data points on the estimator 

performance, simulations were performed with different noise levels and different number of 

( 
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data points for the measurement vector  ̃. Particularly, we performed simulations with a 

standard deviation noise    of 2% (low noise), 5% (medium noise) and 10% (high noise) of 

the dynamic range of the pressure signal and for each noise level we set the length of the data 

vector at N=10, N=50 and N=100 data points.  

The results obtained when using Gaussian prior distributions (case 1 in Prior 

Probability Density Functions section) are summarized in Figure 4.7 - Figure 4.9. 

Comparison in terms of RSS and CV between the Bayesian MAP and the LS estimation 

methods is provided in Table 4-1 - Table 4-3. The results show how the prior Gaussian 

distributions are updated using the measurements, resulting in posterior distributions that are 

still Gaussian (a part from some numerical errors due to the discretization process) but more 

centred around the true parameter values. Furthermore, since the proposed Bayesian 

estimation framework provides an approximation of the full a-posteriori probability density 

function, it is possible to immediately have a visual assessment of the level of confidence that 

we can have on our estimates by simply looking at how much the posterior p.d.f. is spread 

around its mean value (i.e. by looking at its variance or standard deviation). This is a clear 

advantage of Bayesian estimation methods over classical approaches (LS or ML) that require 

computation of the parameter variances via numerical approximations that are valid only 

under white noise assumption (see Eq.4-14).  

Particularly, Figure 4.7 shows how the proposed approach performs when the number 

of data points considered is sufficiently high (N=100). It proves that the method is effectively 

able to estimate the unknown parameters with good precision and accuracy at all noise levels, 

even though the a-priori parameter means are far from the true parameter values. We can 

observe that, at low noise level, the posterior distributions are practically delta functions 

centred around the true parameter values, indicating that the estimator is unbiased and with a 

very small variance. This is confirmed by the very low CV numbers ( 1% for all parameters) 
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shown in Table 4-1. As the level of noise increases from low to high, a very small bias is 

introduced and the a-posteriori p.d.f. become slightly wider indicating a reduced level of 

confidence on the estimated parameters. However, the coefficient of variations are still pretty 

low:  10% for all parameters, except for     at high noise level for which CV=14%. This 

proves the capability of the proposed approach to cope with high noise levels. It is also 

interesting to notice that at all noise levels the CVs are higher for     than for the other two 

parameters, indicating that when N=100 the estimation of this parameter is more critical. By 

comparing the Bayesian MAP estimator against the LS algorithm (see Table 4-1), we can 

observe no clear advantage in this specific case: the RSS numbers are in the same order of 

magnitude and both methods provide estimated parameters very close to their true nominal 

values at all noise levels. Only a slight reduction in the CV numbers is obtained when using 

the Bayesian approach, suggesting that the use of prior information can indeed improve 

precision of the estimates.  

The behaviour of the proposed Bayesian estimation method when the number of data 

points is reduced to N=50 is summarized in Figure 4.8. It shows that by reducing the number 

of data points, the effect of the a-priori information becomes more evident. The mean of the 

a-posteriori parameter distributions are now slightly off from the corresponding nominal 

parameter values and the spread of the posterior p.d.f. around the mean value is increased at 

all noise levels compared to the N=100 case. Nevertheless, the algorithm is still able to 

provide satisfactory results at low and medium noise levels, in terms of both accuracy and 

precision. At high noise level, the estimates are significantly off from the corresponding 

nominal values but the improvements from the a-priori assumed distributions is still quite 

significant. The CVs for    are below 6.5% and the CVs for     are below 10.5% at all noise 

levels. As in the previous case (N=100), the CVs for     are higher compared to those of the 

other two parameters at all noise levels, with a maximum of 18.8% at high noise. By 
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comparing the performance of the MAP and the LS estimators (see Table 4-2) it emerges that 

the two algorithms provide comparable results at low and medium noise levels, in terms of 

parameter values and RSS. However, as observed for the previous case (N=100), the 

Bayesian MAP estimator results in significantly lower CVs for all parameters at all noise 

levels. This is in agreement with our previous intuition that the use of additional prior 

information improves accuracy of the estimator. Furthermore, by looking at the results for the 

high noise case, we can conclude that when the noise level is high and the number of data 

points is relatively low, the LS fails in estimating the most critical parameter     (estimated 

value 1.3 vs nominal value of 5, with a CV of 202%), whereas the Bayesian MAP algorithm 

still provides acceptable results (estimated value of 7.75, with a CV of 18.8 %)  

 Figure 4.9 summarizes the results obtained when the number of data points is further 

reduced (N=10). In this extreme case, the performance of the proposed algorithm are 

significantly compromised, due to the very little information contained in the data especially 

at high noise levels. Nevertheless, the estimation of     and    is still quite acceptable, at 

least for the low and medium noise level cases. On the contrary, estimation of     appears to 

be the critical. This is in contrast to what observed earlier for N=50 and N=100, where the 

critical parameter was    . By comparing the Bayesian MAP and the LS algorithms (see 

Table 4-3) the superiority of the proposed Bayesian approach appears evident: at low noise 

level, the distance between estimated and true parameter values is much larger for the LS 

method than for the MAP method; at medium and high noise levels, the LS estimated     

even assume negative values with very high CV numbers (CV of 160% and 40%, 

respectively), whereas the MAP estimated     remains bound by its prior p.d.f.. This is a 

clear example of how the incorporation of prior information into the estimation algorithm can 

be useful in data poor situations, where classical estimation approaches such as the LS or the 

ML may provide unreasonable solutions.  
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Figure 4.7 – Results obtained via Bayesian estimation when using N=100 data points and Gaussian prior 

distributions for different noise levels. A, low noise; B, medium noise; C, high noise. Left plots are the p.d.f. of 

Rrs, middle plots are the p.d.f. of Ers and right plots are the p.d.f. of P0. Blue curves indicate the a priori 

distributions, green curves indicate the computed posterior distributions and red lines represent the true nominal 

parameter values. 
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Figure 4.8 – Results obtained via Bayesian estimation when using N=50 data points and Gaussian prior 

distributions for different noise levels. A, low noise; B, medium noise; C, high noise. Left plots are the p.d.f. of 

Rrs, middle plots are the p.d.f. of Ers and right plots are the p.d.f. of P0. Blue curves indicate the a priori 

distributions, green curves indicate the computed posterior distributions and red lines represent the true nominal 

parameter values. 
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Figure 4.9 – Results obtained via Bayesian estimation when using N=10 data points and Gaussian prior 

distributions for different noise levels. A, low noise; B, medium noise; C, high noise. Left plots are the p.d.f. of 

Rrs, middle plots are the p.d.f. of Ers and right plots are the p.d.f. of P0. Blue curves indicate the a priori 

distributions, green curves indicate the computed posterior distributions and red lines represent the true nominal 

parameter values. 
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Table 4-1 - Results obtained via Bayesian MAP and LS estimation when using N=100 data points and Gaussian 

prior distributions for different noise levels. The number in parenthesis represent the coefficient of variation CV 

of the corresponding estimated parameter.  

 

 

 

 

 

 

 

Rrs (cmH2O/L·s-1) Ers (L/cmH2O) P0 (cmH2O)

R rs true  = 5 E rs true  = 12.5 P 0 true  = 15

MAP 5 (0.0634) 12.5 (0.0434) 15 (0.0098) 0

LS 4.8268 (2.6732) 12.4810 (0.9934) 15.0985 (0.5996) 0.0658

MAP 5 (5.9588) 12.25 (2.3672) 15 (1.3112) 0.6049

LS 4.8885 (6.5987) 12.0632 (2.5696) 15.1154 (1.4974) 0.8143

MAP 4.75 (14.1144) 13 (4.6659) 15 (3.0545) 1.0173

LS 4.1338 (15.6068) 12.4049 (4.9976) 15.4925 (2.9219) 1.6445

RSS

N° Data Points = 100

2% Noise

5% Noise

10% Noise
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Table 4-2 - Results obtained via Bayesian MAP and LS estimation when using N=50 data points and Gaussian 

prior distributions for different noise levels. The number in parenthesis represent the coefficient of variation CV 

of the corresponding estimated parameter.  

 

Rrs (cmH2O/L·s-1) Ers (L/cmH2O) P0 (cmH2O)

R rs true  = 5 E rs true  = 12.5 P 0 true  = 15

MAP 6 (7.2559) 11.75 (2.6196) 14.5 (1.6851) 0.2088

LS 5.6059 (9.4064) 11.8286 (2.9928) 14.7259 (2.0087) 0.1288

MAP 6.5 (17,1232) 13.25 (6.4358) 14 (4.4546) 0.7153

LS 4.8031 (27.4466) 13.3368 (6.6359) 15.0018 (4.9294) 0.2023

MAP 7.75 (18.8096) 15.25 (10.4579) 13 (6.4453) 4.7925

LS 1.3043(202.1418) 15.6493 (11.3107) 16.7897 (8.8089) 3.1912

5% Noise

10% Noise

N° Data Points = 50

RSS

2% Noise
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Table 4-3 - Results obtained via Bayesian MAP and LS estimation when using N=10 data points and Gaussian 

prior distributions for different noise levels. The number in parenthesis represent the coefficient of variation CV 

of the corresponding estimated parameter.  

 

In order to verify the correctness of the numerical implementation of the Bayesian estimation 

method, we also compared the results obtained via the numerical method against those 

obtained using the analytical expression for the MAP estimator described earlier (see The 

Gaussian Case with Linear Model section). The comparison for the N=50 case is summarized 

in  Table 4-4 from which we can notice that the two methods indeed provide the same 

estimated values except for numerical approximations due to the discretization process used 

in the numerical method.  

Rrs (cmH2O/L·s-1) Ers (L/cmH2O) P0 (cmH2O)

R rs true  = 5 E rs true  = 12.5 P 0 true  = 15

MAP 4.75 (12.208) 26.75 (14.0734) 15 (1.9446) 0.4662

LS 3.6084 (18.879) 33.6768 (17.0557) 15.4473 (2.0711) 0.589

MAP 7.25 (15.7263) 20.75 (22.5364) 13.5 (4.5428) 1.0988

LS 6.067 (28.1)   - 0.8978 (159.9) 14.5678 (5.5) 0.3346

MAP 8.75 (17.1473) 21.5 (22.8063) 12.5 (6.7385) 3.1371

LS 9.6869 (35.1621)  -70.8396 (40.5409) 13.9457 (11.4705) 7.459

N° Data Points = 10

RSS

2% Noise

5% Noise

10% Noise
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Table 4-4 – Comparison between the numerical Bayesian MAP estimator and the analytical MAP estimator. 

 

Finally, in order to show that the proposed approach is applicable to different patient classes, 

which would be characterized by different prior parameter distributions, simulations were 

also performed using the extreme value a-priori distributions simulating an obstructive and a 

restrictive disease (see Prior Probability Density Functions section). Results are shown in 

Figure 4.10 and Figure 4.11, respectively, for the N=100 and medium noise level case. They 

are not substantially different from the corresponding results obtained using Gaussian prior 

distribution and they confirm that the proposed approach can be virtually applied to different 

patient classes once the a-priori parameter distributions have been built.  

 

 

 

 

Rrs (cmH2O/L·s-1) Ers (L/cmH2O) P0 (cmH2O)

R rs true  = 5 E rs true  = 12.5 P 0 true  = 15

MAP 6 11.75 14.5

MAP analytical 6.0169 11.7923 14.4886

MAP 6.5 13.25 14

MAP analytical 6.865 13.1913 13.8067

MAP 7.75 15.25 13

MAP analytical 7.6535 15.2822 13.0988

N° Data Points = 50
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Figure 4.10 – Results obtained via Bayesian estimation at medium noise level when using N=100 data points and 

prior distributions simulating an obstructive disease patient. Left plots are the p.d.f. of Rrs, middle plots are the 

p.d.f. of Ers and right plots are the p.d.f. of P0. Blue curves indicate the a-priori distributions, green curves 

indicate the computed posterior distributions and red lines represent the true nominal parameter values. 

 

 

 

Figure 4.11– Results obtained via Bayesian estimation at medium noise level when using N=100 data points and 

prior distributions simulating a restrictive disease patient. Left plots are the p.d.f. of Rrs, middle plots are the 

p.d.f. of Ers and right plots are the p.d.f. of P0. Blue curves indicate the a-priori distributions, green curves 

indicate the computed posterior distributions and red lines represent the true nominal parameter values. 
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Algorithm Evaluation on Real Data – Stage 2 

The performance of the proposed Bayesian estimation approach was finally evaluated on the 

real data without using the simulation approach described in the previous section. In this case, 

the experimental airway pressure signal        was used to construct the data vector  

  

[
 
 
 
 
 
       

       
 
 
 

       ]
 
 
 
 
 

 and the experimental flow ( ̇) and volume     signals were used to construct 

the input matrix H (see Eq.4-10). The a-priori parameter probability density functions were 

assumed to be Gaussian with the same mean and standard deviation used for the simulated 

data case. Since in this case the actual values of the parameters are not known, it was 

necessary to have some gold standards to assess the performance of the estimator. Hence, the 

gold standards for the     and     parameters were obtained from the ventilator via the 

inspiratory hold maneuver, whereas the gold standard    was assumed to be equal to the 

external PEEP applied by the ventilator. The MAP Bayesian estimator method described 

above was applied to the dataset shown in Figure 4.12, corresponding to a VCV breath with 

no spontaneous respiratory activity as described in the Methods section. The LS method was 

applied to the same dataset as well, in order to allow for a direct comparison between the 2 

approaches in terms of RSS and CV numbers. As shown in Eq. 4-11, when applying the MAP 

Bayesian method the covariance    of the noise term W needs to be selected. Under the 

assumption of white Gaussian noise,    has been assumed a diagonal matrix: 

     
     

where the variance   
  has been estimated from the residual errors obtained via the LS 

method according to [98]: 
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∑ (         ̂         )

 
 

   

 

where  ̂      is the predicted airway pressure computed using the estimates parameters from 

the Least Squares algorithm. 

 

Figure 4.12 – Experimental dataset from the animal test described in chapter 3 used to in the 2
nd

 stage validation 

step. From top to bottom: Pao, is the pressure measured at the airway opening; Flow, is the air flow at the mouth; 

V, is the volume above FRC obtained by numerical integration of the flow signal; Pes is the invasive esophageal 

pressure, surrogate of the intrapleural pressure.    

 

The results obtained by applying the proposed Bayesian approach to the dataset shown above with different data 

vector lengths (N=100, 50 and 10) are summarized in Figure 4.13. We can observe that when the number of data 

samples is sufficiently high (N=100), the method provides posterior parameters p.d.f. that are centered around the 

corresponding gold standard values and that are not very spread. This proves the accuracy of the proposed 

method also in a real case scenario. As observed in the simulation cases, as the number of data points used in the 

estimation is reduced (N=50 and N=10), small biases are introduced and the computed posterior p.d.f. becomes 

wider. Particularly, as it was also suggested from the simulation study, the elastance     seems to be the most 

critical parameter, whereas estimation of    seems to be sufficiently accurate even with few data samples 

(N=10). By comparing the Bayesian MAP estimator against the LS algorithm (see  

Table 4-5), we can observe that for N=100 and N=50 the two methods provide essentially 

similar results: the estimated parameter values are very close, the RSS numbers are in the 

same order of magnitudes and the CVs are very similar. However, for N=10 the Bayesian 

approach appears evidently better: the LS provides estimates of     and     that are way off 

from the corresponding gold standard values and CVs of 43% and 25%, respectively; on the 
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contrary, the use of prior information in the Bayesian approach prevents the resulting 

estimates to deviate too much from the corresponding gold standard values, with CVs 

significantly lower than those obtained via the LS method. 

 

 

 

 

Table 4-5 - Results obtained via Bayesian MAP and LS estimation when using Gaussian prior distributions for 

different number of data points N.The number in parenthesis represent the coefficient of variation CV of the 

corresponding estimated parameter. 

 

 

 

 

Rrs (cmH2O/L·s-1) Ers (L/cmH2O) P0 (cmH2O)

R rs true  = 7.9 E rs true  = 20.543 P 0 true  = 5

MAP 8 (5.9689) 20.5 (2.3421) 5.5 (5.9497) 57.9187

LS 8.0827 (6.1369) 20.4637 (2.3447) 5.3709 (6.0876) 57.0283

MAP 9.25 (9.1875) 23.25 (6.0201) 4.5 (10.3178) 34.6851

LS 9.8571 (9.7993) 23.0578 (6.4131) 4.1315 (12.4662) 34.3358

MAP 7.5(12.3133) 26.75 (18.4907) 4.5 (10.2373) 15.7466

LS 3.6292 (43.1247) 151.8147 (25.0131) 4.4790 (11.5871) 9.3939

RSS

N=100

N-50

N=10
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Figure 4.13  – Results obtained via Bayesian estimation when using Gaussian prior distributions for different 

number of data points N. A,N=100; B, N=50; C, N=10. Left plots are the p.d.f. of Rrs, middle plots are the p.d.f. 

of Ers and right plots are the p.d.f. of P0. Blue curves indicate the a priori distributions, green curves indicate the 

computed posterior distributions and red lines represent the nominal parameter values. 
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4.6.3 Discussion 

In this work we have applied Bayesian inference and Maximum a Posteriori (MAP) estimator 

to a case study related to the estimation of the parameters of a 1
st
 order single-compartment 

model of the respiratory system under passive conditions (no patient’s spontaneous 

respiratory activity). The performance of the MAP Bayesian approach was compared with 

those of the Least Squares (LS) method, one of the most popular classic (or Fisherian) 

estimation methods. Our results show that: the parameter estimates do not significantly 

change between the two approaches when the noise present in the data is sufficiently low and 

the number of data points used in the estimation process is sufficiently high (i.e., when there 

is enough a-posteriori information available); the precision of the estimates always improve 

with the Bayesian approach; when the noise is high and/or the number of data samples used 

in the estimation process is reduced, the LS method can provide non-physiological parameter 

estimates (negative values) whereas the Bayesian approach remains bounded by the a-priori 

probability density function. Bayesian methods might be useful when the respiratory system 

parameters are assumed to be varying in time and the objective of the estimator is to track 

these variations. In such situations, a typical approach consists of fitting the model to very 

short window of data either by using the LS method on a moving window or by applying LS 

in his recursive formulation with forgetting factor (RLS with Exponential Forgetting). In 

these applications, the window size needs to be carefully selected in order to find the optimal 

trade-off between noise sensitivity and algorithm responsiveness. We conjecture that 

Bayesian methods, being more robust than classical methods when the available a-posteriori 

information is reduced, may represent a valuable alternative. Furthermore, Bayesian 

estimation allows to naturally include constraints in the parameter estimates in the form of 

possible range of values. This feature is definitely attractive in physiological parameter 
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estimation problems since, in many cases, physiological ranges can be a-priori determined for 

the majority of the parameters involved.  

Finally, the results obtained from this case-study can be generalized and allow us to 

conclude that when a-priori information on the unknown parameters of a physiological model 

is available, Bayesian estimation can be of relevant interest since it reduces the uncertainty of 

the parameter estimates and can also serve as a practical way to constraint the parameter 

estimates within specific ranges. 

 

4.7 Conclusions and Future Work  

In this chapter we have introduced the concept of Bayesian parameter estimation and 

explained the difference and the potential advantages of Bayesian techniques over classical 

approaches. We have shown how Bayesian methods naturally allow incorporating available 

a-priori knowledge about the parameters and we have provided examples of cases where the 

Bayesian formulation has an analytically tractable closed-form. Then, we have implemented 

Bayesian estimation and applied it to a case-study related to the same respiratory system 

model analysed in Chapter 3. Some conclusions about the potential advantages of Bayesian 

techniques have been drawn from this case-study and have been discussed in the previous 

section. Here, we want to conclude with the hypothesis that given the improvements in the 

estimate precision, Bayesian estimation methods may allow to adopt more complex models 

than those determinable by classical approaches. This hypothesis will be the object of further 

study. Moreover, we want to stress the point that the application of Bayesian estimation to the 

respiratory system case-study was only the first step toward the development of a Bayesian 

framework for the estimation of parameters of complex physiological models such as the one 

presented in Chapter 2. This aspect in particular will be the object of subsequent 
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investigation. Finally, we want to mention the possibility to implement Bayesian estimation 

in a recursive fashion, rather than applying it on a batch of data as we have done in the 

respiratory system case-study. In fact, it is possible to update the posterior p.d.f. in Bayes’ 

theorem every time a new data is collected and then use the computed posterior as prior 

distribution for the next updating step. This is a core concept in Bayesian learning that makes 

this approach particularly appealing for real-time implementation in an clinical environment. 

On the other hand, some computational challenges may be associated with this approach and 

will also be the subject of further investigation. 
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Chapter 5: Summary and Future Research 
 

In this thesis we have taken a small step toward personalized medicine, which allows for 

optimized health assessment and therapy. We have postulated the use of physiology-based 

mathematical models combined with parameter estimation techniques for clinical diagnostic 

and therapeutic applications. This comprised several steps.  

We have developed a novel comprehensive mathematical model (Chapter 2) of the 

cardiovascular and respiratory systems along with their main neural feedback, gas exchange, 

and tissue metabolism. The cardiopulmonary model results for both normo- and patho-

physiology represented with good fidelity published human and animal studies. In normal 

conditions, the mean model predicted hemodynamics (arterial blood pressure, central venous 

pressure, pulmonary artery pressure, left atrium and ventricle pressure) as well as gas 

exchange variables (arterial, venous, alveolar and dead space gas partial pressures) were all 

within the normal ranges experimentally observed in healthy 70 Kg subjects. The model 

simulated cardiovascular and respiratory responses to hypercapnic (3% - 7% CO2 in air) and 

hypoxic (8% O2 in air) stimuli were analysed in terms of respiratory rate, tidal volume, 

minute ventilation, alveolar Po2 and Pco2, heart rate and arterial (mean, diastolic and systolic) 

blood pressure. Excellent agreement with human data from literature was found for all the 

variables in both transient phase and steady-state.  

We then considered a very simple physiology-based lung mechanics model and we have 

developed two parameter estimation techniques (Chapter 3), the CLS and the MKF, in order 

to assess continually and non-invasively parameters that are indicative of lungs’ health 

(respiratory system resistance and compliance) and patient’s effort (work of breathing, 

WOB). The current ways of measuring these parameters are via interruptive manoeuvres to 

the mechanical ventilator and via invasive procedures. The validity of the two proposed 
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estimation techniques was first proven on data obtained from a respiratory system simulator 

and subsequently tested on real pig data. Excellent agreement between the noninvasive 

estimates from the proposed techniques and the corresponding gold standard invasive 

measurements was found. The mean error in WOB estimates was -0.1311 J/L and -0.0083 J/L 

for the CLS and the MKF algorithm, respectively. 

Physiology-based mathematical models can be deterministic or stochastic. The above 

work is based on a deterministic approach. We have also built (Chapter 4) a probability-based 

approach that uses a priori information about the parameters to be estimated, typically 

obtained from population studies. A Bayesian Maximum a Posteriori Probability (MAP) 

estimator was implemented and applied to a case-study of respiratory mechanics estimation. 

Superiority against the classical Least Squares method was proven in data-poor situations. 

The tools developed in this thesis open several future research possibilities. This work can 

be further extended in terms of modeling, parameter estimation, and applications in diagnosis 

and therapy in order to make personalized medicine a companion to clinicians, hence 

complementing their clinical decision capacity. More specifically: 

Chapter 2: The cardiopulmonary model can be expanded to include additional 

physiological mechanisms, such as long term regulation, kidney dynamics, acid-base balance, 

cerebrovascular regulation, etc. 

Chapter 3: The parameter estimation techniques can be applied to more complex models 

of the respiratory system (non-linear and/or multi-compartment models). Other areas for their 

application can also be envisioned 

a. Home ventilation 

b. Anaesthesia 
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Furthermore, the estimated WOB can be used as a variable for closed-loop control of MV, 

where the clinician will enter a WOB trajectory (high-level therapy plan) and a controller will 

adjust ventilator settings in order to maintain patient WOB within the desired target.  

 

Chapter 4: The Bayesian parameter estimation framework can be expanded to a larger 

number of model’s parameters and applied to different physiological systems, such as the 

cardiovascular or gas exchange.  

 

Finally, the model-based approach that is the driving principle of this research can be 

applied to other clinical and therapeutic areas: 

- Anesthesia 

- Fluid management  

- Cardiovascular monitoring 

- Drug infusion 

as well as across the continuum of care (OR, ICU, general ward, home). 
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Appendix: Cardiopulmonary Model’s Equations 

In the following section the complete equations describing the CP Model presented in 

Chapter 2 are provided.  

A1. The Circulatory System 

The equations describing the circulatory system have been obtained by enforcing 

conservation of mass and balance of forces for each vascular compartments in Figure 2.12. 

The general form of these equations has been presented in the Model Development section 

(see Eq 2-1-2-3). Here, this general form is instantiated for each specific circulatory 

compartment included in the circulatory system model. 
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where             indicates the specific systemic compartment,       ∑       is the 

equivalent peripheral compliance given by the parallel arrangement of the 5 different 

systemic peripheral compartments and        is given by Eq. 2.4 (see 2.3 Model Development 

section). 

Pulmonary Circulation 
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A.2 The Heart 

The equations describing the heart model are unchanged compared with previous studies [5, 

6], except for the inclusion of the intrapleural pressure as the external reference pressure 

acting outside the heart. 

Left Heart 
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Right Heart 
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where      is the ventricle activation function (with        at maximum contraction and 

       at complete relaxation), assumed to be equal for both left and right ventricle and 

governed by the equation:  

          {
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  ]                    

                        
 (A-46) 



216 

 

where    is the heart period,      is the duration of systole and   is a dimensionless variable 

ranging between 0 and 1 and indicating the fraction of cardiac cycle:  

       [∫  
 

  

 

     
         ] (A-47) 

where “frac” is the fractional part function (that resets the input to 0 as soon as it reaches 1). 

Finally, the duration of systole      is assumed to decrease linearly with the heart rate 

according to:  

                  
 

  
 (A-48) 

A.3 The Lung Mechanics 

The equations describing the lung mechanics model have been obtained by applying 

conservation of mass to the electrical analog shown in Figure 2.17.  

    
   

  
 

      

   
 

      

   
 (A-49) 

     
          

  
 

      

   
 

      

   
 (A-50) 

    
         

  
 

      

   
 

     

   
 (A-51) 

    
         

  
 

     

   
 (A-52) 

     
           

  
 

      

   
 (A-53) 

  ̇  
      

   
 (A-54) 

  ̇  
      

   
 (A-55) 

               (A-56) 

                         (A-57) 



217 

 

                     (A-58) 
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              (A-60) 

The equations describing the profile of the respiratory muscle generator      have been 

provided in the Model Development section (see Eq. 2-6 ). 

A.4 The Lung Gas Exchange 

The equations describing the lung gas exchange model have been already presented in the 

Model Development section (see Eqs. 2-8 – 2-16) but only in their general form. Here, the 

complete equations governing the model are specialized for the specific gas involved, i.e. for 
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where Eqs. A-61, A-62, A-63, A-64 are derived based on conservation of mass principles, 

Eqs. A-65, A-66, A-67, A-68 are the dissociation functions as reported in [71], Eqs. A-69, A-

70 represent the instantaneous equilibrium assumption between alveolar space and capillary 

blood, Eqs. A-71, A-72 relate gas fractions in the lungs to their corresponding partial 

pressures, Eqs. A-73, A-74 represent the mixing between capillary and shunted blood, and 

Eq. A-75 is used to compute    saturation in the arterial blood. 

A.5 The Tissue Gas Exchange  

The equations describing the tissue gas exchange and the venous pool gas transport models 

have been already presented in the Model Development section (see Eqs.  2-15 - 2-17), but 

only in their general form and without mathematical derivation. Similar to what we have 
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done for the lung gas exchange model, here we present the complete equations, specializing 

them for    and     and for each compartment of the model (see Figure 2.20). 
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See Figure 2.20 for explanation of symbols. 

A.6 The Venous Pool Gas Transport 

The complete equations describing the venous pool gas transport model are the following:  
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where         is the the blood flow entering the j-th systemic peripheral compartment (see 

Figure 2.20). 

A.7 The Respiratory Control 

The respiratory control model has been described in the Model Development section and 

detailed equations have been already provided. 
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A.8 The Cardiovascular Control 

The equations describing the cardiovascular control model are taken from [5, 6]. The only 

modification compared to these early work is in the description of the afferent peripheral 

chemoreceptor mechanism, which in the present model, as mentioned in the previous section, 

is based on the equations reported in [61]. For the sake of brevity, we prefer to omit the 

equations of the cardiovascular control model and we encourage the interested reader to refer 

to the original publications for additional details. 

   

 

 


