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ABSTRACT

Essays in Spatial Economics

Jonathan I. Dingel

A central concern in international economics and urban economics is explaining the distributions

of economic assets and activity across space. This dissertation contains three essays examining the

pattern of specialization across US cities.

Chapter 1 investigates the determinants of quality specialization within products. A growing

literature suggests that high-income countries export high-quality goods. Two hypotheses may

explain such specialization, with different implications for welfare, inequality, and trade policy.

Fajgelbaum, Grossman, and Helpman (2011) formalize the Linder (1961) conjecture that home

demand determines the pattern of specialization and therefore predict that high-income locations

export high-quality products. The factor-proportions model also predicts that skill-abundant, high-

income locations export skill-intensive, high-quality products (Schott, 2004). Prior empirical ev-

idence does not separate these explanations. I develop a model that nests both hypotheses and

employ microdata on US manufacturing plants’ shipments and factor inputs to quantify the two

mechanisms’ roles in quality specialization across US cities. Home-market demand explains at least

as much of the relationship between income and quality as differences in factor usage.

In Chapter 2, Donald R. Davis and I develop a theory to jointly explain the distributions of

skills, occupations, and industries across cities. Our model incorporates a system of cities, their

internal urban structures, and a high-dimensional theory of factor-driven comparative advantage. It

predicts that larger cities will be skill-abundant and specialize in skill-intensive activities according

to the monotone likelihood ratio property. We test the model using data on 270 US metropolitan

areas, 3 to 9 educational categories, 22 occupations, and 21 manufacturing industries. The results

provide support for our theory’s predictions.

Chapter 3 examines whether larger cities are attractive to consumers. Popular and academic

discussions celebrate the virtues of large cities for consumption and leisure. But the standard

spatial-equilibrium account says that the consumer attractions of larger cities cannot account for

their higher nominal wages and more skilled populations. This chapter revisits that conclusion



and shows that the consumption motive can play a first-order role in spatial variation in wage

distributions when individuals are heterogeneous. I present a general-equilibrium model in which

larger cities offer a greater variety of local goods and services, attracting higher-income individuals

who value such variety relatively more. Despite the absence of production-related agglomeration

economies, the equilibrium outcomes match a series of facts about spatial variation in wage dis-

tributions. I present evidence on the spatial choices of retirees, who consume but do not produce,

that is consistent with consumption-driven agglomeration.
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1.1 Introduction

The Linder hypothesis is the oldest theory of product quality in international trade. Linder (1961)

posited that profitably exporting a product requires robust demand for that product in the ex-

porter’s home market. Since higher-income consumers tend to purchase higher-quality products,

Linder conjectured that local consumers’ demand causes high-income countries to produce and

export high-quality products. This “home-market effect” explanation of quality specialization

was recently formalized by Fajgelbaum, Grossman, and Helpman (2011) in a general-equilibrium,

monopolistic-competition model. In contrast, the canonical factor-abundance theory of compara-

tive advantage identifies high-income countries’ greater supplies of capital and skills as the reason

they export high-quality products.2 These two competing theories have distinct implications for

welfare, inequality, and trade policy. Empirical work to date has not identified the importance of

each mechanism in quality specialization.

The empirical challenge is that the two theories make the same predictions about country-level

trade flows. Each predicts that high-income locations export high-quality products, consistent with

the finding that higher-income countries export products at higher prices within narrowly defined

product categories (Schott, 2004; Hummels and Klenow, 2005).3 Similarly, each predicts that

high-income locations import high-quality products if preferences are non-homothetic, as indeed

they are.4 Thus, both theories are consistent with the finding that higher-income countries import

more from countries exporting products at higher prices (Hallak, 2006). Combining these export

and import patterns, both theories predict that countries with more similar incomes trade more

intensely with each other, as found by Hallak (2010) and Bernasconi (2013).5

2For example, Schott (2004, p. 676) suggests that “high-wage countries use their endowment advantage to add
features or quality to their varieties that are not present among the varieties emanating from low-wage countries.”
Linking quality specialization to relative factor supplies dates to at least Falvey (1981).

3Throughout this paper, observed “prices” refer to unit values, which are shipments’ value-to-quantity ratios. Like
international trade data, the data used in this paper describe transactions’ values and quantities.

4Deaton and Muellbauer (1980, p.144) note that homotheticity “contradicts all known household budget studies,
not to mention most of the time-series evidence.”

5Hallak (2010, p. 459) notes that “several theories can explain a systematic relationship between per capita income
and quality production... The prediction of the Linder hypothesis about the direction of trade can be founded on
any of these theories.”
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In this paper, I use theory and data to quantify the roles of the home-market effect and the

factor-abundance mechanism in quality specialization across US cities. I develop a model that yields

an empirical approach to separate the two mechanisms. It requires plant-level data on shipments

and inputs and location-level data on populations and incomes. I implement the empirical strategy

using data on US cities and manufacturing plants and find that the home-market effect influences

quality specialization at least as much as factor abundance.

To guide my empirical investigation, I introduce a theoretical framework that nests the two

mechanisms, each of which has been studied separately. Individuals have non-homothetic prefer-

ences over a homogeneous and a differentiated good; higher-income individuals are more likely to

consume higher-quality varieties of the differentiated good. This demand assumption makes the

model consistent with high-income countries importing high-quality products and generates the

home-market effect when trade is costly. Individuals have heterogeneous skills, and goods can be

ranked by their skill intensities. This production assumption allows skill-abundant locations to

have a comparative advantage in higher qualities when quality is skill-intensive. The model serves

two purposes. First, it confirms that each mechanism alone can generate trade flows consistent

with the empirical findings described above. Second, the theory identifies a way to separate the

two mechanisms using plant-level data. Factor abundance affects specialization exclusively through

plants’ factor usage. Conditional on plant-level factor intensity, demand alone determines quality

specialization. Thus, plant-level data on shipments and inputs can be combined with data on

locations’ incomes to identify the home-market effect.

To implement this empirical strategy, I use microdata on US manufacturing plants’ shipments

and inputs from the Commodity Flow Survey and the Census of Manufactures. These sources

provide microdata on plants in many cities with different income levels in a single dataset. In

contrast, I am not aware of a source containing plant-level shipment and input data from many

countries.6 I document that US cities exhibit the key patterns found in international data. Both

outgoing and incoming shipments exhibit higher prices in higher-income cities, and cities with

6My empirical approach thus follows the counsel of Krugman (1991a, p.3): “if we want to understand international
specialization, a good place to start is with local specialization. The data will be better and pose fewer problems of
compatibility, and the underlying economic forces will be less distorted by government policies.”
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more similar incomes trade more intensely with each other. I therefore proceed to use these data

to distinguish between the home-market-effect and factor-abundance hypotheses.

Guided by the model, my empirical investigation yields two main results. First, differences in

plants’ inputs, which may be induced by either mechanism, explain only a minority of the observed

specialization across cities. Most of the variation is within-factor-intensity variation. Second, a

market-access measure that describes the income composition of proximate potential customers is

strongly related to the pattern of within-intensity specialization. Quantitatively, I find that the

home-market effect plays at least as large a role as the factor-abundance mechanism in local quality

specialization.

More specifically, in my empirical work I infer quality specialization from two empirical measures

commonly used in the literature: unit values and estimated demand shifters. The first measure is

based on the idea that higher-quality products sell at higher prices and has been widely used in

the international trade literature (Hummels and Skiba, 2004; Schott, 2004; Hallak, 2006; Baldwin

and Harrigan, 2011). The second measure follows Sutton (1991, 2012), Berry (1994), Hummels and

Klenow (2005), Khandelwal (2010), and others in identifying a product as higher-quality when,

conditional on price, it has higher market share. When both measures are available in my data,

they yield comparable results.

The first empirical finding is that observed factor-usage differences explain a modest share of

within-product specialization. Guided by the model, I construct factor-intensity measures using

data on plants’ employees, equipment, and wages. Between-intensity variation explains about one

quarter of the covariance between locations’ per capita incomes and outgoing shipment prices.

It explains a larger share of the covariance between incomes and estimated demand shifters, but

observed factor-usage differences never explain more than half of the specialization by income per

capita in any regression specification. Since the factor-abundance mechanism operates only through

between-intensity variation, this finding bounds its explanatory power.7

The second empirical finding is that the home-market effect plays a quantitatively significant

role in quality specialization, at least as large as differences in observed factor usage. Using data

7By its nature, this result describes observed factor usage and cannot rule out unobserved inputs.

4



on cities’ incomes and geographic locations, I construct two market-access measures describing the

income composition of proximate potential customers. The first omits the residents of the city in

which the plant is located, so that it does not reflect any unobserved local supply-side mechanisms.

I find that this measure of demand is strongly positively correlated with manufacturing plants’

outgoing shipment prices. In fact, this measure explains a larger share of the covariance between

income per capita and outgoing shipment prices than plant-level factor usage. The second market-

access measure follows the model by including residents in the city of production. This demand

measure consistently explains a larger share of the observed specialization across cities than plants’

factor inputs. Within-intensity variation in market access explains 54% of the covariance between

product prices and incomes per capita, twice that attributable to factor-usage differences.8 It

explains a similar share, 48%, of the covariance between estimated demand shifters and incomes

per capita.9 I conclude that the home-market effect for quality plays a substantial role in the

economic geography of US manufacturing.

These findings are important because the two theories have distinct implications. In predicting

the quality of a location’s exports, one emphasizes its relative factor supplies while the other stresses

its relative proximity to high-income customers. These yield very different predictions, for instance,

for poor countries that have rich neighbors.10 To the extent that specializing in producing high-

quality goods improves a country’s growth prospects, the strong home-market effect found here

suggests an advantage of proximity to high-income countries.11 And since trade policy can affect

market access, governments may influence quality specialization.12

My empirical strategy of using plant-level data from US cities of different income levels links

8Using only within-intensity variation is conservative. Unconditionally, variation in market access accounts for
72% of the price-income covariance.

9Factor-usage differences explain 46% of the covariance between estimated demand shifters and incomes per capita,
so there is considerably smaller residual variation in the decomposition of this measure.

10For example, Mexico and Turkey are developing economies that are proximate to high-income customers in the
US and EU, respectively. Verhoogen (2008) shows that increased incentive to export caused quality upgrading by
Mexican firms.

11See Redding (1996), Aghion, Blundell, Griffith, Howitt, and Prantl (2009), and Lederman and Maloney (2012)
on quality and growth.

12Helpman and Krugman (1989, p.2): “It is clear that changing one’s view of why trade happens, and how
international markets work, ought to change one’s view of what kind of trade policy is appropriate.”
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my results to a number of findings in urban and regional economics. I provide the first characteri-

zation of production specialization within product categories across cities. Previous empirical work

describing variation in manufacturing across US cities has focused on inter-industry specialization

(Henderson, 1991; Holmes and Stevens, 2004; Davis and Dingel, 2013) or described the products

available to retail consumers without tracking production locations (Handbury and Weinstein,

2011). The finding that the geography of demand plays a major role in specialization comple-

ments a nascent literature describing the consumption benefits of living in cities with high-income

populations (Glaeser, Kolko, and Saiz, 2001; Diamond, 2012; Handbury, 2012).

The paper is organized as follows. Section 1.2 describes the two competing hypotheses. Section

1.3 introduces a model nesting both and shows how to separate them using plant-level data. Section

1.4 describes the US microdata and pattern of specialization and exchange. Section 1.5 reports the

empirical results. Section 1.6 concludes.

1.2 Background

Linder (1961) started from the proposition that home demand is essential to developing an ex-

portable product. Since higher-income consumers tend to purchase higher-quality products, Linder

suggested that demand composition causes higher-income locations to produce higher-quality prod-

ucts. A novel implication was that countries with more similar incomes would trade more intensely

with each other. Despite its informal theoretical underpinnings, this trade-flow prediction moti-

vated many empirical investigations (Deardorff, 1984).

Krugman (1980) formalized how economies of scale and trade costs generate a “home-market

effect” in which the country with a larger home market for a product is the net exporter of that good.

Demand differences determine trade because economies of scale and costly transport mean that a

larger home market is a competitive advantage. First, economies of scale cause each product to be

produced in a single location and sold to many markets. Second, producing in the larger market

minimizes transportation costs. The Krugman (1980) model featured homothetic preferences and

two products produced by different industries, omitting the roles of non-homothetic preferences

and product quality emphasized by Linder.

6



Fajgelbaum, Grossman, and Helpman (2011) recently formalized how income differences can

determine the pattern of quality specialization and trade in a general-equilibrium, monopolistic-

competition model. They describe a world economy without traditional supply-side determinants

of the pattern of trade. The composition of income in a location determines the composition of

demand, since higher-income households are more likely to purchase a higher-quality variety. Plants

produce higher qualities in higher-income locations because it is more profitable to produce in the

larger home market. These mechanics are consonant with the story suggested by Linder (1961).13

In equilibrium, high-income locations disproportionately produce, export, and import high-quality

products.

The canonical factor-abundance theory of comparative advantage yields the same set of pre-

dictions when preferences are non-homothetic. An early example is Markusen (1986), in which

the income elasticity of demand for capital-intensive manufactures is greater than one, so that

high-income, capital-abundant countries specialize in manufactures that are exported to other

high-income countries.14 Many other models make analogous assumptions about the alignment

of comparative advantage and relative demand.15 In these theories, high-income countries both

demand higher-quality products and have Ricardian or factor-abundance-driven comparative ad-

vantage in producing them, so that “tastes and capabilities are correlated” but not causally linked

(Murphy and Shleifer, 1997, p. 6).

Thus, both theories are consistent with the growing body of empirical evidence suggesting that

high-income countries export and import high-quality products. Schott (2004) shows that unit val-

13Linder’s informal narrative focused on the role of entrepreneurial discovery in bringing products to market.
He emphasized the informational costs of distance more than transportation costs and did not explicitly address
economics of scale (Linder, 1961, p.89-90).

14Markusen (1986, p. 1003) obtains “a Linder-type trading pattern based on a Linder-type demand assumption”
with no trade costs and thus no home-market effect. See also Bergstrand (1990). Strictly speaking, these are
general-equilibrium models of intersectoral specialization. Falvey (1981) introduced a partial-equilibrium model of
within-industry specialization across qualities by capital intensity consonant with the within-product interpretation
of factor-abundance theory suggested by Schott (2004).

15Flam and Helpman (1987) focus on a setting in which the high-wage country, which demands higher qualities, has
Ricardian comparative advantage in producing higher-quality varieties. Using aggregate trade flows, Fieler (2011)
estimates a two-sector version of the Eaton and Kortum (2002) Ricardian model. She finds that the industry with a
greater income elasticity has greater dispersion in idiosyncratic productivities, causing higher-TFP countries to have
comparative advantage in these luxuries. Examining variation across 56 broad sectors, Caron, Fally, and Markusen
(2012) find a positive correlation between industries’ income elasticities of demand and skill intensities.
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ues in product-level US import data are higher for higher-income, more capital- and skill-abundant

exporting countries; Hummels and Klenow (2005) find a positive relationship between unit values

and exporter income per capita using data from more than 50 importing countries.16 Khandelwal

(2010) estimates demand shifters using US import data and finds that they are positively related

to exporting countries’ GDP per capita and capital abundance. Feenstra and Romalis (2012) and

Hallak and Schott (2011), using other methods, also report that higher-income countries export

products inferred to be higher quality. High-income countries import narrowly defined products at

higher prices (Hallak, 2006), and higher moments of the income and import price distributions are

similarly related (Choi, Hummels, and Xiang, 2009).

These common predictions for country-level trade flows motivate this paper’s use of plant-level

data to separate the two mechanisms. In short, the challenge prior work has faced is that customers

and workers are the same people in country-level data.17 As the model demonstrates, assessing the

factor-abundance hypothesis requires looking at the factors of production employed by exporting

plants. A series of studies using firm-level data have shown that exporters and firms producing

higher-quality products use more capital-intensive and skill-intensive production. Verhoogen (2008)

describes exporting-induced quality upgrading by demonstrating that the Mexican peso crisis in-

duced initially more productive plants to become exporters, increase their average wages, and raise

their capital-labor ratio. Hallak and Sivadasan (2013) show that, conditional on size, exporting

firms in Chile, Colombia, India, and the United States are more capital-intensive and pay higher

wages. These firm-level findings are consistent with the factor-abundance explanation of quality

specialization. But they do not provide evidence that differences in factor abundance relate to

differences in output across locations, since they describe establishments in a single location.18

As a result, there is no prior empirical evidence distinguishing the home-market effect for

16Torstensson (1996) reports similar results using Swedish imports and more aggregated product categories.

17In addition to looking at country-level capital abundance, Schott (2004) shows that the unit values of exported
products are positively correlated with the capital-labor ratio of the relevant three-digit ISIC industry in the exporting
country. However, much of the variation reflects cross-country differences in capital abundance, a fact noted by
Dollar, Wolff, and Baumol (1988, p. 33). The mean pairwise correlation between any two of the 28 industries’
capital-labor ratios across the 34 countries in the Schott (2003) data is 0.5. Moreover, industry data necessarily
aggregate heterogeneous plants and may not represent exporters’ factor intensities.

18These data describe plants in many cities within a single country, but the authors did not exploit cross-city
variation.
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quality from factor-abundance-determined quality specialization. There is a large literature on

the Krugman (1980) home-market effect, in which a larger home market causes specialization in

the industry with greater economies of scale.19 This empirical work has identified the economies-

of-scale home-market effect by using observable sectoral characteristics, such as transport costs

and elasticities of substitution (Hanson and Xiang, 2004). But these cross-industry sources of

variation are unavailable when considering quality specialization within products. Moreover, since

the composition of income and the composition of human capital are closely related, both across

countries and cities, it is empirically difficult to distinguish the home-market effect for quality from

factor-abundance theories of comparative advantage using aggregate data.

I proceed to introduce a theoretical framework that incorporates both of these mechanisms

and their interaction in equilibrium. This allows me to derive an empirical strategy that relies on

observing plants’ inputs and outputs.

1.3 Theory

I introduce a theoretical framework describing an economy in which both the home-market effect

and relative factor abundance may influence the pattern of production and exchange. I use a

high-dimensional framework with many locations, qualities, and skills.20 It nests a version of the

Fajgelbaum, Grossman, and Helpman (2011) home-market-effect model and a traditional factor-

abundance model as special cases. Nesting the two mechanisms within a single framework allows

me to analyze each in isolation and their interaction.

The theory delivers two results that are key to the empirical investigation. First, it confirms that

quality specialization is overdetermined. Each mechanism alone is sufficient to cause high-income

locations to disproportionately produce, export, and import high-quality varieties in equilibrium.

Second, the theory identifies an important distinction between the two mechanisms. Conditional

19On identifying the Krugman (1980) home-market effect, see Davis and Weinstein (1999), Davis and Weinstein
(2003), and Hanson and Xiang (2004).

20The problems at hand necessitate such an approach. Matching the facts that both outgoing and incoming
shipment prices are increasing in average income necessitates a many-location model. Making comparisons across
and within qualities of different factor intensities, which is at the heart of my empirical strategy, necessitates many
quality levels.
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on plant-level skill intensity, the correlation between local income and plants’ output quality is due

solely to the home-market effect. This result is the basis of my empirical approach.

In the model, there are K locations indexed by k. Location k has a population of size Nk

made up of heterogeneous individuals whose skills, indexed by ω, are distributed according to the

density f(ω, k). I take skill distributions as exogenously determined. This is a standard assumption

in models of international trade and innocuous for the purpose of distinguishing the roles of the

factor-abundance and home-market effect mechanisms.21 I assume that locations can be ranked

by their skill abundance in the likelihood-ratio sense. The skill distribution f(ω, k) is strictly

log-supermodular, so high-k locations are skill-abundant.22

1.3.1 Preferences

Consumer preferences are non-homothetic, so the income distribution influences the composition of

demand. As in Fajgelbaum, Grossman, and Helpman (2011), individuals consume a differentiated

good and a homogeneous good. Varieties of the differentiated good are indexed by j, and Jq

denotes the set of varieties with quality q. For individual h, the utility of consuming z units of the

homogeneous good and a unit of variety j ∈ Jq of the differentiated good is

uhj = zq + εhj , (1.1)

where εhj is the individual’s idiosyncratic valuation of the variety.23 An individual’s vector of

idiosyncratic valuations, εh, is drawn from the generalized extreme value distribution, Gε(ε) =

exp
[
−
∑

q∈Q(
∑

j∈Jq exp(−εj/θq))θq
]
, where Q denotes the set of qualities and θq governs the

strength of idiosyncratic differences among varieties with quality q. This specification yields a

21Factor mobility would be relevant in considering counterfactuals, since individuals may migrate across cities in
response to economic changes.

22My theoretical approach makes extensive use of log-supermodularity as an analytical tool. See Costinot (2009) for
an introduction to log-supermodularity in the context of trade theory. In R2, a function f(ω, k) is log-supermodular
if ω > ω′, k > k′ ⇒ f(ω, k)f(ω′, k′) ≥ f(ω, k′)f(ω′, k) and strictly log-supermodular when the inequality is strict.
Davis and Dingel (2013) provide evidence that cities’ skill distributions are consistent with the log-supermodularity
assumption.

23Varieties are thus both vertically and horizontally differentiated (Beath and Katsoulacos, 1991, p.4-6). Condi-
tional on εh, all consumers prefer higher-q varieties. If all varieties were the same price, consumers would not be
unanimous in their ranking of them due to εh, so these products are horizontally differentiated.
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nested-logit demand system (McFadden, 1978).

An individual chooses variety j and quantity z to maximize utility. The homogeneous good is

the numeraire, and variety j is available at price pj . A consumer with income yh therefore chooses

the variety j that maximizes (yh− pj)q+ εhj , where z = yh− pj is the amount of the homogeneous

good purchased after buying a single unit of differentiated variety j. As Fajgelbaum, Grossman,

and Helpman (2011) show, the fraction of individuals with income y who demand variety j of

quality q is

ρj(y) = ρj(q) · ρq(y) =
exp(−pjq/θq)∑

j′∈Jq exp(−pj′q/θq)

[∑
j′∈Jq exp((y − pj′)q/θq)

]θq
∑

q′

[∑
j′∈Jq′

exp((y − pj′)q′/θq′)
]θq′ .

This demand system has two important properties. First, consumers’ incomes are systematically

related to the quality of the variety they purchase. The market share of variety j of quality q varies

with income according to 1
ρj(y)

∂ρj(y)
∂y = q − qa(y), where qa(y) is the average quality consumed by

individuals with income y.24 The fraction of individuals purchasing variety j rises with income if

and only if its quality exceeds qa(y). Second, the elasticity of demand takes a simple form: holding

the terms within summations fixed, ∂ρj(y)
∂pj

pj
ρj(y) = − q

θq
pj . This property will cause producers of

quality q to charge a constant additive markup, θq
q .25

1.3.2 Production

Production involves employing workers of heterogeneous skills, so relative factor supplies may be

a source of comparative advantage. Both the homogeneous good and the differentiated good are

produced using a constant-elasticity-of-substitution technology. The homogeneous good is freely

traded, produced by perfectly competitive firms, and used as the numeraire. Varieties of the

differentiated good are produced by monopolistically competitive firms.

24qa(y) ≡
P
q∈Q q

hP
j′∈Jq exp((y−pj′ )q/θq)

iθq
P
q′ [

P
j′∈Jω exp((y−pj′ )ω/θq′ )]

θ
q′

.

25I use the nested-logit demand system in part because the constant-additive-markup property makes the model
analytically tractable. Only the former property, that high-income consumers are more likely to purchase high-
quality varieties, is necessary for the home-market effect to influence the pattern of specialization. A broad class of
non-homothetic preferences exhibit this property.
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1.3.2.1 Producing the homogeneous good

The freely traded homogeneous good is produced using a continuum of labor inputs, with skill ω

available in location k at wage w(ω, k). Production exhibits constant returns to scale, so the total

cost of producing quantity x(z, k) at unit cost c(z, k) is x(z, k)c(z, k).26 The unit cost resulting

from hiring `(ω) units of skill ω per unit of output is

c(z, k) = min
`(ω)

∫
ω∈Ω

`(ω)w(ω, k)dω s.t.
(∫

ω∈Ω
b(ω, z)`(ω)

σ−1
σ dω

) σ
σ−1

≥ 1.

The technological coefficients b(ω, z) describe the contribution of each skill type in production

and therefore characterize the homogeneous good’s skill intensity. The elasticity of substitution

across inputs σ is greater than one and finite. Cost minimization yields per-unit input demands

`(ω, z, k) = w(ω, k)−σb(ω, z)σ wherever x(z, k) > 0.

1.3.2.2 Producing varieties of the differentiated good

Firms may enter into the differentiated-good sector by choosing a quality level q that is produced

by incurring fixed cost fq, paid in units of the numeraire. The constant marginal cost of producing

units of quality q in location k is

c(q, k) = min
`(ω)

∫
ω∈Ω

`(ω)w(ω, k)dω s.t.
(∫

ω∈Ω
b(ω, q)`(ω)

σ−1
σ dω

) σ
σ−1

≥ 1.

The resulting input demands are `(ω, q, k) = w(ω, k)−σb(ω, q)σc(q, k)σ, with marginal cost

c(q, k) =
(∫

ω∈Ω
b(ω, q)σw(ω, k)1−σdω

) 1
1−σ

.

A firm producing x(q, k) units of quality q in location k hires x(q, k)`(ω, q, k) of skill ω.

Firms producing a differentiated variety in location k can export one unit to destination k′ at

marginal cost c(q, k) + τqkk′ , where the trade cost τqkk′ is incurred in units of the numeraire. If the

income distribution in location k′ is g(y, k′), then demand for variety j of quality q by consumers

26In a slight abuse of notation, I use z to index the homogeneous good. Recall that in the utility function z denotes
the quantity of this good.
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in location k′ is djk′ = Nk′
∫
ρj(y)g(y, k′)dy, which is

djk′ =Nk′Ek′

 exp(−pjk′q/θq)∑
j′∈Jq exp(−pj′k′q/θq)

[∑
j′∈Jq exp((y − pj′k′)q/θq)

]θq
∑

q′

[∑
j′∈Jq′

exp((y − pj′)q′/θq′)
]θq′

 ,
where Ek′ is the expectations operator with respect to the income distribution in location k′. Taking

competitors’ behavior as given, the optimal prices charged by firm j producing quality q in location

k are given by maximizing profits:

max
{pjk′}

πj =
∑
k′

djk′(pjk′ − c(q, k)− τqkk′)− fq

⇒ pjk′ =c(q, k) + τqkk′ −
djk′
∂djk′
∂pjk′

= c(q, k) + τqkk′ +
θq
q

I now define the equilibrium demand level for variety j of quality q in location k′. Denote the

number of firms producing varieties of quality q in location k by nq,k. Plugging in optimal prices,

demand djk′ can be written in terms of (vectors of) the number of firms (n), the unit costs in each

location (c), and trade costs (τ).

djk′ =Nk′ exp(−(c(q, k) + τqkk′)q/θq)Ek′
[

exp(yq)
[∑

κ nq,κ exp((−c(q, κ) + τqκk′)q/θq)
]θq−1∑

q′ exp(yq′)
[∑

κ nq′,κ exp((−c(q, κ) + τq′κk′)q′/θq′)
]θq′
]

=Nk′ exp(−(c(q, k) + τqkk′)q/θq)Γk′(q,n, c, τ)

The function Γk′(q,n, c, τ) describes the share of demand in location k′ for quality q given the

equilibrium prices and locations of all producers.27 A firm’s sales of quality q to k′ from k depend

on this demand share, population Nk′ , marginal cost c(q, k), and trade cost τqkk′ .

27Fajgelbaum, Grossman, and Helpman (2011) introduce a similar demand measure in their equation (22). Their
expression subsumes τ by adjusting n for trade costs to measure “effective varieties” and does not depend on c
because they assume factor-price equalization.
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1.3.3 Equilibrium

In equilibrium, labor markets clear and firms earn zero profits. The full-employment condition for

each skill ω in each location k is

f(ω, k) = x(z, k)`(ω, z, k) +
∫
q∈Q

∫
j∈Jq

x(q, k)`(ω, q, k)djdq.

Plugging in firms’ labor demands and defining nz,k = 1, we can write this as

f(ω, k) = w(ω, k)−σ
∫
r∈z∪Q

nr,kx(r, k)b(ω, r)σc(r, k)σdr, (1.2)

where the variable of integration r includes both the homogeneous good and qualities of the differ-

entiated good. The local income distribution density, which depends on equilibrium wages w(ω, k),

is g(y, k) =
∫
ω∈Ω:w(ω,k)=y f(ω, k)dω.

The free-entry condition says that the profits from producing quality q in location k, πq,k, are

non-positive everywhere and zero where firms are active: πq,k ≤ 0 ∀k and nq,k > 0 ⇒ πq,k = 0,

where

πq,k =
∑
k′

dqkk′(pqkk′ − c(q, k)− τqkk′)− fq

=
θq
q

exp(−c(q, k)q/θq)
∑
k′

Nk′ exp(−τqkk′q/θq)Γk′(q,n, c, τ)− fq (1.3)

Note that zero-profit condition for the homogeneous, numeraire good is c(z, k) ≥ 1 ∀k and x(z, k) >

0⇒ c(z, k) = 1.

1.3.4 Equilibrium pattern of specialization and trade

Given the distribution of skills across locations, individuals’ preferences, and the production tech-

nology, the pattern of production and trade in equilibrium is determined by two forces, trade costs

and skill intensities. Trade costs, τqkk′ , are important because they shape the pattern of market

access and therefore the home-market effect. Skill intensities, governed by b(ω, r), are important
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because the relative abundance of skills varies across locations.

I consider two cases of trade costs and two cases of skill intensities. The two potential trade

cost matrices are costless trade, in which τqkk′ = 0 ∀q ∀k ∀k′, and trade costs that are small but

positive, τqkk′ > 0 for k 6= k′ and τqkk = 0. The two skill-intensity cases are skill intensities that are

uniform across products, b(ω, r) = b1(ω)b2(r), and skill intensities that are increasing in quality,

b(ω, r) weakly log-supermodular.28

The resulting four classes of equilibria are summarized in Figure 1.1. I proceed to analyze each

in turn. Section 1.3.4.1 describes equilibrium when neither mechanism is active. The resulting

pattern of production is indeterminate. Section 1.3.4.2 characterizes equilibrium when only the

factor-abundance mechanism is active, while Section 1.3.4.3 does likewise for the home-market

effect. In both cases, high-k locations produce high-q varieties. Together, these two sections

demonstrate that each mechanism alone is sufficient to cause high-income locations to produce,

export, and import high-quality products. Thus, the existing empirical evidence documenting such

patterns does not distinguish between the two mechanisms. Section 1.3.4.4 describes equilibrium

when both mechanisms are active and shows how to identify the home-market effect for quality

after conditioning on plants’ skill intensities.

Figure 1.1: Equilibrium pattern of production

Uniform skill intensities Quality is skill-intensive
No trade

costs
Indeterminate pattern of

production
Factor-abundance specialization

Positive
trade costs

Home-market-effect specialization
Factor-abundance mechanism +

home-market effect

In the following analysis, it is useful to be able to refer to a product’s skill intensity. To

that end, define a skill-intensity index i(r) with the properties that i(r) = i(r′) ⇐⇒ b(ω, r) =

h(r, r′)b(ω, r′) ∀ω for some function h(r, r′) and i(r) > i(r′) ⇒ r > r′.29 It is convenient to

choose the labels i(r) such that i(r) is the identity of the lowest r in the set of products with

this skill intensity. This allows us to write b(ω, r) = h(r, i(r))b(ω, i(r)). It also makes b(ω, i)

28When b(ω, q) is log-supermodular, quality is skill-intensive. By allowing z to take any value, I make no assumption
on the skill intensity of the homogeneous good, but I assume that there is a value z making b(ω, r) a log-supermodular
function.

29Therefore i(r) = i(r′)⇒ c(r, k) = h(r, r′)
σ

1−σ c(r′, k) and i(r) = i(r′)⇒ `(r, ω, k) = h(r, r′)
σ

1−σ `(r′, ω, k).

15



strictly log-supermodular by definition, whether b(ω, r) is multiplicatively separable or weakly log-

supermodular. In essence, the intensity index i(r) groups together products so that all products in

the higher-i group use relatively more skilled labor for any wage schedule.

1.3.4.1 Uniform skill intensities and costless trade

When trade is costless, the zero-profit condition (1.3) reduces to

πq,k = exp(−c(q, k)q/θq)
θq
q

∑
k′

Nk′Γ(q,n, c,0)− fq ≤ 0.

In the absence of trade costs, the structure of demand across destinations k′ is orthogonal to the

location of production. The profits from producing quality q are highest wherever the unit cost

c(q, k) is lowest.

When trade is costless and skill intensities are uniform, unit costs are equal across locations,

c(r, k) = c(r) ∀k.30 Thus, production of any variety is equally profitable across all locations in

equilibrium. To reiterate, the labor-market clearing condition (1.2) becomes

f(ω, k) =w(ω, k)−σb1(ω)σ
∫
r∈z∪Q

nr,kx(r, k)b2(r)
σ

1−σ c(r)σdr.

Since nothing inside the integral depends on ω, the composition of local production nr,kx(r, k) is

independent of local factor abundance f(ω, k) in equilibrium.

Result. When trade is costless and skill intensities are uniform, the pattern of production is

indeterminate.

1.3.4.2 Skill-intensive quality and costless trade

Now consider the case when trade is costless and b(ω, q) is (weakly) log-supermodular. As be-

fore, costless trade makes the structure of demand across destinations orthogonal to a location’s

30Note that when b(ω, r) = b1(ω)b2(r) unit costs are c(r, k) = b2(r)
σ

1−σ
“R

ω∈Ω
b1(ω)σw(ω, k)1−σdω

” 1
1−σ

. If c(r, k) <

c(r, k′), then c(r′, k) < c(r′, k′) ∀r′ ∈ z ∪Q. Wages will be bid down until factors are employed.
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profitability. The most-profitable location is where production costs are lowest.

When b(ω, q) is log-supermodular, skill abundance imposes structure on the pattern of pro-

duction through the labor-market clearing condition. In particular, equation (1.2) and the strict

log-supermodularity of f(ω, k) imply, for k > k′ and ω > ω′,

w(ω, k)−σ

w(ω′, k)−σ

∫
r∈z∪Q

b(ω, r)σ

b(ω′, r)σ
φ(r, ω′, k)dr >

w(ω, k′)−σ

w(ω′, k′)−σ

∫
r∈z∪Q

b(ω, r)σ

b(ω′, r)σ
φ(r, ω′, k′)dr,

where φ(r, ω′, k) ≡ nr,kx(r,k)b(ω′,r)σc(r,k)σR
r∈z∪Q nr,kx(r,k)b(ω′,r)σc(r,k)σdr

is a density.31 φ(r, ω′, k) describes the output share

of quality (product) r in location k when shares are weighted by their production costs and use of

skill ω′. Similarly, define the density φi(ω′, k) ≡
∫
r:i=i(r) φ(r, ω′, k)dr, which describes the output

share of products with skill intensity i in location k, and the expectation operator Eω′,k with respect

to this density, which is Eω′,k[α(i)] ≡
∫
i α(i)φi(ω′, k)di. Using the fact that b(ω,r)

b(ω′,r) is the same for

all r with i(r) = i, the inequality can then be written as

w(ω, k)−σ

w(ω′, k)−σ
Eω′,k

(
b(ω, i)σ

b(ω′, i)σ

)
>
w(ω, k′)−σ

w(ω′, k′)−σ
Eω′,k′

(
b(ω, i)σ

b(ω′, i)σ

)
. (1.4)

Since b(ω, i) is strictly log-supermodular, b(ω,i)σ

b(ω′,i)σ is strictly increasing in i and Eω′,k
(
b(ω,i)σ

b(ω′,i)σ

)
is a

measure of the average skill intensity of output in k.

This labor-market clearing condition implies that more skill-abundant (higher-k) locations pro-

duce more skill-intensive (higher-i) products.32 Since k is skill-abundant relative to k′, products

made in k are more skill-intensive (Eω′,k
(
b(ω,i)σ

b(ω′,i)σ

)
is greater) or skilled labor in k is relatively

cheaper ( w(ω,k)−σ

w(ω′,k)−σ is greater). However, if skilled labor is relatively cheaper in k, then skill-

intensive products’ unit costs are relatively lower in k, and thus products made in k must be

more skill-intensive in equilibrium. Higher-quality varieties are more skill-intensive when b(ω, q)

is (weakly) log-supermodular, so we interpret inequality (1.4) as saying that k absorbs its greater

31For expositional convenience, I assume f(ω, k) > 0 ∀ω ∈ Ω ∀k, so that k > k, ω > ω′ ⇒ f(ω,k)
f(ω′,k)

> f(ω,k′)
f(ω′,k′) .

32See appendix section A.1 for a more formal derivation of this paragraph’s explanation.
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relative supply of higher skills by producing higher-quality varieties.33 This result describes the

factor-abundance mechanism for quality specialization.

It is important to note that specialization across qualities of the same skill intensity is indeter-

minate in this case. Inequality (1.4) depends only on i and imposes no restrictions on φ(r, ω, k)

conditional on φi(ω, k). Skill-abundant locations produce higher-quality varieties only because such

products are more skill-intensive.34

What about the equilibrium pattern of demand? Since trade is costless, varieties’ prices do not

vary across locations, and therefore the fraction of consumers of a given income level purchasing a

variety, ρj(y) does not vary across locations. Denoting the equilibrium varieties and factor prices by

the vectors n̄ and c̄, demand levels Γk(q, n̄, c̄,0) vary with location k solely due to differences in the

composition of income. Demand for higher-quality varieties is relatively greater in higher-income

locations.

Result. When trade is costless, there is no home-market effect. When quality is skill-intensive

and skill-abundant locations are higher-income locations, higher-income locations both produce

more of and have greater demand for higher-quality varieties in equilibrium.

The demand levels Γk(q, n̄, c̄,0) will also be important when we consider the interaction of the

skill-abundance mechanism and the home-market effect. When trade is costly, we will consider

the limiting equilibrium that approaches the skill-intensive-quality, costless-trade equilibrium. But

first I describe the case in which the skill-abundance mechanism is absent.

33This interpretation neglects the skill intensity of the homogeneous good. If the homogeneous good is more
skill-intensive, some skill-abundant locations may produce more skill-intensive output by producing more of the
homogeneous good rather than higher-quality varieties. When factor intensities vary both across and within goods,
the factor-abundance mechanism may operate along both margins. Empirically, Schott (2004) documents that there
is little correlation between countries’ factor supplies and across-good specialization. Assuming that the homogeneous
good is the least skill-intensive product is sufficient to guarantee that high-k locations specialize in high-q varieties.

34This result has been derived without any reference to the demand system beyond the fact that costless trade
makes consumers’ locations irrelevant to the optimal production location. Thus, the empirical investigation of whether
the factor-abundance mechanism alone can explain the pattern of specialization does not depend upon the functional
form of the preferences in equation (1.1).
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1.3.4.3 Uniform skill intensities and costly trade

When skill intensities are uniform, unit costs are multiplicatively separable in (r, k) and can be

written as c(r, k) = b2(r)
σ

1−σ c(k).35 The labor-market clearing condition (1.2) becomes

f(ω, k) = b1(ω)σw(ω, k)−σc(k)
∫
r∈z∪Q

nr,kx(r, k)b2(r)
σ

1−σ dr.

Since nothing inside the integral depends on skill ω, the factor-abundance mechanism imposes no

restrictions on the equilibrium composition of local production nr,kx(r, k). Any observed relation-

ship between f(ω, k) and the pattern of specialization results from the demand channel and reflects

the connection between g(y, k) and f(ω, k).

To characterize how specialization is determined by demand, I follow the approach taken by

Fajgelbaum, Grossman, and Helpman (2011) to determining the pattern of specialization when

trade costs are small. With uniform skill intensities, the zero-profit condition is

πq,k =
θq
q

exp(−b2(q)
σ

1−σ c(k)q/θq)
∑
k′

Nk′ exp(−τqkk′q/θq)Γk′(q,n, c, τ)− fq ≤ 0.

Through this condition, demand governs the location of production in equilibrium. Consider two

cases, depending on whether wages vary across locations.

When factor prices equalize, c(k) = 1 ∀k and πq,k varies only with demand. If trade costs are

uniform (τqkk′ = τq ∀k′ 6= k), profits vary with home demand, πq,k > πq,k′′ ⇐⇒ NkΓk(q,n, c, τ) >

Nk′Γk′′(q,n, c, τ). When trade costs are sufficiently low, demands approach their costless-trade

equilibrium levels NkΓk(q,n, c,0).36 Provided that wages are increasing in skill, demand share

Γk(q,n, c,0) is strictly log-supermodular in (q, k), as shown in Lemma A.1 in appendix section

A.1. High-k locations are high-income locations because they are skill-abundant, and this causes

high-k locations to have relatively greater demand for high-q varieties. This makes producing

high-q varieties more profitable in high-k locations. When population sizes are equal and locations

35c(r, k) = b2(r)
σ

1−σ
“R

ω∈Ω
b1(ω)σw(ω, k)1−σdω

” 1
1−σ ≡ b2(r)

σ
1−σ c(k)

36This equilibrium is distinct from that of the previous subsection.
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specialize, Proposition 6 of Fajgelbaum, Grossman, and Helpman (2011) describes the resulting

pattern: if location k produces quality q and location k′ < k produces quality q′, then q′ < q.

Similarly, since higher-k locations have higher relative demand for higher-q varieties, their imports

are higher-quality (see Proposition 7 of Fajgelbaum, Grossman, and Helpman 2011). In the case

of σ = ∞ and Nk = 1 ∀k, the model under consideration reduces exactly to the model described

in section VII of Fajgelbaum, Grossman, and Helpman (2011).

When factor prices do not equalize, the location with the lowest c(k) is the most attractive

cost-wise for all producers. Producers are willing to locate in higher-cost locations to the extent

that these locations have greater demand for their output so that they save on transport costs.

In other words, when trade costs are uniform, if nq,k > 0 and c(k) > c(k′), it must be that

NkΓk(q,n, c, τ) > Nk′Γk′(q,n, c, τ). Qualities are produced where they are in greater demand.

When population sizes are equal and trade costs are sufficiently low, this difference in demand is

due solely to the income composition of the two locations. As a result, higher-income locations

specialize in higher-quality varieties.

Result. When population sizes are equal, skill intensities are uniform, and trade costs are

uniform and small, higher-income locations produce, export, and import higher-quality varieties

because demand for such qualities is greater in such locations.

Thus, the home-market effect yields equilibrium patterns of production and trade that match

the empirical evidence summarized in section 1.2. Since we obtained the same result in the pre-

vious section via the factor-abundance mechanism, quality specialization is overdetermined. Each

mechanism alone is sufficient to generate the observed patterns.

Result. Higher-income locations disproportionately producing, exporting, and importing higher-

quality varieties on average is consistent with the factor-abundance mechanism operating alone or

the home-market effect operating alone.

1.3.4.4 Skill-intensive quality and costly trade

This section analyzes what happens when both mechanisms are active. When quality is skill-

intensive and trade is costly, the labor-market clearing condition (1.2) and the zero-profit condition

(1.3) jointly govern the pattern of quality specialization. The critical result is that demand alone
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determines specialization across varieties of the same skill intensity. This result underlies the

empirical investigation.

First, consider the labor-market-clearing inequality, which is governed by the factor-abundance

mechanism. Following section 1.3.4.2, the inequality is

w(ω, k)−σ

w(ω′, k)−σ
Eω′,k

(
b(ω, i)σ

b(ω′, i)σ

)
>
w(ω, k′)−σ

w(ω′, k′)−σ
Eω′,k′

(
b(ω, i)σ

b(ω′, i)σ

)
.

As shown previously, this requires that φi(ω′, k) place more weight on higher-i varieties in higher-

k locations. Output of higher-i varieties is relatively greater in higher-k locations. Thus, skill

intensities govern the broad pattern of production.

Second, consider the zero-profit condition, which depends on potential customers’ incomes

through demand levels. To summarize demand, define a market-access term

Mq,k(τ) ≡
∑
k′

Nk′ exp(−τqkk′q/θq)Γk′(q, n̄, c̄,0),

where the costless-trade-equilibrium demand levels Γk(q, n̄, c̄,0) were found in section 1.3.4.2.

When trade costs are small, the profits from producing a variety of quality q in location k are

approximately

πq,k ≈
θq
q

exp(−c(q, k)q/θq)Mq,k(τ)− fq. (1.5)

When trade costs are small, profits are not sensitive to the locational decisions of other firms. This

means that all varieties of a given quality are produced in a single location, and we can identify

production locations using the profits expression.

Within skill intensities, demand determines where varieties are produced. When two qualities

have the same skill intensity, i(q) = i(q′), the location that minimizes the cost of producing a variety

of quality q also minimizes the cost of a variety of quality q′, c(q, k) < c(q, k′) ⇐⇒ c(q′, k) <

c(q′, k′). Thus, if varieties of the same skill intensity are produced in different locations, these

differences must be due to differences in market access, Mq,k(τ). In particular, if c(q, k) 6= c(q, k′),

then firms produce in the higher-cost location because its market-access advantage outweighs its
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cost disadvantage.

Proposition 1.1 (Within-intensity market access). When trade costs are small, if nq,k > 0, nq′,k′ >

0, and i(q) = i(q′), then Mq,k ≥Mq,k′ or Mq′,k ≤Mq′,k′.

Proof. Suppose not. That is, suppose Mq,k < Mq,k′ and Mq′,k > Mq′,k′ . If c(q, k) ≥ c(q, k′), then by

approximation (1.5) πq,k′ > πq,k, which contradicts nq,k > 0 by the free-entry condition. Similarly,

if c(q, k) ≤ c(q, k′), then by πq′,k > πq′,k′ , which contradicts nq′,k′ > 0. Hence Mq,k ≥ Mq,k′ or

Mq′,k ≤Mq′,k′ .

Proposition 1.1 establishes that market access alone governs specialization within qualities of the

same skill intensity. An important component of Mq,k(τ) is demand in the location of produc-

tion, NkΓk(q, n̄, c̄,0).37 This is the home-market effect explanation for why high-income locations

specialize in high-quality products.

Thus, we have an empirical strategy for distinguishing the two mechanisms. When quality is

skill-intensive and trade is costly, both the factor-abundance mechanism and the home-market effect

cause high-k locations to specialize in producing high-q varieties. Variation across skill intensities

is overdetermined with respect to the two mechanisms. Variation within skill intensities is driven

by market access alone. We can therefore identify a lower bound on the home-market effect by

examining the pattern of specialization conditional on skill intensities.38 My empirical strategy is

to relate the pattern of specialization across locations to variation in market access after controlling

for plants’ factor usage.

1.3.5 Taking the theory to plant-level data

The predictions above describe relationships between product quality (q), location (k), skill intensity

(i), and market access (Mq,k(τ)). These objects can be inferred from observables in the data using

37In a many-country world, the “home-market effect” involves an appropriately defined market area, not merely
the “home country,” as noted at least since Linder (1961, p. 87). When trade costs are uniform, as in Fajgelbaum,
Grossman, and Helpman (2011), differences in Mq,k(τ) are due solely to differences in demand in the location of
production, Mq,k(τ) > Mq,k′(τ) ⇐⇒ NkΓk(q, n̄, c̄,0) > Nk′Γk′(q, n̄, c̄,0).

38The strategy of using variation in demand within a set of goods of the same factor intensity is similar to the
approach used by Davis and Weinstein (2003) to integrate factor-abundance and home-market-effect models. We
differ when we go to the data. Whereas Davis and Weinstein (2003) assume that factor intensities are fixed within
3-digit ISIC industries, I use plant-level information to infer factor intensities.
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the model and some auxiliary assumptions. The results summarized here are derived in appendix

section A.1. Denote the plant index j, so that, for example, plant j’s skill intensity is i(j).

I infer product quality from shipments’ prices. Assume that the schedule of technological

coefficients b(ω, q) is strictly decreasing in q, so that higher-quality varieties are more costly to

produce. Since free-on-board prices are p(q, k) = c(q, k) + θq
q , if c(q, k) increases in quality faster

than θq/q declines in quality, the price of a variety is informative about its quality. I validate this

approach in appendix section A.5.1 by using estimated demand shifters to infer product quality.

Prices and shifters are strongly positively correlated in my data.

I infer locations’ rankings from their per capita incomes, denoted ȳk. Under the assumption

that g(y, k) is log-supermodular, average income is a sufficient statistic for k.

I infer skill intensities from the composition and wages of plants’ workers. The composition

measure assumes that non-production workers are more skilled than production workers. Denote

the share of non-production workers employed in a plant with skill intensity i in location k by

shareN (i, k). When factor prices equalize, the share of non-production workers reveals a plant’s

skill intensity, shareN (i, k) > shareN (i′, k′) ⇐⇒ i > i′, so shareN (j) is a sufficient establishment-

level control for skill intensity. When labor is cheaper where it is abundant, plants of all intensities

use more skilled workers in skill-abundant locations, and shareN (i, k) is increasing in k. I therefore

also use shareN (j)× ln ȳk to control for skill intensity.

The wage measures assume that wages are increasing in skill.39 If wages are increasing in skill,

we can infer the skill intensity i of a producer in location k from its average wage, w̄(i, k), average

non-production wage, w̄N (i, k), or average production wage, w̄P (i, k). These average wages are all

increasing in i. When factor prices equalize, ranking plants by their average wages is equivalent

to ranking them by their factor intensities, w̄j > w̄j′ ⇐⇒ i(j) > i(j′). When labor is cheaper

where it is abundant, w̄(i, k) is increasing in i, increasing in k, and log-supermodular. I therefore

use ln w̄j and ln w̄j × ln ȳk as controls for skill intensity.

To assess the role of the geography of demand in specialization across US cities, I construct

empirical counterparts to the model’s market-access term Mq,k(τ) in profit expression (1.5). My

39A sufficient condition is ∂ lnw(ω,k)
∂ω

= ∂ ln b(ω,q)
∂ω

− 1
σ
∂ ln f(ω,k)

∂ω
> 0 ∀q∀k. Informally, more skilled individuals have

greater absolute advantage than local abundance.
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market-access measures are weighted averages of potential customers’ per capita incomes, in which

the weights reflect potential customers’ population size and distance from the location of produc-

tion.40 Describing the composition of demand using per capita incomes exploits the fact that this

is a sufficient statistic for relative demand for qualities under the model’s assumptions. Weighting

these incomes by population size and distance reflects the fact that it is more profitable to produce

in locations that are more proximate to a larger number of consumers due to distance-related trade

costs.

I construct two such market-access measures. Denote log income per capita in destination

city d in year t by ln ȳdt, population size by Ndt, and the mileage distance between origin o and

destination d by milesod. The first measure describes the composition of potential customers not

residing in the location of production, so it cannot be contaminated by any supply-side mecha-

nism linked to per capita income in the production location. This measure for a plant producing

in origin city o is M1
ot =

∑
d6=o

Ndtmiles
−η
odP

d′ 6=oNd′tmiles
−η
od′

ln ȳdt. I use it to qualitatively establish the re-

lationship between market access and specialization. The second market-access measure includes

all potential customers, consistent with the theoretical model of the home-market effect. It is

M2
ot =

∑
d

Ndtmiles
−η
odP

d′ Nd′tmiles
−η
od′

ln ȳdt. I use this measure to quantify the role of market access in the

pattern of within-product specialization. In constructing each measure, I use η = 1, consistent

with the international trade literature and the values estimated in appendix section A.3, and the

values of Ndt, milesod, and ȳdt in the data.

I now turn to the data to characterize the empirical relationships linking product qualities, skill

intensities, and market access following the model’s guidance.

1.4 Data and empirical setting

This section introduces the empirical setting in which I conduct my investigation. First, I describe

the data that I use to characterize the pattern of specialization and exchange between US cities.

Additional details are in appendix section A.2. Second, I document that both outgoing shipments

40This market-access measure is the “home-market effect for quality” analogue to the measure constructed by
Redding and Venables (2004) to test the traditional Krugman (1980) home-market effect.
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and incoming shipments within fine product categories exhibit higher prices in higher-income cities.

Thus, this empirical setting is suitable for testing theories of quality specialization.

1.4.1 Data

I combine microdata on US manufacturing plants’ production and shipments with data describing

the characteristics of cities and sectors.

1.4.1.1 Manufacturing microdata

The two plant-level data sources used in this study are the Commodity Flow Survey and the

Census of Manufactures. These sources are components of the quinquennial Economic Census; I

use confidential microdata from the 1997, 2002, and 2007 editions.41

The Commodity Flow Survey (CFS) describes commodity shipments by business establishments

in terms of their value, weight, destination ZIP code, transportation mode, and other character-

istics.42 Products are described using the Standard Classification of Transport Goods, a distinct

scheme that at its highest level of detail, five digits, defines 512 product categories. Each quarter of

the survey year, plants report a randomly selected sample of 20-40 of their shipments in one week.

The Census of Manufactures (CMF) describes a plant’s location, industry, inputs and rev-

enues. This census covers the universe of manufacturing plants, which are classified into 473 6-digit

NAICS manufacturing industries.43 The CMF describes establishments’ employment of production

and non-production workers, production worker hours, production and non-production wages and

salaries, book values of equipment and structures, and cost of materials.

In most of the analysis, I define a product as the pairing of a 5-digit SCTG commodity code

and a 6-digit NAICS industry code. This results in more narrowly defined products in cases

41The Commodity Flow Survey began in 1993. Atalay, Hortaçsu, and Syverson (2014) use 1993 and 1997 CFS
microdata to study vertical integration, Hillberry and Hummels (2003, 2008) use 1997 CFS microdata to study how
geographic frictions affect trade volumes, and Holmes and Stevens (2010, 2012) use 1997 CFS microdata to study
plant size, geography, and trade. The Census of Manufactures has been used in numerous studies.

42The US Census Bureau defines an establishment as “a single physical location where business transactions take
place or services are performed.” The CFS covers manufacturing, mining, wholesale, and select retail and services
establishments. This paper only analyzes shipments by manufacturing establishments, which I refer to as “plants.”

43Information on small establishments is estimated from administrative records rather than reported by the estab-
lishment. I exclude these administrative records and imputed observations. See the data appendix A.2 for details.
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in which the NAICS industry scheme is more detailed than the SCTG commodity scheme. For

example, one product is “footwear” (SCTG 30400) produced by an establishment in “men’s footwear

(except athletic) manufacturing” (NAICS 316213), which is distinct from “footwear” produced by

an establishment in “women’s footwear (except athletic) manufacturing” (NAICS 316214). My

results are robust to ignoring the NAICS information and using only the SCTG commodity codes

to define products.

1.4.1.2 Geographic data

The empirical analysis describes core-based statistical areas (CBSAs), which are 366 metropolitan

and 576 micropolitan statistical areas defined by the Office of Management and Budget.44 I refer to

these geographic units as cities. Appendix section A.2 describes how data using other geographies

were assigned to CBSAs.

I calculate cities’ per capita incomes using data on CBSAs’ total populations and personal

incomes from the Bureau of Economic Analysis’s regional economic profiles for 1997, 2002, and

2007. In my baseline specification, I exclude the employees and income of all establishments in the

same 6-digit NAICS industry as the shipping plant when calculating the population and per capita

income of its CBSA.45 Since most manufacturing sectors’ workforces and payrolls are small relative

to the total populations and incomes of the cities in which they are located, the results obtained

without making this adjustment to the per capita income measure are very similar.46

1.4.2 Pattern of specialization and trade

This section describes variation in manufacturing shipment prices across US cities.47 The patterns

mirror those found in international trade data. First, outgoing shipments exhibit higher prices in

44More than 93% of the US population lived within a CBSA in 2007.

45There is therefore variation across plants within a CBSA in the regressors I call “log origin CBSA population”
and “log origin CBSA per capita income.”

46I also obtain similar results when excluding only a plant’s own employees and payroll from the per-capita-income
calculation.

47Recall that all observed “prices” are in fact unit values, the ratio of a shipment’s value to its weight in pounds.
See data appendix A.2 for details of the sample selection and variable construction.
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higher-income cities. This pattern is consistent with quality specialization in which higher-income

cities produce higher-price, higher-quality varieties. Second, incoming shipments exhibit higher

prices in higher-income cities. This pattern is consistent with non-homothetic preferences in which

higher-income consumers demand higher-price, higher-quality varieties.

One concern with inferring qualities from prices is that products may be horizontally differ-

entiated. With horizontal differentiation, two varieties of the same quality can sell at different

prices in the same destination, with the high-price variety simply obtaining a smaller market share

(Khandelwal, 2010). This raises the concern that high-income locations’ specialization in high-price

products may only reflect higher costs. However, this objection is unlikely to be problematic for

the empirical investigation here.

Unit values are likely to be informative about product quality in this context for three reasons.

First, investigations of international trade data distinguishing between raw unit values and quality-

adjusted prices have shown unit values to be a meaningful, though imperfect, proxy for quality

(Khandelwal, 2010; Feenstra and Romalis, 2012). I obtain similar results in section A.5.1, where

I find that estimated demand shifters are positively correlated with unit values. Moreover, these

estimated demand shifters exhibit patterns of specialization and factor usage consistent with those

found for unit values. Second, my empirical setting allows me to check whether differences in prices

across locations only reflect higher costs. Using plant-level data on wages and workers, I can test

whether plants shipping from high-income locations charge higher prices only because they have

higher labor costs. They don’t. Third, consistent with the international evidence presented by

Hallak (2006), I find a positive relationship between shipment prices and destinations’ per capita

income, suggesting that higher-price products are those preferred by higher-income consumers.48

The first feature of the US data matching international findings is that outgoing shipments’

prices are systematically higher when originating from higher-income cities. To characterize how

shipment prices vary with origin characteristics, I estimate linear regressions describing a shipment

s of product k by plant j from origin city o to destination city d by transport mode m in year t of

48A potential concern is that higher-income consumers pay higher prices for identical products because higher-
income consumers are less responsive to price changes (Simonovska, 2013). This would be a concern if the observed
price variation were primarily within-plant. Table 1.2 below shows that this is not the case.
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the form

ln pskjodmt =β1 ln ȳot + β2 lnNot + α0 lnmilesskjodmt + γmt + γkdt + εskjodt,

where pskjodmt is the shipment’s unit value, ȳot and Not are per capita income and total population

in the origin CBSA, milesskjodt is the ZIP-to-ZIP mode-specific mileage distance of the shipment,

γmt are mode-year fixed effects, and γkdt are product-destination-year fixed effects.

Table 1.1: Outgoing shipment prices

Dep var: Log unit value, ln pskjodmt (1) (2) (3)

Log origin CBSA income per capita, ln ȳot 0.458** 0.448** 0.486**
(0.0427) (0.0609) (0.0607)

Log origin CBSA population, lnNot -0.0100* -0.00519 -0.00737
(0.00479) (0.00659) (0.00657)

Log mileage, lnmilesskjodt 0.0400** 0.0521** 0.0496**
(0.00316) (0.00406) (0.00418)

Log orig inc × differentiation 0.158** 0.216*
(0.0555) (0.0892)

Log orig pop × differentiation -0.00770 -0.0223*
(0.00575) (0.0104)

Log mileage × differentiation -0.0109* -0.0144*
(0.00446) (0.00696)

Differentiation measure Sutton Khandelwal
R-squared 0.878 0.879 0.879
Observations (rounded) 1,400,000 600,000 600,000
Estab-year (rounded) 30,000 15,000 15,000
Ind-prod-year (rounded) 2,000 1,000 1,000

Standard errors, clustered by CBSA × year, in parentheses
** p<0.01, * p<0.05

Notes: Manufacturing establishments in the CFS and CMF. All shipments are to a domestic destination CBSA

distinct from the origin CBSA. All regressions include mode × year fixed effects and SCTG5×NAICS6×destination

CBSA×year fixed effects.

Table 1.1 characterizes how variation in outgoing shipments’ unit values relates to origin char-

acteristics. The first column reports a large, positive origin-income elasticity of shipment prices of

46%. Higher-income cities specialize in the production of higher-price varieties of products, and

this pattern of specialization is quite strong. Conditional on the level of per capita income, there

is no economically meaningful correlation between origin population size and outgoing shipments’
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prices.

I proceed to interact the regressors with two measures of the scope for product differentiation.

The Sutton (1998) measure, industrial R&D and advertising intensity, infers the scope for quality

differentiation from the cost shares of differentiation-related activities. The Khandelwal (2010)

measure infers the scope for quality differentiation from the range of estimated demand shifters

in US imports. The second and third columns of Table 1.1 show that the positive relationship

between origin income per capita and outgoing shipment prices is stronger in products with greater

scope for quality differentiation, as classified by both measures. These patterns are consistent with

local quality specialization in which higher-income cities specialize in higher-quality products. In

products in which there is greater scope for quality differentiation, income differences generate

greater differences in the composition of output.

The second feature of the US data matching international findings is that incoming shipments’

prices are systematically higher when destined for higher-income cities. To characterize how ship-

ment prices vary with destination characteristics, I estimate linear regressions describing a shipment

s of product k by plant j from origin city o to destination city d by transport mode m in year t of

the form

ln pskjodmt =α1 ln ȳdt + α2 lnNdt + α0 lnmilesskjodt + γkt + γmt + θot + θkjt + εskjodt,

where pskjodmt is the shipment’s unit value, milesskjodt is the ZIP-to-ZIP mileage distance of the

shipment, and ȳdt and Ndt are per capita income and total population in the destination CBSA. γkt

and γmt are product-year and mode-year fixed effects that are included in all specifications. The

θ fixed effects, which are mutually exclusive and omitted from some specifications, are origin-year

and product-plant-year fixed effects.

Table 1.2 reports regressions characterizing how variation in shipment unit values within prod-

ucts relates to destination characteristics. The first column shows that the per-capita-income

elasticity of incoming shipment prices is 26%. Higher-income cities import higher-price varieties,

which suggests that preferences are non-homothetic. This pattern is attributable to city income
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Table 1.2: Incoming shipment prices

Dep var: Log unit value, ln pskjodmt (1) (2) (3)

Log destination CBSA income per capita, ln ȳdt 0.256** 0.165** 0.0481**
(0.0247) (0.0191) (0.00715)

Log destination CBSA population, lnNdt -0.00450 -0.00336 0.00123
(0.00266) (0.00201) (0.000831)

Log mileage, lnmilesskjodt 0.0437** 0.0466** 0.0141**
(0.00344) (0.00221) (0.00103)

R-squared 0.818 0.830 0.916
SCTG5 × NAICS6 × Year FE Yes Yes
Origin CBSA × Year FE Yes
Establishment × SCTG5 × Year FE Yes
Observations (rounded) 1,400,000
Estab-year (rounded) 30,000
Ind-prod-year (rounded) 2,000

Standard errors, clustered by destination CBSA×year, in parentheses
** p<0.01, * p<0.05

Notes: Manufacturing establishments in the CFS and CMF. All shipments are to a domestic destination CBSA

distinct from the origin CBSA. All regressions include mode × year fixed effects.

composition, not city size per se, as the coefficient on log population reveals. The distance elasticity

of incoming shipment prices is about 4%; longer shipments exhibit higher prices.49

The second and third columns show that the large majority of the correlation between income

per capita and incoming shipment prices is attributable to cities of different income levels purchasing

goods from different cities and plants. The second column introduces fixed effects for cities of origin,

θot. The destination per capita income elasticity falls by about 10 percentage points, indicating

that about 40% of this variation is attributable to the composition of cities trading with each

other.50 The coefficients on the other regressors are similar to those in the first column. The third

column introduces fixed effects for each plant-product, θkjt. The within-plant destination-income

elasticity of shipment prices is considerably lower, 4.8%. Selling the same product at a higher price

49There are at least four possible explanations for the positive correlation between shipment distances and free-on-
board prices. First, shipping costs may shift relative demand toward higher-price varieties through the Alchian-Allen
effect. Second, non-shipping costs of distance may be included in the fob price. Third, survey respondents may fail
to exclude shipping costs from their reported prices. Fourth, plants may charge higher mark-ups when serving more
distant/remote locations. The third column of Table 1.2 suggests that this last hypothesis could explain at most
one-third of such variation, since the within-establishment mileage elasticity is 1.4%.

50Appendix section A.3 shows that cities with more similar income levels trade more intensely with each other.
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therefore accounts for at most one-fifth of price variation across destinations of different income

levels. This decomposition suggests that changes in markups are not responsible for the majority

of the observed correlation between shipment prices and destination incomes. Similarly, the small

within-plant-product distance elasticity is evidence against the mark-up explanation for the positive

correlation between bilateral distances and free-on-board prices.

These findings demonstrate that the composition of cities’ manufactures demand is strongly

linked to their income levels. This is consistent with numerous previous empirical studies of both

households and countries. Such non-homothetic preferences are necessary for the “home-market

effect for quality” hypothesis.51

Together, Tables 1.1 and 1.2 demonstrate patterns of specialization that are strongly linked

to cities’ income levels. Within narrowly defined product categories, higher-income locations both

export and import higher-price products than lower-income locations. In addition, Appendix A.3

shows that cities with more similar incomes trade more intensely with each other. These findings

mirror those found in international trade data and could be generated by the factor-abundance

mechanism or the home-market effect. I now use data on plants’ factor inputs to empirically

distinguish between these potential explanations.

1.5 Empirical results

This section reports two bodies of empirical evidence. First, observed factor-usage differences

explain only about one quarter of the relationship between cities’ incomes and the prices of outgoing

shipments. This bounds the explanatory power of the factor-abundance mechanism. Second, the

market-access measures describing the income composition of proximate potential customers are

strongly linked to outgoing shipment prices. The estimated home-market effect explains more than

half of the price-income relationship.

My regression results can be understood as decomposing the covariance between plant j’s outgo-

ing shipment price and origin o’s per capita income, cov(ln pjo, ln ȳo). Omitting notation indicating

51Non-homothetic preferences alone are not sufficient to produce the home-market effect, as discussed in section 1.2
and shown in section 1.3.4.2. The home-market effect for quality stems from non-homothetic preferences, economies
of scale, and trade costs.
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that all these moments are conditional on shipment mileage, origin population size, and destination-

product-year fixed effects, we can decompose this covariance into two terms using the law of total

covariance:

cov(ln pjo, ln ȳo) = cov [E(ln pjo|i(j)),E(ln ȳo|i(j))]︸ ︷︷ ︸
between-intensity variation

+ Ei [cov(ln pjo, ln ȳo|i(j))]︸ ︷︷ ︸
within-intensity variation

Higher-income origins have higher outgoing shipment prices to the extent that (1) skill-intensive

products have higher prices and skill-intensive products are produced in higher-income locations

and (2) products of the same skill intensity have higher prices in higher-income locations. The

factor-abundance mechanism operates exclusively through the first component, variation across

skill intensities. The home-market effect may appear in both components, since higher-income

locations have greater demand for higher-quality varieties, regardless of qualities’ skill intensities.

Section 1.5.1 shows that the across-skill-intensities component is modest, constituting 27% of

the total variation. To introduce a market-access measure Mo, we can further decompose the

within-skill-intensity variation into two terms, yielding

cov(ln pjo, ln ȳo) = cov [E(ln pjo|i(j)),E(ln ȳo|i(j))]︸ ︷︷ ︸
factor usage = 27%

+ Ei [cov(E(ln pjo|i(j),Mo),E(ln ȳo|i(j),Mo))]︸ ︷︷ ︸
within-skill-intensity market access = 54%

+ Ei [E(cov(ln pjo, ln ȳo|i(j),Mo))]︸ ︷︷ ︸
residual covariance = 19%

.

The first new term is the share of within-skill-intensity variation attributable to higher-price prod-

ucts being produced where proximate potential customers’ per capita incomes are higher and higher-

income locations being proximate to higher-income potential customers. The second new term is the

share of the covariance explained by neither differences in skill intensity nor the market-access mea-

sure. Note that this decomposition is conservative with respect to the home-market effect because

it restricts attention to within-skill-intensity variation. In section 1.5.2, I find that within-skill-

intensity variation in market access accounts for 54% of the observed price-income relationship,

while the residual constitutes 19%. Hence, home-market demand explains much of the within-

product price-income covariance, and its influence is at least twice as large as observed factor-usage
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differences.

1.5.1 The factor-abundance hypothesis

This section identifies the share of within-product specialization attributable to differences in ob-

servable plant-level factor usage. The canonical factor-abundance theory posits that differences in

locations’ outputs are explained by differences in the factors employed by their producers. Within

groups of products of the same factor intensity, the location of production is indeterminate. That

is, under the null hypothesis that differences in factor supplies are the only source of comparative

advantage, there should be no correlation between locational characteristics and plants’ outputs

after controlling for plant-level factor usage. In fact, there is a very strong relationship between

income per capita and outgoing shipments prices after controlling for factor inputs. Observed factor

usage explains only 27% of the observed covariance between cities’ per capita incomes and outgoing

shipment prices.

To characterize how shipment prices vary with origin characteristics, I estimate linear regressions

describing a shipment s of product k by plant j from origin city o to destination city d by transport

mode m in year t of the form

ln pskjodmt =β1 ln ȳot + β2 lnNot + α0 lnmilesskjodt + γkt + γmt + γkdt

+ α1 ln shareNjt + α2 ln
Kjt

Ljt
+ δ1 ln shareNjt ln ȳot + δ2 ln

Kjt

Ljt
ln ȳot (1.6)

+ α3 ln w̄jt + α4 ln w̄Njt + α5 ln w̄Pjt

+ δ3 ln w̄jt ln ȳot + δ4 ln w̄Njt ln ȳot + δ5 ln w̄Pjt ln ȳot + εskjodt

where shareNjt is the ratio of the plant’s non-production workers to total employees, Kjt
Ljt

is gross

fixed assets per worker, w̄jt is average pay per employee, w̄Njt is average pay per non-production

worker, and w̄Pjt is average pay per production worker.52 The interactions of plant-level factor-

52The theoretical model emphasized differences in the composition of skill across locations. I also include gross
fixed assets per worker as a measure of capital intensity, since this variable has been emphasized in prior empirical
work both across countries (Schott, 2004) and across plants (Verhoogen, 2008). Since I cannot construct capital
stocks using the perpetual-inventory method with quinquennial data, I use the book value of assets as my measure
of plant capital.
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usage measures with origin income per capita address the case in which factor prices do not equalize,

as described in section 1.3.5.53 In theory, either ln shareNjt and its interaction with ln ȳot or ln w̄jt

and its interaction with ln ȳot would be sufficient to characterize plants’ skill intensities. In practice,

I include a battery of plant-level factor-usage controls to maximize the potential explanatory power

of observed factor-usage differences.

Table 1.3 characterizes how variation in shipment unit values relates to origin characteristics and

plant-level observables. The first column relates outgoing shipment unit values to origin character-

istics controlling for destination fixed effects, as in Table 1.1. The next two columns incorporate the

plant-level measures of factor usage and their interactions with income per capita. The second col-

umn introduces quantity measures of capital intensity ( Kjt
Ljt

) and labor usage, the non-production

employment share (shareNjt). The third column adds the three wage measures and therefore

corresponds to the regression specified in equation (1.6).

These measures of factor usage are informative predictors of a plant’s shipment prices, but they

explain only a modest share of the observed origin-income elasticity of outgoing shipment prices.

Consistent with the premise that higher-price, higher-quality varieties are more skill-intensive,

the coefficients on log non-production worker share, log pay per worker, and log pay per non-

production worker are positive and economically large. The negative coefficient on log assets per

worker is inconsistent with a model in which higher-price, higher-quality varieties are more capital-

intensive.54 The positive coefficient on the interaction of log pay per production worker and log

origin per capita income is consistent with the model-predicted behavior when factor prices are not

fully equalized. However, the observed variation in factor usage explains only a small share of the

cross-city variation in outgoing shipment prices. Introducing the quantity measures in the second

column reduces the origin-income elasticity from 46% to 42%. Incorporating the wage measures in

the third column reduces this elasticity to 37%. Thus, these observed factor-usage differences can

explain about one-fifth of the origin-income elasticity of shipment prices.

The fourth through sixth columns of Table 1.3 incorporate the control variables in more flexible

53Bernard, Redding, and Schott (2013) find that relative factor prices do not equalize within the US when consid-
ering two factors, production and non-production workers.

54Using very aggregate data, Torstensson (1996) obtains a negative partial correlation between prices and capital
per worker when distinguishing between human and physical capital.
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Table 1.3: Outgoing shipment prices w/ plant-level factor usage

Dep var: Log unit value, ln pskjodmt (1) (2) (3) (4) (5) (6)

Log origin CBSA income per capita 0.458** 0.421** 0.370** 0.430** 0.381** 0.323**
(0.0427) (0.0415) (0.0397) (0.0411) (0.0396) (0.0381)

Log origin CBSA population -0.0100* -0.0139** -0.0172** -0.00881 -0.0132** -0.0161**
(0.00479) (0.00464) (0.00448) (0.00451) (0.00437) (0.00414)

Log mileage 0.0400** 0.0416** 0.0410**
√ √ √

(0.00316) (0.00310) (0.00302)

Log non-production worker share 0.139** 0.128**
√ √

(0.00797) (0.00937)

Log assets per worker -0.0385** -0.0552**
√ √

(0.00446) (0.00470)

Log non-production worker share 0.0672 0.0398 0.00833 -0.00793
× log per capita income (0.0355) (0.0397) (0.0341) (0.0390)

Log assets per worker -0.0194 -0.0579** 0.00127 -0.0246
× log per capita income (0.0180) (0.0197) (0.0195) (0.0212)

Log pay per worker 0.202**
√

(0.0420)

Log pay per production worker -0.0258
√

(0.0330)

Log pay per non-production worker 0.0489**
√

(0.0146)

Log pay per worker 0.0106 -0.0887
× log per capita income (0.120) (0.122)

Log pay per production worker 0.351** 0.332**
× log per capita income (0.0930) (0.0877)

Log pay per non-production worker 0.0915 0.103
× log per capita income (0.0495) (0.0555)

R-squared 0.878 0.879 0.879 0.878 0.881 0.882
Observations (rounded) 1,400,000
Estab-year (rounded) 30,000
Ind-prod-year (rounded) 2,000

Standard errors, clustered by CBSA × year, in parentheses
** p<0.01, * p<0.05

Notes: Manufacturing establishments in the CFS and CMF. All shipments are to a domestic destination CBSA
distinct from the origin CBSA. All regressions include SCTG5×NAICS6×destination×year fixed effects and mode
× year fixed effects. The fourth through sixth columns include 3-digit-NAICS-specific cubic polynomials in log
mileage (4,5,6), log non-production worker share (5,6), log assets per worker (5,6), log pay per worker (6), log pay
per production worker (6), and log pay per non-production worker (6).
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functional forms. Each variable with an α coefficient in estimating equation (1.6) is entered as a

cubic polynomial that varies by 3-digit NAICS industry. Since there are 21 3-digit industries, this

introduces 63 regressors for each control variable, yielding a total of 378 regressors.55 I refrain from

reporting the coefficients on these controls.

The results obtained using these more flexible functional forms are quite similar to those in

the first three columns of Table 1.3. The origin-income elasticity of 43% is reduced to 38% by the

introduction of the quantity controls and further to 32% by the full battery of plant-level factor-

usage measures. Thus, differences in plants’ observed factor usage explain about one-quarter of the

correlation between cities’ incomes per capita and outgoing shipment prices. This suggests that

the factor-abundance hypothesis has modest explanatory power for the pattern of within-product

specialization across US cities.

These results are robust to introducing further information on the skills employed in these

plants. I construct city-industry-level measures of employees’ schooling from public-use microdata

from the Census of Population and American Community Survey. These measures are available for

a subset of the observations in the main estimation sample. The results are reported in Appendix

Table A.2. The partial-correlation origin-income elasticity of 34% is quite similar to the 32%

obtained in Table 1.3.

A potential alternative interpretation of these results would be that the plant-level variables are

imperfect controls for plant-level factor usage and that city-level income per capita is informative

about plant-level factor usage. Suppose that plants’ factor inputs exhibit unobserved differences in

quality that are correlated with city-level average income, conditional on plant-level observables. It

is plausible that plants with observationally equivalent workforces in terms of non-production-to-

production-worker ratios may differ in worker quality. In particular, prior research has documented

weak but systematic sorting of workers across cities on unobservable characteristics correlated with

higher wages (Davis and Dingel, 2012; De la Roca and Puga, 2012). However, these differences

between workers should appear in the plant-level wage data, and the third and sixth columns of

Table 1.3 includes plant-level wage measures. The posited unobserved differences in input factor

55Using a 3-digit-NAICS-specific translog approximation with the five input measures and a 3-digit-NAICS-specific
quadratic in log mileage, for a total of 462 regressors, yields very similar results.
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quality would therefore have to be characteristics of worker that raise output quality, are not priced

into their wages, and are systematically correlated with city-level incomes, which seems an unlikely

explanation for the findings.

Another potential concern is aggregation bias. Though my data describe hundreds of manufac-

turing product categories, these are less detailed than the most disaggregated product categories

in international trade data. I address this concern using data from the Census of Manufactures

product trailer, which describes comparable number of product categories and reports quantities for

a subset of them. Appendix Table A.3 describes establishments’ average unit values from Census

of Manufactures data on products for which quantities are reported and reports results that are

consistent with those reported in Table 1.3.56 Though the origin-income elasticity is lower than

that found in the CFS data, observed plant-level factor usage explains only about 12% of the total

variation.

Finally, one may worry that some other dimension of plant heterogeneity has been omitted.

Appendix Table A.4 reports results from CFS data while controlling for plant size. This yields a

partial-correlation origin-income elasticity of 30%, similar to that in Table 1.3.

This section has shown that only a modest share of the observed within-product variation

in outgoing shipment prices across cities of different income levels is attributable to observable

differences in plants’ factor usage. Under the null hypothesis that differences in factor abundance

alone explain within-product specialization, the partial correlation between origin income per capita

and outgoing shipment prices after controlling for plant-level factor usage should be zero. In the

presence of a rich set of plant-level controls, the estimated coefficient β̂1 in column six of Table 1.3

is 32%, roughly 3/4 of its value in the absence of any plant-level controls. If we were to attribute

the full decrease in the value of the coefficient on ln ȳot to the factor-abundance mechanism, it

would explain about one quarter of the observed variation.57

56These plant-level average unit values necessarily include shipments destined for the origin CBSA.

57To the degree that differences in skill intensities are causally induced by differences in demand, this overstates
the explanatory power of the factor-abundance hypothesis.
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1.5.2 The home-market effect for quality

This section identifies the share of the covariance between incomes and prices not explained by

factor-usage differences that is attributable to home-market demand. I find that cities with

greater market access to higher-income households produce higher-price manufactures. This within-

intensity home-market effect alone explains twice as much of the covariance between incomes and

prices as differences in plants’ factor inputs.

The “home-market” effect in fact depends on the composition of demand in all locations po-

tentially served from a location of production, as described in the model by market access Mq,k(τ).

A city that is more proximate to another city with many high-income residents has higher relative

demand for higher-quality manufactures, ceteris paribus.58 Section 1.3.5 described two market-

access measures. The first, M1
ot =

∑
d6=o

Ndtmiles
−η
odP

d′ 6=oNd′tmiles
−η
od′

ln ȳdt, omits potential customers residing

in the location of production. The identifying assumption when using this measure is that variation

across locations in neighboring cities’ incomes per capita, after conditioning on plants’ inputs and

income per capita in the city of production, is related to plants’ outputs only through variation in

the composition of demand. The second market-access measure, M2
ot =

∑
d

Ndtmiles
−η
odP

d′ Nd′tmiles
−η
od′

ln ȳdt,

includes all potential customers, consistent with the model. The accompanying identifying assump-

tion is that, after conditioning on plants’ inputs, variation across locations in potential consumers’

incomes, including residents in the city of production, is related to plants’ outputs only through

variation in the composition of demand.59

Table 1.4 demonstrates that market access plays a significant role in explaining the origin-

income elasticity of shipment prices. The first column reports a regression that flexibly controls

for the quantity measures of factor usage, the non-production worker share and assets per worker,

like the fifth column of Table 1.3. The second column adds the first market-access measure. This

58Fajgelbaum, Grossman, and Helpman (2011) derive their results in a setting in which the cost of exporting to
another location is the same across all locations. Thus, in their model the home-market effect depends only on the
difference in income composition between the location of production and the rest of the world. When trade costs
are not uniform, the home-market effect depends on a production location’s access to every other market, i.e. the
matrix of bilateral trade costs. Measuring multilateral market access has received considerable attention in empirical
assessments of the new economic geography, e.g. Redding and Venables (2004). See Lugovskyy and Skiba (2012) for
a discussion of market access in the context of quality specialization.

59This identifying assumption would be violated by unobserved quality-improving inputs or technologies that were
correlated with city-level income per capita but not correlated with my plant-level measures of inputs.
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reduces the origin-income elasticity from 38% to 24%, which is a large change. Controlling for

factor quantities only reduced the elasticity from 43% to 38%. This implies that the income

composition of proximate potential customers other than those in the city of production is more

than twice as quantitatively important as the capital intensity and the non-production employee

share in explaining the pattern of shipment prices. In locations with better access to high-income

customers, plants produce higher-price products. This evidence suggests that the geography of

demand influences the pattern of within-product specialization. The third column uses the second

market-access measure, which includes the income of potential customers in the city of production

in the weighted average. This reduces the origin-income elasticity to 13.6%, a reduction of nearly

25 percentage points compared to column 1.

Table 1.4 reports similar results when controlling for factor usage using the wage measures.

The fourth column is a regression that flexibly controls for the quantity and wage measures of

factor usage, like the sixth column of Table 1.3. The fifth column introduces the first market-access

measure, reducing the origin-income elasticity from 32.3% to 19.5%. The factor-usage measures

reduced this elasticity by 10 percentage points, so the income composition of proximate potential

customers other than those in the city of production has considerable explanatory power. The sixth

column uses the second market-access measure that includes residents in the city of production.

This reduces the origin-income elasticity to 12%, a reduction of more than 20 percentage points

compared to column 4. Thus, market access explains substantially more of the observed relationship

between income per capita and outgoing shipment prices than differences in plants’ factor usage.60

These results can be succinctly summarized as a decomposition of the covariance between

incomes and prices.61 After controlling for population size and shipment mileage, differences in

observed factor usage are responsible for 27% of the covariance between outgoing shipment prices

and origin income per capita. Conditional on factor usage, the first market-access measure, which

60If the demand-side mechanism induces differences in the factor intensities used to produce different qualities, then
market access causally explains an even greater fraction of the observed correlation. I am conservative in controlling
for observed factor usage prior to attributing the change in coefficients to the introduction of the market-access
measure.

61Comparing the estimated elasticities yields shares very similar to this decomposition. However, that back-of-the-
envelope calculation does not account for the changing set of regressors. The law of total covariance is an identity,
so the numbers reported in this paragraph are an exact decomposition.
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Table 1.4: Outgoing shipments and market access

Dep var: Log unit value (1) (2) (3) (4) (5) (6)

Log origin CBSA income per capita 0.381** 0.240** 0.136** 0.323** 0.195** 0.120*
(0.0396) (0.0412) (0.0495) (0.0381) (0.0396) (0.0481)

Log origin CBSA population -0.0132** -0.00233 -0.00814 -0.0161** -0.00591 -0.0118**
(0.00437) (0.00435) (0.00425) (0.00414) (0.00412) (0.00410)

Market access (excl orig) M1
ot 1.144** 1.075**

(0.129) (0.125)

Market access M2
ot 1.040** 0.899**

(0.131) (0.126)

R-squared 0.881 0.881 0.881 0.882 0.882 0.882
Observations (rounded) 1,400,000
Estab-year (rounded) 30,000
Ind-prod-year (rounded) 2,000

Standard errors, clustered by CBSA × year, in parentheses
** p<0.01, * p<0.05

Notes: Manufacturing establishments in the CFS and CMF. All shipments are to a domestic destination CBSA
distinct from the origin CBSA. All regressions include SCTG5×NAICS6×destination×year fixed effects and mode
× year fixed effects. Unreported controls include 3-digit-NAICS-specific cubic polynomials in log mileage (1-6), log
non-production worker share (1-6), log assets per worker (1-6), log pay per worker (4-6), log pay per production
worker (4-6), and log pay per non-production worker (4-6). Also unreported are the interactions of log origin
income per capita with the five input variables.

omits residents in the city of production, accounts for 34% of the total covariance, leaving 39%

as residual variation. The second market-access measure, which follows the model by including

residents in the city of production, accounts for 54% of the total covariance, leaving 19% as residual

variation.

This section has established the role of home-market demand in explaining the pattern of

outgoing shipment prices. The income composition of proximate potential customers is strongly

associated with outgoing shipment prices. Consistent with the model, plants located near higher-

income potential customers sell products at higher average prices. The income composition of

potential customers other than those in the location of production is quantitatively more important

for explaining the origin-income elasticity of outgoing shipment prices than observed plant-level

factor usage. When including individuals residing in the city of production, the income composition

of potential customers explains at least half of the observed origin-income elasticity of shipment

prices. This is consistent with a model in which the home-market effect plays a large role in

determining the pattern of quality specialization.
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1.5.3 Additional evidence

This section briefly summarizes a series of results in Appendix A.5 that are consistent with the

results reported above.

Appendix section A.5.1 characterizes the pattern of quality specialization using estimated de-

mand shifters instead of outgoing shipments’ unit values as the dependent variable. Due to data

constraints, these are only available in 2007. The empirical results are consistent with the unit-

value findings for the influence of market access, though factor usage exhibits greater explanatory

power. The origin-income elasticity of the plant-product estimated demand shifter is 41%, re-

markably similar to the 43% origin-income elasticity of outgoing shipment prices. This covariance

between income per capita and estimated demand shifter decomposes into factor-intensity differ-

ences (46%), within-intensity market-access differences (48%), and residual variation (7%). The

greater explanatory power of plants’ factor inputs primarily reflects less residual variation, not a

dramatically weakened role for the income composition of proximate potential customers. Home-

market demand plays a substantial role in quality specialization, at least as large as that explained

by the factor-abundance mechanism.

Appendix section A.5.2 uses another moment of the income distribution to identify the role

of demand in quality specialization. Conditional on average income, cities with higher variance in

household income have higher incoming shipment prices. I then show that cities with greater income

dispersion have higher outgoing shipment prices, and this is not due to greater dispersion in the

wages or skills of workers employed at the plants shipping these products. This is consistent with

the home-market effect under the Fajgelbaum, Grossman, and Helpman (2011) demand system in

an equilibrium in which most individuals purchase low-quality varieties.

Appendix section A.5.3 shows that the patterns founds in domestic shipments are also found

in export shipments destined for foreign markets. The origin-income elasticity of export prices is

42%. After controlling for plants’ factor inputs, this elasticity is 30%. After controlling for both

factor inputs and market access, this elasticity becomes negative and statistically indistinguishable

from zero. Home-market demand explains a greater share of within-product variation in export

prices than differences in factor usage.
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1.6 Conclusions

Two prominent theories predict that high-income locations specialize in producing and exporting

high-quality products. The Linder (1961) conjecture, formalized by Fajgelbaum, Grossman, and

Helpman (2011), emphasizes the role of high-income customers’ demand for high-quality products.

The canonical factor-proportions theory focuses on the abundant supply of capital and skills in high-

income locations. Prior empirical evidence does not separate the contributions of these mechanisms

because each makes the same predictions about country-level trade flows.

In this paper, I combine microdata on manufacturing plants’ shipments and inputs with data on

locations’ populations and incomes to quantify each mechanism’s role in quality specialization across

US cities. I develop a model that nests both mechanisms to guide my empirical investigation. The

theory’s basic insight is that the factor-abundance mechanism operates exclusively through plants’

input usage. Conditional on plant-level factor intensity, demand determines quality specialization.

I implement my empirical strategy using US microdata because the Commodity Flow Survey and

Census of Manufactures describe plants located in many cities of varying income levels. In doing

so, I document that US cities exhibit the same patterns found in international trade data that

have been interpreted as evidence of quality specialization. My empirical investigation finds that

home-market demand explains at least as much of the specialization across US cities as differences

in plants’ factor inputs.

This finding is significant because the two mechanisms have distinct implications for welfare,

inequality, and trade policy. The large share of quality specialization attributable to market access

suggests that a location’s capacity to profitably produce high-quality products depends significantly

on the income composition of neighboring locations. As a result, geography influences specialization

in part because economic developments in neighboring locations may shift local demand for quality.

To the degree that demand shapes entry and product availability, individuals may gain by living

in locations where other residents’ incomes are similar to theirs. Finally, since market access is

affected by trade policy, governments may have scope to influence quality specialization.
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Chapter 2

The Comparative Advantage of Cities

Donald R. Davis and Jonathan I. Dingel1

1We thank numerous people and seminar audiences for helpful comments and suggestions, especially Bernard
Salanié, Bruno Strulovici, Daniel Sturm, and Jonathan Vogel. We thank Yuxiao Huang and especially Antonio
Miscio for research assistance.
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2.1 Introduction

The distributions of skills, occupations, and industries vary substantially and systematically across

US cities. Figures 2.1 through 2.3 illustrate this with three selected examples for each.

� Figure 2.1 plots the population of three educational attainment categories against total

metropolitan area population.2 The left panel plots the data; the right panel plots a lo-

cally weighted regression for each category. While each educational category’s population

rises with metropolitan population, the relative levels also exhibit a systematic relationship

with city size. Comparing elasticities, the population with a bachelor’s degree rises with

city size faster than the population of college dropouts, which in turn rises faster than the

population of high-school graduates.

Figure 2.1: Populations of three educational groups across US metropolitan areas
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Data source: 2000 Census of Population microdata via IPUMS-USA

� Figure 2.2 plots metropolitan area employment in three occupational categories.3 Computer

2We use the terms cities and metropolitan areas interchangeably, as is customary in the literature. These three
educational groups comprise about 70 percent of the employed metropolitan population (see Table 2.1).

3The occupations are SOC 49, 43, and 15 in the 2000 Occupational Employment Statistics data.
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and mathematical employment rises with city size faster than office and administrative em-

ployment, which in turn rises faster than installation, maintenance and repair employment.

These sectors also differ in their employee characteristics. Nationally, the average individual

in computer and mathematical occupations has about two more years of schooling than the

average individual in office and administrative support and three more years than those in

installation, maintenance, and repair.

Figure 2.2: Employment in three occupations across US metropolitan areas
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Data source: Occupational Employment Statistics 2000

� Figure 2.3 plots employment in three manufacturing industries.4 Employment in computer

and electronic products rises with city size faster than machinery, which in turn rises faster

than wood products. On average, computer and electronic employees have about two more

years of education than wood products employees.

4The industries are NAICS 321, 333, and 334 in the 2000 County Business Patterns data. Employment levels
cluster at particular values due to censored observations. See appendix B.3 describing the data.
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Figure 2.3: Employment in three manufacturing industries across US metropolitan areas
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Data source: County Business Patterns 2000

Together, these three figures suggest that larger cities are skill-abundant and specialize in skill-

intensive activities. Explaining these patterns involves fundamental questions about the spatial

organization of economic activity. What determines the distribution of skills across cities? What

determines the distribution of occupations and industries across cities? How are these two phenom-

ena interrelated? In this paper, we develop a theory describing the comparative advantage of cities

that predicts such a pattern of skills and sectors in a manner amenable to empirical investigation.

As we describe in section 2.2, prior theories describing cities’ sectoral composition have over-

whelmingly focused on the polar cases in which cities are either completely specialized “industry

towns” or perfectly diversified hosts of all economic activities (Helsley and Strange, 2012). Yet

Figures 2.2 and 2.3 make clear both that reality falls between these poles and that sectoral em-

ployment shares are systematically related to cities’ sizes. In this paper, we integrate modern trade

theory with urban economics by introducing a spatial-equilibrium model in which the comparative

advantage of cities is jointly governed by the comparative advantage of individuals and their loca-

tional choices. Our theory both describes the intermediate case in which cities are incompletely
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specialized and relates the pattern of specialization to cities’ observable characteristics. It makes

strong, testable predictions about the distributions of skills and sectors across cities that we take

to the data.

Section 2.3 introduces our model of a system of cities with heterogeneous internal geographies.

Cities are ex ante homogeneous, so cross-city heterogeneity is an emergent outcome of the choices

made by freely mobile individuals. Agglomeration economies make cities with larger, more skilled

populations exhibit higher total factor productivity (TFP). Locations within cities are heteroge-

neous and more desirable locations are relatively scarce, as is customary in land-use models (Fujita

and Thisse, 2002, Ch 3). These cities are populated by heterogeneous individuals with a contin-

uum of skill types, and these individuals may be employed in a continuum of sectors. Comparative

advantage causes more skilled individuals to work in more skill-intensive sectors, as in Sattinger

(1975), Costinot (2009), and Costinot and Vogel (2010). There is a complementarity between in-

dividual income and locational attractiveness, so more skilled individuals are more willing to pay

for more attractive locations and occupy these locations in equilibrium, as in the differential rents

model of Sattinger (1979).

In equilibrium, agglomeration, individuals’ comparative advantage, and heterogeneity across

internal locations within cities combine to deliver a rich set of novel predictions. Agglomeration

causes larger cities to have higher TFP, which makes a location within a larger city more attractive

than a location of the same innate desirability within a smaller city. For example, the best location

within a larger city is more attractive than the best location within a smaller city due to the

difference in TFP. Since more skilled individuals occupy more attractive locations, larger cities are

skill-abundant. The most skilled individuals in the population live only in the largest city and more

skilled individuals are more prevalent in larger cities, consistent with the pattern shown in Figure

2.1. By individuals’ comparative advantage, the most skill-intensive sectors are located exclusively

in the largest cities and larger cities specialize in the production of skill-intensive output. More

skill-intensive sectors exhibit higher population elasticities of sectoral employment, as suggested in

Figures 2.2 and 2.3. Our model therefore predicts an urban hierarchy of skills and sectors.

We examine the model’s predictions about the spatial distribution of skills and sectors across

US cities using data from the 2000 Census of Population, County Business Patterns, and Occu-
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pational Employment Statistics described in section 2.4. We use two empirical approaches. The

first involves regression estimates of the population elasticities of educational, occupational, and

industrial populations akin to those shown in Figures 2.1 through 2.3. The second involves pairwise

comparisons governed by the monotone likelihood ratio property, as per Costinot (2009).5

Section 2.5 reports the results, which provide support for our model’s predictions about the

spatial pattern of skills and sectors. Characterizing skills in terms of three or nine educational

groups, we find that larger cities are skill-abundant. Among US-born individuals, cities’ skill

distributions typically exhibit the monotone likelihood ratio property.6 Characterizing sectors

in terms of 21 manufacturing industries or 22 occupational categories, we find that larger cities

specialize in skill-intensive sectors. While sectors do not exhibit the monotone likelihood ratio

property as reliably as skills, there is systematic variation in cities’ sectoral distributions that is

consistent with the novel predictions of our theory.

In short, when mobile individuals optimally choose locations and sectors, larger cities will have

more skilled populations and thereby comparative advantage in skilled activities. These features

are consistent with US data.

2.2 Related literature

Our contributions are related to a diverse body of prior work. Our focus on high-dimensional labor

heterogeneity is related to recent developments in labor and urban economics. Our theoretical ap-

proach integrates elements from the systems-of-cities literature, land-use theory, and international

trade. Our model yields estimating equations and pairwise inequalities describing the compara-

tive advantage of cities that are related to prior reduced-form empirical work in urban economics,

despite a contrast in theoretical underpinnings.

Our theory describes a continuum of heterogeneous individuals. A large share of systems-of-

5The distributions fc(σ) and fc′(σ) exhibit the monotone likelihood ratio property if, for any σ > σ′, fc(σ)
fc′ (σ)

≥
fc(σ

′)
fc′ (σ

′) .

6Relative to our theory, foreign-born individuals with less than a high-school education tend to disproportionately
locate in large US cities. Data from 1980, when foreign-born individuals were a substantially smaller share of the
US population, suggest this reflects particular advantages that large cities offer foreign-born individuals rather than
a general tendency for the unskilled to locate in large cities. See section 2.5.1.2.
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cities theories describe a homogeneous population (Abdel-Rahman and Anas, 2004). Most previous

examinations of heterogeneous labor have only described two skill levels, typically labeled skilled

and unskilled.7 To describe greater heterogeneity, we assume a continuum of skills, like Behrens,

Duranton, and Robert-Nicoud (2012) and Davis and Dingel (2012).8 Understanding the distribution

of skills across cities with more than two types is valuable for at least three reasons. First, a

large literature in labor economics has described important empirical developments such as wage

polarization, job polarization, and simultaneous changes in between- and within-group inequality

that cannot be explained by a model with two homogeneous skill groups (Acemoglu and Autor,

2011). Second, these developments have counterparts in cross-city variation in inequality and skill

premia (Baum-Snow and Pavan, 2011; Davis and Dingel, 2012). Third, we document systematic

patterns in the cross-city distribution of skills at high levels of disaggregation, which suggests that

individuals within broad skill categories are imperfect substitutes.9

Our model is a novel integration of systems-of-cities theory with land-use theory. The Alonso-

Muth-Mills model of a single city describes a homogeneous population of residents commuting to a

central business district (Brueckner, 1987). In that model, higher rents for locations with shorter

commutes equalize utility across locations in equilibrium. When individuals are heterogeneous

and value the rent-distance tradeoff differently, the single city’s equilibrium rent schedule is the

upper envelope of individuals’ bid-rent functions (von Thünen, 1826; LeRoy and Sonstelie, 1983;

Fujita and Thisse, 2002, Ch 3). Models of a system of cities have incorporated the Alonso-Muth-

Mills urban structure in which all individuals are indifferent across all locations within a city as a

city-level congestion mechanism (Abdel-Rahman and Anas, 2004; Behrens, Duranton, and Robert-

Nicoud, 2012). Our novel contribution is to describe multiple cities with internal geographies when

7We focus on theories in which labor is heterogeneous in some asymmetric sense (e.g. more skilled individuals
have absolute advantage in tasks or more skilled individuals generate greater human-capital spillovers). There are
also models describing matching problems, such as Helsley and Strange (1990) and Duranton and Puga (2001), in
which labor is heterogeneous in a horizontal characteristic.

8Eeckhout, Pinheiro, and Schmidheiny (2011) describe a model with three skill types.

9A long line of empirical work describes cross-city variation in skill distributions in terms of the share of residents
who have a college degree (Glaeser, 2008). Most closely related to our work is Hendricks (2011), who finds a weak
relationship between cities’ industries and college shares.

49



individuals are not spatially indifferent across all locations.10 The essential idea is that individuals

choosing between living in Chicago or Des Moines simultaneously consider in what parts of Chicago

and what parts of Des Moines they might locate. Though these tradeoffs appear obvious, we

are not aware of a prior formal analysis. Considering both dimensions simultaneously is more

realistic in both the description of the economic problem and the resulting predicted cross-city skill

distributions. Since we have a continuum of heterogeneous individuals, we obtain equilibrium rent

schedules that are integrals rather than upper envelopes of a discrete number of bid-rent functions.11

Our model belongs to a long theoretical tradition describing factor-supply-driven comparative

advantage, dating from the Heckscher-Ohlin theory formalized by Samuelson (1948). In interna-

tional contexts, theorists have typically taken locations’ factor supplies as exogenously endowed.

Since individuals are mobile across cities, our theory endogenizes cities’ factor supplies while de-

scribing how the composition of output is governed by comparative advantage. Our approach to

comparative advantage with a continuum of factors and a continuum of sectors follows a large as-

signment literature and is most closely related to the recent work of Costinot (2009) and Costinot

and Vogel (2010).12 While these recent papers assume that countries’ factor endowments exhibit

the monotone likelihood ratio property, we obtain the result that cities’ skill distributions exhibit

this property as an equilibrium outcome. Thus, from a theoretical perspective, cities within a coun-

try constitute a natural setting to examine these theories of comparative advantage. Moreover, the

assumption of a common production technology is likely more appropriate within than between

economies, and data from a single economy are likely more consistent and comparable than data

combined across countries.

The Heckscher-Ohlin model has been the subject of extensive empirical investigation in inter-

national economics. A pair of papers describe regional outputs using this framework. Davis and

Weinstein (1999) run regressions of regional outputs on regional endowments, employing the frame-

work of Leamer (1984), but they abstract from the issue of labor mobility across regions. Bernstein

10In order to tractably characterize multiple cities with internal geographies and heterogeneous agents, we neglect
the business-vs-residential land-use problem studied by Lucas and Rossi-Hansberg (2002)

11Our continuum-by-continuum approach to a differential rents model is in the spirit of Sattinger (1979).

12Sattinger (1993) surveys the assignment literature.
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and Weinstein (2002) consider the two-way links between endowments and outputs, concluding

that if we know regions’ outputs, we know with considerable precision the inputs used, but not vice

versa. For these reasons, traditional Heckscher-Ohlin models did not appear a promising way to

explain regional differences in sectoral composition.

Our theory predicts systematic variation in sectoral composition in the form of an urban hier-

archy of sectors. Prior systems-of-cities theories have overwhelmingly described polarized sectoral

composition: specialized cities that have only one tradable sector and perfectly diversified cities

that have all the tradable sectors (Abdel-Rahman and Anas, 2004; Helsley and Strange, 2012).

A recent exception is Helsley and Strange (2012), who examine whether the equilibrium level of

coagglomeration is efficient. While Helsley and Strange (2012) make minimal assumptions in or-

der to demonstrate that Nash equilibria are generically inefficient when there are interindustry

spillovers, we make strong assumptions that yield testable implications about the distribution of

sectoral activity across cities.

Our model’s equilibrium exhibits a hierarchy of cities and sectors, as larger cities produce a

superset of the goods produced in smaller cities. Models in central place theory, dating from

Christaller (1933) through Hsu, Holmes, and Morgan (2013), have attributed this hierarchy property

to the interaction of industry-specific scale economies and geographic market access based on the

distance between firms located in distinct city centers. It is interesting that our model yields the

hierarchy property in the absence of both. Our theory links the hierarchy of sectors to a hierarchy

of skills shaped by the internal geography of cities, neither of which have been considered in central

place theory.

A recent empirical literature has demonstrated significant agglomeration and coagglomeration

of industries relative to the null hypothesis of locations being (uniformly) randomly assigned in

proportion to local population (Ellison and Glaeser, 1997; Duranton and Overman, 2005; Ellison,

Glaeser, and Kerr, 2010). Our model’s predictions are consistent with these findings. Since our

theory says that sectors are ranked in terms of their relative employment levels, at most one sec-

tor could exhibit employment proportionate to total population. All other sectors will exhibit

geographic concentration. Similarly, since sectors more similar in skill intensity will exhibit more

similar relative employment levels, the cross-city distribution of sectoral employment will be consis-
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tent with skill-related coagglomeration. We obtain these results in the absence of industry-specific

scale economies and industry-pair-specific interactions or spillovers.

Our empirical work follows directly from our model’s predictions about the cross-city distri-

bution of sectoral activity relating cities’ and sectors’ characteristics. There is a small empirical

literature describing variation in cities’ sectoral composition, but this work has not been tightly tied

to theory. This is likely because theories describing specialized or perfectly diversified cities provide

limited guidance to empirical investigations of data that fall between the extremes. Holmes and

Stevens (2004) survey the spatial distribution of economic activities in North America. In examin-

ing the empirical pattern of specialization, they show that agriculture, mining, and manufacturing

are disproportionately in smaller cities, while finance, insurance, real estate, professional, and man-

agement activities are disproportionately in larger cities. However, they do not reference a model

or theoretical mechanism that predicts this pattern to be the equilibrium outcome. Seminal work

by Vernon Henderson explores theoretically and empirically the relationship between city size and

industrial composition (Henderson, 1991). Henderson (1974) theoretically describes the polar cases

of specialized and perfectly diversified cities (Helsley and Strange, 2012), while our model predicts

incomplete industrial specialization. Henderson has argued that localization economies link cities’

and industries’ sizes, while our theory relies on urbanization economies and individuals’ compara-

tive advantage.13 Despite these contrasts, our theory yields estimating equations for the population

elasticities of sectoral employment that are closely related to the reduced-form regressions of em-

ployment shares on population that Henderson (1983) estimated for a few select industries. Our

theory provides an explicit microfoundation for these regressions for an arbitrary number of sectors.

Moreover, it predicts that we can order these elasticities by skill intensity. It also describes how

to compare the sectoral composition of groups of cities ordered by size, nesting the comparison

of large and medium-size cities made by Henderson (1997). While our urbanization-based theory

abstracts from the localization economies emphasized by Henderson, we believe future work should

13The literature traditionally distinguishes two types of external economies of scale (Henderson, 1987, p.929).
Localization economies are within-industry, reflecting the scale of activity in that industry in that location. Ur-
banization economies are general, reflecting the scale of all economic activity in a location. Beyond scale, Lucas
(1988) has stressed the composition of a location’s human capital. The agglomeration process generating city-level
productivities in our theory incorporates both scale and composition effects.
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seek to integrate these distinct approaches.

2.3 Model

We develop a general-equilibrium model in which L heterogeneous individuals choose a city, a

location within that city, and a sector in which to produce. There are C discrete cities (c ∈ C =

{1, . . . , C}), a continuum of skills, and a continuum of sectors. We study the consequences for city

total factor productivity and the cross-city distributions of skills and sectors.

2.3.1 Preferences, production, and places

Individuals consume a freely traded final good. This final good is the numeraire and produced

by combining a continuum of freely traded, labor-produced intermediate goods indexed by σ ∈ Σ.

These have prices p(σ) that are independent of location because trade costs are zero. Locations

are characterized by their city c and their (inverse) desirability τ ∈ T , so they have rental prices

r(c, τ).

Final-goods producers have a CES production function

Q =
{∫

σ∈Σ
B(σ)[Q(σ)]

ε−1
ε dσ

} ε
ε−1

, (2.1)

where the quantity of intermediate good σ is Q(σ), ε > 0 is the elasticity of substitution be-

tween intermediates, and B(σ) is an exogenous technological parameter. The profits of final-goods

producers are given by

Π = Q−
∫
σ∈Σ

p(σ)Q(σ)dσ. (2.2)

Heterogeneous individuals use their labor to produce intermediate goods. There is a mass of

L heterogeneous individuals with skills ω that have the cumulative distribution function F (ω) and

density f(ω) on support Ω ≡ [ω, ω̄]. The productivity of an individual of skill ω in sector σ at

location τ in city c is

q(c, τ, σ;ω) = A(c)T (τ)H(ω, σ). (2.3)
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A(c) denotes city-level total factor productivity, which results from agglomeration and is taken as

given by individuals. T (τ) reflects the productivity effects of location within the city, which in a

canonical case is the cost of commuting to the central business district.14 We assume that T (τ) is

continuously differentiable and T ′(τ) < 0, which is just a normalization that higher-τ locations are

less desirable. We assume that the twice-differentiable function H(ω, σ) is strictly log-supermodular

in ω and σ and strictly increasing in ω.15 The former governs comparative advantage, so that

higher-ω individuals are relatively more productive in higher-σ sectors.16 The latter says that

absolute advantage is indexed by ω, so that higher-ω individuals are more productive than lower-ω

individuals in all sectors. Each individual inelastically supplies one unit of labor, so her income is

her productivity times the price of the output produced, q(c, τ, σ;ω)p(σ).

Locations within each city are heterogeneous, with the desirability of a location indexed by

τ ≥ 0. The most desirable location is denoted τ = 0, so higher values of τ denote greater distance

from the ideal location. The supply of locations with desirability greater than τ is S(τ).17 This is

a strictly increasing function, since the supply of available locations increases as one lowers one’s

minimum standard of desirability. S(0) = 0, since there are no locations better than the ideal. We

assume S(τ) is twice continuously differentiable. Locations are owned by absentee landlords who

spend their rental income on the final good. The city has sufficient land capacity that everyone can

reside in the city and the least desirable locations are unoccupied. We normalize the reservation

value of unoccupied locations to zero, so r(c, τ) ≥ 0.

Individuals choose their city c, location τ , and sector σ to maximize utility. An individual’s

utility depends on their consumption of the numeraire final good, which is their income after paying

14As written, T (τ) indexes the desirability of the location for its productive advantages, but a closely related
specification makes T (τ) describe a location’s desirability for its consumption value. The production and consumption
interpretations yield very similar results but differ slightly in functional form. For expositional clarity, we use the
production interpretation given by equations (2.3) and (2.4) in describing the model in the main text and present
the consumption interpretation in appendix B.1.

15In R2, a function H(ω, σ) is strictly log-supermodular if ω > ω′, σ > σ′ ⇒ H(ω, σ)H(ω′, σ′) > H(ω, σ′)H(ω′, σ).

16We refer to higher-ω individuals as more skilled and higher-σ sectors as more skill-intensive.

17In the special case of the classical von Thünen model, τ describes physical distance from the central business
district and the supply is S(τ) = πτ2.
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their locational cost:

U(ω, c, τ, σ) = A(c)T (τ)H(ω, σ)p(σ)− r(c, τ). (2.4)

Denote the endogenous quantity of individuals of skill ω residing in city c at location τ and working

in sector σ by L× f(ω, c, τ, σ).

City-level TFP, A(c), reflects agglomeration gains derived from both population size and compo-

sition. A(c) is higher when a city contains a larger and more skilled population. Denote the endoge-

nous quantity of individuals of skill ω residing in city c by L×f(ω, c) = L×
∫
σ∈Σ

∫
τ∈T f(ω, c, τ, σ)dτdσ.

Total factor productivity is

A(c) = J

(
L,

∫
ω∈Ω

j(ω)f(ω, c)dω
)
, (2.5)

where J(·, ·) is a positive function increasing in each of its arguments and j(ω) is a positive, non-

decreasing function.

2.3.2 Equilibrium

In a competitive equilibrium, individuals maximize utility, final-good producers and landowners

maximize profits, and markets clear. Individual maximize their utility by their choices of city,

location, and sector such that

f(ω, c, τ, σ) > 0 ⇐⇒ {c, τ, σ} ∈ arg maxU(ω, c, τ, σ). (2.6)

Profit maximization by final-good producers yields demands for intermediates

Q(σ) = I
( p(σ)
B(σ)

)−ε
, (2.7)

where I ≡ L
∑

c

∫
σ

∫
ω

∫
τ q(ω, c, τ, σ)p(σ)f(ω, c, τ, σ)dτdωdσ denotes total income and these produc-

ers’ profits are zero. Profit maximization by absentee landlords engaged in Bertrand competition

causes unoccupied locations to have rental prices of zero,
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r(c, τ)×
(
S′(τ)− L

∫
σ∈Σ

∫
ω∈Ω

f(ω, c, τ, σ)dωdσ
)

= 0 ∀c ∀τ. (2.8)

Market clearing requires the endogenous quantity of individuals of skill ω residing in city c at

location τ and working in sector σ, L×f(ω, c, τ, σ), to be such that the supply of a location type is

greater than or equal to its demand, the demand and supply of intermediate goods are equal, and

every individual lives somewhere.

S′(τ) ≥ L
∫
ω∈Ω

∫
σ∈Σ

f(ω, c, τ, σ)dσdω ∀c ∀τ (2.9)

Q(σ) =
∑
c∈C

Q(σ, c) = L
∑
c∈C

∫
ω∈Ω

∫
τ∈T

q(c, τ, σ;ω)f(ω, c, τ, σ)dωdτ ∀σ (2.10)

f(ω) =
∑
c∈C

f(ω, c) =
∑
c∈C

∫
σ∈Σ

∫
τ∈T

f(ω, c, τ, σ)dτdσ ∀ω (2.11)

A competitive equilibrium is a set of functions Q : Σ→ R+, f : Σ×C×T ×Ω→ R+, A : C→ R+,

r : C× T → R+, and p : Σ→ R+ such that conditions (2.6) through (2.11) hold.

2.3.3 An autarkic city

We begin by considering a single city, denoted c, with exogenous population L(c) and skill distribu-

tion F (ω). With fixed population, autarky TFP is fixed by equation (2.5). We describe individuals’

choices of sectors and locations to solve for the autarkic equilibrium.

To solve, we exploit the fact that locational and sectoral argument enters individuals’ util-

ity functions separably. Individuals’ choices of their sectors are independent of their locational

decisions:

arg max
σ

A(c)T (τ)H(ω, σ)p(σ)− r(c, τ) = arg max
σ

H(ω, σ)p(σ)

Define the assignment function M(ω) = arg maxσH(ω, σ)p(σ) so that we can write G(ω) ≡
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H(ω,M(ω))p(M(ω)). By comparative advantage, M(ω) is increasing.18 By absolute advantage,

more skilled individuals earn higher nominal incomes and G(ω) is a strictly increasing function.19

Individuals’ choices of their locations are related to their sectoral decisions in the sense that

willingness to pay for more desirable locations depends on the skill component of income G(ω).

Within the city, individual choose their optimal location:

max
τ

A(c)T (τ)G(ω)− r(c, τ)

Competition among landlords ensures that the most desirable locations are those occupied, so the

least desirable occupied site τ̄(c) ≡ maxτ{τ : f(ω, c, τ, σ) > 0} in a city of population L(c) is

defined by L(c) = S(τ̄(c)). More desirable locations have higher rental prices.

Lemma 2.1 (Populated locations). In equilibrium, S(τ) = L
∫ τ

0

∫
σ∈Σ

∫
ω∈Ω f(ω, c, x, σ)dωdσdx ∀τ ≤

τ̄(c), r(c, τ) is strictly decreasing in τ ∀τ < τ̄(c), and r(c, τ̄(c)) = 0.

Individuals of higher skill have greater willingness to pay for more desirable locations. That is,

∂2

∂τ∂ωA(c)T (τ)G(ω) < 0 because locational advantages complement individual productivity. As a

result, in equilibrium higher-ω individuals occupy lower-τ locations.

Lemma 2.2 (Autarky locational assignments). In autarkic equilibrium, there exists a continuous

and strictly decreasing locational assignment function N : T → Ω such that f(ω, c, τ, σ) > 0 ⇐⇒

N(τ) = ω, N(0) = ω̄ and N(τ̄(c)) = ω.

This assignment function is obtained by equating supply and demand of locations:

S(τ) = L

∫ τ

0

∫
σ∈Σ

∫
ω∈Ω

f(ω, c, x, σ)dωdσdx

⇒ N(τ) = F−1

(
L(c)− S(τ)

L(c)

)

Given individuals’ equilibrium locations within the city, the schedule of locational rental prices

18Lemma 1 of Costinot and Vogel (2010) shows that M(ω) is continuous and strictly increasing in equilibrium.

19Absolute advantage across all sectors is far from necessary. The weaker condition that productivity is increasing
in skill at the equilibrium assignments, d

dω
H(ω,M(ω)) > 0, is sufficient.
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supporting these assignments comes from combining individuals’ utility-maximizing decisions and

the boundary condition r(c, τ̄(c)) = 0.

Lemma 2.3 (Autarky locational prices). In autarkic equilibrium, r(c, τ) is continuously differen-

tiable on τ ≥ 0 and given by r(c, τ) = −A(c)
∫ τ̄(c)
τ T ′(t)G(N(t))dt for τ ≤ τ̄(c).

The properties of interest in a competitive equilibrium are characterized by the assignment

functions M and N . In the autarkic equilibrium, more skilled individuals work in more skill-

intensive sectors and live in more desirable locations.

2.3.4 A system of cities

The previous section described a single city with an exogenous population. We now describe a

system of cities in which these populations are endogenously determined in spatial equilibrium.

Take cities’ TFPs, which will be endogenously determined in equilibrium, as given for now and

order the cities so that A(C) ≥ A(C − 1) ≥ · · · ≥ A(2) ≥ A(1).20 In autarky, τ was a sufficient

statistic for the attractiveness of a location. Now a location’s attractiveness, which we denote by

γ, depends both on city-level TFP and its innate desirability within the city.

Definition 2.1. The attractiveness of a location in city c of desirability τ is γ = A(c)T (τ).

Cities with higher TFP have larger populations. Consider two cities, c and c′, that differ

in productivity, with A(c) > A(c′). The city with greater TFP will have greater population,

L(c) > L(c′). If it did not, the least desirable occupied location in city c would be more desirable

than the least desirable occupied location in city c′, τ̄(c) ≤ τ̄(c′), since the supply of locations,

S(τ), is common across cities. Since TFP is also higher in c, this would make the least attractive

occupied location in city c more attractive than the least attractive occupied location in city c′,

A(c)T (τ̄(c)) > A(c′)T (τ̄(c′)). In equilibrium, the least desirable occupied location in each city has

a price of zero, r(c, τ̄(c)) = r(c′, τ̄(c′)) = 0, by lemma 2.1. In that case, every individual would

agree that living in c at τ̄(c) is strictly better than living in c′ at τ̄(c′) (because A(c)T (τ̄(c))G(ω) >

20Individuals take these TFPs as given. For now, we can assume these differences in total factor productivity are
exogenously given. We describe their endogenous determination in section 2.3.6.
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A(c′)T (τ̄(c′))G(ω)), which contradicts the definition of τ̄(c′) as an occupied location. So the city

with higher TFP must have a larger population.

A smaller city’s locations are a subset of those in a larger city in terms of attractiveness. For

every location in the less populous city, there is a location in the more populous city that is equally

attractive. The location in city c′ of desirability τ ′ is equivalent to a location τ in city c, given by

A(c)T (τ) = A(c′)T (τ ′). The equally attractive location in the larger city has higher TFP but lower

innate desirability. That is, an individual who is indifferent between Chicago and Des Moines lives

closer to the most desirable location in Des Moines than the most desirable location in Chicago,

τ ′ = T−1
(
A(c)
A(c′)T (τ)

)
< τ . The more populous city also has locations that are strictly more

attractive than the best location in the less populous city; locations of attractiveness γ > A(c′)T (0)

are found in c and not in c′. In equilibrium, two locations of equal attractiveness must have the

same price, so we can describe the rental price of a location of attractiveness γ as rΓ(γ).

To characterize locational assignments and prices in the system of cities, we first characterize

assignments and prices in terms of γ. The solution is analogous to that derived in the autarkic

case. We then translate these assignments and prices into functions of c and τ .

Individuals of higher skill have greater willingness to pay for more attractive locations, so in

equilibrium higher-ω individuals live in higher-γ locations.

Lemma 2.4 (Locational assignments). In equilibrium, there exists a continuous and strictly in-

creasing locational assignment function K : Γ → Ω such that f(ω, c, τ, σ) > 0 ⇐⇒ A(c)T (τ) = γ

and K(γ) = ω, where K(γ) = ω, and K(γ̄) = ω̄.

To obtain an explicit expression for K : Γ→ Ω, we can denote the supply of locations offering

benefits γ or greater as SΓ(γ). The supply function is

SΓ(γ) =
∑

c:A(c)T (0)≥γ

S

(
T−1

(
γ

A(c)

))

By definition SΓ(γ̄) = 0 and by the fact that the best locations are populated SΓ(γ) = L. Lemmas

2.1 and 2.4 allow us to say that SΓ(γ) = L
∫ γ̄
γ f(K(x))K ′(x)dx, so K(γ) = F−1

(
L−SΓ(γ)

L

)
. These

locational assignments yield an expression for equilibrium locational prices.
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Lemma 2.5 (Locational prices). In equilibrium, rΓ(γ) is continuously differentiable on [γ, γ̄] and

given by rΓ(γ) =
∫ γ
γ G(K(x))dx.

Therefore, the determination of locational assignments and prices within the system of cities is

analogous to determining these locational assignments and prices for an autarkic city with a supply

of locations that is the sum of locations across the system of cities. The task that remains is to

translate these assignments and prices from γ back to c, τ .

The city limit is τ̄(c) = T−1
(

γ

A(c)

)
. Since we are not focused on rental prices, a sufficient char-

acterization is r(c, τ) = rΓ(A(c)T (τ)). For locational assignments, we obtain an explicit expression

that characterizes cities’ skill distributions in terms of ω and c.

Lemma 2.6 (A city’s skill distribution). The population of individuals of skill ω in city c is

f(ω, c) =


−K−1′ (ω)
A(c)L T−1′

(
K−1(ω)
A(c)

)
S′
(
T−1

(
K−1(ω)
A(c)

))
if A(c)T (0) ≥ K−1(ω)

0 otherwise
.

The relative populations of individuals of skill ω depends on the relative supply of locations of

attractiveness K−1(ω). Since higher-ω individuals live in more attractive locations and the most

attractive locations are found exclusively in the larger city, there is an interval of high-ω individuals

who reside exclusively in the larger city. Individuals of abilities below this interval are found in

both cities, and individuals of equal skill reside in equally attractive locations that have equal rental

prices.

2.3.5 Cities’ populations and sectors

When more desirable locations within cities are scarcer, our model implies that larger cities will

exhibit relatively more skilled populations and produce relatively more in skill-intensive sectors.

The first result comes from large cities offering more attractive locations, which are occupied by

more skilled individuals in equilibrium. The second result comes from larger cities’ TFP advantages

being sector-neutral, so that sectoral composition is governed by skill composition.

Larger cities have relatively more skilled populations. We have already shown that the most

skilled individuals live exclusively in the largest city because it offers the most attractive locations.
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What about individuals of skill levels found in multiple cities? The distribution of skills is governed

by the interaction of city TFPs, A(c), and the supply of locations within cities yielding at least

T (τ) = z, which is S(T−1(z)). We say that the latter is well-behaved when more desirable locations

are scarcer and their distribution satisfies a common regularity condition.21

Definition 2.2. The supply of locations within cities is well-behaved if the density − ∂
∂zS(T−1(z))

is decreasing and log-concave.

When the supply of locations within cities is well-behaved, more skilled individuals are relatively

more prevalent in larger cities throughout the skill distribution. Consider a location in Des Moines,

which has attractiveness γ′. Higher-TFP Chicago has more locations of attractiveness γ ≥ γ′, since

S(τ) is increasing. If S(T−1(z)) is well-behaved, then Chicago’s supply of γ′ locations relative to

γ′′ locations, for any γ′ > γ′′, is greater than that of Des Moines. Since higher-ω individuals live in

higher-γ locations, this means the population of Chicago is relatively more skilled when comparing

any two skill types. Proposition 2.1 states this result for a system of cities; its proof is in appendix

B.2.

Proposition 2.1 (Skill abundance). If the supply of locations within cities is well-behaved, then

f(ω, c) is log-supermodular.

Our next set of results concern the sectoral output of cities. Since individuals’ choices of sectors

are independent of their cities and locations, the cross-city skill distribution governs the cross-city

output distribution. Larger cities are relatively skill-abundant and more skilled individuals work

in more skill-intensive sectors, so larger cities produce relatively more in skill-intensive sectors.

These patterns of specialization and trade are closely related to the high-dimensional model

of endowment-driven comparative advantage introduced by Costinot (2009), but in our setting

cities’ populations are endogenously determined.22 Since at equilibrium larger cities’ productivity

advantages are sector-neutral differences in total factor productivity, f(ω, c) is log-supermodular,

21Log-concavity is most commonly used in economics in the context of probability distributions (Bagnoli and
Bergstrom, 2005).

22Assumption 2 in Costinot (2009)’s factor endowment model is that countries’ exogenous endowments are such
that countries can be ranked according to the monotone likelihood ratio property. Proposition 2.1 identifies sufficient
conditions for cities’ equilibrium skill distributions to exhibit this property.
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and H(ω, σ) is log-supermodular, our economy’s equilibrium satisfies Definition 4, Assumption 2,

and Assumption 3 of Costinot (2009).23 The result is that Q(σ, c) is log-supermodular. As shown

by Corollaries 2 and 3 in Costinot (2009), we can therefore rank the relative output (Q(σ, c)),

employment (f(σ, c) ≡
∫
τ∈T

∫
ω∈Ω f(ω, c, τ, σ)dωdτ), and revenue (R(σ, c) ≡ p(σ)Q(σ, c)) of any

two sectors in any two cities.

Proposition 2.2 (Comparative Advantage). If f(ω, c) is log-supermodular, then Q(σ, c), f(σ, c),

and R(σ, c) are log-supermodular, so that for c ≥ c′ and σ ≥ σ′, the following inequalities hold true

Q(σ, c)Q(σ′, c′) ≥ Q(σ, c′)Q(σ′, c)

f(σ, c)f(σ′, c′) ≥ f(σ, c′)f(σ′, c) (2.12)

R(σ, c)R(σ′, c′) ≥ R(σ, c′)R(σ′, c)

These inequalities characterize the pattern of comparative advantage across cities.24

2.3.6 Endogenizing cities’ total factor productivities

Our exposition of equilibrium in sections 2.3.4 and 2.3.5 took cities’ total factor productivities as

exogenously given. When the conditions of Proposition 2.1 are satisfied, a city that has higher total

factor productivity A(c) is larger and has a skill distribution f(ω, c) that likelihood ratio dominates

those of cities with lower TFPs. Thus, this spatial pattern can be supported by endogenous

productivity processes that make the city-level characteristic A(c) higher when the city contains

a larger and more skilled population, such as the class of agglomeration functions described by

23Definition 4 of Costinot (2009) requires that factor productivity vary across countries (cities) in a Hicks-neutral
fashion. Since productivity A(c)T (τ) varies both across and within cities, our production function q(c, τ, σ;ω) does
not satisfy this requirement for arbitrary locational assignments. However, in equilibrium, our economy does exhibit
this property. In the production interpretation of T (τ), equilibrium productivity q(c, τ, σ;ω) = K−1(ω)H(ω, σ) does
not vary across ω-occupied locations and is log-supermodular in ω and σ. In the notation of equation (6) in Costinot
(2009), a(γ) = 1 and h(ω, σ) = K−1(ω)H(ω, σ), satisfying Definition 4 and Assumption 3.

24A traditional definition of comparative advantage refers to locations’ autarkic prices. In our setting, autarky
means prohibiting both trade of intermediate goods and migration between cities. Since individuals are spatially
mobile, cities do not have “factor endowments”, and we must specify the autarkic skill distributions. If we consider
an autarkic equilibrium with the skill distributions from the system-of-cities equilibrium, then larger cities have lower
relative autarkic prices for higher-σ goods because they are skill-abundant in the MLRP sense, as shown by Costinot
and Vogel (2010, p. 782).
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equation (2.5). Numerous agglomeration processes may generate such productivity benefits, and

we do not attempt to distinguish between them here.

2.4 Empirical approach and data description

We examine the predictions of Propositions 2.1 and 2.2 using two approaches. The first involves

regression estimates of the population elasticities of educational, occupational, and industrial pop-

ulations. The second involves pairwise comparisons governed by the monotone likelihood ratio

property.

Empirically testing our model requires data on cities’ skill distributions, sectors’ skill intensities,

and cities’ sectoral employment. We use public-use microdata from the US Census of Population

to identify the first two. The latter is described by data from County Business Patterns and

Occupational Employment Statistics. The Census of Population describes individuals’ educational

attainments, geographic locations, places of birth, occupations, and industries. County Business

Patterns describes cities’ industrial employment. Occupational Employment Statistics describes

cities’ occupational employment. We combine these various data at the level of (consolidated)

metropolitan statistical areas (MSAs); see appendix B.3 for details.

2.4.1 Empirical tests

Propositions 2.1 and 2.2 say that the distribution of skills across cities, f(ω, c), and the distribution

of sectoral employment across cities, f(σ, c), are log-supermodular functions. Log-supermodularity

has many implications; we focus on two that are amenable to empirical testing. If the function

f(ν, c) is log-supermodular, then

� a linear regression ln f(ν, c) = αν + βν lnL(c) + εν,c in which αν are fixed effects and L(c) is

city population yields βν ≥ βν′ ⇐⇒ ν ≥ ν ′;

� if C and C′ are distinct sets and C is greater than C′ (infc∈C L(c) > supc′∈C′ L(c′)), then∑
c∈C f(ν, c)

∑
c′∈C′ f(ν ′, c′) ≥

∑
c∈C f(ν ′, c)

∑
c′∈C′ f(ν, c′) ∀ν > ν ′.
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The first implication, which we will refer to as the “elasticity test,” says that the city-population

elasticity of the population of a skill type in a city f(ω, c) is increasing in skill ω.25 Similarly, the

population elasticity of sectoral employment f(σ, c) is increasing in skill intensity σ. The elasticity

test examines the patterns suggested by Figures 2.1 through 2.3, where steeper slopes correspond to

higher elasticities. Our theory thus provides a structure to interpret previous work describing the

population elasticities of sectoral employment, such as Henderson (1983) and Holmes and Stevens

(2004).26 The second implication, which we will refer to as the “pairwise comparisons test”, says

that if cities are divided into bins ordered by population sizes, then in any pairwise comparison of

two bins and two skills/sectors, the bin containing more populous cities will have relatively more

of the more skilled type.27

2.4.2 Skills

Following a large literature, we use observed educational attainment as a proxy for individuals’

skills.28 Educational attainment is a coarse measure, but it is the best measure available in data

describing a large number of people across detailed geographic locations. To describe cities’ skill

distributions, we aggregate individual-level microdata to the level of metropolitan statistical areas.

A large literature in urban economics describes variation in terms of two skill groups, typically

college and non-college workers. Following Acemoglu and Autor (2011), we use a minimum of three

skill groups. The Census 2000 microdata identify 16 levels of educational attainment, from “no

schooling completed” to “doctoral degree”. We define three skill groups of approximately equal

size among the working population: high-school degree or less; some college or associate’s degree;

25The linear regression may understood as a first-order Taylor approximation: ln f(ν, c) ≈ ln f(ν, c∗) +
∂ ln f(ν,c∗)
∂ lnL(c)

(lnL(c)−lnL(c∗))+ε = αν+βν lnL(c)+εν,c, where βν = ∂ ln f(ν,c∗)
∂ lnL(c)

is increasing in ν by log-supermodularity

of f(ν, c).

26Henderson (1983) regresses employment shares on population levels, but reports “percent T share / percent T
population”, which is equal to βσ − 1 in our notation. Similarly, Holmes and Stevens (2004) describe how location
quotients, a city’s share of industry employment divided by its share of total employment, vary with city size. In our

notation, a location quotient is LQ(σ, c) =
f(σ,c)/

P
c′ f(σ,c′)

L(c)/L
, so the L(c)-elasticity of LQ(σ, c) is βσ − 1.

27The pairwise comparisons test follows from taking sums twice of each side of f(ν, c)f(ν′, c′) ≥ f(ν′, c)f(ν, c′)
given c > c′ ∀c ∈ C ∀c′ ∈ C′ ∀ν > ν′.

28Costinot and Vogel (2010) show that log-supermodularity of factor supplies in an observed characteristic and
unobserved skill ω is sufficient for mapping a theory with a continuum of skills to data with discrete characteristics.
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and bachelor’s degree or more. In a more ambitious approach, we also consider nine skill groups,

ranging from individuals who never reached high school (3 percent of the population) to those with

doctoral degrees (1 percent).29 Table 2.1 shows the population shares of each of these skill groups

in 2000.

Table 2.1: Skill groups by educational attainment

Skill (3 groups) Population share Skill (9 groups) Population share
High school or less 0.35 Less than high school 0.03

High school dropout 0.07
High school graduate 0.24

Some college 0.32 College dropout 0.24
Associate’s degree 0.08

BA or more 0.33 Bachelor’s degree 0.21
Master’s degree 0.08
Professional degree 0.03
Doctoral degree 0.01

Population shares are percentages of full-time, full-year prime-age workers.

Source: Census 2000 microdata via IPUMS-USA

2.4.3 Sectors

In our model, workers produce freely traded sectoral outputs indexed by σ that are used to produce

the final good. In the international trade literature, it is common to interpret sectors in models of

comparative advantage as industries. Recent work in both international and labor economics has

emphasized a perspective focused on workers completing tasks, which empirical work has frequently

operationalized as occupations (Grossman and Rossi-Hansberg, 2008; Acemoglu and Autor, 2011).

We will implement empirical tests using each. We define sectors to be the 21 manufacturing indus-

tries in the three-digit stratum of the North American Industry Classification System (NAICS) or

the 22 occupational categories in the two-digit stratum of the Standard Occupational Classification

(SOC). We suspect that the assignment of workers to sectors is better characterized as assignments

to occupations than assignments to industries, since virtually all industries employ both skilled

and unskilled workers. Our measures of cross-sectoral variation in skill intensities in the following

section are consistent with this conjecture.

29Individuals with doctorates typically earn less than individuals with professional degrees, so it may be inappro-
priate to treat PhDs as higher-ω individuals than professionals.
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We measure industrial employment in a metropolitan area using data from the 2000 County

Business Patterns. We measure occupational employment in a metropolitan area using estimates

from the 2000 BLS Occupational Employment Statistics. See appendix B.3 for details.

2.4.4 Skill intensities

Our theory makes the strong assumption that H(ω, σ) is strictly log-supermodular so that sectors

are ordered with respect to their skill intensities. In our empirical work, we infer sectors’ skill

intensities from the data using the observable characteristics of the workers employed in them.

We use microdata from the 2000 Census of Population, which contains information about workers’

educational attainments, industries, and occupations. We use the average years of schooling of

workers employed in a sector as a measure of its skill intensity.30 In doing so, we control for

spatial differences by regressing years of schooling on both sectoral and city fixed effects, but we

have found that omitting the city fixed effects has little effect on the estimated skill intensities.

Table 2.2 reports the five least skill-intensive and five most skill-intensive sectors among both the

21 manufacturing industries and the 22 occupational categories. There is considerably greater

variation in average years of schooling across occupational categories than across industries.31 This

may suggest that the “assignment to occupations” interpretation of our model will be a more apt

description of the data than the “assignments to industries” interpretation.

30Autor and Dorn (2013) rank occupations by their skill level according to their mean log wage. Our assumption
of absolute advantage is consistent with such an approach. Using average log wages as our measure of skill intensity
yields empirical success rates comparable to and slightly higher on average than those reported in section 2.5. We use
years of schooling rather than wages as our measure of sectoral skill intensities since nominal wages may also reflect
compensating differentials or local amenities.

31The standard deviations of average years of schooling across occupational categories, industries, and manufac-
turing industries are 2.2, 1.0, and 0.9, respectively.
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Table 2.2: Sectoral skill intensities

Skill Skill

SOC Occupational category intensity NAICS Manufacturing industry intensity

45 Farming, Fishing, and Forestry 9.3 315 Apparel 10.7

37 Building & Grounds Cleaning 10.9 314 Textile Product Mills 11.4

35 Food Preparation and Serving 11.4 316 Leather and Allied Product 11.7

47 Construction and Extraction 11.5 313 Textile Mills 11.7

51 Production 11.6 337 Furniture and Related Products 11.7

29 Healthcare Practitioners and Technical 15.6 312 Beverage and Tobacco Products 13.1

21 Community and Social Services 15.8 336 Transportation Equipment 13.2

25 Education, Training, and Library 16.5 324 Petroleum and Coal Products 13.5

19 Life, Physical, and Social Science 17.1 334 Computer & Electronic Products 14.1

23 Legal 17.3 325 Chemical 14.1

Source: Census 2000 microdata via IPUMS-USA.

2.4.5 Pairwise weights

The most disaggregate implications of Propositions 2.1 and 2.2 are inequalities describing the

number of individuals residing (employed) in two cities and two skill groups (sectors). Empirically

testing these pairwise predictions involves evaluating as many as ten million of these inequalities

and summarizing the results. An important question is whether each of these comparisons should

be considered equally informative.

An unweighted summary statistic assigns equal weight to correctly predicting that Chicago

(population 9 million) is relatively more skilled than Des Moines (population 456 thousand) and

correctly predicting that Des Moines is relatively more skilled than Kalamazoo (population 453

thousand). Given the numerous idiosyncratic features of the real world omitted from our parsi-

monious theory, the former comparison seems much more informative about the relevance of our

theory than the latter. Similarly, an unweighted summary statistic treats comparisons involving

high school graduates (24 percent of the workforce) and comparisons involving PhDs (1 percent of

the workforce) equally, while these differ in their economic import.

Following Trefler (1995), we report weighted averages of success rates in addition to unweighted

statistics. In describing skill distributions, we weight each pairwise comparison by the two cities’

difference in log population. When we consider nine skill groups, we also report a case where we

weight by the product of the two skill groups’ population shares. Figure 2.4 shows the distribution

of differences in log population across city pairs. Since the majority of city pairs have quite small
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differences in log population, the unweighted and weighted statistics may yield substantially differ-

ent results. In describing sectoral distributions, we weight pairwise comparisons by the two cities’

difference in log population, the two sectors’ difference in skill intensity, or the product of these.

Figure 2.5 shows the distribution of differences in skill intensity across occupational pairs. While

not as right-skewed as the distribution of differences in log population, this distribution may cause

the unweighted and weighted statistics to differ. Figure 2.6 shows the distribution of differences in

skill intensity across industries. The median difference between occupations is 2.3 years while the

median difference between manufacturing industries is only 0.9 years. This relative compression in

skill differences in the industrial data suggests that it may prove harder to make strong statements

about differences across cities in industries than in occupations. Figures 2.5 and 2.6 underscore the

importance of looking at weighted comparisons.

Figure 2.4: Differences in population across city pairs
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Figure 2.5: Differences in skill intensities across occupational pairs
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Data source: 2000 Census of Population microdata via IPUMS-USA.

Figure 2.6: Differences in skill intensities across industrial pairs0
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2.5 Empirical results

In this section, we test our predictions relating cities’ sizes to their distributions of skill, occu-

pational employment, and industrial employment. First, we examine whether populations are

log-supermodular in educational attainment and city size. This prediction is a much stronger char-

acterization of cities’ skill distributions than the well known fact that larger cities typically have

a greater share of college graduates. Second, we examine whether the spatial pattern of sectoral

employment is governed by this spatial pattern of skills. Our theory’s predictions are more realistic

than completely specialized or perfectly diversified cities and more specific than theories allowing
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arbitrary patterns of interindustry spillovers.

The data are broadly consistent with both of our novel predictions. Skill distributions regularly

exhibit the monotone likelihood ratio property, though international migration plays an important

role in the largest US cities that is omitted from our model. More skill-intensive sectors are relatively

larger in more populous cities, on average. However, cities’ sectoral distributions do not exhibit

the monotone likelihood ratio property as often as cities’ skill distributions do. One interpretation

of this result is that skill-driven comparative advantage plays an important role in determining

the spatial pattern of production, but localization and coagglomeration economies may also play a

role.32 We show that there are not systematic violations of our predicted pattern of comparative

advantage.

2.5.1 Larger cities are relatively more skilled

This subsection tests our prediction that larger cities have relatively more skilled populations. We

empirically describe skill abundance using the two tests described in section 2.4.1. We first do these

exercises using three skill groups defined by educational attainment levels and then repeat them

using nine very disaggregated skill groups.

2.5.1.1 Three skill groups

The elasticity test applied to the three skill groups across 270 metropolitan areas is reported in Table

2.3. The results match our theory’s prediction that larger cities will have relatively more people

from higher skill groups. The population elasticities are monotonically increasing in educational

attainment and the elasticities differ significantly from each other. In anticipation of issues related

to international immigration that arise when we examine nine skill groups, the second column

of the table reports the population elasticities of US-born individuals for these three educational

categories. The estimated elasticities are slightly lower, since foreign-born individuals are more

concentrated in larger cities, but the differences between the elasticities are very similar.

32Since the employment data do not distinguish employees by birthplace, another possibility is that the dispropor-
tionate presence of low-skill foreign-born individuals in larger cities influences sectoral composition in a manner not
described by our theory.
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Table 2.3: Population elasticities of educational groups

Dep var: ln f(ω, c) All US-born
βω1 HS or less 0.96 0.90
× log population (0.011) (0.016)

βω2 Some college 1.00 0.97
× log population (0.010) (0.012)

βω3 BA or more 1.10 1.07
× log population (0.015) (0.017)

Standard errors, clustered by MSA, in parentheses.

Sample is all full-time, full-year employees residing in 270 metropolitan areas.

The pairwise comparison test examines ordered groups of cities to see if the relative population

of the more skilled is greater in larger cities. Implementing this test involves defining groups of

cities. Ordering cities by population, we partition the 270 metropolitan areas in our data into 2, 3,

5, 10, 30, 90, and 270 sets of cities. Making pairwise comparisons between three skill groups and as

many as 270 metropolitan areas involves computing up to 108,945 inequalities.33 Note that prior

work typically describes a contrast between large and small cities for high and low skills, whereas

our most aggregated comparison is between large and small cities for three skill groups.

Figure 2.7 and Appendix Table B.1 summarize the results of these tests using various sets of

cities, weights, and birthplaces. In the unweighted comparisons, the success rate ranges from 60

percent when comparing individual cities to 97 percent when comparing five groups of cities to 100

percent for the standard case of two groups of cities. Weighting the comparisons by the population

difference generally yields a higher success rate.34 When we weight by population differences, the

success rate is 67 percent when comparing individual cities, 98 percent for five groups of cities, and

100 percent for the simple comparison of large versus small cities.35

33With n city groups and m skill groups, we make n(n−1)
2

m(m−1)
2

comparisons. For example, 270×269
2

3×2
2

= 108, 945.

34Despite the fact that the success rate of the Des-Moines-Kalamazoo comparisons is actually higher than the
Chicago-Des-Moines comparisons.

35Our comparisons of two or five groups of cities are analogous to the empirical exercises presented in Eeckhout,
Pinheiro, and Schmidheiny (2011) and Bacolod, Blum, and Strange (2009).
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Figure 2.7: Pairwise comparisons of three skill groups
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2.5.1.2 Nine skill groups

We next examine our tests for the case with nine skill groups. Starting with the elasticity test,

Table 2.4 shows, contrary to our model’s predictions, that those not completing high school are

highly prevalent in larger cities. The second column reveals that this result is due to the presence

of foreign-born individuals with low educational attainment in larger cities. If we restrict attention

to US-born individuals, we can only reject the hypothesis that βω ≥ βω′ ⇐⇒ ω ≥ ω′ in one of

thirty-six comparisons, the case where βω2 = 0.94 > 0.90 = βω3 .36 In short, the elasticity test

provides strong support for our theory when we examine the US-born population.37

How should we interpret the difference between the spatial distribution of skills among the pop-

ulation as a whole and among US-born individuals? One possibility is that immigrants strongly

prefer larger cities for reasons omitted from our model, causing less-skilled foreign-born individuals

36The estimated elasticities for the tails of the skill distribution have larger standard errors. This likely reflects
greater sampling noise for scarce educational categories; for example, the median (C)MSA had 34 observations of
full-time, full-year employees with a PhD in the 5 percent public-use 2000 Census microdata.

37Interestingly, among US-born individuals, the nine estimated elasticities naturally break into the three
more aggregate educational attainment categories that we used above: βω1 , βω2 , βω3 ∈ (0.91, 0.94);βω4 , βω5 ∈
(0.96, 0.98);βω6 , βω7 , βω8 , βω9 ∈ (1.06, 1.09).

72



Table 2.4: Population elasticities of educational groups, 2000

Dep var: ln f(ω, c) All US-born
βω1 Less than HS 1.17 0.91
× log population (0.039) (0.028)

βω2 High school dropout 1.03 0.94
× log population (0.017) (0.020)

βω3 High school graduate 0.93 0.90
× log population (0.013) (0.016)

βω4 College dropout 1.00 0.98
× log population (0.011) (0.013)

βω5 Associate’s degree 1.00 0.96
× log population (0.014) (0.016)

βω6 Bachelor’s degree 1.10 1.07
× log population (0.015) (0.017)

βω7 Master’s degree 1.12 1.09
× log population (0.018) (0.019)

βω8 Professional degree 1.12 1.09
× log population (0.018) (0.019)

βω9 PhD 1.11 1.06
× log population (0.035) (0.033)

Standard errors, clustered by MSA, in parentheses.

Sample is all full-time, full-year employees residing in 270 metropolitan areas.

to disproportionately locate in larger cities. This would be consistent with an established litera-

ture that describes agglomeration benefits particular to unskilled foreign-born individuals, such as

linguistic enclaves (Edin, Fredriksson, and Aslund, 2003; Bauer, Epstein, and Gang, 2005).38

Eeckhout, Pinheiro, and Schmidheiny (2011) articulate another possibility, in which an economic

mechanism they term “extreme-skill complementarity” causes less skilled individuals, foreign-born

or US-born, to disproportionately reside in larger cities. Larger cities’ benefits for immigrants serve

as a “tie breaker” that causes the foreign-born to choose larger cities in equilibrium. This theory

predicts that in the absence of foreign-born low-skilled individuals, US-born low-skilled individuals

would disproportionately locate in larger cities.

We attempt to distinguish between these hypotheses by looking at the skill distributions of US

cities two decades earlier. In 2000, foreign-born individuals were 11 percent of the US population,

while in 1980 they constituted about 6 percent. More importantly, in 2000, foreign-born individuals

38Another potential mechanism is that immigrants may find larger cities’ combination of higher nominal wages
and higher housing prices more attractive than natives (Diamond, 2012), possibly because they remit their nominal
incomes abroad or demand less housing than US-born individuals.
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Table 2.5: Population elasticities of educational groups, 1980

Population Population elasticities
share All US-born
0.06 βω1 Less than grade 9 0.99 0.89

× log population (0.028) (0.030)

0.11 βω2 Grades 9-11 1.00 0.98
× log population (0.019) (0.021)

0.33 βω3 Grade 12 0.97 0.95
× log population (0.013) (0.015)

0.08 βω4 1 year college 1.04 1.03
× log population (0.018) (0.018)

0.13 βω5 2-3 years college 1.09 1.07
× log population (0.018) (0.018)

0.13 βω6 4 years college 1.10 1.08
× log population (0.018) (0.018)

0.13 βω7 5+ years college 1.13 1.11
× log population (0.022) (0.022)

Standard errors, clustered by MSA, in parentheses

Sample is full-time, full-year employees residing in 253 metropolitan areas.

constituted nearly 80 percent of the lowest skill group, while in 1980 they were less than one third

of the lowest skill group. If our hypothesis that foreign-born individuals are particularly attracted

to larger cities is correct, then the population elasticity of less-skilled types should be lower when

foreign-born shares are lower. Table 2.5 demonstrates that this is the case in 1980. It does not

provide any evidence that the least skilled were overrepresented in larger cities in 1980, among either

the population as a whole or US-born individuals.39 Reconciling these results with the model of

Eeckhout, Pinheiro, and Schmidheiny (2011) would require that the production function changed

from top-skill complementarity in 1980 to extreme-skill complementarity in 2000.

We now turn to the pairwise comparisons for the case with nine skill groups in 2000, summarized

in Figure 2.8 and Appendix Table B.2. These test inequalities for 36,315 individual city pairs for

each pairing of the nine skill groups. In both the unweighted and weighted comparisons, our

theory does best in predicting comparisons of skill groups that have a high school degree or higher

attainment. Fewer than 50 percent of the comparisons yield the correct inequality when the “less

than high school” skill group is involved in the comparison. As would be expected from the

39The educational categories in Table 2.5 differ from prior tables because Census microdata collected prior to 1990
identify coarser levels of educational attainment in terms of years of schooling rather than highest degree attained.
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Figure 2.8: Pairwise comparisons of nine skill groups
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previous results, these comparisons are considerably more successful when restricted to the US-

born population. When these are also weighted by population differences and education shares,

the overall success rate in comparing individual cities rises to 64 percent.

Figure 2.8 and Appendix Table B.3 show how the pairwise comparison success varies when

we group cities by size. When we restrict attention to the US-born, the unweighted success rate

respectively for individual cities, five and two groups of cities are 56 percent, 71 percent, and 81

percent. If, in addition, we weight successes by education shares and population differences, the

success rates for individual cities, five and two groups of cities are 64 percent, 87 percent, and 88

percent, respectively. In short, for the case of nine skill groups, the raw comparisons for individual

cities including the foreign born show very modest success. As in the elasticities test, restricting

attention to the US-born population yields significant improvement. Likewise, there is considerably

greater success as we group cities and as we weight them by the overall prevalence of the education

group in the labor force. Overall, we consider this solid support for our theory.
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2.5.2 Larger cities specialize in skill-intensive sectors

This section examines the spatial pattern of sectoral employment. In our theory, larger cities are

relatively more skilled, cities’ equilibrium productivity differences are Hicks-neutral, and sectors

can be ordered by their skill intensity, so larger cities employ relatively more labor in skill-intensive

sectors. We established that larger cities are relatively more skilled in section 2.5.1. We now

examine whether larger cities are relatively specialized in skill-intensive sectors. Since employment

levels in both industries and occupations are readily available in the data, we test the employment

implications of Proposition 2.2.40

2.5.2.1 The spatial distribution of occupations

We first implement the elasticities test and the pairwise comparisons test interpreting sectors as

occupations. We begin with a visualization of the elasticity results. Figure 2.9 plots the 22 occu-

pational categories’ estimated population elasticities of employment against their skill intensities,

measured as the average years of schooling of individuals employed in that occupation.41 There

is a clear positive relationship. Outliers in the figure include close-to-unitary elasticities for the

relatively skilled occupations in education, healthcare, and social services, which may reflect non-

traded status. On the other side, computer and mathematical occupations have an elasticity that

is quite high relative to their average schooling.

We can also look at this more formally. With the population elasticities of occupations in hand,

the hypothesis that βσ ≥ βσ′ ⇐⇒ σ ≥ σ′ involves 231 (= 22× 21/2) comparisons of the estimated

coefficients.42 This hypothesis is rejected at the five-percent significance level in 46 comparisons,

so the success rate is 80 percent.

The results for pairwise comparisons for occupations appear in Figure 2.10 and Appendix Table

B.5. When we do this for 276 cities and 22 occupations, we have a total of 8,766,450 pairwise

40Section 2.5.1 showed that US-born individuals better match our model’s predictions about the distribution of
skills. Unfortunately, the County Business Patterns and Occupational Employment Statistics data describe employ-
ment counts, not individual employees’ characteristics, so we cannot address the birthplace issues in this section.

41These elasticities are estimated without including zero-employment observations. The results obtained when
including those observations are similar.

42The elasticity estimates appear in Appendix Table B.4.
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Figure 2.9: Occupations’ population elasticities and skill intensities
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comparisons, of which 53 percent are correct. This is low compared to our results for skills. When

we stay with individual cities but weight by population and skill differences, this rises above 58

percent. We can maintain the weighting and consider it for cities grouped by size into, for example,

30, 5, or 2 groups. The corresponding proportion of successes rises respectively to 66, 73, and

78 percent. While the results for occupations are not as strong as the results for skills, there are

nonetheless quite informative patterns – even when we group cities into five size-based bins, we get

nearly three-fourths of the pairwise comparisons correct across the 22 occupational categories.
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Figure 2.10: Pairwise comparisons of 22 occupational categories
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2.5.2.2 The spatial distribution of industries

We now implement the elasticities test and the pairwise comparisons test interpreting sectors as

manufacturing industries.43 A visualization of the elasticity test appears in Figure 2.11. Again,

as predicted by our theory, there is a clear positive relationship so that the population elasticity

of industry employment is rising with the skill intensity of the industry. The apparel industry

is an outlier, with low average education and a high population elasticity of employment. This

may reflect the share of apparel industry employees who are less-skilled foreign-born individuals,

consistent with our previous discussion of skills. Testing the hypothesis that βσ ≥ βσ′ ⇐⇒ σ ≥ σ′

for the 21 manufacturing industries involves 210 (= 21 × 20/2) comparisons of these estimated

elasticities.44 This hypothesis is rejected in 26 comparisons, so the elasticity implication holds true

for manufacturing industries about 87 percent of the time.45 This success rate is higher than the

43We focus on manufacturing industries since we believe they have the lowest trade costs, but we have found
broadly similar results when using all industries.

44The elasticity estimates appear in Appendix Table B.6.

45If we restrict the data to uncensored observations, which reduces the sample considerably, this hypothesis is
rejected in 32 comparisons, for an 85 percent success rate. See appendix B.3 for a discussion of censoring in County
Business Patterns data.
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Figure 2.11: Industries’ population elasticities and skill intensities
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corresponding statistic for occupational elasticities.

The pairwise comparisons results for industries appear in Figure 2.12 and Appendix Table

B.7. When we do this for 276 individual cities and 21 industries, we have a total of nearly 8

million pairwise comparisons, of which just half are correct. Weighting this by skill and population

differences raises this to 54 percent, again low compared to our results for pairwise comparisons

of skills. We can maintain the weighting and consider this for cities grouped by size into 30, 5, or

2 groups. The corresponding proportion of successes rises respectively to 58, 66, and 71 percent.

These are low relative to the prior results on occupations and even more so relative to the results

on skills. Nonetheless, they do show that there is systematic variation across cities of different sizes

in the composition of manufacturing.46 Note that prior work contrasting large and medium-size

cities, Henderson (1997), is analogous to our comparisons of two or three groups of cities ordered

by population.

46These results are not driven solely by the largest metropolitan areas; excluding the ten largest cities from pairwise
comparisons of occupations and industries yields similar success rates.
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Figure 2.12: Pairwise comparisons of 21 manufacturing industries
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2.5.3 Testing for systematic failures of comparative advantage

Our results for the cross-city distributions of skills, industries, and occupations demonstrate sys-

tematic patterns in line with our theory’s predictions. While demonstrating predictive power, the

pairwise comparisons also fall well short of 100 percent success. This is not surprising, given that our

model’s parsimony stems from making strong assumptions that omit various features that influence

the real world. An important question is whether our theory’s unsuccessful pairwise predictions

are merely idiosyncratic deviations from the pattern of comparative advantage or are systematic

violations of our predicted pattern.

Sattinger (1978) develops an approach to test for such systematic violations in the form of

systematic intransitivity in the pattern of comparative advantage. It is possible for the data to

exhibit, for c > c′ > c′′ and σ > σ′ > σ′′, f(σ,c)
f(σ′,c) ≥

f(σ,c′)
f(σ′,c′) and f(σ′,c′)

f(σ′′,c′) ≥
f(σ′,c′′)
f(σ′′,c′′) without exhibit-

ing f(σ,c)
f(σ′′,c) ≥

f(σ,c′′)
f(σ′′,c′′) . With hundreds of metropolitan areas and dozens of sectors, it is easy to

find three cities and three sectors in the data exhibiting such intransitivity. But do intransitivi-

ties arise systematically? Sattinger (1978) shows that if ln f(σ, c) is a polynomial function of β̂σ

and ln populationc, then there can be systematic intransitivity only if ln f(σ, c) is a function of
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higher-order interactions of β̂σ and ln populationc. We therefore added quadratic terms and their

interactions to our elasticity regressions. These did little to improve the regression’s adjusted R2,

and F-tests yielded p-values that did not come close to rejecting the null that these additional terms

were uninformative. There is no evidence of systematic intransitivity in comparative advantage.

While our theory’s predictive successes are systematic, the empirical departures from our theory

appear to be idiosyncratic.

2.6 Discussion and conclusions

In this paper, we introduce a model that simultaneously characterizes the distribution of skills and

sectors across cities. We describe a high-dimensional economic environment that is a system of cities

in which cities’ internal geographies exhibit substantive heterogeneity and individuals’ comparative

advantage governs the distribution of sectoral employment. Our model achieves two aims. First, we

obtain “smooth” predictions, in the sense that cities’ skill and sectoral distributions will be highly

overlapping. These are more realistic than prior theories describing cities that are perfectly sorted

along skills or polarized in terms of sectoral composition. Second, we obtain “strong” predictions,

in the sense that cities’ skill and sectoral distributions will exhibit systematic variation according

to the monotone likelihood ratio property. These are more precise than the predictions of many

prior theories of the spatial organization of economy activity and guide our empirical investigation.

Examining data on US metropolitan areas’ populations, occupations, and industries in the year

2000 reveals systematic variation in the cross-city distribution of skills and sectors that is consistent

with our theory. Larger cities are skill-abundant. Our results using three equal-sized categories of

educational attainment are quite strong. Even disaggregated to nine educational categories, the

cross-city distribution of US-born individuals is well described by our theory.

Empirically, we find that larger cities specialize in skill-intensive activities. More skill-intensive

occupations and industries tend to have higher population elasticities of employment. In making

pairwise comparisons, our model does better in describing the pattern of occupational employ-

ment than industrial employment. This is consistent with a recent emphasis in the literature on

workers performing tasks. Our results demonstrate that metropolitan skill distributions shape the
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comparative advantage of cities, though the fact that our sectoral-employment predictions do not

perform as well as our skill-distribution predictions is consistent with the idea that localization or

coagglomeration economies omitted from our model may also be important.

We believe that our framework is amenable to both theoretical and empirical applications and

extensions. The “smoothness” resulting from the simultaneous consideration of cross- and within-

city heterogeneity in a continuum-by-continuum environment would make our model amenable to

theoretical analyses of the consequences of commuting costs, globalization, and skill-biased technical

change. The “strong” character of our predictions and their demonstrated relevance for describing

US cities in 2000 suggest that their examination in other settings, such as economies at different

stages of development or in different historical periods, would be interesting.
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Chapter 3

Consumer Cities in General

Equilibrium

Jonathan I. Dingel1

1I am grateful to Don Davis for invaluable discussions and guidance. I thank Jessie Handbury, Corinne Low, David
Munroe, Eric Verhoogen, Jonathan Vogel, and participants in the Columbia University applied microeconomics and
international trade colloquia for helpful comments.
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3.1 Introduction

By many accounts, big cities are attractive places to reside. A best-selling popular account of

modern cities, Florida (2002), says that metropolitan areas’ fortunes depend on the quality of

life they offer innovative individuals. News stories describe firms pressured to move to denser

metropolitan areas because “a suburban location has become a liability in recruiting the best and

brightest young bankers, who want to live in Manhattan or Brooklyn, not in Stamford.”2 Glaeser,

Kolko, and Saiz (2001) describe the various attractions of “consumer cities” and argue that “the

future of cities increasingly depends on whether cities are attractive places for consumers to live.”

But urban economists have concluded that large cities are unattractive to consumers. Their

conclusion follows from an indifference condition that is at the heart of spatial-equilibrium theory,

originally laid out in Roback (1982). In spatial equilibrium, the advantage of larger cities’ higher

nominal wages must be offset by a consumption disadvantage so that individuals are indifferent

between larger and smaller cities.3 If larger cities offered both higher nominal wages and lower

amenity-adjusted local prices, no one would live in smaller cities. Empirically, individuals with

similar demographic and educational characteristics earn higher wages in larger cities. This ob-

servation causes Glaeser and Gottlieb (2009, p.1000) to write that “the spatial equilibrium model

allows us to easily reject the view that consumer amenities are the primary force driving urban

concentration in the United States.”

This chapter revisits that conclusion and shows that the consumption motive can play a first-

order role in spatial variation in wage distributions when individuals are heterogeneous. I introduce

a general-equilibrium model in which larger cities’ consumption benefits explain their higher nom-

inal incomes. Cities’ characteristics are endogenous outcomes of individuals’ locational choices.

Larger cities offer a greater variety of local goods and services. They also exhibit higher hous-

ing prices due to congestion costs. Heterogeneous consumers have non-homothetic preferences.

Higher-income consumers spend a larger fraction of their income on local goods and services and a

2Charles V. Bagli, “Regretting Move, Bank May Return to Manhattan,” New York Times, 8 June 2011. See also
Alejandra Cancino, “In search for talent, companies relocating to downtown Chicago,” Chicago Tribune, 31 July
2011.

3Albouy (2012) shows that the implied consumption disadvantages are overstated if one fails to account for federal
taxes and non-labor income.
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smaller fraction of their incomes on housing. This causes higher-income individuals to find larger

cities relatively more desirable places to locate. This consumption motive induces spatial sorting:

higher-income individuals tend to live in larger cities.

The model demonstrates that the inference that agglomeration is driven by production stems

from assumptions about the homogeneity of individuals, not spatial equilibrium. Differences in

consumption opportunities are the model’s only force for urban concentration, yet an econometri-

cian analyzing model-generated data in which individual skills are imperfectly observed would find

a positive city-size wage premium due to differences in the composition of cities’ populations. The

more populous city has higher nominal income per capita and higher housing prices. The larger

city’s skill distribution stochastically dominates that of the smaller city, and its nominal wage dis-

tribution inherits this property. Consumption motives alone could explain a large body of facts

about the spatial pattern of wages and prices.

I develop several new facts about the spatial choices of retirees to demonstrate that the consumer-

cities hypothesis is more than a theoretical curiosity. Since retirees do not work, their locational

choices must reflect consumption concerns. Yet the data do not reveal an exodus of the recently

retired from larger cities. Moreover, more educated retirees are more likely to live in larger cities.

Theories positing a skill-size complementarity in production cannot explain such a pattern amongst

those not producing. This evidence suggests that an account of cities omitting consumption motives

is incomplete.

In isolating the role of non-homothetic preferences in explaining the spatial allocation of het-

erogeneous talent, my consumer-cities theory complements the theories of Behrens, Duranton, and

Robert-Nicoud (2012) and Davis and Dingel (2012) in describing systems of cities with heteroge-

neous individuals in general equilibrium.4 A number of authors (Glaeser, Kolko, and Saiz, 2001;

Combes, Duranton, and Gobillon, 2008; Lee, 2010) have suggested the relevance of consumption

motives, but their role has thus far not been formalized in a general-equilibrium setting. The model

4The first draft of this chapter was completed in April 2011, when it shared Columbia economics’ Vickrey Prize.
Contemporaneous with my research, Behrens, Duranton, and Robert-Nicoud (2012) developed an extension of their
theory that is related to my model. See appendix H in the June 2012 version of their working paper. Behrens, Du-
ranton, and Robert-Nicoud (2012) do not note the implications of the consumer-cities hypothesis for interpreting em-
pirical wage patterns nor present empirical evidence distinguishing between consumption- and production-motivated
agglomeration.
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presented here starkly assumes no production-related agglomeration mechanisms in order to exam-

ine the extent to which empirical patterns in systems of cities could be explained by consumption

motives alone. In reality, both production and consumption forces likely explain larger cities’ higher

average wages and skills. Silicon Valley is more than a case of correlated, geeky consumer tastes.

The value of offering a competing, consumption-driven explanation for the stylized facts established

by empirical work is that it forces us to revisit our interpretation of empirical evidence and con-

sider the mechanisms’ differing welfare and policy implications. This chapter is a first step towards

identifying and understanding the relative importance of consumption and production motives in

systems of cities.

Section 3.2 describes how my theory unifies emerging literatures on spatial sorting and consump-

tion motives. Section 3.3 describes empirical patterns that are puzzling for theories neglecting the

benefits of agglomeration for consumption purposes. Section 3.4 formalizes a parsimonious, general-

equilibrium model in which consumption motives alone produce a system of cities in which larger

cities exhibit higher nominal wages and more skilled populations. Section 3.5 concludes.

3.2 Related literature

This chapter unifies two recent lines of thought in the systems-of-cities literature. An empirical line

of work examines the role of labor heterogeneity in determining the spatial pattern of economic

outcomes, particularly the degree to which spatial sorting causes differences across individuals to

result in differences across places. The second line of literature considers the benefits that cities

provide to individuals as consumers rather than producers. The model presented here uses the

consumption motive, in the form of differences in willingness to pay for access to cities’ local goods

and services, to explain the sorting of persons with different characteristics across different cities.

3.2.1 Cities’ incomes and populations

Nominal wages are higher in larger cities. This section describes recent empirical work showing

that a substantial share of this spatial variation in incomes is attributable to spatial variation in

individuals’ characteristics.
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Individuals living in larger cities exhibit meaningful differences in observable characteristics

(Bacolod, Blum, and Strange, 2009; Glaeser and Resseger, 2010). Perhaps the most obvious is

spatial variation in educational attainment. A greater fraction of the population has a university

degree in larger cities, and a greater fraction of these university graduates have masters or profes-

sional degree in larger cities.5 Since individuals with greater educational attainment have higher

average incomes, these population differences generate income differences across cities.

Recent empirical work shows that individuals living in larger cities tend to also have unob-

servable characteristics that are correlated with higher nominal income. These studies identify

spatial sorting on unobserved characteristics by using longitudinal data and wage regressions with

individual fixed effects.6 They suggest that a meaningful share of larger cities’ higher nominal in-

comes are attributable to the composition of their populations. Gibbons, Overman, and Pelkonen

(2013), using longitudinal data on UK individuals, suggest that the spatial distribution of individ-

ual characteristics accounts for fourth-fifths or more of spatial wage disparities. They also show

that there is a positive correlation between area effects and individual characteristics associated

with higher wages. Combes, Duranton, and Gobillon (2008), using population variables from more

than a century earlier to instrument for employment area density and land area, estimate a co-

efficient on density that is half that usually found in the literature. They show that aggregating

their French data to the area level without controlling for sorting nearly doubles the coefficient on

density and therefore stress the “failure of previous literature to control properly for unobserved

individual heterogeneity.” In discussing the relative importance of the problems that both the

quantities and qualities of workers are endogenous, Combes, Duranton, Gobillon, and Roux (2010)

conclude that “the sorting of workers across places is a quantitatively more important issue than

their indiscriminate agglomeration in highly productive locations.”

Why do more skilled, higher-income individuals tend to locate in larger cities? There is no

standard theory predicting the positive skill-size relationship. In concluding their empirical work,

5In the Census 2000 microdata, amongst the full-time, full-year employed population ages 25-60, a doubling of
metropolitan population is associated with a 2.4 percentage-point increase in the share with a bachelor’s degree or
higher and a 0.4 percentage-point increase in the share of bachelor’s degree holders with a master’s or professional
degree.

6The identifying assumption underlying the use of individual fixed effects is that movement is random conditional
on observable characteristics.
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Combes, Duranton, and Gobillon (2008) suggest three possible explanations:

1. The most talented go to the largest towns to find scope for their abilities.

2. Workers learn more in larger cities.

3. Larger cities offer amenities that appeal more to workers earning higher wages.

The first explanation has been formalized by Nocke (2006) in partial equilibrium and Behrens,

Duranton, and Robert-Nicoud (2012) in general equilibrium. The second explanation has recently

been explored by Davis and Dingel (2012). This chapter introduces a model of the third mechanism,

in which larger cities’ local consumption opportunities appeal more to higher-income individuals.

3.2.2 Consumer cities and non-homothetic preferences

Recent work in urban economics has drawn attention to the role of cities as centers of consumption.

Glaeser, Kolko, and Saiz (2001) argue that urban economics has often assumed “that cities are good

for production and bad for consumption”, thereby neglecting an important dimension of city life.

The authors discuss four types of urban consumption attractions – variety of goods and services,

aesthetics and physical setting, good public services, and transport speed – and provide evidence

suggesting that these city elements influence individuals’ locational choices.

Two prior theories describe the spatial allocation of heterogeneous workers when locational

choices are motivated by consumption concerns.

Gyourko, Mayer, and Sinai (2013) present a two-city model in which individuals’ productivities

and nominal incomes are location-invariant in order to study spatial skewness in housing prices

and incomes. The two cities differ exogenously in their elasticities of housing supply. Consumers

at every income level have idiosyncratic tastes for one city or the other. Higher-income consumers

exhibit greater willingness to pay for their preferred location. In the location with a less elastic

housing supply, high rents cause lower-income consumers to move away. This “superstar city” has

a nominal income distribution that stochastically dominates that of the city with a more elastic

housing supply.

The model presented here differs in at least two important respects. First, its asymmetric

outcomes are emergent, since its locational fundamentals are symmetric. The model shows how
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consumer spending acts as an agglomeration force by increasing the variety of local goods and

services.7 Heterogeneous consumers’ differing willingness to pay for access to this variety of local

goods and services sustains an equilibrium with cities of different sizes. Second, it exhibits the

positive correlations between cities’ populations, housing prices, and nominal income distributions

found in the data. In the Gyourko, Mayer, and Sinai (2013) model, the “superstar city” with high

housing prices and high nominal incomes may be more or less populous than the other city.

Lee (2010) introduces a partial-equilibrium model with exogenous city characteristics to mo-

tivate empirical work that examines whether more skilled individuals’ nominal wages rise less

quickly with city size. Like the model presented here, Lee (2010) posits that higher-income indi-

viduals spend a larger fraction of their budget on differentiated local goods and services relative to

housing. His Proposition 1 states that if all individuals are indifferent across cities, more skilled

individuals’ nominal incomes will increase with city size less quickly. Lee (2010) claims that this

prediction is unique to the consumer-cities hypothesis. It is not. As Black, Kolesnikova, and Taylor

(2009) show, skill premia will be negatively correlated with housing prices whenever the income

elasticity of housing demand is less than one and all individuals are indifferent across cities. This

prediction follows from the spatial-indifference condition, regardless of the agglomeration force.

Empirically, cities’ skill premia and population sizes tend to be positively related. Lee (2010)

finds a negative correlation amongst individuals employed in medical occupations, but this pat-

tern does not hold more broadly. Davis and Dingel (2012) show that college graduates’ wages

increase with metropolitan size faster than high school graduates’ wages, so that there is a posi-

tive correlation between college premia and city sizes. Bacolod, Blum, and Strange (2009) show

that high school graduates’ wages increase with metropolitan size faster than high school dropouts’

wages. Thus, theories predicting negative premia-size correlations, regardless of the agglomeration

mechanism, are generally not empirically relevant.

The model put forth in this chapter differs from the model in Lee (2010) in three important

respects. First, it is general equilibrium, so housing prices, goods prices, and the measure of

varieties are determined by market-clearing conditions. In Lee (2010), healthcare workers produce

7This love-of-variety mechanism has a long history in economic geography. See Krugman (1991b) and Handbury
and Weinstein (2011).
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medical services that aren’t consumed and consume local varieties that aren’t produced. Second,

city characteristics are endogenous, so the system-of-cities phenomena of interest result from the

posited economic mechanisms. Third, some individuals are inframarginal residents, so the Black,

Kolesnikova, and Taylor (2009) result does not apply and skill premia are not necessarily negatively

related to city size. I provide examples of parameter values such that the model’s equilibrium

exhibits a positive size-premium relationship.

In sum, while urban economists have drawn attention to consumption motives in recent work,

their potential importance has been understated. The following section presents patterns in the

spatial distribution of retirees suggesting that consumption motives are empirically relevant. The

model presented in the subsequent section demonstrates how, in a general-equilibrium setting,

consumption motives alone could explain the cross-sectional spatial pattern of skills and wages.

3.3 Empirical evidence from retiree populations

In this section, I examine the spatial distribution of retiree populations.8 I document three empirical

patterns that are puzzling for the traditional production-motive conclusion but consistent with the

consumer-cities hypothesis. Both the canonical spatial-equilibrium model and the consumer-city

model presented here are static, so they do not formally describe life-cycle dynamics. But their

contrasting economic mechanisms have contrasting implications for the behavior of retirees, who

finance their consumption from location-independent wealth.

3.3.1 Contrasting predictions

If the net benefits of agglomeration stem from production advantages, retirees should find large

cities unattractive. The canonical spatial-equilibrium model with homothetic preferences says that

the higher wages of workers in larger cities compensate them for the combined effect of higher

local prices or lower consumer amenities. When workers retire, the wage-earning motivation for

8An older literature studied aggregate net retiree migration flows, neglecting households’ characteristics (Graves
and Waldman, 1991; Clark and Hunter, 1992; Duncombe, Robbins, and Wolf, 2001). In a recent article, Chen and
Rosenthal (2008) use Census microdata to study how households’ migration decisions vary with their educational
attainments. I discuss their findings below.
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locating in large cities ceases.9 The theory then predicts that all retirees should move to the city

with the lowest nominal wages, since the spatial indifference condition reveals this location to

have the best combination of consumer amenities and local prices.10 This prediction also holds

in production-driven agglomeration theories with heterogeneous labor, such as Behrens, Duranton,

and Robert-Nicoud (2012) and Davis and Dingel (2012). If larger cities are attractive because they

improve individuals’ skills or allow individuals to apply their skills to a larger market, these benefits

are irrelevant to retirees. Retirees of all skill levels will move to the location where workers’ wages

are lowest.

If cities’ income and skills reflect consumption-driven locational decisions, some retirees should

find large cities attractive. In the consumer-city model presented in this chapter, all individuals’

incomes are location-independent. High-wage individuals tend to live in large cities because they

find large cities’ combination of high housing prices and low variety-adjusted non-tradables prices

relatively attractive. Low-wage individuals spend a larger share of their income on housing, so they

tend to prefer small cities. Upon retirement, individuals have no reason to change location because

they consume out of permanent income and locations’ consumption opportunities do not depend

upon labor-force participation. Retirees with higher expenditure levels find larger cities relatively

more attractive.

Empirical reality falls between these two extreme predictions, since some retirees do change

locations upon retirement but not all move to the city with the lowest nominal wage. A more ap-

propriate inquiry is to ask which theory better describes the data, since each necessarily omits many

aspects. To do so, consider introducing idiosyncratic moving costs and idiosyncratic permanent-

income shocks that are both orthogonal to individuals’ and cities’ characteristics. These weaken

the theories’ sharp predictions while allowing the posited economic mechanisms to drive the central

tendencies in the data.

The weakened predictions of the production-driven agglomeration theory are that individuals

in large cities tend to relocate upon retirement, they move to locations with lower nominal wages,

9Albouy (2012) analyzes the importance of location-independent income in Rosen-Roback exercises. He identifies
the location-dependent income share as the 75% of average household income that is labor income.

10This logic dates at least to Henderson (1974, p.643), who says that if capital owners do not work as laborers,
they will “avoid the high cost of living or housing in cities. . . by living in the countryside.”
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and individuals of all skill levels have equal reason to relocate. In the frictionless theory, all retirees

would move to the location with the lowest nominal wages. Idiosyncratic bilateral moving costs

mean that not all retirees will move and not all movers will go to the same location. Idiosyncratic

income shocks do not alter the relative desirability of destinations. All retirees’ moves will be shifts

to locations with lower nominal wages than their city of origin, since these destinations have lower

amenity-adjusted local prices. Since moving costs and income shocks are orthogonal to individuals’

characteristics, the profile of destinations should be common across skill groups.

The weakened predictions of the consumer-cities theory are that retirees will sometimes move,

they will move to both more and less populous destinations, and higher-income retirees should find

larger cities relatively more attractive for the same reason that higher-income working individuals

find larger cities attractive. In the frictionless case, individuals have no reason to relocate upon

retirement because they consume out of permanent income, just as they did while working. The

introduction of idiosyncratic moving costs does not change this. But income shocks will cause

some retirees to move when the benefit of moving to a better location for consumption exceeds

their bilateral moving cost. Since unexpected income shocks are mean zero, the destination profile

of retirees inherits the characteristics of the income shocks. For example, if the income-shock

distribution is symmetric with a median of zero, then moves to locations with a higher average

nominal wage than the individual’s current location are as likely as moves to locations with a

lower nominal wage. Finally, since higher-income individuals find larger cities more attractive, this

means, conditional on changing metropolitan areas, more educated retirees are more likely to select

larger cities as their destination.

Thus, the production-driven-agglomeration and consumer-cities hypotheses make contrasting

predictions about the frequency of retiree relocations, the contrast between the characteristics of a

mover’s origin and destination cities, and the destination profiles of different skill groups.

Comparing employed and retired individuals’ behavior to distinguish between consumption- and

production-driven agglomeration assumes that the most prominent difference between these two

groups is the absence of the wage-earning motivation to locate in large cities. Is this a reasonable

assumption? Workers and retirees are similar in terms of their levels of consumption. Hurst (2008)

shows that consumption expenditure changes little for most individuals upon retirement, except
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for a decline in work-related expenses and a shift towards home-produced meals. Are workers

and retirees similar in terms of their consumer tastes? Consumers’ concerns likely do change with

age. For example, older individuals may be more sensitive to unpleasant weather conditions or less

concerned with varieties of local nightlife than younger counterparts. To the extent that tastes

differ, this empirical comparison will be less informative. But there seems little reason to believe

that older individuals find larger cities’ consumption opportunities much more attractive than

younger individuals do, the rationalization necessary to accept the retiree evidence below while

denying the relevance of the consumer-cities hypothesis for the working-age population.

3.3.2 Empirical evidence

Three pieces of evidence show that the behavior of retirees is closer to the prediction of the

consumer-cities theory than the prediction of the production agglomeration theory. First, the ma-

jority of individuals do not change residences upon retiring. Second, retirees who do move across

metropolitan areas do not show a strong tendency to relocate to metropolitan areas with smaller

populations or lower nominal wages. Third, more educated retirees, including those who move

across metropolitan areas, more frequently reside in metropolitan areas with larger populations

and higher nominal wages.

I use microdata from the 2000 US Census of Population (Ruggles, Alexander, Genadek, Goeken,

Schroeder, and Sobek, 2010) describing individuals age 60 or older who are not in the labor force,

who I henceforth refer to as “retirees”.11 The Census asks individuals about their current residence

and their residence five years prior. This allows me to study both the location of retirees and retirees’

residential moves. The Census also reports non-employed individuals’ previous occupations if they

worked sometime during the five years prior, allowing me to attempt to identify those retirees who

recently exited the labor force.

First, most retirees continue to reside in the same metropolitan area as when they were working.

95% of all retirees live in the same metropolitan area as five years prior. Amongst those who exited

11I use 60 as the age cutoff because there is a notable acceleration of the “not in labor force” rate at this age. The
results of analyzing individuals age 65 or older are very similar. The not in labor force rates are 42% at 60 and 70%
at 65.
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the labor force in the last five years, 92.5% reside in the same metropolitan area as five years prior.

Amongst retirees who recently exited the labor force and changed their residential domicile in the

previous five years, only 30% changed their metropolitan area of residence.12

The fact that the majority of individuals do not change residences upon retiring is compatible

with two starkly different explanations. The first is the consumer-cities hypothesis put forward in

this chapter. The second is that the costs of relocation are quite high, so individuals have limited

mobility. If the latter were true, the low rate of retiree relocations would not be evidence in favor

of the consumer-cities hypothesis. While most urban economists believe that the US population is

relatively mobile, in the rest of the empirical work that follows, I condition on individuals changing

the metropolitan area in which they reside and use the behavior of these movers to distinguish

between the consumption-driven and production-driven agglomeration hypotheses.

The second piece of evidence is that retirees who move across metropolitan areas do not tend

to relocate to small, low-wage cities. Their locations generally mirror those of the population

as a whole. Considering only retirees who changed metropolitan areas in the prior five years, a

regression of log retiree population on log working population yields an elasticity of .83 and an

R2 of .68. While this elasticity is lower than that obtained for the retiree population as a whole

(.93), it is still much closer to the consumer-cities hypothesis of unity than the negative correlation

predicted by the canonical theory.

The data do not reveal a strong tendency for retirees to move from large cities to small cities.

Of retirees who changed metropolitan areas between 1995 and 2000, 62.7% moved from a more

populous metropolitan area to a less populous location. If individuals chose their destinations

randomly, 50.7% of retiree moves would have been from larger to smaller cities.13 Therefore, the

data reveal a tendency for retirees to move from more populous to less populous cities. But the claim

that the net benefits of agglomeration favor production over consumption implies that everyone

will move to smaller cities upon retirement, and retiree locational changes fall far short of that

pattern.

1277% of all retirees and 74% of recent retirees live in the same residence as five years prior.

13I assume that individuals chose their destinations randomly, with each potential destination assigned a probability
equal to its share of the US national population. If the probability of choosing each destination were uniform, the
benchmark would be 83.1%.
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Individuals’ relocations do not show a strong tendency for retirees to move from high-wage to

low-wage cities. Since larger cities exhibit higher observed nominal wages, the wage differences

associated with retirees’ relocations are quite similar to the population differences.14 The random-

destination benchmark says that retirees will move to a metropolitan area with a lower wage than

their origin 50.2% of the time; the data show that retirees move to a lower-wage location 64% of

the time. This is weak evidence for the canonical hypothesis.

These findings echo the results reported in Chen and Rosenthal (2008). Those authors find

that there is a tendency for married retiree households who migrate to move to locations with

lower nominal wages. However, these moves are relatively muted in comparison to the hypothesis

that households will retire to the location with the lowest nominal wage. The greatest changes

found by Chen and Rosenthal (2008) are moves by married households in which both spouses are

college educated and the head of household is between ages 60 and 65. Conditional on changing

metropolitan areas, these households typically move to a city with an annual nominal wage effect

that is $933 lower (in 2000 US dollars).15 In the 2000 data, the standard deviation of cities’

wage effects exceeds $1300 and the difference between the cities with the highest and lowest wage

effects exceeds $9000.16 Thus, while these individuals do relocate to lower-wage cities, their moves

do not exhibit changes of the magnitude implied by theories in which agglomeration only benefits

productivity and retirees move to the location with the lowest nominal wages. The wage differences

associated with moves by retiree households of other ages, educational attainments, and marital

status are even smaller. In fact, Chen and Rosenthal (2008) find no statistically significant wage

downgrades associated with metropolitan area changes for unmarried college-educated individuals

over age 65.

The third piece of evidence for the consumer-cities hypothesis is the spatial distribution of

14I estimate city’s nominal wage effects using data on full-time, full-year employees with high school degrees and
bachelor’s degrees. I regress individuals’ log weekly wages on city fixed effects and individual controls (demographic
characteristics interacted with educational attainment). The population elasticity of this nominal wage effect is 6.2%,
in line with estimates typically obtained when failing to control for unobserved individual heterogeneity (Combes,
Duranton, and Gobillon, 2008). The R2 from regressing cities’ wage effects on their log population is 0.53, so
characterizing retirees’ relocations in terms of wage differences or population differences yields quite similar results.

15In the notation of Chen and Rosenthal (2008), QH −QB = −2w̄jt, so their coefficient of 1865.16 in their Table
A4 shows a wage effect that is $932.58 lower.

16These numbers describe the wage effects whose estimation is described in footnote 14.
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retiree skills. Since educational attainment is strongly correlated with lifetime income, differences

between retirees in terms of educational attainment likely reflect difference between retirees in terms

of consumption expenditure. I split the population into four educational groups: those with less

than a high school degree, high school graduates, college dropouts, and those with an associate’s

degree or higher educational attainment. The first two groups each constitute approximately one

third of the retiree population; the latter two are approximately one sixth each.17

Table 3.1: The working-population elasticity of retiree populations

All retirees Retirees who changed MSAs
(1) (2) (3) (4) (5) (6)

Log working population 0.919 0.828 0.755
(0.015) (0.031) (0.032)

Log working population × HSD 0.912 0.856 0.716
(0.021) (0.030) (0.029)

Log working population × HSG 0.908 0.812 0.765
(0.020) (0.033) (0.034)

Log working population × CD 0.939 0.819 0.785
(0.017) (0.043) (0.044)

Log working population × CG 0.978 0.917 0.856
(0.017) (0.039) (0.041)

Only US-born Yes Yes

N 270 1080 270 1080 270 1080
R2 0.918 0.884 0.683 0.634 0.640 0.591

Standard errors (clustered by MSA) in parentheses
Dependent variable is log retiree population in odd-numbered columns and
log retiree population by educational group in even-numbered columns

Table 3.1 shows that more educated retirees are more likely to reside in larger metropolitan

areas. This is true both for all retirees and for those changing metropolitan areas in the previous

five years. The first column reports the total-population elasticity of the retiree population. The

second column reports separate elasticities for each educational group and shows that more educated

retirees are more likely to live in larger cities. This is partly attributable to the fact that more

educated workers are more likely to live in larger cities and few workers change metropolitan areas

17I obtain similar results when I divide the population into three educational groups of roughly equal size.
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upon retirement. However, restricting attention to the population of retirees who changed their

metropolitan area of residence in the previous five years, the fourth column of Table 3.1 shows

that more educated retirees are more likely to live in larger cities. An exception is that high-school

dropouts are more likely to live in larger cities than high school graduates and college dropouts, but

this tendency is driven by the locational choices of foreign-born retirees, as shown in column six.

Amongst US-born retirees, the total-population elasticity of retiree population is strictly increasing

in educational attainment. An established literature describes agglomeration benefits particular to

less educated foreign-born individuals, such as linguistic enclaves, that are omitted from my model

(Edin, Fredriksson, and Aslund, 2003; Bauer, Epstein, and Gang, 2005). The overrepresentation

of foreign-born high-school-dropout retirees in large cities mirrors their overrepresentation in the

working population.

These three pieces of empirical evidence demonstrate that the locational behavior of retirees

favors the consumer-cities hypothesis over the canonical interpretation of spatial-equilibrium theory.

First, the vast majority of retirees do not change residences or metropolitan areas upon exiting the

labor force, consistent with the hypothesis that locations reflect consumption decisions financed

out of permanent income. Second, retirees do not exhibit a strong tendency to move from high-

wage cities to low-wage cities, contrary to the behavior implied by the standard production-driven

spatial-equilibrium account. Third, retired residents in larger cities are more educated, consistent

with the hypothesis that large cities complement skills through the consumption channel.

This evidence motivates a formalization of the consumer-cities hypothesis. The following section

introduces a simple model with heterogenous labor and non-homothetic preferences in which larger

cities exhibit higher nominal incomes and more skilled populations.

3.4 A model of consumer cities in general equilibrium

I describe an economy made up of two cities, denoted c and c′, whose characteristics are endoge-

nously determined by individuals’ locational choices. The outcomes are driven by non-homothetic

preferences exhibiting love of variety in consumption of non-tradables.
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3.4.1 Consumer preferences

This section describes consumers and their preferences. Housing is a necessity, so the income

elasticity of housing demand is less than one. Individuals with higher nominal incomes value

greater variety of local goods and services relative to housing costs more than individuals with

lower nominal incomes, since lower-income individual spend a larger share of their income on

housing.18 This is the agglomeration force that attracts higher-income individuals to larger cities.

There are N individuals in the economy. Individuals are heterogeneous because they vary in

their effective units of labor. Individual i is endowed with and inelastically supplies li units of

labor. Labor endowments are distributed according to the cumulative distribution function G(l)

with support on [lmin, lmax].

Consumers must pay for their housing and commuting costs, rc or rc′ , before purchasing goods.

There are two types of goods – tradables and non-tradables. The tradable is a homogeneous good

that I use as the numeraire. It is produced with labor at constant returns to scale, and I choose

units so that the wage per effective unit of labor is also the numeraire. The non-tradable good has

differentiated Dixit-Stiglitz varieties, whose elasticity of substitution is σ. These are produced by

firms with increasing returns to scale, and the local Dixit-Stiglitz price indices are Pc and Pc′ . The

non-tradables and tradable have budget shares of α and 1− α, respectively. The indirect utility of

individual i in city c is

Uic =
li − rc
Pαc

+ liεic (3.1)

The idiosyncratic values of cities are such that εic − εic′ ∼ F (·), with F (0) = 1
2 . Following Tabuchi

and Thisse (2002) and Moretti (2011), these idiosyncratic valuations cause local labor supply curves

to be upward sloping in the real wage.19 The fundamentals are symmetric so that if prices are equal

18This is similar to the logic presented by Black, Gates, Sanders, and Taylor (2002), who attribute gays’ greater
concentration in high-amenity cities to their smaller housing expenditure shares, which are due to their lower likelihood
of child rearing.

19Canonical spatial-equilibrium models such as Roback (1982) have perfectly elastic local labor supplies, which is the
case when F (·) is degenerate and εic−εic′ = 0. In Moretti (2011), εic−εic′ is uniformly distributed. Davis and Dingel
(2013) provide for microfoundations for upward sloping local labor supply curves by introducing heterogeneity in the
internal geography of cities. In the interest of brevity, I follow Moretti (2011) by using the idiosyncratic-preferences
specification.
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across locations, the median individual of every skill level is indifferent between the two cities.

This specification of preferences is particularly tractable because after paying the necessary

housing and commuting cost, every consumer allocates 1 − α of her remaining expenditure to

the tradable numeraire and α to the differentiated good. This feature means that preferences

are “homothetic at the margin” and permits aggregation of individual demands to the city level,

provided that every individual in city c has income greater than rc. Denote the total earnings in a

city by Lc and population by Nc. Total expenditure on the non-tradables is Xc = α(Lc − rcNc).

These preferences are non-homothetic because housing and commuting costs are necessities that

have income elasticities of demand of zero.20 As a result, individuals with higher incomes find cities

with lower Dixit-Stiglitz price indices relatively more attractive. The probability that an individual

of skill li finds city c preferable to c′ is

Pr(Uic > Uic′) = 1− F
((
P−αc′ − P

−α
c

)
+

1
li

(
rcP

−α
c − rc′P−αc′

))

This probability rises with skill when the relative price of non-tradables is lower in city c:

∂Pr(Uic > Uic′)
∂li

= F ′
((
P−αc′ − P

−α
c

)
+

1
li

(
rcP

−α
c − rc′P−αc′

)) 1
l2i

(
rc
Pαc
− rc′

Pαc′

)
∂Pr(Uic > Uic′)

∂li
> 0 ⇐⇒ Pαc

rc
<
Pαc′

rc′

In contrast, suppose that individuals had homothetic preferences over the tradable numeraire, non-

tradable Dixit-Stiglitz varieties, and housing taking the form Uic = li
P (1,Pc,rc)

+ liεic, where P (·)

is the homothetic price index. Then ∂Pr(Uic>Uic′ )
∂li

= 0 and the fraction of individuals finding city

c preferable to city c′ is independent of skill. The model’s key mechanism is the fact that the

preferences in equation (3.1) exhibit love of variety for non-tradables and are non-homothetic so

that individuals’ willingness to pay higher housing prices to access greater local variety varies with

their incomes.21

20This stark assumption is one of convenience. The necessary assumption is only that the income elasticity of
demand for housing is less than one. Notowidigdo (2011) and Ganong and Shoag (2012) provide evidence from
the Consumer Expenditure Survey that the income elasticity of housing demand is below one. Glaeser, Kahn, and
Rappaport (2008) show that the income elasticity of housing space demand is far below one.

21As written, individuals consume every local variety available in their location. The model would produce the
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3.4.2 Production

Housing and commuting costs are determined by the usual Alonso-Mills-Muth internal urban struc-

ture, in which these costs are increasing in the local population Nc due to congestion. Every resident

of city c pays the net urban cost rc = θNγ
c , where θ, γ > 0.22

The tradable good is produced with labor at constant returns to scale. This makes the nominal

wage per effective unit of labor the same across cities, so an individual’s labor income is simply l.

Dixit-Stiglitz varieties are produced by firms with increasing returns to scale (Dixit and Stiglitz,

1977; Dingel, 2009). To produce a quantity x, a firm incurs a fixed cost f and constant marginal

cost m. An individual firm has labor demand l = mx+ f . Each firm chooses to produce a distinct

variety, and there is free entry so that each firm’s profits are zero. Since each firm hires fσ units

of labor, the number of firms in city c is nc = Xc
fσ , where Xc is total local expenditure on the

non-tradable. Therefore, the Dixit-Stiglitz price index is

Pc =
(
Xc

fσ

) 1
1−σ mσ

σ − 1
(3.2)

3.4.3 Equilibrium

Since individuals earn the same nominal income in both cities, their locational decisions depend

on local prices, rc and Pc, and their idiosyncratic valuations of locations. Denote π ≡ P−αc′ − P
−α
c

and Γ ≡ rcP−αc − rc′P−αc′ , so that the fraction of individuals with labor endowment l preferring city

c′ to c is F
(
π + Γ

l

)
. These individual decisions aggregate to determine the cities’ populations and

local expenditure.

The population and total expenditure in each city are

Nc = N

∫ [
1− F

(
π +

Γ
l

)]
dG(l) Nc′ = N

∫
F

(
π +

Γ
l

)
dG(l)

Lc = N

∫
l ·
[
1− F

(
π +

Γ
l

)]
dG(l) Lc′ = N

∫
l · F

(
π +

Γ
l

)
dG(l)

same results if consumers valued greater local variety because they wished to buy an ideal variety in a number of
goods categories, in the spirit of Lancaster (1979). Shamus Khan (“The New Elitists”, New York Times, 7 Jul 2012)
provides anecdotal accounts of higher-income individuals’ greater concern with variety and product differentiation.

22See Behrens, Duranton, and Robert-Nicoud (2012) for a derivation of this urban cost structure.
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The existence of a symmetric equilibrium is straightforward. When Lc = Lc′ and Nc = Nc′ ,

local prices in the two locations are equal, rc = rc′ and Pc = Pc′ , so π = Γ = 0 and the median

individual at every skill level is indifferent between the two locations. Nc = N
∫

[1− F (0)] dG(l) =

N
∫ [

1
2

]
dG(l) = 1

2N = Nc′ and similarly Lc = Lc′ = 1
2L.

Of greater interest are asymmetric equilibria. These occur when there is a solution to the set

of equations above in which Nc 6= Nc′ and Lc 6= Lc′ .

Love of variety in local goods and services is the agglomeration force that is necessary for an

asymmetric equilibrium. If there were no love of variety (σ = +∞), then the relevant price index

would simply be the price of housing (Γ = rc − rc′ and π = 0). Due to congestion costs, the larger

city would be less attractive to all individuals, so this cannot be an equilibrium. Suppose that

Nc > Nc′ so that Γ > 0. Then F
(

Γ
l

)
> 1

2 ∀ l, so Nc < Nc′ , contradicting the premise. In the

absence of an agglomeration force, individuals disperse, causing the two locations to have equal

population sizes.

Sufficient conditions for the existence of such equilibria depend on the distributions F (·) and

G(·). However, we can establish a number of properties of these asymmetric equilibria without

specifying functional forms for F (·) and G(·).

3.4.4 Cross-city patterns in asymmetric equilibria

In asymmetric equilibria, the two cities differ in both their aggregate and individual-level outcomes.

At the city level, the two locations differ in their populations and aggregate income. These generate

differences in the cities’ prices. At the micro level, the larger city has skill and wage distributions

that stochastically dominate those of the smaller city. These patterns match the empirical facts

usually ascribed to production motives.

The two cities’ differences in population and aggregate income imply that the more populous

city has higher housing prices and a lower Dixit-Stiglitz price index. The higher housing prices

follow directly from congestion raising local urban costs, rc. In equilibrium, these higher local

urban costs must be accompanied by a lower local Dixit-Stiglitz price index Pc. If both prices were

higher, the city would be relatively less attractive to consumers of all income levels and therefore
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the less populous location.23 The Dixit-Stiglitz price index is lower when total local expenditures

on these varieties is higher, so aggregate income is higher in the more populous city.

These differences in cities’ prices cause the larger city to have a more skilled population and

higher individual incomes. Since the larger city has higher housing costs and a lower Dixit-Stiglitz

price index, it is more attractive to higher-income individuals who spend a larger fraction of their

income on Dixit-Stiglitz varieties. Thus, the fraction of individuals of skill level l living in the larger

city is increasing in their labor endowment l.24 This means that the larger city’s skill distribution

stochastically dominates that of the smaller city. Since the nominal wage per effective unit of labor

is location-invariant, this causes the larger city’s nominal income distribution to stochastically

dominate that of the smaller city.

These skill and wage distributions can explain the empirical finding that observationally similar

individuals earn higher nominal wages in larger cities, which is usually interpreted as suggesting

that cities are not driven by consumption motives. Since the larger city’s income distribution

stochastically dominates that of the smaller city, an econometrician imperfectly observing individ-

uals’ skills would conclude that similar individuals earn higher nominal wages in the larger city.

For example, if the econometrician compared the average nominal wages of individuals in a skill

interval, li ∈ [l, l̄], first-order stochastic dominance would cause the average in the larger city to be

higher.25

Thus, this simple model in which individuals’ nominal incomes are location-invariant yields

asymmetric equilibria replicating a number of established empirical regularities in systems of cities.

The larger city has higher average nominal wages, higher housing prices, a nominal wage distribution

that stochastically dominates the wage distribution of the smaller city, and a greater fraction of

higher-skilled individuals. When individuals are heterogeneous, consumption motives can play a

first-order role in determining price and wage patterns in the cross section of cities.

23Formally, if Pc > Pc′ and rc > rc′ , then π + Γ
li
> 0 ∀li so Nc < Nc′ .

24Recall that
∂Pr(Uic>Uic′ )

∂li
> 0 ⇐⇒ Pαc

rc
<

Pα
c′
rc′

.

25These “skill intervals” might correspond to various levels of educational attainment, for example. There is
considerable wage variation within the class of individuals holding a given degree.
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3.4.5 Existence of asymmetric equilibria

In this section, I describe the conditions for existence of asymmetric equilibria under various dis-

tributional assumptions.

3.4.5.1 Perfectly elastic labor supplies

Suppose that F (·) is a degenerate distribution at εic − εic′ = 0 so that there is no heterogeneity

amongst individuals who have the same labor endowment. In this case, all individuals who have the

same labor endowment live in the same location unless li−rc
Pαc

= li−rc′
Pα
c′

so that they are indifferent.

In an asymmetric equilibrium in which Lc 6= Lc′ and Nc 6= Nc′ , denote the value of li satisfying

this equality as l∗.

Suppose that Lc > Lc′ . The population and total expenditure in each city are

Nc = N

∫ ∞
l∗

dG(l) Nc′ = N

∫ l∗

−∞
dG(l)

Lc = N

∫ ∞
l∗

l dG(l) Lc′ = N

∫ l∗

−∞
l dG(l)

A sufficient condition for the existence of an asymmetric equilibrium in this case is θ
(
N
2

)γ
< lmin <

θNγ . The first inequality ensures that there exists a spatial allocation of the population such

that all individuals have enough income to afford their housing and commuting costs. The second

inequality ensures that congestion costs are sufficiently high that not all individuals can live in a

single location in equilibrium. This condition means that there exists a value l∗ such that the four

equations above are satisfied and l∗−rc
Pαc

= l∗−rc′
Pα
c′

.

While such an asymmetric equilibrium exhibits all the properties described in section 3.4.4, these

outcomes are very stark. The skill and wage distributions of the two cities do not overlap because

the least skilled individual in the larger city has income equal to that of the most skilled individual

in the smaller city. Nonetheless, this result is theoretically interesting because it demonstrates that

consumption motives alone can generate a system of cities with a positive city-size wage premium.

The essential elements are heterogenous labor and non-homothetic preferences. To generate a more

empirically relevant cross-city pattern of outcomes, I relax the assumption that local labor supplies
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are perfectly elastic.

3.4.5.2 Uniform distributions

Suppose that, as in Moretti (2011), individuals’ idiosyncratic valuations are uniformly distributed

such that εic − εic′ ∼ U(−s, s). And suppose that individuals’ labor endowments are uniformly

distributed such that l ∼ U(a, a + b).26 Aggregate expenditure in the economy is L = N
(
a+ b

2

)
.

If every type of laborer is present in each city (0 < Pr(Uic > Uic′) < 1), then the populations and

expenditures are

Nc = N
1
2

(
1− π

s

)
−N Γ

2s
ln
(
a+ b

a

)
Nc′ = N −Nc

Lc = L
1
2

(
1− π

s

)
− L Γ

2s
1

a+ b
2

Lc′ = L− Lc

where Γ and π are defined as before.

Defining λN = Nc
N , λL = Lc

L , k1 ≡
(
α
fσ

) 1
1−σ m

ρ , k2 ≡ θNγ , k3 ≡ k2 ln
(
a+b
a

)
, k4 ≡ k2

1
a+ b

2

and

plugging in the values of π and Γ using equation (3.2), the equilibrium can be expressed as two

equations in two unknowns:

λN =
1
2

+
1
2s
(
k1 − k3λ

γ
N

) (
λLL− k2Nλ

γ+1
N

) α
σ−1

− 1
2s

(k1 − k3(1− λN )γ)
(
(1− λL)L− k2N(1− λN )γ+1

) α
σ−1

λL =
1
2

+
1
2s
(
k1 − k4λ

γ
N

) (
λLL− k2Nλ

γ+1
N

) α
σ−1

− 1
2s

(k1 − k4(1− λN )γ)
(
(1− λL)L− k2N(1− λN )γ+1

) α
σ−1

To aid interpretation, think of the two equations as defining λL as an implicit function of λN .

Note that λN determines relative housing prices and λL determines relative Dixit-Stiglitz prices.

The first equation describes the spatial allocation of aggregate expenditure, λL, necessary to realize

a given spatial allocation of aggregate population, λN . That is, given relative housing prices, what

relative Dixit-Stiglitz prices would induce the population to choose their locations in such a way as

26Therefore, lmin = a and lmax = a+ b.
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to yield those relative housing prices? The second equation describes the expenditure pattern that

is induced by a given spatial allocation of aggregate population. That is, fixing relative housing

prices, what Dixit-Stiglitz prices are consistent with the population choosing their locations in such

a way as to yield those Dixit-Stiglitz prices? An equilibrium satisfies both equations simultaneously.

Figure 3.1: Equilibrium conditions
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Note: The parameters for the left figure are α = .3, σ = 5, a = 10, s = .1, γ = .2, k1 = .5, N = 1, b = 5, θ = 2.5.
In the right figure, σ = 4. The solid red line satisfies the first equation. The dashed blue line satisfies the second
equation.

As is common in the new economic geography, this system of equations does not have a tractable

analytical solution for asymmetric equilibria. I therefore characterize the properties of the system

numerically. Figure 3.1 provides two examples. The left figure shows a system in which there

are both symmetric and asymmetric equilibria. The right figure, with a lower value of σ, shows a

system in which the only equilibrium is the symmetric one.

The properties of the left figure are straightforward. Since the fundamentals are symmetric,

one asymmetric equilibrium is just a relabeling of the other. In the right figure, the agglomeration

force is stronger because individuals place greater value on the variety of local goods and services.

From the left figure to the right figure, both lines rotate clockwise around the λN = λL = 1
2 origin,

but the dashed blue line moves farther, so that it now falls below the solid red line for all values

λN > 1
2 . Both lines rotate clockwise because the stronger agglomeration force makes relative Dixit-

Stiglitz prices more responses to differences in total local expenditure. The dashed blue line rotates

farther than the solid red line because higher-income individuals are relatively more responsive to
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differences in relative Dixit-Stiglitz prices when σ is lower.27

In sum, the existence of an asymmetric equilibrium depends on the strength of the agglomeration

force relative to congestion costs and individuals’ idiosyncratic tastes for cities. If the agglomeration

force is too strong, differences in the variety of local goods and services across cities make the

larger city more attractive to all individuals and the second city cannot exist in an asymmetric

equilibrium. If the agglomeration force is too weak, differences in variety are insufficient to attract

enough individuals to generate that variety. In between, asymmetric equilibria exist and exhibit

the properties described in section 3.4.4.

3.4.6 Skill premia and city size

When labor is heterogeneous and preferences are non-homothetic, consumer cities can match the

empirical cross-city pattern of skills and wages. The model demonstrates that larger cities can

exhibit both higher nominal incomes and more skilled populations without an agglomeration mech-

anism that increases productivity. Lee (2010) presents a partial-equilibrium model in which the

pattern of skill premia reflects consumption motives. In his model, individuals have reservation

utilities and local labor supplies are perfectly elastic. Since higher-income individuals are more

willing to pay for greater local variety, skilled individuals’ nominal incomes should not increase

with city size as quickly as less skilled individuals’ incomes.28 Empirically, skill premia, measured

as college wage premia, increase with city size (Davis and Dingel, 2012).29 While this fact rejects

the particular hypothesis described by the model of Lee (2010), it does not imply that consumption

motives are unimportant in determining cities’ skills and wages.

When local labor supplies are less than perfectly elastic and skill is imperfectly observed, a

system of consumer cities may exhibit a positive correlation between skill premia and city sizes. I

define the observed skill premium in a city as the average nominal wage of skilled individuals in

that city divided by the average nominal wage of unskilled individuals in that city. The observed

27When εic − εic′ ∼ U(−s, s), ∂2Pr(Uic>Uic′ )
∂li∂σ

= 1
2s

1
li

αk1
(σ−1)2

“
rc′X

α
σ−1
c′ lnXc′ − rcX

α
σ−1
c lnXc

”
< 0.

28Since Lee (2010) does not model multiple cities, it would be more accurate to describe this as a comparative
static than a prediction about the cross-city pattern of premia.

29Lee (2010) restricts his study to medical occupations, which are an exception to the general pattern.
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cross-city pattern of skill premia is jointly determined by the economy-wide skill distribution, how

the continuum of skills is divided into two skill groups, and within-group variation in incomes.30

I now provide a numerical example. Consider the asymmetric equilibrium in the left panel of

Figure 3.1. Recall that l ∼ U(10, 15). If the population is divided into two groups in which those

with l ≥ 12.5 are “skilled” and those with l ≤ 12.5 are “unskilled”, the observed skill premia of the

two cities are equal in the asymmetric equilibrium. When the skilled-unskilled cutoff is less than

12.5, the larger city’s skill premium is greater than that of the smaller city.

This demonstrates that a consumption-driven system of cities can explain the empirical finding

that city sizes and skill premia are positively correlated. Of course, a numerical example does not

demonstrate that a positive size-premium correlation is a general property of the model. But it

demonstrates that the indifference-condition test of the consumer-cities hypothesis proposed by

Lee (2010) depends on the assumption of perfectly elastic labor supplies and precisely observed

skill levels. Relaxing those assumptions, the model presented here is compatible with the empirical

pattern of skill premia.

3.5 Conclusion

Popular and academic discussions of cities emphasize their values as places to consume. But con-

sumption motives have hitherto been relegated to a second-order force shaping the system of cities.

Since nominal wages are higher in larger cities, urban economists have concluded that agglomeration

is primarily about larger cities’ advantages for production. For example, Rappaport (2008, p.549)

says that “the observed positive correlation between wages and density places an upper bound on

the importance of quality of life as a source of local crowdedness.” This chapter shows that larger

cities’ higher nominal incomes and more skilled populations could be explained by consumption

motives alone. If higher-income individuals value greater variety of local goods and services more

relative to housing prices, they will find larger cities relatively more attractive. These differing

valuations of heterogeneous individuals support heterogeneous cities as an equilibrium outcome.

30Davis and Dingel (2012) show how within-group heterogeneity and spatial sorting determine the pattern of skill
premia in an economy with production motives for agglomeration.
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Consumption-driven agglomeration may be as important as production-driven agglomeration.

The logic of the consumer-cities hypothesis presented in this chapter is more general than the

particular functional forms used to demonstrate my results. For example, larger cities may exhibit

consumption benefits valued by high-income individuals in dimensions other than variety. Suppose

that product quality is endogenous and firms upgrade their product quality by incurring fixed

costs, as in Sutton (1991). In larger markets, firms would produce higher-quality goods, so cities

with higher total expenditure would have a lower quality-adjusted price index rather than a lower

variety-adjusted price index.31 If high-income consumers spent a larger share of their income on

these goods or were more willing to pay for quality, they would move to larger cities in order to

access higher-quality products. This variant of the model would yield the same predicted skill and

wage distributions, but its predictions about observable outcomes in the goods market would be in

terms of quality rather than variety.

It seems unlikely that individuals’ productivities are spatially invariant. But it seems equally

implausible that cities’ consumption opportunities are similarly valued by heterogeneous individ-

uals. The purpose of this chapter is to introduce a parsimonious, general-equilibrium model of a

system of cities in which consumption motives are the agglomeration mechanism. It shows that

consumer cities can account for a range of empirical facts often identified as evidence that larger

cities’ advantages must stem from production-driven agglomeration. While Glaeser, Kolko, and

Saiz (2001) argue that the role of cities as centers of consumption is increasingly important relative

to their role as centers of production, this theory shows that consumer cities could already account

for fundamental facts about systems of cities.

31Berry and Waldfogel (2010) provide evidence that product quality increases with market size in daily newspapers,
where quality is produced with fixed costs.
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Appendix A

Appendix for Chapter 1

A.1 Theory appendix

Equilibrium pattern of specialization and trade

Skill-intensive quality and costless trade

Inequality (1.4) says that skill-abundant locations specialize in skill-intensive products. Recall:

k > k′, ω > ω′ ⇒ w(ω, k)−σ

w(ω′, k)−σ
Eω′,k

(
b(ω, i)σ

b(ω′, i)σ

)
>
w(ω, k′)−σ

w(ω′, k′)−σ
Eω′,k′

(
b(ω, i)σ

b(ω′, i)σ

)

To arrive at the result, we’ll first consider the case of factor-price equalization and then describe

the more general case.

When wages are equal across locations, w(ω, k) = w(ω) ∀k, this inequality simplifies to

Eω′,k
(
b(ω, i)σ

b(ω′, i)σ

)
> Eω′,k′

(
b(ω, i)σ

b(ω′, i)σ

)
.

In this case, φ(r, ω′, k) = nr,kx(r,k)b(ω′,r)σc(r)σR
r∈z∪Q nr,kx(r,k)b(ω′,r)σc(r)σdr

= nr,kx(r,k)`(ω′,r)R
r∈z∪Q nr,kx(r,k)`(ω′,r)dr

is a density that

describes ω′-use-weighted shares of total output of r in location k. The inequality says that the

average skill intensity of output is higher in k than k′. This requires that φi(ω′, k) put more weight

on some higher values of i than φi(ω′, k′) does so that the average skill intensity of output produced
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in k is higher than in k′.1 This is the factor-abundance mechanism for quality specialization.

In the absence of factor-price equalization, a slightly longer chain of reasoning delivers the

same conclusion. Suppose that inequality (1.4) were true but φi(ω′, k) did not place greater

weight on higher values of q in higher-k locations (i.e. φi(ω′, k) = φi(ω′, k′)). If so, w(ω, k)−σ

must be strictly log-supermodular to satisfy this inequality. If w(ω, k)−σ is log-supermodular,

then c(r, k)−σ is log-supermodular, since c(r, k)1−σ =
∫
ω∈Ω b(ω, r)

σw(ω, k)1−σdω and b(ω, r) is

log-supermodular (Lehmann, 1955). In the absence of trade costs, varieties of skill intensity

i are only produced in location k when c(i, k) = mink′ c(i, k′). Thus, log-supermodularity of

c(i, k)−σ and the zero-profit condition imply that φi(ω′, k) is log-supermodular in (i, k). As a result,

Eω′,k
(
b(ω,i)σ

b(ω′,i)σ

)
> Eω′,k′

(
b(ω,i)σ

b(ω′,i)σ

)
. Therefore skill-abundant locations specialize in skill-intensive,

high-quality varieties.

Uniform skill intensities and costly trade

Lemma A.1. When factor prices equalize and wages are increasing in skill, Γk(q,n, c,0) is strictly

log-supermodular in (q, k).

Proof. The proof of this lemma is quite similar to the proof of Lemma 1 in Fajgelbaum, Grossman,

and Helpman (2011). The demand level is

Γk(q,n, c,0) =
∫

exp(yq)
[∑

k′′ nq,k′′ exp(−c(q, k′′)q/θq)
]θq−1∑

q′ exp(yq′)
[∑

k′′ nq′,k′′ exp(−c(q, k′′)q′/θq′)
]θq′︸ ︷︷ ︸

≡Ψ(y,q,n,c,0)

g(y, k)dy

exp(yq) is strictly log-supermodular (SLSM), so Ψ(y, q,n, c,0) is SLSM in (y, q). Since w(ω) is

increasing and f(ω, k) is SLSM, g(y, k) is SLSM. Since Ψ(y, q,n, c,0) is SLSM in (y, q) and g(y, k)

is SLSM in (y, k), Γk(q,n, c,0) is strictly log-supermodular in (q, k) (Lehmann, 1955).

1Note that the inequality of expectations holds for an arbitrary ω > ω′. Therefore, { b(ω,i)
σ

b(ω′,i)σ }ω,ω′∈Ω,ω>ω′ is a

class of strictly increasing functions. If this class were all increasing functions, we would conclude that φi(ω
′, k)

stochastically dominates φi(ω
′, k′), since Ex̃(u(x)) ≥ Ex̃′(u(x)) ∀u′(x) > 0 ⇐⇒ Fx̃(x) ≤ Fx̃′(x) ∀x, where F is the

cumulative distribution function.
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Taking the theory to plant-level data

If b(ω, q) is strictly decreasing in q, higher-quality varieties are more costly to produce, c(q, k) >

c(q′, k) ⇐⇒ q > q′.

∂c(q, k)
∂q

=
−σ
σ − 1

c(q, k)σ
∫
b(ω, q)σ−1w(ω, k)1−σ ∂b(ω, q)

∂q
dω

∂b(ω, q)
∂q

< 0 ∀ω ⇒ ∂c(q, k)
∂q

> 0

If g(y, k) is log-supermodular, average income is a sufficient statistic for k. k > k′ if and only if

g(y, k) likelihood-ratio dominates g(y, k′), so Ek(y) > Ek′(y) ⇐⇒ k > k′.

The composition measure assumes that non-production workers are more skilled than produc-

tion workers. Denote the fraction of workers of skill ω labeled as non-production by l(N,ω) and the

fraction labeled production as l(P, ω) = 1 − l(N,ω). Denote the share of non-production workers

employed in a plant with skill intensity i in location k by shareN (i, k) ≡
R
ω `(ω,i(q),k)l(N,ω)dωR

ω `(ω,i(q),k)dω
. If

l(N,ω) is strictly increasing in ω, then shareN (i, k) is strictly increasing in i.2 Inside the factor-

price equalization (FPE) set, `(ω, q, k) = `(ω, q) ∀k and therefore shareN (i, k) = shareN (i) ∀k.

Outside the FPE set, if w(ω, k)−σ is log-supermodular, shareN (i, k) is strictly increasing in k.3 I

therefore use shareN (j)× ln ȳk as an additional control for skill intensity.

The wage measures assume that wages are increasing in skill, ω.4 If wages are increasing in

skill, we can infer the skill intensity of a plant’s variety from its average wage. The average wage

at a plant producing quality q with skill intensity i(q) in location k is

w̄(i, k) = w̄(q, k) =
∫
ω

w(ω, k)`(ω, i(q), k)∫
ω′ `(ω

′, i(q), k)dω′
dω =

∫
ω
w(ω, k)ϕ(ω, i, k)dω,

2This assumption is analogous to Property (28) in Costinot and Vogel (2010), which connects observable and
unobservable skills. If l(N,ω) is strictly increasing in ω, then choosing the labeling scheme of worker type t = N or
t = P with N > P makes l(t, ω) a strictly log-supermodular function. Since `(ω, i, k) is strictly log-supermodular
in (ω, i) and strict log-supermodularity is preserved by integration, the integral

R
ω
`(ω, i, k)l(t, ω)dω is strictly log-

supermodular in (t, i). As a result, the ratio
R
ω
`(ω, i, k)l(N,ω)dω/

R
ω
`(ω, i, k)l(P, ω)dω is strictly increasing in i.

Therefore shareN (i, k) is strictly increasing in i.

3This follows from `(ω, i, k) log-supermodular in (ω, k) and l(t, ω) log-supermodular in (t, ω).

4A sufficient condition is ∂ lnw(ω,k)
∂ω

= ∂ ln b(ω,q)
∂ω

− 1
σ
∂ ln f(ω,k)

∂ω
> 0 ∀q∀k. Informally, more skilled individuals have

greater absolute advantage than local abundance.
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where ϕ(ω, i(q), k) ≡ `(ω,i(q),k)R
ω′ `(ω

′,i(q),k)dω′
is a density that is strictly log-supermodular in (ω, i), which

means that ϕ(ω, i, k) likelihood-ratio dominates ϕ(ω, i′, k) if and only if i > i′.5 The average wage

w̄(i, k) is therefore strictly increasing in skill intensity i. We can similarly define the average wage

of production workers by

w̄P (i, k) =
∫
w(ω, k)`(ω, q, k)l(P, ω)∫
`(ω′, q, k)l(P, ω′)dω′

dω =
∫
w(ω, k)ϕP (ω, i, k)dω,

and an analogous average wage w̄N (i, k) for non-production workers with density ϕN (ω, i, k).

ϕP (ω, i, k) and ϕN (ω, i, k) are strictly log-supermodular in (ω, i), so these average wages are strictly

increasing in skill intensity i.

Inside the FPE set, wages equalize across locations, w̄(q, k) = w̄(q) ∀k, and ranking plants

by their averages wages is equivalent to ranking them by their factor intensities, w̄j > w̄j′ ⇐⇒

i(j) > i(j′). w̄P (q, k) and w̄N (q, k) also have these properties. This motivates using these average

wages as establishment-level controls for skill intensity. Outside the FPE set, if w(ω, k)1−σ is log-

supermodular, w(ω, k)ϕ(ω, i, k) is strictly log-supermodular in (ω, i) and in (ω, k). As a result,

w̄(i, k) is increasing in i, increasing in k, and log-supermodular. I therefore use w̄j × ln ȳk as an

additional establishment-level control for skill intensity.

Describing the composition of demand using per capita incomes exploits the fact that this

is a sufficient statistic for relative demand for qualities under the model’s assumptions. Lemma

1 in Fajgelbaum, Grossman, and Helpman (2011) shows that, when g(y, k) is log-supermodular

and trade costs are small, relative demand for higher-q varieties is greater in the higher-k location.

That is, when g(y, k) is log-supermodular, Γk′(q, n̄, c̄,0) is log-supermodular in (q, k). As mentioned

previously, when g(y, k) is log-supermodular, income per capita is a sufficient statistic for k.

5w̄(i, k) and ϕ(ω, i, k) can be written in terms of the skill intensity i(q) because i(q) = i(q′) ⇒ `(ω,q,k)R
ω′ `(ω

′,q,k)dω′ =

`(ω,q′,k)R
ω′ `(ω

′,q′,k)dω′ .
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A.2 Data appendix

A.2.1 Public data

A.2.1.1 Geography

All the reported results describe core-based statistical areas (CBSAs). ZIP-code tabulation areas

(ZCTAs), counties, and public-use microdata areas (PUMAs) were assigned to OMB-defined CBSAs

using the MABLE Geocorr2K geographic correspondence engine from the Missouri Census Data

Center. I use the CBSA geographies as defined in November 2008. These consist of 366 metropolitan

areas and 574 micropolitan statistical areas.

In the gravity regressions and in constructing the market-access measures, I define the mileage

distance between two CBSAs as the geodetic distance between their population centers. These

population centers are the population-weighted average of the latitude and longitude coordinates

of all ZCTAs within the CBSA, using population counts from the 2000 Census. I define the mileage

distance from a CBSA to itself as the population-weighted average of the pairwise geodetic distances

between all the ZCTAs within the CBSA. For five CBSAs containing only one ZCTA, I generated

this mileage distance to self using the predicted values obtained by projecting mileage distance to

self for the other 935 CBSAs onto their land areas.

A.2.1.2 Locational characteristics

Data on CBSAs’ aggregate populations and personal incomes come from the BEA’s regional eco-

nomic profiles for 1997, 2002, and 2007, data series CA30.

Data on the distribution of household incomes for the 1997 and 2002 samples were constructed

from county-level estimates reported in U.S. Census Bureau, 2000 Census Summary File 3, Series

P052. Data on the distribution of household incomes at the CBSA level for the 2007 sample were

obtained from U.S. Census Bureau, 2005-2009 American Community Survey 5-Year Estimates,

Series B19001.

City-industry college shares were constructed from the 2000 Census and 2005-2009 American

Community Surveys microdata made available via IPUMS-USA (Ruggles, Alexander, Genadek,

Goeken, Schroeder, and Sobek, 2010). City-industry means and standard deviations of years of
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schooling and wages from the 2000 Census and 2005-2009 American Community Surveys microdata

made available via IPUMS-USA (Ruggles, Alexander, Genadek, Goeken, Schroeder, and Sobek,

2010).

Locations’ latitudes and longitudes were compiled from various sources. Latitude and longitude

coordinates for US ZIP-code Tabulation Areas (ZCTAs) were obtained from the 2000 Census.6 The

geodetic distances for export shipments in appendix section A.5.3 were calculated using latitude and

longitude coordinates for major Canadian cities, which were constructed by aggregating Canadian

dissemination areas’ populations and coordinates in the 2006 Census Geographic Attribute File

from Statistics Canada, and coordinates of each nation’s capital or main city from Mayer and

Zignago (2011).

A.2.1.3 Industrial and product characteristics

The Sutton (1998) R&D and advertising intensity measure of scope for vertical differentiation is

provided at the SIC72 level in Federal Trade Commission (1981). These were mapped to 1987

SIC codes using the Bartlesman, Becker, and Gray concordance from Jon Haveman’s website and

to 1997, 2002, and 2007 (via 2002) NAICS codes using concordances from the US Census. For

industries to which multiple SIC72 industries were mapped, I calculated the weighted average of

intensities, using 1975 sales as weights.

The Khandelwal (2010) ‘ladder’ measure of scope for vertical differentiation was mapped from

HS10 product codes to 6-digit NAICS codes using the Pierce and Schott (2012) concordance. For

industries to which multiple commodities were mapped, I calculated the weighted average of ladder

lengths, using the initial period import values reported by Khandelwal as weights.

In estimating demand shifters, I mapped the Feenstra and Romalis (2012) estimates of σ̂ and

λ̂ from SITC revision 2 commodity codes to 5-digit SCTG product codes using a United Nations

SITC-HS concordance and a Statistics Canada HS-SCTG concordance. When multiple parameter

estimates mapped to a single 5-digit SCTG product code, I used the median values of σ̂ and λ̂.

The results are robust to using the arithmetic mean.

6Downloaded from http://www.census.gov/tiger/tms/gazetteer/zcta5.txt in December 2012.
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A.2.2 Confidential Census data

I use establishment-level microdata from the 1997, 2002, and 2007 editions of the Commodity Flow

Survey (CFS) and Census of Manufactures (CMF).

A.2.2.1 Commodity Flow Survey

I use data describing shipments by manufacturing plants from the Commodity Flow Survey, a

component of the quinquennial Economic Census. Each quarter of the survey year, establishments

report a randomly selected sample of 20-40 of their shipments from a given week and describe

them in terms of commodity content, value, weight, destination, transportation mode, and other

characteristics. The approximately 100,000 establishments sampled by the CFS were selected using

a stratified sampling design reflecting the Commodity Flow Survey’s objectives (Bureau of Trans-

portation Statistics and US Census Bureau, 2010); of the approximately 350,000 manufacturing

establishments in the United States, about 10,000 per year appear in my estimation sample.7

These data are analogous to firm-level customs data with four important distinctions. First,

the data describe shipments at the establishment level rather than at the firm level. Second, the

geographic detail of ZIP-to-ZIP shipments is orders of magnitude more precise than the distance

measures used to describe international transactions. Each shipment’s mileage was estimated by

BTS/Census using routing algorithms and an integrated, intermodal transportation network de-

veloped for that purpose. Third, establishments report a sample of their shipments in the survey,

not a complete record of all transactions. Each quarter of the survey year, establishments report a

randomly selected sample of 20-40 of their shipments in one week. The CFS data include statistical

weights that can be used to estimate aggregate shipment flows. Fourth, the CFS uses a distinct

product classification scheme, the Standard Classification of Transport Goods, that is related to

the Harmonized System used in international trade data. At its highest level of detail, five digits,

the SCTG defines 512 product categories.8

7The 2002 CFS sample is roughly half that of the 1997 and 2007 surveys, sampling about 50,000 establishments
in total and a proportionate number that appear in my estimation sample (Bureau of Transportation Statistics and
US Census Bureau, 2004).

8By comparison, the HS scheme has 97 2-digit and about 1400 4-digit commodity categories.
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The Commodity Flow Survey microdata include statistical weights so that observations can be

summed to obtain estimated totals that are representative. Each shipments’ associated “tabula-

tion weight” is the product of seven component weights (Bureau of Transportation Statistics and

US Census Bureau, 2010, Appendix C). The products of four of these weights (shipment weight,

shipment nonresponse weight, quarter weight, and quarter nonresponse weight) scale up an es-

tablishment’s shipments to estimate the establishments’ total annual shipments. The other three

component weights (establishment-level adjustment weight, establishment weight, industry-level

adjustment weight) scale up establishments’ total shipments to estimate national shipments. The

1997 and 2002 microdata report only the tabulation weights, while the 2007 microdata report all

seven component weights.

The demand estimation performed in section A.5.1 requires measures of establishments’ market

shares, which are calculated from estimates of their total sales of that product in a destination

market. These shares are estimated using the first four component weights. These establishment-

level measures should not be scaled up by the latter three component weights, such as the probability

of the establishment being selected into the CFS sample. As a result, it is only possible to estimate

the plant-product demand shifters using the 2007 microdata, which include the component weights

required to estimate market shares.

The CFS classifies shipments’ commodity contents using the Standard Classification of Trans-

ported Goods (SCTG), a coding system based on the Harmonized System (HS) classification that

was introduced in the 1997 CFS. At its highest level of detail, five digits, the SCTG defines 512

product categories. By comparison, the HS scheme has 97 2-digit and about 1400 4-digit commod-

ity categories. I exclude from my analysis all SCTG product categories whose 5-digit product codes

end in 99, since these are catch-all categories such as 24399 “Other articles of rubber.”

I calculate shipment unit values by dividing shipment value by shipment weight. All my analyses

of these unit values are within-product comparisons or regressions incorporating product fixed

effects. These unit values are proxies for producer prices, because they do not include shipping

costs or shelving costs that may appear in the retail consumer price.

Each shipment is reported to have been sent by any combination of eight transportation modes.

In much of the analysis, I restrict attention to unimodal shipments, which account for more than
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80% of shipments by value and 90% by weight (Bureau of Transportation Statistics and US Census

Bureau, 2010, Table 1b).

A.2.2.2 Census of Manufactures

Each manufacturing plant appearing in the Commodity Flow Survey also appears in the Census

of Manufactures, which describes plant-level characteristics such as wage bills, production and

non-production employees, and capital stocks. Very small establishments do not report detailed

production data to the CMF. Instead, the Census Bureau uses data from administrative records

from other agencies, such as tax records, to obtain information on revenues and employment. It

then imputes other variables.

The product trailer of the CMF describes the products produced at each establishment. For all

products, establishments report the total value of their annual output. For a subset of products,

establishments report both values and quantities.9 I calculate unit values by dividing product value

shipped by product quantity shipped; these unit values are used in appendix Table A.3.

A.2.2.3 Longitudinal Business Database

I also use information from the Longitudinal Business Database (LBD), which is a census of US

business establishments and firms with paid employees. Microdata from the 1997, 2002, and 2007

editions are a combination of survey and administrative records. I use the LBD for two purposes.

First, I use the records in linking establishments across the 2002 CFS and CMF data sets. Second,

I use an establishment’s first year appearing in the LBD, which is a comprehensive census, to

calculate plants’ ages.

A.2.2.4 Combining the CFS and CMF

I matched shipment-level observations in CFS data to establishment-level characteristics in CMF

data using unique establishment identifiers called Census File Numbers (1997) and Survey Unit

Identifiers (2002, 2007). I also used information in the LBD to address the switch from CFNs to

SUIs in 2002.

9The set of products for which product quantity shipped data are collected has shrunk over time.
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Each data source contains information on the geographic location of an establishment. The

CMF reports the county in which an establishment is located. The CFS reports the ZIP code and

state in all survey years and some information about core-based statistical areas in 2002 and 2007.

A.2.2.5 Sample selection

Though the CFS and CMF data are very rich descriptions of establishments and their shipments,

some of the observations exhibit limitations that warrant their exclusion from the estimation sample.

CFS & CMF: I exclude establishments not belonging to a OMB-defined CBSA. I exclude

a small number of establishments for which the CFS and CMF do not report the same CBSA. I

exclude SCTG5-NAICS6 pairs in which fewer than five establishments report shipping a commodity.

CFS: I restrict the sample to unimodal shipments, which constitute more than 80% of shipments

by value and 90% by weight (Bureau of Transportation Statistics and US Census Bureau, 2010).

I exclude shipments with unit values more than two standard deviations from the product mean.

I exclude destination-product pairs for which only one establishment ships that product to that

destination. I exclude shipments that are the unique instance of that commodity being shipped by

that establishment.

CMF: I exclude establishments whose information in the Census of Manufactures are derived

from administrative records rather than directly reported. I exclude establishments whose em-

ployment levels or wage bills are imputed in the 2002 and 2007 CMF.10 I exclude establishments

with wages that lie below the 1st percentile or above the 99th percentile of the wage distribution

for manufacturing establishments. I exclude CBSA-NAICS6 pairs in which total employment is

reported to be more than 10% of residential population.

A.3 Gravity appendix

This appendix characterizes the pattern of manufactures shipments between US cities using a

gravity model of shipment volumes. Gravity regressions relate the volume of trade to the origin’s

economic size in terms of output produced, the destination’s economic size in terms of consumer

10The 1997 CMF does not identify variables that have been imputed, so I am unable to exclude such observations.
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expenditure, and trade frictions between the origin and destination.11 Hallak (2010) and Bernasconi

(2013) use gravity models of trade flows between countries to assess whether locations with more

similar income levels trade more with each other, controlling for origin characteristics, destination

characteristics, and bilateral trade frictions. They find that countries with more similar income

distributions trade more with each other, as predicted by Linder (1961). I find a similar pattern of

trade flows between US cities.

The baseline gravity specification is

lnXodst = η · ln milesod + β · | ln ȳot − ln ȳdt|+ γost + γdst + εodst

where Xodst is the volume of shipments in sector s sent from origin o to destination d in year t,

milesodt is the distance between the two locations, | ln ȳot − ln ȳdt| is the difference in their log per

capita incomes, γost and γdst origin-sector-year and destination-sector-year fixed effects, and εodst

is a residual reflecting both random sampling and potential measurement error.12

This baseline specification is estimated using observations with strictly positive shipment vol-

umes. In fact, there are many zeros in the trade matrix, and these non-positive shipment volumes

reflect economic mechanisms, like trade costs. For example, every city ships a positive amount to

itself in every sector Xoost > 0 ∀o∀s∀t.

I use two approaches to correct for the non-random nature of zeros. First, I implement the

Heckman (1979) two-step selection correction. The first-step probit regression, which has the same

regressors on the right-hand side, yields an estimated probability of a strictly positive shipment

volume for each origin-destination-sector-year. The second-step estimating equation is

lnXodst = −η · ln milesod + β · | ln ȳot − ln ȳdt|+ δ
φ(Φ−1(ρ̂odst))

ρ̂odst
+ γost + γdst + εodst,

11See Anderson (2011) and Bergstrand and Egger (2011) for surveys of the gravity literature. Importantly, the
correct notions of economic size account for “multilateral resistance” terms that depend on the locations’ bilateral
trade frictions with all trading partners. These are captured by fixed effects in my regressions.

12Observations of Xodstinclude sampling error since a representative sample of shipments is used to estimate the
total shipment volume. See the data appendix A.2 for details. Noise in the dependent variable will not bias the
estimated coefficients of interest.
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where ρ̂odst is the predicted probability from the probit regression, φ and Φ are the probability and

cumulative density functions of the normal distribution, and φ(Φ−1(ρ̂odst))
ρ̂odst

is the inverse Mills ratio.

The second approach I use to address zeros is the Poisson pseudo-maximum likelihood estimator

introduced by Silva and Tenreyro (2006) to estimate the gravity equation in levels.

E(Xodst) = miles−ηod | ln ȳot − ln ȳdt|β exp(γost + γdst)

This estimation approach allows me to include observations for which Xodst = 0.13

Table A.1 reports the result of estimating this gravity regression for aggregate manufactures

shipment volumes. The first column reports the result of estimating the baseline gravity specifi-

cation via OLS. The second column uses the squared difference in incomes, (ln ȳot − ln ȳdt)2, as a

regressor instead of the absolute difference. The third column adds the two-step Heckman (1979)

correction for selection into strictly positive trade flows. The fourth and fifth columns use the Silva

and Tenreyro (2006) Poisson pseudo-maximum likelihood estimator for all observations and strictly

positive trade flows, respectively.

In all the relevant specifications, the difference between two cities’ average income levels is neg-

atively correlated with the level of trade between them. The Linder pattern of trade, in which

locations with more similar incomes trade more intensely with each other, holds true for manufac-

tures shipments between US cities. The finding that locations disproportionately demand products

that are produced in locations of similar income levels suggests two elements that any model ex-

plaining within-product specialization must incorporate. First, preferences are non-homothetic, so

the composition of demand varies with locations’ incomes. Second, high-income locations have

comparative advantage in producing products that are particularly attractive to high-income con-

sumers. As described in section 1.2, these patterns are compatible with the factor-abundance

mechanism or home-market effect determining the pattern of within-product specialization.

The distance elasticity of trade, η, is estimated to be near one. Most of the estimates are

about 0.9, while the two-step Heckman specification implies that shipment volumes are notably

13Silva and Tenreyro (2006) emphasize that their estimation procedure addresses a concern that higher moments of
exp(εodst) are correlated with the regressors, which would cause the estimated coefficients in the log-linear specification
to be inconsistent.

129



Table A.1: Shipment volumes (2007)

(1) (2) (3) (4) (5)
OLS OLS Heckman PPML w/ zeros PPML w/o zeros

Dep var: lnXod lnXod lnXod Xod Xod

ln milesod -0.916** -0.917** -1.773** -0.952** -0.831**
(0.00745) (0.00715) (0.0104) (0.0170) (0.0170)

| ln ȳo − ln ȳd| -1.696** -1.074** -0.430** -1.241**
(0.0413) (0.0454) (0.0840) (0.0934)

(ln ȳo − ln ȳd)2 -2.657**
(0.0854)

Inverse Mills φ(Φ−1(ρ̂od))
ρ̂od

2.434**
(0.0222)

R-squared 0.347 0.347 0.378
Observations (rounded) 175,000 175,000 175,000 850,000 175,000
Origin CBSAs (rounded) 900
Destination CBSAs (rounded) 950

Standard errors in parentheses
** p<0.01, * p<0.05

Notes: Aggregate shipment volume by establishments in the CFS and CMF between distinct CBSAs in 2007. All
regressions include origin and destination fixed effects. Standard errors are bootstrapped with 50 repetitions in
columns 1-3 and heteroskedastic-robust in columns 4-5.

more sensitive to the distance between origin and destination. These results are consistent with

the central tendency of the vast international literature summarized by Disdier and Head (2008)

and the elasticity of domestic shipments reported in Table 1 of Hillberry and Hummels (2008) for

geographically aggregate shipment volumes.

A.4 Tables appendix
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Table A.2: Outgoing shipment prices with city-industry schooling measures

Dep var: Log unit value (1) (2) (3) (4) (5)

Log origin CBSA income per capita 0.529** 0.472** 0.392** 0.404** 0.340**
(0.0546) (0.0529) (0.0517) (0.0587) (0.0570)

Log origin CBSA population -0.0217** -0.0241** -0.0253** -0.0209** -0.0232**
(0.00672) (0.00635) (0.00607) (0.00731) (0.00688)

Log non-production worker share -0.0149 -0.0536 -0.0171 -0.0580
× log per capita income (0.0450) (0.0527) (0.0454) (0.0529)

Log assets per worker 0.00456 -0.0250 0.00485 -0.0251
× log per capita income (0.0251) (0.0295) (0.0245) (0.0290)

Log pay per worker 0.0680 0.0933
× log per capita income (0.146) (0.146)

Log pay per production worker 0.265* 0.249*
× log per capita income (0.110) (0.113)

Log pay per non-production worker 0.0207 0.0184
× log per capita income (0.0661) (0.0665)

City-industry mean years schooling 0.0191 -0.000797
× log per capita income (0.0325) (0.0332)

R-squared 0.883 0.885 0.886 0.885 0.887
Note flex miles ctrl qnt flex ctrl all flex ctrl qnt flex ctrl all flex

+ school flex + school flex
Observations (rounded) 1,000,000
Estab-year (rounded) 22,500
Ind-prod-year (rounded) 2,000

Standard errors, clustered by CBSA × year, in parentheses
** p<0.01, * p<0.05

Notes: Manufacturing establishments in the CFS and CMF. All shipments are to a domestic destination CBSA
distinct from the origin CBSA. All regressions include SCTG5×NAICS6×destination×year fixed effects and mode×
year fixed effects. Unreported controls are 3-digit-NAICS-specific third-order polynomials in log mileage (columns
1-5), log non-production worker share (2-5), log assets per worker (2-5), log pay per worker (3,5), log pay per
producer worker (3,5), log pay per non-production worker (3,5), and city-industry means years of schooling (4-5).
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Table A.3: Establishments’ prices and origin characteristics

Dep var: CMF Log unit value (1) (2) (3) (4) (5) (6) (7)

Log origin CBSA income per capita 0.218** 0.204** 0.193** 0.192** 0.155** 0.142** 0.0591
(0.0384) (0.0384) (0.0392) (0.0409) (0.0373) (0.0392) (0.0459)

Log origin CBSA population -0.000772 -0.00120 -0.00151 -0.000374 0.00380 0.00345 -0.00274
(0.00484) (0.00481) (0.00473) (0.00501) (0.00483) (0.00492) (0.00490)

Log non-production worker share 0.0564** 0.0471**
√ √ √

(0.00539) (0.00652)

Log assets per worker -0.0125** -0.0159**
√ √ √

(0.00395) (0.00404)

Log non-production share 0.0261 0.0320 0.0147 0.0125 0.00937
× log per capita income (0.0268) (0.0343) (0.0311) (0.0310) (0.0310)

Log assets per worker -0.0229 -0.0183 -0.0229 -0.0226 -0.0181
× log per capita income (0.0226) (0.0213) (0.0198) (0.0197) (0.0198)

Log pay per worker 0.109**
√ √ √

(0.0281)

Log pay per production worker -0.0411*
√ √ √

(0.0187)

Log pay per non-production worker -0.0257*
√ √ √

(0.0124)

Log pay per worker -0.0729 0.00495 0.00157 -0.0108
× log per capita income (0.170) (0.147) (0.146) (0.147)

Log pay per production worker -0.0408 -0.0751 -0.0752 -0.0922
× log per capita income (0.120) (0.101) (0.100) (0.101)

Log pay per non-production worker -0.00298 0.00839 0.00891 0.00244
× log per capita income (0.0575) (0.0531) (0.0527) (0.0531)

Market access (excl origin) M1
ot 0.564** 0.469**

(0.136) (0.136)

Log std dev household income 0.0804
(0.0460)

Market access M2
ot 0.403**

(0.113)

R-squared 0.914 0.914 0.914 0.917 0.914 0.917 0.917
Obs (rounded) 100000
Estab-year (rounded) 27500
Ind-prod-year (rounded) 8000

Standard errors, clustered by CBSA × year, in parentheses
** p<0.01, * p<0.05

Notes: Manufacturing establishments in the CMF reporting a product with quantity shipped. All regressions
include NAICS6×year and NAICS product code×year fixed effects. The fourth, sixth, and seventh columns include
3-digit-NAICS-specific third-order polynomials in log non-production worker share, log assets per worker, log pay
per worker, log pay per producer worker, and log pay per non-production worker.
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Table A.4: Outgoing shipment prices with plant-size controls

Dep var: Log unit value (1) (2) (3)

Log origin CBSA income per capita 0.412** 0.366** 0.298**
(0.0415) (0.0402) (0.0384)

Log origin CBSA population -0.00823 -0.0112* -0.0150**
(0.00454) (0.00441) (0.00413)

Log non-production worker share 0.0253 0.0194
× log per capita income (0.0345) (0.0398)

Log assets per worker 0.000542 -0.0246
× log per capita income (0.0191) (0.0210)

Log pay per worker -0.0819
× log per capita income (0.121)

Log pay per production worker 0.363**
× log per capita income (0.0876)

Log pay per non-production worker 0.133*
× log per capita income (0.0555)

R-squared 0.880 0.882 0.883
Observations (rounded) 1,400,000
Estab-year (rounded) 30,000
Ind-prod-year (rounded) 2,000

Standard errors, clustered by CBSA × year, in parentheses
** p<0.01, * p<0.05

Notes: Manufacturing establishments in the CFS and CMF. All shipments are to a domestic destination CBSA
distinct from the origin CBSA. All regressions include SCTG5×NAICS6×destination×year fixed effects and mode
× year fixed effects. Unreported controls are 3-digit-NAICS-specific third-order polynomials in log mileage (columns
1-3), log establishment size (1-3), log non-production worker share (2-3), log assets per worker (2-3), log pay per
worker (3), log pay per producer worker (3), and log pay per non-production worker (3).
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A.5 Supplementary appendix

This appendix reports further empirical evidence consistent with the results presented in section 1.5.

First, estimated demand shifters exhibit the same patterns as outgoing shipment prices. Second,

cities with greater income dispersion have higher outgoing shipment prices, consistent with the

model’s demand system in an equilibrium in which most individuals purchase low-quality varieties.

Third, export shipments exhibit patterns consistent with those found in domestic transactions.

A.5.1 Estimated demand shifters

This section characterizes the pattern of within-product specialization across US cities and its

determinants using estimated demand shifters. As previously described, consumer love of variety

in the presence of horizontal differentiation breaks the price-quality mapping by allowing high-cost

varieties to sell alongside low-cost varieties of the same quality. Section 1.5 addresses this concern by

including a variety of plant-level cost measures, which were not available to researchers analyzing

aggregate trade flows between countries. This section addresses the concern a second time by

estimating demand shifters for each plant-product pair. The empirical results are consistent with

the unit-value findings.

The demand-shifter approach assigns higher quality valuations to products that have higher

market shares, conditional on price (Berry, 1994; Khandelwal, 2010; Sutton, 2012). As described

in the data appendix, it is only possible to calculate plants’ market shares in the 2007 edition of

the Commodity Flow Survey. This considerably reduces the number of observations compared to

the number underlying the previously presented results.

To estimate demand shifters, I use the “non-homothetic CES preferences” of Feenstra and

Romalis (2012).14 In this specification, the sales volume sjd of product j in destination market d

in 2007 is described by

14One merit of this demand system is its computational simplicity. Because the nested-logit demand system used
in the Fajgelbaum, Grossman, and Helpman (2011) model uses quality levels as nests, its estimation would require
a computationally intensive iterative approach. Products must be assigned to quality nests in order to estimate the
demand system, and product qualities must be inferred by estimating demand.
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ln sjd =(σ − 1)(ln qj + λ ln ȳd ln qj − ln pjd) + γd + εjd

where qj is the product-quality shifter, pjd is price, ȳd is per capita income in market d, γd captures

both aggregate expenditure and the price index in the destination market, and εjd captures both

idiosyncratic demand shocks and measurement error. The parameter λ governs how consumer

valuation of quality varies with income; the parameter σ is the elasticity of substitution and price

elasticity of demand. In the demand system, pjd is the price paid by the consumer, while in my

data the observed price p̌jd excludes shipping costs.15 I therefore include the shipment mileage

from establishment to destination and the shipment mileage interacted with price, lnmilesjd and

1
p̌jdt

lnmilesjd, as additional regressors to control for shipping costs.16 I use sectoral estimates of λ̂

and σ̂ from Feenstra and Romalis (2012) in order to estimate qj in the linear regression

ln sjd + (σ̂ − 1) ln p̌jd
(1 + λ̂ ln ȳd)(σ̂ − 1)

= ln qj + η1 lnmilesjd + η2
1
p̌jd

lnmilesjd + γ̃d + ε̃jd

where γ̃d and ε̃jd are rescaled versions of γd and εjd. These regressions are estimated product-by-

product, for 1000 products defined by SCTG5-NAICS6 codes, for the 2007 sample.17

Table A.5 describes how these estimated demand shifters relate to the observable characteristics

of products, plants, and cities. The first column reports that the estimated demand shifters are

strongly positively correlated with plants’ prices. This validates the use of prices in inferring the

pattern of quality specialization earlier in the paper. The second column shows that plants with

higher estimated demand shifters are located in cities with higher per capita incomes. The 41%

origin-income elasticity of the estimated demand shifter is remarkably similar to the 43% origin-

15In international trade parlance, demand depends on the “cost-insurance-and-freight” price while my data reports
the “free-on-board” price. If the consumer price reflects both multiplicative and additive trade costs, τmjd and τajd,
then pjd = p̌jdτ

m
jd + τajd and ln pjd ≈ ln p̌jd + (τmjd − 1) + 1

p̌jd
τajd. Assuming that τmjd and τajd are functions of the

shipment distance motivates the inclusion of lnmilesjd and 1
p̃jd

lnmilesjdas regressors.

16Omitting these regressors has very little impact on the estimated demand shifters and the subsequent results
relating these shifters to city and plant characteristics.

17I obtain very similar results if I define products using only 5-digit SCTG codes. See the appendix section A.2 for
details of how I mapped the Feenstra and Romalis (2012) parameter estimates to these product codes.
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income elasticity of outgoing shipment prices. The third and eighth columns demonstrate that

this positive relationship persists after controlling for plants’ input usage. Qualitatively consistent

with the result in section 1.5.1, observed differences in plant-level factor usage explain less than

half of the observed correlation between plants’ output characteristics and per capita incomes.

The fourth and ninth columns replicate the finding that the income composition of proximate

potential customers, excluding those in the city of production, is strongly positively associated with

a plant’s output profile. The 11-percentage-point decline in the origin-income elasticity caused by

introducing the first-market access measure after controlling for factor-usage differences suggests

that proximity to these customers explains at least one-quarter of the observed variation. The

sixth column demonstrates that introducing the first market-access measure prior to controlling

for factor usage would result in a change in the origin-income elasticity of essentially the same

magnitude as controlling for factor usage. The fifth, seventh, and tenth columns demonstrate that

the second market-access measure, which includes residents in the city of production, has greater

explanatory power. The eleventh column replicates the findings of section 1.5.2 by demonstrating

a positive relationship with origin CBSA income dispersion and the market-access measure.

These results can be succinctly summarized as a decomposition of the covariance between

incomes and shifters. After controlling for population size, differences in observed factor usage are

responsible for 46% of the covariance between per capita incomes and estimated demand shifters.

Conditional on factor usage, the conservative market-access measure that omits residents in the

city of production accounts for 25% of the total covariance, leaving 30% as residual variation. The

model-consistent market-access measure that includes residents in the city of production accounts

for 48% of the total covariance, leaving 7% as residual variation.18 Thus, the observed pattern of

specialization and inferences about its determinants obtained using estimated demand shifters are

similar to those obtained by examining unit values.

18Numbers sum to 101% due to rounding.
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A.5.2 Income dispersion

This section documents the relationship between the second moment of the income distribution

and shipment prices. Cities with greater dispersion in household income exhibit higher prices

for both incoming and outgoing shipments. The latter is not explained by dispersion in workers’

wages or skills. These findings are consistent with a demand-side mechanism linking local income

distributions to the pattern of quality specialization.

In the Fajgelbaum, Grossman, and Helpman (2011) model, income inequality is linked to qual-

ity specialization because the income distribution determines the composition of local demand for

quality. In general, the effect of greater income dispersion on relative demand for quality is am-

biguous. The authors’ Proposition 2(iii) shows that, when there are two qualities and the majority

of individuals at all income levels consume the low-quality variety, a mean-preserving spread of

the income distribution raises local relative demand for the high-quality variety in their demand

system. Since the converse would hold if a majority of individuals consumed high-quality varieties,

there is no general theoretical result for the correlation between income dispersion and relative

demand for quality.

A few theories link income dispersion to specialization through supply-side mechanisms that are

absent from the model in section 1.3. In Grossman and Maggi (2000) and Bombardini, Gallipoli,

and Pupato (2012), locations with more diverse skill distributions have comparative advantage in

sectors in which skills are more substitutable.19 In Grossman (2004), imperfect labor contracting

causes locations with more diverse skill distributions to have comparative advantage in sectors

in which the most talented individuals’ contributions are more easily identified. Applying these

models to question at hand involves reinterpreting them as theories of intrasectoral specialization.

For example, if different skills were less substitutable in the production of higher-quality products,

these models would predict that locations with greater skill dispersion would specialize in lower-

19Though both papers describe locations with greater skill dispersion specializing in sectors with greater substi-
tutability of skills, these two papers differ considerably. Grossman and Maggi (2000) compare two countries and two
sectors, one in which output is supermodular in the two workers’ talents and another in which output is submod-
ular in talents. They assume that talent is perfectly observed. Bombardini, Gallipoli, and Pupato (2012) describe
imperfectly observed skills and CES production functions that vary in their elasticities of substitution between skills.
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quality varieties.20 If they were more substitutable, the reverse prediction would result.

In light of these theoretical ambiguities, I rely on the distinction between income dispersion

among local consumers and skill dispersion among local workers to empirically distinguish between

the demand-side and supply-side mechanisms. Income dispersion among all potential customers

influences the demand channel. In the supply-side theories (appropriately reinterpreted to describe

specialization within sectors), only skill dispersion among those working in the industry in question

is relevant. Thus, I construct two types of empirical measures: the standard deviation of household

income within each city and the standard deviations of years of schooling and weekly wages within

each city-industry pair. The former proxies for the demand-side mechanism; the latter for the

supply-side. I proceed to include these measures in linear regressions describing shipment prices.

Table A.6 documents how shipment prices are related to income and skill dispersion in the

destination and origin cities. The first two columns report the result of adding the standard

deviation of household income in the shipment destination to multivariate regressions like those

appearing in Table 1.2. The first column omits any origin-city characteristics; the second column

includes origin-city fixed effects. In each case, the standard deviation of household income is strongly

positively related to the price of incoming shipments. This is consistent with an equilibrium in which

a more dispersed income distribution has more households in the right tail of the distribution who

purchase higher-price, higher-quality varieties.

The next five columns of Table A.6 relate outgoing shipment prices to income and skill dispersion

in the shipment origin. These regressions all include destination-product-year fixed effects and

control variables with industry-specific third-order polynomials, like those regressions appearing

in the last three columns of Tables 1.3. The third column introduces the standard deviation

of household income as a regressor alongside origin characteristics and shipment mileage. The

fourth column adds controls for plant-level factor usage in quantities and wages. The standard

deviation of household income in the shipment origin is strongly, positively related to the outgoing

shipment price. This is consistent with models in which income dispersion generates demand for

high-price, high-quality varieties or skill dispersion generates comparative advantage in high-price,

20Grossman and Maggi (2000, p.1255,1271) cite quality control as an example of supermodular production in which
less dispersion yields comparative advantage.
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high-quality varieties. The fifth and sixth columns repeat the third and fourth columns for the

subset of observations for which city-industry-level measures of skill dispersion are available so

that we can contrast income dispersion amongst potential customers with skill dispersion amongst

workers employed in production. The sixth column introduces an additional control, city-industry

mean years of schooling, that is available for these observations. Among this subsample, the

coefficients on the log standard deviation of household income are more than double their values

for the full sample. The key result, appearing in the seventh column, is that controlling for the

logs of the standard deviations of years of schooling and weekly wages at the city-industry level

leaves the coefficients on origin characteristics virtually unaltered. Skill dispersion on the supply

side appears unrelated to outgoing shipment prices. These findings suggest that a demand-side

mechanism links the local income distribution to specialization.
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A.5.3 Export shipments

This section examines export shipments. My empirical investigation was motivated in part by

a growing international trade literature on quality specialization. I implemented my empirical

strategy using plant-level data from US cities of varying income levels. The analysis above described

shipments destined for US cities, which account for the vast majority of US manufactures output,

to characterize how shipments’ characteristics are related to the characteristics of their production

locations. This section shows that the patterns found in domestic shipments are also found in

export shipments destined for foreign markets.

Export shipments by US manufacturing plants exhibit price patterns consistent with those

observed in domestic shipments. Table A.7 presents results for regressions analogous to those

presented in Tables 1.3 and 1.4 using shipments sent to foreign destinations. The sample size is

considerably smaller, since exports represent less than 8% of shipments by value and 4% by weight

(Bureau of Transportation Statistics and US Census Bureau, 2010).21 I calculate the mileage

distance from origin CBSA to foreign destination using latitude and longitude coordinates.22

The estimated coefficients are consistent with those reported for shipments to domestic destina-

tions. The origin-income elasticity of export prices is 42%. After controlling for plant-level factor

usage, the origin-income elasticity is 30%. Upon introduction of the market-access measures, the

origin-income elasticity becomes negative and statistically indistinguishable from zero. The disper-

sion of household income in the origin CBSA is positively related to export shipment prices, though

this relationship is statistically insignificant, presumably due to the small sample size. Thus, the

empirical relationships between export shipment prices, factor usage, and the demand measures

are in line with those found for shipments to domestic destinations.

21This small sample size prevents me from estimating demand shifters using export shipments.

22For Canadian destinations, I use the coordinates of major Canadian cities. For other countries, I use the coordi-
nates of the capital or main city. See data appendix A.2 for details.
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Appendix B

Appendix for Chapter 2

B.1 Consumption interpretation

The production and consumption interpretations yield very similar results but differ slightly in

notation. In the consumption interpretation, an individual’s productivity and utility are

q(c, τ, σ;ω) = A(c)H(ω, σ) (B.1)

U(ω, c, τ, σ) = T (τ) [A(c)H(ω, σ)p(σ)− r(c, τ)] (B.2)

where T (τ) determines the value of the individual’s disposable income after paying his or her

locational price.1 In this interpretation, preferences are non-homothetic in a manner akin to that

of Gabszewicz, Shaked, Sutton, and Thisse (1981). Higher-income individuals are more willing

to pay for higher-quality locations because a more desirable location complements their higher

consumption of tradables.

In this case, instead of γ = A(c)T (τ) = A(c′)T (τ ′) ⇐⇒ r(c, τ) = r(c′, τ ′) = rΓ(γ),

the appropriate equivalence between two locations is their “amenity-amplified price”, which is

T (τ)r(c, τ). So the equivalence statement is now γ = A(c)T (τ) = A(c′)T (τ ′) ⇐⇒ T (τ)r(c, τ) =

T (τ ′)r(c′, τ ′) = rΓ(γ). The results in lemma 2.1 are unaltered, though the proof is modified to

use the relevant U(ω, c, τ, σ). The expressions for K : Γ → Ω, γ̄, and γ are unaltered. This

1Recall that the final good is the numeraire.
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leaves the conclusions of lemmas 2.4, 2.5, and 2.6 intact. The locational price schedule is given by

r(c, τ) = rΓ(A(c)T (τ))
T (τ) = A(c) rΓ(γ)

γ .

These locational prices do not appear in the proof of Proposition 2.1 nor the endogenous def-

inition of A(c). When evaluated at equilibrium, occupied locations’ productivities q(c, τ, σ;ω) =

A(c)H(ω, σ) differ across cities in a Hicks-neutral fashion that satisfies Costinot’s Definition 4 (see

footnote 23), so Proposition 2.2 applies. As a result, the predictions about cities’ population, sec-

tors, and productivities described in sections 2.3.5 and 2.3.6 are unaltered by interpreting T (τ) as

describing consumption benefits rather than production benefits.

B.2 Proofs

Proof of Lemma 2.1:

Proof. Suppose that ∃τ ′ < τ̄(c) : S(τ ′) > L
∫ τ ′

0

∫
σ∈Σ

∫
ω∈Ω f(ω, c, x)dωdσdx. Then ∃τ ≤ τ ′ :

S′(τ) > L
∫
σ∈Σ

∫
ω∈Ω f(ω, c, τ)dωdσ. Then r(c, τ)) = 0 ≤ r(c, τ̄(c)), so U(ω, c, τ, σ) > U(ω, c, τ̄(c), σ) ∀ω∀σ

since T (τ) is strictly decreasing. This contradicts the definition of τ̄(c), since τ̄(c) is a location that

maximizes utility for some individual. Therefore S(τ) = L
∫ τ

0

∫
σ∈Σ

∫
ω∈Ω f(ω, c, x)dωdσdx ∀τ ≤

τ̄(c).

Suppose that ∃τ ′, τ ′′ : τ ′ < τ ′′ ≤ τ̄(c) and r(c, τ ′) ≤ r(c, τ ′′). Then U(ω, c, τ ′, σ) > U(ω, c, τ ′′, σ) ∀ω∀σ

since T (τ) is strictly decreasing. This contradicts the result that τ ′′ maximizes utility for some in-

dividual. Therefore r(c, τ) is strictly decreasing in τ ∀τ ≤ τ̄(c).

Suppose r(c, τ̄(c)) > 0. Then by its definition as a populated location, ∃ω : A(c)T (τ̄(c))G(ω)−

r(c, τ̄(c)) ≥ A(c)T (τ̄(c) + ε)G(ω) ∀ε > 0. This inequality is false for all ω for sufficiently small ε,

by the continuity of T (τ). Therefore r(c, τ̄(c)) = 0.

Proof of Lemma 2.2:

Proof. Much of our argument follows the proof of Lemma 1 in Costinot and Vogel (2010). De-

fine f(ω, c, τ) ≡
∫
σ∈Σ f(ω, c, τ, σ)dσ. Define Ω(τ) ≡ {ω ∈ Ω|f(ω, c, τ) > 0} and T (ω) ≡ {τ ∈

[0, τ̄(c)]|f(ω, c, τ) > 0}.

1. T (ω) 6= ∅ by equation (2.11) and f(ω) > 0. Ω(τ) 6= ∅ ∀τ ≤ τ̄(c) by lemma 2.1.
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2. Ω(τ) is a non-empty interval for τ ∈ [0, τ̄(c)]. Suppose not, such that ω < ω′ < ω′′ with

ω, ω′′ ∈ Ω(τ) and ω′ /∈ Ω(τ). ∃τ ′ : ω′ ∈ Ω(τ ′). Suppose τ ′ > τ. By utility maximization

A(c)T (τ ′)G(ω′)− r(c, τ ′) ≥ A(c)T (τ)G(ω′)− r(c, τ)

A(c)T (τ)G(ω)− r(c, τ) ≥ A(c)T (τ ′)G(ω)− r(c, τ ′)

These jointly imply (T (τ ′) − T (τ))(G(ω′) − G(ω)) ≥ 0, contrary to τ ′ > τ and ω′ > ω. The

τ ′ < τ case is analogous, using ω′ and ω′′. Therefore Ω(τ) is a non-empty interval. The same

pair of inequalities proves that for τ < τ ′ ≤ τ̄(c), if ω ∈ Ω(τ) and ω′ ∈ Ω(τ ′), then ω ≥ ω′.

3. Ω(τ) is singleton for all but a countable subset of [0, τ̄(c)]. Follow Costinot and Vogel (2010).

4. T (ω) is singleton for all but a countable subset of Ω. Follow Costinot and Vogel (2010).

5. Ω(τ) is singleton for τ ∈ [0, τ̄(c)]. Suppose not, such that there exists τ ∈ [0, τ̄(c)] for which

Ω(τ) is not singleton. By step two, Ω(τ) is an interval, so µ[Ω(τ)] > 0, where µ is the Lebesgue

measure over R. By step four, we know that T (ω) = {τ} for µ-almost all ω ∈ Ω(τ). Hence

condition (2.11) implies

f(ω, c, τ) =f(ω)δDirac[1− 1Ω(τ)] for µ-almost all ω ∈ Ω(τ), (B.3)

where δDirac is a Dirac delta function. Combining equations (2.9) and (B.3) with µ[Ω(τ)] > 0

yields S′(τ) = +∞, which contradicts our assumptions about S(τ).

Step 5 means there is a function N : T → Ω such that f(ω, c, τ) > 0 ⇐⇒ N(τ) = ω. Step 2 says

N is weakly decreasing. Since Ω(τ) 6= ∅ ∀τ ≤ τ̄(c), N is continuous and satisfies N(0) = ω̄ and

N(τ̄(c)) = ω. Step 4 means that N is strictly decreasing on (0, τ̄(c)).

Proof of the explicit expression of N(τ) that follows Lemma 2.2:
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S(τ) = L

∫ τ

0

∫
σ∈Σ

∫
ω∈Ω

f(ω, c, x, σ)dωdσdx

= L

∫ τ

0

∫
ω∈Ω

f(ω)δDirac[x−N−1(ω)]dωdx

= L

∫ τ

0

∫
τ ′
f(N(τ ′))δDirac[x− τ ′]N ′(τ ′)dτ ′dx

= −L
∫ τ

0
f(N(x))N ′(x)dx = L(1− F (N(τ)))

⇒ N(τ) = F−1

(
L− S(τ)

L

)

Proof of Lemma 2.3:

Proof. By utility maximization

A(c)T (τ)G(N(τ))− r(c, τ) ≥ A(c)T (τ + dτ)G(N(τ))− r(c, τ + dτ)

A(c)T (τ + dτ)G(N(τ + dτ))− r(c, τ + dτ) ≥ A(c)T (τ)G(N(τ + dτ))− r(c, τ)

Together, these inequalities imply

A(c)T (τ + dτ)G(N(τ))−A(c)T (τ)G(N(τ))
dτ

≤ r(c, τ + dτ)− r(c, τ)
dτ

≤ A(c)T (τ + dτ)G(N(τ + dτ))−A(c)T (τ)G(N(τ + dτ))
dτ

Taking the limit as dτ → 0, we obtain ∂r(c,τ)
∂τ = A(c)T ′(τ)G(N(τ)). Integrating from τ to τ̄(c)

and using the boundary condition r(c, τ̄(c)) = 0 yields r(c, τ) = −A(c)
∫ τ̄(c)
τ T ′(t)G(N(t))dt.

Proof of Lemma 2.4:

This proof is analogous to the proof of lemma 2.2.

Proof of Lemma 2.5:
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Proof. By utility maximization

γG(K(γ))− rΓ(γ) ≥(γ + dγ)G(K(γ))− rΓ(γ + dγ)

(γ + dγ)G(K(γ + dγ))− rΓ(γ + dγ) ≥γG(K(γ + dγ))− rΓ(γ)

Together, these inequalities imply

(γ + dγ)G(K(γ + dγ))− γG(K(γ + dγ))
dγ

≥rΓ(γ + dγ)− rΓ(γ)
dγ

≥ (γ + dγ)G(K(γ))− γG(K(γ))
dγ

Taking the limit as dγ → 0, we obtain ∂rΓ(γ)
∂γ = G(K(γ)). Integrating from γ to γ and using

the boundary condition rΓ(γ) = 0 yields rΓ(γ) =
∫ γ
γ G(K(x))dx.

Proof of Lemma 2.6:

Proof. In city c, the population of individuals with skills between ω and ω + dω is

L

∫ ω+dω

ω
f(x, c)dx = S

(
T−1

(
K−1(ω)
A(c)

))
− S

(
T−1

(
K−1(ω + dω)

A(c)

))

Taking the derivative with respect to dω and then taking the limit as dω → 0 yields the

population of ω in c.

In the course of proving Proposition 2.1, we use the following lemma.

Lemma B.1. Let f(z) : R → R++ and g(x, y) : R2 → R++ be C2 functions. If f is decreasing

and log-concave and g(x, y) is increasing in x, decreasing in y, and submodular, then f(g(x, y)) is

log-supermodular in (x, y).

Proof. f(g(x, y)) is log-supermodular in x and y if and only if

∂2 ln f
∂x∂y

=
∂ ln f
∂z

gxy +
∂2 ln f
∂z2

gxgy > 0

fz < 0, ∂2 ln f
∂z2 , gx > 0, gy < 0, and gxy < 0 are sufficient for this inequality to be true.
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More concisely, an increasing, log-convex transformation of an increasing, supermodular func-

tion is log-supermodular.

Proof of Proposition 2.1:

Proof. The population of skill ω in city c can be written as

f(ω, c) = − 1
L

∂

∂ω
S

(
T−1

(
K−1(ω)
A(c)

))
=
K−1′(ω)
A(c)L

[(
− ∂

∂z
S
(
T−1 (z)

)) ∣∣∣
z=

K−1(ω)
A(c)

]

Since K−1′ (ω)
A(c)L is multiplicatively separable in ω and c, f(ω, c) is log-supermodular if and only

if the term in brackets is log-supermodular. Since K−1(ω) and A(c) are increasing functions, if

− ∂
∂zS(T−1(z)) is a decreasing and log-concave function, then f(ω, c) is log-supermodular by lemma

B.1.

B.3 Data

Data sources: Our metropolitan population data are from the US Census website (2000). Our

data on individuals’ demographics, educational attainments, geographic locations, and sectors of

employment come from the 5 percent sample of the 2000 US Census and the 1 percent metro

sample of the 1980 US Census made available by IPUMS-USA (Ruggles, Alexander, Genadek,

Goeken, Schroeder, and Sobek, 2010). Our data on industrial employment come from the 2000

County Business Patterns, available from the US Census Bureau website. Our data on occupational

employment come from the 2000 Occupational Employment Statistics, available from the Burea of

Labor Statistics website.

Geography: We use (consolidated) metropolitan statistical areas as defined by the OMB as

our unit of analysis.

The smallest geographic unit in the IPUMS-USA microdata is the public-use microdata area

(PUMA), which has a minimum of 100,000 residents. We map the PUMAs to metropolitan statisti-

cal areas (MSAs) using the MABLE Geocorr2K geographic correspondence engine from the Missouri

Census Data Center. In some sparsely populated areas, a PUMA is larger than a metropolitan

area. We drop six MSAs in which fewer than half of the residents of the only relevant PUMA live
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within the metropolitan area. As a result, there are 270 MSAs when we use Census of Population

data.

The 1980 Census of Population IPUMS-USA microdata do not identify PUMAs, so we use the

“metarea” variable describing 253 consolidated MSAs for the regressions in Table 2.5.

The County Business Patterns data describe 318 metropolitan statistical areas. These corre-

spond to a mix of OMB-defined primary and consolidated metropolitan statistical areas outside

New England and New England county metropolitan areas (NECMAs). We aggregate these into

OMB-defined (consolidated) metropolitan statistical areas to obtain 276 MSAs.

The Occupational Employment Statistics data describe 331 (primary) metropolitan statistical

areas. We aggregate these into OMB-defined (consolidated) metropolitan statistical areas to obtain

observations for 276 MSAs.

Skill distribution: Our sample of individuals includes all full-time, full-year prime-age work-

ers, defined as individuals 25 to 55 years of age who reported working at least 35 hour per week and

40 weeks in the previous year. Using the “educd” variable from IPUMS, we construct nine levels

of educational attainment: less than high school, high school dropout, high school graduate, some

college, associate’s degree, bachelor’s degree, master’s degree, professional degree, and doctorate.

There is at least one observation in every educational category in every metropolitan area.

Sectoral skill intensity: Using the same sample of full-time, full-year prime-age workers,

we measure a sector’s skill intensity by calculating the average years of schooling of its employees

after controlling for spatial differences in average schooling. We calculate years of schooling using

the educational attainment “educd” variable from IPUMS at its finest level of disaggregation. For

instance, this means that we distinguish between those whose highest educational attainment is

sixth grade or eighth grade. We use the “indnaics” and “occsoc” variables to assign individuals

to their 3-digit NAICS and 2-digit SOC sectors of employment. Aggregating observations to the

MSA-sector level, weighted by the IPUMS-provided person weights, we regress the average years

of schooling on MSA and sectoral dummies. The sectoral dummy coefficients are our measure of

skill intensities.

Industrial employment: There 96 3-digit NAICS industries, of which 21 are manufacturing

industries. 75 of these industries, including all 21 manufacturing industries, appear in both the
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Census of Population microdata and the County Business Patterns data. The County Business

Patterns data are an almost exhaustive account of US employer establishments. When necessary

to protect the confidentiality of individual establishments, employment in an industry in a location

is reported as falling within an interval rather than its exact number. In our empirical work,

we use the midpoints of these intervals as the level of employment. There are 390 (C)MSA-

manufacturing-industry pairs, out of 5796 = 21× 276, in which there are zero establishments. The

County Business Patterns data omit self-employed individuals and employees of private households,

railroads, agriculture production, the postal service, and public administrations. See the CBP

methodology webpage for details.

Occupational employment: There are 22 2-digit SOC occupations. Across 331 (P)MSAs,

there should be 7282 metropolitan-occupation observations. The 2000 BLS Occupational Employ-

ment Statistics contain employment estimates for 7129 metropolitan-occupation observations, none

of which are zero. The 153 omitted observations “may be withheld from publication for a number of

reasons, including failure to meet BLS quality standards or the need to protect the confidentiality

of [BLS] survey respondents.” 31 of these observations are for “farming occupations”, and the vast

majority of them are for less populous metropolitan areas. We assign these observations values of

zero when they are included in our calculations.

B.4 Tables
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Table B.1: Pairwise comparisons of three skill groups

College vs College vs Some college Total

Bins Weights Birthplace some college HS or less vs HS or less comparisons Average

2 Unweighted All 1.00 1.00 1.00 3 1.00

2 Pop diff All 1.00 1.00 1.00 3 1.00

2 Unweighted US-born 1.00 1.00 1.00 3 1.00

2 Pop diff US-born 1.00 1.00 1.00 3 1.00

3 Unweighted All 1.00 1.00 .667 9 .889

3 Pop diff All 1.00 1.00 .853 9 .951

3 Unweighted US-born 1.00 1.00 1.00 9 1.00

3 Pop diff US-born 1.00 1.00 1.00 9 1.00

5 Unweighted All 1.00 1.00 .900 30 .967

5 Pop diff All 1.00 1.00 .959 30 .986

5 Unweighted US-born 1.00 1.00 1.00 30 1.00

5 Pop diff US-born 1.00 1.00 1.00 30 1.00

10 Unweighted All .800 .844 .756 135 .8

10 Pop diff All .914 .935 .875 135 .908

10 Unweighted US-born .800 .867 .756 135 .808

10 Pop diff US-born .914 .951 .875 135 .913

30 Unweighted All .763 .717 .625 1,305 .702

30 Pop diff All .875 .845 .699 1,305 .806

30 Unweighted US-born .775 .759 .699 1,305 .744

30 Pop diff US-born .886 .878 .817 1,305 .86

90 Unweighted All .671 .666 .587 12,015 .641

90 Pop diff All .788 .774 .634 12,015 .732

90 Unweighted US-born .672 .686 .639 12,015 .666

90 Pop diff US-born .790 .800 .727 12,015 .772

270 Unweighted All .629 .616 .556 108,945 .6

270 Pop diff All .717 .695 .588 108,945 .667

270 Unweighted US-born .624 .635 .589 108,945 .616

270 Pop diff US-born .712 .726 .647 108,945 .695

Note: The number of cities per “bin” may differ by one, due to the integer constraint.
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Table B.2: Pairwise comparisons of nine skill groups with one city per bin

Unweighted comparisons
LHS HSD HS CD AA BA MA Pro

2 HSD .423
3 HS .399 .413
4 CD .428 .486 .587
5 AA .43 .483 .571 .483
6 BA .476 .555 .644 .619 .602
7 MA .484 .558 .643 .614 .615 .528
8 Pro .484 .57 .645 .617 .604 .524 .499
9 PhD .49 .548 .598 .576 .577 .521 .501 .511
Population-difference weighted comparisons of US-born population

LHS HSD HS CD AA BA MA Pro
2 HSD .568
3 HS .488 .435
4 CD .583 .569 .649
5 AA .552 .53 .616 .453
6 BA .644 .65 .738 .695 .682
7 MA .648 .651 .738 .686 .695 .544
8 Pro .654 .654 .73 .676 .676 .533 .493
9 PhD .611 .605 .651 .605 .617 .502 .476 .497
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Table B.3: Pairwise comparisons of nine skill groups

Total All individuals US-born
Bins Weights comparisons success rate success rate

2 Unweighted 36 .556 .806
2 Population differences 36 .556 .806
2 Educational shares 36 .754 .883
2 Pop diff × edu shares 36 .754 .883
3 Unweighted 108 .5 .685
3 Population differences 108 .54 .744
3 Educational shares 108 .707 .836
3 Pop diff × edu shares 108 .736 .866
5 Unweighted 360 .536 .714
5 Population differences 360 .55 .767
5 Educational shares 360 .747 .844
5 Pop diff × edu shares 360 .756 .873
10 Unweighted 1620 .528 .617
10 Population differences 1620 .551 .696
10 Educational shares 1620 .67 .715
10 Pop diff × edu shares 1620 .725 .802
30 Unweighted 15,660 .521 .59
30 Population differences 15,660 .545 .656
30 Educational shares 15,660 .632 .666
30 Pop diff × edu shares 15,660 .699 .754
90 Unweighted 144,180 .527 .568
90 Population differences 144,180 .555 .626
90 Educational shares 144,180 .594 .614
90 Pop diff × edu shares 144,180 .657 .694
270 Unweighted 1,307,340 .536 .559
270 Population differences 1,307,340 .564 .605
270 Educational shares 1,307,340 .567 .579
270 Pop diff × edu shares 1,307,340 .612 .635
Note: The number of cities per “bin” may differ by one, due to the integer constraint.
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Table B.4: Occupational employment population elasticities
βσ1 Farming, Fishing, and Forestry Occupations 0.803 βσ12 Sales and Related Occupations 1.037
× log population (0.048) × log population (0.010)

βσ2 Building and Grounds Cleaning and Maintenance 1.039 βσ13 Management occupations 1.082
× log population (0.011) × log population (0.015)

βσ3 Food Preparation and Serving Occupations 0.985 βσ14 Arts, Design, Entertainment, Sports, and Media 1.158
× log population (0.011) × log population (0.019)

βσ4 Construction and Extraction Occupations 1.037 βσ15 Business and Financial Operations Occupations 1.204
× log population (0.014) × log population (0.018)

βσ5 Production Occupations 1.045 βσ16 Architecture and Engineering Occupations 1.209
× log population (0.025) × log population (0.026)

βσ6 Transportation and Material Moving Occupations 1.061 βσ17 Computer and Mathematical Occupations 1.395
× log population (0.014) × log population (0.034)

βσ7 Installation, Maintenance, and Repair Workers 1.015 βσ18 Healthcare Practitioners and Technical Occupations 1.001
× log population (0.011) × log population (0.014)

βσ8 Healthcare Support Occupations 0.980 βσ19 Community and Social Services Occupations 0.986
× log population (0.013) × log population (0.020)

βσ9 Personal Care and Service Occupations 1.065 βσ20 Education, Training, and Library Occupations 1.011
× log population (0.017) × log population (0.017)

βσ10 Office and Administrative Support Occupations 1.081 βσ21 Life, Physical, and Social Science Occupations 1.170
× log population (0.010) × log population (0.030)

βσ11 Protective Service Occupations 1.123 βσ22 Legal Occupations 1.200
× log population (0.014) × log population (0.022)

Observations 5943 Observations 5943
R-squared 0.931 R-squared 0.931
Occupation FE Yes Occupation FE Yes

Standard errors, clustered by MSA, in parentheses

Table B.5: Pairwise comparisons of occupations

Bins Weights Comparisons Success rate
2 Unweighted 231 0.723
2 Popuation difference × skill difference 231 0.779
3 Unweighted 693 0.693
3 Popuation difference × skill difference 693 0.772
5 Unweighted 2,310 0.652
5 Popuation difference × skill difference 2,310 0.728
10 Unweighted 10,395 0.606
10 Popuation difference × skill difference 10,395 0.688
30 Unweighted 100,485 0.579
30 Popuation difference × skill difference 100,485 0.659
90 Unweighted 925,155 0.561
90 Popuation difference × skill difference 925,155 0.634
276 Unweighted 8,766,450 0.533
276 Popuation difference × skill difference 8,766,450 0.583
Note: The number of cities per “bin” may differ by one, due to the integer constraint.
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Table B.6: Industrial employment population elasticities
βσ1 Apparel Manufacturing 1.237 1.024 βσ11 Nonmetallic Mineral Product Manufacturing 1.018 0.955
× log population (0.070) (0.148) × log population (0.036) (0.042)

βσ2 Textile Product Mills 1.125 0.905 βσ12 Paper Manufacturing 0.901 0.539
× log population (0.056) (0.135) × log population (0.063) (0.104)

βσ3 Leather and Allied Product Manufacturing 0.743 0.147 βσ13 Printing and Related Support Activities 1.202 1.122
× log population (0.099) (0.284) × log population (0.036) (0.047)

βσ4 Furniture and Related Product Manufacturing 1.120 1.000 βσ14 Electrical Equipment, Appliance & Component 1.159 0.813
× log population (0.050) (0.076) × log population (0.074) (0.111)

βσ5 Textile Mills 0.823 0.352 βσ15 Machinery Manufacturing 1.071 0.960
× log population (0.105) (0.208) × log population (0.055) (0.069)

βσ6 Wood Product Manufacturing 0.848 0.608 βσ16 Miscellaneous Manufacturing 1.224 1.208
× log population (0.055) (0.085) × log population (0.044) (0.059)

βσ7 Fabricated Metal Product Manufacturing 1.094 1.036 βσ17 Beverage and Tobacco Product Manufacturing 1.168 1.010
× log population (0.048) (0.050) × log population (0.065) (0.147)

βσ8 Food Manufacturing 0.953 0.864 βσ18 Transportation Equipment Manufacturing 1.254 0.940
× log population (0.050) (0.067) × log population (0.075) (0.101)

βσ9 Plastics and Rubber Products Manufacturing 1.105 0.975 βσ19 Petroleum and Coal Products Manufacturing 0.951 0.393
× log population (0.056) (0.070) × log population (0.074) (0.308)

βσ10 Primary Metal Manufacturing 0.997 0.449 βσ20 Computer and Electronic Product Manufacturing 1.453 1.254
× log population (0.078) (0.107) × log population (0.075) (0.108)

βσ21 Chemical Manufacturing 1.325 0.992
× log population (0.065) (0.098)

Observations 5406 2130 Observations 5406 2130
R-squared 0.564 0.541 R-squared 0.564 0.541
Industry FE Yes Yes Industry FE Yes Yes
Only uncensored obs Yes Only uncensored obs Yes

Standard errors, clustered by MSA, in parentheses

Table B.7: Pairwise comparisons of manufacturing industries

Bins Weights Comparisons Success rate
2 Unweighted 210 .638
2 Popuation difference × skill difference 210 .675
3 Unweighted 630 .640
3 Popuation difference × skill difference 630 .665
5 Unweighted 2,100 .606
5 Popuation difference × skill difference 2,100 .633
10 Unweighted 9,450 .561
10 Popuation difference × skill difference 9,450 .597
30 Unweighted 91,350 .543
30 Popuation difference × skill difference 91,350 .573
90 Unweighted 841,050 .522
90 Popuation difference × skill difference 841,050 .549
276 Unweighted 7,969,500 .495
276 Popuation difference × skill difference 7,969,500 .531
Note: The number of cities per “bin” may differ by one, due to the integer constraint.
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