Graph Structure and Coloring

Matthieu Plumettaz

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy
in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2014

ABSTRACT

Graph Structure and Coloring

Matthieu Plumettaz

We denote by $G=(V, E)$ a graph with vertex set V and edge set E. A graph G is claw-free if no vertex of G has three pairwise nonadjacent neighbours. Claw-free graphs are a natural generalization of line graphs. This thesis answers several questions about claw-free graphs and line graphs.

In 1988, Chvátal and Sbihi [15] proved a decomposition theorem for claw-free perfect graphs. They showed that claw-free perfect graphs either have a clique-cutset or come from two basic classes of graphs called elementary and peculiar graphs. In 1999, Maffray and Reed [26] successfully described how elementary graphs can be built using line graphs of bipartite graphs and local augmentation. However gluing two claw-free perfect graphs on a clique does not necessarily produce claw-free graphs. The first result of this thesis is a complete structural description of claw-free perfect graphs. We also give a construction for all perfect circular interval graphs. This is joint work with Chudnovsky, and these results first appeared in [8].

Erdốs and Lovász conjectured in 1968 that for every graph G and all integers $s, t \geq 2$ such that $s+t-1=\chi(G)>\omega(G)$, there exists a partition (S, T) of the vertex set of G such that $\chi(G \mid S) \geq s$ and $\chi(G \mid T) \geq t$. This conjecture is known in the graph theory community as the Erdős-Lovász Tihany Conjecture. For general graphs, the only settled cases of the conjecture are when s and t are small. Recently, the conjecture was proved for a few special classes of graphs: graphs with stability number 2 [2], line graphs [24] and quasi-line graphs [2]. The second part of this thesis considers the conjecture for claw-free graphs and presents some progresses on it. This is joint work with Chudnovsky and Fradkin, and it first appeared in [5].

Reed's ω, Δ, χ conjecture proposes that every graph satisfies $\chi \leq\left\lceil\frac{1}{2}(\Delta+1+\omega)\right\rceil$; it is known to hold for all claw-free graphs. The third part of this thesis considers a local strengthening of this conjecture. We prove the local strengthening for line graphs, then note that previous results immediately tell us that the local strengthening holds for all quasi-line graphs. Our proofs lead to
polytime algorithms for constructing colorings that achieve our bounds: The complexity are $O\left(n^{2}\right)$ for line graphs and $O\left(n^{3} m^{2}\right)$ for quasi-line graphs. For line graphs, this is faster than the best known algorithm for constructing a coloring that achieves the bound of Reed's original conjecture. This is joint work with Chudnovsky, King and Seymour, and it originally appeared in [7].

Table of Contents

List of Figures iii
1 Introduction 1
1.1 Perfect graphs 1
1.2 Claw-free perfect graphs 3
1.3 Conjectures related to the chromatic number 4
2 Trigraphs 7
3 The Structure of Claw-Free Perfect Graphs 15
3.1 Preliminary results 16
3.2 Essential Triangles 18
3.3 Holes of Length 4 24
3.4 Long Holes 28
3.5 Some Facts about Linear Interval Join 32
3.6 Proof of the Main Theorem 36
4 On the Erdốs-Lovász Tihany Conjecture 45
4.1 Introduction 45
4.2 Structure Theorem 46
4.3 Tools 50
4.4 The Icosahedron and Long Circular Interval Graphs 53
4.5 Non-2-substantial and Non-3-substantial Graphs 54
4.6 Complements of Orientable Prismatic Graphs 59
4.7 Non-orientable Prismatic Graphs 64
4.8 Three-cliqued Graphs 67
4.9 Non-trivial Strip Structures 70
4.10 Proof of the Main Theorem 72
5 A Local Strengthening of Reed's Conjecture 73
5.1 Introduction 73
5.2 Line Graphs 75
5.3 Quasi-line Graphs. 83
5.4 Decomposing Quasi-line Graphs 86
5.5 Putting the pieces together and Algorithmic Considerations 90
Bibliography 91
A Appendix 96
A. 1 Orientable prismatic graphs 96
A. 2 Non-orientable prismatic graphs 99
A. 3 Three-cliqued graphs 99

List of Figures

1.1 A claw 3
1.2 Examples of claw-free and quasi-line graphs 3
1.3 Example for Reed's Conjecture 5

Acknowledgments

I first want to express my deepest gratitude to my adviser, Maria. You have mentored and guided me every step of the way during the last five years. You have always made yourself available whenever I needed help for my research and academic progresses or on any other topic. It was truly a blessing to be able to work with you.

Merci maman et papa pour votre soutien durant toutes ces années. Vous ne m'avez pas seulement aidé lors de cette thèse, vos encouragements tout au long de ma vie m'ont permis d'en arriver ici. Je vous dois tellement. Merci Anaïs et Damien, ça n'a pas été facile tous les jours d'être loin de la Suisse, mais vous avez transformé chaque visite en un moment mémorable et relaxant pour reprendre de plus belle. Un grand merci à toute ma famille, vos messages, pensées et visites me touchent toujours. Muchisimas gracias señora Ana, señor Alberto, ahijados Helen y Juan. Me hicieron parte de su familia desde el primer día, y tener el apoyo, el amor y la confianza de su familia ha sido muy importante durante este proceso, mil gracias.

Thank you Antoine for the countless duels, whether they were in squash, Pentago, Tash-Kalar and for failing to save earth together so many times. Thank you Fanny for all the delicious meals and all the competitive games we played, and I am really sorry for Carcassonne. Thank you Irene and Nitin for the delicious diners across Manhattan. Thank you Rodrigo, Daniela, Arseniy and Olga for the many movie nights and celebrations throughout the years. Thank you Ceci and Yixi for making me part of the CoC by association. Thank you Rouba and Yori for all the good times and the coffees watching the world cup. Thank you Silvia and Juancho for coming so many times to watch the Patriots lose. Thank you to the french troop, Laurine, Thibaut, Julia, Justine, Antoine and Anisha, for all the moments shared together. Thank you Sarah and Bernard, this adventure would have never started without you. Thank you to all my officemates during my time here, you brought every day so many ways not to work, that was awesome. A special thank you to all the people who read part of this thesis, and gave comments and corrections. And thanks to all my
fellow Ph.D. colleagues for making all of it worth it.
I would like to thank all the staff and faculty members of the IEOR department. Everybody on the staff has always been supportive, helpful and kind and it was amazing to be able to learn from such knowledgeable faculty. Thank you Alex, Andrew, Gregory, Paul, Sasha and Yared, for the collaboration on different projects.

Thank you Nightwish, Saez, Dido, Queen, Offspring, Nirvana, Ska-P and les Enfoirés for amusing my ears during the long days and late nights. A big thanks to all the developers who created so many good games, Blood Bowl, Civilization, Dota, Final Fantasy, Frozen Synapse, XCOM, in which I lost countless hours of sleep. Thanks the Old World Football League for the competitive games, the community, the nuffling and the whining. I joined you guys not long after I started this Ph.D., and even during the hardest times, I could not stop myself from playing my game and let Nuffle finish the job.

But the most important person is without a doubt my wife, Tulia. Thank you so much for all you did for me. I would not have been able to make it without your support each and every day. You made all the hard days easier to live and all the good days a delight to be part of.

To my parents

Chapter 1

Introduction

1.1 Perfect graphs

A graph G is a mathematical object used to model pairwise relations among a collection of entities. This collection of entities is called the vertex set and is denoted by $V(G)$. The edge set, denoted by $E(G)$, represents the relations between pairs of elements of $V(G)$. Graphs have numerous applications to a wide variety of fields, from finding the shortest path between two cities on a GPS, to managing inventory in a warehouse or detecting particular molecules in biology. The major part of the thesis will be about with structural graph theory. Structural graph theory tries to understand families of graphs. When someone studies a particular problem, it is generally possible to characterize some properties of the underlying family of graphs. One of our main goals is to understand what are the basic graphs in a given family. In particular, we want to describe a family in terms of well-understood graphs and construction steps. This description can then lead to a better understanding of how to approach a problem both from a theoretical and an algorithmic point of view.

For two elements $x, y \in V(G)$, we say that x is adjacent to y if $x y \in E(G)$ and x is non-adjacent to y if $x y \notin E(G)$. A clique in G is a set $X \subseteq V(G)$ such that every two members of X are adjacent. A set $X \subseteq V(G)$ is a stable set in G if every two members of X are non-adjacent. A set $S \subseteq V(G)$ is an anti-matching if every vertex in S is non-adjacent to at most one vertex of S. A brace is a clique of size 2 , a triangle is a clique of size 3 and a triad is a stable set of size 3 . Note that all the graphs that we consider in this thesis are finite.

CHAPTER 1. INTRODUCTION

We say that H is a subgraph of G with vertex set X, if every pair of vertices in X that are adjacent in H are also adjacent in G. For $X \subseteq V(G)$, we define the subgraph $G \mid X$ induced on X as the subgraph with vertex set X and such that x is adjacent to y in $G \mid X$ if and only if x is adjacent to y in G. For a graph H, we say that H is an induced subgraph of G if there exists $X \subseteq V(G)$ such that $G \mid X=H$. A k-coloring of G is a map $c: V(G) \rightarrow\{1, \ldots, k\}$ such that for every pair of adjacent vertices $v, w \in V(G), c(v) \neq c(w)$. For simplicity, we may also refer to a k-coloring as a coloring. The chromatic number of G, denoted by $\chi(G)$, is the smallest integer such that there exits a $\chi(G)$-coloring of G. The clique number of G, denoted by $\omega(G)$, is the size of a maximum clique in G, and the stability number of G, denoted by $\alpha(G)$ is the size of the maximum stable set in G. A graph G is said to be perfect if for every induced subgraph G^{\prime} of G, the chromatic number of G^{\prime} is equal to the clique number of G^{\prime}. The complement of a graph G is the graph \bar{G} with vertex set $V(G)$ and such that x is adjacent to y in \bar{G} if and only if x is non-adjacent to y in G.

Perfect graphs were introduced in 1960 by Claude Berge and are a central family of graphs because they are the graphs that behave 'perfectly' in terms of coloring. For any graph $G, \omega(G)$ is always a trivial lower bound on the chromatic number. Perfect graphs are the family of graphs that match this bound and are closed under taking induced subgraph. When Claude Berge introduced the family of perfect graphs, he also introduced another family of graphs - that we now call Berge graphs. To give a formal description, we first need a few more definitions. A path in G is a subgraph P with n vertices for $n \geq 1$, whose vertex set can be ordered as $\left\{p_{1}, \ldots, p_{n}\right\}$ such that p_{i} is adjacent to p_{i+1} for $1 \leq i<n$. A cycle in G is a subgraph C with n vertices for some $n \geq 3$, whose vertex set can be ordered as $\left\{c_{1}, \ldots, c_{n}\right\}$ such that c_{i} is adjacent to c_{i+1} for $1 \leq i<n$, and c_{n} is adjacent to c_{1}. We say that a cycle C is a hole, if $n>3$ and if for all $1 \leq i, j \leq n$ with $i+2 \leq j$ and $(i, j) \neq(1, n)$, c_{i} is non-adjacent to c_{j}. The length of C is the number of vertices of C. We say that a graph G is Berge if G does not contain any odd holes and \bar{G} does not contain any odd holes. Claude Berge stated two conjectures when introducing perfect graphs. The first one, known as the Weak Perfect Graph Conjecture, states that a graph G is perfect if an only if \bar{G} is perfect. It was proved to be true by Lovász [25]. The second conjecture, known as the Strong Perfect Graph Conjecture, states that a graph is perfect if and only if it is Berge. This conjecture remained open for more than 40 years before Chudnovsky, Robertson, Seymour and Thomas proved it in 2002 [9]. Those two results are stated bellow.
1.1.1 (Weak Perfect Graph Theorem. Lovász 25). A graph G is perfect if and only if \bar{G} is perfect.
1.1.2 (Strong Perfect Graph Theorem. Chudnovsky, Robertson, Seymour and Thomas [9]). A graph is perfect if and only it is Berge.

1.2 Claw-free perfect graphs

The neighborhood of a vertex v is the set $N(v)$ of vertices adjacent to v. Vertices of $N(v)$ are called neighbors of v. Given a multigraph G, the line graph of G, denoted by $L(G)$, is the graph with vertex set $V(L(G))=E(G)$ in which two vertices are adjacent precisely if their corresponding edges in H share an endpoint. We say that a graph G^{\prime} is a line graph if for some multigraph $G, L(G)$ is isomorphic to G^{\prime}. A vertex is simplicial if its neighborhood is a clique, and a vertex is bisimplicial if its neighborhood is the union of two cliques. A graph G is quasi-line if every vertex v of G is bisimplicial. A claw is the graph with four vertices and three edges where the edges are all incident to a single vertex (see Figure 1.1). A graph G is claw-free if it contains no induced claw. It is easy to observe that every line graph is quasi-line and every quasi-line graph is claw-free. In Figure 1.2 , we give two examples that show that there are quasi-line graphs that are not line graphs and claw-free graphs that are not quasi-line graphs.

Figure 1.1: This illustration show a claw.

Figure 1.2: The graph on the left is a quasi-line graph but is not a line graph. The graph on the right is a claw-free graph but is not a quasi-line graph.

CHAPTER 1. INTRODUCTION

Several attempts have been made to describe claw-free perfect graphs: first by Chvátal and Sbihi in 1988 [15], and then by Maffray and Reed in 1999 [26]. However, these results only showed how to decompose claw-free perfect graphs, but did not show how to construct them explicitly. Indeed, Chvátal and Sbihi result uses clique-cutsets to decompose claw-free perfect graphs into two basic classes of graphs. But the inverse operation of gluing two graphs on a clique might produce a claw in the resulting graph. In order to obtain a structural theorem, understanding how to decompose graphs is only a first step, but it still only gives an incomplete picture of the family. We wish to be able to build all graphs in a family from smaller graphs in such a way that every graph we construct is in the family.

The results presented in Chapter 3 give a complete description of the structure of claw-free perfect graphs. In fact, by the Strong Perfect Graph Theorem 1.1.2, we study claw-free Berge graphs because in many cases it is easier to prove that a graph is Berge than to prove that the graph is perfect. Actually we will work with slightly more general objects called trigraphs which will be defined in Chapter 2. Chudnovsky and Seymour proved a structural theorem for general claw-free graphs [13] and quasi-line graphs in [14]. Later we will show that every perfect claw-free graph is a quasi-line graph, however not all quasi-line graphs are perfect. Our result refines the characterization of quasi-line graphs from [14] to obtain a precise description of perfect quasi-line graphs.

1.3 Conjectures related to the chromatic number

Finding the exact value of the chromatic number of a graph is a fundamental algorithmic and theoretical problem in graph theory. Attempt to bound the value of $\chi(G)$ for families of graphs have been made since the beginning of graph theory. One of the most famous example is probably the Four Color Theorem. In the 18th century, the following question has been raised: Is it was true that the chromatic number of planar graphs is 4? A graph is planar if it can be drawn on a plan with no edge crossing each other. It is easy to build a planar graph that needs 4 colors, but it took more than a century until Appel and Haken proved in 1976 the following:
1.3.1 (Four Color Theorem. Appel and Haken [1]). Let G be a planar graph, then $\chi(G) \leq 4$.

In the last 50 years, many conjectures and many theorems related to the chromatic number have

CHAPTER 1. INTRODUCTION

been stated. We present now one of them, a conjecture that Erdős and Lovász made in 1968.
Conjecture 1 (Erdős-Lovász Tihany). For every graph G with $\chi(G)>\omega(G)$ and for every two integers $s, t \geq 2$ with $s+t=\chi(G)+1$, there is a partition (S, T) of the vertex set $V(G)$ such that $\chi(G \mid S) \geq s$ and $\chi(G \mid T) \geq t$.

Currently, the only settled cases of the conjecture are $(s, t) \in\{(2,2),(2,3),(2,4),(3,3),(3,4)$, $(3,5)\}$ [3; 28; 33; 34]. Recently, Balogh, Kostochka, Prince and Stiebitz proved Conjecture 1 for quasi-line graphs. In Chapter 4, we consider the Erdős-Lovász Tihany Conjecture for claw-free graphs. We prove a slightly weakened version of Conjecture 1 for this class of graphs. Our proof relies on a structure theorem of claw-free graphs by Chudnovsky and Seymour 13]

The degree $d(v)$ of a vertex $v \in V(G)$ is the number of vertices adjacent to v in G. For a graph G, we define the maximal degree by $\Delta(G)=\max _{v \in V(G)}\{d(v)\}$. The chromatic number of G is trivially bounded above by $\Delta(G)+1$ and below by $\omega(G)$. Reed's ω, Δ, χ Conjecture proposes, roughly speaking, that $\chi(G)$ falls in the lower half of this range:

Conjecture 2 (Reed). For any graph G,

$$
\chi(G) \leq\left\lceil\frac{1}{2}(\Delta(G)+1+\omega(G))\right\rceil .
$$

One of the first classes of graphs for which this conjecture was proved is the class of line graphs 23]. Already for line graph the conjecture is tight. We show in Figure 1.3 examples of line graphs for which the conjecture holds with equality.

Figure 1.3: Example of a line graph for which Conjecture 2 is tight. The graph on the right is the line graph of the graph on the left.

The proof of Conjecture 2 for line graphs was later extended to quasi-line graphs 21; 22] and claw-free graphs [21]. In his thesis, King proposed a strengthening of Reed's Conjecture, giving a
bound in terms of local parameters. For a vertex v, let $\omega(v)$ denote the size of the largest clique containing v.

Conjecture 3 (King [21]). For any graph G,

$$
\chi(G) \leq \max _{v \in V(G)}\left\lceil\frac{1}{2}(d(v)+1+\omega(v))\right\rceil
$$

In Chapter 5 we prove that Conjecture 3 holds for line graphs. Then using methods similar to [22], we extend the result to quasi-line graphs. Furthermore our proofs yield polytime algorithms for constructing a proper coloring achieving the bound of the theorem: $O\left(n^{2}\right)$ time for a line graph on n vertices, and $O\left(n^{3} m^{2}\right)$ time for a quasi-line graph on n vertices and m edges.

The thesis is organized as follow. In Chapter 2, we introduce trigraphs and notions associated with them. In Chapter 3, we present and prove our structural theorem for claw-free perfect graphs. In Chapter 4, we explore the Erdős-Lovász Tihany for claw-free graphs. Finally in Chapter 5, we prove Conjecture 3 for quasi-line graphs.

Chapter 2

Trigraphs

Trigraphs are a generalization of graphs that are useful for studying problems about forbidden induced subgraphs. Trigraphs will be extensively used in Chapter 3. The majority of graph notions can be directly extended to trigraphs, and will be described in this chapter. All graphs and trigraphs considered in this thesis are finite.

A trigraph G consists of a finite set $V(G)$ of vertices, and a map $\theta_{G}: V(G)^{2} \rightarrow\{-1,0,1\}$, satisfying:

- for all $v \in V(G), \theta_{G}(v, v)=0$.
- for all distinct $u, v \in V(G), \theta_{G}(u, v)=\theta_{G}(v, u)$
- for all distinct $u, v, w \in V(G)$, at most one of $\theta_{G}(u, v), \theta_{G}(u, w)$ equals 0 .

For distinct $u, v \in V(G)$, we say that u, v are strongly adjacent if $\theta_{G}(u, v)=1$, strongly antiadjacent if $\theta_{G}(u, v)=-1$, and semiadjacent if $\theta_{G}(u, v)=0$. We say that u, v are adjacent if they are either strongly adjacent or semiadjacent, and antiadjacent if they are either strongly antiadjacent or semiadjacent. Also, we say that u is adjacent to v if u, v are adjacent, and that u is antiadjacent to v if u, v are antiadjacent. For a vertex a and a set $B \subseteq V(G) \backslash\{a\}$, we say that a is complete (resp. anticomplete) to B if a is adjacent (resp. antiadjacent) to every vertex in B. For two disjoint $A, B \subset V(G)$, we say that A is complete (resp. anticomplete) to B if every vertex in A is complete (resp. anticomplete) to B. Similarly, we say that a is strongly complete to B if a is strongly adjacent to every member of B, and so on.

Let G be a trigraph. A clique is a set $X \subseteq V(G)$ such that every two members of X are adjacent and X is a strong clique if every two members of X are strongly adjacent. A set $X \subseteq V(G)$ is a stable set if every two members of X are antiadjacent and X is a strong stable set if every two members of X are strongly antiadjacent. A triangle is a clique of size 3 , and a triad is a stable set of size 3 .

For a trigraph G and $X \subseteq V(G)$, we define the trigraph $G \mid X$ induced on X as follows. Its vertex set is X, and its adjacency function is the restriction of θ_{G} to X^{2}. We say that G contains H, and H is a subtrigraph of G if there exists $X \subseteq V(G)$ such that H is isomorphic to $G \mid X$.

A claw is a trigraph H such that $V(H)=\{x, a, b, c\}, x$ is complete to $\{a, b, c\}$ and $\{a, b, c\}$ is a triad. A trigraph G is said to be claw-free if G does not contains a claw.

A path in G is a subtrigraph P with n vertices for $n \geq 1$, whose vertex set can be ordered as $\left\{p_{1}, \ldots, p_{n}\right\}$ such that p_{i} is adjacent to p_{i+1} for $1 \leq i<n$ and p_{i} is antiadjacent to p_{j} if $|i-j|>1$. We generally denote P with the following sequence $p_{1}-p_{2}-\ldots-p_{n}$ and say that the path P is from p_{1} to p_{n}. For a path $P=p_{1}-\ldots-p_{n}$ and $i, j \in\{1, \ldots, n\}$ with $i<j$, we denote by $p_{i}-P-p_{j}$ the subpath P^{\prime} of P defined by $P^{\prime}=p_{i}-p_{i+1}-\ldots-p_{j}$.

A cycle (resp. anticycle) in G is a subtrigraph C with n vertices for some $n \geq 3$, whose vertex set can be ordered as $\left\{c_{1}, \ldots, c_{n}\right\}$ such that c_{i} is adjacent (resp. antiadjacent) to c_{i+1} for $1 \leq i<n$, and c_{n} is adjacent (resp. antiadjacent) to c_{1}. We say that a cycle (resp. anticycle) C is a hole (resp. antihole), if $n>3$ and if for all $1 \leq i, j \leq n$ with $i+2 \leq j$ and $(i, j) \neq(1, n), c_{i}$ is antiadjacent (resp. adjacent) to c_{j}. We will generally denote C with the following sequence $c_{1}-c_{2}-\ldots-c_{n}-c_{1}$. The length of C is the number of vertices of C. Vertices c_{i} and c_{j} are said to be consecutive if $i+1=j$ or $\{i, j\}=\{1, n\}$.

A trigraph G is said to be Berge if no subtrigraph of G is a hole, and no subtrigraph of G is an antihole. In Chapter 3, we study perfect graphs, which by the strong perfect graph theorem [9], is equivalent to studying Berge graphs. We will in fact work with the slightly more general Berge trigraphs. Since it is easier in many cases to prove that a trigraph is Berge than to prove that the trigraph is perfect, we will only deal with Berge trigraphs.

A trigraph G is cobipartite if there exist nonempty subsets $X, Y \subseteq V(G)$ such that X and Y are strong cliques and $X \cup Y=V(G)$.

For $X, A, B, C \subseteq V(G)$, we say that $\{X \mid A, B, C\}$ is a claw if there exist $x \in X, a \in A$,
$b \in B$ and $c \in C$ such that $G \mid\{x, a, b, c\}$ is a claw and x is complete to $\{a, b, c\}$. Similarly, for $X_{1}, \ldots, X_{n} \subseteq V(G)$, we say that $X_{1}-X_{2}-\ldots-X_{n}-X_{1}$ is a hole (resp. antihole) if there exist $x_{i} \in X_{i}$ such that $x_{1}-x_{2}-\ldots-x_{n}-x_{1}$ is a hole (resp. antihole). To simplify notation, we will generally forget the bracket delimiting a singleton, i.e. instead of writing $\{\{x\} \mid A,\{y\}, B\}$ we will simply denote it by $\{x \mid A, y, B\}$.

Let A, B be disjoint subsets of $V(G)$. The set A is called a homogeneous set if A is a strong clique, and every vertex in $V(G) \backslash A$ is either strongly complete or strongly anticomplete to A. The pair (A, B) is called a homogeneous pair in G if A, B are nonempty strong cliques, and for every vertex $v \in V(G) \backslash(A \cup B), v$ is either strongly complete to A or strongly anticomplete to A, and either strongly complete to B or strongly anticomplete to B.

Let V_{1}, V_{2} be a partition of $V(G)$ such that $V_{1} \cup V_{2}=V(G), V_{1} \cap V_{2}=\emptyset$, and for $i=1,2$ there is a subset $A_{i} \subseteq V_{i}$ such that:

- A_{i} and $V_{i} \backslash A_{i}$ are not empty for $i=1,2$,
- $A_{1} \cup A_{2}$ is a strong clique,
- $V_{1} \backslash A_{1}$ is strongly anticomplete to V_{2}, and V_{1} is strongly anticomplete to $V_{2} \backslash A_{2}$.

The partition $\left(V_{1}, V_{2}\right)$ is called a 1 -join and we say that G admits a 1 -join if such a partition exists.
Let $A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}$ be disjoint subsets of $V(G)$. The 6 -tuple $\left(A_{1}, A_{2}, A_{3} \mid B_{1}, B_{2}, B_{3}\right)$ is called a hex-join if $A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}$ are strong cliques and

- A_{1} is strongly complete to $B_{1} \cup B_{2}$, and strongly anticomplete to B_{3}, and
- A_{2} is strongly complete to $B_{2} \cup B_{3}$, and strongly anticomplete to B_{1}, and
- A_{3} is strongly complete to $B_{1} \cup B_{3}$, and strongly anticomplete to B_{2}, and
- $\bigcup_{i}\left(A_{i} \cup B_{i}\right)=V(G)$.

Let G be a trigraph. For $v \in V(G)$, we define the neighborhood of v, denoted $N(v)$, by $N(v)=$ $\{x: x$ is adjacent to $v\}$. The trigraph G is said to be a quasi-line trigraph if for every $v \in V(G)$, $N(v)$ is the union of two strong cliques.

A trigraph H is a thickening of a trigraph G if for every $v \in V(G)$ there is a nonempty subset $X_{v} \subseteq V(H)$, all pairwise disjoint and with union $V(H)$, satisfying the following:

- for each $v \in V(G), X_{v}$ is a strong clique of H,
- if $u, v \in V(G)$ are strongly adjacent in G then X_{u} is strongly complete to X_{v} in H,
- if $u, v \in V(G)$ are strongly antiadjacent in G then X_{u} is strongly anticomplete to X_{v} in H,
- if $u, v \in V(G)$ are semiadjacent in G then X_{u} is neither strongly complete nor strongly anticomplete to X_{v} in H.

Next we present some definitions related to quasi-line graphs that have been introduced in [14]. To develop our structural results in Chapter 3, we need a few more definitions that refine and extend the concepts used in [14] and will be presented at the same time.

A stripe is a pair (G, Z) of a trigraph G and a subset Z of $V(G)$ such that $|Z| \leq 2, Z$ is a strong stable set, $N(z)$ is a strong clique for all $z \in Z$, no vertex is semiadjacent to a vertex in Z, and no vertex is adjacent to two vertices of Z.
G is said to be a linear interval trigraph if its vertex set can be numbered $\left\{v_{1}, \ldots, v_{n}\right\}$ in such a way that for $1 \leq i<j<k \leq n$, if v_{i}, v_{k} are adjacent then v_{j} is strongly adjacent to both v_{i}, v_{k}. Given such a trigraph G and numbering v_{1}, \ldots, v_{n} with $n \geq 2$, we call ($\left.G,\left\{v_{1}, v_{n}\right\}\right)$ a linear interval stripe if G is connected, no vertex is semiadjacent to v_{1} or to v_{n}, there is no vertex adjacent to both v_{1}, v_{n}, and v_{1}, v_{n} are strongly antiadjacent. By analogy with intervals, we will use the following notation, $\left[v_{i}, v_{j}\right]=\left\{v_{k}\right\}_{i \leq k \leq j},\left(v_{i}, v_{j}\right)=\left\{v_{k}\right\}_{i<k<j},\left[v_{i}, v_{j}\right)=\left\{v_{k}\right\}_{i \leq k<j}$ and $\left(v_{i}, v_{j}\right]=\left\{v_{k}\right\}_{i<k \leq j}$. Moreover we will write $x_{i}<x_{j}$ if $i<j$.

Let Σ be a circle in the sphere, and let $F_{1}, \ldots, F_{k} \subseteq \Sigma$ be homeomorphic to the interval $[0,1]$, such that no two of F_{1}, \ldots, F_{k} share an end-point. Now let $V \subseteq \Sigma$ be finite, and let G be a trigraph with vertex set V in which, for distinct $u, v \in V$,

- if $u, v \in F_{i}$ for some i then u, v are adjacent, and if also at least one of u, v belongs to the interior of F_{i} then u, v are strongly adjacent,
- if there is no i such that $u, v \in F_{i}$ then u, v are strongly antiadjacent.

Such a trigraph G is called a circular interval trigraph. We will denote by F_{i}^{*} the interior of F_{i}.
Let G have four vertices say w, x, y, z, such that w is strongly adjacent to x, y is strongly adjacent to z, x is semiadjacent to y, and all other pairs are strongly antiadjacent. Then the pair $(G,\{w, z\})$ is a spring and the pair $(G \backslash w,\{z\})$ is a truncated spring.

Let G have three vertices say v, z_{1}, z_{2} such that v is strongly adjacent to z_{1} and z_{2}, and z_{1}, z_{2} are strongly antiadjacent. Then the pair $\left(G,\left\{z_{1}, z_{2}\right\}\right)$ is a spot, the pair $\left(G,\left\{z_{1}\right\}\right)$ is a one-ended spot and the pair $\left(G \backslash z_{2},\left\{z_{1}\right\}\right)$ is a truncated spot.

Let G be a circular interval trigraph, and let $\Sigma, F_{1}, \ldots, F_{k}$ be as in the corresponding definition. Let $z \in V(G)$ belong to at most one of F_{1}, \ldots, F_{k}; and if $z \in F_{i}$ say, let no vertex be an endpoint of F_{i}. We call the pair $(G,\{z\})$ a bubble.

If H is a thickening of G, where $X_{v}(v \in V(G))$ are the corresponding subsets, and $Z \subseteq V(G)$ and $\left|X_{v}\right|=1$ for each $v \in Z$, let Z^{\prime} be the union of all $X_{v}(v \in Z)$; we say that $\left(H, Z^{\prime}\right)$ is a thickening of (G, Z).

The following construction is slightly different from how linear interval joins have been defined for general quasi-line graphs [14], but the resulting graphs are exactly the same. We may also assume that if (G, Z) is a stripe then $V(G) \neq Z$. Any trigraph G that can be constructed in the following manner is called a linear interval join.

- Let $H=(V, E)$ be a graph, possibly with multiple edges and loops.
- Let $\eta:(E \times V) \cup E \rightarrow 2^{V(G)}$.
- For every edge $e=x_{1} x_{2} \in E$ (where $x_{1}=x_{2}$ if e is a loop)
- Let $\left(G_{e}, Y_{e}\right)$ be either
* a spot or a thickening of a linear interval stripe if e is not a loop, or
* the thickening of a bubble if e is a loop.

Moreover let ϕ_{e} be a bijection between Y_{e} and the endpoints of e.

- Let $\eta\left(e, x_{j}\right)=N\left(\phi_{e}\left(x_{j}\right)\right)$ for $j=1,2$ and $\eta(e, v)=\emptyset$ if v is not an endpoint of e.
- Let $\eta(e)=V\left(G_{e}\right) \backslash Y_{e}$.
- Construct G with $V(G)=\bigcup_{e \in E} \eta(e), G \mid \eta(e)=G_{e} \backslash Y_{e}$ for all $e \in E$ and such that $\eta(f, x)$ is strongly complete to $\eta(g, x)$ for all $f, g \in E$ and $x \in V$ (in particular if x is an endpoint of both f and g, then the sets $\eta(f, x)$ and $\eta(g, y)$ are nonempty and strongly complete to each other).

Moreover, we call the graph H used in the construction of a linear interval join G the skeleton of G, and we say that e has been replaced by $\left(G_{e}, Y_{e}\right)$.

Let G be a circular interval trigraph. The trigraph G is a structured circular interval trigraph if, for some even integer $n \geq 4, V(G)$ can be partitioned into pairwise disjoint strong cliques X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{n} such that (all indices are modulo n):
$(\mathrm{S} 1) \bigcup_{i}\left(X_{i} \cup Y_{i}\right)=V(G)$.
(S2) $X_{i} \neq \emptyset \forall i$.
(S3) Y_{i} is strongly complete to X_{i} and X_{i+1} and strongly anticomplete to $V(G) \backslash\left(X_{i} \cup X_{i+1} \cup Y_{i}\right)$.
(S4) If $Y_{i} \neq \emptyset$ then X_{i} is strongly complete to X_{i+1}.
(S5) Every vertex in X_{i} has at least one neighbor in X_{i+1} and at least one neighbor in X_{i-1}.
(S6) X_{i} is strongly complete to X_{i+1} or X_{i-1} and possibly both, and strongly anticomplete to $V(G) \backslash\left(X_{i} \cup X_{i-1} \cup X_{i+1} \cup Y_{i} \cup Y_{i-1}\right)$.

A bubble (G, Z) is said to be a structured bubble if G is a structured circular interval trigraph.
We need to define one important class of Berge circular interval trigraphs. Let G be a trigraph with vertex set the disjoint union of sets $\left\{a_{1}, a_{2}, a_{3}\right\}, B_{1}^{1}, B_{1}^{2}, B_{1}^{3}, B_{2}^{1}, B_{2}^{2}, B_{2}^{3}, B_{3}^{1}, B_{3}^{2}, B_{3}^{3}$ such that $\left|B_{i}^{j}\right| \leq 1$ for $1 \leq i, j \leq 3$ with adjacency as follows (all additions are modulo 3):

- For $i=1,2,3, B_{i}^{1} \cup B_{i}^{2} \cup B_{i}^{3}$ is a strong clique.
- For $i=1,2,3, B_{i}^{i}$ is strongly complete to $\bigcup_{k=1}^{3}\left(B_{i+1}^{k} \cup B_{i+2}^{k}\right)$.
- For $1 \leq i, j \leq 3$ with $i \neq j, B_{i}^{j}$ is strongly complete to $\bigcup_{k=1}^{3} B_{j}^{k}$.
- For $i=1,2,3, B_{i}^{i+1}$ and B_{i+2}^{i+1} are either both empty or both nonempty, and if they are both nonempty then B_{i}^{i+1} is not strongly complete to B_{i+2}^{i+1}.
- For $i=1,2,3, a_{i}$ is strongly complete to $\bigcup_{k=1}^{3}\left(B_{i}^{k} \cup B_{i+1}^{k}\right)$ and a_{i} is strongly anticomplete to $\bigcup_{k=1}^{3} B_{i+2}^{k}$.
- a_{1} is antiadjacent to a_{3}, and a_{2} is strongly anticomplete to $\left\{a_{1}, a_{3}\right\}$.
- If a_{1} is semiadjacent to a_{3} then $B_{3}^{1} \cup B_{2}^{1}=\emptyset$.
- There exist $x_{i} \in V(G) \cap\left(B_{i}^{1} \cup B_{i}^{2} \cup B_{i}^{3}\right)$ for $i=1,2,3$, such that $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a triangle.

We define \mathcal{C} to be the class of all such trigraphs G. We will prove in 3.2.7 that all trigraphs in \mathcal{C} are Berge and circular inteveral. Moreover we define \mathcal{C}^{\prime} to be the set of all pairs ($H,\{z\}$) such that there exists $i \in\{1,2,3\}$ with $z \in X_{a_{i}}, H$ is a thickening of a trigraph in \mathcal{C} with $B_{i+1}^{i+2} \cup B_{i}^{i+2}=\emptyset$ and such that $N(z) \cap\left(X_{a_{i+1}} \cup X_{a_{i+2}}\right)=\emptyset$ (with $X_{a_{i}}$ as in the definition of a thickening).

A signing of a graph $G=(V, E)$ is a function $s: E \rightarrow\{0,1\}$. The value $v(C)$ of a cycle C is $v(C)=\sum_{e \in C} s(e)$. A graph, possibly with multiple edges and loops, is said to be evenly signed by s if for all cycles C in G, C has an even value, and in that case the pair (G, s) is said to be an evenly signed graph.

We need to define three classes of graphs that are going to play an important role in the structure of claw-free perfect graphs.
\mathcal{F}_{1} : Let (G, s) be a pair of a graph G (possibly with multiple edges and loops) and a signing s of G such that:

- $V(G)=\left\{x_{1}, x_{2}, x_{3}\right\}$,
- there is an edge $e_{i j}$ between x_{i} and x_{j} with $s\left(e_{i j}\right)=1$ for all $\{i, j\} \subset\{1,2,3\}$ with $i \neq j$,
- if e and f are such that $s(e)=s(f)=0$, then e is parallel to f.

We define \mathcal{F}_{1} to be the class of all such pairs (G, s).
\mathcal{F}_{2} : Let (G, s) be a pair of a graph G (possibly with multiple edges and loops) and a signing s of G such that $|V(G)|=4 \mid$, all pairs of vertices of G are adjacent and $s(e)=1$ for all $e \in E(G)$. We define \mathcal{F}_{2} to be the class of all such pairs (G, s).
\mathcal{F}_{3} : Let (G, s) be a pair of a graph G (possibly with multiple edges and loops) and a signing s of G such that:

- $V(G)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ with $n \geq 4$,
- there is an edge e_{12} between x_{1} and x_{2} with $s(e)=1$,
- $\left\{x_{1}, x_{2}\right\}$ is complete to $\left\{x_{3}, \ldots, x_{n}\right\}$,
- $\left\{x_{3}, \ldots, x_{n}\right\}$ is a stable set,
- if $s(e)=0$, then e is an edge between x_{1} and x_{2}.

We define \mathcal{F}_{3} to be the class of all such pairs (G, s).

An even structure is a pair (G, s) of a graph G and a signing s such that for all blocks A of G, $\left(A,\left.s\right|_{E(A)}\right)$ is either a member of $\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3}$ or an evenly signed graph.

Here is a construction; a trigraph G that can be constructed in this manner is called an evenly structured linear interval join.

- Let $H=(V, E)$ and the signing s be an even structure.
- Let $\eta:(E \times V) \cup E \rightarrow 2^{V(G)}$.
- For every edge $e=x_{1} x_{2} \in E$ (where $x_{1}=x_{2}$ if e is a loop),
- Let $\left(G_{e}, Y_{e}\right)$ be:
* a spot if e is in a cycle, $x_{1} \neq x_{2}$ and $s(e)=1$,
* a thickening of a spring if e is in a cycle, $x_{1} \neq x_{2}$, and $s(e)=0$,
* a trigraph in \mathcal{C}^{\prime} if e is a loop,
* either a spot or a thickening of a linear interval stripe if e is not in a cycle.
- Let ϕ_{e} be a bijection between the endpoints of e and Y_{e}.
- Let $\eta\left(e, x_{j}\right)=N\left(\phi_{e}\left(x_{j}\right)\right)$ for $j=1,2$ and $\eta(e, v)=\emptyset$ if v is not an endpoint of e.
- Let $\eta(e)=V\left(G_{e}\right) \backslash Y_{e}$.
- Construct G with $V(G)=\bigcup_{e \in E} \eta(e), G \mid \eta(e)=G_{e} \backslash Y_{e}$ for all $e \in E$ and such that $\eta(f, x)$ is complete to $\eta(g, x)$ for all $f, g \in E$ and $x \in V$ (in particular if x is an endpoint of both f and g, then the sets $\eta(f, x)$ and $\eta(g, y)$ are nonempty and strongly complete to each other).

As for the linear interval join, we call the graph H used in the construction of an evenly structured linear interval join G the skeleton of G, and we say that e has been replaced by $\left(G_{e}, Y_{e}\right)$.

Chapter 3

The Structure of Claw-Free Perfect Graphs

The class of claw-free perfect graphs has been extensively studied in the past. The first structural result for this class was obtained by Chvátal and Sbihi [15]. In particular, in 1998, they proved that every claw-free Berge graph can be decomposed via clique-cutsets into two types of graphs: 'elementary' and 'peculiar'. We say that a graph G admits a clique-cutset A, B if A and B are subset of $V(G)$ such that $A \cap B$ is a clique, $A \cup B=V(G)$ and there is no edge between $A \backslash B$ and $B \backslash A$. If a graph G admits a clique-cutset A, B, it is a classical technique to decompose G into $G \mid A$ and $G \mid B$. The structure of peculiar graphs was determined precisely by their definition, but that was not the case for elementary graphs. In 1999, Maffray and Reed [26] proved that an elementary graph is an augmentation of the line graph of a bipartite multigraph, thereby giving a precise description of all elementary graphs. Their result, together with the result of Chvátal and Sbihi, gave an alternative proof of Berge's Strong Perfect Graph Conjecture for claw-free Berge graphs (the first proof was due to Parthasarathy and Ravindra [30]). However, this still does not describe the class of claw-free perfect graphs completely, as gluing two claw-free Berge graphs together via a clique-cutset may introduce a claw. In this chapter we use trigraphs and a previous result on claw-free graphs by Chudnovsky and Seymour [14] to obtain a full characterization of claw-free perfect graphs. That is, we give an explicit construction describing all claw-free perfect graphs, using a technique that generalizes the construction of line graphs.

This chapter is organized as follows. In Section 3.1, we prove a few introductory results and state our main theorem 3.1.4 The proof of 3.1 .4 is broken down in several cases depending on the underlying structure of the graph. Each section analyzes a different case of the main theorem. In Section 3.2, we study circular interval trigraphs that contain special triangles. Section 3.3 examines circular interval trigraphs that contain a hole of length 4 while Section 3.4 covers the case when a circular interval trigraph contains a long hole. In Section 3.5, we analyze linear interval joins. Finally, in Section 3.6, we gather our results and prove 3.1.4

3.1 Preliminary results

We start by proving two easy facts.

3.1.1. Every claw-free Berge trigraph is a quasi-line trigraph.

Proof. Let G be a claw-free Berge trigraph and let $v \in V(G)$. Since G is claw-free, we deduce that $G \mid N(v)$ does not contain a triad. Since G is Berge, we deduce that $G \mid N(v)$ does not contain a odd antihole. Thus $G \mid N(v)$ is cobipartite and it follows that $N(v)$ is the union of two strong cliques. This proves 3.1.1
3.1.2. Let G be a trigraph and H be a thickening of G. If F is a thickening of H then F is a thickening of G.

Proof. For $v \in V(H)$, let X_{v}^{F} be the strong clique in F as in the definition of a thickening. For $v \in V(G)$, let X_{v}^{H} be the strong clique in H as in the definition of a thickening. For $v \in V(G)$, let $Y_{v} \subseteq V(F)$ be defined as $Y_{v}=\bigcup_{y \in X_{v}^{H}} X_{y}^{F}$. Clearly, the sets Y_{v} are all nonempty, pairwise disjoint and their union is $V(F)$. Since X_{v}^{H} is a strong clique, we deduce that Y_{v} is a strong clique for all $v \in V(G)$. If $u, v \in V(G)$ are strongly adjacent (resp. antiadjacent) in G, then X_{u}^{H} is strongly complete (resp. anticomplete) to X_{v}^{H} in H and thus Y_{u} is strongly complete (resp. anticomplete) to Y_{v} in F. If $u, v \in V(G)$ are semiadjacent in G, then X_{u}^{H} is neither strongly complete nor strongly anticomplete to X_{v}^{H} in H and hence Y_{u} is neither strongly complete nor strongly anticomplete to Y_{v} in F. This proves 3.1.2.

The following theorem is the main characterization of quasi-line graphs 14. It is the starting point of our structure theorem for claw-free perfect graphs.
3.1.3. Every connected quasi-line trigraph G is either a linear interval join or a thickening of a circular interval trigraph.

We can now state our main theorem:
3.1.4. Every connected Berge claw-free trigraph is either an evenly structured linear interval join or a thickening of a trigraph in \mathcal{C}.

The goal of this chapter is to prove 3.1.4, but first we can prove an easy result about evenly signed graphs. Here is an algorithm that will produce an even signing for a graph:

Algorithm 1

- Let T be a spanning tree of G and root T at some $r \in V(G)$.
- Arbitrarily assign a value from $\{0,1\}$ to $s(e)$ for all $e \in T$.
- For every $e=x y \in E(G) \backslash T$, let $s(e)=\sum_{f \in P_{x}} s(f)+\sum_{f \in P_{y}} s(f)(\bmod 2)$ where P_{i} is the path from r to i in T.
3.1.5. Algorithm 1 produces an evenly signed graph (G, s).

Proof. Let C be a cycle in G. First, we notice that for an edge e in $T, s(e)$ can be expressed with the same formula used to calculate the signing of an edge outside of T. In fact we have that for all $e \in E(G), s(e)=\sum_{f \in P_{x}} s(f)+\sum_{f \in P_{y}} s(f)(\bmod 2)$. Thus,

$$
\begin{gathered}
\sum_{e=x y \in E(C)} s(e)=\sum_{x y \in E(C)}\left(\sum_{e \in P_{x}} s(e)+\sum_{e \in P_{y}} s(e)\right)= \\
=2 \cdot \sum_{x \in V(C)}\left(\sum_{e \in P_{x}} s(e)\right)=0 \quad(\bmod 2)
\end{gathered}
$$

which concludes the proof of 3.1.5.

The result of 3.1.5 shows that if we have a graph G, we can find all signings s such that (G, s) is an evenly signed graph by using Algorithm 1 with all possible assignments for $s(e)$ on the tree T.

3.2 Essential Triangles

In order to prove 3.1.4 we first prove the following:
3.2.1. Let G be a Berge circular interval trigraph. Then either G is a linear interval trigraph, or a cobipartite trigraph, or a thickening of a member of \mathcal{C}, or G is a structured circular interval trigraph.

Before going further, more definitions are needed. Let G be a circular interval trigraph defined by Σ and $F_{1}, \ldots, F_{k} \subseteq \Sigma$. Let $T=\left\{c_{1}, c_{2}, c_{3}\right\}$ be a triangle. We say that T is essential if there exist $i_{1}, i_{2}, i_{3} \in\{1, \ldots, k\}$ such that $c_{1}, c_{2} \in F_{i_{1}}, c_{2}, c_{3} \in F_{i_{2}}$ and $c_{3}, c_{1} \in F_{i_{3}}$, and such that $F_{i_{1}} \cup F_{i_{2}} \cup F_{i_{3}}=\Sigma$. Let x, y, q be three points of Σ. We denote by $\Sigma_{x, y}^{q}$ the subset of Σ such that there exists a homeomorphism $\phi: \Sigma_{x, y}^{q} \rightarrow[0,1]$ with $\phi(x)=0$ and $\phi(y)=1$ and such that $q \in \Sigma_{x, y}^{q}$. Moreover let $\bar{\Sigma}_{x, y}^{q}=\left(\Sigma \backslash \Sigma_{x, y}^{q}\right) \cup\{x, y\}$.

The following two lemmas are basic facts that will be extensively used to prove 3.2.1
3.2.2. Let G be a circular interval trigraph defined by Σ and F_{1}, \ldots, F_{k}. Let $x, y, a, b \in V(G)$ such that $x \in \bar{\Sigma}_{a, b}^{y}$. If x is antiadjacent to a and b, then y is strongly antiadjacent to x.

Proof. Assume not. Since x is adjacent to y, we deduce that there exists F_{i} such that $x, y \in F_{i}$. It follows that at least one of $a, b \in F_{i}^{*}$. By symmetry we may assume that $a \in F_{i}^{*}$, but it implies that a is strongly adjacent to x, a contradiction. This proves 3.2.2.
3.2.3. Let G be a circular interval trigraph defined by Σ and F_{1}, \ldots, F_{k}. Let $x, y, z \in V(G)$ such that x is adjacent to y and x is antiadjacent to z. Then there exists F_{i} such that $\bar{\Sigma}_{x, y}^{z} \subseteq F_{i}$.

Proof. Since x is adjacent to y there is F_{i} such that $x, y \in F_{i}$. Since z is antiadjacent to x, we deduce that $z \notin F_{i}^{*}$. Thus we conclude that $\bar{\Sigma}_{x, y}^{z} \subseteq F_{i}$. This proves 3.2.3.
3.2.4. Let G be a circular interval trigraph defined by Σ and F_{1}, \ldots, F_{k}, and let $C=c_{1}-c_{2}-\ldots-$ $c_{n}-c_{1}$ be a hole. Then the vertices of C are in order on Σ.

Proof. Assume not. By symmetry, we may assume that $c_{1}, c_{2}, c_{3}, c_{4}$ are not in order on Σ, and thus we may assume that $c_{4} \in \Sigma_{c_{1}, c_{3}}^{c_{2}}$. Since c_{3} is antiadjacent to c_{1} and since c_{2} is complete to $\left\{c_{1}, c_{3}\right\}$, we deduce that there exist F_{i} and F_{j}, possibly $F_{i}=F_{j}$, such that $\bar{\Sigma}_{c_{1}, c_{2}}^{c_{3}} \subseteq F_{i}$ and $\bar{\Sigma}_{c_{2}, c_{3}}^{c_{1}} \subseteq F_{j}$. If $c_{4} \in \bar{\Sigma}_{c_{1}, c_{2}}^{c_{3}}$, then since $c_{4} \in F_{i}^{*}$, we deduce that c_{4} is strongly complete to $\left\{c_{1}, c_{2}\right\}$, a contradiction.

If $c_{4} \in \bar{\Sigma}_{c_{3}, c_{2}}^{c_{1}}$, then since $c_{4} \in F_{j}^{*}$, we deduce that c_{4} is strongly complete to $\left\{c_{2}, c_{3}\right\}$, a contradiction. This proves 3.2.4
3.2.5. Let G be a circular interval trigraph defined by Σ and F_{1}, \ldots, F_{k}. If G is not a linear interval trigraph, then there exists an essential triangle or a hole in G.

Proof. Let $F_{i_{1}}$ be such that $F_{i_{1}} \cap V(G)$ is maximal and let $y \notin F_{i_{1}}$. Let $x_{0}, x_{1} \in F_{i_{1}}$ such that $\bar{\Sigma}_{x_{0}, x_{1}}^{y} \cap F_{i_{1}}$ is maximal.

Let x_{2} and $F_{i_{2}}$ be such that $x_{2} \in F_{i_{2}}, x_{2} \notin F_{i_{1}}$ and $\bar{\Sigma}_{x_{1}, x_{2}}^{x_{0}}$ is maximal.
Starting with $j=3$ and while $x_{j-1} \notin F_{i_{1}}$, let x_{j} and $F_{i_{j}}$ be such that $x_{j} \in F_{i_{j}}, x_{j} \notin F_{i_{k}}$, for any $k<j$ and $\bar{\Sigma}_{x_{j-1}, x_{j}}^{x_{1}}$ is maximal. Since G is not a linear interval trigraph, there exists $k>1$ such that $x_{k} \in F_{i_{1}}$.

Assume first that $k=3$. Clearly $F_{i_{1}} \cup F_{i_{2}} \cup F_{i_{3}}=\Sigma, x_{0}, x_{1} \in F_{i_{1}}, x_{1}, x_{2} \in F_{i_{2}}$ and $x_{0}, x_{2} \in F_{i_{3}}$. Hence $T=\left\{x_{0}, x_{1}, x_{2}\right\}$ is an essential triangle.

Assume now that $k>3$. Clearly x_{j-1} is adjacent to x_{j} for $j=1, \ldots, k-1$ and x_{k-1} is adjacent to x_{0}. By the choice of $F_{i_{1}}$ and x_{0}, x_{1}, we deduce that x_{k-1} is strongly antiadjacent to x_{1}. By the choice of $F_{i_{j}}, x_{j-1}$ is antiadjacent to $x_{j+1} \bmod k$ for all $j=1, \ldots, k-1$. Hence by 3.2.2, C is a hole. This concludes the proof of 3.2.5.
3.2.6. Let G be a circular interval trigraph and C a hole. Let $x \in V(G) \backslash V(C)$, then x is strongly adjacent to two consecutive vertices of C.

Proof. Let G be defined by Σ and F_{1}, \ldots, F_{k} and let $C=c_{1}-c_{2}-\ldots-c_{l}-c_{1}$. By 3.2.4, there exists j such that $x \in \bar{\Sigma}_{c_{j}, c_{j+1}}^{c_{j+2}}$. Since c_{j} is adjacent to c_{j+1} and antiadjacent to c_{j+2}, we deduce that there exists $i \in\{1, \ldots, k\}$ such that $\bar{\Sigma}_{c_{j}, c_{j+1}}^{c_{j+2}} \subseteq F_{i}$. Hence x is strongly adjacent to c_{j} and c_{j+1}. This proves 3.2 .6

In the remainder of this section, we focus on circular interval trigraphs that contain an essential triangle. For the rest of the section, addition is modulo 3.
3.2.7. Every trigraph in \mathcal{C} is a Berge circular interval trigraph.

Proof. Let G be in \mathcal{C}. We let the reader check that G is indeed a circular interval trigraph, it can easily be done using the following order of the vertices on a circle:

$$
B_{1}^{3}, B_{1}^{1}, B_{1}^{2}, a_{1}, B_{2}^{1}, B_{2}^{2}, B_{2}^{3}, a_{2}, B_{3}^{2}, B_{3}^{3}, B_{3}^{1}, a_{3}
$$

(1) There is no odd hole in G.

Assume there is an odd hole $C=c_{1}-c_{2}-\ldots-c_{n}-c_{1}$ in G. Since B_{i}^{i} is strongly complete to $V(G) \backslash\left\{a_{i+1}\right\}$, it follows that $V(C) \cap B_{i}^{i}=\emptyset$ for all i. Since $G \mid\left(B_{1}^{2} \cup B_{1}^{3} \cup B_{2}^{1} \cup B_{2}^{3} \cup B_{3}^{1} \cup B_{3}^{2}\right)$ is a cobipartite trigraph, we deduce that $\left|\left\{a_{1}, a_{2}, a_{3}\right\} \cap V(C)\right| \geq 1$.

Assume first that a_{1}, a_{3} are two consecutive vertices of C. We may assume that $c_{1}=a_{1}$ and $c_{2}=a_{3}$. Since c_{n} is adjacent to c_{1} and antiadjacent to c_{2}, we deduce that $c_{n} \in B_{2}^{1} \cup B_{2}^{3}$. Symmetrically, $c_{3} \in B_{3}^{1} \cup B_{3}^{2}$. As a_{1} is semiadjacent to a_{3}, it follows that $B_{2}^{1} \cup B_{3}^{1}=\emptyset$. Hence, c_{3} is strongly adjacent to c_{n}, a contradiction.

Thus, we may assume that $c_{1}=a_{i}$ and $\left\{c_{2}, c_{n}\right\} \cap\left\{a_{1}, a_{2}, a_{3}\right\}=\emptyset$. Since c_{2} is antiadjacent to c_{n}, and c_{1} is complete to $\left\{c_{2}, c_{n}\right\}$, we deduce that $\left\{c_{2}, c_{n}\right\}=B_{i}^{i+2} \cup B_{i+1}^{i+2}$. Without loss of generality, let $c_{2} \in B_{i}^{i+2}$ and $c_{n} \in B_{i+1}^{i+2}$. Since c_{n-1} is antiadjacent to c_{2}, we deduce that $c_{n-1}=a_{i+1}$. Symmetrically, we deduce that $c_{3}=a_{i+2}$. Since a_{i+2} is not consecutive with a_{i+1} in C, we deduce that $n>5$. But $\mid\left\{x \in V(G): x\right.$ antiadjacent to $\left.c_{2}\right\} \mid \leq 2$, a contradiction. This proves (11).

(2) There is no odd antihole in G.

Assume there is an odd antihole $C=c_{1}-c_{2}-\ldots-c_{n}$ in G. By (1), we may assume that C has length at least 7 . Since B_{i}^{i} is strongly complete to $V(G) \backslash\left\{a_{i+1}\right\}$, it follows that $V(C) \cap B_{i}^{i}=\emptyset$ for all i.

Assume first that a_{1} is semiadjacent to a_{3}. Then $B_{3}^{1} \cup B_{2}^{1}=\emptyset$. Since $\left|V(G) \backslash\left(B_{1}^{1} \cup B_{2}^{2} \cup B_{3}^{3}\right)\right|=7$, we deduce that $V(C)=\left(\left\{a_{1}, a_{2}, a_{3}\right\} \cup B_{1}^{2} \cup B_{1}^{3} \cup B_{3}^{2} \cup B_{2}^{3}\right)$. But a_{2} has only two neighbors in $\left(\left\{a_{1}, a_{2}, a_{3}\right\} \cup B_{1}^{2} \cup B_{1}^{3} \cup B_{3}^{2} \cup B_{2}^{3}\right)$, a contradiction. This proves that a_{1} is strongly antiadjacent to a_{3}.

Assume now that $\left|V(C) \cap\left\{a_{1}, a_{2}, a_{3}\right\}\right|=1$. We may assume that $a_{1} \in V(C)$ and it follows that $V(C)=\left\{a_{1}\right\} \cup \bigcup_{j \neq k} B_{j}^{k}$. But $G \mid\left(\left\{a_{i}\right\} \bigcup_{j \neq k} B_{j}^{k}\right)$ is not an antihole of length 7, since the vertex of B_{1}^{2} has 5 strong neighbors in $\left(\left\{a_{i}\right\} \bigcup_{j \neq k} B_{j}^{k}\right)$, a contradiction.

Hence we may assume that $\left|V(C) \cap\left\{a_{1}, a_{2}, a_{3}\right\}\right| \geq 2$. Since there is no triad in C, we deduce that $\left|C \cap\left\{a_{1}, a_{2}, a_{3}\right\}\right|=2$ and by symmetry we may assume that $c_{1}=a_{1}, c_{2}=a_{2}$ and $a_{3} \notin C$. But since $B_{1}^{2} \cup B_{1}^{3}$ is strongly anticomplete to a_{2} and $B_{3}^{1} \cup B_{3}^{2}$ is strongly anticomplete to a_{1}, we deduce that $\left\{c_{4}, c_{5}, c_{6}\right\} \subseteq B_{2}^{1} \cup B_{2}^{3}$, a contradiction. This proves (2).

Now by (1) and (2), we deduce 3.2.7.
3.2.8. Let G be a Berge circular interval trigraph such that G is not cobipartite. If G has an essential triangle, then G is a thickening of a trigraph in \mathcal{C}.

Proof. Let $\left\{x_{1}, x_{2}, x_{3}\right\}$ be an essential triangle and let F_{1}, F_{2}, F_{3} be such that $x_{1} \in F_{1} \cap F_{3}, x_{2} \in$ $F_{1} \cap F_{2}, x_{3} \in F_{2} \cap F_{3}$ and $F_{1} \cup F_{2} \cup F_{3}=\Sigma$.
(1) x_{i} is not in a triad for $i=1,2,3$.

Assume x_{1} is in a triad. Then there exist y, z such that $\left\{x_{1}, y, z\right\}$ is a triad. Since $x_{1} \in F_{1} \cap F_{3}$, we deduce that $y, z \in F_{2}^{*}$ and so y is strongly adjacent to z, a contradiction. This proves (1).

By (1) and as G is not a cobipartite trigraph, there exists a triad $\left\{a_{1}^{*}, a_{2}^{*}, a_{3}^{*}\right\}$ and we may assume that $a_{i}^{*} \in F_{i} \backslash\left(F_{i+1} \cup F_{i+2}\right), i=1,2,3$. Let $\bar{a}_{i} \in F_{i} \cap \Sigma_{a_{i}^{*}, a_{i+2}^{*}}^{x_{i}}$ and $\bar{a}_{i}^{\prime} \in F_{i} \cap \sum_{a_{i}^{*}, a_{i+1}^{*}}^{x_{i+1}}$ such that $\bar{a}_{i}, \bar{a}_{i}^{\prime}$ are in triads and $\sum_{\bar{a}_{i}, \bar{a}_{i}^{\prime}}^{a_{i}^{*}}$ is maximal. Let $\mathcal{A}_{i}=\sum_{\bar{a}_{i}, \bar{a}_{i}^{\prime}}^{a_{i}^{*}}, \mathcal{B}_{i}=\sum_{a_{i}^{*}, a_{i+2}^{*}}^{x_{i}} \backslash\left(\mathcal{A}_{i} \cup \mathcal{A}_{i+2}\right), A_{i}=V(G) \cap \mathcal{A}_{i}$ and $B_{i}=V(G) \cap \mathcal{B}_{i}$. By the definition of $\bar{a}_{1}, \bar{a}_{2}, \bar{a}_{3}, \bar{a}_{1}^{\prime}, \bar{a}_{2}^{\prime}, \bar{a}_{3}^{\prime}$, no vertex in $B_{1} \cup B_{2} \cup B_{3}$ is in a triad.
(2) $\left\{\bar{a}_{1}, \bar{a}_{2}, \bar{a}_{3}\right\}$ and $\left\{\bar{a}_{1}^{\prime}, \bar{a}_{2}^{\prime}, \bar{a}_{3}^{\prime}\right\}$ are triads.

By the definition, \bar{a}_{1} is in a triad. Let $\left\{\bar{a}_{1}, a_{2}, a_{3}\right\}$ be a triad, then we assume that $a_{i} \in A_{i}, i=$ 2,3 . By 3.2.2, \bar{a}_{1} is non adjacent to \bar{a}_{3}. Now, using symmetry, we deduce that $\left\{\bar{a}_{1}, \bar{a}_{2}, \bar{a}_{3}\right\}$ and $\left\{\bar{a}_{1}^{\prime}, \bar{a}_{2}^{\prime}, \bar{a}_{3}^{\prime}\right\}$ are triads. This proves $[2]$.
(3) For all $x \in A_{i}$ there exist $y \in A_{i+1}, z \in A_{i+2}$ such that $\{x, y, z\}$ is a triad.

By symmetry, we may assume that $x \in A_{1}$. If $\left|A_{1}\right|=1$, then $x=a_{1}^{*}$ and $\left\{a_{1}^{*}, a_{2}^{*}, a_{3}^{*}\right\}$ is a triad. Therefore, we may assume that $\bar{a}_{1} \neq \bar{a}_{1}^{\prime}$. By (2) and 3.2.2, x is antiadjacent to \bar{a}_{2}^{\prime} and \bar{a}_{3}. We may assume that $\left\{x, \bar{a}_{2}^{\prime}, \bar{a}_{3}\right\}$ is not a triad, then \bar{a}_{2}^{\prime} is strongly adjacent to \bar{a}_{3}. By (22 and 3.2.2, \bar{a}_{2} is strongly antiadjacent to \bar{a}_{3}^{\prime}. Since $x-\bar{a}_{2}-\bar{a}_{2}^{\prime}-\bar{a}_{3}-\bar{a}_{3}^{\prime}-x$ is not a hole of length 5 , we deduce that x is not strongly complete to $\left\{\bar{a}_{2}, \bar{a}_{3}^{\prime}\right\}$. But now one of $\left\{x, \bar{a}_{2}^{\prime}, \bar{a}_{3}^{\prime}\right\},\left\{x, \bar{a}_{2}, \bar{a}_{3}\right\}$ is a triad. This proves (3).
(4) $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a triangle such that $x_{i} \in B_{i}$ for $i=1,2,3$.

By (3), $x_{i} \notin A_{1} \cup A_{2} \cup A_{3}$ for $i=1,2,3$. By the definition of B_{i}, it follows that $x_{i} \in B_{i}$ for $i=1,2,3$. Moreover, $\left\{x_{1}, x_{2}, x_{3}\right\}$ is an essential triangle. This proves (4).
(5) $\left(A_{1}, A_{2}, A_{3} \mid B_{1}, B_{2}, B_{3}\right)$ is a hex-join.

By the definition of $A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}$, they are clearly pairwise disjoint and $\bigcup_{i}\left(A_{i} \cup B_{i}\right)=$ $V(G)$. Clearly A_{i} is a strong clique as $\mathcal{A}_{i} \subset F_{i}, i=1,2,3$.

If there exist $y_{i}, y_{i}^{\prime} \in B_{i}$ such that y_{i} is antiadjacent to y_{i}^{\prime}, then $\left\{y_{i}, y_{i}^{\prime}, a_{i+1}^{*}\right\}$ is a triad by 3.2.2, a contradiction. Thus B_{i} is a strong clique for $i=1,2,3$.

By symmetry, it remains to show that B_{1} is strongly anticomplete to A_{2} and strongly complete to A_{1}. Since $B_{1} \subset \bar{\Sigma}_{a_{1}^{*}, a_{3}^{*}}^{a_{2}^{*}}$, we deduce that B_{1} is strongly anticomplete to A_{2} by 3.2.2 and (3).

Suppose there is $a_{1} \in A_{1}$ and $b_{1} \in B_{1}$ such that a_{1} is antiadjacent to b_{1}. By (3), let $a_{2} \in A_{2}$ and $a_{3} \in A_{3}$ be such that $\left\{a_{1}, a_{2}, a_{3}\right\}$ is a triad. Since a_{2} is anticomplete to $\left\{a_{1}, a_{3}\right\}$, and $b_{1} \in \bar{\Sigma}_{a_{1}, a_{3}}^{a_{2}}$, we deduce by 3.2 .2 that b_{1} is strongly antiadjacent to a_{2}. Thus $\left\{a_{1}, a_{2}, b_{1}\right\}$ is a triad, a contradiction as $b_{1} \in B_{1}$. This concludes the proof of (5).
(6) There is no triangle $\left\{a_{1}, a_{2}, a_{3}\right\}$ with $a_{i} \in A_{i}, i=1,2,3$

Let $a_{i} \in A_{i}, i=1,2,3$ be such that a_{1} is adjacent to $a_{i}, i=2,3$. By (3), let $c_{i} \in A_{i}, i=2,3$ such that $\left\{a_{1}, c_{2}, c_{3}\right\}$ is a triad. By 3.2.3, $c_{2} \in \bar{\Sigma}_{a_{2}, a_{3}}^{a_{1}}$. By symmetry, $c_{3} \in \bar{\Sigma}_{a_{2}, a_{3}}^{a_{3}}$. Since $\left\{a_{2} \mid a_{1}, c_{2}, c_{3}\right\}$ is not a claw, we deduce that c_{3} is strongly antiadjacent to a_{2}. By 2 and as $a_{2} \in \bar{\Sigma}_{\bar{a}_{2}^{\prime}, \bar{a}_{1}^{\prime}}^{a_{1}^{\prime}}, \bar{a}_{3}^{\prime}$ is antiadjacent a_{2}. Since $a_{3} \in \bar{\Sigma}_{c_{3}, a_{3}^{\prime}}^{a_{2}}$ and by 2 , a_{3} is strongly antiadjacent to a_{2}. This proves (6).

For the rest of the proof of 3.2 .8 , let $\{j, k, l\}=\{1,2,3\}$.
(7) There is no induced 3-edge path $w-x-y-z$ such that $w \in A_{j}, x, y \in A_{k}, z \in A_{l}$.

Assume that $w-x-y-z$ is an induced 3-edge path such that $w \in A_{1}, x, y \in A_{2}, z \in A_{3}$. Now by (5), $w-x-y-z-x_{1}-w$ is a hole of length 5 , a contradiction. This proves (7).
(8) For $i=1,2,3$, let $y_{i} \in A_{i}$. Then y_{k} is strongly antiadjacent to at least one of y_{j}, y_{l}.

Suppose there exist $y_{i} \in A_{i}, i=1,2,3$ such that y_{2} is adjacent to y_{1} and y_{3}. By (6), y_{1} is strongly antiadjacent to y_{3}. By (3), there exist $z_{1}, z_{3} \in A_{2}$ such that z_{1} is antiadjacent to y_{1} and z_{3} is antiadjacent to y_{3}. Since $\left\{y_{2} \mid y_{1}, y_{3}, z_{3}\right\}$ and $\left\{y_{2} \mid y_{1}, y_{3}, z_{1}\right\}$ are not claws, we deduce that y_{1} is strongly adjacent to z_{3}, and y_{3} is strongly adjacent to z_{1}. But $y_{1}-z-3-z_{1}-y_{3}$ is a 3 -edge path, contrary to (7). This proves (8).
(9) A_{j} is strongly anticomplete to at least one of A_{k}, A_{l}.

Assume not. By symmetry, we may assume there are $x \in A_{1}, y, z \in A_{2}$ and $w \in A_{3}$ such that x is adjacent to y and z is adjacent to w. By (8), x is strongly antiadjacent to w, y is strongly antiadjacent to w, and z is strongly antiadjacent to x; and in particular $y \neq z$. But now $x-y-z-w$ is am induced 3 -edge path, contrary to (7). This proves (9).
(10) For $i=1,2,3$, let $b_{i} \in B_{i}$ such that b_{k} is adjacent to b_{l}. Then b_{j} is strongly adjacent to at least one of b_{k}, b_{l}.

By symmetry, we may assume that $j=1, k=2$ and $l=3$. Since $b_{1}-a_{3}^{*}-b_{3}-b_{2}-a_{1}^{*}-b_{1}$ is not a hole of length 5 , by (5) we deduce that b_{1} is strongly adjacent to at least one of b_{2}, b_{3}. This proves 10.
(11) Let $x \in B_{j}$, then x is strongly complete to one of B_{k}, B_{l}.

Assume there is $y \in B_{k}$ such that x is antiadjacent to y. Let $z \in B_{l}$. If y is antiadjacent to z, then x is strongly adjacent to z since $\{x, y, z\}$ is not a triad. By (10), if y is strongly adjacent to z, then x is strongly adjacent to z. Thus x is strongly complete to B_{l}. This proves 11.

By (9) and symmetry, we may assume that A_{2} is strongly anticomplete to $A_{1} \cup A_{3}$.
Let B_{i}^{i} be the set of all vertices of B_{i} that are strongly complete to $B_{i+1} \cup B_{i+2}$. For $j \neq i$, let B_{i}^{j} be the set of all vertices of $B_{i} \backslash B_{i}^{i}$ that are strongly complete to B_{j}. By 11, we deduce that $B_{i}=\bigcup_{j=1}^{3} B_{i}^{j}$.
(12) If $B_{j}^{k}=\emptyset$, then $B_{l}^{k}=\emptyset$.

Assume that B_{j}^{k} is empty. It implies that B_{l}^{k} is strongly complete to $B_{j} \cup B_{k}$, contrary of the definition of B_{l}^{l} and B_{l}^{k}. This proves 12 .

Now, we observe that $A_{2}, B_{1}^{1}, B_{2}^{2}, B_{3}^{3}$ are homogeneous sets and $\left(A_{1}, A_{3}\right),\left(B_{1}^{2}, B_{3}^{2}\right),\left(B_{2}^{3}, B_{1}^{3}\right)$, $\left(B_{3}^{1}, B_{2}^{1}\right)$ are homogeneous pairs. If A_{1} is strongly anticomplete to A_{3}, then by (4) and $12, G$ is a thickening of a member of \mathcal{C}. Thus, we may assume that A_{1} is not strongly anticomplete to A_{3}. Since $A_{1}-A_{3}-B_{3}^{1}-A_{2}-B_{2}^{1}-A_{1}$ is not a hole of length 5 , we deduce that either $B_{2}^{1}=\emptyset$ or $B_{3}^{1}=\emptyset$. By (12), it follows that $B_{2}^{1} \cup B_{3}^{1}$ is empty. Using (4) and (12), we deduce that G is a thickening of a member of \mathcal{C}. This concludes the proof of 3.2.8.

3.3 Holes of Length 4

Next we examine circular interval trigraphs that contain a hole of length 4.
3.3.1. Let G be a Berge circular interval trigraph. If G has a hole of length 4 and no essential triangle, then G is a structured circular interval trigraph.

Proof. In the following proof, the addition is modulo 4 . Let G be defined by Σ and F_{1}, \ldots, F_{k}. Let $x_{1}^{*}-x_{2}^{*}-x_{3}^{*}-x_{4}^{*}-x_{1}^{*}$ be a hole of length 4 . We may assume that $x_{i}^{*}, x_{i+1}^{*} \in F_{i}, i=1,2,3,4$.
(1) x_{i}^{*} is strongly antiadjacent to x_{i+2}^{*}.

Assume not. By symmetry we may assume that x_{1}^{*} is adjacent to x_{3}^{*}. Moreover, we may assume that there exists $i \in\{1, \ldots, k\}$ such that $\Sigma_{x_{1}^{*}, x_{3}^{*}}^{x_{3}^{*}} \subseteq F_{i}$. If $i=4$, it implies that $\left\{x_{1}^{*}, x_{2}^{*}, x_{3}^{*}, x_{4}^{*}\right\} \subset F_{4}$, and thus $x_{1}^{*}-x_{2}^{*}-x_{3}^{*}-x_{4}^{*}-x_{1}^{*}$ is not a hole, a contradiction. Symmetrically, we may assume that $i \neq 3$. But now $\left\{x_{1}^{*}, x_{3}^{*}, x_{4}^{*}\right\}$ is an essential triangle since $F_{i} \cup F_{3} \cup F_{4}=\Sigma$, a contradiction. This proves (17.

For $i=1,2,3,4$, let $\mathcal{X}_{i}, \mathcal{Y}_{i} \subset \Sigma$ and $X_{i}, Y_{i} \subset V(G)$ be such that:
(H1) each of $\mathcal{X}_{i}, \mathcal{Y}_{i}$ is homeomorphic to $[0,1)$,
(H2) $\quad X_{i} \subseteq V(G) \cap \mathcal{X}_{i}, Y_{i} \subseteq V(G) \cap \mathcal{Y}_{i}, i=1,2,3,4$,
$(\mathrm{H} 3) \bigcup_{i}\left(\mathcal{X}_{i} \cup \mathcal{Y}_{i}\right)=\Sigma$,
(H4) $\mathcal{X}_{1}, \mathcal{X}_{2}, \mathcal{X}_{3}, \mathcal{X}_{4}, \mathcal{Y}_{1}, \mathcal{Y}_{2}, \mathcal{Y}_{3}, \mathcal{Y}_{4}$ are pairwise disjoint,
(H5) $\mathcal{Y}_{i} \subseteq \bar{\Sigma}_{x_{i}^{*}, x_{i+1}^{*}}^{x_{i+1}^{*}}, i=1,2,3,4$,
(H6) $x_{i}^{*} \in X_{i}, i=1,2,3,4$,
(H7) $X_{1}, X_{2}, X_{3}, X_{4}, Y_{1}, Y_{2}, Y_{3}, Y_{4}$ are disjoints strong cliques satisfying (S2)-(S6),
(H8) $\bigcup_{i}\left(X_{i} \cup Y_{i}\right)$ is maximal.
By 11, such a structure exists. We may assume that $V(G) \backslash \bigcup_{i}\left(X_{i} \cup Y_{i}\right)$ is not empty. Let $x \in$ $V(G) \backslash \bigcup_{i}\left(X_{i} \cup Y_{i}\right)$. For $S \subseteq V(G) \backslash\{x\}$, we denote by S^{C} the subset of S that is complete to x, and by S^{A} the subset of S that is anticomplete to x.

For $i=1,2,3,4$, let $x_{i}^{l}, x_{i}^{r} \in X_{i}$ be such that $x_{i-1}^{*}, x_{i}^{l}, x_{i}^{r}, x_{i+1}^{*}$ are in this order on Σ and such that $\bar{\Sigma}_{x_{i}^{l}, x_{i}^{r}}^{x_{i+1}^{*}}$ is maximal.
(2) $\left\{x_{i}^{r}, x_{i+1}^{l}\right\}$ is complete to $X_{i} \cup X_{i+1}$.

By (S5), there exists $a \in X_{i}$ such that a is adjacent to x_{i+1}^{r}. By 3.2 .3 and (S6), there exists F_{l} such that $\left\{a, x_{i}^{r}\right\} \cup X_{i+1} \subseteq F_{l}$ and thus x_{i}^{r} is complete to X_{i+1}. By symmetry, x_{i+1}^{l} is complete to X_{i}. This proves (2) by (H7).
(3) If X_{i} is not complete to X_{i+1}, then x_{i}^{l} is strongly antiadjacent to x_{i+1}^{r}.

Let $a \in X_{i}$ and $b \in X_{i+1}$ be such that a is strongly antiadjacent to b. By 3.2.2 and (S6), a is strongly antiadjacent to x_{i+1}^{r}. By 3.2.2 and (S6), x_{i+1}^{r} is strongly antiadjacent to x_{i}^{l}. This proves (3). (4) $x \notin \bar{\Sigma}_{x_{i}^{l}, x_{i}^{r}}^{x_{i+1}^{l}}$ for all i.

Assume not. We may assume that $x \in \bar{\Sigma}_{x_{1}^{l}, x_{1}^{r}}^{l_{2}^{l}}$. For $i=1,2,3,4$, let $Y_{i}^{\prime}=Y_{i}$, for $i=2,3,4$, let $X_{i}^{\prime}=X_{i}$ and let $X_{1}^{\prime}=X_{1} \cup\{x\}$. Since $Y_{2} \cup Y_{3} \cup X_{3}$ is strongly anticomplete to $\left\{x_{1}^{r}, x_{1}^{l}\right\}$ by (S3) and (S6), we deduce by 3.2 .2 that x is strongly anticomplete to $Y_{2} \cup Y_{3} \cup X_{3}$. Since x_{1}^{r} is adjacent to x_{4}^{r} by (2), we deduce by 3.2 .3 that x is strongly complete to Y_{4} and not strongly anticomplete to X_{4}. By symmetry, x is strongly complete to Y_{1} and not strongly anticomplete to X_{2}. Since x_{1}^{l} is strongly adjacent to x_{1}^{r}, we deduce that X_{1}^{\prime} is a strong clique. If X_{1} is strongly complete to X_{2}, it follows from 3.2 .3 that x is strongly complete to X_{2}. By symmetry, if X_{1} is strongly complete to X_{4}, then x is strongly complete to X_{4}. The above arguments show that $X_{1}^{\prime}, \ldots, X_{4}^{\prime}, Y_{1}^{\prime}, \ldots, Y_{4}^{\prime}$ are disjoint cliques satisfying (S2)-(S6). Moreover, $\mathcal{X}_{i}, \mathcal{Y}_{i} i=1,2,3,4$ clearly satisfy (H1)-(H5) with $X_{i}^{\prime}, Y_{i}^{\prime} i=1,2,3,4$, contrary to the maximality of $\bigcup_{i}\left(X_{i} \cup Y_{i}\right)$. This proves (4).

By $\sqrt[4]{4}$ and by symmetry, we may assume that $x \in \bar{\Sigma}_{x_{1}^{r}, x_{2}^{l}}^{x_{3}^{*}}$ and therefore $x \in F_{1}$. By 3.2 .2 and (S3), x is strongly anticomplete to Y_{3}. Since $x \in F_{1}$, we deduce that x is strongly complete to Y_{1}.
(5) X_{3}^{C} is strongly anticomplete to X_{4}^{C}.

Assume not. We may assume there exist $x_{3} \in X_{3}^{C}$ and $x_{4} \in X_{4}^{C}$ such that x_{3} is adjacent to x_{4}. By (S6), x_{3} is strongly antiadjacent to x_{1}^{*} and therefore by 3.2 .3 there exists $F_{i}, i \in\{1, \ldots, k\}$, such that $x, x_{3} \in F_{i}$ and $x_{1}^{*} \notin F_{i}$. By symmetry, there exists $F_{j}, j \in\{1, \ldots, k\}$ such that $x, x_{4} \in F_{j}$
and $x_{2}^{*} \notin F_{j}$. Moreover, as $x_{2}^{*} \in F_{i}$, we deduce that $F_{i} \neq F_{j}$. By (S6), x_{i}^{*} is strongly anticomplete to x_{i+2} for $i=1,2$. Now, since x_{3} is adjacent to x_{4}, we deduce from 3.2 .3 that there exists F_{l} such that $x_{3}, x_{4} \in F_{l}$ and $l \in\{1, \ldots, k\} \backslash\{i, j\}$. Since $\bar{\Sigma}_{x, x_{3}}^{x_{4}} \subseteq F_{i}, \bar{\Sigma}_{x, x_{4}}^{x_{3}} \subseteq F_{j}$ and $\bar{\Sigma}_{x_{3}, x_{4}}^{x} \subseteq F_{k}$, we deduce that $F_{i} \cup F_{j} \cup F_{k}=\Sigma$. Hence, $\left\{x, x_{3}, x_{4}\right\}$ is an essential triangle, a contradiction. This proves (5). (6) At least one of X_{3}^{C}, X_{4}^{C} is empty.

Assume not. Let $a \in X_{4}^{C}$. By 3.2.3 and since a is strongly anticomplete to X_{2}, we deduce that there is $F_{i}, i \in\{1, \ldots, k\}$, such that $\left\{a, x_{4}^{r}, x\right\} \in F_{i}$ and thus $x_{4}^{r} \in X_{4}^{C}$. Symmetrically, $x_{3}^{l} \in X_{3}^{C}$. By (5), x_{4}^{r} is strongly antiadjacent to x_{3}^{l}. By (S6), X_{1} is strongly complete to X_{4}, and X_{2} is strongly complete to X_{3}. By (2) and (5), x is anticomplete to $\left\{x_{3}^{r}, x_{4}^{l}\right\}$. But now by 2 and (S6), $x-x_{4}^{l}-x_{2}^{l}-x_{4}^{r}-x_{3}^{l}-x_{1}^{r}-x_{3}^{r}-x$ is an antihole of length 7 , a contradiction. This proves (6).

By symmetry, we may assume that x is strongly anticomplete to X_{4}. By (2) and 3.2.3, x is strongly complete to $X_{1} \cup X_{2}$.
(7) x is adjacent to x_{3}^{l}.

Assume not. By 3.2.2, x is strongly anticomplete to X_{3}. Since $x-Y_{2}-x_{3}^{r}-x_{4}^{r}-X_{1}-x$ and $x-Y_{4}-x_{4}^{l}-x_{3}^{l}-X_{2}-x$ are not holes of length 5 , we deduce that x is strongly anticomplete to $Y_{2} \cup Y_{4}$. Since $x-X_{2}-X_{3}-X_{4}-X_{1}-x$ is not a cycle of length 5 , we deduce that X_{1} is strongly complete to X_{2}. For $i=1,2,3,4$, let $X_{i}^{\prime}=X_{i}$, for $i=2,3,4$, let $Y_{i}^{\prime}=Y_{i}$, and let $Y_{1}^{\prime}=Y_{1} \cup\{x\}$. The above arguments show that $X_{1}^{\prime}, \ldots, X_{n}^{\prime}, Y_{1}^{\prime}, \ldots, Y_{n}^{\prime}$ are disjoint cliques satisfying (S2)-(S6). Moreover, it is easy to find $\mathcal{X}_{i}^{\prime}, \mathcal{Y}_{i}^{\prime}, i=1,2,3,4$, satisfying (H1)-(H5), contrary to the maximality of $\bigcup_{i}\left(X_{i} \cup Y_{i}\right)$. This proves (7).

By 3.2 .3 and (7), x is strongly complete to Y_{2}. For $i=3,4$, let $X_{i}^{\prime}=X_{i}$, for $i=1,2,3$, let $Y_{i}^{\prime}=Y_{i}$, let $Y_{4}^{\prime}=Y_{4}^{A}$, let $X_{1}^{\prime}=X_{1} \cup Y_{4}^{C}$ and let $X_{2}^{\prime}=X_{2} \cup\{x\}$. The above arguments show that $X_{1}^{\prime}, \ldots, X_{n}^{\prime}, Y_{1}^{\prime}, \ldots, Y_{n}^{\prime}$ are disjoint cliques satisfying (S2), (S3) and (S5). To get a contradiction, it remains to show that $X_{1}^{\prime}, \ldots, X_{n}^{\prime}, Y_{1}^{\prime}, \ldots, Y_{n}^{\prime}$ satisfy (S4) and (S6).

First we check (S4). Since $X_{3}^{\prime}=X_{3}, X_{4}^{\prime}=X_{4}$ and $Y_{3}^{\prime}=Y_{3}$, and since $X_{1}^{\prime} \backslash X_{1} \subset Y_{4}$ is strongly complete to X_{4}, it is enough to check the following:

- If $Y_{2} \neq \emptyset$ then X_{2}^{\prime} is complete to X_{3}^{\prime}.
- If $Y_{1} \neq \emptyset$ then X_{1}^{\prime} is complete to X_{2}^{\prime}.

For the former, we observe that if x is not strongly complete to X_{3}, then since $x-Y_{2}-X_{3}-X_{4}-X_{1}-x$ is not a hole of length 5 , we deduce that Y_{2} is empty. For the latter, since x is strongly complete to X_{1}, it is enought to show that if Y_{1} is not empty, then Y_{4}^{C} is empty. Since X_{3}^{C} is not empty, it follows that $Y_{1} \subseteq \bar{\Sigma}_{x, x_{1}^{*}}^{x_{2}^{*}}$. Now if Y_{4}^{C} is not empty, then Y_{1} is empty by 3.2.3 and (S4).

To check (S6), we need to prove the following:
(i) If X_{1}^{\prime} is not strongly complete to X_{2}^{\prime} then X_{2}^{\prime} is strongly complete to X_{3}^{\prime}.
(ii) If X_{2}^{\prime} is not strongly complete to X_{3}^{\prime} then X_{3}^{\prime} is strongly complete to X_{4}^{\prime}.
(iii) If X_{3}^{\prime} is not strongly complete to X_{4}^{\prime} then X_{4}^{\prime} is strongly complete to X_{1}^{\prime}.
(iv) If X_{4}^{\prime} is not strongly complete to X_{1}^{\prime} then X_{1}^{\prime} is strongly complete to X_{2}^{\prime}.

For (i), first assume that x is not strongly complete to X_{3}. By 3.2 .2 , we deduce that x is strongly anticomplete to x_{3}^{r}. Since $x-x_{2}^{r}-x_{3}^{r}-X_{4}-Y_{4}-x$ and $x-x_{2}^{r}-x_{3}^{r}-X_{4}-X_{1}-x$ are not cycles of length 5 , we deduce that Y_{4}^{C} is empty and that X_{1} is strongly complete to X_{2}. Thus $X_{1}^{\prime}=X_{1}$ and since x is strongly complete to X_{1}, it follow that X_{1}^{\prime} is strongly complete to X_{2}^{\prime}. So we may assume that x is strongly complete to X_{3}. By 3.2 .3 and (S6), it follows that X_{2} is strongly complete to X_{3} and thus X_{2}^{\prime} is strongly complete to X_{3}^{\prime}. This proves (i).

For (ii), if X_{3}^{\prime} is not strongly complete to X_{4}^{\prime}, then by (3) it follows that x_{3}^{l} is strongly antiadjacent to x_{4}^{r}. Moreover by (S4), X_{2} is strongly complete to X_{3}. Since $x-x_{3}^{l}-x_{3}^{r}-x_{4}^{r}-X_{1}-x$ is not a cycle of length 5 , we deduce, using (2), that x is strongly complete to X_{3} and thus X_{3}^{\prime} is strongly complete to X_{2}^{\prime}. This proves (ii).

For (iii) and (iv), we may assume that X_{4}^{\prime} is not strongly complete to X_{1}^{\prime}. Since X_{4} is strongly complete to Y_{4}, we deduce that X_{4} is not strongly complete to X_{1}. But by (S6), it implies that X_{4} is strongly complete to X_{3} and thus X_{4}^{\prime} is strongly complete to X_{3}^{\prime}, and (iii) follows. Also by (S6), we deduce that X_{1} is strongly complete to X_{2}. Moreover by (S4), it follows that Y_{4} is empty. Since x is strongly complete to X_{1}, we deduce that X_{1}^{\prime} is strongly complete to X_{2}^{\prime}, and (iv) follows.

The above arguments show that $X_{1}^{\prime}, \ldots, X_{n}^{\prime}, Y_{1}^{\prime}, \ldots, Y_{n}^{\prime}$ are disjoint cliques satisfying (S2)-(S6). Moreover, it is easy to find $\mathcal{X}_{i}^{\prime}, \mathcal{Y}_{i}^{\prime}, i=1,2,3,4$, satisfying (H1)-(H5), contrary to the maximality of $\bigcup_{i}\left(X_{i} \cup Y_{i}\right)$. This concludes the proof of 3.3 .1

3.4 Long Holes

In this section, we study circular interval trigraphs that contain a hole of length at least 6 .
A result equivalent to 3.4 .1 has been proved independently by Kennedy and King 20]. The following was proved in joint work with Varun Jalan.
3.4.1. Let G be a circular interval trigraph defined by Σ and $F_{1}, \ldots, F_{k} \subseteq \Sigma$. Let $P=p_{0}-p_{1}-$ $\ldots-p_{n-1}-p_{0}$ and $Q=q_{0}-q_{1}-\ldots-q_{m-1}-q_{0}$ be holes. If $n+1<m$ then there is a hole of length l for all $n<l<m$. In particular, if G is Berge then all holes of G have the same length.

Proof. We start by proving the first assertion of 3.4.1. We may assume that the vertices of P and Q are ordered clockwise on Σ. Since P and Q are holes, it follows that $n \geq 4$ and $m>5$. We are going to prove the following claim which directly implies the first assertion of 3.4.1 by induction.
(1) There exists a hole of length $m-1$.

We may assume that Q and P are chosen such that $|V(Q) \cap V(P)|$ is maximal.
(2) If there are $i \in\{0, \ldots, m-1\}, j \in\{0, \ldots, n-1\}$ such that

$$
q_{i}, q_{i+1} \in \bar{\Sigma}_{p_{j}, p_{j+1}}^{p_{j+2}} \backslash\left\{p_{j}, p_{j+1}\right\}
$$

with $q_{m}=q_{0}, p_{n}=p_{1}$ and $p_{n-1}=p_{0}$, then there is a hole of length $m-1$ in G.
We may assume that $q_{1}, q_{2} \in \bar{\Sigma}_{p_{1}, p_{2}}^{p_{3}} \backslash\left\{p_{1}, p_{2}\right\}$. Since q_{1} is antiadjacent to q_{3}, we deduce that $q_{3} \notin \bar{\Sigma}_{p_{1}, p_{2}}^{p_{3}}$. Since $p_{2} \in \bar{\Sigma}_{q_{2}, q_{3}}^{q_{1}}$, we deduce by 3.2 .3 that p_{2} is strongly anticomplete to $\left\{q_{0}, q_{5}\right\}$.

If p_{2} is adjacent to q_{4}, it follows that $Q-q_{1}-p_{2}-q_{4}-Q$ is a hole of length $q-1$. Thus we may assume that p_{2} is strongly antiadjacent to q_{4}. But then $Q^{\prime}=Q-q_{1}-p_{2}-q_{3}-Q$ is a hole of length m with $\left|V\left(Q^{\prime}\right) \cap V(P)\right|>|V(Q) \cap V(P)|$, a contradiction. This proves (2).

By (2) and since $m>n+1$, we may assume that $|V(P) \cap V(Q)|>1$. Let $V(P) \cap V(Q)=$ $\left\{x_{0}, x_{1}, \ldots, x_{s-1}\right\}$. We may assume that x_{0}, \ldots, x_{s-1} are in clockwise order on Σ. For $i \in\{0, \ldots, s-$ $1\}$, let $A_{i}=\bar{\Sigma}_{x_{i}, x_{i+1} \bmod s}^{x_{i+2} \bmod s}$. Since $m>n+1$, there exists $k \in\{0, \ldots, s-1\}$ such that $\left|A_{k} \cap V(P)\right|<$ $\left|A_{k} \cap V(Q)\right|$. By (2), it follows that $\left|A_{k} \cap V(P)\right|=\left|A_{k} \cap V(Q)\right|-1$. Let P^{\prime} be the subpath of P such that $V\left(P^{\prime}\right)=V(P) \cap A_{k}$. Let Q^{\prime} be the subpath of Q such that $V\left(Q^{\prime}\right) \cap A_{k}=\left\{x_{i}, x_{i+1}\right\}$. Then $x_{1}-P^{\prime}-x_{2}-Q^{\prime}-x_{1}$ is a hole of length $m-1$.

This proves (1) and the first assertion of 3.4.1. Since every hole in a Berge trigraph has even length, the second assertion of 3.4 .1 follows immediately from the first. This concludes the proof of 3.4.1
3.4.2. Let G be a Berge circular interval trigraph. If G has a hole of length n with $n \geq 6$, then G is a structured circular interval trigraph.

Proof. Let G be a Berge circular interval trigraph. Let X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{n} be pairwise disjoint cliques satisfying $(S 2)-(S 6)$ and with $\left|\bigcup_{i}\left(X_{i} \cup Y_{i}\right)\right|$ maximum. Such sets exist since there is a hole of length n in G. Moreover since G is Berge, it follows that n is even. We may assume that $V(G) \backslash \bigcup_{i}\left(X_{i} \cup Y_{i}\right)$ is not empty. Let $x \in V(G) \backslash \bigcup_{i}\left(X_{i} \cup Y_{i}\right)$.

For $S \subseteq V(G) \backslash\{x\}$, we denote by S^{C} the subset of S that is complete to x, and by S^{A} the subset of S that is anticomplete to x.
(1) If $y \in X_{i}^{C}$ and $z \in X_{i+1}^{C}$ then y is strongly adjacent to z.

Assume not. We may assume $y \in X_{1}^{C}$ and $z \in X_{2}^{C}$ but y is antiadjacent to z. By (S4), $Y_{1}=\emptyset$. By (S6), X_{2} is strongly complete to X_{3}, and X_{n} is strongly complete to X_{1}. Since $\left\{x \mid y, z, \cup_{i=4}^{n-1} X_{i} \cup_{i=3}^{n-1} Y_{i}\right\}$ is not a claw, x is strongly anticomplete to $X_{4}, \ldots, X_{n-1}, Y_{3}, \ldots, Y_{n-1}$. Since $x-z-X_{3}-\ldots-X_{n-1}-y-x$ is not a hole of length $n+1$, we deduce that x is strongly complete to at least one of X_{3} or X_{n}. Without loss of generality, we may assume that x is strongly complete to X_{3}. Since $x-X_{3}-X_{4}-\ldots-X_{n}-x$ is not a hole of length $n-1, x$ is strongly anticomplete to X_{n}. Since $\left\{X_{3} \mid X_{4}, Y_{2}, x\right\}$ and $\left\{X_{3} \mid X_{2}, X_{4}, x\right\}$ are not claws, we deduce that x is strongly complete to $Y_{2} \cup X_{2}$.

For $i=3, \ldots, n$, let $X_{i}^{\prime}=X_{i}$, for $i=1, \ldots, n-1$, let $Y_{i}^{\prime}=Y_{i}$. Let $X_{2}^{\prime}=X_{2} \cup\{x\}, X_{1}^{\prime}=X_{1} \cup Y_{n}^{C}$ and $Y_{n}^{\prime}=Y_{n}^{A}$. Then $X_{1}^{\prime}, \ldots, X_{n}^{\prime}, Y_{1}^{\prime}, \ldots, Y_{n}^{\prime}$ are disjoint cliques satisfying $(S 2)-(S 6)$ but with $\left|\bigcup_{i}\left(X_{i} \cup Y_{i}\right)\right|<\left|\bigcup_{i}\left(X_{i}^{\prime} \cup Y_{i}^{\prime}\right)\right|$, a contradiction. This proves (1).
(2) If $X_{i}^{C} \neq \emptyset$ and $X_{i+2}^{C} \neq \emptyset$ then $X_{i+1}^{A}=\emptyset$.

Assume not. We may assume $y \in X_{n}^{C}$ and $z \in X_{2}^{C}$ and $w \in X_{1}^{A}$. Since $\left\{x \mid y, z, \cup_{i=4}^{n-2} X_{i}\right\}$ is not a claw by (S6), x is strongly anticomplete to X_{4}, \ldots, X_{n-2}. Assume that $C=x-X_{3}-\ldots-X_{n-1}-x$ is a hole. Then C has length $n-2$, but w is strongly anticomplete to $V(C) \backslash\{x\}$, contrary to 3.2.6. Thus x is strongly anticomplete to at least one of X_{3} or X_{n-1}. By symmetry, we may assume that
x is strongly anticomplete to X_{3}. Since $x-X_{2}-X_{3}-\ldots-X_{n-1}-x$ is not a hole length $n-1$, x is strongly anticomplete to X_{n-1}. By (S6) and symmetry, we may assume that X_{1} is strongly complete to X_{2}. But now $\left\{z \mid X_{3}, x, w\right\}$ is a claw, a contradiction. This proves (2).
(3) If $X_{i}^{C} \neq \emptyset$, then $X_{i+2}^{C}=\emptyset$.

Assume not. We may assume there exist $y \in X_{n}^{C}$ and $z \in X_{2}^{C}$. By (2), x is strongly complete to X_{1}. Since $\left\{x \mid y, z, \cup_{i=4}^{n-2} X_{i} \cup_{j=3}^{n-2} Y_{j}\right\}$ is not a claw by (S6), it follows that x is strongly anticomplete to X_{4}, \ldots, X_{n-2} and Y_{3}, \ldots, Y_{n-2}.

If $X_{3}^{C} \neq \emptyset$, then either $\left\{x \mid X_{1}, X_{3}, X_{n-1}\right\}$ is a claw or $x-X_{3}-X_{4}-\ldots-X_{n}-x$ is a hole of length $n-1$ and therefore odd, hence x is strongly anticomplete to X_{3}. By symmetry, x is strongly anticomplete to X_{n-1}. Since $\left\{z \mid X_{3}, x, Y_{1}\right\}$ and $\left\{y \mid X_{n-1}, x, Y_{n}\right\}$ are not claws, x is strongly complete to $Y_{1} \cup Y_{n}$.

For $i=3, \ldots, n-1$, let $X_{i}^{\prime}=X_{i}$ and for $i=1,3,4, \ldots, n-2, n$, let $Y_{i}^{\prime}=Y_{i}$. Let $X_{2}^{\prime}=X_{2} \cup Y_{2}^{C}$, let $X_{1}^{\prime}=X_{1} \cup\{x\}$, let $Y_{2}^{\prime}=Y_{2}^{A}$, let $X_{n}^{\prime}=X_{n} \cup Y_{n-1}^{C}$ and let $Y_{n-1}^{\prime}=Y_{n-1}^{A}$.

Clearly $X_{1}^{\prime}, \ldots, X_{n}^{\prime}, Y_{1}^{\prime}, \ldots, Y_{n}^{\prime}$ are disjoint cliques such that $\left|\bigcup_{i}\left(X_{i} \cup Y_{i}\right)\right|<\left|\bigcup_{i}\left(X_{i}^{\prime} \cup Y_{i}^{\prime}\right)\right|$. The above arguments show that $X_{1}^{\prime}, \ldots, X_{n}^{\prime}, Y_{1}^{\prime}, \ldots, Y_{n}^{\prime}$ satisfy (S2) and (S5). To get a contradiction, we need to show that $X_{1}^{\prime}, \ldots, X_{n}^{\prime}, Y_{1}^{\prime}, \ldots, Y_{n}^{\prime}$ satisfy (S3), (S4) and (S6).

Since $\left\{x \mid X_{n}, Y_{1}, Y_{2}^{C}\right\}$ is not a claw, we deduce that either $Y_{1}=\emptyset$ or $Y_{2}^{C}=\emptyset$. In both cases, it implies that Y_{1}^{\prime} is strongly complete to X_{2}^{\prime}. Symmetrically, Y_{n}^{\prime} is strongly complete to X_{n-1}^{\prime}. Hence, (S3) is satisfied.

It remains to prove the following.
(i) If $Y_{1} \neq \emptyset$, then X_{1}^{\prime} is strongly complete to X_{2}^{\prime}
(ii) If $Y_{n} \neq \emptyset$, then X_{n}^{\prime} is strongly complete to X_{1}^{\prime}
(iii) X_{2}^{\prime} is strongly complete to at least one of $X_{3}^{\prime}, X_{1}^{\prime}$.
(iv) X_{n}^{\prime} is strongly complete to at least one of $X_{n-1}^{\prime}, X_{2}^{\prime}$.
(v) X_{1}^{\prime} is strongly complete to at least one of $X_{n}^{\prime}, X_{2}^{\prime}$.

Assume that $Y_{1} \neq \emptyset$. It implies by (S4), that X_{1} is strongly complete to X_{2}. Since $\left\{x \mid Y_{n}, Y_{1}, Y_{2}^{C}\right\}$ is not a claw, we deduce that $Y_{2}^{C}=\emptyset$. Since $x-Y_{1}-X_{2}^{A}-X_{3}-\ldots-X_{n}-x$ is not a hole of
length $n+1$, we deduce that $X_{2}^{A}=\emptyset$ and thus X_{1}^{\prime} is strongly complete to X_{2}^{\prime}. This proves i) and by symmetry ii) holds.

If $Y_{2}^{C} \neq \emptyset$, it follows by (S4) that X_{2}^{\prime} is strongly complete to X_{3}^{\prime} and iii) holds. Thus we may assume that Y_{2}^{C} is empty. If X_{2}^{A} is empty, and since by (S6), X_{2} is strongly complete to at least one of X_{1}, X_{3}, it follows that X_{2}^{\prime} is strongly complete to at least one of $X_{1}^{\prime}, X_{3}^{\prime}$. Thus we may assume that $X_{2}^{A} \neq \emptyset$. Since $x-Y_{1}-X_{2}^{A}-X_{3}-\ldots-X_{n}-x$ is not a hole of length $n+1$, we deduce that $Y_{1}=\emptyset$.

Assume that there exist $w \in X_{2}$ and $v \in X_{3}$ such that w is antiadjacent to v. Suppose first that $w \in X_{2}^{C}$. Since $x-w-X_{2}^{A}-v-X_{4}-\ldots-X_{n}-x$ is not a cycle of length $n+1$, we deduce that v is strongly anticomplete to X_{2}^{A}. By (S5), there exists $a \in X_{2}^{C}$ adjacent to v. But $\left\{a \mid x, v, X_{2}^{A}\right\}$ is a claw, a contradiction. Thus we may assume that $w \in X_{2}^{A}$ and v is strongly complete to X_{2}^{C}. But $\{z \mid x, v, w\}$ is a claw, a contradiction. Hence X_{2} is strongly complete to X_{3}. This proves iii) and by symmetry iv) holds.

We claim that x is strongly complete to at least one of X_{2} or X_{n}. Suppose that $p \in X_{n}^{A}$ and $q \in X_{2}^{A}$. By (S5) and (S6), there is $r \in X_{1}$ that is adjacent to both p and q. But $\{r \mid p, q, x\}$ is a claw, a contradiction. This proves the claim. By symmetry we may assume that x is strongly complete to X_{n}. By [1], X_{n} is strongly complete to X_{1}. If $Y_{n-1}^{C}=\emptyset$, it follows that X_{1}^{\prime} is strongly complete to X_{n}^{\prime} and v) holds. Thus we may assume that $Y_{n-1}^{C} \neq \emptyset$. Since $\left\{x \mid X_{1}, Y_{n-1}^{C}, Y_{2}^{C}\right\}$ is not a claw, we deduce that $Y_{2}^{C}=\emptyset$. Since $x-Y_{n-1}^{C}-X_{n-1}-\ldots-X_{3}-X_{2}^{A}-X_{1}-x$ is not a hole of length $n+1$, we deduce that X_{2}^{A} is empty. By 11, X_{1} is strongly complete to X_{2} and thus X_{1}^{\prime} is strongly complete to X_{2}^{\prime}. This proves v). This concludes the proof of (3).

Let $C=x_{1}-x_{2}-\ldots-x_{n}-x_{1}$ be a hole of length n with $x_{i} \in X_{i}$. By 3.2.6, x is strongly adjacent to two consecutive vertices of C. Without loss of generality, we may assume that x is strongly complete to $\left\{x_{1}, x_{2}\right\}$. By (1), x_{1} is strongly adjacent to x_{2}. By (3), x is strongly anticomplete to $X_{3} \cup X_{4} \cup X_{n-1} \cup X_{n}$. Since $G \mid\left(\{x\} \bigcup_{i} X_{i}\right)$ does not contain an induced a cycle of length $p \neq n$ by 3.4.1, we deduce that x is strongly anticomplete to X_{i} for $i=5, \ldots, n-2$. Similarly, x is strongly anticomplete to $Y_{3} \cup \ldots \cup Y_{n-1}$ otherwise there is a hole of length $p \neq n$ in G.

Since $x-Y_{2}-X_{3}-\ldots-X_{n}-X_{1}-x$ and $x-Y_{n}-X_{n}-\ldots-X_{2}-x$ are not holes of length $n+1$, we deduce that x is strongly anticomplete to $Y_{2} \cup Y_{n}$.

Since $\left\{X_{2}^{C} \mid X_{1}^{A}, x, X_{3}\right\}$ and $\left\{X_{1}^{C} \mid X_{2}^{A}, x, X_{n}\right\}$ are not claws, it follows that X_{1}^{A} is strongly anticomplete to X_{2}^{C} and X_{1}^{C} is strongly anticomplete to X_{2}^{A}. Suppose there is $a \in X_{1}^{A}$. By (S5), there is $b \in X_{2}^{A}$ adjacent to a. But $G \mid\left(\left\{x_{1}, x_{2}, a, b\right\}\right.$ is a hole of length 4 strongly anticomplete to X_{4}, contrary to 3.2 .6 . Thus $X_{1}^{A}=X_{2}^{A}=\emptyset$ and by (1), X_{1} is strongly complete to X_{2}. Since $\left\{X_{1} \mid x, Y_{1}, X_{n}\right\}$ is not a claw, we deduce that x is strongly complete to Y_{1}.

For $i=1, \ldots, n$, let $X_{i}^{\prime}=X_{i}$, for $i=2, \ldots, n$, let $Y_{i}^{\prime}=Y_{i}$ and let $Y_{1}^{\prime}=Y_{1} \cup\{x\}$. The above arguments show that $X_{1}^{\prime}, \ldots, X_{n}^{\prime}, Y_{1}^{\prime}, \ldots, Y_{n}^{\prime}$ are cliques satisfying $(S 2)-(S 6)$ but $\left|\bigcup_{i}\left(X_{i} \cup Y_{i}\right)\right|<$ $\left|\bigcup_{i}\left(X_{i}^{\prime} \cup Y_{i}^{\prime}\right)\right|$, a contradiction. This concludes the proof of 3.4.2

We now have all the tools to prove 3.2.1.
Proof of 3.2.1. We may assume that G is not a linear interval trigraph and not a cobipartite trigraph. By 3.2.5, there is an essential triangle or a hole in G. Then by 3.2.8, 3.3.1 and 3.4.2, G is either a structured circular interval trigraph or is a thickening of a trigraph in \mathcal{C}. This proves 3.2.1.

3.5 Some Facts about Linear Interval Join

In this section we prove some lemmas about paths in linear interval stripes.
3.5.1. Let G be a linear interval join with skeleton H such that G is Berge. Let e be an edge of H that is in a cycle. Let $\eta(e)=V(T) \backslash Z$ where (T, Z) is a thickening of a linear interval stripe ($S,\left\{x_{1}, x_{n}\right\}$). Then the lengths of all paths from x_{1} to x_{n} in $\left(S,\left\{x_{1}, x_{n}\right\}\right)$ have the same parity.

Proof. Assume not. Let $C=c_{0}-c_{1}-\ldots-c_{n}-c_{0}$ be a cycle in H such that $e=c_{0} c_{n}$. For $i=0, \ldots, n-1$, let $c_{i} c_{i+1}=e_{i},\left(G_{e_{i}},\left\{x_{i}^{1}, x_{i}^{2}\right\}\right)$ be such that $\eta\left(e_{i}\right)=V\left(G_{e_{i}}\right) \backslash\left\{x_{i}^{1}, x_{i}^{2}\right\}, \phi_{e_{i}}\left(c_{i}\right)=x_{i}^{1}$ and $\phi_{e_{i}}\left(c_{i+1}\right)=x_{i}^{2}$ as in the definition of a linear interval join. We may assume that $\phi_{e}\left(c_{n}\right)=x_{1}$ and $\phi_{e}\left(c_{0}\right)=x_{n}$. Let $O=x_{1}-o_{1}-\ldots-o_{l-1}-x_{n}$ be an odd path from x_{1} to x_{n} in S and $P=x_{1}-p_{1}-\ldots-p_{l^{\prime}-1}-x_{n}$ be an even path from x_{1} to x_{n} in S. For $i=0,1, \ldots, n-1$, let Q_{i} be a path in $G_{e_{i}}$ from x_{i}^{1} to x_{i}^{2}. Let Q_{i}^{\prime} be the subpath of Q_{i} with $V\left(Q_{i}^{\prime}\right)=V\left(Q_{i}\right) \backslash\left\{x_{i}^{1}, x_{i}^{2}\right\}$.

Let $C_{1}=X_{o_{1}}-\ldots-X_{o_{l-1}}-Q_{0}^{\prime}-Q_{1}^{\prime}-\ldots-Q_{n-1}^{\prime}-X_{o_{1}}$ and $C_{2}=X_{p_{1}}-\ldots-X_{p_{l^{\prime}-1}}-Q_{0}^{\prime}-Q_{1}^{\prime}-$ $\ldots-Q_{n-1}^{\prime}-X_{p_{1}}$. Then one of C_{1}, C_{2} is an odd hole in G, a contradiction. This proves 3.5.1.

Before the next lemma, we need some additional definitions. Let ($G,\left\{x_{1}, x_{n}\right\}$) be a linear interval stripe. The right path of G is the path $R=r_{0}-\ldots-r_{p}$ (where $r_{0}=x_{1}$ and $r_{p}=x_{n}$) defined
inductively starting with $i=1$ such that $r_{i}=x_{i^{*}}$ with $i^{*}=\max \left\{j \mid x_{j}\right.$ is adjacent to $\left.r_{i-1}\right\}$ (i.e. from r_{i} take a maximal edge on the right to r_{i+1}). Similarly the left path of G is the path $L=l_{0}-\ldots-l_{p}$ (where $l_{0}=x_{1}$ and $l_{p}=x_{n}$) defined inductively starting with $i=p-1$ such that $l_{i}=x_{i^{*}}$ with $i^{*}=\min \left\{j \mid x_{j}\right.$ is adjacent to $\left.l_{i+1}\right\}$.
3.5.2. Let $\left(G,\left\{x_{1}, x_{n}\right\}\right)$ be a linear interval stripe and R be the right path of G. If $x, y \in V(R)$, then $x-R-y$ is a shortest path between x and y.

Proof. Let $P=x-p_{1}-\ldots-p_{t-1}-y$ be a path between x and y of length t and let $x-r_{l}-\ldots-$ $r_{s+l-2}-y=x-R-y$. By the definition of R and since G is a linear interval stripe, we deduce that $r_{l+i-1} \geq p_{i}$ for $i=1, \ldots, s-1$. Hence it follows that $s \leq t$. This proves 3.5.2.

3.5.3. Every linear interval trigraph is Berge.

Proof. Let G be a linear interval trigraph with $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$. The proof is by induction on the number of vertices. Clearly $H=G \mid\left\{v_{1}, \ldots, v_{n-1}\right\}$ is a linear interval trigraph, so inductively H is Berge. Since G is a linear interval trigraph, it follows that $N\left(v_{n}\right)$ is a strong clique. But if A is an odd hole or an odd antihole in G, then for every $a \in V(A)$, it follows that $N(a) \cap V(A)$ is not a strong clique. Therefore $v_{n} \notin V(A)$ and consequently G is Berge. This proves 3.5.3.
3.5.4. Let $\left(G,\left\{x_{1}, x_{n}\right\}\right)$ be a linear interval stripe. Let S and Q be two paths from x_{1} to x_{n} of length s and q such that $s<q$. Then there exists a path of length m from x_{1} to x_{n} in G for all $s<m<q$.

Proof. Let G^{\prime} be a circular interval trigraph obtained from G by adding a new vertex x as follows:

- $V\left(G^{\prime}\right)=V(G) \cup\{x\}$,
- $G^{\prime} \mid V(G)=G$,
- x is strongly anticomplete to $V(G) \backslash\left\{x_{1}, x_{n}\right\}$,
- x is strongly complete to $\left\{x_{1}, x_{n}\right\}$.

Let $s<m<q, C_{1}=x_{1}-S-x_{n}-x-x_{1}$ and $C_{2}=x_{1}-Q-x_{n}-x-x_{1}$. Clearly, C_{1} and C_{2} are holes of length $s+2$ and $q+2$ in G^{\prime}. By 3.4.1, there exists a hole C_{m} of length $m+2$ in G^{\prime}. Since it is easily seen from the definition of linear interval trigraph that there is no hole in G, we deduce that $x \in V\left(C_{m}\right)$. Let $C_{m}=x-c_{1}-c_{2}-\ldots-c_{m+1}-x$. Since $N(x)=\left\{x_{1}, x_{n}\right\}$, we may assume

CHAPTER 3. THE STRUCTURE OF CLAW-FREE PERFECT GRAPHS
that $c_{1}=x_{1}$ and $c_{m+1}=x_{n}$. But now $x_{1}-c_{2}-\ldots-c_{m}-x_{n}$ is a path of length m from x_{1} to x_{n} in G. This proves 3.5.4

We say that a linear interval stripe $\left(G,\left\{x_{1}, x_{n}\right\}\right)$ has length p if all paths from x_{1} to x_{n} have length p.
3.5.5. Let $\left(G,\left\{x_{1}, x_{n}\right\}\right)$ be a linear interval stripe of length p. Let $L=l_{0}-\ldots-l_{p}$ and $R=r_{0}-\ldots-r_{p}$ be the left and right paths. Then $r_{0}<l_{1} \leq r_{1}<l_{2} \leq r_{2}<\ldots<l_{p-1} \leq r_{p-1}<l_{p}$.

Proof. Since G is a linear interval trigraph and by the definition of right path, it follows that $r_{0}<r_{1}<r_{2}<\ldots<r_{p}$.

We claim that if $l_{i} \in\left(r_{i-1}, r_{i}\right]$, then $l_{i-1} \in\left(r_{i-2}, r_{i-1}\right]$. Assume that $l_{i} \in\left(r_{i-1}, r_{i}\right]$. Since r_{i-1} is adjacent to r_{i}, we deduce that l_{i} is adjacent to r_{i-1}. By the definition of the left path, $l_{i-1} \leq r_{i-1}$. Since $r_{i-1}<l_{i}$ and by the definition of the right path, we deduce that r_{i-2} is strongly antiadjacent to l_{i}. Since G is a linear interval trigraph, we deduce that $l_{i-1}>r_{i-2}$. This proves the claim.

Now, since $l_{p} \in\left(r_{p-1}, r_{p}\right]$ and using the claim inductively, we deduce that $r_{i-1}<l_{i} \leq r_{i}$ for $i=1, \ldots, p$. This proves 3.5.5.
3.5.6. Let $\left(G,\left\{x_{1}, x_{n}\right\}\right)$ be a linear interval stripe of length p. Let $L=l_{0}-\ldots-l_{p}$ and $R=r_{0}-\ldots-r_{p}$ be the left and right paths. Then $\left[r_{0}, l_{i}\right)$ is strongly anticomplete to $\left[l_{i+1}, l_{p}\right]$ and $\left[r_{0}, r_{i}\right]$ is strongly anticomplete to $\left(r_{i+1}, l_{p}\right]$ for $i=0, \ldots, p$.

Proof. Assume not. By symmetry, we may assume that there exist $i, a \in\left[r_{0}, l_{i}\right)$ and $b \in\left[l_{i+1}, l_{p}\right]$ such that a is adjacent to b. Since $l_{i+1} \in(a, b]$ and since G is a linear interval trigraph, we deduce that l_{i+1} is adjacent to a. But $a<l_{i}$, contrary to the definition of the left path. This proves 3.5.6.
3.5.7. Let $\left(G,\left\{x_{1}, x_{n}\right\}\right)$ be a linear interval stripe of length $p \geq 3$. Let $L=l_{0}-\ldots-l_{p}$ and $R=r_{0}-\ldots-r_{p}$ be the left and right paths. If l_{i} and r_{i+1} are strongly adjacent for some $0<i<p$, then G admits a 1-join.

Proof. Let i be such that l_{i} and r_{i+1} are strongly adjacent. Since G is a linear interval trigraph, we deduce that $\left[l_{i}, r_{i+1}\right]$ is a strong clique. By 3.5.6, it follows that $\left[r_{0}, l_{i}\right)$ is strongly anticomplete to $\left(r_{i+1}, r_{p}\right]$.

Suppose there exists $x \in\left[l_{i}, r_{i+1}\right]$ that is adjacent to a vertex $a \in\left[r_{0}, l_{i}\right)$ and $b \in\left(r_{i+1}, r_{p}\right]$. By 3.5.6, it follows that a is strongly anticomplete to $\left[l_{i+1}, l_{p}\right]$ and thus $x \in\left[l_{i}, l_{i+1}\right)$. Symmetrically, $x \in\left(r_{i}, r_{i+1}\right]$. Hence by 3.5.5, we deduce that $x \in\left(r_{i}, l_{i+1}\right)$. By the definition of the right path and since a is adjacent to x, we deduce that $a \notin\left[r_{0}, r_{i-1}\right]$. Hence $a \in\left(r_{i-1}, l_{i}\right)$. By symmetry, $b \in\left(r_{i+1}, l_{i+2}\right)$.

We claim that $P=r_{0}-R-r_{i-1}-a-x-b-l_{i+2}-L-l_{p}$ is a path. Since $r_{i-1}<a$ and by the definition of the right path, we deduce that r_{i-2} is strongly antiadjacent to a. Since $b<l_{i+2}$ and by the definition of the left path, we deduce that b is strongly antiadjacent to l_{i+3}. By 3.5 .6 and since $a \in\left(r_{i-1}, l_{i}\right)$ and $b \in\left(r_{i+1}, l_{i+2}\right)$, it follows that a and b are strongly antiadjacent. Moreover since $x \in\left(r_{i}, l_{i+1}\right)$ and by the definition of the left and right path, we deduce that x is strongly anticomplete to $\left\{r_{i-1}, l_{i+2}\right\}$. This proves the claim.

But P is an path of length $p+1$, a contradiction. Hence for all $x \in\left[l_{i}, r_{i+1}\right], x$ is strongly anticomplete to at least one of $\left[r_{0}, l_{i}\right),\left(r_{i+1}, r_{p}\right]$.

Let $V_{1}=\left\{x \in\left[l_{i}, r_{i+1}\right]: x\right.$ is strongly anticomplete to $\left.\left(r_{i+1}, r_{p}\right]\right\}$ and $V_{2}=\left[l_{i}, r_{i+1}\right] \backslash V_{1}$. The above arguments shows that $\left(\left[r_{0}, l_{i}\right) \cup V_{1},\left(r_{i+1}, r_{p}\right] \cup V_{2}\right)$ is a 1 -join. This proves 3.5.7.
3.5.8. Let $\left(G,\left\{x_{1}, x_{n}\right\}\right)$ be a linear interval stripe of length p with $p>3$, then G admits a 1-join.

Proof. Assume not. Let $L=l_{0}-\ldots-l_{p}$ and $R=r_{0}-\ldots-r_{p}$ be the left and right paths. If $r_{2}=l_{2}$, it follows that r_{2} is strongly adjacent to at least one of l_{1}, r_{3}, contrary to 3.5.7. Thus by 3.5.5, we may assume that $l_{2}<r_{2}$.

By 3.5.7, we may assume that l_{1} is antiadjacent to r_{2} and l_{2} is antiadjacent to r_{3}. By 3.5.5, it follows that $l_{2} \in\left(r_{1}, r_{2}\right)$. Since G is a linear interval trigraph, we deduce that l_{2} is adjacent to r_{2}. Hence $l_{0}-l_{1}-l_{2}-r_{2}-R-r_{p}$ is a path of length $p+1$, a contradiction. This proves 3.5.8.
3.5.9. Let $\left(G,\left\{x_{1}, x_{n}\right\}\right)$ be a linear interval stripe of length three, and (H, Z) a thickening of $\left(G,\left\{x_{1}, x_{n}\right\}\right)$. Then either H admits a 1-join or (H, Z) is the thickening of a spring.

Proof. Let $L=l_{0}-l_{1}-l_{2}-l_{3}$ and $R=r_{0}-r_{1}-r_{2}-r_{3}$ be the left and right paths of G. If l_{1} is strongly adjacent to r_{2} then by 3.5.7, G admits a 1 -join, and so does H.

Thus, we may assume that l_{1} is not strongly adjacent to r_{2}. Suppose that there exists $a \in$ $\left(r_{1}, l_{2}\right)$. Since $a>r_{1}$, we deduce that a is strongly antiadjacent to r_{0}. Symmetrically, a is strongly

CHAPTER 3. THE STRUCTURE OF CLAW-FREE PERFECT GRAPHS
antiadjacent to l_{3}. By 3.5.5, it follows that $a \in\left(l_{1}, l_{2}\right)$. Since G is a linear interval trigraph, we deduce that a is adjacent to l_{1}. Symmetrically, a is adjacent to r_{2}. Hence $r_{0}-l_{1}-a-r_{2}-l_{3}$ is a path of length 4 , contrary to the fact that $\left(G,\left\{x_{1}, x_{n}\right\}\right)$ has length 3 . Thus $\left(r_{1}, l_{2}\right)=\emptyset$.

Since r_{0} is strongly adjacent to r_{1} and as G is a linear interval trigraph, we deduce that (r_{0}, r_{1}] is a strong clique, and moreover, that r_{0} is strongly complete to $\left(r_{0}, r_{1}\right.$]. By 3.5.6, it follows that r_{0} is strongly anticomplete to $\left[l_{2}, l_{3}\right]$. By symmetry and since $V(G)=\left\{r_{0}, l_{3}\right\} \cup\left(r_{0}, r_{1}\right] \cup\left[l_{2}, l_{3}\right)$, the above arguments show that $\left(\left(r_{0}, r_{1}\right],\left[l_{2}, l_{3}\right)\right)$ is a homogeneous pair. Moreover by 3.5.5, $l_{1} \in\left(r_{0}, r_{1}\right]$ and $r_{2} \in\left[l_{2}, l_{3}\right.$). Since l_{1} is antiadjacent to r_{2}, we deduce that ($\left.r_{0}, r_{1}\right]$ is not strongly complete to $\left[l_{2}, l_{3}\right)$. Since $r_{2} \in\left[l_{2}, l_{3}\right)$ and by the definition of the right path, we deduce that $\left(r_{0}, r_{1}\right]$ is not strongly anticomplete to $\left[l_{2}, l_{3}\right)$.

Now setting $X_{w}=\left\{l_{0}\right\}, X_{x}=\left(r_{0}, r_{1}\right], X_{y}=\left[l_{2}, l_{3}\right)$ and $X_{z}=\left\{r_{3}\right\}$, we observe that $\left(G,\left\{x_{1}, x_{n}\right\}\right)$ is the thickening of a spring, and therefore (H, Z) is the thickening of a spring. This proves 3.5 .9 .

3.6 Proof of the Main Theorem

In this section we collect the results we have proved so far, and finish the proof of the main theorem.
3.6.1. Let $(G,\{x\})$ be a connected cobipartite bubble. Then $(G,\{x\})$ is a thickening of a truncated spot, a thickening of a truncated spring or a thickening of a one-ended spot.

Proof. Let X and Y be two disjoint strong cliques such that $X \cup Y=V(G)$. We may assume that $\{x\} \subseteq X$. If $\{x\} \cup N(x)=V(G)$, it follows that $N(x)$ is a homogeneous set. Hence $(G,\{x\})$ is the thickening of a truncated spot.

Thus we may assume that $\{x\} \cup N(x) \neq V(G)$. Let $Y_{1}=Y \cap N(x)$ and $Y_{2}=Y \backslash Y_{1}$. Then x is strongly complete to Y_{1} and strongly anticomplete to Y_{2}. Observe that $\left(N(x), Y_{2}\right)$ is a homogeneous pair. Since G is connected, we deduce that $|N(x)| \geq 1$ and that $N(x)$ is not strongly anticomplete to Y_{2}. If $N(x)$ is strongly complete to Y_{2}, we observe that $(G,\{x\})$ is a thickening of a one-ended spot. And otherwise, we observe that $(G,\{x\})$ is a thickening of a truncated spring. This concludes the proof of 3.6.1.
3.6.2. Let $(G,\{z\})$ be a stripe such that G is a thickening of a trigraph in \mathcal{C}. Then $(G,\{z\})$ is in \mathcal{C}^{\prime}.

Proof. Let H be a trigraph in \mathcal{C} such that G is a thickening of H. For $i, j=1,2,3$, let $B_{i}^{j} \subseteq V(H)$ and $a_{i} \in V(H)$ be as in the definition of \mathcal{C}. For $i=1,2,3$, let $X_{a_{i}} \subset V(G)$ be as in the definition of a thickening. For $b \in V(G) \backslash\left(X_{a_{1}} \cup X_{a_{2}} \cup X_{a_{3}}\right)$ and since there exists i such that $X_{a_{i}} \cup X_{a_{i+1}} \subseteq N(b)$, and $X_{a_{i}}$ is not strongly complete to $X_{a_{i+1}}$, we deduce that $b \notin\{z\}$. Thus there exists $k \in\{1,2,3\}$ such that $z \in X_{a_{k}}$. Since $\bigcup_{i=1}^{3}\left(B_{k}^{1} \cup B_{k+1}^{i}\right) \subseteq N(z)$ and since there exists no $c \in X_{a_{k+1}} \cup X_{a_{k+2}}$ with c strongly complete to $\bigcup_{i=1}^{3}\left(B_{k}^{1} \cup B_{k+1}^{i}\right)$, we deduce that $N(z) \cap\left(X_{a_{k+1}} \cup X_{a_{k+2}}\right)=\emptyset$. Since B_{k+1}^{k+2} is anticomplete to B_{k}^{k+2} and $B_{k+1}^{k+2} \cup B_{k}^{k+2} \subseteq N(z)$, we deduce from the definition of \mathcal{C} that $B_{k+1}^{k+2} \cup B_{k}^{k+2}=\emptyset$. Hence we deduce that $(G,\{z\})$ is in \mathcal{C}^{\prime}. This proves 3.6.2.
3.6.3. Let G be a trigraph and let H be a thickening of G. For $v \in V(G)$, let X_{v} be as in the definition of thickening of a trigraph. Let $C=c_{1}-c_{2}-\ldots-c_{n}-c_{1}$ be an odd hole or an odd antihole of H. Then $\left|V(C) \cap X_{v}\right| \leq 1$ for all $v \in V(G)$.

Proof. Assume not. We may assume that $\left|V(C) \cap X_{x}\right| \geq 2$ with $x \in V(G)$.
Assume first that C is a hole. By symmetry, we may assume that $c_{1}, c_{2} \in X_{x}$. Since c_{3} is antiadjacent to c_{1} and adjacent to c_{2}, we deduce that there exists $y \in V(G)$ such that x is semiadjacent to y and $c_{3} \in X_{y}$. By symmetry, and since x is semiadjacent to at most one vertex in G, we deduce that $c_{n} \in X_{y}$, a contradiction since X_{y} is a strong clique.

Assume now that C is an antihole. By symmetry, we may assume that there exists $k \in\{3, \ldots, n-$ $1\}$ such that $c_{1}, c_{k} \in X_{x}$. Moreover we may assume by symmetry that k is even.
(1) For $i \in\{1, \ldots, k / 2\}$, if i is odd then $c_{i}, c_{k-i+1} \in X_{x}$, and there exists $y \in V(G)$ such that if i is even then $c_{i}, c_{k-i+1} \in X_{y}$.

By induction on i. By assumption, $c_{1}, c_{k} \in X_{x}$. Since c_{2} is adjacent to c_{k} and antiadjacent to c_{1}, we deduce that there exists $y \in V(G)$ such that x is semiadjacent to y in G and $c_{2} \in X_{y}$. By symmetry, and since x is semiadjacent to at most one vertex in G, we deduce that $c_{k-1} \in X_{y}$.

Now let $i \in\{3, \ldots, k / 2\}$ and assume first that i is odd. By induction, we may assume that $c_{i-1}, c_{k-i+2} \in X_{y}$. Since c_{i} is adjacent to c_{k-i+2} and antiadjacent to c_{i-1}, we deduce that $c_{i} \in X_{x}$ since y is semiadjacent only to x in G. By symmetry, we deduce that $c_{k-i+1} \in X_{x}$. Now if i is even, the same argument holds by symmetry. This proves (1).

By (11), there exists $z \in\{x, y\}$ such that $c_{k / 2}, c_{k / 2+1} \in X_{z}$, a contradiction. This concludes the proof of 3.6.3
3.6.4. Let G be a trigraph and let H be a thickening of G. Then G is Berge if and only if H is Berge.

Proof. If $C=c_{1}-c_{2}-\ldots-c_{n}-c_{1}$ is an odd hole (resp. antihole) in G then $C^{\prime}=X_{c_{1}}-X_{c_{2}}-$ $\ldots-X_{c_{n}}-X_{c_{1}}$ is an odd hole (resp. antihole) in H.

Now assume that $C=c_{1}-c_{2}-\ldots-c_{n}-c_{1}$ is an odd hole or an odd antihole in H. By 3.6.3, there is $x_{i} \in V(G)$ such that $c_{i} \in X_{x_{i}}$ for $i=1, \ldots, n$ and such that $x_{i} \neq x_{j}$ for all $i \neq j$. But $x_{1}-x_{2}-\ldots-x_{n}-x_{1}$ is an odd hole or an odd antihole in G. This proves 3.6.4.
3.6.5. Let G be a structured circular interval trigraph. Then G is Berge.

Proof. Assume not. For $i=1, \ldots, n$, let X_{i} and Y_{i} be as in the definition of structured circular interval trigraph. Let $C=c_{1}-\ldots-c_{n}-c_{1}$ be an odd hole or an odd antihole in G. Since $N(y)$ is a strong clique for all $y \in \bigcup_{i=1}^{n} Y_{i}$, we deduce that $V(C) \cap \bigcup_{i=1}^{n} Y_{i}=\emptyset$. But by 3.6.3 and (S1)-(S6), we get a contradiction. This proves 3.6.5.
3.6.6. Let G be a structured circular interval trigraph. Then G is a thickening of an evenly structured linear interval join.

Proof. Let $X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}$ and n be as in the definition of structured circular interval trigraph. Throughout this proof, the addition is modulo n.

Let $H=(V, E)$ be a graph and s be a signing such that:

- $V \subseteq\left\{h_{1}, h_{2}, \ldots, h_{n}\right\} \cup\left\{l_{1}^{1}, \ldots, l_{1}^{\left|Y_{1}\right|}\right\} \cup \ldots \cup\left\{l_{n}^{1}, \ldots, l_{n}^{\left|Y_{n}\right|}\right\}$,
- if X_{i} is not strongly complete to X_{i+1}, then $h_{i+1} \notin V$, and there is exactly one edge e_{i} between h_{i} and h_{i+2}, and $s\left(e_{i}\right)=0$,
- if X_{i} is strongly complete to $X_{i-1} \cup X_{i+1}$, then there are $\left|X_{i}\right|$ edges $e_{i}^{1}, \ldots, e_{i}^{\left|X_{i}\right|}$ between h_{i} and h_{i+1}, and $s\left(e_{i}^{k}\right)=1$ for $k=1, \ldots,\left|X_{i}\right|$,
- if $h_{i} \in V$, there is one edge between h_{i} and l_{i-1}^{k} with $s\left(h_{i} l_{i-1}^{k}\right)=1$ for $k=1, \ldots,\left|Y_{i-1}\right|$.

Then G is an evenly structured linear interval join with skeleton H and such that each stripe associated with an edge e with $s(e)=1$ is a spot. This proves 3.6.6.

We can now prove the following.
3.6.7. Let G be a linear interval join. Then G is Berge if and only if G is an evenly structured linear interval join.

Proof.

\Leftarrow Let G be an evenly structured linear interval join. We have to show that G is Berge. By 3.5.3, linear interval stripes are Berge. By 3.2 .7 and 3.6.4, trigraphs in \mathcal{C}^{\prime} are Berge. By 3.6.5, structured bubbles are Berge. Clearly spots, truncated spots, one-ended spots and truncated springs are Berge. By 3.6 .4 and due to the construction of evenly structured linear interval join, the only holes created are of even length due to the signing. Thus G is Berge.
\Rightarrow Let G be a Berge linear interval join. Let H be a skeleton of G. We may assume that H is chosen among all skeletons of G such that $|V(H)|$ is maximum and subject to that with $|E(H)|$ maximum. Let $\left(G_{e}, Y_{e}\right), e=x_{1} x_{2}$ (with $x_{1}=x_{2}$ if e is a loop) and $\phi_{e}: V(e) \rightarrow Y_{e}$ be associated with H as in the definition of linear interval join.
(1) If $\left(G_{e}, Y_{e}\right)$ is a thickening of a linear interval stripe such that e is in a cycle in H but e is not a loop, then G_{e} does not admit a 1-join.

Assume not. Let $Y_{e}=\{y, z\}$ and $e=x_{1} x_{2}$. We may assume that $\phi_{e}\left(x_{1}\right)=y$ and $\phi_{e}\left(x_{2}\right)=z$. Let H^{\prime} be the graph obtained from H by adding a new vertex a^{\prime} as follows: $V\left(H^{\prime}\right)=V(H) \cup$ $\left\{a^{\prime}\right\}, H^{\prime} \mid V(H)=H \backslash e$ and a^{\prime} is adjacent to x_{1} and x_{2}, and to no other vertex.

Let $\left(F_{e}, Z_{e}\right)$ be a linear interval stripe such that $\left(G_{e}, Y_{e}\right)$ is a thickening of $\left(F_{e}, Z_{e}\right)$ and such that F_{e} admits a 1-join. Let $V_{1}, V_{2}, A_{1}, A_{2} \subset V\left(F_{e}\right)$ be as in the definition of 1-join. Moreover let W_{1}, W_{2} be the natural partition of $V\left(G_{e}\right)$ such that $G_{e} \mid W_{k}$ is a thickening of $F_{e} \mid W_{k}$ for $k=1,2$ and $\left(W_{1}, W_{2}\right)$ is a 1 -join. We may assume that $V\left(F_{e}\right)=\left\{v_{1}, \ldots, v_{n}\right\}$, $V_{1}=\left\{v_{1}, \ldots, v_{k}\right\}$ and $V_{2}=\left\{v_{k+1}, \ldots, v_{n}\right\}$. Let F_{e}^{1} be such that $V\left(F_{e}^{1}\right)=\left\{v_{1}, \ldots, v_{k}, v_{k+1}^{\prime}\right\}$, $F_{e}^{1} \mid V_{1}=F_{e}$ and v_{k+1}^{\prime} is complete to A_{1} and anticomplete to $V_{1} \backslash A_{1}$. Let $\left(G_{e}^{1}, Y_{e}^{1}\right)$ be the thickening of $\left(F_{e}^{1},\left\{v_{1}, v_{k+1}^{\prime}\right\}\right)$ such that $G_{e}^{1} \backslash Y_{e}^{1}=G_{e} \mid\left(W_{1} \backslash Y_{e}\right)$. Let F_{i}^{2} be such that $V\left(F_{e}^{2}\right)=$
$\left\{v_{k}^{\prime}, v_{k+1}, \ldots, v_{n}\right\}, F_{e}^{2} \mid V_{2}=F_{e}$ and v_{k}^{\prime} is complete to A_{2} and anticomplete to $V_{2} \backslash A_{2}$. Let $\left(G_{e}^{2}, Y_{e}^{2}\right)$ be the thickening of $\left(F_{e}^{2},\left\{v_{k}^{\prime}, v_{n}\right\}\right)$ such that $G_{e}^{2} \backslash Y_{e}^{2}=G_{e} \mid\left(W_{2} \backslash Y_{e}\right)$.

Now G is a linear interval join with skeleton H^{\prime} using the same stripes as the construction with skeleton H except for stripe $\left(G_{e}^{1}, Y_{e}^{1}\right)$ and $\left(G_{e}^{2}, Y_{e}^{2}\right)$ associated with the edges $a^{\prime} x_{1}$ and $a^{\prime} x_{2}$, contrary to the maximality of $|V(H)|$. This proves (1).

Let s be a signing of G such that $s(e)=1$ if $\left(G_{e}, Y_{e}\right)$ is a spot, and $s(e)=0$ if $\left(G_{e}, Y_{e}\right)$ is not a spot.

It remains to prove that:
(P1) if e is not a loop and is in a cycle and $s(e)=0$, then $\left(G_{e}, Y_{e}\right)$ is a thickening of a spring, and
(P2) (H, s) is an even structure,
(P3) if e is a loop, then $\left(G_{e}, Y_{e}\right)$ is a trigraph in \mathcal{C}^{\prime}.
First we prove (P1). Let $e=x_{1} x_{2}$ be in a cycle and such that $s(e)=0$ and e is not a loop. Let $\left(G_{e}, Y_{e}\right)$ be a thickening of a linear interval stripe such that e has been replaced by $\left(G_{e}, Y_{e}\right)$ in the construction. Let $Y_{e}=\{y, z\}$. We may assume that $\phi_{e}\left(x_{1}\right)=y$ and $\phi_{e}\left(x_{2}\right)=z$. By 3.5.1 and 3.5.4, if $e \in H$ is in a cycle, then all paths from y to z have the same length. By (1], $\left(G_{e}, Y_{e}\right)$ does not admit a 1-join, and thus by 3.5.8 and 3.5.9, $\left(G_{e}, Y_{e}\right)$ is the thickening of a spring. This proves (P1).

Before proving (P2). We need the following claims.
(2) Let $C=c_{1}-c_{2}-c_{3}-c_{1}$ be a cycle in H with edge set $E(C)=\left\{e_{1}, e_{2}, e_{3}\right\}$. If $s\left(e_{1}\right)=$ $s\left(e_{2}\right)=0$ and $s\left(e_{3}\right)=1$, then there is an odd hole in G.

By (P1), $\left(G_{e_{1}}, Y_{e_{1}}\right)$ and $\left(G_{e_{2}}, Y_{e_{2}}\right)$ are springs. It follows that the springs $\left(G_{e_{1}}, Y_{e_{1}}\right)$ and $\left(G_{e_{2}}, Y_{e_{2}}\right)$ together with the spot $\left(G_{e_{3}}, Y_{e_{3}}\right)$ induce a hole of length 5 in G, a contradiction. This proves (2).
(3) Let $C=c_{1}-c_{2}-\ldots-c_{n}-c_{1}$ be a cycle in H such that $n>3$ and such that $\sum_{e \in E(C)} s(e)$ is odd; then there is an odd hole in G.

The proof of (3) is similar to the proof of (2) and is omitted.
(4) Let $\left\{z_{1}, z_{2}, z_{3}\right\}$ be a triangle in H. For $i=1,2,3$, let e_{i} be an edge between z_{i} and $z_{i+1} \bmod 3$ such that $s\left(e_{i}\right)=1$. If $y \in V(H) \backslash\left\{z_{1}, z_{2}, z_{3}\right\}$ is adjacent to at least two vertices in $\left\{z_{1}, z_{2}, z_{3}\right\}$, then $s(f)=1$ for every edge f with one end y and the other end in $\left\{z_{1}, z_{2}, z_{3}\right\}$.

Assume that there is an edge e_{4} with one end y and the other end in $\left\{z_{1}, z_{2}, z_{3}\right\}$ with $s\left(e_{4}\right)=0$. By symmetry, we may assume that z_{1} is an end of e_{4}. By symmetry, we may also assume that there is an edge e_{5} between y and z_{2}. If $s\left(e_{5}\right)=0$, we deduce by (2) using $y-z_{1}-z_{2}-y$ that there is an odd hole in G, a contradiction. But if $s\left(e_{5}\right)=1$, we deduce by 2$]$ using $y-z_{1}-z_{3}-z_{2}-y$ that there is an odd hole in G, a contradiction. This proves (4).
(5) Let A be a block of H. Assume that there is a cycle $C=c_{1}-c_{2}-c_{3}-c_{1}$ in H such that $s(e)=1$ for all $e \in E(C)$. Then all connected components of $A \backslash V(C)$ have size 1 .

Let B be a connected components of $A \backslash V(C)$ such that $|B|>1$. Since $B \cup\left\{c_{1}, c_{2}, c_{3}\right\}$ is 2connected, there are at least 2 vertices in B that are not anticomplete to $\left\{c_{1}, c_{2}, c_{3}\right\}$. Similarly, there are at least 2 vertices in $\left\{c_{1}, c_{2}, c_{3}\right\}$ that are not anticomplete to B. Hence, we can find $b_{i}, b_{j} \in B$ such that b_{i} is adjacent to c_{i} and b_{j} is adjacent to c_{j} with $i \neq j$. By symmetry, we may assume that $i=1$ and $j=2$. Since B is connected, we deduce that there is a path P from b_{1} to b_{2} in B. But $C_{1}=c_{3}-c_{1}-b_{1}-P-b_{2}-c_{2}-c_{3}$ and $C_{2}=c_{1}-b_{1}-P-b_{2}-c_{2}-c_{1}$ are cycles of length greater than 3 and one of them has an odd value, thus by (3) there is an odd hole in G, a contradiction. This proves (5).

Now we prove (P2). We need to prove that every block of H is either a member of $\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3}$ or an evenly signed graph. Let A be such a block and assume that $\left(A,\left.s\right|_{A}\right)$ is not an evenly signed graph. It follows that there exists a cycle $C=c_{1}-c_{2}-\ldots-c_{n}-c_{1}$ in A of odd value. By (3) and (2), we deduce that C has length 3 and $s(e)=1$ for all edges $e \in E(C)$.

By (2), if $|V(A)|=3$ we deduce that A is a member of \mathcal{F}_{1}. Hence we may assume that there is $c_{4} \in A$. By (5) and by symmetry, we deduce that c_{4} is adjacent to both c_{1} and c_{2}. By (4), we deduce that $s(e)=1$ for all edges e between $\left\{c_{1}, c_{2}, c_{3}\right\}$ and c_{4}.

Assume first that c_{4} is adjacent to c_{3}. Assume that $|V(A)|>4$. Since A is connected, there is $y \in A \backslash\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$ such that y is not anticomplete to $\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$. Let $\{i, j, k, l\}=$ $\{1,2,3,4\}$. Since there is a cycle $C_{i j k}=c_{i}-c_{j}-c_{k}-c_{i}$ of length 3 with $s(e)=1$ for all
edges $e \in E\left(C_{i j k}\right)$, we deduce by (5) that y is not adjacent to c_{l}. Hence y is anticomplete to $\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$, a contradiction. It follows that $|V(A)|=4$. Assume now that there is an edge e in A with $s(e)=0$. By symmetry, we may assume that e is between c_{1} and c_{2}. Now $c_{1}-c_{2}-c_{3}-c_{4}-c_{1}$, is a cycle of length 4 of odd value. By (3), it follows that G has an odd hole, a contradiction. Hence $s(e)=1$ for all edges e in A and we deduce that A is a member of \mathcal{F}_{2}.

Assume now that c_{4} is not adjacent to c_{3}. By (5), we deduce that $E\left(A \backslash\left\{c_{1}, c_{2}, c_{3}\right\}\right)=\emptyset$. Similarly by (5), it follows that $E\left(A \backslash\left\{c_{1}, c_{2}, c_{4}\right\}\right)=\emptyset$. Since A is 2 -connected, it follows that $\left\{c_{1}, c_{2}\right\}$ is complete to $V(A) \backslash\left\{c_{1}, c_{2}\right\}$. By (4), we deduce that $s(f)=1$ for all edges f between $\left\{c_{1}, c_{2}\right\}$ and $V(A) \backslash\left\{c_{1}, c_{2}\right\}$. Hence A is a member of \mathcal{F}_{3}. This proves (P2).

Finally we prove (P3). Let e be a loop. Let $\left(G_{e}, Y_{e}\right)$ be a thickening of a bubble such that e has been replaced by $\left(G_{e}, Y_{e}\right)$ in the construction. Let $Y_{e}=\{y\}$. Let (F, W) be a bubble such that $\left(G_{e}, Y_{e}\right)$ is a thickening of (F, W). By 3.2.1, F is a linear interval trigraph, a cobipartite trigraph, a structured circular interval trigraph or a thickening of a trigraph in \mathcal{C}.

Assume first that F is a linear interval trigraph. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be the set of vertices of F. Let $k \in\{1, \ldots, n\}$ be such that $\left\{v_{k}\right\}=W$. For $v_{i} \in V(F)$, let $X_{v_{i}} \subset V\left(G_{i}\right)$ be as in the definition of a thickening. Let $l<r$ be such that $N\left(v_{k}\right)=\left\{v_{l}, \ldots, v_{r}\right\}$. Assume that $1<l$ and $r<n$. Let H^{\prime} be the graph obtained from H by adding two new vertices a_{1}, a_{2} as follows: $V\left(H^{\prime}\right)=V(H) \cup\left\{a_{1}, a_{2}\right\}, H^{\prime} \mid V(H)=H \backslash e, a_{1}$ and a_{2} are adjacent to $\phi_{e}^{-1}(y)$ and to no other vertex. Let F_{l} be such that $V\left(F_{l}\right)=\left\{v_{0}, v_{1}, \ldots, v_{k}\right\}, F_{l} \backslash v_{0}=F \mid\left\{v_{1}, \ldots, v_{k}\right\}$ and v_{0} is adjacent to v_{1} and to no other vertex. Let F_{r} be such that $V\left(F_{r}\right)=\left\{v_{k}, \ldots, v_{n}, v_{n+1}\right\}$, $F_{r} \backslash v_{n+1}=F \mid\left\{v_{k}, \ldots, v_{n}\right\}$ and v_{n+1} is adjacent to v_{n} and to no other vertex. Let $\left(G_{e}^{l}, Y_{e}^{l}\right)$ be the thickening of $\left(F_{l},\left\{v_{0}, v_{k}\right\}\right)$ such that $G_{e}^{l} \backslash Y_{e}^{l}=G_{e} \mid \bigcup_{j=1}^{k-1} X_{v_{j}}$. Let $\left(G_{e}^{r}, Y_{e}^{r}\right)$ be the thickening of $\left(F_{r},\left\{v_{k}, v_{n+1}\right\}\right)$ such that $G_{e}^{r} \backslash Y_{e}^{r}=G_{e} \mid \bigcup_{j=k+1}^{n} X_{v_{j}}$. Now G is a linear interval join with skeleton H^{\prime} using the same stripes as the construction with skeleton H except for $\left(G_{e}^{l}, Y_{e}^{l}\right)$ and $\left(G_{e}^{r}, Y_{e}^{r}\right)$ instead of $\left(G_{e}, Y_{e}\right)$, contrary to the maximality of $|V(H)|$. Hence by symmetry, we may assume that $l=1$. Now let H^{\prime} be the graph obtained from H by adding a new vertex a^{\prime} as follows: $V\left(H^{\prime}\right)=V(H) \cup\left\{a^{\prime}\right\}, H^{\prime} \mid V(H)=H \backslash e$ and a^{\prime} is adjacent to $\phi_{e}^{-1}(y)$ and to no other vertex. Let F^{\prime} be such that $V\left(F^{\prime}\right)=\left\{v_{1}, \ldots, v_{n}, v_{n+1}\right\}, F^{\prime} \mid V(F)=F$ and v_{n+1} is adjacent to v_{n} and to no other vertex. Let $\left(G_{e}^{\prime}, Y_{e}^{\prime}\right)$ be the thickening of ($F^{\prime},\left\{v_{1}, v_{n+1}\right\}$)
such that $G_{e}^{\prime} \backslash Y_{e}^{\prime}=G_{e} \backslash Y_{e}$. Now G is a linear interval join with skeleton H^{\prime} using the same stripes as the construction with skeleton H except for $\left(G_{e}^{\prime}, Y_{e}^{\prime}\right)$ instead of (G_{e}, Y_{e}), contrary to the maximality of $|V(H)|$. Hence F is not a linear interval trigraph.

Assume now that F is a structured circular interval trigraph. Using the same construction as in the proof of 3.6.6, it is easy to see that there exist H^{\prime} with $\left|V\left(H^{\prime}\right)\right|>|V(H)|$ and a set of stripes \mathcal{S}, such that G is a linear interval join with skeleton H^{\prime} using the stripes of \mathcal{S}, contrary to the maximality of $|V(H)|$. Hence F is not a structured circular interval trigraph.

Assume now that F is a cobipartite trigraph. Clearly any thickening of a cobipartite trigraph is a cobipartite trigraph. By 3.6.1, $\left(G_{e}, Y_{e}\right)$ is a thickening of a truncated spot, a thickening of a truncated spring or a thickening of a one-ended spot.

Assume that $\left(G_{e}, Y_{e}\right)$ is a thickening of a one-ended spot. Let $X_{v} \subset V\left(G_{e}\right)$ be as in the definition of a thickening. Let H^{\prime} be the graph obtained from H by adding a new vertex a^{\prime} as follows: $V\left(H^{\prime}\right)=V(H) \cup\left\{a^{\prime}\right\}, H^{\prime} \mid V(H)=H \backslash e$, there is $\left|X_{v}\right|$ edges between a^{\prime} and $\phi_{e}^{-1}(y)$, there is a loop l on a^{\prime} and a^{\prime} is adjacent to no other vertex than $\phi_{e}^{-1}(y)$. Let the stripes associated with the edges between a^{\prime} and $\phi_{e}^{-1}(y)$ be spots and let the stripe associated with the loop on a^{\prime} be a thickening of a truncated spot. Now G is a linear interval join with skeleton H^{\prime} using the same stripes as the construction with skeleton H except for additional edges, contrary to the maximality of $|V(H)|$. Hence $\left(G_{i}, Y_{i}\right)$ is not a thickening of a one-ended spot.

Assume now that $\left(G_{e}, Y_{e}\right)$ is a thickening of a truncated spot. Let H^{\prime} be the graph obtained from H by adding $\left|V\left(G_{e}\right)\right|-1$ new vertices $a_{1}, \ldots, a_{\left|V\left(G_{e}\right)\right|-1}$ as follows: $V\left(H^{\prime}\right)=V(H) \cup$ $\left\{a_{1}, \ldots, a_{\left|V\left(G_{e}\right)\right|-1}\right\}, H^{\prime} \mid V(H)=H \backslash e$, and for $j \in\left\{1, \ldots,\left|V\left(G_{e}\right)\right|-1\right\}, a_{j}$ is adjacent to $\phi_{e}^{-1}(y)$ and to no other vertex. Now G is a linear interval join with skeleton H^{\prime} using the same stripes as the construction with skeleton H and such that the stripes associated with the added edges are spots, contrary to the maximality of $|V(H)|$. Hence $\left(G_{e}, Y_{e}\right)$ is not a thickening of a truncated spot.

Assume that $\left(G_{e}, Y_{e}\right)$ is a thickening of a truncated spring. Let H^{\prime} be the graph obtained from H by adding a new vertex a^{\prime} as follows: $V\left(H^{\prime}\right)=V(H) \cup\left\{a^{\prime}\right\}, H^{\prime} \mid V(H)=H \backslash e$, and a^{\prime} is adjacent to $\phi_{e}^{-1}(y)$ and no other vertex. Now G is a linear interval join with skeleton H^{\prime}
using the same stripes as the construction with skeleton H and such that the stripe associated with the edge $a^{\prime} \phi_{e}^{-1}(y)$ is a spring, contrary to the maximality of $|V(H)|$. Hence $\left(G_{e}, Y_{e}\right)$ is not a thickening of a truncated spring.

Finally assume that G_{e} is a thickening of a trigraph in \mathcal{C}. By 3.6.2, it follows that $\left(G_{e}, Y_{e}\right)$ is in \mathcal{C}^{\prime}. This concludes the proof of (P3).

Hence G is an evenly structured linear interval join.

This concludes the proof of 3.6.7.

A last lemma is needed for the proof of 3.1.4

3.6.8.

3.6.9. Let G be a cobipartite trigraph. Then G is a thickening of a linear interval trigraph.

Proof. Let Y, Z be two disjoint strong cliques such that $Y \cup Z=V(G)$. Clearly (Y, Z) is a homogeneous pair. Let H be the trigraph such that $V(H)=\{y, z\}$ and

- y is strongly adjacent to z if Y is strongly complete to Z,
- y is strongly antiadjacent to z if Y is strongly anticomplete to Z,
- y is semiadjacent to z if Y is neither strongly complete nor strongly anticomplete to Z.

Now setting $Y=X_{y}$ a nd $Z=X_{z}$, we observe that G is a thickening of H. Since H is clearly a linear interval trigraph, it follows that G is a thickening of a linear interval trigraph. This proves 3.6.9.

Proof of 3.1.4, Let G be a Berge claw-free connected trigraph. By 3.1.3, G is either a linear interval join or a thickening of a circular interval trigraph. By 3.2.1, if G is a thickening of a circular interval trigraph, then G is a thickening of a linear interval trigraph, or a cobipartite trigraph, or a thickening of a member of \mathcal{C}, or G is a structured circular interval trigraph. But by 3.6.6, if G is a structured circular interval trigraph, then G is an evenly structured linear interval join. By 3.6.9, if G is a cobipartite trigraph, then G is a thickening of a linear interval trigraph. Moreover, any thickening of a linear interval trigraph is clearly an evenly structured linear interval join. Finally by 3.6.7, if G is a linear interval join, then G is an evenly structured linear interval join. This proves 3.1.4

Chapter 4

On the Erdôs-Lovász Tihany Conjecture

4.1 Introduction

In 1968, Erdốs and Lovász made the following conjecture:
Conjecture 1 (Erdős-Lovász Tihany). For every graph G with $\chi(G)>\omega(G)$ and any two integers $s, t \geq 2$ with $s+t=\chi(G)+1$, there is a partition (S, T) of the vertex set $V(G)$ such that $\chi(G \mid S) \geq s$ and $\chi(G \mid T) \geq t$.

Let G be a graph such that $\chi(G)>\omega(G)$. We say that a brace $\{u, v\}$ is Tihany if $\chi(G \backslash\{u, v\}) \geq$ $\chi(G)-1$. More generally, if K is a clique of size k in G, then we say that K is Tihany if $\chi(G \backslash K) \geq$ $\chi(G)-k+1$.

The following theorem is the main result of this chapter:
4.1.1. Let G be a claw-free graph with $\chi(G)>\omega(G)$. Then there exists a clique K with $|K| \leq 5$ such that $\chi(G \backslash K)>\chi(G)-|K|$.

To prove 4.1.1 we use a structure theorem for claw-free graphs due to Chudnovsky and Seymour that appears in [13] and is described in the next section. Section 4.3 contains some lemmas that serve as 'tools' for later proofs. The next six sections are devoted to dealing with the different outcomes of the structure theorem, proving that a minimal counterexample to 4.1.1 does not fall into any of those classes. In Section 4.4 we deal with the icosahedron and long circular interval graphs, in Section 4.5 with non-2-substantial and non-3-substantial graphs, in Section 4.6 with
orientable prismatic graphs, in Section 4.7 with non-orientable prismatic graphs, in Section 4.8 with three-cliqued graphs and finally in Section 4.9 with strip structures. In Section 4.10 all of these results are collected to prove 4.1.1.

4.2 Structure Theorem

The goal of this section is to state and describe the structure theorem for claw-free graphs appearing in [13] (or, more precisely, its corollary). We begin with some definitions which are modified from 13).

Let X, Y be two subsets of $V(G)$ with $X \cap Y=\emptyset$. We say that X and Y are complete to each other if every vertex of X is adjacent to every vertex of Y, and we say that they are anticomplete to each other if no vertex of X is adjacent to a member of Y. Similarly, if $A \subseteq V(G)$ and $v \in V(G) \backslash A$, then v is complete to A if v is adjacent to every vertex in A, and anticomplete to A if v has no neighbor in A.

Let $F \subseteq V(G)^{2}$ be a set of unordered pairs of distinct vertices of G such that every vertex appears in at most one pair. Then H is a thickening of (G, F) if for every $v \in V(G)$ there is a nonempty subset $X_{v} \subseteq V(H)$, all pairwise disjoint and with union $V(H)$ satisfying the following:

- for each $v \in V(G), X_{v}$ is a clique of H
- if $u, v \in V(G)$ are adjacent in G and $\{u, v\} \notin F$, then X_{u} is complete to X_{v} in H
- if $u, v \in V(G)$ are nonadjacent in G and $\{u, v\} \notin F$, then X_{u} is anticomplete to X_{v} in H
- if $\{u, v\} \in F$ then X_{u} is neither complete nor anticomplete to X_{v} in H.

In this definition of graph thickening, elements of F have the role of pair of vertices semiadjacent in the description of thickening for trigraphs. Here are some classes of claw-free graphs that come up in the structure theorem.

- Graphs from the icosahedron. The icosahedron is the unique planar graph with twelve vertices all of degree five. Let it have vertices $v_{0}, v_{1}, \ldots, v_{11}$, where for $1 \leq i \leq 10, v_{i}$ is adjacent to v_{i+1}, v_{i+2} (reading subscripts modulo 10), and v_{0} is adjacent to $v_{1}, v_{3}, v_{5}, v_{7}, v_{9}$, and v_{11} is adjacent to $v_{2}, v_{4}, v_{6}, v_{8}, v_{10}$. Let this graph be G_{0}. Let G_{1} be obtained from G_{0} by deleting v_{11} and let G_{2} be obtained from G_{1} by deleting v_{10}. Furthermore, let $F^{\prime}=\left\{\left\{v_{1}, v_{4}\right\},\left\{v_{6}, v_{9}\right\}\right\}$.

Let $G \in \mathcal{T}_{1}$ if G is a thickening of $\left(G_{0}, \emptyset\right),\left(G_{1}, \emptyset\right)$, or $\left(G_{2}, F\right)$ for some $F \subseteq F^{\prime}$.

- Fuzzy long circular interval graphs. Let Σ be a circle, and let $F_{1}, \ldots, F_{k} \subseteq \Sigma$ be homeomorphic to the interval $[0,1]$, such that no two of F_{1}, \ldots, F_{k} share an endpoint, and no three of them have union Σ. Now let $V \subseteq \Sigma$ be finite, and let H be a graph with vertex set V in which distinct $u, v \in V$ are adjacent precisely if $u, v \in F_{i}$ for some i.

Let F^{\prime} be the set of pairs $\{u, v\}$ such that u, v are distinct endpoints of F_{i} for some i. Let $F \subseteq F^{\prime}$ such that every vertex of G appears in at most one member of F. Then G is a fuzzy long circular interval graph if G is a thickening of (H, F).

Let $G \in \mathcal{T}_{2}$ if G is a fuzzy long circular interval graph.

- Fuzzy antiprismatic graphs. A graph K is antiprismatic if for every $X \subseteq V(K)$ with $|X|=4$, the subgraph induced by X is not a claw and there are at least two pairs of vertices in X that are adjacent. Let H be a graph and let F be a set of pairs $\{u, v\}$ such that every vertex of H is in at most one member of F and
- no triad of H contains u and no triad of H contains v, or
- there is a triad of H containing both u and v, and no other triad of H contains u or v.

Thus F is the set of "changeable edges" discussed in [11]. The pair (H, F) is antiprismatic if for every $F^{\prime} \subseteq F$, the graph obtained from H by changing the adjacency of all the vertex pairs in F^{\prime} is antiprismatic. We say that a graph G is a fuzzy antiprismatic graph if G is a thickening of (H, F) for some antiprismatic pair (H, F).

Let $G \in \mathcal{T}_{3}$ if G is a fuzzy antiprismatic graph.
Next, we define what it means for a claw-free graph to admit a "strip-structure". For a multigraph H and $F \in E(H)$, we denote by \bar{F} the set of all $h \in V(H)$ incident with F. Let G be a graph. A strip-structure (H, η) of G consists of a multigraph H with $E(H) \neq \emptyset$, and a function η mapping each $F \in E(H)$ to a subset $\eta(F)$ of $V(G)$, and mapping each pair (F, h) with $F \in E(H)$ and $h \in \bar{F}$ to a subset $\eta(F, h)$ of $\eta(F)$, satisfying the following conditions.
(SD1) The sets $\eta(F)(F \in E(H))$ are nonempty and pairwise disjoint and have union $V(G)$.
(SD2) For each $h \in V(H)$, the union of the sets $\eta(F, h)$ for all $F \in E(H)$ with $h \in \bar{F}$ is a clique of G.
(SD3) For all distinct $F_{1}, F_{2} \in E(H)$, if $v_{1} \in \eta\left(F_{1}\right)$ and $v_{2} \in \eta\left(F_{2}\right)$ are adjacent in G, then there exists $h \in \overline{F_{1}} \cap \overline{F_{2}}$ such that $v_{1} \in \eta\left(F_{1}, h\right)$ and $v_{2} \in \eta\left(F_{2}, h\right)$.

There is also a fourth condition, but it is technical and we will not need it in this thesis.
Let (H, η) be a strip-structure of a graph G, and let $F \in E(H)$, where $\bar{F}=\left\{h_{1}, \ldots, h_{k}\right\}$. Let v_{1}, \ldots, v_{k} be new vertices, and let J be the graph obtained from $G \mid \eta(F)$ by adding v_{1}, \ldots, v_{k}, where v_{i} is complete to $\eta\left(F, h_{i}\right)$ and anticomplete to all other vertices of J. Then $\left(J,\left\{v_{1}, \ldots, v_{k}\right\}\right)$ is called the strip of (H, η) at F. A strip-structure (H, η) is nontrivial if $|E(H)| \geq 2$.

We now describe some strips that we will need for the structure theorem of claw-free graph.
\mathcal{Z}_{1} : Let H be a graph with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$, such that for $1 \leq i<j<k \leq n$, if v_{i}, v_{k} are adjacent then v_{j} is adjacent to both v_{i}, v_{k}. Let $n \geq 2$, let v_{1}, v_{n} be nonadjacent, and let there be no vertex adjacent to both v_{1} and v_{n}. Let $F^{\prime} \subseteq V(H)^{2}$ be the set of pairs $\left\{v_{i}, v_{j}\right\}$ such that $i<j, v_{i} \neq v_{1}$ and $v_{j} \neq v_{n}, v_{i}$ is nonadjacent to v_{j+1}, and v_{j} is nonadjacent to v_{i-1}. Furthermore, let $F \subseteq F^{\prime}$ such that every vertex of H appears in at most one member of F. Then G is a fuzzy linear interval graph if for some H and F, G is a thickening of (H, F) with $\left|X_{v_{1}}\right|=\left|X_{v_{n}}\right|=1$. Let $X_{v_{1}}=\left\{u_{1}\right\}, X_{v_{n}}=\left\{u_{n}\right\}$, and $Z=\left\{u_{1}, u_{n}\right\} . \mathcal{Z}_{1}$ is the set of all pairs (G, Z).
\mathcal{Z}_{2} : Let $n \geq 2$. Construct a graph H as follows. Its vertex set is the disjoint union of three sets A, B, C, where $|A|=|B|=n+1$ and $|C|=n$, say $A=\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}, B=$ $\left\{b_{0}, b_{1}, \ldots, b_{n}\right\}$, and $C=\left\{c_{1}, \ldots, c_{n}\right\}$. Adjacency is as follows. A, B, C are cliques. For $0 \leq i, j \leq n$ with $(i, j) \neq(0,0)$, let a_{i}, b_{j} be adjacent if and only if $i=j$, and for $1 \leq i \leq n$ and $0 \leq j \leq n$, let c_{i} be adjacent to a_{j}, b_{j} if and only if $i \neq j \neq 0$. All other pairs not specified so far are nonadjacent. Now let $X \subseteq A \cup B \cup C \backslash\left\{a_{0}, b_{0}\right\}$ with $|C \backslash X| \geq 2$. Let $H^{\prime}=H \backslash X$ and let G be a thickening of $\left(H^{\prime}, F\right)$ with $\left|X_{a_{0}}\right|=\left|X_{b_{0}}\right|=1$ and $F \subseteq V\left(H^{\prime}\right)^{2}$ (we will not specify the possibilities for the set F because they are technical and we will not need them in our proof). Let $X_{a_{0}}=\left\{a_{0}^{\prime}\right\}, X_{b_{0}}=\left\{b_{0}^{\prime}\right\}$, and $Z=\left\{a_{0}^{\prime}, b_{0}^{\prime}\right\} . \mathcal{Z}_{2}$ is the set of all pairs (G, Z).

CHAPTER 4. ON THE ERDÖS-LOVÁSZ TIHANY CONJECTURE

\mathcal{Z}_{3} : Let H be a graph, and let $h_{1}-h_{2}-h_{3}-h_{4}-h_{5}$ be the vertices of a path of H in order, such that h_{1}, h_{5} both have degree one in H, and every edge of H is incident with one of h_{2}, h_{3}, h_{4}. Let H^{\prime} be obtained from the line graph of H by making the edges $h_{2} h_{3}$ and $h_{3} h_{4}$ of H (vertices of H^{\prime}) nonadjacent. Let $F \subseteq\left\{\left\{h_{2} h_{3}, h_{3} h_{4}\right\}\right\}$ and let G be a thickening of $\left(H^{\prime}, F\right)$ with $\left|X_{h_{1} h_{2}}\right|=\left|X_{h_{4} h_{5}}\right|=1$. Let $X_{h_{1} h_{2}}=\{u\}, X_{h_{4} h_{5}}=\{v\}$, and $Z=\{u, v\} . \mathcal{Z}_{3}$ is the set of all pairs (G, Z).
\mathcal{Z}_{4} : Let H be the graph with vertex set $\left\{a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}, b_{3}, c_{1}, c_{2}\right\}$ and adjacency as follows: $\left\{a_{0}, a_{1}, a_{2}\right\},\left\{b_{0}, b_{1}, b_{2}, b_{3}\right\},\left\{a_{2}, c_{1}, c_{2}\right\}$, and $\left\{a_{1}, b_{1}, c_{2}\right\}$ are cliques; b_{2}, c_{1} are adjacent; and all other pairs are nonadjacent. Let $F=\left\{\left\{b_{2}, c_{2}\right\},\left\{b_{3}, c_{1}\right\}\right\}$ and let G be a thickening of (H, F) with $\left|X_{a_{0}}\right|=\left|X_{b_{0}}\right|=1$. Let $X_{a_{0}}=\left\{a_{0}^{\prime}\right\}, X_{b_{0}}=\left\{b_{0}^{\prime}\right\}$, and $Z=\left\{a_{0}^{\prime}, b_{0}^{\prime}\right\} . \mathcal{Z}_{4}$ is the set of all pairs (G, Z).
\mathcal{Z}_{5} : Let H be the graph with vertex set $\left\{v_{1}, \ldots, v_{12}\right\}$, and with adjacency as follows. $v_{1}-$ $\cdots-v_{6}-v_{1}$ is an induced cycle in G of length 6 . Next, v_{7} is adjacent to $v_{1}, v_{2} ; v_{8}$ is adjacent to $v_{4}, v_{5} ; v_{9}$ is adjacent to $v_{6}, v_{1}, v_{2}, v_{3} ; v_{10}$ is adjacent to $v_{3}, v_{4}, v_{5}, v_{6}, v_{9} ; v_{11}$ is adjacent to $v_{3}, v_{4}, v_{6}, v_{1}, v_{9}, v_{10}$; and v_{12} is adjacent to $v_{2}, v_{3}, v_{5}, v_{6}, v_{9}, v_{10}$. No other pairs are adjacent. Let H^{\prime} be a graph isomorphic to $H \backslash X$ for some $X \subseteq\left\{v_{11}, v_{12}\right\}$ and let $F \subseteq\left\{\left\{v_{9}, v_{10}\right\}\right\}$. Let G be a thickening of $\left(H^{\prime}, F\right)$ with $\left|X_{a_{0}}\right|=\left|X_{b_{0}}\right|=1$. Let $X_{v_{7}}=\left\{v_{7}^{\prime}\right\}, X_{v_{8}}=\left\{v_{8}^{\prime}\right\}$, and $Z=\left\{v_{7}^{\prime}, v_{8}^{\prime}\right\} . \mathcal{Z}_{5}$ is the set of all pairs (G, Z).

We are now ready to state a structure theorem for claw-free graphs that is an easy corollary of the main result of 13 .
4.2.1. Let G be a connected claw-free graph. Then either

- G is a member of $\mathcal{T}_{1} \cup \mathcal{T}_{2} \cup \mathcal{T}_{3}$, or
- $V(G)$ is the union of three cliques, or
- G admits a nontrivial strip-structure such that for each strip $(J, Z), 1 \leq|Z| \leq 2$, and if $|Z|=2$, then either
- $|V(J)|=3$ and Z is complete to $V(J) \backslash Z$, or
$-(J, Z)$ is a member of $\mathcal{Z}_{1} \cup \mathcal{Z}_{2} \cup \mathcal{Z}_{3} \cup \mathcal{Z}_{4} \cup \mathcal{Z}_{5}$.

4.3 Tools

In this section we present a few lemmas that will then be used extensively in the following sections to prove results on the different graphs used in 4.2.1 Let K be a clique in G. We denote by $C(K)$ the set of common neighbors of the members of K, by $A(K)$ the set of their common non-neighbors, and by $M(K)$ the set of vertices that are mixed on the clique K. Formally,

$$
\begin{aligned}
& C(K)=\{x \in V(G) \backslash K: u x \in E(G) \text { for all } u \in K\} \\
& A(K)=\{x \in V(G): u x \notin E(G) \text { for all } u \in K\} \\
& M(K)=V(G) \backslash(C(K) \cup A(K)) .
\end{aligned}
$$

We say that a clique K is dense if $C(K)$ is a clique and we say that it is good if $C(K)$ is an anti-matching.

The following result is taken from [34]. Because it is fundamental to many of our results, we include its proof here for completeness.
4.3.1. Let G be a graph with chromatic number χ and let K be a clique of size k in G. If K is not Tihany, then every color class of $a(\chi-k)$-coloring of $G \backslash K$ contains a vertex complete to K.

Proof. Suppose not. Since K is not Tihany, it follows that $G \backslash K$ is $(\chi-k)$-colorable. Let C be a color class of a ($\chi-k$)-coloring of $G \backslash K$ with no vertex complete to K. Define a coloring of $K \cup C$ by giving a distinct color to each vertex of K and giving each vertex of C a color of one of its non-neighbors in K. This defines a k-coloring of $G \mid(K \cup C)$. Note also that $G \backslash(K \cup C)$ is $(\chi-k-1)$-colorable. However, this implies that G is $(\chi-1)$-colorable, a contradiction. This proves 4.3.1

The next lemma is one of our most important and basic tool.
4.3.2. Let G be a graph such that $\chi(G)>\omega(G)$. Let K be a clique of G. If K is dense, then it is Tihany.

Proof. Suppose that K is not Tihany. Let \mathcal{C} be a $(\chi-k)$-coloring of $G \backslash K$. By 4.3.1, every color class of \mathcal{C} contains a vertex complete to K. Hence, every color class contains a member of $C(K)$ and so $|C(K) \cup K| \geq \chi(G)>\omega(G)$, a contradiction. This proves 4.3.2.

Let (A, B) be disjoint subsets of $V(G)$. The pair (A, B) is called a homogeneous pair in G if A, B are cliques, and for every vertex $v \in V(G) \backslash(A \cup B), v$ is either complete to A or anticomplete to A and either complete to B or anticomplete to B. A W-join (A, B) is a homogeneous pair in which A is neither complete nor anticomplete to B. We say that a W-join (A, B) is reduced if we can partition A into two sets A^{1} and A^{2} and we can partition B into B^{1}, B^{2} such that A^{1} is complete to B^{1}, A^{2} is anticomplete to B, and B^{2} is anticomplete to A. Note that since A is neither complete nor anticomplete to B, it follows that both A^{1} and B^{1} are non-empty and at least one of A^{2}, B^{2} is non-empty. We call a W-join that is not reduced a non-reduced W-join.

Let H be a thickening of (G, F) for some valid $F \subseteq V(G)^{2}$ and let $\{u, v\} \in F$. Then we notice that $\left(X_{u}, X_{v}\right)$ is a W-join in H. If for every $\{u, v\} \in F$ we have that $\left(X_{u}, X_{v}\right)$ is a reduced W-join then we say that H is a reduced thickening of G.

The following result appears in [4].
4.3.3. Let G be a claw-free graph and suppose that G admits a non-reduced W-join. Then there exists a subgraph H of G with the following properties:

1. H is a claw-free graph, $|V(H)|=|V(G)|$ and $|E(H)|<|E(G)|$.
2. $\chi(H)=\chi(G)$.

The result of 4.3.3 implies the following:
4.3.4. Assume that G be a claw-free graph with $\chi(G)>\omega(G)$ that is a minimal counterexample to 4.1.1. Assume also that G is a thickening of (H, F) for some claw-free graph H and $F \subseteq V(H)^{2}$. Then G is a reduced thickening of (H, F).

For a clique $K \subseteq V(G)$ and $F \subseteq V(G)^{2}$, we define $S_{F}(K)=\{x \in V(G): \exists k \in K$ s.t. $\{x, k\} \in$ F and $x \in C(K \backslash k)\}$.
4.3.5. Let G be a reduced thickening of (H, F) for some claw-free graph H and $F \subseteq V(H)^{2}$. Let K be a clique in H such that for all $x, y \in C(K) \subseteq V(H),\{x, y\} \notin F$. If $C(K) \cup S_{F}(K)$ is a clique, then there exists a dense clique of size $|K|$ in G.

Proof. Let K^{\prime} be a clique of size $|K|$ in G such that $K^{\prime} \cap X_{v} \neq \emptyset$ for all $v \in K$. By the definition of a thickening such a clique exists. Moreover since $C(K) \cup S_{F}(K)$ is a clique, it follows that K^{\prime} is dense. This proves 4.3.5.

CHAPTER 4. ON THE ERDÖS-LOVÁSZ TIHANY CONJECTURE

The following lemma is a direct corollary of 4.3 .2 and 4.3.5.
4.3.6. Let G be a reduced thickening of (H, F) for some claw-free graph H and $F \subseteq V(H)^{2}$. Let K be a dense clique in H such that for all $x, y \in C(K),\{x, y\} \notin F$. If $C(K) \cup S_{F}(K)$ is a clique, then there exists a Tihany clique of size $|K|$ in G.

The following result helps us handle the case when $C(x)$ is an antimatching for some vertex $x \in V(G)$.
4.3.7. Let G be a graph with $\chi(G)>\omega(G)$. Let $u, x, y \in V(G)$ such that $u x, u y \in E(G), x y \notin E(G)$ and $x \neq y$. Let $E=\{u, x\}$ and $E^{\prime}=\{u, y\}$. If $C(E)=C\left(E^{\prime}\right)$ then E, E^{\prime} are Tihany.

Proof. Suppose that E is not Tihany. Let \mathcal{C} be a $(\chi(G)-2)$-coloring of $G \backslash\{u, x\}$. Let $C \in \mathcal{C}$ be the color class such that $y \in C$. By 4.3.1, there is a vertex $z \in C$ such that z is complete to E, and so $z \in C(E)$. But y is complete to $C(E)$, a contradiction. Hence E is Tihany and by symmetry, so is E^{\prime}.

In particular, if we have a vertex x such that $C(x)$ is an antimatching, we can find a Tihany edge either by 4.3 .2 or by 4.3.7.
4.3.8. Let H be a graph, G a thickening of (H, F) for some valid $F \subseteq H(V)^{2}$ such that $\chi(G)>\omega(G)$. Let K be a clique of H. Assume that for all $\{x, y\} \in F$ such that $x \in K, y$ is complete to $C(K) \backslash\{y\}$. Let $u, v \in C(K)$ with $u \neq v$ be such that u is not adjacent to v and $\{u, v\}$ is complete to $C(K) \backslash\{u, v\}$. Moreover assume that if there exists $E \in F$ with $\{u, v\} \cap E \neq \emptyset$, then $E=\{u, v\}$. Then there exists a Tihany clique of size $|K|+1$ in G.

Proof. Assume not. Let K^{\prime} be a clique of size $|K|$ in G such that $K^{\prime} \cap X_{y} \neq \emptyset$ for all $y \in K$. If $\{u, v\} \notin F$, let $a \in X_{u}, A=X_{u}, b \in X_{v}$ and $B=X_{v}$. If $\{u, v\} \in F$, let $X_{u}^{1}, X_{u}^{2}, X_{v}^{1}$ and X_{v}^{2} be as in the definition of reduced W -join. By symmetry, we may assume that X_{u}^{2} is not empty. If X_{v}^{2} is empty, let $a \in X_{u}^{2}, A=X_{u}^{2}, b \in X_{v}^{1}$ and $B=X_{v}^{1}$; and if X_{v}^{2} is not empty, let $a \in X_{u}^{2}, A=X_{u}$, $b \in X_{v}^{2}$ and $B=X_{v}$.

Now let $T_{a}=K^{\prime} \cup\{a\}$ and $T_{b}=K^{\prime} \cup\{b\}$. We may assume that $\chi\left(G \backslash T_{a}\right)=\chi\left(G \backslash T_{b}\right)=$ $\chi(G)-|K|-1$. By 4.3.1, we may assume that every color class of $G \backslash T_{a}$ contains a common neighbor of T_{a}. Since no vertex of B is complete to T_{a}, and since B is a clique complete to $C\left(T_{a}\right) \backslash A$, it follows that $|A|>|B|$. But similarly, $|B|>|A|$, a contradiction. This proves 4.3.8.

We need an additional definition before proving the next lemma. Let K be a clique; we denote by $\bar{C}(K)$ the closed neighborhood of K, i.e. $\bar{C}(K):=C(K) \cup K$.
4.3.9. Let G be a graph such that $\chi(G)>\omega(G)$. Let A and B be cliques such that $2 \leq|A|,|B| \leq 3$ (i.e., each one is a brace or a triangle). If $\bar{C}(A) \cap \bar{C}(B)=\emptyset$ and $\bar{C}(A) \cup \bar{C}(B)$ contains no triads then at least one of A, B is Tihany.

Proof. Assume not and let $k=\chi(G)-|A|$. By 4.3.1, in every k-coloring of $G \backslash A$ every color class must have a vertex in $C(A)$. As there is no triad in $\bar{C}(A) \cup \bar{C}(B)$, it follows that every vertex of $C(A)$ is in a color class with at most one vertex of $\bar{C}(B)$, thus $\bar{C}(A)>\bar{C}(B)$. By symmetry, it follows that $\bar{C}(A)<\bar{C}(B)$, a contradiction. This proves 4.3.9.
4.3.10. Let G be a claw-free graph such that $\chi(G)>\omega(G)$. If G admits a clique cutset, then there is a Tihany brace in G.

Proof. Let K be a clique cutset. Let $A, B \subset V(G) \backslash K$ such that $A \cap B=\emptyset$ and $A \cup B \cup K=V(G)$. Let $\chi_{A}=\chi(G \mid(A \cup K))$ and $\chi_{B}=\chi(G \mid(B \cup K))$. By symmetry, we may assume that $\chi_{A} \geq \chi_{B}$.
(1) $\chi(G)=\chi_{A}$

Let $\mathcal{S}_{A}=\left(A_{1}, A_{2}, \ldots, A_{\chi_{A}}\right)$ and $\mathcal{S}_{B}=\left(B_{1}, B_{2}, \ldots, B_{\chi_{B}}\right)$ be optimal colorings of $G \mid(A \cup K)$ and $G \mid(B \cup K)$. Let $K=\left\{k_{1}, k_{2}, \ldots, k_{|K|}\right\}$. Up to renaming the stable sets, we may assume that $A_{i} \cap B_{i}=\left\{k_{i}\right\}$ for all $i=1,2, \ldots,|K|$. Then $\mathcal{S}=\left(A_{1} \cup B_{1}, A_{2} \cup B_{2}, \ldots, A_{\chi_{B}} \cup B_{\chi_{B}}, A_{\chi_{B}+1}, \ldots, A_{\chi_{A}}\right\}$ is a χ_{A}-coloring of G. This proves (11).

Now let $x \in B$ and $y \in K$ be such that $x y \in E(G)$. Then $\chi(G \backslash\{x, y\}) \geq \chi(G \mid(A \cup K \backslash\{y\}) \geq$ $\chi_{A}-1 \geq \chi(G)-1$. Hence $\{x, y\}$ is a Tihany brace. This proves 4.3.10.

4.4 The Icosahedron and Long Circular Interval Graphs

4.4.1. Let $G \in \mathcal{T}_{1}$. If $\chi(G)>\omega(G)$, then there exists a Tihany brace in G.

Proof. Let $v_{0}, v_{1}, \ldots, v_{11}$ be as in the definition of the icosahedron. Let G_{0}, G_{1}, G_{2}, and F be as in the definition of \mathcal{T}_{1}. Then G is a thickening of either $\left(G_{0}, \emptyset\right),\left(G_{1}, \emptyset\right)$, or $\left(G_{2}, F\right)$ for $F \subseteq$ $\left\{\left(v_{1}, v_{4}\right),\left(v_{6}, v_{9}\right)\right\}$. For $0 \leq i \leq 11$, let $X_{v_{i}}$ be as in the definition of thickening (where $X_{v_{11}}$ is empty
when G is a thickening of $\left(G_{1}, \emptyset\right)$ or $\left(G_{2}, F\right)$, and $X_{v_{10}}$ is empty when G is a thickening of $\left.\left(G_{2}, F\right)\right)$. Let $x_{i} \in X_{v_{i}}$ and $w_{i}=\left|X_{v_{i}}\right|$.

First suppose that G is a thickening of $\left(G_{1}, \emptyset\right)$ or $\left(G_{2}, F\right)$. Then $C\left(\left\{x_{4}, x_{6}\right\}\right)=X_{v_{4}} \cup X_{v_{5}} \cup X_{v_{6}}$ is a clique. Therefore, $\left\{x_{4}, x_{6}\right\}$ is a Tihany brace by 4.3.2.

So we may assume that G is a thickening of $\left(G_{0}, \emptyset\right)$. Suppose that no brace of G is Tihany and let $E=\left\{x_{1}, x_{3}\right\}$. Then $G \backslash E$ is $(\chi-2)$-colorable. By 4.3.1, every color class contains at least one vertex from $C(E)=\left(X_{v_{1}} \cup X_{v_{2}} \cup X_{v_{3}} \cup X_{v_{0}}\right) \backslash\left\{x_{1}, x_{3}\right\}$. Since $\alpha(G)=3$, it follows that every color class has at most two vertices from $\bigcup_{i=4}^{11} X_{v_{i}}$. Hence we conclude that

$$
w_{4}+w_{5}+w_{6}+w_{7}+w_{8}+w_{9}+w_{10}+w_{11} \leq 2 \cdot\left(w_{1}+w_{2}+w_{3}+w_{0}-2\right)
$$

A similar inequality exists for every brace $\left\{x_{i}, x_{j}\right\}$. Summing these inequalities over all braces $\left\{x_{i}, x_{j}\right\}$, it follows that $\left(\sum_{i=0}^{11} 20 w_{i}\right) \leq\left(\sum_{i=0}^{11} 20 w_{i}\right)-120$, a contradiction. This proves 4.4.1.
4.4.2. Let $G \in \mathcal{T}_{2}$. If $\chi(G)>\omega(G)$, then there exists a Tihany brace in G.

Proof. Let $H, F, \Sigma, F_{1}, \ldots, F_{k}$ be as in the definition of \mathcal{T}_{2} such that G is a thickening of (H, F). Let F_{i} be such that there exists no j with $F_{i} \subset F_{j}$. Let $\left\{x_{k}, \ldots, x_{l}\right\}=V(H) \cap F_{i}$ and without loss of generality, we may assume that $\left\{x_{k}, \ldots, x_{l}\right\}$ are in order on Σ. Since $C\left(\left\{x_{k}, x_{l}\right\}\right)=\left\{x_{k+1}, \ldots, x_{l-1}\right\}$, it follows that $\left\{x_{k}, x_{l}\right\}$ is dense. Hence by 4.3 .6 there exists a Tihany brace in G. This proves 4.4.2.

4.5 Non-2-substantial and Non-3-substantial Graphs

In this section we study graphs where a few vertices cover all the triads. An antiprismatic graph G is k-substantial if for every $S \subseteq V(G)$ with $|S|<k$ there is a triad T with $S \cap T=\emptyset$. The matching number of a graph G, denoted by $\mu(G)$, is the number of edges in a maximum matching in G. Balogh et al. [2] proved the following theorem.
4.5.1. Let G be a graph such that $\alpha(G)=2$ and $\chi(G)>\omega(G)$. For any two integers $s, t \geq 2$ such that $s+t=\chi(G)+1$ there exists a partition (S, T) of $V(G)$ such that $\chi(G \mid S) \geq s$ and $\chi(G \mid T) \geq t$.

The following theorem is a result of Gallai and Edmonds on matchings and it will be used in the study of non-2-substantial and non-3-substantial graphs.
4.5.2 (Gallai-Edmonds Structure Theorem [17], [19]). Let $G=(V, E)$ be a graph. Let D denote the set of nodes which are not covered by at least one maximum matching of G. Let A be the set of nodes in $V \backslash D$ adjacent to at least one node in D. Let $C=V \backslash(A \cup D)$. Then:
i) The number of covered nodes by a maximum matching in G equals $|V|+|A|-c(D)$, where $c(D)$ denotes the number of components of the graph spanned by D.
ii) If M is a maximum matching of G, then for every component F of $G \mid D, E(D) \cap M$ covers all but one of the nodes of $F, E(C) \cap M$ is a perfect matching of $G \mid C$ and M matches all the nodes of A with nodes in distinct components of D.
4.5.3. Let G be an antiprismatic graph. Let K be a clique and assume that $u, v \in V(G) \backslash \bar{C}(K)$ are non-adjacent. If $\alpha(G \mid(C(K) \cup\{u, v\}))=2$ and $\alpha(G \mid K \cup\{u, v\})=3$, then $G \mid \bar{C}(K)$ is cobipartite.

Proof. Since there is no triad in $C(K) \cup\{u, v\}$, we deduce that there is no vertex in $C(K)$ anticomplete to $\{u, v\}$. Since G is claw-free and $\alpha(G \mid K \cup\{u, v\})=3$, it follows that there is no vertex in $C(K)$ complete to $\{u, v\}$. Let $C_{u}, C_{v} \subseteq C(K)$ be such that $C_{u} \cup C_{v}=C(K)$ and for all $x \in C(K)$, x is adjacent to u and non-adjacent to v if $x \in C_{u}$, and x is adjacent to v and non-adjacent to u if $x \in C_{v}$. Since $\alpha\left(G \mid\left(C_{v} \cup\{u\}\right)\right)=2$, we deduce that C_{v} is a clique and by symmetry C_{u} is a clique. Hence $\bar{C}(K)$ is the union of two cliques. This proves 4.5.3.
4.5.4. Let G be a claw-free graph such that $\chi(G)>\omega(G)$. Let K be a clique such that $\alpha(G \backslash K) \leq 2$. Then there exists a Tihany clique of size at most $|K|+1$ in G.

Proof. Assume not. Let $n=|V(G)|, w \in C(K)$ and $K^{\prime}=K \cup\{w\}$ (such a vertex w exists by 4.3.1).
(1) $\chi(G)=n-\mu\left(G^{c}\right)$.

Since K^{\prime} is not Tihany, it follows that $\chi\left(G \backslash K^{\prime}\right)=\chi(G)-\left|K^{\prime}\right|$. Since $\alpha\left(G \backslash K^{\prime}\right) \leq 2$, we deduce that $\chi\left(G \backslash K^{\prime}\right) \geq \frac{n-\left|K^{\prime}\right|}{2}$, and thus $\chi(G) \geq \frac{n+\left|K^{\prime}\right|}{2}$. Hence in every optimal coloring of G the color classes have an average size strictly smaller than 2 , and since G is claw-free, we deduce that there is an optimal coloring of G where all color classes have size 1 or 2 . It follows that $\chi(G) \geq n-\mu\left(G^{c}\right)$. But clearly $\chi(G) \leq n-\mu\left(G^{c}\right)$, thus $\chi(G)=n-\mu\left(G^{c}\right)$. This proves (11).
(2) Let T be a clique of size $|K|+1$ in G, then $\chi(G \backslash T)=n-|T|-\mu\left(G^{c} \backslash T\right)$.

CHAPTER 4. ON THE ERDÔS-LOVÁSZ TIHANY CONJECTURE

Since T is not Tihany, it follows that $\chi(G \backslash T)=\chi(G)-|T| \geq \frac{n+\left|K^{\prime}\right|}{2}-|T|=\frac{n-|T|}{2}=\frac{|V(G \backslash T)|}{2}$. Hence in every optimal coloring of $G \backslash T$, the color classes have an average size smaller than 2 , and since G is claw-free, we deduce that there is an optimal coloring of $G \backslash T$ where all color classes have size 1 or 2 . It follows that $\chi(G \backslash T) \geq \mid V\left(G \backslash T \mid-\mu\left(G^{c} \backslash T\right)\right.$. Hence $\chi(G \backslash T)=n-|T|-\mu\left(G^{c} \backslash T\right)$. This proves (2).

Let A, D, C be as in 4.5.2 Since $\chi(G) \geq \frac{n+\left|K^{\prime}\right|}{2}$ and $\chi(G)=n-\mu\left(G^{c}\right)$, we deduce that $\mu\left(G^{c}\right) \leq \frac{n-\left|K^{\prime}\right|}{2}$. By 4.5.2 i), we deduce that $\mu\left(G^{c}\right)=\frac{n+|A|-c(D)}{2}$. Thus, it follows that $c(D) \geq\left|K^{\prime}\right|$. Let $D_{1}, D_{2}, \ldots, D_{c(D)}$ be the anticomponents of $G \mid D$. Let $d_{i} \in D_{i}$ for $i=1, \ldots, c(D)$.
(3) $\left|D_{i}\right|=1$ for all i.

Assume not, and by symmetry assume $\left|D_{1}\right|>1$. Since G is claw-free, we deduce $\alpha\left(G \mid D_{1}\right)=2$. Thus there exist $x, y \in D_{1}$ such that x is adjacent to y. Now $T=\left\{x, y, d_{2}, \ldots, d_{|K|}\right\}$ is a clique of size $|K|+1$ and by 4.5 .2 ii), it follows that $\mu\left(G^{c} \backslash T\right)<\mu\left(G^{c}\right)$. By (1) and (22), it follows that $\chi(G \backslash T)+|T|=n-\mu\left(G^{c} \backslash T\right)>n-\mu\left(G^{c}\right)=\chi(G)$, a contradiction. This proves (3).

Let $T=\left\{d_{1}, \ldots, d_{|K|+1}\right\}$. By (3), it follows that $C(T) \cap D$ is a clique. By 4.3.2, we deduce that $C(T) \cap A \neq \emptyset$. Let $x \in C(T) \cap A$. Now $S=\left\{d_{1}, \ldots, d_{|K|}, x\right\}$ is a clique of size $|K|+1$ and by 4.5.2 ii), it follows that $\mu\left(G^{c} \backslash S\right)<\mu\left(G^{c}\right)$. By (1) and (2), it follows that $\chi(G \backslash S)+|S|=n-\mu\left(G^{c} \backslash S\right)>$ $n-\mu\left(G^{c}\right)=\chi(G)$, a contradiction. This concludes the proof of 4.5.4
4.5.5. Let H be an antiprismatic graph such that there exists $x \in V(H)$ with $\alpha(H \backslash x)=2$. Let G be a reduced thickening of (H, F) for some valid $F \subseteq V(G)^{2}$ such that $\chi(G)>\omega(G)$ and $\left|X_{x}\right|>1$. Then for all $\{u, v\} \in X_{x}, \chi(G \backslash\{u, v\}) \geq \chi(G)-1$.

Proof. Let $u, v \in X_{x}$. We may assume that $\{u, v\}$ is not Tihany. Let $k=\chi(G \backslash\{u, v\})$ and $\mathcal{S}=\left(S_{1}, S_{2}, \ldots, S_{k}\right)$ be a k-coloring of $G \backslash\{u, v\}$. By 4.3.1, $S_{i} \cap C(\{u, v\}) \neq \emptyset$. Let $I_{j}=\left\{i:\left|S_{i}\right|=j\right\}$ and let $O=C(\{u, v\}) \cap \bigcup_{i \in I_{1} \cup I_{2}} S_{i}$ and $P=C(\{u, v\}) \cap \bigcup_{i \in I_{3}} S_{i}$.

Since $\alpha(H \backslash x)=2$, it follows that $S_{i} \cap X_{x} \neq \emptyset$ for all $i \in I_{3}$. Hence, P is a clique complete to O and thus $\omega(G \mid O \cup P)=\omega(G \mid O)+\left|I_{3}\right|$. Since $\chi(G)>\omega(G)$, we deduce that $\omega(G \mid O)<\left|I_{1} \cup I_{2}\right|$. By 4.5 .3 and since $O \subseteq \bar{C}\left(X_{x}\right)$, we deduce that $G \mid O$ is cobipartite. Hence $\chi(G \mid O)=\omega(G \mid O)<$ $\left|I_{1} \cup I_{2}\right|$. Thus the coloring \mathcal{S} does not induce an optimal coloring of $G \mid O$. It follows that there exists
an augmenting antipath $P=p_{1}-p_{2}-\ldots-p_{2 l}$ in O. Now let $T_{i}=\left\{p_{2 i-1}, p_{2 i}\right\}$ for $i=1, \ldots, l$. Let s be such that $p_{1} \in S_{s}$ and e be such that $p_{2 l} \in S_{e}$. They are the color classes where the augmenting antipath starts and ends. If $\left|S_{s}\right|=2$, let $T_{l+1}=\left(\{u\} \cup S_{s} \backslash p_{1}\right)$, otherwise let $T_{l+1}=\{u\}$. If $\left|S_{e}\right|=2$, let $T_{l+2}=\left(\{v\} \cup S_{e} \backslash p_{2 l}\right)$, otherwise let $T_{l+2}=\{v\}$. Let $J=\left\{i \mid S_{i} \cap V(P) \neq \emptyset\right\}$. Clearly $|J|=l+1$. Now $\left(T_{1}, T_{2}, \ldots, T_{l+2}\right)$ is a $(l+2)$-coloring of $\bigcup_{i \in J} S_{i} \cup\{u, v\}$, which together with the color classes S_{i} for $i \notin J$ create a $k+1$-coloring of G, a contradiction. This proves 4.5.5.

The next lemma is a direct corollary of 4.5.4 and 4.5.5.
4.5.6. Let H be a non-2-substantial antiprismatic graph. Let G be a reduced thickening of (H, F) for some valid $F \subseteq V(G)^{2}$ such that $\chi(G)>\omega(G)$. Then there exists a Tihany brace in G.

Now we look at non-3-substantial graphs.
4.5.7. Let H be a non-3-substantial antiprismatic graph. Assume that $u, v \in H$ satisfy $\alpha(H \backslash\{u, v\})=$ 2. Let G be a reduced thickening of H such that $\chi(G)>\omega(G)$. If u is not adjacent to v, then there exists a Tihany brace or triangle in G.

Proof. Assume not. Let $N_{u}=C(u) \backslash C(\{u, v\})$ and $N_{v}=C(v) \backslash C(\{u, v\})$. Since H is antiprismatic, it follows that N_{u} and N_{v} are antimatchings.

By 4.5.6, we deduce that N_{u} and N_{v} are not cliques. Let $x_{u}, y_{u} \in N_{u}$ be non-adjacent, and $x_{v}, y_{v} \in N_{v}$ be non-adjacent. Since $\alpha(H \backslash\{u, v\})=2$ and H is antiprismatic, we may assume by symmetry that $x_{u} x_{v}, y_{u} y_{v}$ are edges, and $x_{u} y_{v}, y_{u} x_{v}$ are non-edges. Since $\alpha(H \backslash\{u, v\})=2$ and H is antiprismatic, it follows that every vertex in $C(\{u, v\})$ is either strongly complete to $x_{u} x_{v}$ and strongly anticomplete to $y_{u} y_{v}$, or strongly complete to $y_{u} y_{v}$ and strongly anticomplete to $x_{u} x_{v}$. Let (N_{x}, N_{y}) be the partition of $C(\{u, v\})$ such that all $x \in N_{x}$ are complete to $x_{u} x_{v}$ and and all $y \in N_{y}$ are complete to $y_{u} y_{v}$.

Assume first that $N_{x} \neq \emptyset$ and $N_{y} \neq \emptyset$. Let $n_{x} \in N_{x}$ and $n_{y} \in N_{y}$ and let $T_{u}=\left\{u, y_{u}, n_{y}\right\}$ and $T_{v}=\left\{v, x_{v}, n_{x}\right\}$. Clearly T_{u} and T_{v} are triangles.
(1) $\alpha\left(G \mid \bar{C}\left(T_{u}\right) \cup \bar{C}\left(T_{v}\right)\right)=2$ and $\bar{C}\left(T_{u}\right) \cap \bar{C}\left(T_{v}\right)=\emptyset$.

Assume not. Since $\bar{C}\left(T_{u}\right) \subseteq N_{y} \cup N_{u} \cup\{u\}$ and $\bar{C}\left(T_{v}\right) \subseteq N_{x} \cup N_{v} \cup\{v\}$, we deduce that $\bar{C}\left(T_{u}\right) \cap \bar{C}\left(T_{v}\right)=\emptyset$. Let $T \in \bar{C}\left(T_{u}\right) \cup \bar{C}\left(T_{v}\right)$ be a triad. By symmetry, we may assume that
$u \in T$. Clearly, $T \backslash u \in N_{v}$. But since H is antiprismatic, we deduce that $T \backslash u \subseteq C\left(n_{x}\right)$, hence $T \backslash u \notin \bar{C}\left(T_{u}\right) \cup \bar{C}\left(T_{v}\right)$, a contradiction. This proves (1).

Now let $S_{u}, S_{v} \in G$ be triangles such that $\left|S_{u} \cap X_{u}\right|=\left|S_{u} \cap X_{y_{u}}\right|=\left|S_{u} \cap X_{n_{y}}\right|=1$ and $\left|S_{v} \cap X_{v}\right|=\left|S_{v} \cap X_{x_{v}}\right|=\left|S_{v} \cap X_{n_{x}}\right|=1$. By (1) and 4.3.9 and since G is a reduced thickening of H, we deduce that there is a Tihany triangle in G.

Now assume that at least one of N_{x}, N_{y} is empty. By symmetry, we may assume that N_{x} is empty. Since $C\left(\left\{u, x_{u}\right\}\right)$ is an antimatching, by 4.3 .8 there exists a Tihany triangle in G. This concludes the proof of 4.5.7.
4.5.8. Let H be a non-3-substantial antiprismatic graph. Let $u, v \in H$ be such that $\alpha(G \backslash\{u, v\})=2$. Let G be a reduced thickening of (H, F) for some valid $F \subseteq V(H)^{2}$ such that $\chi(G)>\omega(G)$. If u is adjacent to v, then there exists a Tihany clique K in G with $|K| \leq 4$.

Proof. Assume not. By 4.5.4, we may assume that $\left|X_{u} \cup X_{v}\right|>2$. By 4.5.6, we may assume that $\left|X_{u}\right|>0$ or $\left|X_{v}\right|>0$. If $\left|X_{u}\right|=1$, then $G \backslash X_{u}$ is a reduced thickening of a non-2-substantial antiprismatic graph. By 4.5.5, there exists a brace $\{x, y\}$ in X_{v} such that $\chi\left(G \backslash\left(\{x, y\} \cup X_{u}\right)\right) \geq$ $\chi\left(G \backslash X_{u}\right)-1$. But $\chi\left(G \backslash X_{u}\right)-1 \geq \chi(G)-2$, hence $\{x, y\} \cup X_{u}$ is a Tihany triangle, a contradiction. Thus $\left|X_{u}\right|>1$, and by symmetry $\left|X_{v}\right|>1$.

Let $x_{1}, y_{1} \in X_{u}$ and $x_{2}, y_{2} \in X_{v}$, thus $C=\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$ is a clique of size 4 .
Let $k=\chi(G \backslash C)$ and $\mathcal{S}=\left(S_{1}, S_{2}, \ldots, S_{k}\right)$ be a k-coloring of $G \backslash C$. By 4.3.1, it follows that $S_{i} \cap N(C) \neq \emptyset$. For $j=1,2,3$ let $I_{j}=\left\{i:\left|S_{i}\right|=j\right\}$ and let $O=N(C) \cap \bigcup_{i \in I_{1} \cup I_{2}} S_{i}$ and $P=N(C) \cap \bigcup_{i \in I_{3}} S_{i}$.

Since $\alpha(H \backslash\{u, v\})=2$, it follows that $S_{i} \cap\left(X_{u} \cup X_{v}\right) \neq \emptyset$ for all $i \in I_{3}$. Hence, $\omega(G \mid O \cup P)=$ $\omega(G \mid O)+\left|I_{3}\right|$. Since $\chi(G)>\omega(G)$, we deduce that $\omega(G \mid O)<\left|I_{1} \cup I_{2}\right|$. By 4.5.3, we deduce that $G \mid O$ is cobipartite. Hence $\chi(G \mid O)=\omega(G \mid O)<\left|I_{1}\right|+\left|I_{2}\right|$. Thus the coloring \mathcal{S} does not induce an optimal coloring of $G \mid O$. It follows that there exists an augmenting antipath $P=p_{1}-p_{2}-\ldots-p_{2 l}$ in O. Now let $T_{i}=\left\{p_{2 i-1}, p_{2 i}\right\}$ for $i=1, \ldots, l$. Let s be such that $p_{1} \in S_{s}$ and e be such that $p_{2 l} \in S_{e}$. They are the color classes where the augmenting antipath starts and ends. Since $S_{s} \backslash p_{1}$ is not complete to $\left\{x_{1}, y_{1}\right\}$, we deduce that there exists $\hat{s} \in\{1,2\}$ such that $x_{\hat{s}}$ is antiadjacent to $S_{s} \backslash p_{1}$. Let $T_{l+1}=\left\{x_{\hat{s}}\right\} \cup S_{s} \backslash p_{1}$ and $T_{l+2}=\left\{x_{1}, x_{2}\right\} \backslash x_{\hat{s}}$. Since $S_{e} \backslash p_{2 l}$ is not complete to $\left\{x_{2}, y_{2}\right\}$, we
deduce that there exists $\hat{e} \in\{1,2\}$ such that $x_{\hat{e}}$ is antiadjacent to $S_{e} \backslash p_{2 l}$. Let $T_{l+3}=\left\{x_{\hat{e}}\right\} \cup S_{e} \backslash p_{2 l}$ and $T_{l+4}=\left\{y_{1}, y_{2}\right\} \backslash x_{\hat{e}}$.

Let $J=\left\{i \mid S_{i} \cap V(P) \neq \emptyset\right\}$. Clearly $|J|=l+1$. Now ($T_{1}, T_{2}, \ldots, T_{l+2}, T_{l+3}, T_{l+4}$) is a $(l+4)$ coloring of $\bigcup_{i \in J} S_{i} \cup\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$, which together with the color classes S_{i}, for $i \notin J$, create a $k+3$-coloring of G, a contradiction. This proves 4.5.8.

The following lemma is a direct corollary of 4.5.7 and 4.5.8.
4.5.9. Let H be a non-3-substantial antiprismatic graph. Let G be a reduced thickening of H such that $\chi(G)>\omega(G)$. Then there exists a Tihany clique $K \subset V(G)$ with $|K| \leq 4$.

4.6 Complements of Orientable Prismatic Graphs

In this section we study the complements of orientable prismatic graphs. A graph is prismatic if its complement is antiprismatic. We can also define also prismatic graph in a direct way. A graph G is prismatic if for every triangle $T \subseteq V(G)$ and $x \in V(G) \backslash T$, then $|N(x) \cap T|=1$. Let G be prismatic and let S, T be two disjoint triangles in G. By definition of G there exists a perfect matching between S and T. An orientation \mathcal{O} of G is a choice of a cyclic orientation $\mathcal{O}(T)$ for every triangle T of G such that if $S=\left\{s_{1}, s_{2}, s_{3}\right\}$ and $T=\left\{t_{1}, t_{2}, t_{3}\right\}$ are disjoint triangles with $\mathcal{O}(S)=s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{1}$ and $\mathcal{O}(T)=t_{1} \rightarrow t_{2} \rightarrow t_{3} \rightarrow t_{1}$, then $s_{i} t_{i} \in E(G) i=1,2,3$. We say that G is orientable if it admits an orientation, and G is non-orientable otherwise.

The core of a graph G is the union of all the triangles in G. If $\{a, b, c\}$ is a triangle in G and both b, c only belong to one triangle in G, then b and c are said to be weak. The strong core of G is the subset of the core such that no vertex in the strong core is weak. As proved in [11], if H is a thickening of (G, F) for some valid $F \subseteq V(G)^{2}$ and $\{x, y\} \in F$, then x and y are not in the strong core.

A three-cliqued claw-free graph (G, A, B, C) consists of a claw-free graph G and three cliques A, B, C of G, pairwise disjoint and with union $V(G)$. The complement of a tree-cliqued graph is a 3 -colored graph. Let $n \geq 0$, and for $1 \leq i \leq n$, let $\left(G_{i}, A_{i}, B_{i}, C_{i}\right)$ be a three-cliqued graph, where $V\left(G_{1}\right), \ldots, V\left(G_{n}\right)$ are all nonempty and pairwise vertex-disjoint. Let $A=A_{1} \cup \cdots \cup A_{n}$, $B=B_{1} \cup \cdots \cup B_{n}$, and $C=C_{1} \cup \cdots \cup C_{n}$, and let G be the graph with vertex set $V\left(G_{1}\right) \cup \cdots \cup V\left(G_{n}\right)$ and with adjacency as follows:

- for $1 \leq i \leq n, G \mid V\left(G_{i}\right)=G_{i}$;
- for $1 \leq i<j \leq n, A_{i}$ is complete to $V\left(G_{j}\right) \backslash B_{j} ; B_{i}$ is complete to $V\left(G_{j}\right) \backslash C_{j}$; and C_{i} is complete to $V\left(G_{j}\right) \backslash A_{j}$; and
- for $1 \leq i<j \leq n$, if $u \in A_{i}$ and $v \in B_{j}$ are adjacent then u, v are both in no triads; and the same applies if $u \in B_{i}$ and $v \in C_{j}$, and if $u \in C_{i}$ and $v \in A_{j}$.

In particular, A, B, C are cliques, and so (G, A, B, C) is a three-cliqued graph and (G^{c}, A, B, C) is a 3 -colored graph; we call the sequence $\left(G_{i}, A_{i}, B_{i}, C_{i}\right)(i=1, \ldots, n)$ a worn hexchain for (G, A, B, C). When $n=2$ we say that (G, A, B, C) is a worn hex-join of $\left(G_{1}, A_{1}, B_{1}, C_{1}\right)$ and $\left(G_{2}, A_{2}, B_{2}, C_{2}\right)$. Similarly, the sequence $\left(G_{i}^{c}, A_{i}, B_{i}, C_{i}\right)(i=1, \ldots, n)$ is a worn hex-chain for $\left(G^{c}, A, B, C\right)$, and when $n=2,\left(G^{c}, A, B, C\right)$ is a worn hex-join of $\left(G_{1}^{c}, A_{1}, B_{1}, C_{1}\right)$ and $\left(G_{2}^{c}, A_{2}, B_{2}, C_{2}\right)$. Note also that every triad of G is a triad of one of G_{1}, \ldots, G_{n}. If each G_{i} is claw-free then so is G and if each G_{i}^{c} is prismatic then so is G^{c}.

If (G, A, B, C) is a three-cliqued graph, and $\left\{A^{\prime}, B^{\prime}, C^{\prime}\right\}=\{A, B, C\}$, then $\left(G, A^{\prime}, B^{\prime}, C^{\prime}\right)$ is also a three-cliqued graph, that we say is a permutation of (G, A, B, C).

A list of the definitions needed for the study of orientable prismatic graphs can be found in appendix A.1. The structure of prismatic graphs has been extensively studied in [11] and [12]; the resulting two main theorems are the following.
4.6.1. Every orientable prismatic graph that is not 3-colorable is either not 3-substantial, or a cycle of triangles graph, or a ring of five graph, or a mantled $L\left(K_{3,3}\right)$.
4.6.2. Every 3 -colored prismatic graph admits a worn chain decomposition with all terms in $\mathcal{Q}_{0} \cup$ $\mathcal{Q}_{1} \cup \mathcal{Q}_{2}$.

In the remainder of the section, we use these two results to prove our main theorem for complements of orientable prismatic graphs. We begins with some results that deal with the various outcomes of 4.6.1
4.6.3. Let H be a prismatic cycle of triangles and G be a reduced thickening of (\bar{H}, F) for some valid $F \subseteq V(H)^{2}$ such that $\chi(G)>\omega(G)$. Then there exists a Tihany brace or triangle in G.

CHAPTER 4. ON THE ERDÔS-LOVÁSZ TIHANY CONJECTURE

Proof. Let the set X_{i} be as in the definition of a cycle of triangles. Up to renaming the sets, we may assume $\left|\hat{X}_{2 n}\right|=\left|\hat{X}_{4}\right|=1$. Let $u \in \hat{X}_{2 i}$ and $v \in \hat{X}_{4}$; hence $u v$ is an edge. We have

$$
C_{H}(\{u, v\})=\bigcup_{j=1}^{\bmod } 3, j \geq 4<1 X_{j} \cup R_{1} \cup L_{3} .
$$

If $\left|\hat{X}_{2}\right|>1$, then $\left|R_{1}\right|=\left|L_{3}\right|=\emptyset$ and so $C_{H}(\{u, v\})$ is a clique. Therefore by 4.3.6, there is a Tihany brace in G. If $\left|\hat{X}_{2}\right|=1$, the only non-edges in $\bar{G} \mid C_{H}(\{u, v\})$ are a perfect anti-matching between R_{1} and L_{3}. Hence by 4.3.8, there is a Tihany triangle in G. This proves 4.6.3
4.6.4. Let H be a ring of five graph. Let G be a reduced thickening of (\bar{H}, F) for some valid $F \subseteq V(H)^{2}$ such that $\chi(G)>\omega(G)$. Then there is a Tihany triangle in G.

Proof. Let a_{2}, b_{3}, a_{4} be as in the definition of a ring of five. $C\left(\left\{a_{2}, b_{3}, a_{4}\right\}\right)=V_{2} \cup V_{4}$ and thus $\left\{a_{2}, b_{3}, a_{4}\right\}$ is a dense triangle. By the definitions of H and F, it follows that $\left\{a_{2}, b_{3}, a_{4}\right\} \cap E=\emptyset$ for all $E \in F$. Hence by 4.3.6, there exists a Tihany triangle in G. This proves 4.6.4.
4.6.5. Let H be a mantled $L\left(K_{3,3}\right)$ and G be a reduced thickening of (\bar{H}, F) for some valid $F \subseteq$ $V(H)^{2}$. If $\chi(G)>\omega(G)$, then there exists a Tihany brace in G.

Proof. Assume not. Let $W, a_{j}^{i}, V^{i}, V_{i}$ be as in the definition of mantled $L\left(K_{3,3}\right)$. Let X_{j}^{i} be the clique corresponding to a_{j}^{i} in the thickening and \mathcal{W} (resp. $\mathcal{V}_{i}, \mathcal{V}^{i}$) be the set of vertices corresponding to W (resp. V_{i}, V^{i}) in the thickening. Let $x_{i}^{j} \in X_{i}^{j}, \mathcal{V}=\cup_{i=1}^{3} \mathcal{V}_{i} \cup \mathcal{V}^{i}$ and $k=\chi(G)$.

Recall that for a clique K, we define $A(K)=\{x \in V(G): u x \notin E(G)$ for all $x \in K\}$ and $M(K)=V(G) \backslash(C(K) \cup A(K))$. For a brace E in G, let $M_{W}(E):=M(E) \cap \mathcal{W}, M_{V}(E):=M(E) \cap \mathcal{V}$, $A_{W}(E):=A(E) \cap \mathcal{W}$ and $A_{V}(E):=A(E) \cap \mathcal{V}$. Let $E=\left\{x_{i}^{j}, x_{i^{\prime}}^{j^{\prime}}\right\}$ and let S be a color class in a ($k-2$)-coloring of $G \backslash E$.
(1) If $S \cap A_{V}(E) \neq \emptyset$, then $|S| \leq 2$.

Assume not. Let $S=\{x, y, z\}$ and without loss of generality we may assume that $E=\left\{x_{1}^{1}, x_{2}^{1}\right\}$ and $x \in A_{V}(E)=\mathcal{V}^{1}$. Since x is complete to $\mathcal{V}_{1} \cup \mathcal{V}_{2} \cup \mathcal{V}_{3}$ and X_{i}^{j}, for $i=1,2,3 j=2,3$, we deduce that $y, z \notin \mathcal{V}_{1} \cup \mathcal{V}_{2} \cup \mathcal{V}_{3}$ and $y, z \notin X_{i}^{j}$, for $i=1,2,3 j=2,3$. Since there is no triad in $\mathcal{V}^{1} \cup \mathcal{V}^{2} \cup \mathcal{V}^{3}$, it follows that $\left|\{y, z\} \cap\left(\mathcal{V}^{1} \cup \mathcal{V}^{2} \cup \mathcal{V}^{3}\right)\right| \leq 1$. Since $X_{1}^{1} \cup X_{2}^{1} \cup X_{3}^{1}$ is a clique, we deduce that $\left|\{y, z\} \cap\left(X_{1}^{1} \cup X_{2}^{1} \cup X_{3}^{1}\right)\right| \leq 1$. Hence, we may assume by symmetry that $y \in X_{1}^{1} \cup X_{2}^{1} \cup X_{3}^{1}$ and $z \in \mathcal{V}^{2} \cup \mathcal{V}^{3}$. But $X_{1}^{1} \cup X_{2}^{1} \cup X_{3}^{1}$ is complete to $\mathcal{V}^{2} \cup \mathcal{V}^{3}$, a contradiction. This proves (11).
(2) If $S \cap M_{V}(E) \neq \emptyset$, then $|S| \leq 2$.

Assume not. Let $S=\{x, y, z\}$ and without loss of generality we may assume that $E=\left\{x_{1}^{1}, x_{2}^{1}\right\}$ and $x \in \mathcal{V}_{1}$. Since x is complete to $\mathcal{V}^{1} \cup \mathcal{V}^{2} \cup \mathcal{V}^{3}$ and $X_{2}^{j} \cup X_{3}^{j}$, for $j=1,2,3$, we deduce that $y, z \notin \mathcal{V}^{1} \cup \mathcal{V}^{2} \cup \mathcal{V}^{3}$ and $y, z \notin X_{2}^{j} \cup X_{3}^{j}$, for $j=1,2,3$. Since there is no triad in $\mathcal{V}_{2} \cup \mathcal{V}_{3}$, it follows that $\left|\{y, z\} \cap\left(\mathcal{V}_{2} \cup \mathcal{V}_{3}\right)\right| \leq 1$. As $X_{1}^{1} \cup X_{1}^{2} \cup X_{1}^{3}$ is a clique, we deduce that $\left|\{y, z\} \cap\left(X_{1}^{1} \cup X_{1}^{2} \cup X_{1}^{3}\right)\right| \leq 1$. Hence we may assume by symmetry that $y \in \mathcal{V}_{2} \cup \mathcal{V}_{3}$ and $z \in X_{1}^{1} \cup X_{1}^{2} \cup X_{1}^{3}$. But $\mathcal{V}_{2} \cup \mathcal{V}_{3}$ is complete to $X_{1}^{1} \cup X_{1}^{2} \cup X_{1}^{3}$, a contradiction. This proves (2).

By 4.3.1, every color class of a $(k-2)$-coloring of $G \backslash E$ must have a vertex in $C(E)$. By (1) and (22), it follows that color classes with vertices in $A_{V}(E) \cup M_{V}(E)$ have size 2. Hence we deduce that $\left|A_{V}(E)+\left|M_{V}(E)\right|+\frac{1}{2}\right| A_{W}(E)\left|+\frac{1}{2}\right| M_{W}(E)|\leq|C(E)|-2$. Summing this inequality on all braces $E=\left\{x_{i}^{j}, x_{i^{\prime}}^{j^{\prime}}\right\} i, j=1,2,3$, it follows that

$$
3 \sum_{i}\left(\left|\mathcal{V}_{i}\right|+\left|\mathcal{V}^{i}\right|\right)+6 \sum_{i}\left(\left|\mathcal{V}_{i}\right|+\left|\mathcal{V}^{i}\right|\right)+\frac{4}{2} \sum_{i, j}\left|X_{i}^{j}\right|+\frac{8}{2} \sum_{i, j}\left|X_{i}^{j}\right|<9 \sum_{i}\left(\left|\mathcal{V}_{i}\right|+\left|\mathcal{V}^{i}\right|\right)+6 \sum_{i, j}\left|X_{i}^{j}\right|,
$$

which is a contradiction. This proves 4.6.5.
4.6.6. Let $\left(H, H_{1}, H_{2}, H_{3}\right)^{c}$ be a path of triangle s and $\left(I, I_{1}, I_{2}, I_{3}\right)$ an antiprismatic three-cliqued graph. Let G be a worn hex-join of $\left(H, H_{1}, H_{2}, H_{3}\right)$ and $\left(I, I_{1}, I_{2}, I_{3}\right)$, and G^{\prime} be a reduced thickening of (G, F) for some valid $F \in V(G)^{2}$ such that $\chi\left(G^{\prime}\right)>\omega\left(G^{\prime}\right)$. Then there exists a Tihany clique K in G^{\prime}, with $|K| \leq 4$.

Proof. Assume not. Let the set X_{j} of H be as in the definition of a path of triangles and we may assume that $H_{i}=\cup_{j=i \bmod 3} X_{j}$.

Assume first that $\left|\hat{X}_{2 i}\right|>1$ for some i. Let $u \in X_{2 i-2}$ and $v \in X_{2 i+2}$, so $u v$ is an edge in G. Moreover $\{u, v\}$ is in the strong core. Thus

$$
C_{G}(\{u, v\})=\bigcup_{\substack{j=2 i+2 \bmod 3, j \geq 2 i+2}}^{\bigcup} X_{j} \cup \bigcup_{j=2 i-2 \bmod 3,}^{j \leq 2 i-2}, ~ X_{j} \cup I_{k}
$$

for $k=2 i+1 \bmod 3$. Hence $C_{G}(\{u, v\})$ is a clique and so by 4.3.6, there is a Tihany brace in G^{\prime}, a contradiction. Hence we may assume that $\left|\hat{X}_{2 i}\right|=1$ for all i.

Assume that $n \geq 3$ and let $u \in \hat{X}_{2}, v \in \hat{X}_{6}$. Then $u v$ is an edge in G. Moreover $\{u, v\}$ is in the strong core. Thus

$$
C_{G}(\{u, v\})=\bigcup_{j=0} \bmod 3, j \geq 66
$$

Hence $C_{G}(\{u, v\})$ is an antimatching, and by 4.3.8, there exists a Tihany triangle in G^{\prime}, a contradiction. It follows that $n \leq 2$.

Assume now that $n=2$. Let $u \in \hat{X}_{2}, v \in L_{5}$. Then $u v$ is an edge in G and $C_{G}(\{u, v\})=$ $X_{2} \cup R_{3} \cup L_{5} \cup H_{3}$. Thus $G \mid C(\{u, v\})$ is a perfect anti-matching between R_{3} and L_{5}. Hence by 4.3.8, there is a Tihany triangle in G^{\prime}, a contradiction.

Thus we deduce that $n=1$. Assume that $\left|R_{1}\right|=\left|L_{3}\right|=1$. Let $u \in X_{2}$ and $v \in R_{1} \cup L_{3}$ be a neighbor of v. Without loss of generality, we may assume that $v \in L_{3}$. Since $C_{G}(\{u, v\}) \subseteq$ $X_{2} \cup L_{3} \cup H_{3}$ is a clique, it follows by 4.3.6 that there is a Tihany brace in G^{\prime}, a contradiction. Hence we deduce that $\left|R_{1}\right|=\left|L_{3}\right|>1$. Now, let $u \in R_{1}$ and $v \in L_{3}$ be adjacent. By 4.5.6, we may assume that G is not a 2 -non-substantial graph. If follows that there exists $x \in I_{2}$ such that x is in a triad. Thus $C_{G}(\{u, v, x\})$ is an antimatching, and by 4.3.8, there exists a Tihany clique K in G^{\prime} with $|K| \leq 4$, a contradiction. This proves 4.6.6.
4.6.7. Let (G, A, B, C) be an antiprismatic graph that admit a worn chain decomposition $\left(G_{i}, A_{i}, B_{i}, C_{i}\right)$. Suppose that there exists k such that $\left(G_{k}, A_{k}, B_{k}, C_{k}\right)$ is the line graph of $K_{3,3}$. Let G^{\prime} be a reduced thickening of (G, F) for some valid $F \in V(G)^{2}$. If $\chi\left(G^{\prime}\right)>\omega\left(G^{\prime}\right)$, then there is a Tihany brace in G^{\prime}.

Proof. Assume not. Let $\left\{a_{j}^{i}\right\}_{i, j=1,2,3}$ be the vertices of G_{k} using the standard notation. Let $X_{j}^{i}=X_{a_{j}^{i}}$ be the clique corresponding to a_{j}^{i} in the thickening. Moreover, let $x_{i}^{j} \in X_{i}^{j}, w_{i}^{j}=\left|X_{i}^{j}\right|$.

Since all of the vertices in the thickening of G_{k} are in triads, G_{k} is linked to the rest of the graph by a hex-join.

Note that $G \backslash\left\{x_{1}^{1}, x_{2}^{1}\right\}$ is $(\chi(G)-2)$-colorable. By 4.3.1, it follows that every color class containing a vertex in $X_{1}^{2} \cup X_{1}^{3}$ must have a vertex in $X_{2}^{1} \cup X_{3}^{1}$. Hence we deduce that $w_{1}^{2}+w_{1}^{3} \leq w_{2}^{1}+w_{3}^{1}-1$ and by symmetry $w_{2}^{2}+w_{2}^{3} \leq w_{1}^{1}+w_{3}^{1}-1$. Summing these two inequalities, it follows that

$$
w_{1}^{2}+w_{1}^{3}+w_{2}^{2}+w_{2}^{3}<w_{2}^{1}+w_{1}^{1}+2 w_{3}^{1} .
$$

A similar inequality can be obtained for all edges $x_{i}^{j} x_{i^{\prime}}^{j}$. Summing them all, we deduce that $4 \sum_{i j} w_{i}^{j}<2 \sum_{i j} w_{i}^{j}+2 \sum_{i j} w_{i}^{j}$, a contradiction. This proves 4.6.7
4.6.8. Let H be a 3 -colored prismatic graph. Let G be a reduced thickening of (\bar{H}, F) for some valid $F \subseteq V(H)^{2}$ such that $\chi(G)>\omega(G)$. Then there exists a Tihany brace or triangle in G.

Proof. By 4.6.2, H admits a worn chain decomposition with all terms in $\mathcal{Q}_{0} \cup \mathcal{Q}_{1} \cup \mathcal{Q}_{2}$. If one term of the decomposition is in \mathcal{Q}_{2} then by 4.6.6, it follows that there is a Tihany clique K in G with $|K| \leq 4 G$. If one term of the decomposition is in \mathcal{Q}_{1}, then by 4.6.7, it follows that there is a Tihany brace in G. Hence we may assume that all terms are in \mathcal{Q}_{0}. Therefore there are no triads in G and thus by 4.5.1, it follows that there is a Tihany brace in G. This proves 4.6.8.

We can now prove the main result of this section.
4.6.9. Let H be an orientable prismatic graph. Let G be a reduced thickening of (\bar{H}, F) for some valid $F \subseteq V(H)^{2}$ such that $\chi(G)>\omega(G)$. Then there exists a Tihany clique K in G with $|K| \leq 4$.

Proof. If H admits a worn chain decomposition with all terms in $\mathcal{Q}_{0} \cup \mathcal{Q}_{1} \cup \mathcal{Q}_{2}$, then by 4.6.8, G admits a Tihany brace or triangle. Otherwise, by 4.6.1, H is either not 3 -substantial, a cycle of triangles, a ring of five graph, or a mantled $L\left(K_{3,3}\right)$.

If H is not 3 -substantial, then by 4.5.7, there is a clique K in G with $|K| \leq 4$. If H is a cycle of triangles, then by 4.6.3, there is a Tihany brace or triangle in G. If H is a ring of five graph, then by 4.6.4 there is a Tihany triangle in G. Finally, if H is a mantled $L\left(K_{3,3}\right)$, then by 4.6.5, there is a Tihany brace in G. This proves 4.6.9.

4.7 Non-orientable Prismatic Graphs

The definitions needed to understand this section can be found in appendix A.2. The following is a result from [12].
4.7.1. Let G be prismatic. Then G is orientable if and only if no induced subgraph of G is a twister or rotator.

In the following two lemmas, we study complements of orientable prismatic graphs. We split our analysis based on whether the graph contains a twister or a rotator as an induced subgraph.
4.7.2. Let H be an non-orientable prismatic graph. Assume that there exists $D \subseteq V(H)$ such that $G \mid D$ is a rotator. Let G be a reduced thickening of (\bar{H}, F) such that $\chi(G)>\omega(G)$ for some valid $F \subseteq V(H)^{2}$. Then there exists a Tihany clique K in G with $|K| \leq 5$.

Proof. Assume not. Let $D=\left\{v_{1}, \ldots, v_{9}\right\}$ be as in the definition of a rotator. For $i=1,2,3$, let A_{i} be the set of vertices of $V(H) \backslash D$ that are adjacent to v_{i}. Since H is prismatic and $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a triangle, it follows that $A_{1} \cup A_{2} \cup A_{3}=V(H) \backslash D$.

Let $I_{1}=\{\{5,6\},\{5,9\},\{6,8\},\{8,9\}\}, \quad I_{2}=\{\{4,6\},\{4,9\},\{6,7\},\{7,9\}\} \quad$ and $I_{3}=\{\{4,5\},\{4,8\},\{5,7\},\{7,8\}\}$. For $i=1,2,3$ and $\{k, l\} \in I_{i}$, let $A_{i}^{k, l}$ be the set of vertices of $V(H) \backslash D$ that are complete to $\left\{v_{i}, v_{k}, v_{l}\right\}$. Since $\left\{v_{1}, v_{2}, v_{3}\right\}$ and $\left\{v_{i}, v_{i+3}, v_{i+6}\right\}$ are triangles for $i=1,2,3$ and H is prismatic, we deduce that $A_{i}=\bigcup_{\{k, l\} \in I_{i}} A_{i}^{k, l}$ for $i=1,2,3$. For $i=1,2,3$ and $\{k, l\} \in I_{i}$ and since $\left\{v_{1}, v_{4}, v_{7}\right\},\left\{v_{2}, v_{5}, v_{8}\right\},\left\{v_{3}, v_{6}, v_{9}\right\}$ are triangles and H is prismatic, it follows that $A_{i}^{k, l}$ is anticomplete to v_{m} for all $m \in\{4,5,6,7,8,9\} \backslash\{i, k, l\}$.

Assume that $A_{2}^{4,9}$ and $A_{3}^{4,8}$ are not empty. Since H is prismatic, we deduce that $A_{2}^{4,9}$ is anticomplete to $A_{3}^{4,8}$ in H. Let $x \in A_{2}^{4,9}$ and $y \in A_{3}^{4,8}$. Then $C_{\bar{H}}\left(\left\{v_{1}, v_{5}, v_{6}, x, y\right\}\right)$ is a clique and $\left\{v_{1}, v_{5}, v_{6}, x, y\right\}$ is in the strong core. Hence by 4.3.6, there exists a Tihany clique of size 5 in G.

Assume now that $A_{2}^{4,9}$ is not empty, but $A_{3}^{4,8}$ is empty. Let $x \in A_{2}^{4,9}$. Then $C_{\bar{H}}\left(\left\{v_{1}, v_{5}, v_{6}, x\right\}\right)$ is a clique and $\left\{v_{1}, v_{5}, v_{6}, x\right\}$ is in the core. Moreover $\left\{v_{1}, v_{6}, x\right\}$ is in the strong core. Since $\left\{v_{2}, v_{5}, v_{8}\right\}$ is a triad and v_{2} is in the strong core, it follows that if there exists $E \in F$ with $v_{5} \in E$, then $E=\left\{v_{5}, v_{8}\right\}$. But v_{8} is not adjacent to v_{6} in \bar{H}. Hence by 4.3.6, there exists a Tihany clique K of size 4 in G.

We may now assume that $A_{2}^{4,9}=A_{3}^{4,8}=\emptyset$. Since H is prismatic, it follows that $C_{\bar{H}}\left(\left\{v_{1}, v_{5}, v_{6}\right\}\right)$ is an anti-matching. Moreover $\left\{v_{1}, v_{5}, v_{6}\right\}$ is in the core and v_{1} is in the strong core. For $i=2,3$, since $\left\{v_{i}, v_{i+3}, v_{i+6}\right\}$ is a triad and v_{i} is in the strong core, it follows that if there exists $E \in F$ with $v_{i+3} \in E$, then $E=\left\{v_{i+3}, v_{i+6}\right\}$. But v_{8} is not adjacent to v_{6} and v_{9} is not adjacent to v_{5}. Hence by 4.3.6, there exists a Tihany triangle in G. This concludes the proof of 4.7.2.
4.7.3. Let H be a non-orientable prismatic graph. Assume that there exists $W \subseteq V(H)$ such that $H \mid W$ is a twister. Further, assume that there is no induced rotator in H. If G is a reduced thickening of (\bar{H}, F) such that $\chi(G)>\omega(G)$, then there exists a Tihany clique K in G with $|K| \leq 4$.

Proof. Assume not. Let $W=\left\{v_{1}, v_{2}, \ldots, v_{8}, u_{1}, u_{2}\right\}$ be as in the definition of a twister. Throughout
the proof, all addition is modulo 8 . For $i=1, \ldots, 8$, let $A_{i, i+1}$ be the set of vertices in $V \backslash W$ that are adjacent to v_{i} and v_{i+1} and let $B_{i, i+2}$ be the set of vertices in $V \backslash W$ that are adjacent to v_{i} and v_{i+2}. Moreover, let $C \subseteq V \backslash W$ be the set of vertices that are anticomplete to W. Since H is prismatic, we deduce that $\bigcup_{i=1}^{8}\left(A_{i, i+1} \cup B_{i, i+2}\right) \cup C=V \backslash W$. Moreover $A_{i, i+1}$ is complete to $\left\{v_{i}, v_{i+1}, v_{i+3}, v_{i+6}\right\}$ and anticomplete to $W \backslash\left\{v_{i}, v_{i+1}, v_{i+3}, v_{i+6}\right\}$. Since H is prismatic, it follows also that $B_{i, i+2}$ is complete to $\left.u_{i} \bmod 2\right\}$ and anticomplete to $W \backslash\left\{v_{i}, v_{i+2}, u_{i} \bmod 2\right\}$. Moreover, C is anticomplete to $\left\{v_{1}, v_{2}, \ldots, v_{8}\right\}$.
(1) There exists $i \in\{1, \ldots, 8\}$, such that $A_{i, i+1}$ and $A_{i+3, j+4}$ are either both empty or both nonempty.

Assume not. By symmetry we may assume that $A_{1,2}$ is not empty and $A_{4,5}$ is empty. Since $A_{1,2}$ is not empty, we deduce that $A_{6,7}$ is empty. Since $A_{4,5}$ and $A_{6,7}$ are empty, it follows that $A_{7,8}$ and $A_{3,4}$ are not empty. Let $x \in A_{7,8}$ and $y \in A_{3,4}$. Then $G \mid\left\{v_{8}, u_{1}, v_{4}, x\right.$, $\left.v_{6}, v_{3}, v_{7}, v_{2}, y\right\}$ is a rotator, a contradiction. This proves (11).
(2) If $A_{i, i+1}$ and $A_{i+3, i+4}$ are both non-empty for some $i \in\{1, \ldots, 8\}$, then there exists a Tihany clique of size 5 in G.

Assume that $A_{2,3}$ and $A_{5,6}$ are not empty and let $x \in A_{2,3}$ and $y \in A_{5,6}$. The anti-neighborhood of $\left\{v_{1}, v_{7}, u_{2}, x, y\right\}$ in H is a stable set. Moreover, $\left\{v_{1}, v_{7}, u_{2}, x, y\right\}$ is in the strong core and hence by 4.3 .6 there is a Tihany clique of size 5 in G. This proves (2).
(3) If $A_{i, i+1}$ and $A_{i+3, i+4}$ are both empty for some $i \in\{1, \ldots, 8\}$, then there exists a Tihany clique of size 4 in G.

Assume that $A_{2,3}$ and $A_{5,6}$ are both empty. Then the anti-neighborhood of $\left\{v_{1}, v_{7}, u_{2}\right\}$ in H is $A_{8,2} \cup A_{2,4} \cup A_{4,6} \cup A_{6,8}$ which is a matching. Moreover u_{2} is in the strong core and $\left\{v_{1}, v_{7}\right\}$ is in the core. Possibly $\left\{v_{1}, v_{5}\right\}$ and $\left\{v_{3}, v_{7}\right\}$ are in F, but $A_{2,8} \cup A_{2,4} \cup A_{4,6} \cup A_{6,8} \cup\left\{v_{3}, v_{7}\right\}$ is also an anti-matching. Hence by 4.3.8, there is a Tihany clique of size 4 in G. This proves (3).

Now by (1), there exists i such that $A_{i, i+1}$ and $A_{i+3, i+4}$ are either both empty or both nonempty. If $A_{i, i+1}$ and $A_{i+3, i+4}$ are both non-empty, then by (2) there is a Tihany clique of size 5 in G. If $A_{i, i+1}$ and $A_{i+3, i+4}$ are both empty, then by (3) there is a Tihany clique of size 4 in G. This concludes the proof of 4.7.3.
4.7.4. Let H be a non-orientable prismatic graph. Let G be a reduced thickening of (\bar{H}, F) for some valid $F \subseteq V(G)^{2}$ such that $\chi(G)>\omega(G)$; then there exists a Tihany clique K in G with $K \leq 5$.

Proof. By 4.7.1, it follows that there is an induced twister or an induced rotator in H. If there is an induced rotator in H, then by 4.7 .2 , it follows that there is a Tihany clique of size 5 in G. If there is an induced twister and no induced rotator in H, then by 4.7.3, it follows that there is a Tihany clique of size 4 in G. This proves 4.7.4.

4.8 Three-cliqued Graphs

In this section we prove 4.1 .1 for those claw-free graphs G for which $V(G)$ can be partitioned into three cliques. The definition of three-cliqued graphs has been given at the start of Section 4.6, A list of three-cliqued claw-free graphs that are needed for the statement of the structure theorem can be found in appendix A.3. We begin with a structure theorem from (13].
4.8.1. Every three-cliqued claw-free graph admits a worn hex-chain into terms each of which is a reduced thickening of a permutation of a member of one of $\mathcal{T C}_{1}, \ldots, \mathcal{T C}_{5}$.

Let (G, A, B, C) be a three-cliqued graph and K be a clique of G. We say that K is strongly Tihany if for all three-cliqued graphs $\left(H, A^{\prime}, B^{\prime}, C^{\prime}\right), K$ is Tihany in every worn hex-join ($I, A \cup$ $\left.A^{\prime}, B \cup B^{\prime}, C \cup C^{\prime}\right)$ of (G, A, B, C) and ($H, A^{\prime}, B^{\prime}, C^{\prime}$) such that $\chi(I)>\omega(I)$.

A clique K is said to be bi-cliqued if exactly two of $K \cap A, K \cap B, K \cap C$ are non-empty and every $v \in K$ is in a triad. A clique K is said to be tri-cliqued if $K \cap A, K \cap B, K \cap C$ are all non-empty and every $v \in K$ is in a triad.
4.8.2. Let K be a dense clique in $\left(G, A_{1}, A_{2}, A_{3}\right)$. If both K and $\bar{C}(K)$ are bi-cliqued, then K is strongly Tihany.

Proof. Let $\left(G^{\prime}, A^{\prime}, B^{\prime}, C^{\prime}\right)$ be a three-cliqued claw-free graph and let (H, D, E, F) be a worn hexjoin of (G, A, B, C) and $\left(G^{\prime}, A^{\prime}, B^{\prime}, C^{\prime}\right)$. Then in $H, C(K) \cap V\left(G^{\prime}\right)$ is a clique that is complete to $C(K) \cap V(G)$. Hence, by 4.3.2, K is Tihany in H and hence H is strongly Tihany.
4.8.3. Let K be a dense clique of a three-cliqued graph (G, A, B, C). If K is tri-cliqued, then K is strongly Tihany.

Proof. Let $\left(G^{\prime}, A^{\prime}, B^{\prime}, C^{\prime}\right)$ be a three-cliqued claw-free graph and let (H, D, E, F) be a hex-join of (G, A, B, C) and $\left(G^{\prime}, A^{\prime}, B^{\prime}, C^{\prime}\right)$. Then in $H, C_{H}(K) \cap V\left(G^{\prime}\right)=\emptyset$ and thus $C_{H}(K)$ is a clique in H. Hence, by 4.3.2, K is strongly Tihany.
4.8.4. Let (G, A, B, C) be an element of $\mathcal{T C}_{1}$ and G^{\prime} be a reduced thickening of (G, F) for some valid $F \subseteq V(G)^{2}$. Then there is either a strongly Tihany brace or a strongly Tihany triangle in G^{\prime}.

Proof. Let H, v_{1}, v_{2}, v_{3} be as in the definition of $\mathcal{T} \mathcal{C}_{1}$; so $L(H)=G$. Let V_{12} be the set of vertices of H that are adjacent to v_{1} and v_{2} but not to v_{3} and let V_{13}, V_{23} be defined similarly. Let V_{123} be the set of vertices complete to $\left\{v_{1}, v_{2}, v_{3}\right\}$.

Suppose that $V_{i j} \neq \emptyset$ for some i, j. Then let $v_{i j} \in V_{i j}$, and let x_{i} be the vertex in G corresponding to the edge $v_{i j} v_{i}$ in H and x_{j} be the vertex in G corresponding to the edge $v_{i j} v_{j}$ in H. Then $C_{G}\left(\left\{x_{i}, x_{j}\right\}\right)=\emptyset$, and thus by 4.3.5 and 4.8.2, there exists a strongly Tihany brace in G^{\prime}.

So we may assume that $V_{i j}=\emptyset$ for all i, j. Then from the definition of $\mathcal{T \mathcal { C } _ { 1 }}$, it follows that V_{123} is not empty. Let $v \in V_{123}$ and let x_{1}, x_{2}, x_{3} be the vertices in G corresponding to the edges $v v_{1}, v v_{2}, v v_{3}$ of H, respectively. Then $C_{G}\left(\left\{x_{1}, x_{2}, x_{3}\right\}\right)=\emptyset$ and hence by 4.3.5 and 4.8.3, there exists a strongly Tihany triangle in G^{\prime}. This proves 4.8.4.
4.8.5. Let (G, A, B, C) be an element of $\mathcal{T} \mathcal{C}_{2}$ and let $\left(G^{\prime}, A^{\prime}, B^{\prime}, C^{\prime}\right)$ be a reduced thickening of (G, F) for some valid $F \subseteq V(G)^{2}$. Then there is either a strongly Tihany brace or a strongly Tihany triangle in G^{\prime}.

Proof. Let $\Sigma, F_{1}, \ldots, F_{k}, L_{1}, L_{2}, L_{3}$ be as in the definition of $\mathcal{T} \mathcal{C}_{2}$. Without loss of generality, we may assume that A is not anticomplete to B. It follows from the definition of G that there exists F_{i} such that $F_{i} \cap A$ and $F_{i} \cap B$ are both not empty. Let $\left\{x_{k}, \ldots, x_{l}\right\}=V(H) \cap F_{i}$ and without loss of generality, we may assume that $\left\{x_{k}, \ldots, x_{l}\right\}$ are in order on Σ.

Let F_{i} be such that there exists no j with $F_{i} \subset F_{j}$. Let $\left\{x_{k}, \ldots, x_{l}\right\}=V(H) \cap F_{i}$ and without loss of generality, we may assume that $\left\{x_{k}, \ldots, x_{l}\right\}$ are in order on Σ. Since $C\left(\left\{x_{k}, x_{l}\right\}\right)=$ $\left\{x_{k+1}, \ldots, x_{l-1}\right\}$, it follows that $\left\{x_{k}, x_{l}\right\}$ is dense. If x_{k}, x_{l} are the endpoints of F_{i}, it follows by 4.3.1 and 4.3.5 that there is a Tihany brace in G. Otherwise, by 4.3 .6 there exists a Tihany brace in G. This proves 4.4.2.
4.8.6. Let (G, A, B, C) be an element of $\mathcal{T \mathcal { C } _ { 3 }}$ and let $\left(G^{\prime}, A^{\prime}, B^{\prime}, C^{\prime}\right)$ be a reduced thickening of (G, F) for some valid $F \in V(G)^{2}$. Then there is either a strongly Tihany brace or a strongly Tihany triangle in G^{\prime}.

Proof. Let $H, A=\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}, B=\left\{b_{0}, b_{1}, \ldots, b_{n}\right\}, C=\left\{c_{1}, \ldots, c_{n}\right\}$, and X be as in the definition of near-antiprismatic graphs. Suppose that for some $i, a_{i}, b_{i} \in V(G)$. Then since $|C \backslash X| \geq$ 2 , it follows that there exists $j \neq i$ such that $c_{j} \in V(G)$. Now $T=\left\{a_{i}, b_{i}, c_{j}\right\}$ is dense and tri-cliqued in G, and so by 4.3.5 and 4.8.3 there is a strongly Tihany triangle in G^{\prime}.

So we may assume that for all i, if $a_{i} \in V(G)$, then $b_{i} \notin V(G)$. Since by definition of $\mathcal{T} \mathcal{C}_{3}$ every vertex is in a triad, it follows that $c_{i} \in V(G)$ whenever $a_{i} \in V(G)$. Now suppose that $a_{i}, a_{j} \in V(G)$ for some $i \neq j$. Then $\left(\left\{a_{i}, a_{j}\right\},\left\{c_{i}, c_{j}\right\}\right)$ is a non-reduced homogeneous pair in G. Hence we may assume that for all $i \neq j$ at most one of a_{i}, a_{j} is in $V(G)$. Let $a_{i} \in V(G) ;$ then for some $j \neq i$ we have $c_{j} \in V(G)$. Now $E=\left\{a_{i}, c_{j}\right\}$ is dense and bi-cliqued. Moreover $\bar{C}(E)$ is bi-cliqued, hence by 4.3.5 and 4.8.2, it follows that E is a strongly Tihany brace in G^{\prime}. This proves 4.8.6.
4.8.7. Let G be an element of $\mathcal{T \mathcal { C } _ { 5 }}$ and G^{\prime} be a reduced thickening of (G, F) for some valid $F \subseteq$ $V(G)^{2}$. Then there exists either a brace $E \in V\left(G^{\prime}\right)$ that is strongly Tihany or a triangle $T \in V\left(G^{\prime}\right)$ that is strongly Tihany in G^{\prime}.

Proof. First suppose that $G \in \mathcal{T} \mathcal{C}_{5}^{1}$. Let $H,\left\{v_{1}, \ldots, v_{8}\right\}$ be as in the definition of $\mathcal{T} \mathcal{C}_{5}^{1}$. If $v_{4} \in V(G)$ then $\left\{v_{2}, v_{4}\right\}$ is dense and bi-cliqued. Moreover $\bar{C}\left(\left\{v_{2}, v_{4}\right\}\right)$ is bi-cliqued and thus by 4.3.5 and 4.8.2, there is a strongly Tihany brace in G^{\prime}. If $v_{3} \in G$, then $\left\{v_{3}, v_{5}\right\}$ is dense and bi-cliqued. Moreover $\bar{C}\left(\left\{v_{3}, v_{5}\right\}\right)$ is bi-cliqued and so by 4.3.5 and 4.8.2, there is a strongly Tihany brace in G^{\prime}. So we may assume that $v_{4}, v_{3} \notin V(G)$. But then the triangle $T=\left\{v_{1}, v_{6}, v_{7}\right\}$ is dense and tri-cliqued and thus by 4.3.5 and 4.8.3, there exists a strongly Tihany triangle in G^{\prime}.

We may assume now that $G \in \mathcal{T} \mathcal{C}_{5}^{2}$. If $v_{3} \in G$ then $\left\{v_{2}, v_{3}\right\}$ is dense, bi-cliqued and $\bar{C}\left(\left\{v_{2}, v_{3}\right\}\right)$ is bi-cliqued. Otherwise, $\left\{v_{2}, v_{4}\right\}$ is dense, bi-cliqued and $\bar{C}\left(\left\{v_{2}, v_{4}\right\}\right)$ is bi-cliqued. In both cases, it follows from 4.3 .5 and 4.8 .2 that there exists a strongly Tihany brace in G^{\prime}. This proves 4.8.7 \square

We are now ready to prove the main result of this section.
4.8.8. Let G be a three-cliqued claw-free graph such that $\chi(G)>\omega(G)$. Then G contains either a Tihany brace or a Tihany triangle in G.

Proof. By 4.8.1, there exist $\left(G_{i}, A_{i}, B_{i}, C_{i}\right)$, for $i=1, \ldots, n$, such that the sequence $\left(G_{i}, A_{i}, B_{i}, C_{i}\right) \quad(i=1, \ldots, n)$ is a worn hex-chain for (G, A, B, C) and such that $\left(G_{i}, A_{i}, B_{i}, C_{i}\right)$ is a reduced thickening of a permutation of a member of one of $\mathcal{T} \mathcal{C}_{1}, \ldots, \mathcal{T C}_{5}$. If there exists $i \in\{1, \ldots, n\}$ such that $\left(G_{i}, A_{i}, B_{i}, C_{i}\right)$ is a reduced thickening of a permutation of a member of $\mathcal{T C}_{1}, \mathcal{T C}_{2}, \mathcal{T C}_{3}$, or $\mathcal{T C}_{5}$, then by 4.8.4, 4.8.5, 4.8.6, or 4.8.7 (respectively), there is a strongly Tihany brace or a strongly Tihany triangle in G_{i}, and thus there is a Tihany brace or a Tihany triangle in G. Thus it follows that $\left(G_{i}, A_{i}, B_{i}, C_{i}\right)$ is a reduced thickening of a member of $\mathcal{T C}_{4}$ for all $i=1, \ldots, n$. Hence G is a reduced thickening of a three-cliqued antiprismatic graph. By 4.6.8, there exists a Tihany brace or triangle in G. This proves 4.8.8.

4.9 Non-trivial Strip Structures

In this section we prove 4.1.1 for graphs G that admit non-trivial strip structures and appear in (13).

Let (J, Z) be a strip. We say that (J, Z) is a line graph strip if $|V(J)|=3,|Z|=2$ and Z is complete to $V(J) \backslash Z$.

The following two lemmas appear in (4].
4.9.1. Suppose that G admits a nontrivial strip-structure such that $|Z|=1$ for some strip (J, Z) of (H, η). Then either G is a clique or G admits a clique cutset.
4.9.2. Let G be a graph that admits a nontrivial strip-structure (H, η) such that for every $F \in E(H)$, the strip of (H, η) at F is a line graph strip. Then G is a line graph.

We now use these lemmas to prove the main result of this section.
4.9.3. Let G be a claw-free graph with $\chi(G)>\omega(G)$ that is a minimal counterexample to 4.1.1. Then G does not admit a nontrivial strip-structure (H, η) such that for each strip (J, Z) of (H, η), $1 \leq|Z| \leq 2$, and if $|Z|=2$ then either $|V(J)|=3$ and Z is complete to $V(J) \backslash Z$, or (J, Z) is a member of $\mathcal{Z}_{1} \cup \mathcal{Z}_{2} \cup \mathcal{Z}_{3} \cup \mathcal{Z}_{4} \cup \mathcal{Z}_{5}$.

Proof. Suppose that G admits a nontrivial strip-structure (H, η) such that for each strip (J, Z) of $(H, \eta), 1 \leq|Z| \leq 2$. Further suppose that $|Z|=1$ for some strip (J, Z). Then by 4.9.1 either G is a
clique or G admits a clique cutset; in the former case G does not satisfy $\chi(G)>\omega(G)$, and in the latter case 4.9.3 follows from 4.3.10. Hence we may assume that $|Z|=2$ for all strips (J, Z).

If all the strips of (H, η) are line graph strips, then by $4.9 .2, G$ is a line graph and the result follows from [2]. So we may assume that some strip $\left(J_{1}, Z_{1}\right)$ is not a line graph strip. Let $Z_{1}=$ $\left\{a_{1}, b_{1}\right\}$. Let $A_{1}=N_{J_{1}}\left(a_{1}\right), B_{1}=N_{J_{1}}\left(b_{1}\right), A_{2}=N_{G}\left(A_{1}\right) \backslash V\left(J_{1}\right)$, and $B_{2}=N_{G}\left(B_{1}\right) \backslash V\left(J_{1}\right)$. Let $C_{1}=V\left(J_{1}\right) \backslash\left(A_{1} \cup B_{1}\right)$ and $C_{2}=V(G) \backslash\left(V\left(J_{1}\right) \cup A_{2} \cup B_{2}\right)$. Then $V(G)=A_{1} \cup B_{1} \cup C_{1} \cup A_{2} \cup B_{2} \cup C_{2}$.
(1) If $C_{2}=\emptyset$ and $A_{2}=B_{2}$, then there is a Tihany clique K in G with $|K| \leq 5$.

Note that $V(G)=A_{1} \cup B_{1} \cup C_{1} \cup A_{2}$. Since $\left|Z_{1}\right|=2$ and $\left(J_{1}, Z_{1}\right)$ is not a line graph strip, it follows that $\left(J_{1}, Z_{1}\right)$ is a member of $\mathcal{Z}_{1} \cup \mathcal{Z}_{2} \cup \mathcal{Z}_{3} \cup \mathcal{Z}_{4} \cup \mathcal{Z}_{5}$. We consider the cases separately:

1. If $\left(J_{1}, Z_{1}\right)$ is a member of \mathcal{Z}_{1}, then J_{1} is a fuzzy linear interval graph and so G is a fuzzy long circular interval graph and 4.9.3 follows from [2].
2. If $\left(J_{1}, Z_{1}\right)$ is a member of $\mathcal{Z}_{2}, \mathcal{Z}_{3}$, or \mathcal{Z}_{4}. In all of these cases, A_{1}, B_{1}, and C_{1} are all cliques and so $V(G)$ is the union of three cliques, namely $A_{1} \cup A_{2}, B_{1}$, and C_{1}. Hence, by 4.8.8, there exists a Tihany clique K with $|K| \leq 5$.
3. If $\left(J_{1}, Z_{1}\right)$ is a member of \mathcal{Z}_{5}. Let $v_{1}, \ldots, v_{12}, X, H, H^{\prime}, F$ be as in the definition of \mathcal{Z}_{5} and for $1 \leq i \leq 12$ let $X_{v_{i}}$ be as in the definition of a thickening. Then A_{2} is complete to $X_{v_{1}} \cup X_{v_{2}} \cup X_{v_{4}} \cup X_{v_{5}}$. Let $H^{\prime \prime}$ be the graph obtained from H^{\prime} by adding a new vertex a_{2}, adjacent to v_{1}, v_{2}, v_{4} and v_{5}. Then $H^{\prime \prime}$ is an antiprismatic graph. Moreover, no triad of $H^{\prime \prime}$ contains v_{9} or v_{10}. Thus the pair $\left(H^{\prime}, F\right)$ is antiprismatic, and G is a thickening of $\left(H^{\prime}, F\right)$, so 4.9.3 follows from 4.6.9 and 4.7.4.

This proves (11).

By (11), we may assume $C_{2} \neq \emptyset$ or $A_{2} \neq B_{2}$. Suppose that $A_{2}=B_{2}$. Then since $C_{2} \neq \emptyset$ it follows that A_{2} is a clique cutset of G and the result follows from 4.3.10. Hence, we may assume that $A_{2} \neq B_{2}$ and without loss of generality we may assume that $A_{2} \backslash B_{2} \neq \emptyset$. Let $v \in A_{2} \backslash B_{2}$ and let $w \in A_{1} \backslash B_{1}$. Then $E=\{v, w\}$ is dense and 4.9.3 follows from 4.3.2.

4.10 Proof of the Main Theorem

We can now prove the main theorem.
Proof of 4.1.1. Let G be a claw-free graph with $\chi(G)>\omega(G)$, and suppose that there does not exist a clique K in G with $|K| \leq 5$ such that $\chi(G \backslash K)>\chi(G)-|K|$. By 4.9.3 and 4.2.1, it follows that either G is a member of $\mathcal{T}_{1} \cup \mathcal{T}_{2} \cup \mathcal{T}_{3}$ or $V(G)$ is the union of three cliques. By 4.4.1, it follows that G is not a member of \mathcal{T}_{1}. By 4.4.2, it follows that G is not a member of \mathcal{T}_{2}. By 4.6.9 and 4.7.4, we deduce that G is not a member \mathcal{T}_{3}. Hence, it follows that $V(G)$ is the union of three cliques. But by 4.8.8, it follows that there is a Tihany brace or triangle in G, a contradiction. This proves 4.1.1.

Chapter 5

A Local Strengthening of Reed's

Conjecture

5.1 Introduction

The chromatic number is a notion of utmost importance in graph theory. Finding its exact value for a graph is a central problem both from a theoretical and algorithmic point of view. For general graphs, there is a trivial lower and upper bound on the chromatic number that we present now. We include the proof for completeness.
5.1.1. Let G be a graph. Then $\omega(G) \leq \chi(G) \leq \Delta(G)+1$.

Proof. Let K be a clique of size $\omega(G)$. No two vertices of K can have the same color, hence we need at least $\omega(G)$ colors for the vertices of K. It follows that $\chi(G) \geq \omega(G)$.

For the upper bound we will use induction on the number of vertices in G. Clearly if G has one vertex, then $\chi(G)=1 \leq \Delta(G)+1$. Now let G be such that $|V(G)|=n$ and assume that for all graph H with $|V(H)|<n$ then $\chi(H) \leq \Delta(H)+1$. Let $x \in V(G)$. Now $G \backslash x$ has $n-1$ vertices and so $\chi(G \backslash x) \leq \Delta(G \backslash x)+1 \leq \Delta(G)+1$. But $N(x)$ uses at most $\Delta(G)$ colors since $|N(x)|=d(x) \leq \Delta(G)$. Therefore there is at least one color free to extend the coloring of $G \backslash x$ to a coloring of G using at most $\Delta(G)+1$ colors. This proves 5.1.1.

In 1998, Reed made the following conjecture.
Conjecture 2 (Reed). For any graph G,

$$
\chi(G) \leq\left\lceil\frac{1}{2}(\Delta(G)+1+\omega(G))\right\rceil .
$$

Conjecture 2 has been proved first for line graphs [23] and was then extended to quasi-line graphs [21; 22] and later claw-free graphs [21]. Later, King proposed a local strengthening of Reed's Conjecture.

Conjecture 3 (King). For any graph G,

$$
\chi(G) \leq \max _{v \in V(G)}\left\lceil\frac{1}{2}(d(v)+1+\omega(v))\right\rceil .
$$

There are several pieces of evidence that lend credence to Conjecture 3 First is the fact that the result holds for claw-free graphs with stability number at most three [21]. However, for the remaining classes of claw-free graphs, which are constructed as a generalization of line graphs [10], the conjecture has remained open.

The second piece of evidence for Conjecture 3 is that the fractional relaxation holds. The fractional chromatic number $\chi_{f}(G)$ is the optimal value of the following linear program, which is the linear relaxation of the standard integer program formulation of the graph coloring problem.

$$
\begin{aligned}
\chi_{f}(G)= & \min \\
\text { subject to } & \sum_{S} x_{S} \\
& \sum_{S \ni v} x_{S} \geq 1 \quad \forall v \in V(G) \\
& x_{S} \in[0,1] \quad \forall \text { stable set } S
\end{aligned}
$$

It was noted by McDiarmid as an extension of a theorem of Reed [27] that the following holds. 5.1.2 (McDiarmid). For any graph G,

$$
\chi_{f}(G) \leq \max _{v \in V(G)}\left(\frac{1}{2}(d(v)+1+\omega(v))\right)
$$

The main result of this chapter is:
5.1.3. For any quasi-line graph G,

$$
\chi(G) \leq \max _{v \in V(G)}\left\lceil\frac{1}{2}(d(v)+1+\omega(v))\right\rceil .
$$

This chapter is organized as follow. In Section 5.2, we prove Conjecture 3 for line graphs. In Section 5.3, we introduce quasi-line graphs and some important concepts. In Section 5.4, we study how quasi-line graphs can be decomposed into smaller pieces that are well understood, and finally in Section 5.5 we put the different pieces together to prove 5.1 .3 and discuss some algorithmic notions.

5.2 Line Graphs

In order to prove Conjecture 3 for line graphs, we prove an equivalent statement in the setting of edge colorings of multigraphs. Given distinct adjacent vertices u and v in a multigraph G, we let $\mu_{G}(u v)$ denote the number of edges between u and v. We let $t_{G}(u v)$ denote the maximum, over all vertices $w \notin\{u, v\}$, of the number of edges with both endpoints in $\{u, v, w\}$. That is,

$$
t_{G}(u v):=\max _{w \in N(u) \cap N(v)}\left(\mu_{G}(u v)+\mu_{G}(u w)+\mu_{G}(v w)\right) .
$$

We omit the subscripts when the multigraph in question is clear.
Observe that given an edge e in G with endpoints u and v, the degree of $u v$ in $L(G)$ is $d(u)+$ $d(v)-\mu(u v)-1$. And since any clique in $L(G)$ containing e comes from the edges incident to u, the edges incident to v, or the edges in a triangle containing u and v, we can see that $\omega(v)$ in $L(G)$ is equal to $\max \{d(u), d(v), t(u v)\}$. Therefore we prove the following theorem, which, aside from the algorithmic claim, is equivalent to proving Conjecture 3 for line graphs:
5.2.1. Let G be a multigraph on m edges, and let

$$
\begin{align*}
\gamma_{l}^{\prime}(G):= & \max _{u v \in E(G)}\left\lceil\operatorname { m a x } \left\{ d(u)+\frac{1}{2}(d(v)-\mu(v u)),\right.\right. \\
d(v) & +\frac{1}{2}(d(u)-\mu(u v)) \tag{5.1}\\
& \left.\left.\frac{1}{2}\left(d(u)+d(v)-\mu_{G}(u v)+t(u v)\right)\right\}\right\rceil .
\end{align*}
$$

Then $\chi^{\prime}(G) \leq \gamma_{l}^{\prime}(G)$, and we can find a $\gamma_{l}^{\prime}(G)$-edge-coloring of G in $O\left(m^{2}\right)$ time.

The most intuitive approach to achieving this bound on the chromatic index involves assuming that G is a minimum counterexample, then characterizing $\gamma_{l}^{\prime}(G)$-edge-colorings of $G-e$ for an edge e. We want an algorithmic result, so we will have to be a bit more careful to ensure that we can modify partial $\gamma_{l}^{\prime}(G)$-edge-colorings efficiently until we find one that we can extend to a complete $\gamma_{l}^{\prime}(G)$-edge-coloring of G.

Our $O\left(m^{2}\right)$-time algorithm requires time-efficient data structures, i.e. a combination of lists and matrices. Our algorithm will build the multigraph one edge at a time, maintaining a proper k-edgecoloring at each step (in this case, $k=\gamma_{l}^{\prime}(G)$). We may assume we are given vertices 1 to n and a multiset of m edges, which we first sort at a cost of $O(m \log m)$ time, then add to the graph in lexicographic order. We may also assume that G contains no isolated vertices.

As we build the multigraph we maintain an $n \times n$ adjacency matrix, each cell of which contains a list of edges between the two vertices in question. We also maintain a sorted list of neighbors for each vertex, and a sorted list of edges incident to each vertex. Further, we maintain a $k \times n$ color-vertex incidence matrix, and for each vertex v two lists: a list of the colors appearing on an edge incident to v, and a list of the colors not incident to v. All these structures shall be connected with appropriate links. For example, if color c does not appear at vertex v, the corresponding cell of the color-vertex incidence matrix will be linked to the corresponding node in the list of colors absent at v. If c does appear at v, the cell will be linked to the corresponding node in the list of colors incident to v, as well as to the edge incident to v with color c.

To initialize the coloring data structures we first need to determine $\gamma_{l}^{\prime}(G)$. After building the multigraph in time $O(n m) \subseteq O\left(m^{2}\right)$, for each edge $u v$ we can determine $d(u), d(v), \mu(u v)$, and $t(u v)$ in $O(n)$ time. So we can determine $\gamma_{l}^{\prime}(G)$ in $O(n m)$ time and initialize the structures in $O\left(n m+\gamma_{l}^{\prime}(G) n\right) \subseteq O\left(m^{2}\right)$ time.

These structures allow us to update efficiently: When we add an edge to the multigraph, the fact that the edges are presorted allows us to update all lists and matrices in constant time. When changing the color of an edge, the interlinkedness of the matrices and lists allows us to update in constant time.

We begin by defining, for a vertex v, a fan hinged at v. Let e be an edge incident to v, and let v_{1}, \ldots, v_{ℓ} be a set of distinct neighbors of v with e between v and v_{1}. Let $c: E \backslash\{e\} \rightarrow\{1, \ldots, k\}$ be a proper edge coloring of $G \backslash\{e\}$ for some fixed k. Then $F=\left(e ; c ; v ; v_{1}, \ldots, v_{\ell}\right)$ is a $f a n$ if for every j such that $2 \leq j \leq \ell$, there exists some i less than j such that some edge between v and v_{j} is assigned a color that does not appear on any edge incident to v_{i} (i.e. a color missing at v_{i}). We say that F is hinged at v. If there is no $u \notin\left\{v, v_{1}, \ldots, v_{\ell}\right\}$ such that $F^{\prime}=\left(e ; c ; v ; v_{1}, \ldots, v_{\ell}, u\right)$ is a fan, we say that F is a maximal fan. The size of a fan refers to the number of neighbors of the hinge vertex contained in the fan (in this case, ℓ). These fans generalize Vizing's fans, originally used in
the proof of Vizing's theorem [37]. Given a partial k-edge-coloring of G and a vertex w, we say that a color is incident to w if the color appears on an edge incident to w. We use $\mathcal{C}(w)$ to denote the set of colors incident to w, and we use $\overline{\mathcal{C}}(w)$ to denote $[k] \backslash \mathcal{C}(w)$.

Fans allow us to modify partial k-edge-colorings of a graph (specifically those with exactly one uncolored edge). We will show that if $k \geq \gamma_{l}^{\prime}(G)$, then either every maximal fan has size 2 or we can easily find a k-edge-coloring of G. For more general results related to fans, see [35]. We first prove that we can construct a k-edge-coloring of G from a partial k-edge-coloring of $G-e$ whenever we have a fan for which certain sets are not disjoint.
5.2.2. For some edge e in a multigraph G and positive integer k, let c be a k-edge-coloring of $G-e$. If there is a fan $F=\left(e ; c ; v ; v_{1}, \ldots, v_{\ell}\right)$ such that for some $j, \overline{\mathcal{C}}(v) \cap \overline{\mathcal{C}}\left(v_{j}\right) \neq \emptyset$, then we can find a k-edge-coloring of G in $O(k+m)$ time.

Proof. Let j be the minimum index for which $\overline{\mathcal{C}}(v) \cap \overline{\mathcal{C}}\left(v_{j}\right)$ is nonempty. If $j=1$, then the result is trivial, since we can extend c to a proper k-edge-coloring of G. Otherwise $j \geq 2$ and we can find j in $O(m)$ time. We define e_{1} to be e. We then construct a function $f:\{2, \ldots, \ell\} \rightarrow\{1, \ldots, \ell-1\}$ such that for each i, (1) $f(i)<i$ and (2) there is an edge e_{i} between v and v_{i} such that $c\left(e_{i}\right)$ is missing at $v_{f(i)}$. We can find this function in $O(k+m)$ time by building a list of the earliest v_{i} at which each color is missing, and computing f for increasing values of i starting at 2 . While doing so we also find the set of edges $\left\{e_{i}\right\}_{i=2}^{\ell}$.

We construct a k-edge-coloring c_{j} of $G-e_{j}$ from c by shifting the color $c\left(e_{j}\right)$ from e_{j} to $e_{f(j)}$, shifting the color $c\left(e_{f(j)}\right)$ from $e_{f(j)}$ to $e_{f(f(j))}$, and so on, until we shift a color to e. We now have a k-edge-coloring c_{j} of $G-e_{j}$ such that some color is missing at both v and v_{j}. We can therefore extend c_{j} to a proper k-edge-coloring of G in $O(k+m)$ time.
5.2.3. For some edge e in a multigraph G and positive integer k, let c be a k-edge-coloring of $G-e$. If there is a fan $F=\left(e ; c ; v ; v_{1}, \ldots, v_{\ell}\right)$ such that for some i and j satisfying $1 \leq i<j \leq \ell$, $\overline{\mathcal{C}}\left(v_{i}\right) \cap \overline{\mathcal{C}}\left(v_{j}\right) \neq \emptyset$, then we can find v_{i} and v_{j} in $O(k+m)$ time, and we can find a k-edge-coloring of G in $O(k+m)$ time.

Proof. We can easily find i and j in $O(k+m)$ time if they exist. Let α be a color in $\overline{\mathcal{C}}(v)$ and let β be a color in $\overline{\mathcal{C}}\left(v_{i}\right) \cap \overline{\mathcal{C}}\left(v_{j}\right)$. Note that by 5.2.2, we can assume $\alpha \in \mathcal{C}\left(v_{i}\right) \cap \mathcal{C}\left(v_{j}\right)$ and $\beta \in \mathcal{C}(v)$.

Let $G_{\alpha, \beta}$ be the subgraph of G containing those edges colored α or β. Every component of $G_{\alpha, \beta}$ containing v, v_{i}, or v_{j} is a path on ≥ 2 vertices. Thus either v_{i} or v_{j} is in a component of $G_{\alpha, \beta}$ not containing v. Exchanging the colors α and β on this component leaves us with a k-edge-coloring of $G-e$ in which either $\overline{\mathcal{C}}(v) \cap \overline{\mathcal{C}}\left(v_{i}\right) \neq \emptyset$ or $\overline{\mathcal{C}}(v) \cap \overline{\mathcal{C}}\left(v_{j}\right) \neq \emptyset$. This allows us to apply 5.2.2 to find a k-edge-coloring of G. We can easily do this work in $O(m)$ time.

The previous two lemmas suggest that we can extend a coloring more easily when we have a large fan, so we now consider how we can extend a fan that is not maximal. Given a fan $F=\left(e ; c ; v ; v_{1}, \ldots, v_{\ell}\right)$, we use $d(F)$ to denote $d(v)+\sum_{i=1}^{\ell} d\left(v_{i}\right)$.
5.2.4. For some edge e in a multigraph G and integer $k \geq \Delta(G)$, let c be a k-edge-coloring of $G-e$ and let F be a fan. Then we can extend F to a maximal fan $F^{\prime}=\left(e ; c ; v ; v_{1}, v_{2}, \ldots, v_{\ell}\right)$ in $O\left(k+d\left(F^{\prime}\right)\right)$ time.

Proof. We proceed by setting $F^{\prime}=F$ and extending F^{\prime} until it is maximal. To this end we maintain two color sets. The first, \mathcal{C}, consists of those colors appearing incident to v but not between v and another vertex of F^{\prime}. The second, $\overline{\mathcal{C}}_{F^{\prime}}$, consists of those colors that are in \mathcal{C} and are missing at some fan vertex. Clearly F^{\prime} is maximal if and only if $\overline{\mathcal{C}}_{F^{\prime}}=\emptyset$. We can perform this initialization in $O(k+d(F))$ time by counting the number of times each color in \mathcal{C} appears incident to a vertex of the fan.

Now suppose we have $F^{\prime}=\left(e ; c ; v ; v_{1}, v_{2}, \ldots, v_{\ell}\right)$, along with sets \mathcal{C} and $\overline{\mathcal{C}}_{F^{\prime}}$, which we may assume is not empty. Take an edge incident to v with a color in $\overline{\mathcal{C}}_{F}$; call its other endpoint $v_{\ell+1}$. We now update \mathcal{C} by removing all colors appearing between v and $v_{\ell+1}$. We update $\overline{\mathcal{C}}_{F^{\prime}}$ by removing all colors appearing between v and $v_{\ell+1}$, and adding all colors in $\mathcal{C} \cap \overline{\mathcal{C}}\left(v_{\ell+1}\right)$. Set $F^{\prime}=\left(e ; c ; v ; v_{1}, v_{2}, \ldots, v_{\ell+1}\right)$. We can perform this update in $d\left(v_{\ell+1}\right)$ time; the lemma follows.

We can now prove that if $k \geq \gamma_{l}^{\prime}(G)$ and we have a maximal fan of size 1 or at least 3 , we can find a k-edge-coloring of G in $O(k+m)$ time.
5.2.5. For some edge e in a multigraph G and positive integer $k \geq \gamma_{l}^{\prime}(G)$, let c be a k-edge-coloring of $G-e$ and let $F=\left(e ; c ; v ; v_{1}\right)$ be a fan. If F is a maximal fan we can find a k-edge-coloring of G in $O(k+m)$ time.

Proof. If $\overline{\mathcal{C}}(v) \cap \overline{\mathcal{C}}\left(v_{1}\right)$ is nonempty, then we can easily extend the coloring of $G-e$ to a k-edgecoloring of G. So assume $\overline{\mathcal{C}}(v) \cap \overline{\mathcal{C}}\left(v_{1}\right)$ is empty. Since $k \geq \gamma_{l}^{\prime}(G) \geq d\left(v_{1}\right), \overline{\mathcal{C}}\left(v_{1}\right)$ is nonempty. Therefore there is a color in $\overline{\mathcal{C}}\left(v_{1}\right)$ appearing on an edge incident to v whose other endpoint, call it v_{2}, is not v_{1}. Thus $\left(e ; c ; v ; v_{1}, v_{2}\right)$ is a fan, contradicting the maximality of F.
5.2.6. For some edge e in a multigraph G and positive integer $k \geq \gamma_{l}^{\prime}(G)$, let c be a k-edge-coloring of $G-e$ and let $F=\left(e ; c ; v ; v_{1}, v_{2}, \ldots, v_{\ell}\right)$ be a maximal fan with $\ell \geq 3$. Then we can find a k-edge-coloring of G in $O(k+m)$ time.

Proof. Let v_{0} denote v for ease of notation. If the sets $\overline{\mathcal{C}}\left(v_{0}\right), \overline{\mathcal{C}}\left(v_{1}\right), \ldots, \overline{\mathcal{C}}\left(v_{\ell}\right)$ are not all pairwise disjoint, then using 5.2.2 or 5.2.3 we can find a k-edge-coloring of G in $O(m)$ time. We can easily determine whether or not these sets are pairwise disjoint in $O(k+m)$ time. Now assume they are all pairwise disjoint; we will exhibit a contradiction, which is enough to prove the lemma.

The number of missing colors at v_{i}, i.e. $\left|\overline{\mathcal{C}}\left(v_{i}\right)\right|$, is $k-d\left(v_{i}\right)$ if $2 \leq i \leq \ell$, and $k-d\left(v_{i}\right)+1$ if $i \in\{0,1\}$. Since F is maximal, any edge with one endpoint v_{0} and the other endpoint outside $\left\{v_{0}, \ldots, v_{\ell}\right\}$ must have a color not appearing in $\cup_{i=0}^{\ell} \overline{\mathcal{C}}\left(v_{i}\right)$. Therefore

$$
\begin{equation*}
\left(\sum_{i=0}^{\ell} k-d\left(v_{i}\right)\right)+2+\left(d\left(v_{0}\right)-\sum_{i=1}^{\ell} \mu\left(v_{0} v_{i}\right)\right) \leq k . \tag{5.2}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\ell k+2-\sum_{i=1}^{\ell} \mu\left(v_{0} v_{i}\right) \leq \sum_{i=1}^{\ell} d\left(v_{i}\right) \tag{5.3}
\end{equation*}
$$

But since $k \geq \gamma_{l}^{\prime}(G)$, 5.1] tells us that for all $i \in[\ell]$,

$$
\begin{equation*}
d\left(v_{i}\right)+\frac{1}{2}\left(d\left(v_{0}\right)-\mu\left(v_{0} v_{i}\right)\right) \leq k \tag{5.4}
\end{equation*}
$$

Thus substituting for k tells us

$$
\sum_{i=1}^{\ell} \frac{d\left(v_{0}\right)+2 d\left(v_{i}\right)-\mu\left(v_{0} v_{i}\right)}{2}+2-\sum_{i=1}^{\ell} \mu\left(v_{0} v_{i}\right) \leq \sum_{i=1}^{\ell} d\left(v_{i}\right) .
$$

So

$$
\begin{aligned}
2+\frac{1}{2} \ell d\left(v_{0}\right)-\frac{3}{2} \sum_{i=1}^{\ell} \mu\left(v_{0} v_{i}\right) & \leq 0 \\
2+\frac{1}{2} \ell d\left(v_{0}\right) & \leq \frac{3}{2} \sum_{i=1}^{\ell} \mu\left(v_{0} v_{i}\right) \\
\frac{\ell}{2} d\left(v_{0}\right) & <\frac{3}{2} d\left(v_{0}\right) .
\end{aligned}
$$

This is a contradiction, since $\ell \geq 3$.
We are now ready to prove the main lemma of this section.
5.2.7. For some edge e_{0} in a multigraph G and positive integer $k \geq \gamma_{l}^{\prime}(G)$, let c_{0} be a k-edge-coloring of $G-e$. Then we can find a k-edge-coloring of G in $O(k+m)$ time.

As we will show, this lemma easily implies 5.2.1. We approach this lemma by constructing a sequence of overlapping fans of size two until we can apply a previous lemma. If we cannot do this, then our sequence results in a cycle in G and a set of partial k-edge-colorings of G with a very specific structure that leads us to a contradiction.

Proof of 5.2.7. We postpone algorithmic considerations until the end of the proof.
Let v_{0} and v_{1} be the endpoints of e_{0}, and let $F_{0}=\left(e_{0} ; c_{0} ; v_{1} ; v_{0}, u_{1}, \ldots, u_{\ell}\right)$ be a maximal fan. If $\left|\left\{u_{1}, \ldots, u_{\ell}\right\}\right| \neq 1$, then we can apply 5.2.5 or 5.2.6. More generally, if at any time we find a fan of size three or more we can finish by applying 5.2.6. So assume $\left\{u_{1}, \ldots, u_{\ell}\right\}$ is a single vertex; call it v_{2}.

Let $\overline{\mathcal{C}}_{0}$ denote the set of colors missing at v_{0} in the partial coloring c_{0}, and take some color $\alpha_{0} \in \overline{\mathcal{C}}_{0}$. Note that if α_{0} does not appear on an edge between v_{1} and v_{2}, then α_{0} appears between v_{1} and a vertex $u \notin\left\{v_{0}, v_{1}, v_{2}\right\}$, so there is a fan $\left(e_{0} ; c_{0} ; v_{1} ; v_{0}, v_{2}, u\right)$ of size 3 and apply 5.2.6 to complete the coloring. So we can assume that α_{0} does appear on an edge between v_{1} and v_{2}.

Let e_{1} denote the edge between v_{1} and v_{2} given color α_{0} in c_{0}. We construct a new coloring c_{1} of $G-e_{1}$ from c_{0} by uncoloring e_{1} and assigning e_{0} color α_{0}. Let $\overline{\mathcal{C}}_{1}$ denote the set of colors missing at v_{1} in the coloring c_{1}. Now let $F_{1}=\left(e_{1} ; c_{1} ; v_{2} ; v_{1}, v_{3}\right)$ be a maximal fan. As with F_{0}, we can assume that F_{1} exists and is indeed maximal. The vertex v_{3} may or may not be the same as v_{0}.

Let $\alpha_{1} \in \overline{\mathcal{C}}_{1}$ be a color in $\overline{\mathcal{C}}_{1}$. Just as α_{0} appears between v_{1} and v_{2} in c_{0}, we can see that α_{1} appears between v_{2} and v_{3}. Now let e_{2} be the edge between v_{2} and v_{3} having color α_{1} in c_{1}. We construct a coloring c_{2} of $G-e_{2}$ from c_{1} by uncoloring e_{2} and assigning e_{1} color α_{1}.

We continue to construct a sequence of fans $F_{i}=\left(e_{i}, c_{i} ; v_{i+1} ; v_{i}, v_{i+2}\right)$ for $i=0,1,2, \ldots$ in this way, maintaining the property that $\alpha_{i+2}=\alpha_{i}$. This is possible because when we construct c_{i+1} from c_{i}, we make α_{i} available at v_{i+2}, so the set $\overline{\mathcal{C}}_{i+2}$ (the set of colors missing at v_{i+2} in the coloring c_{i+2}) always contains α_{i}. We continue constructing our sequence of fans until we reach some j for
which $v_{j} \in\left\{v_{i}\right\}_{i=0}^{j-1}$, which will inevitably happen if we never find a fan of size 3 or greater. We claim that $v_{j}=v_{0}$ and j is odd. To see this, consider the original edge-coloring of $G-e_{0}$ and note that for $1 \leq i \leq j-1, \alpha_{0}$ appears on an edge between v_{i} and v_{i+1} precisely if i is odd, and α_{1} appears on an edge between v_{i} and v_{i+1} precisely if i is even. Thus since the edges of color α_{0} form a matching, and so do the edges of color α_{1}, we indeed have $v_{j}=v_{0}$ and j odd. Furthermore $F_{0}=F_{j}$. Let C denote the cycle $v_{0}, v_{1}, \ldots, v_{j-1}$. In each coloring, α_{0} and α_{1} both appear $(j-1) / 2$ times on C, in a near-perfect matching. Let H be the sub-multigraph of G consisting of those edges between v_{i} and v_{i+1} for $0 \leq j \leq j-1$ (with indices modulo j). Let A be the set of colors missing on at least one vertex of C, and let H_{A} be the sub-multigraph of H consisting of e_{0} and those edges receiving a color in A in c_{0} (and therefore in any c_{i}).

Suppose $j=3$. If some color is missing on two vertices of C in c_{0}, c_{1}, or c_{2}, we can easily find a k-edge-coloring of G since any two vertices of C are the endpoints of e_{0}, e_{1}, or e_{2}. We know that every color in $\overline{\mathcal{C}}_{0}$ appears between v_{1} and v_{2}, and every color in $\overline{\mathcal{C}}_{1}$ appears between v_{2} and $v_{3}=v_{0}$. Therefore $\left|E\left(H_{A}\right)\right|=|A|+1$. Therefore

$$
\begin{aligned}
2 \gamma_{l}^{\prime}(G) & \geq d_{G}\left(v_{0}\right)+d_{G}\left(v_{1}\right)+t_{G}\left(v_{0} v_{1}\right)-\mu_{G}\left(v_{0} v_{1}\right) \\
& =d_{H_{A}}\left(v_{0}\right)+d_{H_{A}}\left(v_{1}\right)+2(k-|A|)+t_{G}\left(v_{0} v_{1}\right)-\mu_{G}\left(v_{0} v_{1}\right) \\
& \geq d_{H_{A}}\left(v_{0}\right)+d_{H_{A}}\left(v_{1}\right)+2(k-|A|)+t_{H_{A}}\left(v_{0} v_{1}\right)-\mu_{H_{A}}\left(v_{0} v_{1}\right) \\
& \geq 2\left|E\left(H_{A}\right)\right|+2(k-|A|) \\
& >2|A|+2(k-|A|)=2 k
\end{aligned}
$$

This is a contradiction since $k \geq \gamma_{l}^{\prime}(G)$. We can therefore assume that $j \geq 5$.
Let β be a color in $A \backslash\left\{\alpha_{0}, \alpha_{1}\right\}$. If β is missing at two consecutive vertices v_{i} and v_{i+1}, then we can easily extend c_{i} to a k-edge-coloring of G. Bearing in mind that each F_{i} is a maximal fan, we claim that if β is not missing at two consecutive vertices, then either we can easily k-edge-color G, or the number of edges colored β in H_{A} is at least twice the number of vertices at which β is missing in any c_{i}.

To prove this claim, first assume without loss of generality that $\beta \in \overline{\mathcal{C}}_{0}$. Since β is not missing at v_{1}, β appears on an edge between v_{1} and v_{2} for the same reason that α_{0} does. Likewise, since β is not missing at v_{j-1}, β appears on an edge between v_{j-1} and v_{j-2}. Finally, suppose β appears between v_{1} and v_{2}, and is missing at v_{3} in c_{0}. Then let e_{β} be the edge between v_{1} and v_{2} with color
β in c_{0}. We construct a coloring c_{0}^{\prime} from c_{0} by giving e_{2} color β and giving e_{β} color α_{1} (i.e. we swap the colors of e_{β} and e_{2}). Thus c_{0}^{\prime} is a k-edge-coloring of $G-e_{0}$ in which β is missing at both v_{0} and v_{1}. We can therefore extend $G-e_{0}$ to a k-edge-coloring of G. Thus if β is missing at v_{3} or v_{j-3} we can easily k-edge-color G. We therefore have at least two edges of H_{A} colored β for every vertex of C at which β is missing, and we do not double-count edges. This proves the claim, and the analogous claim for any color in A also holds.

Now we have

$$
\begin{equation*}
\sum_{i=0}^{j-1} \mu_{H_{A}}\left(v_{i} v_{i+1}\right)=\left|E\left(H_{A}\right)\right|>2 \sum_{i=0}^{j-1}\left(k-d_{G}\left(v_{i}\right)\right) \tag{5.5}
\end{equation*}
$$

Therefore taking indices modulo j, we have

$$
\begin{equation*}
\sum_{i=0}^{j-1}\left(d_{G}\left(v_{i}\right)+\frac{1}{2} \mu_{H_{A}}\left(v_{i+1} v_{i+2}\right)\right)>j k . \tag{5.6}
\end{equation*}
$$

Therefore there exists some index i for which

$$
\begin{equation*}
d_{G}\left(v_{i}\right)+\frac{1}{2} \mu_{H_{A}}\left(v_{i+1} v_{i+2}\right)>k . \tag{5.7}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
k \geq d_{G}\left(v_{i}\right)+\frac{1}{2} \mu_{G}\left(v_{i+1} v_{i+2}\right)>k . \tag{5.8}
\end{equation*}
$$

This is a contradiction, so we can indeed find a k-edge-coloring of G. It remains to prove that we can do so in $O(k+m)$ time.

Given the coloring c_{i}, we can construct the fan $F_{i}=\left(e_{i}, c_{i} ; v_{i+1} ; v_{i}, v_{i+2}\right)$ and determine whether or not it is maximal in $O\left(k+d\left(F_{i}\right)\right)$ time. If it is not maximal, we can complete the k-edge-coloring of G in $O(m)$ time; this will happen at most once throughout the entire process. Therefore we will either complete the coloring or construct our cycle of fans F_{0}, \ldots, F_{j-1} in $O\left(\sum_{i=0}^{j-1}\left(k+d\left(F_{i}\right)\right)\right)$ time. This is not the desired bound, so suppose there is an index i for which $k>d\left(F_{i}\right)$. In this case we certainly have two intersecting sets of available colors in F_{i}, so we can apply 5.2.2 or 5.2.3 when we arrive at F_{i}, and find the k-edge-coloring of G in $O(k+m)$ time. If no such i exists, then $j k=O\left(\sum_{i=0}^{j-1}\left(d\left(F_{i}\right)\right)\right)=O(m)$, and we indeed complete the construction of all fans in $O(k+m)$ time.

Since each F_{i} is a maximal fan, in c_{0} there must be some color $\beta \notin\left\{\alpha_{0}, \alpha_{1}\right\}$ missing at two consecutive vertices v_{i} and v_{i+1}, otherwise we reach a contradiction. To find β and i, we first check
for any i for which $\left|\overline{\mathcal{C}}_{i}\right|>d\left(v_{i+1}\right)$, which we can easily do in $O(m)$ time - such an i guarantees a $\beta \in \overline{\mathcal{C}}_{i} \cap \overline{\mathcal{C}}_{i+1}$, which we can find in $O(k)$ time. If such a trivial i does not exist, we search for a satisfying i by comparing $\overline{\mathcal{C}}_{i}$ for each i from 0 to j. We can do this in $O\left(\left|\overline{\mathcal{C}}_{i}\right|+\left|\overline{\mathcal{C}}_{i+1}\right|\right)$ time for each i, and since each i satisfies $\left|\overline{\mathcal{C}}_{i}\right| \leq d\left(v_{i+1}\right)$, this takes $O(m)$ time in total. Therefore the entire operation takes $O(k+m)$ time.

We now complete the proof of 5.2.1.
Proof of 5.2.1. Let $k=\gamma_{l}^{\prime}(G)$. As noted in Section 5.2, we can compute k in $O\left(m^{2}\right)$ time. Taking the (lexicographically presorted) edges e_{1}, \ldots, e_{m} of G, for $i=0, \ldots, m$ let G_{i} denote the subgraph of G on edges $\left\{e_{j} \mid j \leq i\right\}$. Since G_{0} is empty it is vacuously k-edge-colored. Given a k-edgecoloring of G_{i}, we can find a k-edge-coloring of G_{i+1} in $O(k+m)$ time by applying 5.2.7. Since $k=\gamma_{l}^{\prime}(G)=O(m)$, each augmentation step takes $O(m)$ time, for a total running time of $O\left(m^{2}\right)$. The theorem follows.

This gives us the following result for line graphs, since for any multigraph G we have $|V(L(G))|=$ $|E(G)|$:
5.2.8. Given a line graph G on n vertices, we can find a proper coloring of G using $\gamma_{l}(G)$ colors in $O\left(n^{2}\right)$ time.

Proof. To $\gamma_{l}(G)$-color G we first find a multigraph H such that $G=L(H)$, then we apply 5.2.1. As discussed in 21] §4.2.3, we can construct H from G in $O(|E(G)|)$ time using one of a number of known algorithms.

This is faster than the algorithm of King, Reed, and Vetta [23] for $\gamma(G)$-coloring line graphs, which is given an improved complexity bound of $O\left(n^{5 / 2}\right)$ in [21], §4.2.3.

5.3 Quasi-line Graphs

We now leave the setting of edge colorings of multigraphs and consider vertex colorings of simple graphs. As mentioned in the introduction, we can extend Conjecture 3 from line graphs to quasi-line graphs using the same approach that King and Reed used to extend Conjecture 2 from line graphs to quasi-line graphs in [22]. We do not require the full power of Chudnovsky and Seymour's structure
theorem for quasi-line graphs [14]. Instead, we use a simpler decomposition theorem from [10]. Our proof of 5.1.3 yields a polytime $\gamma_{l}(G)$-coloring algorithm; we sketch a bound on its complexity at the end of the section.

We wish to describe the structure of quasi-line graphs. If a quasi-line graph does not contain a certain type of homogeneous pair of cliques, then it is either a circular interval graph or built as a generalization of a line graph - where in a line graph we would replace each edge with a vertex, we now replace each edge with a linear interval graph. We now describe this structure more formally, which is equivalent to the quasi-line trigraph decomposition that we used in Chapter 3. We restate here the decomposition in term of graphs and reintroduce some definition for completeness. It is important to notice that in this chapter, we take the view of gluing strips together into 'composition of linear interval strips', where in Chapter 3 and Chapter 4 we took the opposite approach of decomposing 'linear interval joins' and 'strip structures' into strips.

A linear interval graph is a graph $G=(V, E)$ with a linear interval representation, which is a point on the real line for each vertex and a set of intervals, such that vertices u and v are adjacent in G precisely if there is an interval containing both corresponding points on the real line. If X and Y are specified cliques in G consisting of the $|X|$ leftmost and $|Y|$ rightmost vertices (with respect to the real line) of G respectively, we say that X and Y are end-cliques of G. These cliques may be empty.

Accordingly, a circular interval graph is a graph with a circular interval representation, i.e. $|V|$ points on the unit circle and a set of intervals (arcs) on the unit circle such that two vertices of G are adjacent precisely if some arc contains both corresponding points. Circular interval graphs are the first of two fundamental types of quasi-line graph. Deng, Hell, and Huang proved that we can identify and find a representation of a circular or linear interval graph in $O(m)$ time 16 .

We now describe the second fundamental type of quasi-line graph.
A linear interval strip (S, X, Y) is a linear interval graph S with specified end-cliques X and Y. We compose a set of strips as follows. We begin with an underlying directed multigraph H, possibly with loops, and for every every edge e of H we take a linear interval strip (S_{e}, X_{e}, Y_{e}). For $v \in V(H)$ we define the hub clique C_{v} as

$$
C_{v}=\left(\bigcup\left\{X_{e} \mid e \text { is an edge out of } v\right\}\right) \cup\left(\bigcup\left\{Y_{e} \mid e \text { is an edge into } v\right\}\right) .
$$

We construct G from the disjoint union of $\left\{S_{e} \mid e \in E(H)\right\}$ by making each C_{v} a clique; G is then
a composition of linear interval strips. Let G_{h} denote the subgraph of G induced on the union of all hub cliques. That is,

$$
G_{h}=G\left[\cup_{v \in V(H)} C_{v}\right]=G\left[\cup_{e \in E(H)}\left(X_{e} \cup Y_{e}\right)\right] .
$$

Compositions of linear interval strips generalize line graphs: note that if each S_{e} satisfies $\left|S_{e}\right|=$ $\left|X_{e}\right|=\left|Y_{e}\right|=1$ then $G=G_{h}=L(H)$.

A pair of disjoint nonempty cliques (A, B) in a graph is a homogeneous pair of cliques if $|A|+$ $|B| \geq 3$, every vertex outside $A \cup B$ is adjacent to either all or none of A, and every vertex outside $A \cup B$ is adjacent to either all or none of B. Furthermore (A, B) is nonlinear if G contains an induced C_{4} in $A \cup B$ (this condition is equivalent to insisting that the subgraph of G induced by $A \cup B$ is a linear interval graph).

Chudnovsky and Seymour's structure theorem for quasi-line graphs 10 tells us that any quasiline graph not containing a clique- cutset is made from the building blocks we just described.
5.3.1. Any quasi-line graph containing no clique-cutset and no nonlinear homogeneous pair of cliques is either a circular interval graph or a composition of linear interval strips.

To prove 5.1.3, we first explain how to deal with circular interval graphs and nonlinear homogeneous pairs of cliques, then move on to considering how to decompose a composition of linear interval strips.

We can easily prove Conjecture 3 for circular interval graphs by combining previously known results. Niessen and Kind proved that every circular interval graph G satisfies $\chi(G)=\left\lceil\chi_{f}(G)\right\rceil$ [29], so 5.1.2 immediately implies that Conjecture 3 holds for circular interval graphs. Furthermore Shih and Hsu [32] proved that we can optimally color circular interval graphs in $O\left(n^{3 / 2}\right)$ time, which gives us the following result:
5.3.2. Given a circular interval graph G on n vertices, we can $\gamma_{l}(G)$-color G in $O\left(n^{3 / 2}\right)$ time.

There are many lemmas of varying generality that tell us we can easily deal with nonlinear homogeneous pairs of cliques; we use the version used by King and Reed [22] in their proof of Conjecture 2 for quasi-line graphs:
5.3.3. Let G be a quasi-line graph on n vertices containing a nonlinear homogeneous pair of cliques (A, B). In $O\left(n^{5 / 2}\right)$ time we can find a proper subgraph G^{\prime} of G such that G^{\prime} is quasi-line, $\chi\left(G^{\prime}\right)=$ $\chi(G)$, and given a k-coloring of G^{\prime} we can find a k-coloring of G in $O\left(n^{5 / 2}\right)$ time.

It follows immediately that no minimum counterexample to 5.1 .3 contains a nonlinear homogeneous pair of cliques.

5.4 Decomposing Quasi-line Graphs

Decomposing graphs on clique-cutsets for the purpose of finding vertex colorings is straightforward and well understood.

For any monotone bound on the chromatic number for a hereditary class of graphs, no minimum counterexample can contain a clique-cutset, since we can simply "paste together" two partial colorings on a clique-cutset. Tarjan 36] gave an $O(\mathrm{~nm})$-time algorithm for constructing a clique-cutset decomposition tree of any graph, and noted that given k-colorings of the leaves of this decomposition tree, we can construct a k-coloring of the original graph in $O\left(n^{2}\right)$ time. Therefore if we can $\gamma_{l}(G)$-color any quasi-line graph containing no clique-cutset in $O(f(n, m))$ time for some function f, we can $\gamma_{l}(G)$-color any quasi-line graph in $O(f(n, m)+n m)$ time.

If the multigraph H contains a loop or a vertex of degree 1 , then as long as G is not a clique, it will contain a clique-cutset.

A canonical interval 2-join is a composition by which a linear interval graph is attached to another graph. Canonical interval 2-joins arise from compositions of strips, and can be viewed as a local decomposition rather than one that requires knowledge of a graph's global structure as a composition of strips.

Given four cliques X_{1}, Y_{1}, X_{2}, and Y_{2}, we say that $\left(\left(V_{1}, X_{1}, Y_{1}\right),\left(V_{2}, X_{2}, Y_{2}\right)\right)$ is an interval 2-join if it satisfies the following:

- $V(G)$ can be partitioned into nonempty V_{1} and V_{2} with $X_{1} \cup Y_{1} \subseteq V_{1}$ and $X_{2} \cup Y_{2} \subseteq V_{2}$ such that for $v_{1} \in V_{1}$ and $v_{2} \in V_{2}, v_{1} v_{2}$ is an edge precisely if $\left\{v_{1}, v_{2}\right\}$ is in $X_{1} \cup X_{2}$ or $Y_{1} \cup Y_{2}$.
- $G \mid V_{2}$ is a linear interval graph with end-cliques X_{2} and Y_{2}.

If we also have X_{2} and Y_{2} disjoint, then we say $\left(\left(V_{1}, X_{1}, Y_{1}\right),\left(V_{2}, X_{2}, Y_{2}\right)\right)$ is a canonical interval 2-join. The following decomposition theorem is a straightforward consequence of the structure theorem for quasi-line graphs:
5.4.1. Let G be a quasi-line graph containing no nonlinear homogeneous pair of cliques. Then one of the following holds.

- G is a line graph
- G is a circular interval graph
- G contains a clique-cutset
- G admits a canonical interval 2-join.

Therefore to prove 5.1.3 it only remains to prove that a minimum counterexample cannot contain a canonical interval 2-join. Before doing so we must give some notation and definitions.

We actually need to bound a refinement of $\gamma_{l}(G)$. Given a canonical interval 2-join $\left(\left(V_{1}, X_{1}, Y_{1}\right),\left(V_{2}, X_{2}, Y_{2}\right)\right)$ in G with an appropriate partitioning V_{1} and V_{2}, let G_{1} denote $G \mid V_{1}$, let G_{2} denote $G \mid V_{2}$ and let H_{2} denote $G \mid\left(V_{2} \cup X_{1} \cup Y_{1}\right)$. For $v \in H_{2}$ we define $\omega^{\prime}(v)$ as the size of the largest clique in H_{2} containing v and not intersecting both $X_{1} \backslash Y_{1}$ and $Y_{1} \backslash X_{1}$, and we define $\gamma_{l}^{j}\left(H_{2}\right)$ as $\max _{v \in H_{2}}\left\lceil d_{G}(v)+1+\omega^{\prime}(v)\right\rceil$ (here the superscript j denotes join). Observe that $\gamma_{l}^{j}\left(H_{2}\right) \leq \gamma_{l}(G)$. If $v \in X_{1} \cup Y_{1}$, then $\omega^{\prime}(v)$ is $\left|X_{1}\right|+\left|X_{2}\right|,\left|Y_{1}\right|+\left|Y_{2}\right|$, or $\left|X_{1} \cap Y_{1}\right|+\omega\left(G \mid\left(X_{2} \cup Y_{2}\right)\right)$.

The following lemma is due to King and Reed and first appeared in [21] ; we include the proof for the sake of completeness.
5.4.2. Let G be a graph on n vertices and suppose G admits a canonical interval 2-join $\left(\left(V_{1}, X_{1}, Y_{1}\right),\left(V_{2}, X_{2}, Y_{2}\right)\right)$.

Then given a proper l-coloring of G_{1} for any $l \geq \gamma_{l}^{j}\left(H_{2}\right)$, we can find a proper l-coloring of G in $O(n m)$ time.

Since $\gamma_{l}^{j}\left(H_{2}\right) \leq \gamma_{l}(G)$, this lemma implies that no minimum counterexample to 5.1.3 contains a canonical interval 2-join.

It is easy to see that a minimum counterexample cannot contain a simplicial vertex (i.e. a vertex whose neighborhood is a clique). Therefore in a canonical interval 2-join $\left(\left(V_{1}, X_{1}, Y_{1}\right),\left(V_{2}, X_{2}, Y_{2}\right)\right)$ in a minimum counterexample, all four cliques X_{1}, Y_{1}, X_{2}, and Y_{2} must be nonempty.

Proof. We proceed by induction on l, observing that the case $l=1$ is trivial. We begin by modifying the coloring so that the number k of colors used in both X_{1} and Y_{1} in the l-coloring of G_{1} is maximal. That is, if a vertex $v \in X_{1}$ gets a color that is not seen in Y_{1}, then every color appearing in Y_{1} appears in $N(v)$. This can be done in $O\left(n^{2}\right)$ time. If l exceeds $\gamma_{l}^{j}\left(H_{2}\right)$ we can just remove a color class in G_{1} and apply induction on what remains. Thus we can assume that $l=\gamma_{l}^{j}\left(H_{2}\right)$ and so if we apply induction we must remove a stable set whose removal lowers both l and $\gamma_{l}^{j}\left(H_{2}\right)$.

We use case analysis; when considering a case we may assume no previous case applies. In some cases we extend the coloring of G_{1} to an l-coloring of G in one step. In other cases we remove a color class in G_{1} together with vertices in G_{2} such that everything we remove is a stable set, and when we remove it we reduce $\gamma_{l}^{j}(v)$ for every $v \in H_{2}$; after doing this we apply induction on l. Notice that if $X_{1} \cap Y_{1} \neq \emptyset$ and there are edges between X_{2} and Y_{2} we may have a large clique in H_{2} which contains some but not all of X_{1} and some but not all of Y_{1}; this is not necessarily obvious but we deal with it in every applicable case.

Case 1. $Y_{1} \subseteq X_{1}$.
H_{2} is a circular interval graph and X_{1} is a clique-cutset. We can $\gamma_{l}\left(H_{2}\right)$-color H_{2} in $O\left(n^{3 / 2}\right)$ time using 5.3.2. By permuting the color classes we can ensure that this coloring agrees with the coloring of G_{1}. In this case $\gamma_{l}\left(H_{2}\right) \leq \gamma_{l}^{j}\left(H_{2}\right) \leq l$ so we are done. By symmetry, this covers the case in which $X_{1} \subseteq Y_{1}$.

Case 2. $k=0$ and $l>\left|X_{1}\right|+\left|Y_{1}\right|$.
Here X_{1} and Y_{1} are disjoint. Take a stable set S greedily from left to right in G_{2}. By this we mean that we start with $S=\left\{v_{1}\right\}$, the leftmost vertex of X_{2}, and we move along the vertices of G_{2} in linear order, adding a vertex to S whenever doing so will leave S a stable set. So S hits X_{2}. If it hits Y_{2}, remove S along with a color class in G_{1} not intersecting $X_{1} \cup Y_{1}$; these vertices together make a stable set. If $v \in G_{2}$ it is easy to see that $\gamma_{l}^{j}(v)$ will drop: every remaining vertex in G_{2} either loses two neighbors or is in Y_{2}, in which case S intersects every maximal clique containing v. If $v \in X_{1} \cup Y_{1}$, then since X_{1} and Y_{1} are disjoint, $\omega^{\prime}(v)$ is either $\left|X_{1}\right|+\left|X_{2}\right|$ or $\left|Y_{1}\right|+\left|Y_{2}\right|$; in either case $\omega^{\prime}(v)$, and therefore $\gamma_{l}^{j}(v)$, drops when S and the color class are removed. Therefore $\gamma_{l}^{j}\left(H_{2}\right)$ drops, and we can proceed by induction.

If S does not hit Y_{2} we remove S along with a color class from G_{1} that hits Y_{1} (and therefore not X_{1}). Since $S \cap Y_{2}=\emptyset$ the vertices together make a stable set. Using the same argument as before we can see that removing these vertices drops both l and $\gamma_{l}^{j}\left(H_{2}\right)$, so we can proceed by induction.

Case 3. $k=0$ and $l=\left|X_{1}\right|+\left|Y_{1}\right|$.
Again, X_{1} and Y_{1} are disjoint. By maximality of k, every vertex in $X_{1} \cup Y_{1}$ has at least
$l-1$ neighbors in G_{1}. Since $l=\left|X_{1}\right|+\left|Y_{1}\right|$ we know that $\omega^{\prime}\left(X_{1}\right) \leq\left|X_{1}\right|+\left|Y_{1}\right|-\left|X_{2}\right|$ and $\omega^{\prime}\left(Y_{1}\right) \leq\left|X_{1}\right|+\left|Y_{1}\right|-\left|Y_{2}\right|$. Thus $\left|Y_{1}\right| \geq 2\left|X_{2}\right|$ and similarly $\left|X_{1}\right| \geq 2\left|Y_{2}\right|$. Assume without loss of generality that $\left|Y_{2}\right| \leq\left|X_{2}\right|$.

We first attempt to l-color $H_{2}-Y_{1}$, which we denote by H_{3}, such that every color in Y_{2} appears in X_{1} - this is clearly sufficient to prove the lemma since we can permute the color classes and paste this coloring onto the coloring of G_{1} to get a proper l-coloring of G. If $\omega\left(H_{3}\right) \leq l-\left|Y_{2}\right|$, then this is easy: we can $\omega\left(H_{3}\right)$-color the vertices of H_{3}, then use $\left|Y_{2}\right|$ new colors to recolor Y_{2} and $\left|Y_{2}\right|$ vertices of X_{1}. This is possible since Y_{2} and X_{1} have no edges between them.

Define b as $l-\omega\left(H_{3}\right)$; we can assume that $b<\left|Y_{2}\right|$. We want an $\omega\left(H_{3}\right)$-coloring of H_{3} such that at most b colors appear in Y_{2} but not X_{1}. There is some clique $C=\left\{v_{i}, \ldots, v_{i+\omega\left(H_{3}\right)-1}\right\}$ in H_{3}; this clique does not intersect X_{1} because $\left|X_{1} \cup X_{2}\right| \leq l-\frac{1}{2}\left|Y_{1}\right| \leq l-\left|Y_{2}\right|<l-b$. Denote by v_{j} the leftmost neighbor of v_{i}. Since $\gamma_{l}^{j}\left(v_{i}\right) \leq l$, it is clear that v_{i} has at most $2 b$ neighbors outside C, and since $b<\left|Y_{2}\right| \leq \frac{1}{2}\left|X_{1}\right|$ we can be assured that $v_{i} \notin X_{2}$. Since $\omega\left(H_{3}\right)>\left|Y_{2}\right|$, $v_{i} \notin Y_{2}$.

We now color H_{3} from left to right, modulo $\omega\left(H_{3}\right)$. If at most b colors appear in Y_{2} but not X_{1} then we are done, otherwise we will "roll back" the coloring, starting at v_{i}. That is, for every $p \geq i$, we modify the coloring of H_{3} by giving v_{p} the color after the one that it currently has, modulo $\omega\left(H_{3}\right)$. Since v_{i} has at most $2 b$ neighbors behind it, we can roll back the coloring at least $\omega\left(H_{3}\right)-2 b-1$ times for a total of $\omega\left(H_{3}\right)-2 b$ proper colorings of H_{3}.

Since $v_{i} \notin Y_{2}$ the colors on Y_{2} will appear in order modulo $\omega\left(H_{3}\right)$. Thus there are $\omega\left(H_{3}\right)$ possible sets of colors appearing on Y_{2}, and in $2 b+1$ of them there are at most b colors appearing in Y_{2} but not X_{1}. It follows that as we roll back the coloring of H_{3} we will find an acceptable coloring.

Henceforth we will assume that $\left|X_{1}\right| \geq\left|Y_{1}\right|$.
Case 4. $0<k<\left|X_{1}\right|$.
Take a stable set S in $G_{2}-X_{2}$ greedily from left to right. If S hits Y_{2}, we remove S from G, along with a color class from G_{1} intersecting X_{1} but not Y_{1}. Otherwise, we remove S along with a color class from G_{1} intersecting both X_{1} and Y_{1}. In either case it is a simple matter to confirm that $\gamma_{l}^{j}(v)$ drops for every $v \in H_{2}$ as we did in Case 2 . We proceed by induction.

Case 5. $k=\left|Y_{1}\right|=\left|X_{1}\right|=1$.
In this case $\left|X_{1}\right|=k=1$. If G_{2} is not connected, then X_{1} and Y_{1} are both clique-cutsets and we can proceed as in Case 1. If G_{2} is connected and contains an l-clique, then there is some $v \in V_{2}$ of degree at least l in the l-clique. Thus $\gamma_{l}^{j}\left(H_{2}\right)>l$, contradicting our assumption that $l \geq \gamma_{l}^{j}\left(H_{2}\right)$. So $\omega\left(G_{2}\right)<l$. We can $\omega\left(G_{2}\right)$-color G_{2} in linear time using only colors not appearing in $X_{1} \cup Y_{1}$, thus extending the l-coloring of G_{1} to a proper l-coloring of G.

Case 6. $k=\left|Y_{1}\right|=\left|X_{1}\right|>1$.
Suppose that k is not minimal. That is, suppose there is a vertex $v \in X_{1} \cup Y_{1}$ whose closed neighborhood does not contain all l colors in the coloring of G_{1}. Then we can change the color of v and apply Case 4 . So assume k is minimal.

Therefore every vertex in X_{1} has degree at least $l+\left|X_{2}\right|-1$. Since $X_{1} \cup X_{2}$ is a clique, $\gamma_{l}^{j}\left(H_{2}\right) \geq l \geq \frac{1}{2}\left(l+\left|X_{2}\right|+\left|X_{1}\right|+\left|X_{2}\right|\right)$, so $2\left|X_{2}\right| \leq l-k$. Similarly, $2\left|Y_{2}\right| \leq l-k$, so $\left|X_{2}\right|+\left|Y_{2}\right| \leq l-k$. Since there are $l-k$ colors not appearing in $X_{1} \cup Y_{1}$, we can $\omega\left(G_{2}\right)$-color G_{2}, then permute the color classes so that no color appears in both $X_{1} \cup Y_{1}$ and $X_{2} \cup Y_{2}$. Thus we can extend the l-coloring of G_{1} to an l-coloring of G.

These cases cover every possibility, so we need only prove that the coloring can be found in $O(n m)$ time. If k has been maximized and we apply induction, k will stay maximized: every vertex in $X_{1} \cup Y_{1}$ will have every remaining color in its closed neighborhood except possibly if we recolor a vertex in Case 6. In this case the overlap in what remains is $k-1$, which is the most possible since we remove a vertex from X_{1} or Y_{1}, each of which has size k. Hence we only need to maximize k once. We can determine which case applies in $O(m)$ time, and it is not hard to confirm that whenever we extend the coloring in one step our work can be done in $O(n m)$ time. When we apply induction, i.e. in Cases 2,4 , and possibly 6 , all our work can be done in $O(m)$ time. Since $l<n$ it follows that the entire l-coloring can be completed in $O(n m)$ time.

5.5 Putting the pieces together and Algorithmic Considerations

We are now ready to prove 5.1.3.

Proof of 5.1.3. Let G be a minimum counterexample. By 5.3.3, it follows that G contains no nonlinear homogeneous pair of cliques. By 5.2.1, we deduce that G is not a line graph and 5.3.2 implies that G is not a circular interval graph. By 5.4.2, it follows that G does not admit a canonical interval 2-join. Therefore by 5.4.1, G cannot exist.

It is fairly clear that our proof of 5.1.3 gives us a polytime coloring algorithm. Here we sketch a bound of $O\left(n^{3} m^{2}\right)$ on its running time.

We proceed by induction on n. We reduce to the case containing no nonlinear homogeneous pair of cliques by applying 5.3.3 $O(m)$ times in order to find a quasi-line subgraph G^{\prime} of G such that $\chi(G)=\chi\left(G^{\prime}\right)$, and given a k-coloring of G^{\prime}, we can find a k-coloring of G in $O\left(n^{2} m^{2}\right)$ time. We must now color G^{\prime}. Following Section 5.4, we need only consider graphs containing no clique-cutsets since $n^{3} m^{2} \geq n m$.

If G^{\prime} is a circular interval graph we can determine this and $\gamma_{l}(G)$-color it in $O\left(n^{3 / 2}\right)$ time. If G^{\prime} is a line graph we can determine this in $O(m)$ time using an algorithm of Roussopoulos 31, then $\gamma_{l}(G)$-color it in $O\left(n^{2}\right)$ time. Otherwise, G^{\prime} must admit a canonical interval 2-join. In this case Lemma 6.18 in [21], due to King and Reed, tells us that we can find such a decomposition in $O\left(n^{2} m\right)$ time.

This canonical interval 2-join $\left(\left(V_{1}, X_{1}, Y_{1}\right),\left(V_{2}, X_{2}, Y_{2}\right)\right)$ leaves us to color the induced subgraph G_{1} of G^{\prime}, which has at most $n-1$ vertices and is quasi-line. Given a $\gamma_{l}(G)$-coloring of G_{1} we can $\gamma_{l}(G)$-color G^{\prime} in $O(n m)$ time, then reconstruct the $\gamma_{l}(G)$-coloring of G in $O\left(n^{2} m^{2}\right)$ time. The induction step takes $O\left(n^{2} m^{2}\right)$ time and reduces the number of vertices, so the total running time of the algorithm is $O\left(n^{3} m^{2}\right)$.

Remark: This bound does not use recent, more sophisticated results on decomposing quasi-line graphs, such as those found in [6] and [18]. We suspect that by applying these results carefully, one should be able to reduce the running time of the entire $\gamma_{l}(G)$-coloring algorithm to $O\left(m^{2}\right)$.

Bibliography

[1] K. Appel and W. Haken. Solution of the Four Color Map Problem. Scientific American, 237 (4):108-121, 1977.
[2] J. Balogh, A. Kostochka, N. Prince, and M. Stiebitz. The Erdős-Lovász Tihany conjecture for quasi-line graphs, Discrete Math., 309 (2009), no. 12, 3985-3991. 2011.
[3] W. G. Brown and H. A. Jung. On odd circuits in chromatic graphs. Acta Math. Acad. Sci. Hungar., 20:129-134, 1999.
[4] M. Chudnovsky and A. O. Fradkin. An approximate version of Hadwiger's conjecture for claw-free graphs. J. Graph Theory, 63:259-278, 2010.
[5] M. Chudnovsky, A. O. Fradkin, and M. Plumettaz. On the Erdős-Lovász Tihany Conjecture for Claw-Free Graphs. Submitted for publication.
[6] M. Chudnovsky and A. D. King. Optimal antithickenings of claw-free trigraphs. Submitted. Arxiv preprint 1110.5111, 2011.
[7] M. Chudnovsky, A. D. King, M. Plumettaz, and P. Seymour. A local strengthening of Reed's ω, Δ, χ conjecture for quasi-line graphs, 2011. Submitted. Arxiv preprint arXiv:1109.2112 v1.
[8] M. Chudnovsky and M. Plumettaz. The Structure of Claw-Free Perfect Graphs. Journal of Graph Theory, 75:203-230, 2014.
[9] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. The strong perfect graph theorem. Annals of Mathematics, 164:51-229, 2002.
[10] M. Chudnovsky and P. Seymour. The structure of claw-free graphs. In B. S. Webb, editor, Surveys in Combinatorics, volume 327 of London Mathematical Society Lecture Note Series. Cambridge University Press, 2005.
[11] M. Chudnovsky and P. Seymour. Claw-free Graphs. I. Orientable prismatic graphs. Journal of Combinatorial Theory, Series B, 97(6):867-903, 2007.
[12] M. Chudnovsky and P. Seymour. Claw-free Graphs. II. Non-orientable prismatic graphs. Journal of Combinatorial Theory, Series B, 98(2):249-290, 2008.
[13] M. Chudnovsky and P. Seymour. Claw-free graphs. V. Global structure. Journal of Combinatorial Theory, Series B, 98(6):1373-1410, 2008.
[14] M. Chudnovsky and P. Seymour. Claw-free graphs. VII. Quasi-line graphs. 2009.
[15] V. Chvátal and N. Sbihi. Recognizing Claw-Free Perfect Graphs. Journal of Combinatorial Theory, Series B, 44(2):154-176, 1988.
[16] X. Deng, P. Hell, and J. Huang. Linear-time representation algorithms for proper circular-arc graphs and proper interval graphs. SIAM Journal on Computing, 25:390-403, 1996.
[17] J. R. Edmonds. Maximum matching and a polyhedron with 0,1 -vertices, J. Res. Nat. Bur. Standards Sect. B, 125-130. 1968.
[18] Y. Faenza, G. Oriolo, and G. Stauffer. An algorithmic decomposition of claw-free graphs leading to an $O\left(n^{3}\right)$-algorithm for the weighted stable set problem. Proc. 21st ACM-SIA M Symposium on Discrete Algorithms, 2011.
[19] T. Gallai. Maximale Systeme unabhänginger Kanten, Magyar Tud. Akad. Mat. Kutató Int. Köyl., 9, 401-413. 1965.
[20] W. S. Kennedy and A. D. King. Finding a smallest odd hole in a claw-free graph using global structure. 2011.
[21] A. D. King. Claw-free graphs and two conjectures on ω, Δ, and χ. PhD thesis, McGill University, October 2009.
[22] A. D. King and B. A. Reed. Bounding χ in terms of ω and Δ for quasi-line graphs. J. Graph Theory, 59(3):215-228, 2008.
[23] A. D. King, B. A. Reed, and A. Vetta. An upper bound for the chromatic number of line graphs. Eur. J. Comb., 28(8):2182-2187, 2007.
[24] A. V. Kostochka and M. Stiebitz. Partitions and edge colorings of multigraphs. Electron. J. Combin., 15, 2008.
[25] L. Lovász. Normal hypergraphs and the perfect graph conjecture. Discrete Mathematics, 2:253-267, 1972.
[26] F. Maffray and B. A. Reed. A Description of Claw-Free Perfect Graphs. Journal of Combinatorial Theory, Series B, 75(1):134-156, 1999.
[27] M. Molloy and B. Reed. Graph Colouring and the Probabilistic Method. Springer, 2000.
[28] N. N. Mozhan. On doubly critical graphs with chromatic number five, Technical Report 14, Omsk institute of Technology, 1986 (in Russian).
[29] T. Niessen and J. Kind. The round-up property of the fractional chromatic number for proper circular arc graphs. J. Graph Theory, 33:256-267, 2000.
[30] K. R. Parthasarathy and G. Ravindra. The strong perfect graph conjecture is true for $K_{1,3}$-free graphs. J. Combin. Theory Ser. B, 21:212-223, 1976.
[31] N. D. Roussopoulos. A max $\{m, n\}$ algorithm for determining the graph H from its line graph G. Information Processing Letters, 2:108-112, 1973.
[32] W.-K. Shih and W.-L. Hsu. An $O\left(n^{3 / 2}\right)$ algorithm to color proper circular arcs. Discrete Applied Mathematics, 25:321-323, 1989.
[33] M. Stiebitz. K_{5} is the only double-critical 5-chromatic graph. Discrete Math., 64:91-93, 1987.
[34] M. Stiebitz. On k-critical n-chromatic graphs. In: Colloquia Mathematica Soc. Janos Bolyai 52, Combinatorics, Eger (Hungary), 509-514. 1987.
[35] M. Stiebitz, D. Scheide, B. Toft, and L. M. Favrholdt. Graph Edge Coloring: Vizing's Theorem and Goldberg's Conjecture. Wiley Series in Discrete Mathematics and Optimization. John Wiley \& Sons, 2012.
[36] R. E. Tarjan. Decomposition by clique separators. Discrete Mathematics, 55(2):221-232, 1985.
[37] V. G. Vizing. On an estimate of the chromatic class of a p-graph. Diskret. Analiz, 3:23-30, 1964. In Russian.

Appendix A

Appendix

A. 1 Orientable prismatic graphs

- \mathcal{Q}_{0} is the class of all 3 -coloured graphs (G, A, B, C) such that G has no triangle.
- \mathcal{Q}_{1} is the class of all 3 -coloured graphs (G, A, B, C) where G is isomorphic to the line graph of $K_{3,3}$.
- \mathcal{Q}_{2} is the class of all canonically-coloured path of triangles graphs.
- Path of triangles. A graph G is a path of triangles graph if for some integer $n \geq 1$ there are pairwise disjoint stable subsets $X_{1}, \ldots, X_{2 n+1}$ of $V(G)$ with union $V(G)$, satisfying the following conditions (P1)-(P7).
(P1) For $1 \leq i \leq n$, there is a nonempty subset $\hat{X}_{2 i} \subseteq X_{2 i} ;\left|\hat{X}_{2}\right|=\left|\hat{X}_{2 n}\right|=1$, and for $0<i<n$, at least one of $\hat{X}_{2 i}, \hat{X}_{2 i+2}$ has cardinality 1.
(P2) For $1 \leq i<j \leq 2 n+1$
(1) if $j-i=2$ modulo 3 and there exist $u \in X_{i}$ and $v \in X_{j}$, nonadjacent, then either i, j are odd and $j=i+2$, or i, j are even and $u \notin \hat{X}_{i}$ and $v \notin \hat{X}_{j} ;$
(2) if $j-i \neq 2$ modulo 3 then either $j=i+1$ or X_{i} is anticomplete to X_{j}.
(P3) For $1 \leq i \leq n+1, X_{2 i-1}$ is the union of three pairwise disjoint sets $L_{2 i-1}$, $M_{2 i-1}, R_{2 i-1}$, where $L_{1}=M_{1}=M_{2 n+1}=R_{2 n+1}=\emptyset$.
(P4) If $R_{1}=\emptyset$ then $n \geq 2$ and $\left|\hat{X}_{4}\right|>1$, and if $L_{2 n+1}=\emptyset$ then $n \geq 2$ and $\left|\hat{X}_{2 n-2}\right|>1$.
(P5) For $1 \leq i \leq n, X_{2 i}$ is anticomplete to $L_{2 i-1} \cup R_{2 i+1} ; X_{2 i} \backslash \hat{X}_{2 i}$ is anticomplete to $M_{2 i-1} \cup$ $M_{2 i+1}$; and every vertex in $X_{2 i} \backslash \hat{X}_{2 i}$ is adjacent to exactly one end of every edge between $R_{2 i-1}$ and $L_{2 i+1}$.
(P6) For $1 \leq i \leq n$, if $\left|\hat{X}_{2 i}\right|=1$, then
(1) $R_{2 i-1}, L_{2 i+1}$ are matched, and every edge between $M_{2 i-1} \cup R_{2 i-1}$ and $L_{2 i+1} \cup M_{2 i+1}$ is between $R_{2 i-1}$ and $L_{2 i+1}$;
(2) the vertex in $\hat{X}_{2 i}$ is complete to $R_{2 i-1} \cup M_{2 i-1} \cup L_{2 i+1} \cup M_{2 i+1}$;
(3) $L_{2 i-1}$ is complete to $X_{2 i+1}$ and $X_{2 i-1}$ is complete to $R_{2 i+1}$
(4) if $i>1$ then $M_{2 i-1}, \hat{X}_{2 i-2}$ are matched, and if $i<n$ then $M_{2 i+1}, \hat{X}_{2 i+2}$ are matched.
(P7) For $1<i<n$, if $\left|\hat{X}_{2 i}\right|>1$ then
(1) $R_{2 i-1}=L_{2 i+1}=\emptyset$;
(2) if $u \in X_{2 i-1}$ and $v \in X_{2 i+1}$, then u, v are nonadjacent if and only if they have the same neighbour in $\hat{X}_{2 i}$.

Let $A_{k}=\bigcup\left(X_{i}: 1 \leq i \leq 2 n+1\right.$ and $\left.i=k \bmod 3\right)(k=0,1,2)$. Then $\left(G, A_{1}, A_{2}, A_{3}\right)$ is a canonically-coloured path of triangles graphs.

- Cycle of triangles. A graph G is a cycle of triangles graph if for some integer $n \geq 5$ with $n=2$ modulo 3 , there are pairwise disjoint stable subsets $X_{1}, \ldots, X_{2 n}$ of $V(G)$ with union $V(G)$, satisfying the following conditions (C1)-(C6) (reading subscripts modulo $2 n$):
(C1) For $1 \leq i \leq n$, there is a nonempty subset $\hat{X}_{2 i} \subseteq X_{2 i}$, and at least one of $\hat{X}_{2 i}, \hat{X}_{2 i+2}$ has cardinality 1 .
(C2) For $i \in\{1, \ldots, 2 n\}$ and all k with $2 \leq k \leq 2 n-2$, let $j \in\{1, \ldots, 2 n\}$ with $j=i+k$ modulo 2n:
(1) if $k=2$ modulo 3 and there exist $u \in X_{i}$ and $v \in X_{j}$, nonadjacent, then either i, j are odd and $k \in\{2,2 n-2\}$, or i, j are even and $u \notin \hat{X}_{i}$ and $v \notin \hat{X}_{j} ;$
(2) if $k \neq 2$ modulo 3 then X_{i} is anticomplete to X_{j}.
(Note that $k=2$ modulo 3 if and only if $2 n-k=2$ modulo 3 , so these statements are symmetric between i and j.)
(C3) For $1 \leq i \leq n+1, X_{2 i-1}$ is the union of three pairwise disjoint sets $L_{2 i-1}, M_{2 i-1}$, $R_{2 i-1}$.
(C4) For $1 \leq i \leq n, X_{2 i}$ is anticomplete to $L_{2 i-1} \cup R_{2 i+1} ; X_{2 i} \backslash \hat{X}_{2 i}$ is anticomplete to $M_{2 i-1} \cup$ $M_{2 i+1}$; and every vertex in $X_{2 i} \backslash \hat{X}_{2 i}$ is adjacent to exactly one end of every edge between $R_{2 i-1}$ and $L_{2 i+1}$.
(C5) For $1 \leq i \leq n$, if $\left|\hat{X}_{2 i}\right|=1$, then
(1) $R_{2 i-1}, L_{2 i+1}$ are matched, and every edge between $M_{2 i-1} \cup R_{2 i-1}$ and $L_{2 i+1} \cup M_{2 i+1}$ is between $R_{2 i-1}$ and $L_{2 i+1}$;
(2) the vertex in $\hat{X}_{2 i}$ is complete to $R_{2 i-1} \cup M_{2 i-1} \cup L_{2 i+1} \cup M_{2 i+1}$;
(3) $L_{2 i-1}$ is complete to $X_{2 i+1}$ and $X_{2 i-1}$ is complete to $R_{2 i+1}$
(4) $M_{2 i-1}, \hat{X}_{2 i-2}$ are matched and $M_{2 i+1}, \hat{X}_{2 i+2}$ are matched.
(C6) For $1 \leq i \leq n$, if $\left|\hat{X}_{2 i}\right|>1$ then
(1) $R_{2 i-1}=L_{2 i+1}=\emptyset$;
(2) if $u \in X_{2 i-1}$ and $v \in X_{2 i+1}$, then u, v are nonadjacent if and only if they have the same neighbour in $\hat{X}_{2 i}$.
- Ring of five. Let G be a graph with $V(G)$ the union of the disjoint sets $W=\left\{a_{1}, \ldots, a_{5}, b_{1}, \ldots, b_{5}\right\}$ and $V_{0}, V_{1}, \ldots, V_{5}$. Let adjacency be as follows (reading subscripts modulo 5). For $1 \leq i \leq 5$, $\left\{a_{i}, a_{i+1} ; b_{i+3}\right\}$ is a triangle, and a_{i} is adjacent to $b_{i} ; V_{0}$ is complete to $\left\{b_{1}, \ldots, b_{5}\right\}$ and anticomplete to $\left\{a_{1}, \ldots, a_{5}\right\} ; V_{0}, V_{1}, \ldots, V_{5}$ are all stable; for $i=1, \ldots, 5, V_{i}$ is complete to $\left\{a_{i-1}, b_{i}, a_{i+1}\right\}$ and anticomplete to the remainder of W; V_{0} is anticomplete to $V_{1} \cup \cdots \cup V_{5}$; for $1 \leq i \leq 5 V_{i}$ is anticomplete to V_{i+2}; and the adjacency between V_{i}, V_{i+1} is arbitrary. We call such a graph a ring of five.
- Mantled $L\left(K_{3,3}\right)$. Let G be a graph with $V(G)$ the union of seven sets

$$
W=\left\{a_{i}^{j}: 1 \leq i, j \leq 3\right\}, V^{1}, V^{2}, V^{3}, V_{1}, V_{2}, V_{3},
$$

with adjacency as follows. For $1 \leq i, j, i^{\prime}, j^{\prime} \leq 3, a_{i}^{j}$ and $a_{i^{\prime}}^{j^{\prime}}$ are adjacent if and only if $i^{\prime} \neq i$ and $j^{\prime} \neq j$. For $i=1,2,3, V^{i}, V_{i}$ are stable; V^{i} is complete to $\left\{a_{i}^{1}, a_{i}^{2}, a_{i}^{3}\right\}$, and anticomplete to the remainder of W; and V_{i} is complete to $\left\{a_{1}^{i}, a_{2}^{i}, a_{3}^{i}\right\}$ and anticomplete to the remainder of
W. Moreover, $V^{1} \cup V^{2} \cup V^{3}$ is anticomplete to $V_{1} \cup V_{2} \cup V_{3}$, and there is no triangle included in $V^{1} \cup V^{2} \cup V^{3}$ or in $V_{1} \cup V_{2} \cup V_{3}$. We call such a graph G a mantled $L\left(K_{3,3}\right)$.

A. 2 Non-orientable prismatic graphs

- A rotator. Let G have nine vertices $v_{1}, v_{2}, \ldots, v_{9}$, where $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a triangle, $\left\{v_{4}, v_{5}, v_{6}\right\}$ is complete to $\left\{v_{7}, v_{8}, v_{9}\right\}$, and for $i=1,2,3, v_{i}$ is adjacent to v_{i+3}, v_{i+6}, and there are no other edges. We call G a rotator.
- A twister. Let G have ten vertices $u_{1}, u_{2}, v_{1}, \ldots, v_{8}$, where u_{1}, u_{2} are adjacent, for $i=1, \ldots, 8$ v_{i} is adjacent to $v_{i-1}, v_{i+1}, v_{i+4}$ (reading subscripts modulo 8), and for $i=1,2, u_{i}$ is adjacent to $v_{i}, v_{i+2}, v_{i+4}, v_{i+6}$, and there are no other edges. We call G a twister and u_{1}, u_{2} is the axis of the twister.

A. 3 Three-cliqued graphs

- A type of line trigraph. Let v_{1}, v_{2}, v_{3} be distinct nonadjacent vertices of a graph H, such that every edge of H is incident with one of v_{1}, v_{2}, v_{3}. Let v_{1}, v_{2}, v_{3} all have degree at least three, and let all other vertices of H have degree at least one. Moreover, for all distinct $i, j \in\{1,2,3\}$, let there be at most one vertex different from v_{1}, v_{2}, v_{3} that is adjacent to v_{i} and not to v_{j} in H. Let A, B, C be the sets of edges of H incident with v_{1}, v_{2}, v_{3} respectively, and let G be a line trigraph of H. Then (G, A, B, C) is a three-cliqued claw-free trigraph; let $\mathcal{T} \mathcal{C}_{1}$ be the class of all such three-cliqued trigraphs such that every vertex is in a triad.
- Long circular interval trigraphs. Let G be a long circular interval trigraph, and let Σ be a circle with $V(G) \subseteq \Sigma$, and $F_{1}, \ldots, F_{k} \subseteq \Sigma$, as in the definition of long circular interval trigraph. By a line we mean either a subset $X \subseteq V(G)$ with $|X| \leq 1$, or a subset of some F_{i} homeomorphic to the closed unit interval, with both end-points in $V(G)$. Let L_{1}, L_{2}, L_{3} be pairwise disjoint lines with $V(G) \subseteq L_{1} \cup L_{2} \cup L_{3}$; then $\left(G, V(G) \cap L_{1}, V(G) \cap L_{2}, V(G) \cap L_{3}\right)$ is a three-cliqued claw-free trigraph. We denote by $\mathcal{T \mathcal { C } _ { 2 }}$ the class of such three-cliqued trigraphs with the additional property that every vertex is in a triad.
- Near-antiprismatic trigraphs. Let H be a near-antiprismatic trigraph, and let A, B, C, X be as in the deffnition of near-antiprismatic trigraph. Let $A^{\prime}=A \backslash X$ and define B^{\prime}, C^{\prime} similarly; then $\left(H, A^{\prime}, B^{\prime}, C^{\prime}\right)$ is a three-cliqued claw-free trigraph. We denote by $\mathcal{T} \mathcal{C}_{3}$ the class of all three-cliqued trigraphs with the additional property that every vertex is in a triad.
- Antiprismatic trigraphs. Let G be an antiprismatic trigraph and let A, B, C be a partition of $V(G)$ into three strong cliques; then (G, A, B, C) is a three-cliqued claw-free trigraph. We denote the class of all such three-cliqued trigraphs by $\mathcal{T C}_{4}$. (In 11] Chudnovsky and Seymour described explicitly all three-cliqued antiprismatic graphs, and their "changeable" edges; and this therefore provides a description of the three-cliqued antiprismatic trigraphs.) Note that in this case there may be vertices that are in no triads.

- Sporadic exceptions.

- Let H be the trigraph with vertex set $\left\{v_{1}, \ldots, v_{8}\right\}$ and adjacency as follows: v_{i}, v_{j} are strongly adjacent for $1 \leq i<j \leq 6$ with $j-i \leq 2$; the pairs $v_{1} v_{5}$ and $v_{2} v_{6}$ are strongly antiadjacent; v_{1}, v_{6}, v_{7} are pairwise strongly adjacent, and v_{7} is strongly antiadjacent to $v_{2}, v_{3}, v_{4}, v_{5} ; v_{7}, v_{8}$ are strongly adjacent, and v_{8} is strongly antiadjacent to v_{1}, \ldots, v_{6}; the pairs $v_{1} v_{4}$ and $v_{3} v_{6}$ are semiadjacent, and v_{2} is antiadjacent to v_{5}. Let $A=\left\{v_{1}, v_{2}, v_{3}\right\}, B=\left\{v_{4}, v_{5}, v_{6}\right\}$ and $C=\left\{v_{7}, v_{8}\right\}$. Let $X \subseteq\left\{v_{3}, v_{4}\right\}$; then ($H \backslash X, A \backslash X, B \backslash X, C)$ is a three-cliqued claw-free trigraph, and all its vertices are in triads.
- Let H be the trigraph with vertex set $\left\{v_{1}, \ldots, v_{9}\right\}$, and adjacency as follows: the sets $A=\left\{v_{1}, v_{2}\right\}, B=\left\{v_{3}, v_{4}, v_{5}, v_{6}, v_{9}\right\}$ and $C=\left\{v_{7}, v_{8}\right\}$ are strong cliques; v_{9} is strongly adjacent to v_{1}, v_{8} and strongly antiadjacent to $v_{2}, v_{7} ; v_{1}$ is strongly antiadjacent to $v_{4}, v_{5}, v_{6}, v_{7}$, semiadjacent to v_{3} and strongly adjacent to $v_{8} ; v_{2}$ is strongly antiadjacent to $v_{5}, v_{6}, v_{7}, v_{8}$ and strongly adjacent to $v_{3} ; v_{3}, v_{4}$ are strongly antiadjacent to v_{7}, v_{8}; v_{5} is strongly antiadjacent to $v_{8} ; v_{6}$ is semiadjacent to v_{8} and strongly adjacent to v_{7}; and the adjacency between the pairs $v_{2} v_{4}$ and $v_{5} v_{7}$ is arbitrary. Let $X \subseteq\left\{v_{3}, v_{4}, v_{5}, v_{6}\right\}$, such that
* v_{2} is not strongly anticomplete to $\left\{v_{3}, v_{4}\right\} \backslash X$
* v_{7} is not strongly anticomplete to $\left\{v_{5}, v_{6}\right\} \backslash X$

APPENDIX A. APPENDIX

* if $v_{4}, v_{5} \notin X$ then v_{2} is adjacent to v_{4} and v_{5} is adjacent to v_{7}.

Then ($H \backslash X, A, B \backslash X, C$) is a three-cliqued claw-free trigraph.
We denote by $\mathcal{T C}_{5}$ the class of such three-cliqued trigraphs (given by one of these two constructions) with the additional property that every vertex is in a triad.

