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ABSTRACT

Statistical Modeling and Statistical
Learning for Disease Prediction and

Classification

Tianle Chen

This dissertation studies prediction and classification models for disease risk through

semiparametric modeling and statistical learning. It consists of three parts. In the

first part, we propose several survival models to analyze the Cooperative Huntington’s

Observational Research Trial (COHORT) study data accounting for the missing mu-

tation status in relative participants (Kieburtz and Huntington Study Group, 1996a).

Huntington’s disease (HD) is a progressive neurodegenerative disorder caused by an

expansion of cytosine-adenine-guanine (CAG) repeats at the IT15 gene. A CAG re-

peat number greater than or equal to 36 is defined as carrying the mutation and

carriers will eventually show symptoms if not censored by other events. There is

an inverse relationship between the age-at-onset of HD and the CAG repeat length;

the greater the CAG expansion, the earlier the age-at-onset. Accurate estimation

of age-at-onset based on CAG repeat length is important for genetic counseling and

the design of clinical trials for HD. Participants in COHORT (denoted as probands)

undergo a genetic test and their CAG repeat number is determined. Family mem-

bers of the probands do not undergo the genetic test and their HD onset information

is provided by probands. Several methods are proposed in the literature to model

the age specific cumulative distribution function (CDF) of HD onset as a function

of the CAG repeat length. However, none of the existing methods can be directly

used to analyze COHORT proband and family data because family members’ mu-



tation status is not always known. In this work, we treat the presence or absence

of an expanded CAG repeat in first-degree family members as missing data and use

the expectation-maximization (EM) algorithm to carry out the maximum likelihood

estimation of the COHORT proband and family data jointly. We perform simulation

studies to examine finite sample performance of the proposed methods and apply

these methods to estimate the CDF of HD age-at-onset from the COHORT proband

and family combined data. Our results show a slightly lower estimated cumulative

risk of HD with the combined data compared to using proband data alone.

We then extend the approach to predict the cumulative risk of disease accom-

modating predictors with time-varying effects and outcomes subject to censoring.

We model the time-specific effect through a nonparametric varying-coefficient func-

tion and handle censoring through self-consistency equations that redistribute the

probability mass of censored outcomes to the right. The computational procedure is

extremely convenient and can be implemented by standard software. We prove large

sample properties of the proposed estimator and evaluate its finite sample perfor-

mance through simulation studies. We apply the method to estimate the cumulative

risk of developing HD from the mutation carriers in COHORT data and illustrate

an inverse relationship between the cumulative risk of HD and the length of CAG

repeats at the IT15 gene.

In the second part of the dissertation, we develop methods to accurately predict

whether pre-symptomatic individuals are at risk of a disease based on their various

marker profiles, which offers an opportunity for early intervention well before defini-

tive clinical diagnosis. For many diseases, existing clinical literature may suggest

the risk of disease varies with some markers of biological and etiological importance,

for example age. To identify effective prediction rules using nonparametric decision

functions, standard statistical learning approaches treat markers with clear biological

importance (e.g., age) and other markers without prior knowledge on disease etiology

interchangeably as input variables. Therefore, these approaches may be inadequate



in singling out and preserving the effects from the biologically important variables,

especially in the presence of potential noise markers. Using age as an example of a

salient marker to receive special care in the analysis, we propose a local smoothing

large margin classifier implemented with support vector machine to construct effec-

tive age-dependent classification rules. The method adaptively adjusts age effect and

separately tunes age and other markers to achieve optimal performance. We derive

the asymptotic risk bound of the local smoothing support vector machine, and perfor-

m extensive simulation studies to compare with standard approaches. We apply the

proposed method to two studies of premanifest HD subjects and controls to construct

age-sensitive predictive scores for the risk of HD and risk of receiving HD diagnosis

during the study period.

In the third part of the dissertation, we develop a novel statistical learning method

for longitudinal data. Predicting disease risk and progression is one of the main goals

in many clinical studies. Cohort studies on the natural history and etiology of chronic

diseases span years and data are collected at multiple visits. Although kernel-based

statistical learning methods are proven to be powerful for a wide range of disease

prediction problems, these methods are only well studied for independent data but

not for longitudinal data. It is thus important to develop time-sensitive prediction

rules that make use of the longitudinal nature of the data. We develop a statisti-

cal learning method for longitudinal data by introducing subject-specific long-term

and short-term latent effects through designed kernels to account for within-subject

correlation of longitudinal measurements. Since the presence of multiple sources of

data is increasingly common, we embed our method in a multiple kernel learning

framework and propose a regularized multiple kernel statistical learning with random

effects to construct effective nonparametric prediction rules. Our method allows easy

integration of various heterogeneous data sources and takes advantage of correlation

among longitudinal measures to increase prediction power. We use different kernels

for each data source taking advantage of distinctive feature of data modality, and



then optimally combine data across modalities. We apply the developed methods

to two large epidemiological studies, one on Huntington’s disease and the other on

Alzhemeier’s Disease (Alzhemeier’s Disease Neuroimaging Initiative, ADNI) where

we explore a unique opportunity to combine imaging and genetic data to predict the

conversion from mild cognitive impairment to dementia, and show a substantial gain

in performance while accounting for the longitudinal feature of data.

Key words: Huntington’s disease; Age-at-onset; Disease prediction; Varying-coefficient

model; Self-consistency equation; Statistical learning; Local smoothing; Reproducing

kernel Hilbert space; Risk bound; longitudinal data; Integrative analysis; Latent ef-

fects
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1

Chapter 1

Introduction

1.1 Overview

This dissertation develops several new methods for disease classification and predic-

tion for time-to-event data, cross-sectional and longitudinal binary data. The disser-

tation consists of three parts. In the first part (Chapter 2), we propose statistical

modeling approaches for the analysis of age-at-disease-onset data for chronic diseases.

We model the relationship between mutation status and age-at-onset for Hunting-

ton’s disease through parametric and non-parametric survival models with methods

to handle missing information on mutation status and account for right-censoring. In

the second and third parts (Chapters 3 and 4), we propose statistical learning ap-

proaches for the analysis of cross-sectional and longitudinal binary data. In Chapter

3, we consider a targeted local kernel support vector machine to construct effective

age-dependent rules for classifying mutation status in pre-symptomatic subjects and

predicting disease onset in mutation carriers. By using the local kernel method we

are able to catch the nonlinear age effect on disease risk and other markers associated

with a chronic disease and provide age-specific prediction rules for subjects in different

age groups. In Chapter 4, we propose a multi-kernel support vector machine to con-

struct prediction rules for disease onset and progression. We use separate kernels for
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modeling markers from heterogeneous data sources and integrate the information in

a non-sparse fashion. We design kernels to model the subject-specific long-term and

short-term latent effects to extract information from correlated longitudinal outcome

data. Our method provides prediction rules at subject-specific level and improves

prediction accuracy, especially in the situation of predicting future outcomes based

on existing data collected from the same subject.

1.2 Introduction to the statistical modeling for dis-

ease risk prediction

Huntington’s disease (HD) is a severe dominantly inherited neurodegenerative disor-

der that affects motor, cognitive, and psychiatric function and is uniformly fatal. HD

is caused by the expansion of CAG repeats in the IT15 gene that codes for the protein

Huntingtin (Ross, 1995; Ross and Tabrizi, 2011). Affected individuals typically begin

to show motor signs around 30-50 years of age and eventually die 15-20 years after

the disease onset (Foroud et al., 1999). Despite identification of the causative gene,

there is currently no treatment that delays or stops disease progression.

One large genetic epidemiological study of HD, the Cooperative Huntington’s

Observational Research Trial (COHORT), including 42 Huntington Study Group re-

search centers in North America and Australia was initiated in 1996, and concluded

in 2011 (Kieburtz and Huntington Study Group, 1996a; Dorsey et al., 2008). Partic-

ipants in COHORT (denoted as probands) underwent a clinical evaluation and DNA

from whole blood was genotyped for mutations in the IT15 gene. Since 2005, CO-

HORT probands particiapte in family history interviews and provide information on

HD affection status in their family members. While CAG repeat length is ascertained

in probands, the high cost of conducting in-person interviews of family members pre-

vents the collection of all family members’ blood samples. Family members’ morbidity

and mortality information such as age-at-onset (AAO) of HD, is obtained through
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systematic interviews of the probands or the family members themselves. Although

a relative’s genotype is unavailable, the corresponding distribution of the HD geno-

types can be obtained based on the relative’s relationship with the proband and the

proband’s CAG repeat lengths (Wang et al., 2008).

In a genetic counseling setting, CAG repeat length greater than or equal to 36

is defined as carrying the HD mutation (carrier), CAG repeat length between 27

and 35 is defined as intermediate, and CAG repeat length less than or equal to 26

is defined as normal, or non-carrier (Rubinsztein et al., 1996; Ha et al., 2012). It

is known that there is an inverse association between the CAG repeat length and

AAO of HD, i.e. the longer the repeat length, the earlier the motor onset (Langbehn

et al., 2004). Modeling such a relationship as well as the conditional distribution of

HD onset given CAG repeat length accurately and precisely is important for genetic

counseling and the design of clinical trials for HD. The AAO of HD is subject to right

censoring by the constraint of the study period. Several formulae were proposed in

the literature to estimate the survival function of HD onset given CAG repeat length

(e.g., Stine et al., 1993; Rubinsztein et al., 1996; Langbehn et al., 2004). Langbehn

et al. (2004) has shown that the standard semiparametric survival models, such as the

Cox proportional hazards model, do not fit the HD data and proposed a new logistic-

exponential parametric model. Specifically, the conditional distribution of HD onset

given the CAG repeat length is modeled as a logistic function, with a location and

a scale parameter depending on CAG through a non-linear relationship. This model

allows the mean and variance of HD onset to depend on CAG by exponential functions

respectively, offering flexibility to the distribution function. Other parametric models,

such as Gamma distribution, were also proposed in the literature (Gutierrez and

MacDonald, 2004). Langbehn et al. (2010a) examines several population models in

the literature and show the superior performance of Langbehn et al. (2004) in terms

of predicting the two-year onset probability in an independent prospective data.

None of the aforementioned existing methods can be directly used to analyze CO-



4

HORT family data because family members are not always genotyped and their HD

mutation status is unknown. When the inclusion of family data contributes addition-

al information, however, the unobserved mutation status complicates the analysis.

To see this, note that the affected parent carrying the mutation has a 50% chance of

transmitting the mutation to an offspring. An added complexity is that the likelihood

of the offspring having a longer CAG repeat length than the parent is higher if the

parent is the father. Since the offspring is not genotyped, whether he or she carries

expanded CAG repeats is unknown. In this work, we treat the mutation transmission

status as missing data and use the EM algorithm to carry out the maximum likelihood

estimation of the proband and family data jointly. Conditionally on the transmission

status in family members, we use the logistic-exponential model in Langbehn et al.

(2004) to model the AAO as a function of CAG repeat length. We perform simulation

studies to examine finite sample performances of the proposed methods. Finally, we

apply these methods to analyze the COHORT proband and family combined data.

Our results show a slightly lower estimated cumulative risk of HD with the combined

data compared to using proband data alone.

We then extend the parametric model from Langbehn et al. (2004) to a nonpara-

metric model. Instead of modeling the mean and variance of HD onset as exponential

functions on CAG repeats, we consider a nonparametric varying-coefficient model of

the cumulative risk using a logistic link

logit{pr(Ti ≤ t|Xi)} = β0(t) + c0(Xi) + β1(t)c1(Xi), (1.1)

where c0(x) and c1(x) are known functions of covariates. To provide flexibility and

protect against misspecification, β0(t) and β1(t) are left as unknown nonparametric

functions. Note that when c1(x) = 1/s(x; γ), c0(x) = −µ(x;α)/s(x; γ), β0(t) = 0,

and β1(t) = t, model (1.1) reduces to that in Langbehn et al. (2004). For the sake

of simple illustration, further consider a special case of (1.1), a varying-coefficient
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proportional odds model, where

logit{pr(Ti ≤ t|Xi)} = β0(t) + β1(t)Xi. (1.2)

The interpretation of β1(t) is then directly related to the cumulative risk of disease,

since exp{β1(t)} is the odds ratio of experiencing disease onset by age t for subjects

with one unit difference in X. Since pr(Ti ≤ t|Xi) is a cumulative distribution

function, β0(t) and β0(t) + β1(t)Xi are constrained to be non-decreasing functions of

t. In applications where Xi’s are positive, we require β1(t) to be non-decreasing as

well. When β0(t) and β1(t) are constants that do not vary with t, model (1.2) reduces

to a standard proportional odds model.

In the literature, Jung (1996) directly modeled survival function using regres-

sion model at a fixed time point without considering temporal effect. There are a

number of other works on extending proportional odds model to account for tem-

poral covariate effect or time-varying covariates. Peng and Huang (2007) proposed

a strict extension of Cox proportional hazards model in the context of proportional

odds model to account for temporal effect. The procedure involves solving a series of

estimating equation sequentially, which may be computationally heavy. Chen et al.

(2012) proposed methods to extend transformation models considered in for example,

Zeng and Lin (2007), to account for external time-varying covariates.

Here, we take a completely different approach that does not involve counting

process and with straightforward and simple computational algorithm. When there

is no censoring, to estimate the cumulative risk function at a time point t0 given a

covariate, e.g., pr(Ti ≤ t0|Xi), a straightforward analysis is to fit a logistic regression of

I(Ti ≤ t0) on the covariates Xi. When the outcome is subject to censoring, I(Ti ≤ t)

may not be observed for some of the censored subjects. Let Ci denote the censoring

time, Efron (1967) proposed a nonparametric estimator of a survival function by re-

distributing the conditional masses for the censored subjects, pr(Ti > Ci|Ci), equally

to the non-censored observations above Ci, where the weights depend on the number

of at-risk subjects. Portnoy (2003) and Wang and Wang (2009) used similar idea
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to fit a quantile regression with covariates Xi, where the conditional point masses

pr(Ti > Ci|Ci, Xi) for censored subjects are re-distributed to the right. For quantile

regression, the estimator only depends on the signs of residuals and thus the point

masses for censored subjects are re-distributed to +∞. Since there are covariates

involved, the conditional masses to be estimated depend on the covariates and the

unknown distribution function.

In the first part of this dissertation, to estimate β(t0) from (1.1) or (1.2), we

fit a pseudo-logistic regression of I(Ti ≤ t0) through redistributing weights to the

right to account for censoring. We apply the procedure to estimate the coefficient

function at distinct uncensored event times, and smooth the coefficient functions

across the entire support of event times when necessary. This type of smoothing

was found to be equivalent to applying local kernel smoothing directly (Ma and Wei,

2012). The proposed computational procedure is extremely easy to implement and

can be handled by standard softwares. We investigate the asymptotic properties of

the proposed estimator to show consistency and normality, and conduct simulation

studies to examine its finite sample performance. The proposed methods are applied

to estimating the cumulative risk of developing HD from subjects with IT15 gene

mutation using the COHORT data and illustrate an inverse relationship between the

cumulative risk of HD and the length of CAG repeats. We compare the estimates

under model (1.2) with fully nonparametric Kaplan-Meier estimates using subjects

with the same CAG values and reveal consistent results.



7

1.3 Introduction to the targeted local kernel sup-

port vector machine for age-dependent classi-

fication and prediction

An important research goal for chronic diseases is to develop effective early interven-

tion to delay onset, slow disease progression, and provide different treatment or care

management at each stage based on subject-specific characteristics (Paulsen et al.,

2006). It is necessary to identify biological, behavioral and clinical markers that can

be combined to distinguish premanifest subjects at high risk of a disease from those

who are at low risk or free of risk. For many illnesses, existing clinical literature may

suggest the risk of disease varies with some markers of biological and etiological im-

portance. For example, it is well known that the risk of Alzheimer’s disease increases

with age (Celsis, 2000), and the predictive power of other markers and their relative

importance often change over a subject’s lifespan. It is beneficial to take advantage of

the existing etiologic information on disease risk to develop age-sensitive diagnostic

rules in conjunction with other markers with less clear prior biological information on

disease risk to boost predictive power. Using age as an example of a salient marker

to receive special care in the analysis, we develop methods to treat biologically im-

portant variables separately from other variables in the presence of some potential

noise markers. The developed prediction rules have implications on prioritizing oth-

er markers and informing timing of therapeutic interventions to guide personalized

medicine.

To predict binary outcomes such as disease status, regression-based methods in-

cluding logistic regression and time-varying coefficient models are often used (Cai

et al., 2000; Wang et al., 2009b). These models focus on estimating population-

average association (e.g., odds ratio) instead of making subject-specific prediction or

classification, thus may not be optimal (Pepe et al., 2004, 2006; Ware, 2006). For ex-

ample, variables that are themselves not significant at certain levels may contribute to
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improving prediction in combination especially when they are highly correlated (Wei

et al., 2009). To directly focus on classification and prediction, large margin-based

statistical learning approaches (e.g., Vapnik, 1995; Shen et al., 2003; Zhang et al.,

2006; Wang et al., 2009a; Wu and Liu, 2013) can be used. The geometric set up of

these methods is to construct an optimal separating boundary between two classes by

maximizing the margin from each class to the boundary. The equivalent statistical

framework is to minimize a margin-based loss function subject to a regularization

penalty. They are among the most successful nonparametric and robust classifiers

in practice that can improve individual-specific prediction and classification prob-

lems especially in high-dimensional settings with correlated variables (Moguerza and

Munoz, 2006; Orru et al., 2012). Among the large-margin based classifiers, support

vector machine (SVM) is one of the most popular binary classifiers proven to exhibit

some optimal theoretical properties (Lin, 2002). Recently, Ladicky and Torr (2011)

and Zhang et al. (2011b) proposed a non-specific locally linear smoothing in the SVM

context using all the features variables. However, what they considered is based on

local affine approximation of the entire feature variable space involving variables in all

dimensions. Their locality is defined by all the features variables in a neighborhood

of a data point. When the dimension of the feature variable space is high, it may be

difficult to perform smoothing in the entire feature space due to sparseness of data in

any local neighborhood. In addition, since these approaches are based on lineariza-

tion of a potentially high-dimensional nonparametric surface, stronger assumptions

on the smoothness of separating boundary in all dimensions of the feature space are

required.

One convenient approach to incorporate age information to classify a subject’s at-

risk status is to treat age as one of input variables interchangeably with other markers

and learn classification rules using kernel machine (e.g., Gaussian kernel). However,

such a strategy may not be optimal for several reasons. First, from a clinical point of

view, age plays distinctive clinical and biological roles on disease risk. It is the easiest
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factor to measure to be used for indicating the timing of intervention and guiding

choices of treatments, and thus it should call for some special attention. Second, from

a statistical point of view, lumping age together with other markers exchangeably in

a learning algorithm is very likely to dilute the age signal especially when the marker

dimension is not small and some noise variables are included. Furthermore, since all

variables are tuned by the same tuning parameter, age effect may be masked by the

other markers which potentially introduce noise. This is observed in our subsequent

numerical studies. Lastly, using fully nonparametric learning without distinguishing

age from other markers makes it difficult to provide an interpretable and practical

guideline for timely intervention.

In the second part of this dissertation, we develop a large-margin based classifier

implemented with SVM for discriminating subjects at risk through solving a kernel

weighted optimization problem to provide age-dependent prediction rules from mark-

ers collected in cross-sectional studies. Since disease risk for two subjects close in

age is expected to be similar controlling for other characteristics, certain smoothness

with respect to age is anticipated so it can be taken advantage of when classifying

a subject’s disease status. The proposed approach uses a local smoothing kernel to

pool information across subjects similar in age and selects the tuning parameter for

age separately from tuning parameter for other markers. Therefore, we adaptively

estimate age effect and protect the age signal from being lost especially when noise

markers are present. We first consider interpretable locally linear prediction rules

where the age profile for each marker can be easily presented and used to assess im-

portance of each marker. We then consider more general nonlinear prediction rules

through kernel machines locally at each age. Our method differs from the literature

(Ladicky and Torr, 2011; Zhang et al., 2011b) in that there exists a targeted variable

with strong prior knowledge to be predictive or needs to be adjusted. We perform

local smoothing along one targeted dimension of a well-motivated content-important

variable (e.g., age) while leaving other variables intact. Our approach only requires
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data to be reasonably abundant along one targeted dimension.

The remainder of this work is organized as follows. In section 3.2, we describe

the details of the proposed method and provide an easy computational algorithm

supporting the method. In section 3.3, we study the theoretical properties of the

risk bound as a function of local smoothing kernel bandwidth. In section 3.4, we

perform extensive simulation studies to compare the proposed method with several

alternative approaches and examine the finite sample properties of the fitted classifi-

cation boundaries. In section 3.5, we apply the proposed methods to two Huntington’s

disease (HD) data examples (Dorsey and Huntington Study Group COHORT Investi-

gators, 2012; Paulsen et al., 2008) to predict age-specific risk of developing HD or risk

of pre-symptomatic subjects receiving HD diagnosis during study period using motor,

cognitive and behavioral markers, and show the age-dependent profiles of several key

markers. Some concluding remarks are given in section 3.6.

1.4 Introduction to the multiple kernel learning

with random effects for predicting longitudinal

outcomes and data integration

Accurate prediction of current and future clinical status of a patient based on subject-

specific clinical and biological markers is an important goal for early diagnosis and

monitoring diseases progression. Modern technologies offer opportunities to collect

data from heterogeneous sources such as genetic data, imaging data, and clinical data

including electronic health records. Furthermore, many cohort studies on natural

history and etiology of chronic diseases often span years and data may be collected

at multiple visits. It is thus important to develop time-sensitive prediction rules that

not only integrate data from multiple sources but also make use of the longitudinal

nature of the data collected from the same subjects.
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There is an extensive body of literature on longitudinal data analysis exploring

the association between candidate predictors and outcomes measured repeatedly over

time (See for example, Diggle et al., 2002). In these association analyses, primary

goals are estimation and hypothesis testing of regression parameters which may not

necessarily yield powerful prediction rules. For the purpose of prediction with lon-

gitudinal data, a number of works focus on linear or quadratic discriminant analysis

of longitudinal profiles or a sample of curves (e.g., James and Hastie, 2001; Marshall

and Baron, 2000; Luts et al., 2012). These works aim to classify a functional curve

into two groups and rely on either linear mixed effects models (Verbeke and Lesaf-

fre, 1996; Marshall and Baron, 2000) or functional data analysis or their extensions

(James and Hastie, 2001) to perform classification. In the past decades, there has

been growing interest in using powerful machine learning methods to build effective

predictive models for binary and continuous disease outcomes (Oquendo et al., 2012).

Particularly, kernel-based methods such as support vector machine or support vector

regression are proposed to classify longitudinal profile into groups (Pearce and Wand,

2009; Luts et al., 2012). However, disease outcomes in these approaches do not change

with time so they are not applicable to classify clinical outcomes assessed repeatedly

over time. Since most of the existing statistical learning methods assume the sample

to be independent and identically distributed, there is a lack of literature on how

to effectively incorporate within-subject dependence to improve prediction of future

subjects’ clinical outcomes or within-subject change especially when the outcomes

are binary ones.

In the third part of this dissertation, we introduce a novel statistical learning

method to predict longitudinal binary outcomes in the multiple kernel learning (Lanck-

riet et al., 2004; Bach and Lanckriet, 2004) framework. Our method not only us-

es observed feature variables but also introduces subject-specific unobserved latent

variables to extract information from correlated outcomes and build time-sensitive

prediction rules. More specifically, we use multiple additive kernels for observed fea-
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ture variables, which can account for heterogeneous data sources taking advantage

of the correlation within each data modality, while at the same time, we account

for within-subject correlation of longitudinal measurements by introducing subject-

specific short-term and long-term latent random effects modeled through a separate

kernel. In many biomedical studies, the observed feature variables only explain some

proportion of variability in outcomes, and the gain from using latent random effects

to extract information from the remaining unexplained variability can be substan-

tial. The weights used for each kernel are tuned based on minimizing the overall loss,

therefore we optimally combine data across modalities in a data-driven fashion. In

addition to methods for training model, we also develop methods for predicting future

outcomes through observed features and unobserved latent effects when longitudinal

training data are available.

On one hand, depending on the choice of kernels, the proposed method bears some

similarity with semiparametric or nonparametric mixed effect models for longitudinal

data. However, unlike traditional mixed models, our proposed method aims at pre-

diction accuracy, allows greater flexibility through the use of kernel machines, and is

relatively easy to scale up for large dimensional data. On the other hand, using differ-

ent kernels for feature variables and latent variables shares the same advantages with

multiple kernel learning methods which have been developed to handle challenges

to integrate different data sources (Pavlidis et al., 2002; Lanckriet et al., 2004; Yu

et al., 2010; Zhang and Shen, 2012). Specifically, the latter treats each data source

component, for example, genetic data, imaging data or clinical data, as belonging

to separate kernel spaces and finds an optimal way to combine them for prediction.

The multiple kernel methods have been shown to yield much improved performance

as compared to using one single kernel in various biomedical applications (Yu et al.,

2010). Although our proposed method uses multiple kernels, one significant differ-

ence from the above literature is that separate kernels are also applied to unobserved

latent variables in our method.
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Next we summarize third part of this dissertation. In Section 4.2, we propose

learning method to predict longitudinal binary outcomes based on the support vec-

tor machine with multiple kernels. In Section 4.3, extensive simulation studies are

conducted to illustrate small-sample performance of the proposed method and com-

pare with some existing approaches. In Section 4.4, we apply the developed method

to two real data examples. In the first example, we predict Huntington’s disease

(HD) diagnosis in a large multi-site HD epidemiological study from various sources

of clinical interviews and biomarkers and show that the proposed method outper-

forms single kernel approaches and multiple kernel approaches without accounting

for subject-specific correlations in terms of both predicting future subjects and pre-

dicting future outcomes on the same subject. In the second example, we apply the

proposed method to analyze the Alzheimer’s Disease Neuroimaging Initiative (AD-

NI) data, where a unique opportunity is presented to combine various modalities of

imaging and genetic data to distinguish subjects with mild cognitive impairment (M-

CI) from subjects with Alzheimer’s Disease (AD), and we show a substantial gain in

performance while accounting for the longitudinal correlation of data. The proposed

multiple kernel fusion with random effects proves to be effective in both applications.

Some remarks are provided in Section 5.
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Chapter 2

Statistical modeling for disease risk

prediction

2.1 Overview

In this chapter, we propose parametric and non-parametric statistical models for

chronic diseases with approaches to deal with missing information and censored data.

In the first section, we develop a parametric survival model with EM algorithm for

predicting cumulative risk of disease onset in a mixed population with partial miss-

ing information. In the second section, we extend the parametric model to a non-

parametric model and deal with censoring through re-distributing weights approach.

In the third section, we summarize our findings and discuss possible extensions.

2.2 Parametric survival model with EM algorithm

2.2.1 Methods

We start by introducing some notations. For the ith subject, let Ti denote the age-

at-onset of HD, let δi be the event indicator, let Ci denote the censoring time, and
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let Xi = min(Ti, Ci). Let Ai denote the CAG repeat length. Langbehn et al. (2004)

models distribution of Ti given Ai by a logistic function. The cumulative distribution

function (CDF) given Ai is

F (t|Ai) = Pr(Ti ≤ t|Ai) =
1

1 + e−[t−µ(Ai)]/s(Ai)
, (2.1)

and the density function is

f(t|Ai) =
e−[t−µ(Ai)]/s(Ai)

s(Ai){1 + e−[t−µ(Ai)]/s(Ai)}2
.

Here µ(Ai) is a location parameter depending on the covariate Ai and s(Ai) is a scale

parameter depending on Ai. Let S(t|Ai) = 1 − F (t|Ai) denote the survival function

of HD onset. The location and scale parameters have the following relationship with

the mean and variance of Ti given Ai:

E(Ti|Ai) = µ(Ai), var(Ti|Ai) =
π2

3
s2(Ai)

Various parametric functions for the location and scale parameters were compared

in Langbehn et al. (2004, 2010b), and the exponential function provides the best fit.

Therefore we use the same model where

µ(Ai) = µ1 + exp(µ2 − µ3Ai),

and var(Ai) = σ1 + exp(σ2 − σ3Ai).

Substitute these into F (t|Ai) and f(t|Ai) to obtain a parametric model for the dis-

tribution of AAO of HD with six parameters, β = (µ1, µ2, µ3, σ1, σ2, σ3)
T .

2.2.1.1 Proband-only analysis

First, consider proband’s data where all Ai’s are observed. Since a subject’s AAO of

HD is subject to the right censoring, the likelihood function is

L(β) =
n∏
i=1

f δi(Xi|Ai; β)S1−δi(Xi|Ai; β), (2.2)
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and the log-likelihood is

l(β) =
n∑
i=1

{
−δi log[s(Ai)]−

Xi − µ(Ai)

s(Ai)
− (1 + δi) log

[
1 + e

−Xi−µ(Ai)
s(Ai)

]}
.

The maximum likelihood estimate (MLE) of the parameters, β̂, can be obtained via

a general-purpose optimization algorithm such as Newton-Raphson or Nelder-Mead

implemented in the ‘optim’ function of the R program version 2.13.1. The variance-

covariance matrix of β̂ is estimated by the inverse of the estimated Hessian matrix,

ĉov(β̂) = [H(β̂)]−1.

The standard error of the survival function, Ŝ(t|Ai), is then estimated by the Delta

method, that is,

v̂ar[Ŝ(t|Ai)] = GT (β̂)v̂ar(β̂)G(β̂),

where the gradient vector

G(β̂) =
∂S(t|Ai)
∂β

∣∣∣
β=β̂

.

2.2.1.2 Incorporating family members

Next, we consider incorporating family members’ AAO data. We do not observe

whether a family member inherits the mutation in the HD gene from the proband,

but we observe whether a subjects has developed HD based on a systematic interview

with the proband. The likelihood of AAO of HD takes a mixture form. Let pi denote

the probability of the ith subject receiving a deleterious allele from a proband and

therefore becoming a carrier. Such probabilities are calculated based on Mendelian

transmission (Wang et al., 2008). For example, offsrping and siblings of a carrier

proband have a probability of 50% of receiving the Huntingtin mutation. We assume

that conditioning on a family member receiving Huntingtin allele, the CAG repeat

length is the same as observed in the proband, although this is a simplification. For

subjects who receive a wild type allele (CAG<36), their probability of developing HD
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is zero, thus f(t|Ai < 36) = 0, and S(t|Ai < 36) = 1,∀t. For the family members,

the likelihood is

L(β) =
n∏
i=1

[pif
δi(Xi|Ai; β)S1−δi(Xi|Ai; β) + (1− pi)(1− δi)],

where the above second term follows from the assumption that non-carriers do not

develop HD. Note that for all carrier probands we observe pi = 1, thus the likelihood

reduces to (2.2).

The above likelihood can be maximized by a combination of EM and Newton-

Raphson algorithm. Let Gi denote the unobserved carrier status indicator for the

ith family member (i.e., Gi = 1 indicates a family member receives a mutation and

Gi = 0 indicates otherwise). Then the complete data log-likelihood is

n∑
i=1

I(Gi = 1){δif(Xi|Ai; β) + (1− δi) log[S(Xi|Ai; β)]}

At the (k + 1)th iteration of the E-step, we compute the conditional expectation of

the complete data log-likelihood, given the observed data. Essentially, we compute

w
(k+1)
i = E[I(Gi = 1)|Xi, δi, β

(k)]

=
pif

δi(Xi|Ai; β(k))S1−δi(Xi|Ai; β(k))

pif δi(Xi|Ai; β(k))S1−δi(Xi|Ai; β(k)) + (1− pi)(1− δi)
.

In the M-step, we update β(k+1) by maximizing the weighted log-likelihood

n∑
i=1

w
(k+1)
i {δif(Xi|Ai; β) + (1− δi) log[S(Xi|Ai; β)]}

using the Newton-Raphson algorithm developed for the proband data.

Since the parameters are estimated by the MLE, it is straightforward to carry out

the likelihood ratio tests (LRTs) to compare the model fit from the COHORT data

with the ones obtained in other studies such as Langbehn et al. (2004). Here, twice

the difference in the log-likelihood follows a chi-square distribution with 6 degrees of

freedom.
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2.2.2 Simulation studies

We conducted two simulation studies closely related to the observed COHORT data to

illustrate the performance of the Newton-Raphson optimization and the EM algorithm

(Laird and Ware, 1982). In all our optimization procedures, we centered both Ai and

Xi. Since the direct optimization and EM algorithm need reasonable initial values,

we fitted two nonlinear least square (NLS) to the observed sample mean and variance

of the AAO on subjects with δi = 1. To be specific, we fit

m1(ai) = µ1 + exp(µ2 − µ3ai), s21(ai) = σ1 + exp(σ2 − σ3ai),

where m1(ai) and s21(ai) are the sample mean and variance for all subjects with

Ai = ai, respectively. The six NLS estimators were used as the initial values for

further optimization. We denoted the estimated β from the centered data as β̂c. For

each simulation, the un-centered β̂ were then calculated based on β̂c and the sample

mean of Ai and Xi.

We restricted simulations to CAG repeat lengths between 41 and 56 to guard

against sensitivity to the extremely high or low CAG repeats to be consistent with

Langbehn et al. (2004). For the analysis of proband data, we generated a sample of

2000 subjects, each with a CAG repeat length ranging from 41 to 56 that follows a

multinomial distribution in which the probability pr(Ai = a) equals to the observed

proportion of Ai = a in the COHORT proband data set (Table 2.5). The failure times

Ti were simulated from the distribution (2.1), where the parameters β were fixed at

the values fitted from the COHORT proband data (see next section for their values).

The censoring times, Ci, were generated from a re-scaled Beta distribution.

For the analysis of the combined proband and family data, we generated a sample

of 4000 subjects. The probabilities pi were generated by re-sampling the observed

pi’s in the COHORT data. With a given pi for each subject, we simulated his or

her mutation carrier status from a Bernoulli distribution with success probability pi.

For family members simulated to receive an expanded CAG repeat (carriers), their
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CAG repeats Ai were set to be the same as the probands and their failure times were

simulated from (2.2) with β fixed at estimates from the COHORT combined data.

For non-carrier family members, their failure times were set to be infinity and their

Xi = Ci. We used the same censoring distribution for generating Ci as in the first

simulation study.

The results in Tables 2.1 and 2.2 report the mean estimated β̂ and β̂c, their mean

estimated standard errors, and empirical standard deviation in the two simulations.

We see from these tables that the mean β̂ is very close to the true β in both studies.

The mean estimated standard errors of β̂c are close to the empirical standard devi-

ations, indicating that the estimation of variability is appropriate. Since one of our

goals is to estimate the CDF of HD onset, we also examine the estimated F̂ (t|Ai) at

typical Ai’s. Figures 2.1 and 2.2 present three curves of F̂ (t|Ai) at Ai = 41, 46, 50

and their 95% empirical confidence intervals for the proband data and combined data,

respectively. We see that F̂ (t|Ai) coincide with the circles representing true F (t|Ai)

at various ages. We provide numerical values of F (t|Ai), mean F̂ (t|Ai), empirical

standard deviation of F̂ (t|Ai), and the mean estimated standard error of F̂ (t|Ai) at

various ages in Table 2.3 and 2.4.

2.2.3 COHORT data analysis results

We first describe the proband and family data in the COHORT study. Information on

CAG repeat length and age was available for 1357 probands with CAG repeats varying

from 36 to 100 (Table 2.5). There were 3409 first-degree relatives available from 675

probands. We show the descriptive statistics for the relatives stratified by relationship

type in Table 2.6. A subset of 1151 subjects with CAG length between 41 and 56

was our proband data set (21 subjects whose self-reported and clinician-reported age

at the onset of symptom differed by greater than 15 years were removed) and used

for the proband-only analysis. Similar to Langbehn et al. (2004), we restricted the

analysis to CAG repeat lengths between 41 and 56 to guard against sensitivity to the



20

extremely high or low CAG repeats.

Information on CAG repeat length, age at time of evaluation and the probability

of being a carrier (receiving Huntingtin mutation from the proband) was available for

2851 family members of all 1151 probands. In the proband data set, both individuals

with manifest HD and presymptomatic carriers are included. Their age-at-diagnosis

and age-at-first- motor sign were recorded. Among 1151 probands, 876 (76%) subjects

had experienced HD onset and the average AAO of the HD diagnosis was 44 years

of age. There were 54% females and 94% Caucasians. Our combined proband and

family data has 4002 subjects. In this combined data set, 51%were females and 35%

subjects had experienced HD onset. Among the 4002 subjects, 467 are singletons

(probands with no family member included). Among the rest 3535 subjects, there

are 623 families with average size 5.674 (sd=2.609). In the combined data, there are

two different probabilities of being a carrier: pi = 1 (1199 subjects) or pi = 0.5 (2803

subjects). Among the 2851 family members, 966 are parents of the probands, 1095

are siblings of the probands and 790 are children of the probands.

When using the age-at-diagnosis in our proband data as Ti, the estimated cumu-

lative risk of HD is

F (t|Ai) =

(
1 + exp

{
− π√

3

[t− 16.284− exp(3.428− 8.325Ai)]√
22.379 + exp(15.657− 0.284Ai)

})−1
.

The estimated parameters for the CDF from the proband-only analysis are different

from the ones obtained from Langbehn et al. (2004). Our estimated mean and stan-

dard deviation of the AAO of HD is about 1 to 3 years later than the ones obtained

in Langbehn et al. (2004), and the standard deviation (SD) is slightly smaller (Table

2.7). In addition, the estimated CDF is lower at most Ai values using COHORT data.

We ran a likelihood ratio test of

H0 : β = β0 vs. H1 : β = β̂1,

where β0 are the values obtained in Langbehn et al. (2004) and the p-value was

less than 0.001. When analyzing the age-at-first-symptom in our proband data, the
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estimated cumulative risk of HD is

F̂ (t|Ai) =

(
1 + exp

{
− π√

3

[t− 14.266− exp(7.987− 0.104Ai)]√
28.933 + exp(17.130− 0.312Ai)

})−1
.

We present F̂ (t|Ai) curves for age-at-diagnosis and age-at-symptom at various

CAG lengths and their 95% confidence intervals for the proband data in Figures 2.3.

It can be seen that with a given Ai, the estimated probability of having the first

symptoms of HD is higher than the probability of a diagnosis of HD at the same age.

This is consistent with the intuition that symptoms of HD will be observed before a

diagnosis. The mean AAO of first-symptom is estimated to be about 2 years earlier

than AAO of diagnosis (Table 2.7) and the standard deviation of the former is slightly

larger, indicating that age-at-first-symptom is more variable.

As a sensitivity analysis, we compared the estimated CDF based on the parametric

model with a nonparametric Kaplan-Meier estimator for subjects with a given Ai.

Figure 2.4 presents this comparison using probands’ age-at-diagnosis data. We show

in the figure that the parametric model fit is consistent with the Kaplan-Meier fit.

However, as expected, the confidence interval for the parametric model estimate at a

given age is narrower than the Kaplan-Meier estimate (results not shown). The figure

comparing age-at-symptom data is similar and therefore omitted.

We analyzed the AAO of the first symptom using the combined proband and

family data, since the age-at-diagnosis was not available for family members. The

estimated cumulative risk of HD at age t is

F̂ (t|Ai) =

(
1 + exp

{
− π√

3

[t− 18.832− exp(8.461− 0.118Ai)]√
32.365 + exp(14.823− 0.248Ai)

})−1
.

The corresponding F̂ (t|Ai) curves at various CAG lengths and their 95% confidence

intervals are shown in Figure 2.5. In Table 2.7, we compare the estimated mean and

SD of the AAO from the proband and combined data. We can see that the estimated

mean AAOs for several CAGs are similar regardless of whether family members are

included. The SD estimated from the model is larger for the combined data. This is a
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Table 2.1: Simulation 1 (probands data). Estimated parameters and standard errors

of the direct optimization of proband-only analysis, n = 2000, 1000 replications.

β Mean β̂ Mean

β̂c

Mean

se(β̂c)

Empi

sd(β̂c)

µ1 14.402 13.748 -29.574 2.777 3.362

µ2 8.197 8.168 3.439 0.090 0.107

µ3 0.108 0.107 0.107 0.011 0.013

σ1 19.687 19.323 19.323 10.737 9.847

σ2 12.354 13.497 3.484 0.360 0.358

σ3 0.200 0.227 0.227 0.088 0.086

reflection of the observed data in that there is a wider range of AAO in the combined

data than in the proband data. For example, the SD for CAG=41 of the former is

11 years, whereas it is 10 years in the probands, and the SD for CAG=42 is 10 in the

combined and 8 in the probands.

One of the utilities of the estimated curves is to estimate the conditional probabil-

ity of having an HD onset (or staying HD free) in the next five or ten years, given a

subject has not had an onset by a given age. In Table 2.8, we present such conditional

probabilities in five-year intervals for a subject without HD at age 40 and with given

CAG repeat length. For example, a 40-year pre-symptomatic subject with a CAG of

40 has a probability of 11% (CI: 9%, 14%) of developing HD in the next 10 years (by

age 50), while for a subject with a CAG of 50 this probability increases to 93% (CI:

91%, 95%).
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Table 2.2: Simulation 2 (combined data). Estimated parameters and standard errors

of the EM algorithm with combined proband and family analysis, n = 4000, 1000

replications.

β Mean β̂ Mean

β̂c

Mean

se(β̂c)

Empi

sd(β̂c)

µ1 18.943 18.735 -30.795 2.449 2.556

µ2 8.628 8.647 3.307 0.093 0.096

µ3 0.121 0.122 0.122 0.013 0.013

σ1 32.538 30.432 30.432 11.683 11.241

σ2 14.642 15.000 3.923 0.271 0.269

σ3 0.244 0.253 0.253 0.075 0.076
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Table 2.6: Descriptive statistics of the first-degree relatives of COHORT proband

subjects stratified by relationship

Numbers and ages for relationship of

Parents Siblings Children Total

Not affected

Number 739 1110 931 2780

Ave age 70 50 26 42

Min age 27 0 0 18

Max age 111 93 62 88

sd 13 15 14 13

% 26.6 39.9 33.5

Affected

Number 379 237 13 629

Ave age 45 42 36 45

Min age 18 7 23 11

Max age 82 70 44 82

sd 11 11 7 12

% 60.3 37.7 2.1

Total Number 1118 1347 944 3409
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Table 2.7: Mean and standard deviation of AAO estimated from the model (2.1) for

four analyses.

Langbehn COHORT data

data Probands diagnosis∗ Probands symptom∗∗ Combined symptom†

CAG Mean SD Mean SD Mean SD Mean SD

41 57.06 10.50 59.84 8.78 57.74 9.13 59.33 11.68

43 48.06 8.62 51.17 7.31 49.32 7.90 50.63 9.60

46 38.66 7.08 41.29 5.97 39.66 6.57 41.20 7.59

48 34.32 6.57 36.31 5.47 34.75 5.95 36.69 6.79

50 31.08 6.28 32.32 5.16 30.80 5.50 33.21 6.28

∗ : Using proband age-at-diagnosis data;

∗∗: Using proband age-at-first-symptom data;

†: Using proband and relative combined age-at-first-symptom data.
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Figure 2.1: Estimated CDF of HD onset for Ai = 41, 43, 46, and 50 with simulated

proband data.

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Age

C
um

ul
at

iv
e 

ris
k 

of
 H

D

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

41434650

Solid circle: True F(t)
Solid line: Mean estimated F(t)
Dashed line: Empirical 95% CI

Figure 2.2: Estimated CDF of HD onset for Ai = 41, 43, 46, and 50 with simulated

proband and family data.
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Figure 2.3: Estimated CDFs of age-at-diagnosis and age-at-first-symptom of HD for

Ai = 41, 43, 46, and 50 with COHORT proband data.
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Figure 2.4: Kaplan-Meier curve and estimated CDF of age-at-diagnosis of HD for

Ai = 41, 46, and 50 with COHORT proband data.
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Figure 2.5: Estimated CDF of age-at-first-symptom of HD for Ai = 41, 46, and 50

with COHORT proband and family data.
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2.3 Non-parametric model with re-distributing weight-

s

2.3.1 Methods

For the purpose of illustration, we mainly focus on the varying coefficient model (1.2).

It is straightforward to extend to the more general model (1.1).

2.3.1.1 Uncensored data

First we investigate estimation at a fixed time point t0 when the outcome is not subject

to censoring. Let β(t) = {β0(t), β1(t)}T , let θ = β(t0) denote β(·) evaluated at t0, and

let Zi = (1, Xi)
T . When there is no censoring, the likelihood for {I(Ti ≤ t0), Xi, i =

1, · · · , n} under a logistic link takes the standard form,
∏
i

exp{I(Ti ≤ t0)Z
T
i θ}

1 + exp{ZT
i θ}

. To

estimate θ, we solve the estimating equation

n∑
i=1

m(Xi, Ti; t0, θ) = 0,

where m(Xi, Ti; t0, θ) = {I(Ti ≤ t0)− µ(Xi; θ)}Zi, and µ{Xi; θ} =
exp{ZT

i θ}
1 + exp{ZT

i θ}
.

The influence function for the estimate θ̂ is

φ(Xi, Ti; t0, θ) = A(Xi; θ) {I(Ti ≤ t0)− µ(Xi; θ)}Zi,

where A(Xi; θ) =
(
E[µ(Xi; θ){1 − µ(Xi; θ)}ZiZT

i ]
)−1

. We fit a logistic regression

of I(Ti ≤ t0) on Xi and repeat this process while varying t0 at all distinct values

of observed Ti’s. One can then smooth the estimates β̂(t0) as a function of t0 (Ma

and Wei, 2012) subject to the monotonicity constraint. An alternative is to fit a

nonparametric regression (for example using splines) treating I(Ti ≤ t) as generalized

outcomes. This method was shown to have similar performance as the post-hoc

smoothing above (Ma and Wei, 2012), but is more difficult to implement under the

monotonicity constraint, therefore we do not further explore here.
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2.3.1.2 Censored data

When a subject is right censored (i.e., Ti > Ci) and Ci ≥ t0, we still observe I(Ti ≤

t0) = 0. Ambiguity occurs when a subject is censored and Ci < t0. We propose

an estimator that re-distributes weights to the right for ambiguous subjects based

on self-consistency equations similar to Efron (1967) and Wang and Wang (2009).

Let Oi = {Xi, Ti ∧ Ci,∆i ≡ I(Ti ≤ Ci)}T denote the ith observation. We solve the

following weighted estimating equation

Sn(Oi; θ, β) = n−1
n∑
i=1

s(Oi; t0, θ, β) = 0, (2.3)

where

s(Oi; t0, θ, β) = w{Oi; t0, β(·)}m(Xi, Ti ∧ Ci; t0, θ) + [1− w{Oi; t0, β(·)}]m(Xi,+∞; t0, θ),

and

w{Oi; t0, β(·)} =

{
1, ∆i = 1 or (∆i = 0 and Ci ≥ t0)

F (t0|Xi)− F (Ci|Xi)

1− F (Ci|Xi)
, ∆i = 0 and Ci < t0.

(2.4)

Here F (t|x) = µ{x; β(t)} is the conditional distribution of Ti given Xi introduced in

model (1.2), and the weight for the ith subject depends on β(·) evaluated at t0 and

Ci.

To gain insights on the weights, note that subjects with observed I(Ti ≤ t0) will

receive a weight of one for their contributions to the estimating equation. Subjects

with missing I(Ti ≤ t0) have conditional probability masses

E{I(Ti ≤ t0)|Ti > Ci, Xi, Ci} =
F (t0|Xi)− F (Ci|Xi)

1− F (Ci|Xi)
.

Treating (Xi, Ci) as pseudo-observations for censored subjects with censoring time

less than t0, they receive weights w{Oi; t0, β(·)} = pr(Ti ≤ t0|Ti > Ci, Xi). We

re-distribute their complementary weights 1 − w{Oi; t0, β(·)} = pr(Ti > t0|Ti >

Ci, Ci, Xi) to the right. Since the outcomes are binary variables, the complemen-

tary masses 1−w{Oi; t0, β(·)} for pseudo-observations (Xi, Ci) can be re-distributed
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to any point that is greater than all observations that is not specific to any observa-

tion above Ci (see also Portnoy (2003); Wang and Wang (2009)). Thus, any point

above Ci contributes the same information to the estimating equation. Without loss

of generality, we re-distribute the complementary mass to +∞, and the contribution

from these observations to the estimating equation is m(Xi,+∞; t0, θ) = −µ(Xi; θ)Zi.

In practice, the weights w{Oi; t0, β(·)} depend on unknown distribution function

F (·|X) which needs to be estimated. An initial estimator for β(·) is easily obtained

by the inverse probability of censoring weighting (IPW) proposed in Bang and Tsiatis

(2000), which weights subjects having an event by the inverse of their probabilities

of not being censored. To be specific, we can obtain an initial estimator by solving

the estimating equation
n∑
i=1

I(Ti ≤ Ci)m(Xi, Ti; t0, θ)

G(Ti)
,

where G(·) is the survival function for the censoring times Ci. Estimating G(·) by

the Kaplan-Meier of the censoring process, the estimating equation for θ is
n∑
i=1

I(Ti ≤ Ci)m(Xi, Ti; t0, θ)

Ĝ(Ti)
= 0. (2.5)

This process is repeated for t0 on a grid (u1, · · · , uM) and denote the resulting esti-

mator as β̂(uj), j = 1, · · · ,M .

Substituting β̂(·) in (2.4) to obtain weights w{Oi; t0, β̂(·)} to be redistributed, the

final estimator θ̂n then solves the weighted estimating equation

Sn(O; t0, θ, β̂) = n−1
n∑
i=1

s(Oi; t0, θ, β̂) = 0. (2.6)

It is extremely easy to implement this weighting scheme. Without loss of generality,

assume the first n0 subjects have unobserved outcomes I(Ti ≤ t0). Create pseudo-

observations Õ1 = (X1,+∞,∆1), · · · , Õn0 = (Xn0 ,+∞,∆n0). Append all pseudo-

observations to the original observations to obtain observations (O1, · · · , On, Õ1, · · · , Õn0)

with weights

[w{O1; t0, β̂(·)}, · · · , w{On; t0, β̂(·)}, 1− w{O1; t0, β̂(·)}, · · · , 1− w{On0 ; t0, β̂(·)}].
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Then θ̂n is estimated by a weighted logistic regression. The weights w{O; t0, β̂(·)}

extract information at multiple time points simultaneously, and thus pool information

across time points to estimate the distribution function at t0.

2.3.2 Asymptotic properties

To show consistency and asymptotic normality of β̂(t) at fixed t obtained from (2.6),

we will need the following technical conditions:

A1. Assume that β(t) is right continuous with left-hand limits (cadlag) componen-

twise.

A2. Assume that for t ∈ [a, b], β(t) is uniformly bounded on [a, b] componentwise,

that is, supt∈[a,b] |β(t)| ≤ c <∞ componentwise.

A3. Assume that the covariates Xi are not degenerate, i.e., pr(Xi = x0) 6= 1 and are

bounded in probability, i.e., pr(|Xi| < c) = 1.

A4. Assume that the censoring times are bounded, i.e., pr(Ci < c) = 1.

A5. Assume that E
(
ZiZ

T
i exp{ZT

i β(t)}/[1 + exp{ZT
i β(t)}]2

)
is positive definite.

The conditions A1-A2 control the size of the parameter space. The conditions

A3-A4 exclude some degenerate cases. The condition A5 ensures a unique solution

to the estimating equation. The following theorem establishes the consistency of the

estimator θ̂n.

Theorem 1. Assume that {Oi, i = 1, · · · , n} are i.i.d. random samples, and Ti and

Ci are independent. Then under model (1.1) and assumptions A1-A5, θ̂ → θ in

probability as n→∞ for any t0 ∈ (a, b).

The proof of this theorem is in Appendix A and it uses the semiparametric asymp-

totic results developed in Newey (1994) and Chen et al. (2003).
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Since the final estimator involves estimates β̂(·) in the entire range of Ti, uniform

consistency of the initial estimator is required. The next theorem establishes the

asymptotic normality of θ̂n.

Theorem 2. Under the assumptions of Theorem 1, as n→∞,

√
n(θ̂ − θ)→ N(0, A−1V A−1)

in distribution, where A = E[µ(Xi; θ){1 − µ(Xi; θ)}ZiZT
i ], V = cov{s(Oi; t0, θ, β) +

ξ(Ti; t0, θ, β)},

ξ(Ti; t0, θ, β) =

∫ t0

0

g(u)

∫
h(x)zzT

[
F (t0|x){1− F (t0|x)}ψ(x, Ti; t0, θ)

−F (u|x){1− F (t0|x)}ψ{x, Ti;u, β(u)}
]
dxdu,

g(u) is the density function for Ci, h(x) is the density function for Xi, z = (1, x)T ,

and ψ{x, Ti;u, β(u)} is defined in the appendix.

The proof of this theorem is in Appendix A and it also uses the results in Newey

(1994).

2.3.3 Simulation studies

To study the finite sample performance of the proposed estimator, we ran two set-

s of simulation studies. In each set, the true survival times were generated from

the distribution (1.1) with β0(t) = β00 + β01 log(t), β1(t) = β10 + β11 log(t) and

(β00, β01, β10, β11)
T = (−80, 21.5,−1.4, 0.7)T . The parameters were designed such

that the cumulative risk functions resembles the fit from COHORT data in section

2.3.4. We simulated Xi from a multinomial distribution with support on integer val-

ues between 41 and 50 representing CAG repeats. The censoring times were generated

from a Beta distribution where the overall censoring rate is about 25%, similar to the

COHORT data. We simulated two samples sizes n = 1000 and n = 2000 since the

real data has a sample size of 1151.
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We compared two estimators. The first is the initial inverse probability weighted

estimator (IPW) β̂0(t) from (2.5) and the second is the proposed redistribution to

the right weighted estimator (REW) β̂(t) from (2.6). We summarized the numerical

results in Tables 2.9 and 2.10, where we presented the estimated culumative distri-

bution functions (CDFs) obtained from the two estimators at various ages and CAG

values (42 and 46). It can be seen that both IPW and REW estimators have small

finite sample biases. The estimated standard errors and empirical standard errors are

close to each other over the entire age range. The empirical standard error of REW is

smaller than that of IPW, especially at older ages. For example, the efficiency gain of

REW over IPW is 10% at age 50 for CAG=42 and n = 1000. The empirical coverage

of the 95% confidence interval is close to the nominal level when age is below 60 for

both IPW and REW. At age 60, since censoring is heavier, the coverages of both IPW

and REW are lower than the nominal level, with the performance of REW slightly

better between the two.

We presented the true CDFs and the mean CDFs obtained from REW at various

CAGs in Figure 2.6. The mean estimated distribution function coincides with the true

function in most cases. When CAG=42 and n = 1000, there appears to be a small bias

at the tail area for IPW estimator, for example, at t = 65 (bias=0.0055, SE=0.0009).

However, this bias is within the variability range, which may be explained by the

higher censoring rate within this range for subjects with CAG=42 (about 45%). When

we increase the sample size to n = 2000, the bias decreased to almost zero.

In addition to the above estimators, we also investigated a smoothed REW estima-

tor, where β̂(t) were smoothed across the range of t subject to monotone constraint

using a Generalized Pooled-Adjacent-Violators Algorithm (de Leeuw et al., 2009).

The mean estimated cumulative distribution function and empirical standard error

are almost identical to the non-smoothed estimator. The maximum absolute differ-

ence in the mean of the two estimators averaged across simulations was very small.

Therefore we omit the results of the smoothed estimator here.
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2.3.4 Application to COHORT data

As introduced in introduction, despite identification of the causative gene for HD,

there is currently no effective treatment that delays HD onset or stops disease pro-

gression. To improve the care of HD patients and inform the development of effective

treatment, a large genetic epidemiological study on HD, the Cooperative Huntington’s

Observational Research Trial (COHORT), was started in 1996. This is a study orga-

nized by 42 Huntington Study Group research centers in North America and Australia

(Kieburtz and Huntington Study Group, 1996b; Dorsey et al., 2008). Participants

in COHORT underwent a clinical evaluation where blood samples are genotyped for

Huntingtin gene mutation and their CAG repeats lengths were obtained. Model-

ing the inverse association between the CAG repeats length and age-at-onset of HD

accurately is important.

In this section, we fit the COHORT data by the model (1.1) where we do not

assume a parametric form of β0(t) or β1(t). In our analysis, information on CAG

repeats length, age at the time of evaluation, and age at diagnosis of HD onset (if a

subject had been diagnosed) were available for 1151 subjects recruited in COHORT.

In the study, both HD affected carriers and pre-symptomatic carriers were included.

Their ages-at-first-motor-symptom were also recorded. Among 1151 subjects, 876

(76%) subjects had experienced HD motor sign onset and the average age of the

diagnosis was 44 years of age.

To estimate the distribution of age-at-onset of HD given a subject’s CAG repeats

length, we fit three estimators: the initial IPW, REW, and Kaplan-Meier estimate

using only subjects with a particular CAG repeats length. Figure 2.7 presents the

estimated CDF at various CAG values. The results show a positive correlation be-

tween the onset probability and the CAG repeats, that is, the cumulative risk of HD

onset by a given age increases with increasing number of CAG repeats. Subjects

with longer CAG repeats have a higher probability of developing HD by a certain

age, which is consistent with the literature (Langbehn et al., 2004). We summarize
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numerical results of estimated CDF at a few CAGs and age in Table 2.11. As a

comparison, we see that IPW and REW provides point estimates of CDF similar to

Kaplan Meier using only subjects with the same CAG values. However, the standard

errors of REW at different age and CAGs are smaller than both Kaplan-Meier and

IPW, suggesting efficiency gain. For example, at CAG=42 and age 50, the standard

error of the cumulative risk estimated by IPW is 18% larger than REW and KM is

40% larger than REW. The post-hoc smoothing of β̂(t) leads to CDF close to the

non-smoothed CDF and therefore not reported here.
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Table 2.11: COHORT data: Estimated KM, IPW and REW estimators and their

estimated SE for age at diagnosis at CAG=42, 44, 46 and 48.

CAG=42

Age KM SE(KM) IPW‡ SE(IPW) REW∗ SE(REW)

30 0.0000 NA 0.0042 0.0017 0.0032 0.0014

35 0.0101 0.0071 0.0120 0.0033 0.0103 0.0030

40 0.0421 0.0146 0.0392 0.0070 0.0342 0.0063

45 0.1052 0.0229 0.0952 0.0135 0.0875 0.0123

50 0.2677 0.0344 0.2865 0.0242 0.2429 0.0199

55 0.5337 0.0402 0.5467 0.0358 0.5009 0.0257

60 0.7429 0.0369 0.7874 0.3009 0.7466 0.0234

CAG=44

Age KM SE(KM) IPW SE(IPW) REW SE(REW)

30 0.0246 0.0121 0.0135 0.0039 0.0105 0.0034

35 0.0566 0.0183 0.0475 0.0083 0.0375 0.0073

40 0.1564 0.0294 0.1591 0.0148 0.1367 0.0135

45 0.3649 0.0398 0.3750 0.0214 0.3412 0.0196

50 0.7322 0.0377 0.6859 0.0226 0.6482 0.0225

55 0.9184 0.0244 0.8840 0.0174 0.8684 0.0173

60 0.9674 0.0160 0.9601 0.0644 0.9544 0.0108

CAG=46

Age KM SE(KM) IPW SE(IPW) REW SE(REW)

30 0.0410 0.0201 0.0420 0.0087 0.0342 0.0078

35 0.1522 0.0375 0.1705 0.0184 0.1273 0.0156

40 0.4233 0.0523 0.4677 0.0286 0.4147 0.0265

45 0.8230 0.0413 0.7739 0.0278 0.7366 0.0284

50 0.9183 0.0310 0.9224 0.0142 0.9136 0.0149

55 0.9387 0.0292 0.9796 0.0063 0.9775 0.0064

60 0.9796 0.0193 0.9936 0.0101 0.9933 0.0030

CAG=48

Age KM SE(KM) IPW SE(IPW) REW SE(REW)

30 0.1389 0.0576 0.1231 0.0208 0.1053 0.0188

35 0.4783 0.0841 0.4585 0.0420 0.3535 0.0359

40 0.8344 0.0647 0.8031 0.0306 0.7603 0.0334

45 0.9337 0.0446 0.9513 0.0127 0.9379 0.0149

50 0.9669 0.0323 0.9848 0.0047 0.9838 0.0048

55 1.0000 NA 0.9967 0.0016 0.9965 0.0015

60 1.0000 NA 0.9990 0.0015 0.9991 0.0006

‡: IPW estimator, β̂0
t , solving (2.5).

∗: Re-distributed to right weighted estimator, β̂W
t , using IPW as initial estimator to solve (2.6).
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Figure 2.6: True and REW estimated cumulative distribution curves at CAG=50,

48, 46, 44, 42 (left to right). The mean and true cumulative distribution curves are

indistinguishable in IPW and REW estimators for most cases. n = 1000 (top) and

n = 2000 (bottom), 400 simulations.
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Figure 2.7: Estimated cumulative distribution curves (KM, IPW and REW) with

COHORT proband data (n = 1151) evaluated at CAG=50, 48, 46, 44, 42 (left to

right).
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2.4 Discussion

We propose methods to predict disease risk from a known mutation (or to estimate

the penetrance function). For most complex diseases, predicting the AAO of a disease

from genetic markers such as single-nucleiotide polymorphisms (SNPs) continue to be

a challenging issue (Kanga et al., 2010). Even with diseases like HD where the gene

is identified, the predictive model can be complicated: a special feature of the HD

data is that the mutation is defined as a continuous variable (CAG repeats) instead

of a categorical variable, as it is in most genome-wide association studies.

One of the contributions of this work is to use the family data as well as the

proband data to maximize available information in building a model. Our results re-

veal that the estimated risk obtained from the combined proband and family data is

slightly lower than the risk estimated from the proband data alone. It is possible that

the proband data consists of a biased clinical sample of gene positive or HD affected

subjects, and is therefore not a fair representative sample of the entire HD popula-

tion, especially under-representing subjects at-risk. The family data may be a better

representative of the population since the family members are included in the analysis

only through the inclusion of the probands. Although proband may participate the

study because they had HD or they had more servere symptoms of HD, the relatives

were not included based on their CAG repeat length or affection status. Of course,

some of the family members will not receive an allele with expanded CAG repeats

from the probands and therefore are non-carriers who will never develop HD. The

expected number of carriers in the combined data is 2601 and the proportion of af-

fecteds (n=1496) out of the expected carriers 58%, which is lower than the proportion

of affected subjects in the proband data.

Note that our estimated cumulative risk of onset of a positive HD diagnosis in the

proband data is also slightly lower than Langbehn et al. (2004) which also examined

age-at-HD-diagnosis. We observe later mean AAO for each CAG repeat length for

COHORT data than Langbehn et al. (2004). For example, the mean AAO of HD
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diagnosis for probands with a CAG of 42 in the former data was 3 years later and

for a CAG of 43, it was 4 years later (Table 2.5). On average, for all subjects with

a CAG between 41 and 50, the mean AAO in Langbehn data was 2 years earlier

than in the COHORT data. This is consistent with the prediction from the model

shown in Table 2.7. Another possible explanation for the difference is that the CAG

repeat lengths in Langbehn study were measured in different laboratories while in the

COHORT they were all measured in the same lab.

Here, we assumed Mendelian transmission of the mutation without interference

so that the CAG length does not change from parents to offspring. There are sev-

eral possible violations of these assumptions. For example, an extremely elongated

HD mutation (CAG >> 56) may occasionally cause miscarriages, perhaps even in

very early development before a mother necessarily knows that she was pregnant.

Therefore, the transmission probability from a mother with extremely high CAG to a

child can be less than 0.5. Another possible violation of Mendelian law is that those

inheriting the gene from their father may have a higher probability of longer CAG

repeat length than their father. The probability of this occurring is much lower if

inheritance is from the mother. An explanation is that there are many more biological

opportunities for the CAG length to change in the father’s process of sperm formation

than in the mother’s process of egg formation. Under normal conditions, the CAG

length does not change, but there is a slightly higher probability that the CAG repeat

length will increase (expand) rather than decrease at each generation of new germ

cells. However, there are no reasonable dynamic population genetics models for these

effects and appropriate assumptions are rather complicated.

Consistent with Langbehn et al. (2004) and other studies (Brinkman et al., 1997;

McNeil et al., 1997), we estimated reduced penetrance for lower CAG repeat lengths

(≤ 40). We point out that the parameter estimates from the current model do not

include subjects with CAG less than 41, therefore the risk estimates for these subjects

are extrapolations. However, it is conceivable that as long as the inverse relationship
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between AAO and CAG still holds for the lower CAGs, the life time disease risk for

these subjects will be less than 100%, since the life time risk for a CAG of 41 is about

100%.

Although the CAG repeat explains the majority (about 75%) of variability in AAO

of HD, there are other potential variables contributing to the distribution of AAO.

Our current model does not include other observed covariates, such as gender, nor

does it account for unobserved residual familial aggregation, aside from sharing HD

mutation in a family. Future research will focus on incorporating observed covariates

and adding family-specific random effects to account for residual familial aggregation.

We also propose methods to estimate cumulative disease risk from a nonparametric

varying-coefficient model. The proposed method explores a pseudo-logistic regression

and redistributes the probability mass at the censored outcomes to the right. The

procedure has desirable numerical and asymptotic properties and is extremely easy to

implement. Although we focused on assessing the effect of CAG repeats on HD onset,

it is easy to include other covariates with time-invariant effect through a backfitting

procedure for models such as

logit{pr(Ti ≤ t|Xi)} = β0(t) + β1(t)Xi + γTZi.

The proposed methods have computational advantages compared to, for example,

Peng and Huang (2007). In addition to the logistic link as discussed here, the devel-

oped methods can be adapted to transformation models with a known link function.
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Chapter 3

Targeted local kernel support

vector machine for age-dependent

classification and prediction

3.1 Overview

In this chapter, we propose statistical learning methods for age-dependent disease

classification and prediction. In the first section, we propose a targeted local support

vector machine. In the second section, we show the asymptotic properties. In the

third section, we conduct two simulation studies to investigate performance of the

proposed methods. In the fourth section, we apply the method to two study data sets

on Huntington’s disease, the COHORT data and the PREDICT-HD data. Finally,

we summarize our findings and discuss possible extensions in the fifth section.
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3.2 Targeted local smoothing for large margin clas-

sifiers

Let D be the dichotomous at-risk status coded as 1 and −1 for subjects at risk of

a disease and not at risk, respectively. Let W denote a subject’s age and let X be

a vector of the other potential risk-altering markers for this subject. The goal is

to determine an age-dependent classification rule using X to predict D at each age

W (the target variable). For this purpose, we first consider the following composite

predictive score

α(W ) +XTβ(W ), (3.1)

where α(W ) is an unspecified baseline function, and β(W ) is a vector of unspecified

age-dependent coefficients for markers X. A subject with a positive fitted score will

be classified as at risk of disease, and as risk free if the subject has a negative fitted

score. Note the score in model (3.1) has a nonparametric form with respect to age

effect, while at each given age it is linear in terms of markers X. This formulation

allows decomposition of the diagnostic score as the sum of a component due to normal

aging, α(W ), and a component due to the other markers, XTβ(W ). The unrestricted

form of β(w) allows the age-dependent effect to change freely. Since age may serve

as a surrogate for many unmeasured physiological factors, for subjects close in age

and with the same values of other markers, the disease risk is expected to be similar,

and thus certain smoothness is expected for functions α(w) and β(w).

The age-dependent classification boundary in (3.1) has several features. First,

although the score is allowed to change from one age to another in an unspecified

fashion, at a given age the prediction is a linear combination of markers to facilitate

interpretation. It is easy to tell which markers are effective at which age by examining

coefficient functions β(w). When varying age smoothly, the corresponding separating

hyperplane constructed from other markers also changes smoothly. Second, since the

coefficient function β(w) is age-adaptive, it captures the age-dependent effects of
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markers. As introduced later in section 3.5, there might be markers informative for

younger subjects but not older subjects or vice versa, which suggests different sets of

markers would be considered as effective depending on a subject’s age. Third, some

cumulative summary of β(w), for example, the vector
∫
|β(w)|dw, can be used to

rank the overall importance of markers under model (3.1).

In a standard classification problem with predictive score α+XTβ, a large-margin

based classifier would minimize a penalized loss function,

min
α,β

∑
i

L{Di,X i;α,β}+ λn||β||2,

where λn is a tuning parameter depending on the sample size, and L(·) belongs to a

class of margin-based loss functions. Examples of margin-based loss functions include

hinge loss, i.e., SVM loss, {1− df(x)}+; its variations such as ψ−loss which satisfies

U ≥ ψ(z) > 0 where z = df(x), if z ∈ [0, τ ]; ψ(z) = U(1−sign(z)), otherwise for some

constants U and 0 < τ < 1 (Shen et al., 2003); and logistic loss, log{1+exp(−df(x))}.

To fit the age-dependent predictive score in model (3.1) taking advantage of the

smoothness effect in age, we introduce a local smoothing kernel weighted support

vector machine (KSVM). Essentially, the KSVM solves an SVM at each w0 where the

ith subject is weighted by a local smoothing kernel function Khn(Wi−w0), so we pool

information across subjects whose ages are close to w0. Here Khn(·) is a symmetric

kernel density and hn is its bandwidth. Specifically, we fit (3.1) by solving

min
α(w0),β(w0)

∑
i

Khn(Wi − w0)L{Di,X i;α(w0),β(w0)}+ λn||β(w0)||2, (3.2)

where w0 varies across the support of age Wi. The loss function in the minimization

problem (3.2) can be considered as a locally weighted loss where the subjects closer

to age w0 contribute larger weights.

In the subsequent implementation of KSVM, we choose the hinge loss. Computa-
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tionally, the optimization problem is solved by

min
α(w0),β(w0)

∑
i

Khn(Wi − w0)ξi + λn‖β(w0)‖2,

subject to Di{α(w0) +XT
i β(w0)} ≥ 1− ξi, ξi ≥ 0.

This alternative form provides some insights to the locally weighted objective function

(3.2). Treating the slack variables ξi as serving similar roles as residuals in a regression

model, problem (3.2) can be thought as minimizing a penalized locally weighted

“residual” subject to linear constraints. Using the Lagrange multipliers, we can derive

the corresponding dual form as

max
γ∈Rn

∑
i

γi −
1

2

∑
i,j

γiγjDiDjX
T
i Xj,

subject to 0 ≤ γi ≤ Khn(Wi − w0)Cn, and
∑
i

γiDi = 0.

Note that by reparametrizing γi as γiKhn(Wi − w0), the dual form is equivalent to

max
γ∈Rn

∑
i

γiKhn(Wi − w0)−
1

2

∑
i,j

γiγjDiDjKhn(Wi − w0)Khn(Wj − w0)X
T
i Xj,

subject to 0 ≤ γi ≤ Cn, and
∑
i

γiKhn(Wi − w0)Di = 0. (3.3)

This is a locally weighted quadratic programming problem with linear constraints

which can be solved conveniently using existing quadratic programming packages in

R or MatLab. The resulting prediction of disease status for a w-year-old subject with

markers x is

d̂(x, w) = sign{f̂(x;w)}, f̂(x;w) = α̂(w) + xT β̂(w). (3.4)

When at a given age the disease risk groups cannot be adequately separated by a

linear function of marker, it may be useful to perform prediction in the reproducing

kernel Hilbert space (RKHS, Wahba, 1990) feature space instead of the original mark-

er space. Consider a nonparametric predictive score, f(X i;wi), which is a completely

unspecified function of age and markers. The age-dependent decision boundary (3.1)
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corresponds to a special case of taking a linear combination of all components of X i

at each age point w, i.e., α(wi)+XT
i β(wi). The nonlinear classification boundary re-

laxes the linear form (in terms of markers) at each age. To fit this nonlinear predictive

score, we smooth age effect by a local smoothing kernel while mapping other markers

to a RKHS feature space through Mercer kernels. To be specific, denote a Mercer

kernel H(x,y), through an appropriate inner product in the RKHS. Commonly used

Mercer kernels include the Gaussian kernel, where H(x,y) = exp(−γ‖x− y‖2), and

the kth order polynomial kernel, where H(x,y) = (1 + xTy)k. At a given age w0,

the general decision boundary can be expressed as a function in the RKHS associated

with H(·, ·) as

f(x;w0) = η0(w0) +
∑
i

ηi(w0)H(X i,x).

Comparing with the age-dependent model in (3.1), we see the methodology de-

veloped there can be implemented similarly. To pool information from subjects with

similar ages, we use local smoother to weight observations around w0, and the result-

ing local optimization problem is

min
η0(w0),θ(w0)

∑
i

Khn(wi − w0){1−Di[η0(w0) +
∑
j

ηj(w0)H(Xj,X i)]}+ + λn||f(·;w0)||2H,

where ‖f‖H is the norm of f in the RKHS. This locally weighted problem is solved

in the dual space by replacing XT
i Xj in (3.3) by H(X i,Xj) associated the RKHS.

The predicted at-risk status for a subject with marker x at age w using a fully

nonparametric boundary is

d̂(w,x) = sign{f̂(x;w)}.

Note the distinct roles of the smoothing kernel Khn(·) and Mercer kernel H(·, ·): the

former is used to pool information across age and the later for producing nonlinear

decision boundary and dimension reduction with respect to the markers X. The

tuning parameters hn and λn are chosen over a grid in a range, respectively, by mini-

mizing the five-fold cross validated misclassification error. By using a different kernel
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and a separate tuning parameter for age, the age effect can be better accommodated.

In summary, the proposed method can be viewed as a splice of local smoothing and

the RKHS framework for the SVM.

3.3 Theoretical results

In this section, we provide general theoretical results for the prediction errors using

the fitted rule f̂(X;w) as compared to the true optimal rule based on f0(X;w) =

2P (D = 1|X,W = w)− 1. Our results require the following assumptions:

(C.1) Markers (X,W ) have a bounded support and the conditional density of (D,X)

given W = w and is twice-continuously differentiable with respect to w. Moreover,

the marginal density for W is twice-continuously differentiable and bounded away

from zero;

(C.2) The conditional distribution of P (X|W = w) has a uniform geometric noise

exponent α > 0; that is, there exists a constant C independent of w such that∫
|f0(x;w)| exp

{
−τx(w)2

t

}
dP (x|w) ≤ Ctαd/2,

where d is the dimension of X , and τx(w) is the minimum distance from x to set

{z : f0(z;w) ≤ 0} for x with f0(x;w) > 0 while it is the minimum distance from x

to set {z : f0(z;w) ≥ 0} for x with f0(x;w) < 0;

(C.3) The kernel function Khn(x) = h−1n K(x/hn), where K(·) is symmetric and has

finite second moments. The reproducing kernel Hilbert space used to fit the general

decision boundary in (3.4) is generated from a Gaussian kernel with the bandwidth

σ−1n .

(C.4) hn, λn → 0, σn = λ
−1/((α+1)d)
n and

√
nh2n →∞.

Condition (C.1) ensures the smoothness of the distribution of the data over age

W , so that we can borrow neighboring information to infer an age-dependent rule.

Condition (C.2) is given in Steinwart and Scovel (2007), where they discussed a list

of examples that satisfy the geometric noise exponent condition. In particular, if the
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distribution satisfies that |f0(x;w)| ≤ cτx(w)γ1 and P (|f0(x;w)| ≤ t|W = w) ≤ Ctq

(Tsybakov noise exponent q), then condition (C.2) holds for α = (q+ 1)γ1/d if q ≥ 1.

In condition (C.4), as indicated in the proof and also in Steinwart and Scovel (2007),

the choice of σn is optimal in terms of approximating the Bayesian error bound using

the decision function for the reproducing kernel Hilbert space. Our main theoretical

result is the following.

Theorem 1. Define Err(f ;w) as the prediction error at age w, i.e., Err(f ;w) =

P (Df(X;w) < 0|W = w). Under conditions (C.1)-(C.4), there exists a constant cd

such that for any t > t0 where t0 is a constant that depends on d, with probability at

least 1− e−t, it holds

sup
w∈W

{∣∣∣Err(f̂ ;w)− Err(f0;w)
∣∣∣} ≤ cd(h

2
nλ
−1
n + λα/(α+1)

n + rnt),

where rn = n−1/2h−2n λ
−1−(d+2)/[(α+1)d]
n and is assumed to vanish as n goes to infinity.

Note the rate of risk bound is characterized through the geometric noise exponent

α, local kernel smoothing parameter hn, and the regularization parameter λn for SVM.

In addition, we obtain the supreme norm risk bound over the support of age. The

proof of Theorem 1 uses the embedding properties of the reproducing kernel Hilbert

space, the large deviation results of empirical processes and the approximation using

the kernel function. In the proof, we first note that Err(f̂ ;w) − Err(f0;w) can

be bounded by the corresponding risk based on the hinge loss E[(1 − Df̂)+|W =

w]− E[(1−Df0)+|W = w]. We then decompose the latter into

E[(1−Df̂)+|W = w] − E[(1−Df̂)+Khn(W − w)]/fW (w)

−
{
E[(1−Df0)+|W = w]− E[(1−Df0)+Khn(W − w)]/fW (w)

}
and {

E[(1−Df̂)+Khn(W − w)]− E[(1−Df0)+Khn(W − w)]
}
/fW (w),

where fW is the marginal density of W . Note that the first part is the bias due to

the kernel smoothing so can be controlled using the kernel bandwidth. The latter
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part is a weighted version of the hinge loss; therefore, we will adapt the existing

theory for the support vector machine (Steinwart and Scovel, 2007) but with careful

modification due to the local smoothing kernel weights. The main challenge is to

control the complexity of the kernel weighted functions from the reproducing kernel

Hilbert space and assess the tail bound of some kernel weighted empirical processes.

The detail of the proof is given in Appendix B.

From Theorem 1, we conclude

sup
w∈W

{∣∣∣Err(f̂ ;w)− Err(f0;w)
∣∣∣} = O(h2n/λn + λα/(α+1)

n ) +Op(rn).

Therefore, the optimal hn is [n−1/2λ
−1−(d+2)/[(α+1)d]
n ]1/4 and the derived rate becomes

Op(λ
α/(α+1)
n + [n−1/2λ−1−(d+2)/[(α+1)d]

n ]1/2/λn).

This further gives the optimal choice of λn to be λoptn = n−γ where γ = 1/[6 + 2(d +

2)/[(α + 1)d] + 4α/(α + 1)] so it results in the optimal rate as

sup
w∈W

{∣∣∣Err(f̂ ;w)− Err(f0;w)
∣∣∣} = Op(n

−γα/(α+1)).

Clearly, these optimal rates depend on the unknown α, so they cannot be estimat-

ed. Instead, we suggest using the cross-validation to estimate the optimal choices of

(hn, λn) in practice. Under the special case when f0(x;w) = XTβ0(w), if we choose

h4n/λn = n−1/2, then Theorem 1 can be modified to obtain

sup
w∈W
|Err(f̂ ;w)− Err(f0;w)| = Op(n

−1/4).

This rate gives an supreme bound of the classification error over the range of age

when the underlying true classification boundary is linear.

3.4 Simulation studies

In this section, we conducted two sets of simulation studies to compare the empirical

performance of KSVM with several alternatives. We generated samples with a size
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of n = 500 or 1000. For each setting we carried out 200 simulation runs. The

standardized ages Wi were generated from a uniform distribution with support (0, 1).

In the first set of experiments, we simulated data retrospectively. We generated

dichotomous outcomes

Yi = sign(W 2
i +Wi − 1 + εi), εi ∼ N(0, 1),

and given Yi and Wi, we generated markers X i = (Xi1, Xi2)
T as

X i|Yi,Wi ∼MVN{β(Wi)Yi, σ
2I},

and β(w) = (sin(4πw), 2 exp{−20(w − 0.5)2})T .

We compared several alternative methods of handling age and other markers.

For the handling of age effect we compared three approaches: (1) Using X i but

no Wi to train a standard SVM (SVM0); (2) Using X i, Wi and X iWi as input

variables to train a standard SVM (SVM1); and (3) the proposed local smoothing

SVM (KSVM). Within each of these methods, we compared using a linear kernel

for input variables versus using a Gaussian kernel. To evaluate the performance of

different approaches, we recorded the misclassification rate and area under the receiver

operating characteristic (ROC) curve (AUC) at each age point, and computed an

overall AUC and mean misclassification rate pooling data across all age points. For

KSVM, the bandwidth hn and the tuning parameter λn were chosen by 5-fold cross

validation separately. For the multiple marker case, we included both markers Xi1

and Xi2, and two other noise markers that do not contribute to disease risk.

Table 3.1 records the mean overall misclassification rate and AUC averaged over

simulations for SVM0, SVM1 and KSVM with two choices of Mercer kernels when

using Xi1 alone, using Xi2 alone, or using both plus two noise markers generated

from a standard uniform distribution. From Table 3.1, when a single marker is used

and the true classification boundary is more complex, such as a sine function, the

locally weighted KSVM has much lower average misclassification rate and much higher

overall AUC than fitting SVM0 or SVM1. Using a Gaussian kernel improves overall
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performance for SVM1 and KSVM but not for SVM0. As expected, larger sample size

improves AUC and decreases misclassification rate. When the underlying separating

boundary is a simpler function such as a Gaussian function, the difference between

KSVM and SVM0 is still substantial while the difference between KSVM and SVM1

is smaller. KSVM performs better than both SVM0 and SVM1 when a linear Mercer

kernel is used. With a Gaussian kernel, the overall performance of SVM1 and KSVM

is similar due to the true coefficient function β(w) being Gaussian (nonlinear) and the

ability of Gaussian Mercer kernel to fit nonlinear separating boundaries. Furthermore,

from this table, we observe that using all the markers compared to using single markers

improves the prediction accuracy. In this case, comparing three approaches in treating

the age effect, KSVM still has the overall performance superior to SVM0 or SVM1.

The decrease in misclassification rate of KSVM over alternatives averaged across age

and simulations is up to 50% (0.133 versus 0.265), and the increase in AUC is up

to 13% (0.941 versus 0.817), which is substantial. Comparing different treatment

of Mercer kernels, using a Gaussian kernel does not improve performance of either

SVM0, SVM1 or KSVM.

Figure 3.1 presents more detailed information on the age-specific misclassification

rate and AUC as a function of w averaged across simulation repetitions. When the

true coefficient function is a sine function, KSVM dominates the alternatives over the

entire range of w: it has lower misclassification rate and higher AUC at each age.

For Gaussian coefficient function, KSVM improves upon SVM0 and SVM1 at the tail

area. For the multiple marker case, Figure 3.1 (bottom panels) shows that while

the age-specific AUC and misclassification rate indicates a superior performance of

KSVM over the alternatives in the entire range of age, the improvement is much more

significant at the tail area and at places where the two classes have large overlap. For

example, SVM1 fails to accommodate the decision boundary around about w = 0.15

and w = 0.85 (high misclassification rate and low AUC) as shown by two subfigures.

In the second set of simulations, we simulated data prospectively based on a known
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true decision boundary thus we could assess the performance of the fitted decision

boundary through its mean squared error. First, we generated the standardized ages

Wi from a uniform distribution with support (0,1). The markers X i = (Xi1, Xi2)
T

are generated as β(Wi)+εi, where εi follows MVN(0, 1.52I) and the true β’s are the

same as in the first set of simulations. We further considered three different scenarios

where Zi1 = Xi1 − β1(Wi), Zi2 = Xi2 − β2(Wi), and Zi3 = Zi1 + Zi2, and the true

margin had a width of δ = 0.3. Then the class labels were generated as

Yik =


1; if Zik > δ

-1; if Zik < −δ

1 or -1 with probability of 0.5; otherwise,

for k = 1, 2, 3. We show a scatter plot of data generated in a typical simulation and

the true discriminant boundary which depends on the age in Figure 3.2.

We computed the mean squared error (MSE) of the fitted classification bound-

ary averaged across age for SVM0, SVM1 and KSVM. When a linear Mercer kernel

is used and with a sample size of 500, the MSE of KSVM under sine or Gaussian

coefficient function is much smaller than either SVM0 or SVM1: for the sine coeffi-

cient, MSE(×100)=49.8, 43.5, 6.24, respectively for SVM0, SVM1 and KSVM; for the

Gaussian coefficient, MSE(×100)=50.7, 51.4, 2.59, respectively. This reflects the in-

flexibility of SVM1 in fitting nonlinear age boundaries. When we increase the sample

size to 1000, the bias in SVM1 persists for all three scenarios. In Table 3.2, we sum-

marized overall AUC and misclassification under all settings with linear kernel and

Gaussian kernel. The trend in these indices is similar to the first set of simulations.

That is, for more complicated functions, KSVM noticeably improves upon SVM1 and

SVM0 with either linear or Gaussian kernel. For simpler functions such as Gaussian,

using a Gaussian kernel combining age and markers improves overall performance of

SVM1.



60

3.5 Applications to two clinical studies on Hunt-

ington’s disease

HD is an autosomal dominant disease caused by an expansion of CAG trinucleotide

repeats in IT15 gene on chromosome 4 (Huntington’s Disease Collaborative Research

Group, 1993). The disease is considered nearly fully penetrant. The inheritance of an

expansion of CAG trinucleotide repeats (mutation) from a father is associated with

increased penetrance to a greater extent in younger subjects than older subjects,

while the effect of inheritance from a mother slightly increases over age range of

their children. Majority of subjects with an expansion of CAG repeats in IT15 gene

(CAG repeats ≥ 36) on one allele will develop HD if not censored by death (Kieburtz

and Huntington Study Group, 1996b). It is well established that the risk of HD

diagnosis increases with age and CAG repeats length (Zhang et al., 2011a). A range

of cognitive and behavioral markers may have age-varying effect on the risk of HD as

well. For example, the symbol digit modality test score (SDMT, a neuropsychological

measure of attention, Smith, 1982) may be more sensitive than the total motor score

(a measure of motor impairment in HD, Kieburtz and Huntington Study Group,

1996b) in identifying younger subjects at risk of HD while total motor score maybe

more sensitive for older adults (Figure 3.6). In this section, various methods are

applied to two large genetic epidemiological studies on HD to investigate these issues.

3.5.1 COHORT study results

COoperative Huntington’s Observational Research Trial (COHORT, Dorsey and Hunt-

ington Study Group COHORT Investigators, 2012) is a large multi-site study that

includes 42 Huntington Study Group research centers in North America and Aus-

tralia. In the COHORT study, standard demographic, neurological, cognitive and

behavioral instruments were administered. Individuals who met criteria for Hunt-

ington’s disease (receiving a diagnostic confidence level, DCL, of 4 on the UHDRS
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assessment) as well as individuals at risk for HD by virtue of having a first degree

relative with HD were assessed. In this example baseline data was used, and there

were 338 premanifest cases and 670 controls.

Although genetic testing is available to determine whether a premanifest subject

(individuals who have not been diagnosed) carries an expansion of CAG repeats, most

individuals with a known family history of HD choose not to be tested since there is

currently no efficacious treatment to prevent or delay onset of disease (Williams et al.,

2010). Therefore, an important research goal is to develop personalized classification

to distinguish pre-symptomatic subjects who will develop HD from controls who will

never develop HD without taking a genetic test. In clinical practice, HD diagnosis is

based on motor symptoms, and clinicians assign a diagnostic confidence level (DCL)

from UHDRS motor exam. A lower DCL category indicates lower confidence of

HD, and a level of “4” indicates confirmed HD and these subjects are no longer

premanifests (Paulsen et al. 2008). For a neurodegenerative disease such as HD or

Alzheimer’s disease (Celsis, 2000), age is one of the most important variable to control

for. The goal of this analysis is to develop age-sensitive prediction to determine

whether a subject who has not received a diagnosis of HD (e.g., did not receive a

UHDRS DCL of 4) at the baseline visit is a pre-manifest HD case (i.e., carrying an

expansion of CAG repeats, gene-positive) or a control who will not develop HD (no

CAG expansion, gene-negative, will not develop HD).

To this end, we first show some descriptives of the COHORT data. In Figure 3.3,

we present the scatter plots of a few continuous variables reported in the literature

(Langbehn et al., 2007) associated with the risk of HD such as total motor score of

the UHDRS (higher is more severe) and symbol digit modality test, SDMT (higher

score is better). We overlay the LOWESS smoothing of the average scores in the

premanifest case group and control group on the scatter plot. It is clear that none

of the markers alone can discriminate the groups based on a linear boundary. We

tested for nonlinearity through a regression spline model with two knots and found a
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significant nonlinear effect for total motor score, SDMT, and verbal fluency test. It

is desirable to combine markers and create nonlinear classification boundary.

We applied KSVM with Gaussian kernel to combine 19 markers in COHORT to

capture the nonlinear age trend and develop an age-sensitive prediction rule. There

were 6 continuous markers (e.g., body mass index (BMI), UHDRS total motor score,

SDMT, verbal fluency test (Mitrushina et al., 2005), and stroop test (Stroop, 1935))

and 13 binary markers (e.g., history of alcohol abuse, history of drug abuse, significant

history of depression, current depression, mother affected by HD, father affected by

HD). To compute an honest AUC and misclassification rate, we randomly splitted

samples into a training set (n = 700, approximately 34% of which are premanifest

cases) and a testing set (n = 308) 100 times and reported the average performance

indices when applying fitted model to the testing set. We compared the overall AUC

and average misclassification rate over age for KSVM using all 19 markers with using

a single marker for several selected markers. We compared with the penalized logistic

regression with varying-coefficient age effect and accounting for interactions among

markers (Paik and Hastie 2009). The varying-coefficient of age takes a nonparametric

form fitted by a fourth order B-spline basis with 10 knots, and the tuning parameter

was selected by five-fold cross validation. Lastly, we also compared KSVM with SVM1

as described in section 3.4.

We summarize the overall sensitivity, specificity, AUC and misclassification rate

using all 19 markers and several examples of using each individual marker alone

in Table 3.3. KSVM with all 19 markers significantly improves the overall AUC

(0.88) and decreases the average misclassification rate (0.19) comparing to using a

single marker alone. It is clear that combining all the markers greatly improves

the prediction performance distinguishing carriers of an expansion of CAG repeats

from non-carriers (controls). Among the single marker models, total motor score

has the highest AUC, and the other markers have similar predictive powers that

are weaker than the total motor score. The average overal AUC and sensitivity are
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higher than penalized logistic regression with varying coefficients and SVM1, and

the misclassification rate for KSVM is lower than these two competing methods. In

Figure 3.4, we present a boxplot of four performance measures obtained from 100 cross

validations comparing three methods to demonstrate superior performance of KSVM.

The mean AUC, sensitivity and missclassification rate of KSVM are better than the

other two methods, while the specificty is similar. The variability of specificity and

other measures of KSVM is smaller than the competing methods, suggesting KSVM

to be more robust.

In the top panels of Figure 3.5 we show the age-specific sensitivity and specifici-

ty. We see a decreasing age trend in sensitivity which suggests it is easier to screen

presymptomatic cases from the population for younger subjects than for older sub-

jects, i.e., the predictive score is more sensitive for younger subjects. When a subject

shows subtle motor signs or cognitive decline at an early age, it is an indication of

increased likelihood of developing HD in the future since such signs may be rarely

present in controls of similar age. When a subject shows signs of clinical symptoms

at an older age, however, it is less predicative of HD disease status since controls at

older age may also show similar signs.

Combining all markers significantly improves over using single marker. For ex-

ample, total motor score and SDMT have sensitivities decreasing to zero for older

ages (non-age-corrected raw SDMT was used). We show the specificity in the upper

right panel of Figure 3.5. As expected, specificity increases with age, which suggests

it is easier to screen controls from the sample for older subjects. When the clinical

markers are absent by an old age, it is more likely a subject will never develop the

disease, and therefore the score is more specific for older subjects. Furthermore, s-

ince a subject at-risk for HD is mostly likely to develop HD between age 30 and 50

(Foroud et al., 1999), the increasing trend in specificity is consistent with the clinical

observation that an older subject who does not develop HD by a certain age is more

likely to be in the control group. When compared to the penalized logistic regression,
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we see an improvement in sensitivity especially at the younger age.

In the bottom panels of Figure 3.5, we show trajectories of the age-specific AUC

and misclassification rate. Again, we see at each age, using multiple markers has

superior performance than using each single marker. The general trend shows that

considering both sensitivity and specificity, it is easier to predict the risk status of HD

in an older subject than a younger subject since the AUC increases with age and the

misclassification status decreases with age. We can also see from the figure that the

combined predictive score maybe more accurate in the older age range, for example,

the AUC>0.85 for subjects with age> 38. When splitting samples by the median age

(47), the AUC is 0.84 for younger subjects and 0.89 for older subjects. The AUC of

the KSVM is higher than the logistic regression from age 20 to 55, and similar from

55 to 70. Same trend is observed for the misclassification rate.

To further investigate the relative ranking of markers, the first two subfigures in

Figure 3.6 present the age-specific predictive effect of several markers from age 20

to 70. These effects are computed as differences in the fitted discriminant functions

between values 1 and 0 of a particular binary marker or as differences of 1/4 standard

deviation units increase of a particular continuous marker with other markers fixed

at sample means in the local age window (5-year). It shows the markers expressing

different trends: some with increasing age effect (seeing a mental health professional)

and decreasing effect (father’s HD status). More importantly, we see that the relative

magnitude of the marker effect changes across age and the ranking of the importance

of markers based on the magnitude of shifts in their classification function also varies

with age. For example, SDMT score is more important than the total motor score

for younger subjects, while the total motor score dominates other markers for older

subjects (age 45 or above).

In summary, this analysis shows that markers’ sensitivity and specificity vary in

predicting at risk for HD according to age. Combining informative markers signifi-

cantly improves prediction accuracy. The most important marker for younger subjects
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is SDMT while it is total motor score for older subjects.

3.5.2 PREDICT-HD study results

We illustrate our methods through a second example, PREDICT-HD (Paulsen et al.,

2008), a 32-site observational study of HD focusing on premanifest subjects followed

from the prodromal phase through to post-diagnosis. To date, the main study has

1314 total participants, 1013 of whom were gene-expanded cases and 301 of whom

were non-expanded controls. The individual follow up period spans 10 years with

annual or biennial measurements on variables in important domains of motor, cog-

nitive, psychiatric as well as brain imaging. The number of subjects at each visit

ranges from 43 to 380. One of the major goals of PREDICT-HD is to discover mark-

ers for predicting onset of HD diagnosis based on motor symptoms in a short study

period in premanifests subjects. Such information is valuable for planning recruit

of a future clinical trial on HD. Thus, here our outcome of interest is the risk of a

pre-symptomatic subject at baseline receiving HD diagnosis during the study period.

That is, to predict risk of conversion: risk of a subject with DCL<4 (no diagnosis)

at the baseline converting to DCL=4 (receive a confirmed clinical diagnosis) in the

study period. This outcome of interest in this section is conversion status distin-

guishes PREDICT analysis from COHORT analysis in the previous section (outcome

mutation carrier status).

Our analysis included a subsample of 671 gene-expanded cases from PREDICT-

HD study who were not diagnosed with HD at the baseline. There were 107 converters

who received a disease diagnosis during the study period. Five markers (gender, CAG

repeats, total motor score, TFC and stroop color score) were used to predict the age-

specific conversion status in the age range from 25 to 65. We applied both KSVM

(with Gaussian kernel) and penalized logistic regression (Paik and Hastie 2009) with

nonparametric varying coefficient (B-spline basis expansion with 10 knots) to the data

for comparison similar to the COHORT study. The tuning parameter was selected
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by five-fold cross-validation.

We show some descriptives of the markers included in the analyses in the top

panels of Figure 3.7. We present the scatter plots of baseline total motor score and

stroop color score with overlaid LOWESS plots as examples. Although the figure hints

the mean total motor score to be different in converters and non-converters, a linear

separation boundary does not appear to be adequate. Similar pattern can be seen

for the stroop score. We therefore combine all five markers to perform classification

with a nonlinear boundary. The bottom panels of Figure 3.7 show the results. From

bottom left subfigure, we see that the age-specific sensitivity of KSVM is much higher

compared to penalized logistic regression in the younger age range (before 43 years

old). The specificity of the two methods is similar (results not shown). For the older

age range, their performance is similar. The right panel shows the standardized effects

of four continues markers (measured in 1/4 standard deviation unit of each marker).

Baseline total motor score has the largest effect across all age range, suggesting the

importance of this marker in tracking disease progression. Among the other markers,

total functional capacity has larger effect for younger subjects (less than age 37),

while these markers have similar magnitude of effect for older age range.

In summary, this analysis shows that KSVM creates much more sensitive predic-

tive score especially for younger subjects. In predicting conversion status during a

fixed time period, baseline total motor score has dominating effect over other markers.

3.6 Discussion

We have proposed a local smoothing classification method to predict disease risk

accounting for its age-dependent effect. Age has clear clinical interpretation and rep-

resents a constellation of underlying unobserved biological and physiological factors.

Constructing age-specific prediction rules facilitates studying the timing of interven-

tion and discovering markers useful to guide personalized treatments. The fitted coef-
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ficients β(w) depict age-sensitive profiles of the markers on disease risk. Furthermore,

the obtained age-dependent predictive scores can be used to allocate patients into risk

groups. Therefore the developed methods can be used to recruit high-risk patients for

clinical trials based on a subject’s age and marker values to improve efficiency of the

trial. In the application example, we classified HD premanifest case/control status

for presymptomatic individuals where all subjects with CAG≥ 36 belong to the case

group (they will develop HD a future time point). It would be interesting to use the

actual CAG repeat length in a future work and to classify more refined groups of cases

(e.g., close or far to disease onset). It may also be desirable to examine predictive

powers of other markers such as brain imaging measures in a future analysis.

Here we considered markers with age-dependent effects, but it is easy to incorpo-

rate markers with constant effects. For example, an iterative backfitting procedure

can be used to include markersZ with age-invariant effects and fit decision boundaries

such as

α(w) +XTβ(w) +ZTγ.

Specifically, at a given γ, α(w) and β(w) will be fitted through the developed ap-

proaches. Then fixing these functions at their fitted values, an update of γ is obtained

through a regular SVM procedure without smoothing. These two steps will be iterated

until convergence. We can extend the current approach when there is an addition-

al marker that needs special attention (e.g., BMI or CAG repeats length). We can

then extend our method to incorporate a two-dimensional coefficient function, i.e.

β(w, u), and apply two-dimensional local kernel smoothing. It is also easy to extend

the current methods to multi-category outcomes and to continuous outcomes.

Large margin classification with other penalty functions are discussed in Zhu et al.

(2003) (i.e., 1-norm SVM) and Zou and Yuan (2008) (i.e., F∞-norm SVM). We have

not considered marker selection in the current local smoothing setting. It may be

possible to use some of the other penalty functions to perform marker selection so

that the marker without any effect at the entire range of age will be automatically
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excluded. We do not discuss effective handling of correlated markers here. Lastly,

our simulation results show that different choices of Mercer kernel may lead to slight

difference in prediction accuracy. A procedure that maximizes performance over a

class of Mercer kernels is conceivable. These topics worth some future research.
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Table 3.1: Summary of simulation results from Simulation 1 (retrospective data gen-

eration)

Marker Mercer Index SVM†0 SVM‡1 KSVM§ SVM†0 SVM‡1 KSVM§

used kernel

n=500 n=1000

Xi1 Linear Miss∗ 0.439 0.334 0.240 0.440 0.334 0.228

AUC∗∗ 0.500 0.738 0.833 0.498 0.743 0.848

Gaussian Miss 0.446 0.277 0.233 0.442 0.260 0.223

AUC 0.500 0.760 0.825 0.501 0.783 0.838

Xi2 Linear Miss 0.262 0.174 0.164 0.264 0.170 0.161

AUC 0.819 0.884 0.899 0.818 0.885 0.903

Gaussian Miss 0.263 0.165 0.166 0.265 0.161 0.161

AUC 0.782 0.899 0.890 0.780 0.902 0.897

Multiple Linear Miss 0.267 0.174 0.143 0.265 0.168 0.133

AUC 0.813 0.897 0.932 0.817 0.902 0.941

Gaussian Miss 0.270 0.172 0.151 0.265 0.158 0.140

AUC 0.792 0.896 0.915 0.799 0.909 0.925
∗: Overall misclassification rate averaged over age; ∗∗: Overall AUC averaged over age;

† : Ignoring age effect; ‡ : A parametric linear age effect; §: Local smoothing of age effect.
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Table 3.2: Summary of simulation results from Simulation 2 (prospective data gen-

eration)

Marker Mercer Index SVM†0 SVM‡1 KSVM§ SVM†0 SVM‡1 KSVM§

used kernel

n=500 n=1000

Xi1 Linear Miss† 0.168 0.153 0.084 0.169 0.153 0.081

AUC‡ 0.930 0.937 0.979 0.930 0.937 0.981

Gaussian Miss 0.170 0.153 0.087 0.170 0.152 0.082

AUC 0.903 0.922 0.972 0.902 0.928 0.978

Xi2 Linear Miss 0.164 0.164 0.079 0.166 0.166 0.080

AUC 0.931 0.930 0.984 0.930 0.929 0.985

Gaussian Miss 0.164 0.085 0.083 0.163 0.081 0.080

AUC 0.897 0.980 0.978 0.900 0.983 0.982

Multiple Linear Miss 0.150 0.146 0.084 0.150 0.143 0.081

AUC 0.935 0.940 0.977 0.936 0.944 0.978

Gaussian Miss 0.153 0.138 0.095 0.152 0.120 0.081

AUC 0.920 0.944 0.972 0.921 0.957 0.979

Legends see Table 1.
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Figure 3.1: (Simulation 1) Age-specific misclassification rate (left) and AUC (right)

for SVM0, SVM1 and KSVM. The corresponding analysis from the top to the bottom

are: using Xi1, using Xi2 and using multiple markers.
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Figure 3.2: (Simulation 2) True classification boundary and a typical set of simulated

data.
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Figure 3.3: Descriptive scatter plots of several continuous markers and lowess s-

moothed mean curves in COHORT
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Figure 3.4: Comparison of KSVM, SVM1 and penalized logistic using 19 markers in

predicting at-risk status of Huntington’s disease with COHORT premanifest subjects

(overall 1-Misclassification Rate, AUC, Sensitivity, and Specificity).
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Figure 3.5: Comparison of 19-marker penalized logistic, 19-marker KSVM and single-

marker KSVM in predicting at-risk status of Huntington’s disease with COHORT

premanifest subjects (age-specific sensitivity, specificity, AUC and misclassification

rate).
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Figure 3.6: Standardized effect for key markers in COHORT study fitted by KSVM.
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Figure 3.7: Age-specific descriptives, sensitivity, and standardized effect for predicting

HD conversion status in PREDICT-HD premanifest subjects.
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Chapter 4

Multiple kernel learning with

latent effects for predicting

longitudinal outcomes and data

integration

4.1 Overview

In this chapter, we propose statistical learning methods for disease prediction for

longitudinal binary data with heterogeneous data sources. In the first section, we

propose a multiple kernel support vector machine with random effects for predicting

longitudinal outcomes and data integration. In the second section, we conduct two

simulation studies to investigate performance of the proposed methods. In the third

section, we apply the method to two longitudinal study data sets, the PREDICT-HD

data and the ADNI data. Finally, we summarize our findings and discuss possible

extensions in the fourth section.
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4.2 Multiple Kernel Fusion Learning for Longitu-

dinal Data

We start by briefly introducing standard statistical learning through support vector

machine with a single kernel, followed by incorporating longitudinal component to

the learning through fusing two kernels, and lastly we discuss integration of multiple

data sources through fusing multiple heterogeneous kernels.

4.2.1 Review of support vector machine

Let X denote a complete separable space for feature variables. The random feature

variables X take values in X , and the binary disease outcomes Y take values in R.

The goal of statistical learning is to train an optimal prediction function f : X → R

to predict Y given X for any future subject, where the performance of prediction

is quantified by the prediction error defined as E[I(Y f(X) < 0]. Due to the non-

smoothness of I(Y f(X) < 0), the optimal prediction function is usually obtained

by minimizing the empirical version of some surrogate loss function. One such loss

function most commonly used is the hinge loss, or the so called support vector machine

(SVM, Vapnik, 1995), and it has been proven to be successful in a wide range of

applications (Orru et al., 2012).

Assume that we have n independent observations (xi, yi), i = 1, ..., n. With a

linear prediction function f(xi) = 〈xi,w〉+ b, where the inner product here is defined

as 〈a,b〉 = aTb, the primal optimization problem of the SVM has the form (e.g.,

Hastie et al., 2009)

min
w∈X ,b∈R

{
1

2
wTw + C

n∑
i=1

ξi

}
(4.1)

subject to the constraints with slack variables ξi

yi(〈xi,w〉+ b) ≥ 1− ξi and ξi ≥ 0, for all i = 1, ..., n.
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The corresponding dual form is

max
α∈Rn

{
n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyj〈xi,xj〉

}
, (4.2)

subject to 0 ≤ αi ≤ C, i = 1, ...n,

and
n∑
i=1

αiyi = 0.

To accommodate nonlinear separating boundary, one defines a Mercer kernel k(·, ·)

such that

k(xi,xj) = 〈Φ(xi),Φ(xj)〉,

where Φ(·) is the mapping from the input space to a higher dimensional feature space,

and 〈·, ·〉 is the inner product defined in the reproducing kernel Hilbert space (RKHS,

Wahba 1990). The corresponding dual form becomes

max
α∈Rn

{
n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjk(xi,xj)

}
,

leading to the decision functions of the form

d(x) = sign (
n∑
i=1

αiyik(x,xi) + b).

Note that one advantage of solving the optimization from the dual form is that the

explicit form of Φ(·) does not need to be known as long as the kernel function k(·, ·)

is well defined (Kimeldorf and Wahba, 1970).

4.2.2 Proposed multiple kernel learning for longitudinal data

The above formulation is designed for independent outcomes. For longitudinal biomed-

ical data, outcome measures on the same subjects are correlated after accounting for

the observed fixed effects feature variables. Taking advantage of such correlation

is expected to lead to improved prediction. Classical longitudinal analysis divides



82

into two camps: estimating the marginal population-average effect, and estimating

the subject-specific effect given the random effects. For the former view, correlation

among repeated measures is treated as nuisance parameter, while for the latter it

is modeled through subject-specific random effects. In our setting, subject-specific

classifications are of interest instead of population average effects, therefore we intro-

duce random effects to the SVM framework to improve prediction in our proposed

approach.

Assume that we have n independent subjects and the ith subject has ni visits.

Let yij denote the disease outcome for the ith subject at the jth visit coded as “1”

for diseased subjects and “−1” for non-diseased subjects. Let xij denote a vector of

feature variables collected at the same visit. We introduce two latent random effects

for subject i, a time-invariant effect aij, which aims to capture the long-term latent

effect across all the visits from the same subject, and a time-varying effect bij, which

attempts to account for short-term latent effect or local influence from recent history

that depends on the time interval between visits. Therefore, for a subject with feature

variables xij at time tij, a prediction rule with subject-specific random effects can be

expressed as

sign{f(xij, aij, bij)},

where the prediction function has the form

f(xij, aij, bij) = 〈Φx(xij),w〉+ waΦa(aij) + wbΦb(bij). (4.3)

Here, Φx(x) consists of some mapping from the input space X to a higher-order

feature space (for example, the basis function associated with some reproducing k-

ernel Hilbert space) and both Φa(a) and Φb(b) are nonlinear transformation of the

latent effects which will be induced by some kernel functions defined for aij and bij,

respectively in Section 2.3. For identifiability, we also assume that aij and bij are

standardized random variables with mean zero and variance one. Clearly, since a and

b are unobserved random variables, conventional SVM techniques cannot be directly

applied.



83

When including the random effects into the model, the single kernel SVM becomes

a multi-kernel SVM with one kernel for fixed effects and two kernels for random

effects. Following the multiple kernel learning framework, a weight parameter θ is

then assigned to each kernel and a fused kernel is formed as a linear combination of

kernels under an L2-norm regularization constraint on the weight parameters. The

weights are chosen in a data-driven way to minimize the loss function under the fused

kernels. Thus, the primal form in the feature space becomes

min
wx∈X ,b∈R

1

2

(
wT
xwx

θx
+
w2
a

θa
+
w2
b

θb

)
+ C

n,ni∑
i,j

ξij (4.4)

subject to yij

(√
θx〈Φx(xij),wx〉+

√
θawaΦa(aij) +

√
θbwbΦb(bij)

)
≥ 1− ξij

ξij ≥ 0, i = 1, ..., n, and j = 1, ..., ni,

θ2x + θ2a + θ2b = 1, θx, θa, θb ≥ 0.

As a remark, comparing the optimization problem for longitudinal data (4.4) with

the original standard SVM primal form (4.1), we observe that the objective function

for the former is a conic combination of the separate objective functions for the latter

with a quadratic constraint. Furthermore, the resemblance with multiple kernel learn-

ing allows easy generalization to accommodate data from heterogeneous sources by

using separate kernels for observed feature variables from each source. Such method

incorporates prior knowledge on each source while performing integration. Contrary

to concatenating all variables in a single kernel, using separate ones reflects prior

knowledge that the feature variables from the same source have stronger correlations

than with variables from difference sources. For example, assuming there are P data

sources for fixed effects xij = (xij1, ...,xijP ) and with two kernels for two types of
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random effects, the corresponding primal form is

min
w∈X ,b,θp,θa,θb∈R

1

2

(
P∑
p=1

wT
p wp

θp
+
w2
a

θa
+
w2
b

θb

)
+ C

n,ni∑
i,j

ξij

subject to yij

(
P∑
p=1

√
θp〈Φp(xijp),wp〉+

√
θawaΦa(aij) +

√
θbwbΦb(bij)

)
≥ 1− ξij

ξij ≥ 0, i = 1, ..., n, and j = 1, ..., ni,
P∑
p=1

θ2p + θ2a + θ2b = 1, θp, θa, θb ≥ 0, p = 1, · · · , P.

The computation of the multiple kernel learning is essentially a quadratically-

constrained quadratic programming (QCQP) problem (Lanckriet et al., 2004). Specif-

ically, the dual form is

max
α

min
θ

n,ni∑
ij

αij −
1

2

n∑
i,k

ni∑
j,l

αijαklyijykl{
P∑
p=1

θpkp(xijp,xklp) +

θaka(aij, akl) + θbkb(bij, bkl)}

subject to 0 ≤ αij ≤ C, i, k = 1, ..., n, j, l = 1, ..., ni,

n,ni∑
i,j

αijyij = 0,

P∑
p

θ2p + θ2a + θ2b = 1, θp, θa, θb ≥ 0, p = 1, · · · , P.

where kp(xijp,xklp) = 〈Φp(xijp),Φp(xklp)〉 is the kernel for the reproducing kernel

Hilbert space for xijp, and ka(aij, akl) = 〈Φa(aij),Φa(akl)〉, kb(bij, bkl) = 〈Φb(bij),Φb(bkl)〉

are kernel functions for some inner products defined for latent effects we discuss next.

4.2.3 Choice of kernel functions for latent effects

Here we introduce kernels to model the two random effects aij and bij, respectively.

Recall kernel matrix measures similarity between two observations, a natural choice

of kernel function is the covariance structure of the random effects which can also

be considered as the inner product with respect to its distribution function. Thus,

we assume that the similarity between the latent effects from independent subjects
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is zero, the similarity between the long term random effects on the same subjects is

a constant ρ, and the similarity between local short term random effects depends on

the time interval between the two measurements.

Specifically, to account for the long-term latent effects, we can consider aij to

represent the common random effect shared across visits plus an independent random

error component, and therefore the commonly shared random effect will contribute

to prediction at each visit. Equivalently, construct elements in a kernel matrix as

ka(aij, akl) = 1 if i = k, j = l; ka(aij, akl) = ρ if i = k, j 6= l; and ka(aij, akl) = 0 if

i 6= k. That is, the kernel function for ni long-term random effects ai = (ai1, · · · , aini)T

is

Kai =


1 ρ · · · ρ

ρ 1 · · · ρ

· · · · · · · · · · · ·

ρ · · · ρ 1


ni×ni

,

and the kernel matrix for all N = (n1 + n2 + ...) observations from all the subjects is

Ka =


Ka1 0 · · · 0

0 Ka2
. . .

...
...

. . . . . . 0

0 · · · 0 Kan


N×N

.

Next, in order to account for short term latent random effects, we assume an expo-

nential covariance structure for bi. Thus, kb(bij, bkl) = exp{−α|tij − til|} if i = k;

and kb(bij, bkl) = 0 if i 6= k. The kernel matrix for the short term random effects

bi = (bi1, · · · , bini)T with measurement time points (ti1, · · · , tini)T is defined as

Kbi =


1 e−α|ti1−ti2| e−α|ti1−ti3| . . . e−α|ti1−tini |

e−α|ti1−ti2|) 1 e−α|ti2−ti3| . . . e−α|ti2−tini |

...
...

...
. . .

...


ni×ni

,
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where α is a pre-specified scale parameter, and the kernel matrix for all time-varying

short-term random effects on all subjects is

Kb =


Kb1 0 · · · 0

0 Kb2

. . .
...

...
. . . . . . 0

0 · · · 0 Kbn


N×N

.

Under the above choice of kernels, we can optimize the dual form (4.5) using the

quadratic programming. Earlier work suggests exhaustive search at given values of

θ and treating the fused kernels as a new kernel in a standard SVM optimization

problem. However, the computational burden is high. A computationally efficient

algorithm for solving the optimization problem (4.5) was proposed in Yu et al. (2010)

to solve for weights θ and α simultaneously. Specifically, the dual form (4.5) is solved

under the Cauchy-Schwarz inequality as

min
t,α

1

2
t−

n,ni∑
i,j

αij

subject to

n,ni∑
i,j

αijyij = 0, 0 ≤ αij ≤ C,

t ≥ ‖γ‖2,

where γ =
{
αTY K1Y α, ...,α

TY KPY α,α
TY KaY α,α

TY KbY α
}T

, and the op-

timal weight parameters for the pth kernel is θ∗p = αTY KpY α/‖γ‖2.

4.2.4 Prediction of future observations

For a longitudinal study, we distinguish two types of prediction of interest. We refer

type A prediction as predicting outcome for a new subject with the observed feature

variables x only and no prior history information, for example, prediction for a new

subject at the baseline visit. We refer type B prediction as predicting outcomes at

future follow-up time points for an existing subject with observed prior visit outcomes
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and feature variables x. One of the main components of our proposed learning is to

extract information from exisiting correlated outcomes to improve future prediction.

For each type of the prediction, we discuss a different strategy in predicting the

outcomes.

For type A prediction on a new subject with feature variables xi, directly using

designed kernel functions and the fitted prediction function (4.3) is equivalent to

using fixed effects only to predict the outcome and set the random effects at their

mean level, zero. This is because the designed kernel functions ka and kb for random

effects have non-zero values only between two visits on the same subject. In type A

problem, the existing subjects and the new subject are independent, and therefore

the fitted score from solving the dual form (4.5) do not involve random effects, which

corresponds to using the population mean value for all subjects with fixed effects xi

to perform prediction.

We suggest an alternative to use random effects for type A prediction. We repeat-

edly draw independent random effects ai and bi from a working Gaussian distribution.

For each random draw, we computed the predictive function as in (4.3) and classify

the outcome using the sign of f(xi, ai, bi). The final predicted outcome is based on a

majority vote: if more than 50% of random draws lead to positive predicted outcomes,

the final predicted outcome would be positive, and otherwise negative.

For type B prediction, we use an existing subject’s predictors and outcomes at

prior visits to predict their future follow up outcomes. We can then directly compute

the random effects for the same subject at a future time t∗ using the designed kernel

matrices Ka and Kb, and the fitted predictive function is obtained from the solutions

to (4.5).
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4.3 Simulation Studies

In this section, we conducted simulation studies to compare the empirical performance

of multi-kernel SVM with several standard alternatives for analyzing longitudinal

data.

4.3.1 Setting 1: single data source

In the first simulation setting, we generated the dichotomous outcomes from the

following model:

Yij = sign{βW ∗
ij + aij + bij + εij},

where W ∗ is the radius of the two spheres in Figure 4.1. First we generated W ij, a

3-dimensional vector randomly located either on the outer sphere with a radius equal

to 2 (with a small random error) or on the inner sphere with a radius equal to 1

(with a small random error) at each visit for a subject. We used the radius W ∗ in

the score function for generating the binary outcome. The radius changes at each

visit (with equal probability to be 1 or 2). A single radial kernel SVM can generate

a sphere-shaped boundary and perfectly separate the two groups of W ’s. ai and bi

are subject-specific random effects. Specifically, ai is generated from MVN(0,Σa),

where Σa is a correlation matrix with compound-symmetric structure (ρ = 0.5), and

bi is generated from MVN(0,Σb), where Σb is a correlation matrix with exponential

correlation structure, e.g., ρj,k = exp(−α|tj − tk|) with α = 1. Here εij are normally

distributed random errors of the ith subject at the jth visit. We performed 100 simu-

lation runs and compared various performance indices of the proposed method under

a single linear or radial kernel with and without random effects to logistic regression

ignoring correlation and generalized mixed effects regression with subject-specific ran-

dom intercepts. For logistic regression and generalized mixed effects regression, we

included all the feature variables, their squared terms and pairwise interactions.
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In type A prediction, we predicted outcomes for a new subject based on his/her

observed feature variables alone and the trained model. We generated longitudinal

data from the single source W plus latent random effects with a sample size of n = 250

subjects, each having 4 visits. Two-thirds of the subjects are included in the train-

ing set and the rest one-third as the testing set. The results are summarized in the

top panel of table 4.1 and Figure 4.2. The performance of the linear kernel SVM

is poor so only the radial kernel SVM results are shown in the figure. On average,

the two radial kernel SVMs with and without random effects have better accuracy

(1-misclassification rate), sensitivity and negative predictive value (NPV). The speci-

ficity and positive predictive value (PPV) is slightly lower. Including random effects

in the prediction improves accuracy and leads to smaller variability over repeated

simulations. Similar phenomenon holds for other indices.

In type B prediction, we predicted the future follow-up outcomes for the same

subject based on his/her observed features variables and prior visits’ outcomes and

the trained model. In this case each subject was generated to have 6 visits. The first

3 visits of each subject are used as the model-building set and the rest 3 visits as the

testing set. In this case we can compute the fitted random effects for each subject

using the designed kernel functions, and the subject-specific outcomes for the last

3 visits can be predicted for each subject incorporating fitted random effects. The

results are summarized in the bottom panel of table 4.1 and Figure 4.2. Here we

see more improvement for SVM-based approach compared to the generalized mixed

effects regression or logistic regression, and again extracting information from the

distribution of random effects leads to smaller variability for each of the performance

index.

4.3.2 Setting 2: multiple data sources

In order to mimic the real data application where the data are complex and from

heterogeneous sources, we generated the dichotomous outcomes from the following
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model:

Yij = sign{β0Tij + βT1Zi + βT2X
∗
ij + β3W

∗
i + aij + bij + εij},

where Tij is the age of the ith subject at the jth visit. The age ranges from 10

years old to 70 years old uniformly, and two subsequent visits of a subject have

a distance of around 3 years in age. Here Zi is a vector of time-invariant binary

markers of the ith subject which remain the same at each visit; X1i is a vector of

time-invariant continuous markers of ith subject uniformly ranging from -2 to 2; and

X2ij is a vector of time-varying continuous markers with a correlation ρ(X2ij, X2ik) =

exp(−α|tij − tik|) with α = 1 between the jth and kth visits of the ith subject. Vector

X = (X∗1, X
∗
2) are the mapping of (X1, X2) in the new feature space corresponding

to a polynomial kernel with degree 2, e.g., the inner product < u∗, v∗ > in the feature

space equals K(u, v) in the original space, where K is a polynomial kernel with degree

2. In Figure 4.3 we demonstrated a typical set of X when its dimension is 2. The

boundary for the two groups is nonlinear in the original space (top panel), while in the

new 3-dimensional feature space the boundary becomes a separating plane which is

linear (bottom panel). Markers W i is a 3-dimensional vector generated in the same

way as in the single source simulation (Figure 4.1), except that in this setting W

is time-invariant, which means that it varies between subjects but not among visits

from the same subject. Therefore the corresponding oracle kernels to use for the fixed

effects in this setting are a linear kernel for T , a linear kernel for Z, a polynomial

kernel with degree 2 forX, and a radial kernel forW . Subject-specific random effects

ai and bi were generated in the same way as in the single source simulation.

We also conducted two types of prediction for different purposes. In type A

prediction we generated samples with a size of n = 500 subjects, each having 4

visits. Two-thirds of the subjects are included in the training set and the rest one-

third as the testing set. We present the results in Figure 4.4. In the top panel

we compared a single radial kernel SVM (concatenate all feature variables in a single

radial kernel), a multiple radial kernel SVM (one separate radial kernel for each group
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of variables) and a multiple fused kernel SVM (combination of linear, polynomial

and radial kernels) with and without accounting for random effects. In this case, the

logistic regression without random effects and the generalized mixed effects regression

perform substantially worse than the SVM based methods in terms of all fit indices

(accuracy, sensitivity, specificity, PPV and NPV). In addition, the variability of the

former two approaches are much larger than the latter, indicating that the SVM based

methods provide more stable predictions.

Comparing four SVM-based approaches, the single radial kernel SVM performs

the worst (results for the single linear or polynomial kernel are even worse than using

radial kernel, so they are not shown here), indicating the advantage for using separate

kernels for fixed effects when data are heterogenous. Using multiple fused kernels

(different types of kernels, oracle) greatly improves the performance comparing to

using multiple radial kernels (same type of kernels), which confirms the importance

of using appropriate kernels for data from different sources. When comparing the

performance of multiple fused kernel SVM with and without random effects, we see

that including kernels for random effects reduces variability for all fit indices and

improves or maintains their mean values.

In type B prediction we generated samples with a size of n = 500 subjects, each

having 6 visits. The first 3 visits of each subject are used as the training set and the

rest 3 visits as the testing set. We predicted the subject-specific outcomes for the last

3 visits for each subject. The bottom panel of Figure 4.4 compares the performance of

multiple fused kernel SVM with or without random effects to logistic regression and

generalized mixed effects regression. The improvement of including random effects is

greater than that in type A prediction, suggesting that the developed method is more

powerful when predicting subject-specific outcomes when some outcomes on the prior

visits of the same subject are available.
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4.4 Application to two epidemiological studies

4.4.1 PREDICT-HD study

We applied the developed method to PREDICT-HD (Paulsen et al., 2008), a multi-

center observational study on Huntington’s disease (HD). HD is an autosomal dom-

inant disease caused by an expansion of CAG trinucleotide repeats in ITI5 gene on

chromosome 4 (Huntington’s Disease Collaborative Research Group, 1993). Majority

of subjects with an expansion of CAG repeats in IT15 gene (CAG repeats ≥ 36) on

one allele will develop HD if not censored by death (Kieburtz and Huntington Study

Group, 1996b). It is well established that the risk of HD diagnosis increases with

age and CAG repeats length (Zhang et al., 2011a). The diagnosis of HD is based on

the diagnostic confidence level (DCL), a measure ranging from 0 to 4 based on the

UHDRS assessment. A DCL of 0 means no abnormalities and 4 means motor abnor-

malities that are unequivocal signs of HD with 99% confidence. Subjects with a DCL

of 2 or higher can be considered as showing motor abnormalities that may be signs

of HD with more than 50% confidence. There are 941 CAG-expanded participants

in the data set who have complete data for analysis. The median age is 40 years old

and the range is from 18 to 75. 195 participants have a DCL of 2 or higher at the

baseline and totally 126 subjects reached a DCL of 4 during the study.

The goal of PREDICT-HD analysis is to distinguish among those who showed no-

ticeable motor signs of HD from those who did not. The analysis sample included 449

participants who had 4 or more visits, and the outcome of interest is whether a subject

had a DCL≥ 2 versus DCL< 2 at each visit. The data sources include demographic

data (age, gender and education level), genetic marker (CAG repeat length), motor

and functional measures (total motor score and total functional capacity), cognitive

function measures (stroop color, digital and word, and symbol digit modalities tests)

and psychiatric assessment scores obtained through FRSBE (Frontal Systems Be-

havior Scale), SCL90 (Global Severity Index, Positive Symptom Total and Distress
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Index) and UHDRS (Unified Huntington’s disease rating scale). For the multiple

fused kernel SVM, we used 5 separate kernels for the feature variables: a linear kernel

for age at visit since age appears to be an important biomarker for HD (Chen et al.,

2014), a radial kernel for all the continuous clinical measures and cognitive scores,

another radial kernel for their interaction with age, a linear kernel for genetic marker

and other demographic variables, and another linear kernel for their interaction with

age.

We first assessed the type A prediction by treating one third of subjects as new

subjects and predicting their outcomes at several visits based on the model trained

from the rest of two-thirds subjects. For the standard approaches, we only reported

results from logistic regression without random effects since generalized mixed effects

model failed to converge due to large number of feature variables included in the mod-

el. We compared the performance of five methods: logistic regression, single radial

kernel SVM, multiple radial kernel SVM, multiple fused kernel SVM and multiple

fused kernel SVM with random effects. The tuning parameter C for cost was selected

by five-fold cross-validation. The performance of methods using multiple kernels are

much better than using the single kernel in all the measures except for specificity (due

to very low sensitivity). For example, the accuracy for the single-kernel SVM is only

0.66 and the sensitivity is 0.15, while for all other methods the accuracy is around

0.85 and the sensitivity is between 0.75 and 0.80. In the top panel of Figure 4.5, we

show the performance of the other four methods. We can see that the kernel-based

methods perform better the logistic regression in four out of five fit indices (similar

sensitivity). Including random effects into multiple fused kernels improves accuracy,

specificity and NPV.

Next, we assessed the type B prediction of future observations on existing subjects.

We used the first two visits of each subject as the training set to predict the subject-

specific outcomes at the rest of follow-up visits. Since the division of training set

and testing set is fixed in this setting, we repeated the process n times, taking one
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subject out each time. From the bottom panel of Figure 4.5, we can see that the

accuracy is higher when including random effects, and its standard deviation is much

smaller, indicating stability of the results. Although the sensitivity and NPV are

slightly lower, the specificity and PPV are much higher.

4.4.2 Application to ADNI data

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) was a large joint initiative

by National Institute of Health, Food and Drug Administration, private pharmaceu-

tical companies, and nonprofit organizations. It is a naturalistic, non-randomized,

non-treatment study in which a total of 800 subjects including 200 normal control-

s, 400 individuals with mild cognitive impairment (MCI), and 200 subjects with

mild Alzheimer’s Disease (AD) recruited at approximately 50 sites in the United

States and Canada for longitudinal follow-up. MCI is a transition state between

the age-related decline in cognitive functions and clinically diagnosed features of AD

(Petersen, 2007). The goal of the study is to test whether a combination of MRI,

positron emission tomography (PET), other biological markers, genetic markers, and

clinical and neuropsychological assessments can be used to track the progression of

MCI and early AD. There are three phases of ADNI study: ADNI1, ADNI GO and

ADNI2. Further study design information is provided at http://www.adni-info.org/,

and detailed clinical characteristics of the ADNI sample are in Mueller et al. (2005)

and Petersen et al. (2010).

According to the ADNI protocol, all the subjects had clinical and cognitive assess-

ments and 1.5 T structural MRI at specified intervals (6 or 12 month) for 2-3 years.

Approximately 50% of the subjects also had PET scans at the same time intervals

and 25% of the subjects (who have not been scanned using PET) would have MRI at

3 Tesla. MCI subjects at high risk for conversion to AD would be studied at 0, 6, 12,

18, 24 and 36 months. Age matched controls would be studied at the same assessment

points. Detailed information regarding MRI and imaging protocol are presented in
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Clifford R. Jack et al. (2008). To the best of our knowledge, very few of the existing

analyses of ADNI data has optimally taken advantage of the longitudinal MCI status

assessments in a statistical learning framework.

In 2009, efforts to integrate genetic research related to ADNI biomarkers were

planned and carried out to assess genes beyond ApoE, the largest known genetic risk

factor for AD (Ashford, 2004). Since then, genetic and imaging data are available to

contribute to the understanding of biological etiology of AD and MCI. The proposed

multiple kernel framework exploits this unique opportunity to combine imaging and

genetic data to predict the progression of MCI and early AD. Previous studies showed

that some imaging biomarkers are important in predicting conversion from MCI to

AD and early AD progression (Devanand et al., 2008; Hampel et al., 2008; Nestor

et al., 2008). It is conceivable that imaging variables are more correlated with each

other than with genetic markers. If both types of data are concatenated in a single

kernel, for instance, a polynomial kernel, unnecessary polynomial correlation will

be imposed between imaging and genetic markers. In a multiple kernel learning

with separate kernels, however, such correlation is reduced, avoiding overfitting and

unwanted complexity. In our framework, one could use existing kernels designed for

imaging data and genetic data separately. Such analyses has not been reported in

ADNI literature before.

Our analysis goal is to distinguish the subjects who have MCI and the subject-

s who have dementia using demographic, clinical, imaging, and genetic markers.

The key data were merged from various case report forms and biomarker lab mea-

sures across the ADNI protocols by ADNI investigators and posted to ADNI website

(http://www.adni-info.org/). Our further inclusion criteria of samples were: subjec-

t’s disease status being MCI or dementia, having 4 or more follow-up records, and

having complete imaging and genetic data. The sample used in our analysis contains

213 participants from all 3 phases with 1055 longitudinal follow-up records.

The feature variables we used include demographic variables (age, gender, and e-
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ducation level), clinical variables (clinical dementia rating sum of boxes scores (CDR-

SB), the Alzheimer’s Disease Assessment Scale (11 and 13), mini-mental state exami-

nation (MMSE), Rey auditory verbal learning test (RAVLT) (forgetting and immedi-

ate) and functional assessment questionnaire (FAQ)), imaging markers (volume mea-

sures of ventricles, hippocampus, entorhinal cortex, and intra-cranial volume (ICV)),

and genetic markers (ApoE4 and 16 SNPs on the PICALM gene). The PICALM

gene was reported to be a causal gene for AD (Harold et al., 2009), and therefore the

SNPs in this gene were included in our analyses. We used four separate kernels for

each source of variables in the multiple fused kernel SVM: a polynomial kernel with

degree two for age at each visit, a radial kernel for demographic variables and clinical

variables, a linear kernel for imaging variables, and an identity-by-state (IBS) kernel

for genetic markers. The IBS kernel is specially designed to measure the similarity

between two subjects’ SNPs based on their identity by state information and has been

proven to be useful in genome-wide association studies (Wu et al., 2010).

The top panel of Figure 4.6 summarized the results of logistic regression, single

radial kernel SVM, multiple fused kernel SVM with and without random effects for

type A prediction. The performance of multiple kernel SVMs improve upon the

logistic regression in terms of all the fit indices, and upon the single radial kernel

SVM in terms of accuracy, specificity, and PPV. Sensitivity of the single kernel SVM

is slightly better than multiple kernel SVMs. The inclusion of random latent effects

to a multiple fused kernel SVM makes little difference in terms of type A prediction.

The bottom panel of Figure 4.6 compares the multiple fused kernel SVM with and

without random effects for type B prediction. In this case, accounting for random

effects in the multiple fused kernel leads to a substantial gain in accuracy, sensitivity

and NPV, which reflects the ability of using the latent random effects kernel matrix

to extract correlated similarity information of the outcomes on the same subject

(within-subject outcomes are often similar to some extent). In this example, the

fixed effects feature variables explained some proportion of variability while the latent
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effects improve prediction by extracting information from the unexplained variability

in type B prediction. Specificity and PPV for the multiple SVM incorporating random

effects is slightly lower, however, to a much lesser extent.

4.5 Discussion

In this work, we present new methods for statistical learning with random effects

for longitudinal data. For analyzing longitudinal data, conventional approaches such

as generalized mixed effects regression may fail to converge especially when a large

number of predictors are included. Marginal approaches are alternatives, however,

they aim at population average effects and may lead to inferior results. Our pro-

posed statistical learning method offers an effective alternative especially when the

number of predictors is large. A key feature is to embed correlation of longitudi-

nal observations into kernel matrices and take advantage of multiple kernel learning

methodologies. With a single data source, the classical methods perform adequately.

However, when there are multiple heterogeneous data sources, the improvement of

the proposed method is more evident. Making connections to multiple kernel learning

allows proposed method to enjoy easy integration of heterogeneous data sources to

boost information while accounting for longitudinal data structure. We have shown

through our simulations and real data analyses that when prior scientific knowledge

suggests distinct distribution of feature variables, treating each component with a

separate kernel and then combine in an optimal way allows substantial information

gain.

We discuss two types of prediction problems here. We show that by extracting

information on the distributions of the random effects, we improve prediction both for

future subjects and for future outcomes on the same subject given feature variables

and past outcomes. However, for longitudinal studies, the type B problems are more

commonly encountered in applications where the outcome at a follow-up visit for the
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same subject is desirable, and our learning method is more effective than ignoring

correlation among observations. When the interest is on predicting outcomes for a

new subject at the baseline, conventional approaches may work as well. The choice of

covariance structure and the choice of appropriate kernel functions is related to the

choice of the best representation of the kernel space. There is no consensus on these

issues in the current literature which warrants future study on these matters.

We adopt the use of L2-norm kernel fusion which leads to a non-sparse integra-

tion of multiple data sources, which may be more appealing in biomedical applications

where it is believed there is no clear “winner” and each data modality contributes

partial information to the prediction. Besides the L2-norm on weights θp, other reg-

ularization, such as L1-norm and L∞-norm, can also be imposed in the kernel fusion.

L1-norm generates a sparse integration, which can be used for data source selection

when the number of data sources is large and no prior information on which source

is more predictive is available. L∞-norm assigns the dominantly weight parameter to

only one kernel, which can be used when there is the need for a unique data source

competition.

Lastly, for the proposed method, the decision function takes an additive structure

of the feature variables and the latent effects. A natural extension will be to include

the interactions between them in the prediction rule. The proposed algorithm can

be easily modified to handle this issue through tensor products of kernel matrices.

Here we do not assume a distribution for random effects, but uses kernel functions to

capture correlation. The kernel matrices for ai and bi may be misspecified so that it

will be interesting to study the robustness of the prediction rule to the specification

of these matrices.
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Figure 4.1: A typical set of simulated data (3-dimensional vector W ).

−2

−1

0

1

2

−2

−1

0

1

2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2



101

Figure 4.2: Simulation setting 1 (single data source). Top panel presents type A

prediction of new subjects (left to right): 1-logistic regression, 2-generalized mixed

effects regression, 3-single radial kernel SVM, 4-single radial kernel SVM with random

effects. Bottom panel presents type B prediction of outcomes at future visits on the

same subjects (labels same as top the panel).
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Figure 4.3: A typical set of simulated data (2-dimensional vector X). Top panel:

nonlinear boundary in original space. Bottom panel: linear boundary (separating

plane) in new 3-dimensional space.
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Figure 4.4: Simulation setting 2 (multiple data sources). Top panel presents type A

prediction of new subjects (left to right): 1-logistic regression, 2-generalized mixed

effects regression, 3-single radial kernel SVM, 4-multiple radial kernel SVM, 5-multiple

fused kernel SVM, 6-multiple fused kernel SVMwith random effects. Bottom panel

presents type B prediction of outcomes at future visits on the same subjects (left to

right): 1-logistic regression, 2-generalized mixed effects regression, 3-multiple fused

kernel SVM, 4-multiple fused kernel SVM with random effects.
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Figure 4.5: PREDICT-HD study. Top panel presents type A prediction of new sub-

jects (left to right): 1-logistic regression, 2-multiple radial kernel SVM, 3-multiple

fused kernel SVM, 4-multiple fused kernel SVM with random effects. Bottom panel

presents type B prediction of outcomes at future visits on the same subjects (left

to right): 1-multiple fused kernel SVM, 2-multiple fused kernel SVM with random

effects.

0.8

0.82

0.84

0.86

0.88

0.9

1 2 3 4

Ac
cur

acy

0.65

0.7

0.75

0.8

0.85

0.9

1 2 3 4

Se
nsi

tivi
ty

0.8

0.85

0.9

0.95

1

1 2 3 4

Sp
eci

fici
ty

0.7

0.75

0.8

0.85

0.9

0.95

1 2 3 4

PP
V

0.8

0.85

0.9

0.95

1 2 3 4
NP

V

0.84

0.85

0.86

0.87

1 2

Ac
cur

acy

0.7

0.72

0.74

0.76

0.78

0.8

1 2

Se
nsi

tivi
ty

0.9

0.92

0.94

0.96

0.98

1

1 2

Sp
eci

fici
ty

0.87

0.89

0.91

0.93

0.95

1 2

PP
V

0.8

0.82

0.84

0.86

0.88

1 2

NP
V



105

Figure 4.6: ADNI study. Top panel presents type A prediction of new subjects (left to

right): 1-logistic regression, 2-single radial kernel SVM, 3-multiple fused kernel SVM,

4-multiple fused kernel SVM with random effects. Bottom panel presents type B

prediction of outcomes at future visits on the same subjects (left to right): 1-multiple

fused kernel SVM, 2-multiple fused kernel SVM with random effects.
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Appendix A

Proofs of theorems in Chapter 2

A.1 Proof of Theorem 1

We show consistency by Lemma 5.2 in Newey (1994). We need to show uniform

consistency of the initial IPW estimator, i.e., supt∈[a,b] |β̂(t) − β(t)| = op(1), and

verify assumption 5.4 and 5.5 in Newey (1994). First show uniform consistency of

the initial IPW estimator. Wang et al. (2012) showed that the IPW estimator can be

expanded as

β̂(t)− β(t) =
1

n

n∑
i=1

ψ{Xi, Ti; t, β(t)}+ op(n
−1/2), (A.1)

where

ψ{Xi, Ti; t, β(t)} = φ{Xi, Ti; t, β(t)} −
n∑
i=1

∫
[φ{Xi, Ti; t, β(t)} − B(φ, u)]dM c

i (u)

G(u)
,

B(φ, u) = E[φ{Xi, Ti; t, β(t)}|Ti ≥ u,Xi], and dM c
i (u) is the martingale of the

censoring process. To show uniform consistency, we need to show that the set{
ψ{Xi, Ti; t, β(t)} : t ∈ [a, b]

}
is a Glivenko-Cantelli class. Note that φ{Xi, Ti; t, β(t)} =

A{Xi; β(t)}[I(Ti ≤ t) − µ{Xi; β(t)}]Zi. Indicator functions are cadlag processes

which are bounded in total variation and belong to the Vapnic-Červonencis class.

Thus they are bounded in uniform entropy integral with square-integrable enve-

lope. It follows that they belongs to a Donsker class, and hence Glivenko-Cantelli.
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In addition, µ{Xi; β(t)} is Lipschitz continuous. By assumption A1, β(t) belongs

to a cadlag processes therefore are also bounded in uniform entropy integral. S-

ince Lipschitz continuous functions of classes bounded in uniform entropy integral

and pointwise measurable are also bounded in uniform entropy integral and point-

wise measurable,
{
µ{Xi; β(t)}, t ∈ [a, b]

}
, is Glivenko-Cantelli. From A{Xi; β(t)} ={

E(µ{Xi; β(t)}[1−µ{Xi; β(t)}]ZiZT
i )
}−1

, under assumption A5, A{Xi; β(t)} is bound-

ed from below and above by positive constants component-wise and bounded in u-

niform entropy integral, therefore is Glivenko-Cantelli. Lastly, since Xi is bounded

and products of classes with bounded uniform entropy integral also have bounded

uniform entropy integral, we have
{
φ{Xi, Ti; t, β(t)} : t ∈ [a, b]

}
is Glivenko-Cantelli.

Now we check the second term in ψ{Xi, Ti; t, β(t)}. Note that

B(φ, u) = E[φ{Xi, Ti; t, β(t)}|Xi, Ti ≥ u]

=
E[φ{Xi, Ti; t, β(t)}I(Ti ≥ u)|Xi]

E(Ti ≥ u|Xi)

=

∫∞
u
A{Xi; β(t)}[I(s ≤ t)− µ{Xi; β(t)}]ZidF (s|Xi)

1− F (u|Xi)

=
A{Xi; β(t)}[F (t|Xi)− F (u|Xi)− µ{Xi; β(t)}{1− F (u|Xi)}]Zi

1− F (u|Xi)
.

Therefore

n∑
i=1

∫
[φ{Xi, Ti; t, β(t)} − B(φ, u)]dM c

i (u)

G(u)

=
n∑
i=1

(1− δi)
G(Ci)

{
φ{Xi, Ti; t, β(t)}

−A{Xi; β(t)}[F (t|Xi)− F (Ci|Xi)− µ{Xi; β(t)}{1− F (Ci|Xi)}]Zi
1− F (Ci|Xi)

}
.(A.2)

Under condition A4, G(Ci) > 0. Under model (??) and conditions A1, A2, the above

term indexed by t is also Glivenko-Cantelli. This proves that
{
ψ{Xi, Ti; t, β(t)} : t ∈

[a, b]
}

is Glivenko-Cantelli. It follows that

sup
t∈[a,b]

∣∣∣∣∣n−1
n∑
i=1

ψ{Xi, Ti; t, β(t)} − E[ψ{Xi, Ti; t, β(t)}]

∣∣∣∣∣→ 0.
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Since E[ψ{Xi, Ti; t, β(t)}] = 0, we have shown the uniform consistency of the IPW

estimator,

sup
t∈[a,b]

|β̂(t)− β(t)| = 0.

Now we verify assumptions 5.4 and 5.5 in Newey (1994). In what follows, we

use θ and β(·) to denote true parameter values and use θ̃ and β̃(·) to denote other

values different from the truth. For assumption 5.4 (i), it is straightforward to see

that s(Oi; t0, θ̃, β) is continuous in θ̃ and is bounded under the assumptions A1, A3,

and A4. For the assumption 5.4 (ii), note

s(Oi; t0, θ̃, β̃)− s(Oi, ; t0, θ̃, β)

= I(Ti > Ci)I(Ci < t0){w(Oi; t0, β̃)− w(Oi; t0, β)}Zi

= I(Ti > Ci)I(Ci < t0)Zi

[
µ{Xi; β̃(t0)} − µ{Xi; β̃(Ci)}

1− µ{Xi; β̃(Ci)}
− µ{Xi; β(t0)} − µ{Xi; β(Ci)}

1− µ{Xi; β(Ci)}

]

= I(Ti > Ci)I(Ci < t0)ZiZ
T
i

(
µ{Xi; β̌(t0)}[1− µ{Xi; β̌(t0)}]

1− µ{Xi; β̌(Ci)}
{β̃(t0)− β(t0)}

−µ{Xi; β̌(Ci)}[1− µ{Xi; β̌(t0)}]
1− µ{Xi; β̌(Ci)}

{β̃(Ci)− β(Ci)}

)
, (A.3)

where β̌(u) is on the line segment between β̃(u) and β(u). Here the last equality is

obtained by taking pathwise derivative with respect to β. See also (A.4). Since 0 <

µ{x; β̌(u)} < 1 for u ∈ [a, b], it follows that there exists b(Oi) such that component-

wise we have

||s(Oi; t0, θ, β̃)− s(Oi, ; t0, θ, β)|| ≤ b(Oi)||β̃ − β||.

By condition A5, the assumption 5.5 in Newey (1994) is satisfied. Finally, by Lemma

5.2 of Newey (1994), we have θ̂n = θ + op(1).
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A.2 Proof of Theorem 2

We show the asymptotic normality of θ̂n by Lemma 5.3 of Newey (1994). For as-

sumption 5.1(i), note again

s(Oi; t0, θ, β̃)− s(Oi; t0, θ, β) = I(Ti > Ci)I(Ci < t0){w(Oi; t0, β̃)− w(Oi; t0, β)}Zi.

We now compute a pathwise derivative of w(Oi; t0, β) w.r.t. β evaluated at the true

β in the direction [β̃ − β]. Let βε(u) = β(u) + ε{β̃(u)− β(u)}. We can verify that

limε→0
1

ε

{
F (t0|Xi; βε)− F (Ci|Xi; βε)

1− F (Ci|Xi; βε)
− F (t0|Xi)− F (Ci|Xi)

1− F (Ci|Xi)

}
=

F (t0|Xi){1− F (t0|Xi)}ZT
i

1− F (Ci|Xi)
{β̃(t0)− β(t0)}

−F (Ci|Xi){1− F (t0|Xi)}ZT
i

1− F (Ci|Xi)
{β̃(Ci)− β(Ci)}. (A.4)

Let

D(Oi; β̃ − β) = I(Ti > Ci)I(Ci < t0)ZiZ
T
i

[F (t0|Xi){1− F (t0|Xi)}
1− F (Ci|Xi)

{β̃(t0)− β(t0)}

−F (Ci|Xi){1− F (t0|Xi)}
1− F (Ci|Xi)

{β̃(Ci)− β(Ci)}
]
. (A.5)

From (A.3), we can verify

s(Oi; t0, θ, β̃)− s(Oi; t0, θ, β)−D(Oi; β̃ − β)

= I(Ti > Ci)I(Ci < t0)ZiZ
T
i

(
µ{Xi; β̌(t0)}[1− µ{Xi; β̌(t0)}]

1− µ{Xi; β̌(Ci)}
{β̃(t0)− β(t0)}

−µ{Xi; β̌(Ci)}[1− µ{Xi; β̌(t0)}]
1− µ{Xi; β̌(Ci)}

{β̃(Ci)− β(Ci)}

)
−D(Oi; β̃ − β)

= I(Ti > Ci)I(Ci < t0)ZiZ
T
i

×

([µ{Xi; β̌(t0)}[1− µ{Xi; β̌(t0)}]
1− µ{Xi; β̌(Ci)}

− F (t0|Xi){1− F (t0|Xi)}
1− F (Ci|Xi)

]
{β̃(t0)− β(t0)}

−
[µ{Xi; β̌(Ci)}[1− µ{Xi; β̌(t0)}]

1− µ{Xi; β̌(Ci)}
− F (Ci|Xi){1− F (t0|Xi)}

1− F (Ci|Xi)
{β̃(Ci)− β(Ci)}

])
,
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where again β̌(u) is on the line segment of β̃(u) and β(u). It is now easy to see that

||s(Oi; t0, θ, β̃)− s(Oi; t0, θ, β)−D(Oi; β̃ − β)|| ≤ b(Oi)||β̃ − β||2.

For (ii) in assumption 5.1, we need to show that the convergence rate of the IPW

estimator β̂ is at least n1/4. Let F denote all cadlag functions uniformly bounded on

[a, b]. By adapting the proof in the previous item, we know that {ψ{Xi, Ti; β(t)} :

t ∈ [a, b], β ∈ F} belongs to a Donsker class. Therefore
√
n{β̂(·) − β(·)} converges

weakly to a Gaussian process. Therefore this assumption is satisfied.

We now prove assumption 5.2 (stochastic equicontinuity). Note∫
D(o; β̃ − β)dGdH

=

∫ t0

0

g(u)

∫
h(x)

[F (t0|x){1− F (t0|x)}zzT{β̃(t0)− β(t0)}
1− F (u|x)

{1− F (u|x)}

−F (u|x){1− F (t0|x)}zzT{β̃(u)− β(u)}
1− F (u|x)

{1− F (u|x)}
]
dxdu

=

∫ t0

0

g(u)

∫
h(x)zzT

[
F (t0|x){1− F (t0|x)}{β̃(t0)− β(t0)}

−F (u|x){1− F (t0|x)}{β̃(u)− β(u)}
]
dxdu.

A sufficient condition for stochastic equicontinuity is provided in Chen et al.

(2003), Remark 2. To be specific, we need to show for δn = op(1),

sup
||β̃−β||≤δn

|| 1
n

n∑
i=1

D(Oi, β̃ − β)−
∫
D(o, β̃ − β)dGdH|| = op(n

−1/2).

This can be proved by showing the process {D(Oi, β̃ − β) : t ∈ [a, b], β̃ − β ∈ F}

belongs to a Donsker class. Note the form of D(Oi, β̃−β) in (A.5), again by adapting

proof in item 4 this holds under the conditions A1-A5.

A sufficient condition for assumption 5.3 in Newey (1994) is

√
n

∫
D(o; β̂ − β)dGdH −

n∑
i=1

α(Oi)/
√
n→ 0,
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for some α(·) (p.1366, Newey, 1994). Using the expansion (A.1) for β̂(t), we obtain∫
D(o; β̂ − β)dGdH =

1

n

n∑
i=1

ξ(Ti; t0, θ, β) + op(n
−1/2),

where

ξ(Ti; t0, θ, β) =

∫ t0

0

g(u)

∫
h(x)zzT

[
F (t0|x){1− F (t0|x)}ψ(x, Ti; t0, θ)

−F (u|x){1− F (t0|x)}ψ{x, Ti;u, β(u)}
]
dxdu.

Therefore assumption 5.3 holds.

For assumption 5.6, it is straightforward that (i) and (ii) are satisfied. We have

A = E

{
∂s(Oi; t0, θ, β)

∂θ

}
= E[µ(Xi; θ){1− µ(Xi; θ)}ZiZT

i ],

which is nonsingular under the assumption A5. It is easy to see that (iv) hold-

s. For (v), since
∂s(Oi; t0, θ, β)

∂θ
is continuous in θ, assumption 5.4 (i) holds for

∂s(Oi; t0, θ, β)

∂θ
. The assumption 5.4 (ii) holds for

∂s(Oi; t0, θ, β)

∂θ
since it does not

depend on β.

By Lemma 5.3 of Newey (1994), we obtain

√
n(θ̂n − θ)→ N(0, A−1V A−1).
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Appendix B

Proofs of Theorem 1 in Chapter 3

Let Pn denote the empirical measure and P be the probability measure. Let Hn be

the reproducing kernel Hilbert space with the Gaussian kernel function with variance

1/σ2
n. Then the estimated decision function f̂(x;w) minimizes

ln(f ;w) + λn‖f‖2Hn ,

where ln(f ;w) = Pn [Khn(W − w)φ(Df(X))], φ(x) = (1 − x)+, and ‖ · ‖Hn is the

norm in Hn. In our following derivations, we use cd to denote any constant only

depending on d.

First, we find a function fλn in Hn which has the prediction error close to the

true Bayes error. Let l̃(f ;w) = E[φ(Df(X;w))|W = w]. Note that since f0 mini-

mizes E[φ(Df(X;w))|X = x,W = w], f0 also minimizes l̃(f ;w). Under assumption

(C.2), we obtain from Theorem 2.7 in Steinwart and Scovel (2007) that there exists

a constant cd such that for any w

inf
f∈Hn

(
l̃(f ;w) + λn‖f‖Hn − l̃(f0;w)

)
≤ cd

(
σdnλn + C(2d)αd/2σ−αdn

)
Since σn = λ

−1/[(α+1)d]
n from condition (C.3), it gives

inf
f∈Hn

(
l̃(f ;w) + λn‖f‖Hn − l̃(f0;w)

)
≤ cdλ

α/(α+1)
n .
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Therefore, if let fλn(·;w) be the unique function in Hn (the uniqueness is due to the

strictly convexity) minimizing the left-hand side of the above inequality, then it holds

that uniformly in w ∈ W , where W is the support of W ,

l̃(fλn ;w) + λn‖fλn‖Hn − l̃(f0;w) ≤ cdλ
α/(α+1)
n . (A.1)

From (A.1), we have

‖fλn‖Hn ≤ l̃(f0;w)/λn + cdλ
α/(α+1)
n /λn.

Since l̃(f0, w) is uniformly bounded, by redefining constant cd, we obtain supw∈W ‖fλn‖Hn ≤

cd/λn. According to Lemma 3.1 in Steinwart et al. (2006), supw,x |fλn| ≤ cd/λn.

Moreover, Steinwart and Scovel (2007) shows that for any m > d/2, ‖fλn‖W 2,m ≤

λ−1n cdσ
2m−d
n where ‖ · ‖W p,k is the Sobolev norm. Thus, from the Sobolev embedding

theorem, we conclude ‖fλn‖W∞,m−(d+1)/2 ≤ λ−1n cdσ
2m−d
n .

Second, to establish the risk bound for f̂(x;w), we need an upper bound for

supw ‖f̂(x;w0)‖Hn . From the fact that

ln(f̂ ;w) + λn‖f̂‖2Hn ≤ ln(fλn ;w) + λn‖fλn‖2Hn , (A.2)

we have

λn‖f̂‖2Hn ≤ cd/λnPnKhn(W − w) + λn‖fλn‖2Hn .

Thus, using the uniform consistency of the kernel density estimator, we have

λn‖f̂‖2Hn ≤ cdλ
−1
n + λn‖fλn‖2Hn . (A.3)

This implies ‖f̂‖Hn is bounded by O(λ−1n ) with probability one.

We consider probability sample in the event

A =

{
sup
w∈W
‖f̂‖Hn ≤ cd(λ

−1
n + t)

}
.

From (A.2), we obtain

l(f̂ ;w)− l(fλn ;w)− λn‖fλn‖2Hn + λn‖f̂‖2Hn
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≤ (Pn −P) [Khn(W − w)φ(Dfλn(X;w))]− (Pn −P)
[
Khn(W − w)φ(Df̂(X;w))

]
,

(A.4)

where l(f ;w) = P[Khn(W − w)φ(Df(X;w))]. By the continuous differentiability

of the conditional density of (D,X) given W in condition (C.1), it is easy to show

supw∈W |l(f ;w)− l̃(f ;w)|fW (w) ≤ cdh
2
n/λn if |f | ≤ cd/λn. Furthermore, using (A.1)

, the left-hand side of (A.4) is bounded from below by

cd[l̃(f̂ ;w)− l̃(f0;w)− c̃dλα/(α+1)
n ] + λn‖f̂‖2Hn .

On the other hand, if we define

F1 =
{
Khn(W − w)φ(Df(X)) : w ∈ W , ‖f‖W∞,m−(d+1)/2 ≤ cd(λ

−1
n + t)σ2m−d

n

}
,

then following the embedding arguments from the reproducing kernel Hilbert space

Hn to the Sobolev space, we conclude that both fλn and f̂ belong to F2. Hence, we

obtain from equation (A.4) that

sup
w∈W

{
l̃(f̂ ;w)− l̃(f0;w) + λncd‖f̂‖2Hn

}
≤ cd

{
h2nλ

−1
n + λα/(α+1)

n

}
+ 2‖Pn −P‖F1 .

(A.5)

From Theorem 2.7.1 in Van der Vaart and Weller (1996), the bracket number of

F2 =
{
f(X) : ‖f‖W∞,m−(d+1)/2 ≤ λ−1n cdσ

2m−d
n

}
satisfies logN(ε,F2λn/σ

2m−d
n , ‖ · ‖∞) ≤ cdε

−d/(m−(d+1)/2). Since for any w1, w2 and

f1, f2,∣∣∣Khn(W−w1)φ(Df1(X))−Khn(W−w2)φ(Df2(X))
∣∣∣ ≤ cdh

−2
n /λn|w1−w2|+h−1n |f1(X)−f2(X)|.

Therefore, the covering number for F1 satisfies

logN(ε,F1(λnhn)2/σ2m−d
n , ‖ · ‖∞) ≤ cdε

−d/(m−(d+1)/2)
{

1 + log ε−1
}
.

From the large deviation results for the empirical process (Theorem 2.14.10, Van der

Vaart and Weller, 1996), we obtain

P
(√

n‖Pn −P‖F1 > tσ2m−d
n cd(λ

−1
n + t)/(hn)2

)
≤ cde

−t2
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when t > t0(d) for some constant t0(d) if we choose m so that m > d + 1/2. We

conclude

P (‖Pn −P‖F1 > rnt) ≤ cde
−t.

Hence,

P

(
sup
w∈W

{
l̃(f̂ ;w)− l̃(f0;w) + cdλn‖f̂‖2Hn

}
> cd

{
h2nλ

−1
n + λα/(α+1)

n + rnt
})
≤ e−t,

where rn = n−1/2σ2m−d
n λ−1n /(hn)2.

Finally, using the relationship between the hinge loss and the zero-one loss (cf.

Bartlett et al., 2006), we conclude

P

(
sup
w∈W

{
|Err(f̂ ;w)− Err(f0;w)|+ cdλn‖f̂‖2Hn

}
> cd(h

2
n/λn + λα/(α+1)

n ) + rnt
)
≤ e−t.

The theorem follows if we choose m = d+ 1.

Remarks. Under the linear rules, we can follow exactly the same arguments as before

but the Hilbert space Hn is replaced by the Euclidean space Rd. Thus, we can set

σn = 1. Furthermore, we can use f0(x;w) as fλn(x;w) in the proof of Theorem 1.

Then from (A.2), we obtain

‖β̂(w)‖2 ≤ cdλ
−1
n + ‖β0(w)‖2.

Thus, using the large deviation result for the first term in the right-hand side, we

obtain

P (sup
w
‖β̂(w)‖2 > cd(λ

−1
n + t)) < e−t

2

. (A.6)

Thus, we restrict to the probability set of supw ‖β̂‖2 ≤ cd(λ
−1
n + t)). Then using the

inequality (A.4), we obtain

sup
w∈W

{
l(f̂ ;w)− l(f0, w)

}
≤ 2‖Pn −P‖F4 ,
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where

F4 =
{
Khn(W − w)φ(Df) : f = βTx, ‖β‖2 ≤ cd(λ

−1
n + t)

}
.

From the large deviation result of empirical process, we know

P (
√
n‖Pn −P‖F4 > h−2n λ−1/2n cdt) ≤ e−t

2

. (A.7)

Therefore, using l(f ;w) = E[φ(Df(X;w))|W = w] + O(h2nλ
−1/2
n

√
1 + t) and the

relationship between the hinge loss and zero-one loss, it gives that with at least

probability 1− e−t,

sup
w∈W
|Err(f̂ ;w)− Err(f0;w)| ≤ h2nλ

−1/2
n

√
1 + t+ n−1/2h−2n λ−1/2n cdt ≤ n−1/4 + n−1/4t.

That is, supw∈W |Err(f̂ ;w)− Err(f0;w)| = Op(n
−1/4).
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