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Abstract

The arithmetic and geometry of genus four curves

Hang Xue

We construct a point in the Jacobian of a non-hyperelliptic genus four curve which

is defined over a quadratic extension of the base field. We attempt to answer two

questions:

1. Is this point torsion?

2. If not, does it generate the Mordell–Weil group of the Jacobian?

We show that this point generates the Mordell–Weil group of the Jacobian of the

universal genus four curve. We construct some families of genus four curves over the

function field of P1 over a finite field and prove that half of the Jacobians in this family

are generated by this point via the other half are not. We then turn to the case where

the base field is a number field or a function field. We compute the Neron–Tate height

of this point in terms of the self-intersection of the relative dualizing sheaf of (the

stable model of) the curve and some local invariants depending on the completion of

the curve at the places where this curve has bad or smooth hyperelliptic reduction. In

the case where the reduction satisfies some certain conditions, we compute these local

invariants explicitly.
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Chapter 1

Introduction

1.1 Introduction

Let X be a variety defined over a field. Constructing homologically trivial cycles and determining

whether they are torsion in the corresponding Chow group is an important problem in algebraic and

arithmetic geometry. An explicit construction usually gives deep information on the arithmetic and

geometry of X. One of the most well-known examples is when X is an elliptic curve over a number

field, one can construct the Heegner point on X. In this case, whether the point is non-torsion is

related to the first derivative of the Hasse–Weil L-function of the elliptic curve by the Gross–Zagier

formula. This construction, together with other powerful techniques, provides the best results so far

towards the famous BSD conjecture.

Another example is the Gross–Schoen cycle on the triple product of a pointed curve and studied in

detail in [GS1995,Zha2010]. In the paper of Zhang, the height of the Gross–Schoen cycle is expressed in

terms of the self-intersection of the dualizing sheaf of the curve [Zha2010, Theorem 1.3.1]. Various deep

arithmetic information is extracted from such a formula. For instance, it is proved that the Northcott

property holds for this cycle [Zha2010, Theorem 1.3.5]. This formula is also applied to the effective

Bogolomov conjecture, the Beilinson–Bloch conjecture and the non-triviality of the tautological cycles

in the Jacobians. The height formula of the Gross–Schoen cycle provides important progress towards

these long standing conjectures. For example, by using the Fourier transform on the Chow group, it

is proved that if X is a curve, the Ceresa cycle X − [−1]∗X in the Jacobian of X has the Northcott

property [Zha2010, Theorem 1.5.5]. Previously, the Ceresa cycle is only known to be non-torsion in

the corresponding Chow groups for generic curves.
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It is Zhang’s remarkable observation that one can construct a degree zero divisor on a non-

hyperelliptic genus four curve. More precisely, let K be a field, X a non-hyperelliptic curve genus four

over K. Then X is a complete intersection of Q and S on P3, where Q is a (unique) irreducible quadric

surface and S is an irreducible cubic surface [Har1977, Chapter IV]. Assume that Q is smooth. For

any geometric point p of X, there are two lines l and l′ of in Q passing through p, which intersect X

at two degree three divisors D,D′. Then Ξ := D′ −D is a degree zero divisor on X which gives rise

to a point in Jac(X)(K). It is clear that this point, i.e. the linear equivalence class of this divisor, up

to sign, doesn’t depend on the choice of p. This divisor class is defined over K ′, a quadratic extension

of K obtained by adding square root of the discriminant of Q. Indeed, the base change QK′ of Q to

K ′ is isomorphic to P× P′ where P and P′ are genus zero curve over K ′. Then the image of the point

ωX ⊗ωP′ |X ∈ Jac(X)(K ′) in Jac(X)(K) is Ξ. When Q is not smooth, we have the same discussion as

above, except that D and D′ coincide, hence the point Ξ ∈ Jac(X)(K) is zero. There are two basic

questions:

1. Is this point torsion in the Jacobian?

2. When it is non-torsion, does it generate Jac(X)(K ′), at least up to torsion?

The aim of this paper is to study these two questions when K is a global field, or when K is the

function field of the moduli space of genus four curve and X is the universal genus four curve.

1.2 Statement of the main results

We now describe our main theorems. Let k be a field with char k 6= 2. Let M4 be the moduli space

of curves of genus four over k and K its function field. Let M4,1 →M4 be the universal genus four

curve over M4. Let X → SpecK be the generic fiber of M4,1 →M4. Let K ′ be the quadratic field

extension of K as in the previous section, over which the point Ξ is defined.

Theorem 1.2.1 (Theorem 2.1.5). The Mordell–Weil group Jac(X)(K ′) is of rank one. Moreover

Jac(X)(K ′)⊗Q is generated by Ξ.

We now let k = Fpn be the finite field with pn elements and p 6= 2. The general genus four curve is

a smooth curve in P1×P1 of type (3, 3). The space of all (3, 3)-curves on P1×P1 is a projective space

P of dimension 15. We consider the line bundle L = O(d, 3, 3) on P1×P1×P1 and the complete linear

system |L| parameterizing hyperplane sections of P1 × P1 × P1. Then each hyperplane section can be

viewed as fibration in genus four curves over P1 via the first projection. We prove in Lemma 2.2.1 that
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there is an open subset V of |L| such that the fibration over P1 is generically smooth, non-isotrivial, all

fibers are irreducible and the total space is smooth. Suppose s ∈ V (k), we denote by Js the Jacobian

of the generic fiber. We prove in Lemma 2.2.3 that Ξ is always non-torsion in Js(K) where K it the

function field of P1. Let

V (k,Ξ) = {s ∈ V (k) | Ξ generates Js(K) }.

Then we show that

Theorem 1.2.2 (Corollary 2.4.5). Assume that d ≥ 2. Then

lim
#k→∞

#V (k,Ξ)

V (k)
≥ 1

2
.

If the Tate conjecture holds, then the inequality is an equality.

We note that similar theorems for the plane curves of a fixed degree have been previously obtained

by de Jong and Katz [dJK2000].

Let k be a number field. Then we have a similar construction of the scheme V over k as above.

Fix any height function h on V (k). Let H be any real number. We let

V (H) = {s ∈ V (k) | h(s) ≤ H},

V (H,Ξ) = {s ∈ V (H) | Ξ generates Js(K)}.

Theorem 1.2.3 (Theorem 2.4.8). We have

lim
H→∞

#V (H,Ξ)

#V (H)
= 1.

Theorem 1.2.2 and 1.2.3 show that the equidistribution behavior over a number field and a finite

field is completely different.

From now on, let K be a function field of a smooth projective curve B or a number field in which

case we let B = Spec oK where oK is the ring of integers of K. A natural measure of the non-triviality

of a point in Jac(X)(K) is the Neron–Tate height. We are going to give a brief review of the Neron–

Tate height in Section 3.1. The last theorem of this paper is an expression of the Neron–Tate height

of Ξ in terms of the self-intersection of the relative dualizing sheaf of X and local contributions when

the reduction of X satisfies certain conditions.

Let X be the stable model of X over B. If K is a function field, let ω be the dualizing sheaf of
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X → B. If K is a number field, let ω be the Arakelov dualizing sheaf, c.f. Section 3.1. Let v be a

place of B and R the completion of B at the place v. Let Y be the special fiber of X at v. We say

that the reduction of X at v is simple if Y is of one of the following types.

1. Y is smooth. We denote by h(Xv) the maximal integer n, such that Xn := X ×R R/$n is still

hyperelliptic. In this case, Y is said to be of type SMOOTH. A curve Y → R/$n is called

hyperelliptic if there is an involution σ : Y → Y over R/$n, such that Y/〈σ〉 is a P1-bundle

over R/$n.

2. Y is an irreducible nodal curve with a single node p and its normalization is not hyperelliptic.

In this case, Y is said to be of type IRRED. We assume that the local equation of X at the node

is xy −$δ0 .

3. Y has two components C and E meeting at a single node p, where C is a non-hyperelliptic genus

three curve and E is an elliptic curve. In this case, Y is said to be of type ELL. We assume that

the local equation of X at the node p is xy −$δ1 .

4. Y has two components C1 and C2 meeting at a single node p. Here both C1 and C2 are of genus

two and p is not a Weierstrauss point on either component. In this case, Y is said to be of type

TWO. We assume that the local equation of X at the node p is xy −$δ2 .

Remark 1.2.4. The condition that the reduction being simple is an open condition. More precisely,

there is an open subscheme U ofM4 whose completement is contained in the boundary ofM4 and of

at least codimension two, such that X has smooth non-hyperelliptic or simple reduction if and only

if Y corresponds to a point in U .

The theorem is

Theorem 1.2.5 (Proposition 3.2.1, 3.4.1, 3.4.2). We have

height Ξ = 5ω2 −
∑
v

ϕv, (1.1)

where the sum runs over all the places of K and ϕv is some constant depending only on Xv, the

completion of X at the place v. If the reduction of X at v is smooth and non-hyperelliptic, then
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ϕv = 0. Moreover, if v is non-archimedean and the reduction of X at v is simple, then

ϕv =



36h(Xv), Type SMOOTH;

2δ0, Type IRRED;

19δ1, Type ELL;

27δ2, Type TWO.

1.3 Consequences of Theorem 1.2.5

As a corollary to Theorem 1.2.5 we get a lower bound of ω2 for fibred surfaces in genus four.

Corollary 1.3.1. Suppose B is a smooth projective curve and X → B is a semistable curve of genus

four. Assume that X is regular, the geometric generic fiber of X → B is smooth non-hyperelliptic, the

X → B is not-isotrivial and all the reductions of X is simple. Then

5ω2
X/B ≥ 2δ0 + 19δ1 + 27δ2 + 36h.

This inequality is sharper than that of Moriwaki [Mor1998] under the stronger assumption that

the generic fiber has simple reductions.

Now suppose that B is a smooth projective curve over a finite field and K is its function field.

Let X be a non-hyperelliptic curve over K which can be extended to a non-isotrivial smooth family

of non-hyperelliptic curves X → B. Then all the local invariants ϕ(Xv) vanishes, and we obtain a

simple identity

h(Ξ) = 5ω2
X/B .

Note that in this case the self-intersection of ωX/B is strictly positive [Szp1981, Théorème 2], which

means Ξ is not torsion. This shows that

rank Jac(X)(K ′) ≥ 1.

One also looks at the Hasse–Weil L-function L(Jac(XK′), s) of the Jacobian of the curve XK′ . Since

K is a function field, one has

ords=1 L(Jac(XK′), s) ≥ rank Jac(X)(K ′) ≥ 1.
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However, as X has good reduction at all the places of K, the sign of the functional equation of

L(Jac(XK′), s) is +1. This shows

Corollary 1.3.2. Let K be the function field of a smooth projective curve B over a finite field, and

let X be a non-hyperelliptic curve over K which can be extended to a non-isotrivial smooth family of

non-hyperelliptic curves over B. Then

ords=1 L(Jac(XK′), s) ≥ 2.

In view of Birch–Swinnerton-Dyer conjecture, we make the following conjecture.

Conjecture 1.3.3. Let K be as above and B be as above. Then

rank Jac(X)(K ′) ≥ 2.

It seems difficult to find this “extra” point in Jac(X)(K ′).

The non-triviality of Ξ in this case also gives rise to the so-called Northcott property.

Corollary 1.3.4. Let K be a number field Let H and D be two positive real numbers. Suppose X → T

is a non-isotrivial family of smooth non-hyperellitpic genus four curves with T being a proper curve

over K. Then the set

{t ∈ T (K) | deg t ≤ D, height (Ξt) ≤ H}

is finite. Here deg t stands for the degree of the field of the definition of t over K and Ξt is the divisor

class Ξ on the fiber Xt.

Proof. This follows from the fact that Ξ is not torsion on the generic fiber of X → T and Silverman’s

specialization theorem [Sil1983, Theorem C].

Remark 1.3.5. One should note that if T is a proper subvariety of M4 which does not meet the

hyperelliptic locus, then dimT ≤ 1.

1.4 Organization of this thesis

This thesis has six chapters and is divided into three parts.

The first part is chapter 2 which is devoted to the proof of Theorem 1.2.1 and 1.2.2. The view

point we take in this chapter is to put Ξ in families and study how Ξ varies in families. After reviewing
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some general fact about the moduli space of genus four curves, we prove Theorem 1.2.1 by studying

the monodromy of families of (3, 3)-curves in P1 × P1. This proof is similar to the proof of Noether’s

theorem [Del1973, Théorème 1.3]. Then we study the equidistribution of the rank of the Neron–Severi

group of the hyperplane section of P1×P1×P1 following the technique of de Jong and Katz [dJK2000].

We prove Theorem 1.2.2 at the end of this chapter.

The second part consists of Chapter 3, 4 and 5 and is devoted to the proof of Theorem 1.2.5. We

start Chapter 3 by reviewing the notion of heights and recall the Hodge index theorem, which enables

us to compute the height of Ξ via intersection theory. Then in Section 3.2 we decompose the height

of Ξ into the form (1.1). To compute the constant ϕv, we describe explicitly the integral model of X

in detail when X has simple reductions. This is the content of Section 3.3. Finally in Section 3.4, we

reduce the computation of the height of Ξ to two technique propositions, Proposition 3.4.1 and 3.4.2.

The proof of Proposition 3.4.1 and 3.4.2 is the most technical part of this thesis. In Chapter 4,

we prove Proposition 3.4.1 via a dedicate computation on surfaces. In Chapter 5, we prove Propo-

sition 3.4.2. We study in Section 5.1 a double cover of the moduli space M4 whose sheaf of relative

differentials is closely related to Ξ. The final results amount to give an embedded resolution of the

Petri locus inM4. See Section 2.1 for the definition of the Petri locus. We then prove Proposition 3.4.2

by “pulling back” our results from the moduli space.

The last chapter forms the third part of this thesis. This chapter is more speculative. It summarizes

the questions left open in this thesis and raises some conjectures.

1.5 Notation and conventions

Through out this thesis, we use the following notation and terminologies.

• A curve is a one-dimensional reduced scheme which is proper over a field.

• Let X be a scheme. Let Pic(X) be the Picard group of X. If D is a Cartier divisor on X, then

we denote its class in Pic(X) by [D].

• Let D be a Cartier divisor, then |D| is the complete linear system associated to D. Similar

notation for any line bundle L. We use grd to denote a linear system of degree d and dimension

r.

• For any scheme S and any morphism S-scheme X and T , we use XT to denote the base change

XT = X ×S T .
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• For any morphism f : X → Y and any line bundle L on Y , we shall denote f∗L by L|X .

• Let f : X → S be a projective morphism. Let F be a coherent sheaf on X. Let det Rf∗F be

the line bundle on S defined as in [KM1976]. If Rif∗F is locally free for any i, then

det Rf∗F =
⊗
i

(det Rif∗F)(−1)
i

.

If S = SpecA is affine, this is also denoted by det H∗(X,F), which is a projective A-module.

• For any flat morphism f : X → S of relative dimension one between normal integral schemes X

and S, we denote the Deligne pairing [Del1987,Zha1996] by

〈−,−〉 : Pic(X)× Pic(X)→ Pic(S).

In this case, the Deligne’s pairing can be defined as follows. Let L1, L2 ∈ Pic(X), then

〈L1, L2〉 := det Rf∗(L1 ⊗ L2)⊗ det Rf∗(L
−1
1 )⊗ det Rf∗(L

−1
2 )⊗ det Rf∗OX .
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Chapter 2

The generic case

2.1 Moduli space of genus four curves

Let M4 be the moduli space of genus four curves. Let M4 be the moduli space of Deligne–Mumford

semistable curves [DM1969]. This is a proper smooth stack over SpecZ. The complement of M4 in

M4 consists of three irreducible components:

M4\M4 = ∆0 ∪∆1 ∪∆2.

The generic point of ∆0 corresponds to a curve with a single node whose normalization is connected.

The general point of ∆i (i = 1, 2) corresponds to a curve that has a single node whose normalization

consists of two smooth curves with genus i and 4− i respectively.

Let π :M4,1 →M4 be the universal genus four curve. Then we define the Hodge bundle

λ = detπ∗ω,

where ω = ωM4,1/M4
stands for the relative dualizing sheaf. It is known that Pic(M4) is generated

by λ and ∆i (i = 0, 1, 2). It is also known that the natural restriction map

Pic(M4)→ Pic(M4,C)

has finite kernels and cokernels. Therefore it is an isomorphism after tensoring Q.
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Lemma 2.1.1. We have

〈ω, ω〉 ' λ⊗12(−∆0 −∆1 −∆2)

on M4.

This isomorphism will be referred to as the Mumford isomorphism. See [Mum1977] for a proof.

We recall the following lemma.

Lemma 2.1.2. Let X be a smooth non-hyperelliptic genus four curve over field k. Let X → P3 be

the canonical embedding. Then X lies on a unique irreducible quadric surface in P3 and is a complete

intersection of the quadric surface and an irreducible cubic surface.

Proof. Consider the exact sequence

0→ IX ⊗O(2)→ O(2)→ O(2)|X → 0,

where IX is the defining ideal of X in P3. Then taking long exact sequence, we get

0→ H0(P3, IX ⊗O(2))→ H0(P3,O(2))→ H0(X,O(2)|X).

Note that dim H0(P3,O(2)) = 10 and dim H0(X,O(2)|X) = dim H0(X,ω2
X) = 9. Therefore there is at

least one nonzero section of H0(P3, IX ⊗ O(2)). This section defines a quadric surface Q in P3 that

X lies on. Moreover, this surface is integral since a non-hyperelliptic genus four curve can never be a

plane curve. The curve X cannot be contained in two distinct irreducible quadric surfaces Q and Q′

since the intersection of Q and Q′ is a curve of degree four while X is of degree six. This moreover

shows that the map H0(P3,O(2))→ H0(X,O(2)|X) is surjective.

We consider similarly the exact sequence

0→ IX ⊗O(3)→ O(3)→ O(3)|X → 0,

and conclude that H0(P3, IX ⊗ O(3)) is at least five dimensional. The cubic forms consisting of the

quadratic form above times a linear form, forms a subspace of dimension four. So X is contained in

an irreducible cubic surface F . Then X is contained in the intersection of Q ∩ F . They are both of

degree six in P3. We then conclude that X is this complete intersection.

Let H4 be the hyperelliptic locus in M4 and M◦4 the open substack of M4 parameterizing non-

hyperelliptic curves. Let Z be the Petri locus inM◦4 and Z the closure of it inM4. By definition, the
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divisor Z is the locus inM◦4 consists of non-hyperelliptic curves whose canonical embedding lies on a

singular quadric surface in P3. Note that the closure of Z inM4 contains the hyperelliptic locus. We

shall refer to the closure of Z inM4 as the Petri locus onM4 and also denote it by Z. There should

not be any confusion since the moduli space in question is always clear from the context.

We now give another description of the locus Z. It follows from the proof of the above lemma that

there is a surjective morphism

Sym2 π∗ω → π∗ω
⊗2

on M◦4. Let L be the kernel of this morphism. Then there is a discriminant morphism

disc : L⊗4 → λ⊗2,

which is given as follows. Locally if fQ is a section of Sym2 π∗ω where f is a function and

Q =

4∑
i,j=1

qijαi ⊗ αj ,

where {αi : i = 1, 2, 3, 4} is a basis of π∗ω and (qij) is a symmetric matrix, then

disc(fQ) = f det qij(∧iαi)⊗2.

The Petri locus is then the zero locus of the discriminant morphism.

Lemma 2.1.3. We have O(Z) ' λ⊗34 on M4.

Proof. From the above description of Z, one sees that

O(Z) ' λ2 ⊗ (det Sym2 π∗ω)−4 ⊗ (detπ∗ω
⊗2)4.

There is a canonical isomorphism

det Sym2 π∗ω ' λ5.

It follows from Mumford’s isomorphism that

detπ∗ω
⊗2 ' λ13.

The lemma then follows.
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The divisor class of Z in Pic(M4) is obtained by Eisenbud–Harris [EH1987].

Proposition 2.1.4. In Pic(M4)⊗Q, one has

[Z] = 34λ− 4[∆0]− 14[∆1]− 18[∆2].

In the following, a stable curve that corresponds to a point in Z will be called Petri special,

otherwise it will be called Petri general.

From now on, we work over a field k with char k 6= 2.

Let J → M4 be the universal Jacobian over M4. Every point of M◦4 corresponds to a curve

whose canonical embedding lines on a smooth quadric surface. It then follows that this curve is of

type (3, 3) in P1 × P1. A (3, 3) curve is given by a homogeneous equation

3∑
i,j=0

aijx
i
0x

3−i
1 yj0y

3−j
1 = 0.

The space of (3, 3) curves in P1 × P1 is P[aij : i, j : 0, · · · 3] which is isomorphic to P15. The group

Γ = PGL2×PGL2 o{±1} acts on P[aij ] where PGL2×PGL2 acts by changing variables and {±1}

acts by aij 7→ aji. There is an open subscheme P0 of P[aij ] which parameterizes smooth (3, 3) curves.

Then M◦4 is the quotient of P0 by Γ (as a stack).

Let X → P[aij ] the universal (3, 3) curve. There is a embedding j : X → P1 × P1 × P[aij ] over

P[aij ]. Let X0 → P0 be the universal smooth (3, 3) curve and J → P0 its Jacobian. Let L be the

function field of P[aij ]. Then the line bundle ΞP = j∗O(1,−1) on X defines an L-point of J.

Theorem 2.1.5. The Mordell–Weil group J(L) is of rank one and J(L)⊗Q ' Q.ΞP .

Corollary 2.1.6. Let K be the function field ofM4 and J the generic fiber of the universal Jacobian.

Then J (K ′)⊗Q ' Q ' Q.Ξ. Here K ′ and Ξ are as in the introduction.

Proof. We observe that L is a (transcendental) extension of K ′. In fact, the field K ′ is the function

field of [P[aij ]/PGL2×PGL2]. Note also that J ×SpecK SpecL ' J. Thus there is an injective map

J (K ′) → J(L). The image of the point Ξ is ΞP ∈ J(L) (up to a sign). The corollary then follows

from the theorem.
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2.2 Curves on quadric surface

In order to prove Theorem 2.1.5, we study the one dimensional families of (3, 3)-curves in P1×P1. Let

Y = P1×P1×P1 and L = O(d, 3, 3) be a line bundle on Y . Assume that d ≥ 2. This is a very ample

line bundle on Y , which induces an embedding Y → PN . The linear system |L| parameterizes all

hyperplane sections of Y . Let U ⊂ |L| be the open subset parameterizing smooth hyperplane sections

of Y . Let X → U be the universal hyperplane section. Then by construction, there is a tautological

morphism X→ Y × U over U .

Each hyperplane section X of Y is viewed as a fibration over P1 via the first projection.

Lemma 2.2.1. There is an open subset V ⊂ U , such that any X ∈ V , as a fibration over B, satisfies:

1. It is not isotrivial.

2. All the fibers are irreducible.

Proof. First of all, there is an open subset U0 of U , such that all the fibers of X ∈ U0 are curves, i.e.

the morphism π : X → P1 is flat. There is an open subset U1 of U0, such that all the fibers of X

are irreducible. Let P (m,n) be the space of curves of type (m,n) on P1 × P1. Then those reducible

(3, 3) curves form a proper algebraic subset R of P (3, 3), namely the union of P (a, b)×P (3−a, 3− b),

where 0 ≤ a ≤ 3 and 0 ≤ b ≤ 3 with a and b not identically 0 or 3.

Any point in U0 corresponds to a morphism from P1 to P (3, 3), thus we get a tautological morphism

U0 × P1 → P (3, 3). This morphism is dominant. Let Z be the inverse image of R. This is a proper

algebraic subset of U0 ×B such that (X,x) ∈ Z if and only if the fiber of π over x ∈ P1 is reducible.

Let W be the image of Z in U0. Since P1 is proper, W is proper closed in U0. Thus U1 = U0\W is

the subset of U0 such that all the fibers of X → P1 are irreducible.

Next we show that there’s an open subset U2 of U0, such that X ∈ U2 if and only it is not isotrivial.

The fibration X → P1 is isotrivial if and only if the image of the corresponding morphism B → P (3, 3)

is zero dimensional. This forms a proper algebraic subset of |L|.

Now V = U1 ∩ U2 is the desired subset in the lemma.

The hyperplane sections X of Y that satisfies the two conditions in the lemma are call good

hyperplane sections.

Let X be a hyperplane section of Y which corresponds to a point in V . Let L be the function

field of P1, s = SpecL the generic point of P1 and Xs the generic fiber. Let J be the Jacobian of Xs

and ρ be the rank of the Mordell–Weil group J(L). This is finite since the fibration X → P1 is not

isotrivial.
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The following lemma is well-known, see [Tat1995].

Lemma 2.2.2. For surface X ∈ V , we have

dimQ NS(X)⊗Q = 2 + ρ. (2.1)

The divisor class Ξ we have introduced in the introduction is Ξ = O(0, 1,−1)|X .

Lemma 2.2.3. If X ∈ V , then Ξ is not torsion in J(L).

Proof. The self-intersection on −6d. The lemma follows from the Hodge index theorem for surfaces

and that the fibers of X → P1 are all irreducible.

Let η be the generic point of U and η be the geometric generic point. Let Xη be the geometric

generic fiber of X→ U . The tautological morphism X→ Y ×U over U induces the morphism on the

generic fiber Xη → Yη.

Proposition 2.2.4. The canonical restriction map

NS(Yη)⊗Q→ NS(Xη)⊗Q

is an isomorphism.

Proposition 2.2.4 will be proved in the next section.

Proof of Theorem 2.1.5 assuming Proposition 2.2.4. It follows from Proposition 2.2.4 that NS(Xη) is

of rank three. Let pr1 : Xη → P1
η be the first projection and let Jη be the Jacobian of the generic

fiber. Let L′ be the function field of P1
η. Then it follows from Lemma 2.2.2 and 2.2.3 that the rank of

J(L′) is one and is generated by Ξ after tensoring with Q.

By construction, there is a canonical morphism

V × P1 → P[aij ].

This morphism is clearly dominant. Therefore L′ is an extension of L. It follows that J(L) is a

subset of Jη(L′). It is clear that the point Ξη is the image of ΞP under the inclusion J(L)→ Jη(L′).

Theorem 2.1.5 is thus proved.
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2.3 Monodromy

We keep the notation from the previous section.

We consider the local system R2φ∗Ql(1) on U where φ : X → U is the structure morphism. The

tautological embedding X→ Y × U induces a map

H2(Yη,Ql(1))→ H2(Xη,Ql(1)),

which is π1(U, η)-equivariant. In fact, H2(Yη,Ql(1)) is the fixed part of H2(Xη,Ql(1)) under the

action of π1(U, η). The orthogonal complement of H2(Yη,Ql(1)) is denoted by Ev2(Xη,Ql(1)). It is

the subspace of H2(Xη,Ql(1)) generated by the vanishing cycles.

There is a non-degenerate symmetric pairing 〈−,−〉 on Ev2(Xη,Ql(1)). The image of π1(U, η)

in GL(Ev2(Xη,Ql(1))) actually lies in O(Ev2(Xη,Ql(1))). Moreover, this representation is abso-

lutely irreducible. This is classical if char k = 0 (c.f. [Voi2007, Corollary 3.28]) and proved by

Deligne [Del1974, Corollary 5.5] when char k > 0.

We denote by Ev2(Xη,Ql(1))alg the subspace of Ev2(Xη,Ql(1))alg generated by algebraic coho-

mology class. Here “algebraic” means the cohomology classes of algebraic cycles on Xη. This subspace

is again preserved by the action of π1(U, η). Therefore it is either the whole space or it is empty.

Lemma 2.3.1. If Ev2(Xη,Ql(1)) = Ev2(Xη,Ql(1))alg, then the image of π1(U, η) is finite.

Proof. Recall that L′ is the function field of U . The canonical map

Gal(L′/L′)→ π1(U, η)

is surjective [Gro1971a, Exposé IX, Corollaire 5.6]. Every algebraic cycle is defined on Xη is defined

over some finite extension of L′. Therefore it is stabilized by an open subgroup of Gal(L′/L′) of finite

index. Moreover the space Ev2(Xη,Ql(1)) is finite dimensional. We then conclude that the action of

Gal(L′/L′) factors through an open subgroup of finite index. The image is thus finite.

Lemma 2.3.2. If char k = 0, then Ev2(Xη,Ql(1))alg = 0 and the image of π1(U, η) is not finite.

Proof. We may assume that k = C by the Lefchetz principle. Suppose Ev2(Xη,Ql(1))alg 6= 0, then

by the previous lemma, the image of π1(U, η) is finite. We fix an embedding ι : Ql → C and

denote by Ev(Xη) the subspace of H2(Xη,C) generated by Ev2(Xη,Ql(1)) via this embedding. Then

by [Del1973, Proposition 3.4],

Ev2(Xη) ⊂ H1,1(Xη).



16

So to get the contradiction, we only have to check that

H2,0(Xη) ∩ Ev2(Xη) 6= 0.

To simplify notation, we write X (resp. Y ) instead of Xη (resp. Yη). Denote by j : X → Y

the embedding. Denote by NX/Y the normal bundle of X in Y . Then NX/Y ' j∗L. By adjunction

formula, ωX ' j∗O(d− 2, 1, 1). Then

H2,0 = H0(X,ωX) ' H0(Y,O(d− 2, 1, 1)⊗ j∗OX).

By definition we have

0→ OY (−X)→ OY → j∗OX → 0,

where OY (−X) = O(−d,−3,−3). Therefore

0→ O(−2,−2,−2)→ O(d− 2, 1, 1)→ O(d− 2, 1, 1)⊗ j∗OX → 0.

Taking long exact sequence gives

0→ H0(Y,O(d− 2, 1, 1))→ H0(Y,O(d− 2, 1, 1)⊗ j∗OX ).

By Künneth formula we get

dim H0(Y,O(d− 2, 1, 1)) = 4 dim H0(P1,O(d− 2)) ≥ 4.

Here we used the assumption that d ≥ 2. This yields dim H2,0(X ) ≥ 4.

Since dim H2(Y,C) = 3 by Künneth formula, we know that Ev2(X) is of codimension 3 in H2(X,C).

Therefore H2,0(X) ∩ Ev2(X) 6= 0. This proves the lemma.

Lemma 2.3.3. If char k 6= 2, then Ev2(Xη,Ql(1))alg = 0.

Proof. We deduce the lemma from its characteristic zero counterpart. This argument is adapted

from [Del1973, § 3.6]. Suppose Ev2(Xη,Ql(1))alg 6= 0. Let R be a discrete valuation ring of unequal

characteristic with residue field k and fraction field K. The scheme Y and the line bundle L are both

defined over R. We consider the universal smooth hyperplane section XR → UR of Y over R. We

denote the universal hyperplane section over K (resp. k) by XK → UK (resp. Xk → Uk), and the
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generic fiber by XK (resp. Xk). The generic point of UK (resp. Uk) is denoted by ηK (resp. ηk).

The representation

π1(Uk, ηk)→ O(Ev2(Xk,Ql(1)))

defines a local system Evk on Uk. The closure of the image of this monodromy action do not change is

we restrict Evk to a general Lefchetz pencil `k. Here “general” means `k lies in an open subset of the

Grassmanian of the lines in |Lk|. The same is true if we replace k by K in all the statements above.

We consider a general Lefchetz pencil ` over R. The exceptional locus T ⊂ ` is etale over R. Note

that we have used the fact that char k 6= 2 here. The monodromy group of ` over the generic point of

SpecR and the closed point of SpecR are the same. We conclude then that image of

π1(UK , ηk)→ O(Ev2(XK ,Ql(1)))

is finite. This contradicts Lemma 2.3.2.

Proof of Proposition 2.2.4. To simplify notation, we write X (resp. Y ) instead of Xη (resp. Yη). By

the weak Lefchetz theorem, the map

NS(Y )⊗Q→ NS(X)⊗Q

is injective. The surjectivity of this map follows from the orthogonal decomposition

H2(X,Ql(1)) = H2(Y,Ql(1))⊕ Ev2(X,Ql(1))

and the fact that there is no algebraic cohomology class in Ev2(X,Ql(1)).

2.4 Equidistribution

We work over the a field k with char k 6= 2 in this section.

Recall that Y = P1 × P1 × P1 and L = O(d, 3, 3). Let X be a hyperplane section of Y in |L|.

Lemma 2.4.1. For any d ≥ 1, we have

dim H2(Xk,Ql(1)) = 34d− 14, dim Ev2(Xk,Ql(1)) = 34d− 17.

Proof. Note that dim H0(Xk,Ql(1)) = dim H4(Xk,Ql(1)) = 1, dim H1(Xk,Ql(1)) = H3(Xk,Ql(1)) =
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0 by the weak Lefchetz theorem. Therefore

χ(Xk,Ql) = 2 + dim H2(Xk,Ql(1)).

Let d = 1. Then we may view Xk has the total space of the Lefchetz pencil of hyperplane sections

of P1 × P1 embeded in P15 via the very ample line bundle O(3, 3). Therefore X is the blowup of

P1 × P1 at 18 points. We conclude then that

χ(Xk,Ql) = χ(P1 × P1,Ql) + 18 = 22.

Therefore dim H2(Xk,Ql(1)) = 20.

We can also compute χ(Xk,Ql) via the Lefchetz fibration Xk → P1. Let S be the number of

singular fibers. Then

χ(Xk,Ql) = (2− S)χ(smooth fiber) + S · χ(singular fiber).

Since the singular fiber is smooth except for an ordinary double point, the Euler characteristic is one

plus the Euler characteristic of the smooth fiber. Then we have

χ(Xk,Ql) = 2 · χ(smooth fiber) + S = S − 12.

Therefore S = 34.

Now let d ≥ 2. We may compute χ(Xk,Ql) via the pullback of a Lefchetz pencil via a degree d

finite flat morphism P1 → P1 which is etale over all the exceptional locus on the Lefchetz pencil. This

fibration then has 34d singular fibers. Each singular fiber is irreducible and has a unique ordinary

double point. Then

χ(Xk,Ql) = (2− 34d)χ(smooth fiber) + 34d · χ(singular fiber)

= 34d− 12.

Therefore

dim H2(Xk,Ql(1)) = 34d− 14.
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From now on, we take k = Fpn to be a finite field with pn elements. Assume that d ≥ 2 as before.

Let φ : X→ V be the universal good hyperplane section of Y , c.f. 2.2.1. We consider the local system

E on V which is the orthogonal complement of R2 pr∗Ql(1) in R2φ∗Ql(1), where pr : Y × V → V

is the second projection. The cup product pairing on R2φ∗Ql(1) restricted to E is non-degenerate.

Let s ∈ V (k) be any point and s = Spec k → V be a geometric point over s. Then the image of the

monodromy action

π1(V, s)→ GL(Es)

actually lies in O(Es).

Theorem 2.4.2 ([Del1980, Théorème 4.4.1, dJK2000, Theorem 7.5]). The closure of the image of

π1(Vk, s) is O(Es).

Let Frobs be the image of the Frobenius conjugacy class in O(Es). By [Del1974], the reverse

characteristic polynomial det(1− tFrobs | Es) has coefficient in Q and is independent of l. If we fix an

embedding Ql → C, the roots of this polynomial all lie on the unit circle. Therefore, there is a unique

conjugacy class θ(s) in O(34d−17) with the same reverse characteristic polynomial. Here O(34d−17)

is the compact real orthogonal group of rank 34d− 17.

Lemma 2.4.3. Let V (k,+) (resp. V (k,−)) be the subset of V (k) such that det(−θ(s)) = 1 (resp.

det(−θ(s)) = −1). Then

lim
#k→∞

#V (k,+)

V (k)
= lim

#k→∞

#V (k,−)

V (k)
=

1

2
.

Proof. The character

π1(V, s)→ O(34d− 17)
det−−→ {±1}

is not trivial on π1(Vk, s). In fact, the image of π1(Vk, s) in O(34d − 17) is Zariski dense. Now the

lemma follows from Chebotarev density theorem.

We now apply Deligne’s equidistribution theorem [Del1980, Théorème 3.5.3], see also [dJK2000,

§ 6.5–6.9].
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Proposition 2.4.4. Let

V (k, θ = 1) =

s ∈ V (k)

∣∣∣∣∣ θ(s) has a eigenvalue 1 and no other

eigenvalues which are roots of unity

 ,

V (k, θ = −1) =

s ∈ V (k)

∣∣∣∣∣ θ(s) has a eigenvalue −1 and no other

eigenvalues which are roots of unity

 .

Then

lim
#k→∞

#V (k, θ = 1)

V (k)
= lim

#k→∞

#V (k, θ = −1)

V (k)
=

1

2
.

Proof. The proof is the same as that of [dJK2000, Theorem 6.11]. Let f1 be the characteristic function

of SO(34d− 17). For any root of unity ζ, let Z(ζ) be the subset of O(34d− 17) consisting of matrix

A such that ζ is a root of det(1− tA)/(1− tdetA). Let Z be the union of all Z(ζ) where ζ runs over

all roots of unity whose minimal polynomial has degree less or equal to 34d− 17. Then Z is a Zariski

closed subset of O(34d− 17). Let f2 be the characteristic function of O(34d− 17)\Z.

Let dA be the Haar measure on O(34d − 17) with total mass 1. The equidistribution theorem of

Deligne gives

lim
#k→∞

1

V (k)

∑
s∈V (k)

f(θ(s)) =

∫
O(34d−17)

f(A)dA =
1

2
.

Since 34d− 17 is odd, any matrix A ∈ O(34d− 17) has an eigenvalue 1. It then follows that

lim
#k→∞

#V (k, θ = 1)

V (k)
=

1

2
.

The other limit formula follows similarly.

Combining this Proposition with the Tate conjecture for Xs, we have the following observation.

Recall that the Tate conjecture claims that there is a bijection

NS(Xs)⊗Ql → H2(Xs,Ql(1))Frob=1,

where H2(Xs,Ql(1))Frob=1 is the eigenspace of Frobenius Frob with eigenvalue 1.

We view Xs as a fibration over P1
k

and let Js be the Jacobian of the generic fiber. Let K be the

function field of P1
k
. Let

V (k,Ξ) = {s ∈ V (k) | Ξs generates Js(K)}.
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Corollary 2.4.5. We have

lim
#k→∞

#V (k,Ξ)

#V (k)
≥ 1

2
.

If the Tate conjecture holds for Xs, then the above inequality is an equality.

Proof. This follows from the fact that Ξ is not trivial on Xs, Lemma 2.2.2 and Lemma 2.2.3.

Having looked at the equidistribution behavior over a finite field, we now look at the equidistribu-

tion behavior over a number field. So from now on we take k to be number field.

Let η be the generic point of V and η be any geometric point over η. Recall that we have shown

in Proposition 2.2.4 that

rank NSXη = 3.

We now make use of the specialization theorem of the Neron–Severi group. Recall that by [Gro1971b,

Exposé X, App 7, MP2012, Proposition 3.6], for any geometric point s ∈ V (k), one has

rank NSXs ≥ rank NSXη = 3.

Theorem 2.4.6 ([And1996,MP2012]). Let

Vjump(k) = {s ∈ V (k) | rank NSXs > 3}.

Then Vjump(k) is a thin set [Ser1997, Chapter 9].

Recall that a subset Ω of a projective space PN (k) is called thin if there is a generically finite

morphism f : A → PN which admits no section and Ω ⊂ f(A(k)). The property of the thin set that

we are going to use is the following. This is a combination of the results of [Coh1981] and [Sch1964].

Lemma 2.4.7. Let Ω ⊂ PN (k) be a thin set. Let h be a height function on PN (k). Then

lim
H→∞

#{s ∈ Ω | h(s) ≤ H}
#{s ∈ PN (k) | h(s) ≤ H}

= 0.

We now fix any height function h on V (k). Let H be any real number. Let

V (H) = {s ∈ V (k) | h(s) ≤ H},

V (H,Ξ) = {s ∈ V (H) | Ξ generates Js(K)}.
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Theorem 2.4.8. We have

lim
H→∞

#V (H,Ξ)

#V (H)
= 1.

Proof. This is a combination of Lemma 2.2.2, Theorem 2.4.6 and Lemma 2.4.7.
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Chapter 3

Towards a height formula

3.1 Review of heights

Let K be the function field of a smooth projective curve B over some base field k or a number field

in which case we let B = Spec oK . By a metrized line bundle on B we mean a projective module M

over oK of rank one, together with a metric ‖·‖v on M ⊗Kv for each archimedean place v. We define

the degree of M by

degM = log #M/loK −
∑
v|∞

εv log‖l‖v,

where l ∈M is any element and εv = 1 if v is real and 2 if v is complex. The following lemma is clear

from this definition.

Lemma 3.1.1. Let L and M be two metrized line bundles on B. Suppose there is an open subset B◦ ⊂

B and an isomorphism f : L 'M over B0. If v is archimedean, then let ϕv = log(‖s‖Lv/‖f(s)‖Mv ).

If v is non-archimedean, let Rv be the local ring at v. We view f as a function on B with zeros and

poles outside B0. Let ϕv = ordv(f) where ordv is the valuation at the place v. Then

degL = degM +
∑
v

ϕv log Nv.

If K is a number field, then Nv is the number of element in the residue field of v if v is non-archimedean

and log Nv = 1 if v is real and log Nv = 2 if v is complex. If K is the function field, then log Nv = 1.

Let f : X → B be a generically smooth projective flat morphism of relative dimension one. Let L

be a line bundle on X . If K is a number field, then we endow L with a metric at each archimedean

place. A line bundle L together with the metric at each archimedean place is referred to as a metrized
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line bundle. Then there is a canonical way to endow det Rf∗L with a metric so that it is a metrized

line bundle on B [Del1987,Fal1984]. Let L and M be two metrized line bundles. We define a metric

on the Deligne pairing 〈L,M〉 so that

〈L,M〉 = det Rf∗(L⊗M)⊗ (det Rf∗L)−1 ⊗ (det Rf∗M)−1 ⊗ det Rf∗O

is an isometry. Then the arithmetic intersection number L.M is defined to be deg〈L,M〉.

We now review the notion of heights and the Hodge index theorem. Let X be a smooth projective

curve over K. Let x ∈ Jac(X)(K). Then we define the Neron–Tate height of x as in [Ser1997]. Then

x is torsion if and only if the height of x is zero. The Hodge index theorem provides us with a way to

compute the height of x in terms of (Arakelov) algebraic geometry.

Suppose the field of definition of x is some finite extension K ′ of K. Suppose B is a smooth

projective curve with function field K ′ or B = Spec oK′ if K ′ is a number field. By replacing K ′

by a finite extension, we may assume that X has semistable reduction at all the places of K ′. Let

f : X → B be a regular minimal semistable model of X. Let x be a line bundle on X (possibly with

Q coefficients, i.e. an element in Pic(X )⊗Q) whose restriction to X is x and that the restriction to

the normalization of any vertical divisor on X is of divisor is of degree zero. Here a divisor V ⊂ X is

vertical if V does not dominate B under the morphism f .

If K ′ is a number field and v an archimedean place of K ′. Then the completion Xv = X ×K′ K ′v

is a Riemann surface and xv is a line bundle on Xv of degree zero. It then follows from the work of

Arakelov [Ara1974] that there is a metric on xv, unique up to a constant, whose curvature is zero.

We denote by x̂ the line bundle x, together with such a metric at each archimedean place. If K ′ is a

function field, then we let x̂ = x.

The Hodge index theorem [Fal1984,Hri1985], in this context, asserts that

heightx = − 2

(L : K)
x̂.x̂,

where x̂.x̂ is the arithmetic intersection number on the arithmetic surface X if L is a number field, or

the usual intersection number on the fibered surface X [Har1977].

We now recall the notation the Arakelov dualizing sheaf [Ara1974,Fal1984]. Let X be a Riemann

surface of genus g. Let α1, · · · , αg be an orthogonal basis of H0(X,ωX). Let

dµ =
i

2g

g∑
i=1

αi ∧ αi
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be a measure on X with total mass one. Let L be line bundle on X. A metric on L is called admissible

if its curvature equals degL ·dµ. Let p ∈ X. We endow the line bundle O(p) with the metric ‖·‖ such

that log‖1p‖(q) = g(p, q) where g(p, q) is the Arakelov Green’s function. By definition, it satisfies the

condition that ∂q∂qg(p, ·) = µ− δp and
∫
X
g(p, q)dµq = 0. We put a metric on any line bundle of the

form O(D) where D is a divisor on X so that for any p, q ∈ X, the isomorphism O(p+q) ' O(p)⊗O(q)

is an isomorphism. This metric is admissible. We then put a metric on ωX such that the canonical

residue map

ωX ' O(−p)|p

is an isometry. This is an admissible metric.

Now let X be a curve defined over the number field K and X → B be the minimal regular

semistable model. Let ωX/B be the relative dualizing sheaf. For each archimedean place, we endow

ωXv = ωX/B |Xv with the metric described as above. This is the Arakelov dualizing sheaf. We

sometimes call ωX/B the (Arakelov) dualizing sheaf of X. We denote it by ωX and its self-intersection

by ω2
X .

3.2 Decomposition of the height

Let k be a field with char k 6= 2. Let K be a function field of a smooth projective curve B over k or

a number field in which case we put B = Spec oK where oK is the ring of integers of K. Let X be a

smooth Petri general genus four curve over K. We assume that X has semistable reduction over K.

Replacing K be a quadratic extension if necessary, we may assume that X is a complete intersection

of a quadric surface Q ' P1 × P1 and an irreducible cubic surface C in P3. Let j : X → P1 × P1 be

the embedding. Then by definition, the point Ξ = j∗O(1,−1) ∈ JacX(K).

The goal of this section is to prove the following proposition.

Proposition 3.2.1. There is a ϕv for each place v, which depends only on the completion of X at

the place v, such that

h(Ξ) = 5ω2 −
∑

ϕv,

where the sum is over all places of B and ω is the dualizing sheaf of X. Moreover, if X has good

non-hyperelliptic reduction at v then ϕv = 0.

We first prove a technical lemma which implies Proposition 3.2.1.

Let us make some remarks on the degenerate locus of a morphism. Let S be a regular scheme and
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M and N are two vector bundles on S of the same rank. Let f : M → N be an injective morphism.

Let I be the sheaf of ideals on S generated by the determinant of f . Then the degenerate locus Z

of f is the subscheme of S defined by I. The degenerate locus Z is a Cartier divisor and there is an

isomorphism detN ' detM ⊗O(Z) on S.

We shall work with in the following situation.

Let S be a connected regular scheme and f : X → S a projective flat morphism with the total

space X being normal. Assume that

1. All the fibers of f are geometrically reduced and the generic fiber of f is a smooth genus four

curve.

2. The morphism f is local complete intersection. This implies that the dualizing sheaf ωX/S is a

line bundle.

3. The relative dualizing sheaf ωX/S is very ample.

Under these conditions, there is a canonical embedding X → P(f∗ωX/S). This embedding factors

through a quadratic space bundle Q over S. We assume

4. The generic fiber of Q → S is isomorphic to P1 × P1. The fibers of Q → S are geometrically

integral and has at most one ordinary double point.

This quadratic surface is defined by the kernel of the morphism Sym2 π∗ωX/S → π∗ω
⊗2
X/S , say L.

Just as in section 2.1, we can form the discriminant morphism disc : L4 → λ2. Let Z be the zero

locus of the discriminant morphism.

Let S◦ = S\Z be the open subscheme of S. By assumption, the quadric surface QS◦ ' P × P′

over S◦ where P and P′ are P1-bundles over S◦. By the theory of the compactifiaction of the Picard

functor using torsion free sheaves [AK1980], we see there is a torsion free sheaf F on Q, which is

isomorphic to O(1, 0) when restricted to QS◦ . More concretely, there is a P1-bundle P over S which

is a closed subscheme of Q. For any geometric point s of S, the fiber Ps of P is a reduced line on the

quadric surface Qs. let I be the defining ideal of Q. Then F is isomorphic to Hom(I,OQ) or O(1)⊗ I

where O(1) is the pullback of O(1) on P3 to Q. We denote the pullback of F to X by L. Then Ls

is a torsion free sheaf of degree three on Xs. If Xs does not pass through the singular point on Qs,

then Ls is locally free.

Lemma 3.2.2. For any geometric point s ∈ S, one has dim H0(Qs, Fs) = 2.
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Proof. The lemma is clear if Qs is smooth. Assume that Qs is singular. Let ν : Q̃s → Qs be the

desingularization of Qs. Then Qs is isomorphic to a ruled surface π : P(O ⊕O(−2)) → P1. Let l be

any fiber of Qs over P1, then ν∗O(−l) ' Is. Let e be the section of π such that e2 = −2 on Q̃s. Then

ν∗O(1) ' O(2l+ e). Here O(1) stands for the pullback of O(1) of P3 to Qs. One has Fs = ν∗O(l+ e)

and

H0(Qs, Fs) = H0(Q̃s,O(l + e)) = H0(P1,O(1)⊗ π∗O(e)).

The result then follows from the fact that π∗O(e) = O ⊕O(−2).

Lemma 3.2.3. For any geometric point s ∈ S, we have H0(Xs, Ls) ' H0(Qs, Fs). So in particular,

the sheaf f∗L on S is a vector bundle of rank two and is compatible with any base change.

Proof. The lemma is clear if Qs is smooth. Assume that Qs is singular. Let j : Xs → Qs be the

embedding. Then

H0(Xs, Ls) = H0(Qs, j∗OXs ⊗ F ).

Consider the exact sequence

0→ O(−Xs)⊗ F → F → j∗OXs ⊗ F → 0.

Since O(−Xs) ' O(−3), where O(−3) is the pullback of O(−3) on P3 to Qs, taking long exact

sequence of the short exact sequence above shows in order to prove the lemma, we need to prove

H1(Qs, Fs ⊗O(−3)) = 0.

We use the notation from (the proof) of the previous lemma. Note that R1ν∗OQ̃s
= 0. Then

H1(Qs, Fs ⊗O(−3)) = H1(Q̃s,O(−5l − 2e)).

The cohomology group H1(Qs, Fs ⊗O(−3)) sits in the exact sequence

0→ H1(P1, π∗O(−5l − 2e))→ H1(Qs, Fs ⊗O(−3))→ H0(P1,R1π∗O(−5l − 2e)).

We have π∗O(−5l−2e) = O(−5)⊗π∗O(−2) = 0 since π∗O(−2e) = 0. We also have R1π∗O(−5l−2e) =

O(−5)⊗ R1O(−2e). Consider the short exact sequence

0→ O(−2e)→ O(−e)→ O(−e)|e → 0.
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We have π∗O(−e) = 0 and R1π∗O(−e) = 0. Therefore R1π∗O(−2e) = π∗O(−e)|e. The self-

intersection of e is −2 and π is an isomorphism when restricted to e. Therefore R1π∗O(−2e) = O(2).

Thus H0(P1,R1π∗O(−5l − 2e)) = 0. We conclude that H1(Q̃s,O(−5l − 2e)) = 0. The lemma is thus

proved.

Lemma 3.2.4. The sheaf f∗Hom(L, ωX/S) is a vector bundle of rank two and is compatible with

arbitrary base change.

Proof. This follows from duality and the lemma above.

Consider the cup product morphism

f∗L⊗ f∗Hom(L, ωX/S)→ f∗ωX/S . (3.1)

Both the source and the target are vector bundles of rank four. Moreover, it is an isomorphism at the

generic point of S. Therefore it is injective.

Lemma 3.2.5. Let Zi : i = 1, · · · , r be the irreducible components of Z and Z =
∑n
i=1 aiZi as the

divisor on S. Then ai’s are even.

Proof. Let η be the generic point of Zi, R the local ring of S at η and t a local uniformizer. Then by

assumption, we can choose coordinates x, y, w, z of P3 so that the equation of the Q over R is

xy = z(z + trw).

Then the discriminant is t2n. This shows ai is even.

We set Z ′ = 1
2Z as a divisor on S.

Lemma 3.2.6. The degenerate locus of the cup product (3.1) is Z ′.

Proof. We note that

f∗Hom(L, ωX/S) ' g∗Hom(F,O(1)), f∗ωX/S ' g∗O(1),

where g : Q→ S is the structure morphism. The line bundle O(1) on Q is the pullback of O(1) from

P(f∗ωX/S). So we are reduced to show that the degeneration locus of

g∗F ⊗ g∗Hom(F,O(1))→ g∗O(1)
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is Z ′. Let t be a uniformizer at the generic point of any irreducible component of Z. Then we can

choose the isomorphisms

g∗F ' OSu1 ⊕OSu2, g∗Hom(F,O(1)) ' OSv1 ⊕OSv2

so that the cup product is given by

u1v1 7→ w1, u1v2 7→ w2, u2v1 7→ w3, u2v2 7→ w3 + tnw4

The leading term of the discriminant of Q at η is thus t2n. The Petri locus is thus defined by t2n and

Z ′ is defined by tn.

Proof of Proposition 3.2.1. Let f : X → B be a minimal regular semistable model of X → K. Let

B◦ ⊂ B be the open subset of B such that for any point b ∈ B, the fiber Xb is a smooth non-

hyperelliptic curve. Since X is Petri general, we see that B◦ is not empty. We denote by Z the locus

on B◦ where Q is singular and Z ′ = 1
2Z as in Lemma 3.2.6.

Let X ◦ = X ×B B◦. According to Lemma 3.1.1, we only have to give an isomorphism

〈Ξ̂, Ξ̂〉 ' 〈ω, ω〉−5

over B◦, where Ξ̂ is some extension of Ξ to X ◦ and ω is the dualizing sheaf of X ◦ → B◦.

By assumption, the space X ◦ embeds in QB◦ where the generic fiber of QB◦ → B◦ is isomorphic to

P1×P1. We are therefore in the situation at the beginning of this section. Let s be any geometric point

of B◦ such that Qs is singular, then Xs does not pass through the singular point on Qs. Therefore L

is a line bundle on X ◦ and ω ⊗ L−2 is an extension of Ξ on X ◦. Thus

〈ω ⊗ L−2, ω ⊗ L−2〉 ' 〈ω, ω〉 ⊗ 〈L, ω ⊗ L−1〉−4.

By the Riemann–Roch formula, we have

〈L, ω ⊗ L−1〉 ' (det Rf∗O)2 ⊗ (det Rf∗L)−2.

Note that (R1f∗L)∨ ' f∗Hom(L, ωX/S) by duality. By Lemma 3.2.6,

det(f∗L⊗ (R1f∗L)∨)⊗O(Z ′) ' det f∗ωX/S .
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Note that

det(f∗L⊗ (R1f∗L)∨) ' (det Rf∗L)2, det f∗ωX/S ' det Rf∗OX , O(Z ′) ' (det Rf∗OX )17

where the last isomorphism follows from Lemma 2.1.3. The proposition then follows from the Mumford

isomorphism (det Rf∗OX )12 ' 〈ω, ω〉.

3.3 The integral model

In order to compute the height of Ξ, or equivalently the constant ϕv, we need to describe explicitly

the integral model of X and the extension Ξ to the integral model. This is the goal of this section.

Let Y be the stable model of X over B and X be the minimal regular semistable model of X.

There is a morphism X → Y over B which contracts all rational curves on X whose self-intersection

is (−2). We choose a divisor D on X so that L = O(D) on X and let D the closure of D in X .

Let V be a rational linear combination of vertical divisors on X so that Ξ̂ := ωX/B(−2D + V ) has

the property that it is of degree zero on any irreducible vertical component on X . If K is a number

field, we endow Ξ̂ on X(Kv) with a metric for each place v at infinity of K. The metric we choose is

the Arakelov metric for the dualizing sheaf and the admissible metric given by the Arakelov Green’s

function for O(D), c.f. Section 3.1. The curvature of this metric is zero.

We shall compute ϕv when v is non-archimedean and the reduction of X at the place v satisfies

certain restrictions. We contend ourselves with the following remark concerning the archimedean

places.

Remark 3.3.1. If K is a number field and v is a place at infinity, then we can write ϕv as a sum

of some other (less complicated) constants. It follows from the computation in section 2.1 that there

is an isomorphism O(Z) ' λ34 over M4,C. The line bundle O(Z) has a canonical section which we

denote by 1Z . The Hodge bundle λ on M4 has a canonical metric which gives a metric on O(Z) via

the isomorphism O(Z) ' λ34. We denote the norm of the section by discv. Its evaluation at Xv is

discv(Xv). This is a continuous function on M◦4(C).

The cup product morphism 3.1 takes the form

H0(Xv, Lv)⊗H0(Xv, ωXv
⊗ L−1v )→ H0(Xv, ωXv

).

This is an isomorphism by the assumption that X is Petri general. Then the cup product induces an
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isomorphism (det H∗(Xv, Lv))
2 ' det H∗(Xv,OXv

). Both sides are endowed with the canonical metric

by Faltings [Fal1984, Theorem 1]. The norm of this isomorphism is denoted by cv(Xv). The the proof

of Proposition 3.2.1, combined with the Noether’s formula for arithmetic surface [Fal1984, MB1989]

yields

ϕv = −4 log cv(Xv) + 2 log discv(Xv)− 96 log 2π + 6δv(Xv),

where δv(Xv) is the Faltings’ delta constant [Fal1984]. Since ϕv, as a function onM4,C, is bounded n-

ear the non-hyperelliptic, but Petri special curves. This in particular implies that cv(Xv)
4/ discv(Xv)

2

is bounded. This is not obvious from the definition as both of them acquire singularities on the Petri

locus. The nature of cv and discv deserves further study. However, we will not address this issue in

this paper.

From now on, we focus on the case where v is non-archimedean.

Let v be a finite place of K, and Rv be the strict henselization of B at v. Let k = k be the residue

field of Rv and Yv = Y ×B k be the fiber of Y at v.

Definition 3.3.2. We say that the reduction of X at v is simple if Yv is of one of the following cases.

1. (SMOOTH) Yv is smooth and hyperelliptic.

2. (IRRED) Yv is an irreducible nodal curve with a single node p. The normalization of Yv is

non-hyperelliptic.

3. (ELL) Yv has two components C and E meeting at a single node p. Here C is a non-hyperelliptic

genus three curve and E is an elliptic curve.

4. (TWO) Yv has two components C1 and C2 meeting at a single node p. Here both C1 and C2

are of genus two and p is not a Weierstrauss point on either component.

We refer to these four cases SMOOTH, IRRED, ELL, TWO respectively. They stand for “smooth”,

“irreducible”, “elliptic tail” and “genus two” respectively.

We shall describe the integral model at the place v and the divisor D more explicitly. We deal

with one v at a time. So we supress the subscript v to simplify notation. We shall denote by R the

strict henselization of B at the place v. Let $ be a uniformizer of R.

The case IRRED: In this case, Y is an irreducible curve with a single node p. Let ν : Y ′ → Y

be the normalization. Then Y ′ is not hyperelliptic. Let p1, p2 ∈ Y ′ be the inverse image of p ∈ Y .

Lemma 3.3.3. There are at most two line bundles M on Y with dim H0(Y,M) ≥ 2 and deg ν∗M = 3.

They can be describe as follows. Let j : Y ′ → P2 be the canonical embedding. Let l be line that passes



32

through p1 and p2 which intersect Y ′ at other two point p3, p4 (They might coincide and might coincide

with p1 or p2). Then ν∗M ' ωY ′(−p3) or ν∗M ' ωY ′(−p4).

Proof. We note that there is an injective map

H0(Y,M)→ H0(Y ′, ν∗M).

Therefore dim H0(Y ′, ν∗M) ≥ 2. Since deg ν∗M = 3, we must have dim H0(Y ′, ν∗M) = 2. Thus ν∗M

is of the form ωY ′(−p3) for some p3 ∈ Y ′.

The space H0(Y,M) consists of sections of ν∗M on Y ′ whose value at p1 and p2 coincide. This

means when Y ′ is canonically embedded in P2, the points p3, p1 and p2 lie on the same line l. This

line intersects Y ′ another point p4. If p3 6= p4, there are two line bundles M and M ′ with the

desired property and ν∗M = ωY ′(−p3), ν∗M ′ = ωY ′(−p4). If p3 = p4, the line bundle M with

ν∗M = ωY ′(−p3) is the only choice.

By the lemma above, there is a choice of the divisor D on X, such that the closure D on Y

intersects Y at three points q1 +q2 +q3. Their inverse image in Y ′ is linearly equivalent to p1 +p2 +p3

or p1 + p2 + p4.

Suppose the local equation at the node p is given by xy − $e. Consider the desingularization

X → Y. The component in the special fiber of X that dominates the special fiber of Y is also denoted

by Y . Then the exceptional divisor is a chain of (e − 1) P1’s. We denote them consequtively by Ei

(i = 1, · · · , e− 1) with Ei.Ei+1 = 1 and E1.Y = Ee−1.Y = 1.

Note that ωX/R(−2D) is of degree zero on each vertical component of the special fiber of X .

The case ELL: In this case, the special fiber Y has two components C and E where C is a

non-hyperelliptic genus three curve and E is an elliptic curve. Suppose the local equation of Y at p is

xy−$e. Consider the desingularization X → Y. The inverse image of p in X consists of (e− 1) P1’s,

denoted by E1, · · · , Ee−1, such that Ei.Ei+1 = 1 and C.E1 = E.Ee−1 = 1.

Let L be an extension of L on X .

Lemma 3.3.4. Let Ls be the restriction of L on Y with the property that degL|C = 3, degLs|E = 0

and degLs|Ei = 0 (i = 1, · · · , e − 1). Then Ls|E ' OE and Ls|C be can described as follows. Let

j : C → P2 be the canonical embedding. Let l be the tangent line of C at the point p, which intersect C

at two other points q1, q2 (they might coincide and they might coincide with p). Then Ls|C ' ωC(−q1)

or Ls|C ' ωC(−q2).
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Proof. let p1 be the intersection point of C and E1 and p2 be the intersection point of E and Ee−1.

By semi-continuity, for any divisor V supported on Y , we must have

dim H0(Y,Ls(V )|Y ) ≥ 2.

We first claim that Ls|E must be effective, hence Ls|E = OE . If not, then

H0(Y,Ls|Y ) ⊂ H0(C,Ls|C(−p1)).

As C is not hyperelliptic, we have dim H0(C,Ls|C(−p1)) ≤ 1. This is a contradiction. This in addition

shows that dim H0(C,Ls|C) ≥ 2.

Now there is a divisor V supported in Y , such that Ls(V )|C = 1, Ls(V )|E = 2 and Ls(V )|Ei = 0.

Then Ls(V )|C = Ls|C(−2p1) and Ls(V )|E = Ls|E(2p2). Since dim H0(E,Ls(V )E) = 2, we conclude

that Ls(V )|C = Ls|C(−2p1) must be effective on C. Therefore Ls|C = O(2p1 + q) for some q on C

and dim H0(C,O(2p1 + q)) ≥ 2. The rest of the argument is similar to the proof of Lemma 3.3.3.

By this lemma, there is a choice of D on X , so that the closure D on X only intersects C at three

points. The location of these three points are described as in the lemma.

Let V be a divisor supported on the special fiber of X defined by

V = E1 + 2E2 + · · ·+ (e− 1)Ee−1 + eE.

Then it is easy to check that ωX/R(−2D + V ) has degree zero on each irreducible component of the

special fiber of X . The self-intersection of V is

V 2 = −e.

The case TWO: In this case, the special fiber Y has two components C1 and C2. They are both

of genus two and the node is not a Weierstrauss point on either component.

Suppose the equation of Y at the node p is xy − $e. Then the inverse image p in the desingu-

larization X → Y consists of (e − 1) P1’s. We denote them by E1, · · · , Ee−1 so that Ei.Ei+1 = 1,

C1.E1 = 1 and C2.Ee−1 = 1.

Let L be an extension of L on X with degL|C1 = 2, degL|C2 = 1 and degL|Ei = 0. Let the

intersection of C1 and E1 by p1 and the intersection of C2 and Ee−1 by p2.
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Lemma 3.3.5. One of the following two cases happens.

1. One has dim H0(C1,L|C1
) = 2 and L|C2

' O(q) where q ∈ C2 is the hyperelliptic involution of

p2 on C2.

2. One has L|C1
= O(2p1) and L|C2

' O(p2).

If the second case happens, the line bundle ωX/R ⊗ L−2(−E1 − · · · − Ee−1) is an extension of

ωX(−D) and satisfies the first condition.

Proof. The proof is similar to that of Lemma 3.3.4.

By this lemma, there are two possibilities.

1. There is a choice of D on X so that its closure on X intersects with C1 at two points q1 + q2

such that dim H0(C1,O(q1 + q2)) = 2 and intersect C2 at the hyperelliptic involution of p. Let

V be the divisor supported on the special fiber of X defined by

V = E1 + 2E2 + · · ·+ (e− 1)Ee−1 + eC2.

Then ωX/R(−2D + V ) has degree zero on each irreducible component of the special fiber of X .

The self-intersection of V is

V 2 = −e.

2. If such a D does not exist. Then we can find an effective divisor D′ such that ωX ' O(D+D′)

and similar properties for D′ hold.

From now on, we fix the choice of D as described above in each case. In case TWO, we assume

that the first of the two possibilities happens.

Lemma 3.3.6. 1. The closure of D in X does not meet the rational component in the special

fiber whose self-intersection is −2. Equivalently, this mean the closure of D in Y does not pass

through the singular point on the special fiber of Y.

2. Both H0(X ,O(D)) and H0(X , ωX/R(−D)) are free R-modules of rank two and are compatible

with arbitrary base change.

Proof. This follows from the explicit description of the integral model in this section.
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3.4 The cokernel of the cup product

We keep the notation from the previous section. We always work at a fixed place v, so the subscript

v is always suppressed. We always assume that X has simple reduction at the place v.

We study the cup product

H0(X ,O(D))⊗H0(X , ωX/R(−D))→ H0(X , ωX/R). (3.2)

By the assumption that X is Petri general, this cup product is injective. Let W be the degenerate

locus. Then W is supported on the closed point of SpecR. We would like to study the length of W .

Note that the morphism X → SpecR induces a canonical morphism SpecR→M4. The pullback

of O(Z) to SpecR is a free R-module generated by $m. We define p(X) = m.

Proposition 3.4.1. Suppose we are in case IRRED, ELL or TWO. Suppose the local equation of Y

at the singular point on the special fiber is xy −$e. Then

lengthW =



1

2
p(X) Case IRRED

1

2
p(X) + e Case ELL

e Case TWO.

Now consider the case SMOOTH.

First let us make some remarks on families of hyperelliptic curves. Let S be a scheme and C → S

a smooth projective morphism of relative dimension one. We say that C is a hyperelliptic curve over

S if one of the following equivalent conditions holds.

1. There is an involution σ : C → C over S, such that the quotient C/〈σ〉 ' P where P → S is

smooth projective and all the fibers are genus zero curves.

2. There is a finite flat degree two morphism C → P over S where P → S is smooth projective

and all the fibers are genus zero curves.

We call the fix point of σ the Weierstrauss subscheme of C.

We define the hyperelliptic multiplicity h(X) of X as

h(X) = max{n | X ×R R/$n is a hyperelliptic curve over R/$n}.
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Proposition 3.4.2. Suppose we are in the case SMOOTH. Then

lengthW =
1

2
p(X)− 9h(X).

The proof of these two propositions will be the theme of the next two chapters.
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Chapter 4

Proof of Proposition 3.4.1

4.1 Some preliminaries

The goal of this chapter is to prove Proposition 3.4.1. We keep the notation from Chapter 3 Section 3.3.

We recall that X → SpecR is a minimal regular semistable model of X and Y → SpecR the stable

model of X. The special fiber of Y is denoted by Y . There is a unique node on Y which we denote

by p. The local equation of Y at p is xy −$e for some integer e.

We denote by µ : X → Y be the canonical morphism. The divisor D on X is chosen as was

described in Section 3.3. We shall denote by D the closure of D on any model of X over SpecR. This

is a slight abuse of notation, but we are going to specify the model whenever there is some possible

confusion.

Lemma 4.1.1. We have

µ∗OX (D) ' OY(D), µ∗ωX ' ωY , µ∗ωX (−D) ' ωY(−D).

Proof. This is clear since D does not meet the rational components with self-intersection −2 in the

special fiber of X .

For later use, we recall the Grothendieck duality theorem and some of its consequences here

following Artin [Art1986]. We temporarily change the notation. Let R be a discrite valuation ring

and X → SpecR a flat projective morphism of relative dimension one. Assume that X is integral

and normal. This implies that the generic fiber of X is smooth and the special fiber is reduced. Let

E be a connected reduced subscheme of X supported on the special fiber of X. A contraction of E
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is a morphism π : X → X over SpecR, such that X is normal, the morphism X → SpecR is flat

projective, the image of E is a point p ∈ X and the restriction

π|X\E : X\E → X\{p}

is an isomorphism.

Lemma 4.1.2 ([Art1986, 1.5]). 1. The sheaf Rqπ∗F = 0 if q > 1 and R1π∗F is a finite length OX
module supported at p.

2. If q 6= 0, then Rqπ∗ωX = 0.

3. If F is an OX module of finite length, then Extq(F, ωX) = 0 if q 6= 2. Moreover, Ext2(F, ωX) is

dual to F as a finite length OX-module. Therefore they are of the same length.

4. If F locally free, then Extq(F, ωX) = 0 for any q 6= 0.

The Grothendieck duality theorem [Har1966], applied to the morphism π, yields that for any

coherent sheaf F on X, there is a canonical isomorphism

Rπ∗RHom(F, ωX) ' RHom(Rπ∗F, ωX).

in the derived category of the coherent sheaves on X. It then follows from Lemma 4.1.2 that

Lemma 4.1.3 ([Art1986, 1.6]). Suppose F is locally free. Then there is an exact sequence

0→ π∗Hom(F, ωX)→ Hom(π∗F, ωX)→ Ext2(R1π∗F, ωX)→ R1π∗Hom(F, ωX)→ 0. (4.1)

4.2 The case of IRRED

We are going to prove Proposition 3.4.1 in the case IRRED in this section. Recall that Y is irreducible

and has single node p. The normalization Y ′ of Y is not hyperelliptic.

We first study the relative dualizing sheaf ωY/R.

Lemma 4.2.1. The dualizing sheaf ωY/R of Y is very ample. The canonical embedding of Y is a

complete intersection of a quadric surface Q and a cubic surface C in P3. Moreover, if Q is singular,

then Y does not pass through the singular point of Q.
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Proof. What we need to prove is that for any points x, y ∈ Y , the canonical morphisms

H0(Y, ωY )→ OY,x/mx ⊕OY,y/my, H0(Y, ωY )→ OY,x/m2
x

are surjective. Since Y ′ is not hyperelliptic, the lemma is clear if neither x nor y is the node.

Suppose x = p and y 6= p. There is a holomorphism differential form on Y ′ that is not zero y. This

differential form descends to a section of ωY on Y that vanishes on p and is not zero at y. We can

also find a form α on Y ′ that is has first order pole at q1 and q2 with Resq1 α + Resq2 α = 0. If this

form is not zero at y, then let β be a holomorphic form on Y ′ that is not zero at y and some suitable

combination of α and β gives a form on Y ′ that has first order pole at q1 and q2 and vanishes at y.

This gives a sections of ωY on Y that vanishes on y but not at p.

To show that H0(Y, ωY )→ OY,p/m2
p is surjective, it is enough to show that H0(Y, ωY )→ mp/m

2
p is

surjective. we note that there is an isomorphism mp/m
2
p ' mq1/m

2
q1 ⊕mq2/m

2
q2 . A holomorphic form

α on X ′ that vanishes at q1 but not at q2 gives a surjection to mq1/m
2
q1 . Similar for mq2/m

2
q2 .

The description of the canonical embedding of Y is obtained similarly as Lemma 2.1.2.

Proof of Proposition 3.4.1. Proposition 3.4.1 follows from Lemma 3.2.6.

4.3 The case of ELL

In this section, we prove Proposition 3.4.1 in the case ELL. The special fiber Y consist of two compo-

nents C and E of genus three and one respectively, and they meet at a node p. The component C is

not hyperelliptic.

By our description of the integral model, the divisor D intersects with C at three point p1 +p2 +p3

on C and does not meet E. It does not pass through the node p. Let C → P2 be the canonical

embedding of C and l the tangent line of C at p. Then l intersects C at two other points q1 and q2

(which might coincide). Then the divisor p1 + p2 + p3 on C is linearly equivalent to 2p+ q1 or 2p+ q2.

We define

X = Proj
⊕
n≥0

H0(Y,O(nD))

and let f : Y → SpecR and g : X → SpecR the structure morphism. There is a canonical morphism

π : Y → X , which contracts E. The special fiber of X is now an irreducible reduced curve C acquiring

a cusp at p. Since divisor D does not meet E, its image in X , which we still denote by D is still an

effective Cartier divisor. It is also clear that π∗OY(D) = OX (D) and π∗OY(D) = OX (D).
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Lemma 4.3.1. The relative dualizing sheaf ωX/R is relatively very ample.

Proof. The special fiber C is of arithmetic genus four and normalization C is of genus three. This

means that the delta invariant of the cusp is 1 [Har1977, Chapter 4]. Note that this is a unibranch

singularity therefore locally it must be of the form y2 = x3. A local generator of ωC is dx/y. A similar

argument as the proof of Lemma 4.2.1 proves the lemma.

Lemma 4.3.2. The R-module R1π∗OY is torsion of length e.

Proof. We use the formal function theorem to compute the length of R1π∗OY . Let I be the defining

ideal of E on Y, and En be the closed subscheme of Y defined by In. We have

R1π∗OY ' ̂R1π∗OY ' lim←−
n

H1(En, In).

Here ̂R1π∗OY is the completion of R1π∗OY as an R-module. It is isomorphic to R1π∗OY because it

is a torsion R-module. The second isomorphism follows from the formal function theorem.

We note that E is not a Cartier divisor on Y, but eE is a Cartier divisor. Let Ie be the defining

ideal of eE. This is an ideal locally generated by a nonzero divisor. We observe that the system of

ideals {In} is cofinal to the system {Ine }. So to calculate lim
←−

H1(En, In), we may use the system {Ine }

instead. Let E′n be the Cartier divisor defined by the ideal Ine . There is an exact sequence

0→ Ine /Ime → OE′m → OE′n → 0

for any m ≥ n. It follows that

H1(E′m−n, Ine /Ime )→ H1(E′m,OE′m)→ H1(E′n,OE′n)→ 0.

We claim that for any n ≥ 1, there is an isomorphism H1(E′n, Ine ) ' H1(E′n+1, In+1
e ). By definition,

Ie is locally generated by a nonzero divisor. Therefore

Ine /In+1
e ' Symn Ie/I2e , n ≥ 1.

When n = 1, the scheme E′ is an elliptic curve over R/$e with a section s and Ie/I2e ' OE′(s).

Therefore

H1(E′, Ine /In+1
e ) ' H1(E′,OE′(ns)) = 0
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for all n ≥ 1. This shows our claim. Moreover, when n = 1, H1(E′,OE′) ' R/$e. Then R1π∗OX '

R/$e by formal function theorem. The lemma is thus proved.

Lemma 4.3.3. The cokernel of f∗ωY → g∗ωX is of length e.

Proof. Consider the exact sequence (4.1)

0→ π∗ωY → ωX → Ext2(R1π∗OY , ωY)→ 0.

It gives rise to the long exact sequence

0→ f∗ωY → g∗ωX → g∗Ext2(R1π∗OY , ωX )→ R1g∗π∗ωY .

It follows from the spectral sequence Rpg∗R
qπ∗ωY ⇒ Rp+qf∗ωY that there is an exact sequence

0→ R1g∗π∗ωY → R1f∗ωY → g∗R
1π∗ωY → 0.

Therefore R1g∗π∗ωY ' R1f∗ωY ' R since R1π∗ωY = 0.

The sheaf R1π∗OY is supported at p and Ext2(R1π∗OY , ωX ) and R1π∗OY are dual as finite length

OX -modules. Thus Ext2(R1π∗OY , ωX )→ R1g∗π∗ωY is the zero map. The lemma then follows.

Lemma 4.3.4. The R-module R1f∗ωY(−D) is a vector bundle of rank two and compatible with any

base change. The cokernel of f∗ωY(−D)→ g∗ωX(−D) is also of length e.

Proof. The proof is similar to that of Lemma 4.3.2. We leave the details to the interested reader.

Proof of Proposition 3.4.1 in the case ELL. Consider the cup product

H0(X ,O(D))⊗H0(X , ωX/R(−D))→ H0(X , ωX/R) (4.2)

whose cokernel is denoted by Q. It follows from Lemma 3.2.6 that the length of c1(Q) as a zero

dimensional R scheme is 1
2p(X).

There is a commutative diagram

0 // f∗OY(D)⊗ f∗ωY(−D)

��

// f∗ωY

��

// Q //

��

0

0 // g∗OX (D)⊗ g∗ωX (−D) // g∗ωX
// Q // 0

.
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Note that f∗OY(D) and g∗OX (D) are free of rank two. The Proposition 3.4.1 then follows from

the snake lemma and Lemma 4.3.3 and Lemma 4.3.4.

4.4 The case of TWO

In this section, we prove Proposition 3.4.1 in the case TWO. The special fiber Y consists of two genus

two components C1 and C2 meeting at a node p. By assumption, the node p is not a Weierstrauss

point on either component. The local equation of Y at the node p is xy−$e. The closure D of D on

Y intersects C1 at two points p1 + p2 and C2 at a point q. Moreover, dim H0(C1,O(p1 + p2)) = 2 and

q is the hyperelliptic involution of p on C2.

Lemma 4.4.1. The base point of D is a length e zero dimensional subscheme of Y supported at q.

In other words, the cokernel K of

H0(Y,OY(D))→ OY(D)

is supported at q and is of length e as an R-module.

Proof. By our description of the integral model Y and D, it is clear that the base point of D is

supported at q. We first note that the length of the base point is at least e. This is because Y⊗RR/$e

is reducible and consists of two genus two curves C1,e and C2,e over R/$e. There are sections

si : R/$e → Ci,e of Ci,e, i = 1, 2, along which C1,e and C2,e are glued to obtain Y ⊗ R/$e. The

intersection of D and Y ⊗ R/$e is a subscheme of the base locus of D. The base locus of D is thus

at least of length e.

Let I be the defining ideal of the Cartier divisor eC2 on Y and C2,n be the closed subscheme of X

defined by In. We consider the exact sequence

H0(C2,n,O(D)|C2,n
)→ O(D)|C2,n

→ Kn → 0.

If m ≥ n, then the canonical morphism Km → Kn is surjective. We claim that if for any n ≥ 1, then

the morphism Kn+1 → Kn is an isomorphism. Moreover, K1 is of length e. In fact, K1 is isomorphic

to the structure sheaf of the intersection of D and Y ⊗R/$e. So Kn is of length e for any n ≥ 1.

To prove that Kn+1 → Kn is an isomorphism, we make use of the exact sequence

0→ In/In+1 ⊗O(D)→ O(D)|C2,n+1 → O(D)|C2,n → 0
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Since I is locally generated by a nonzero divisor, one has In/In+1 ' Symn I/I2 ' O(ns2) on C2,1.

It follows that the morphism

H0(C2,1, In/In+1 ⊗O(D))→ In/In+1 ⊗O(D)

is surjective. Moreover, H1(C2,1, In/In+1 ⊗O(D)) = 0 since s2 is not a Weierstrauss point on C2,1.

There is a commutative diagram

0 // In/In+1 ⊗O(D) // O(D)|C2,n+1
// O(D)|C2,n

// 0

0 // H0(C2,1, In/In+1 ⊗O(D)) //

OO

H0(C2,n+1,O(D|C2,n+1)) //

OO

H0(C2,n,O(D)|C2,n) //

OO

0

.

It follows then from the snake lemma that Kn+1 → Kn is an isomorphism.

We now relate Kn with K. Since K is supported on q ∈ C2 and the morphism Y → SpecR is

smooth at q. Since K is of finite length, we have K⊗O/In ' K for sufficiently large n. Moreover the

image of H0(X ,O(D)) in O(D)⊗O/In is a subsheaf of the image of H0(C2,n,O(D)|C2,n
) in O/In since

the morphism H0(X ,O(D))→ O(D)⊗O/In factors through H0(C2,n,O(D)|C2,n)→ O(D)⊗O/In.

Thus K ⊗O/In is a subsheaf of Kn. It follows that K ' K1 which is of length e.

Let B be the base locus of D on Y and IB its defining ideal, i.e. the image of H0(Y,O(D)) ⊗

O(−D)→ OY . It follows from (the proof of) Lemma 4.4.1 that B is flat over R/$e. Let ν : Y ′ → Y

be the blowup of Y along IB . Then the closure D of D in Y ′ is base point free. The exceptional

divisor of Y ′ → Y is isomorphic to P1 over B. We denote the reduced part of the exceptional divisor

by E. Note that this not a Cartier divisor unless e = 1. Let IE be its defining ideal and En the

closed subscheme defined by InE . Then Ee is the exceptional divisor of ν which is a Cartier divisor.

Denote the intersection of E and C2 by p′. Then local equation of Y ′ at p′ is xy − $e. We denote

the intersection of D and E by p3. We denote the structure morphism Y ′ → SpecR by f and the

structure morphism Y → SpecR by g.

Lemma 4.4.2. Let Q′ be the cokernel of

H0(Y ′,OY′(D))⊗H0(Y ′, ωY′/R(−D))→ H0(Y ′, ωY′/R).

Then Q′ ' Q.
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Proof. It follows from the general theory of blowup that

ν∗OY′(D) ' IB , ν∗OY′(−D) ' OY(−D), ν∗ωY′/R ' ωY/R.

We also note that H0(Y,O(D)) ' H0(Y,O(D⊗IB)) since B is the base locus of D on Y. The lemma

then follows.

Lemma 4.4.3. There is an R-module isomorphism R1f∗ωY′(−D) ' R⊕2 ⊕R/$e.

Proof. It follows from the spectral sequence Rpg∗R
qν∗ωY′(−D) ⇒ Rp+qf∗ωY′(−D) that there is an

exact sequence

0→ R1g∗ωY(−D)→ R1f∗ωY′(−D)→ f∗R
1ν∗ωY′(−D)→ 0 (4.3)

We have R1g∗ωY(−D) ' R⊕2. We then need to compute R1ν∗ωY′(−D). By the projection formula,

R1ν∗ωY′(−D) ' ωY(−D)⊗ R1ν∗O(E2e).

We use the formal function theorem to compute R1ν∗O(E2e). There’s an exact sequence

0→ Ine/I(n+1)e ⊗O(E2e)→ O(E2e)|E(n+1)e
→ O(E2e)|Ene → 0.

Taking long exact sequence for the global section on Y ′ gives an isomorphism

H1(E(n+1)e,O(E2e)|E(n+1)e
) ' H1(Ene,O(E2e)|Ene

).

This is because Ee is an local complete intersection in Y ′ and is isomorphic to P1 over B. Therefore

Ine/I(n+1)e ' Symn(Ie/I2e) ' O(n). It follows from the formal function theorem that

R1ν∗ωY′(−D) ' H1(Ee,O(E2e)|Ee) ' R/$e.

We are left to show that extension (4.3) splits. We note that R1f∗ωY′(−D) is compatible with

any base change since the relative dimension of f is one. Therefore R1f∗ωY′(−D)⊗R R/$e is a free

R/$e-module of rank three. The split extension is the only extension of R/$e by R⊕2 such that the

base change to R/$e gives a free R/$e moduli of rank three.
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Let

π : Y ′ → X := Proj
⊕
n≥0

H0(Y ′,OY′(nD))

This is the morphism that contracts the component C2 on Y ′. We denote by h : X → SpecR the

structure morphism and by X the special fiber of X . The closure D of D on X does not pass through

the singular point on the special fiber of X , hence it is an effective Cartier divisor on X . We denote the

image of the components C1 and E by C1 and E respetively. The point where they meet is denoted

by p.

Lemma 4.4.4. The components C1 and E of X are both smooth.

Proof. To prove this lemma, we only need to exhibit a function f in a formal neighborhood U of C2

on X ′, so that f vanishes at along C2 and vanishes exactly to the order one at the point C1 ∩ U and

E ∩ U .

Let 1D ∈ H0(Y,OY(D)) be the canonical section of D. Then we claim that 1D vanishes along C2.

Indeed, H0(Y,OY(D)) is a vector bundle of rank two over SpecR and is compatible with base change.

Since

H0(X,O(D)|X) ' H0(C1,O(D)|C1
),

the section 1D must be constant along C2. Moreover, 1D|X vanishes at q. Therefore 1D vanishes

along C2. This proves our claim. It also follows from this argument that 1D|C1
vanishes exactly to

the order one at p, since

H0(C1,O(D)|C1
(−2p)) = 0.

We have H0(Y ′,OY′(D)) ' H0(Y,OY(D)) since B is the base locus of D on Y. Let 1′D be the

image of 1D under this isomorphism. Then 1′D vanishes along C2. Moreover, 1′D|E vanishes exactly

to the order one at p′. Otherwise 1′D|E vanishes to the order two at p′ and has at most an order one

pole at p′. This is not possible. Therefore 1′D|U is the desire function on any formal neighborhood U

of C2. The lemma is thus proved.

Lemma 4.4.5. The cup product h∗OX (D)⊗ h∗ωX (−D)→ h∗ωX is surjective.

Proof. To prove the surjectivity, we only need to show that the cup product on the special fiber is

surjective and h∗OX (D) and h∗ωX (−D) are both compatible with base change.

Consider the special fiber X. The components C1 and E are both smooth. Therefore X has

planar singularity at p. With a suitably choosing the coordinates, the local equation of the singularity

is y(y − xr). We see that the r = 3 since the arithmetic genus of X is four while the arithmetic
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genus of C1 is two and E is rational. Therefore by the description of ωX as the sheaf of Rosenlisch

differentials [BHPVdV2004, Chapter II Proposition 6.2], one sees that ωX |C1
= ωC1

(3p) and ωX |E =

ωE(3p). The local generator of ωX at the singularity is dx/x3.

We have H0(E,ωE(3p)) is one dimensional, as E is isomorphic to P1. We choose a global section

η ∈ H0(X,ωX (−D)|X). Assume that the restriction of η to E does not vanish. Then by the description

of the Rosenlisch differential, the restriction of η to C1 at the point p must have an order three pole

at p. On the other hand, from the Riemann–Roch theorem, one sees that

dim H0(C1, ωC1
(−D|C1

+ 3p))− dim H0(C1, ωC1
(−D|C1

+ 2p)) = 1

This shows that there is a unique Rosenlisch differential form, up to a constant multiple, that is

nonzero when restricted to E. If the restriction of η to E is zero, then the restriction of η to C1 is

holomorphic at p. One has dim H0(C1, ωC1
(−D|C1

)) = 1. This shows dim H0(X,ωX(−D)) = 2. This

implies by duality and base change theorem that h∗OX (D) and h∗ωX (−D) are both vector bundles

and are compatible with base change.

We now prove that the cup product on the special fiber is an isomorphism. As we have seen

above, the space H0(X,ω(−D)|X) is generated by two Rosenlisch differentials η1 and η2, where η1

is zero when restricted to E and η2 has an order three pole when restricted to E. We note also

that H0(X,O(D)|X) is generated by two elements 1 and s where 1 is the constant function 1 when

restricted to each component while s is a meromorphism function which has precisely poles at D|X
when restricted to each component. One can choose s so that it has a simple zero at p when restricted

to both components.

Then by looking at the zero’s and poles of the Rosenlisch differentials η1, η2, η1s and η2s, we see

that they are linearly independent in H0(X,ωX). This show that the cup product is injective, hence

an isomorphism.

Lemma 4.4.6. 1. The sheaf R1π∗OY′ is supported at p and is of length 3e.

2. The morphism f∗ωX ′ → h∗ωX is injective and the cokernel is of length 3e.

Proof. This is the similar computation as in Lemma 4.3.3 using the formal function theorem and

Lemma 4.1.3. We leave the details to interested readers.

Lemma 4.4.7. The morphism f∗ωY′(−D)→ h∗ωX(−D) is injective and the cokernel is of length 2e.
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Proof. It follows from the projection formula and Lemma 4.4.6 that there is a short exact sequence

0→ π∗ωY′(−D)→ ωX (−D)→ T → 0,

where T is a torsion sheaf supported at p and is of length 3e. Pushing forward via h∗, we get

0→ f∗ωY′(−D)→ h∗ωX (−D)→ h∗T → R1f∗ωY′(−D)→ R1h∗ωX (−D)→ 0.

Here we have used the fact that R1π∗ωY′(−D) = 0 to conclude R1h∗π∗ωY′(−D) ' R1f∗ωY′(−D).

It follows from Lemma 4.4.3 that R1f∗ωY′(−D) is isomorphic to R⊕2 ⊕ R/$e. We have also

proved in Lemma 4.4.5 that h∗O(D) is a rank two vector bundle over R. It follows from duality that

R1h∗ωX (−D) is a rank two vector bundle over R. The lemma then follows.

Proof of Proposition 3.4.1 in the case TWO. Consider the following commutative diagram

0 // f∗OX ′(D′)⊗ f∗ωX ′(−D′) //

��

f∗ωX ′ //

��

Q′ //

��

0

0 // g∗OX(D)⊗ g∗ωX(−D) // g∗ωX
// 0 // 0

(4.4)

Proposition 3.4.1 in the case TWO then follows from the snake lemma and Lemma 4.4.6 and Lem-

ma 4.4.7
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Chapter 5

Proof of Proposition 3.4.2

5.1 Fitting ideals

For the convenience of the reader, we recall the notion of the Fitting ideal here. Let X be a scheme

and F a coherent sheaf on X. Let

M
γ−→ N → F → 0

be a presentation of F , with M and N being locally free sheaves on X of rank m and n respectively.

Then the i-th Fitting ideal Ii of F , is by definition the sheaf of ideals on X generated by the (n− i+

1)× (n− i+ 1) minor of the morphism γ. More precisely, this is the image of

∧n−i+1M ⊗ ∧n−i+1N∨ → OX .

The Fitting ideal is independent of the choice of the presentation.

5.2 Double cover of the local moduli space

We are going to work on the moduli space M4 over Z[ 12 ]. We are going to construct a double cover

of M4 around each point. This double cover is closely related to the cup product map (3.1) via

deformation theory.

Let k be an algebraically closed field with char k 6= 2. Let X be a hyperelliptic curve over k which

gives k-point [X] of the moduli space M4. Let M be a the strict henselization of M4 at [X]. Let

C → M be the universal curve and J → M be the universal Jacobian. Note that in this case, J → M

is representable since C → M has a section. The universal Jacobian J is thus a scheme. We denote
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by Jd → M the universal Jacobian over M parameterizing degree d line bundles on C. Let L be the

universal line bundle of degree three on C ×M J3. Let N be a closed subscheme of J3 defined by the

second Fitting ideal of R1p∗L where p : C ×M J3 → J3 is the projection to the second factor. So

set theoretically, the fiber of N → M consists of the degree three line bundles L on curve C with

dim H0(C,L) ≥ 2. We may in fact replace “≥” by “=” as dim H0(C,L) ≤ 2 for any degree three line

bundles on a genus four curve.

We call Z = M×M4
Z the Petri locus on M. We denote the hyperelliptic locus on M by H. Then

H ⊂ Z. Let M◦ = M\H be the open subscheme of M. Then N◦ = N ×M M◦ → M◦ is finite flat of

degree two. Since Z is regular away from the hyperelliptic locus, the scheme N◦ is regular. The fiber

of N→ M over the closed point [X] of M is isomorphic to X, embedded in Jac(X) via the morphism

X → Jac(X), p 7→ L0 ⊗O(p),

where L0 is the unique degree two line bundle on X with dim H0(X,L0) = 2 and p is some point on

X.

We first study the tangent space of N at (X,L). We denote by π : N→ M and by dπ : TN,(X,L) →

TM,X the tangent morphism. The kernel of dπ is at least one dimensional. Consider the following cup

product map

µ0 : H0(X,L)⊗H0(X,ω ⊗ L−1)→ H0(X,ω),

where ω stands for the dualizing sheaf of X. There is a morphism

µ1 : Kerµ0 → H0(X,ω⊗2X )

whose cokernel is dual to the image of dπ, c.f. [ACG2011, Chapter XXI § 6, p. 808]. We briefly

recall the construction of µ1 here. Recall that TM,X ' H1(X,TX). A little deformation theory shows

that TN,(X,L) can be interpreted in the following way. The line bundle L gives a cohomology class in

H1(X,ωX) ' Ext1(TX ,OX). This is via taking the logarithmic differential of the transition function

of L. This class defines a rank two vector bundle on X such that

0→ OX → ΣL → TX → 0.
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There is a cup product homomorphism, c.f. [ACG2011, chapter XXI, § 5]

H1(X,ΣL)→ Hom(H0(X,L),H1(X,L)).

The kernel is identified with the tangent space of N at (X,L). The dual of this homomorphism “lifts”

the usual cup product homomorphism

µ0 : H0(X,L)⊗H0(X,ωX ⊗ L−1)→ H0(X,ωX).

One can define the following homomorphism

µ1 : Kerµ0 → H0(X,ω⊗2X ),

whose cokernel is dual to the image of dπ at the point (X,L). This homomorphism fits in the following

diagram

0

��

0

��
Kerµ0

��

µ1 // H0(ω⊗2)

��

// cokerµ1

��

// 0

H0(L)⊗H0(ωL−1)

��

// H0(ωΣ∨L)

��

// T∨N,(X,L)

��

// 0

0 // H0(L)⊗H0(ωL−1)/Kerµ0

��

µ0 // H0(ω)

��

// Q //

��

0

0 0 0

. (5.1)

Here all the global sections are over X. The homomorphism H0(ω⊗2)→ T∨N,(X,L) is dual to dπ. The

kernel of it is thus the orthogonal complement of image of dπ. By snake lemma, the homomorphism

cokerµ1 → T∨N,(X,L) is injective. Therefore the kernel of H0(ω⊗2) → T∨N,(X,L) is identified with the

image of µ1.

Lemma 5.2.1. The scheme N is regular.

Proof. We only need to show that N is regular at the points over the closed point [X] of M. Such a

point corresponds to a pair (X,L) where L is a degree three line bundle on X and dim H0(X,L) = 2.

We are going to show that the image of TN,(X,L) under dπ is eight dimensional. This implies the

regularity of N at (X,L). From the discussion of the homomorphism µ1 above, we see that it is enough



51

to show that Kerµ1 is one-dimensional.

We now choose charts and calculate µ1 using Cech cocycles. Choose a chart on X as follows.

Let X = U0 ∪ V0, where U0 is the subscheme of A2 given by the equation y2 = f(x), and V0 is the

subscheme of A2 given by the equation v2 = g(u) and x = u−1, y = u−5v. In this chart, one has

1. A basis of H1(X,TX) is

{θi, i = 1, · · · , 7; ηj , j = 1, 2},

where

θi = x−iy2
∂

∂x
, ηj = x−jy

∂

∂x
.

2. A basis of H0(X,ω⊗2X ) is

{ρi, i = 1, · · · , 7; σj , j = 1, 2},

where

ρi = xi−1
(

dx

y

)2

, σj = xj−1
(dx)2

y
.

They are dual basis to each other. It should be noted that θi, i = 1, · · · , 7 (resp. ρi) span the tangent

(resp. cotangent) space of H4 at [X].

Let f : X → P1 be the canonical morphism, given by (x, y) 7→ x. Let (x0, y0) = p ∈ X. Suppose

that the line bundle L is isomorphic to O(f−1(∞) + p). For simplicity assume that f is not ramified

at p. The case that f ramifies at p can be treated in a similar way. We choose a refined chart on X as

follows. Let X = U ∪ V . Here U = U0\{p} and V = V0\{p′} where p′ = (x0,−y0). Using this chart,

the restriction of θi’s, etc. still give a basis of corresponding cohomology.

A basis of H0(X,L) is {1, x}, and a basis of H0(X,ω ⊗ L−1) is {(x − x0)dx
y , x(x − x0)dx

y }. The

kernel of µ0 is thus one dimensional and is generated by

1⊗ x(x− x0)
dx

y
− x⊗ (x− x0)

dx

y
.

By the description of µ1 given in [ACG2011, p. 809-810], the image of µ1 is given by

(x− x0)
(dx)2

y
= σ2 − x0σ1.

Its orthogonal complement in H1(X,TX), i.e. the image of TN,(X,L) in TM,X is thus generated by

θi, i = 1, · · · , 7; x0η2 + η1.
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To summarize, we have shown that the image of TN,(X,L) in TM,X is eight dimensional and it contains

TH,X .

Lemma 5.2.2. There is an isomorphism C×M H→ N×M H, i.e. the fiber of H of N is isomorphic to

the universal hyperelliptic curve over H.

Proof. To simplify notation, we write NH = N ×M H and CH = C ×M H. There is an hyperelliptic

involution ι : CH → CH over H. As CH → H has a section s, the line bundle F = O(s + ι∗s) on CH

restricts to the unique line bundle of degree two that has two dimensional global sections on each fiber

of CH → H.

Consider the morphism νi : CH×H CH → CH (i = 1, 2) where νi is the projection to the i-th factor.

Consider the line bundle F+ := ν∗1F ⊗ O(∆) on CH × CH where ∆ is the diagonal morphism. Now

view CH × CH as a family of curves over CH via ν2. The line bundle F+ is of degree three on each

fiber, and has the property that rank R1ν∗F
+ = 2. So by the universal property of NH, there is a

morphism CH → NH over H. It is not hard to see that this morphism is in fact an isomorphism over

each geometric point of H. This shows that it is in fact an isomorphism.

Let M̃ be the blowup of M with the center H. Since N is regular, the inverse image NH is thus

a Cartier divisor on N, hence the morphism N → M factors through M̃ → M. Let P → H be the

exceptional divisor of the blowup. It is a P1-bundle over H. Then the morphism N → M̃ gives a

morphism NH → P. From the proof of lemma 5.2.1, one sees that this morphism is identified with the

universal double cover CH → P. The morphism N→ M̃ is thus finite flat of degree two. Let Z′ be the

ramification locus of N→ M̃ on N.

There is an involution

σ : N→ N, (Y → S,L) 7→ (Y → S, ωY/S ⊗ L−1),

on N over M, where S is an M-scheme. This is precisely the “deck transformation” on the double

cover N◦ → M◦. Its fixed point in the locus where π ramifies, which is nothing but Z′. Therefore the

intersection of the closure of Z′ in N and NH is the Weierstrauss subscheme on NH. It is finite etale

over H of degree ten. This is equivalent to that the intersection of the strict transform of Z in M̃ and

P is the universal branching divisor on P.

We summarize the above discussion in the following lemma.

Lemma 5.2.3. The multiplicity of Z at the generic point of H is ten. All components of Z are regular

at the generic point of H.
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5.3 Computing the length of the cokernel of the cup product

There is an universal line bundle L over CN := C ×M N such that rank R1p∗L = 2. Here p is the

projection to the second factor. We consider the “universal” cup product

p∗L⊗ p∗ωL−1 → p∗ω.

Here ω = ωCN/N is the dualizing sheaf. Let Q be its cokernel.

Proposition 5.3.1. We have an isomorphism Q⊗ det Rp∗L ' Ω1
N/M.

Proof. We recall that the defining ideal of N in J3 is the second Fitting ideal I of R1p∗L, where

q : C×M J3 → J3 is the projection to the second factor and L is the universal line bundle. Let E be a

section of q and n a sufficiently large integer. Then there is an exact sequence

0→ K0 → K1 → R1q∗L→ 0,

where K0 ' q∗L(nE), K1 ' q∗L(nE)/L. The morphism K0 → K1 is injective since generically a degree

three line bundle on C has no section.

The sheaf K0 and K1 are both locally free, say of rank r. The defining ideal I of N is generated

by all the minors of the morphism K0 → K1 of size (r − 1)× (r − 1). If we restrict this presentation

to N, then one has

0→ p∗L→ K0|N → K1|N → R1p∗L→ 0.

Note that R1q∗L is compatible with base change and R1q∗L|N ' R1p∗L. Thus there is a morphism

p∗L⊗ (R1p∗L)∨ → (K0 ⊗K1,∨)|N.

Moreover since K0 and K1 are locally free of rank r, we have Ki ' ∧r−1Ki,∨ ⊗ ∧rKi, (i = 0, 1). It

then follows from the definitions of the Fitting ideal that there is a morphism

p∗L⊗ (R1p∗L)∨ → I/I2 ⊗ det Rp∗L.

By duality, this is

p∗L⊗ p∗ωL−1 → I/I2 ⊗ det Rp∗L.

Here ω stands for the dualizing sheaf of CN → N.
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Consider exact sequence

0→ I/I2 → Ω1
J3/M|N → Ω1

N/M → 0.

Note that Ω1
J3/M|N ' p∗ω ⊗ det Rp∗L. We then get a surjective morphism

Q⊗ det Rp∗L→ Ω1
N/M.

By the deformation theory [ACGH1985, Chapter IV, Proposition 4.2], this morphism is an isomor-

phism at each geometric point of N. It is thus an isomorphism of sheaves since N is reduced.

We have factorized N → M as N → M̃ → M where M̃ → M is the blowup of H and N → M̃ is a

double cover branching along the strict transform of Z. Therefore

Ω1
M̃/M
|N → Ω1

N/M → Ω1
N/M̃
→ 0.

Lemma 5.3.2. The morphism Ω1
M̃/M
|N → Ω1

N/M is injective.

Proof. The scheme N (resp. M̃) is a union of a closed subscheme NH = N ×M H (resp. P) and its

complement N◦ (resp. M◦). Here we consider M◦ as an open subscheme of M̃. Let i : NH → N be the

closed immersion and j : N◦ → N the open immersion. Then there is a commutative diagram

0 // j!j∗Ω1
N/M

//

��

Ω1
N/M

//

��

i∗Ω
1
NH/H

//

��

0

0 // j!j∗Ω1
N/M̃

// Ω1
N/M̃

// i∗Ω1
NH/P

// 0

The left vertical arrow is an isomorphism since they are both isomorphic to j∗Ω
1
N◦/M◦ . The middle

arrow is surjective by definition and the right arrows is surjective since i is a closed immersion.

Note that we have Ω1
M̃/M
|N ' i∗

(
Ω1

P/H|NH

)
. It then follows from diagram chasing that Ω1

M̃/M
|N →

Ω1
N/M is injective if and only if Ω1

P/H|NH
→ Ω1

NH/H
is injective. The injectivity of Ω1

P/H|NH
→ Ω1

NH/H
is

clear since they are both line bundles and the morphism is nontrivial.

Corollary 5.3.3. Keep the notation as above. Then

detQ ' ON(Z′ + NH).
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Proof. It follows from the above lemma and Proposition 5.3.1 that

detQ ' det Ω1
N/M̃
⊗ det Ω1

M̃/M
|N.

Here we have used the fact that Q is zero at the generic point of N. Then det Ω1
N/M̃
' O(Z′) since Z′

is the ramification locus of N→ M̃ and det Ω1
M̃/M
|N ' O(NH) since M̃/M is the blowup of M centered

at H.

Proof of Proposition 3.4.2. We let R be a strict henselizian discrete valuation ring. Choose a uni-

formizer $ of R. Let K be the function field of R and k the residue field. By assumption, k is

not of characteristic two. We assume that the curve X is Petri general and has smooth hyperelliptic

reduction over R. Let f : X → SpecR be an integral model of X and Y be the special fiber. Then

Y is a smooth hyperelliptic curve. The divisor D on X is of degree three and dim H0(X,O(D)) = 2.

We denote by D its closure on X .

By the moduli interpretation of N, there is a unique morphism i : SpecR→ N and X ' SpecR×N

CN. Let L = L|X . Then it is a line bundle on X which extends O(D) on the generic fiber.

We need to compute the cup product over SpecR, i.e.

f∗L ⊗ f∗ωL−1 → f∗ω, (5.2)

where ω is the dualizing sheaf of X over R. Let W ⊂ SpecR be the degenerate locus of the cup

product. Then W is a finite length scheme supported at the closed point of SpecR. Then

det Rf∗ω ' (det Rf∗L)2 ⊗O(W ).

This is the pullback of the isomorphism

det Rp∗ωCN/N ' (det Rp∗L)2 ⊗ detQ.

The length of NH ×N SpecR as a finite length R scheme is h(X) by the lemma below. The length of

Z′ ×N SpecR is 1
2p(X) − 10h(X). This follows from Lemma 5.2.3 and the fact that M̃ → M is the

blowup centered at H.

We then conclude from Corollary 5.3.3 that the length of W is the 1
2p(X)− 9h(X). The Proposi-

tion 3.4.2 is thus proved.
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Lemma 5.3.4. Let M be a scheme and Z ⊂ M be a closed subscheme. Let M̃ → M be the blowup

centered at Z and E ⊂ M̃ be the exceptional divisor. Let R be a discrete valuation ring with function

field K, residue field k and a uniformizer $. Let i : SpecR→M be a morphism such that the image

of SpecK does not lie in Z while the image of Spec k lies in Z. Let ĩ : SpecR → M̃ be the strict

transform. Let in : SpecR/$n → M (resp. ĩn : SpecR/$n → M̃) be the morphism induced by i

(resp. ĩn). Let

z = max{n | in is a closed immersion},

and

z̃ = max{n | ĩn is a closed imersion}.

Then z = z̃.

Proof. Let IZ (resp. IE) be the defining ideal of Z (resp. E). The pullback of IZ (resp. IE) to SpecR

is an ideal in R generated by $z (resp. $z̃). But IE is the inverse image ideal sheaf of IZ . The

lemma then follows.
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Chapter 6

Speculations

This chapter is largely speculative. We summarize the problems left open in this thesis and provide

some hints to the solutions.

6.1 Double cover of M4

As we have seen in Chapter 5, for any smooth genus four curve X, there is a double cover of a

neighbourhood of [X] in M4. The construction of this double cover can be summarizes as follows.

The singularity of the Petri locus Z in M4 is hyperelliptic locus H4. Blowing up H4 in M4 gives

an embedded resolution of the Petri locus Z. Let Z̃ be the strict transform of Z. The double cover

precisely ramifies along Z̃.

Now the question is:

Can we make similarly constructions on M4?

We have also used the double cover of M4 in a crucial way to compute the cokernel of the cup

product (3.1). If the answer to the above question is YES, then the next question is:

What is the relation between the double cover of M4 and cup product?

These questions seem to be inaccessible in its full generality at this moment. We only give some

tentative description of the geometry of M4 near the point [X] ∈ Z.

Expectation 6.1.1. If X is of the type IRRED, ELL Section 3.3, then the closure of the Petri locus

is smooth at [X] if [X]

Remark 6.1.2. If X is of type TWO, then it does not lies in the closure of the Petri locus.
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Expectation 6.1.3. Suppose X is irreducible and has a single node p. Assume that the normalization

X ′ → X is hyperelliptic. Let q1 and q2 be the inverse image of p. If q1 and q2 are not hyperelliptic

involution of each other, then Z at [X] is smooth.

Explanation. If X is irreducible, then X is a complete intersection of a singular quadric and a cubic

surface in P3. That means, the Petri locus near the point [X] is isomorphic to an open part of the

projective space, which is smooth.

Suppose X has two components C and E of genus three and one respectively, the component C

being non-hyperelliptic. Let Q be a singular quadric in P3 and we look at the linear system P on Q

cut out by degree three hypersurfaces. The locus in P where the divisor acquires at most a cusp is

smooth if the singularity of the divisor is not on the singularity of Q. The locus C where the divisor

acquires a cusp is also smooth. Then locally on the moduli space M4 near the point [X], the Petri

locus is isomorphic to the blowup of P along C, which is again smooth.

Expectation 6.1.4. Let

Σ =

X ∈ ∆1

∣∣∣∣∣ X consists of two components C and E meeting at one point

where C is a hyperelliptic genus three curve and E is an elliptic curve

 .

Let η be the generic point of Σ. Then the Petri locus Z at η has multiplicity four.

Explanation. Suppose the geometric generic point of Σ corresponds to a curve X = C ∪ E. We then

take the strict henselization of M4 at the generic point of Σ. We then get a two dimensional scheme

M and η is the only closed point. Then Z is the divisor on M which has three components at η and

each component is smooth.

Denote the universal curve over M by X and the degree three Jacobian by J 3. The Jacobian is

the connected component of the relative Picard scheme that is of multi-degree (2, 1) on X, i.e. of

degree two on C and degree one on E. Still consider the locus W ⊂ J consisting of line bundles

whose global section has dimension at least two. A little computations show that the closed fiber of

W over η is of dimension one and is isomorphic to E.

It is expected that W is regular. Moreover, the morphism W → M admits a factorization W →

M̃ → M where M̃ → M is the blowup of M at the closed point and W → M̃ is finite flat of degree

two. Let P be the exceptional divisor. Then the morphism E → P is the usual double cover defined

by the linear system |2p| on E. The strict transform of Z intersects P precisely at the branching point

of E → P .
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6.2 The local invariant and the Northcott property

We have shown in Corollary 1.3.4 that for a complete family of smooth non-hyperelliptic genus four

curves, the Northcott property holds. The obvious question is, does this holds over the whole moduli

space M◦4 parameterizing non-hyperelliptic genus four curve?

Conjecture 6.2.1. Let K be a number field Let H and D be two positive real numbers. Then the set

{t ∈M◦4(K) | deg t ≤ D, height (Ξt) ≤ H}

is finite.

This conjecture is closely related to the lower bound of ω2
X .

Expectation 6.2.2. There is some ε > 0, such that

5ω2
X ≥ (1 + ε)

∑
v

ϕv.

The inequality we obtained from the non-negativity of the height is inequality above with ε = 0.

Note that this equality implies Conjecture 6.2.1.

Recall that the effective Bogomolov conjecture predicts that there is an effectively computable

constant c > 0 such that ω2
X ≥ c.

Expectation 6.2.3. If v is non-archimedean, the constant ϕv is effectively computable. If v is

archimedean, then ϕv > 0.

Explanation. Suppose v is non-archimedean. We expect that there is an absolute constant c > 0, such

that

ϕv ≥ c(h(X) + δ(X)).

Here h(X) is the number of nodes on the minimal regular semistable model of X over B and h(X)

is the number of hyperelliptic fibers, counting multiplicity. Moreover, we expect that we could take

c = 2
5 . This means that when getting into the deeper strata of the the boundary ofM4, the constant

ϕv increases.

Our result on the height of Ξ is somewhat a reminiscence of [Zha2010, Theorem 1.3.5]. But we

should point out that there is an important difference. We expect that when v is archimedean, the
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local constant ϕv is not an expression involving only the Green’s functions. If we consider the Green’s

function as some “distance” function on the moduli space to the boundary ofM4, then the expression

of ϕv should involve some other function which expresses the “distance” to the hyperelliptic locus. I

do not know at this moment what this function should be. This seems to be an interesting phenomena.

One perhaps should try to look for similar distance function for curves of other genera.
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