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Abstract 
 
 
Mid-channel proteolysis of the L-type voltage gated calcium channel and the 

potential role of amyloid-β precursor protein  

 

Kathryn Abele Henckels 

 

 
 L-type voltage-gated calcium channels are involved in many important 

physiological processes, including muscle contraction, hormone secretion and neuronal 

gene expression. These channels are regulated by many different mechanisms to tightly 

control calcium influx. Our lab has uncovered a new form of L-type channel regulation 

that involves the proteolysis of the channel in the main body of the α1 subunit in response 

to increased intracellular calcium, channel activity and age. I investigated the immediate 

and long-term functional impact of mid-channel proteolysis on the CaV1.2 channel. Mid-

channel proteolysis causes an acute change in gating and a decrease in channel activity 

over a longer time scale. Fragment channels result from proteolysis, and these fragments 

associate on the plasma membrane to form functional channels. These L-type fragment 

channels exhibit different biophysical properties than full-length CaV1.2. While fragment 

channels must combine so that all four domains are present to be functional, non-

complimentary pairs containing more than four domains still produce discernible current. 

L-type fragment channels co-immunoprecipitate with the full-length CaV1.2, indicating 

that fragments bind to either the α1 subunit or the channel complex. Some of these 

fragments cause a shift in inactivation and in the I-V curve of the channel, and one 

fragment comprising Domain IV and the C-terminus (fragment C2) inhibits full-length 



 

CaV1.2 in a dominant negative manner. These results demonstrate the functional effects 

of mid-channel proteolysis.  

 L-type mid-channel proteolysis increases with animal age. Therefore, to identify 

the protease responsible for mid-channel proteolysis, I turned to proteases involved in 

aging diseases. Amyloid-β precursor protein (APP), a protein implicated in Alzheimer’s 

disease (AD), modulates L-type channels and is itself extensively proteolyzed. One of 

those proteases is presenilin, the catalytic component to γ-secretase. I found that APP 

dramatically reduced human CaV1.2 current in Xenopus oocytes. The current-voltage 

relationship and inactivation profiles of CaV1.2 in the presence of APP mirrored those of 

the fragment channels. Moreover, a γ-secretase inhibitor, DAPT, completely reversed this 

effect. When an AD APP mutant was co-expressed with CaV1.2, currents were further 

diminished. Astonishingly, an APP mutant that protects against AD had the opposite 

effect, allowing larger CaV1.2 currents than wild-type APP.  

 Western blots stained with an antibody against CaV1.2 revealed a ~100 kD band 

when APP was coexpressed with the channel, which was absent in oocytes solely 

expressing CaV1.2. DAPT application reversed this effect, indicating the band was a 

product of presenilin proteolysis. A putative cut site was found on the α1 subunit that 

would produce a band similar in size to the one observed in Western blots. When this site 

was mutated, the ~100 kD band no longer appeared when CaV1.2 was coexpressed with 

APP. Unfortunately, the CaV1.2 II-III loop antibody was later found to cross-react with 

APP. Therefore, additional experiments are necessary to determine whether the ~100 kD 

band is CaV1.2 Interestingly, APP induced mid-channel proteolysis was detected in 

primary neurons using imaging techniques. While the mechanism for APP-induced 



 

inhibition of the channel is still unresolved, my data clearly shows this effect is mediated 

by presenilin. Whether or not presenilin is responsible for cutting CaV1.2 remains to be 

resolved.
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Chapter 1 

Introduction 

 
 

1.1 OVERVIEW OF VOLTAGE-GATED CALCIUM CHANNELS 

 Ion channels are transmembrane proteins that form pores in the plasma membrane 

to allow the passage of ions in and out of the cell. Voltage-gated ion channels open in 

response to changes in membrane potential, and include voltage-gated Na+, K+, Cl- and 

Ca2+ channels. These are different than ligand-gated ion channels that open in response to 

a ligand binding, allowing for an influx of Na+ or Ca2+ to locally depolarize the 

membrane. Voltage-gated channels are essential for all excitable cells. Voltage-gated 

calcium channels (VGCCs) not only aid in cell excitability, but they allow for the influx 

of calcium, a very important second messenger. Calcium triggers various signaling 

cascades that control many critical cellular processes. These include hormone secretion, 

neurotransmitter release, cell migration, gene transcription, and muscle contraction 

(Catterall, 2000).  In response to changes in voltage across the membrane, and under the 

regulation of many other proteins, VGCCs allow the heart to beat, the kidney to function, 

and neurons to communicate with one another.  

 

1.1.1 The Subunits of Voltage-Gated Calcium Channels 

 VGCCs consist of an assembly of subunits that together form a functional 

channel.  The main transmembrane α1 subunit associates with auxiliary subunits β, α2δ 
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and sometimes γ (Figure 1.1) to form the VGCC complex.  Although α1 alone is able to 

conduct a current, the auxiliary subunits allow for proper gating (Perez-Reyes and 

Schneider, 1995).  Coexpression of β is necessary for α1 trafficking from the 

endoplasmic reticulum to the plasma membrane, therefore little α1 will be expressed 

without β present in heterologous systems (Buraei and Yang, 2010).  While many 

subtypes and splice variants exist for all subunits, the basic structure of the complex is 

similar for all VGCCs.  

 

 

Figure 1.1 Molecular composition of VGCC complex. CaVα1 is the pore-forming subunit 

responsible for the biophysical and pharmacological properties of the channel. CaVβ, CaVγ, and 

CaVα2δ are auxiliary subunits that modulate channel expression and gating. 
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 The principal component of the calcium channel, the α1 subunit, contains the 

voltage sensor and forms the pore through which Ca2+ ions flow (Figure 1.2). This 

subunit is responsible for most of the pharmacological properties of VGCCs (Catterall, 

2000).  The α1 subunit consists of four homologous domains, each containing six 

hydrophobic transmembrane segments. Both the cytoplasmic N- and C-termini and the 

intracellular loops connecting the domains, often termed “linkers”, contain binding sites 

for a multitude of proteins responsible for channel modulation and regulation.  The pore-

lining loops (P loops), which are made up of highly conserved glutamic acid residues 

between segments S5 and S6, reinsert into the membrane.  Due to their negative charge 

they are responsible for the high Ca2+ selectivity of the pore (Yang et al., 1993).  The S4 

segment consists of positively charged lysines and arginines that create the voltage 

sensor, which swings outward opening the ion pore in response to depolarization 

(Bezanilla, 2002).  The S6 segment is involved in inactivation of the channel, whereby 

the I-II linker region docks to the extracellular end of S6 in response to depolarization, 

essentially blocking the pore (Stotz et al., 2004). Ten different genes for α1 have been 

identified in humans, all having different gene transcripts, but belonging to the same 

CACNA1 family, although various splice variants exist (Jurkat-Rott and Lehmann-Horn, 

2004).   Expression of a particular α1 subunit dictates the type of channel, high voltage 

activated (HVA) or low voltage activated (LVA), as well as the type of current conducted 

through that channel.  
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Figure 1.2 Schematic topology of α1 subunit. Positively charged voltage-sensor S4 is in yellow 

and the pore forming segments S5, S6 and the P-loop are in green. Domains are denoted as I, II, 

III and IV. Both N- and C-termini are intracellular. (Modified from (Catterall, 2011)). 

 

 The cytosolic β subunit is a multifunctional protein in regards to the role it plays 

as part of the VGCC complex (Buraei and Yang, 2010).  The β subunit acts as a 

chaperone to α1, trafficking it out of the endoplasmic reticulum and to the plasma 

membrane (Raghib et al., 2001)  Different β subtypes determine the subcellular location 

of the channel (Wittemann et al., 2000). The GK domain of β is absolutely necessary for 

channel expression on the membrane, regardless of whether the rest of the β subunit is 

present (He et al., 2007).  The β subunit also greatly affects the activation and 

inactivation kinetics of the channel. There are four known human β subunit genes, each 

with splice variants, termed β1, β2 β3 and β4 (Birnbaumer et al., 1998) and each subtype 

of VGCC associates primarily with one specific β subtype (Reimer et al., 2000).  β 

directly interacts with α1 on the I-II linker (Chen et al., 2004), and this high-affinity 

binding site is termed the α1-interaction domain (AID). A single β subunit molecule is 
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sufficient to provide full function and membrane expression of the channel (Dalton et al., 

2005). β hyperpolarizes the voltage-dependence of activation of VGCCs (Dolphin, 2003) 

and increases the mean open time of the channel pore (Wakamori et al., 1999).  

 The α2 and δ subunits are generally considered one subunit as they are encoded 

by the same gene (De Jongh et al., 1990).  However, posttranslational modifications 

occur that cleave the translated protein into 143-kD α2 and 27-kD δ subunits, which are 

then linked by a disulfide bond to form the α2-δ complex (Jay et al., 1991). Several splice 

variants of α2-δ are known, many with specific tissue expression (Klugbauer et al., 2003).  

Previous studies have reported that expression of the α2-δ complex increases currents in 

α1/β recombinant channels (Bangalore et al., 1996) and influences inactivation rates.  

Assembly of the α2-δ complex with N-type channels increased the half-life of the channel 

(Bernstein and Jones, 2007), possibly tethering it to the membrane to impede 

internalization of the channel by mechanisms yet unexplored.  The α2δ subunit is also 

thought to assist with α1 trafficking and stabilization of the VGCC complex on the 

plasma membrane (Dolphin, 2012).   

 The γ subunit is a hydrophobic glycoprotein with four transmembrane domains 

and cytoplasmic N- and C-termini (Black, 2003).  The γ-subunit was found to be just over 

25kD in size and co-purified with the other four subunits of the L-type Ca2+ channel 

(Sharp and Campbell, 1989).  There are currently eight known γ genes in humans, all of 

the CACNG gene family (Black, 2003). Not all VGCC complexes require the γ subunit to 

function properly. Cardiac L-type channels have been found to associate with the γ 



 6	
  

subunit (Yang et al., 2011) and γ was shown to cause activation to occur at more negative 

potentials, as well as speed up inactivation (Eberst et al., 1997) . 

1.1.2 Subtypes of VGCCs 

 Two main types of VGCCs exist, high voltage activated (HVA) and low voltage 

activated (LVA), and they are further differentiated based on the type of α1 subunit they 

express (Figure 1.3). The HVA channels consist of L-, P/Q-, N-, and R-type currents, 

while T-type currents are classified as LVA channels. They are subdivided into CaV1, 

CaV2, and CaV3 families, each of which have representative channels in C. elegans 

(Jeziorski et al., 2000), proving the phylogenic age of these proteins. The CaV1 and CaV2 

channels are roughly 50% homologous to one another, whereas the CaV3 channels have 

only ~25% homology to the HVA channels (Figure 1.3), about the same as those 

channels share with Na+ channels, indicating that T-type channels separated from HVA 

VGCCs around the same time as voltage-gated Na+ channels did (Catterall, 2011). 

However, the differences between the channel subtypes are not only in their amino acid 

sequences, but in their tissue localization and function (described in detail below). 

 The L-type Ca2+ channels have four different gene transcripts, all specifying 

different α1 subtypes.  These are designated Cav1.1, Cav1.2, Cav1.3, and Cav1.4, which 

express α1S, α1C, α1D, and α1F respectively. P/Q-type channels are classified as Cav2.1 

and express α1A, N-type channels are classified as CaV2.2 and express α1B, and R-type 

channels are classified as CaV2.3 and express α1E. The T-type Ca2+ channels have three 

subtypes classified as Cav3.1, Cav3.2, and Cav3.3, which express α1G, α1H, and α1I 

respectively. 
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Figure 1.3 The three subfamilies of VGCCs. A dendogram comparing the amino acid sequences 

between the subtypes of VGCC α1 subunits. Gene name, chromosome location, tissue localization 

and type of current also listed. (Taken from (Jurkat-Rott and Lehmann-Horn, 2004)). 

 

1.1.3 Localization and Function of VGCCs 

 L-type channels are involved in muscle contraction, hormone secretion and gene 

transcription (Catterall, 2011). CaV1.1 channels are predominately found in skeletal 

muscle and CaV1.2 channels are located in cardiac tissue and brain. CaV1.3 channels are 

generally found in the central nervous system (Catterall, 2000) and auditory hair cells 

(Platzer et al., 2000).  CaV1.4 channels are expressed in the retina and are involved in 

phototransduction (Bech-Hansen et al., 1998).  Neuronal L-type channels (CaV1.2 and 

CaV1.3) are found at postsynaptic synapses and in the soma, however they are also 

recruited to microdomains along distal dendrites and spines, which allows for easier 

synapse to nucleus communication (Leitch et al., 2009).  L-type channels play a role in 
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gene transcription in neurons (Bean, 1989) and are involved in hormone secretion in 

endocrine cells (Milani et al., 1990).  They are responsible for the contraction of cardiac 

and smooth muscle, and initiate rapid contraction in skeletal muscle by directly 

interacting with ryanodine-sensitive Ca2+ release channels (Catterall, 2011). L-type 

channels are known to be sensitive to phenylalkylamines, benzothiazapines, and 

dihydropyridines (Reuter, 1983) and are blocked by the spider toxin ω-agatoxin IIIA 

(Mintz et al., 1991).  L-type channels are implicated in many disease states, including 

Duchenne muscular dystrophy (Friedrich et al., 2008), arrhythmias and hypertension 

(Triggle, 2006), Timothy syndrome (Barrett and Tsien, 2008), hypokalemic periodic 

paralysis and night blindness (Striessnig et al., 2004).  

 The P/Q-, R-, and N-type Ca2+ channels make up the CaV2 family and are widely 

expressed in neurons and chromaffin cells (Garcia et al., 2006).  CaV2 channels are 

mainly involved in short-term synaptic plasticity (Catterall et al., 2013). P- and Q-type 

channels are derived from alternative splice variants of the same gene (Bourinet et al., 

1999), and can be distinguished based on their sensitivities to various toxins.  P-type 

channels are more sensitive to ω-AgaIVA, whereas Q-type channels are sensitive to ω-

CMVIIC (Randall and Tsien, 1995).  N-type channels are specifically blocked by the 

marine snail toxin, ω-conotoxin GVIA (Plummer et al., 1989).  R-type channels are 

resistant to these toxins, thus termed “R” for resistant.  P/Q- and N-type channels are 

abundant in presynaptic terminals and are involved in neurotransmitter release 

(Takahashi and Momiyama, 1993). N-type channels (CaV2.2) are found in neurons and 

neuroendocrine cells (Catterall and Few, 2008). In the spinal cord (Snutch, 2005) they are 

located in dorsal root ganglia and at the synaptic terminals in dorsal horn neurons that 
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connect to afferent sensory fibers (Perret and Luo, 2009).  In the dorsal horn, they are 

found predominately in substance P containing cells (Altier et al., 2007; Snutch, 2005). 

CaV2.2 channels are responsible for the majority of synaptic processing of nociceptive 

information in dorsal horn neurons (Hatakeyama et al., 2001; Matthews and Dickenson, 

2001). P/Q-type channels (CaV2.1) are found throughout the entire brain, but are 

expressed at particularly high levels in the cerebellum (Pietrobon, 2005b). CaV2.1 

channels are also found in brain regions associated with the perception of pain, such as 

the trigeminal ganglia and brainstem nuclei (Pietrobon, 2005b).  They play a major role at 

excitatory synapses (glutamate) and a lesser role at inhibitory synapses (GABA) 

(Timmermann et al., 2002). While CaV2.2 knockouts do not display an adverse 

phenotype besides higher threshold for pain (Pietrobon, 2005a), CaV2.1 knockout mice 

survive for only a few weeks, and display seizures and ataxia while alive (Jun et al., 

1999). Also, a lack of N- and R-type channels can be compensated for, whereas 

deficiencies in P/Q-type channels cannot (Pietrobon, 2005a).   

 The T-type calcium channels make up the CaV3 family and are the LVA calcium 

channels, meaning they open at much more negative potentials than the other VGCCs 

(Carbone and Lux, 1984). T-type calcium channels are expressed throughout the body, 

and can be found in the brain, heart, kidney, sperm, smooth muscle and many endocrine 

organs (Perez-Reyes, 2003). They serve a major role in cardiac pacemaking and neuronal 

oscillations (Cueni et al., 2009) and are essential for sleep, motor coordination and 

learning. In contrast to the other VGCCs that require auxiliary subunits to function, CaV3 

channels are believed to function as independent α1 subunits (Catterall, 2011).  
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1.2 REGULATION OF VGCCS 

With such a diverse range of functions, it is no surprise that VGCCs must be 

intricately regulated by a variety of mechanisms. Many proteins interact with VGCCs to 

regulate or modulate the channel (Figure 1.4). Kinases activate the channel through 

phosphorylation. G-proteins can bind to and inactivate the channel. Lipids in the 

membrane interact with the channel to stabilize it in the membrane and contribute to the 

channel’s kinetics. Calcium binding proteins act as calcium sensors to control the channel 

in response to its environment. The VGCC subtypes are regulated by one, or many, of the 

following proteins in order to properly function. 

 

1.2.1 PKA and PKC 

 VGCCs can be regulated by c-AMP dependent protein kinase A (PKA) and 

protein kinase C (PKC). L-type channels are phosphorylated by PKA, which enhances 

channel activity (to be discussed in detail below). CaV1 channels also directly bind to 

PKA anchoring proteins (AKAP) (Hulme et al., 2002). PKA has been found to enhance 

voltage-dependent facilitation of CaV2.1 channels (Tamse et al., 2003) and CaV2.2 

channels to a lesser extent (Fukuda et al., 1996). Many different isoforms of PKC have 

been shown to co-immunopreciptitate with CaVα1 (Dai et al., 2009). PKC has an 

inhibitory effect on L-type channels, whereby phosphorylation of two sites on the N-

terminus decreases current in both CaV1.2 (McHugh et al., 2000) and CaV1.3 (Baroudi et 

al., 2006) channels. In contrast, PKC phosphorylation of Ser1928 in the C-terminus, the 

same residue that is phosphorylated by PKA, upregulates CaV1.2 activity (Yang et al., 

2005). PKC also phosphorylates CaV2 channels in the I-II loop, leading to an 
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upregulation of channel activity by antagonizing Gβγ (Zamponi et al., 1997). PKC 

phosphorylation of CaV2 channels in the synprint site interfere with syntaxin binding and 

cause a hyperpolarizing shift in voltage-dependent inactivation (Jarvis and Zamponi, 

2001). 

Figure 1.4 CaV2 channel signaling complexes. Sites of interaction of regulatory proteins are 

illustrated. Gβγ binds to the I-II loop, N- and C-termini. PKC phosphorylates residues on the I-II 

and II-III loop. SNARE proteins interact with the synprint site on the II-III loop. CaM binds to 

both the IQ- like motif (IM) and the CaM binding domain (CBD). β associates with the channel at 

in the AID of the I-II loop. (Modified from (Catterall, 2011)). 
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1.2.2 G-proteins 

The G protein heterodimer Gβγ is known to inhibit P/Q- and N-type calcium 

channels (Herlitze et al., 1996; Ikeda, 1996) by causing a change in the voltage 

dependence of VGCCs so that more positive voltages are necessary for activation of the 

channel (Catterall, 2000). This inhibition is most prominent at hyperpolarized potentials 

and is transiently relieved by large depolarization steps that facilitate the channel 

(Zamponi and Currie, 2013). This inhibition is thus termed voltage-dependent inhibition. 

Gβγ appears to only inhibit members of the Cav2 family, suggesting its involvement in 

neurotransmitter release at the presynaptic terminal (Tedford and Zamponi, 2006). Gβγ 

binds to sites on the N-terminus, the I-II linker encompassing the AID and the C-terminus 

(Zamponi and Currie, 2013). When bound to α1, Gβγ stabilizes the closed conformation 

of the channel and it is only after Gβγ dissociates that the channel can return to a state 

willing to open (Zamponi and Snutch, 1998). When β binds to the AID it induces a rigid 

alpha helical link with domain IS6. When the membrane is depolarized, this rigid alpha 

helix moves and disrupts the Gβγ binding pocket, which displaces Gβγ from the channel 

and relieves the inhibition (Zhang et al., 2008). The voltage-dependent inhibition is 

dependent on β; when β is not present Gβγ will not dissociate (Zhang et al., 2008). 

Protein kinase C can also reverse G-protein inhibition, most likely by interfering with the 

Gβγ binding domains through phosphorylation sites on the I-II linker (Zamponi et al., 

1997).   

 



 13	
  

1.2.3 RGK proteins 

 The RGK proteins, comprised of Rem, Rem2, Gem, and Rad, are all small GTP-

binding proteins in the Ras protein family (Correll et al., 2008b) and act as inhibitors of 

VGCCs (Tedford and Zamponi, 2006). It was originally thought that RGK proteins act to 

sequester β in the ER to hinder α1 trafficking to the membrane (Correll et al., 2008b).  

However, it is now known that Rem, Rad, and Gem are able to bind to the β-α1 complex 

on the membrane without causing β to dissociate (Beguin et al., 2007; Fan et al., 2012).  

In fact, while Gem binds to α1 directly, Gem inhibition requires β to also bind to α1 to 

expose an inhibitory site on the channel (Fan et al.). Rem2 also forms a Rem2-β-α1 

complex at the plasma membrane, and localization of Rem2 to the plasma membrane is 

essential for its inhibitory effect on channel function (Correll et al., 2008a). RGK proteins 

impose their inhibitory effects by increasing channel endocytosis, decreasing the open 

probability of channels on the membrane, and inhibiting the movement of the voltage 

sensor in a GTP dependent manner (Yang and Colecraft, 2013).  

 

1.2.4 Lipids 

 Lipids in the plasma membrane also regulate HVA VGCCs. Phosphatidylinositol-

4,5-biphosphate (PIP2) stabilizes the channel in the plasma membrane and attenuates 

current rundown (Michailidis et al., 2007), and also produces voltage-dependent 

inhibition. HVA VGCC voltage-dependent inhibition occurs because of the slow 

hydrolysis of PIP2 and arachidonic acid in the plasma membrane. Interestingly, PIP2 

induced voltage-dependent inhibition is reversed by PKA phosphorylation (Wu et al., 
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2002). Gβγ inhibition also requires an ample amount of PIP2 on the plasma membrane 

(Rousset et al., 2004). Additionally, phosphatidylinositol-3,4,5-triphosphate (PIP3) 

promotes trafficking of the channels to the plasma membrane, increasing surface 

expression (Viard et al., 2004). 

 

1.2.5 SNARE proteins 

 Neurotransmitters are released through a complex vesicular fusion process 

initiated by the influx of Ca2+ at the presynaptic terminal. The docking and fusion of 

vesicles is dependent on Ca2+ concentration within the presynaptic terminal where 

VGCCs interact with the SNARE protein complex of syntaxin, SNAP-25, and 

VAMP/synaptobrevin (Bajjalieh and Scheller, 1995).  P/Q- and N-type channels 

physically couple to synaptic release complexes, ensuring Ca2+ influx occurs in close 

proximity to the release site (Sheng et al., 1998).  This region of binding on the α1 

subunit has been termed the “synprint” site for synaptic protein interaction and is located 

in the II-III loop of CaV2 channels. In addition, SNARE proteins modulate channel 

gating, shifting the voltage-dependence of inactivation to more hyperpolarized potentials 

(Bezprozvanny et al., 1995; Zhong et al., 1999). Syntaxin may also act as a scaffolding 

protein, bringing Ca2+ channels and Gβγ into close proximity to allow inactivation of the 

channel (Evans and Zamponi, 2006), however this has only been demonstrated in N-type 

Ca2+ channels. 
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1.2.6 Calmodulin 

 Calmodulin (CaM) is a calcium binding protein that acts as a calcium sensor to 

regulate VGCCs in a biphasic manner. CaM contains four Ca2+ binding domains, two in 

the N-terminal lobe and two in the C-terminal lobe.  While CaM is constitutively bound 

to the C-terminus of VGCCs, it binds specific regions on α1, termed the calmodulin 

binding domain (CBD) and the IQ domain, depending on the amount of bound Ca2+ it 

holds (Catterall and Few, 2008). An N-terminal binding CaM site has also recently been 

uncovered (Simms et al., 2013). For CaV2 channels, when Ca2+ binds the C-terminal lobe 

of CaM, CaM binds the IQ domain prompting a fast calcium-dependent facilitation 

(CDF) of the channel (DeMaria et al., 2001). However, when Ca2+ also binds to the N-

terminal lobe of CaM, CaM binds the CBD just downstream of the IQ site and causes a 

slower Ca2+ dependent inactivation (CDI) (Soldatov 2003). Therefore, Ca2+ influx causes 

an initial facilitated opening and a gradual Ca2+ induced closing of CaV2 channels. In 

contrast, CaV1 channels experience rapid CDI in response to Ca2+ binding the C-terminal 

lobe of CaM, a process that occurs within milliseconds of Ca2+ influx (Lee et al., 1985). 

This dual role of CaM in VGCC modulation provides positive and negative feedback in 

response to both local and global Ca2+ levels. 

 

1.3 REGULATORY PROTEOLYSIS  

Proteases are yet another subset of proteins that can act on VGCCs to modulate 

their function. Two forms of CaV1.1 channel exist in the heart, full length (~220 kD) and 

truncated (~190 kD). Approximately 80% of CaV1.1 channels are truncated in the heart 

(De Jongh et al., 1991), and therefore the truncated channel is the predominant 
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physiological form. This truncated version is cleaved in the C-terminus between residues 

A1664 and N1665 of CaV1.1 in skeletal muscle (Hulme et al., 2005) and A1800 and 

N1801 of CaV1.2 in cardiac muscle (Fuller et al., 2010). The C-terminus is an important 

factor for VGCC function, affecting channel properties through the mechanisms 

mentioned above, like the interaction with calmodulin (Zuhlke and Reuter, 1998), the β 

subunit (Gao et al., 1997), cAMP-dependent protein kinase (PKA) (Sculptoreanu et al., 

1993), and by targeting the channel to the plasma membrane (Gao et al., 2000). What 

purpose would this proteolysis serve if the C-terminus is so integral to channel function?  

 In skeletal muscle, excitation-contraction coupling is initiated by L-type channels 

(Catterall, 1991), which open and allow Ca2+ to enter acting as a second messenger.  This 

is a tightly regulated process, requiring rapid phosphorylation of the CaV1 channel by 

PKA, which modulates channel activity (Johnson et al., 1994; Sculptoreanu et al., 1993), 

and is thought to underlie the “fight or flight” phenomenon.  Basically, when faced with a 

threat, epinephrine and norepinephrine are released and activate the β-adrenergic system, 

which in turn activates L-type channels allowing muscle contraction to increase and the 

heart to beat faster (Bers, 2002).  This mechanism has now been parsed out and the 

cleaved CaV1 C-terminal fragment plays a major role in the regulation of the “fight or 

flight” phenomenon.   

 Phosphorylation by PKA is crucial for channel modulation during β-adrenergic 

regulation, however it is anchored to the channel through sites on the the distal C-

terminus, a region that is cleaved from the channel under physiological conditions. This 

modulation could only occur if the cleaved C-terminus reassociates with the channel. 

Indeed, this was found to be the case.  The distal C-terminus and proximal C-terminus 
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co-immunoprecipitated when coexpressed in HEK-293 cells and also directly interacted 

in a yeast-two hybrid screen (Hulme et al., 2005).  Functional studies revealed that when 

the C-terminus is removed from the channel by mutagenesis, an increase in peak current 

amplitude results (Wei et al., 1994).  This has also been demonstrated using tsA201 cells 

with cardiac CaV1.2 channels truncated at 1821 (Hulme et al., 2006), at 1905, and those 

missing the PRD region (Gerhardstein et al., 2000).  When truncated channels were 

coexpressed with the C-terminal fragment, a 20-fold inhibition occurred and even full-

length channels were further inhibited by the C-terminal fragment (Hulme et al., 2006).  

In fact, it was found that channels missing only their last 147 residues displayed an 

increase in peak current amplitude compared to full-length channels, which was able to 

be reversed by addition of C-terminal fragments through direct association with α1 (Gao 

et al., 2001). Arginines 1696 and 1697 on the proximal C-terminus interact with 

negatively charged residues (E2103, E2106, and D2110) on the distal C-terminal 

fragment via salt bridges to exert this inhibitory effect (Hulme et al., 2006).  Therefore, it 

has been established that the C-terminal fragment that has been cleaved from α1 can 

reassociate with the channel and act as an autoinhibitor.  Besides an overall decrease in 

peak current amplitude, the C-terminal fragment shifts the voltage dependence of 

activation causing the channels open at higher voltages, however there is no effect on 

inactivation properties (Hulme et al., 2006). 

 CaV1 potentiation in both the heart and skeletal muscle is controlled by a rapid 

phosphorylation by PKA (Sculptoreanu et al., 1993).  Two conserved phosphorylation 

sites in CaV1.1 (S1575 and T1579) and in CaV1.2 (S1700 and T1704) are regulated by the 

β-adrenergic system; S1575 phosphorylation is increased with isoproterenol, a β-
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adrenergic receptor agonist, and decreased with propranolol, an antagonist (Emrick et al., 

2010).  These experiments were more relevant than past in vitro phosphorylation assays 

(Fuller et al., 2010; Johnson et al., 1997) because they were done using isolated rabbit 

skeletal muscle, whereby the animal was injected with these drugs while moving and 

breathing, and therefore are more physiologically relevant.  While PKA has been 

primarily implicated in the β-adrenergic system, it was found that S1575 can be 

phosphorylated by both PKA and CAMKII (Emrick et al., 2010).  On the other hand, 

T1579 is phosphorylated by casein kinase 2 (Emrick et al., 2010).  PKA phosphorylation 

dramatically increases CaV1 current (Johnson et al., 1997), presumably by forcing the 

disassociation of the distal C-terminal fragment and relieving the autoinhibition. 

 PKA phosphorylation happens so rapidly, it was assumed that PKA must be 

stationed very close to the channel.  An anchoring protein, AKAP-15 was identified that 

was integral to PKA phosphorylation.  When a peptide that corresponded to 24 amino 

acids of a human AKAP protein was applied through a patch electrode on myotubes, it 

was able to inhibit channel current to the same extent that PKA inhibitors did (Johnson et 

al., 1994). AKAP-15 co-immunoprecipitates with CaV1.1 from skeletal muscle (Gray et 

al., 1997) and from tsa-201 cells (Gray et al., 1998), and confocal microscopy revealed it 

also colocalized with CaV1.1 in distinct areas (Gray et al., 1998).  It wasn’t confirmed 

that the two proteins directly interact until, using a yeast two-hybrid screen, AKAP-15 

was found to bind to the distal C-terminal domain of CaV1.1 (residues 1774-1841) 

(Hulme et al., 2002).  This interaction occurs through a leucine zipper (LZ) motif on 

AKAP-15 and a LZ-like motif on the CaV1.1 C-terminus.  Furthermore, when either of 

the two regions were mutated to alanine, or a synthetic peptide comprising the LZ motif 
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of AKAP-15 was introduced to negatively compete with AKAP-15, PKA was unable to 

anchor to the channel, disrupting phosphorylation and voltage-dependent potentiation 

(Gray et al., 1998; Hulme et al., 2002). Therefore, AKAP-15 is responsible for targeting 

PKA to the channel. 

 While this mechanism has been established for CaV1.1, cardiac CaV1.2 is also 

truncated in the C-terminus at A1800 (Fuller et al., 2010). However, this residue does not 

appear to be required for proteolytic cleavage, since channels lacking this region were 

cleaved at the same rate as wild-type channels (Yang et al., 2013). CaV1.2 is also targeted 

by AKAP-15 and PKA in the same manner that CaV1.1 is. This mechanism has been 

reconstituted in non-muscle tsA-201 human embryonic kidney cells with CaV1.2 (Fuller 

et al., 2010) after transfection of the necessary molecular players, namely AKAP-15, 

PKA, CaV1.2 (1-1800) and the distal C-terminus. Furthermore, mice with CaV1.2 lacking 

the distal C-terminus developed cardiac hypertrophy and their β-andernergic pathway 

was disabled due to an inability of PKA to regulate CaV1.2 function (Fu et al., 2011). 

Cardiac myocytes from these mice also showed decreased surface expression of this 

truncated CaV1.2, which is most likely due to the role the C-terminus plays in trafficking 

the channel.  AKAP-15 also had reduced expression. However, the required CaV1.2 PKA 

phosphorylation sites may be different than CaV1.1. It was recently found that cardiac 

myocytes taken from transgenic mice with mutated CaV1.2 phosphorylation sites 

(S1700A and T1704A) still exhibited isoproterenol- and forskolin-induced β-adrenergic 

stimulation (Yang et al., 2013). CaV1.2 channels in the hippocampus also undergo 

extensive C-terminal cleavage in response to NMDA receptor activation, which was 

blocked by calpain inhibitors (Hell et al., 1996).  Calpains are activated by depolarization 
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(Roehm et al., 2008) and also require calcium, therefore it seems plausible that calpains 

could be responsible for CaV1 proteolysis. The 190 kD form of CaV1.2 also appears in 

uterine smooth muscle and its expression levels are regulated by hormones during 

pregnancy (Helguera et al., 2002). 

 

  

 

Figure 1.5 Proteolytic cleavage of the C-terminus in β-adrenergic regulation. The distal C-

terminus (red) is cleaved from the channel and reassociates with the proximal C-terminus causing 

inhibition of the channel. AKAP-15 and PKA are docked close to this site. When activated by the 

β-adrenergic pathway, PKA phosphorylation dislodges the distal C-terminus, relieving the 

inhibition. (Modified from (Abele and Yang, 2012)). 

 

 

  

 In summary, under normal physiological conditions, CaV1 is proteolyzed by 

calpains and the cleaved distal C-terminus reassociates with the channel to inhibit its 
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function.  AKAP-15 binds to the C-terminal fragment and recruits PKA to the scene 

(Figure 1.5).  In a “fight or flight” scenario the β-adrenergic system is activated, in turn 

activating PKA.  It is thought that PKA then phosphorylates the channel, which forces the 

distal C-terminus apart from the channel, releasing inhibition and greatly enhancing the 

activity of the channel.  It is this mechanism that is believed to be responsible for 

excitation-contraction coupling. 

 

1.4 SPLICE VARIANTS AND TRUNCATED HVA VGCCS 

  The α1 subunit is normally 190-260 kD depending on the subtype of channel, 

however many different forms of α1 exist in both the natural and disease state. Some 

alternate forms of α1 are developmentally regulated, others are tissue specific. Alternative 

splicing produces much smaller transcripts from sections of the channel to perform other 

functions, such as initiating transcription. Disease mutations cause early truncations 

resulting in nonfunctional channels that interfere with full-length channels. All of these 

channel fragments affect the excitability and health of the cell. 

 

1.4.1 Natural Truncations of L-type Channels 

 Two different truncated CaV1.2 channels are produced by alternative splicing in 

the II-III loop (Wielowieyski et al., 2001). Both of these two-domain fragments contain 

domains I and II and a unique C-terminal tail. Another naturally occurring CaV1.2 

channel truncated in domain II was found to act in a dominant-negative fashion, 

inhibiting full-length CaV1.2 current (Cox and Fromme, 2013). While proteolysis of 
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CaV1.3 has not been reported, a truncated form of the channel exists naturally that occurs 

through alternative splicing (Singh et al., 2008).  The truncated version of CaV1.3 

incorporates an alternative exon 42 that encodes a stop codon after the IQ domain in the 

C-terminus. This splice variant changes the gating and biophysical properties of the 

channel.  Truncated CaV1.3 channels inactivate much faster, due mainly to enhanced 

CDI, and they activate at more negative potentials than full length CaV1.3. A 

developmentally regulated ascidian homologue of the L-type channel thought to originate 

from an alternative start site results in a three-domain channel beginning in the middle of 

domain II (Okagaki et al., 2001). While this channel did not prove to be functional, it 

strongly inhibited the full-length channel when coexpressed in Xenopus oocytes (Okagaki 

et al., 2001).  

 

1.4.2 CaV1 Fragments as Transcription Factors 

 It has been well established that one of the many functions of L-type channels is 

to control gene expression, however it was always thought to occur through calcium-

mediated activation of transcription factors or signaling proteins (Bean, 1989).  Another 

mechanism for transcriptional activation that is mediated by L-type channels has been 

discovered; that the C-terminus of CaV1.2 is itself a transcription factor (Gomez-Ospina 

et al., 2006). The C-terminal fragment, termed CCAT (calcium channel associated 

transcriptional regulator), was found to translocate to the nucleus predominately in 

inhibitory neurons.  CCAT is larger than the distal C-terminus fragment reported by the 

Catterall group; it appears as 75kD in western blots and comprises the last 503 amino 

acids of the C-terminus.  Interestingly, the appearance of this fragment is 
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developmentally regulated, gradually becoming more prominent in the nucleus starting at 

age P1 through adulthood. Furthermore, CCAT translocates to the nucleus in an activity-

dependent manner.  When L-type channels were stimulated with either KCl or glutamate, 

less CCAT was detected in nuclei.  The converse was also true whereby the presence of 

EDTA caused a significant increase in the amount of CCAT in the nucleus of neurons. 

While it was initially assumed the full-length channel is proteolyzed to cleave CCAT 

from the channel, further experiments identified an exonic promoter and alternative start 

site that produced the CCAT fragment (Gomez-Ospina et al., 2013). At the gene 

expression level, 16 mRNAs were found to be upregulated and 31 genes were 

downregulated in cells transfected with CCAT, and CCAT itself bound to the enhancer of 

the Connexin 3.1 gene.  In addition, CCAT appeared to increase neurite growth in 

cerebellar granule neurons. 

 Another group reported the CaV1.2 C-terminus as exhibiting transcriptional 

properties, although they focused on cardio myocytes (Schroder et al., 2009).  A 37kD C-

terminal fragment was found to localize to the nucleus, interact with the CaV1.2 

promoter, and ultimately act as a repressor, downregulating CaV1.2 levels. Schoder, et al. 

reported that the N-terminal truncated C-terminal fragment (1906-2171) showed the 

greatest nuclear presence, where that reported in Gomez-Ospina, et al. did not find this 

region necessary for nuclear translocation.  This discrepancy could be due to the cell 

systems the experiments were performed in, or possibly the species and variant of CaV1.2 

they were using.   
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1.4.3 P/Q-type channel truncations 

 Another of the HVA VGCCs also undergoes proteolysis on its C-terminus.  Two 

sizes of the P/Q-type channel have been isolated, 220kD and 170kD (Kordasiewicz et al., 

2006).   The cleaved C-terminus translocates to the nucleus, however it is unclear 

whether it participates in transcription. It does appear to be linked to spinocerebellar 

ataxia type 6, where the expanded polyglutamine track in the C-terminus causes this 

fragment to become toxic to cells (Kordasiewicz et al., 2006; Kubodera et al., 2003). In 

addition, another short form of the channel, 95kD, has been isolated that comprises the 

N-terminus to the middle of the II-III linker (Scott et al., 1998).  This short form of the 

P/Q channel interacts with β and is glycosylated.  It has yet to be determined whether this 

95 kD form of CaV2.1 is a splice variant or the result of posttranslational proteolysis, 

although a splice variant causing a truncation in the II-III linker has been reported (Soong 

et al., 2002).  

 Genetic channelopathies of the P/Q-type channel that result in a truncated channel 

cause a form of absence epilepsy and episodic ataxia in humans (Pietrobon, 2010).  A 

case was reported whereby a child with absence seizures and ataxia had a frameshift 

mutation in the CACNA1A gene that gave rise to a truncated C-terminus and complete 

loss of function of the channel (Jouvenceau et al., 2001). The leaner (tgla) mouse has a 

frameshift mutation that causes a truncated C-terminus and results in ataxia and absence 

seizures (Fletcher et al., 1996). Episodic ataxia type two (EA2) is a disorder caused by a 

truncated CaV2.1 channel that inhibits wild-type CaV2.1 channels (Jeng et al., 2008). This 

dominant-negative effect is caused by increased proteasomal degradation, whereby the 

mutant form interacts with the wild-type channel to promote ER retention and premature 
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degradation (Mezghrani et al., 2008). Truncated N-type channels were constructed to 

mimic these EA2 mutations (Raghib et al., 2001) and were found to induce the same 

dominant-negative effect through increased degradation of full-length channels (Page et 

al., 2010). 

 

1.4.4 N-type channel Splice Variants 

Two main N-type α1 subunits have been identified, one 240kD and the other 

210kD, and these are predominately located in dendrites (Westenbroek et al., 1992). At 

least six different splice variants of CaV2.2 are expressed in sympathetic ganglia cells, 

with two of the variants responsible for 60-85% of the channels.  These variants differ in 

three areas of the coding region and one in the 3’UTR, with the majority of the variants 

expressed only differing in one residue (A415) (Lin et al., 1997).  In individual DRG 

neurons, multiple isoforms of the N-type channel can be expressed.  It was found that in a 

single neuron, CaV2.2 was expressed with and without exon e18a (Bell et al., 2004). N-

type channels, as all other HVA channels, are alternatively spliced, allowing for 

differences in biophysical properties depending on the tissue, cell type, or time of 

development.  For example, exon e18a located within the II-III loop of CaV2.2 is 

developmentally regulated, where it’s expression steadily increases from birth through 

adulthood in rat superior cervical ganglia (Gray et al., 2007). 
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1.5 Thesis Introduction 

 Truncated channels formed by proteolysis, splicing, an alternative start site, or a 

frame-shift mutation are responsible for very specific physiological functions. C-terminal 

proteolysis of the cardiac CaV1.2 channel during β-adrenergic regulation exemplifies the 

importance of VGCC proteolysis in channel regulation in the fight or flight response. The 

C-terminal fragment of neuronal CaV1.2 illustrates the direct involvement of VGCCs in 

gene expression. Although proteolysis of Cav2 channels has not been extensively 

observed, many short forms of CaV2.1 and CaV2.2 are known to exist as a result of 

alternative splicing or disease-causing mutations.  These truncated forms of CaV2 

channels markedly change the function and expression of their full-length counterparts. 

Considering all the regions of α1 that are necessary for proper regulation, it is no surprise 

that channels lacking those sites behave differently than full-length channels. These 

truncated VGCCs are relevant in overall cell excitability and cellular function.  

 Our lab has discovered a new form of CaV1.2 produced by proteolysis within the 

body of the α1 subunit. This mid-channel proteolysis is regulated by the activity of the 

channel and results in fragment channels that remain on the plasma membrane. What is 

the physiological purpose of this type of regulation? For example, does it simply aid in 

degradation of the channel or do the products of mid-channel proteolysis have alternate 

functions? Furthermore, what effect does this have on the full-length channel’s function? 

And lastly, what protease is involved in this regulation? Would the disruption of mid-

channel proteolysis lead to disease or a dysfunction in calcium signaling? This thesis will 

attempt to answer these questions in the subsequent chapters. 
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 In chapter 3 of this thesis, I focus on the functional effects mid-channel 

proteolysis exerts on CaV1.2. The channel behaves differently immediately after the 

channel is cut, as well as many hours after proteolysis occurs. Mid-channel proteolysis 

results in fragment channels that can remain on the plasma membrane. Chapter 4 serves 

to characterize the functions of these L-type fragments, as well as the effect they have on 

full-length channels. Chapter 5 identifies a potential protease involved in mid-channel 

proteolysis. Presenilin appears to cleave CaV1.2 through the coexpression of amyloid-β 

precursor protein (APP), reducing peak current and shifting biophysical properties. The 

involvement on these two proteins ties mid-channel proteolysis to Alzheimer’s disease 

(AD), and APP mutants that lead to AD have a more extreme effect on CaV1.2 function. 
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Chapter 2  

Materials & Methods 

 

2.1 Molecular Biology 

 For two-electrode voltage clamp (TEVC) and inside-out macropatch recordings in 

Xenopus oocytes, cDNAs encoding various constructs were sub-cloned into a modified 

oocyte expression vector pGEMHE. Rat brain Cav1.2 (UniProt P22002-5) and rabbit 

CaV2.1 (GenBank accession number X57477) were used as controls. Rat skeletal muscle 

α2δ (GenBank accession number M21948) and rat brain β3 (GenBank accession number 

M88751) were co-injected into all oocytes to allow for optimal α1 expression. The P/Q 

channel carrying the TEVp cutting motif (ENLYFQG) at three different locations was 

engineered by using splice-by-overlap PCR. The ENLYFQG motif was inserted between 

G419-A420 in loop I-II, L1096-S1097 in loop II-III, and G1218-P1219 in loop II-III of 

CaV2.1. Tobacco etch virus protease (TEVp) (Addgene Plasmid 8827) was also cloned 

into pGEMHE for TEVC experiments. For the fragment channels, A1 (residues M1-

D449), A2 (E450-L2143), B1 (M1-S866), B2 (M867-L2143), C1 (M1-W1216) and C2 

(Y1217-L2143) were truncated using PCR into the backbone of CaV1.2. Human CaV1.2 

(UniProt Q13936) was used in the Alzheimer’s disease (AD) experiments (Chapter 5). 

Potential cut site mutants (hL_4xAla, hL_4xIle, and hL_4xVal) were made using splice-

by-overlap PCR techniques on human CaV1.2. Neuronal isoform APP-695 (Entrez Gene 

351) was used as the backbone to make APP mutants (A598T, A598V and V642F) using 

PCR. 
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 For imaging in primary neurons, a modified rat CaV1.2 (UniProt P22002-5) was 

made by attaching GFP to the N-terminus and adding a HA tag to domain III (termed 

LGH3). LGH3 was inserted into a modified mammalian expression vector peGFP-C3. 

The thrombin and enterokinase triple mutant was made by splice-by-overlap PCR using 

LGH3 as the backbone. APPwt, APP_A598T and APP_A598V were subcloned into 

pcDNA3.1(-) for neuronal expression. 

 For co-immunoprecipitations (co-IP) and Westerns in HEK293_β3α2δ cells 

relating to the fragment channels (Chapter 4), the full-length rat CaV1.2 channel and 

fragments were tagged with either HA or Flag on the N-terminus and cloned into 

pcDNA3.1(-). For co-IP and Westerns in HEK293_β3α2δ cells relating to the AD 

experiments (Chapter 5), the human CaV1.2 channel and APP were tagged with either HA 

or Flag on the N-terminus and cloned into pcDNA3.1(-). 

 

2.2 Protein Purification 

 For protein synthesis in E.coli, DE3 bacteria was used for cDNA transformation 

and protein expression. Tobacco etch virus protease (TEVp) (Addgene Plasmid 8827: 

pRK793) contains a MBP molecule for enhanced expression, a TEV recognition site 

(ENLYFQG) and a polyhistidine-tag at the N-terminus of TEV.  Transformed DE3 

bacteria were cultured at 37 oC until OD600 reached 0.6 and then induced at room 

temperature by 0.8 mM IPTG for 16 hours. Cells were collected at 1000 g for 10 minutes 

and resuspended in a lysis solution containing 50 mM Tris-HCl, 250 mM NaCl, 2.5% 

glycerol and 7 mM β- mercaptoethanol (pH 7.8). Resuspended bacteria were sonicated 
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with a Branson digital sonifier, followed by centrifugation at 10,000 g for 30 minutes.  

The supernatant was collected and incubated with Ni-NTA His•Bind beads (Novagen) in 

the presence of 30 mM imidazole at 4 °C for 1 hour. Proteins were eluted from the beads 

with 300 mM imidazole in the lysis solution. Proteins were concentrated and further 

purified using overnight dialysis to remove imidazole from the solution.  

 

2.3 RNA Synthesis 

 cRNAs were transcribed from 6-8 µg template DNA that was linearized overnight 

and then purified with phenol (pH 8.0)/chloroform extraction and ethanol precipitation. 

An in vitro transcription reaction was set up for each RNA using the purified DNA 

template, 2 µL T7 RNA polymerase (100 units, New England Biolabs), 15 µL G(ppp)G 

RNA Cap structure analog (10 mM, New England Biolabs), 4 µL rNTP (100 mM, 

Roche), 5 µL DTT (100 mM, Pierce), 7.2 µL MgCl2 (50 mM), 4 µL T7 RNA polymerase 

transcription buffer (New England Biolabs), 1.5 µL RNAse Inhibitor (15 units, 

Invitrogen), and 10.8 µL DEPC treated water (Ambion). The transcription reaction 

proceeded at 37°C for 2.5-3 hours. The RNA product was then purified with phenol (pH 

5.2)/chloroform extraction and ethanol precipitation and diluted to 1 µg/µL in DEPC-

treated water. The concentration was  determined using formaldehyde agarose gel 

electrophoresis and comparing to a RNA ladder (Invitrogen). 
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2.4 Oocyte Preparation & cRNA Injection 

 Ovarian lobes were obtained from adult Xenopus laevis (Xenopus I and Xenopus 

Express) under 0.5% tricaine anesthesia. Stages V–VI oocytes were prepared by 

treatment with 0.5 mg/mL collagenase A (Roche) for 1.5–2.5 h under 250 rpm shaking in 

OR2 solution (82.4 mM NaCl, 2.5 mM KCl, 1 mM MgCl2, and 5 mM hepes (pH 7.6)), 

and then rinsed two times (15 min each) with ND96 solution (96 mM NaCl, 2.5 mM KCl, 

1 mM MgCl2, 5 mM hepes, 1.8 mM CaCl2, 100 units/mL penicillin, and 100 µg/mL 

streptomycin (pH7.6)).  Single defoliculated oocytes were individually selected. cRNAs 

were synthesized in vitro, and varying amounts (0.2–5 ng) were injected into selected 

oocytes in various combinations.  Recordings were performed 3–5 d after injection. 

 

2.5 Electrophysiology 

 For whole-oocyte recordings by TEVC, electrodes were filled with 3 mM KCl 

and had a resistance of 0.5–1 MΩ. The bath solution contained 10 mM BaCl2, 5 mM 

KCl, 60 mM tetra-ethyl ammonium hydroxide, 20 mM NaOH, and 5 mM HEPES (pH 

7.4 with methane-sulfonic acid).   To obtain I-V curves, the current was evoked every 2 

sec by a +10 mV pulse for 60 ms from a holding potential of -80 mV.  For inactivation 

curves, a prepulse of 10 mV was delivered before a 5 sec +10 pulse, followed by a 10 mV 

test pulse before a 55 sec recovery at -80 mV.  All data were analyzed with Clampfit and 

were represented as mean ± SD. 

 For inside-out macropatch, electrodes had a diameter of 15-30 µm and a 

resistance of 0.2-0.4 MΩ when filled with a solution containing 45 mM BaCl2, 80 mM 

KCl, 10 mM HEPES (pH 7.3 with KOH). The bath solution contained 125 mM CsCl, 4 
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mM NaCl, 10 mM HEPES, 10 mM EGTA (pH 7.3 with KOH). Cs+ was included to 

reduce the influence of endogenous potassium channels. No PIP2 or MgATP were added 

to avoid any interference on TEV protease activity. The purified TEV protease or its 

catalytically inactive mutant C151A was perfused in the bath solution for 2 min, followed 

by 1 min of wash. Recordings were obtained before protease application (0 min), and 

after wash (3 min). To construct activation curves, macroscopic currents were evoked 

from a holding potential of -80 mV by 5-ms depolarizations ranging from -40 mV to 

+100 mV in 20-mV increments at 2 s intervals. Tail currents were recorded by 

repolarization to -40 mV, regardless of the preceding test pulse, normalized by that after 

depolarization to +100 mV, and plotted against the test potentials. All data were analyzed 

with Clampfit and were represented as mean ± SD. 

 For the DAPT experiments, oocytes were treated with DAPT dissolved in ND96 

media (50 µM final concentration) for 24-48 hours before recordings. Oocytes were 

stored at 18°C. 

 All experiments were performed at 22°C. 

 

2.6 Rat Cortical Slices 

 Male Sprague-Dawley rats were purchased from Taconic Farms and housed in a 

controlled environment animal facility (stable temperature and regular light-dark cycle. 

Animals were anesthetized by injection of a mixture of ketamine (80 mg/kg in saline) and 

xylazine (8 mg/kg). Dissections were performed by removing the brain and immediately 

submerging it in a sucrose saline solution (27 mM NaHCO3, 1.5 mM NaH2PO4, 2.55 mM 
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KCl, 222 mM sucrose) bubbling with 95% O2 at 4°C. The cortices were then placed on a 

Vibratome stage (V-1500 sectioning system), and horizontal slices of 400 µm were 

obtained from each hemisphere while bubbling in ice-cold sucrose solution. Slices were 

transferred to a bubbled incubation chamber of 35-37°C, filled with artificial 

cerebrospinal fluid (ACF: 119 mM NaCl, 26 mM NaHCO3, 1.25 mM NaH2PO4, 2.5 mM 

KCl, 15 mM glucose, 1 mM myo-inositol, 2 mM pyruvate, 0.4 mM ascorbic acid) and 

left there to recover for 15 minutes. After recovery, slices were split into treatment groups 

in the ACS solution, bubbling with 95% O2 at room temperature. Treatments lasted for 

20-30 minutes before slices were moved to an ACS solution on ice containing biotin 

(Pierce) to label surface proteins. For the rest of the procedure, all steps were performed 

on ice. After a 40 minute biotin treatment, a quenching solution was added and slices 

were collected. Slices were washed twice with ice cold 1x PBS containing protease 

inhibitor cocktail and stored at -80°C until further use. Tissues were homogenized and 

lysed using Pierce lysis buffer plus 1:50 protease inhibitor cocktail (Halt cocktail, Pierce) 

rotating at 4°C for 45-60 minutes. Samples were centrifuged to remove cell debris, and 

supernatant was incubated with neutravidin agarose bead slurry column (Pierce) for 90-

120 minutes rotating at 4°C. Samples were then centrifuged and collected as “flow-

through” samples presumed to contain all cytoplasmic proteins. The neutravidin agarose 

beads were then washed four times using Pierce wash buffer with 1:1000 protease 

inhibitor cocktail.  Surface proteins were eluted using SDS with 53 mM DTT by rotating 

for 45-60 minutes at 37°C and collected by centrifugation. Samples were stored at -80°C 

until being further used. 
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2.7 HEK293 stable line creation and cell culture 

 The pIRES-eGFP vector (neomycin resistant) was modified so that it contained β3 

before the IRES sequence and α2δ in place of the GFP after the IRES sequence. This 

plasmid was then transiently transfected into HEK293 cells (detailed in 2.8). 16 hours 

post-transfection, the media was removed and new media (DMEM, 10% FBS, 1% 

Pen/Strep) containing 2mg/mL geneticin (Gibco) was added to the cells for selection. 

After one week, surviving cells were spilt and moved to a new plate and maintained with 

1mg/mL geneticin. Expression of β3 and α2δ was confirmed with Western blot (detailed 

in 2.11.) 

 Cells were maintained at 37°C in DMEM media supplemented with 10% FBS, 

100 U/mL penicillin, 100 µg/mL streptomycin and 1mg/mL geneticin. When cells 

reached 85% confluency, they were rinsed using 1x PBS (Gibco) and then split using 

0.5% trypsin-EDTA solution (Gibco).  

 

2.8 Embryonic hippocampal neuron culture 

 Pregnant Sprague-Dawley rats were anesetized using the carbon dioxide chamber 

and embryos were quickly removed at age E17-E19. Embryos were rinsed with 70% 

ethanol and immediately placed in ice cold 1x Hank’s buffer (Invitrogen) containing 5.54 

mM glucose and supplemented with 1:200 penicillin and streptomycin (Sigma). The 

hippocampal dissection was performed in a laminar flow hood with embryo brains 

submerged in the ice cold 1x Hank’s buffer. Once the hippocampi were isolated, they 

were incubated at 37°C for 15 minutes in 0.125% trypsin in Hank’s buffer. They were 
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then washed three times with plating media (DMEM media (Gibco) supplemented with 

10% fetal bovine serum (Hyclone) and 10% F-12 (Invitrogen)) to remove traces of 

trypsin. Hippocampi were triturated with polished glass pipettes, counted and plated on 

poly-D-lysine/laminin-coated (Sigma) glass coverslips or tissue treated petri dishes in 

plating media. 16h later and then every 3-4 days, the culture medium was replaced in a 

1:1 ratio with neurobasal medium (Invitrogen) supplemented with B-27 (1:50) and 0.5 

mM I-glutamax (Invitrogen). Neurons were kept in an incubator at 37°C in a 5% CO2 

humid atmosphere for up to 2 weeks.  

 

2.9 Transfection 

 Hippocampal neurons were transfected between DIV10-13. Neurobasal media 

was removed and saved and 1-1.5 µg of DNA / 1µL Lipofectamine 2000 (Invitrogen) in 

100 µl Opti-MEM (Invitrogen) was added for each 12 mm (diameter) coverslip. Neurons 

were then incubated at 37°C. After 40 minutes the DNA:lipofectamine solution was 

removed and the neurobasal media was  returned to the plates. Neurons were allowed to 

recover for 36-48 hours post-transfection before prepping for western blot or imaging. 

 HEK 293 cells were transfected using Lipofectamine 2000 (Invitrogen) according 

to the manufacture’s directions. 16 hours post-transfection, the DNA:lipofectamine 

solution was removed and fresh DMEM media was added. HEK 293 cells were processed 

40-48 hours post-transfection. 
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2.10 Co-Immunoprecipitation 

 HEK 293 cells were collected 40-48 hours post-transfection. Cells were washed 

twice with PBS + 1:1000 protease inhibitor cocktail (Pierce) and then scraped in the same 

solution. Cells were centrifuged at 1000 g for 5 minutes and the pellet was lysed in lysis 

buffer (Pierce) with 1:50 protease inhibitors for 1 hour at 4°C while rotating. After 

vortexing the lysate was centrifuged at 10,000 g for 10 minutes to pellet cell debris. A 

portion of the supernatant was removed and set aside as “input” sample and the 

remainder was incubated with monoclonal anti-Flag (Clone M2) antibody coated affinity 

gel (Sigma) or monoclonal anti-HA (Clone HA-7) antibody coated affinity gel for 2 

hours rotating at 4°C. Affinity gel was washed four times with TBS containing 250 mM 

NaCl and 1:1000 protease inhibitor cocktail (Pierce). Tagged proteins of interest were 

then eluted using the Flag (Sigma) or HA (Genscript) peptide dissolved in RIPA buffer 

(Sigma) according to manufactures’ instructions. SDS was added to all samples and the 

samples were incubated at 37°C for 1 hour before being analyzed using SDS-PAGE or 

frozen at -80°C until further use. 

 

2.11 Biotinylation of HEK293_β3α2δ  cells 

 Neurons and HEK 293 cells were biotinylated using the Surface Protein Isolation 

Kit (Pierce). Biotin was dissolved in cold PBS and cells were gently washed with cold 

PBS before adding the biotin mixture to the plates. Plates were then incubated at 4°C for 

25-30 minutes with gentle shaking. Afterwards, a quenching solution (Pierce) was added 

for 5 minutes to stop the biotin reaction. Cells were washed twice with PBS + 1:1000 

protease inhibitor cocktail (Pierce) and then scraped in the same solution. Cells were 
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centrifuged at 1000 g for 5 minutes and the pellet was lysed in lysis buffer (Pierce) with 

1:50 protease inhibitors for 1 hour at 4°C while rotating. After vortexing, the lysate was 

centrifuged at 10,000 g for 10 minutes to pellet cell debris. The supernatants were 

removed and incubated with a neutravidin agarose bead slurry column (Pierce) by 

rotating for 2 h at 4°C to bind surface-biotinylated proteins, followed by 3-4 PBS washes 

in the presence of protease inhibitors (1:250) after whatever did not bind to the beads was 

collected (cytoplasmic proteins). The beads were finally incubated with SDS sample 

buffer supplemented with 53 mM DTT for 30-45 minutes at 37°C to elute biotinylated 

proteins, which were collected by centrifugation and analyzed by SDS-PAGE. 

 

2.12 SDS-PAGE and Western Blot 

 For SDS-PAGE, samples were run in 6% acrylamide (BioRad) gels cast in the 

laboratory or 4-12% precast gradient gels (Invitrogen). Electrical transfer to PVDF 

membranes (BioRad) was performed in a standard 25 mM Tris, 192 mM glycine, pH~8.3 

buffer supplemented with 0.002% SDS for 90 min at 90 V at 4°C. Methanol was not 

added to the transfer buffer to facilitate the transfer of large proteins. Membranes were 

blocked by gently shaking for 1 hour at room temperature with blocking buffer (Odyssey) 

and 1xPBS at a 1:1 ratio. Membranes were incubated with primary antibody overnight at 

4°C. Membranes were washed in 1x PBS containing 0.2% Tween-20 (PBST). After four 

5 minute PBST-washing steps, secondary antibody in blocking buffer/PBST was applied 

and membranes were shaken at room temperature for 1 hour. After four 5 minute washes 

with PBST, protein bands were visualized using enhanced chemiluminescence reagents 

(Pierce) on X-ray film (Kodak). 



 38	
  

 Primary antibodies were used at 1:500-1:1000 dilutions. Antibodies were as 

follows: rabbit polyclonal anti-CaV1.2 II-III loop (Sigma), rabbit polyclonal anti-HA 

(Sigma), mouse monoclonal anti-Flag M2 (Sigma), rabbit monoclonal anti-Na+/K+-

ATPase (Abcam), rabbit polyclonal anti-APP Y188 (Abcam), rabbit monoclonal anti-

presenilin 1 (Cell Signaling), and rabbit polyclonal anti-β-actin (Sigma). Secondary 

antibodies, goat anti-rabbit and goat anti-mouse (SantaCruz Biotechnologies) were used 

at 1:2000 dilution.  

 

2.13 Immunofluorescent Staining and Confocal Microscopy 

 Immunofluorescence staining of hippocampal neurons was performed 24-36 

hours post-transfection. The culture medium was removed and the transfected neurons 

grown on glass coverslips were briefly rinsed with PBS before being fixed in PBS 

supplemented with 2% paraformaldehyde-4% sucrose for 15 minutes at room 

temperature. Cells were washed briefly in PBS, then blocked in a non-permeabilizing 

(detergent-free) blocking buffer consisting of 0.5% fish gelatin and 10% goat serum in 

PBS for 1 hour at room temperature. To visualize surface HA tags, the coverslips were 

incubated with a primary antibody against HA (mouse monoclonal anti-HA, Covance) for 

1 hour at room temperature in PBS containing 0.5% fish gelatin and 10% goat serum, 

then washed with PBS four times. The goat anti-mouse secondary antibody conjugated 

with the Alexa594 fluorophore (Invitrogen) was added to the coverslips for 1 hour at 

room temperature in the same buffer composition. The stained coverslips were finally 

washed four times with PBS and once with distilled water, then mounted on imaging 

slides using an anti-fade reagent (Biomeda). 
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 Confocal imaging was performed using a spinning disc confocal microscope 

upgraded from an inverted Nikon Eclipse TE2000-S microscope. Confocal optics 

consisted of a spinning disc confocal scanner unit (CSU10, Yokogawa) rotating between 

1200 and 2500 rpm and a CCD high resolution digital B/W ORCA-ER camera 

(Hamamatsu). Images were acquired using either a 100x or a 60x color-corrected 

objective lens (Nikon). The GFP (green) laser line used 491 nm and 520 nm as excitation 

and emission wavelengths, respectively. The Alexa594 (red) laser optical path consisted 

of a 561 nm excitation source and a 591 nm emission filter. Laser sources and equipment 

were from Spectral. Optical filters were sputter-coated to minimize chromatic aberration 

(Chromas). Confocal optical slice thickness (z-axis) was 300 nm in all cases. Confocal 

images for each fluorophore in double-labeling experiments were always acquired 

separately (sequential scans, every 300 nm) rather than simultaneously, to further 

minimize optical bleedthrough.  

 

2.14 Data Analysis 

 For imaging, resulting images were processed using the Volocity (PerkinElmer) 

image analysis software package and MatLab. In ensemble %Frequency-above-threshold 

vs. NCI curves using data pooled from multiple neurons, the X-axis consisted of step 

thresholds used to bin the entire population of NCI values. Typically, a group of ~15 

neurons produced ~150,000-200,000 voxels. In these cases, X-axis thresholds were a 

sequence of logarithmically spaced numbers generated by MatLab to represent values 

between 0.1 and 10. Y-axis data points from all the neurons in any given group were 

averaged and plotted as mean± SE. 
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 For electrophysiology, all data were analyzed using Clampfit. Peak current was 

represented as mean ± SE. I-V and activation curves were generated after normalizing 

currents to peak current and represented as a percentage ± SE at various voltages. 

Inactivation curves were generated from dividing peak current at +10 mV test pulse by 

the peak current at +10 mV pre-pulse for each voltage and represented as a percentage ± 

SD.  

 



 41	
  

 

 

	
  

Chapter 3 

Functional Effect of Proteolysis of CaV1.2 
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PRODUCTION OF THE TEV PROTEASE. 
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3. 1 INTRODUCTION 

 Voltage gated calcium channels (VGCCs) control many critical physiological 

processes, including hormone secretion, neurotransmitter release, cell migration, gene 

transcription, and muscle contraction (Catterall, 2000).  In response to changes in voltage 

across the membrane, and under the regulation of many other proteins, these channels 

allow the heart to beat, the kidney to function, and neurons to communicate with one 

another. Many genetic diseases can be attributed to mutations in these channels, such as 

familial hemiplegic migraine (Pietrobon and Striessnig, 2003), long QT syndrome 

(Gargus, 2006), Timothy syndrome (Barrett and Tsien, 2008), and epilepsy (Zamponi et 

al., 2009).  Also, VGCC dysfunction has been associated with Alzheimer’s disease, 

Parkinson’s disease (Mattson, 2007), and chronic pain (Snutch, 2005). Due to having 

such a diverse range of functions, VGCCs are regulated by many pathways and 

mechanisms.  

 Proteolysis as a regulatory mechanism has been reported for a variety of ion 

channels.  Epithelial sodium channels are targeted by the protease furin, which cleaves a 

small section of the α1 subunit, releasing an inhibitory segment and activating the 

channel (Kleyman et al., 2009).  The AMPA receptor undergoes a C-terminal cleavage 

mediated by calpain which alters the channel’s properties (Bi et al., 1996).  The voltage 

gated Na+ channel α1 subunit is also proteolyzed by calpain (von Reyn et al., 2009) and 

its associated β2 subunit is proteolyzed by β- and γ-secretase (Kim et al., 2005). 

Proteolysis of the L-type calcium channel as a form of regulation has also been reported. 

CaV1.2 is cleaved in the C-terminus and this distal C-terminal fragment then binds to the 

proximal C-terminus, still attached to α1, to act as an autoinhibitor to the channel (Hulme 
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et al., 2006).  Our lab has uncovered a new form of proteolysis of the L-type voltage 

gated calcium channel, CaV1.2, which is termed mid-channel proteolysis because it 

occurs within the body of the α1 subunit. 

 

3.2 RESULTS 

3.2.1 Mid-channel proteolysis of CaV1.2 

 The CaV1.2 α1 subunit has a predicted molecular weight of 190-240 kD. The α1 

subunit consists of four homologous domains, each containing six hydrophobic 

transmembrane segments, connected by intracellular loops and flanked by an intracellular 

N- and C-terminus. The three intracellular loops are referred to as the I-II loop, the II-III 

loop and the III-IV loop. 

 Mid-channel proteolysis was first discovered in biotinylated cortical slices from 

six-week-old rats. Western blots of surface proteins probed with an antibody against the 

II-III loop revealed two bands, one at the predicted 240 kD and one at 150 kD. This 

pattern was seen repeatedly with subsequent experiments. This 150 kD band has been 

previously observed (Gomez-Ospina et al., 2006; Sakurai et al., 1995; Scott et al., 1998; 

Westenbroek et al., 1995), but has yet to be explained. Our lab observed the 150 kD 

fragment so consistently that we decided to investigate it further.  

 Using antibodies from three regions of the channel; the N-terminus, the II-III loop 

and the C-terminus (Figure 1a) it could be determined which section of the channel the 

150 kD band comprised. The 150 kD band was present with the II-III loop antibody 

(Figure 1b and 1c) and the C-terminus antibody (Figure 1d), and a ~90 kD band was 
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present with the N-terminus antibody (Figure 1e). This pattern of bands would only be 

produced if the channel was being cut within the II-III loop (Figure 1a). The other bands 

detected by the N- and C-terminal antibodies suggest that the channel is extensively 

proteolyzed. Moreover, these channel segments are found on the plasma membrane. 

 Unfortunately, there is no CaV1.2 knockout mouse available because deletion of 

CaV1.2 is embryonic lethal (Seisenberger et al., 2000), and therefore samples taken from 

a knockout cannot be used to confirm this band is calcium channel. However, since 

multiple CaV1.2 antibodies stained the 150 kD band, it is undoubtedly not an artifact. The 

150 kD band was also sent for mass spectrometry analysis and was found to be L-type 

calcium channel. After confirming the 150 kD fragment is a smaller L-type calcium 

channel, the big question is why would this channel form exist? 
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Figure 3.1 Mid-channel proteolysis of endogenous Cav1.2 in cortical neurons and its channel 

activity-dependent regulation. (a) Topology of Cav1.2 with epitope locations for three antibodies 

(anti-LII-III, anti-Ct and anti-Nt) indicated and predicted molecular masses for full-length Cav1.2 

and two fragment-channels generated by a presumed proteolytic cut (scissors). b, Western blot 

with anti-LII-III of native Cav1.2 in surface-biotinylated and non-biotinylated cortical slices (from 

6-week old rats), showing a 150-kDa band (arrow). (c-e) Western blot with anti-LII-III (c), anti-Ct 

(d) or anti-Nt (e) of native Cav1.2 from the same sample of surface-biotinylated cortical slices. (f-

i) Activity-dependent regulation of mid-channel proteolysis. Left: representative Western blot 

with anti-LII-III of Cav1.2 in cortical slices treated with either vehicle (control) or the indicated 

reagent(s) before surface biotinylation: (f) verapamil (65 µM, 2 hr); (g) nifedipine (10 µM, 2 hr) 

and CNQX (21.5 µM, 2 hr); (h) ionomycin (3 µM, 45 min); (i) BayK8644 (14 µM, 40 min) and 

65 mM KCl (40 min). Middle: bar graph depicting the proteolysis index (intensity ratio of 150-

kDa/240-kDa band) for the representative gel. Right: summary graph showing data pooled from 

the indicated number of independent experiments. Data in bar graphs are represented as 

mean±s.e.m. and asterisks denote statistical differences, with P<0.01. Modified from (Michailidis 

IE, Abele-Henckels K, et al. Neuron. 2014. In Press). 
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3.2.2 Activity-dependent proteolysis of CaV1.2 

 Mid-channel proteolysis could occur as a way to regulate calcium influx. One 

method to test this hypothesis is to measure the ratio between the 150 kD and 240 kD 

bands in response to channel activity. Using densitometry, the proteolysis index was 

calculated for each sample. Rat cortical slices were treated with various L-type channel 

activators and inhibitors, biotinylated and then ran on Western blots. All experiments 

were done quickly at 4°C and in the presence of protease inhibitor cocktail to minimize 

sample preparation degradation.  

 When the channel was inhibited with application of the phenylalkylamine 

Verapamil, a L-type calcium channel blocker, mid-channel proteolysis decreased about 

50% (Figure 3.1 f). The same effect was observed when the dihydropyridine Nifedipine, 

another L-type calcium channel blocker, was applied to cortical slices in the presence of 

CNQX, an AMPA receptor antagonist (Figure 3.1 g). These results demonstrate that 

when the channels are prevented from opening, either through direct inhibition or 

combined with lower cell excitability, mid-channel proteolysis is reduced. When a 

calcium channel ionophore, ionomycin, was added to neurons, forcing an influx of 

calcium into the cells, mid-channel proteolysis increased (Figure 3.1 h). The same effect 

was seen when neurons were treated with a combination of high KCl and BayK8644, a L-

type channel agonist (Figure 3.1 i). Therefore, enhanced cell excitability, increased 

intracellular calcium and activation of L-type channels increase mid-channel proteolysis. 

 These results were also replicated in biotinylated, cultured hippocampal neurons. 

Mid-channel proteolysis appears to be a regulated event, since the channel is proteolyzed 

in response to channel activity. The increase in proteolysis in response to increased 
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channel activity hints that the purpose may be to down-regulate functional channels on 

the membrane. These results also rule out the 150 kD band being a product of sample 

preparation degradation, since that is not regulated and would happen in the processing of 

the samples and not during the drug treatment of the neurons.    

 

3.2.3 Separation of the channel on the membrane 

 CaV1.2 channel fragments reside on the plasma membrane, but do they remain 

associated after proteolysis? One way to answer this question is to visualize the 

fragments using confocal microscopy. CaV1.2 was modified to include GFP on the N-

terminus and a HA tag on an extracellular loop of Domain III, a construct called LGH3 

(Figure 3.2 a). Using an anti-HA primary antibody and an Alexa-594 secondary antibody 

under non-permeabilized conditions, surface LGH3 could be visualized. Surface channels 

would appear red (HA staining) and green (GFP). Channels that had not yet reached the 

membrane would only appear green.  

 In most cases, red signal clustered with green signal, which is expected of intact 

surface channels where the red and green signals are on the same protein. Interestingly, 

there were many instances of red signal without green signal along dendrites (Figure 3.2 

b and c).  This indicated that domain III of the channel was dissociating from the N-

terminal half of the channel on the membrane. In order to quantify this, an algorithm was 

developed that scanned each dendrite and detected any red “voxels”, which are 

essentially objects made of pixels of similar intensity. For each voxel the intensity of 

green signal and red signal was measured and the red/green ratio was determined. This 

ratio was termed the non-colocalization index (NCI). A value of 1 represents 
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colocalization; for every red signal there is a green signal. A value greater than 1 

represents a higher red signal than there is green signal, indicating separation of 

fragments and thus proteolysis. This measurement method was tested comparing two 

dendrites, and the dendrite with obvious red-only clusters (Segment y) had a right-shift in 

the NCI curve (Figure 3.2 d). NCI values were calculated for all dendrites of a neuron 

and then many neurons were averaged per treatment group. In an additional control test, 

the same batch of neurons transfected with LGH3 was split in two and the NCI was 

measured and averaged for each group. The NCI values for the two groups overlapped 

completely (Figure 3.2 e), validating the analysis method.  

 In western blots, several bands were observed with both the N- and C-terminal 

antibodies. One explanation for this pattern is that the channel is cleaved in several 

locations. If this is true, the NCI should increase as the HA tag is moved further away on 

the channel from GFP. Constructs were made with a HA tag on Domain I (LGH1) and on 

Domain II (LGH2) to compare to LGH3. As expected, the NCI decreased as the HA tag 

moved closer to GFP (Figure 3.2 f). This not only substantiates the analysis method, 

since separation of red and green should not happen when they are very close together, 

but also indicates the channel can be cleaved in multiple locations along the α1 subunit. 
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Figure 3.2 Visualization of mid-channel proteolysis of Cav1.2 in the plasma membrane of 

cultured hippocampal neurons. (a) LGH3 construct with a N-terminal GFP and a HA tag on an 

extracellular loop of Domain III. Antibody epitope locations are also indicated. (b) Confocal 

images of a representative dendritic segment of a neuron expressing LGH3. Left: surface and 

intracellular LGH3 indicated by GFP. Middle: surface LGH3 indicated by anti-HA+Alexa594 

secondary antibodies. Right: overlay. Clusters of red/green colocalization and non-colocalization 

are marked by yellow and white arrows, respectively. (c) Fluorescence intensity profile (bottom) 

of a dendritic segment (top). Exemplar clusters of red/green colocalization and non-colocalization 

are marked by * and **, respectively. (d) Quantification of red/green colocalization in two 

dendritic segments displaying visually different extents of mid-channel proteolysis. Left and 

middle: images of GFP (lane 1), HA-Alexa594 (lane 2), overlay (lane 3) and the “voxels” 

selected according to our analysis protocol (lane 4). Right: cumulative distribution of the non-

colocalization index (NCI) for the two selected dendritic segments. (e) Ensemble cumulative 

distribution of NCI from the dendrites of two randomly selected groups of neurons (n=15 each, 

same culture) expressing LGH3. (f) Cumulative distribution of NCI from the dendrites of neurons 

expressing LGH1 (n=23), LGH2 (n=15) and LGH3 (n=13). Taken from (Michailidis IE, Abele-

Henckels K, et al. Neuron. 2014. In Press). 
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3.2.4 Age-dependent proteolysis of CaV1.2 

 L-type channel activity has been implicated in aging and aging diseases (Moyer et 

al., 1992; Thibault and Landfield, 1996; Thibault et al., 1998).  Therefore, the extent of 

mid-channel proteolysis could vary depending on the age of the animal. To test this 

hypothesis, cortical slices were isolated from rats of various age groups (10 days, 6 

weeks, 6 months and 16 months) and processed in parallel. Mid-channel proteolysis 

increased with the animals’ age (Figure 3.2 a). While the 6-month-old and 16-month-old 

rats had less full-length CaV1.2 on the membrane than younger rats, there was a large 

increase in the ratio of the 150 kD band / 240 kD band, indicating increased mid-channel 

proteolysis. When 16-month-old rats were treated for 3-5 weeks with an oral dose of 

Verapamil, a L-type channel blocker, mid-channel proteolysis was slightly reduced 

(Figure 3.3 b), indicating that age-induced mid-channel proteolysis is partially reversible 

and dependent on channel activity.  
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Figure 3.3 Mid-channel proteolysis is age-dependent and can be reversed in vivo. (a) Left: 

representative Western blot with anti-LII-III of native Cav1.2 in surface-biotinylated rat cortical 

slices from the indicated age groups. Middle: proteolysis index for the representative gel. Right: 

summary graph showing data pooled from the indicated number of independent experiments. (b) 

Left: representative Western blot with anti-LII-III of native Cav1.2 in surface-biotinylated cortical 

slices from 16-month old rats fed with water with or without verapamil for 3-5 weeks. Middle: 

proteolysis index for the representative gel. Right: summary graph showing data pooled from five 

independent experiments. Data in bar graphs are represented as mean±s.e.m. and asterisks denote 

statistical differences, with P<0.01. Taken from (Michailidis IE, Abele-Henckels K, et al. 

Neuron. 2014. In Press).  
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3.2.5 Identifying the protease site 

 Based on the molecular weights of the bands present in western blots, it was 

likely that the channel was being cut near or within the II-III loop. The first step to try 

and identify a protease was to run the channel sequence through PeptideCutter (ExPASy) 

to determine if any potential protease candidates cut in that region. The results included 

two proteases that potentially cut the channel in the II-III loop: enterokinase and 

thrombin. Enterokinase had potential cut sites in both the I-II loop (K490) and the II-III 

loop (K803), while thrombin only cut the channel once in the II-III loop (R888). All other 

proteases included in the results either cut the channel too many times or cut in the C-

terminus, so those were excluded from mid-channel proteolysis candidates. 

 Using our confocal imaging method, we wanted to see whether mutating these 

“cut sites” would shift the NCI curve to the left, indicating less proteolysis than the wild-

type channel. Each enterokinase and thrombin cleavage site was mutated by changing the 

consensus residues to glycines in LGH3. A triple mutant, where all three sites were 

mutated, was also made. This construct (TripMut) and wild-type LGH3 were transfected 

into rat hippocampal neurons. In case mid-channel proteolysis only occurs with increased 

channel activity, each group was also subjected to a 30 minute 65 mM KCl treatment 48 

hours post-transfection. The neurons were then fixed, stained and imaged to see whether 

the triple mutation changed red-green separation. 
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Figure 3.4 Thrombin and enterokinase are not the protease. Normalized distribution graph 

depicting red-green co-localization along dendrites of neurons expressing LGH3 (WT) or LGH3 

with thrombin and enterokinase sites mutated (TripMut). Also shown are neurons treated with 65 

mM KCl for 30 minutes before fixation. There is no change in the NCI between WT and 

TripMut.  

 

 

 There was no change between the wild-type channel and the triple mutant under 

normal conditions or when the channel was activated with KCl (Figure 3.4). The KCl 

treatment did shift the NCI curve to the right, as expected, but the triple mutation showed 

no difference compared to wild-type. Therefore, it appears that the mutated residues are 

not the cut sites involved in mid-channel proteolysis. Neither thrombin nor enterokinase 

is likely to be the protease. 
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3.2.6 Acute functional effect of mid-channel proteolysis 

 If the observed proteolysis occurs in response to channel activity, functional 

studies are necessary to demonstrate what effect that cleavage has on channel function.  

One way to investigate the acute functional effects of channel cleavage is to insert a 

protease site into the channel and, using inside-out macropatch, perfuse the protease 

while measuring current in real-time. In order to use this method effectively, the P/Q-type 

calcium channel must be used because it experiences less current run-down than L-type 

calcium channels.   

 An appropriate protease would be one that is highly specific, stable at room 

temperature, does not require calcium for activity, and does not naturally cut the channel. 

The tobacco etch virus protease (TEVp) meets these criteria, and because it is from a 

plant virus, it has very few mammalian targets. TEVp is a cysteine protease used often in 

protein purification experiments because it can be grown to a large scale in bacteria and 

purified and is catalytically active at a range of temperatures. Since inside-out 

macropatch recording measures all the effects the perfused protease has on the channel, 

other variables besides channel cleavage need to be controlled for, such as the protease 

binding to the channel. Therefore, a catalytically inactive TEVp was engineered to serve 

as a control since it presumably retains all wild-type properties except its ability to cut the 

channel. 

 TEVp is a small protein (27 kD) and therefore is more difficult to express in 

bacteria. To circumvent this problem, maltose binding protein (MBP) was tethered N-

terminally to a TEVp containing a six histidine repeat with a TEVp cut site in between 

the two proteins. Once the protein is translated in DE3 cells, TEVp cuts itself from MBP 
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and the 27 kD protease can be purified using nickel beads. The catalytically inactive 

TEVp (TEVp_mut) was made by mutating cysteine 151 to an alanine (C151A). This 

mutant TEVp is unable to cut itself from MBP (42 kD), and therefore is a ~70 kD protein 

when purified with nickel beads (Figure 3.5 a). In order to remove the MBP, active TEVp 

without a His tag was incubated with the TEVp_mut overnight at 4°C and TEVp_mut 

was subsequently purified using nickel beads and concentrated. 

 TEVp recognizes the sequence ENLYFQG and cuts between the Q and G.  I 

inserted the TEVp recognition sequence site once in the I-II loop and twice in the II-III 

loop of CaV2.1 (Figure 3.5 b) using PCR mutagenesis. Three sites were added to increase 

the likelihood that a cut site is accessible to the protease. Four days following 

microinjection of cRNA into Xenopus oocytes, inside out macropatch recording was 

performed. The current was recorded from a patch until a baseline was reached and then 

the protease was perfused over the cytoplasmic side of the patch while the current was 

being recorded. After 2 minutes, the patch was perfused with the control bath solution to 

measure if the protease effect was reversible.  This method was tested with trypsin as a 

positive control, since trypsin cuts the channel hundreds of times, and the current was 

quickly and irreversibly abolished after trypsin perfusion. Before the experiment, I also 

confirmed that TEVp was functional by incubating TEVp with its substrate for five 

minutes and using SDS-PAGE to confirm that the substrate was cut. 

 When TEVp_wt was perfused over the wild-type PQ channel containing no TEVp 

cut sites, there was no observable effect on channel current. When the catalytically 

inactive TEVp (TEVp_mut) was perfused over the PQ channel containing three TEVp 

cut sites (PQ_tev), no effect was seen on the current. However, when the TEVp_wt was 
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perfused over the mutant channel (PQ_mut), an irreversible left shift was seen in the 

activation curve (Figure 3.5 c). The channel was still functional, however there was an 

immediate change in gating properties. The channel may have remained functional after 

being cut because the two halves were held in close proximity on the membrane.  

 

 

Figure 3.5 Acute functional effect of mid-channel proteolysis. (a) Western blot stained with anti-

TEVp primary antibody to show catalytically inactive (TEVp C151A) and WT TEVp after 

purification with nickel beads. (b) P/Q channel with three TEV recognition sites construct 

(PQ_tev). (c) Current was recorded at +10 mV before and after addition of protease.  A shift in 

the activation curve was seen only when active, TEVpwt was added to patches expressing 

PQ_tev. Catalytically inactive TEV (TEVpmut) and PQ_wt channels exhibited no change in 

current.  N>7. Error bars represent ±SE. 
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3.2.7 Long-term functional effect of mid-channel proteolysis 

 After deciphering the immediate effect of proteolysis, I wanted to test the effect 

on a longer time scale. What happens to channel function hours after the channel is cut? I 

made wild-type TEVp RNA and injected into Xenopus oocytes along with wild-type PQ 

channel or the TEVp mutant PQ channel. All oocytes were also injected with α2δ and β3.  

Recordings were done 4 or 5 days after injection to allow for sufficient time for protein 

expression.  This should allow the cleaved channel time to separate on the membrane, 

which would be more relevant to what we observed in vivo.  Wild-type PQ channel 

showed no change in current when TEVp was co-expressed (Figure 3.6). Without TEVp 

present, PQ_mut had current that was similar to PQ_wt, although the peak amplitude was 

slightly smaller (Figure 3.6). However, when PQ_mut was expressed with TEVp, the 

current was dramatically reduced (Figure 3.6). These data suggest that the long-term 

effect of mid-channel proteolysis is decreased channel function and down-regulated 

calcium current. 

 The long-term effect of proteolysis appears to be a reduction rather than a total 

abolishment of current. Is the residual current produced because not all of the channels 

are proteolyzed or because proteolyzed channels remain functional? To answer this 

question, I examined whether two complementary “fragment channels” can still form a 

functional channel. Xenopus oocytes expressing a truncated CaV1.2 containing either 

domains I-II or domains III-IV (Figure 3.7 a) were evaluated by TEVC.  When the 

fragment channels were coexpressed, currents were approximately 60% of full-length 

CaV1.2 (FL) currents (Figure 3.7 b).  When expressed alone they were completely 

nonfunctional (Figure 3.7 b).  CaVβ binds to the AID in the I-II loop and traffics the 
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channel to the surface, therefore both fragment channels most likely assemble together 

prior to reaching the membrane. No dominant-negative effect on peak current amplitude 

was seen when one fragment channel was expressed along with the full-length channel 

(Figure 3.7 b), contrary to what as has been reported with N-type channels (Raghib et al., 

2001). 

 

 

 

 

Figure 3.6 Long-term functional effect of mid-channel proteolysis. Comparison of peak current 

recorded at +10 mV by TEVC in oocytes expressing the indicated constructs with or without co-

expression of TEV protease. Currents were normalized by the WT response.  N > 10 for each 

group. Error bars represent ±SE. Expression of TEV protease had no effect on WT channels but 

did decrease the current of the mutated channel. 
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Figure 3.7 Fragment channels are functional when coexpressed. Two-electrode voltage clamp 

experiments recorded at +10mV on fragment channel constructs expressed in Xenopus laevis 

oocytes. (a) Fragment channel construct. (B) Peak current amplitude of full-length CaV1.2 (FL), 

when fragment pairs are co-expressed (I-II + III-IV), when fragments are expressed alone, and 

when each fragment is co-expressed with the full-length CaV1.2. N>10 for all groups.  
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3.3 DISCUSSION 

3.3.1 The importance of L-type mid-channel proteolysis 

 The L-type voltage-gated calcium channel, CaV1.2, plays an important role in 

many cellular functions. Calcium influx through the channel not only changes cell 

excitability (Mahapatra et al., 2012), but activates various signaling cascades eventually 

causing a change in gene expression (Ma et al., 2012). Therefore, these channels have to 

be tightly regulated by a multitude of mechanisms, some redundant, to ensure that there is 

an optimal intracellular calcium concentration. Our lab has uncovered a new form of 

regulation of CaV1.2, termed mid-channel proteolysis, which serves to down-regulate 

calcium influx through the proteolysis of the α1 subunit. This is different than the C-

terminal proteolysis that occurs with 80% of CaV1.2 channels in the heart (Hulme et al., 

2006). Our lab has shown that mid-channel proteolysis is dependent on the activity of the 

channel and the age of the animal. I have shown that the acute effect of the channel being 

cut is an immediate change in gating properties. The resultant “fragment channels” can 

remain on the membrane and associate to form functional channels. Perhaps many 

different forms of CaV1.2 naturally reside on the membrane and together are responsible 

for the total CaV1.2 current. 

	
  
	
  

3.3.2 Identifying the protease and cut site 

 While thrombin and enterokinase were ruled out as potential proteases, many 

other proteases were considered. Due to mid-channel proteolysis being correlated to age, 

proteases involved in Alzheimer’s disease were prime candidates. Many experiments 
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were done, as described in Chapter 5, to investigate the role γ-secretase plays in CaV1.2 

proteolysis. While γ-secretase activity does have an effect on CaV1.2 current (Chapter 5, 

Figure 5.6), it is still unclear whether this is due to directly cutting the channel or through 

an indirect mechanism. Another viable candidate is calpain, a calcium activated protease 

assumed to be involved in the C-terminal proteolysis of CaV1.2 (Hell et al., 1996; Hulme 

et al., 2006). Applying a cocktail of calpain inhibitors to neurons expressing LGH3 

resulted in a significant decrease in mid-channel proteolysis (Appendix, Figure 3a and b), 

however it did not abolish proteolysis completely and therefore other proteases are most 

likely involved. The ubiquitin-proteasome system, which is involved in degradation of 

proteins (Hershko and Ciechanover, 1998), might also be involved. A cocktail of 

ubiquitin inhibitors was added to neurons expressing LGH3 and resulted in a decrease in 

mid-channel proteolysis (Appendix, Figure 3c), as did mutating a putative ubiquitin site 

on the channel itself (Appendix, Figure 3d).  PEST sequences are also involved in the 

ubiquitin-proteasome system, signaling the protein for degradation (Rechsteiner and 

Rogers, 1996). Two PEST sequences on the channel (Catalucci et al., 2009) were 

mutated, and one mutation (PEST1) practically abolished mid-channel proteolysis 

(Appendix, Figure 3). The exact cut site on the channel has yet to be identified and other 

potential proteases are likely to be involved. 

	
  

3.3.3 Functional effects of mid-channel proteolysis 

 The inside-out macropatch experiments allowed me to observe in real-time the 

immediate effect on the channel being cut. It is not surprising that the channel was still 

functional after proteolysis, given the time scale of the measurements. The channel is a 
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properly formed tetramer held in place by non-covalent interactions with itself and the 

lipids in the plasma membrane. A simple nick of a cytoplasmic loop would not cause the 

channel to immediately dissociate, however it would have an effect on gating, which was 

observed (Figure 3.5 c). It seems reasonable that over a longer time scale the cut channel 

could separate, possibly by internalization or movement of one fragment within the 

membrane. These new fragment channels could therefore remain on the membrane 

without being associated with its partner. On this longer time scale you would expect a 

decrease in overall current, since upon separation, fragments cannot form a functional 

pore. This was seen in the TEVC experiment when TEVp was co-expressed with PQ_tev 

(Figure 3.6). One caveat of this experiment is that it does not reflect what occurs 

physiologically. TEVp is being constitutively over-expressed and is not cutting the 

channel in the regulated manner that mid-channel proteolysis occurs. Another caveat is 

that I was unable to control for where the channels were cut. The channel could be cut in 

the ER before surfacing or at the plasma membrane. A Western done by a colleague in 

the lab showed that these fragments are present on the plasma membrane after being cut 

by TEVp (Appendix, Figure 5). The final experiment described in this chapter proved 

that fragment channels are able to associate with one another and traffic together to the 

plasma membrane (Figure 3.7).   

	
  
	
  

3.3.4 Fragment channels are functional 

 My finding that the two fragment channels can together form a functional channel 

on the membrane opens up many more questions. Do they traffic together to the plasma 

membrane? Is their reduced current a product of decreased surface expression, or is their 
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functionality impaired because they are separate proteins? Do they exhibit distinct 

biophysical properties? It does not appear that full-length channel current amplitude is 

affected by the presence of a fragment channel, however there could still be an impact on 

the full-length channel’s gating properties. Only one set of fragment channels was tested 

here, however the channel can also be cut in other loops. It would therefore be interesting 

to evaluate the behavior of other fragment pairs. All of these questions will be addressed 

in the following chapter. 
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Chapter 4 

Functional Characterization of CaV1.2 Fragment Channels 

 
 

 

 

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
ALL OF THE EXPERIMENTS IN THE FOLLOWING CHAPTER WERE COMPLETELD BY KATHRYN 

ABELE HENCKELS. 
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4.1 INTRODUCTION 

 
 The α1 subunit of voltage gated calcium channels (VGCCs) has four homologous 

domains, each containing six hydrophobic transmembrane segments, connected by 

intracellular loops and flanked by an intracellular N- and C-terminus (Catterall, 2000). 

The four domains come together in the membrane to form the pore that allows for Ca2+ 

influx. The β subunit binds to the I-II loop of α1 and is necessary for surface expression 

(Buraei and Yang, 2010). It has been shown that CaVβ masks an ER retention signal in 

the I-II loop to allow α1 to traffic to the membrane (Bichet et al., 2000), however there is 

also evidence that it protects α1 from proteasomal degradation once it has left the ER 

(Waithe et al., 2011). The N- and C-termini are also very important in channel function, 

as both contribute to channel gating. Both the N- and C-terminus bind calmodulin, a 

calcium sensor that is responsible for calcium-dependent inactivation (CDI) and calcium-

dependent facilitation (CDF) of the channel (Ben Johny et al., 2013). The C-terminus has 

also been recently associated with anchoring the channel to the plasma membrane 

through interactions with α-actinin (Hall et al., 2013).  

 The α1 subunit can be extensively spliced (Lipscombe et al., 2013), and splice 

variants have been discovered that only contain partial α1 subunits (Okagaki et al., 2001; 

Wielowieyski et al., 2001), which raises the possibility that VGCCs can form functional 

channels out of smaller α1 fragments. This is not such a farfetched concept, since 

voltage-gated potassium channels are proteins containing six transmembrane domains 

that form a tetramer in the plasma membrane to conduct potassium (MacKinnon, 2003). 

There are also many naturally occurring disease-causing mutations that result in truncated 
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α1 subunits (Pietrobon, 2010). For example, episodic ataxia Type-2 mutants cause 

truncated CaV2.1 channels and act in a dominant-negative manner with wild-type CaV2.1 

channels by causing their retention in the ER (Jeng et al., 2008). A naturally occurring 

CaV1.2 α1 subunit truncated in domain II was found to act in a dominant-negative fashion 

inhibiting full-length CaV1.2 current (Cox and Fromme, 2013).  

 N-type fragment channels reflecting a channel cut in the II-III loop were found to 

form functional channels with no differences in gating properties compared to full-length 

CaV2.2 (Raghib et al., 2001). Both fragments caused a decrease in current amplitude 

when coexpressed with full-length CaV2.2 and the fragment containing domain I was 

found to inhibit surface expression of CaV2.2 by interfering with channel synthesis 

(Raghib et al., 2001). This occurs when the fragment channel containing the N-terminus 

(Page et al., 2010) binds to CaV2.2 and initiates the unfolded protein response in the ER 

causing immediate protein degradation (Page et al., 2004). These are not naturally 

occurring fragment channels however, but they do provide insights into how truncated 

disease mutants can exert their dominant-negative effects on wild-type channels. 

 Mid-channel proteolysis of CaV1.2 produces fragment channels that remain on the 

plasma membrane for an unknown time and function. They may themselves form 

functional channels, although for reasons stated above, they would have to combine to 

include all four domains and both termini. They may also exert an effect on other full-

length CaV1.2 channels on the membrane that have not yet been cleaved. Since it is still 

unclear where mid-channel proteolysis occurs in the cell, fragment channels could be 

created before reaching the plasma membrane and bind to full-length channels to 

influence trafficking and degradation. In this chapter, I investigate whether fragment 
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channels formed from cleavage of CaV1.2 in the I-II loop, II-III loop and III-IV loop are 

functional. I also evaluate whether they have distinct biophysical properties and if they 

can form functional channels with non-complimentary pairs. Their ability to associate 

with and influence the function of full-length CaV1.2 is also assessed.  
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4.2 RESULTS 

4.2.1 Fragment channels are functional as complementary pairs 

 When CaV1.2 is split into two fragments, these fragment channels can still 

function if they are properly paired, albeit at less capacity than full-length CaV1.2 

(CaV1.2_FL). This was shown with fragments resulting from a cut in the II-III loop 

(Chapter 3, Figure 3.7), however the channel can be cut in multiple places along the α1 

subunit (Chapter 3, Figure 3.2 f). Therefore, I decided to make sets of fragment channels 

reflecting proteolysis in the I-II loop (A1 + A2), the II-III loop (B1 + B2), and the III-IV 

loop (C1 + C2) (Figure 4.1 a). All three pairs of fragment channels were injected into 

Xenopus oocytes along with β3 and α2δ and peak current was measured using TEVC to 

evaluate fragment channel function. Peak current was measured at + 10 mV and 

compared to the CaV1.2_FL current levels. When expressed along with their 

complimentary fragment, fragment channel pairs produced current that averaged ~40% of 

CaV1.2_FL current (Figure 4.1 b). This indicates that all three pairs of fragment channels 

can properly pair together on the plasma membrane and function in response to 

membrane depolarization. When these fragments were expressed alone, with β3 and α2δ 

but without their complimentary fragments, they were non-functional (Figure 4.1 c).  

This result clearly shows that in order for the channel to produce current, four domains 

have to be present to form the pore and the N- and C-termini are critical for channel 

function. However, do the pairs have to be properly matched? What if there were five 

domains, a N-terminus and a C-terminus present? In most cases, when fragments were 

paired with a non-complimentary fragment they were non-functional (Figure 4.1 d). 
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However, fragments C1 and B2 did produce a small amount of current when paired, 

demonstrating that an extra domain, while impeding proper function, can in some cases 

be pushed out of the way so that a pore can form (Figure 4.1 d). The A1 + A2 pair 

exhibited lower currents than previously, and after repeated attempts I could still not find 

a batch of oocytes that produced 40% full-length current with A1 + A2. Also, B1 + B2 

exhibited higher currents than usual in these oocyte batches. This could have been due to 

the quality of the injected RNA or differences in translation machinery for these 

particular batches of oocytes. 
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Figure 4.1 Fragment channels are functional when properly paired. (a) Schematic of the three 

sets of fragment channels cut in the I-II loop (A1 + A2), the II-III loop (B1 + B2) or the III-IV 

loop (C1 + C2). (b) Peak whole-cell currents recorded from oocytes at -10 mV to 0 mV 

expressing the full-length channel (CaV1.2 FL) or indicated fragment pairs. (c) Peak whole-cell 

currents recorded from oocytes at -10 mV to 0 mV expressing the full-length channel (FL) or 

indicated fragments without their complementary pair. (d) Peak whole-cell currents recorded 

from oocytes at - 0 mV expressing the indicated fragment pairs. Fragments paired with their 

complementary partner produced current, while fragments paired with a non-complimentary 

fragment produced little to no current. Error bars for all graphs reflect ±SE and the numbers 

above each bar represent the N. 
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4.2.2 Fragment channels have different biophysical properties 

	
  
 All three fragment pairs have been found to be functional, but do they display 

differences in gating? Fragment channels were injected into Xenopus oocytes along with 

β3 and α2δ and the current-voltage relationship was determined by recording the peak 

Ba2+ current at a set applied voltage ranging from -50 mV to +60 mV. The current from 

each voltage was normalized to the peak current that occurred; -10 mV for CaV1.2_FL 

and 0 mV for each of the fragment channel pairs. All three fragment channel pairs 

displayed the same +10 mV shift in their current-voltage relationship (Figure 4.2 a). This 

suggests that the two halves of the channel being disconnected makes the channel slightly 

harder to open since a higher depolarization is needed for the channel to exhibit peak 

current influx. 

 The same fragment pairs were tested for their inactivation properties to see if the 

fragments had difficulty recovering from voltage-dependent inactivation. A pre-pulse of 

+10 mV was applied before a voltage between -50 mV and +30 mV was applied for 5 

sec, which was followed by a test pulse of +10 mV. Again all three fragment channel 

pairs displayed the same inactivation profile, one that was shifted  +10 mV from the 

CaV1.2_FL channel (Figure 4.2 b). This implies that the fragments have decreased 

inactivation compared to the full-length channel. 
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Figure 4.2 Fragment channels have different biophysical properties than CaV1.2. (a) The current-

voltage relationship of full-length CaV1.2 (black, , N = 45) compared to fragments A1 + A2 

(red, Δ, N = 12), B1 + B2 (blue, , N = 15 ) and C1 + C2 (green, , N = 15). (b) Inactivation 

curve of full-length CaV1.2 (black, , N = 29) compared to fragments A1 + A2 (red, Δ, N = 6), 

B1 + B2 (blue, , N = 18 ) and C1 + C2 (green, , N = 14). Error bars for both graphs reflect 

±SE. 

 

4.2.3 Surface expression of fragment channels 

 The fragment channels, while functional, have smaller currents compared to 

CaV1.2_FL. Is this due to the inherent nature of the two channel segments not being 

connected, or is surface expression an issue due to inadequate trafficking? One way to 

determine this is to look at the overall surface expression of the fragments compared to 

the surface expression of the full-length channel. This can be done using biotinylation 

and separating surface proteins from cytoplasmic proteins using streptavidin beads. 

Unfortunately, the oocytes membranes became too unhealthy after shaking during a 45-

minute incubation with biotin. For this reason, another model system would have to be 

used. 
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 HEK 293 cells do not endogenously express CaV1.2, and therefore make for a 

good model system to examine surface expression of CaV1.2 and the fragment channels. 

However, in order for CaV1.2 to traffic to the membrane efficiently and function 

properly, CaVβ and CaVα2δ also have to be expressed. Three to four different proteins 

(especially when two of them are as large as α1 and α2δ) are too difficult to 

simultaneously transfect. Therefore, making a stable line constitutively expressing β3 and 

α2δ was the best option.  I modified a pIRES vector so that upstream of the IRIS 

sequence was the β3 gene and downstream was the α2δ gene. Whatever is upstream of 

IRES is translated at a higher rate than what comes after IRES and α2δ, while important 

for CaVα1 function, is not as critical as β3. HEK 293 cells were transfected with this 

construct and selected using geneticin (G418). This stable line (HEK293_β3α2δ) was 

now ready for transfection followed by biotinylation. 

 To be able to distinguish one fragment channel from the other, I decided to use 

two different tags. The fragment containing the N-terminus had a Flag-tag and the 

fragment comprising the C-terminus had a HA-tag. Both complimentary fragment 

channels were transfected together to replicate the condition that fragments were 

recorded from. As controls, I used LGH3, because it contained a HA tag, and a Flag-

tagged CaV1.2. Comparing the amount of surface protein to the cytoplasmic protein, and 

then comparing that to the control allows for an estimate on the trafficking ability of the 

fragment channels. B1 + B2 and C1 + C2 seemed to have equal surface expression 

compared to the controls (Figure 4.3). Interestingly, A1 + A2 appeared to have slightly 

greater surface expression than the controls (Figure 4.3), which is contrary to the 

electrophysiology experiments where A1 + A2 had much less current that the full-length 
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channel and usually less current than the other fragment pairs. For the HA-tagged 

channels there seemed to be much less surface expression overall, including with the 

control LGH3, but this is most likely due to the antibody staining. This experiment does 

not allow for quantification due to the quality of the Western blots, but it does 

demonstrate that the surface expression of fragment channels is comparable to full-length 

CaV1.2. 

	
  
Figure 4.3 Surface expression of fragment channels. HEK293_β3α2δ cells were biotinylated 48-

hours post-transfection and surface proteins were separated from cytoplasmic proteins using 

streptavidin beads (Thermo). (Top) Western of full-length CaV1.2 (Lflag) or indicated fragments 

containing a N-terminal Flag-tag and stained with an anti-Flag primary antibody. Cytoplasmic 

(C) and surface (S) proteins for each condition are shown. (Bottom) Western of full-length 

CaV1.2 (LGH3) or indicated fragments containing a N-terminal HA-tag and stained with an anti-

HA primary antibody. Cytoplasmic (C) and surface (S) proteins for each condition are shown. 
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4.2.4 Dominant negative effects on the full-length channel 

 Next, I wanted to examine whether these fragment channels have an effect on 

full-length channel function. I had already observed that fragments B1 + B2 did not 

decrease CaV1.2_FL current (Chapter 3, Figure 3.7 b), however I did not investigate 

whether they had any effect on the biophysical properties of CaV1.2_FL. The other 

fragments could have differing effects on CaV1.2_FL as well. I first tested each of the 

individual fragments with CaV1.2_FL to see whether they had a dominant negative effect 

on peak current amplitude. C2 was the only fragment that produced a significant decrease 

in peak current (Figure 4.4). This initial C2 result was very interesting, but I wanted to 

examine further the effect these fragments were having on CaV1.2_FL. Even if they don’t 

decrease peak CaV1.2_FL current, do they change the current-voltage relationship or 

inactivation profile of CaV1.2_FL? Also, do they physically interact with CaV1.2_FL? 

 

Figure 4.4 Dominant negative effects of individual fragments on full-length CaV1.2. Peak whole-

cell currents recorded from oocytes at -10 mV to 0 mV expressing the full-length channel (CaV1.2 

FL, N = 24) alone or with the indicated fragment A1 (N = 9), A2 (N = 8), B1 (N = 8), B2 (N = 

14), C1 (N = 6), and C2 (N = 7). C2 produced a dramatic decrease in current amplitude. Error 

bars represent ±SE. 
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4.2.4.1 Fragment A1 & A2 

 Fragments A1 and A2 were individually coexpressed with CaV1.2_FL, β3, and 

α2δ in Xenopus oocytes. The current-voltage relationship and inactivation profile were 

determined according to methods described above. Both A1 and A2 had an effect on the 

biophysical properties of CaV1.2_FL. The I-V curve of CaV1.2_FL was shifted to the 

right (Figure 4.5 a) and inactivation was increased (Figure 4.5 b). To determine whether 

this was due to a direct interaction between A1/A2 and CaV1.2_FL, co-

immunoprecipitations were done. Flag-tagged CaV1.2_FL (L-flag) and HA-tagged 

fragments (A1-HA and A2-HA) were transfected into HEK293_β3α2δ cells and lysates 

were incubated with anti-Flag or anti-HA beads. Untransfected cells and cells transfected 

solely with L-flag or A1/A2-HA served as controls. Fragments A1 (Figure 4.5 c) and A2 

(Figure 4.5 d) were clearly able to be pulled down with L-flag, indicating that they 

associate with the full-length channel either by directly binding to α1 or through 

interaction with auxiliary subunits such as β3 and α2δ.  
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Figure 4.5 Fragments A1 and A2 affect the biophysical properties of CaV1.2 through an 

association with the channel complex. (a) I-V curve of CaV1.2_FL (black, , N = 31) is shifted to 

the right when coexpressed with either A1 (red, Δ, N = 9) or A2 (blue, , N = 7). (b) Inactivation 

of CaV1.2_FL (black, , N = 14) is increased when coexpressed with either A1 (red, Δ, N = 5) or 

A2 (blue, , N = 4). Error bars for both graphs reflect ±SE. (c) Western blot showing that A1 

interacts with the channel complex. A1-HA co-immunoprecipitates with L-flag. (d) Western blot 

showing that A2 interacts with the channel complex. A2-HA co-immunoprecipitates with L-flag. 
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4.2.4.2 Fragment B1 & B2 

 Fragments B1 and B2 were individually coexpressed with CaV1.2_FL, β3, and α2δ 

in Xenopus oocytes. The current-voltage relationship and inactivation profile were 

determined according to methods described above.  Neither B1 nor B2 had a significant 

effect on the biophysical properties of CaV1.2_FL. The I-V curve of CaV1.2_FL remained 

the same when coexpressed with B1 or B2 (Figure 4.6 a) and CaV1.2_FL inactivation did 

not change when coexpressed with B1 or B2 (Figure 4.b b). To determine whether there 

was still an interaction between B1/B2 and CaV1.2_FL, co-immunoprecipitations were 

done. Flag-tagged CaV1.2_FL (L-flag) and HA-tagged fragments (B1-HA and B2-HA) 

were transfected into HEK293_β3α2δ cells and lysates were incubated with anti-Flag or 

anti-HA beads. Untransfected cells and cells transfected solely with L-flag or B1/B2-HA 

served as controls. Fragments B1 (Figure 4.6 c) and B2 (Figure 4.6 d) were both able to 

be pulled down with L-flag, indicating that they associate with the full-length channel 

complex. 
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Figure 4.6 Fragments B1 and B2 associate with the channel complex but do not affect the 

biophysical properties of CaV1.2. (a) There is no change in the I-V curve of CaV1.2_FL (black, , 

N = 31) when coexpressed with either B1 (red, Δ, N = 8) or B2 (blue, , N = 14). (b) There is no 

significant change in the inactivation of CaV1.2_FL (black, , N = 14) when coexpressed with 

either B1 (red, Δ, N = 9) or B2 (blue, , N = 9). Error bars for both graphs reflect ±SE. (c) 

Western blot showing that B1 interacts with the channel complex. B1-HA co-immunoprecipitates 

with L-flag. (d) Western blot showing that B2 interacts with the channel complex. B2-HA co-

immunoprecipitates with L-flag to a lesser degree than B1-HA. 
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4.2.4.3 Fragment C1 & C2 

 Fragments C1 and C2 were individually coexpressed with CaV1.2_FL, β3, and α2δ 

in Xenopus oocytes. The current-voltage relationship and inactivation profile were 

determined according to the methods described above. C2 had a slight effect on the I-V 

curve, as it seemed to shift the reversal potential to less positive voltages (Figure 4.7 a). 

The small shift C2 imposed on CaV1.2_FL inactivation is inconclusive due to the low 

sample size (Figure 4.7 b).  C1, however, had a striking effect on the biophysical 

properties of CaV1.2_FL. The I-V curve of CaV1.2_FL was shifted to the left (Figure 4.7 

a) and the inactivation was dramatically increased (Figure 4.7 b). To determine whether 

this was due to a direct interaction between C1/C2 and CaV1.2_FL, co-

immunoprecipitations were done. Flag-tagged CaV1.2_FL (L-flag) and HA-tagged 

fragments (C1-HA and C2-HA) were transfected into HEK293_β3α2δ cells and lysates 

were incubated with anti-Flag or anti-HA beads. Untransfected cells and cells transfected 

solely with L-flag or C1/C2-HA served as controls. Fragment C1 did co-

immunoprecipitate with the channel, however a small amount of C1-HA was pulled 

down by the Flag beads themselves (Figure 4.7 c). Therefore, no definitive conclusion 

can be made from this experiment. Fragment C2 (Figure 4.7 d) was able to be cleanly 

pulled down with L-flag, indicating that it does associate with the full-length channel 

complex. 
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Figure 4.7 Fragments C1 and C2 affect the biophysical properties of CaV1.2 and C2 strongly 

associates with the channel complex. (a) I-V curve of CaV1.2_FL (black, , N = 31) when 

coexpressed with either C1 (red, Δ, N = 7) or C2 (blue, , N = 7) C1 causes a left shift in the I-V 

curve while C2 seemed to change the reversal potential of CaV1.2_FL to +35 mV. (b) Inactivation 

curve of CaV1.2_FL (black, , N = 14) when coexpressed with either C1 (red, Δ, N = 3) or C2 

(blue, , N = 1). C1 dramatically increased inactivation, while C2 is inconclusive because of the 

low N. Error bars for both graphs reflect ±SE. (c) Western blot showing that C1 does not interact 

with the channel complex. C1-HA co-immunoprecipitates with L-flag, however a small amount 

of it is also pulled down by Flag beads without L-flag present. Therefore, this result is 

inconclusive. (d) Western blot showing that C2 interacts with the channel complex. C2-HA co-

immunoprecipitates with L-flag. 
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4.3 DISCUSSION 

4.3.1 Fragment channels are functional 

 Two-domain fragments of the N-type VGCC (CaV2.2) have been found to be 

functional when paired with their complementary partner (Raghib et al., 2001), however 

they did not exhibit differences in gating. In contrast, when CaV1.2 is split into two-

domain fragments these channels are not only functional (Figure 4.1 b), but have unique 

biophysical properties (Figure 4.2). In addition, other varieties of CaV1.2 fragment 

channels reflecting cleavage in any one of the three intracellular loops (Figure 4.1 a), all 

produce current when paired with their complementary fragment (Figure 4.1 b). 

Moreover, they all share the same shift in their current-voltage relationship and 

inactivation profile (Figure 4.2). All fragments shifted the I-V curve to the right, 

reflecting a channel that is more difficult to open. Voltage-dependent inactivation also 

decreased with all the fragment pairs, indicating that once the channel is opened it is 

harder to close than when the channel is one continuous subunit. These results fit with a 

recombinant channel that is less fluid in it’s gating due to not being properly joined 

together. It could also signify that interruptions in the intracellular loops disrupt the 

binding of regulatory proteins important in channel kinetics. 

 The observation that the fragment pairs have less current than the full-length 

channel can be a result of a few different factors. For instance, it is possible that this is a 

trafficking issue resulting in less surface expression than the full-length channel. This is a 

likely scenario, as it must be difficult to traffic together to the plasma membrane since 

only the fragment containing the I-II loop binds CaVβ to aid in exit from the ER. 
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However, this does not appear to be the case. Biotinylation experiments reveal that 

fragment channels have comparable, if not greater, surface expression than full-length 

channels (Figure 4.3). Therefore, the dampened peak current must be an inherent 

property of fragment channels paired together, perhaps a difference in gating, or of the 

two fragments being dissociated from one another in the membrane. The later seems 

likely in light of imaging experiments of LGH3 that show dissociated domains III and IV 

present on the plasma membrane (Chapter 3). 

 It does appear that for fragment channels to be functional their combination does 

need to contain all four domains, since fragments expressed alone produced no current 

(Figure 4.1 c). Interestingly, it does not appear to be the rule that the channel must 

contain only four domains. When a fragment containing domains I, II and III (C1) was 

coexpressed with a fragment containing domains III and IV (B2), functional channels 

resulted on the membrane (Figure 4.1 d), although with much smaller current than when 

fragments were properly paired. This unexpected result hints to the possibility that the 

channel can form a pore on the membrane by “kicking out” one of the extra domains. It 

also means that the same interactions between fragment channels may happen between a 

full-length channel and a smaller fragment, possibly affecting the overall functionality of 

the channel. 

 

4.3.2 Effect of fragments on full-length CaV1.2 

 None of the fragments except C2 imposed a dominant-negative effect on the 

channel. C2 is interesting because it did not appear to change the biophysical properties 

of the full-length channel, however it reduced peak current. This is the same effect 
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Domain I had on the CaV2.2 channel (Raghib et al., 2001), which was later found to be 

due to the N-terminus interacting with the channel (Page et al., 2010). Possibly, the C-

terminus of CaV1.2 interacts with full length CaV1.2, inhibiting its current (Hulme et al., 

2006). Clearly, C2 binds to the full-length channel complex (Figure 4.7 d) and could be 

interfering with other proteins necessary for channel function. For example, it could 

disrupt CaV1.2 binding to α-actinin, which would impede surface expression (Hall et al., 

2013). It could also affect CaV1.2 synthesis, whereby the fragment binds to the channel in 

the ER triggering the unfolded protein response, as was found with the N-type channel 

(Page et al., 2004) or just induce rapid protein degradation (Mezghrani et al., 2008). More 

experiments are needed to determine if the interaction between C2 and CaV1.2_FL results 

in less surface expression or direct inhibition of the channel. 

 Fragments A1 and A2 both had a small, but significant effect on the IV-curve and 

inactivation of CaV1.2_FL (Figure 4.5 a and b). Co-immunoprecipitations revealed that 

both fragments physically interact with the channel or channel complex (Figure 4.5 c and 

d). Regardless, this interaction did not decrease current (Figure 4.4) and therefore this 

interaction must only be affecting gating of CaV1.2_FL. Surprisingly, fragments B1 and 

B2 had no effect on the current or gating of CaV1.2_FL (Figure 4.4 and 4.6). In the 

literature it is mainly fragments containing two domains that do the most damage to full-

length channel function (Cox and Fromme, 2013; Okagaki et al., 2001; Raghib et al., 

2001). B1 and B2 did bind to the channel complex however, and it is unclear how this 

interaction would not have some effect on channel function. C1 had a major effect on the 

inactivation of CaV1.2_FL and shifted the I-V curve to the left. Unfortunately, because of 
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the background binding in the co-immunoprecipitation experiment, it is inconclusive 

whether this is due to a direct interaction with the channel complex.  

4.3.3 Implications of fragment channels as products of mid-channel proteolysis 

 The data gathered on the fragment channels has many implications for the 

aftermath of mid-channel proteolysis. The products of the channel being cut in any of the 

intracellular loops can associate to form functional channels. They can traffic together to 

the plasma membrane if the cleavage takes place in the ER, or remain on the plasma 

membrane if the cleavage occurs there. They can also interact with full-length channels 

that are already on the plasma membrane, changing gating properties. They can bind to 

the channel complex, including α1, potentially affecting surface expression and protein 

degradation. If mid-channel proteolysis occurs as a way to regulate calcium, fragment 

channels are one way it exerts its effect. Not only can the proteolysis of the channel cause 

the two fragments to separate, abolishing current, but the fragments can then interact with 

other channels and proteins to further impact calcium influx. It is possible that the 

currents from VGCCs are actually a compilation of various forms of α1, all working 

together to control calcium levels. 
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Chapter 5 

CaV1.2 function is inhibited by APP and γ-secretase 

 

 

 

 

 

 

 

 

 

ALL OF THE EXPERIMENTS PERFORMED IN THE FOLLOWING CHAPTER WERE COMPLETED BY 

KATHRYN ABELE HENCKELS. UNDERGRADUATE MORGAN GOODMAN ASSISTED IN THE 

CLONING OF THE APP MUTANTS. 
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5.1 INTRODUCTION 

5.1.1 The calcium hypothesis of Alzheimer’s Disease 

 Alzheimer’s disease (AD) is strongly correlated with age and is characterized by 

progressive cognitive decline, memory loss, and impaired speech and spatial abilities 

(Albert, 2011). Two main types of AD exist, sporadic late-onset AD and genetic, early 

onset familial AD (FAD). In brain tissue, AD causes amyloid plaque deposition, which is 

generated from the amyloid-β precursor protein (APP), neurofibrillary tangles and 

selective neuronal loss (LaFerla, 2002). AD has been linked to erratic calcium signaling 

at the cellular level (Berridge, 2010; Green and LaFerla, 2008; LaFerla, 2002; Supnet and 

Bezprozvanny, 2010). In normal aging, neurons gradually lose their ability to tightly 

control calcium fluxes and recover from calcium load (Mattson, 2007); this deficit is 

exacerbated in AD.  

APP is metabolized by two independent pathways (to be expanded on in 5.1.2). 

One pathway produces amyloid-β (Aβ), which is thought to contribute to a remodeling of 

calcium signaling pathways. When APP is processed in the amyloidogenic pathway, Aβ 

peptides are released to the extracellular space. These Aβ peptides can activate NMDA 

receptors causing an influx in calcium (Ye et al., 2004), and even form calcium leak 

channels themselves on the plasma membrane (Arispe et al., 1993). In addition, APP 

metabolism itself is enhanced by an increase in intracellular calcium (Pierrot et al., 2004), 

resulting in a positive feedback loop to further disrupt calcium homeostasis (Figure 5.1). 

Downstream effects of increased calcium include activation of calcineurin (Kuchibhotla 

et al., 2008) and calpains (Nixon et al., 1994), both exerting an effect on synaptic 
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plasticity. In postmortem brains of AD patients, an increase in levels of calpain and other 

calcium-dependent proteases has been observed (Green and LaFerla, 2008). Calbindin, a 

calcium buffer, has been observed to be downregulated in AD (Palop et al., 2003). 

Mitochondrial disruptions also result, leading to a depletion of ATP that causes enhanced 

membrane depolarization (Manczak et al., 2006; Toman and Fiskum, 2011) and increased 

facilitation of VGCCs on the plasma membrane.  

 Another consequence of this modified calcium signaling is an increase in the 

amount of calcium released from the endoplasmic reticulum (ER). Presenilin, a protease 

(discussed in detail below) intimately related to APP processing and AD, causes an 

increase in calcium release by InsP3 (Cheung et al., 2008). This in turn increases the 

expression of the ryanodine receptor, the major Ca2+ release channel in the ER (Chan et 

al., 2000; Stutzmann et al., 2006) and of the sarco/endoplasmic reticulum ATPase 

(SERCA) pump, which refills ER Ca2+ stores (Green et al., 2008), all of which contribute 

to marked changes in calcium dynamics. Presenilins can even form passive calcium leak 

channels themselves in the ER and familial AD (FAD) mutations in presenilin prevent 

this, causing dysfunctional calcium signaling (Tu et al., 2006).  

 Increased calcium levels lead to disruptions in synaptic plasticity, long-term 

depression (LTD) and long-term potentiation (LTP), all factors contributing to learning 

and memory (Berridge, 2010). Aberrant calcium signaling also leads to apoptosis 

(Mattson, 2007), which could be the contributing factor to neuronal death in AD. 

Intriguingly, mutations in APP or presenilin that are linked to AD tend to intensify 

calcium dyshomeostasis, further validating the hypothesis that calcium plays a role in the 

onset and progression of AD.  
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Figure 5.1 Dysregulation of intracellular calcium (Ca2+) in AD. APP is cut by β- and γ-secretases 

to yield Aβ peptides that form oligomers in the extracellular space. These Aβ oligomers can 

activate NMDARs or insert into the membrane to form Ca2+ permeable pores, leading to an influx 

of Ca2+. An overload of intracellular Ca2+ activates calpains and calcineurin and depletes ATP 

from the mitochondria. This leads to changes in synaptic plasticity and membrane integrity, 

which depolarizes the membrane, facilitating the activation of VGCCs. In the ER, presenilins 

form Ca2+ leak channels and increase the expression of SERCA. More Ca2+ is released from 

InsP3Rs and RyanRs. All of these cause altered Ca2+ signaling pathways that lead to synaptic 

loss, apoptosis and AD. Taken from (Supnet and Bezprozvanny, 2010). 
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5.1.2 APP Processing 

 To date the main focus of APP research has been on its relation to AD, 

specifically the Aβ product of metabolism. APP is, however, evolutionarily a highly 

conserved protein (Coulson et al., 2000) and must serve a function other than 

contributing to a devastating disease. Most of what is known of APP’s function has come 

from studying knockout mice. APP has been reported to be involved in neuronal 

migration (Young-Pearse et al., 2007), neurogenesis, (Ma et al., 2008), neurite growth 

(Sabo et al., 2003), cell movement (Sabo et al., 2001), spatial learning and long-term 

potentiation (Tremml et al., 1998). How APP mechanistically exerts these effects and 

how it behaves in a non-disease state remains elusive.  

 APP is a type-1 membrane protein comprising a large extracellular N-terminus, a 

one-pass transmembrane segment and a short, intracellular C-terminus region (Kang et 

al., 1987).  APP is metabolized by two independent pathways (De Strooper, 2010; 

Jacobsen and Iverfeldt, 2009), both involving a multitude of proteases (Figure 5.2). The 

non-amyloidogenic pathway, initiated by cleavage of APP by α-secretase (Postina, 

2012), does not cause the production of Aβ and thus is not considered to contribute to 

AD. Instead, the products of α-secretase cleavage yield the soluble N-terminus, sAPPα 

and the membrane-bound C83. C83 is then cut by γ-secretase generating p3 and the APP 

intracellular domain (AICD), which can travel to the nucleus and aid in gene transcription 

(Cao and Sudhof, 2001).  The amyloidogenic pathway begins when APP is cleaved by β-

secretase (Vassar et al., 1999). This releases the soluble N-terminus, sAPPβ, and leaves 

the membrane-bound C99 as a target for γ-secretase. C99 is cleaved by γ-secretase to 

release the AICD and one of two forms of Aβ (Esler and Wolfe, 2001). The more 
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common, non-disease causing product of Aβ is Aβ-40. If however, Aβ is cut to yield a 

42-residue peptide (Aβ-42), this disease form aggregates in the extracellular space 

leading to amyloid plaques (Iwatsubo et al., 1994), a hallmark symptom of AD. 

 All FAD APP mutations either flank or are located within the Aβ region, and are 

thought to disrupt normal processing by the secretases, creating more Aβ-42 (Wolfe, 

2012). Most of the other FAD mutations occur in presenilin, a component of γ-secretase, 

which will be expanded on below. Recently, a protective APP mutant was found in an 

Icelandic population that had a single residue substitution from an alanine to a threonine 

in the β-secretase cut site of APP. This decreased the incidence of AD in people and 

dramatically decreased secreted Aβ in HEK cells (Jonsson et al., 2012). The same 

mutation was found in a Finnish woman that lived to the age of 104 (Kero et al., 2013). 

This protective effect is proposed to work through inhibiting β-secretase cleavage of 

APP. 	
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Figure 5.2 Overview of APP processing. APP is first cleaved by α- or β-secretase, which leads to 

the secretion of N-terminal sAPPα or sAPPβ. The remaining C-terminal membrane-bound C83 or 

C99 are cleaved by γ-secretase, generating AICD and either p3 or Aβ. Taken from (Jacobsen and 

Iverfeldt, 2009). 

	
  

  

 γ-secretase is a multimeric complex consisting of presenilin, PEN-2, nicastrin, and 

APH-1 (Selkoe and Wolfe, 2007). Presenilin is the catalytic component of γ-secretase 

and many presenilin mutations lead to AD. Presenilin contains nine transmembrane 

segments and has two catalytic aspartate residues in S6 and S7 that come together to 

cleave membrane bound proteins (Li et al., 2013). While presenilin does not have a 
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defined cut site and has even been referred to as the “proteasome of the membrane” 

(Kopan and Ilagan, 2004), it is thought to predominately cleave type-1 membrane 

proteins after most of the ectodomain has been removed (Selkoe and Wolfe, 2007; Struhl 

and Adachi, 2000). The most studied substrates of γ-secretase are APP and Notch (Lathia 

et al., 2008). 

 Recently, new targets of γ-secretase have been identified, including ion channel 

subunits. The β subunit of the voltage-gated sodium channel NaV1.1 is cleaved by 

presenilin, driving transcription of the α1 subunit resulting in increased surface 

expression of NaV1.1 (Kovacs et al., 2010) and facilitating cell adhesion and migration 

(Kim et al., 2005). The KCNE1 and 2 subunits of voltage-gated potassium channels are 

also cleaved by presenilin (Sachse et al., 2013). While most of the known γ-secretase 

substrates are type-1 membrane proteins, the glutamate receptor subunit 3 is cleaved by 

γ-secretase in the membrane re-entry loop that forms the pore (Meyer et al., 2003). γ-

secretase cleavage of these proteins regulates many neuronal functions including synaptic 

transmission and cell excitability. It was found using PS-1 knockout hippocampal 

neurons that γ-secretase regulates spontaneous neurotransmitter release in a calcium 

dependent fashion (Pratt et al., 2011). γ-secretase is found at synapses and has been 

shown to modulate synaptic activity by cleaving and downregulating synaptic proteins 

(Restituito et al., 2011). Intriguingly, PS-1 knockout mice have increased L-type current 

(Cook et al., 2005). 
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5.1.3 L-type channel and Alzheimer’s Disease 

 In the hippocampus of AD brains there is increased expression of L-type channels 

and a lower cell density compared to healthy brains (Coon et al., 1999). L-type channel 

blockers have been shown to reduce symptoms of AD in in vitro cell systems, mice and 

humans. Verapamil, diltiazem, isradipine, and nimodipine all decreased Aβ42 toxicity in 

MC65 cells (Anekonda et al., 2011). A selective L-type channel blocker, S-312-d, 

rescued primary rat cortical neurons from Aβ-induced death (Yagami et al., 2004). 

Verapamil reversed Aβ-induced depression of long term potentiation in the hippocampus 

(Freir et al., 2003).  Nimodipine slowed progression of AD in a clinical trial (Lopez-

Arrieta and Birks, 2002; Tollefson, 1990). In an AD mouse model expressing two 

common FAD mutations, CaV1.2 expression in astrocytes increased along with increased 

Aβ plaques in an age-dependent manner (Willis et al., 2010). CaV1.2 current density was 

markedly reduced in hippocampal slice preps of a double AD mouse model, with knock-

in APP and presenilin mutants, compared to wild-type mice (Thibault et al., 2012). In 

APP-/- mouse striatum, CaV1.2 expression and Ca2+ currents were increased compared to 

wild-type and APP-/- mice in which APP was reintroduced using lentiviral infection 

(Yang et al., 2009). All of these findings point to a close association between CaV1.2 and 

AD, or at least CaV1.2 and proteins involved in AD such as APP and presenilin. 

 Our lab has shown that mid-channel proteolysis of CaV1.2 occurs in response to 

increased Ca2+ levels and channel activity. It is believed to be a regulatory mechanism to 

aid in the control of Ca2+ homeostasis. If Ca2+ levels go so awry in AD, it would follow 

that mid-channel proteolysis would try to compensate for the increased intracellular Ca2+. 

Mid-channel proteolysis and AD are both strongly correlated to age. CaV1.2 is important 
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for memory and neuronal plasticity, two functions that APP also seems to be involved in 

and which AD disrupts. What’s more, there seems to be a direct link between APP and 

CaV1.2, whereby APP levels augment Ca2+ influx through CaV1.2. Pharmacologically 

inhibiting CaV1.2 also reverses toxic effects of Aβ and slows the progression of AD in 

patients. Therefore, a reasonable hypothesis would be that CaV1.2 plays a role in AD and 

that mid-channel proteolysis would occur as a protective mechanism for the neuron.  
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5.2 RESULTS 

5.2.1 APP decreases L-type channel current and changes its biophysical properties 

 Based on reported observations (Yang et al., 2009), I wanted to confirm that APP 

causes a decrease in L-type channel current. Using Xenopus oocytes, I microinjected the 

human CaV1.2 channel, along with β3 and α2δ, with or without APP. I recorded peak 

currents 4 days post-injection between -10 mV and 0 mV. There was a dramatic decrease 

in peak current (~70%) when APP was coexpressed, indicating that APP inhibits the 

channel (Figure 5.3). 

 

 

Figure 5.3 APP inhibits CaV1.2 peak current. Peak Ba2+ currents of human CaV1.2, β3 and α2δ 

without (hL, N = 11) and with APP (hL + APP, N = 13). Currents were recorded at +10 mV in 

whole oocytes and averaged. Error bars represent SE. 

 

 

 There was also a +10 mV shift in the current-voltage relationship when APP was 

present (Figure 5.4 a).  This indicates that APP makes the channel harder to open, 
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positively shifting the activation voltage. There was also a +10 mV shift in the 

inactivation curve (Figure 5.4 b), revealing that APP decreased inactivation of the 

channel. Interestingly, the same +10 mV shift in both the inactivation and I-V curve was 

seen when complimentary pairs of fragment channels were coexpressed (Chapter 4, 

Figure 4.2).  

 

 

 

Figure 5.4 Biophysical changes to CaV1.2 in the presence of APP. (a) I-V curve of hL (blue , N 

= 49) and hL + APP (red Δ, N = 48). A +10 mV shift occurs when APP is present. (b) 

Inactivation curve of hL (blue , N = 10) and hL + APP (red Δ, N = 9). APP causes a decrease in 

channel inactivation. 

 

 

 Due to the similarity in biophysical properties to the fragment channels, perhaps 

the decrease in peak current could be caused by proteolysis of the channel. APP is itself 

robustly proteolyzed by three different proteases. One of these proteases, γ-secretase, is 

known to be highly expressed in oocytes (Tsujimura et al., 1997), because it is involved 
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in Notch processing and the polarization of the oocyte. A western of the oocytes 

confirmed that presenilin-1 is indeed endogenously expressed (data not shown).  

 

5.2.2 A ~100kD band appears in westerns when APP is coexpressed with CaV1.2 

 To investigate whether the channel was being proteolyzed in the presence of APP, 

a Western was done on oocytes (N = ~40/group) injected with human CaV1.2 (hL), β3, 

and α2δ with or without APP. Oocytes were biotinylated 4 days post-injection and both 

the surface proteins and cytosolic proteins were collected. Each group of oocytes showed 

the predicted 240 kD band indicating full-length CaV1.2. However, in the group of 

oocytes also expressing APP, a ~100 kD band appeared in both the surface and cytosolic 

preparations (Figure 5.5). It appeared that the channel was being cut when APP was 

present. Perhaps APP was colocalizing with the channel and targeting one of the 

secretases to the channel. A likely candidate for a protease is γ-secretase for reasons 

previously mentioned. I wanted to test if inhibiting γ-secretase would change the 

occurrence of this ~100 kD band.  
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Figure 5.5 APP causes the appearance of a ~100 kD band in Western blots. Western blots of 

oocyte lysates stained with anti-CaV1.2 II-III loop antibody (Sigma). (a) Membrane proteins from 

oocytes injected with hL, β3 and α2δ with or without APP. Membrane proteins were separated 

using ultracentrifugation. N = ~ 40 oocytes. (b) Total cell lysate from oocytes injected with hL, β3 

and α2δ with or without APP. N = ~ 40 oocytes. 

 

 

5.2.3 DAPT reverses the effect on current and proteolysis 

 DAPT, N-[N-(3,5-Difluorophenyl)-L-alanyl]-D-phenylglycine t-butyl ester, is a 

potent and specific γ-secretase inhibitor that blocks the catalytic site in presenilin. I added 

DAPT to the oocyte media two days post-injection (two days pre-recording/ isolation) for 

a final concentration of 10 µM. If APP is needed to target γ-secretase to the channel for 

cleavage, thus causing a decrease in channel function, then the addition of DAPT should 

reverse the currents to levels seen when APP is not expressed. This is indeed what I 

observed. DAPT was applied to the media of oocytes injected with hL and oocytes 

injected with both hL and APP. Without DAPT, the decrease in current was observed 

when APP was coexpressed (Figure 5.6 a). This effect was completely reversed when 



 100	
  

DAPT was applied to oocytes expressing both hL and APP (Figure 5.6 a). There was a 

small effect of DAPT on L-type currents when APP was not coexpressed. This result is 

consistent with the hypothesis that γ-secretase is being targeted to CaV1.2 by APP and 

then cutting the channel, since inhibition of γ-secretase prevents the APP-induced 

decrease in peak current amplitude. 

 DAPT did not have as dramatic an effect on the I-V curve. While APP still shifted 

the I-V curve +10 mV, DAPT only partially reversed this to ~+5 mV (Figure 5.6 b). 

DAPT applied to oocytes that only expressed hL had the same +5 mV shift however, 

indicating that DAPT itself has an effect on the current-voltage relationship of the 

channel. It is not clear if this is due to an inhibition of proteolysis, or if it is a 

pharmacological effect on the channel itself. Interestingly, DAPT had a huge effect on 

the inactivation properties of CaV1.2 coexpressed with APP. As seen before, the addition 

of APP slowed down inactivation (Figure 5.6 c), shifting the inactivation curve by 

approximately +10 mV. DAPT treatment reversed this effect, and actually increased 

inactivation beyond that of hL expressed alone (Figure 5.6 c). The addition of DAPT 

caused 80% of channels to inactivate compared to ~60% of channels observed previously 

at the same voltages. If γ-secretase is cutting the channel and decreasing channel 

inactivation, it is possible that even without APP present there is a basal level of 

proteolysis by γ-secretase that is abolished by DAPT. 

 To confirm that DAPT was preventing the proteolysis of the channel, I ran a 

Western on the oocytes treated with DAPT to see if the presence of the ~100 kD was 

abolished. In two independent experiments, the addition of DAPT to the media of oocytes 

injected with both hL and APP resulted in the complete absence of the ~100 kD band 
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(Figure 5.6 d).  There were a few new bands that appeared in these gels (at ~130 kD and 

~200 kD), but the ~100 kD band was only present in the oocytes expressing APP without 

DAPT treatment.  

 It now seems likely that γ-secretase cleaves CaV1.2, which results in a current 

decrease as well as a slower and decreased inactivation. APP, a known γ-secretase 

substrate, might somehow interact with or colocalize with the channel, targeting γ-

secretase to CaV1.2 to increase the chances of this proteolysis. This result leads to the 

question of whether this is a L-type channel specific effect, or if APP would induce this 

cleavage on any calcium channel. 
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Figure 5.6 DAPT reverses the effect APP has on CaV1.2. (a) Peak Ba2+ currents of hL, β3 and α2δ 

without (hL, N = 11), with APP (hL + APP, N = 13), with DAPT (hL + DAPT, N= 10) and with 

APP and DAPT (hL + APP + DAPT, N = 12). Currents were recorded at +10 mV in whole 

oocytes and averaged. (b) I-V curve of hL (blue, , N = 15), hL + APP (red, Δ, N = 13), hL + 

DAPT (green, , N = 10) and hL + APP + DAPT (black, ✕, N = 12). A +10 mV shift occurs 

when APP is present. 24 hour DAPT treatment with or without APP have the same + 5 mV shift 

on the channel’s current-voltage relationship. All error bars represent SE. (c) Inactivation curve 

of hL (blue , N = 10), hL + APP (red Δ, N = 9), and hL + APP + 24 hour DAPT treatment 

(black, , N= 4). APP slows the inactivation of the channel, while DAPT markedly reverses this, 

beyond untreated hL. All error bars represent SE. (d) Western blots of membrane fractionated 

lysates taken from two batches of oocytes injected with hL, hL + APP, and hL + APP treated with 

10 µM DAPT for 24 hours. The ~100 kD band only appears when APP is coexpressed with 

CaV1.2 and disappears when oocytes are treated with DAPT. 
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5.2.4 The ~100kD band occurs with rat CaV1.2 but not PQ channel 

 If γ-secretase cleaves the human CaV1.2, and this is a L-type channel specific 

phenomenon, it should also cleave CaV1.2 channels from other species. To test this, rat 

CaV1.2 (ratL) was injected into oocytes with or without APP and four days later oocytes 

were isolated for Western blot analysis. The same ~100 kD band that was produced when 

hL was expressed was also seen with ratL (Figure 5.7 a). Therefore, this APP-induced 

proteolysis seems to happen to CaV1.2 channels in general. Next, I wanted to determine if 

APP-induced γ-secretase proteolysis is specific to L-type calcium channels. Does co-

expression of APP with another type of voltage-gated calcium channel cause the same 

proteolysis pattern? I injected oocytes with rabbit P/Q-type channel with and without 

APP and isolated the oocytes four days later for Western blot analysis. No difference in 

band patterns was seen between the two groups (Figure 5.7 b) and there was no band 

visible around 100 kD. It therefore seems likely that this is a L-type specific effect. 
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Figure 5.7 The ~100 kD band is L-type specific. (a) Western blots stained with anti-CaV1.2 II-III 

loop antibody (Sigma). Membrane fractionated lysates from oocytes injected with Rat L (ratL) or 

Human L (hL) with (+) out without (-) APP. The ~100 kD band appears (arrow) with both the rat 

and human L-type channel when APP is present. (b) Membrane fractionated lysates from oocytes 

injected with rabbit P/Q-type channel with (+) out without (-) APP. The ~100 kD band does not 

appear (arrow) when APP is present. 

 

 

5.2.5 Potential cut sites on the channel – mutations change cleavage pattern 

 As mentioned in the introduction, presenilin is a promiscuous protease, not having 

a particular “cut site”. The location that it cuts APP however, is well characterized and 

contains the residues TVIVIT. I aligned the sequence of many CaV1.2 channels and found 

they all contain the residues IVIVT within a well-conserved region of the channel (Figure 

5.8 a). These residues mirror the APP γ-secretase cut site. Moreover, this site is not 

conserved in any other of the voltage-gated calcium channels, strengthening the 

possibility that this is a CaV1.2 specific effect. These residues also occur in a region of 
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the channel that, if cut, would produce a band with the predicted molecular weight of 115 

kD (Figure 5.8 b), close to the observed ~100 kD band in my Western blots. 

 Mutating these residues could determine whether this is the region presenilin cuts 

CaV1.2. I first mutated all four residues to alanine (hL 4xAla) and expressed the mutant 

channel with APP in oocytes, along with the controls of wild-type hL with and without 

APP. The protein was isolated four days later for Western blot analysis. Surprisingly, the 

4xAla mutation did not decrease proteolysis (Figure 5.8 c). It appeared that this was not 

the cut site, since changing the residues to alanines is a severe mutation to the cut site. 

However, the putative site was modeled after the APP γ-secretase site, and γ-secretase 

has other substrates. Notch, another well described γ-secretase substrate, is cut at a site 

containing four alanines (Selkoe and Kopan, 2003). This could explain why the hL 4xAla 

channel did not abolish proteolysis. Therefore, I decided to try different mutations to the 

same site, one changing the two isoleucines to valines (hL 4xVal) and the other changing 

the two valines to isoleucines (hL 4xIle). This time the band was completely missing in 

the valine and isoleucine substitution mutants (Figure 5.8 c). It now seems likely that this 

is the site presenilin is cutting the channel. 
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Figure 5.8 Mapping the potential cut site in CaV1.2. (a) Top: Amino acid alignment of CaV1.2 

channel from rat, mouse, rabbit and human. Conserved residues shown (*) and residues 

comprising the putative cut site in red. Bottom: Amino acid alignment of different VGCCs from 

rat. Conserved residues shown (*). The putative cut site is only present in CaV1.2. (b) Topology 

of CaV1.2 and putative cute site region shown in red box. II-III loop antibody residues (green) and 

molecular weight of channel from N-terminus to putative cut site indicated. (c) Western blots 

stained with anti-CaV1.2 II-III loop antibody (Sigma). Membrane fractionated lysates from 
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oocytes injected with wild-type hL, β3, α2δ, +/- APP or with hL mutants + APP. The ~100 kD 

band only appears when wild-type hL and hL 4xAla are coexpressed with APP. hL 4xVal and hL 

4x Ile do not produce the ~100 kD band, and look similar to hL without APP. 

 

 

5.2.6 APP-induced proteolysis is not reproducible in neurons 

 Having demonstrated APP-induced proteolysis of CaV1.2 by γ-secretase in 

oocytes, I focused on reproducing the result in a more physiological relevant system. 

Since the interaction between APP and CaV1.2 has implications for Alzheimer’s disease 

(AD), and AD is a disease affecting the brain, the next logical step was to move into 

neuronal models. An added benefit of this model is that CaV1.2, APP, and all of the 

components of γ-secretase are endogenously expressed in neurons. Therefore, I could 

observe what happens to endogenous channels in cortical slices and hippocampal neurons 

after treatment with DAPT. 

 Using rat cortical slices is an efficient way to see if the ~100 kD band is present 

under normal conditions and whether DAPT is able to reverse this effect. Cortical slices 

were collected from one adult rat (~6 weeks old) and split into three groups: control, KCl 

+ BayK, and KCl + BayK + DAPT. In case APP-induced proteolysis is dependent on 

channel activity or calcium influx, 65 mM KCl and 14µM BayK8644 was added to the 

artificial cerebral spinal fluid (ACS) to activate the channel. The same condition plus the 

addition of 100 µM DAPT was used on another group of slices to block any activity-

dependent APP-induced γ-secretase proteolysis of the channel. After 20 minutes of 

treatment, slices were biotinylated to label surface proteins. After cytosolic and surface 
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proteins were separated using streptavidin beads (Thermo), samples were analyzed by 

Western blot to see if the DAPT treatment prevented the proteolysis of the channel. Two 

bands were observed, one at ~140 kD and one at ~110 kD. There was not a significant 

DAPT effect on the ~110 kD band (Figure 5.9 a), as this band did not change 

considerably from the KCl + BayK group. This ~110 kD band was slightly larger than the 

~100 kD band seen in oocytes, but this could be due to the change in model systems. 

There was, however, a decrease in the intensity of ~140 kD band after DAPT treatment. 

Surprisingly, the KCl + BayK treatment did not enhance 140 kD proteolysis in these 

samples. It is possible that a 20-minute DAPT treatment was not long enough to see an 

effect. After all, the oocytes were exposed to DAPT for 48 hours before they were lysed 

for Western blot analysis. If longer treatment is required to see a DAPT effect on CaV1.2 

proteolysis, then it is not be possible to uses cortical slices because they do not live for 

longer than 8 hours after isolation. Cultured hippocampal neurons are a better choice.  
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Figure 5.9 CaV1.2 proteolysis patterns in rat neurons. Western blots stained with anti-CaV1.2 II-

III loop antibody (Sigma). (a) Slices from a 6-week old rat treated in parallel with DMSO 

(control), 65 mMKCl + BayK8644, or 65 mM KCl + BayK8644 + 50 µM DAPT for 30 minutes. 

Samples were biotinylated and surface proteins are shown. Proteolysis patterns look similar 

between all three treatment groups.  (b) Cultured hippocampal neurons from E17-19 rats treated 

on DIV 14 in parallel with DMSO (control), 65 mMKCl + BayK8644, or 65 mM KCl + 

BayK8644 + 50 µM DAPT for 30 minutes. Samples were biotinylated and surface proteins are 

shown. Proteolysis patterns look similar between all three treatment groups. 

 

 

 Using the same strategy on embryonic rat hippocampal neuron cultures, it would 

be possible to see if this ~100 kD band appears under normal circumstances, and if so, 

whether it is abolished or reduced with DAPT treatment. Cultured neurons have the 

benefit of being able to be treated for any duration of time before isolating the protein. 

Neurons were cultured for 10 days according to normal conditions. On day 11, one plate 

was treated with DAPT (50 µM final concentration). 48 hours later, the DAPT treated 

plate and an untreated plate were treated with KCl and BayK for 20 minutes. A control 

plate was treated with DMSO. After this treatment, neurons were biotinylated and 
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collected for Western blot analysis. The same band pattern that appeared with the cortical 

slices was present in the hippocampal neurons (Figure 5.9 b). Unfortunately, there was 

not a significant change in any of the bands between treatment groups. Perhaps DAPT 

was degraded in the neuronal media after such a long time. This experiment was then 

repeated testing DAPT treatment at 12 and 24 hours, but the results were the same. 

DAPT treatment did not seem to change the amount of ~110 kD band that appeared. One 

explanation for the DAPT effect being observed in oocyte experiments is that APP was 

exogenously expressed. Perhaps the high level of endogenous APP present in neurons 

makes it difficult to observe a change.  

 

5.2.7 APP-/- brain slices and neurons 

 If the co-localization of APP and CaV1.2 is necessary for targeting γ-secretase to 

the channel, APP knockout animals should have little to no proteolysis of CaV1.2. We 

therefore decided to compare WT and APP-/- mice brain homogenates. In very young 

mice (P7-9), there was no proteolysis of CaV1.2 in either the WT or the APP-/- mice 

(Figure 5.10 a). This came as a surprise, since a 150 kD band has always been seen in rat 

brain of all ages (Chapter 3 and Appendix). There was an equal amount of presenilin in 

both brains, and it was confirmed that there was no APP protein in the APP-/- brain 

(Figure 5.10 a). 
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Figure 5.10 Comparing proteolysis patterns of CaV1.2 in wild-type (WT) and APP-/- mice. (a) 

Brain homogenate from mice (P7-9). Anti-CaV1.2 (top) only reveals full-length channel in both 

WT and APP samples. APP, β-actin and presenilin-1 levels indicated for both WT and APP-/- 

samples. (b) Hippocampal neuronal cultures (DIV 14) from WT and APP-/- mice. Samples were 

split into cytoplasmic (C) flow-through fractions and surface (S) biotinylated fractions. Anti-

CaV1.2 reveals the ~100 kD band in surface fractions of WT neurons but not in APP-/- neurons. 

Anti-APP shows APP levels in both WT and APP-/- neurons. 

 

 

 I next wanted to see whether culturing these neurons in vitro would induce the 

proteolysis so often observed in rat hippocampal neurons. Performing side-by-side 

cultures of P0/P1 WT and APP-/- mice, I plated hippocampal neurons under normal 

culture conditions and let them grow for 14 days. At that point, neurons from both groups 

were biotinylated and processed for western blots. The cytosolic samples from both mice 

showed no difference in the proteolysis pattern of CaV1.2. Interestingly, the surface 

samples showed a dramatic difference. WT surface CaV1.2 was highly proteolyzed with 

distinct bands at ~140 kD and ~100 kD (Figure 5.10 b). These bands were completely 
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absent in the APP-/- surface sample. Consistent with this observation, there appeared to 

be slightly more full-length CaV1.2 in the APP-/- mice. As expected, there was no APP 

present in the APP-/- neurons. 

 Why these bands would be so heavily expressed on the surface, but not present at 

all in the cytoplasmic pool could be explained by a protein concentration issue. Only 1% 

of the total cytoplasmic sample was loaded onto the gel, whereas 10% of the surface 

sample was loaded. Regardless, the protein levels between the two different mice were 

equal, so the difference in surface fragments is significant. Having observed APP-

induced proteolysis of CaV1.2 in mouse cultures, APP-/- neurons can be used to transfect 

different forms of APP and measure endogenous CaV1.2 proteolysis patterns. 

 

5.2.8 There is no proteolysis in HEK 293 cells 

 Hippocampal neurons have only a 5-10% transfection efficiency and are therefore 

not suitable for Westerns on transfected proteins. Therefore, in order to perform co-

immunoprecipitations (co-IPs) to test the association between APP and CaV1.2, as well as 

Westerns to look at differences in CaV1.2 proteolysis in response to different APPs, a 

heterologous system must be used. Due to the seasonality of oocytes as a model system, a 

more reliable model system is the HEK293-β3α2δ stable line.  

 Cells were either untransfected, transfected with hL, or transfected with both hL 

and APP. In all cases, cytoplasmic and surface protein samples were collected. There did 

not appear to be any marked proteolysis of hL in the cytoplasmic (flow-thru) samples and 

there were no proteolysis products detected in the surface protein samples regardless of 
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whether APP was coexpressed (Figure 5.11). It appears that the proteolysis that occurs in 

neurons and oocytes does not occur in HEK 293 cells. Perhaps the necessary, and 

unknown, proteases and auxiliary proteins are not endogenously expressed. 

 

 

Figure 5.11 CaV1.2 proteolysis is absent in the HEK293 β3-α2δ stable line. Western on 

biotinylated samples collected from cells transfected with hL with or without APP. Cytosolic 

(flow-thru) and surface proteins stained with anti-CaV1.2 II-III loop antibody, anti-APP anti-

body, and anti-β-actin antibody. There is little to no proteolysis of hL and no difference in hL 

proteolysis patterns when APP is coexpressed. HEK293 cells have a small amount of endogenous 

APP found in cytosolic fractions, which is absent in surface fractions. Only transfected HEK293 

cells have surface APP. 
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5.2.9 APP and hL do not co-IP in HEK cells or oocytes 

 Based on observations that APP and CaV1.2 co-immunoprecipitate from HEK 293 

cells and mouse brain (Yang et al., 2009), and that APP induces a change in channel 

current, there is a strong possibility that APP and CaV1.2 are directly interacting. To test 

this hypothesis, I tagged hL with a flag tag on the N-terminus (Flag-hL) and tagged APP 

with a HA tag on the N-terminus (HA-APP) and both were transfected into the HEK293-

β3α2δ stable cell line. Even if CaV1.2 proteolysis does not occur in HEK 293 cells, APP 

and hL may still interact in this system. Using Flag or HA beads (Sigma) I was able to 

purify the transfected proteins from the cell lysates. If there was any interaction between 

the two proteins, HA-APP should be pulled down with the Flag beads and Flag-hL pulled 

down with the HA beads. Strangely, when HA-APP was coexpressed with Flag-hL, it 

was no longer pulled down by HA beads (Figure 5.12 a and b). This also happened in a 

repeat experiment, suggesting that the presence of the channel either impeded the HA tag 

from binding to the beads or induced proteolysis of the N-terminus off APP. Flag-hL was 

not pulled down with HA-APP, most likely for one of the same reasons. 

 To circumvent this issue, I moved the HA tag to the C-terminus of APP. In this 

case, HA-APP was pulled down by the HA beads, however Flag-hL was not pulled down 

with it in HEK293-β3α2δ cells (Figure 5.12 c). Because APP had such a robust effect on 

hL current in oocytes, they might serve as a better model system for looking at 

interactions between the proteins. Surprisingly, the same result was observed in oocytes 

(Figure 5.12 d). Therefore, it appears that the two proteins do not directly interact. 
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However, this does not rule out an indirect interaction, since HEK293 cells and oocytes 

may not express the other proteins necessary for an interaction to occur. 

 

Figure 5.12 There is no apparent association between hL and APP. (a and b) Co-IPs with N-

terminally HA tagged APP in HEK293 β3-α2δ stable line. When Flag-hL is coexpressed with 

HA-APP, HA-APP can no longer be pulled down with HA beads. Flag-hL is not pulled down 

with HA-APP using HA beads. HA-APP appears to be pulled down with Flag-hL, but is pulled 

down at the same rate with Flag beads and no Flag-hL present, indocating this is background 

APP. (c) Co-IP with C-terminally HA tagged APP in HEK293 β3-α2δ stable line. HA beads pull 

down APP-HA when alone or coexpressed with Flag-hL. Flag-hL is not pulled down with APP-

HA by HA beads. APP-HA is pulled down by Flag beads when Flag-hL is not expressed 

indicating this is background binding. APP and hL do not appear to associate in HEK293 cells. 

(d) Co-IP of C-terminally HA tagged APP and Flag-hL isolated from injected Xenopus oocytes. 

Flag-hL is not pulled down with APP-HA by HA beads. APP-HA is not pulled down by Flag-hL 

with Flag beads. APP and hL do not appear to associate in oocytes.   

 



 116	
  

5.2.10 Effect of APP mutants on CaV1.2 current in oocytes 

 Many different mutations in APP are linked to Familial Alzheimer’s disease 

(FAD). One particularly well studied FAD APP mutant has a valine to phenylalanine 

(V642F) mutation in the γ-secretase cut site (Goate et al., 1991). This mutation causes γ-

secretase to cut APP at a site that releases more of the toxic Aβ42, eventually causing 

more Aβ plaques. On the other hand, the APP mutation that seems to have a protective 

effect against Alzheimer’s disease (Jonsson et al., 2012) forces APP to undergo the non-

amlyoidogenic pathway of proteolytic processing by α-secretase. Since wild-type APP 

has such a dramatic effect on CaV1.2 current, I wanted to investigate whether mutations 

to APP altered this effect. Indeed, the FAD mutant APP_V642F further decreased hL 

current when coexpressed in oocytes (Figure 5.13 a). Even more interesting was that this 

decrease in peak current amplitude was partially rescued when hL was coexpressed with 

the protective mutant, APP_A598T (Figure 5.13 a). While the FAD mutant shifted the I-

V curve to the right, the protective mutant did not reverse the effect wild-type APP had 

on the current-voltage relationship of hL (Figure 5.13 b). 

 If the decrease in hL peak current when APP is present is due to the channel being 

cut, and the FAD mutant enhances this effect while the protective mutant dampens it, one 

would expect that the amount of ~100 kD band would vary accordingly. However, when 

a Western was performed on the lysates of oocytes injected with hL and APP, 

APP_A598T, or APP_V642F, no difference was seen in the intensity of the ~100 kD 

band in any of the groups injected with APP variations (Figure 5.13 c). Of greater 

concern was the observation that when samples are stained with an antibody against APP, 

the band appears at the same ~100 kD molecular weight. Is it possible that the CaV1.2 II-
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III loop Sigma antibody is somehow recognizing APP? The antibody epitope shares four 

consecutive residues in common with APP, not usually enough to elicit a reaction. To test 

this possibility, oocytes were injected with just APP and run on a Western against 

samples injected with both the channel and APP variations. Indeed, the ~100 kD band 

appeared in the sample where no channel was present and only APP was expressed 

(Figure 5.13 d). This raises the possibility that the ~100 kD band observed in oocytes is 

actually APP. 

 

 

 

 

 

	
  
	
  



 118	
  

 

Figure 5.13 APP mutants’ effect on current and proteolysis of hL. (a) Peak Ba2+ currents of hL, 

β3 and α2δ without (hL, blue, N = 11), with APP (hL + APP, red, N = 13 ), with protective APP 

(hL + A598T, green, N= 17) and with FAD APP (hL + V642F, purple, N = 10). Currents were 

recorded at +10 mV in whole oocytes and averaged. Error bars represent SE. Peak current of hL 

was reduced by the presence of wild-type (WT) APP and dramatically reduced by the presence of 

FAD APP mutant (V642F). The protective APP mutant, while still reducing current, partially 

rescued the effect of WT APP. (b) I-V curve of hL (blue, N = 15), hL + APP (red, N = 13), hL + 

APP_A598T (green, N = 10) and hL + APP_V642F (purple, N = 12). A +10 mV shift occurs 

when WT APP is present and a +20 mV shift occurs with FAD APP mutant (V642F). The 

protective APP mutant (A598T) has the same effect as WT APP. All error bars represent SE. (c) 

Western blot of membrane fractionated lysates taken from oocytes injected with hL, hL + WT 

APP, hL + APP protective mutant (A598T) and hL + APP FAD mutant (A598V). The ~100 kD 

band appears with equal intensity when any version of APP is coexpressed with CaV1.2. APPs are 

expressed at equal levels in all samples (white blotches on black background). (d) Western blots 

of membrane fractionated lysates taken from uninjected oocytes, oocytes injected with just hL, 

just APP, hL + APP, and hL + protective mutant APP (A598T) stained with anti-CaV1.2 II-III 

loop antibody (Sigma). The ~100 kD band appears when APP is expressed, regardless of whether 

hL is expressed. 
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5.2.11 Imaging reveals APP-dependent proteolysis of CaV1.2 in neurons  

 While Western blots from cortical slices, neurons, HEK 293 cells and oocytes 

remain inconclusive, the functional data points to possible proteolysis of the channel. 

Another way to examine this is using the imaging method described in Chapter 3. 

Transfecting LGH3 (Chapter 3, Figure 3.2 a) into neurons along with different forms of 

APP would allow visualization of the channel separating on the membrane if it is indeed 

cut. The channel is tagged with an intracellular GFP on the N-terminus, so LGH3 in the 

cytosol and on the membrane will glow green (Figure 5.14 a left). Only channel that is on 

the plasma membrane will be stained with the HA antibody, and therefore red signal 

represents surface LGH3 (Figure 5.14 a middle). Quantifying the overlay of signals 

(Figure 5.14 a right) would give a non-colocalization index (NCI) for each group of 

neurons. This method also does not require the use of the Sigma II-III loop antibody, so 

there is limited risk in non-specifically staining APP.  

 When LGH3 was coexpressed with wild-type APP, there was no significant shift 

in the NCI from when LGH3 was expressed alone (Figure 5.14 b). This is not surprising, 

since neurons have a high level of endogenous APP expression, the LGH3 expressed 

alone could still be interacting with native APP. Interestingly, when LGH3 was 

coexpressed with the protective mutant of APP, APP_A598T, the NCI shifted to the left 

(Figure 5.14 b), indicating less red/green separation on the membrane, and hence less 

proteolysis. The same effect was seen in another batch of neurons (Figure 5.14 c). Even 

more striking was the NCI shift when LGH3 was coexpressed with an FAD mutant, 

APP_A598V. This mutant caused a dramatic NCI shift to the right, indicating greater 

proteolysis of the channel (Figure 5.14 c). 
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Figure 5.14 APP FAD and protective mutant effects on the separation of surface LGH3. (a) 

Representative hippocampal neuron expressing LGH3 and APP. Left: GFP representing total 

LGH3. Middle: HA-Alexa 594 representing surface LGH3. Right: Overlay, yellow representing 

surface channels containing GFP and red representing surface channels without associated GFP. 

(b) Graph displaying the red/green ratio of LGH3 in transfected neurons alone (Ctrl), with wild-

type APP (APPwt), with the APP protective mutant (A598T) or a FAD APP mutant (A598V). 

Values greater than 1 represent increased separation of red and green, signifying mid-channel 

proteolysis. 
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5.3 DISCUSSION 

 My studies show that APP has an effect on CaV1.2 current (Figure 5.3-4). 

Reduction of Ca2+ current from L-type VGCCs when APP is present has previously been 

shown in mouse neurons (Yang et al., 2009), however the shift in the current-voltage 

relationship and inactivation properties is a new finding. Even more interesting, I found 

that the FAD APP mutants further enhance APP’s effect on channel current (Figure 

5.13). Astonishingly, the recently discovered APP protective mutant (APP_A598T) 

partially reversed the inhibition APP induced on the channel, displaying a restorative 

effect on channel function (Figure 5.13). Another very interesting observation was that 

inhibiting presenilin-1 has a dramatic effect on CaV1.2 current, as DAPT completely 

reversed the APP-induced current inhibition (Figure 5.6 a). While the APP_A598T effect 

could be considered incompatible with the DAPT effect, it shouldn’t be. Perhaps 

decreasing β-secretase cleavage leads to a decrease in γ-secretase recruitment, since γ-

secretase prefers to cut proteins that have already shed their ectodomians. The amount of 

soluble Aβ released could also be what is inhibiting channel function since DAPT and the 

protective mutant prevent Aβ from being released, however after applying conditioned 

media containing Aβ no change was found in peak current (data not shown). 

 That I was unable to show an association between APP and CaV1.2 is 

disappointing (Figure 5.12). However, negative data is never conclusive. One reason 

could have been that the system I used prevented me from being able to observe an 

interaction. For example, the HA- and Flag- tags tethered to the proteins could have 

interfered in their interaction. I did show that the placement of the tag on APP was very 

important to be able to pull down APP. The two proteins could also interact in a more 
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transient manner, or could perhaps interact through auxiliary proteins. Perhaps it is one of 

the many APP fragments (Figure 5.2) that interacts with the channel to inhibit current, 

and that fragment was not tagged. Additionally, APP could be interacting with another 

protein that in turn affects the channel current. It has been reported that APP and CaV1.2 

directly interact since they were able to be co-precipitated in HEK 293 cells and whole 

brain lysate (Yang et al., 2009). However, an important detail to note is that the authors 

of this paper pulled down the channel with an antibody against the same epitope as the II-

III loop Sigma antibody, an antibody I found to non-specifically stain APP. If APP can be 

stained by the antibody, the antibody must bind to APP, and therefore would pull APP 

down regardless of the channel being present. The authors did not do the proper control 

experiment of a co-IP using the CaV1.2 II-III loop antibody on cells only transfected with 

APP. Therefore, the notion that these two proteins interact, while plausible, is still not 

substantiated by experimental evidence. 

 Unfortunately, no conclusive evidence of proteolysis besides the separation in 

imaging experiments (Figure 5.14) could be gained. While the I-V curve and inactivation 

profile of CaV1.2 in the presence of APP looks very similar to that of the fragment 

channels (Chapter 4, Figure 4.1), more experiments need to be done to see whether APP 

is stimulating proteolysis of the channel. APP at first seemed to induce the proteolysis of 

CaV1.2 in oocytes, causing the appearance of a ~100 kD band in Western blots (Figure 

5.5). Unfortunately, it was later found that APP is a non-specific target of the CaV1.2 II-

III loop Sigma antibody (Figure 5.13 d), and therefore the ~100 kD band in Western blots 

could possibly be APP. Strangely, DAPT reversed the appearance of this band in oocytes 

(Figure 5.6 d), while APP levels remained similar. Also puzzling was the effect of the 
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cut-site mutants on the appearance of the ~100 kD band (Figure 5.8 c), considering all 

mutants were coexpressed with the same levels of APP. Therefore, this band could still 

be the channel and more experiments should be done with different antibodies to 

determine this. If this band is actually full-length APP, its disappearance with DAPT and 

the channel mutants could signify that the channel is somehow regulating the expression 

of APP. The inability to generate this ~100 kD band in HEK 293 cells was not surprising. 

Other, unknown proteins not endogenously expressed in HEK 293 cells could be needed 

for proteolysis to take place. Primary neurons and cortical slices did show a ~110 kD 

band, however it was not as easily manipulated with DAPT treatment (Figure 5.9). 

Optimal DAPT concentration and treatment time can vary in neurons, so perhaps more 

experimental variations should have been tested. This band was absent in APP-/- neurons 

(Figure 5.10) suggesting it is APP induced, but this could also be due to nonspecific 

antibody staining. 

 Mid-channel proteolysis of CaV1.2 changes with age and happens in response to 

channel activity and increased intracellular Ca2+. AD is an age-dependent disease that is 

characterized by disrupted Ca2+ homeostasis. Both processes involve multiple proteases. 

It is a rational hypothesis to investigate whether there is a link between the two. Clearly, 

APP and presenilin exert an inhibitory effect on the L-type channel, however the 

mechanism remains to be uncovered. Whether or not APP induces proteolysis of the 

channel or presenilin cleaves the channel remains to be resolved. More experiments are 

necessary, in different model systems, to identify what other proteins could be involved 

and how APP, presenilin and CaV1.2 interact with each other to change channel function.  
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Chapter 6  

Concluding Remarks and Future Prospects 

	
  

6.1 Mid-channel Proteolysis of CaV1.2 

 Our lab has uncovered a new form of L-type channel regulation that involves the 

proteolysis of the channel in the main body of the α1 subunit in response to increased 

intracellular calcium, channel activity and age of the animal. In Chapter 3, I addressed the 

effect this proteolysis has on the function of the channel. I found that the immediate 

effect of a protease cutting the channel in the intracellular loops is a shift in gating 

properties, however over a longer time scale, proteolysis dramatically decreased channel 

current. This is possibly due to a separation of the fragments on the membrane, since it 

was determined that fragment channels can still traffic to the membrane and function. 

One caveat to these experiments was they measured a channel that was engineered with a 

cut site for the protease of my choice. Therefore, many questions remain about the 

functional effect of the actual endogenous protease responsible for CaV1.2 mid-channel 

proteolysis. Proteolysis was reduced, but not abolished, when calpains were inhibited, 

signaling another protease must be involved. More experiments are necessary to decipher 

the protease(s) responsible for mid-channel proteolysis and to uncover the precise 

cleavage site on the α1 subunit.  

 Mid-channel proteolysis appears to be a novel form of CaV1.2 regulation. It will 

be interesting to see whether other channels, such as voltage-gated sodium channels, are 

regulated in the same manner. There are also a myriad of co-factors yet to be discovered 
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that aid in this regulation. We have already shown that ubiquitin and the PEST sequences 

on α1 are involved. The CaV1 C-terminal proteolysis involved in β-adrenergic regulation 

was discovered in 1991 (Catterall, 1991), and papers are still being published today 

parsing out the details of this complicated mechanism. Perhaps we have only scratched 

the surface of how mid-channel proteolysis is initiated and how it ultimately regulates 

intracellular Ca2+ levels. 

 

6.2 The Fate and Function of Fragment Channels 

 Mid-channel proteolysis creates fragment channels that can remain on the plasma 

membrane. In Chapter 4, I was able to show that fragment channels formed from cuts in 

any of the three intracellular loops can still function when properly paired with one 

another. Moreover, one set of improperly paired fragment channels produced current, 

albeit very little. Intriguingly, all three sets of fragment channel exhibited the same shift 

in inactivation and their current-voltage relationship. Some fragments were also able to 

impact the function of the full-length channel and almost all fragments interacted with 

either the channel complex or α1 itself. These results are not entirely consistent with work 

done on other constructed channel fragments (Raghib et al., 2001), however those N-type 

fragments were less physiologically relevant considering they were modeled after P/Q-

type channel disease truncations. In contrast, we have shown that the L-type channel 

undergoes mid-channel proteolysis under normal conditions in vivo, and therefore the 

fragment channels that result are physiologically relevant. To my knowledge, these are 

the first experiments done to assess the functionality of L-type fragment channels.  
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 The dominant negative effect of fragment C2 leaves many unanswered questions. 

What is the nature of C2’s inhibitory effect? It binds to the channel complex, but does 

this decrease surface expression by interfering with trafficking? Perhaps it binds to the 

full-length channel in the ER and triggers the unfolded protein response causing 

degradation (Page et al., 2004). It could also bind to the channel on the cell surface and 

prevent it from opening. Is the inhibition a result of the C-terminus or the entire C2 

fragment? It is known that the distal C-terminus binds to the proximal C-terminus and 

inhibits the channel (Hulme et al., 2006). Recently it was reported that the distal C-

terminus interferes with full-length channel transcription and overall protein expression 

(Bannister et al., 2013). These questions can be answered by looking at the surface 

expression of the full-length channel in the presence of C2. To narrow down the region 

on C2 responsible for CaV1.2 inhibition, C2 can be further truncated. Full-length channel 

function and surface expression can then be measured when the channel is coexpressed 

with these new variations of C2.  

 Collectively, my results demonstrate how the result of mid-channel proteolysis 

can impact CaV1.2 functionality and intracellular Ca2+ levels. While the ultimate fate of 

these fragments is still uncertain, their temporary existence allows them to form 

functional channels and interact with full-length channels on the membrane to alter gating 

properties. It remains to be determined whether fragment channels are the first step in 

protein degradation, or if they are created as a way to modulate calcium influx. Live cell 

imaging experiments could reveal the fate of these fragments after mid-channel 

proteolysis occurs, perhaps by visualizing them entering lysosomes below the surface. 
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6.3 The Effect of Amyloid-β  Precursor Protein and Presenilin on CaV1.2 

 In Chapter 5, I investigated the role AD related proteins might play in mid-

channel proteolysis. I was able to show that coexpression of APP with CaV1.2 in Xenopus 

oocytes decreases channel current and shifts inactivation and the current-voltage 

relationship in the same manner as fragment channels. FAD APP mutants exasperated 

this effect. Interestingly, an AD protective APP mutant had the opposite effect, increasing 

CaV1.2 currents towards levels seen in the absence of wild-type APP. Furthermore, I was 

able to reverse APP-induced inhibition by adding a γ-secretase inhibitor to the oocyte 

media. γ-secretase is a multimeric complex consisting of presenilin, PEN-2, nicastrin, and 

APH-1 (Selkoe and Wolfe, 2007) of which presenilin is the catalytic component. These 

data suggest that presenilin is inhibiting CaV1.2 and that APP acts to target γ-secretase to 

the channel. Another experiment that could be done to further solidify these results would 

be to activate γ-secretase by coexpressing GASP in the absence of APP and see whether 

this decreases CaV1.2 current (He et al., 2010). Presenilin has high endogenous 

expression in oocytes, therefore coinjecting a siRNA against presenilin should have the 

same effect as DAPT if presenilin were specifically responsible for the decrease in 

channel current. All of the above experiments were performed using Xenopus oocytes. 

Therefore, it would be ideal to confirm these results using another model system such as 

a HEK 293 stable cell line expressing CaV1.2, α2δ and β3. Whole cell recordings could 

then be performed after transient transfection of APP or after DAPT treatment to measure 

CaV1.2 current. 

 Due to γ-secretase being a protease and the channel displaying the same 

biophysical properties as fragment channels when in the presence of APP, I wanted to 
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determine whether the channel was being cleaved by presenilin. Western blots stained 

with an antibody against the II-III loop of CaV1.2 confirmed that a ~100 kD band 

appeared when APP was coexpressed. This band was completely absent when APP 

injected oocytes were treated with DAPT. Surprisingly, CaV1.2 harbors a consensus site 

that mirrors that of the APP γ-secretase cut site in a region of the channel that would 

produce a ~115 kD fragment. When this site on the channel was mutated, the ~100 kD 

band did not appear in Western blots. Unfortunately, when APP was injected without 

CaV1.2 the ~100 kD band also appeared. This posed a major setback to my research, 

since the L-type II-III loop antibody I had been so faithfully using was cross-reacting 

with APP. I tried to repeat the experiments using a HA-tagged APP and incubating the 

lysate with HA beads to remove the APP protein. However, this method did not work 

since APP still appeared in Western blots. This could have been caused by a saturation of 

the HA beads or because the HA tag was cleaved from APP, something I found to happen 

during co-immunoprecipitation experiments. A similar method could be used by tagging 

the channel in a region close to the II-III loop epitope. The tagged channel could then be 

pulled down and stained with II-III loop antibody, and the samples would presumably be 

rid of APP. Another option would be to affinity purify the antibody against APP. It is 

however very possible that the II-III loop antibody is staining a CaV1.2 fragment that 

happens to be of a similar size to APP.  

 It is critical that the effect of APP and presenilin on CaV1.2 be observable in 

primary neurons. While the DAPT effect in rat hippocampal neurons was not 

reproducible, there are some modifications that could be made to optimize the 

experiment. For example, lower concentrations of DAPT could be tried, since it is known 
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that DAPT concentrations can have differing effects on presenilin stability and rate of 

activity (Barthet et al., 2011). My experiments were all performed in hippocampal 

neurons, however another type of neuron, such as striatal neurons (Yang et al., 2009), 

might be more susceptible to DAPT treatment. There were some promising results using 

the APP-/- hippocampal cultures and these will be a very useful model system for future 

experiments. These neurons can be used to transfect various forms of APP and assess the 

effect on CaV1.2. Lastly, imaging experiments performed on neurons showed that APP 

mutants had an effect on channel separation on the plasma membrane. The co-

localization index of the channel coexpressed with these APP mutants trended with the 

effect the mutants had on channel current. 

 Alzheimer’s disease research has focused so heavily on the amyloid hypothesis 

over the years, however the mechanism of disease is likely to be far more convoluted. 

First, no one is certain what role APP plays in the normal physiology of the cell. 

Knockout models provide clues to processes it is involved in, but most mechanistic 

studies are focused on APP in the disease state. AD is likely to involve many molecular 

pathways. Aβ could just be a small part of a larger signaling cascade that ultimately 

causes AD, and CaV1.2 could be a part of that cascade. It is not unlikely that AD would 

eventually increase mid-channel proteolysis, since the cell would try to regain control 

over Ca2+ levels. Further experiments are necessary to determine if there is a link 

between mid-channel proteolysis and this devastating aging disease. 
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SUMMARY 

Neural circuitry and brain activity depend critically on proper function of voltage-

gated calcium channels (VGCCs), whose activity must be tightly controlled. We 

show that the main body of the pore-forming α1 subunit of neuronal L-type VGCCs, 

Cav1.2, is proteolytically cleaved, resulting in Cav1.2 fragment-channels that 

separate but remain on the plasma membrane. This “mid-channel” proteolysis is 

regulated by channel activity, involves the Ca2+-dependent protease calpain and the 

ubiquitin-proteasome system, and causes attenuation and biophysical alterations of 

VGCC currents. Recombinant Cav1.2 fragment-channels mimicking the products of 

mid-channel proteolysis do not form active channels on their own, but when 

properly paired, produce currents with distinct biophysical properties. Mid-channel 

proteolysis increases dramatically with age and can be attenuated with an L-type 

VGCC blocker in vivo. Mid-channel proteolysis represents a novel form of 

homeostatic negative-feedback processing of VGCCs that could profoundly affect 

neuronal excitability, neurotransmission, neuroprotection, and calcium signaling in 

physiological and disease states. 
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HIGHLIGHTS 

► The core of L-type VGCC pore-forming subunit Cav1.2 undergoes regulated cleavage 

► Cleaved Cav1.2 fragments stay on the plasma membrane but can dissociate    

► Aging, channel activity, calpain and PEST sequences play a role in Cav1.2 proteolysis  

► Cav1.2 core cleavage greatly changes L-type VGCC properties and currents   

 

INTRODUCTION 

VGCCs (L-, N-, P/Q-, R-, and T-types) control a plethora of physiological processes, 

from muscle contraction, heartbeat, neural communication and hormone secretion to cell 

differentiation, motility, growth and apoptosis (Catterall, 2000). Their mutations and 

dysfunction are linked to diverse disorders such as epilepsy, migraine, ataxia, 

hypertension, arrhythmia, and autism (Cain and Snutch, 2011; Liao and Soong, 2010; 

Pietrobon, 2010; Striessnig et al., 2010; Zamponi et al., 2010). In neurons, L-type 

VGCCs regulate membrane excitability, Ca2+ signaling, and gene transcription (Catterall, 

2000; Deisseroth et al., 2003; Dolmetsch, 2003; Wheeler et al., 2012). Changes in L-type 

VGCC activity are linked to aging and age-related neurodegenerative diseases (Moyer et 

al., 1992; Thibault and Landfield, 1996; Thibault et al., 1998), and variations in L-type 

VGCC genes are linked to neuropsychiatric diseases including schizophrenia, bipolar 

disorder, autism spectrum disorder, major depressive disorder, and attention deficit-

hyperactivity disorder (Smoller et al., 2013).  
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To serve their vital and varying roles, VGCCs are subject to tight regulation by 

diverse pathways and mechanisms (Catterall, 2000; Zamponi and Currie, 2013). One 

form of regulation is proteolytic processing of the cytosolic C-terminus (Ct) of the α1 

subunit (Cavα1) of L-type VGCCs (Brawley and Hosey, 1992; De Jongh et al., 1994; De 

Jongh et al., 1991; Gao et al., 2001; Gerhardstein et al., 2000; Hell et al., 1993; Hulme et 

al., 2005; Hulme et al., 2006; Lai et al., 1990). This proteolysis produces a 30-45 kDa 

distal C-terminal fragment, which acts as an auto-inhibitory domain (Hulme et al., 2006). 

Relief of this autoinhibition is believed to underlie the sympathetic nerve stimulation-

induced increase of cardiac and skeletal muscle calcium currents, part of the “fight or 

flight” response (Fuller et al., 2010). In addition to this Ct fragment, a spectrum of other 

fragments has been observed in Western blots of L-, N- and P/Q-type Cavα1 

(Kordasiewicz et al., 2006; Leenders et al., 2008; Leenders et al., 2002; Ramakrishnan et 

al., 2006; Sakurai et al., 1995; Schiff et al., 2000; Scott et al., 1998; Westenbroek et al., 

1995; Woppmann et al., 1994); the most consistent and prominent include a 90-kDa, a 

150-kDa, and a 170-kDa fragment. These fragments have generally been thought to be 

non-specific degradation products. Intriguingly, however, short isoforms of L- and P/Q-

type Cavα1 have been found in neurons and muscle cells (Malouf et al., 1992; Okagaki et 

al., 2001; Scott et al., 1998). Moreover, truncated P/Q-type Cavα1, generated by disease-

causing mutations, are present in neurons (Jeng et al., 2008; Mezghrani et al., 2008; Page 

et al., 2004; Pietrobon, 2010; Scott et al., 1998; Wappl et al., 2002).  

VGCCs are typically composed of a pore-forming Cavα1 and auxiliary α2δ and β 

(Cavβ) subunits. Full length Cavα1 is a large protein (with a predicted molecular mass of 

190-280 kDa) consisting of four homologous repeats, each containing six transmembrane 
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segments; the four repeats are connected by cytoplasmic loops termed I-II loop, II-III 

loop, and III-IV loop. The aforementioned findings motivated us to investigate the 

existence and functional importance of proteolytic cleavage in the core (i.e., the four 

repeats and the tethering cytosolic loops) of Cavα1. We find that indeed the core of native 

brain L-type Cavα1, Cav1.2, undergoes extensive regulated proteolysis, generating Cav1.2 

fragments on the plasma membrane and greatly influencing channel activity. We further 

find that this proteolysis is age-dependent and can be reversed in vivo by reducing L-type 

channel activity. To distinguish this proteolytic event from C-terminal proteolysis, we 

refer to it as “mid-channel proteolysis”.  

 

RESULTS 

Biochemical detection of mid-channel proteolysis of native L-type channels 

We first studied mid-channel proteolysis of native L-type channels in cortical brain 

slices freshly isolated from 6-week old rats. Surface channels were biotinylated and 

analyzed by Western blot. When probed with an antibody against the Cav1.2 II-III loop 

(anti-LII-III, epitope=T821-S838 of rat brain Cav1.2, Figure 1A), two prominent bands 

were routinely observed: 240 kDa (full-length Cav1.2) and 150 kDa (Figures 1B-1I). An 

85-kDa band was also sometimes detected (Figures 1B-1G). The 150-kDa band was also 

recognized (Figure 1D, arrow) by an antibody against the distal C-terminus (anti-Ct, 

epitope=G2127-L2143, Figure 1A). Thus, this fragment appears to contain part of II-III 

loop, repeats III and IV, and the C-terminus (Figure 1A). Anti-Ct also labeled bands at 

100 kDa and 70 kDa (Figure 1D, arrowheads). Probing with an antibody against the N-

terminus (anti-Nt, epitope=V2-N14, Figure 1A) also revealed several low molecular 
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weight (MW) bands, including those at 175 kDa, 100 kDa, and 90 kDa (Figure 1E, 

arrowheads and arrow). These results suggest that native Cav1.2 in cortical neurons 

undergo extensive proteolysis in vivo and that the cleaved products reside in the plasma 

membrane as fragment-channels. The 150-kDa fragment detected by both anti-LII-III and 

anti-Ct (Figures 1C, 1D, arrow) and the 90-kDa fragment detected by anti-Nt (Figure 1E, 

arrow) are complementary, adding up to 240 kDa (expected full-length Cav1.2 MW). As 

the 150-kDa fragment was the most robust, we focused subsequent studies on this 

fragment.  

 

Mid-channel proteolysis is bidirectionally regulated  

We next investigated whether Cav1.2 mid-channel proteolysis is a regulated event 

occurring in vivo. To minimize non-specific degradation, abundant protease inhibitors 

were added and all procedures were performed rapidly at 4°C. More critically, as non-

specific degradation is an unregulated event, we investigated whether mid-channel 

proteolysis could instead be disrupted or enhanced. Agents that affect intracellular Ca2+, 

L-type channel activity, and/or cell excitability were used to treat cortical slices prior to 

surface biotinylation. To quantify mid-channel proteolysis, densitometry was used to 

define a proteolysis index as the intensity ratio of the 150-kDa/240-kDa bands detected 

by anti-LII-III. This index is unaffected by the total protein amount since it is the ratio of 

two bands from the same lane/sample. The non-normalized proteolysis index differed 

among preparations (Figures 1F-1I), reflecting intrinsic animal-to-animal variation. 

However, this variation does not affect pair-wise comparison of control and test results, 

which were obtained from parallel experiments from the same animal.  
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Mid-channel proteolysis was decreased by the L-type channel antagonist verapamil 

(Figure 1F), or by an activity-suppressing cocktail of nifedipine (another L-type channel 

antagonist) and the glutamate receptor inhibitor CNQX (Figure 1G). In contrast, mid-

channel proteolysis was increased by the Ca2+-ionophore ionomycin (Figure 1H), and by 

an activity-enhancing cocktail of high extracellular K+ and L-type channel agonist 

BayK8644 (Figure 1I). Thus, mid-channel proteolysis correlated with L-type channel 

activity and intracellular Ca2+ levels. This bidirectional regulation suggests that Cav1.2 

mid-channel proteolysis takes place in vivo.   

Regulated mid-channel proteolysis of native Cav1.2 was also observed in cultured 

hippocampal neurons (Figure 2A and Figure S1A). After surface biotinylation and 

Western blot, anti-LII-III robustly detected bands at 240 kDa and 150 kDa (Figure 2A, left, 

arrow). Both bands were also detected by anti-Ct (Figure 2A, middle, arrow), as were a 

100-kDa band and a 70-kDa band (arrowheads), which were also present in cortical slices 

(Figure 1D, arrowheads). In the same samples, anti-Nt visualized the 240-kDa band and a 

90-kDa band (Figure 2A, right, arrow). The detection of the complementary 150-kDa and 

90-kDa bands in both cortical slices and cultured hippocampal neurons is consistent with 

proteolysis in the II-III loop of Cav1.2.  

 

Visualization of mid-channel proteolysis reveals separation of cleaved fragment-

channels 

The above biochemical results indicate that the complementary 150-kDa and 90-kDa 

Cav1.2 fragments are present on the plasma membrane. Do these cleaved fragments 

remain associated on the cell surface? To address this question, we transfected cultured 
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hippocampal neurons with “LGH3”, a Cav1.2 tagged with GFP on the N-terminus and 

HA on an extracelluar loop of repeat III (Figure S1B), and visualized the channels by 

confocal microscopy. LGH3 generated currents in Xenopus oocytes (Figure S1C) and 

expressed robustly in cultured hippocampal neurons (Figure S2). Labeling the HA tag 

with an anti-HA antibody and Alexa594 under non-permeabilizing conditions revealed 

LGH3 on the plasma membrane (Figure S2A, red). Cav1.2 with GFP but without HA tag 

(LGN) showed no surface labeling (Figure S2B), indicating that the anti-HA labeling was 

specific.  

In optical sections, Alexa594-labeled dendrites of LGH3-expressing neurons often 

displayed a membrane-associated pattern (Figure 2B, middle), consistent with red 

labeling representing surface Cav1.2. Surface Cav1.2 channels tend to form clusters 

(Figures 2B and 2C), as has been reported (Di Biase et al., 2011). Intriguingly, in some 

locations green and red clustered separately (Figure 2B, left, and 2C). Green-only clusters 

likely represent intracellular LGH3 and are expected, but red-only clusters are anomalous 

- in theory, GFP and HA signals should colocalize since the two tags are on the same 

protein. The separation of red and green, however, is consistent with cleavage of Cav1.2 

somewhere between the two tags. Furthermore, it suggests that the cleavage products on 

the plasma membrane dissociate from one another.  

We developed an unbiased procedure to quantify red/green separation in imaging 

experiments: (1) A software routine scanned optical sections of dendrites and 

automatically detected red “voxels”, each with a dimension of 0.211 x 0.211 x 0.211 µm 

(typical dendrites are <2 µm in diameter), and ~10,000 voxels were typically found per 

neuron; (2) The intensity of red and green for each voxel was measured; (3) The 
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red/green ratio, termed non-colocalization index (NCI), was calculated, binned, and 

graphed in a cumulative frequency (ordinate) vs. NCI (abscissa) plot (Figures 2D-2F).  

Three conclusions apply to the results of this analysis protocol: (i) Voxels of high 

NCI are likely proteolysis hot spots and contain proteolytically cleaved, HA-containing 

fragment-channels, including the 150-kDa fragment; (ii) the higher the NCI, the more 

extensive the proteolysis; and (iii) a shift of the distribution curve to the right signifies 

greater proteolysis. 

The above analysis protocol was calibrated in two dendritic segments selected for 

their different extent of red/green separation (Figure 2D). As expected, the segment 

displaying a higher number of visual red-only spots (segment y) showed a right-shifted 

NCI distribution (Figure 2D). In another critical test, LGH3-expressing neurons from the 

same culture randomly divided into two groups showed identical ensemble NCI 

distributions (Figure 2E), strongly validating the analysis protocol.  

 

Visualization of mid-channel proteolysis suggests multiple cleavage sites 

If red/green separation represents mid-channel proteolysis of Cav1.2, it should 

decrease when GFP and HA are closer together on the channel. Moreover, the appearance 

of multiple Cav1.2 fragments in Western blots (Figures 1D, 1E and 2A) suggests that 

there may be more than one cleavage site in the Cav1.2 core domain. To test these 

predictions, we constructed two additional GFP/HA double-tagged Cav1.2 subunits 

named LGH1 and LGH2 (HA positioned extracellularly on repeats I or II, respectively). 

LGH1 and LGH2 produced currents in oocytes (Figure S1C), confirming they traffic to 

the plasma membrane and are functional. Parallel imaging experiments showed markedly 
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reduced red/green separation as the two tags were moved closer together (Figure 2F). 

These results further validate the analysis protocol and support the notion that red/green 

separation is indicative of mid-channel proteolysis. They also suggest proteolysis not 

only in the II-III loop but also in the I-II loop.  

 

Molecular determinants of mid-channel proteolysis 

To examine the signaling pathways of mid-channel proteolysis, we first tested the 

role of calpain, a Ca2+-sensitive protease likely responsible for the cleavage of Cav1.2 C-

terminus (Hell et al., 1996; Hulme et al., 2006). A cocktail of calpain inhibitors 

significantly reduced mid-channel proteolysis in hippocampal neurons, detected by both 

Western blot and imaging (Figures 3A and 3B), supporting calpain’s involvement. 

However, residual mid-channel proteolysis persisted (Figure 3A), suggesting additional 

proteases. We thus tested the role of the ubiquitin-proteasome system, a common route 

for protein degradation. The mid-channel proteolysis of LGH3 was markedly reduced by 

a cocktail of ubiquitin aldehyde, a general inhibitor of ubiquitination, and MG-132, a 

proteasome inhibitor (Figure 3C), and by mutating a putative ubiquitination motif on 

LGH3 (Figure 3D). Two PEST sequences have been found in Cav1.2, in the I-II and II-III 

loops (Catalucci et al., 2009) (named PEST1 and PEST3, respectively, Figure 3E); PEST 

sequences serve as signals for rapid proteolysis and possible degradation by the ubiquitin-

proteasome system in various proteins (Rechsteiner and Rogers, 1996). Mid-channel 

proteolysis was greatly reduced by PEST3 deletion (Figure 3F) and was virtually 

abolished by PEST1 deletion (Figure 3G and Figure S3C). These results identify 
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structural elements regulating mid-channel proteolysis and suggest a compelling role for 

the ubiquitin-proteasome system.  

 

Separation of fragment-channels is regulated by channel activity  

Mid-channel proteolysis of LGH3, like that of endogenous Cav1.2, was regulated by 

L-type channel activity. Depolarizing neurons with high extracellular K+, in the absence 

or presence of BayK8644, increased mid-channel proteolysis in both imaging and 

Western blot experiments (Figures 4A and 4B). On the other hand, treatment with 

nifedipine, even in the presence of high extracellular K+, decreased it (Figures 4C, 4D 

and Figure S4). These results further support the notion that the red/green separation is a 

consequence and manifestation of mid-channel proteolysis. 

 

Functional impact of mid-channel proteolysis  

We next investigated the functional effect of mid-channel proteolysis on calcium 

channel currents in several ways. First, we tested the long-term effect of two treatments 

shown to differentially alter mid-channel proteolysis on native VGCC currents in 

hippocampal neurons. Incubating neurons with high K+ and BayK8644 (followed by 

washout) increased mid-channel proteolysis (Figures 4A and 4B) and reduced VGCC 

currents (Figure 4E), whereas incubation with nifedipine (followed by washout) 

decreased mid-channel proteolysis (Figures 4C and 4D) and enhanced VGCC currents 

(Figure 4F). These results are consistent with a hypothesis that mid-channel proteolysis 

serves to homeostatically regulate VGCC activity, keeping at bay excessive Ca2+ influx 

that could have a potential deleterious effect to neurons.   
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Second, in another test of the long-term effect of mid-channel proteolysis, we inserted 

a cleavage motif for the tobacco etch virus protease (TEVp) in the II-III loop of LGH3 

(between D815 and G816, upstream of the anti-LII-III epitope T821-S838), generating 

LGH3_TEVp (Figure 5A). Xenopus oocytes expressing LGH3, LGH3_TEVp, or LGH3 

with TEVp had comparable currents (Figure 5B, top), but those expressing LGH3_TEVp 

with TEVp had much smaller currents (Figure 5B, top). The latter group showed a 

prominent 150-kDa fragment detected by anti-LII-III on the plasma membrane, with a 

drastic concomitant reduction of the 270-kDa (Cav1.2 + 27-kDa GFP) full-length band 

(Figure 5B, bottom). This 150-kDa fragment, largely absent in the three control groups, 

most likely represents the C-terminal product of specific TEVp cleavage of 

LGH3_TEVp.  The decreased current of LGH3_TEVp by TEVp proteolysis validates the 

hypothesis that mid-channel proteolysis down-regulates VGCC currents.  

Third, we examined the acute effect of mid-channel proteolysis. To accomplish this, 

we engineered TEVp cleavage sites in the I-II and II-III loops of Cav2.1 (this mutant is 

called Cav2.1_TEVp), and tested the effect of purified recombinant TEVp on 

Cav2.1_TEVp channels in inside-out membrane macro-patches excised from Xenopus 

oocytes. Cav2.1 was chosen because its currents run down much slower than Cav1.2 

currents do. A 2-min application of TEVp did not abolish channel activity, but did 

produce an irreversible left shift of the activation curve of Cav2.1_TEVp, but not WT 

Cav2.1 channels (Figure 5C, bottom). A catalytically inactive TEVp (carrying the C151A 

mutation) had no effect (Figure 5C, bottom). These results indicate that mid-channel 

proteolysis alters VGCC gating, leaving a biophysical imprint. 
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Fourth, we constructed three pairs of complementary Cav1.2 fragment-channels, 

mimicking mid-channel proteolysis in loop I-II, II-III or III-IV (Figure 6A), and tested 

their activity in oocytes by two-electrode voltage clamp (TEVC). None of the six 

recombinant fragment-channels, named A1, A2, B1, B2, C1 and C2, produced currents 

when individually expressed in oocytes (Figure 6B). However, all three complementary 

pairs produced sizeable currents, albeit their amplitude was smaller than that of CaV1.2 

currents (Figure 6C). Channels formed by all three complementary pairs displayed a 

right-shifted I-V curve (Figure 6D) and a change in the voltage-dependence of 

inactivation (Figure 6E). Thus, although individual fragment-channels do not conduct 

current, when properly paired they can assemble and reach the plasma membrane to form 

functional channels with distinct biophysical properties. We also examined expression of 

four non-complementary fragment pairs, A1+C2, A2+B1, A2+C1 and B2+C1, in 

oocytes. The first three pairs did not produce any currents while the last pair produced a 

small current (Figure S6B). These results suggest that all four repeats of Cavα1 are needed 

to form functional channels and that certain non-complementary Cavα1 fragments 

containing, altogether, more than four repeats may still assemble and form functional 

channels, albeit poorly. 

Lastly, we examined whether the recombinant fragment-channels change the 

properties of full-length Cav1.2. Previous studies have shown that coexpression of Cavα1-

fragments with full-length Cavα1 often suppresses WT channel currents in a dominant-

negative manner and sometimes alters their biophysical properties (Ebihara et al., 2002; 

Jeng et al., 2008; Mezghrani et al., 2008; Page et al., 2004; Page et al., 2010; Raghib et 

al., 2001; Raike et al., 2007). We found that fragment C2 greatly dampened Cav1.2 
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current amplitude while other fragments did not have a significant dominant-negative 

effect (Figure 6F). Fragments A1 and A2 shifted the Cav1.2 I-V curve to the right (Figure 

6G) and increased Cav1.2 inactivation (Figure 6H). Fragments B1 and B2 did not have a 

significant effect (Figures 6I and 6J). Fragment C1 shifted Cav1.2’s I-V curve to the left 

(Figure 6K) and markedly increased Cav1.2 inactivation (Figure 6L). Thus, Cav1.2 

fragment-channels can have multifaceted effects on full-length Cav1.2 channels.  

 

Mid-channel proteolysis is age-dependent and can be reversed in vivo  

Because changes in L-type Ca2+ channel activity have been linked to normal aging 

(Moyer et al., 1992; Thibault and Landfield, 1996; Thibault et al., 1998), we examined 

whether mid-channel proteolysis of Cav1.2 is regulated across the life span. Cortical 

slices were freshly isolated, in strict parallel, from rats of four age groups (10 days, 6 

weeks, 6 months and 16 months), and cell-surface Cav1.2 was examined by Western blot 

(Figure 7A). Mid-channel proteolysis increased steadily and significantly with age, being 

~7 times more pronounced in 16-month old rats than in 10-day old rats (Figure 7A). 

Moreover, the elevated mid-channel proteolysis in the 16-month old rats could be 

partially reversed by a 3-5 week treatment with verapamil, a L-type VGCC blocker 

commonly used for hypertension, cardiac arrhythmia, cluster headache and bipolar 

disorder (Figure 7B), at a dosage equivalent to that used for human patients, adjusted for 

body weight and metabolic rate. 
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DISCUSSION 

We have uncovered a new form of regulation of L-type VGCCs, namely, proteolytic 

cleavage of the main body of native Cav1.2 channels. Strikingly, cleaved fragment-

channels are present on the plasma membrane and can dissociate from each other. This 

mid-channel proteolysis is not a result of non-specific protein degradation since it is 

bidirectionally regulated, is inversely correlated with Ca2+ channel activity, and is 

dependent on age. The finding that mid-channel proteolysis in freshly isolated cortical 

slices and cultured hippocampal neurons can be reduced by inhibiting L-type Ca2+ 

channel activity (Figures 1F, 1G, and 4C, 4D) suggests that it is an on-going 

physiological event occurring in native cells. This finding, together with the observation 

that mid-channel proteolysis can be enhanced by increased intracellular Ca2+ (Figure 1H 

and Figure S1A) or increased L-type Ca2+ channel activity (Figures 1I and 4A, 4B) 

suggests that mid-channel proteolysis is a homeostatic/neuroprotective mechanism to 

regulate intracellular Ca2+. The dramatic increase of Cav1.2 mid-channel proteolysis with 

age in vivo is likely a manifestation of such a homeostatic/neuroprotective mechanism: as 

neurons age, their L-type Ca2+ channel currents increase (Moyer et al., 1992; Thibault 

and Landfield, 1996; Thibault et al., 1998), leading to an increased intracellular Ca2+ and 

a compensatory increase of Cav1.2 mid-channel proteolysis. 

The conditions shown in this study that enhance Cav1.2 mid-channel proteolysis, such 

as increased intracellular Ca2+, increased Ca2+ channel activity and increased age, did not 

change the levels of surface Na+-K+ ATPases and did not increase proteolysis of PARP 

(Figures S5A-S5D), an apoptotic protein marker whose proteolytic cleavage has been 

correlated with programmed cell death (Chaitanya et al., 2010), suggesting that mid-
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channel proteolysis of Cav1.2 is not simply an early step of L-type VGCC degradation, is 

not due to cell damage, and is not a prelude to cell death. That mid-channel proteolysis is 

robustly detected in freshly isolated cortical slices and hippocampal neurons (Figures 1-4 

and 7), is bidirectionally regulated (Figures 1F-1I and 4A-4D), is strongly linked to aging 

(Figure 7A), and is reversible in animals by a L-type VGCC blocker (Figure 7B), suggest 

that mid-channel proteolysis is a physiological mechanism of feedback regulation of L-

type VGCCs in intact cells in vivo.  

In our imaging experiments, we postulated that the red/green separation is indicative 

of mid-channel proteolysis of Cav1.2, and that the lateral shifts of the ensemble NCI plots 

represent changes in mid-channel proteolysis. Is it possible, however, that such shifts are 

due to changes in the relative expression level of Cav1.2 in the plasma membrane versus 

intracellular compartments? To examine this possibility, we plotted the ratio of total red 

over total green (i.e., surface plus intracellular) fluorescence for four drug treatments that 

produced shifts in the NCI: calpain inhibitors, proteasome inhibitors, 65 mM KCl or 65 

mM KCl+BayK, and 65 mM KCl or 65 mM KCl + nifedipine. The exact same neurons 

used for the NCI plots were used in the total fluorescence plots. In each case, the drug 

treatment did not significantly change total red/total green fluorescence compared to its 

untreated control group (Figures S3A, S3B, and S4B, S4C). This analysis is consistent 

with the notion that NCI shifts reflect a redistribution of red and green in the plasma 

membrane rather than a change of intracellular GFP. 

Mid-channel proteolysis is distinct from the well-studied C-terminal proteolysis 

(Brawley and Hosey, 1992; De Jongh et al., 1994; De Jongh et al., 1991; Gao et al., 2001; 

Gerhardstein et al., 2000; Hell et al., 1993; Hulme et al., 2005; Hulme et al., 2006; Lai et 
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al., 1990) in cleavage sites and consequences: the core of Cav1.2 remains intact after C-

terminal proteolysis but is split following mid-channel proteolysis. Our biochemical and 

imaging experiments both suggest that mid-channel proteolysis takes place at several 

locations of Cav1.2 (Figures 1D, 1E, and 2A, 2F). As a result, Cav1.2 channels on the 

plasma membrane of native cells may be heterogeneous, with some being full-length 

Cav1.2 subunits and some being Cav1.2 fragments of various lengths. Our results from 

recombinant fragment-channels show that they display biophysical properties distinct 

from full-length channels (Figures 6C-6E). Furthermore, our results show that cleaved 

Cav1.2 fragments can dissociate from one another (Figures 2B, 2C and 2F), and while 

these fragments do not form functional channels on their own (Figure 6B), some of them 

can alter the biophysical properties of full-length channels (Figures 6F-6L). Thus, Cav1.2 

currents in native cells could be produced by a highly heterogeneous population of 

channels. How fragment-channels change full-length Cav1.2 properties is unclear; 

possibilities include competition for the ancillary subunits (β and/or α2δ) or a direct 

association with Cav1.2. 

VGCCs are regulated by a host of Ca2+-binding proteins and undergo Ca2+-dependent 

inactivation (CDI) involving calmodulin (Christel and Lee, 2012). Why do neurons need 

yet another Ca2+-dependent negative feedback mechanism, and one as drastic as mid-

channel proteolysis? For neuroprotection, it is not surprising if neurons utilize multiple or 

even redundant means to diligently control the activity of channels as essential as 

VGCCs. There may also be significant differences between CDI and mid-channel 

proteolysis for neurons to exploit. For example, CDI can occur quickly to affect VGCC 

activity within milliseconds (Tadross et al., 2008, Christel, 2012 #197); mid-channel 
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proteolysis, on the other hand, takes longer and may affect not only VGCC activity but 

also intracellular Ca2+ homeostasis. Furthermore, while CDI mainly assists VGCC 

inactivation, the consequences of mid-channel proteolysis can involve Ca2+ current 

attenuation, channel biophysical property changes, and perhaps putative non-channel 

functions of the nascent fragments.  

It has been shown that Cav1.2 and Cav2.2 undergo ubiquitination and proteasomal 

degradation, and that these events are regulated by Cavβ (Altier et al., 2011; Waithe et al., 

2011). In the absence of Cavβ, Cav1.2 is robustly ubiquitinated and is targeted to the 

proteasome for degradation; association of Cavβ attenuates Cav1.2 ubiquitination and 

prevents endoplasmic reticulum (ER)-associated protein degradation (ERAD), leading to 

an increased surface expression of Cav1.2 (Altier et al., 2011). It is unclear if and how 

mid-channel proteolysis relates to ERAD, but imaging experiments revealed that 

separation of proteolytically cleaved Cav1.2 fragments was unaltered by the 

overexpression of α2δ and β subunits (Figures S2C, S2D), suggesting that either these 

auxiliary subunits do not affect mid-channel proteolysis, or the channels undergoing mid-

channel proteolysis already have associated endogenous α2δ and Cavβ subunits. 

Where does Cav1.2 mid-channel proteolysis take place, on the plasma membrane or in 

an intracellular compartment? Although our results do not provide a definitive answer, 

they are consistent with the possibility that mid-channel proteolysis occurs on the plasma 

membrane: (1) Cleaved complementary Cav1.2 fragments are present on the plasma 

membrane (Figures 1C-1E and Figure 2A). (2) It is not affected by the overexpression of 

α2δ and β subunits (Figures S2C, S2D). (3) It is dependent on the ubiquitin-proteasome 

system, being greatly reduced by a cocktail of ubiquitination and proteasome inhibitors or 
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when a putative ubiquitination site on Cav1.2 is mutated (Figures 3C and 3D). (4) It is 

significantly reduced (Figure 3F) or virtually abolished (Figure 3G) when PEST 

sequences in Cav1.2 are deleted. PEST sequences serve as signals for rapid proteolysis by 

yet unknown proteases (with calpain as a candidate) or by proteasomal degradation, 

presumably by recruiting proper proteases to the target protein or directing the target 

protein to proteasomes (Rechsteiner and Rogers, 1996). It has been reported that the two 

PEST sequences in Cav1.2 are involved in Akt-mediated increase of calcium channel 

currents (Catalucci et al., 2009). Akt is thought to phosphorylate Cavβ2, resulting in the 

masking of the PEST sequences and, consequently, decreased degradation of surface 

Cav1.2. Consistent with this notion, deleting each PEST sequence individually increases 

the stability and current density of Cav1.2 channels expressed in COS-7 or tsA-201 cells 

(Catalucci et al., 2009). The precise role of the two PEST sequences and why PEST1 is 

more effective than PEST3 in aiding Cav1.2 mid-channel proteolysis remain to be 

investigated. These sequences are probably not the cleavage sites themselves. We 

speculate that PEST1, because of its location and/or conformation in the three-

dimensional structure of Cav1.2, is more effective than PEST3 in recruiting calpain to 

Cav1.2. 

Many other questions remain to be elucidated, including the kinetics of mid-channel 

proteolysis, additional proteases involved, the precise cleavage sites in Cavα1, and the 

fate and function of the resulting fragment-channels. It will be interesting to examine 

whether other types of VGCCs and other multi-repeat ion channels such as Na+ channels 

also undergo mid-channel proteolysis. Truncated forms of Cavα1, generated by either 

alternative splicing or disease-causing mutations, are naturally present in muscles and 
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neurons (Jeng et al., 2008; Malouf et al., 1992; Mezghrani et al., 2008; Okagaki et al., 

2001; Page et al., 2004; Pietrobon, 2010; Scott et al., 1998; Wappl et al., 2002). The 

fragment-channels produced by regulated mid-channel proteolysis, as well as these short 

forms of Cavα1, may play important roles in both physiological and pathological 

conditions.  
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EXPERIMENTAL PROCEDURES 

Constructs 

Rat (Rattus norvegicus) brain Cav1.2 was used for transfection in hippocampal neurons. 

GFP was linked to the N-terminus of Cav1.2 to generate LGN. HA epitopes were cloned 

on LGN at different extracellular locations to generate GFP- and HA-tagged LGH1, 

LGH2, and LGH3, in which the HA tag was placed, respectively, between residues T320-

G321, Q683-T684, and G1136-P1137. A proteolytic motif (ENLYFQG) for TEVp was 

introduced on LGH3 between II-III loop residues D815-G816 (LGH3_TEVp). On 

LGH3_PY/AA, P1364 and Y1365 were each mutated to alanine. Residues 840-861 and 

446-459 were deleted to generate LGH3_ΔPEST3 and LGH3_ΔPEST1, respectively. 

Cav1.2 fragment-channels were engineered to encompass the following channel regions: 

A1: M1-D449, A2: E450-L2143; B1: M1-S866, B2: M867-L2143; C1: M1-W1216, C2: 

Y1217-L2143. For oocyte macropatch recordings, rabbit Cav2.1 was used. Cav2.1_TEVp 

carried the TEVp cutting motif at three different locations: G419-A420 (loop I-II), 

L1096-S1097 and G1218-P1219 (loop II-III). 

Cortical Slice Surface Protein Biotinylation 

Neocortical slices (400-µm thick, cut horizontally) were obtained from 6-week old male 

rat brain and were incubated at 35-37°C in oxygenated artificial cerebrospinal fluid 

(ACF, in mM: NaCl 119, NaHCO3 26, NaH2PO4 1.25, KCl 2.5, glucose 15, myo-inositol 

1, pyruvate 2, ascorbic acid 0.4) for 20-60 min before any pharmacological treatments. 

For biotinylation of surface proteins, slices were rapidly collected into ice-cold  bubbled 

ACF containing 1mg/ml sulfo-NHS-SS-biotin (Pierce) for 45 min. Quenching solution 



 175	
  

was added for 5 min. Solubilization, incubation with neutravidin-agarose beads, washing 

and elution of surface proteins for SDS-PAGE and Western blot, were performed 

according to Pierce’s instructions, with modifications for neocortical slices described in 

detail in Supplemental Experimental Procedures.  

Cortical Slice Age Comparison 

For the aging study of Figure 7A, the procedure described above was upgraded to 

handle 4 or more animals of different ages in strict parallel, as described in detail in 

Supplemental Experimental Procedures. 

Verapamil Feeding of Aged Animals 

Verapamil was used to medicate the drinking water of aged rats, at 12.5 mg per diem, 

for 3 to 5 weeks. Dosage calculation and details of verapamil administration are 

explained in Supplemental Experimental Procedures.  

Hippocampal Neuron Culture, Transfection and Surface Biotinylation 

Embryonic hippocampi were isolated and primary cultures were grown using standard 

procedures (Blanpied et al., 2002). 24 h after plating and then every 4 days, neurobasal 

medium containing B-27 and I-glutamax (Invitrogen) was used to replace 50% of the 

culture medium. Neurons were kept at 37°C in a 5% CO2 humid atmosphere. 

Hippocampal neurons DIV10-13 were transfected with an optimized method using 

Lipofectamine 2000 (Invitrogen). 1.5 µg of DNA in 100 µl Opti-MEM (Invitrogen) were 

used to transfect each 12 mm (diameter) coverslip. Surface biotinylation was similar to 

that described for cortical slices.  
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Hippocampal Neuron Immunofluorescence and Imaging 

Hippocampal neurons were fixed with 2% paraformaldehyde and immunostained 24-48 h 

post-transfection. To visualize surface HA tags, neurons were incubated with a mouse 

monoclonal anti-HA (Covance) for 1 h in PBS containing 0.5% fish gelatin and 10% goat 

serum, then washed with PBS 4 times. The goat anti-mouse secondary antibody 

conjugated with the Alexa594 fluorophore (Invitrogen) was added to the neurons for 1 h 

in the same buffer composition. The stained coverslips were washed and mounted on 

imaging slides using an anti-fade reagent (Biomeda). All procedures were done at room 

temperature. 

Confocal imaging was performed using a spinning disc microscope. Optical slice 

thickness was 300 nm. Confocal images for each fluorophore in multi-labeling 

experiments were acquired separately (sequential scans). Images were analyzed using 

Volocity (PerkinElmer) and MatLab.  

Imaging Data Quantification and Histogram Construction 

A software routine was created to scan optical sections of dendrites and automatically 

select the red objects, which presumably represent surface CaV1.2. These objects vary in 

size and are divided into a volume unit called voxel, which has a dimension of 

0.211x0.211x0.211µm and a volume of 0.00944 µm3. Typically, ~10,000-15,000 voxels 

were generated for each neuron. The red and green intensity was measured for each voxel 

and the red/green ratio (i.e., non-colocalization index or NCI) was determined. The NCI 

of all the voxels was binned and plotted in a frequency (ordinate, Y-axis) vs. NCI 
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(abscissa, X-axis) graph. This resulting distribution (curve) shows the percentage of 

voxels that exhibit NCI above a threshold value. 

In ensemble %Frequency-above-threshold vs. NCI curves using data pooled from 

multiple neurons, the X-axis consisted of step thresholds used to bin the entire population 

of NCI values. Typically, a group of ~15 neurons produced ~150,000-200,000 voxels. X-

axis thresholds were a sequence of logarithmically spaced numbers generated by MatLab 

to represent values between 0.1 and 10 (listed in Supplemental Experimental 

Proceudures). Y-axis data points from all the neurons in any given group were averaged 

and plotted.  

Xenopus Oocyte Preparation, Injection and Surface Biotinylation  

Female oocyte-positive Xenopus laevis (African clawed) frogs were purchased from 

Xenopus I, Xenopus Express or Nasco, and stage V-VI oocytes were isolated. Briefly, 

frogs were anesthetized in a 0.3% tricaine solution. Ovarian lobes were excised in OR2 

(Ca2+-free) solution (mM: NaCl 82.4, KCl 2.5, MgCl2 1, HEPES 5) and digested in OR2 

supplemented with collagenase A (0.2-0.5 mg/ml, Roche) for 2-3 h at room temperature. 

Oocytes were washed and recovered in ND96 solution (mM: NaCl 96, KCl 2.5, MgCl2 1, 

HEPES 5, CaCl2 1.8, supplemented with penicillin/streptomycin). mRNA injection and 

oocyte surface biotinylation protocol are presented in detail in Supplemental 

Experimental Procedures. 

Electrophysiology 

For whole-cell recording of hippocampal neurons, the pipette solution contained (in 

mM): CsCl 122, HEPES 10, EGTA 10, MgCl2 5, MgATP 4 and GTP 0.4, pH 7.2 with 
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CsOH. Recording electrodes had resistances of 2-4 MΩ. The bath solution contained (in 

mM): NaCl 115, TEA·OH 20, KCl 5, MgCl2 2, BaCl2 5, HEPES 10, D-glucose 10, pH 

7.4 with NaOH. 1 µM TTX was added before recordings.  

For two-electrode voltage-clamp recording of oocytes, the bath solution contained (in 

mM): BaCl2 10, KCl 5, tetraethyl ammonium hydroxide 60, NaOH 20, HEPES 5 (pH 7.4 

adjusted with methanesulfonic acid).  

For inside-out macropatch recordings from oocytes, Cav2.1 (P/Q-type) channels were 

used because of their slower rundown (Zhen et al., 2006). Electrodes had a diameter of 

15-30 µm and a resistance of 0.2-0.4 MΩ when filled with a solution containing (in mM): 

BaCl2 45, KCl 80, HEPES 10, pH 7.3 with KOH. The bath solution contained (in mM): 

CsCl 125, NaCl 4, HEPES 10, EGTA 10, pH 7.3 with KOH. The purified WT or mutant 

TEV proteases were perfused in the bath solution for 2 min, followed by 1 min of wash.  

Data were analyzed with Clampfit. All experiments were performed at 22-23°C. 

Western Immunoblotting 

Protein samples were run in 8% acrylamide (BioRad) gels or 4-12% precast gradient gels 

(Invitrogen). Electrical transfer to PVDF membranes (BioRad) was performed in a 

standard 25 mM Tris, 192 mM glycine, pH~8.3 buffer supplemented with 0.002% SDS 

for 90 min at 90 V, at 4°C. Membranes were handled in PBS containing 0.2% Tween-20 

(PBST). Blocking buffer was 10% newborn calf serum (NCS, Gibco) plus 1% fish 

gelatin (Sigma) in PBST. Primary antibodies were used at 1:750-1:1000 dilutions, and 

were purchased from Sigma (anti-LII-III and anti-Nt), Cell Signaling (anti-PARP), and 



 179	
  

Abcam (anti-Na+/K+-ATPase). Anti-Ct, generated against residues 2155-2171 of the 

rabbit cardiac Cav1.2 (Hulme et al., 2006), was a courteous gift from Drs. W.A. Catterall 

and R. Westenbroek (University of Washington, Seattle). Secondary antibody (goat anti-

rabbit, HRP-conjugated, SantaCruz Biotechnologies) was used at 1:2000 dilution. Protein 

bands were visualized using enhanced chemiluminescence reagents (Pierce) on X-ray 

film (Kodak). For stripping and reprobing of PVDF membranes, the stripping buffer was 

100 mM β-mercaptoethanol, 2% SDS, 62.5 mM Tris-HCl, pH 6.8. Coomassie Blue staining 

was performed using Biosafe Coomassie (BioRad) according to the manufacturer's 

instructions, or using a stain consisting of 0.1% Coomassie Brilliant Blue R-250 in 40% 

MeOH and 1% acetic acid.	
  

Purification of Tobacco etch virus protease 

For protein synthesis in E. coli, DE3 bacteria were used for cDNA transformation and 

protein expression. The expressed recombinant tobacco etch virus protease (TEVp, 

Addgene Plasmid 8827: pRK793) construct contained an MBP molecule for enhanced 

expression, a TEVp self-cleavage recognition site (ENLYFQG), a His-tag, and finally 

TEVp itself. Ultimately, TEVp was isolated from transformed DE3 bacteria using a 

nickel-bead column system as described in Supplemental Experimental Procedures. 

Western blot with an antibody against TEVp (courtesy of Dr. Michael Ehrmann at 

University of Duisburg-Essen, Germany) revealed that the purified TEVp had the 

expected molecular mass of TEVp plus the His tag (27 kDa), indicating that the tagged 

MBP molecule had been removed from the parent construct by TEVp self-cleavage 

(Figure S6A). In contrast, the molecular mass of the purified C151A mutant protease was 

significantly higher (70 kDa) than that of WT TEVp (Figure S6A), as expected for the 
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original MBP-tagged parent construct, confirming the loss of catalytic activity caused by 

the C151A mutation. 

Statistics 

Data are represented as mean±s.e.m. and asterisks denote statistical differences 

throughout. For all statistical tests used and their resulting p-values, see Supplemental 

Experimental Procedures. 
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FIGURE LEGENDS 

 

Figure 1. Mid-channel proteolysis of native Cav1.2 in cortical neurons and its 

dependence on channel activity  

(A) Domain topology of Cav1.2. Indicated are epitope locations for three antibodies (anti-

LII-III, anti-Ct and anti-Nt) and predicted molecular masses for full-length Cav1.2 and two 

fragment-channels generated by a presumed proteolytic cut (scissors).  

(B) Western blot with anti-LII-III of native Cav1.2 in surface-biotinylated (+) and non-

biotinylated (-) cortical slices from 6-week old rats, showing a 150-kDa band (arrow). (C-

E) Western blot with anti-LII-III (C), anti-Ct (D) or anti-Nt (E) of native Cav1.2 from the 

same sample of surface-biotinylated cortical slices.  

(F-I) Channel activity-dependent regulation of mid-channel proteolysis. Left: 

representative Western blot with anti-LII-III of Cav1.2 in cortical slices treated with either 

vehicle (control) or the indicated reagent(s) before surface biotinylation: (F) verapamil 

(VP, 65 µM, 2 hr); (G) nifedipine (Nif, 10 µM, 2 hr) and CNQX (21.5 µM, 2 hr); (H) 

ionomycin (Iono, 3 µM, 45 min); (I) BayK8644 (14 µM, 40 min) and 65 mM KCl (40 

min). Middle: bar graph depicting the proteolysis index (intensity ratio of 150-kDa/240-

kDa band) for the representative gel. Right: summary graph showing data pooled from 

the indicated number of independent experiments. In this and all subsequent figures, data 

in bar graphs are represented as mean±s.e.m. and asterisks denote statistical differences, 

with P<0.01, unless indicated otherwise. See also Figure S5. 
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Figure 2. Visualization of mid-channel proteolysis of Cav1.2 in the plasma 

membrane of cultured hippocampal neurons 

(A) Western blot with the indicated antibodies of native Cav1.2 from the same 

preparation of surface-biotinylated neurons.  

(B) Confocal images of a representative dendritic segment of a neuron expressing LGH3. 

Left: surface and intracellular LGH3 indicated by GFP. Middle: surface LGH3 indicated 

by anti-HA+Alexa594 secondary antibodies. Right: overlay. Exemplar clusters of 

red/green colocalization and non-colocalization are marked by yellow and white arrows, 

respectively. Scale bar: 5 µm. 

(C) Fluorescence intensity profile (bottom) of another dendritic segment (top). Exemplar 

clusters of red/green colocalization and non-colocalization are marked by * and **, 

respectively.  

(D) Quantification of red/green colocalization in two dendritic segments displaying 

visually different extents of mid-channel proteolysis. Left and middle: images of GFP 

(lane 1), HA-Alexa594 (lane 2), overlay (lane 3) and the “voxels” selected according to 

our analysis protocol (lane 4). Right: cumulative distribution of the non-colocalization 

index (NCI) for the two selected dendritic segments. Scale bar: 10 µm. 

(E) Ensemble cumulative distribution of NCI from the dendrites of neurons expressing 

LGH3 randomly divided into two groups (n=15 each, same culture).  

(F) Ensemble cumulative distribution of NCI from the dendrites of neurons expressing 

LGH1 (n=23), LGH2 (n=15) and LGH3 (n=13). All experiments were performed in 

parallel. The three distributions were significantly different. See also Figures S1 and S2. 
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Figure 3. Signaling pathways and molecular determinants of Cav1.2 mid-channel 

proteolysis.  

(A) Role of calpain. Left: representative Western blot with anti-LII-III in hippocampal 

neurons treated, before surface biotinylation, with a cocktail of calpain inhibitors (200 

nM calpeptin, 1 µM ALLN, and 270 nM calpain inhibitor III) for 80 min at 37°C. 

Middle: proteolysis index for the representative gel. Right: summary graph showing data 

pooled from 4 independent experiments. P<0.05.  

(B) Ensemble cumulative distribution of NCI from the dendrites of neurons expressing 

LGH3 treated with DMSO (control, n=24) or calpain inhibitors (n=19).  

(C) Ensemble cumulative distribution of NCI from the dendrites of neurons expressing 

LGH3 (n=13) treated with DMSO (control) or a cocktail of MG-132 (7 µM) and 

ubiquitin aldehyde (1 µM) for 75 min at 37°C.  

(D) Ensemble cumulative distribution of NCI from the dendrites of neurons expressing 

LGH3 (n=16) or LGH3_PY/AA (n=17), where residues P1364 and Y1365 of LGH3 were 

mutated to alanine.  

(E) Schematic domain topology of LGH3, marking the positions and amino acid 

sequences of the PEST1 site, the PEST3 site, and the PY motif.  

(F) Ensemble cumulative distribution of NCI from the dendrites of neurons expressing 

LGH3 (n=19) or LGH3_ΔPEST3 (n=17), where residues H840-R861 of LGH3 were 

deleted.  

(G) Ensemble cumulative distribution of NCI from the dendrites of neurons expressing 

LGH3 (n=19) or LGH3_ΔPEST1 (n=15), where residues D446-D459 of LGH3 were 

deleted. Representative dendrites are shown in Figure S3C. In (B-D), (F) and (G), all 
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experiments in each panel were performed in parallel, and the two distributions were 

significantly different. See also Figure S3. 

 

Figure 4. Channel activity-dependent regulation of Cav1.2 mid-channel proteolysis 

and Ca2+ channel currents in cultured hippocampal neurons.  

(A and C) Ensemble cumulative distribution of NCI from the dendrites of neurons 

expressing LGH3. Neurons were treated for 30 min with DMSO (control), DMSO and 65 

mM KCl, or 1.4 µM BayK8644 and 65 mM KCl (n=13 for all) in (A); or with DMSO 

(control) (n=19), DMSO and 65 mM KCl (n=14), or 20 µM nifedipine and 65 mM KCl 

(n=18) in (C). Representative dendrites for each condition are shown in Figure S4A. All 

experiments in each panel were performed in parallel. In (A), the two treated groups were 

significantly different from control but not from each other; in (C), all three distributions 

were significantly different. The same results were obtained from two other independent 

cultures.  

(B and D) Channel activity-dependent regulation of mid-channel proteolysis. Left: 

representative Western blot with anti-LII-III in neurons treated (1hr) with DMSO (ctl) or 

BayK8644 (1.4 µM) (B), or nifedipine (10 µM) (D), before surface biotinylation. Middle: 

proteolysis index for the representative gel. Right: summary graph showing data pooled 

from the indicated number of independent experiments.  

(E and F) Whole-cell Ca2+ channel currents from neurons blindly treated for 30 min with 

DMSO (ctl), or 65 mM KCl and 1.4 µM BayK8644 (E), or 10 µM nifedipine (F). Left: 

representative family of currents recorded from the indicated neuron. Right: summary 
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graph of the maximal current density for the indicated group of neurons. Number of blind 

recordings is indicated above the bar. P<0.05. See also Figure S4. 

 

Figure 5. Functional effect of mid-channel cleavage at an engineered site on Ca2+ 

channel currents and properties.  

(A) Schematic of LGH3_TEVp, which contains a TEVp cutting site (yellow circle) in the 

II-III loop between D815 and G816, upstream of the anti-LII-III epitope T821-S838.  

(B) Whole-cell currents (top) recorded at -10 mV from oocytes expressing the indicated 

constructs (middle). Currents were normalized to the mean value of the left-most control 

group. Number of measurements indicated above the bar. Bottom: Western blot with anti-

LII-III of surface-biotinylated oocytes from the exact same groups.  

(C) Voltage-dependence of activation of currents recorded from inside-out macropatches 

excised from oocytes expressing Cav2.1_TEVp or WT Cav2.1, before (top) or after 

(bottom) bath application of 100 µM purified TEVp or TEVp(C151A). Standard error is 

smaller than the symbols (n=7-10). See also Figure S6A. 

 

Figure 6. Functional properties and effects of fragment-channels. 

 (A) Schematic of three possible cuts (scissors) of Cav1.2 and three pairs of recombinant 

complementary fragment-channels.  

(B and C) Whole-cell currents recorded at -10 mV from oocytes expressing the indicated 

recombinant fragment-channels (B) or proper pairs (C).  
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(D and E) Current-voltage relationship (D) and voltage-dependence of inactivation (E) of 

currents recorded from oocytes expressing the indicated constructs. Standard error is 

smaller than the symbols (n=6-18).  

(F) Whole-cell currents recorded at -10 mV from oocytes expressing full-length Cav1.2, 

with or without the indicated recombinant fragment-channel coexpressed.  

(G-L) Current-voltage (I-V) relationship (G, I, and K) and voltage-dependence of 

inactivation (H, J, and L) of currents recorded from oocytes expressing the indicated 

Cav1.2 constructs. Standard error is smaller than the symbols (n=3 for (L) and n=6-14 for 

other panels). The effect of C2 could not be assessed because the whole-cell current in 

those experiments was too small to allow accurate measurements (see (F), right-most 

bar). See also Figure S6B. 

 

Figure 7. Mid-channel proteolysis is age-dependent and can be reversed by a L-type 

VGCC blocker in vivo.  

(A) Progressive increase of mid-channel proteolysis with age. Left: representative 

Western blot with anti-LII-III of native Cav1.2 in surface-biotinylated rat cortical slices 

from the indicated age groups. Middle: proteolysis index for the representative gel. Right: 

summary graph showing data pooled from the indicated number of independent 

experiments. Every independent experiment consisted of parallel dissections of the age 

groups involved (see Experimental Procedures).  

(B) Reduction of mid-channel proteolysis by oral administration of verapamil. Left: 

representative Western blot with anti-LII-III of native Cav1.2 in surface-biotinylated 

cortical slices from 16-month old rats fed with water, or water medicated with 12.5 mg 
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per day of verapamil for 3-5 weeks. Middle: proteolysis index for the representative gel. 

Right: summary graph showing data pooled from five independent experiments. See also 

Figure S7. 
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