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Quantitative measures of acoustic similarity can reveal patterns of shared vocal behavior in social

species. Many methods for computing similarity have been developed, but their performance has

not been extensively characterized in noisy environments and with vocalizations characterized by

complex frequency modulations. This paper describes methods of bioacoustic comparison based on

dynamic time warping (DTW) of the fundamental frequency or spectrogram. Fundamental fre-

quency is estimated using a Bayesian particle filter adaptation of harmonic template matching. The

methods were tested on field recordings of flight calls from superb starlings, Lamprotornis super-
bus, for how well they could separate distinct categories of call elements (motifs). The fundamen-

tal-frequency-based method performed best, but the spectrogram-based method was less sensitive

to noise. Both DTW methods provided better separation of categories than spectrographic cross

correlation, likely due to substantial variability in the duration of superb starling flight call motifs.
VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4812269]

PACS number(s): 43.80.Ev, 43.80.Ka [MJO] Pages: 1407–1415

I. INTRODUCTION

Many species of birds and mammals produce vocaliza-

tions that are learned from conspecifics (Janik and Slater,

1997; Williams, 2004). These sounds typically serve social

functions such as attracting mates (Searcy and Yasukawa,

1996), repelling intruders (Beecher et al., 1996), and signal-

ing kinship, group membership, or individual identity

(Mundinger, 1970; Boughman, 1997). In contrast to innately

specified vocalizations, learned calls and songs reflect an

individual’s experience of a social environment (Beecher

and Burt, 2004). Understanding how vocalizations are shared

among individuals of the same species requires quantitative

methods for measuring how acoustic features vary across

groups and individuals.

Automated signal-processing techniques can greatly aid

in the analysis of large sets of recordings. One set of methods

is based on measuring one or more of the many acoustic fea-

tures that can be extracted from recordings (Schrader and

Hammerschmidt, 1997). Multivariate statistics are then used

to determine which features or combinations of features vary

across individuals (Mammen and Nowicki, 1981; Freeberg

et al., 2003), groups (Boughman, 1997; Townsend et al.,
2010), or geographic and genetic distance (Irwin et al., 2008).

Other methods compare recordings directly in a pair-

wise manner to quantify their acoustic similarity. Recordings

are typically represented as univariate or multivariate time

series. In the well-established technique of spectrographic

cross correlation (SP/CC), the representation is the signal’s

power in different frequencies (Clark et al., 1987; Baker and

Logue, 2003; McDonald and Wright, 2011). Other represen-

tations have been used, including cepstral coefficients

(Ranjard et al., 2010), peak frequency (Farabaugh et al.,
1994), fundamental frequency (or pitch) (Deecke et al.,
1999; Smolker and Pepper, 1999; McComb et al., 2003;

Shapiro and Wang, 2009), and harmonicity and Wiener en-

tropy (Tchernichovski et al., 2000). The time series are then

compared to each other, often using cross correlation.

Similar signals will exhibit a peak in the cross correlation,

and the height of the peak can be taken as a measure of simi-

larity. Cross correlation can be sensitive to small differences

in duration and modulation rate. For example, two tones

modulated at slightly different rates will have spectrograms

that may overlap at only a few points, resulting in low corre-

lations. Other metrics of similarity, such as piecewise and

polynomial fits (Smolker and Pepper, 1999), hidden Markov

models (Chen and Maher, 2006) and dynamic and linear

time warping (Anderson et al., 1996; Tchernichovski et al.,
2000), allow the signals to distort in time and are less sensi-

tive to temporal differences.

The fundamental frequency (F0) is a particularly useful

basis for comparison of vocalizations that are tonal and har-

monic. Tonal sounds are perceived by humans and at least

some species of birds and mammals as having a defined

pitch that corresponds to F0 (Shofner, 2005). Pitch can be

modulated under motor control (Curry, 1937; Goller and

Suthers, 1996), and both absolute pitch and pitch modula-

tions can serve as signals in vocalizations (e.g., Christie

et al., 2004). Because of the importance of pitch to human

perception, there have been countless studies on automated

methods of extracting F0 from human speech and song
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(Gold et al., 2011), and some of these methods have been

applied to studies of non-human mammals (McCowan,

1995; Deecke et al., 1999; McComb et al., 2003; Shapiro

and Wang, 2009).

Although many avian songs and calls are tonal, pitch

has not been extensively used for acoustic similarity meas-

urements in field studies of birds (Tchernichovski et al.,
2000; Ranjard et al., 2010). This paper describes a method

for comparing tonal avian vocalizations using dynamic time

warping (DTW) of F0 contours. The F0 contours were esti-

mated with a pitch-tracking algorithm (Wang and Seneff,

2000) modified for increased robustness to noise in open-air

field recordings. This method and a number of similar algo-

rithms were evaluated for how well they separated clusters

of similar vocalizations in a library of tonal, harmonic flight

calls from superb starlings, Lamprotornis superbus.

II. METHODS

A. Recording apparatus

The recordings in this study were collected with a

PMD660 or PMD661 digital recorder (Marantz, Mahwah, NJ)

and an ME66 or ME62 shotgun microphone (Sennheiser

Electronic, Old Lyme, CT) with a foam wind screen (MZW66

or MZW62; Sennheiser Electronic). The recorder digitized

the signals at 16-bit resolution and a sampling rate of 44.1 or

48 kHz and stored the data in time-stamped WAVE files.

B. Study species and acoustic recordings

Superb starlings are cooperative breeders that live pri-

marily in semi-arid savannas in East Africa (Feare and

Craig, 1999). The recordings for this study were collected at

Mpala Research Centre, Kenya (08.17�N, 378.52�E) from a

population of nine geographically isolated social groups all

located within 8.7 km of each other. Groups consisted of up

to 35 birds at any one time (Rubenstein, 2007a). All the indi-

viduals in the population were marked with a unique combi-

nation of four color leg bands and a numbered metallic ring

(Rubenstein, 2007b).

When taking off or flying over conspecifics, superb star-

lings often make loud calls (hereafter, flight calls). The data in

this study comprised 365 flight calls recorded between May

and July in 2008–2010 during daylight hours. Caller identity

was established through a spotting scope and was noted

vocally on the recordings. In total, 109 banded adults

(56 male, 53 female) were recorded. Recording conditions var-

ied with distance from the bird (20–100 m) and the presence of

environmental noise, including wind, vocalizations from other

species and more distant conspecifics, and human-generated

sounds. Signal-to-noise ratio (SNR), measured relative to one

or more segments of background from the same recording,

ranged between�22 and 28 dB (mean 6 SD¼ 3.3 6 8.1).

The recorded flight calls were tonal, harmonic, and rap-

idly modulated in frequency (Fig. 1). Calls consisted of

bouts of “motifs” that were separated by intervals of silence

(typically 40–100 ms) and that were often used multiple

times in the same bout. Some of the same motifs were

recorded in other kinds of vocalizations from this population,

including songs (Pilowsky and Rubenstein, 2013) and short

calls given from elevated perches (S. C. Keen, personal ob-

servation), but only motifs from flight calls were included in

this study.

For analysis, call bouts were segmented into motifs by

visual inspection of spectrograms, with a criterion of at least

25 ms of silence or background noise between motifs. Of a

total of 2552 motifs, 210 (8%) were excluded because the

signal quality was too poor. For another 226 of the motifs

(9%), the focal singer could not be positively identified ei-

ther because more than one bird was singing with similar

loudness (at different times) or the colored bands on the

bird’s leg could not be clearly observed. These motifs were

used in testing the F0-tracking algorithm but excluded from

the analysis of call similarity. A total of 2116 motifs were

from identified birds (mean 6 SD¼ 5.8 6 4.1 motifs per

bout, N¼ 365).

C. F0 tracking

All the recorded flight call motifs were tonal and har-

monic with a well-defined F0 that modulated in time as seen

in Figs. 1 and 2(a). F0 was estimated from the recordings

using a harmonic-template-matching algorithm modified

from Wang and Seneff (2000). The modifications include

the use of time-frequency reassignment spectrograms to

increase resolution, particle filtering to smooth estimates

across time, and spectrogram masking to remove noise.

Briefly, the harmonic-template algorithm is based on the def-

inition of harmonic sounds as having peaks of spectral entry

at integral multiples of F0. An estimate of F0 can be obtained

by cross correlating the power spectrum on a logarithmic fre-

quency grid [Fig. 2(b)] with a harmonic template that has

FIG. 1. Spectrogram of an exemplar superb starling flight call bout. Darker shades indicate increasing power (log scale). Horizontal black bars above the spec-

trogram indicate the component motifs.
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peaks at logarithmically-spaced intervals. Following Wang

and Seneff (2000), the harmonic template had seven peaks,

which were scaled so that the normalized area under each

peak decreased exponentially with a decay factor of 0.85.

Negative peaks were added between the positive ones, with

an amplitude of 0.35 times the amplitude of the main peak in

the template. The template is shown in Fig. 2(c). These fea-

tures help to reduce pitch-doubling and halving errors.

To extract F0 contours (i.e., as a function of time), the har-

monic template was cross correlated with spectra calculated in

short, overlapping analysis windows. Due to the high rate of

frequency modulation in superb starling motifs (as high as

80 Hz in the trills), the analysis windows needed to be short

(around 10 ms), which in a standard short-time Fourier trans-

form (STFT) would lead to relatively broad peaks in the fre-

quency domain. Time-frequency reassignment was used to

sharpen the peaks (Auger and Flandrin, 1995).

Analysis windows were 12 ms in duration, shifted by

1.5 ms in each frame. A multitaper algorithm was used to

produce more stable estimates, with five Hermitian tapers

(Xiao and Flandrin, 2007), and spectral energy was “locked”

to within 480 Hz and 7.5 ms of its original location, which

helps to further reduce noise (Gardner and Magnasco, 2006).

Frequency reassignment was on a logarithmically spaced

grid to facilitate cross correlation with the template. The

code used to calculate the reassigned spectrograms is avail-

able at http://www.github.com/dmeliza/libtfr.

Some tracking algorithms for pitch (and peak fre-

quency) impose a continuity constraint to ensure that esti-

mates change smoothly between successive frames and

avoid doublings and halvings (Boersma, 1993; Wang and

Seneff, 2000; Mallawaarachchi et al., 2008). This constraint

can be especially important in field recordings where low-

frequency noise (e.g., from wind), vocalizations from other

species, and other non-stationary environmental sounds tem-

porarily obscure the main peak in the cross correlation.

Particle filtering, a well-established statistical sampling

method, was used to smooth estimates of F0 across time (Liu

and Chen, 1998). Following Wang and Seneff (2000), the

cross correlation between successive frames [Fig. 2(e)] of

the spectrogram was used as the smoothing constraint (i.e.,

proposal density). The particle filter generated a distribution

of likely contours, which was backtracked using a Viterbi

algorithm (Godsill et al., 2001) to find the most likely con-

tour. F0 was taken as the mean across five runs with different

initial conditions.

Start and stop times for tracking were set manually by

inspecting the spectrograms. The parameters of the algo-

rithm were optimized heuristically using several exemplar

motifs. Plots of the F0 estimates were overlaid on the spec-

trograms, and the parameters were adjusted to maximize the

degree of overlap of the estimates with the strongest and

lowest frequency contour in the spectrogram. The same pa-

rameters were used for all motifs.

After an initial run of the algorithm, a polygonal mask

was drawn on the spectrogram [Fig. 2(a)] to exclude interfer-

ence from wind, other vocalizations, and reverberation. The

power for time-frequency points outside the mask was set to

zero, effectively restricting the F0 contours to areas within

the mask and preventing the algorithm from treating noise as

a possible harmonic [Fig. 2(d)]. The masks were iteratively

refined until the F0 estimates aligned with the lowest har-

monic. These refined estimates were used as the basis for

evaluating the performance of the algorithm on unmasked

recordings at different SNR. The error in the unmasked F0

estimate was calculated as the root-mean-square (RMS) of

the difference between the unmasked and refined estimates.

Recordings where the fundamental frequency was not clearly

visible in the spectrogram, or where the F0 estimate could

FIG. 2. (Color online) Example of F0 tracking analysis. (a) Time-frequency

reassignment spectrogram of a superb starling flight call motif. Shaded

region is a manually drawn mask used to reduce influence of low-frequency

noise. Dashed line indicates time frame analyzed in subsequent panels. (b)

Power spectrum in example time frame. Note the peak corresponding to the

fundamental frequency of the vocalization, around 3 kHz, is small relative to

the low-frequency noise. (c) Harmonic template, with logarithmically

spaced peaks to detect harmonic structure. (d) Cross correlations of spec-

trum with harmonic template. Masking the spectrogram [shaded polygon in

(a)] reduces low-frequency interference so that the highest peak corresponds

to the fundamental frequency. (e) Cross correlation between the example

frame and the following time point, which is used by the particle filter to

smooth estimates. The peak at þ2% indicates F0 is increasing.
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not be refined to match the spectrogram, were excluded from

later analyses. Masking and exclusion were done blindly,

with no information about the locations of or individuals in

the recordings made available to the operator.

D. Motif comparisons

A number of different pairwise-comparison methods

were tested on two sets of flight call motifs comprising 5–20

exemplars of nine distinct motif types, three types from three

different social groups. Each set was chosen by an observer

given spectrograms of the motifs and information about

which social group they were recorded from but not the F0

estimates or any information that would identify the singer.

Observers were instructed to choose sets of exemplars that

looked similar to each other but were distinct from the other

eight motif types. One set (hereafter, the test set) was chosen

by C.D.M. and was used to tune parameters of the compari-

son methods to maximize the similarity among exemplars of

each motif type and maximize dissimilarity among different

motif types. The second set (hereafter, validation set) was

chosen from three different social groups by a person famil-

iar with superb starling song but without any prior exposure

to this dataset. The comparison procedures were applied to

the validation set without further adjusting the parameters.

Details of individual comparison algorithms are given in the

following text.

To evaluate the performance of each comparison metric,

the similarity values within types were compared to the simi-

larity values between types. An ideal comparison metric would

yield large within-type similarities compared to between-type

similarities. The average silhouette (Rousseeuw, 1987), a non-

parametric measure of cluster separation, was used to quantify

performance. For each motif i, the silhouette index is defined

as si¼ (bi � ai)/max(ai, bi), where ai is the average dissimilar-

ity between i and the other motifs of the same type, and bi is

the minimum dissimilarity between i and all the motifs of a dif-

ferent type. Dissimilarity was taken to be the reciprocal of sim-

ilarity. The average silhouette is the mean of si over all motifs,

and it ranges between �1 and 1 with larger values indicating

better separation among types. Because silhouette is nonpara-

metric it is less likely to be influenced by differences in the

scale of similarity scores from different methods. Silhouette

was calculated in R with the package cluster (version 2.15.1).

1. Cross correlation

The peak cross correlation of two time series provides a

simple similarity metric. Motifs were compared using cross

correlation of the F0 estimates (F0/CC) and cross correlation

of the spectrograms (SP/CC). SP/CC is identical to standard

univariate cross correlation but averaged across multiple

frequency bands. In keeping with standard methodology

(Charif et al., 2010), spectrograms for SP/CC were calcu-

lated using a conventional STFT, a Hanning window of

10.8 ms (518 samples corresponding to a frequency resolu-

tion of 93 Hz) and a frame shift of 1.04 ms (50 samples).

These values gave the best performance on the test set.

Based on visual inspection, the power in superb starling

flight calls was restricted to frequencies between 750 Hz and

10 kHz, so only those bands were included in the calculation.

To avoid spurious correlations between beginnings and ends

of motifs, only lags where the shorter signal overlapped

completely with the longer one were used. SP/CC was tested

with power on a linear scale and on a log scale, and with and

without masking. For log-scale spectrograms and F0 the

mean was subtracted before evaluating the correlation.

Similarity was taken to be the peak of the cross correlation.

2. Dynamic time warping

DTW is similar in principle to cross correlation, but the

time series are allowed to compress and expand temporally to

find the best alignment (Vintsyuk, 1971; Anderson et al.,
1996). DTW consists of two steps. First, all the time points in

the two signals A and B are compared in a pairwise manner to

generate a difference matrix, Hi;j, where i is a time index in A
and j a time index in B. For the F0 contours, the signals were

univariate functions, FA
0 (t) and FB

0 (t), and the difference was

the Euclidean distance, H2
i;j ¼ ðFA

0 ðtiÞ � FB
0 ðtjÞÞ2. For spec-

trograms, each time point was represented by a vector [Sf(t)],
and there were multiple options for calculating Hi;j. DTW of

spectrograms (SP/DTW) was tested using the Euclidean dis-

tance, H2
i;j ¼

P
f ðSA

f ðtiÞ � SB
f ðtjÞÞ2, which emphasizes differ-

ences in power, and the cosine of the angle between the

vectors

Hi;t ¼
SA

f ðtiÞ � SB
f ðtjÞ

kSA
f ðtiÞkkSB

f ðtjÞk
;

which emphasizes differences in shape. As with SP/CC, the

spectral DTW algorithm (SP/DTW) was tested on both lin-

ear and log-scale spectrograms and with and without masks.

The second step in DTW is finding the optimal path

through the difference matrix that minimizes the dissimilar-

ity, subject to a cost function that determines how much

warping will be allowed. For this application, to allow some

degree of local warping while penalizing large differences in

duration, an adaptive Itakura constraint was used (Itakura,

1975)

dðk; lÞ ¼
maxðk; lÞ if k ¼ 1; l � 3 or k � 3; l ¼ 1;

exp½maxðk; lÞ�=3 if k ¼ 1; l � N or k � N; l ¼ 1;

1 otherwise

8><
>:

(1)

where d(k,l) is the cost of moving k time points in one signal

and l in the other, and N is one greater than the minimum

factor by which the shorter motif needs to be deformed to be

alignable with the longer motif. It can be seen that this

cost function allows signals to compress or expand locally

by a factor of up to N but with exponentially increasing

penalties. The total dissimilarity is defined by the sum of

Hiþk;jþ1dðk; lÞ over the best path, with 0 indicating that the

signals are identical and larger numbers indicating greater

dissimilarity. Scores were normalized by the average length

of the two signals, and similarity was defined as the recipro-

cal of dissimilarity.
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3. SOUND ANALYSIS PRO

SOUND ANALYSIS PRO (SAP) is widely used in laboratory

studies of song learning and development (Tchernichovski

et al., 2000) and in some field studies as well (Baker and

Logue, 2003; Brunton and Li, 2006; Ranjard et al., 2010).

SAP’s symmetric comparison function was used to make

pairwise similarity measurements. Out of a range of values

for the interval and minimum duration parameters, the best

results were observed with an interval of 60 ms and a

minimum duration of 26 ms. It was not possible to test

masked spectrograms because SAP only takes sound files

as inputs.

E. Software

The F0 tracking, DTW, and CC algorithms used in this

study are available as part of an open-source, freely avail-

able software package called CHIRP (http://github.com/

dmeliza/chirp). Version 1.2 was used for analyses in this

study. The software includes a graphical interface for

inspecting spectrograms and drawing denoising masks and

a batch processing interface for calculating F0 and compar-

ing recordings. Batch analyses take advantage of multi-core

processors for substantial improvements in speed with large

libraries of recordings. Results can be exported to plain

text files or SQL databases. Signal comparisons use a modu-

lar plugin architecture that allows users to supply additional

algorithms.

III. RESULTS

A. F0 tracking

For recordings of superb starling flight calls with high

SNR, the estimated F0 traces reliably tracked the fundamen-

tal frequency in the spectrogram. As shown in Fig. 3(a), the

F0 contours followed rapid and fine-scale frequency modula-

tions in trilled and “hairpin” sections of the motifs. With

increasing noise, the algorithm was increasingly likely to

briefly follow ridges in the noise instead of the contour of

the vocalization. Nonstationary sounds from other birds,

humans, and mechanical devices were the most problematic,

but low-frequency noise from wind could also introduce

errors when the amplitude was large enough. Reverberation

smeared spectral energy across time, as seen in Fig. 3(a),

and could lead to a failure to track frequency modulations.

At high levels of noise, around 0 dB SNR, the algorithm was

increasingly unlikely to find the start of the contour.

Most of these errors could be corrected by using spectro-

temporal masks to eliminate interference from other sources.

An example mask is shown in Fig. 2(a). Effectively the mask

acted as a bandpass filter the passband of which could be con-

trolled on a fine time scale. The F0 traces extracted after

masking were used to assess the performance of the tracker

on unmasked signals. Figure 3(b) shows that the median

RMS difference between masked and unmasked estimates

and the number of recordings with large errors (>2 kHz

RMS) increased with noise. A substantial proportion (11%)

FIG. 3. F0 tracking performance on

noisy recordings. (a) Spectrograms of

six exemplar motifs. Numbers in each

panel indicate signal-to-noise ratio (dB

RMS). Red traces indicate F0 estimates

without masking; blue traces indicate

estimates after masking. In the final

panel, the signal is barely visible and

the F0 estimate is extremely noisy.

Dynamic range of the spectrograms is

50 dB, and the time and frequency

scales are the same for all plots.

Arrowheads indicate reverberation. (b)

Boxplot of average error (RMS differ-

ence between masked and unmasked

F0 estimates) as a function of record-

ing SNR. Thick horizontal lines indi-

cate medians. The upper and lower

edges of the boxes indicate upper and

lower quartiles, and the vertical lines

extend to 1.5 times the interquartile

range. Outliers beyond the range of the

whiskers are shown as points.
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of the recordings with SNR below 0 dB were so badly

obscured by noise that the F0 contour could not be seen in the

spectrogram. Even with masking, F0 estimates from these

recordings were highly variable, as seen in the last panel of

Fig. 3(a), and the recordings were not included in further

analysis.

B. Motif-similarity measurements

A subset of the superb starling flight call recordings was

used to test several different pairwise-comparison methods.

The results from these analyses are shown in Fig. 4 as matri-

ces in which each cell corresponds to a different pair of

motifs, and intensity indicates the similarity score. As seen

in Fig. 4(a), F0/DTW yielded relatively high similarity

scores between motifs of the same type and low similarity

scores between motifs of different types. Results for some

of the other comparison methods are shown in Fig. 4(c).

SP/DTW using both masked and unmasked spectrograms

gave results comparable to DTW using F0 estimates refined

by masking, but F0/DTW with unrefined estimates appeared

to give lower within-type similarity. F0/CC gave the lowest

between-type scores but also showed low within-type scores

for many of the motif types. SP/CC and SAP gave relatively

high between-type scores.

The average silhouette was used to quantify how well

each of the comparison methods separated the motif types

into distinct clusters. High within-type and low between-

type similarity results in silhouette values approaching 1.

Silhouette values close to or below 0 indicate overlap

between clusters. The same algorithms were also applied

to a second set of validation motifs. As seen in Fig. 5, the

F0/DTW algorithm using masked spectrograms gave the best

cluster separation on both the test and validation sets, fol-

lowed by the SP/DTW algorithm using masked spectro-

grams, a linear power scale, and cosine-based spectrographic

distance. However, for unmasked spectrograms, SP/DTW

outperformed F0/DTW. F0/CC also gave relatively good sep-

aration for masked spectrograms. The worst cluster separa-

tion was with SP/DTW using a linear power spectrum and a

Euclidean spectrographic distance.

IV. DISCUSSION

A. F0 tracking

Despite the importance of pitch as a bioacoustic feature,

obtaining good pitch estimates from field recordings remains

difficult. The most advanced algorithms are specialized for the

human vocal system, and more general algorithms can be

fairly sensitive to noise. The pitch-tracking algorithm

described here is based on harmonic template matching, origi-

nally developed for human telephone speech (Wang and

Seneff, 2000) but also used with whale vocalizations (Shapiro

and Wang, 2009). For these recordings, multitaper reassign-

ment spectrograms increased precision and robustness to

unstructured noise, and a Bayesian particle filter improved

tracking by smoothing estimates over time. F0 estimates from

this method were reliable if the signal strength was at least

10 dB above background noise. This method could be used

FIG. 4. Similarity of superb starling flight calls calculated with different

comparison methods. (a) Matrix of similarity scores for each pair of record-

ings from a test set comprising multiple exemplars of nine different motif

types (indicated by brackets below matrix). Scores are calculated using

DTW of the F0 contours with lighter shades indicating higher similarity.

Motifs are indexed in the matrix by type so that cells corresponding to

within-type comparisons are in blocks along the diagonal and between-type

comparisons are off the diagonal. (b) Exemplars of recordings from three of

the motif types. Note differences within types in duration, modulation rate,

and background noise. (c) Similarity score matrices for some of the other

comparison methods. SP/DTW: Dynamic time warping of spectrograms

with linear spectrogram scale and cosine distance metric; F0/CC: Cross cor-

relation of F0 contours; SP/CC: Spectrographic cross correlation with cosine

distance metric; SAP: SOUND ANALYSIS PRO. “Masked” indicates that a denois-

ing mask was applied to the spectrograms prior to running the F0 estimation

or spectrographic comparisons. Intensity maps are on a log scale for DTW

scores due to their large range and on a linear scale for CC and SAP, which

give scores bounded between 0 and 1.
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without denoising on recordings made in good acoustic condi-

tions, including field sites where the microphone is close to

the animal.

For noisier recordings, applying a mask to the spectro-

gram to eliminate interference from noise sources restricted

to specific times and frequencies improved F0 tracking down

to SNR levels around 0 dB. Masking has the potential to

introduce bias and operator error, in the extreme reducing

the procedure to hand-tracing of contours. Depending on the

system, more automated methods of denoising may be pref-

erable (Mallawaarachchi et al., 2008; Johansson and White,

2011). However, it is important to note that most analyses of

field recordings involve a heuristic element if only to iden-

tify the onsets and offsets of recordings, and all manual steps

in acoustic analyses should be conducted blindly with no in-

formation about variables of potential interest available to

the operator.

B. Motif comparisons

DTW of F0 estimates from denoised recordings gave

similarity scores that corresponded well with identified motif

types, yielding high scores for comparisons between exem-

plars of the same type and low scores for comparisons

between exemplars of different types. These motif types were

identified through inspection of spectrograms and are likely to

reflect the most visually salient features of the spectrograms,

which in these data were the overall shapes of the F0 modula-

tions. Variations in duration and amplitude modulation, in

contrast, were not as visually salient. Thus F0/DTW accu-

rately quantifies the differences between recordings that are

apparent in spectrograms. Using CC to compare F0 estimates

instead of DTW gave worse cluster separation, consistent

with the greater sensitivity of CC to differences in temporal

structure. Some of these differences may be behaviorally

significant (e.g., Nelson and Marler, 1989), and playback

studies are necessary to determine whether additional infor-

mation is carried in the duration of superb starling flight calls.

Cluster separation was also good for DTW of full spec-

trograms when the spectrograms were calculated on a linear

power scale and the comparisons between time points were

based on the cosine of the angle between spectra rather than

the Euclidean distance. The cosine metric is normalized for

the power of the spectra and thus emphasizes differences in

shape, whereas the Euclidean metric is also sensitive to dif-

ferences in total power. Furthermore, a linear scale empha-

sizes peaks in the power spectrum more than a logarithmic

scale. The combination of these choices probably causes the

DTW algorithm to find optimal warpings based on the har-

monic peaks of the signals. In contrast, the combination of a

linear scale and a Euclidean metric led to a complete failure

to separate motif types. This combination of parameters is

likely to be extremely sensitive to differences in overall

power, which is not optimal given the range of recording

quality and amplitude in the field recordings used here.

F0/DTW, SP/DTW, and F0/CC outperformed SP/CC

and SAP, two commonly used methods for pairwise compar-

isons. The poor performance of SP/CC on this dataset may

reflect variability in the temporal structure of the motifs. A

comparison of the similarity matrices for SP/CC and F0/CC

[Fig. 4(c)] suggests that both methods show relatively good

clustering for the same subset of motif types. However, SP/

CC gives much higher between-type scores than F0/CC,

indicating that the poor cluster separation for SP/CC may

also be due to spuriously high correlations between unrelated

recordings.

Environmental noise had a clear impact on the perform-

ance of the similarity metrics (Fig. 5). For F0/DTW, noise

degraded cluster separation by introducing errors in the F0

estimates. A similar effect probably accounted for the poor

performance of SAP, which is designed for lab recordings

and does not have any denoising functionality. Noise also

affected the spectral-based comparisons, presumably by

introducing spurious correlations, but overall the spectral

methods were less sensitive than F0-based ones. For

unmasked spectrograms, SP/DTW outperformed F0/DTW.

Because masking requires significant manual effort and

introduces potential biases, SP/DTW is probably a better

choice for comparing noisy recordings if the F0 estimates

are not needed for anything else.

V. CONCLUSIONS

Quantitative, automatic comparisons of acoustic signals

offer the possibility of studying large numbers of vocaliza-

tions to look for patterns in the development of an individu-

al’s repertoire or in cultural transmission of vocal behaviors

through populations (Lachlan and Slater, 2003; Runciman

et al., 2005; Sewall, 2009). The current results illustrate the

importance of choosing comparison metrics that reflect the

structure of the vocalizations under study. Superb starling

flight call motifs are tonal and harmonic, and F0 provides a

useful low-dimensional representation for making pairwise

comparisons. Similar improvements over spectral-based

FIG. 5. Cluster separation (average silhouette) for pairwise-comparison met-

rics. Headings in capital letters are the comparison algorithms of which there

were one or more variants. For the spectrographic metrics, subheadings indi-

cate whether the power scale was linear or logarithmic, and whether spectro-

graphic distance was calculated using a cosine (cos) or Euclidean (eucl)

metric.
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methods are likely to obtain for other species that produce

tonal vocalizations and use pitch modulations to convey in-

formation. Likewise, superb starling motifs vary substan-

tially in duration while maintaining the same overall shape

of F0 modulation. For such data, time-warping methods pro-

vide estimates of similarity that correspond better to visual

classification in comparison to cross-correlational methods,

which are more sensitive to small differences in temporal

structure.
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