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Abstract

Beneath many glaciers and ice sheets, hydrology influences or controls a variety of basal pro-
cesses. Glaciohydraulic supercooling is a process whereby water freezes englacially or sub-
glacially because its internal temperature is below the bulk freezing temperature. Water super-
cools when it is at its freezing point and flows from an area of higher pressure (lower ambient
temperature) to an area of lower pressure (higher ambient temperature) without equilibrating
its internal energy. The process is dependent on the configuration of the water flow path relative
to the pressure gradient driving flow.

I formulate the governing equations of mass, linear momentum, and internal energy for time-
dependent clear water flow based on previous work (Clarke, 2003; Spring & Hutter, 1981, 1982).
Because field evidence and steady-state theory point to water distributing laterally across the
bed, I modify this theory to account for an aperture that is much wider than deep, which I refer
to as a sheet. Ice accretion terms are formulated with porosity because accreting ice has residual
porosity. Ice intrusion into such a water sheet is not described in the literature, and I formulate
intrusion based on previous work as well as ideas gained from subglacial cavity formation. In
addition, I modify the clear water equations to include erosion and deposition of sediment along
the glacier bed and incorporation of sediment into the accreted ice. Furthermore, water may
leave the ice–bed interface and flow through the glacier pore space because subglacial water
pressure is relatively high when supercooling occurs. To this end, I develop an englacial water-
flow model that incorporates changes in ice porosity based on creep closure and ice melt or
accretion.

Simulations reveal behavior that cannot be inferred from simplified models. For example,
while total ice accretion is comparable to field estimates, locations of simulated ice accretion
along the ice–bed interface conflict with steady state models, which tend to overpredict accretion
amounts. Simulations also indicate that much sediment deposition occurs prior to water being
supercooled. Sediment deposition tends to smooth subglacial topography rather than enhance
it. Additional results and implications of numerical simulations are discussed.
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Chapter 1

Introduction

Water flow and ice–water interactions in glaciers provide a complex and captivating area of
research. One phenomenon associated with en- and subglacial water flow is glaciohydraulic
supercooling: under the proper conditions, water flowing through a glacier’s hydrologic system
will freeze. Supercooling implies that the water temperature is below its equilibrium freezing
temperature. Glaciohydraulic supercooling depends on the configuration of the hydrologic sys-
tem as well as the change in the freezing point of water. Because glaciohydraulic supercooling
is an unusual process whereby the hydraulic pathways operate in concert with the phase change
of water, an understanding of the both glacier hydrology and supercooling are necessary.

This thesis focuses on glaciohydraulic supercooling. The goal of the present work is to
investigate supercooling in the subglacial environment from a theoretical and computational
perspective. Water flow englacially and, in particular, subglacially will be of principal impor-
tance throughout this thesis.

1.1 Glacier hydrology

During summer months, meltwater generated at a glacier surface flows to the margin along
pathways that may be supraglacial, englacial, or subglacial. Surface waters may channelize as
they flow across the top of the glacier and flow down moulins or crevasses. Once water drains
from the surface, its flow path may not be straightforward. Water may continue englacially; or
alternatively, water can proceed to the ice–bed interface. Path selection is dictated by potential
gradients. Provided that water is flowing down gradient, it is not restricted to flowing downhill.

Water that flows englacially may use any passageway available. Passageways can be conduits
(e.g., Shreve, 1972), englacial fractures (e.g., Fountain et al., 2005a), or a network of small veins
at the boundaries of ice crystals (e.g., Nye, 1976). An englacial conduit network would be a series
of connected tubes. A fracture network would likely be a series of intersecting crevasses that
have not refrozen sufficiently to block water flow. Veins exist at ice grain-boundary junctions.
Because of their small size, veins are only weakly hydraulically conductive but may be the only
mode of water transport in glaciers that lack englacial fractures or conduits. Other types of
englacial passageways are clearly possible, but would likely be variants of the aforementioned
types.

After entering the englacial plumbing system, water can continue to the ice–bed interface to
enter subglacial passageways that have a substrate floor and an ice ceiling. A substrate floor can
be either rock, sediment, or some combination of the two depending on what is available below
the glacier. Any passageway can be subglacial, or basal, if it meets the criterion that it has
an ice roof and a substrate floor. These subglacial passageways have received copious attention
in the literature (for recent reviews, see Clarke, 2005; Fountain & Walder, 1998; Hubbard &
Nienow, 1997).

Subglacial passages fall into broad categories based on the drainage network morphology,
cross section, and the water flow velocity. Hubbard & Nienow (1997) reviewed the predomi-
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nant types of passageways and grouped them according to water velocity. Their premise was
that passageways that conduct fast-flowing water would form an arborescent drainage network.
The remaining passageways would form a distributed network. They distinguished seven ma-
jor types of cross-sections: Röthlisberger- or R-channels, Nye- or N-channels, broad-and-flat
channels, films, linked cavities, porous media, and canals (Fig. 1.1). Generally, high-conducting
passageways (R-, N-, and broad-and-flat channels) have higher ratios of cross-sectional area to
wetted perimeter. As a result, water is able to flow faster and loses more momentum to friction
along the wetted perimeter that enables melting of the surrounding ice (Röthlisberger, 1972).
This melting allows the pressure gradient driving flow to increase. In contrast, low-conducting
passageways (films, linked cavities, porous media, and canals) have lower ratios of cross-sectional
area to wetted perimeter. In consequence, these passageways operate at pressures at or near the
ice overburden pressure and have extremely low pressure gradients driving flow. Water flowing
through these passageways loses less momentum to the perimeter of flow. Because flow is slow,
there is little melt induced by friction at the hydraulic perimeter (Walder, 1986).

Hubbard & Nienow’s (1997) review concludes by noting that the understanding of temporal
and spatial changes in morphology is incomplete. The transformation of one cross-section and
its corresponding network morphology to a different cross-section and morphology is unclear.
Morphological switching would occur, for example, if a film terminated at an R-channel (Fig. 1.1
a,d; Weertman & Birchfield, 1983). Passageways may switch temporally from one flow regime
to another depending on the supply of water (e.g., Kamb, 1987). A water supply difference
from upstream to downstream could also cause a switch in morphology. For example, an over-
abundance of water moving downstream may cause a film to be downstream of the conduit,
as in the case of the 1998 outburst flood (jökulhlaup) moving down Skeiðararjökull, Iceland
(Björnsson, 2002). Similarly, during the spring thaw when glacier hydrology awakens from its
winter hibernation, the subglacial hydraulic system may evolve from one type of morphology to
another (e.g., Iken & Bindschadler, 1986). In sum, water is capable of utilizing any morphol-
ogy or cross section depending on the water flow conditions at the ice–bed interface. Different
types of passageways may be spatially contiguous, and there is a rich continuum of network
morphologies and cross sections.

Access to the basal plumbing system is limited by the overlying glacier. As a result, little
is known about subglacial network morphologies, cross-sections, and water velocities relative
to subaerial fluvial systems. Interpretations of the hydraulic system are therefore limited to
observing properties of input and output water (e.g., Kohler, 1995; Lawson et al., 1998; Seaberg
et al., 1988), drilling through the glacier to install instruments (e.g., Flowers & Clarke, 2002b;
Harper et al., 2002), or altering the flow regime via slug or other tests that introduce a pressure
transient into the subglacial system (e.g., Kulessa et al., 2005; Stone & Clarke, 1993). One result
of this limitation is that testable physical and numerical models become crucial to understanding
spatial and temporal changes in subglacial hydraulic characteristics.

Supercooling

Any liquid that is at a temperature below its bulk freezing temperature is said to be supercooled.
The term “supercooling” is slightly misleading because as liquid water freezes its temperature
must be at least a small amount below the freezing point. The sensible heat associated with the
supercooling is then converted to latent heat as the water freezes. This conversion drives the
temperature of the liquid back toward the bulk freezing temperature. Normally, explicit use of
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Figure 1.1: Illustration of simple subglacial hydraulic systems. Not to scale. White ice overlies
a light gray water system and a dark gray substrate. Figures a, b, and c are the high-conducting
water systems. Figures d, e, f, and g are the low-flow water systems. (a) R-channel typified
as an ice-walled tube (Röthlisberger, 1972) overlying sediment or bedrock. (b) N-channel cut
into bedrock (Nye, 1973b). (c) Broad-and-flat channel (Hooke et al., 1990) over sediment or
bedrock. (d) Thin water film (e.g., Weertman, 1972) overlying either sediment or bedrock.
Films are typically microns thick and overlie microtopography on the bed. (e) Linked cavity
system (Kamb, 1987; Walder, 1986) overlying bedrock. Flow through linked cavities is governed
by the small orifices connecting the cavities. (f) Porous medium through sediment or bedrock.
(g) Subglacial canal (Walder & Fowler, 1994) partially cut into sediment. Canals can occur only
where a glacier overlies sediment.

the word supercooling implies that the freezing process is not at equilibrium. Undercooling and
supercooling are interchangeable terms with both found in the literature.

Water can supercool to different levels depending on when ice crystallization occurs. Lack of
sites for crystallization typically enhances the level of supercooling. For example, at atmospheric
pressure, pure water without condensation nuclei from any source will freeze at a temperature of
about −40 oC, well below its bulk freezing temperature (Hobbs, 1974, p. 468). In this case, water
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nucleates on itself, termed homogeneous nucleation1. Heterogeneous nucleation, however, occurs
when water freezes to non-ice particles within the liquid. Depending on the composition of the
particles, the freezing point can be anywhere between −40 oC and 0 oC at atmospheric pressure
(Hobbs, 1974, p. 502–504). For natural streams, Osterkamp & Gilfillian (1975) found that
heterogeneous nucleation occurs between about −4.9 and −13.9 oC. When the seed particles
are ice crystals, this is termed secondary nucleation. The temperature depression can be a
fraction of a degree for this type of freezing. Martin (1981) reviewed the observational basis of
secondary nucleation and found that ice can begin to crystallize at about −0.05 oC in natural
streams, and possibly at higher temperatures.

Glaciohydraulic supercooling is a special case of supercooling where the flow of water either
sub- or englacially causes the water to be below its freezing point. This natural phenomenon
arises from water’s freezing point being linearly dependent on pressure. When water at the
freezing point moves rapidly from one area of the glaciohydraulic system to another where the
ambient pressure is lower, and if the internal energy of the water does not adjust to the ambient
pressure, then the water supercools. Glaciohydraulic supercooling is a process that is dependent
on water velocity. The water needs to flow faster than it can equilibrate its internal energy. As
a result of this velocity dependence, glaciohydraulic supercooling favors network morphologies
and hydraulic cross sections that are most conducive to fast water flow.

Water can change its freezing point by moving vertically through a glacier’s hydraulic system.
A decrease in the amount of ice above the water decreases the water pressure, and results in
an increase in the freezing point. The amount of the increase in freezing point is governed by
the linearized Clausius-Clapeyron relationship. Thus, water that moves rapidly upwards in the
glacier from an area with a lower freezing point than the ambient freezing point will supercool.
Upward flow of water is the most obvious way of changing the freezing point, commonly called
the pressure melting point. Because englacial pathways are ice-bound and subglacial pathways
are ice-roofed, secondary nucleation at relatively low levels of supercooling is possible. Figure
(1.2) shows a downward view of a moulin where overpressured water spouted out of the glacier.
Because of supercooling, ice accreted along the perimeter of the moulin.

Figure 1.2: A downward view of a moulin with accreted ice from Llewellyn Glacier, B.C. Wa-
ter spouted several meters above the glacier surface from this moulin immediately before this
photograph was taken. The accreted ice surrounds the black moulin. Pocket knife for scale.

1A detailed discussion of homogeneous nucleation can be found in Chapter 7 of Pruppacher & Klett (1997)
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Subglacial passageways tend to be horizontal or sub-horizontal over scales of meters. For
glaciohydraulic supercooling to occur, these passageways must be inclined such that upward
motion occurs and the pressure melting point rises faster than the water warms. The simplest
way of meeting these criteria is illustrated in Figure 1.3. In this case, water flows in subglacial
passageways along the ice–bed interface up a slope adverse to flow. As water ascends an adverse
slope beneath a glacier, it progresses from a region of higher pressure to a region of lower pressure
(Alley et al., 1998; Röthlisberger & Lang, 1987). Because the freezing point of water is pressure
dependent, if the water moves rapidly from high pressure to low pressure without warming
sufficiently, the water will supercool. If water flow is slow, the internal energy of the water may
equilibrate and prevent supercooling. The same arguments hold for water that flows vertically
rather than subhorizontally. Presentation of the detailed physics of flow and supercooling will
appear in subsequent chapters of this thesis.
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Figure 1.3: A synthetic geometry. Water flows along the ice–substrate boundary and ascends
the adverse slope from 150-0 meters from the terminus.

Figure 1.3 displays a synthetic example of a longitudinal glacier section2 for which the
surface and bed arrangement may yield supercooling. Water may flow through a subglacial
passageway from left to right at the ice–substrate interface. The glacier surface height decreases
monotonically, suggesting that the freezing point increases because of the decrease in pressure.
From 150–0 meters upstream from the terminus, water would travel up a slope adverse to flow.
If supercooling were to occur, it would occur as water flows out of this overdeepening. The term
overdeepening indicates a large closed depression beneath a glacier. Water is not able to flow
out of the overdeepening without a boost from the ice overburden pressure.

1.2 Previous work

Röthlisberger (1968) was the first to recognize the possibility of supercooling water in the sub-
glacial system. His thoughts are supplementary to the main body of the paper but capture the
essence of subglacial supercooling:

2In this case, a longitudinal section indicates that ice flow is parallel or nearly parallel to the section. A cross
section would indicate flow normal to the plane of the page. The formulation for the synthetic section of a glacier
can be found in Appendix A. All longitudinal sections will be shown such that water flow would be from page
left to page right.
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When the water moves to a higher pressure in a basin the equilibrium tempera-
ture decreases. The water has to be cooled, and the heat sink is provided by ice
which melts. Ascending water has to become warmer again: ice forms, or heat
comes from other sources which would otherwise be available for melting. . . .

We see that ice may form on the upper side of a riegel [a transverse bedrock
bump] if water ascends steeply. Under these conditions, where the water channels
cannot be kept open by continuous melting, the flow will presumably occur in a
sheet or a system of flat cavities rather than in a channel or tunnel.

Röthlisberger envisioned water flowing up a riegel out of a rock overdeepening.
Subsequently, Röthlisberger & Lang (1987) described the effect of water flow out of overdeep-

enings when they discussed enlargement of conduits via melting at the hydraulic perimeter. They
assumed that water flow was in steady state and derived relationships for water flow through
circular conduits, but then found that water approaches the ice overburden pressure when it
ascends the adverse slope. As a result of this elevated water pressure, they reasoned that any
of the plausible hydraulic cross-sections, notably conduits or sheets, are possible when water
flows up adverse slopes. Where a bed slope exceeds the surface slope by a factor of −2.02 for
pure water and −1.30 for air-saturated water, Röthlisberger & Lang determined that super-
cooling would occur. They also suggested that the conduits may freeze shut in overdeepenings
depending on the flow conditions.

Röthlisberger & Lang worked primarily from a theoretical perspective, whereas most in-
vestigations of glacier hydrology concentrate on specific field sites. Studies of glaciohydraulic
supercooling follow this trend. In particular, many relevant observations come from two glaciers:
Storglaciären, Sweden and Matanuska Glacier, Alaska, USA. Work conducted at Storglaciären
has focused primarily on the englacial hydrology of the system (e.g., Fountain et al., 2005a;
Hooke, 1991; Hooke & Pohjola, 1994; Hooke et al., 1988; Seaberg et al., 1988). Observations at
Matanuska Glacier have focused on subglacial hydrology and its relationship to subglacial and
basal sediments (e.g., Evenson et al., 1999; Lawson, 1979; Lawson et al., 1998; Pearce et al.,
2003). Work at both of these glaciers is ongoing. Less extensive observations have been made
at other glaciers.

1.2.1 Storglaciären

Storglaciären, Sweden, possesses an active hydrology and, in part, lies in an overdeepening
(Figs. 1.4 and 1.5). The main overdeepening is bounded on its downglacier side by a bedrock
riegel (R in Fig. 1.5). This riegel–overdeepening configuration corresponds to the description
of Röthlisberger (see above). Below this riegel, there is another overdeepening called the ter-
minal overdeepening (OD in Fig. 1.5). Seaberg et al. (1988) poured dye into moulins draining
to the subglacial water system. From these studies, Seaberg et al. concluded that the sub-
glacial hydraulic system below the riegel and through the terminal overdeepening was either
an arborescent network of linked cavities or was a braided, tortuous system of conduits. In a
companion paper, Hooke et al. (1988) discussed the hydrology above the riegel and determined
that the hydraulic pathways are both englacial and subglacial. The englacial and subglacial
water flow velocities above the riegel are slow relative to the water velocities below the riegel.
Hooke & Pohjola (1994) attributed the difference in hydrology to supercooled water freezing
and constricting the subglacial passages. As a result of this constriction, the water is diverted
and forced to flow through a low-conductivity englacial system. Hooke & Pohjola also observed
frazil ice, a strong indicator of supercooled water, discharging from several of the boreholes they
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had drilled.
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Figure 1.4: Map view of Storglaciären, Sweden. Thin black lines are the bed elevations. Thick,
labeled contours are the surface elevations. Contour intervals for both the surface and bed are
25 meters. Ice flows from west to east. The horizontal dashed line is the section for Figure 1.5.
Figure after Aschwanden & Blatter (2005). Data courtesy of P. Jansson.
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Figure 1.5: Storglaciären, Sweden, longitudinal section. E denotes the approximate equilibrium
line location. R denotes the location of a riegel underlying the glacier. MOD and TOD
denote the horizontal limits of the main and terminal overdeepenings, respectively. Vertical
exaggeration is 1.5. Length is the same as the dashed horizontal line in Figure 1.4.

Hydraulic studies at Storglaciären led Hooke (1991) to suggest that overdeepenings play a
substantial role in bedrock erosion. Part of his argument is that as water flows up the adverse
slope, the discharge diminishes and sediment is deposited. The discharge lessens because higher
water pressures force water to flow englacially. Sediment deposited when water leaves the
subglacial pathways mantles the bedrock and prevents further erosion. For a sufficiently steep
overdeepening, the water will move out of conduits and into a thin film along the ice–bed
interface. Hooke envisioned the thin film as being mildly hydraulically conductive. He asserted
that most of the drainage in the overdeepening must be englacial. Using additional borehole
data, Fountain et al. (2005a) extended Hooke’s (1991) idea and concluded that fractures may
be the main hydraulic pathway through glaciers and, specifically, Storglaciären. However, when
Fountain et al. drilled boreholes and observed a hydraulic connection, they stopped drilling.
As a result, it is difficult to ascertain what percentage, if any, of the hydraulic discharge occurs
at the ice–bed interface. Fountain et al. did not provide estimates of discharge through the
fracture system but proposed that the flow was significant.
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1.2.2 Matanuska Glacier

In a pair of papers assessing Matanuska Glacier, Alaska, a team spearheaded by Lawson and
Alley described data related to subglacial supercooling (Lawson et al., 1998) and presented the
basic mathematical formulation (Alley et al., 1998). At the base of Matanuska Glacier, a debris-
rich package of basal ice is overlain by cleaner glacier ice (Fig. 1.6). The debris-laden ice exhibits
a higher tritium content than the overlying englacial ice, which is tritium-poor (Lawson et al.,
1998). The difference in tritium concentration signifies that the basal ice accreted after the early
1950s when large-scale production of tritium via free air nuclear weapons testing commenced.
The tritium-poor englacial ice is older. Co-isotopic analyses of water and ice revealed that the
accreted ice is isotopically lighter than the englacial ice and subglacial water discharge (Lawson
et al., 1998). Isotopic analyses of frazil and anchor ice present in water issuing from the subglacial
passageways have values equivalent to the accreted ice layers. The formation of the debris-rich
basal layer directly from supercooled water is consistent with these data (Lawson et al., 1998).
As a result, there is little doubt that the subglacial package of accreted ice and sediment is
formed from actively supercooling water.

Figure 1.6: Terminus of Matanuska Glacier. White to grey meteoric ice overlies dark-grey to
black, sediment-rich basal ice that formed from glaciohydraulic supercooling subsequent to the
most recent surface testing of nuclear weapons. Illumination is from the upper right. From
Lawson et al. (1998).

Water flows through the overdeepening in conduits or a distributed drainage system. Near
the terminus, water emerges at several localized vents. Radar profiles taken near these vents
reveal what appear to be channels extending back toward the subglacial system (Arcone et al.,
1995; Lawson et al., 1998). Debris layers in the basal ice are laterally continuous, suggesting ac-
cretion via a distributed system (Lawson et al., 1998). Frozen features resembling cross-sections
of ice-choked subglacial conduits exist in the accreted ice but are rare. In addition, analyses of
dye-tracing studies suggest that water distributes laterally beneath Matanuska Glacier (Lawson
et al., 1998).

Generally, the debris content ranges from 15–60% by volume but can range from practically
none to entirely sediment (Lawson et al., 1998). Large clasts, such as pebbles and cobbles,
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found in the accreted ice are rounded and suggest a glaciofluvial origin, provided that those
sediments have not been reworked by other subglacial processes. Fine sediment dominates
the debris layers with fewer coarse-grained layers. The coarse layers can be clast-supported
or ice-supported. Clast-supported layers may indicate regelation entrainment (e.g., Iverson &
Semmens, 1995), but ice-supported layers form as water supercools and freezes (Lawson et al.,
1998). Overall, material that is entrained via regelation accounts for a small percentage of the
material in the basal layers. In addition, Lawson et al. discussed the similarity of parts of the
basal ice facies dominated by silt. These layers resemble features that have formed as frazil ice
flocs entrain sediment. The presence of frazil ice is indicative of turbulent water flow (e.g., Daly,
1984) as is the presence of high concentrations of sediment in the flowing water.

1.2.3 Other glaciers

Supercooled water and ice accretion are observed at other glaciers. Roberts et al. (2002) gave
an overview of supercooling in Iceland. They separated the subglacial supercooling into two
broad categories: supercooling under ablation conditions and supercooling under jökulhlaup
conditions. Roberts et al. used ablation conditions to describe supercooling that occurs on a
daily basis at Skaftafellsjökull under normal melt conditions. Data acquired at Skaftafellsjökull
includes evidence of active frazil and anchor ice accretion. Here, the sediment-rich basal ice is
several meters thick. In addition, water that flows up crevasses near the terminus supercools
and accretes sediment. These conditions would be analogous to daily summertime conditions
at Matanuska Glacier.

Jökulhlaup conditions are strikingly different. Water under high pressure fractured the sur-
face near the terminus of Skeiðarárjökull during the 1996 jökulhlaup (Roberts et al., 2002).
These high angle shear fractures acted as an overdeepened slope that Roberts et al. estimated
was a factor of −44.5 times the surface slope, well beyond Röthlisberger & Lang’s (1987) super-
cooling criterion. Within the fractures, Roberts et al. identified intercalated platelets of ice
and lozenge shaped ice crystals up to 40 mm in diameter that resembled deposits at Matanuska
Glacier (Evenson et al., 1999).

Recent observations at Taku Glacier, Alaska, included artesian water flowing from the ter-
minus and freezing (M. Truffer, personal communication, 2003). There is also some accreted
basal ice; however, detailed descriptions are not available. Observations are in concert with
Taku Glacier’s recent down valley advance and modification of its bed (Motyka & Echelmeyer,
2003; Nolan et al., 1995). Radar data point to the lower 1500 meters of the glacier lying in a
sediment-floored overdeepening (Nolan et al., 1995). This area of the glacier is well below the
equilibrium line, and the bed most likely receives abundant meltwater.

Few data exist at other glaciers. Radar echo soundings of Muir Glacier, Alaska, reveal an
overdeepening as well as accreted debris-rich basal ice (Alley et al., 2003a). However, there are
no direct observations from the terminus. Observations from the terminus of Kvíárjökull, Iceland
indicate that subglacial supercooling is occurring and accreting debris (Spedding & Evans, 2002),
but direct observations of supercooled water were not made. In addition, Spedding & Evans
suspected that their observations were uncertain because co-isotopic studies of the accreted ice
had not been completed at the time of publication.
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1.3 Importance and scope

1.3.1 Importance

Recently, Alley et al. (2003b) highlighted glaciohydraulic supercooling as being an important
process through which glaciers modulate subglacial sediment erosion and deposition. Alley et al.
argued that glaciers that rapidly erode and transport sediment will tend to develop an adverse
slope because these glaciers cannot evacuate sediment as rapidly as they accumulate it. As a
result, the bed steepens to its supercooling threshold which prevents the glacier from eroding
its bed further. Hence, glaciohydraulic supercooling stabilizes the subglacial sediment erosion
and deposition processes by preventing additional erosion. These arguments recapitulate and
extend Hooke’s (1991) ideas on the subject.

However, if glaciohydraulic supercooling is a stabilizing feedback, why is it not more com-
monly observed at glaciers with sedimentary bases? Questions such as this illustrate the lack
of knowledge surrounding the phenomenon. Foremost, glaciohydraulic supercooling needs to be
placed in the context of the larger subglacial and englacial hydrology. A general understanding
of exchanges between different hydraulic network morphologies and how these influence erosion
of the bed would be useful. In addition, Hooke et al.’s (1988) contention that englacial pathways
matter to the subglacial system appears to be corroborated by Fountain et al.’s (2005a) work.
Understanding why or how water leaves the subglacial system would aid in determining when
supercooling is important to the subglacial hydrology.

Fountain et al. made their observations upglacier from an adverse slope. If englacial water
transport is fundamental to water flow through an overdeepening, then the water may not have
the opportunity to be in contact with the bed. Obviously if water does not access the bed,
then sediment at the ice–bed interface will not be mobilized. If this is the case, then the Alley
et al. (2003b) hypothesis may need to be modified. Furthermore, it may be possible that the
Fountain et al. (2005a) observations are enhanced by the presence of an overdeepening. Water
may not be permitted to drain subglacially because the riegel acts as a dam. Water would then
flow englacially.

Ideally, issues such as these need to be resolved so that interpretations of glaciohydraulic
supercooling can be applied to modern or past glaciers and ice sheets. In particular, the southern
lobes of the Laurentide Ice Sheet occupied overdeepenings. For instance, the Lake Michigan
Lobe may have had glaciohydraulic supercooling affecting the sediment budget, and the nearby
Saginaw Lobe had active sediment transport in what appear to be, locally, subglacial sheets
(Fisher et al., 2005) that could have been flowing up adverse slopes.

A better understanding of glaciohydraulic supercooling may aid paleoclimatic and dynamic
interpretations of ice sheets. For example large iceberg discharges, termed Heinrich Events,
occurred quasi-periodically throughout the Pleistocene when northern outlets of the Laurentide
Ice Sheet discharged icebergs to the North Atlantic (for a recent review, see Hemming, 2004).
These icebergs had sediment-rich basal layers and rafted debris over much of the North Atlantic
(Dowdeswell et al., 1995). Sediment package thickness decreases away from Hudson Strait, but
lithologies point to an origin from regions that were ice-covered. The exact mechanisms of sub-
glacial erosion and subsequent entrainment are not well understood. However, glaciohydraulic
supercooling may be the phenomenon responsible for accreting sediment to the base of the ice
sheet (Hemming, 2004; Hulbe et al., 2004). Water could have flowed up the sill of Hudson Strait,
supercooled, and accreted water and sediment to the base of the ice sheet. The sill would act
as the adverse slope necessary for glaciohydraulic supercooling. Similar situations may have
occurred for other Pleistocene and contemporary ice sheets.
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Chapter 1. Introduction

1.3.2 Scope

Three areas of interest center on glaciohydraulic supercooling and overdeepenings: the shape of
the hydraulic cross-section, exchanges between the englacial and subglacial system, and sediment
transport within the overdeepenings. For the most part, information on these individual areas
can be inferred from hydraulic, geomorphic, and geologic data. However, the rates, locations,
and other analytic information throughout overdeepenings are difficult to quantify either from
downhole englacial or near-terminus proglacial studies.

The first area of interest is the cross-section that is favored by the hydraulic system. Data
appear to indicate that a fast-flowing distributed sheet is preferred. The large body of theory on
R-channels makes them, in a way, the default model of subglacial flow. Röthlisberger & Lang
(1987) made no allowance for the absence of a conduit, while Hooke & Pohjola (1994) and Alley
et al. (1998) favor distributed subglacial water systems. Furthermore, stratigraphic observations
at the front of Matanuska Glacier seem to indicate that a distributed system, possibly a water
sheet, is prevalent.

There is also an informal “clogged artery” hypothesis. Because R-channels can act as hy-
draulic arteries, the freezing point of the water may be well below that of the ambient ice.
Freezing of the water then occurs rapidly, and the artery clogs itself and cannot reform faster
than the water distributes into a sheet. Knowing the conditions for which the cross section is a
conduit or a sheet would be useful, especially because both appear to be supported by different
parts of the stratigraphic data (Lawson et al., 1998).

The second area of interest is sediment transport. Both Hooke and Alley et al. (2003b)
supposed that deposition occurs on the adverse slope. If this is true, the slope may change,
possibly obtaining some kind of critical value; or the ice–bed profile may change, possibly
assuming some kind of characteristic shape. Alternatively, there may be no feedback loop.
While their arguments are persuasive, Alley et al. reason through how the system operates
without presenting new field data or numerical results. I attempt to evaluate their proposed
feedbacks associated with sediment transport at the bed.

Glaciohydraulic supercooling can be an important component of subglacial sediment trans-
fer. With its high rates of sediment accretion and glaciofluvial transport, Matanuska Glacier
illustrates this significance; but questions still surround the process. For example, why is the
process so well developed there relative to other locales? An understanding of the factors con-
trolling subglacial sediment motion is incomplete. Clearly, surface and bed slopes are crucial
(Röthlisberger & Lang, 1987), but how these interact with other hydraulic conditions to mobilize
and accrete sediment is not clear.

The third area of interest is the movement of water between the englacial system and the
subglacial one. Principally, why does water leave a subglacial pathway to travel through an
englacial one? Alternatively, the water might never enter a subglacial system, instead remain-
ing englacial. Meltwater at Storglaciären appears to favor englacial flow while meltwater at
Matanuska Glacier appears to prefer to flow subglacially, but both locales show signs of glacio-
hydraulic supercooling. The difference in the location of flow, englacial versus subglacial, must
result from a physical mechanism that is active in one situation but not the other. Finding a
pertinent trade-off would be extremely useful, especially if discernible characteristics could be
qualified for different types of glaciers.

My approach is to develop and use a numerical model of en- and subglacial water flow. Much
of the theory for the model is extracted from other glaciological studies or from other areas of the
earth sciences. The notable exception is the closure of the sheet cross-section, which is entirely
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new. Attempts to link this same material either have not been tried or not been published.
For example, the results from the simultaneous reconstructions of both englacial and subglacial
water temperature from a hydrologic model are the first of their kind.

On one hand, the numerical model and the physical model on which it is based are necessarily
subject to assumptions to make the problem tractable. The diversity of material presented here
rules against an exhaustive search of parameter space. I have attempted to minimize these effects
or quantify them. On the other hand, the numerical model allows solutions over contiguous space
and time that field measurements may not capture. The model allows detailed comparisons and
contrasts of different variables and parameters both in space and time. In sum, there are notable
deficiencies to numerical modeling, but there are also conspicuous advantages that I exploit.

1.4 Structure of the thesis

This thesis is structured around the major components of the modeling effort. The aim is to
elucidate factors controlling glaciohydraulic supercooling and to provide direction for future
process-based studies. In general, shorter, simpler chapters are favored over longer, more elab-
orate ones.

• Chapter 1, the present chapter, focuses on introducing glacier hydrology and how
glaciohydraulic supercooling fits into this larger picture. The process is identified and
the scope of the work is established.

• Chapter 2 introduces the fluid flow physics and the strategy for examining the sub-
glacial hydrology. This physical model is modified from Clarke’s (2003) effort. Rea-
sonable approximations are used to determine pertinent length and time scales for
glaciohydraulic supercooling.

• Chapter 3 acquaints the reader with the way in which hydraulic sheets close and open
in a vertical sense. These arguments provide a fresh look at regelation and creep
closure from the work of Nye (1967) and Weertman (1972). In addition, the strong
arguments put forth by Walder (1982) for the instability of sheets allow an easy access
point for reassessing the stability of locally distributed sheets along the adverse slope.

• The sediment transport relations are advanced in Chapter 4. Semiempirical sediment
transport relations culled from the fluvial literature are recapitulated, modified, if
necessary, and applied to the subglacial environment.

• Chapter 5 captures the flow physics and their necessary approximations for englacial
fluid flow in a Darcian model. This model describes the evolution of the pore space in
the ice through melting or freezing along the perimeter of the pores. Formulation of
the englacial model is included to provide a thorough elucidation of the water sources
and sinks that may influence flow under and through overdeepenings.
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• Chapter 6 discusses the simulations and the implications of these simulations. I con-
struct synthetic longitudinal sections that have characteristics of both Matanuska
Glacier and Storglaciären to simplify numerical results. Each simulation type pro-
vides insight into the governing processes. Furthermore, different components of the
previous chapters are turned on or off to produce stark contrasts and allow compari-
son. Simulations focus on flow at the ice–bed interface. Englacial aquifer simulations
are omitted for brevity and simplicity.

• The conclusions to this thesis are found in Chapter 7. The summary of the major
results can also be found here along with the important additions and modifications
of our present understanding of glaciohydraulic supercooling. These are placed in the
context of the larger body of glacier hydrology. Finally, ideas for future work and a
synopsis of unfinished details are presented.

Some of these chapters rely on useful auxiliary relations. These auxiliary relations appear in
appendices at the end of the thesis. The appendices are presented in the order in which they
are referenced in the chapters.
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Chapter 2

Subglacial flow equations

Physical models have been used as both diagnostic and prognostic tools in glacier hydrology.
These models tend to be process-specific. Extensive examples of these types of models can be
found in jökuhlhaup studies (e.g., Clarke, 2003, 1986; Fowler, 1999; Ng & Björnsson, 2003; Nye,
1976). Fewer examples can be found in studies of cavities (e.g., Walder, 1986) or descriptions of
morphological switching during surging (e.g., Kamb, 1987). A class of broader comprehensive
numerical models is difficult to construct because of the feedbacks among ice dynamics, water
flow, and basal conditions. In particular, capturing the essential physics of some processes, mor-
phological switching (e.g., Kamb, 1987), for example, in numerical models is challenging and
requires creative parameterizations (e.g., Flowers et al., 2004). Presently, the use of compre-
hensive glaciohydrological models is limited to feedbacks between ice dynamics and subglacial
hydrology (Arnold & Sharp, 2002; Johnson & Fastook, 2002) and feedbacks among different
units of glacier hydrology (Flowers & Clarke, 2002a). The model I present here is not necessar-
ily process specific, as it could easily be modified for other sub- and englacial uses, but I choose
to present it with the specific intention of explaining glaciohydraulic supercooling. This model
is not coupled to a model of ice flow and, therefore, attempts to capture feedbacks only within
the glaciohydrologic system.

Röthlisberger & Lang (1987) and Alley et al. (1998) described the physics of supercooling
subglacial water. Aside from the hydraulic cross-section, both papers treated water flow similarly
inasmuch as they make use of the same assumptions. For example, they both assumed that the
water is always at the freezing point along the flow path. In addition, they assumed steady and
uniform flow. Indeed, Alley et al. followed much of Röthlisberger & Lang’s representation but
added parameter analyses specific to glaciohydraulic supercooling.

Any model of subglacial water flow that treats the thermodynamics appropriately can be
used to simulate subglacial supercooling. Clarke (2003) provided one of these models. Clarke’s
work is based on the work of Spring & Hutter (1981, 1982) for flow through ice-walled conduits.
This model formulates the physics in terms of the continuum balance laws. Clarke modified the
original theory by utilizing a common compressibility assumption to solve the two simultane-
ous mass balance equations. In addition, he modified the conduit geometry, adding a simple
sediment-floored conduit.

Following Clarke’s (2003) modification of the hydraulic cross-section, I introduce a dis-
tributed water sheet as an appropriate hydraulic cross-section for water-flow through an overdeep-
ening. There are several reasons for the introduction of this cross-section. Most importantly,
accreted basal layers at Matanuska Glacier are broader than they are high (Lawson et al., 1998).
Additionally, results from dye-tracing studies suggest that water distributes laterally at the ice-
bed interface (Lawson et al., 1998). There is also evidence that water pressure is above flotation
in parts of overdeepenings. Hooke (1991) suggested that water distributes laterally across the
bed when overpressures occur. Furthermore, a turbulent sheet parallels the concept of broad-
and-flat channels that were originally developed for water flow through overdeepenings (Hooke
et al., 1990); however, in the case of sheets, it is not necessary to calculate the lateral extent
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of the channel. Alley et al. (1998) also envisioned a laterally distributed system but selected
slower types of cross-sections (Fig. 1.1). I adopt a type of cross section that is consistent with
turbulent conditions indicated by the presence of frazil ice and a considerable sediment load at
the front of Matanuska Glacier (Lawson et al., 1998). Both fast and slow types of hydrology are
not exclusive of one another as there is most likely longitudinal and lateral variation within the
hydraulic system (e.g., Lappegard et al., 2006). Furthermore, water discharged through sheets
as envisioned here can move fast or slow.

Within this chapter, I review the formulation of the basic governing equations for the case
of steady flows, which Röthlisberger & Lang (1987) and Alley et al. (1998) used in their anal-
yses, and time dependent flows, which Clarke (2003) used. Equations from the Spring-Hutter
formulation can be reduced to the steady-state representation, and this feature will be exploited
in this chapter. In addition, I revisit the necessary fundamentals for simulation of water flow
and glaciohydraulic supercooling. The Clausius-Clapeyron equation will be used throughout
the thesis and requires illumination. The hydraulic geometry also requires parameterization,
but these assumptions appear to be supported by observations reasonably well, suggesting that
model results are pertinent to conditions in the subglacial system.

2.1 Conceptual model

Water flows along the ice–bed interface (Fig. 1.3), in either a channel or sheet (Fig. 1.1). Flow
in both R-channels and sheets can be formulated as a one-dimensional process using an along-
path coordinate, s. The location of the water pathway is defined in x and z, the horizontal
and vertical coordinate, respectively. The third coordinate, y, perpendicular to flow, is not
simulated, and any variation in the flow path is assumed to be only in the x and z coordinates.
The along-path coordinate is a line integral along the ice–bed interface in x and z. The change
in any increment of the flow path is given by

∆s =
√

∆x2 + ∆z2. (2.1)
The glacier overlies this water system, sealing it. The water layer has a substrate floor,

which can be either rock or sediment. Data at both Matanuska Glacier (Lawson, 1979) and
Storglaciären (Hooke et al., 1997) suggest that much sediment exists at the base of these glaciers,
such that I refer to the floor as being sediment. For the purposes of this study, the main difference
between a rock and sediment floor is that a sediment bed may be mobile, whereas a rock bed
would be static. I anticipate that both rock and sediment floors may be found under different
areas of overdeepenings within the same glacier, but do not anticipate simulating this transition
directly. The dynamical behavior of the water system and its interaction with the overlying
ice and underlying sediment is described as each of the individual balance laws is introduced
subsequently in this chapter.

2.1.1 Hydraulic geometry

Generally, I consider geometries with cross sections that are circular, or Röthlisberger (R-) chan-
nels (Röthlisberger, 1972), the semicircular R-channels envisioned by Clarke (2003), and water
flow in sheets. Both R-channels and sheets can conduct water at a relatively high velocity.
Other types of cross-sections have been described (e.g., Ng, 1998), but these representations
are mathematically bold, and would require diligent modification of the Spring-Hutter formu-
lation. Because circular channels have a well-described theory in the literature (e.g., Clarke,
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2003; Fowler, 1999; Röthlisberger, 1972; Shoemaker, 1987; Shreve, 1972; Spring & Hutter, 1982;
Weertman & Birchfield, 1983), these will not be discussed in as much detail as the subglacial
sheets. Sheets are not nearly as well described in the literature (Walder, 1982; Weertman, 1972).
These sheets are a layer of water having a mean thickness and a width that is much greater
than that thickness. Furthermore, a water sheet compatible with the work of Alley et al. (1998)
or Hooke (1991) is not adequately characterized in relation to high velocity water flows. I resist
the flow velocity characterizations of Hubbard & Nienow (1997) and envision sheets as being
akin to broad-and-flat channels in flow characteristics (Fig. 1.1c) but more like films in cross
section (Fig. 1.1d). Within the glaciological community, the terms sheet and film are commonly
applied for thin subglacial water layers. However, I draw the distinction that sheets are capable
of conducting water rapidly. The term film will assume its conventional use to describe melt
associated with regelation (e.g., Lliboutry, 1993; Nye, 1973a; Weertman, 1964).

Röthlisberger & Lang (1987) performed their analysis for water flowing in conduits but
acknowledged that any hydraulic cross section is possible. Alley et al. (1998) suggested a
distributed water system, and as a geometrical simplification, performed analyses for a one-
dimensional water layer. Alley et al. cited evidence from Matanuska Glacier that shows that
the bulk of accreted ice is from water flow that is laterally distributed over the base (Lawson,
1979; Lawson et al., 1998). Because I am investigating channel and sheet cross-sections, both
must be perpetuated throughout the theory.

Figure 2.1: Subglacial flow path. Not to scale. Front of the section presented in Figure 1.3.
Water flows up the ice–sediment interface along path coordinate s. From left to right: Hb is
the water layer height, which is equivalent to 2Rb. Z i is the ice thickness. The along path
coordinate s follows the water layer. The surface elevation is zr. The elevation of the glacier
base is zb. The elevation of the base of the water layer is zs. The angle of the surface and the
bed are αr and αb, respectively.

Water flows along the ice–sediment interface until exiting the glacier section downstream of
an overdeepening. From input to output, an element of water is described in terms of the 1-D
coordinate (Fig. 2.1). The base of the water lies at an elevation zs. The roof of the water is at
an elevation zb. A glacier of thickness Z i overlies the water layer. Both R-channels and sheets
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can be defined in terms of their hydraulic perimeter Pw, and cross-sectional area Sw,

Pw =





2πRb circular channel,
(π + 2)Rb semicircular channel,
2Hb + 2W sheet,

(2.2a)

Sw =





π(Rb)2 circular channel,
π
2 (Rb)2 semicircular channel,
HbW sheet,

(2.2b)

where Rb is the channel radius, Hb is the sheet thickness, and W is the sheet width. These
cross-sectional geometries are summarized in Figure 2.2. In the along-path coordinate, these
cross-sections vary smoothly, growing larger or smaller depending on flow conditions (Nye, 1976;
Spring & Hutter, 1982). In loose terms, the channels behave as tubes, while the sheets behave
as ducts. Sheets have a cross sectional area; but for a sheet continuous in y, its thickness Hb

determines the behavior of the cross-section. Equations governing flow become width-averaged
quantities. This sheet thickness spans the average elevation of the subglacial sediments zs to
the average elevation of the base of the glacier zb. These two horizons are locally parallel.

W

a b

R
b

c

R
b

H
b

Figure 2.2: Subglacial water cross sections. White represents water flow area, light grey areas
represent ice, and dark grey areas represent subglacial material. (a) R-channel surrounded by
ice. (b) Semicircular R-channel. (c) Water sheet. Cross-sectional areas for both channels are
equal. The cross-sectional area of the sheet is approximately half of the other two. Water flow
is perpendicular to the plane of the page.

The hydraulic radius, which is the ratio of the cross-sectional area to the wetted perimeter,
Rh = Sw/Pw, is commonly used in fluid flow engineering applications,

Rh =





Rb

2
circular channel,

πRb

2(π + 2)
semicircular channel.

(2.3)

For tubes with circular cross sections, the hydraulic radius is simply half the radius. For a
semicircular conduit bounded on its base by sediment, the hydraulic radius is given as one
quarter of the radius. Water sheets are relatively shallow. The width of the flow is then much
greater than its height (W À Hb), and the hydraulic radius for sheets can be approximated by

Rh =
Hb

2
. (2.4)
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For the semicircular case, if the roughness of the bed is significantly less than the radius of
the channel, then equation (2.3) is sufficient. For subglacial sheets, this approximation depends
on how the water floods the roughness elements. For lack of a better parameterization, this
hydraulic radius (eq. 2.4) will be used.

The melting perimeter P i, will be different for each of the geometries,

P i =





2πRb circular channel,
πRb semicircular channel,
2Hb + W sheet.

(2.5)

Only for the circular case will the melting perimeter be exactly the wetted perimeter. For the
both the semicircular cross-section and the sheet, only the ceiling will melt. The bed is excluded
from any melt relation. Clarke (2003) noted that the melt rate depends on the melting perimeter
along the flow rather than simply the hydraulic perimeter. Assuming that the water layer is
ice-roofed, the melting perimeter is the width of the layer. If the water layer is bound on either
side by ice, then the small height approximation can be applied: melt on vertical ice walls can
be ignored. However, if the sheet has sediment walls, then the melting perimeter is exactly the
roof width. Either way, melt from the wall of the sheet is not immediately important.

Supercooled water need not form ice on the underside of the glacier. Examples from fluvial
studies (e.g., Osterkamp & Gosink, 1983; Kerr et al., 2002) illustrate that much ice can form
on rocks at the base of rivers. This fluvial process may be paralleled subglacially such that
ice forms on the sediment below the water. Ice could encase some of the sediments, and then
mobilize the sediments into the flow or float them to the ice–water interface where they freeze
to the underside of the glacier. This idea merits attention but is not of primary importance.
For simplicity, crystallization of ice can be assumed to occur along the melting perimeter. The
melting and freezing perimeter are exactly the same for the remainder of this study but need
not be.

2.1.2 Clausius-Clapeyron equation

Figure 2.3 illustrates the phase diagram of water. Lines of coexistence separate water vapor,
liquid water, and water ice. The unique feature of these lines is that the change in Gibbs free
energy required to cross from one phase to another is zero along them. By setting the change
in Gibbs free energy to zero, the Clausius-Clapeyron equation can be derived for the change of
phase (e.g., Krauskopf & Bird, 1995, p. 420),

∂p

∂T
=

∆E

T0∆V
, (2.6)

where the slope of the line ∂p/∂T , is defined by the change in enthalpy ∆E, a change in volume
∆V , and a reference temperature for the phase change T0.

The inverse slope, ∂T/∂p, is the quantity of interest. This slope is obtained by inverting
equation (2.6) to obtain

∂T

∂p
=

(
1
ρw

− 1
ρi

)
T0

L
. (2.7)

In moving from (2.6) to (2.7), the latent heat of fusion per unit mass L is substituted for
the enthalpy; and the change in volume is replaced with the change in mass densities. The
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Figure 2.3: Phase diagram of water. Lines indicate where both phases are stable. All three
phases are stable at the triple point (∼ 612 Pa, 273.16 K). The maximum pressure on this
diagram (3.0 × 107 Pa) is equivalent to an ice thickness of 3300 m. Adapted from Wagner &
Pruss (1993) and Wagner et al. (1994).

quantities ρi and ρw are the usual mass densities of ice and water. Because the slope of the
line of coexistence between water and ice is relatively smooth, the change in ∂T/∂p can be held
constant for values near T0. The change in the zero point from the reference value T0 when the
interfacial pressure pw, changes is given by

Tmp = T0 + βpw, (2.8)

where the coefficient β is equal to the inverse Clausius-Clapeyron slope ∂T/∂p. The reference
freezing point is 273.15 K in equation (2.7), but could also be 0 oC in (2.8) because this equation
denotes only a relative change. From equation (2.7) the parameter β will be negative because
ice is less dense than water at the freezing point. However, when these equations are applied to
the subglacial environment, the density of water must include air within the water. The effect
of air on the water density was noted by both Röthlisberger & Lang (1987) and Alley et al.
(1998).

The interfacial pressure was discussed by Spring & Hutter (1982). The two obvious choices
are the overburden stress from the ice or the water pressure at the ice–water contact. Spring
& Hutter used the water pressure, which makes sense given that the ice overburden may not
govern the local variations in stress at the ice–water contact. I apply this interfacial pressure
parameterization to equation (2.8) throughout the thesis.

The Clausius-Clapeyron equation determines how the change in water pressure can modulate
the melting point. Generally, β takes a value from −7.4×10−8 to −9.8×10−8 K Pa−1 depending
on whether the water is pure or air-saturated, respectively. From the synthetic glacier section
in Figure 1.3 with maximum ice thickness of about 47 m, assuming that the water pressure
varies directly with ice overburden thickness, the maximum change of the melting point would
be −0.03 or −0.04 oC for pure or air-saturated water, respectively. These example tempera-
ture depressions scale linearly with ice thickness, but water pressure at the base may deviate
significantly from ice overburden.
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One aspect of equation (2.7) that I have not discussed is the role of salts or other impurities.
Salts typically depress the freezing point further. Equation (2.6) sets the change in Gibbs free
energy to zero, making the change in entropy equal to the change in enthalpy divided by the
reaction temperature. If salts are included, an additional term draws from the entropy term.
Lawson (pers. comm., 2005) stated that all water quality measurements at Matanuska Glacier
have pointed to the water being fresh. However, Björnsson (2002) noted that a sulphurous odor
preceded jökulhlaups at Skeiðarárjökull. The presence of chemical components suggests that
supercooling under jökulhlaup conditions would necessitate the additional temperature depres-
sion terms in the Clausius-Clapeyron equation. The effect of salts on the freezing temperature
has been studied (e.g., Chen & Millero, 1977, 1986) but is not included because water quality
data at most field sites are not readily available.

2.2 Balance laws

The continuum balance laws provide the foundation for the model (Spring & Hutter, 1981,
1982). In total, there are four time-dependent equations: two mass balance equations, one
momentum balance equation, and one energy balance equation. The four dependent variables
are hydraulic cross-section, water pressure, water velocity, and water temperature. Each of these
variables represents a local average in space and time. The balance equations are equivalent to
the St. Venant equations that are commonly used in fluvial engineering. The main differences
between the St. Venant equations and the Spring-Hutter formulation are that water flow is
sealed and, to a degree, pressurized by an overlying glacier and that a phase change from water
to ice is permissible (Spring & Hutter, 1981, 1982). Because the phase change is temperature
dependent, an energy equation governing the temperature evolution appears that would not
necessarily be present in the St. Venant equations.

Furthermore, these equations have an accessible relationship to the previously published
material of Röthlisberger & Lang (1987) and Alley et al. (1998). Röthlisberger & Lang pro-
vided the basic relationship for melting or freezing of flowing water because of a change in the
temperature-dependent melting point. In addition to assuming that the flow is steady and uni-
form, they assumed that the water is always at the pressure melting point. These assumptions
in a mathematical sense, using the linear subglacial water velocity ub in the s direction and the
temperature of the subglacial water T b are

dub

dt
=0, (2.9a)

∂T b

∂t
=0, (2.9b)

where equation (2.9a) denotes steady, uniform flow. This equation is somewhat misleading
because it states that the source terms are equal to zero as well, which is the desired relationship.
Equation (2.9b) indicates that the water is at the pressure melting point regardless of its location.
The Spring-Hutter formulation has a reduced form that corresponds to equations (2.9a) and
(2.9b). The relationship between both sets of equations will be presented in detail in subsequent
parts of this chapter.

Higher-order models of subglacial water flow have been proposed. For example, Bates et al.
(2003) formulated flow based on the Reynolds averaged Navier–Stokes (RANS) equations. The
main difference between a RANS representation and the Spring-Hutter formulation is that the
dissipation terms from viscous stresses are parameterized as a shear stress along the hydraulic
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perimeter in the Spring-Hutter formulation. In general, the dissipation along the hydraulic
perimeter is several orders of magnitude larger than the dissipation within the flow (Hinze, 1975).
A RANS representation is also more complex in the case of subglacial flow because the exact
hydraulic geometry is not known but would be required. Solution of a RANS representation
is also computationally intensive. As a result, simulation of water flow via a RANS or other
higher-order model representation is beyond the scope of the present work.

2.2.1 Mass balance

Spring & Hutter derived the mass balance specifically for curvilinear tubes using the transport
theorem. They assumed that the tube could vary in s. Spring & Hutter were chiefly interested
in jökuhlhaups, and as a result, thought of the channel simply as melting open rather than
freezing closed. For the phenomena described here, a negative melt rate is equivalent to an
ice accretion rate. Because there are two phases, water and ice, there must also be two mass
balance equations that include the processes of creep and melt closure to describe how cross-
section changes through time (Spring & Hutter, 1981, 1982).

In a one dimensional system, the second dimension is approximated by having the cross
section evolve. In the case of R-channels, the cross-sectional area evolves directly, while the
other pertinent parameters can be calculated from that area. For example, hydraulic radius can
be calculated from the area and the assumed cross-section. For the sheet, the second dimension
is not critical; and as a result, it is not modeled. The mass balance relations then reduce
to cross-sectional evolution and height evolution equations for their respective cross-sectional
geometries.

Equation (2.10) shows the general form for the mass of water in the hydraulic cross section,

Mw =
∫

s

∫

Sw

ρw dS ds. (2.10)

Following Spring & Hutter (1982), I define a difference in cross section,

Ŝ = Si − Sw, (2.11)

that represents the instantaneous misfit resulting from ice melted away per unit time. The mass
of this misfit cross-section is

M̂ =
∫

s

∫

Ŝ

{(
1− ni

p

)
ρi + ni

pρ
w
}

dS ds, (2.12)

where ni
p is the porosity of the ice. Equation (2.12) assumes that the surrounding ice is porous

and that the mass is a mixture of water and ice. Moving equations (2.10) and (2.12) to a local
balance per unit channel length along s via the material derivative yields

ρw ∂Sw

∂t
+ ρw ∂

∂s
(uw

s Sw) =m +
ni

pρ
w

(
1− ni

p

)
ρi

m, (2.13a)
{

(
1− ni

p

)
ρi + ni

pρ
w

}{
∂Ŝ

∂t
+

∂

∂s

(
ui

sŜ
)}

=−m− ni
pρ

w

(
1− ni

p

)
ρi

m. (2.13b)

where m is the mass of melt per unit time per unit channel length, uw
s is the water velocity

along s, and ui
s is the ice velocity along s. In these equations, the density of water and ice are
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assumed to be constant. Equations (2.13) show that the rate of change of mass in either cross
section is equal to the amount of water produced from melting or freezing. Rewriting both of
these equations for ∂Sw/∂t yields

∂Sw

∂t
=

(
1− ni

p

)
ρi + ni

pρ
w

(
1− ni

p

)
ρiρw

m− ∂

∂s
(uw

s Sw) , (2.14a)

∂Sw

∂t
=

m(
1− ni

p

)
ρi

+
(

∂Si

∂t

)

close

, (2.14b)

where equation (2.14a) is the mass balance for the water and equation (2.14b) is the mass
balance for the ice. In moving from equation (2.13b) to (2.14b), the time derivative of the
right hand side of equation (2.11) is used to substitute for the time rate of change of the area
melted, ∂Ŝ/∂t = ∂Si/∂t− ∂Sw/∂t. Furthermore, the velocity of the ice along s is neglected. In
consequence,

(
∂Si/∂t

)
close

is the velocity of ice normal to water flow and represents ice closure.
The form of the closure velocity

(
∂Si/∂t

)
close

will depend on whether the cross-section is a sheet
or a channel.

Solving these two equations for the hydraulic cross-section requires that a numerical solver
set both results equal to the same value. This forced equality makes the problem numerically
stiff. If instead, an approximation to one of the equations is made, then the equality can be
relaxed. Clarke (2003, appendix A) detailed this relaxation. The salient feature of the relaxation
is that the water is assumed to be compressible. One can then use the equation of state for
water to substitute for the time rate of change of the water density. The net result is that the
mass balance equation for water becomes an equation for the pressure of water pb,

∂pb

∂t
= − 1

γbSb

{
∂Sb

∂t
+

∂(Sbub)
∂s

−
(
1− ni

p

)
ρi + ni

pρ
w

(
1− ni

p

)
ρiρw

m

}
, (2.15)

where ub replaces uw
s , and Sb replaces Sw. The notation Sb has sole reference to subglacial

channels, and Sw will refer to the general forms of the cross section presented in equation (2.2b).
Use of both Sb and ub makes notation simpler throughout the remainder of the thesis. Solving
this equation in conjunction with (2.14b) and γb set as the compressibility of the water yields the
exact solution produced by solving both equations (2.14a) and (2.14b). Relaxing γb physically
approximates water being more compressible but enhances the convergence of the numerical
solution. This relaxation has no noticeable effect on the overall mass balance. Clarke also noted
that the mass balance of the ice could be used instead of the water balance. This approximation
is equivalent to making the channel walls distensible, or stretchable. Compressibility assump-
tions such as these are common in the fluid dynamics literature, and the compressibility has
been used in hydrogeology to represent compressible aquifers (e.g., Bear, 1988, p. 204).3

For the subglacial sheet, the final equations are given by,

∂Hb

∂t
=

m̃(
1− ni

p

)
ρi

+
(

∂Hb

∂t

)

close

, (2.16a)

∂pb

∂t
=− 1

γbHb

{
∂Hb

∂t
+

∂(Hbub)
∂s

−
(
1− ni

p

)
ρi + ni

pρ
w

(
1− ni

p

)
ρiρw

m̃

}
. (2.16b)

3In Chapter 5, I show the details of the compressibility assumption in deriving the pressure evolution in the
englacial water system.

22



Chapter 2. Subglacial flow equations

In these equations, m̃ is the mass of melt per second per square meter or m per unit width. The
sheet closure velocity (∂H/∂t)close is the subject of Chapter 3 and will not be given additional
attention here.

Expanding equation (2.14b) using the closure relationship yields the evolution of the cross
section for the R-channels,

∂Sb

∂t
=

m

ρi
(
1− ni

p

) − 2Sb sgn(pi − pb)
( |pi − pb|

nB
)n

, (2.17)

where pi the is ice overburden pressure, n is the flow law exponent, and B is the flow law
coefficient, or fluidity of ice. The term on the extreme right of (2.17) is the Glen’s law formulation
of creep closure that Spring & Hutter (1981) used for conduits. The mass balance system for
the channels is given by equations (2.15) and (2.17). These equations can be contrasted with
those for the sheet in equation set (2.16). I will present the momentum and energy equations
twice also: once for the channels and once for the sheets.

Because these equations have a melt rate term, they affect the overlying ice by melting or
freezing along the melt perimeter. The thickness of the ice changes as ice is accreted or melted
from the base. For the sheet, a simple mass balance term for overlying ice is given by

∂Z i

∂t
= − m̃(

1− ni
p

)
ρi

. (2.18)

In this equation, the total derivative is equal to the negative melt rate term. Because I neglect
ice flow, there is no convective velocity. While glaciers are rarely static, adding a convective
term and the corresponding strain terms for the ice is beyond the scope of the present work.
In addition, I use the notation Z i for the thickness of the glacier itself (Fig. 2.1). When the
porosity is reduced to zero, equation (2.18) reduces to a solid accretion rate.

An alternative to equation (2.18) is to define an accreted ice thickness Zb:e. The evolution
of the accreted ice thickness is simply

∂Zb:e

∂t
= − m̃(

1− ni
p

)
ρi

sheet. (2.19)

Furthermore, the thickness of accreted ice for the channels is

∂Zb:e

∂t
=





− 1
Rb + Zb:e

[
m

2π(1− ni
p)ρ

i + Zb:e

2πRb

(
∂Sb

∂t

)

close

]
circular channel,

− 1
Rb + Zb:e

[
m

π(1− ni
p)ρ

i + Zb:e

πRb

(
∂Sb

∂t

)

close

]
semicircular channel,

(2.20)

where the closure term on the right hand side accounts for the contraction of the accreted ice
layer. Equation (2.19) does not account for this contraction because ice moves vertically into
and out of the sheet without the radial divergence present in the case of channels.

Porosity of the accreted ice

Ice that accretes may be discontinuous and preserve a residual porosity. Direct observations of
ice actively accreting subglacially are nonexistent. Instead, observations made at glacier termini

23



Chapter 2. Subglacial flow equations

are commonly used as proxies for the subglacial environment. Frazil ice near the terminus of
Matanuska Glacier forms in water that ascends vents local to the terminus (Lawson et al., 1998).
When water ascended a shear fracture extending from the bed to the surface of Skeiðarárjökull
frazil ice formed (Roberts et al., 2002). It is not immediately clear that water that ascends
steep local features is representative of the subglacial environment. However, the formation of
frazil is certainly a viable method of accreting ice and appears to be dominant in subglacial
environments. Another method of accreting ice would be the formation of a mushy layer (e.g.,
Worster, 1997). Mushy layers typically form in low-velocity flows with the prominent analog
being sea ice growing downward at the sea surface (e.g., Wettlaufer, 2001). Depending on
conditions, the porosity in mushy layers can be high. In contrast, Gilpin’s (1981) experiments
of flow through closed conduits showed that accreting ice is not very porous. However, these
experiments were run with high pressure gradients and high velocities. With a wide range of
porosity to choose from depending on the choice of analog for the subglacial environment, it
stands to reason that the accreting ice will be somewhat porous. Moreover, porosity of an
accreted layer will be a function of flow conditions.

In the absence of an exact relationship for the evolution of the ice porosity, ni
p becomes

an adjustable parameter that affects the cross-section evolution, water pressure, and, for the
sheet, ice thickness. The rate of change of the hydraulic cross-section is governed not only by
melt but by the addition of water that is in the pore space. The rate of water addition from
the pore space is the final term on the right hand side of equations (2.13). The rate of change
of the thickness of the water sheet resulting from melting or freezing is m̃/

[
(1− ni

p)ρ
i
]
. This

relationship appears in equations (2.16a), and (2.18).

2.2.2 Momentum balance

Steady flow

While flow may be steady and uniform, the supply and flux of momentum are governed by
the geometry of the ice–bed interface and the overlying ice. As is typical of steady conditions,
momentum supply from gravitational head loss and a change in pressure gradient is balanced
by shear along the perimeter (e.g., Bird et al., 1960, p. 182),

−
(
∆pb + ρwg∆zb

)
Sw = Pw∆s τ0, (2.21)

where ∆pb is a change in water pressure, g is the gravitational acceleration, ∆zb is the elevation
change of the ice–water interface, and τ0 is the shear along the hydraulic perimeter. Moving
this macroscopic balance to a differential balance is straightforward,

τ0 =− Sw

Pw

(
∂pb

∂s
+ ρwg

∂zb

∂s

)
, (2.22a)

=− Sw

Pw

∂φb

∂s
. (2.22b)

The left hand side of equation (2.22a) is identifiable as the scaled negative gradient of the
hydraulic potential,

φb = pb + ρwgzb. (2.23)
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The Darcy-Weisbach formulation is an empirical relation for the shear stress along the hy-
draulic perimeter,4

τ0 =
1
8
ρwfd(ub)2, (2.24)

where fd is a friction coefficient. Clarke (2003) suggested that the friction coefficient was a
combination of the ice and bed friction coefficients,

fd =





f i
d circular conduit

P if i
d +

(
Pw − P i

)
f s

d

Pw semicircular conduit
1
2

(
f i

d + f s
d

)
sheet

(2.25)

where f i
d and f s

d are the friction coefficients for the ice and bed, respectively. In equation (2.25),
I make the simple assumption that the roof and floor of the sheet account for an equal portion
of the shear stress; but they need not be equal depending on roughness features of the ice or
characteristics of the bed. For turbulent water flow, fd must be assigned as parameter. Values
for fd for relatively smooth open channel flow range from 0.0012 to 0.06 (Schlichting, 1979,
p. 617, Fig. 20.18). Clarke (2003) used hydraulic roughness parameters equivalent those for
rough streams to simulate outburst floods. For laminar water flow, the friction factor is usually
based on the Reynolds number. Because these relationships are based on data for smooth-walled
conduits and have low accuracy (Bird et al., 1960, p. 187), the laminar relationships are not of
interest here.

A relationship for the velocity follows from equations (2.22b) and (2.24),

ub =−
(

8
ρwfd

Sb

Pw

) 1
2

sgn
(

∂φb

∂s

) ∣∣∣∣
∂φb

∂s

∣∣∣∣
1
2

channel, (2.26a)

ub =−
(

8
ρwfd

Hb

2

) 1
2

sgn
(

∂φb

∂s

) ∣∣∣∣
∂φb

∂s

∣∣∣∣
1
2

sheet. (2.26b)

Stone & Clarke (1993) used a similar relationship for turbulent flow in a horizontal water layer
beneath a glacier. Other shear stress parameterizations could be used to create equations (2.26).
For example, the Manning-Strickler formula could be used in the place of the Darcy-Weisbach
formula. Clarke (2003) used both but reasoned that the Manning-Strickler formula is more
realistic for floods.

4Bird et al. (1960) gave their derivation in terms of the Fanning friction coefficient ff . However, Schlichting
(1979, p. 597) gave a similar derivation using the Darcy-Weisbach friction coefficient fd. These two coefficients
are related via ff = fd/4. The difference of 1/4 results from a discrepancy in transferring the coefficient from
Hagen-Poiseuille flow to turbulent pipe flow. The Schlichting form is more common in the fluvial geomorphology
literature; yet both are used and often carelessly given the notation f without proper identification. I thus adopt
fd as the more common Darcy-Weisbach coefficient in place of the Fanning coefficient ff .
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Time dependent flow

Modification of the velocity evolution of Spring & Hutter (1981) to include the porosity of the
ice gives,

∂ub

∂t
=− ub ∂ub

∂s
−

(
1− ni

p

)
ρi + ni

pρ
w

(
1− ni

p

)
ρi

mub

ρwSb
− 1

ρw

∂pb

∂s
− g

∂zb

∂s
− Pwτ0

Sbρw
channel, (2.27a)

∂ub

∂t
=− ub ∂ub

∂s
−
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)
ρi + ni

pρ
w

(
1− ni

p

)
ρi

m̃ub

ρwHb
− 1

ρw

∂pb

∂s
− g

∂zb

∂s
− 2τ0

Hbρw
sheet, (2.27b)

where both equations include the porosity change discussed previously. These equations are
derived from the material balance of the local momentum. Multiplying these equations by
the water density and cross sectional area would yield the momentum balance in its original
one-dimensional form. Beginning with the left hand side, the first two terms are the material
derivative of the velocity. The next term, with m or m̃, is the impulse lost (or gained) from
melt (or accretion) along the hydraulic perimeter. The next two terms result from the change
in the hydraulic potential along flow. The final term on the right is shear along the hydraulic
perimeter. These equations are subject to the supplementary relations in equations (2.24) and
(2.38b).

Equivalent discharge

The amount of meltwater that reaches the ice–bed interface will be independent of whether the
water runs through sheets or conduits. Water discharge must then be equivalent for either a
sheet or a channel. Exact equivalence of discharge might never occur subglacially. For example,
in examining Figures 2.1 and 2.2, there are several competing features among the cross sections.
In particular the momentum expended on shear along the hydraulic perimeter will be much
greater for the sheet than for the conduits despite the expectation that hydraulic potential will
be the same for all the cross-sections. For the steady case, the discharge Qb = Sbub can be
set equal using equations (2.26). The radii of the channels can then be found in terms of the
geometry of the sheet,

Rb =
(
Hb

) 3
5

(
W

π

) 2
5

circular channel, (2.28a)

Rb =(4π + 8)
1
5

(
Hb

π

) 3
5

W
2
5 semicircular channel. (2.28b)

Time dependent flow is not necessarily subject to these relationships because the flow will adjust
according to the upstream boundary conditions.

2.2.3 Energy balance

Time dependent flow

Spring & Hutter (1981, 1982) derived the energy balance equation for one-dimensional pipe flow
incorporating the ice–water phase change. Expanding the material derivative and rearranging
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the heat balance yields a partial differential equation for temperature,

∂T b

∂t
=− ub ∂T b
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L + cw
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(2.29a)
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τ0u
b

ρwcw
p

,

(2.29b)

where the specific heat of water is cw
p , and equations (2.29a) and (2.29b) are for the channel

and sheet, respectively. In these equations, the time derivative of the change in energy per
unit volume is equal to the changes in latent heat L, sensible heat cw

p ∆Tmp, and specific kinetic
energy (ub)2/2 released through melting, m or m̃, plus the shear heating along the hydraulic
perimeter Pwτ0u

b. The specific kinetic energy term results from the impulse term from equation
(2.27) being dotted by the velocity to make an energy term. The primary difference between the
energy equation for conduit flow and a distributed macroporous sheet is the hydraulic perimeter
and cross-section of flow. Again, equations (2.3) provide supplementary relationships for one of
the hydraulic cross sections.

Steady flow: Röthlisberger heat transfer

Because the water is always in contact with ice along its flow path, the only reasonable inter-
pretation of the assumption in equation (2.9b) is that the temperature of the water must be
equal to that of the overlying ice. Additionally, the overlying ice and underlying bed must be
at the local melting point. As a result, the subglacial temperature must remain at the steady
value of the pressure melting point. The assumption of the time rate of change being zero fixes
the melt rate, and the energy balance becomes a statement of the melt rate.

Because the water is at the melting point, the sensible heat term is unimportant in isolating
the melt rate from (2.29). I also discard the energy imparted from the impulse term because it
is approximately five orders of magnitude smaller than the latent heat term. Rewriting equation
set (2.29) for the melt rate gives the equations,

m =− Sbub

L

(
ρwcw

p

∂T b

∂s
+

Pwτ0u
b

Sb

)
channel, (2.30a)

m̃ =− Hbub

L

(
ρwcw

p

∂T b

∂s
+

2τ0u
b

Hb

)
sheet. (2.30b)

Another modification to the melt rate is to use the chain rule in conjunction with the inverse
Clausius-Clapeyron slope (eq. 2.8) for the change in temperature with pressure,

∂T

∂s
= β

∂p

∂s
. (2.31)

By substituting equation (2.31) into equation (2.30) and parameterizing the shear stress by
equation (2.22b) in equation (2.30), I obtain a melt rate that is dependent on the discharge
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through the water horizon, the water pressure, and the hydraulic gradient,

m =− Sbub

L

(
ρwcw

p β
∂pb

∂s
+

∂φb

∂s

)
channel, (2.32a)

m̃ =− Hbub

L

(
ρwcw

p β
∂pb

∂s
+

∂φb

∂s

)
sheet. (2.32b)

This melt rate falls directly out of the assumptions proposed by Röthlisberger & Lang (1987).
As a result, I refer to this steady state melt rate as “Röthlisberger heat transfer” in a similar
spirit to Clarke’s (2003) reference to Nye’s (1976) heat transfer assumption.5

2.3 The melt rate

A heat flux formulated from Newton’s law of cooling (e.g., Bird et al., 1960, p. 267) gives an
estimate for the heat that can be conducted over a given length scale, which relates directly to
the melt rate,

qT = h∆T, (2.33a)

h = −Kw
T

`1
,

m =
qT

L
. (2.33b)

Here, h is the heat transfer coefficient, `1 is a length scale, ∆T is the temperature change across
that length scale, and Kw

T is the thermal conductivity of water. The heat flux qT is the magnitude
of the heat flux vector qT normal to the phase change boundary, which is the melting perimeter
in this case. The heat flux is in W m−2. For water flowing in either of the cross sections, there
is an inner region of the flow where the temperature is relatively homogenous because the water
is well-mixed. Near the boundary, heat is conducted across a boundary layer. The length scale
`1 is the height of the conductive boundary layer δH , between the well-mixed inner region and
the ice wall.

The Nusselt number is the ratio of the total heat transfer to the conductive heat transfer. A
Nusselt number greater than unity indicates that there is convective heat transfer. Multiplying
the conductive heat flux in equation (2.33a) by the Nusselt number gives a heat flux that includes
convection. After this multiplication, the length scale `1 ceases to be the conductive boundary
layer and becomes the entire thermal boundary layer.

2.3.1 Semiempirical correlations

There are numerous empirical relationships for the heat transfer coefficient from the engineering
literature. In general, these fall into a broad class of correlations for the Nusselt Number,

Nu = C1 Re$Prς , (2.34)

where C1 is a nondimensional constant, and $ and ς are indices (e.g., Hutter, 1982; Schlichting,
1979). In this equation, the Reynolds number (Re) and Prandtl number (Pr) are given by the

5Nye’s heat transfer assumption is that dT b/dt = 0 whereas Röthlisberger’s is ∂T b/∂t = 0 (eq. 2.9b).
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usual definitions,

Re =





4Rh|ub|ρw

µ
channel,

Hb|ub|ρw

µ
sheet,

(2.35a)

Pr =
ν

κw
T

=
µcw

p

Kw
T

, (2.35b)

where µ is the viscosity of water, ν is the dynamic viscosity of water, and κw
T is the thermal

diffusivity of water. The Reynolds number is the ratio of the inertial forces to the viscous forces.
The distinction between the thermal boundary layer and the inertial boundary layer is given by
the Prandtl number. For water at the freezing point, the Prandtl number is approximately 13;
or the thermal boundary layer is 13 times the inertial boundary layer.

McAdams (1954) presented several formulae for flow in ducts, pipes, and sheets. From these
relationships, the Dittus-Boelter heat transfer relationship for flow in turbulent pipes stands out
because of its use in outburst flood studies (Mathews, 1973; Nye, 1976; Spring & Hutter, 1981,
1982). The Nusselt number becomes (McAdams, 1954, p. 219),

Nu = 0.023Re4/5Pr2/5. (2.36)

Alternative formulations exist for the Nusselt number, but these are less popular. For example,
Isenko et al. (2005)6 used the relationship,

Nu = 0.003RePr2/5, (2.37)

to interpret experimental work. For the remainder of this analysis, I employ the more popular
Dittus-Boelter relationship (eq. 2.36). However, any relationship in the form of (2.34) could be
suitable.

Because the height of the boundary layer is not obvious from the momentum equations
(eq. 2.27), the Dittus-Boelter relationship substitutes the characteristic hydraulic cross-section
length scale for the boundary layer thickness. For conduits, the characteristic length is 4Rh,
which is the diameter of the circular channel or the radius of the semicircular channel. The
same heat transfer in a macroporous sheet depends on the thickness of the water layer instead
of the diameter.

The mass melt rate per unit channel length can be formulated with appropriate substitutions
of equations. The melt rate per unit area m̃ is simply the equivalent melt rate for the channel
(eq. 2.38a) divided by the melting perimeter,

m =
0.023Re4/5Pr2/5Kw

T ∆TmpP
i

4RhL
channel, (2.38a)

m̃ =
0.023Re4/5Pr2/5Kw

T ∆Tmp

HbL
sheet. (2.38b)

6Isenko et al. (2005) gave their relationship in terms of a volumetric energy density per degree multiplied by
the along path velocity. The Nusselt number presented here is equivalent to their formulation.
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Ultimately, the Dittus-Boelter relationship approximates heat transfer across the turbulent
boundary layer. This relationship is found via equations (2.33a) and (2.36),

δT =





4Rh

0.023Re4/5Pr2/5
channel,

Hb

0.023Re4/5Pr2/5
sheet.

(2.39)

A rough estimate of the thermal boundary layer for water flowing in sheets is 3 × 10−4 m—
assuming Re = 2100, the transition from laminar to turbulent flows in plane-parallel apertures,
Pr = 13, and Hb = 0.01 m.7 For a circular channel a radius equivalent to a sheet with unit
width (2.28), the thermal boundary layer is approximately 1 × 10−3 m.8 While there is no
guarantee that these examples are compatible with the balance equations presented thus far,
this value does suggest limitations on the height and radius of the subglacial cross sections.

Much of the heat transfer literature rests on a few correlations, one of these being the Dittus-
Boelter relation. The Dittus-Boelter heat transfer relationship was originally designed for heat
transfer within smooth-walled pipes. While the ice ceiling above the flow and the bed below
are most likely not smooth, there are few published engineering Nusselt number correlations for
rough boundaries. Other correlations exist for flat plates, concentric tubes, and tube bundles,
but it is not clear that additional insight or accuracy can be gained by using these for rough-
walled boundaries.

Bird et al. (1960, p. 401) pointed out that these correlations can be applied but are less
reliable in the transition region, defined approximately as Re = 2100–10 000. Despite this
limited range, the relationship proposed in equation (2.38b) appears to be the most relevant
above the laminar flow regime. Within the laminar flow regime, Bird et al. (1960, p. 399)
suggested

Nu =1.86
(

Re Pr 4Rh

∆s

) 1
3

channel, (2.40a)

Nu =1.86
(

Re PrHb

∆s

) 1
3

sheet, (2.40b)

where an equivalent scaling to equation (2.39), assuming Hb/∆s as 0.01, gives the Nusselt
number as approximately 6 for the laminar case and 27 using equation (2.36). In general, water
flowing in subglacial sheets is not expected to be flowing below a Reynolds number of about
2100 for the model proposed here; however, I leave this option available should the flow ever
drop below this value.

7The corresponding velocity from equation 2.35a is approximately 0.4 m s−1.
8The corresponding velocity from equation 2.35a is approximately 0.1 m s−1.
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2.4 Steady state accretion rate

Alley et al. (1998) arrived at an accretion rate via a heat balance,

−m

ρi
=

Qbg cosαb

ρiL

{
ρiC2α

r +
(
ρw − ρiC2

)
αb

}
, (2.41a)

C2 ≡1− βcw
p ρw, (2.41b)

where tanαr is the glacier surface slope, and tanαb is the energy slope of the water layer
(Fig. 2.1).9 Furthermore, Alley et al. made small angle approximations such that αr ∼ tanαr

and αb ∼ tanαb. The discharge Qb in (2.41a) is constant such that both Hb and ub are both
held constant. The bed slope and surface slope of the glacier are also held constant along the
flow path, similar to Figure 2.1. The final cosαb term is a result of the flow path’s inclination
relative to the horizontal.

Equation (2.32b) is essentially the relationship that Alley et al. (1998) outlined previously
(eq. 2.41) without some of their additional assumptions. They reasoned that the water pressure
gradient, ∂pw/∂s is adequately approximated by the ice overburden pressure gradient ∂pi/∂s.
Furthermore, Alley et al. (1998) assumed a wedge-shaped ice configuration such as the area near
the outlet in Figure 2.1. These assumptions lead to

m̃ =− Hbub

L

(
∂pb

∂s

(
ρwcw

p β + 1
)

+ ρwg
∂zb

∂s

)
, (2.42a)

m

W
=− gHbub

L

(
ρi

(
sinαr − sinαb

) (
ρwcw

p β + 1
)

+ ρw sinαb
)

. (2.42b)

After grouping the terms like Alley et al., an equation that parallels their work is quickly realized,

−m

ρi
= −gHbWub cosαb

ρiL

(
tanαb(ρw − C2ρ

i) + C2ρ
i(− tanαr)

)
. (2.43)

The assumption inherent in equation (2.43) is that cosαb ∼ cosαr ∼ 1. This assumption may
not be valid depending on the slopes of the surface and bed but may be for relatively flat
glaciers. Equations (2.41) and (2.43) illustrate that the Spring-Hutter formulation of the water
flow equations can be reduced to a steady state representation.

By setting equation (2.43) equal to zero, the crossing from melting to freezing can be found
in terms of the surface and bed slopes,

R = −sinαb

sinαr
= −

(
1 + βcw

p ρw
)
ρi

ρw − (
1 + βcw

p ρw
)
ρi
∼ −tanαb

tanαr
. (2.44)

Röthlisberger & Lang (1987) gave this ratio as −2.02 for pure water and −1.30 for air-saturated
water. Alley et al. (1998) gave the ratio as −1.7 for pure water and −1.2 for air-saturated
water. Hooke (1991) also computed the ratio and found it to be −2.0 and −1.5 for pure and air
saturated water, respectively. The large variability in these numbers results from small changes
in the constants in equations (2.44) and (2.7). While the assumption that surface and bed
topography are constant must be false, a simple ratio to predict glaciohydraulic supercooling
from topography is extremely helpful.

9I have modified Alley et al.’s (1998) notation to match the present formulation. In addition, the surface and
energy slopes are taken to be positive numbers.
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2.5 Summary

Throughout this chapter, I have focused on glaciohydraulic supercooling in a subglacial water
system. Glaciohydraulic supercooling occurs because water flows upwards in a hydraulic sys-
tem without warming sufficiently to maintain water. The change of phase is governed by the
Clausius-Clapeyron relation (eq. 2.8).

Three balance laws—mass (eqs. 2.15, 2.16, and 2.17), momentum (eqs. 2.26 and 2.27), and
energy (eq. 2.29)—provide a mathematical representation through which water cross-section
area or height, water pressure, water velocity, and water temperature can be simulated. Each
of these equations has steady-state and time-dependent formulations. These formulations are
subject to phenomenological conditions for heat transfer between the ice and water (eq. 2.32).
In addition, the equations are subject to geometrical conditions on cross section (eqs. 2.2, 2.3,
2.4) and flow path (Fig. 2.1). For steady-state conditions there is a condition on the surface and
base angles of the glacier, indicating the propensity towards supercooling (2.44).
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Sheet closure mechanisms

The aim of this chapter is to provide a concise relationship for ice intruding into a water sheet via
the processes of regelation and viscous creep. A water passageway can close or open depending
on the difference between the water pressure and the stress in the ice acting toward the water.
For example, if the water pressure is below that of the ice overburden, ice will intrude into the
cross-section, contracting it. If the water pressure is greater than the ice overburden pressure,
it may be possible for the water to push the ice, dilating the cross-section.

For a conduit idealized as a tubular volume with a circular cross section, the relationship for
closure is power-law creep (eq. 2.17). Creep closure of conduits in ice was observed and quantified
by Glen (1952, 1954). To explain these observations, Nye (1953) constructed an extensive theory.
Creep closure for conduits has proven effective in various forms and simulations (e.g., Nye, 1976;
Spring & Hutter, 1981). In these situations, the difference between the ice overburden stress and
the water pressure determines whether the cross-section is shrinking or growing. Typically, ice
overburden squeezes the conduit shut. However, if water is being forced through at a pressure
higher than the ice overburden pressure, then the ice walls may be pushed outward, opening
the conduit. Examples of water dilating the cross-section occur during jökulhlaups when a large
supply of meltwater may force its way along the ice–bed interface (e.g., Björnsson, 2002).

For sheets, the intrusion relationship is not well-defined. This ambiguity may be, in part, a
result of sheets not appearing conspicuously at the front or surface of glaciers. As a water system
nears the terminus of a glacier, water depressurizes in response to atmospheric pressure. Chan-
nelization is then favored at the ice–bed interface (e.g., Fowler, 1987; Walder, 1982). Depressur-
ization may explain the lack of observations of sheets emerging at the front of glaciers. Because
observations of sheets are scarce, physical models help explain their development. Walder (1982)
analyzed the dilation and contraction of water sheets and appraised their stability with respect
to channelization. His exposition has not been extended but merits further attention because
he was interested only in flat glacier beds.

Walder (1982) investigated the stability of a laterally continuous sheet of water at the glacier
bed. He examined the two-dimensional, steady-state Navier-Stokes equations coupled to a
simple diffusive thermodynamic model. In his model, ice sags into the water sheet, closing it.
Walder approximated the rheology of ice by a linear viscosity rather than a nonlinear, power-law
viscosity. He used linear perturbation analyses to determine what thickness of water would yield
stable sheets under different conditions. Walder concluded that water sheets with flat beds were
almost always unstable and would decay to channelized cross-sections. Sheets with rougher beds
were stable to a thickness of about 4 mm. Unstable sheets would be discontinuous and give way
to an arborescent drainage system.

3.1 Formulation

Glacier sliding and ice intruding into a sheet are analogous processes whereby ice moves past
obstacles at the ice–bed interface. The difference between sliding and intrusion is the direction
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of ice movement: horizontal for sliding, vertical for intrusion. This physical similarity opens
the body of literature on sliding to closure of a water sheet. Glacier sliding is the result of
two processes: viscous creep and regelation (e.g., Weertman, 1964). Physically, creep is the
movement of lattice dislocations in ice crystals in response to applied stresses. Regelation is the
movement of ice past an obstacle by melting on a high pressure side and then refreezing on a
low pressure side. Water flows in a thin film from the high pressure side of an obstacle to the
low pressure side.

Weertman (1964) superposed the regelation velocity vr and the creep velocity vc to give the
total ice velocity v, past an obstacle,

v = vr + vc. (3.1)

Equation (3.1) is the statement for glacier sliding speed, and this equation also represents the
closure speed of ice into the sheet v = ∂Hb/∂t (see equation (2.16a)). Equation (3.1) holds for
any individual obstacle that the ice is moving past. For ice at the melting point, regelation acts
as a slip condition on the surface of the sediment. Creep acts on distances approximately the
size of the obstacle that ice is moving past.

Both regelation and creep act jointly over different length scales to move the ice along the
bed. Weertman (1964) observed that, for very large obstacles, creep will be the dominant
mechanism. For very small obstacles, Weertman reasoned that the regelation velocity will be
large. Near where the regelation velocity equals the creep velocity, both will be small. These
obstacles will then control the speed at which the roof collapses. Nye (1969, 1970) suggested
that a controlling obstacle size lies between 2 and 50 cm. In addition, Kamb (1970) concluded
that a transition obstacle wavelength exists near 50 cm (Paterson, 1994, p. 142). A similar
trade-off should occur for ice intrusion.

3.1.1 Regelation closure

Regelation is a thermodynamic process where ice in contact with another material melts because
of the local change in the pressure melting point. Closure of the water system via regelation is
not understood nearly as well as the effect of creep closure. For a cross section idealized as a
sheet less than the transitional obstacle size, regelation should be the sole mechanism acting to
close a water layer.

Nunn & Rowell (1967) performed laboratory experiments that have become classic examples
of regelation. In these experiments a wire is loaded such that the pressure of the leading edge
exceeds the local melting temperature of the ice (via eq. 2.8). Water produced flows in a thin film
around the wire to the low pressure side, where it refreezes. Latent heat released from refreezing
is conducted back through the wire, enhancing melt. Townsend & Vickery (1967) performed
similar experiments and obtained similar results by pulling a metal ball though a block of ice.
Weertman (1972) and Nye & Frank (1973) gained insight from these simple experiments to
explain a glacier sliding past obstacles at the ice–bed interface and, subsequently, to determine
sliding speed over a rock bed.

Nye (1967) constructed the theory for these experiments. He considered ice that is clean
and separated from obstacles by a thin film of water and then solves for the force required for a
steady regelation velocity. Nye noted if ice is below the melting point, regelation ceases unless
there is an additional heat source. In this case, heat returning to the area of melting must first
raise the temperature of the ice to the melting point before melting the ice. Because of this
feature, I consider cases where the sensible heat is negligible. Other assumptions are inherent
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in regelation: ice is clean, there is a thin film of water separating the ice from the sediment
grains, and transient effects are negligible. Also, the mechanical properties of ice, such as fabric
orientation, should not change when ice melts and then reforms.

Ice flow past bedrock obstacles implies that ice flow is roughly parallel to the bed for sliding.
For the closure of the ice–bed interface in the presence of a water sheet, the direction of ice motion
must be into the sheet, or nearly vertical. Figure 3.1 depicts ice resting on a sediment grain at
the ice–bed interface. On the leading edge of the grains, ice melts. The water generated then
flows around the sediment grain toward the water sheet. “Regelation” in this sense is somewhat
of a misnomer because water is not necessarily refreezing on the low pressure side. However,
the theoretical basis for regelation is applicable provided that heat is conducted through the
sediment grain to melt the overlying ice.

Figure 3.1: A simple picture of regelation closure. The water layer is the lightest gray. As the
ice descends onto the grains, stress from the overlying ice is concentrated, and the ice melts.
Grey arrows show the sense of ice motion. Black arrows indicate motion of water generated
from ice melt.

Nye (1967) gave the formulation for regelation in terms of a single cylinder and altered the shape
factor to account for spheres. He then gave an approximate formulation for any shape,

F =
Veρ

iLvr

βKe:T
, (3.2)

where Ve is the effective volume of the shape, Ke:T is an effective thermal conductivity, vr is
the speed at which the ice is regelating past the object, and β is the linearized pressure-melting
coefficient (eq. 2.8). Rewriting (3.2) in terms of the normal stress available for regelation gives

σr = − ρiL

βKe:T

Ve

Ae
vr, (3.3)

where Ae is an effective area. The effective area is an area of ice–object contact. The negative
sign in equation (3.3) indicates that the direction of closure is opposite to the positive z-direction,
or downwards, when the ice overburden stress is greater than the water pressure.

The definition of the effective area Ae in equation (3.3) involves both a sediment grain and an
applied stress. Philip (1980) noted that the stress is the mean normal stress, and he defined the
force as acting along the direction of ice flow. However, this is at odds with Nye (1967) who used
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the stress normal to the surface of the obstacle. In this case, Nye’s formulation is preferable.
Ae is then the surface area opposing the motion of the ice. If there is a known relationship
between the surface and cross-sectional areas of sediments, then the cross-sectional area could
be substituted. The effective area is not the area of all grains on the bed, but the effective
cross sectional area of those sediment grains emerged into the ice and partially submerged in
the water. Obstacles that are completely submerged by water do not have an effect. Similarly,
Ve is the volume of an obstacle encased in ice at the ice–bed interface that the ice is regelating
past.

Philip (1980) investigated the effective thermal conductivity. He constructed an analytic
model of ice regelating past arrays of equally spaced obstacles, cylinders or spheres, having
an adjustable thermal conductivity. Philip solved for the effective thermal conductivity based
on a given array geometry and an obstacle shape. If the thermal conductivity of an array is
the same as that of ice, the effective thermal conductivity reverts to that of ice. As a result,
obstacle spacing is irrelevant without varying the conductivities. For obstacles with thermal
conductivities greater than that of ice, heat is preferentially moved through the cylinders. Con-
versely, if the thermal conductivity of a cylinder is less than that of ice, a greater relative heat
flux occurs through the ice. It is not clear that Philip’s (1980) method of applying different
conductivities provides adequate compatibility because sediment grains at the ice–bed interface
are usually irregularly spaced. However, his study does give an impression of what may happen
when the thermal conductivity is varied. In addition, Rempel et al. (2004) noted that varying
the conductivity of the grains makes the problem unnecessarily difficult. Iverson & Semmens
(1995) avoided the issue completely in their experimental study by setting the conductivities of
ice and sediment equal. Because the thermal conductivity appears to have a small impact on
the problem, I set the thermal conductivity equal to that of ice as has been done by Iverson &
Semmens (1995).

3.1.2 Creep closure

Creep is the process whereby ice deforms under an applied stress. For sediment grains with mean
dimension larger than the transitional obstacle size, the primary mechanism of ice intrusion into
the macroporous water layer will be power-law creep. The most common form of the flow law
for ice was given by Glen (1954) where a strain rate is proportional to a stress raised to a
power. If ice rests on grains that concentrate stress then ice will preferentially creep around
these grains. Figure 3.2 shows the conceptual framework for creep closure of a sheet with ice
sagging between two large sediment grains. If the ice were lower in the figure, overburden stress
would be dissipated because the ice would rest on more grains. This dissipation may reduce the
rate of creep closure.

Creep is driven by the stress deviator at the ice–bed interface. Equivalent shear τ can be
written in terms of the stress deviation from a hydrostatic state,

2τ2 = σ2
c + 2τ2

xz, (3.4)

where σc denotes a deviatoric stress available for creep. Weertman (1964) noted that there are
two deviators. One deviator results from the compression on the obstacle. The other is a tension
from the ice that passes the obstacle. This is clearly seen as (3.5) retains a 1/2. In addition,
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Figure 3.2: A simple picture of regelation closure. Ice preferentially sags into the water layer
with a larger spacing between particles. Same color scheme as Figure 3.1

because shear from down glacier ice movement is neglected, τxz in (3.4) can be neglected10,

2τ2 =(σc)
2 ,

τ =

√
1
2

(σc)
2. (3.5)

Because the water sheet experiences only vertical motion, the bed must be in compression or
tension. As a result, the 1/2 in (3.5) is not critical. Weertman (1964) also argued that the 1/2
is not important for glacier sliding where obstacles at the ice–bed interface are in both tension
and compression simultaneously, and

τ = σc. (3.6)

The strain rate in the ice can be approximated by the flow law (e.g., Paterson, 1994).
Substituting the creep closure stress directly into the flow law yields the strain rate in terms of
the creep closure stress,

ε̇z = A sgn (σc) |σc|n, (3.7)

where εz is the vertical strain into the sheet and A is a flow law coefficient. Multiplying (3.7)
by a length scale produces a velocity,

vc = A sgn (−σc) |σc|n le, (3.8)

where le is the creep length scale. The effective length scale provides an approximation to the
spatial integral of the strain rate without solving the integral directly. Solving the integral
directly would necessitate solving for the stress distribution in the ice. An attempt to integrate
the stress would not necessarily give a better approximation because an integration would be
dependent on the boundary conditions, which are not straightforward for a bed of irregularly
shaped objects of variable horizontal spacing. By using a simple length scale, equation (3.8)

10By neglecting shear, I preclude the circumstances that would allow a sedimentary bed to develop cavities.
These cavities might take an elongate form (e.g., Weertman, 1986) that could then coalesce into laterally con-
tinuous cavities (e.g., Kamb, 1987; Walder, 1986). This coalescence would lead to configurations similar to those
discussed by Alley et al. (1998).
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yields a tractable approximation of creep closure. The creep closure stress can be found by
rearranging equation (3.8)

σc = − sgn (vc)
( |vc|
Ale

)1/n

. (3.9)

The natural scale for the effective length in equation (3.8) is the distance between the
sediments at the bed because an ice roof will preferentially sag between supporting grains.
Creep around the individual grains would be secondary to the sagging. This length scale will
vary depending on the thickness of the water sheet.

3.2 Bed partitioning

The overlying ice rests on an unlithified sedimentary bed and water sheet. Within this water
sheet, many smaller sediment grains are wholly submerged. Larger grains may penetrate the
water to partially support the ice and stabilize the water layer. A combination of water pressure
and sediment stresses jointly support the weight of the overlying ice. As a result, the total
cross-sectional areas of water Aw and sediment As sum to the total area of the ice,

Ai = Aw + As. (3.10)

In this case, Ai is a cross-sectional area of ice normal to the direction of closure. The ice seals
the water sheet and partially rests on sediment grains. This equation is consistent with the
ice–water configuration of a sheet from Chapter 2.

Many different grain sizes may be present on the bed. Some grain sizes will be fully sub-
merged in water and not touch the ice ceiling. The remaining grain sizes will support some of
the weight of the glacier. The total contact area of sediments touching the ice As is equal to
the integral

As =
∫

Ai

∫

as

f s
aa

s das dAi (3.11)

where f s
a is the number of grains per unit size (in area) of a given texture per unit area of the

bed. The quantity f s
a is a number density. Each of a variety of grain textures has an individual

fractional area as. One of the geometric necessities of equation (3.11) is that As is defined at the
average elevation of Ai, which is zb. The cross-sectional area normal to intrusion for one grain
size is then dependent on the mean size of the grains, the level of submergence, and the number
of that grain size on the bed. Implicit assumptions include the sediment grains being exposed
to the same level and having a cross-sectional area and volume that can be approximated by a
known function of the mean grain size.

3.2.1 Stress partitioning

If the ice is resting on more than one grain size across the water horizon then the ice overburden
stress can be partitioned among the different grain sizes and the water pressure. A reasonable
analog for stress partitioning emerges from work on sliding and cavitation at the ice–bed interface
(e.g., Fowler, 1987; Lliboutry, 1979; Schoof, 2005). Fowler (1987) approximated a series of bumps
at a glacier bed as a Fourier series. In his formulation, the largest wavelength bumps have the
largest amplitude, and smaller wavelength bumps are superimposed on the larger bumps. When
the glacier’s sliding speed reaches a threshold, water cavities develop behind the smallest bumps.
As the sliding speed of the glacier increases, larger cavities form behind the larger bumps. These
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larger cavities drown a fraction of the smaller bumps and cavities. In order to cope with the areal
changes in normal stress and water pressure at the bed, Fowler used a stress renormalization
technique introduced by Lliboutry (1979).

A similar formulation can be used for ice intruding into a sheet of water. The downward
force of the overlying ice F i is partitioned among all grain sizes available at the bed and the
water sheet,

F i =Fw + F s,

Aiσi =Awpw + As
1σ

s
1 + . . . + As

Nσs
N ,

=Awpw +
N∑

i=1

As
iσ

s
i , (3.12)

where F s and Fw are normal forces on the sediment and water, σi = ρigZ i is the ice overburden
stress, As

i is the total area opposing flow for the ith grain size, and σs
i is the stress on the ith

grain size. Shear from ice movement is ignored as are any other stresses.
Partitioning equation (3.12) into intermediate stresses σi yields a renormalization,

Aiσi =As
1σ

s
1 +

(
Ai −As

1

)
σ1 (3.13a)(

Ai −As
1

)
σ1 =As

2σ
s
2 +

(
Ai −As

1 −As
2

)
σ2 (3.13b)

. . .(
Ai − . . .−As

N−1

)
σN−1 =As

Nσs
N + Awpw. (3.13c)

In these equations, larger i values indicate smaller grain sizes. Equations (3.13) are predicated
on the largest grain sizes supporting a significant portion of the ice overburden stress. The
remaining stress is distributed among the smaller grains. The summation of the N equations
(3.13) yields equation (3.12). Renormalization of the stresses is the crucial step that differenti-
ates this work from that of previous workers who were interested in both regelation and creep
(e.g., Weertman, 1964).

Solving (3.13) for σs
i yields a series of equations with a subtle relationship,

σs
i =

Ai−1

As
i

(σi−1 − σi) +
As

i

As
i

σi, (3.14a)

=
Ai−1

As
i

σe:i + σi, (3.14b)

where σe:i is the relative effective stress for the ith grain size, and i = 1 . . . N . The area A0 is
equal to Ai for the largest grain sizes, and σN is equal to pw for the smallest grain sizes.

One grain size: a simple case

If there is only one grain size on the bed, then there is a simple stress division among the water
and sediment. The stresses for regelation and creep are the deviatoric stress on the sediment
grains and the effective stress, respectively. This stress must be obtained via a force balance on
the bed, whereby the mass of the overlying ice must be supported by either the water or the
grains at the base of the glacier:

σiAi =σsAs + pwAw,

σs =
Ai

As
σe + pw . (3.15)
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In this case, the three stress components available for ice closure are the vertical stress in the
ice σi, the water pressure pw, and the stress exerted by sediment grains on the ice σs.

3.3 Stress–velocity relation

There is one equation each for the total closure velocity (eq. 3.1), regelation (eq. 3.3), creep
(eq. 3.9), and a constitutive relationship for stress at the bed (eq. 3.12). To solve these equations,
three more relationships are necessary,

σr:i =σs
i − σi =

Ai−1

As
i

σe:i, (3.16a)

σc:i =σe:i, (3.16b)
v =v1 = . . . = vN . (3.16c)

Here, stress deviators driving regelation and creep closure are given by equations (3.16a) and
(3.16b), respectively. These stresses, σr and σc, now have an unambiguous relationship to the
stress renormalization. Equation (3.16a) states that stress driving regelation for a particular
grain size is the stress on a grain less the intermediate stress. This stress difference is essentially
the stress deviator of the renormalized system. Use of a stress on an individual size for regelation
is equivalent to previous work (Nye, 1967; Weertman, 1964). Equation (3.16b) states that the
total stress available for creep is simply the renormalized effective stress. The renormalized
effective stress becomes the deviation from the local hydrostatic stress state away from the
supporting grains.

Equation (3.16c) states that there is only one closure velocity and that the velocity around
individual grains at the bed must be equal to each other. This final assumption is compatible
with the theory of Weertman (1964) who assumed that the ice will flow past obstacles at only
one sliding speed. One closure velocity for all individual grain sizes at the bed means not all
stresses are equal on the sediment grains. The stress distribution in the ice reorganizes to allow
only one closure velocity.

The total velocity is the addition of the creep closure velocity and the regelation closure
velocity in the same vein as Weertman (1964) from equation (3.1). After substituting equations
(3.3), (3.8), and (3.16), the total closure velocity becomes

v =− βKe:T

ρiL

(
Ae

Ve

)

i

σr:i +Ale:i sgn (−σc:i) |σc:i|n, (3.17a)

=− βKe:T

ρiL

(
Ae

Ve

)

i

(
Ai−1

As
i

σe:i

)
+Ale:i sgn (−σe:i) |σe:i|n. (3.17b)

Because there are N grain sizes, there are N versions of equation (3.17b). Each of these versions
is exactly equal to the same closure velocity as highlighted above. The sum of the stresses in
equation (3.12) is the final condition necessary to solve for the N+1 equations. The intermediate
stresses and grain stresses can be found from equations (3.14). Details of the solution of these
equations using Newton’s method can be found in Appendix C.

Negative effective stresses

Subglacial water pressures may exceed ice overburden stresses (e.g., Murray & Clarke, 1995;
Hooke & Pohjola, 1994) causing effective stresses to be negative. In particular, Hooke & Pohjola
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noted that water pressure will be greater than ice overburden stress along an adverse slope. If
water pressure is greater than ice overburden, then a subglacial water sheet will dilate. In this
case, the stress partitioning is not valid, and the regelation terms in equations (3.17) do not
play a role. Equations (3.17) then revert to a simple creep velocity governed by the smallest
effective stress and effective creep scale (eq. 3.8).

This assessment of processes that occur when effective stresses are negative is necessarily
simple. In nature, glacier ice may lift off the bed via a number of processes. For example, ice
that has intruded around sediments may lift the sediments off the bed. Such mechanisms are
not included here but can occur and merit further investigation.

3.4 Effective scales

Numerous sizes and shapes of sediment grains may lie on the bed. These grains may be buried
to different depths and offer different sizes and shapes at different heights within the water layer
for the ice to rest upon. Packing of a plane with particles can take many different patterns.
For example, for one grain size, the closest and most common packing is hexagonal. Riverbeds
do have structure in response to variations in shear stress; however, the exact order of grains
at the bed is difficult to predict. Interactions of the water with the overlying ice and the
underlying sediment will determine the effective scales (Ae, Ve, or le). The subglacial hydrology,
in concert with the overlying glacier, impose structure on the subglacial bed; but it is difficult,
if not impossible to observe this structure. As a result, an approximation to the variation of
material at the bed is necessary, this includes the population of any individual grain size, N s

i .
This approximation allows a functional form for the effective length, volume, and area scales in
equation (3.17).

The definition of these effective scales is somewhat delicate in that they may have a large
effect on the closure of the bed. While the scale effects appear to be linear in v, they may
produce nonlinear effects because of the grain distribution at the bed. In order to allay concerns
regarding the effective scales, I first define the scales in terms of the grain distribution at the
bed, and then provide examples illustrating how the effective scales may affect equation (3.17).

3.4.1 Regelation area and volume scales

The volume to area ratio in equation (3.17) for regelation closure is dependent on the individual
grains lying on the bed. The exact relationship for either the effective volume to area ratio or
the population can never be known exactly, but a reasonable approximation may be made for
these parameters. As ice moves past sediment grains at the bed, the effective volume and area
for each grain size change as Hb changes. In general, the population will not change; but the
population exposed to the ice may change as Hb evolves. As ice descends, it will be in contact
with more grain sizes depending on the sediment floor–ice ceiling distance. As ice rises off the
bed, ice will make contact with fewer grains. Not only is it necessary to find a relationship
that represents the material at the bed, but this representation must also be adjustable as Hb

changes.
The simplest geometrical parameterization is to assume that each sediment grain is a sphere.

Strictly speaking, sediment grains are rarely spherical, but the rates of closure should only differ
by a shape factor. The effective volume is the spherical cap above Hb, and the effective area
is the circular cross section at Hb. Where the base of the grain sits on the same datum as the
water sheet zs, the spherical cap and the cross-sectional disk have two values: (a) one when
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Hb > ri and (b) one when Hb < ri, where ri is the individual grain radius. For the case of
sediment grains lying on zs, the effective volume is then given by

Ve:i =
π

3

{
2ri −Hb

}{
2r2

i + riH
b −

(
Hb

)2
}

. (3.18)

The effective cross section is the area of the disk,

Ae:i =

{
π

{
2Hbri −

(
Hb

)2
}

for Hb > ri

πr2
i for Hb ≤ ri.

(3.19)

If all the grains are buried to their equator, then similar relationships exist for the effective
volume and area. This case will be referred to as the half grain case. This case is illustrated in
Figures 3.1 and 3.2. Equations similar to (3.18) and (3.19) are

Ve:i =
π

3

{
2r3

i − 3Hbr2
i +

(
Hb

)3
}

, (3.20a)

Ae:i =π

{
r2
i −

(
Hb

)2
}

. (3.20b)

Details of these derivations appear in Appendix B. As ice descends on the grain, the upper
equation in the set of (3.19) describes the area as grain contact increases. Once the ice has
passed the equator of the grain, the cross sectional area opposing ice flow does not lessen but
remains the same.

From equation (3.19), the total area normal to ice motion for the ith grain size is accessible,

As
i = N s

a:iAe:i. (3.21)
This equation simply states that As

i is the product of the population of sediment grains at the
bed times their individual effective area.

3.4.2 Creep length scale

For an area at the bed, an effective length scale should capture an average spacing of the change
in stress over that area. As shown in Figure 3.2, the length scale is the space over which an
ice roof sags into a water sheet. Because the area of a water sheet varies with the height and
number of sediments exposed at the bed, a creep length scale will be dependent on the spacing
between the sediment grains. Naturally, this length scale is only an approximation to what the
grain spacing is at the ice–bed interface. Furthermore, a parameterization that captures how
the average length scale would vary at the ice–bed interface is given by

le:i =
(

Ai −As
i

N s
a:i

)1/2

. (3.22)

The length scale in equation (3.22) varies as water is exposed to the overlying ice. For a square
with an area equivalent to that of water exposed to the ice, the length scale of interest would be
the square root of the area of the water. The length scale should be inversely proportional to
the number of grains touching the ice. If each of the grains is a point, and the points are equally
spaced within the water, then each point can occupy a square. All squares would have an equal
area. Alternatively, a circle with equivalent area could be used with a factor of 2π included, but
it is not clear that the choice of geometry is fundamental. A different areal geometry will only
change the length scale by a constant. A key assumption is that the grain spacing is regular at
the bed. Most sedimentary beds are likely not regular.
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3.4.3 Sediment grain size distribution

Sediment grain distributions on the bed have been discussed by numerous authors. The discus-
sion about particular grain distributions is left to Chapter 4. One aspect that is important is
that most subglacial sediments tend to be deformation tills. Hooke & Iverson (1995) found that
deformation tills follow a fractal distribution in number,

N s
a:i = N s

0

(
ri

r0

)−m

, (3.23)

where m is the fractal index, and the subscript 0 denotes a reference value. Moreover, Hooke
& Iverson showed that the fractal index is approximately three, implying that each grain size
occupies an equivalent amount of volume in the till. If there is a mixture of grain sizes in the till
occupying a unit volume with a unit area on a face of that volume, then the face will have an
equal distribution of those grain sizes in area (e.g., Kellerhals & Bray, 1971). For the sediments
exposed at a glacier bed, the fractal distribution would have an index of about 2. An equivalent
relationship is presented in Chapter 4 (eq. 4.18) where m is approximately 3. The difference
in the index value is a result of the use of an areal distribution (m ' 2) versus a volumetric
distribution (m ' 3). This fractal distribution will be the baseline case for both the regelation
and creep closure.

3.5 Example closure rates

In order to obtain a qualitative understanding of how these equations interact to produce closure,
examples are necessary. There will be cases when either regelation or creep dominates closure
of the water sheet, and as result, it is important to know where these lie and what effect they
may have on a water layer below a glacier.

Rather than construct these examples around water layer thicknesses, I construct the exam-
ples based on possible grain size distributions at the ice-bed interface. This method of example
construction provides insight into closure mechanisms at both the maximum possible sheet
thickness and a minimum sheet thickness. However, I do not suggest that an extremely thick
water layer is possible under a given set of hydraulic constraints. I assume that a thick water
layer is permissible if the grain size distribution contains large clasts in order to explore process
phenomena.

3.5.1 Closure rates for beds with uniform grain size

Large grains

The simplest illustrative cases have only one grain size. For very large clast sizes, the expectation
is that creep dominates with regelation being of secondary importance. There should also be
faster closure velocities for larger effective stresses because of the dependence of Glen’s flow law
on n (eq. 3.17). Finally, for large clasts, the closure rate should linearly increase for a linear
increase in le.

Figures 3.311 and 3.4 show example closure velocities for the parameters in Table 3.1. These
examples are consistent with boulders with a radius of 0.2 m. In this example, exactly half

11All figures that report closure velocities use positive values. These are absolute values of the closure velocities.
All velocities are downward toward the bed. No closure velocities for negative effective pressures are plotted.
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Figure 3.3: Example closure velocities for a grain size of ri = 0.2 m. Parameters are given in
Table 3.1. (a) σe/pi = 0.05 (b) σe/pi = 0.5 (c) σe/pi = 0.95. The letters (C, M, R) along the
base of the plots correspond to the areas in Figure 3.4.

Table 3.1: Closure parameters.

Parameter Value Units Notes
A 6.8× 10−24 s−1 Pa−n (Paterson, 1994, p. 97)
cw
p 4217.6 J kg−1 K−1

g 9.81 m s−2

Ke:T 3.3 W m−1 K−1

L 3.336× 105 J kg−1

n 3.0 (Nye, 1953; Paterson, 1994)
pi 8.99× 105 Pa Corresponds to 100 m of ice overburden
β 7.440× 10−8 K Pa−1 From equations (2.7) and (2.8)
ρi 916.7 kg m−3

ρw 1000.0 kg m−3

of the bed is covered by boulders. The boulders rest on a flat surface with the whole grain
exposed according to equations (3.18) and (3.19). At the base of Figure 3.3 and in Figure 3.4, R
(regelation regime) denotes that vr > 0.9v, C (creep regime) denotes vc > 0.9v, and M (mixed
regime) denote that neither process is controlling. These and subsequent figures are constructed
around the grain size(s) rather than realistic sheet water depths. Water depth of the sheet would
not be as high as 0.4 meters but are probably less than one tenth that height (e.g., Lawson et al.,
1998).

There are several striking features in Figures 3.3 and 3.4. The first feature is that regelation
is an important process for several parameter choices. In the case of Figure 3.3a, the effective
stress driving closure is relatively low. As a result, the creep velocity is quite small, and the
regelation velocity is a greater part of the total closure velocity. However, throughout most of
height of the water layer (as indicated by M), the creep velocity is greater than 10% of the total
closure rate. In Figures 3.3b and 3.3c, the relative effective pressure is much higher. The result
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is that creep is important for most of the grain height. Near 0.4 m for both Figures 3.3b and
3.3c, there is a sharp upturn in the total velocity. This upturn is a result of the ratio Ae/Ve

being large as the ice initially settles on a grain.
Each creep velocity in Figure 3.3 curves slightly from 0.2 to 0.4 m. This curvature results

from the cross-sectional area in equation (3.23) evolving until the equator is reached. Once ice
intrudes below the grain equator of the grain, le is constant. As a result, from 0 to 0.2 m, the
creep velocities are constant.

Figure 3.4 shows the overall pattern for the total closure velocity. In the region where creep
dominates, the velocities rise to the left as a result of the rate dependence on n. The bend in
the black contours at 0.2 m in the creep region is a result of the change in le, as indicated above.
The transition to a mixed regime and a regelation regime near the top of the figure results from
the combination of both the ratio Ae/Ve and the ratio Ai/A

s
i being large. From right to left,

the transition from a creep regime to a mixed regime to a regelation regime results from a drop
in the effective pressure that drives closure.
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Figure 3.4: Total closure velocities for a grain size of ri = 0.2 m with variable effective pressure.
Parameters are given in Table 3.1. The fraction of the bed area covered with water is 0.5.
These velocities are total closure velocities (eq. 3.1). Black contours are spaced at intervals of
0.25 × 10−6 m s−1. Numbers and thick white lines denote different closure regimes. Area R
indicates regelation dominated closure (vr > 0.9v). Area C delimits creep dominated closure
(vc > 0.9v). In area M, both creep and regelation are important for closure.

Figure 3.5 shows the variability of the closure velocity for a change in the area of water.
The practical course of creating a bed parameterization is to define the cross sectional area for a
grain and then determine a number of grains based on a predetermined fractional area of water
(Aw/Ai). The smallest fractional area of water is 0.09 because this is closest hexagonal packing
for circles on a plane. A creep regime dominates most of this figure. The transition from a creep
to a mixed to a regelation regime toward the top of the figure is a result of the change in the

45



Chapter 3. Sheet closure mechanisms

ratio Ae/Ve. The gradual rise in the closure velocities toward the right hand side of the figure
is the result of fewer grains and a larger grain spacing. The close contours in the upper right
corner result from the product of Ae/Ve and Ai/A

s
i driving regelation. Figure 3.3b is a vertical

slice of Figure 3.5 at a fractional area of 0.5.
Because le is dependent on the number of grains (eq. 3.22), the fractional area water is not

a direct proxy for the creep length scale. However, le does increase as the fractional area water
increases. Figure 3.6a shows the increase in closure rate as a function of le. This figure is a
horizontal slice of Figure 3.5 at 0.15 m with the fractional area water converted to le. Figure
3.6a illustrates the creep velocity being linear in le despite the total closure velocity not being
linear.

According to equations (3.17), the creep velocity should vary linearly with le and the regela-
tion velocity should vary linearly with Ai−1/A

s
i . Figure 3.6a illustrates the linear dependence of

the creep velocity on le. Figure 3.6b shows how that the regelation velocity is linear in Ai−1/A
s
i .

In this case, Ai−1/A
s
i = Ai/As. The water depths correspond to Figure 3.5 and were chosen to

show the relative importance of the creep and regelation terms.
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Figure 3.5: Total closure velocities for a grain size of ri = 0.2 m with variable fractional area
water. Parameters are given in Table 3.1. These velocities are total closure velocities (eq. 3.1).
Black contours are spaced at intervals of 0.25 × 10−6 m s−1. Letters and thick white lines
denote different closure regimes. Area R indicates regelation dominated closure (vr > 0.9v).
Area C delimits creep dominated closure (vc > 0.9v). In area M, both creep and regelation are
important for closure. The regelation region saturates the colorbar and has a maximum value
of 0.01 m s−1.
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Figure 3.6: Example closure velocities for a grain size of ri = 0.2 m. Parameters are given in
Table 3.1. The normalized effective pressure is 0.5. Figures (a) and (b) are horizontal slices of
Figure 3.5. (a) Hb = 0.15, vc varies linearly with le; (b) min(Aw/Ai) = 0.5, min(le) = 0.35 m.

Small grains

As Figure 3.7 illustrates, closure for small grain sizes is dominated by regelation. The ratio
Ae/Ve is the controlling term in the regelation velocity with velocities increasing on the right
side of the figure as a result of the velocity dependence on Ai−1/A

s
i . Figure 3.8 shows two cross

sections through Figure 3.7, one horizontal and one vertical. The creep velocities throughout
both figures are several orders of magnitude smaller than the regelation velocities. As effective
stress increases, the creep velocity does increase but not to a magnitude where it becomes
significant (Fig. 3.8b). The magnitude of closure velocities is approximately a factor of 100
greater for small grains than for large grains as noted in the colorbar (compare Fig. 3.4).

3.5.2 Multiple grain sizes

Sedimentary beds beneath glaciers will most likely not consist of only one grain size. Larger
grains will be interspersed among smaller grains. As ice descends, different grain sizes will be
submerged to different levels in the water with the ice resting on the remainder of those grains.
Figure 3.9 illustrates several scenarios for 5, 10, 25, and 50 different grain sizes lying on the
bed. The maximum grain size in each figure is 0.4 m, and the minimum grain size is 0.001
m. These figures are meant as illustrations of the processes. Grain size distributions for each
of these figures are illustrated in Figure 3.10. The fractional areas for each grain size are the
same within each distribution (eq. 3.23). Creep, mixed, and regelation regimes are determined
by multiplying the individual creep and regelation velocities by the fraction of driving stress on
each grain size (eq. 3.14b), summing the creep and regelation components for all grain sizes,
and then comparing the magnitudes of those sums. As a result, the regimes indicated in Figure
3.9 are based on the relevant stress distributions.
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Figure 3.7: Total closure velocities for a grain size of ri = 0.001 mwith variable effective pressure.
Parameters are given in Table 3.1. These velocities are total closure velocities (eq. 3.1). Black
contours are spaced at intervals of 0.25 × 10−5 m s−1. All closure velocities in this figure are
dominated by regelation (R), (vr > 0.9v).

The velocities in Figures 3.9a–d are extremely smooth given the amount of variability mul-
tiple grain sizes could introduce. In general, the closure velocities are less than 0.4 × 10−5

m s−1 for all distributions. Structure in the different closure regimes for 5 and 10 grain sizes
(Figs. 3.9a,b) results from ice sequentially resting on smaller grain sizes. In Figures 3.9c and
3.9d, the creep regime is absent because each grain size has a relatively large value of Ae/Ve.
The process of ice resting on the tops of grains is reasonably continuous for many grain sizes.
For water depths of less than 0.1 m (e.g., Lawson et al., 1998; Seaberg et al., 1988) either a
regelation or mixed regime is favored to close the sheet. Creep closure is more important for
larger water layer thicknesses (e.g., Vogel et al., 2005).

Figure 3.11 shows the fraction of stress available for each grain size for the case of ten grain
sizes. These six figures represent the largest of those ten grain sizes. Between Figures 3.11a and
3.11b the introduction of the second grain size at 0.22 m divides the driving stress between the
two grains. The fraction is not exactly half until the water depth is 0.18 m for high effective
stresses. Similarly, introduction of the third grain size at 0.12 m water depth divides the the
stresses among the first three grain sizes. Perhaps the most striking feature of these figures is
that the stress used by each grain size is never equal across all grain sizes. Larger grains require
larger stresses to achieve the same closure velocity associated with smaller grains.

Grain burial

Instead of using the whole grain parameterization for sediment shape on the bed, the half grain
parameterization can be used (eqs. 3.20). This parameterization gives an estimate for grain
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Figure 3.8: Total closure velocities for a grain size of ri = 0.001 m with variable fractional
area water. Parameters are given in Table 3.1. These velocities are total closure velocities
(eq. 3.1). (a) A vertical slice of Fig. 3.7 where σe/pi = 0.5 (b) A horizontal slice of Fig. 3.7
where Hb = 0.01 m

burial. Relief introduced by the sediments on the bed is reduced. Closure velocity trends
and magnitudes are similar to Figure 3.9 and are not plotted. Figure 3.12 displays the stress
partitioning for the largest six grain sizes. The noticeable difference is that stress levels are
significantly reduced as ice descends onto smaller grain sizes. The smaller grain sizes play less
of a role in this case.

Transitional obstacle size

Weertman (1964) noted that only one of the two terms in either of equations (3.17) would be
significant. This appraisal is based on the regelation velocity being proportional to an inverse
length scale while the creep closure velocity being proportional to a length scale. For a very
small length scale, regelation would be the dominant mechanism of closure. For a large length
scale, creep closure should dominate the system. Thus, intersection of two length scales would
produce a limiting length scale. The actual effective area, volume, and length scale will depend
on the distribution, arrangement, and shapes of grain sizes at the ice–bed interface.

The theory presented here does not strongly support or oppose Weertman’s idea but offers
an alternative view of the processes. When water depth is shallow and the effective stress is
low, larger grains tend to support more of the available stress (Figs. 3.11 and 3.12). These
grains lessen the available stress that the other grains could use to produce faster velocities.
When water depth is shallow and effective stress is high, intermediate-sized grains carry nearly
as much stress as larger grains. When the driving stress is low, perhaps one could say that the
large grains sizes are the controlling obstacle size.
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Figure 3.9: Closure velocities for multiple grain sizes. Figure labels are in the lower left corner.
Parameters are given in Table 3.1. These velocities are total closure velocities (eq. 3.1). Black
contours are spaced at intervals of 0.4 × 10−5 m s−1. Letters and thick white lines denote
different closure regimes. (a) Five different grain sizes. (b) Ten grain sizes. (c) 25 grain sizes.
The closure velocity saturates the color scale in the upper right of the figure and has a maximum
value of 9.9 × 10−4 m s−1. (d) 50 grain sizes. The closure velocity saturates the color scale in
the upper right of the figure and has a maximum value of 2.0× 10−4 m s−1.

3.6 Summary

In this chapter, a method of calculating the rate at which ice closes a subglacial sheet is in-
troduced. The method is based upon steady-state formulations of two processes that occur
subglacially: viscous creep and regelation. Creep is the deformation of ice from an applied
stress, and regelation results from the change in the melting point from an applied stress. The
rates of closure can be calculated numerically from equations (3.17) and (3.14). Parameteriza-
tions are necessary for appropriate length, area, and volume scales (eqs. 3.18, 3.19, 3.20, and
3.22 ) that are based on a distribution of idealized grain sizes lying on the bed. Simulations show
that instantaneous closure velocities range from about 1×10−7 m s−1 to 1×10−4 m s−1 but can
be as high as 1× 10−2 m s−1. These example velocities do not account for the lessening of the
driving stress as ice pressurizes the subglacial sheet. Consequentially, they are not indicative of
yearly closure rates. The formulation for these closure rates can be applied directly to equation
(2.16a) to complete the balance equations of the subglacial sheet.
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Figure 3.10: Logarithmic grain size distributions for the 5, 10, 25, and 50 grain size cases. The
total area of the bed is 100 m2 with 9% of the bed unoccupied by sediment.
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Figure 3.11: Stress partitioning for ten grain sizes. Fraction of stress available for closure that
rests on each of the indicated grain sizes. These are the six largest grain sizes with velocities
corresponding to Figure 3.9b. Stresses for r7...10 plot below the threshold. Black contours are
spaced at intervals of 0.05. (a) Fractional available stress for r1 = 0.2 m. (b) Fractional available
stress for r2 = 0.11 m. (c) Fractional available stress for r3 = 0.06 m. (d) Fractional available
stress for r4 = 0.03 m. (e) Fractional available stress for r5 = 0.02 m. (f) Fractional available
stress for r6 = 0.01.
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Figure 3.12: Stress partitioning for ten grain sizes exposed to their equator. Fraction of stress
available for closure that rests on each of the indicated grain sizes. These are the six largest
grain sizes. Stresses for r7...10 plot below the threshold. Black contours are spaced at intervals of
0.05. (a) Fractional available stress for r1 = 0.2 m. (b) Fractional available stress for r2 = 0.11
m. (c) Fractional available stress for r3 = 0.06 m. (d) Fractional available stress for r4 = 0.03
m. (e) Fractional available stress for r5 = 0.02 m. (f) Fractional available stress for r6 = 0.01.
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Chapter 4

Subglacial sediment transport

The efficacy of glaciers and ice sheets in modifying an unconsolidated bed is well-documented
from both glaciological and glacial geologic perspectives (e.g., Alley et al., 1997; Benn & Evans,
1998; Clark & Walder, 1994; Prest et al., 1968; Shreve, 1985). Numerical studies of subglacial
sediment transfer usually do not focus on unconsolidated beds. For ice sheets, models of erosion
and sediment transport have focused on quarrying, abrasion, and englacial entrainment (e.g.,
Hildes et al., 2004) or movement of deformable sediment via ice motion (e.g., Bougamont &
Tulaczyk, 2003). For alpine glaciers, models of sediment erosion and transportation have been
based on abrasion (Braun et al., 1999) or parameterizations relating erosion to sliding velocity
(e.g., Harbor, 1992; MacGregor et al., 2000). In general, these studies are not motivated by
hypotheses related to movement of sediment through the subglacial water system.

Other studies have included subglacial sediment transport. These studies are chiefly con-
cerned with the occurrence and stability of subglacial canals (Ng, 2000; Walder & Fowler, 1994;
Fig. 1.1g). Rather than being specifically interested in the geomorphological consequences of
eroding and transporting sediment, these models focus on whether canals can occur subglacially.
Subglacial canals undoubtedly have a geomorphological impact, but these effects have not been
quantified using a numerical model.

Fluvial studies, however, have a rich history of numerical process-oriented models that focus
on movement of unconsolidated sediment. These models range in scale from individual reaches
and hillslopes to total valley systems. The models can be either one or two dimensions. Exam-
ples of the application of the models include valley genesis over geologic timescales, sorting of
sediments, and river meandering.

The goal of this chapter is to explain the glaciofluvial modification of the bed with quanti-
tative transport relations used in fluvial studies. Blending these two areas of research requires
a formulation suited to the subglacial environment but retaining the essential attributes of the
fluvial relation. Because the flow cross section is not necessarily conducive to some fluvial rela-
tionships, I have modified them. Furthermore, many of the same issues that are confronted in
fluvial studies also apply to subglacial water flow. For example, the performance of sediment
transport equations at making strong predictions is limited. The work of Gomez & Church
(1989) and Garcia & Parker (1991) demonstrates that no individual sediment transport relation
can cope with all natural conditions. The result is that a transport relation may not provide an
accurate prediction but can provide a consistently scaled argument for or against the amount
of sediment being transported.

In many ways, subglacial fluvial systems behave similarly to subaerial fluvial systems. Po-
tential gradients driving subglacial water flow for many glaciers are commonly inferred to be
proportional to the surface slope of the glacier. These gradients are within the range of gradients
that drive subaerial water flow: the land surface slope. Surface slopes in glaciated areas fall
within the approximate range 0.001–0.1 but can be locally higher or lower. Because these gra-
dients driving flow are similar to river surface slopes, it is reasonable to assume that sediment
concentrations in subglacial hydraulic systems should be similar to those of fluvial systems.
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Lawson (1993) noted that typical subglacial sediment concentrations are approximately 5 g
L−1 whereas proglacial rivers may have sediment concentrations as high as 3 g L−1 but more
commonly have concentrations of 1.5 g L−1. These observed sediment concentrations are well
below the commonly accepted Newtonian/non-Newtonian threshold for water of nine percent
solids. Above this threshold, flows are hyperconcentrated and do not behave as simple fluids.
Subglacial water flow should rarely exceed this threshold, suggesting that fluvial relationships
are adequate.

With a model of sediment transport it is possible to investigate sediment transport along the
ice–bed interface. For example, part of the hypothesis proposed by Alley et al. (2003b) is that
erosion occurs upstream of an adverse slope and sedimentation occurs along the adverse slope.
Sediment erosion and deposition rates in the overdeepening can be simulated with a sediment
transport model and an appropriate ice–bed configuration. The model presented here is not
limited to testing this hypothesis. Erosion and sedimentation rates throughout any subglacial
system can be simulated.

4.1 Balance laws for sediment transport

In the case of subglacial water flow in a sheet or channel, water flows over a floor of unconsoli-
dated sediments and under a ceiling of ice. As the water flows, it may exceed a threshold and
entrain sediment. When sediment is entrained, the sediment floor lowers and the fluid becomes
a mixture of water and sediment. In addition, the ice ceiling can melt or water can freeze along
that ceiling. If water freezes along the ceiling while transporting sediment, the accreted ice will
contain sediment. If this ice is subsequently melted, then sediment is added to the flow based
on the sediment concentration in the ice. The foregoing description is the basis of the model
presented here. The balance laws for a continuum provide a reasonable entry to this description
of subglacial sediment transport.

4.1.1 Sediment mass balances

Most models of sediment transport begin with the mass balance equation, often called the Exner
equation (e.g., Armanini & di Silvio, 1988; Bridge & Bennett, 1992; Correia et al., 1992; Cui
et al., 1996; Hoey & Ferguson, 1994; Park & Jain, 1987; van Niekerk et al., 1992; Wu et al.,
2004). The Exner equation has several forms (e.g., Paola & Voller, 2005), the form presented
here is specifically for subglacial water flow.

Sheet

The mass of sediment in the flowing water is

M s =
∫

s

∫

W

∫ zb

zs

λb(s, y, z, t) ρs dz dy ds, (4.1)

where M s is the mass of sediment, λb(s, y, z, t) is the local volume fraction of sediment in
the water, and ρs is the mass density of sediment. Vertically and horizontally integrating this
equation yields the mass per unit width of the flow M̃ s,

M̃ s =
∫

s
λb(s, t) ρs

(
zb − zs

)
ds. (4.2)
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Instead of using λb(s, t), I drop explicit dependence on s and t with the assumption that any
further appearance of λb is λb(s, t). At this point, it is clear that zb−zs = Hb (Fig. 2.1). Using
Reynolds transport theorem, the local rate of change of the sediment mass is

ρs ∂

∂t

(
λbHb

)
+ ρs ∂

∂s

(
ub

s:bλ
bHb

)
=ρs ∂

∂t

(
λbHb

)
+ ρs ∂q̃s

∂s
, (4.3a)

=Ψ̃s + Ψ̃i, (4.3b)

where q̃s = ub
s:bλ

bHb is the magnitude of the volumetric flux of sediment per unit flow width, Ψ̃s

is the mass supply per unit width from the bed, and Ψ̃i is the mass supply of sediment per unit
width from the ice. Typically, the sediment velocity is kept inside the derivative in equation
(4.3a), making this the transport equation rather than the material derivative (e.g., Paola &
Voller, 2005). This flux term requires the transport velocity of the sediments ub

s:b. To solve for
ub

s:b, ideally there would be a momentum equation for the sediment. Numerous attempts in the
literature at deriving a momentum equation have been met with limited success. Most authors
resort to a semiempirical relation for sediments moving in traction at the bed. These relations
are typically a function of the fluid velocity and shear stress on the bed (e.g., van Rijn, 1984a;
Bagnold, 1973). For sediment that is fully suspended within the flow, the mean water velocity
is usually applied (e.g., Wu et al., 2004; van Rijn, 1984b).

The mass supply of sediments at the sediment–water interface Ψ̃s requires elaboration. For
nonequilibrium conditions, the sediment load should be slightly out of equilibrium. However,
the sediment load should be driven back to equilibrium such that

Ψ̃s =
ρs

Ls
(q̃s

e − q̃s) (4.4)

is exactly zero when equilibrium conditions are met (Einstein, 1968). In this equation, q̃s
e is

the equilibrium sediment flux per unit width and Ls is an adaptation length. The equilibrium
sediment flux can be determined from any of a number of semiempirical relations (see Garcia &
Parker, 1991; Gomez & Church, 1989, for recent reviews). The surface production is the erosion
or sedimentation rate depending on whether it is positive or negative, respectively.

The adaptation length is a spatial measure of how close the sediment load is to equilibrium.
In loose terms, equation (4.4) states that (q̃s

e − q̃s) = exp[−ρs∆t/Ls]. Thus, Ls determines how
quickly sediment transport returns to equilibrium. For small adaptation lengths, flow should
be near equilibrium. The adaptation length can assume any of a number of values for non-
equilibrium flows (e.g., Armanini & di Silvio, 1988; Phillips & Sutherland, 1989; Wu et al.,
2004; Yalin, 1972). Of these, Phillips & Sutherland showed that the adaptation length is 0.09–
0.9 m for coarse sand. Yalin suggested that the adaptation length was a function of several flow
constants and the average grain jump length. van Rijn (1984a) reviewed the jump length and
determined it to be approximately 0.01–0.08 m. For larger grain sizes, the adaptation length
decreases such that the bed load is nearly always in equilibrium. For smaller grain sizes, the
adaptation length is more uncertain and depends on the particle fall velocity and the turbulence
structure of the flow (e.g., van Rijn, 1984b). Wu et al. (2004) noted that different authors chose
different values for Ls depending on which length scale they were interested in (e.g., ripple
v. dune v. bar) and whether the data was from field or flume studies. In general, adaptation
lengths are shorter for flume studies and longer for field studies. Furthermore Wu et al. noted
that short adaptation lengths increase convergence times for numerical models.

The change in bed height must be a function of the total sediment transport at the bed.
Any volume of sediment lost or gained at the bed would reflect a change in the average height
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of the bed. The mass of the bed is

M0 =
∫

s

∫

W

∫ zs

z0

{(
1− ns

p

)
ρs + ns

pρ
w
}

dz dy ds, (4.5)

where ns
p is the porosity of the sediment and M0 is the total mass between a fixed datum z0

and the base of the water layer zs. Assuming that the bed is stationary, the pore water and
sediment matrix are incompressible, and the porosity is constant, the local mass balance is

{(
1− ns

p

)
ρs + ns

pρ
w
}∂zs

∂t
= −Ψ̃s

{
1 +

ns
pρ

w

(1− ns
p)ρs

}
(4.6)

Equation (4.6) also assumes that water saturates the pore space. Equation (4.6) shows that
rate of change of mass per unit width is equal to the supply of sediment and water from the
overlying water layer. This formulation is equivalent to equations (2.13) for the porosity in the
ice adjacent to the water layer. The rate of change of the bed elevation follows from equation
(4.6),

∂zs

∂t
= − 1

(1− ns
p)ρs

Ψ̃s. (4.7)

If equation (4.7) is substituted directly into equation (4.3) the standard form of the Exner
equation follows (Paola & Voller, 2005). The two equations are separate to draw distinction to
the sediment supply, which must be defined via a semiempirical relation.

Channel

Because sediments are exposed to flowing water at the base of semicircular channels (Fig. 2.2b),
the mass balance for sediments in channels pertains to this channel cross section. The total
mass of sediment in a channel is similar to that of the sheet,

M s =
∫

s

∫

Sb

λb(s, S, t) ρs ds dS. (4.8)

Integrating equation (4.8) over Sb and applying Reynolds transport theorem yields the local
balance of mass in the channel,

ρs ∂

∂t

(
λbSb

)
+ ρs ∂

∂s

(
ub

s:bλ
bSb

)
=ρs ∂

∂t

(
λbSb

)
+ ρs ∂qs

∂s
, (4.9a)

=2RbΨ̃s + Ψi, (4.9b)

where qs is the volumetric flux of sediment and Ψi is the sediment mass supply from the ice. In
equation (4.9b), Ψ̃s is still defined with respect to the transport rate per unit width (eq. 4.4),
which contains q̃s. For the case of a semicircular channel, q̃s = qs/(2Rb). In equation (4.9b),
the change to the melt rate m from the melt rate per unit width m̃ in equation (4.3b) corrects
the units for the supply of sediment from the ice.

The global mass of the bed is similar to equation (4.5) except that the horizontal limits of
integration are (0, 2Rb). The mass rate of change per unit width is exactly the same (eqs. 4.6)
as is the rate of change of the bed elevation (4.7). However, before applying Reynolds transport
theorem, M0 needs to be divided by 2Rb to obtain the mass per unit width. The channel radius
will vary with time.
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Volumetric rate of change of sediment

From the mass balance of the sediment in the water, the volume of sediment per unit volume
evolves according to

∂λb

∂t
=

1
ρsSb

(
2RbΨ̃s + Ψi − ρsλb ∂Sb

∂t
− ρs ∂qs

∂s

)
channel, (4.10a)

∂λb

∂t
=

1
ρsHb

(
Ψ̃s + Ψ̃i − ρsλb ∂Hb

∂t
− ρs ∂q̃s

∂s

)
sheet. (4.10b)

These equations are subject to the definitions of Ψ̃s (eq. 4.4), Ψi, and Ψ̃i.

4.1.2 Fluid flow balance laws

Movement of sediments at the bed will affect the mass, momentum, and thermal energy balances
at the bed. The water layer can enlarge via either the melting of ice, as previously discussed, or
through the erosion of sediments. If the bed is eroding, sediment and pore water are supplied
from the bed to the flow, changing the hydraulic cross-section. When the bed is aggrading, the
converse is true, and the flow supplies the bed with sediment and water. In this case, there is
no Darcian flow. Supply of water is only from the arrangement of grains and pores. As grains
enter the flow, interstitial water also enters the flow.

For a semicircular channel, relations equivalent to equations (2.17) and (2.15) are,

∂Sb

∂t
=

1
(1− λi)

(
1− ni

p

)
ρi + ni

pρ
w + λi

(
1− ni

p

)
ρs

{[
1 +

ni
pρ

w

(
1− λi

) (
1− ni

p

)
ρi

]
m + Ψi

}

− 2Sb sgn(pi − pb)
( |pi − pb|

nB
)n

+
2RbΨ̃s

(
1− ns

p

)
ρs

. (4.11a)

∂pb

∂t
=− 1

γbSb




∂Sb

∂t
+

∂
(
Sbub

)

∂s
− 1

λbρs + (1− λb)ρw

{
− Sb (ρs − ρw)

[
∂λb

∂t
+ ub ∂λb

∂s

]

+

[
1 +

ni
pρ

w

(1− λi)
(
1− ni

p

)
ρi

]
m + Ψi +

[
1 +

ns
pρ

w

(
1− ns

p

)
ρs

]
2RbΨ̃s

}
 , (4.11b)

where λi is the sediment concentration in the overlying ice and Sb represents the cross section
of the sediment-fluid mixture. If there is no supply of sediment from the bed or overlying ice,
and the volumetric concentration of sediment in the flow is zero, then these equations revert to
equations (2.17) and (2.15). Equation (4.11a) is the sum of the instantaneous misfit balances
of the ice and sediment. Equation (4.11b) is the balance of the fluid in the cross section. These
equations are derived in appendix D (eqs. D.8 and D.9) with an alternative formulation for the
pressure evolution equation based on the mass balance of water (eq. D.12). Similarly, relations
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equivalent to equations (2.16) for the subglacial water sheet are

∂Hb

∂t
=

1
(1− λi)

(
1− ni

p

)
ρi + ni

pρ
w + λi

(
1− ni

p
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∂Hb
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)
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, (4.12a)
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∂s
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+
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ni
pρ

w

(1− λi)
(
1− ni

p

)
ρi

]
m̃ + Ψ̃i +

[
1 +
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pρ

w

(
1− ns

p

)
ρs

]
Ψ̃s

}
 . (4.12b)

Not surprisingly, these equations are similar to the equations for the channel. Their derivation
parallels the derivation in Appendix D.

The momentum equation is much more difficult to modify. The reason for this difficulty
is the movement of sediment. Generally, sediment transport is correlated to the water flow
using a semiempirical relationship. As a result, the sediment momentum balance becomes a
semiempirical black box. There are a few manageable modifications, however. The simplest
modification is to substitute the fluid density,

ρf = λbρs +
(
1− λb

)
ρw, (4.13)

in place of the water density in equations (2.27). Another modification, given equations (4.11b)
and (4.12b), is the scalar multiplication of production and supply terms with the velocity ub.
This modification creates additional impulse terms as material moves off the hydraulic bound-
aries. The changes to equations (2.27) yield

∂ub

∂t
=− ub ∂ub

∂s
−

{[
1 +

ni
pρ

w

(1− λi)
(
1− ni

p

)
ρi

]
m + Ψi +

[
1 +

ns
pρ

w

(
1− ns

p

)
ρs

]
2RbΨ̃s

}
ub

ρfSb

− 1
ρf

∂pb

∂s
− g

∂zb

∂s
− Pwτ0

Sbρf
, (4.14a)
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∂s
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w

(1− λi)
(
1− ni
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)
ρi

]
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[
1 +
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pρ

w

(
1− ns

p

)
ρs

]
Ψ̃s

}
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ρfHb

− 1
ρf

∂pb

∂s
− g

∂zb

∂s
− 2τ0

Hbρf
, (4.14b)

where equation (4.14a) describes flow in a semicircular channel and equation (4.14b) describes
flow in the sheet. The constitutive relationship for τ0 could also be altered; however, the bed
shear velocity used in sediment transport relationships is commonly described in terms of the
water density rather than the mixture density. For the purposes here, the relationship for τ0 is
fixed by equation (2.24).

The thermal energy balance of the water is the energy balance of interest because the phase
change from water to ice (or vice versa) is important. When the impulse terms are included for
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the water (eqs. D.11 and D.14b), the thermal balances from equations (2.29) become
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for the channel and sheet, respectively. In these equations, the impulse from sediment motion is
not included. This assumption follows Walder & Fowler (1994) who made no allowance for the
work done in eroding and transporting sediment. The temperature of the subjacent pore water
directly below the flowing water should be approximately at the temperature of the flowing
water. As a consequence, no allowance is made for the sensible heat of the entrained pore water.
Other terms, such as the sensible heat of the entrained sediment, could be included but are of
secondary importance.

The thickness of the ice changes as ice is accreted or melted from the base. A simple mass
balance term for overlying ice is given by

∂Z i
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p)ρ
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where equation (4.16a) holds for m̃ > 0 and equation (4.16b) holds for m̃ < 0. Because I assume
that the ice is static, there is no convective velocity, which is equivalent to the assumptions used
in equation (2.18). If the melt rate is positive, then the supply term has a simple form (see
eqs. 4.34) and equation (4.16a) simplifies to

∂Z i

∂t
= − 1

(1− λi)(1− ni
p)ρi

m̃. (4.17)

This equation has the satisfying effect of resembling equation (2.18).

4.2 Subglacial sediment characteristics

A necessary assumption is that the subglacial bed exposed to the overlying ice and water is
unconsolidated sediment. While bedrock is undoubtedly exposed at the bed of many glaciers,
in the ablation zones the bed is often sediment covered (e.g., Clark & Walder, 1994; Lawson,
1981). In general, it is in the ablation zones where supercooling has been observed.
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Typically, subglacial sediments are tills. Sediment size distributions for tills formed under
shear follow a fractal distribution,

N s = N s
0

(
D

D0

)−m

, (4.18)

such that the dimension, or fractal index m in equation (4.18), is approximately 2.9 (Hooke &
Iverson, 1995). Equation (4.18) relates the number of particles N s, of a characteristic diameter
D, to a known number N s

0, for a reference size D0. For a fractal dimension of exactly 3,
the volume occupied by each of the grain sizes will be the same. For m < 3, the volume
of material will preferentially be in the larger grain sizes. For m > 3, the converse is true
and more of the total volume of the till will be in the smaller grain sizes. Because the sheet
closure mechanism relies on the index being 2 for the surface sediments (Fig. 3.10), I assign the
volumetric distribution consistent with this and choose m = 3 in equation (4.18).

Khatwa et al. (1999) analyzed sediments in various diamictons from different glacial en-
vironments. Their results show fractal distributions ranging from 2.55 to 2.97. Supraglacial
deposits in this study had a fractal dimension near 2.83, while the subglacial deposits had a
fractal dimension near 2.92. Khatwa et al. questioned whether the fractal nature of glacial
sediments is really characteristic of the erosion and sedimentation process. In particular, all of
the diamictons they analyzed had a reasonable fractal dimension, but not all of the diamictons
showed a shear fabric.

Benn & Gemmell (2002) demonstrated, through synthetic distributions of sediments, that
the use of a fractal distribution is not an especially discerning analysis for tills. They showed
superimposed Gaussian distributions with different mean values may resemble fractal distribu-
tions with m ∼ 3. Benn & Gemmell went on to suggest that tills with a fractal distribution of
about three can be formed not only from shearing as Hooke & Iverson (1995) proposed but also
from mixing of tills.

A practical problem of a fractal distribution of clast sizes lies in the larger grain sizes. Most
studies with field data (e.g., Hooke & Iverson, 1995; Fischer & Hubbard, 1999; Khatwa et al.,
1999; Benn & Gemmell, 2002) truncate the fractal distribution at either 1 or 10 mm. This
truncation makes it difficult to estimate the size fraction larger than fine pebbles. Estimating
the larger fraction from proglacial deposits is difficult because the fines may be winnowed.
Analyses of till recovered from under Ice Stream B suggest that the fraction of sediment larger
than 4 mm is roughly 3% (Tulaczyk et al., 1998). A drilling program at Black Rapids Glacier
produced several cores of variable quality. Pebbles and cobbles were retrieved from beneath the
glacier with over 20% of the recovered sediments being larger than 4 mm (Truffer et al., 1999).
Because of core quality problems, the Black Rapids data may provide only an upper limit to
the percent of coarse material.

While a fractal distribution may not be very indicative of the genesis of a till, it does provide
a starting point for approximating the texture of subglacial sediments. Because of the generality
of the fractal distribution, it serves as an adequate initial condition on the parent till below the
ice. For grain sizes larger than four millimeters, the fractal distribution may not hold because
these grains usually are not investigated. The work of Benn & Gemmell (2002) circumvents this
inadequacy of the published data, allowing for the fractal distribution to be used. By using a
fractal distribution, I assign an equal volume of solids in subglacial till to all clast sizes.

Lawson (1979) performed sedimentological analyses of the accreted basal layers at Matanuska
Glacier, Alaska. He found that the accreted ice had an average sediment content of 25% by
volume that ranged in size from clay to pebble gravel with large fractions being medium silt to
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sand. Grain size distributions of accreted sediment commonly have multiple peaks in sand to silt
size particles, 0.008 < D < 2.0 mm (Lawson, 1979, 1993). Often there is a spike in coarse silt,
D ' 0.05 mm, accounting for approximately 20% of the sediment in the basal layers. However,
sediment distributions may be dominated by sand or even be up to 50% gravel and larger grains.
Lawson also identified a melt out till directly below the accreted ice at the margin that has the
same source as the sediment entrained in the ice. He described the melt out till as a “pebbly
sandy silt” (Lawson, 1979, p. 39). On the basis of these observations, it seems plausible that
the smaller grain sizes may be volumetrically more important.

There are two possible source options for sediment accreted in the ice. Either the accreted
ice reflects the exact composition of the subglacial layer; or the accreted ice reflects a preferential
sorting of sediment. In the case of a preexisting melt-out till, the accreted sediment may match
the source sediment exactly. A melt-out till is comprised of sediment that had already been
accreted. In most other cases, the accreted sediment will not reflect the exact texture of the
parent material. Subaerial fluvial systems readily sort sediment. Therefore, one expects flowing
water at the base of a glacier to sort sediment as well. Lawson et al. (1998) also described
individual processes such as the filtering of sediment by frazil ice flocs near the terminus of
Matanuska Glacier. This filtering mechanism would tend to sort sediment as it is frozen into
the accreted ice. As a consequence, it is unlikely that the accreted sediment fully represents the
source.

There are no direct observations of sediments in overdeepenings. As a result, I have assumed
that the subglacial material is a deformation till. Where an active subglacial hydraulic system
exists, the sediments could possibly be sorted such that they resemble proglacial outwash. Law-
son (1981) described a section of fluvially sorted material in front of Matanuska Glacier; however,
the location of this section relative to the terminus of the glacier is unclear. In addition, data
on subglacial till from Storglaciären, Sweden, suggests that this overdeepening is occupied by
deformation till (Hooke et al., 1997).

4.2.1 Mobile sediments

Knowledge of the grain size distribution is necessary to state what is and is not mobile sub-
glacially. From the foregoing discussion, two issues are critical: (1) grain size distributions in
overdeepenings are not well characterized, and (2) the smaller grain sizes appear to dominate
subglacial sediments. The result of the first issue is that the model presented here cannot ac-
curately reproduce any data including the grain size distributions presented by Lawson (1979).
This shortcoming is beyond control; and, if necessary, a community effort will be required to
more accurately characterize subglacial beds in situ.

The consequence of the second issue is that construction of a model can focus on the smaller
grain sizes. Focusing on smaller grain sizes is a benefit because the number of processes occur-
ring at the bed are limited. Armoring of a subglacial streambed, for example, does not merit
consideration. Furthermore if smaller grain sizes are readily available at the bed in large quan-
tity, this availability suggests that the source of much of the sediment in the flowing water is
local. The amount of sediment in the flow is not limited by either source or upstream conditions.
Sediment transport conditions are then approximately near equilibrium.

Equilibrium transport occurs when flowing water is eroding and depositing equivalent amounts
of bed material simultaneously. Laboratory experiments or field measurements of equilibrium
conditions require that the flow be steady, the sediment supply not limit the sediment transport,
and the transport conditions be statistically steady (Bagnold, 1966). Once these conditions have
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been met, relations are constructed to predict sediment transport based on flow and sediment
characteristics. The equilibrium assumption pertains to flow conditions. For long time periods,
flow conditions will not be steady, and it must be true that entrained sediment is preferentially
eroded from or deposited on the bed. For example, daily cycles of water discharge do not meet
equilibrium conditions. On a second-to-second time period, transport will be near equilibrium.
Subtle changes in the equilibrium load will lead to the daily variation. The assumption im-
plicit in this statement is that the sediment concentration always responds faster than the flow
conditions. For large hydraulic cross-sections, this assumption may not be valid. However, for
relatively shallow subglacial water sheets, this assumption is acceptable.

If sediment responds slower than the flow conditions or the amount of sediment available to
be transported varies spatially, a correction to an equilibrium transport rule via an adaptation
length (e.g., Armanini & di Silvio, 1988; Wu, 2004; Yalin, 1972) or an equivalent spatial lag
in sediment transport (e.g., Einstein, 1968; Phillips & Sutherland, 1989) is possible (eq. 4.4).
However, adaptation lengths range from a few centimeters to a few meters for coarse sand
(Phillips & Sutherland, 1989). The spatial effect introduced by not applying an adaptation
length is quite small especially when the longitudinal glacier sections (Figs. 1.3 and 1.5) are
hundreds to thousand of meters long.

Larger grain sizes, such as gravel and coarser material, are undoubtedly mobilized by sub-
glacial water flow. R-channels, in particular, may mobilize sediments as the cross section en-
larges. If larger grain sizes are mobilized, then processes such as sorting and armoring may
become important. Sorting and armoring are observed in esker cross-sections (e.g., Shreve,
1985) that indicate these processes occur subglacially. To simulate armoring, the bed must be
divided into vertical levels. Each of these levels contains grain size information. This type of
bed discretization is referred to informally as a Hirano bed (e.g., Parker & Sutherland, 1990).
Sediment transport rules for a partially mobile sediment are required when multiple grain sizes
may be mobile along the bed (Wilcock & McArdell, 1997, 1993; Wilcock, 1997). These processes
are not beyond the scope of this thesis. However, the data available to constrain a model of
subglacial water flow with multiple grain sizes using a Hirano bed is limited. The prudent course
in this situation is to use a relation for total sediment transport before returning to finer de-
tails such as armoring and grain distributions. The consequence is that larger grains, primarily
gravels, will not be a primary concern here.

In addition, the height of subglacial cross-sections along overdeepenings is expected to be
small (Hooke, 1991; Röthlisberger & Lang, 1987) resulting in a size limitation to the material
transported. In this instance, if the shear stress does cross the threshold necessary for entrain-
ment of larger grains in the water layer, these grains will not be mobile. The grains could be
rotated within the flowing water such that they touch the ice ceiling and are frozen in place
along the melting perimeter.

Another mechanism that may limit sediment available to be transported is the closure re-
lationship presented in Chapter 3. If ice rests on larger grains, these will be locally fixed. If
the shear stress exceeds the critical shear necessary for entrainment, the grain will not move.
Finer sediments around the fixed grain will be winnowed. Ice could then preferentially move
around the larger grain, possibly entraining it (Iverson, 2000; Iverson & Semmens, 1995). Large
grains with the fines winnowed do appear in the accreted basal layers at Matanuska Glacier,
Alaska (Lawson et al., 1998). Because of these complications the closure mechanism presented
in Chapter 3 is decoupled in terms of grain size distribution from the model presented here.
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4.3 Equilibrium transport rules

Sediment transport is commonly split into two categories: suspended load and bed load. This
division is common within the fluvial literature and follows analyses of transport equations by
Gomez & Church (1989) and Garcia & Parker (1991). Lawson (1993) and Loso et al. (2004)
also make this distinction for sediments with a subglacial source. Suspended load consists of
sediment grain sizes that are small enough to be suspended by the turbulence within the flow.
Bed load is the sediment that travels in contact with or near the bed via rolling, sliding, or
saltation. For most turbulent water flow, silt- and clay-sized particles (D < 0.06 mm), will be
in the suspended load, while gravel and coarser sediments (D > 2 mm) will be in the bed load.
The break between bed and suspended load often falls in sand-sized particles (0.06 ≤ D ≤ 2
mm); and the break is dependent on both the sediments and water flow (e.g., Church, 2006).
The distinction is not necessarily sharp as there is an unbroken transition from bed to suspended
load.

Another sediment categorization is bed material load and wash load. Bed material load
is that part of the sediment load that interacts with the bed. The sediment sizes in the bed
material load can be found in the bed material. Wash load consists of the finer portion of the
suspended load that rarely interact with the bed. These sediments can be held in suspension
for quite a long distance and may not represent the local bed material. Komar (1989) noted
that little attention has been given in the literature to wash load; and the amount of wash load
in the flow is governed by its availability (Bagnold, 1966; Komar, 1989). While the sediment
mass balance equations (eqs. 4.10) do not explicitly capture this feature of sediment transport,
an approximate calculation of the wash load/bed material load fraction is possible based on the
material transported.

From the sediment size considerations, it is clear that two transport relations are necessary:
one for bed load and one for suspended load. Ideally, all grain sizes below 4 mm are of interest.
However, these gravel-sized sediments are still relatively large. Avoiding gravel, the maximum
size would be 2 mm. Typically, sediment enters suspension around 0.5 mm (e.g., Garcia &
Parker, 1991). The two relations that best account for suspended sediment are those proposed
by van Rijn (1984b) and Smith & McLean (1977) (Garcia & Parker, 1991). Because there is
a complementary bed load formula for van Rijn’s suspended load formulation, I use both in
tandem to estimate sediment transport. These relationships provide an appropriately scaled
estimate of sediment transport that is preferable to simpler formulae that have less accuracy.
van Rijn’s (1984a; 1984b) formulae will handle sand-sized suspended load (0.1 ≤ D ≤ 0.5 mm)
and sand-sized bed load (0.2 ≤ D ≤ 2.0 mm). These sand-bed formulae will determine the
equilibrium sediment flux q̃s

e in equation (4.4).
At first glance, determining q̃s

e from fluvial relationships seems tenuous. These flux rela-
tionships were developed for rivers and canals that are deep relative to subglacial water flows.
Nevertheless, these relationships will most likely yield the best estimates for subglacial flows.
Sand-bed flume experiments often have water depths of three to 15 centimeters (e.g., Abbott
& Francis, 1977; Lee & Hsu, 1994) that are within the range of water depths expected along
overdeepenings. Furthermore, field data suggest that sand is commonly mobilized subglacially.
The bulk of accreted sediment at Matanuska Glacier is in the silt/sand regime (Lawson, 1979;
Lawson et al., 1998), and glaciers with larger subglacial passageways, Skeiðarárjökull for exam-
ple, often discharge a significant amount of sand-sized sediment (e.g., Russell et al., 2006).

In what follows, I briefly review van Rijn’s formulae. For clarity, only an overview appears
here. The essential parts of the formulation can be found in Appendix E. Additional information
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can be found in the original papers as well as the review of suspended load transport algorithms
by Garcia & Parker (1991).

4.3.1 Sand formulae

van Rijn published a series of papers that explored sand movement as bed load (van Rijn, 1984a),
suspended load (van Rijn, 1984b), and in creating bedforms and modifying alluvial roughness
(van Rijn, 1984c). The papers build a framework for sand motion in fluvial environments. The
two later papers build on the bed load paper. As a result, I briefly review the bed load before
examining the suspended load.

Bed load

van Rijn developed a physical model of saltation at the bed based on first principles. He then
compared model simulations against experimental data of saltation along the bed. His model
reproduced observed jump lengths and jump heights of sand grains reasonably well. The jump
height varies from a few millimeters to about a centimeter. The jump length varies from a
few millimeters to a few centimeters (Abbott & Francis, 1977; Lee & Hsu, 1994; van Rijn,
1984a). From this physical model, van Rijn developed a bed load transport relationship. The
relationship is valid for grain sizes in the range (0.2 ≤ D ≤ 2.0 mm).

The bed load transport is
q̃e:b = ubδbλ

b
e:b, (4.19)

where ub is the mean sediment velocity in the bed load layer, δb is the thickness of the bed load
layer, and λb

b is the volumetric sediment concentration. The bed load velocity is

ub = 1.5T 0.6

{(
ρs

ρw
− 1

)
gD50

}0.5

, (4.20)

where T is a transport stage parameter and D50 is the median grain size of the bed. The
transport stage parameter is a nondimensional measure of the excess shear stress on sediments
at the bed relative to the critical shear necessary for sediment entrainment. Transport occurs
in the bed load layer with thickness

δb = 0.3D0.7
∗ T 0.5D50, (4.21)

where D∗ is a nondimensional particle parameter. It is a ratio of the gravity forces on a particle
in fluid relative to the viscous forces and can be derived from the grain Reynolds and Froude
numbers. From the discussion above, δb should be approximately one centimeter for sand.
Finally, the volumetric sediment concentration in the bed load layer is

λb
e:b = 0.18λb

b:0

T
D∗

, (4.22)

where λb
b:0 is a reference concentration for the bed,

λb
b:0 = ns

a(1− ns
p). (4.23)

van Rijn considered the entire bed mobile and gave λb
b:0 as 0.65. Because the closure relationship

presented in Chapter 3 requires larger, immobile clasts, I introduce the mobile fraction of the
bed ns

a. This term states what areal fraction of the bed material is mobile.
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van Rijn (1984a) supported equations (4.20), (4.21), and (4.22) with examples from exper-
imental data. Substituting equations (4.20), (4.21), and (4.22) yields the final form of the bed
load flux,

q̃e:b = 0.081λb
b:0

T 2.1

D0.3∗

{(
ρs

ρw
− 1

)
g

}0.5

D1.5
50 . (4.24)

van Rijn substituted λb
b:0 = 0.65 directly into equation (4.24), using equation (4.23) instead

gives

q̃e:b = 0.053ns
a

T 2.1

D0.3∗

{(
ρs

ρw
− 1

)
g

}0.5

D1.5
50 (4.25)

as the final form of the bed load flux. If ns
a=1, as would be the case for a fully mobile bed, then

the coefficient is simply 0.053, which is what appears in van Rijn (1984a).

Suspended load

The formula for the suspended load is

q̃e:s = ubdbλb
e:s, (4.26)

where ub is the velocity of the subglacial water flow, db is a representative water depth, and λb
s

is the volumetric suspended sediment concentration. The depth of flow in equation (4.26) is

db =

{
π
4Rb semicircular channel,
Hb sheet,

(4.27)

where the depth of a rectangle with an equivalent cross-sectional area approximates the depth
of a semicircular channel. van Rijn (1984b) noted that his relationship is valid for grain sizes
in the range (0.1 < D < 0.5 mm). Grain sizes smaller than 0.1 mm, silt and finer particles,
undoubtedly enter suspension, but van Rijn’s algorithm does not account for these grain sizes
because he used data for predominantly clean sands.

The volumetric concentration is,

λb
e:s = Fsλ

b
s:0 (4.28)

where Fs corrects for the distribution of suspended sediment not being vertically uniform. The
reference suspended sediment concentration λb

s:0 is defined either at half the bedform height or
at the Nikuradse equivalent roughness height. For a flat bed, the bed load layer height δb is
the suspended sediment reference height. Together equations (4.26) and (4.28) are the equation
van Rijn (1984b) wrote for the suspended load flux.

Fs =

(
δs

db

)Z′
−

(
δs

db

)1.2

(
1− δs

db

)Z′ (
1.2−Z ′

) (4.29)

where δs is the suspension reference level and Z ′ is a nondimensional ratio of the momentum
from a falling particle to the momentum available to keep that particle in suspension. The
reference concentration is

λb
s:0 = 0.015

D50T 1.5

δsD0.3∗
(4.30)

where D50, D∗, and T were defined for bed load. All equations presented for both bed load and
suspended load are subject to the supplementary relationships in Appendix E.
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4.3.2 Bed shear and sediment transport

The shear stress imparted on the fraction of mobile sediments at the bed determines whether
those sediments are entrained in the flow. The shear stress available to sediments is commonly
broken up into a grain stress necessary to move sediment, and a form stress (e.g., Yang, 1996,
p. 70). Because fluid velocity and density are the same for both stresses, the friction coefficients
are additive such that

f s
d = f ′d + f ′′d , (4.31)

where f ′d and f ′′d are the grain and form roughness coefficients, respectively. The boundary shear
stress from equations (2.24) and (2.25) becomes

τ0 = τ i
0 +

(
τ ′0 + τ ′′0

)
. (4.32)

where τ ′0 and τ ′′0 are the grain and form shear along the bed.
Partitioning the shear stress along the bed is necessary to compute the sediment load. This

partitioning is important for estimating the grain Chézy coefficient in equation (E.3). The grain
Chézy coefficient is related to the grain Darcy-Weisbach friction coefficient via

C ′ =

√
8g

f ′d
(4.33)

As a result, estimates of f ′d are necessary.
In alluvial rivers, form resistance generally accounts for bedforms such as ripples, bars, and

dunes. In rough streams, large clast sizes account for a significant portion of the form shear,
with relatively little grain shear available to move smaller grain sizes (Church et al., 1998). In a
subglacial water system, not only are fluvial bedforms possible, but the assumed fractal nature
of the grain distribution suggests that large grains bear much of the total stress available for
the bed. As a result, a reasonable assumption is that the grain stress is approximately 15–20%
of the total stress available to the bed. It is possible to have slightly lower or higher values
depending on conditions. These percentages are only suggestive and need to be refined via field
studies.

The fraction of the bed that is mobile is limited to the grain sizes less than about 2 mm in
accordance with van Rijn (1984a). Furthermore, the closure relationship proposed for the bed
has 18 grain sizes (Fig. F.4). Because the bed is assumed to be fractal with m = 3 (eq. 3.23), each
of the grain sizes occupies an equivalent volume of the bed. As a result, half of the bed material
is assumed to be mobile. By making this assumption, I implicitly assume that the suspended
load grain sizes below Φ = 4 behave as suspended sand (van Rijn, 1984b). In general, this is not
true, but it does allow an expeditious procedure for simulating smaller grain sizes. Small grain
sizes will be mobile, and treating them as suspended sand provides a sensible mobility criterion.

Depending on how the bed elevation evolves, the grain size distribution could also evolve.
There is little data against which to check such an evolution. In consequence, I make no
allowance for the erosion or deposition of fine-grained material relative to the coarse-grained
material. Thus, dynamically armoring the bed via sand mining—removal of fines from space
between coarse clasts—is not possible.

Measured friction coefficients are lower for mobile beds. Vanoni & Nomicos (n.d.) performed
flume experiments on both mobile and immobile sand beds. Their intention was to examine the
influence of roughness elements on the flow. They found that, relative to equivalent clearwater
flows, bed mobility lowered the friction coefficient by 5 to 28%. Using similar experiments,
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Gao & Abrahams (2004) found that the shear along the bed was lowered by up to 10%. While
modulation of the friction factor with sediment concentration may occur, it is difficult to examine
variations when the effective magnitudes of the friction coefficient are not known for subglacial
water flow. In consequence, no modification is made to the friction coefficient to account for
sediment transport.

4.4 Conceptual model of sediment and ice accretion

Sediment accretion is not well understood. Using a sediment concentration of subglacial water
of 5 g L−1 (Lawson, 1993), then the equivalent volume of accreted sediment should be approxi-
mately 2%. Because sediment concentrations in the ice are approximately 25% by volume but
can range from practically 0% to over 95%, Lawson et al. (1998) invoke a filtering mechanism
to increase the concentration of sediment accreted. Figure 4.1c illustrates subglacial sediment
transport and this filtering mechanism.

Figure 4.1: Illustration of sediment transport and accretion. Lines through the overlying glacier
represent porosity in the form of fractures (Chap. 5). Filled circles represent sediment grains, and
thin white rectangles represent frazil ice. (a) Sediment is eroded from the bed and transported
in the flow. (b) Water begins to flow up the adverse slope and loses sediment. (c) Frazil ice
forms in the flow and flocculates along the top of the water layer. Sediment is filtered through
a porous lattice of frazil crystals. (d) Ice seals the porous lattice, and sediment is accreted.

Using the ideas of Alley et al. (2003b) and Hooke (1991) as a template, Figure 4.1 illus-
trates most of the ideas captured by the balance laws for sediment transport and equilibrium
transport rules. In Figure 4.1a, sediment is eroded from the bed and transported in the fluid.
As the fluid begins to ascend the overdeepening, water pressure increases (Hooke & Pohjola,
1994). The increased pressure forces water to distribute laterally along the ice–bed interface.
Alternatively, water may escape through an englacial aquifer. The reduced flow rates along the
bed imply a lessened velocity. As a result, sediment transport is diminished (Fig. 4.1b). The
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fluid continues to ascend the adverse slope, and the water temperature drops below the bulk
freezing temperature and supercools. Frazil ice forms in the flow and can flocculate. The flocs
float to the top of the water layer. Figure 4.1c shows schematically how these flocs can trap
sediment. The flocculated layer is exceptionally porous and allows water flow to pump sediment
through those pores. In Figure 4.1d12, the freezing front descends, and sediment is trapped in
the ice. Obviously, all of these processes are continuous, or nearly so, but the four subfigures
illustrate snapshots. Furthermore, Figures 4.1c and d would be continuous in a vertical sense,
with the freezing front descending as frazil flocs are added to the base of the glacier.

Processes occurring in the flocculated layer are responsible for sediment accretion, and to
model sediment accretion properly a frazil ice component is necessary. However, the nucle-
ation, enlargement, flocculation, and eventual solidification of a frazil ice layer is a complex
and demanding topic (e.g., Ashton, 1982; Daly, 1984; Martin, 1981; Wettlaufer, 2001). Because
incorporation of a frazil ice component into the model is beyond the scope of this thesis, Ψi and
Ψ̃i in equations (4.10) become adjustable parameters when the melt rate is negative and ice is
accreting. The supply to or from the ice is

Ψi =





λiρs(
1− λi

)
ρi m for m > 0

C3λ
bm for m < 0

channel (4.34a)

Ψ̃i =





λiρs(
1− λi

)
ρi m̃ for m̃ > 0

C3λ
bm̃ for m̃ < 0

sheet (4.34b)

where C3 is an arbitrary constant. An assumption inherent in this mass supply term is that
there is no sediment in the water in the pore space of the ice. Ideally, C3 would be related to
the degree of supercooling, the flow Reynolds number (or alternatively, the turbulence intensity
which has been linked to frazil ice formation (Daly, 1984)), as well as the concentration of
sediment in the water. These heuristic suggestions would make C3 nonlinear. However, because
there is no data to support these suggestions, implementation would be tenuous. As a result, I
retain C3 as an assigned parameter.

4.5 Verification of the results

The amount of sediment accretion can be tuned via the free parameter C3. Tuning the sediment
accretion can yield results that may not be related via a physical mechanism to field observations
of sediment accretion. Furthermore, the equilibrium transport relations of van Rijn (1984a,b)
have prediction limitations. When compared to data, van Rijn’s bed load algorithm successfully
predicts an amount that is 0.5 to 2 times the actual sediment transported for 77% of 600
data sets (van Rijn, 1984a). Similarly, the suspended load algorithm predicts a value that is
between 0.5 and 2 times the suspended sediment concentration for 76% of 800 data sets (van
Rijn, 1984b). Amounts of subglacial sediment accreted can vary substantially because of the
variability associated with the equilibrium transport relations and balance laws presented here.

A fully independent assessment of subglacial sediment transported and accreted may not be
possible; however, some checks are available. One of these checks is a comparison of sediment

12In Figure 4.1d, I have extended the fractures to symbolize the residual porosity originally introduced in
equation (2.11). Obviously, the fractures will not extend to the accreted ice without incorporating a rule for
fracture generation in a moving glacier.
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eroded, transported, and deposited to the Hjulström diagram (Fig. 4.2). The Hjulström dia-
gram illustrates velocities necessary to erode, transport, and deposit grains of a given diameter.
While not a stringent test, the Hjulström diagram provides a viable way of checking the sedi-
ment concentration versus the flow conditions. Because the wash load can be calculated from
the balance laws, the Hjulström diagram may be most stringent for smaller grain sizes in the
transportation regime.
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Figure 4.2: Hjulström diagram. (After Graf, 1971, p. 88). Hjulström (1935) derived these
grain size–velocity relationships empirically for beds with uniform grain size. The double line
separating the transportation and erosion regimes shows that this boundary is not necessarily
sharp. Dashed vertical lines indicate the range of validity for equilibrium bed load and suspended
load relationships (van Rijn, 1984a,b)

4.6 Summary

This chapter presents a model of subglacial sediment erosion and deposition. Using the mass
balance for a continuum, rates of sediment transport per unit flow width are derived (eqs. 4.10)
as well as the elevation evolution for the subglacial bed (eq. 4.7). If the subglacial fluid density
changes significantly because of sediment transport (eq. 4.13), then the fluid flow balance laws
take a different form for both the channel and sheet (eqs. 4.11, 4.12, 4.14, 4.15). Suspended
load and bed load are common divisions of types of sediment transport. For each type of trans-
port there is one set of equations (4.10), resulting in two equations for sediment transport in
subglacial channels and two equations for sediment transport in subglacial sheets. Because sed-
iment textures at the base of the glacier are difficult to quantify and fines seem to dominate,
only equilibrium transport relationships for sand are employed (eqs. 4.24 and 4.26). These rela-
tionships are subject to a number of auxiliary equations (Appendix E). Furthermore, sediment
transport in the sheet is not explicitly coupled to the closure relationship proposed in Chapter 3.
In addition, sediment accretion to the base of the glacier is parameterized based on the amount
of sediment in the water (eqs. 4.34). Finally, verifying the sediment load within the subglacial
water system is not straightforward. One simple check is to compare results to the Hjulström
curve.
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Englacial aquifer

5.1 Introduction

Subglacial passageways will not always be available at the ice–bed interface. In these instances,
water will move through either an englacial aquifer in the overlying ice or a subglacial aquifer
below the sheet. An englacial aquifer poses unique problems in that the porosity and perme-
ability may evolve as water freezes or melts depending on local conditions. Flow then responds
not only to the change in head driving the system but also to the change in permeability with
time.

Glaciers with an active hydrology have several different types of aquifers based on the form
of the porosity. In the glacier surface snow, there is a multigranular porosity where meltwater
percolates through the snow (e.g., Illangasekare et al., 1990; Pfeffer et al., 1990). Veins at ice-
grain boundaries are another type of porosity (Nye & Frank, 1973). Veins are found throughout
most glaciers and ice sheets but contribute relatively little to the overall hydrology because
they have extremely small apertures. Fractures comprise a third type of porosity. Recently,
Fountain et al. (2005a) suggested that fractures not only dominate englacial flow but may also
be the dominant hydraulic pathway through glaciers. Fractures form in glaciers for any number
of reasons (e.g., Hambrey & Dowdeswell, 1997; Hambrey et al., 2005; Lawson, 1996), but they
are commonly generated as ice flows over steep bedrock. For example, crevasses develop at
Storglaciären as the ice descends bedrock riegels (Fig. 1.5) (e.g., Fountain et al., 2005a; Stenborg,
1973). These crevasses do not completely close, creating an ubiquitous fracture network. These
fractures are expected to govern water flow within an englacial system.

There are only a few existing models of englacial water flow. Nye (1976) discussed flow
in veins. He provided a physical and thermodynamic formulation of water flow through veins.
Hutter (1982) developed a model of ice flow and water transport within the cold and temperate
portions of an ice sheet. His formulation of the temperate ice touched on the mass and mo-
mentum balances of the water and ice as well as the jump conditions at the phase boundary.
Fowler (1984) added to Hutter’s work by including a formal heat balance for the temperate
ice. Fowler’s work is particularly interesting because of this feature. Flowers & Clarke (2002a)
created a vertically integrated model of englacial water flow through fractures. I expand upon
Fowler’s work with the intention of simulating flow in fractures. Water temperature, pore space,
and permeability evolution are of particular interest. Because there may be supercooled water
at the base of a glacier, this water may be able to move upward, freezing to block pore space.
Alternatively, warmer englacial water may move downward, curbing subglacial supercooling.
These two scenarios illustrate how the englacial hydrology may affect the subglacial hydrology
or vice versa. Much of this chapter focuses on the derivation of appropriate relationships to
expand previous work to be able to investigate hydrologic scenarios pertinent to glaciohydraulic
supercooling.
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5.2 Balance laws

Chapter 2 featured steady-state and time-dependent variations of three balance laws: mass,
momentum, and thermal energy. For an englacial system, the balance laws closely parallel a
subglacial water system. However, the balance of momentum is the most important because it
leads to Darcy’s law.

5.2.1 Momentum balance

Darcy’s law governs the mass and momentum balance for flow in a porous medium,

qw =− Kw
H

ρwg
∇φw, (5.1a)

Kw
H =

kρwg

µ
, (5.1b)

where qw is the specific discharge of water vector, Kw
H is the hydraulic conductivity, k is the

permeability, and µ is the static viscosity of water. The hydraulic potential assumes its usual
form, φw = ρwgz + pw (eq. 2.23).

A melt rate term must be included in the momentum equation prior to applying the simplify-
ing assumptions inherent in Darcy’s law. Where the pore space is changing with time, equation
(5.1a) may not provide a proper balance. The goal of expanding the momentum equation is to
alter Darcy’s law for a change in pore space via melting or freezing. Alternatively, inclusion of
a melt rate may not warrant a change in Darcy’s law. Either conclusion is useful.

The material derivative of linear momentum per unit volume is given by,

ρw ∂uw

∂t
+ ρwuw · ∇uw = −(mv − dv)uw −∇φw − Pwτ0

S
, (5.2)

where uw is the velocity vector of the water through a cross section S, mv is a volumetric melt
rate, dv is a pore closure rate via viscous deformation of ice, τ0 is the shear along the hydraulic
perimeter Pw. The right hand side represents an impulse from melt −mvuw, an impulse from
moving ice dvuw, a change in potential ∇φw, and a loss in momentum from the water flowing
within the matrix Pwτ0/S. The hydraulic perimeter Pw is related to the surface area of the
pore space. The melt rate mv is positive when matrix ice melts or negative when pore water
freezes.

Because flow is predominantly slow and steady and ∂uw/∂t is usually assumed small, the left
hand side of (5.2) can be neglected. Recognizing that Darcy’s law is a balance between hydraulic
potential and dissipation from shear, the shear term in equation (5.2) can be approximated using
equation (5.1a),

−(mv − dv)uw −∇φw − ρwg

Kw
H

qw = 0. (5.3)

Rewriting this equation for the specific discharge gives

qw = −Kw
H

ρwg

{
(mv − dv)uw +∇φw

}
. (5.4)

Equation (5.4) is further simplified substituting the pore water velocity with qw/ni
p. A simplified

expression for specific discharge with the momentum source terms is

qw = − Kw
H

ρwg

{
1 +

Kw
H (mv − dv)

ρwgni
p

}∇φw. (5.5)
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If the melt rate is zero, equation (5.5) reverts to Darcy’s law (eq. 5.1a). In practice, the impulse
term should be negligible such that the product Kw

H (mv − dv) /(ρwgni
p) ¿ 1, making Darcy’s

law in its original form a satisfactory approximation. The net result is that Darcy’s law should
hold for an aquifer in which the melt rate is much smaller than the flow rate. If the melt rate
is much greater than the flow rate, then equation (5.2) must be used.

5.2.2 Mass balance

The total mass balance is the sum of the mass fractions of the ice and water components of
the aquifer (e.g., Hutter, 1982). Furthermore, balances for each of the mass fractions can be
separated. In a similar form to the subglacial mass balance equations, the englacial ice balance
becomes the porosity evolution equation, and the water mass balance helps to define the pressure
evolution equation. The total water mass is simply the sum of the mass of water over the domain,

Mw =
∫

V
ni

pρ
w dV, (5.6)

where Mw is the mass of water in a volume of aquifer V . Moving equation (5.6) from a total
mass to a local balance and expanding the material derivative gives

∂(ρwni
p)

∂t
+∇ · (ρwni

pu
w) = mv − dv, (5.7)

where dv is the deformation rate of the ice. Deformation acts to close the pore space, and dv

could also be called a closure rate. Because I am not interested in ice flow, the deformation rate
behaves as a source term, contracting the local water volume when there is a stress difference
between the water and ice. The deformation rate of the ice displaces water but at a volume
equivalent to the mass of ice displaced. There is another form of equation (5.7) in which
the moisture flux is included as a source term; however the moisture flux will result from the
divergence term in the present formulation.

Converting equation (5.7) to an equation governing the evolution of the pore space yields

∂ni
p

∂t
=

(mv − dv)
ρw

− ni
p

ρw

∂ρw

∂t
− 1

ρw
∇ · (ρwqw). (5.8)

While the variation of density in time and space is negligible in most cases, it must be left in
(5.8) until the pressure equation is developed.

The global form of the mass balance, the local balance, and the resulting equation governing
the porosity evolution for ice are similar to equations (5.6), (5.7), and (5.8),

M i =
∫

V

(
1− ni

p

)
ρi dV, (5.9a)

∂
{
ρi(1− ni

p)
}

∂t
=−mv + dv, (5.9b)

∂ni
p

∂t
=− 1

ρi

{
−mv + dv −

(
1− ni

p

) ∂ρi

∂t

}
. (5.9c)

In this formulation, the ice is assumed to be static, with the exception of the local deformation
rate on the right hand side. The production terms on the right hand side of equations (5.7) and
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(5.9b) sum to zero, indicating that the local mass balance is zero for the englacial aquifer and
matrix.

The change in density with pressure varies according to

ρw = ρw
0 exp

{
γw (pw − pw

0 )
}

, (5.10)

which is an equation of state. In equation (5.10), the reference values pw
0 and ρw

0 are taken as
atmospheric pressure and the water density at atmospheric pressure, respectively. The coefficient
γw is the compressibility of water. Taking the derivative of equation (5.10) gives the time
evolution equation of the water density,

∂ρw

∂t
= ρwγw ∂pw

∂t
. (5.11)

The equation of state for ice is similar and varies according to

ρi =ρi
0 exp

{
γi

(
pi − pi

0

)}
, (5.12a)

∂ρi

∂t
=ρiγi ∂pi

∂t
, (5.12b)

where ρi
0 is the reference ice density at the reference ice pressure pi

0, and γi is the bulk com-
pressibility of ice. These reference values are the density of ice at atmospheric pressure and
atmospheric pressure, respectively. The pressure in this case is the stress exerted on the ice
frame. Using a pressure in the equation of state necessitates that the stress state be isotropic. If
the ice were deforming viscously, strictly speaking, the stress tensor would not be isotropic, but
the isotropic case would provide a reasonable approximation. In addition, the compressibility
of the porous ice matrix is not that of pure ice. This compressibility should be lower than that
of pure ice but should converge to the value of ice as the porosity approaches zero.

Expanding equations (5.8) and (5.9c) and solving them for (mv − dv) gives two equivalent
equations. Setting these equations equal and substituting the derivatives of the equations of
state for the change in water and ice density gives an evolution equation for the pressures,

ni
pγ

w ∂pw

∂t
+ (1− ni

p)γ
i
e

∂pi

∂t
= − 1

ρw
∇ · (ρwqw)− (

ρw − ρi
) ∂ni

p

∂t
, (5.13)

where γi
e is the effective compressibility of the ice matrix. While the values of the pressure

in the ice and water may be different, if there are no changes in the aquifer, then locally
∂pw/∂t = ∂pi/∂t; and equation (5.13) can be solved for the water pressure,

∂pw

∂t
= − 1

ρw
{
ni

pγ
w + (1− ni

p)γi
e

}
{
∇ · (ρwqw) +

(
ρw − ρi

) ∂ni
p

∂t

}
. (5.14)

Bear (1988, p. 204) derived a similar form of this equation without source terms. Equation
(5.14) is also reminiscent of the equation for water flow in a deforming medium (e.g., Domenico
& Schwartz, 1997, p. 463), but there are two large differences. In water flow in a deforming
medium, the matrix has a velocity; and the material derivative is not equal to a source term.
If a flowing ice matrix is also incorporated into the present formulation, then the deforming
matrix and the pore space change via melt/freezing would both be necessary and the equations
would be slightly different.
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With both the equation for the evolution of the porosity and the evolution of pressure in
hand, one final assumption can be made: that the local change in density is negligible. This
assumption simplifies equations (5.9c) and (5.14) to

∂ni
p

∂t
=

mv − dv

ρi
, (5.15a)

∂pw

∂t
=− 1

ni
pγ

w + (1− ni
p)γi

e

{
∇ · qw +

(
1− ρi

ρw

)
∂ni

p

∂t

}
. (5.15b)

The mass balance for the water is not used for the evolution of the porosity for the simple reason
that the ice matrix defines the porosity. Inclusion of the divergence of the flux helps to determine
the pressure and would, essentially, be double counted if used in the porosity evolution equation.
While the change in the porosity is expected to be small, one weakness of this formulation is
that the mass balance of the ice should be fully coupled to ice flow, especially for the viscous
deformation term. This coupling is well beyond the scope of the present work, but equation
(5.15b) is a reasonable approximation because the hydraulic system responds much more quickly
than the ice flows.

5.2.3 Energy balance

The thermal energy balance can be broken into parts in a fashion similar to the mass balance
equation. In this case, the mixture of water and ice is the sum of the constituent balances. With
the porosities expected to be low, the mixture temperature T should be close to the ice temper-
ature T i. Below the water table, water content at Falljökull, Iceland, for example, is commonly
2–4% (Murray et al., 2000), indicating that the bulk temperature is controlled by the temperate
ice. Because neither the mixture temperature nor the ice temperature will vary significantly
near the melting point, the total heat of the water must be determined independently of the
mixture heat. The water sheet below the ice and the boundary condition at the surface of the
glacier will affect the temperature of the water.

The temperature evolution of the ice fraction may be important, but the suspicion is that
the ice temperature change is not important. Sensible heats near the freezing point are typically
orders of magnitude smaller than latent heat terms. In order to simplify the problem, I assume
that the ice is isothermal and at the melting point, as is commonly observed at many temperate
glaciers. I thus ignore the thermal energy balance of the ice entirely. Other formulations for
polythermal glaciers exist (e.g., Fowler, 1984; Hutter, 1982) but are beyond the scope of the
present work.

Using elements of the derivations of Fowler (1984) and Spring & Hutter (1982), the total
internal energy of the water Ew in the pore space is

Ew =
∫

V
ρwni

pε
w dV, (5.16)

where the internal energy density can be approximated as εw = cw
p ∆Tmp+L. This approximation

neglects the kinetic energy as well as any variations in the kinetic energy. For Darcian flow,
ignoring the kinetic energy is justified. Moving equation (5.16) from a total internal energy to
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a local energy balance yields,

ρwcw
p ni

p

dTw

dt
=ρwcw

p ni
p

∂Tw

∂t
+ ρwcw

p qw · ∇Tw, (5.17a)

=− (mv − dv)
(
L + cw

p ∆Tmp

)
+

ρwg

ni
pK

w
H

(qw)2 , (5.17b)

where qw is the magnitude of the water flux vector. Both the momentum balance (eq. 5.1) and
the mass balance (eq. 5.7) have been used to simplify these local balances. The only source term
is the final term on the right hand side of equation (5.17b), which represents viscous dissipation.
Because of Darcy’s law, the viscous dissipation can also be written as Kw

H(∇φw)2/(ni
pρ

wg).
Other source terms, such as diffusion of heat through the water via Fourier’s law is omitted be-
cause porosity is low. Rewriting equations (5.17) as an englacial temperature evolution equation
yields,

∂Tw

∂t
= −qw

ni
p

· ∇Tw − mv − dv

ρwcw
p ni

p

(
L + cw

p ∆Tmp

)
+

g

cw
p Kw

H

(
qw

ni
p

)2

. (5.18)

This equation is qualitatively similar to equation (2.29).

5.3 Pore geometry

Numerous attempts have been made to relate hydraulic conductivity, permeability, and porosity
(e.g., Bear, 1988, chap. 5). Specifically, researchers have attempted to link physical models of
different pore geometries to Darcy’s law. The goal is to be able to say how the hydraulic
conductivity varies with a change in the pore volume. A relationship between porosity and
hydraulic conductivity is necessary to close the mass balance and momentum equations.

Flowers & Clarke (2002a) chose the intersecting fracture model of Snow (1968). This model
has several advantages. Snow’s model is relatively simple in its treatment of both the geometry
and the flow physics. In addition, because englacial hydrology is expected to be a fracture
network, Snow’s model is immediately relevant.

The hydraulic conductivity of a network of intersecting fractures is

Kw
H =

ρwg

µ

F`b
3

12
, (5.19)

where F` is a number of fractures per unit length, and b is an average fracture width (Snow,
1968; Flowers & Clarke, 2002a). The porosity is the average fracture width multiplied by the
number density:

ni
p = F`b. (5.20)

These relationships are strictly for laminar flow between two approximately parallel-sided frac-
ture walls. Snow (1968) originally applied this relationship to horizontal packer tests of crys-
talline rocks with low permeability and porosity. He suggested that the maximum fracture size
be less than two millimeters. Furthermore, equation (5.19) assumes that all of the fractures
are hydraulically conductive. For Storglaciären, Sweden, approximately half the fractures are
hydraulically conductive with remaining fractures storing water (Fountain et al., 2005b). In
consequence, equation (5.19) represents an upper limit of englacial hydraulic conductivity. It is
possible to reduce the hydraulic conductivity by multiplying equation (5.19) by the fraction of
active fractures.
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Of the three quantities in equation (5.20) that describe the hydraulic properties of the ice, F`

is the most problematic. Recently, Hambrey conducted a study of fractures at Trapridge Glacier,
Yukon Territory, Canada. He found that fracture densities ranged from 0.6–2.6 m−2 ('0.8–1.6
m−1) (pers. comm., 2006). Fracture densities for the terminus of Matanuska Glacier most likely
fall at the lower end of these values, and fracture densities for the overdeepenings of Storglaciären
can be significantly less. Between the other two remaining parameters ni

p and b, the porosity of
the ice below the water table is better constrained and can range from approximately 0.01 to
0.10 (Pettersson et al., 2004, and references therein). Fracture widths are difficult to ascertain
because hot water drilling often enlarges the fracture before it is measured (e.g., Fountain et al.,
2005b). However, these are constrained to a maximum of 2 mm as noted above.

Rather than evolve the number density of fractures, which would require additional con-
ditions for fracture opening and closing, it is preferable to continue simply with the thermal
evolution of crack width. From (5.20), the time evolution of the porosity becomes,

dni
p

dt
= F`

db

dt
, (5.21)

where the additional b dF`/dt is intentionally absent from the right hand side. Without a change
in the number density of fractures with time, this number density becomes a constant; and the
change in porosity is directly linked to the change in fracture width. The evolution of the
fracture width can be calculated from equations (5.15b) and (5.20).

5.3.1 Creep closure rate

Nye (1953) explored the viscous creep of isotropic ice using Glen’s power law for ice rheology
(Glen, 1954). Nye used these relations to show how cylindrical holes, spherical holes, and
conduits in ice close. The extension to an isotropically closing fracture in ice is not necessarily
straightforward given that the divergence terms in a circular, spherical, or cylindrical coordinate
system lend themselves immediately to solution via separation of variables (Nye, 1953).

Assuming incompressibility and that tractions are negligible, the strain rate tensor for a crack
becomes ∂u/∂x = −∂u/∂z = 0. This relationship implies that the closure rate is independent
of crack width and depends only on the pressure difference between the ice and the water.
However, experience gained from conduit closure suggests that the hydraulic cross section does
matter. For example, Ng (1998, chap. 3) derived a closure relationship for elliptical channels,
but a complementary derivation is beyond the scope of this work. Rather, it will be more
useful to parameterize both Ng and Nye’s work with respect to fractures in a porous medium.
Considering Nye’s (1953) relationship for contraction of a tunnel in ice and rewriting it for the
change in the diameter of that tunnel yields a one-dimensional closure rate,

db

dt
= −b sgn

(
pi − pw

) ( |pi − pw|
nB

)n

, (5.22)

which is similar to the closure term in equation (2.17). Given that a circular aperture should close
faster than a long fracture because of the circular convergence of the ice, this relationship would
provide a reasonable upper bound for the closure of a fracture. Conversely, if the fractures
are opening via deformation of the ice, then this relationship will overestimate the change.
Arguably, a shape factor could be inserted into (5.22) to account for the change in cross section.
The pressure of the ice in equation (5.22) is simply the ice overburden pressure, pi = ρwg

(
zi − z

)
.
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From equations (5.21),and (5.22) the closure rate dv becomes,

dv = ρini
p sgn

(
pi − pw

) ( |pi − pw|
nB

)n

, (5.23)

where ρi corrects the units for equation (5.15a). Equation (5.23) arbitrarily takes closure to be
positive when fracture apertures are decreasing (i.e., closing).

5.3.2 Volumetric melt rate

Heat transfer in laminar flow regimes has been well-studied. Analytic solutions for both the
flow distribution and the temperature distribution have been derived for Hagen-Poiseuille flow
through tubes and laminar flow between flat plates. Pigford (1955, eq. 32) gave the heat transfer
coefficient for nonisothermal conditions for a tube,

h =
1.27
2R

(
Sρwcw

p Kw
T uw

s

) 1
2

where R is the radius of the tube, s is its length, and S is its cross-sectional area. If the
transverse length of a fracture can be taken as equivalent to its height, then an equivalent
relation for plane-parallel fractures is

h = 1.27
(

ρwcw
p Kw

T qw

ni
pb

) 1
2

. (5.24)

Equation (5.24) is the heat transfer coefficient for only one crack. Multiplying this equation by
F` yields the heat transfer density.

Substituting the heat transfer density into equation (2.33b) yields the volumetric melt rate,

mv = 1.27
(

ρwcw
p Kw

T qw

ni
pb

) 1
2 F`∆Tmp

L
. (5.25)

The temperature difference is simply that of the interstitial water and the melting point, with
the melting point governed by the Clausius-Clapeyron equation (eq. 2.8). The melting point is
dependent on the interfacial pressure between the water and the ice.

5.4 Aquifer thickness evolution

At the top of the englacial aquifer, water may leave or enter the glacier, depending on the
availability of water and the saturation of the ice. Water can also enter the aquifer from the
sheet or conduit at the base of the glacier. These two sources of water as well as the flow of
water within the englacial aquifer may cause the total thickness of the aquifer to change height.
Figure (5.1) shows the conceptual configuration of the englacial aquifer where the thickness of
the aquifer is defined as Ze = ze − zb. This figure complements figure (2.1) in defining the
different geometrical quantities.
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Figure 5.1: Schematic englacial aquifer. Front of the section presented in Figure 1.3. Dotted
line indicates the height of the water table. From left to right: Z i is the glacier thickness. Ze

is the englacial aquifer thickness. zr is the height of the glacier surface. ze is the height of the
englacial water table. zb is the height of the base of the glacier. zs is the height of the base
of the water layer. Hr is the thickness of water above zr. If Hr > 0, then ze = zr. In this
illustration, the front of the glacier has a seepage face.

5.4.1 Water table evolution

The rate of change of englacial water table elevation ze, is a kinematic boundary problem. The
formulation is well known (e.g., Fowler, 1997, pp. 79–80),

∂ze

∂t
= qw

z − qw
x

∂ze

∂x
+ qr

z, (5.26)

where all values are valid on the boundary. Equation (5.26) holds for cases of the change in the
water table elevation is below the surface of the glacier.

When the englacial water table reaches or exceeds the surface of the glacier, there is no
condition on equation (5.26) to either keep the water table at the surface or restore the water
table to the surface. As a result, there will need to be a condition that restores the water
table to the surface of the glacier when it is exceeded. A penalty function forces the englacial
system to monotonically approach the surface of the glacier once the water table has exceeded
an arbitrary elevation,

∂ze

∂t
=

1
τ r

(
zi − ze

)
, (5.27)

where τ r is an arbitrary time constant. Flowers & Clarke (2002a) used a similar formulation
to describe the exchange of water between the en- and supraglacial water systems instead of
a form of Darcy’s law (eq. 5.28). Penalty functions are a mode of mitigating inconsistencies
between a physical formulation and necessary simplifications. In this instance, the physical
formulation allows the water table to exceed the glacier surface, which is not realistic. Other
methods of solving the confined kinematic boundary problem exist, and equation (5.27) is simply
numerically expedient.
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5.4.2 Surface boundary

The boundary at the glacier surface is phreatic with the fluid pressure set to atmospheric
pressure, if there is no supraglacial flow at the surface of the glacier. If there is water flow at
the surface then conditions are assumed for the flow of water into the ice. No attempt is made
to model the capillary fringe above the phreatic surface, nor is any attempt made to capture
the full physics of fluid flow in the snowpack, firn, or unsaturated zone in general.

There are two options for the surface boundary: the water table is at the surface of the
glacier or the water table is below the surface of the glacier. If the water table is at the surface
of the glacier, then the pressure condition on the aquifer surface is simply atmospheric if there
is no surface water at the surface. If there is water on the glacier surface, then the pressure
condition is taken as the height of the surface water layer. These pressure conditions affect the
surface formulation of Darcy’s law,

qw
z=ze = −Kw

H

ρwg

∂φ

∂z

r

, (5.28)

where ∂φr/∂z is the hydraulic potential difference across the surface of the water table. This
hydraulic potential does not have a pressure component when when there is not a supraglacial
water system.

In some cases, there may be a perched aquifer on the surface of the glacier. For example,
meltwater ponds form at the surface when water flows over the surface of the glacier but cannot
drain through moulins, fractures, or other drainage features. If the flux of water across the
surface of a glacier is greater than the flux from the surface to the englacial system, then there
may be a perched aquifer feeding the englacial aquifer. In terms of the Darcian model presented
here, the flux of water to the englacial system may be approximated as,

qr
z =




−Kw

H

(
Hr

zi − ze
+ 1

)
for Hr > 0,

0 for Hr = 0,

(5.29)

where qr
z is the vertical water flux at the glacier surface and Hr is the thickness of the supraglacial

water system. If there is no supraglacial system, there is no flux from the surface. Rather than
model the unsaturated zone explicitly, I assume that water is instantaneously added to the water
table with an amount governed by Darcy’s law. Because the unsaturated zone has a pressure
equal to atmospheric pressure, the pressure difference is approximated by the hydrostatic pres-
sure at the base of the supraglacial water layer taken over the height of the unsaturated zone
(upper condition in (5.29)). If there is no surface water layer, then this term decays to zero. If
there is no unsaturated zone such that the englacial water height is equal to the surface elevation
of the ice, ze = zi, then qr

z takes the form of equation (5.28).
In groundwater applications, the hydraulic conductivity of the unsaturated zone is gener-

ally lower than that of the saturated medium. Because equation (5.19) relates flow through a
parallel fracture, it is not immediately clear what part of the physics should be altered. To com-
pensate, the unsaturated zone hydraulic conductivity will be the equivalent saturated hydraulic
conductivity multiplied by an arbitrary retarding coefficient.

If water emerges at the surface of the glacier, then the water may flow supraglacially. Typi-
cally, water will form streams at the surface of the glacier in a way similar to subaerial streams.
Because these streams are not of particular interest here, water flow on the glacier surface is
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handled as a diffusive flux in the same fashion as Flowers & Clarke (2002a),

∂Hr

∂t
=−∇ · (urHr) + qr

z, (5.30a)

ur =−Kr
H∇

(
Z i + Hr

)
, (5.30b)

where ur is the surface velocity, and Kr
H is the surface hydraulic conductivity tensor. Surface

energy balance terms and precipitation terms can be added to this balance for a more inclusive
surface hydrology (Flowers & Clarke, 2002a). These terms are avoided here.

Streams preferentially move water directly downhill on glaciers, melting out supraglacial
stream beds. As a consequence, the hydraulic conductivity tensor in equation (5.30b) is rarely
isotropic. However, because this relationship is used only to accommodate water flow, I assume
that the conductivity is isotropic in the same manner as Flowers & Clarke (2002a).

5.4.3 Subglacial boundary

The lower boundary is the water layer. Flux into the aquifer is governed by Darcy’s law applied
at the base of the glacier. This water flux not only provides water to the englacial aquifer, but
drains water from the subglacial sheet. Obviously, water can flow from the englacial aquifer
to the water layer or in the reverse direction, depending on the hydraulic potential gradient.
There is no necessary flow boundary condition at the lower bound except the pressure condition,
which is simply the water pressure in the sheet. The mass of water in the subglacial sheet will
be governed by equation (5.31a) while the flux into the base of the aquifer is governed by its
negative in equation (5.31b),

∂Hb

∂t
=− Kw

H

ρwg

∂φw

∂z
, (5.31a)

qb
z =

Kw
H

ρwg

∂φw

∂z
. (5.31b)

The pressure difference governing the flux is simply the difference in pressure between the sheet
and the aquifer. Similarly, temperature can be imported or exported depending on the water
flux. Both the pressure and temperature are Dirichlet conditions in that they are specified at
the boundary of the aquifer as the conditions in the sheet. These boundary conditions are not
dependent on a transition from laminar to turbulent flow when the water leaves the aquifer and
enters the sheet or the converse when water leaves the sheet and enters the aquifer.

Melting or accretion of ice by the subglacial water will either expand or contract the aquifer
at its base. This accretion is described by the melt rate equation for the subglacial sheet,

dzb

dt
= − m̃(

1− ni
p

)
ρi

. (5.32)

This equation is the same as equation (2.18) presented for the glacier thickness; however, here,
the equation has a different function as a change in the height of the base of the glacier. The
thickness of the englacial aquifer,

dZe

dt
=

dze

dt
− dzb

dt
, (5.33)

is simply a derivative of the definition of the aquifer thickness. Either the ordinary or partial
derivatives could be used in (5.33) because the convective velocities are zero for these terms
because the glacier is assumed to be static.
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5.4.4 Downstream and upstream boundaries

At the downstream end of the glacier, ice and water meet. If the water table is high enough
englacially, then the glacier may have a seepage face. The condition on the seepage face is
that the pressure is atmospheric. As a result, the hydraulic potential is simply the height at the
outlet, with no pressure component. Computationally, this outlet is a simple Dirichlet condition
on the seepage face.

The upstream boundary is also prescribed as a Dirichlet condition. This condition can vary
with time, and as a result, requires a function to describe its evolution. An upstream condition is
somewhat artificial because water would normally enter the glacier from the surface. The usual
upstream condition would be a flux condition. For example, a zero flux at a glacier headwall,
or an equivalent condition would be more physical. However, because I am only interested in
sections of glaciers at this point, head will be the prescribed quantity.

5.5 Summary

Throughout this chapter, I have focused on the hydrologic and thermal evolution of the englacial
aquifer. Together the three balance laws—momentum (eqs. 5.1), mass (eqs. 5.15), and energy
(eq. 5.18)—provide a mathematical representation through which water flux, aquifer porosity,
water pressure, and water temperature can be simulated. These formulations are subject to
auxiliary conditions for creep closure of the pore space (eq. 5.23) and heat transfer between the
ice and water (eq. 5.25). Boundary conditions at the surface of the glacier are based on Darcy’s
law (eq. 5.28) and on the conservation of water along a kinematic boundary (eq. 5.26). If the
water reaches the surface of the glacier, a penalty function (eq. 5.27) limits the height of the
aquifer to the glacier surface. However, water can leave the glacier to flow over the surface of
the glacier via an enhanced diffusion scheme (eq. 5.30). At the base of the glacier, water can
enter or exit the glacier from the sheet (eqs. 5.31). If ice is accreting, the englacial aquifer is
also changing (eq. 5.32). Upstream and downstream boundaries have conditions on hydraulic
potential. Together, all of these equations form an internally consistent scheme for simulating
englacial water flow in temperate ice.
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Chapter 6

Results and discussion

In this chapter, I illustrate some of the behaviors of the physical model using numerical simu-
lations. This departs from previous chapters where the focus was the construction of a physical
model. Details of the numerical formulation can be found in Appendix F. Because much of
the theory in the previous chapters has either not been assembled in the present format or has
not been developed for sub- and englacial water flow, I separate these into clear water flows
(Chapter 2) and sediment laden flows (Chapter 4), but I omit water flow through an englacial
aquifer (Chapter 5).

The relative importance of the terms in several of the governing equations need to be illus-
trated. For example, the relative importance of the energy balance terms in equations (2.29)
governing the thermal evolution of the water are important. Furthermore, for parameters that
require careful selection, an exhaustive search is not possible. Fortunately, an exhaustive search
is also not warranted. Glaciers such as those discussed in Chapter 1 have a finite range of
physical characteristics. Numerical simulations presented here capture relevant processes and
rates for these physical characteristics.

6.0.1 Longitudinal sections

The subglacial water flow model is not designed to give prognostications for any particular
glacier. Rather, the model is intended to diagnose and elucidate controlling processes. Ideally,
simulations should capture relevant features of the physical model. Because the ice-surface slope
and the bed slope are of first-order importance, suitable longitudinal sections are necessary.

Longitudinal sections from the terminal overdeepening at Matanuska Glacier are shown
in Figure 6.1. Lawson et al. (1998) published these sections as approximate hydraulic sections.
Each has a water vent emerging at its downstream end. These sections display much information,
both in the surface and bed structure and also in the supercooling ratios plotted below the
sections. The bed slope in these sections is often −3 to −5 times the surface slope, where
negative values imply that the bed slope is adverse to flow (Figs. 6.1b,d). Therefore, these bed
slopes are well-above the steady-state supercooling threshold. Surprisingly, at 50 m from the
terminus, Figure 6.1c displays a ratio that is below the steady-state subglacial lake criterion of
−11.0 (Clarke et al., 2005, using values from Table 6.2). Obviously, simulating these sections is
useful if local process-based results are desired for Matanuska Glacier.

However, the level of information in the Matanuska sections is unwarranted for elucidating
the behavior of the governing equations. As an alternative, any number of parameters can be
chosen for synthetic sections, and these sections have the benefit of being spatially smooth.
Smoothness in space aids in the convergence of the numerical solver. Four relevant sections are
shown in Figure 6.2. These sections are meant to mimic some of the features of Matanuska
Glacier and other glaciers while retaining an uncomplicated structure. Relevant parameters for
each of these sections appear in Table 6.1. Of these, the surface-to-bedslope ratio is the most
telling. The section in Figure 6.2a has a threshold bed and surface slope ratio, −1.70, for the
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Figure 6.1: Interpreted longitudinal sections from Lawson et al. (1998). (a) Figure 9a from
Lawson et al. (1998). Height=0 m is the minimum ice elevation in this figure. The aspect ratio
is 1 : 1. (b) Supercooling ratio derived from bed and surface data in Fig. 6.1a. Thick dashed
line is the steady-state supercooling threshold (R = −1.70, eq. (2.44)). Values below this line
indicate locations of supercooling for steady-state hydraulic conditions. Thin dot-dashed line is
R = 0. (c) Figure 9b from Lawson et al. (1998). Height=0 m is the minimum ice elevation in
this figure. The aspect ratio is 1 : 1, but the x-axis is not the same scale as (a). (d) Same as
(b) but data from Fig. 6.1b. Minimum value at 50 m is R = −15.6.
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Figure 6.2: Simulated synthetic glacier sections. Subglacial water flows from left to right along
the line at the interface of the ice and bed. (a) Threshold-overdeepened case with R = −1.70
(Figs. 1.3 and A.1). (b) Overdeepened case with R = −3, which is above the steady-state
supercooling threshold.. (c) Overdeepened case with R = −0.85, which is below the steady-
state supercooling threshold. (d) Flat-bedded case. Dashed lines in (b), (c), and (d) are the
surface and bed in (a). The aspect ratio is 1 : 1.
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parameters listed in Table 6.2. The section in Figure 6.2b has a surface to bed slope ratio of
−3.00 and a maximum ice thickness of 35.99 m. Both sections in 6.2c and 6.2d have surface
to bed slope ratios that are below the steady-state threshold necessary for supercooling. These
non-supercooled cases will be used to illustrate several key points. None of the synthetic sections
is meant to illustrate entire glaciers. Rather, these are meant to illustrate processes occurring
near a glacier terminus.

Table 6.1: Parameters used to create the synthetic glacier sections in Figure 6.2

Threshold Above- Below- Flat-
threshold threshold bedded

Figure 6.2a 6.2b 6.2c 6.2d
Start of overdeepening: xu 150.00 150.00 150.00 n/a
Start of wedge: xw 107.59 107.59 122.84 n/a
Elevation at outlet: zb

0 21.85 21.85 14.82 0.00
Upstream ice thickness: Z i

l 46.86 35.99 46.86 46.86
Bed to surface slope ratio: R -1.70 -3.00 -0.85 0.00
Surface slope: tanαr 0.10 0.06 0.13 0.19
Bed slope: tanαb 0.17 0.17 0.11 0.00
Values of x, z, and Z have units of meters. The other parameters are unitless.
For all sections, the coefficient Cx = 0.002 m1−2ox , ice thickness at the outlet
Z i

0 = 0.00 m, the transition coefficient ox = 1, the location of the downstream
water outlet x0 = 0.00 m, the location of the upstream water boundary xl =
250.00 m, and the elevation of the upstream water boundary zb

l = 0.00 m. See
Appendix A for a more detailed explanation.

6.0.2 Model details

Parameters and constants that are applicable to all model runs are presented in Table 6.2. Many
of these values are well-established in the literature and need no further clarification. However,
several require additional clarification. The natural variability of the pressure melting coefficient
β, lies between −7.4× 10−8 and −9.8× 10−8 K Pa−1 depending on whether the water is pure
or air-saturated, respectively. Alley et al. (1998) investigated effects of applying different values
and found that the accretion rate is sensitive to β when water flux is high. More ice accretes
when water is air-saturated. I thus choose a value of β that corresponds to pure water to yield
conservative estimates of accretion. This value is consistent with the densities in Table 6.2 and
equation (2.7).

Another parameter that deserves attention is the compressibility of the subglacial hydraulic
system γb. Its physical limit is the compressibility of the mixture of water, ice, and sediment in
the flowing water and should be close to the compressibility of water, 4.5× 10−10 Pa−1. Clarke
(2003) noted that this parameter is essentially numerical and governs the rate of convergence
of the computational scheme. However, γb does not govern accuracy. I have tested numerous
values for this parameter over several orders of magnitude using the sheet version of the code,
with no noticeable difference in the results. As a result, I assign γb to the value of 1.0 × 10−7

Pa−1 (Clarke, 2003).
The flow-law exponent n also deserves some discussion. There is evidence that n is commonly

less than 2 at low driving stresses (e.g., Duval et al., 2000). Low effective stresses are often found
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subglacially. For most examples contained within this thesis, closure is not dominated by creep.
Rather, sheet closure is predominantly regelation, and creep is less important (Fig. F.5). In the
case of negative effective pressures, n = 3 will overestimate the rate of opening for faster changes
in sheet thickness. In this case, n = 3 provides conservative estimates of pressure response from
ice closure. Thus, a higher value of n is not problematic in terms of the model. Furthermore,
smaller values of n can be substituted easily into the formulation presented in Chapter 3.

Table 6.2: Model parameters

Parameter Value Units Notes
Physical constants:
A 6.8× 10−24 Pa−n s−1 Flow law coefficient (Paterson, 1994, p. 97)
cw
p 4217.6 J kg−1 K−1 Specific heat of water at constant pressure

g 9.81 m s−2 Gravitational acceleration
Kw

T 0.5610 W m−1 K−1 Thermal conductivity of water
L 3.336× 105 J kg−1 Latent heat of water
n 3.0 [unitless] Flow exponent (Nye, 1953; Paterson, 1994)
ρw 1000.0 kg m−3 Mass density of water at 0 oC
ρi 916.7 kg m−3 Mass density of ice
µ 1.781 × 10−3 N s m−2 Viscosity of water
Derived constants:
B 5.28× 107 Pa s1/n Flow law coefficient (= A1/n)
Pr 13.39 [unitless] Prandtl number
β −7.44× 10−8 K Pa−1 Pressure melting coefficient (eqs. 2.7, 2.8)
R −1.70 [unitless] Threshold bed to surface slope ratio (eq. 2.44)
Numerical parameters:
γb 1× 10−7 Pa−1 Subglacial water compressibility
∆x 2.5–5 m Longitudinal grid spacing
∆t 30 s Maximum forward time step
Zb:e

0 0 m Minimum accreted ice thickness

The grid spacing ∆x is relatively arbitrary. Essentially, ∆x needs to be small enough to
capture the relevant processes. However, if ∆x is too small, then the matrix inversions necessary
to advance in time for the numerical differentiation formula become prohibitively expensive. In
the limit of an extremely tight spatial discretization, time stepping is not possible because the
matrices have high condition numbers. Knowledge of a horizontal length scale of any of the
processes discussed in previous chapters would limit ∆x. The most conspicuous of these is the
ice–bed configuration of the longitudinal section to be simulated. For the synthetic sections, I
take ∆x as 5 meters unless otherwise noted. I have tested other discretizations and found the
results presented here to be largely independent of the grid spacing

In addition to parameter choices listed in 6.2, other parameters are also necessary. These are
given in Table 6.3. The crevasse-cross sectional area is relatively small. This low value provides
little buffering in terms of the response time of the subglacial system to the recharge rate. In
terms of a simple geometry, the crevasse cross-sectional area corresponds to circular moulin
of approximately 3.6 m diameter. The Darcy-Weisbach friction coefficient is high relative to
subaerial streams. However, Clarke (2003) showed that appropriate flood discharge hydrographs
for Steele Glacier, Yukon Territory, Canada can be reconstructed using values of fd in the
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range 0.12–0.20. I take 0.16 as the mean value. The crevasse recharge rate is taken to be
0.1 m3 s−1. This value corresponds to a maximum summertime discharge for Matanuska Glacier,
as described above. Finally, I explicitly state that the width of the sheet is 1 m. Thus, all
simulations are per unit glacier width. Values of width-averaged parameters discussed in Chapter
2 are returned to their usual dimensions using this value.

Table 6.3: Additional model parameters

Parameter Value Units
Crevasse cross-sectional area Ac 10 m2

Darcy-Weisbach friction coefficient (eq. 2.24) fd 0.16 [unitless]
Crevasse recharge rate Qmelt 0.1 m3 s−1

Unit glacier width W 1 m

Boundary conditions

Meltwater from the glacier surface can flow into the subglacial water system through fractures,
moulins, or crevasses. Because there is no surface component to the model, a feeder crevasse
is constructed at the upstream end of the longitudinal section. The feeder crevasse acts as
a reservoir. This reservoir is a simplification of upstream hydrology and is meant to loosely
approximate upstream conditions. The crevasse has a cross sectional area normal to z, and
a recharge rate feeds into the crevasse. The pressure difference between the crevasse and the
subglacial water system determines the flux of water into the subglacial system. Upstream
crevasse water temperature is assumed to be at the equilibrium melting point. If instead sensible
heat were imported from the surface, the subglacial hydraulic system would melt open. Because
the upstream crevasse is a simplification of upstream hydrology, I make the expedient assumption
that there is no sensible heat; and water enters the subglacial system at the melting temperature.
Details of the crevasse formulation appear in Appendix F.1.2 and are illustrated in Figure F.2.

While the crevasse condition is a useful addition to the model, the selection of the crevasse
cross-sectional area and the recharge rate are arbitrary. A large upstream crevasse buffers
the evolution of the hydrostatic pressure at its base. Large crevasses represent an upstream
hydraulic system with much storage while small crevasses represent the opposite. Given these
representations, the cross sectional area of the upstream crevasse need not be physically exact
but only justifiable for the simulation.

Surface melt water flows through a glacier for only a fraction of a year. Opening and closing
of the subglacial system are not treated here because they are extremely difficult to simulate.
To simplify, I assume that the subglacial water system is capable of accepting water at the time
that water flows into the crevasse. Furthermore, time integration is limited to a melt season.
Duration and intensity of the melt season depends on climatic and geographical parameters
which are not treated here. For simplicity, I make the expedient assumption that a melt season
is approximately 100 days long (e.g., Pearce et al., 2003).

There are two limits for steady state solutions for the height of water in the crevasse: (1) ei-
ther the water height is at the glacier surface, or (2) the water is at the height of maximum bed
elevation downstream of the crevasse. For long time intervals, the recharge rate will determine
if and when the crevasse water elevation approaches either of these limits. If the crevasse water
level is below the maximum downstream bed elevation, then water will flow in reverse from
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the subglacial system to the crevasse. In this case, recharge will also play an important role in
returning the crevasse water elevation to a permissible level. In sum, the crevasse water height
must be between these two limiting elevations in order for water to flow through the subglacial
water system.

For longer times, the numerical model seeks an equilibrium among crevasse water pressure,
storage, and subglacial discharge. If the recharge rate is high relative to discharge to the
subglacial system, then the crevasse height can rise to the glacier surface. Discharge through
the subglacial system increases until a critical subglacial cross-section is reached. The crevasse
then drains to a steady level. This decay often takes tens to hundreds of hours depending on
the crevasse size and water recharge rate. If the converse is true, and the recharge rate is low,
then the crevasse water elevation can approach its minimum value. Generally, long integration
times are necessary for the water system to creep closed in this case.

Depending on the simulation, recharge into the crevasse can take a value of 0.001–0.3
m3 s−1 m−1 based on field data. Discharge data from Matanuska Glacier and Storglaciären
are relatively important because glaciohydraulic supercooling at these locales is relatively well-
described and the width-averaged water fluxes constrain upstream model conditions. At Mat-
anuska Glacier, summer discharge measured approximately 200 m downstream of the terminus
can exceed 80 m3 s−1 (Lawson et al., 1998). The width at the terminus is approximately 5 km,
giving a width averaged discharge of about 0.02 m3 s−1 m−1. However, a large portion of the
terminus is not active. Therefore, Alley et al. (1998) suggested that summertime discharge may
meet or exceed 0.1 m3 s−1 m−1. In addition the subglacial system may leak water to an englacial
or subglacial aquifer (Alley et al., 1998; Hooke et al., 1988), which then discharges to the hy-
drologic system downstream of the overdeepening. Consequently, the width-averaged discharge
at the ice–bed interface is most likely lower than 0.1 m3 s−1 m−1. During winter, proglacial
water discharge continues at a rate of approximately 1 m3 s−1, either from water stored sub- or
englacially. Accretion occurs but is slow relative to summertime conditions.

At Storglaciären, two streams, Nordjokk and Sydjokk, drain the glacier. These two streams
have maximum summer discharges of approximately 2.5 and 1.5 m3 s−1, respectively (estimated
from Hooke et al., 1988; Hooke & Pohjola, 1994; Seaberg et al., 1988). The width of the glacier
at the riegel is approximately 850 m (Fig. 1.4). The width-averaged discharge is therefore
approximately 0.005 m3 s−1 m−1, which is considerably lower than the equivalent value for
Matanuska Glacier. This is not surprising given that Storglaciären is in a drier climate and is a
small fraction of the size of Matanuska Glacier.

Other glaciers have similar width-averaged discharges. Width-averaged discharge on Columbia
Glacier, Alaska, approach 0.1 m3 s−1 m−1, but the water pathways are not well known (R.A.
Walters et al. as cited in Alley et al., 1998). Bering Glacier, one of the largest glaciers in the
Chugach Mountains, Alaska, has width averaged discharges that can exceed 0.3 m3 s−1 m−1 in
the glacier’s non-surge phase (Fleisher et al., 1998). Findelengletscher, Switzerland has width
averaged discharges of approximately 0.001–0.01 m3 s−1 m−1 and the water there travels through
a subglacial cavity system (Iken & Bindschadler, 1986). Haut Glacier d’Arolla, Switzerland has
a peak summer discharge of approximately 7 m3 s−1 m−1 and a width near the terminus of 1 km
(Swift et al., 2005) leading to a maximum width averaged discharge of approximately 0.007 m3

s−1 m−1. Bench Glacier is a relatively small glacier (∼7.5 km2) in the Chugach Mountains.
Maximum summer discharge is approximately 7 m3 s−1 and the width is approximately 0.9 km
(Riihimaki et al., 2005). These numbers yield a maximum width-averaged discharge of 0.008 m3

s−1 m−1. There are no overdeepenings at Bench Glacier, and probably none at Haut Glacier
d’Arolla and Findelengletscher; however, these glaciers are nearly the same size as Storglaciären
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and provide roughly equivalent width-averaged discharges in the range 0.001–0.01 m3 s−1 m−1.
Columbia and Bering Glaciers are closer to the same size and have similar climatic conditions
to Matanuska Glacier.

Because the recharge rate is arbitrary, selection of the direction is largely by trial and error
within the bounds of the physical system. However, Alley et al. (1998) showed that accretion is
favored for higher discharge systems. In response to their estimates, I take 0.1 m3 s−1 m−1 as
a baseline discharge in an attempt to reproduce their accretion rates.

At the outlet end of the longitudinal section, water pressure must be prescribed. Two simple
options are either atmospheric pressure or ice overburden pressure at the terminus. Numerous
field studies of supercooled vents demonstrate that water flow is artesian (e.g., Lawson et al.,
1998; Pearce et al., 2003; Tweed et al., 2005). Consequently, a value of pressure slightly above
atmospheric or ice overburden can also be used. However, the degree of overpressure is difficult
to estimate a priori. Unless otherwise noted, pressure is prescribed as atmospheric.

Initial conditions

Nonzero initial values are necessary for pb, ub, T b, and, depending on cross-section, either Hb

or Sb. Initial conditions are discussed in Appendix F.1.3. A reasonable initial assumption for
the water pressure is the ice overburden pressure. The water velocity can be assumed to be the
velocity of steady state via equation (2.26). Initial temperature can be set via the Clausius-
Clapeyron relationship (eq. 2.8). Values of pb, ub, and T b are readily purged in numerical
simulations provided that initial values are reasonably close to an expected solution.

The values of Hb or Sb are more difficult to initialize because there are no accepted values
of either for overdeepenings. Moreover, these values should vary through the overdeepening and
depend on the mass balance of the water layer. In previous studies, Clarke (2003) and Ng (1998)
chose Sb to match data from jökulhlaups. However, matching data from outburst floods is not a
goal of this study. Alley et al. (1998) posited that distributed water systems in overdeepenings
were cavities and used a value of 0.1 m taken from field studies (Walder & Hallet, 1979). For
the sheet model, Hb values of 0.1 m are possible but high, and I thus choose 0.1 m as a default
initial maximum water depth. This value translates into an average water depth of 0.087 m (see
Appendix F.4.1).

6.1 Steady flow: simple hydraulic sheets

The basic model presented in Chapter 2 with auxiliary relationships presented in Chapter 3
governs clear water flow. In this case, the subglacial hydraulic system is opened via a high melt
rate. Closure occurs through accretion via freezing or a combination of creep and regelation.
One important scenario for the clear water model is a steady forcing where the recharge to the
upstream crevasse is kept constant. This boundary condition represents the simplest forcing
function for the subglacial water system. Responses among terms within the governing equa-
tions and different geometries are most easily illustrated for steady forcing because the subglacial
water system is forced to find a configuration that matches input conditions. Illustrated config-
urations may not be attainable in reality because of diurnal, seasonal, and other variations. I
discuss the effects of these fluctuations later in this chapter. This boundary condition is meant
to illustrate governing processes rather than give site- or scenario-specific information.

Furthermore, discharge is included in the steady state accretion rate (eq. 2.42a). However,
there is not a steady state as is implied in this equation because the melt rate must either be
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positive or negative for flowing water. Only for the trivial case of no water discharge is there an
obvious steady state. It is thus useful to explore the behavior of the accretion rate under steady
forcing.

Unless otherwise noted, these simulations are specifically for hydraulically conductive sheets.
I contrast conduits later in this chapter.

6.1.1 Constant recharge simulations

Overdeepened case: Threshold section

Clear water results for sheet thickness Hb, water pressure pb, water velocity ub, and water tem-
perature T b are plotted in Figure 6.3 from the model presented in Chapter 2. In Figure 6.3a,
from approximately 250–175 m from the terminus, the water depth decreases. From approxi-
mately 175–60 m, the water sheet bulges; and from 60–0 m, the water sheet thins below its initial
value. In Figure 6.3b, the water pressure is smooth throughout the section, with a relatively
smooth bend in the contours at approximately 25 d and farther than 150 m from the terminus.
Water pressure decreases smoothly from the inlet pressure to the outlet. The water velocity in
Figure 6.3c, shows variations similar in overall form to Figure 6.3a, but opposite in sign. Values
for the velocity are high—approximately 1 m s−1 (Fig 6.3c). Where the water sheet is relatively
thick, velocity is slow relative to areas where the water sheet is thin and vice versa. The water
temperature illustrated is Figure 6.3d and bears some resemblance to Figure 6.3b; but there is
additional structure in the plot for water temperature that is not evident in the water pressure.

From the four basic output variables a working hypothesis appears. Water sheet depth
and water velocity are related to each other via a simple continuity relationship such that
Qb = WHbub. Thus, as the water sheet thickness increases, the water velocity must decrease
to maintain a constant discharge. Furthermore, water pressure and water temperature appear to
be related to one another via the Clausius-Clapeyron relationship. However, additional effects
appear in the results for the temperature that are not clearly evident in the water pressure
results.

Discharge results shown in Figure 6.4 point to the monotonous nature of inlet and along-
path discharge. In Figure 6.4a, the water height of the crevasse, a surrogate for inlet pressure
head, (solid black line) is plotted against the left axis, and discharge from the crevasse to the
subglacial sheet (solid gray line) is plotted against the right axis. The pressure head has a strong
transient response for approximately the first 10 d before relaxing to a constant pressure head of
34.3 m. This value is well below the maximum allowable value of 46.86 m which is the upstream
ice thickness. Furthermore, the inlet pressure head is less than the flotation height of 42.96 m.
Discharge to the subglacial sheet is constant after approximately three hours of integration.

The along-path discharge is plotted in Figure 6.4b with time on the vertical axis. Approx-
imately 0.2% of the array values fall out of the range 0.1 ± 0.0001 m3 s−1, and most of this
variation occurs within the first 10 d. Once inlet pressure variations subside, the variations in
water discharge also subside.

The Reynolds number varies directly with discharge for sheet water flow (eq. 2.35a). Because
discharge does not vary significantly, Figure 6.4 only shows small variations in Reynolds number.
The consequence is that the Reynolds number does not appear to be very telling in this case.
For example, there are no large variations from the non-overdeepened portion of the section
to the overdeepened portion. The important result is that water discharge is fully turbulent
because the Reynolds number exceeds 2100. Key results from the discharge information are (1)
sheet water discharge attempts to mimic the crevasse recharge rate, (2) the discharge is roughly
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Figure 6.3: Threshold section output for a 100-day simulation under constant recharge condi-
tions. Water flows from left to right along the line at the interface of the ice and bed. Time is
along the vertical axis. (a) Water depth. Contour interval is 0.01 m. (b) Water pressure. Con-
tour interval is 3 m. (c) Water velocity. Contour interval is 0.12 m s−1. (d) Water temperature.
Contour interval is 0.003 oC.

constant over the section such that Qb = WHbub where W ≡ 1 m, and (3) Reynolds numbers
are fully turbulent.

In Figure 6.5a, the difference in temperature over the course of the model simulation ranges
from about −0.001 to approximately 0.010 oC. The temperature depression shows that most of
the flow path is above the melting point except for a small fraction that lies up the overdeepening.
The area bounded by the zero degree isotherm is of particular interest. This swath starts
approximately 20 d from the onset of the simulation. Eventually, it steps back to approximately
50 m from the terminus over the course of the simulation. Simultaneously, water upon exit from
the terminus is not supercooled at 100 d. A similar feature in the same area also exists in the
velocity simulation (Fig. 6.3c). This swath is more clearly evident in longer simulations (not
shown), and the swath steps upstream to the onset of supercooling at about 107 m, which is
the start of the wedge (Table 6.1).

The net accretion from this area of supercooling is shown in Figure 6.5b. A total of ap-
proximately 0.017 m ice accretes near the terminus. The maximum accretion is nearly 0.015 m
at the terminus at approximately 75 d. Because the supercooled swath is stepping upstream
(Fig. 6.5a), accretion is not monotonic or sustained throughout the simulation; and some ac-
creted ice is melted in the final days of the simulation. However, this simulation is a threshold
simulation. The expectation is that there will be no or very little supercooling, which is evident
in the amount of accretion.
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Figure 6.4: Discharge and Reynolds numbers in Figure 6.3. (a) Left axis: Elevation of water
in the crevasse (black line). Black dotted line is the maximum water height and corresponds to
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from the crevasse into the subglacial sheet (gray line). (b) Subglacial water discharge. Contour
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s−1. The colorbar has only one tick owing to its small range (0.099995, 0.100003). (c) Reynolds
numbers corresponding to (a). The precision is indicative of the lack of variability and does not
reflect additional knowledge of subglacial water flow. Contour interval is 0.25.

Relevant melt rates are shown in Figure 6.6. Figure 6.6a shows the model melt rate computed
using the Dittus-Boelter semiempirical relationship (eq. 2.38b). Rates vary from about −0.6×
10−5 to slightly over 8×10−5 kg m−2 s−1. The swath of negative melt rates corresponds directly
to the swath of temperature depression (Fig. 6.5a). This feature is a result of the melt rate being
directly dependent on the temperature depression. There is a secondary dependence on (ub)4/5

and (Hb)−1/5.
It is possible to compute alternative melt rates based on the output variables. Specifically,

the approximate melt rates based on the steady state assumptions are useful for comparison
(eqs. 2.9) (e.g., Röthlisberger & Lang, 1987). Figure 6.6b shows a melt rate using ice overburden
pressure as an approximation from equation (2.42b). In this case the melt rate varies from about
−0.4× 10−5 to slightly over 21× 10−5 kg m−2 s−1. The pattern results from the small variation
in the overall glacier ice thickness during the model run. High melt rates occur where ice is
thickest. Tight contours from 150 to 100 m occur because of the onset of the overdeepening.
Generally, the approximate melt rate is a factor of ±2–3 greater than the model melt rate.
Furthermore the pattern is starkly different.

Instead of approximating the water pressure as the ice overburden pressure in the steady state
melt rate, it is possible to use the water pressure directly. Figure 6.6c shows the approximate
melt rate using this substitution. Instead of being a better fit to the model melt rate, the result
is worse. Average misfit melt rates are closer to ±5–20 times the model rate along the adverse
slope. However, locally the misfit can be much greater.
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Overdeepened case: Above-threshold section

The above-threshold section fully activates the glaciohydraulic supercooling phenomenon. In
Figure 6.7a, the water depth shallows along the adverse slope from about 100 m to the terminus.
The darkened curved contours are the area of supercooling; and it steps upstream towards the
onset of the wedge at about 107 m. The minimum water depth is below 0.07 m. Beneath the
flat-bedded portion, the sheet expands to above 0.18 m at 150 m and 100 d.

The pressure evolution displayed in Figure 6.7b has a strong upstream contour from ap-
proximately 0–50 d. This feature results from the input pressure taking a much longer time
to approach a steady value (Fig. 6.8, left axis). The input pressure head evolves to a value of
approximately 32 m, which is below ice flotation. However, the pressure head only reaches a
steady value after 200 d (not shown). As a result, the pressure evolution in Figure 6.7b has not
equilibrated after 100 d.

For the first four days, the crevasse water elevation is at the glacier surface and above
flotation. These first four days are clear in all of the plots for the above-threshold overdeepened
section. After approximately 4 d, the water system has reorganized, and the upstream crevasse
pressure evolution follows a damped decay pattern. For the threshold case, the damping takes
30 d (Fig. 6.4a, left axis). For the above-threshold case, the damping to a steady value takes
more than 200 d. In both instances, the discharge into the subglacial system from the crevasse
equilibrates relatively rapidly to the recharge rate (Figs. 6.4a, 6.8, left axes).

Because water discharge is nearly constant across the overdeepening (Fig. 6.8, right axis), the
velocity increases where the water depth decreases. This behavior is illustrated in Figure 6.7c.
Water velocities up the adverse slope exceed 1.4 m s−1 where the water depth is shallow. Where
the sheet bulges, water velocities are lower.

From Figure 6.7d, water temperature again varies in a fashion very similar to water pressure.
However, water temperature relative to the melting point appears to be more closely related
to the water depth and velocity (Fig. 6.9a). The maximum amount of ice accreted is slightly
above 0.039 m at 100 d and 70 m (Fig 6.9b). This ice thickness is over double the maximum
ice accreted ice thickness for the threshold case.

93



Chapter 6. Results and discussion

0 0

T
im

e 
(d

) a

25

50

75

100

m
el

t r
at

e
x 

10
−5

(k
g 

m
−2

 s
−1

)

0
2
4
6
8

00

0

T
im

e 
(d

) b

25

50

75

100

m
el

t r
at

e
x 

10
−5

(k
g 

m
−2

 s
−1

)

0

5

10

15

20

0

0

T
im

e 
(d

)

Distance upstream from terminus (m)

c

050100150200250
0

25

50

75

100

m
el

t r
at

e
x 

10
−5

(k
g 

m
−2

 s
−1

)

0

20

40

Figure 6.6: Melt rates for the threshold case in Figure 6.3. (a) Melt rate using equation (2.38b).
Contour interval is 0.5 × 10−5 kg m−2 s−1. (b) Approximate melt rate using ice overburden
pressure from equation (2.42b). Contour interval is 1×10−5 kg m−2 s−1. (c) Approximate melt
rate using water pressure from equation (2.32b) Contour interval is 5× 10−5 kg m−2 s−1.

Furthermore, the area of accreted ice extends along most of the adverse slope by 100 d.
There is a drop in the accreted ice thickness near the terminus with time because the water
temperature drops below freezing, rises above freezing, and then drops below freezing again.
This feature is shown in the location of the zero degree isotherms in Figure 6.9a with a swath
that is slightly above zero separating the two zero degree isotherms that are farthest right.

In Figure 6.10a, the modeled melt rate follows the temperature depression inasmuch as the
zero degree isotherms are also the zero-values for the melt rate. The patterns for both the
temperature depression and melt rate are similar. The steady state melt rate shown in Figure
6.10b appears to be governed more by the ice overburden pressure than the actual flow. The
approximate melt rates are approximately ±2–3 times the modeled melt rates along the adverse
slope.

Results are plotted in Figure 6.10c for the case when water pressure is used in the approx-
imate melt rate instead of ice overburden pressure. This plot resembles many of the others
inasmuch as there is a swath. However, the melt rates do not come close to giving the proper
rates or areas of melt. Except for the obvious statement that water freezes along the adverse
slope, it is clear that this approximation does not capture the areas or rates very well relative
to the model melt rate.

Reconstructing the time-dependent local balance of temperature is useful because it is possi-
ble to discern the governing terms in the heat balance. From equation (2.29b), the local balance
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The latent heat, sensible heat, and kinetic energy terms all have the same melt rate prefactor
outside the left, vertical brace.

The actual values for each of these five terms is not necessarily important, but the relative
magnitudes and patterns are important. These are plotted in order of appearance in Figure 6.11.
Immediately apparent from Figure 6.11 is that the divergence and viscous dissipation terms
(Fig. 6.11a and e, respectively) are clearly dominant and nearly balance each other with ranges
up to ±50 × 10−5 oC s−1. In Figure 6.11b, the latent heat term is the next largest term.
The specific kinetic energy term is surprisingly large in Figure 6.11d. The sensible heat in
Figure 6.11c is negligible because it is approximately five orders of magnitude smaller than the
largest terms.
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Both the viscous dissipation and specific kinetic energy terms depend on the water velocity.
From equation (2.24), the viscous dissipation goes as (ub)3 while the kinetic energy term goes
as (ub)2. In consequence, it is not surprising that these two terms bear a resemblance to
Figure 6.7c. Furthermore, because the velocity is closely coupled to the change in water thickness
via Qb = WHbub when discharge is constant, it is not surprising that these terms are coupled
to the ice accretion rate. In addition, the latent heat term is coupled directly to the ice accretion
because this term is directly linked to the phase change.

In Figure 6.7a, the heat divergence term is more difficult to interpret as-is because it re-
lates how much heat is available to move through the subglacial water system. Substituting
the Clausius-Clapeyron relationship (eq. 2.8) gives −ub∂T b/∂s ∼ −ubβ∂pb/∂s. The result is
that an approximate heat divergence follows from the subglacial water pressure gradient. This
approximation appears in Figure 6.12a, and the residual appears in Figure 6.12b. The residual
has a similar pattern to the approximate melt rate in Figure 6.10 which is not a coincidence
given that the same approximation appears in both figures. The obvious conclusion is that
there is enough heat in the subglacial system that the pressure-melting assumption does not
unequivocally hold in order to recover the location or rate of accretion.
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Figure 6.10: Melt rates for the above-threshold case presented in Figure 6.7. (a) Melt rate using
equation (2.38b). Contour interval is 0.5× 10−5 kg m−2 s−1. (b) Approximate melt rate using
ice overburden pressure from equation (2.42b). Contour interval is 1 × 10−5 kg m−2 s−1. (c)
Approximate melt rate using water pressure from equation (2.32b) Contour interval is 2.5×10−5

kg m−2 s−1.

Overdeepened case: Below-threshold section

The below-threshold overdeepened section shown in Figure 6.2c is different from the previous
two synthetic sections because supercooling should not occur. This will also be true of the
flat-bedded case presented in the next section.

Figure 6.13a shows that the water depth is low at the upstream end, and grows through
time at the terminus. At the upstream end, the water depth at 100 d is approximately 0.047 m.
Because the melt rate must be positive, only the combination of creep and regelation closure
under the thicker ice contracts the sheet thickness at the upstream boundary. Closure occurs
more readily where there is lower water pressure and higher ice overburden stress. The water
depth at the terminus at 100 d approaches 0.19 m, which is indicative of vigorous melting with
a small closure rate.

The water pressure head varies smoothly and appears to be approaching a steady state near
100 d. The values at the upstream crevasse are near 29 m w.e., which are about 14 m below
the flotation pressure head (Fig. 6.14a, left axis). Water velocities are also monotonic. At the
upstream end, these exceed 2 m s−1. At the downstream end, these are 0.55 m s−1 at 100 d.

As is common with the previous examples, discharge to the subglacial system is constant
throughout much of the simulation (Fig. 6.14a, right axis). Furthermore, the effluent discharge
(light dotted line) at the terminus plots directly over the upstream discharge (gray solid line).
The water level in the crevasse stabilizes at about 18 d. After 18 d, the Reynolds numbers in
Figure 6.14b increase towards the outlet. This increase results from water added to the flow
because of melt.

In Figure 6.13c, the water temperature is relatively monotonic after 18 d. In general, the
water temperature is warmer than the freezing point (Fig. 6.15a). The temperature difference
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Figure 6.11: Components of the local internal energy balance for the above threshold case.
All colorbars are independent. Each colorbar has a different scale. (a) Heat divergence term.
Contour interval is 5.4 × 10−5 oC s−1. (b) Latent heat term. Contour interval is 0.76 × 10−5
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oC s−1. (d) Specific kinetic energy term. Contour interval is 0.15 × 10−5 oC s−1. (e) Viscous
dissipation term. Contour interval is 5.5× 10−5 oC s−1.

is greatest along the flat portion of the section and decreases as the water ascends the overdeep-
ening. In Figure 6.15b, the melt rate follows the pattern of the temperature difference relatively
closely with the highest melt rates lying over the flat portion of the section.
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Figure 6.13: Below-threshold section output for a 100-day simulation under constant recharge
conditions. Water flows from left to right along the line at the interface of the ice and bed.
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Figure 6.15: Temperature depression and melt rate from Figure 6.13. (a) Temperature depres-
sion. Contour interval is 0.001 oC. (b) Modeled melt rate using equation (2.38b). Contour
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Flat-bedded case

The flat-bedded case displays many of the same features as the below-threshold overdeepened
case. In Figure 6.16a, the water depth increases monotonically to the terminus. In this case,
the water depth maximum, 0.255 m, is reached at approximately 42 d. Because I have not
incorporated a closure scheme when the maximum height of the largest size class is exceeded in
Chapter 3, the numerical integration ceases. The net result is that this simulation takes about
42 d to lift off the bed for this case.

Within those 42 d, the sheet grows rapidly at the terminus, but the upstream sheet thickness
does not evolve significantly after the first 10 d. The pressure, velocity, and temperature output
in Figures 6.16b–d is also nearly constant at a given upstream location after 10 d. Upstream
water velocities are high, exceeding 2 m s−1.
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Figure 6.16: Flat-bedded section output for a 100-day simulation under constant recharge con-
ditions. Water flows from left to right along the line at the interface of the ice and bed. Time
is along the vertical axis. (a) Water depth. Contour interval is 0.01 m. (b) Water pressure in
meters of water equivalent. Contour interval is 3 m. (c) Water velocity. Contour interval is 0.16
m s−1. (d) Water temperature. Contour interval is 0.004 oC.

Surprisingly, the crevasse does not drain completely, but drains to approximately 21 m
(Fig. 6.17a, left axis). Approximately 15 m of pressure head are dispersed in the first 150 m
of flow, where most of the gradients in the other output are steady. Discharge, however, has a
constant value throughout the 42 d (Fig. 6.17a, right axis), matching the recharge condition.
Reynolds numbers in Figure 6.17b increase slightly from left to right, indicating that the ice
ceiling is melting and adding water to subglacial water flow.
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The output temperature in Figure 6.16 is warm, with values near the terminus exceeding
0 oC. The temperature difference in Figure 6.18a shows that the water is only at the melting
point at the upstream boundary where it is prescribed. The remainder of the section is above
zero. As a result, the melt rates in Figure 6.18b are fairly high. The contour patterns of Figures
6.18a and 6.18b do not align near the terminus. The flat bedded case is the first of the examples
that has not aligned.
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Figure 6.18: Temperature depression and melt rate from Figure 6.16. (a) Temperature depres-
sion. Contour interval is 0.0025 oC. (b) Modeled melt rate using equation (2.38b). Contour
interval is 1.0× 10−5 kg m−2 s−1.

The terms of the local internal energy balance are presented in Figure 6.19. All terms, with
the exception of the sensible heat term, are approximately 10 times greater in the flat-bedded
case, with viscous dissipation dominating the heat balance. The divergence term almost balances
viscous dissipation, and the sensible heat term is negligible. In Figure 6.19b, the latent heat
component is lowest upstream.
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In contrast to Figure 6.11 for the above-threshold section, the heat balance terms are gener-
ally quite different for the flat-bedded section. Velocities are much higher for the flat-bedded sec-
tion, increasing viscous dissipation. Furthermore, a feature that dominates the above-threshold
section, the area of ice accretion, is absent for the flat-bedded section.
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Discussion

One of the most important characteristics of all simulations is that discharge is approximately
constant along the section. Water velocity and sheet thickness are closely coupled. The only
explicit source or sink of water is melt. Variations in melt are small, and even the overdeepened
sections for which ice accretes experience net melting over the entire base of the glacier. Because
water discharge is constant, where the sheet bulges, velocity is low and vice versa. Along the
sections with ice accretion, sheet thickness drops along the adverse slope, and velocities increase.
Upstream of the overdeepening, melt increases the sheet thickness and velocities are lower.

Because discharge is constant, the hydraulic system seeks an equilibrium with the recharge
rate. As a result, the upstream crevasse water elevation varies to accommodate a constant
discharge. Crevasse water elevation decays to a level that is below ice flotation. Only in the
case of the above-threshold overdeepening are there significant damped oscillations of crevasse
water elevation. These oscillations are revealed in the structure of the pressure evolution for the
above-threshold section.
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Pressure and temperature are coupled as well via the Clausius-Clapeyron equation. However,
this coupling is significantly weaker because the balance of internal energy equation dynamically
smoothes the temperature variation. The result is that there is a spatial lag associated with the
latent heat in the subglacial system. This lag can be seen clearly in that the accretion for the
threshold and above-threshold sections does not begin exactly at the onset of the overdeepening.
For these sections, the accretion steps backward towards the onset of the overdeepening from
the outlet point.

The areas of accretion correspond directly to areas where the temperature is below the
freezing point. This observation is clear in comparing melt rates and temperature differences.
These areas vary based upon the internal energy balance, and appear to undulate along the
adverse slope based on where accretion is occurring and how water accelerates to get through
constricted cross-sections.

Water flow along each section is fully turbulent, enabling use of the turbulent heat transfer
relation. The turbulent Nusselt number gives melt rates that are a fraction of the equilibrium
melt rates calculated using either ice overburden pressure or water pressure. Estimates of
accretion, therefore, are biased high when using equilibrium estimates. Conversely, it is possible
to state that the Nusselt number approach underestimates accretion. One argument against
this, though, is that discharge is constant, and viscous dissipation will increase where velocity
increases—where accretion occurs. However, I do not suggest that the accretion rate is correct
using the turbulent Nusselt number because there are other formulations that undoubtedly give
different estimates (e.g., eq. 2.36 v. eq. 2.37).

The below-threshold and flat-bedded case exhibit few of the intricacies as the other sections.
Because water is not forced back to the pressure melting point by the bed slope, these sections
show that the hydraulic systems simply melt open under constant discharge conditions. The
below-threshold case melts open less aggressively than the flat-bedded case because some energy
is needed for the change in the pressure melting point.

Maximum accretion for the threshold and above-threshold sections is in the range 0.02–
0.05 cm for the 100 d simulations. If 100 days sufficiently approximates a melt season, then
there would be about 2–5 m of accretion per century. This rate is less than half the rate seen
at Matanuska Glacier (Lawson et al., 1998), but is certainly reasonable given the simplifying
assumptions inherent in this model. Moreover, Matanuska Glacier has adverse slopes with larger
potential for supercooling (Fig. 6.1) such that estimates presented here would most likely be
lower than field estimates.
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6.1.2 Energy Balance

The two largest fractions of the internal energy balance are the divergence term and the viscous
dissipation term. Figures 6.11 and 6.19 show that the heat balance boils down to trade-offs
among latent heat released through melting, heat divergence in the flow, and viscous dissipation.
A smaller component is borne by the specific kinetic energy, and the sensible heat component
is negligible as noted above. Because the degree of glaciohydraulic supercooling is sensitive to
the friction coefficient, I explore this sensitivity in this section.

The friction coefficient fd requires careful attention because the heat balance depends on
the viscous dissipation term. This coefficient is not clearly defined relative for overdeepened
environments. For outburst floods of the Steele Glacier, (Clarke, 2003) determined that rea-
sonable values of the friction coefficient lie in the range 0.12–0.2. For the case of glacier lake
outbursts, Clarke tuned the friction coefficient by matching the measured flood hydrograph to
the modeled hydrograph. This is possible because both accurate flood hydrographs and water
flowpaths are known. The friction coefficient is tuned via the momentum equation. In the case of
glaciohydraulic supercooling, both flow paths and hydrographs are not well constrained. Thus,
tuning via the momentum equation is not possible. It would be possible to tune the equations
to effluent water temperatures if discharge was known. However, these data are sparse and not
known with great accuracy despite high-spirited studies (e.g., Lawson et al., 1998; Tweed et al.,
2005).

Only the above-threshold section is illustrated. Results are broadly applicable to other
sections. For these examples, I have chosen two different friction coefficients, fd = 0.20 and
fd = 0.12 that bracket the value of fd = 0.16 used in simulations discussed previously. All other
parameters in Table 6.2 remain the same.

Results

Figures 6.20 and 6.21 illustrate discharge variables for fd = 0.20 and fd = 0.12, respectively.
Figures 6.20a and 6.21a show the sheet thickness results. Overall, the plots are similar. Up-
stream thicknesses are dominated by the growth of the sheet as water passes through the flat-
bedded area of the section. Along the adverse slope, the water sheet thickness drops in both
cases because ice forms and constricts the flow. Because discharge is constant (Figs. 6.20c and
6.21c), velocity results shown in Figures 6.20b and 6.21b vary inversely to the sheet thickness
results. Upstream, velocity is slow relative to flow along the adverse slope, where water velocity
increases.

Finer structure of the results results from the difference in the friction coefficient. Maximum
values of the sheet thickness are approximately 0.2 m and 0.18 m at about 150 m from the
terminus for fd = 0.20 and fd = 0.12, respectively. Along the adverse slope, water sheet depths
are also greater for the case of fd = 0.20, owing to the increase friction and higher melt rate. In
the case with higher viscous dissipation, more melt is produced (Fig. 6.22b), enlarging the sheet.
Along the overdeepening, the case of fd = 0.20 has clear gentle undulation in water thickness.
These undulations in water depth yield accompanying undulations in output velocity. Although
undulations also exist in the case of lower friction, the undulations are subdued. The velocity
results show that increased friction lowers the velocity by about 0.1 m s−1 along the flat-bedded
portion of the section and by about 0.2 m s−1 along the adverse slope.

In Figures (c), both simulations match input and outlet water discharge (0.1 m3 s−1), and the
water elevation in the crevasse decays to approximately 32 m for each simulation. In Figure 6.20,
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Figure 6.20: Above-threshold discharge output for fd = 0.20. In (a) and (b), each colorbar has
a different scale. (a) Water sheet thickness. Contour interval is 0.01 m. (b) Water velocity.
Contour interval is 0.01 m s−1 (c) Left axis: Elevation of water in the crevasse. Black dotted
line is the maximum water height and corresponds to the ice surface elevation. Black dashed
line is the flotation limit. Right axis: Water discharge. Gray line is the input into the subglacial
water system. Light gray dotted line contained within the gray line is the effluent subglacial
water discharge.

the crevasse water elevation reaches flotation before the water drains rapidly after six days. This
threshold behavior is also shown in Figure 6.8; however it is absent from Figure 6.21c.

With all other candidate processes removed, it is clear that this threshold feature is related
to viscous dissipation. In Figures 6.8 and Figure 6.20c, the friction is high enough that the
crevasse cannot drain. Because the friction coefficient is high, the sheet melts open rapidly over
the first six days, as shown in Figure 6.20a. The latent heat released is strongly negative over
those first six days, indicating much melt (Fig. 6.23b).

The comparison of accretion characteristics in Figure 6.22 illustrates many similar character-
istics to the discharge results. Aside from the undulations previously discussed, the form of both
temperature differences and both melt rates are similar. For the high-friction case, the temper-
ature difference is less than 0.001 oC higher than that of the low-friction case. Furthermore, the
melt rates are quite similar with the exception of the first six days in the high friction case. The
largest differences are in the accreted ice thickness, which is nearly a centimeter greater for the
low-friction case than that of the high friction case.

Figure 6.23 shows each of the heat balance terms for both cases. In general, each of the
figures on the right hand side for fd = 0.12 are greater in absolute magnitude than the equivalent
plot for fd = 0.20. This contrast is a direct result of the velocity being greater for the low-friction
case. For example, because the viscous dissipation term goes as (ub)3 but is only linear in fd,
the shear heating term is higher for the low-friction case. This additional heat is then available
to be moved in the flow by the divergence term, which also has a dependence on velocity.
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Figure 6.21: Above-threshold discharge output for fd = 0.12. In (a) and (b), each colorbar has
a different scale. (a) Water sheet thickness. Contour interval is 0.01 m. (b) Water velocity.
Contour interval is 0.01 m s−1. (c) Left axis: Elevation of water in the crevasse. Black dotted
line is the maximum water height and corresponds to the upstream ice surface elevation. Black
dashed line is the flotation limit. Right axis: Water discharge. Gray line is the input into the
subglacial water system. Light gray dotted line contained within the gray line is the effluent
subglacial water discharge.

Discussion

Because the melt rate is sublinearly dependent on velocity via the Reynolds number, melt is
slightly higher for the high-friction case. This observation is seemingly inconsistent with the
available heat terms presented in Figure 6.23. However, because of the form in which the heat
balance is presented in equation (6.1), the latent heat, sensible heat, and specific kinetic energy
terms are lower for a higher sheet thickness. Thus, the only necessary condition for an increased
melt rate is that the Reynolds number be higher. The net result is that larger magnitudes of
heat balance terms do not yield greater melt.

Another key aspect of the friction coefficient is that it controls the forced opening and closing
of the subglacial system during the first few days of the simulation for fd = 0.20 and fd = 0.16
presented in the last section. The case of fd = 0.12 does not show the same threshold. This
threshold is exceptional in that it suggests that the pressure driving flow may be above ice
overburden for short time periods to force the entire system to melt open. The water system
reorganizes during this period and then returns to conditions where the input water pressure
is below flotation. Only during these periods does subglacial discharge not match the recharge
rate for a steady forcing.

The range of friction coefficients suggested by Clarke (2003) and explored here does not alter
the subglacial water flow significantly. Water depths, velocities, pressures, and temperatures
are quite similar. The result is that other quantities, such as melt rate, are very similar. For
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Figure 6.22: Accretion characteristics for different friction factors. Figures (a–c) are for fd =
0.20. Figures (d–f) are for fd = 0.12. Each colorbar has a different scale. Contour values are
the same for each pair of figures. (a,d) Temperature depression. Contour interval is 0.001 oC.
(b,e) Melt rate. Contour interval is 5×10−6 kg m−2 s−1. (c,f) Accreted ice thickness. Contours
are 0.001, 0.01, 0.02, 0.03, and 0.04 m.
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Figure 6.23: Components of the local internal energy balance for different friction factors. Fig-
ures (a–e) are for fd = 0.20. Figures (f–i) are for fd = 0.12. Each colorbar has a different
scale. Contour values are the same for each pair of figures. (a,f) Heat divergence term. Contour
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significantly different friction coefficients, the water system does behave differently. A calibrated
bed roughness, or friction coefficient, would be extremely useful but is not possible with present
data sets.
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6.1.3 Effect of porosity of the accreted ice

In Chapter 2, I augmented the original theory of Spring & Hutter to include the porosity of
the accreted ice. Because different selections of ice porosity may change subglacial water flow
it is important to illustrate this modification. In the present formulation, the ice porosity is
constant and needs to be assumed based on field data and experimental analogues. Generally,
an increase in the accreted ice porosity will block flow, and change flow conditions. In this case,
I test two different values: a high porosity case with ni

p = 0.10 and a low porosity case with
ni

p = 0.01. Each of these simulations relies on the above-threshold longitudinal section and the
same model parameters used in the previous sections. The recharge rate is held constant at 0.1
m3 s−1.

Results

Flow variable results presented for ni
p = 0.05 in Figure 6.7 are almost identical to those each of

these simulations. In consequence, those results are not presented. Figure 6.24 presents results
for the temperature difference, melt rate, and accreted ice thickness. Overall, the two figures are
almost identical. The simplest point of reference is the amount of ice accreted from 75–100 d.
More ice accreted for the high porosity case. However, the difference is almost negligible. The
only numerical result that is quite different is that specific kinetic energy for the low porosity
case (not shown) is negligible to the overall heat balance.
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Figure 6.24: Accretion characteristics for different ice porosities. Figures (a–c) are for ni
p = 0.10.

Figures (d–f) are for ni
p = 0.01. Each colorbar has a different scale. Contour values are the same

for each pair of figures. (a,d) Temperature depression. Contour interval is 0.001 oC. (b,e) Melt
rate. Contour interval is 5× 10−6 kg m−2 s−1. (c,f) Accreted ice thickness. Contours are 0.001,
0.01, 0.02, 0.03, and 0.04 m.

Discussion

Overall, the change in porosity is not significant to clear water flows. Trade-offs within the
discharge relationship and the internal energy balance prevent large changes in flow structure.
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Higher porosities yield slightly more accretion and lower sheet thickness. However, these changes
are largely negligible.

Inclusion of porosity in the formulation provides a starting point for any type of porosity
evolution. The flocculation and solidification of subglacial frazil ice is a parallel problem that
will rely on such a formulation. These contribute to the trapping of sediment of sediment at the
glacier bed. Furthermore, if water is to flow from the subglacial system to the englacial system
(e.g., Chapter 5), some porosity is necessary to conduct water between the two systems.
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6.2 Comparison of channels and sheets

One area of interest is the cross-section that is favored by the hydraulic system. Data indicate
that a fast-flowing distributed water sheet is preferred. Observations include continuous layers
of sediment-rich accreted ice at the front of Matanuska Glacier (Lawson et al., 1998). However,
because the large body of theory on R-channels makes them a default model of subglacial flow,
and channel cross sections that have been choked with ice and frozen are observed in these basal
layers, it is necessary to illustrate how a distributed sheet differs from a subglacial channel in
overdeepenings.

Subglacial hydraulic cross-sections can and do dynamically switch. The classic example
of this is morphological switching when cavities changing morphologically into channels (e.g.,
Kamb, 1987; Walder, 1986), (see Fig. 1.1). Sheet to conduit transitions have been modeled
successfully (Flowers et al., 2004). However, both spatial and temporal morphological switching
is a formidable topic. Indeed, even in his lengthy treatise, Kamb (1987) made simplifying
assumptions about the melt rate that are not inherent in the formulation presented in Chapter
2. As a logical consequence, I avoid switching altogether. Instead, I compare and contrast sheet
and R-channel models in order to discern where switches may occur, if ever.

There are simple metrics to estimate when sheets and conduits would be favored. These
chiefly rest with the subglacial water pressure evolution. If water pressures are below the ice
overburden pressure, channelization should occur (e.g., Röthlisberger, 1972; Walder, 1982). On
the contrary, if water pressures are at or above the ice overburden pressure, then water distributes
along the ice-bed interface (Hooke & Pohjola, 1994). Other phenomenological criteria exist for
sheet–conduit transitions for water pressures below ice overburden, but these criteria rest on
configuration and/or sliding assumptions at the ice–bed interface. However, no criterion is more
durable than the relationship of water pressure to ice overburden. These concepts are readily
distinguishable through simulations of longitudinal sections because glacier geometry exerts the
strongest governing constraint on water flow beneath glaciers.

Simulations are presented for semicircular channels. The grid spacing is 2.5 m. All other
parameters are the same as for the sheet simulations. The upstream recharge rate is held at
0.1 m3 s−1. Initial conduit radii are calculated using equation (2.28b). In general, output vari-
ables for channels closely resemble the equivalent figures for sheets. I therefore omit presenting
those results.

6.2.1 Results

Figures 6.25 and 6.26 show the effective pressures for the sheet and channel simulations, re-
spectively. Within these figures areas of negative effective pressure are of particular interest.
For the threshold section and sheet simulation (Fig. 6.25a), areas of negative effective pressure
correspond relatively closely to areas of accretion. However, there are only negative effective
pressures for approximately the final 52 d of the simulation that reach back to approximately
50 m from the terminus at 100 d. The equivalent plot for the channel (Fig. 6.26a) illustrates a
much more complex evolution of channel pressures where the terminus is overpressured between
approximately days 20 and 48. From 48 d to 100 d, the terminus has weakly positive effective
pressures, and the region of negative effective pressures has migrated upstream.

Figures 6.25b and 6.26b illustrate the effective pressures for the above-threshold case. These
two figures largely coincide with one another both temporally and spatially. Most of the section
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Figure 6.25: Effective pressure in meters of water equivalent for subglacial sheets. All colorbars
have different axes. Contour interval is 1 m w.e. (a) Threshold case. (b) Above-threshold case.
(c) Below-threshold case. (d) Flat-bedded case. The time axis ends at approximately 42 d.

is overpressured from the start of the simulation. The smooth curves around 50 d correspond
to oscillations in the crevasse water height at those times.

The remaining figures (Figs. 6.25c,d and 6.26c,d) show that both the below-threshold and
flat-bedded sections have positive effective pressures. Conduit results indicate that they run
at lower pressures than the equivalent sheets and that upstream crevasse water elevations are
lower.

Relative to Figures 6.5b and 6.9b, Figures 6.27a and b indicate that total accretion over the
100 d is higher in the case of channels. For the threshold section, sheet water flow accreted
little more than a centimeter near the terminus. However, for the same section, total accretion
reaches a maximum of approximately 6 cm after 100 d but is less than a centimeter at the
terminus. For the above-threshold section, total accretion is only slightly higher (∼2 cm) and
follows the same general pattern.

One surprising result is that ice accretes along the below-threshold section as shown in
Figure 6.27. Not only is there accretion, but it is also in comparable amounts to the other two
sections in the figures directly above. Obviously, this case is different from the equivalent sheet
flow because that simulation experiences net melting along the entire length.

According to the steady-state theory presented in Chapter 2, accretion is not possible in the
case of below-threshold section conduits. The bed-to-surface slope criterion depends on water
pressure gradients being comparable to ice pressure gradients. However, in this case, water
pressure is only loosely related to ice overburden pressure. The pressure gradient driving flow is
shallower than the ice overburden gradient. As a result, supercooling and ice accretion occur.
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6.2.2 Discussion

Broadly, sheets operate at higher pressures (lower effective pressures) and dissipate more heat
than channels. Channels flow faster and move water more effectively than sheets. The generation
of heat along both the ice ceiling and the sediment floor in the case of sheets means that
supercooling is less dramatic.

For the flat-bedded case, it is clear that, barring microtopography or unusual water input
from the surface, water must flow in conduits. There would not be an impetus for water to
remain in a sheet. The arguments of Walder (1982) hold such that melt concentrates locally,
pressures drop where there is melt, and water flows towards the melting zones. This feedback
continues until a channel forms.

The below-threshold overdeepened simulations are less clear. These simulations show that a
conduit preferentially freezes closed, but that a sheet melts open. Water flows at lower pressure
in the conduit, and these cross-sections will be favored. However, a conduit will slowly constrict
along an adverse slope. This situation may be one where an intermediate cross-sectional form
such as a broad-and-flat channel is favored (Hooke et al., 1990). In addition, some ice-choked
conduits appear in basal ice at Matanuska Glacier (Lawson et al., 1998) that are broader than
they are thick. While it is not certain that these ice-choked channels are below-threshold, wide
channels, their genesis is consistent with results from the model.

Furthermore, these simulations indicate that intermediate bedslopes exist that are below the
steady-state supercooling threshold but still permit water to freeze. This possibility exists when
the upstream pressure driving flow is free to drop well below ice overburden pressure. Pressure
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Figure 6.27: Effective pressure in meters of water equivalent for subglacial channels. All color-
bars have different axes. Contour interval is 1 m w.e. (a) Threshold case. (b) Above-threshold
case. (c) Below-threshold case.

most readily drops in the subglacial system when the system is connected to the surface (e.g.,
Murray & Clarke, 1995). Water pressure can also be lower on the lee side of subglacial bumps
(e.g., Kamb, 1987; Schoof, 2005; Walder, 1986). This case may require additional constraints on
the hydraulic potential (eq. 2.23) to include compressive, longitudinal stresses in the direction of
ice flow (C. Schoof, pers. comm., 2007). Results such as these signify that research into below-
threshold glaciohydraulic thermodynamics may provide additional insight into the subglacial
hydraulic system.

For the above-threshold case, water pressure exceeds ice overburden pressure along most
of the longitudinal section. In this case, water distributes laterally over the bed into a sheet.
Alternatively, water can move into an englacial or subglacial aquifer. For high englacial hydraulic
conductivity, enough water can leave the bed that subglacial pathways are flux-limited (see
eqs. 5.1). Presumably, in this case, water flux lowers and intermediate channels are favored,
such as those discussed above. However, englacial hydraulic conductivities can be orders of
magnitude smaller than either subglacial conductivities. In the case of low englacial hydrualic
conductivity, water must distribute laterally along the bed into subglacial sheets or equivalent
hydraulic cross-sections.

Not surprisingly, the threshold section falls between below-threshold and above-threshold
sections in terms of its behavior. For sheets, only flow along the upper portion adverse slope is
overpressured. Conduits, however, can be overpressured along any part of the adverse slope, and
the pressure changes its spatial distribution throughout the simulation. Based on the effective
pressure, these simulations suggest that there can be along-path changes in hydraulic cross-
section. Along the flat-bedded portion of the section, conduits are favored. Water that ascends
the adverse slope distributes to a subglacial sheet. The location of this change is not necessarily
static in time. Depending on circumstances, it may be possible that the sheet can change back
into a conduit. However, once the conduit transforms into a sheet, it is unlikely that the sheet
will transform back into conduit because the water flows through a sheet at higher pressure.
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In summary, simulations of each type of cross-section reveal negative effective pressures.
These negative effective pressures can determine where switching between cross-sections can
occur (Hooke, 1991). Moreover, there may be intermediate cross-sections that have an inter-
mediate behavior to both a laterally distributed sheet and a semicircular conduit. Locations of
transitions between sheets and conduits vary depending on the surface-to-bedslope ratio. Fur-
thermore, these locations of transitions can vary through time. For high surface-to-bedslope
ratios, distributed systems are clearly favored, provided sub- and superjacent aquifers have low
hydraulic conductivity.
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6.3 Diurnal forcing

Glaciers commonly exhibit diurnal variations in surface meltwater production that yield varia-
tions in sub- and englacial drainage characteristics. Meltwater input to crevasses and moulins
that act to recharge the subglacial water system varies principally with glacier surface tempera-
ture and solar insolation (Hock, 1999). Other factors, such as snowpack thickness and proximity
of melt sources, also affect meltwater recharge to an individual crevasse.

Figure 6.28 captures several features of meltwater recharge and approximates field data
from boreholes (e.g., Flowers & Clarke, 2002b; Hubbard et al., 1995). This synthetic forcing is
a truncated daily sine curve with a peak at 1500h. This peak mimics peaks in glacier melt that
commonly fall in mid- to late afternoon. Melt commonly ceases at night when temperatures drop
below freezing, and borehole water levels respond to various drainage mechanisms. Recharge
and melt are not synonymous inasmuch as water that does not refreeze at night can still recharge
a borehole or crevasse. In addition, a crevasse may be recharged by englacial or subglacial water
flow from up-glacier. However, I ignore this inconsistency and assume that recharge occurs
only during the day and ignore en- and subglacial recharge entirely as these are of secondary
importance.
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Figure 6.28: Synthetic diurnal forcing

I multiply the synthetic diurnal forcing by a background recharge rate, say 0.1 m3 m−1 s−1

for example, to obtain an actual recharge value. Because the peak is set at 1500h, melt begins
recharging the crevasse at 0900h and ceases at 2100h. Each of these simulations is also run for
100 days, starting at 0000h with a crevasse filled such that hydrostatic pressure at its base is
equivalent to ice overburden pressure. Aside from the recharge rate, the only difference between
the clear water and diurnally-forced simulations is that the grid spacing is reduced to 2.5 m for
these simulations from the previous 5 m.

6.3.1 Results

Overdeepened case: threshold section

Based on Figure 6.5b, the threshold case does not accrete much ice. However, as a counterpoint
example, I present the threshold case when forced with diurnal recharge.

Obvious structure appears in the evolution of the daily cycles (not shown). After approx-
imately 20 d, the daily maximum crevasse water elevation reaches the glacier surface for ap-
proximately one hour each day. Within the 12 hour recharge cycle for the remaining 80 days,
recharge raises the water level during the first seven hours. Maximum water elevation in the
crevasse peaks at flotation approximately one hour after the discharge into the crevasse peaks.
The water level then decreases between 1600h and 2200h. Over the course of the simulation, the
daily cycles evolve slightly such that the subglacial system accepts less water, but this effect is
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subdued relative to the magnitude of diurnal oscillations. Maximum discharge from the crevasse
to the sheet decreases from by approximately 0.004 m3 s−1.

Figure 6.29 depicts the final five days of the simulation. Figures 6.29a, b, and c show the
prescribed crevasse recharge rate, the resultant crevasse water height, and the resultant discharge
to the subglacial sheet, respectively. From left to right, each of these figures helps to generate
the next figure. During the middle of the day, the crevasse water height maxima are blunted
because water reaches the surface of the glacier. From approximately 1400h to nearly 1800h the
crevasse water elevation is above the flotation level.

Discharge to the subglacial sheet (6.29c, thicker, solid line) skews to later time and indi-
cates that the subglacial system is not symmetric with respect to recharge and draining. The
downstream outlet discharge (thinner, dashed line) overprints the inlet discharge and indicates
that even though the subglacial water system does not have constant discharge in time, it has
nearly constant discharge in space. Obviously, the discharge changes some small amount as ice
is melted off or accreted to the overlying glacier. This variability is contained within the line
thicknesses.
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Figure 6.29: Final five daily cycles for the threshold case. (a) Discharge into the crevasse
from the surface. (b) Water elevation in the upstream crevasse. Outlet elevation is given by
the dotted line. (c) The thick line is discharge from the upstream crevasse to the water sheet.
Dotted line within the thick line is water discharge at the terminus of the section. (d) Water
velocity. Contour interval is 0.5 m s−1. (e) Effective pressure. Contour interval is 4 m w.e.

Water velocities plotted in Figure 6.29d show the diurnal cycles. During daytime conditions,
water velocities peak at about 2.9 m s−1 near the entrance to the water sheet. This maximum
reflects a change in pressure gradient driving flow. There is also a maximum velocity during the
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day of about 1.3 m s−1 near the terminus that results from a decrease in sheet thickness. Ve-
locities during nighttime conditions hover near 0 m s−1 and can be slightly negative. Maximum
nightly negative values for the 100 d simulation are approximately 10−3–10−4 m s−1. Overall,
the negative velocity values are not especially significant because there is little discharge.

Figure 6.29e delineates the times and locations for changes in the effective pressures. The
effective pressures are dominated by large temporal and spatial swaths of positive values. These
indicate that the water pressure is below the ice overburden pressure. Negative effective pressures
occur from about 1400h to 1900h along the adverse slope. During all other times, effective
pressures are positive along the adverse slope. Spatially, the negative effective pressures occur
from about 80 m upstream from the terminus, which is roughly 27 m from the start of the
overdeepened wedge (Table 6.1). Other negative effective pressures occur within the first six
meters from the upstream crevasse during the daily maximum in crevasse water elevation.
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Figure 6.30: Final five daily cycles for the threshold case. These figures have the same input
conditions as Figure 6.29. (a) Reynolds numbers. Contours are 2100, 10000, 30000, and 50000.
(b) Melt rate. Contour interval is 2 × 10−5 kg m−2 s−1. (c) Closure rate. Contour interval is
5.2× 10−1 m s−1.

The variability in the Reynolds numbers is subdued. Daily maxima are reached at approximately
1600h. During the night phase, Reynolds numbers are in the laminar range. Between 0900h
and 1000h, flow becomes turbulent as meltwater infiltrates the upstream crevasse. Similarly,
between 2100h and 2200h, flow becomes laminar as the crevasse drains to its minimum elevation.
These changes mean that during nighttime conditions the melt rate (Fig. 6.30b) switches from
the regular turbulent Nusselt number (eq. 2.36) to the laminar formulation (eq. 2.40b). The
melt rate is approximately 0 kg m−2 s−1 during the nighttime.
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Melt rates during daytime conditions contain much structure. Along the flat-bedded portion
of the section, melt dominates in a fashion similar to Figure 6.6a. These melt rates increase as
both the Reynolds number and temperature change increase and subsequently decrease during
the day. Along the adverse slope, melt rates are initially near zero and decrease to a minimum
at approximately 1100h. Melt rates then increase and maintain positive values between about
1330h and 1900h. Melt rates then return to negative values before entering the nighttime phase.

Closure rates are dependent on the effective stress. Therefore, the highly negative closure
rates mimic the effective stresses. There is a juxtaposition of process in the daily cycles. Days
are dominated by melting and freezing with very little closure. At night, closure dominates the
evolution of the subglacial water sheet.

The net results of the cycles are plotted in Figure 6.31. Qualitatively, the water sheet
thickness looks very much like the results for the steady flows (Fig. 6.3). However, the bulge
around 100 m from the terminus is about 0.05 m shallower for the case of the daily cycles. In
addition, there are daily variations in sheet thickness because of nightly closure and daily melt
cycles. Total closure acts most effectively on the upstream portion of the sheet (Fig. 6.31c). Ice
accretes at the terminus in this case (Fig. 6.31b). Maximum values are approximately 0.015 m
at the terminus.
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Figure 6.31: Results for the threshold case with daily cycles. Variability of the thickness of the
contour lines is indicative of movement of the contours over the daily cycles. (a) Water sheet
thickness. Contour interval is 0.01 m. (b) Accreted ice thickness. Contours represent 0.001,
0.05, 0.1, and 0.15 m. (c) Reconstructed total closure. Negative values indicate ice intrusion
into the sheet. Contour interval is 0.03 m.
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Overdeepened case: above-threshold section

Simulations for the above-threshold overdeepened section have many characteristics that are
similar either to above-threshold simulations with a constant recharge rate or to the thresh-
old case with diurnal forcing. Other characteristics bear a stark contrast to either of those
simulations.

Figure 6.32a shows the exact same recharge condition as Figure 6.29a. However, the resultant
crevasse water elevation and subglacial discharge have truncated peaks. Furthermore, the above-
threshold case develops continuously over the course of the simulation. Structure is clearly
visible in the evolution of the daily cycles (not shown). In the first day, the daily maximum
crevasse water elevation reaches the glacier surface between 1500h and 1700h. By the end
of the simulation, the crevasse water elevation reaches the surface between 1300h and 1900h
(Fig. 6.32b).

Evolution of crevasse water elevations are driven by the decrease in discharge from the
crevasse to the subglacial sheet over 100 d. Maximum discharge evolves from approximately
0.095 m3 s−1 on the first model day to 0.053 m3 s−1 on model day 100 (Fig. 6.32b). Discharge at
the terminus closely mimics input discharge such that the maximum difference is approximately
2× 10−5 m3 s−1.
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Figure 6.32: Final five daily cycles for the above-threshold case. (a) Discharge into the crevasse
from the surface. (b) Water elevation in the upstream crevasse. Outlet elevation is given by
the dotted line. (c) The thick line is discharge from the upstream crevasse to the water sheet.
Dotted line within the thick line is water discharge at the terminus of the section. (d) Water
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The result of the conspicuous evolution of the input discharge is that transitions from the low-
discharge, nocturnal portion of the cycle the high-discharge, diurnal portion of the cycle become
progressively more rapid. Figures 6.32d and e illustrate these transitions for the velocity and
effective pressure for the final five days.

For these five days, daily maximum velocities of about 1.7 m s−1 occur near the upstream
entrance. Throughout the simulation, the location of the daily maximum is steady, but its
magnitude evolves smoothly over the first 40 d from a minimum value of about 1.1 m s−1.
There is also a strong velocity maximum along the adverse slope approximately 60 m from the
terminus. This feature is not constant, but begins at the terminus at approximately 20 d and
moves upstream over the final 80 d.

Figure 6.32e illustrates that effective pressures during the day are negative along the the
length of section. Morning and evening transitions are also abrupt. Because upstream crevasse
water elevations reach the surface during much of the day, inlet conditions suggest that effective
pressures are negative.

The temperature relative to the freezing point shows several interesting features (Fig. 6.33).
Upstream, daily maximum temperature differences are near 2.5× 10−3 oC, but nightly temper-
ature differences drop to 0 oC. Along the adverse slope, daily maximum temperature differences
are approximately 1.6 × 10−3 oC. These drop sharply with the evening transition to about
−6× 10−3 oC before recovering to values near zero. With the onset of the daily cycle, temper-
atures again drop well below freezing before climbing to the daily maximum.
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Figure 6.33: Final five daily cycles for the above-threshold case. (a) Difference between the
water temperature and the melting point. Contour interval is 0.001 oC. (b) Melt rate. Contour
interval is 5× 10−6 kg m−2 s−1. (c) Closure rate. Contour interval is 2.1× 10−1 m s−1.
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The result of these temperature swings is that the melt rate is largely positive during the
day, with the exception of about 60–90 m upstream from the terminus where they are slightly
negative. During the morning and evening transitions, the melt rate along the adverse slope is
strongly negative. Despite the temperature difference being fairly large during the night phase,
water discharge is low. The result is that the melt rate is small and negative. Thus, accretion
largely occurs during the morning and evening transitions. During the day, ice melts along the
adverse slope. During the night, little happens via melt.

Closure of the water system is dependent on effective pressure. Because effective pressures
are large at night, closure proceeds almost entirely at night (Fig. 6.33c). Therefore, during the
morning and evening transitions, the subglacial sheet along the adverse slope is dominated by
freezing. During the daytime, the sheet melts open. At night, ice intrudes into the sheet. Along
the flat-bedded portion of the section, the sheet melts open during the day. At night, the ice
intrudes vigorously into the flat-bedded portion.

The net result of these processes is shown in Figure 6.34. The sheet decreases on input owing
to the high amount of closure. From about 100 m from the terminus to the terminus, closure of
the sheet mainly occurs through accretion of ice. Maximum values are upwards of 0.03 m. This
value is roughly the same as that of the steady flow (Fig. 6.9b).
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Figure 6.34: Results for the above-threshold case with daily cycles. Variability of the thickness
of the contour lines is indicative of movement of the contours over the daily cycles. (a) Water
sheet thickness. Contour interval is 0.01 m. (b) Accreted ice thickness. Contours represent 0.001,
0.1, 0.2, and 0.3 m. (c) Reconstructed total closure. Negative values indicate ice intrusion into
the sheet. Contour interval is 0.01 m.
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Overdeepened case: below-threshold section

Not surprisingly, the below-threshold section closes upstream, where ice thickness is greatest,
and melts open near the terminus (Fig. 6.35). Upstream, relatively steady water depths are
reached after approximately 20 d. Downstream, the water sheet dilates from melt throughout
the integration time.
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Figure 6.35: Water sheet thickness results for the above-threshold case with daily cycles.
Variability of the thickness of the contour lines is indicative of movement of the contours over
the daily cycles. Contour interval is 0.01 m.

Figures 6.36a, b, c show the recharge into the crevasse, the crevasse water elevation, and
subglacial discharge, respectively for the last five days of the one hundred-day simulation. Rel-
ative to the recharge rate, crevasse water elevation and subglacial discharge are skewed to later
times. This result is consistent with previous examples of daily cycles. The water pressure in
the crevasse is above flotation for approximately two hours starting at 1515h, but does not reach
the ice surface elevation. Figure 6.36b is the only diurnal example where this is true. Both the
discharge into the subglacial water system and discharge at the terminus closely match each
other and the recharge rate, which is consistent with the subglacial system accepting all water
that feeds the upstream crevasse. Furthermore, the water system has similar peak discharge for
the final 80 d of the simulation. Thus, these results are largely indicative of the system as for
those days.

Figures 6.36d and e illustrate several important features of the heat-transfer of the below-
threshold section. Temperature differences are mainly positive throughout the day, as would
be expected for a system that melts open. However, along the adverse slope from 80 m to
the terminus, accretion occurs during the morning and evening hours. Melt rates are largely
negative along the adverse slope during the morning, evening, and night. However, these melt
rates are small. Viscous dissipation overwhelms the other terms in the heat balance during the
day. Thus, there is no accretion.

Lower discharge. If the peak recharge rate is lower, say 0.05 m3 s−1, then it is possible to
accrete ice along the below-threshold section. Figure 6.37a illustrates the water depth evolution.
All other simulation parameters are the exact same as for Figure 6.35. Contrasting these to
figures, it is clear that the evolution of the sheet is quite different for both. Sheet thickness
decreases along the adverse slope for the lower recharge rate with a maximum accretion over
0.02 m (Fig. 6.37b). Upstream, the sheet thickness is lower for the low recharge rate because
less water passes through the system. Thus, less melting occurs upstream.

For the lower-recharge case, Figure 6.38 is equivalent to Figure 6.36 for the higher-recharge
case. Clear differences exist because the discharges are approximately half (Fig. 6.38a, c).
Crevasse water elevation is quite similar for both cases, but the lower-discharge case only has
values over flotation for about one half hour around 1700h each day.
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Figure 6.36: Final five daily cycles for the below-threshold case. (a) Discharge into the crevasse
from the surface. (b) Water elevation in the upstream crevasse. Outlet elevation is given by the
gray dashed line. Maximum water elevation is given by the black dotted line. The black dashed
line indicates the flotation level. (c) The thick line is discharge from the upstream crevasse to
the water sheet. Dashed line within the thick line is water discharge at the terminus of the
section. (d) Temperature depression. Contour interval is -0.003 oC. (e) Melt rate. Contour
interval is 3× 10−5 kg m−2 s−1.

More telling are the temperature depressions and melt rates. Figure 6.38d shows that tem-
perature depressions are lower during the day for all areas of the sheet. During the evening and
morning the temperature depressions are higher along the adverse slope, indicating that there
is less accretion for this case relative to the higher-recharge rate case. Figure 6.38e illustrates
that the melt rates are less by about 4 kg m−2 s−1.

For both cases, during the morning and evening, accretion occurs along the adverse slope.
Nighttime is insignificant in terms of the accretion because discharge is low. Even with negative
temperature differences, the lack of discharge drives the melt rate to zero. During the day, for
the higher-recharge case, viscous dissipation overwhelms the other terms in the heat balance
because the velocity is relatively high. The total daytime melt exceeds the morning and evening
accretion. In contrast, daytime melt does not exceed morning and evening accretion for the
lower-recharge case.

The effective pressures for the lower-discharge case are positive (Fig. 6.39a). This result
suggests that even with accretion, the below-threshold case favors a conduit. However, after
significant accretion, the conduit may give way to a hybrid conduit–sheet form such as broad-
and flat-channels (e.g., Hooke et al., 1990). Furthermore, closure rates are strongly positive at
night (Fig. 6.39b) and positive, but near zero during the day.
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Figure 6.38: Final five daily cycles for the below-threshold case with lower discharge. (a) Dis-
charge into the crevasse from the surface. (b) Water elevation in the upstream crevasse. Outlet
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6.3.2 Discussion

The diurnally forced simulations suggest that there are several fundamental time periods for wa-
ter flow. I break these up into morning, daytime, evening and nighttime. Morning and evening
conditions are similar but opposite in sign and are shoulder or transition periods between day-
time and nighttime conditions.

1. During morning, crevasse water elevation rises from its nightly minimum. Water
discharge rises in concert with the input water elevation. Reynolds numbers indicate
an almost immediate onset of turbulence with the beginning of the daily cycle. Ice
accretes to the glacier base. Effective pressures decrease, and sheet closure occurs but
is low.

2. During daytime, crevasse water elevation rises above the flotation limit. In some
cases, crevasse water elevation reaches the glacier surface. Water flow reaches its peak
discharge, and viscous dissipation melts ice from the base of the glacier. Effective
pressure reaches its maximum and sheet closure ceases or is very low. Accretion is
possible, but it is low.

3. During evening, crevasse water elevation and subglacial water discharge fall. Ice ac-
cretion occurs. Effective pressures decrease. Sheet closure occurs, but is low. The
evening extends up to one hour beyond the cessation of recharge into the crevasse,
indicating that there is a lag caused by the subglacial drainage system.

4. Through the night, crevasse water elevation drops to its nightly minimum, and water
discharge is low to zero. Effective pressures are high, and sheet closure accelerates.
Temperature depressions are largely below freezing; however, the lack of discharge
precludes significant accretion. The nighttime ends punctually with the onset of melt.

In conjunction with subglacial discharge, ice-bed configuration determines how daily cycles
behave. Upstream ice thickness limits maximum water pressure to approximately 110% of
flotation pressure. Maximum water pressure at inlet and atmospheric pressure at water outlet
help to determine along-path pressure gradients that drive water flow. The speed at which the
water system passes through the shoulder periods is determined by the pressure gradients and
the bed-to-surface slope ratios. For example, the above-threshold section has rapid transitions
in less than a few hours. In contrast, the lower discharge simulations for the below-threshold
section vary gently throughout the diurnal cycle.

In the case of steady recharge, maximum accretion focuses some distance back from the
terminus. In the case of diurnally varying recharge, maximum accretion occurs at the down-
stream terminus. Studies at discharge vents at Matanuska Glacier (Lawson et al., 1998), water
outlets at Bering Glacier (Fleisher et al., 1998), and at various locations in Iceland (Roberts
et al., 2002), indicate that much accretion can occur near the outlet. However, glaciers with
exposed basal ice possibly accrete ice upstream and transport these accreted layers through
glacier movement. Radar profiles at Matanuska Glacier indicate that the basal ice thickness
is nearly constant through the overdeepening and suggest that net accretion occurs upstream
(Lawson et al., 1998). However, where this accretion occurs along the adverse slope is not clear,
but it most likely occurs at the farthest downstream extent of the adverse slope.

Net accretion for the longitudinal sections is in the range 0.01–0.04 m. If a hundred days
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accurately represents a melt season, then net accretion is 1–4 m per century. This amount of
accretion is one quarter to one half of an equivalent amount at Matanuska Glacier (Lawson et al.,
1998). However, bed-to-surface slope ratios are less aggressive in the simulations presented here
than at Matanuska Glacier. Modeled accretion rates are compatible with field data for results
presented here.

In terms of sheet to conduit transitions, there may be both spatial and temporal transitions
based on the effective pressure criterion discussed in Section 6.2. These transitions can occur for
either threshold or above-threshold longitudinal sections. During nighttime, effective pressures
are high, and closure dominates the subglacial water system. There is very little water flux
during the night, and as a result, there would be little water to channelize. However, if there are
incipient channels either melted into the ice or eroded out of the bed, then water would retreat
to these hydraulic lows during the night.

During daytime, an incipient channel would flood laterally into a subglacial floodplain to
create a sheet. For the above-threshold section, the entire subglacial system would transform
into a sheet system for the entire overdeepening illustrated here. For the threshold section, only
part of the area along the adverse slope transforms to a sheet. Broadly speaking, there is most
likely a range of intermediate behaviors between these two, whereby different extents of the
overdeepening transform between sheets and conduits. More extreme morphological switching
behaviors may exist for higher bed-to-surface slope ratios.

Below-threshold section effective pressure results are complementary to similar results dis-
cussed in Section 6.2. Effective pressures are positive, but accretion occurs. A typical channel
might not be favored by the hydraulic system, but water cannot spread into a sheet. Again,
a logical conclusion is that there is an intermediate channel-like form that can conduct wa-
ter. In addition, these intermediate cross-sections may be dependent on discharge. For the
lower-discharge case, net accretion occurs, but for the higher-discharge case, there is no net
accretion. Therefore, an intermediate channel cross-section may be favored by lower discharge
flows. It is worth noting, however, that R-channels are only a default cross-section. Other forms
undoubtedly exist subglacially.

6.4 Sediment transport

By extending the governing equations to include sediment transport, one can examine numerous
other questions of glacier hydrology and erosion. The two questions that are most pertinent to
glaciohydraulic supercooling are: (1) Under what conditions does the bed aggrade or erode? and
(2) How much sediment can be accreted to the base of the glacier? The first question pertains
to how the configuration of the ice and bed evolves. Specifically, Alley et al. (2003b) hypoth-
esized that alluvial glacier beds should tend toward threshold bed-to-surface slope conditions.
Answering the second question gives insight into how glaciers entrain sediment. In particular,
the amount of entrainment can be used to bound both processes and rates along a glacier bed.

The sediment transport equations build upon the clear water equations.13 Additional terms
are introduced to account for erosion and sedimentation along the bed. When there is no sedi-
ment present in the flow, the sediment transport equations collapse to the clear water equations.

13I designate the equations in Chapter 2 as “clear water” equations. However, an alternative but equally valid
designation is “non-erosive” or “hard bed” equations for the situation when the bedrock is immobile.
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6.4.1 Model details

In order to implement sediment transport, several parameters are necessary. These parameters
are summarized in Table 6.4. The sediment density could take a range of values, but I assume
a value of 2500 kg m−3, which is close to the density of quartz sand (∼2650 kg m−3). von
Karman’s constant is a constant of proportionality for the turbulent mixing length. Its value
presented here is in ordinary usage in the sediment transport literature.

Table 6.4: Model parameters specific to sediment transport.

Parameter Value Units Notes
Sediment entrainment coefficient C3 1 [unitless] see eq. (4.4)
Median grain diameter D50 0.001 m see eqs. (4.20),

(4.21), (4.30)
Grain diameter of the 90th D90 0.0018 m see eq. (E.17)
percentile
Friction coefficient fd 0.16 [unitless] see eq. (2.24)
Grain friction coefficient f ′d 0.0176 [unitless] see eq. (4.31)
Adaptation length Ls 10 m see eq. (4.4)
Porosity of the bed ns

p 0.35 [unitless] see eq. (4.7)
Active fraction of the bed ns

a 0.5 [unitless] see eq. (4.23)
Maximum crevasse recharge rate Qmelt 0.05 m3 s−1 see eq. (F.10)
Sediment mass density ρs 2500 kg m−3

von Karman’s constant κs 0.4 [unitless] see eq. (E.12)

Other parameters are related to the semiempirical sediment transport formulae of van Rijn
(1984a,b). The bed porosity is exactly the value put forth in these papers. In addition, median
and 90th percentile grain sizes are meant to coincide with the sand-bed equations. The median
grain size represents coarse sand, and the 90th percentile represents very coarse sand. Other
grain size choices would be acceptable; however, I weight these choices on the large size of sand
to account for the poorly sorted nature of glacial sediments. Because I assume that the silt
and finer sizes behave as fine sand, these are accounted for in the suspended load calculations.
The active fraction of the bed ns

a, is based on the sediment distribution used in the closure
relationship. Exactly half the bed is composed of sand and smaller grain sizes. All of these sizes
are assumed to be mobile. Data from Matanuska Glacier corroborate these assumptions where
sand and silt appear to be the dominant grain sizes discharged (Lawson, 1979).

With the sediment entrainment coefficient set as unity, the concentration of sediment en-
trained in the ice is assumed to be exactly the same as the concentration of sediment in the
flow. When the sediment entrainment coefficient is set greater than unity, the assumption is that
the sediment entrainment processes are efficient at extracting sediment from the water. Pro-
cesses, such as frazil ice filtering of sediments, are acknowledged from field studies (e.g., Lawson
et al., 1998). Without baseline studies, it is impossible to know what value is acceptable for the
sediment entrainment coefficient. I make the conservative assumption that this factor is unity.

The adaptation length Ls, is the distance over which nonequilibrium flow becomes an equi-
librium flow. For bed load, this value should be low (∼1 m). For suspended load, this value
can be higher. Furthermore, as reviewed in Chapter 4, the adaptation length governs numerical
convergence. Smaller values require longer times to converge. The value of 10 m strikes a bal-
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ance between physical definition of Ls and the computational difficulty of simulating sediment
transport. In addition, I have tested lower values of Ls but have found little overall difference
in the results.

In Table 6.4, I assign the grain roughness coefficient f ′d as 0.0176. This value accounts for
11% of the overall friction along the bed. Even though this value is lower than the value of
15–20% discussed in Chapter 4, it still allows sufficient sediment motion. The reason the grain
roughness can be set at such a low value is that the friction coefficient fd, is set high relative to
subaerial fluvial values. In addition, I choose this value based on numerical tests that suggest
that values at 15–20% of overall friction are excessive.

6.4.2 Initial and boundary conditions

In Table 6.4, I lower the maximum crevasse recharge rate to 0.05 m3 s−1. While lower than the
value of 0.1 m3 s−1 used in the previous simulations, it is within the range of 0.001–0.3 m3 s−1

observed at field locations and discussed previously. Lower discharge aids in numerical solution
of the governing equations. The evolution of the subglacial discharge is important to sediment
transport, and I discuss how the recharge rate is relevant to the subglacial system later in this
chapter. Finally, the upstream recharge rate follows the diurnal cycle illustrated in Figure 6.28.

Suspended and bed load sediment concentrations in the subglacial water system are initial-
ized to equilibrium conditions using the semiempirical sediment transport relationships. The
initial water velocity is calculated as a steady state velocity. Sediment concentrations in the
accreted ice are assumed to be zero.

Upstream boundary conditions on sediment transport are set such that there is no upstream
gradient in sediment concentration: ∂λs

s/∂s = ∂λb
b /∂s = 0. Another acceptable boundary

condition would be that λb
b = λb

b = 0, implying that influent water contains no sediment. The
trouble with specifying concentrations is that the subglacial water is probably not clear prior
to entering the longitudinal section. Even though water that recharges a subglacial hydraulic
system is commonly sediment-free, the upstream crevasse in the present scenario is simplified
representation of the upstream water supply. While neither sediment boundary condition is
ideal, the condition on the concentration gradient more closely describes the subglacial system.

All other initial and boundary conditions are those for the clear water simulations. In
addition, these simulations are only for subglacial hydraulic sheets.

6.4.3 Results

Overdeepened case: Threshold section

The crevasse water elevation evolves such that the water elevation reaches the surface on day
12 during the daytime (Fig. 6.40a). For the first 37 d, the nightly water elevation returns to
approximately 22 m, which is the elevation of the terminus. The subglacial system remains
saturated at all times. After day 37, the minimum nightly crevasse water elevation rises over
the remainder of the simulation to about 32 m. This nighttime rise indicates that the crevasse
is not draining completely.

The crevasse does not drain completely during the nighttime because the subglacial discharge
is decreasing over the course of the model run. Figure 6.40b shows that the maximum daily
discharge is exactly the recharge condition, 0.05 m3 s−1. Over the course of the simulation,
discharge decreases to approximately 0.004 m3 s−1 during daytime and 0.003 m3 s−1 during
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nighttime. Nighttime discharge is coincident with nonzero crevasse pressure gradients driving
water flow.
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Figure 6.40: Daily cycles with erosion: Threshold case. (a) Water elevation in the upstream
crevasse. Uppermost dotted line is the elevation of the glacier surface. Dark dashed line indicates
the equivalent flotation elevation. Lowermost, gray dashed line is the elevation of the terminus.
(b) Discharge from the crevasse to the subglacial water system.

Discharge falls over the course of the simulation because the water sheet decreases in thick-
ness. Figure 6.41a illustrates the decreases of the water depth from its starting value near 0.1 m
to below 0.01 m. This occurs over the first 85 d of the simulation. After about 88.7 d, low water
discharge and water depth cause the bedload equations to produce inaccuracies in the numerical
integration. However, the numerical solver is able to integrate until 98.7 d. In consequence, I
show only up until day 85. Failure of the numerical integration scheme is a consequence of the
limited degrees of freedom of the modeled physical system, as I discuss below.

Candidate processes for closing the water sheet are ice intrusion, sedimentation, and ac-
cretion. Figure 6.41b rules out ice intrusion because closure is extremely small over the 85 d.
Sedimentation is clearly a factor in the decrease of water depth (Fig. 6.41c). Much sedimenta-
tion (>0.1 m) occurs at the upstream end of the adverse slope. At the upper end of the adverse
slope, sedimentation occurs, but is slow relative to the upstream end, especially after day 40,
when little sedimentation occurs.

Figure 6.42a illustrates that accretion is low for the threshold case. Total accretion is slightly
above 0.01 m near terminus. This result is consistent with all other simulations of threshold sec-
tions, where the accreted ice thickness is near zero. Furthermore, accretion begins downstream
of the onset of the adverse slope. After 25 d, accretion begins at 55 m from the terminus, which
is downstream of the onset of the supercooled slope at about 107 m.

The total volumetric concentration of sediment in the ice varies near the terminus but is
low. Relatively high concentrations occur for low accreted ice thicknesses. These concentrations
occur prior to 37 d. After 37 d, concentration drops off in the accreted ice.

The daily cycles illustrated in Figures 6.43a–c detail the relationship of crevasse recharge,
crevasse water elevation, and subglacial discharge for days 80–85. Despite large variations
in the recharge, there is little variation in the discharge to the subglacial system from the
upstream crevasse. Downstream discharge mimics upstream discharge in the same manner as
all previous simulations. In addition, the crevasse water elevation lags the recharge rate by
about three hours. During nighttime, the crevasse water elevation drops nearly linearly because
the subglacial discharge is approximately constant.
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Figure 6.41: Daily cycles with erosion: Threshold case. (a) Thickness of the subglacial water
sheet. Contour interval is 0.01 m. (b) Total ice closure. Contour interval is 3 × 10−6 m.
(c) Change in bed elevation. Positive values indicate sedimentation. Contour interval is 0.01 m.

The daily variations in melt rate illustrated in Figure 6.43c show that accretion occurs from
about midnight to noon. Melt occurs during the remainder of the day. Along the flat-bedded
portion, melt occurs at all times but is highest from 1600h to 1700h. Accretion occurs only on
the adverse slope. Because water discharge is constant, the system is able to sustain accretion
at night. This result contrasts with the clear water case where discharge was zero and accretion
was negligible at night.

Figure 6.43e shows the total sediment supply, both bed load and suspended load, from the
bed. Where the supply is negative, sedimentation occurs. During nighttime, there is little
sedimentation. During the day, there is much sedimentation with most of it occurring in the
early part of the afternoon along the flat-bedded portion of the section. Sedimentation drops
off sharply from 140 to 75 m from the terminus as the water loses its sediment load. Because
the water is losing its sediment load, there is little sediment that can be accreted. Thus, in
Figure 6.42b, the drop in sediment concentration occurs because accretion happens at night
while sediment transport occurs during the day.

Prior to day 37, sediment transport and accretion occur at nearly the same time (not shown).
During the early part of the simulation, accretion still occurs during the shoulder times of
morning and evening, but there is enough sediment in the flow that elevated concentrations are
captured by the accreted ice.

Figures 6.44a–c show the total sediment load in the subglacial system, the suspended load,
and the bed load, respectively. Sediment load is largely dependent on the daily discharge being
relatively high. Even though the discharge varies by only about 0.001 m3 s−1 from daytime
to nighttime, this is enough to stimulate sediment transport. In addition, concentration in
the water exceeds concentration in the ice by two orders of magnitude. Both suspended and
bed load sediment concentrations are low. These are approximately factors of 5–10 lower than
concentrations observed at Matanuska Glacier (Lawson et al., 1998).

Water velocities range from 0.3 to 0.5 m s−1. In terms of the Hjulström diagram (Fig. 4.2),
these velocities should imply erosion. However, the Hjulström diagram was developed for rivers
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Figure 6.42: Daily cycles with erosion: Threshold case. (a) Accreted ice thickness. Except for
the first contour at 0.001 m, the contour interval is 0.01 m. (b) Concentration of sediment in
the basal ice. Contour interval is 2 × 10−5. Blocky contours upstream prior to day 25 are a
numerical artifact and result from low accretion ice thickness.

with higher hydraulic radii than simulated subglacial sheets. For comparison, Reynolds numbers
have a daytime peak at about Re=2700 during days 80 to 85. At night, Reynolds numbers drop
to about 1600. In consequence, the subglacial system is tending toward a low-flow state that is
not accurately captured by the Hjulström diagram.

In sum, the hydraulic system becomes choked with sediment over the course of the simu-
lation. Silting of the hydraulic system prevents significant drainage of water. Because of the
blockage, the numerical solver eventually fails because there is no optional routing for the dis-
charge. Sediment choking is compatible with field observations. Furthermore, as the subglacial
system chokes with sediment, accretion switches from occurring during morning and evening to
occurring at nighttime. As a result, ice that accretes at nighttime has low sediment concentra-
tions. Overall, ice accretion is low when the hydraulic system chokes.
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Figure 6.43: Daily cycles with erosion: Threshold case. (a) Recharge into the subglacial water
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Positive values indicate erosion. Contour interval is 3.6× 10−6 kg m−2 s−1.
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Figure 6.44: Daily cycles with erosion: Threshold case. (a) Total concentration of sediment
in subglacial water. Contour interval is 5 × 10−5. (b) Concentration of suspended sediment in
subglacial water. Contour interval is 0.1 g L−1. (c) Bed load transport rate in subglacial water
(converted from volume concentration and velocity). Contour interval is 0.2 g m−1 s−1.
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Overdeepened case: Above-threshold section

The crevasse water elevation reaches the surface of the glacier after 21 d (Fig. 6.45a). During
the remaining days of the simulation, crevasse water elevation reaches the surface of the glacier
during the daytime. In contrast to the threshold section, the above-threshold section is able to
drain completely at night. The crevasse is able to drain in the above-threshold case because the
ice thickness is about 11 m thinner than the threshold case.

After 21 d, the maximum daily discharge to the subglacial hydrology from the crevasse
decreases from 0.05 to about 0.008 m3 s−1. Minimum nighttime discharge is negligible. There
is not a particular discharge that the above-threshold case strives to maintain; however, the
subglacial discharge decreases significantly.
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Figure 6.45: Daily cycles with erosion: Above-threshold case. (a) Water elevation in the
upstream crevasse. Uppermost dotted line is the elevation of the glacier surface. Dark dashed
line indicates the equivalent flotation elevation. Lowermost, gray dashed line is the elevation of
the terminus. (b) Discharge from the crevasse to the subglacial water system.

Minimum water depths are below 0.02 m but above 0.01 m after 80 d (Fig. 6.46). The water
depth responds nearly in unison over the entire length. Downstream water depth evolution
precedes the upstream end by a day or two. Much of the evolution of the water sheet occurs
within the first 21 d when the sheet drops over 0.03 m. Figure 6.46b illustrates that ice intrusion
into the sheet is negligible. Maximum intrusion occurs upstream and is about 2 × 10−5 m. In
terms of water depth, ice intrusion is almost irrelevant.

However, sedimentation is not negligible. Figure 6.46c shows that over the course of 100 d,
maximum sedimentation of about 0.1 m occurs at the start of the adverse slope. Sedimentation
also occurs along the adverse slope for most of the first 50 d. During the final 50 d, the erosion
steps upstream from the terminus to about 100 m from the terminus by the end of the simulation.

Ice accretion is also important in reducing water depth over the course of 100 d. Figure 6.47
shows that maximum accretion is at the terminus and is over 0.06 m at 100 d. This amount
of accretion is roughly double the amount for daily water cycles with clear water flows. The
spatial lag between the onset of the adverse slope and the onset of accretion is also smaller for
the case with sediment motion.

The volume concentration of sediment in the ice varies but is greatest near the terminus.
Maximum values are about 1.3× 10−4. After about 60 d, the concentration of sediment in the
ice begins to decrease.
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Figure 6.46: Daily cycles with erosion: Above-threshold case. (a) Thickness of the subglacial
water sheet. Contour interval is 0.01 m. (b) Total ice closure. Contour interval is 3× 10−6 m.
(c) Change in bed elevation. Positive values indicate sedimentation. Contour interval is 0.01 m.

Meltwater recharge to the upstream crevasse, crevasse water elevation, and discharge in
the subglacial water system are illustrated in Figures 6.48a–c, respectively. Response of the
crevasse water elevation follows the onset of daytime conditions at 0900h. Maximum crevasse
water elevation is reached by noon, and crevasse water elevation begins to drop at 2000h. The
system has a time lag such that the minimum water elevation is reached at about 0700h. The
daily cycle then repeats.

Over the last five days of the simulation (Fig. 6.48d), the melt rate is largely negative,
indicating of accretion. During the morning, daytime, and evening, melt rates are strongly
positive along the flat-bedded portion of the section. From 0700h to 0900h, during the end of
the night phase, melt rates are negative along the flat-bedded portion. However, the lack of
discharge precludes accretion. Downstream, accretion occurs from about 100 m to the terminus
and is strongest during the morning and evening. This result is consistent with results from
clear water diurnal forcing for the above-threshold section.

Figure 6.48e reveals that sediment supply from the bed is negative upstream for most of the
day. Along the final 75–100 m from the terminus, erosion occurs during the daytime. Little
sediment is available to the hydraulic system during the morning, evening, or night portions of
the diurnal cycle. Small amounts of sediment are present throughout the night, and these are
deposited nearly uniformly along the section.

Sediment concentrations illustrated in Figures 6.49a–c, show that sediment transport de-
creases over the final five days during the daytime. Total sediment concentrations are highest
upstream. As water flows downstream, sediment is deposited along flat-bedded portion of the
section. Suspended sediment load and bed load are lower than field studies, but are higher
than the concentration of sediment accreted in the ice. This result corresponds to sediment
transport occurring largely within the daytime portion of the diurnal cycle. Very little sediment
is mobilized during the morning or evening when accretion rates are higher.

Maximum daily discharge, therefore, crosses a threshold at approximately 60 d when less
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Figure 6.47: Daily cycles with erosion: Above-threshold case. (a) Accreted ice thickness. Except
for the first contour at 0.001 m, the contour interval is 0.01 m. (b) Volume concentration of
sediment in the basal ice. Contour interval is 2× 10−5.

sediment is mobilized. As a result, less sediment is captured by the accreted ice, and the accreted
ice becomes cleaner over the final 40 d of the simulation.

Maximum daily water velocities over the final five days of the simulation reach 0.5 m s−1.
In terms of the Hjulström diagram (Fig. 4.2), these velocities should produce erosion albeit
by a nominal amount given a D50 of 0.001 m. Maximum daytime Reynolds numbers for the
final five days peak at about 5000, which is a consequence of shallow water depths. As a
result, the Hjulström diagram is not necessarily a valuable tool for estimating whether subglacial
water sheets will erode or deposit sediment because the diagram is intended for use with higher
hydraulic radii and higher Reynolds numbers. Still, the Hjulström diagram does indicate that
the erosion–transportation–sedimentation thresholds are bunched together, which is what the
above-threshold simulations indicate. In sum, the Hjulström diagram is loosely analogous to
what occurs in the subglacial alluvial system but is not particularly revealing.

The above-threshold system also chokes with sediment. However, this choking takes longer
to accomplish because the system moves less sediment than the threshold section by about
a factor of two. The net result is that the hydraulic system is able to evacuate water more
effectively despite the additional effect of accretion during along the adverse slope.
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Figure 6.48: Daily cycles with erosion: Above-threshold case. (a) Recharge into the subglacial
water system. (b) Water elevation in the upstream crevasse. Dark dotted line is the glacier
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Figure 6.49: Daily cycles with erosion: Above-threshold case. (a) Total volume concentration of
sediment in subglacial water. Contour interval is 3×10−5. (b) Concentration of suspended sedi-
ment in subglacial water. Contour interval is 0.1 g L−1. (c) Bed load transport rate in subglacial
water (converted from volume concentration and velocity). Contour interval is 0.2 g m−1 s−1.
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Overdeepened case: Below-threshold section

Crevasse water elevation for the below-threshold section rises to the surface of the glacier by
simulation day 9 (Fig. 6.50a). After 21 d, the crevasse water elevation rises from the minimum
value of the terminus elevation. This result parallels the threshold section where the crevasse
also did not drain to its minimum value.

As shown in Figure 6.50b, maximum daytime discharge for the below-threshold section
decreases over the course of the simulation. Nighttime discharge rises above zero beginning on
day 21. This result is consistent with the upstream crevasse retaining additional water at night.
By the end of the simulation, subglacial discharge varies between 0.003 and 0.005 m3 s−1. This
variation is greater than that of the threshold section and adds to the numerical stability of the
below-threshold section for the course of the entire 100 days.
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Figure 6.50: Daily cycles with erosion: Below-threshold case. (a) Water elevation in the
upstream crevasse. Uppermost dotted line is the elevation of the glacier surface. Dark dashed
line indicates the equivalent flotation elevation. Lowermost, gray dashed line is the elevation of
the terminus. (b) Discharge from the crevasse to the subglacial water system.

Most of the evolution of the subglacial sheet is complete by day 21, as illustrated in Fig-
ure 6.51a. For the final 79 days of the simulation, the sheet shallows by less than 0.01 m. In
this instance, ice intrusion is negligible because the total closure over 100 days is tens of microns
(Fig. 6.51b).

The shallowing of the water depth primarily results from deposition of sediments along the
section (Fig. 6.51c). Maximum sedimentation is about 0.15 m and occurs at the upstream end
of the adverse slope. Along the adverse slope, there is a subdued pattern where additional
sedimentation occurs approximately 75 m from the terminus.

Figure 6.52 illustrates the components of the mass balance of the sheet for the final five days
of the simulation. The melt rate is always moderately positive in both space and time. Only
during the late night part of the diurnal cycle does the melt rate approach zero. This observation
draws sharp contrast to the clear water example where accretion was possible during the morning
and evening parts of the diurnal cycle. Melt during the day opens the water system at about
double that of the nighttime closure rate (Fig. 6.52b).

Sediment supply from the bed is roughly twice the magnitude of the melt during the daytime
(Fig. 6.52c). There is no sedimentation at night when water velocity is too low to move sediment.
Sedimentation concentrates during the morning portion of the daily cycle along the flat-bedded
portion of the section. During nighttime, competition between the closure and melt rates acts
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Figure 6.51: Daily cycles with erosion: Below-threshold case. (a) Thickness of the subglacial
water sheet. Contour interval is 0.01 m. (b) Total ice closure. Contour interval is 5× 10−6 m.
(c) Change in bed elevation. Positive values indicate sedimentation. Contour interval is 0.01 m.

to close the sheet. However, onset of melt and cessation of closure during the morning open the
sheet. Accommodation space created by melt is quickly filled in by the movement of sediment
during the morning.

As Figure 6.53a illustrates, the below threshold case carries much sediment. Maximum daily
total volumetric sediment concentration is approximately 0.001 near the inlet. During daytime
conditions, the concentration decreases along the section. This drop increases along the adverse
slope. At night, sediment transport is negligible. The evening transition from sediment-laden to
low-sediment conditions occurs over a few hours and is not as sharp as the morning transition
from low to high sediment load.

Relative to the threshold section, water flow in the below-threshold section carries signifi-
cantly more sediment up the adverse slope. Along the flat-bedded portion of the section, bed
load is approximately three times greater in the case of the below-threshold section (Fig. 6.53b).
Suspended load along the flat-bedded portion of the below-threshold section is also about three
times greater (Fig. 6.53c).

Despite the fact that the below-threshold section flushes more sediment through the system,
the water system chokes with sediment. The added sediment reduces the water depth consider-
ably during the first part of the simulation. Nighttime melt opens the channel enough to create
accommodation space which is then filled with sediment during daytime conditions.

144



Chapter 6. Results and discussion

T
im

e 
(d

)

a

Distance upstream
from terminus (m)

050100150200250

Melt rate x 10 −5 (kg m −2 s−1)

0.5 1 1.5

b

Distance upstream
from terminus (m)

050100150200

Closure rate x 10 −8 (m s−1)

−8 −6 −4 −2

c
T

im
e 

(d
)

Distance upstream
from terminus (m)

050100150200
95

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

Ψs x 10−5 (kg m −2 s−1)

−4 −3 −2

Figure 6.52: Daily cycles with erosion: Below-threshold case. (a) Melt rate. Contour interval
is 1.16× 10−6 kg m−2 s−1. (b) Closure rate. Contour interval is 1× 10−10 m s−1. (c) Sediment
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Figure 6.53: Daily cycles with erosion: Below-threshold case. (a) Total concentration of sedi-
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6.4.4 Discussion

One of the most important observations of these numerical simulations is that the threshold
and below-threshold sections effectively choke with sediment. The threshold section chokes so
severely that numerical solution of the governing equations eventually ceases. Both of these
longitudinal sections seek nighttime water velocities that are below the sediment transport
threshold. Daytime water velocities cross the transport threshold, and sediment is mobilized.
For the choice of parameters presented here, the threshold lies in the range 0.003–0.004 m3 s−1.

The above-threshold section also chokes with sediment but not as sharply as the other two
sections. Nighttime water discharge is able to lower to zero for the above threshold section. In
this case, shallower pressure gradients drive water flow. Therefore, water velocities are lower
and not as much sediment is mobilized. Consequentially, less sediment is available to choke the
water system.

Another key observation is the timing of accretion. For the threshold section, accretion shifts
to the nighttime once the system has choked. However, sediment is available to be accreted only
during daytime conditions when discharge is higher. The net result is that cleaner ice is accreted.
This scenario is one that has not been considered in the literature. Field studies support low
water and sediment discharge at night; but the timing of accretion of clear ice in the diurnal
cycle has not been discussed. Clear ice lenses are observed at Matanuska Glacier (Lawson et al.,
1998), and these lenses can form at nighttime based on threshold simulation results.

For the above-threshold section, maximum sediment concentrations occur during daytime.
Accretion, however, is favored during the morning and evening portions of the diurnal cycle.
Sediment concentrations in the accreted ice are thus lower than daily maximum concentrations.
For ice and sediment to accrete simultaneously, low viscous dissipation combined with mobile
sediment are necessary but not sufficient. A mechanism not captured in the model physics must
also act to concentrate sediment in the accretion ice. Frazil floc filters, for example, could be
sufficient to concentrate the sediment at many times the transport concentration (e.g., Lawson
et al., 1998).

For all sections, sedimentation occurs primarily at the base of the adverse slope. In this case,
∂2φ/∂s2 is highest at the start of the adverse slope. The result is that velocity slows considerably
at this location. Because sediment transport has a velocity threshold, sedimentation occurs when
the velocity drops. Once the water depth has stabilized around 0.01 m, the above-threshold and
threshold sections erode a small amount along the adverse slope. The below-threshold section
deposits sediment here. Sediment transport smoothes bed topography for all of these sections
because the curvature of the hydraulic potential is highest at the onset of the adverse slope.

In light of the hypothesis that alluvial glacier beds should tend toward threshold conditions
proposed by Alley et al. (2003b), simulations presented here do not support this hypothesis.
Simulations show much more sedimentation at the upstream end of the adverse slope than
along it. The important difference between simulations presented here and the theory proposed
by Alley et al. is that much sedimentation occurs in the simulations before water reaches the
area of supercooling and ice accretion. In this case, the sedimentation and supercooling are fairly
well decoupled; whereas in the theory of Alley et al. (2003b) they are coupled. In addition, these
simulations suggest that glaciers tend toward slopes where the subglacial system can discharge
its upstream water supply efficiently. The sedimentary response tends to mute topography
rather than create it.

Model results can be compared and contrasted to results from dye tracing studies at Mat-
anuska Glacier. Lawson et al. (1998) determined the water depth to be about 0.03 m for
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conduit-like cross-sections. Results from simulations with sediment transport show much shal-
lower water depths than those for clear water flows that are comparable to Lawson et al.’s (1998)
results. The compatibility of this result comes as no surprise because Matanuska Glacier is ac-
tively transporting sediment along its base. Maximum daily model velocities are in the range
0.4–0.5 m s−1, which is much faster than dye-tracing studies. However, the one dimensional
model does not capture the lateral variations in hydraulic cross-sections that most likely exist
(e.g., Lappegard et al., 2006). Dye can either enter areas of lateral storage. In addition, veloc-
ities of 0.04 m s−1 inferred from travel times are low relative to threshold sediment transport
criteria (see Appendix E).

In two-dimensions, the model would yield lateral migration of flow paths as sediment is
deposited. Water most likely would move from one area to another to minimize resistance.
Lateral migration would be on the order of the sedimentation rate (∼ 10−8 m s−1). This
hypothesis is supported by observations of basal ice, where cross-stratification may indicate
hydraulic cross section migration (Lawson et al., 1998).

Temporal evolution of the cross-section during the diurnal cycle is justified via model results.
The cross section for all longitudinal profiles is a distributed sheet during the day as indicated by
water pressures above flotation. At night, however, the water system operates at pressures below
ice overburden pressure. Therefore, nightly cross-sections would be more like a Röthlisberger
channel. During the day, the channels flood into a distributed, sheet-like cross section. Moreover,
there are probably temporal switches between between sheets and R-channels, and intermediate
forms, such as the broad-and-flat channel, may appear during these switches.

6.5 Summary

Simulations presented throughout this chapter highlight the variability and complexity of the
subglacial hydraulic system. Because of the level of detail in Matanuska Glacier sections, I
present results from simplified synthetic longitudinal sections. Results from the synthetic sec-
tions help to diagnose accretion rates, accretion locations, variability of daily cycles, sediment
transport, and other phenomena associated with glaciohydraulic supercooling. Simulated sub-
glacial hydraulic systems display many behaviors that are thresholded, periodic, and/or counter-
intuitive. These results are broadly applicable to glaciers where supercooling occurs. Reasonable
assumptions yield intriguing results, many of which are directly compatible with field data and
observations.
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Conclusions

7.1 Summary

This thesis focuses on subglacial hydrology, specifically on glaciohydraulic supercooling. Glacio-
hydraulic supercooling is a natural process whereby water that flows en- or subglacially freezes
spontaneously because of depressurization without equilibration of internal energy.

7.1.1 Model

Evidence from field sites indicates that water disperses into a broad, distributed water system.
To this end, I reformulate the model of Spring & Hutter (1981) to account for subglacial sheets
that are much wider than high (Chap. 2). This theory rests on the mass balances of ice and
water, the balance of linear momentum, and the balance of internal energy of the water. These
balances ultimately yield four equations: one for the water sheet height, or water depth, water
pressure, water velocity, and water temperature. Equivalent formulations exist for subglacial
channels (Clarke, 2003), and I present these for completeness. Water flow in sheets and chan-
nels is turbulent. In addition, I include ice porosity in the mass balance equations that govern
the evolution of the water sheet. The turbulent melt rate affects supercooling; but with com-
mon assumptions, the theory presented here reduces to the bed-to-surface slope ratio criterion
discussed by others (Alley et al., 1998; Hooke, 1991; Röthlisberger & Lang, 1987).

Because the mathematical description of turbulent sheets is new, a suitable closure relation-
ship for ice intrusion into the sheet is necessary. I formulate the closure relationship based on
ideas taken from subglacial cavities where stress is partitioned based on areal fractions (e.g.,
Fowler, 1987; Lliboutry, 1979; Schoof, 2005, see Chap. 3). The basic idea of these sheets is
that a fraction of the ice rests on sediments. The remainder of the ice rests on the water sheet,
pressurizing it. This idea departs from the formulation of Walder (1982) who envisioned a water
sheet that everywhere separated ice from bed. When the effective pressure is negative, water
floods the bed and distributes laterally. This conceptualization is based on the ideas of Hooke
& Pohjola (1994), where they suggest that water distributes over the bed when water pressure
is greater than ice overburden pressure.

Field observations demonstrate that effluent water and accreted ice can contain much sedi-
ment. Chapter 4 expands the form of the equations governing water flow to include sediment.
In this case, I modify the commonly used Exner equation (e.g., Paola & Voller, 2005) to suit
the subglacial system. This expansion results in equations for the evolution of subglacial bed
elevation and sediment concentrations for both water and accreted ice. Erosion via the spatial
adaptation length (e.g., Einstein, 1968) provides a way of formulating sediment supply from
the bed. Finally, the semiempirical sand-bed equations of van Rijn (1984a,b) close the system.
With the sand-bed equations, the model accounts for both suspended and bed load.

Because water flow up adverse slopes can be above ice overburden pressure and because
accretion ice is observed in crevasses and fractures, Chapter 5 presents an englacial aquifer
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model. This model rests on the balance laws of mass, momentum, and internal energy. The
local forms of these laws yield equations for the evolution of englacial porosity, water pressure,
water temperature. Linear momentum is governed by Darcy’s law, implying that water flow must
be laminar. Two relationships close the governing equations: (1) a semiempirical formulation
for creep closure of pore space, and (2) a formulation of the melt rate for laminar flow. Pore
space volume is assumed to be in the form of englacial fractures (Flowers & Clarke, 2002a;
Snow, 1968). Features of the englacial aquifer model that make it unique relative to previous
work include local formulation of the model (i.e., not vertically integrated) and evolution of
pore space via creep and melt.

7.1.2 Simulations

In Chapter 6, I present results from numerical simulations of the governing equations. These
simulations are primarily for subglacial sheets. Both clear water and sediment laden flows are
included, but I omit englacial aquifer simulations for brevity and simplicity. Through the use of
different synthetic sections, simulations reveal many interesting phenomena within the subglacial
system. Within the accompanying assumptions, these simulations are broadly applicable to
glaciers that have overdeepenings. Here, I summarize some of the results.

For steady recharge rates, several key points are important. Discharge along the hydraulic
section is nearly constant. Variations in discharge occur primarily because ice melts from or
accretes to the overlying glacier. Subglacial discharge is almost exactly equal to the upstream
crevasse recharge rate. Upstream crevasse water pressure that determines discharge can take
longer to equilibrate. Specifically, the above-threshold section does not equilibrate over a 100 d
melt season. In this case, upstream pressure also responds to the crevasse filling completely
to the glacier surface. The water system then dramatically reorganizes when this overpressure
forces melt to occur along the entire length of the section. This reorganization is linked to
viscous dissipation and specifically the choice of friction coefficient.

Model melt rates and approximate melt rates from steady state theory yield starkly different
accretion patterns and rates. The different between the two varies by factors of±2 to over 20 and
can be locally two orders of magnitude higher. Approximate melt rates overestimate accretion
along adverse slopes. For steady recharge rate, areas of accretion propagate upstream along the
adverse slope. For overdeepened simulations with diurnal forcing, accretion is greatest at the
terminus. However, there is a spatial lag between the onset of the adverse slope and the onset
of supercooling. This spatial lag is not captured by the approximate melt rates.

Comparisons between conduits and sheets reveal several features. Longitudinal sections that
are above threshold conditions invariably favor sheets during periods of high discharge. In the
overdeepening, water pressure is above ice overburden pressure and can force water to disperse
laterally. For threshold conditions, upstream and downstream may not behave in unison such
that an upstream conduit can spatially change into a sheet along an adverse slope. Conduits
are favored for cross-sections that are below threshold conditions, but accretion occurs because
heat generation from viscous dissipation is low. Accretion would act to diminish the channel,
and an intermediate hydraulic cross section probably forms.

Nighttime and daytime conditions offer a temporal glimpse of sheet–conduit behavior. Dur-
ing the day, water pressures are above flotation and suggest that sheets dominate the drainage
system. At night, water pressures fall below flotation and ice intrusion dominates. If the bed
floods during the daytime, simulations suggest that channels may be favored at night as water
flux decreases and flooded areas drain to deeper areas of flow. In the case of clear water flows,
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there is little nightly water flux despite the hydraulic system being fully saturated. If there is no
lateral variation in water depth, then nighttime will still be dominated by a stagnant or slowly
flowing sheet. The implication that these are channels may thus be dubious. For sediment-laden
flows, discharge does not cease at nighttime for the threshold case and channelization can occur.
In the case of sediment transport, the above-threshold section drains completely at night; how-
ever, this results from ice at the terminus being relatively thin. For other parameter choices, it
is possible that the hydraulic system does not fully drain, and conduits could be favored.

Portions of diurnal cycles—morning, daytime, evening, and nighttime—each have a different
effect on subglacial hydrology. For sections where ice forms, accretion commonly occurs during
morning and evening. Ice intrudes into the subglacial drainage system at night. The combination
of melt, accretion, and intrusion yield a sheet that evolves not for maximum water flow but for
some intermediate discharge. Maximum daily discharge cannot be conducted by the sheet for
most subglacial sections, and water pressure is above flotation. An exception occurs when water
sheets are thick and discharge is low, as in the case of the below-threshold section with lower
discharge. Sedimentation occurs solely during the daytime and adds additional features to the
daily hydrograph.

Ice accretion is compatible with field estimates. For diurnally-forced clear water simulations,
accretion is about 1–4 m per century. For diurnally-forced flows with sediment transport,
accretion is in the range 1–6 m per century. These values are low relative to Matanuska Glacier,
but bed-to-surface slope ratios are higher there than in the simulations. In consequence, the low
values are not surprising. For threshold sections, accretion is nominal, as would be expected.
Because conduits have lower viscous dissipation, they accrete slightly more ice than sheets. For
the case of the below-threshold section, parameter choices exist that produce water pressure
gradients that are below ice overburden pressure gradients. These low gradients permit ice
accretion. Thus, for certain hydrologic systems, the bed-to-surface slope criterion may not hold.
In general, however, this criterion is useful.

Sediment concentrations in accreted ice are below daily maximum discharge sediment con-
centrations. This result stems from accretion occurring during morning, evening, and nighttime
when sediment concentrations are low when ice accretes. Because sediment transport has a shear
stress criterion governing incipient motion, transport only occurs during daytime. The result
is that concentrations are low. Furthermore, a mechanism must exist that enhances sediment
capture during accretion because field observations of accreted sediments are often higher than
results from simulations.

Sedimentation occurs during daytime conditions. Over the course of the simulations, sedi-
ment chokes the hydraulic system. Sedimentation is greatest at the base of the adverse slope
and subdues topography at the glacier base. The above-threshold and threshold sections erode a
moderate amount along the downstream end of the adverse slope. The below-threshold section
deposits a moderate amount of sediment near the end of the adverse slope. In consequence,
the base of the section tends to smooth to permit both sediment transport during the day and
water discharge throughout the diurnal cycle. Sediment transport also drops off dramatically
as pressure gradients shallow.

7.2 Directions for future work

Because much of the material is new, the thesis also provides an opportunity to examine direc-
tions for future work. Future work falls into two broad and often intermingled areas: technical
directions and topical directions.
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7.2.1 Technical directions

From a technical perspective of the model there are several parameters that are not defined
sufficiently. Chief among these is the friction coefficient, fd. This coefficient governs the mag-
nitude of viscous dissipation in sheets and channels. Lower values allow greater velocities that
yield more heat generation. Higher values slow velocities and yield less heat generation. The
values I choose in Chapter 6 are based on estimates for outburst floods. Better estimates from
field and laboratory studies would help to constrain the model more effectively.

Similarly, the grain friction coefficient f ′d, is not well-constrained. I have assumed that
subglacial sheets have high form friction and low grain friction based on analogous mountain
streams. Without field or laboratory studies of subglacial sediment transport that are geared
to finding these terms, it is difficult to constrain sediment transport effectively. These numbers
should be obtainable via flume experiments.

Spatial lags in the accretion rate are the result of the form of the Nusselt number (eq. 2.34).
Where the Nusselt number is more highly dependent on Reynolds number, the spatial lag in-
creases. The Dittus-Boelter relationship was originally developed for smooth flow in pipes. It
would thus be useful to construct experiments or design field studies to constrain this parame-
terization of the melt rate to examine spatial lags. In general, though, it is notable that results
presented here show that the thermal balance is able to adapt for parameter changes.

A broader technical direction of interest is sheet–channel transitions. Walder (1982) pre-
sented the general idea for these transitions: when melt is greater than ice intrusion, channels
dominate subglacial drainage. Using the theory presented in Chapter 3, it would be stimulating
to see how channels develop along beds with large clast sizes and other bed obstacles.

In terms of sediment transport, exploring two dimensional water flow would be very inter-
esting. How channels and sheets transform in the presence of sedimentation may be compelling
and useful for other areas of glaciology and geomorphology. Furthermore, subglacial meander-
ing or other similar processes may become more apparent with a two-dimensional model. The
equations presented in this thesis are easily transformed into two dimensions.

7.2.2 Topical directions

Large ice sheets create their own overdeepenings via isostatic depression. Glaciohydraulic super-
cooling plays a role in hydrology and sediment transport beneath these ice sheets. For example,
water flow up the sill at the end of Hudson Strait may have supercooled and accreted sediment
to the base of the ice sheet. The accreted ice was later discharged to the North Atlantic dur-
ing Heinrich Events (e.g., Dowdeswell et al., 1995; Hemming, 2004). Exploring accretion and
sedimentation beneath the Laurentide Ice Sheet may yield interesting results.

Other topical directions involve the geomorphological features associated with the margins
of former ice sheets. Shreve (1985) noted that size in eskers was dependent on the hydraulic
gradient and the relationship to supercooling. Revisiting this work with the sediment transport
model might provide additional insight into the formation of eskers. In addition, sediment
transport plays a role in the development of some types tunnel valleys, which are elongate
overdeepenings cut into the substrate near the margins of former ice sheets (e.g., ÓCofaigh,
1996). Examining these features from a numerical perspective may yield additional information
about their genesis.

Recently, satellite measurements of vertical ice motion in Antarctica indicate that water
flows subglacially (Gray et al., 2005; Fricker et al., 2007; Wingham et al., 2006). The work by
Wingham et al. that examines the draining of subglacial lakes is especially interesting because
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the authors published both surface and bed topography. In comparing the bed and surface
slopes it is clear that glaciohydraulic supercooling occurs along their hydraulic profile. What
effect, if any, supercooling plays in the draining of the lakes is difficult to ascertain without
further study. Their work opens the idea that glaciohydraulic supercooling may seal or diminish
lake drainage. In sum, water flow beneath Antarctica will be a fruitful area of study in the
coming years.

7.3 Outlook

This thesis presents a first look at dynamic simulations of glaciohydraulic supercooling and
close examination of the water–ice phase change in subglacial systems. The thesis also presents
a fresh look at how glaciers move sediment in the context of hydraulic equations that govern
flow. Englacial and subglacial hydrology is presently a highly topical field and investigations
such as this thesis will help to constrain and identify glaciohydraulic processes.
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Appendix A

Synthetic glacier section

Synthetic examples of glacier sections provide idealized situations for understanding englacial
and subglacial water systems. These synthetics provide useful visual elucidation of ice–bed
configurations and surface to bed slope ratios. Sections of glaciers interpreted from radar, seis-
mic, and other investigations provide structure that is not necessarily attributable to hydrology;
therefore, these are not used when introducing hydraulic concepts. Furthermore, longitudinal
sections of real glaciers may not necessarily be representative of a glacier’s hydraulic section.
Ideally, a hydraulic section would be derived from a three-dimensional digital database of a
glacier’s bed and surface topography, but these datasets are often unavailable.

Consider a horizontal coordinate x, where the downstream end of the glacier is located at
x = x0. At some upstream value x = xl, the section terminates. Subglacial water may flow
from xl to x0. The vertical coordinate z, is a height above an arbitrary datum. The thickness
of the glacier is

Z i = zr − zb, (A.1)

where Z i is the glacier ice thickness, zb is the height of the ice–bed interface, and zr is the height
of the surface of the glacier.

As shown in Figure A.1, the base of the glacier is divided among three regimes. These three
regimes are given by

zb =





zb
l for xu < x ≤ xl,

Cx (x− xu)2ox + zb
l for xw < x ≤ xu,

2Cxox (xw − xu)2ox−1 (x− xw) + Cx (xw − xu)2ox + zb
l for x0 ≤ x ≤ xw.

(A.2)

where the coefficient Cx is an arbitrary real number and ox is an arbitrary positive integer that
determines how rapidly a transition occurs. The first regime is a horizontal entrance of the
water from xl to xu at height zb = zl. From xu to xw, there is a transition where the base turns
upwards from horizontal to sloped. Because water flow along this horizon is dependent on the
first derivative of the hydraulic potential, the derivative dzb/dx should be smooth. The slope
is chosen to ensure that the first derivative of zb is smooth at xw. Finally, from xw to x0, the
slope of the subglacial horizon is again constant, making the final portion a wedge. The surface
of a synthetic section has a constant slope where the elevation of the surface is

zr =

(
Z i

l + zb
l

)− (
Z i

0 + z0

)

xl − x0
x + zb

0 + Z i
0, (A.3)

where Z i
l and Z i

0 are the ice thicknesses at xl and x0, respectively. If zb
l , xu, and Z i

0 are known,
then one of xw, zb

w or Z i
l is necessary to solve equations (A.2) and (A.3) for the longitudinal

profile.
If a specific ratio is required between the surface slope and the slope of the wedge such that

tan αb = −R tanαr, then the location of xw needs to be found with respect to the third equation
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Appendix A. Synthetic glacier section

in (A.2). For ox = 1 and a known zb
0 , xw takes the value

xw = x0 +
{

(xu − x0)
2 +

1
Cx

(
zl − zb

0

)} 1
2

. (A.4)

Substituting this equation into the second equation of (A.2) gives zb
w. Rewriting equation (A.3)

with the ratio R yields

zr =
1
R

(
zb
0 − zb

w

x0 − xw

)
x + zb

0 + Z i
0. (A.5)

If the upstream ice thickness Z i
0 is known and ox = 1, then xw takes the value

xw = x0 +
x0 − xl

R +
1
R

{
(xl − x0 (R+ 1) +Rxu)2 +

R2

Cx

(
Z i

0 − Z i
l

)}1/2

. (A.6)
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Figure A.1: A synthetic glacier section. Subglacial water flows from left to right along the line
at the interface of the ice and substrate. Parameters are given in Table A.1. The aspect ratio
is 1 : 1.
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Table A.1: Parameters used to create Figure A.1

Parameter Value Units
x0 0.00 m
xw 107.59 m
xu 150.00 m
xl 250.00 m
zb
0 21.85 m

zb
l 0.00 m

Z i
0 0.00 m

Z i
l 46.86 m

Cx 0.002 m1−2ox

ox 1 [unitless]
R -1.70 [unitless]
tanαr 0.10 [unitless]
tanαb

w 0.17 [unitless]
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Appendix B

Grain parameterization for ice
intrusion

For spheres that are intersected by a plane above their equator, the volume above that plane is
a spherical section less the volume of the inscribed cone below it. The cone is inverted with its
vertex at the center of the sphere and its base along Hb. The spherical section plus the cone is
below the plane, and the spherical cap is above the plane. The plane intersects the sphere at a
height Hb which is greater than the sphere radius ri.

r H -r
b

H
b

y

Figure B.1: Figure illustrating the relationship of ri, Hb, and ψ

For Hb > ri, the volume is that of the spherical cap. The cap is the volume of the spherical
segment through a polar angle ψ minus the inscribed cone below the cap,

Ve:i =
∫ 2π

θ=0

∫ ri

R=0

∫ cos−1((Hb−ri)/ri)

ψ=0
R2 sinψ dψ dR dθ − π

3

(
Hb − ri

)(
2riH

b −
(
Hb

)2
)

,

=
π

3

(
2ri −Hb

) (
2r2

i + riH
b −

(
Hb

)2
)

, (B.1)

where Ve:i is the effective volume, R is a radius, and ψ and θ are angles. The effective area is
simply the area of the base of the cone,

ae:i = π

(
2Hbri −

(
Hb

)2
)

. (B.2)

For spheres intersected by a plane below their equator, the relationship takes a similar form.
The spherical cap is the bulk of the sphere when Hb < ri. In this case, the section of interest is
the spherical section plus the inscribed cone. The cone has its vertex at the center of the sphere
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and its base along Hb. A similar integration that yielded equation (B.1) yields,

Ve:i =
∫ 2π

θ=0

∫ ri

R=0

∫ π−cos−1((ri−Hb)/ri)

ψ=0
R2 sinψ dψ dR dθ +

π

3

(
ri −Hb

)((
Hb

)2
− 2riH

b

)

=
π

3

(
2ri −Hb

)(
2r2

i + riH
b −

(
Hb

)2
)

. (B.3)

It is not surprising that equations (B.1) and (B.3) are exactly equal. Once the ice has passed
the equator, the area normal to the force is simply the area of the equator. The effective area
is then that of the maximum cross section of the sphere,

ae:i = πr2
i . (B.4)

If the geometry is a hemisphere resting on the same datum as Hb, then the spherical cap
takes a similar form to equation (B.1),

Ve:i =
∫ 2π

θ=0

∫ ri

R=0

∫ cos−1(Hb/ri)

ψ=0
R2 sinψ dψ dR dθ − π

3
Hb

(
r2
i −

(
Hb

)2
)

=
π

3

(
2r3

i − 3Hbr2
i +

(
Hb

)3
)

. (B.5)

Without an extra length of radius, the effective area is similar to equation (B.2),

ae:i = π

(
r2
i −

(
Hb

)2
)

. (B.6)

170



Appendix C

Solution of the equations governing ice
intrusion

Because the closure relationship is dependent on the number of grain sizes and the closure
velocity, the solution must be simultaneous for all of the variables. Solving for the bed closure
velocity and the relevant stress terms requires a nonlinear, iterative solver. In this case, I employ
a Newton scheme. The Newton solver requires error estimates G, on the functions as well as
the Jacobian terms.

C.1 Three equation model

One method is direct solution of the 2N +1 equations (3.17), (3.12), and either (3.13) or (3.14b)
for the 2N+1 variables: σs

i , σi, and v. The first two conditions and their accompanying Jacobian
terms (∂Gi/∂{σs

j , σj , v}) are straightforward,

G1(v, σs
1 . . . σs

N , σ1 . . . σN ) = −βKe

ρiL

(
Ae

Ve

)

i

(
Ai−1

As
i

σe:i

)
+Ale:i sgn (−σe:i) |σe:i|n − v,(C.1a)

∂G1

∂v
= −1 ,

∂G1

∂σs
j

= δij

{
−βKe

ρiL

(
Ae

Ve

)

i

Ai−1

As
i

+ nAle:i
As

i

Ai−1
sgn (−σe:i) |σe:i|n−1

}
,

∂G1

∂σj
= δij

{
βKe

ρiL

(
Ae

Ve

)

i

Ai−1

As
i

− nAle:i
As

i

Ai−1
sgn (−σe:i) |σe:i|n−1

}
,

G2(v, σs
1 . . . σs

N , σ1 . . . σN ) = σi − pw −
N∑

i=1

As
i

Ai−1
(σs

i − σi) , (C.1b)

∂G2

∂v
= 0 ,

∂G2

∂σs
i

= − As
i

Ai−1
,

∂G2

∂σi
=

As
i

Ai−1
.

In equation (C.1a) and its derivatives, the effective stress σe:i should be replaced by its definition
As

i/Ai−1(σs
i−σi). Equation (C.1a) is the misfit for the relationship governing the closure velocity.

Equation (C.1b) is the misfit for the total effective stress equation.
The third condition is not specific but must relate the intermediate stresses to one another

or the intermediate stresses to the grain stress. These relationships arise from the definition of
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the effective stress for the ith grain size.

G3(v, σs
1 . . . σs

N , σ1 . . . σN ) =
As

i

Ai−1
(σs

i − σi)− σi−1 + σi, (C.2)

∂G3

∂v
= 0 ,

∂G3

∂σs
j

= δij
As

i

Ai−1
,

∂G3

∂σj
= δij

(
− As

i

Ai−1
+ 1

)
.

An alternative third condition is that the stresses must locally sum from equation (3.13).

G3(vi, σ
s
1 . . . σs

N , σ1 . . . σN ) = Ai−1σi−1 − (As
iσ

s
i + Aiσi) , (C.3)

∂G3

∂v
= 0 ,

∂G3

∂σs
j

= −δijA
s
i ,

∂G3

∂σj
= −δijAi.

There are other variations on equations (C.2) and (C.3), but these formulations contain the
same information relating the effective stress to the grain stresses and intermediate stresses.

C.2 Two equation model

Because the entire system is driven by the effective stress, there is not a need to calculate the
stress on the sediments and the intermediate stress in a numerical solver. These stresses can be
calculated recursively starting with either the water pressure or ice overburden pressure.

G1(v, σe:1 . . . σe:N ) = −βKe

ρiL

(
Ae

Ve

)

i

Ai−1

As
i

σe:i +Ale:i sgn (−σe:i) |σe:i|n − v, (C.4a)

∂G1

∂v
= −1,

∂G1

∂σe:j
= δij

{
−βKe

ρiL

(
Ae

Ve

)

i

Ai−1

As
i

+ nAle:i sgn (−σe:i) |σe:i|n−1

}
,

G2(v, σe:1 . . . σe:N ) = σi − pw −
N∑

i=1

σe:i, (C.4b)

∂G2

∂v
= 0,

∂G2

∂σe:i
= −1.

Equation (C.4a) is the misfit to the closure velocity relationship, while equation (C.4b) is the
misfit for the total effective stress. In this system of equations, there are N + 1 variables that
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need to be found: N values of σe:j and one value of v. As a result, there are N simultaneous
versions of equation (C.4a) and N derivatives in σe. Equation (C.4b) completes the system.

In general, the three-equation version of the solution is less desirable. The third misfit
equation, either (C.2) or (C.3), does not add much information. As a result, the condition
numbers for the Jacobian matrix are considerably lower for the two-equation model. The conse-
quence of this condition number is that the number of iterations required for convergence of the
two-equation model is one to two orders of magnitude smaller than that of the three-equation
model.
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Sediment mass balances

D.1 Basal water mass balance

Chapter 4 requires four equations for the mass balance of the basal water layer: two each for
the channel and sheet cross sections. Sediment and ice are assumed to be incompressible. The
water is slightly compressible, which yields the pressure evolution equations. Sediment can be
in the flowing water, on the bed, or in the ice. However, sediment is not permitted to be in the
pore space of the ice. This assumption is consistent with Snow’s (1968) model of flow through
fracture networks where laminar flow occurs in fractures less than 2 mm wide. On the contrary,
this assumption is inconsistent with the hypothesis of Lawson et al. (1998) whereby the ice filters
sediment out of the water. The assumption can be changed; but it would not be consistent with
englacial aquifer model14.

The balance of mass follows a similar form to that presented in Chapter 2. The form
presented there follows Spring & Hutter (1982). In addition, elements of the derivation presented
by Walder & Fowler (1994) appear here.

D.1.1 Channel

Both constituents

I begin with the mass of the fluid,

M f =
∫

s

∫

Sb

{
λbρs + (1− λb)ρw

}
dS ds, (D.1)

where the superscript f denotes the fluid, or sediment–water mixture, such that M f is the mass
of the fluid and Sb is the subglacial cross sectional area of the fluid. The global and local rates
of change of the sediment mass are

dM f

dt
=

d

dt

[∫

s

{
λbρs +

(
1− λb

)
ρw

}
Sbds

]
, (D.2a)

d

dt

[{
λbρs +

(
1− λb

)
ρw

}
Sb

]
=

[
1 +

ni
pρ

w

(1− λi)
(
1− ni

p

)
ρi

]
m + Ψi +

[
1 +

ns
pρ

w

(
1− ns

p

)
ρs

]
2RbΨ̃s,

(D.2b)

14Alternatively, a small layer could be defined above the flow but below the ice that has a high porosity.
Water could then flow through the pore space. Cases such as these are beyond the scope of this thesis but merit
attention.
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where the source terms in equation (D.2b) originate in equations (2.13a) and (4.9b). Equation
(D.2b) can be rewritten for a rate of change of the cross section,

∂Sb

∂t
=− ∂

(
Sbub

)

∂s
+

1
λbρs + (1− λb)ρw

{
−Sb (ρs − ρw)

[
∂λb

∂t
+ ub ∂λb

∂s

]

+

[
1 +

ni
pρ

w

(1− λi)
(
1− ni

p

)
ρi

]
m + Ψi +

[
1 +

ns
pρ

w

(
1− ns

p

)
ρs

]
2RbΨ̃s

}
(D.3)

The change in the cross section resulting from the amount of ice melted per unit time and
the amount of sediment removed per unit time is the sum of those two components. From the
misfit equation for ice, the change in cross section is equivalent to equations (2.14b) and (2.17)
with the sediment in the ice included,

∂Sb

∂t

∣∣∣∣
ice

=
1

(1− λi)
(
1− ni

p

)
ρi + ni

pρ
w + λi

(
1− ni

p

)
ρs

{[
1 +

ni
pρ

w

(
1− λi

) (
1− ni

p

)
ρi

]
m + Ψi

}

− 2Sb sgn(pi − pb)
( |pi − pb|

nB
)n

. (D.4)

In this equation, λi is assumed constant. This is a small approximation because the bulk of the
material that is removed from the channel walls is ice rather than sediment. The change in λi

is handled by equation (D.19).
The portion of sediment removed per unit time can be treated similarly to equation (2.11)

where the cross section that contains the sediment removed per unit time is

Ŝ = Ss − Sb. (D.5)

This equation only applies to the bed exposed to the flow and not to the overlying ice. Applying
the mass balance to equation (D.5) in a similar fashion to equation (2.13b) yields,

{
(
1− ns

p

)
ρs + ns

pρ
w

} {
∂Ŝ

∂t
+

∂

∂s

(
us

sŜ
)}

= −
{

1 +
ns

pρ
w

(
1− ns

p

)
ρs

}
2RbΨ̃s. (D.6)

Because the bed is not flowing, the convective velocity in the s-direction us
s is zero. Rewriting

this equation in terms of the change in the fluid cross section gives,

∂Sb

∂t

∣∣∣∣
bed

=
∂Ss

∂t
+

2RbΨ̃s

(
1− ns

p

)
ρs

, (D.7)

where ∂Ss/∂t is the rate of change of the sediment. If the sediment were allowed to deform to
close the fluid cross-section, then this rate of change would be the deformation of the sediment
into the channel (e.g., Walder & Fowler, 1994). However, in this case, ∂Ss/∂t is exactly zero.
From equations (D.4) and (D.7), the change of the cross section from misfit considerations is

∂Sb

∂t
=

1
(1− λi)

(
1− ni

p

)
ρi + ni

pρ
w + λi

(
1− ni

p

)
ρs

{[
1 +

ni
pρ

w

(
1− λi

) (
1− ni

p

)
ρi

]
m + Ψi

}

− 2Sb sgn(pi − pb)
( |pi − pb|

nB
)n

+
2RbΨ̃s

(
1− ns

p

)
ρs

. (D.8)
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Using equation (D.3), the change in pressure via the compressibility assumption becomes

∂pb

∂t
=− 1

γbSb




∂Sb

∂t
+

∂
(
Sbub

)

∂s
− 1

λbρs + (1− λb)ρw

{
− Sb (ρs − ρw)

[
∂λb

∂t
+ ub ∂λb

∂s

]

+

[
1 +

ni
pρ

w

(1− λi)
(
1− ni

p

)
ρi

]
m + Ψi +

[
1 +

ns
pρ

w

(
1− ns

p

)
ρs

]
2RbΨ̃s

}
 . (D.9)

Qualitatively, equation (D.8) is extremely close to equation (2.17). Differences between these
two equations stem from the source of sediment in the ice and the supply term for sediment
from the bed. The coefficient preceding the melt rate in equation (D.8) is large relative to the
equivalent coefficient in equation (2.17). Substituting Ψi (eq. 4.34a, m > 0) into equation (D.8)
yields a coefficient of 1/

{
(1− λi)(1− ni

p)ρ
i
}
, which is similar to the equivalent coefficient in

equation (2.17). On the surface, equations (D.9) and (2.15) look quite different. However, both
equations are essentially the same with the exception of the space created by the supply of
sediment from the bed. The small corrections for sediments in the flow could largely be ignored
without sacrificing accuracy in the pressure solution. These corrections include: eliminate the
derivatives of the sediment concentration in the flow, and eliminate the supply of sediment as
ice melts. If the bed were aggressively aggrading or eroding, it would be difficult to eliminate
either of the bed sediment supply terms. However, if the bed was fairly stable, then these terms
could also be eliminated.

An alternative formulation

The balance of mass for the water,

Mw =
∫

s

∫

Sb

(1− λb)ρwdS ds, (D.10)

can be drawn separately from equation (D.1). Carrying out the same steps above, the rate of
change of the cross section is

∂Sb

∂t
=− ∂

(
Sbub

)

∂s
+

1
(1− λb) ρw

{
Sbρw

[
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+ ub ∂λb
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)
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]
m +
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w

(
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)
ρs

2RbΨ̃s

}
. (D.11)

Rewriting this equation in the spirit of equation (D.9) gives

∂pb

∂t
=− 1

γbSb


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∂Sb
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+

∂
(
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)
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[
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]

+
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w
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p

)
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]
m +
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pρ

w

(
1− ns

p

)
ρs

2RbΨ̃s

}
 . (D.12)

This equation bears more similarity to the clear water equation (2.15) than equation (D.9) does.
As an addition simplification, the derivatives of λb could be eliminated without affecting the
rate of change of the pressure.
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D.1.2 Sheet

Writing the equations for the sheet is a matter of converting the relevant equations from the
foregoing discussion. The evolution of the height of the sheet is

∂Hb

∂t
=

1
(1− λi)

(
1− ni

p

)
ρi + ni

pρ
w + λi

(
1− ni
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)
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w

(
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) (
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p

)
ρi

]
m̃ + Ψ̃i

}

+
(

∂Hb

∂t

)

close

+
Ψ̃s

(
1− ns

p

)
ρs

, (D.13)

where the closure relationship is derived in Chapter 3. The pressure equation can also be
appropriated from the discussion above,
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ni
pρ

w

(1− λi)
(
1− ni

p

)
ρi
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(
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 , (D.14a)
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ρs

Ψ̃s

}
 , (D.14b)

where equation (D.14a) comes from the total mass balance and equation (D.14b) comes from the
mass balance of the water. These equations are subject to the same discussion of approximation
that applied to equations (D.9) and (D.12) as far as eliminating terms.

D.2 Basal ice sediment concentration

Chapter 4 requires equations that govern the thickness of the accreted ice and the sediment
concentration in the ice. Sediment can accrete to the base of the glacier when water freezes there.
Alternatively, sediment can be lost from the glacier when ice melts to enter the water flow. The
result of this jump condition is that there is an asymmetrical condition on the concentration of
sediment in the ice. The asymmetry appears in the mass balance for the accreted ice layer.

I make the expedient assumption that the basal ice layer has a constant vertical sediment
concentration. Field evidence shows that this is not the case with various grain size distributions
and stratigraphic relationships (e.g., Lawson, 1979; Lawson et al., 1998; Roberts et al., 2002).
However, to accurately reproduce these features, it would be necessary to record the sediment
concentrations more accurately via a tracing algorithm (e.g., Staniforth & Côté, 1991) or a
stretched grid (e.g., Hildes, 2001). Both of these methods are beyond the scope of this thesis
for the simple reason that it is imperative that the scientific questions are well-posed, both in
specific goal and mathematical formulation. For tracing methods to be accurate, the scalar to
be traced would need to be smooth, which is not the case with the melt condition. Stretched
grids have the limitation that numerical diffusion can occur and they do not necessarily conserve
mass. As a result, I avoid both in favor of an average concentration in the accreted basal layer.
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Another assumption inherent in the derivations presented here is that the along-path ice
velocity is neglected. This assumption is consistent with the mass balance equations presented
in Chapter 2.

D.2.1 Sheet

For a subglacial water sheet, the mass of an accreted layer at the glacier base is

Mb:e =
∫

s

∫

y

∫ zb:e

zb

{(
1− ni

p

) (
1− λi

)
ρi +

(
1− ni

p

)
λiρs + ni

pρ
w
}

dz dy ds, (D.15)

where zb:e is the elevation of the englacial transition between accreted ice and overlying meteoric
ice. In equation (D.15), ni

p(x, y, z) and λi(x, y, z, t) are spatially varying quantities.15 Through-
out the remainder of this exposition, these quantities are local averages, but I avoid the tedium
of creating extra notation for these averages.

Melting conditions: mass loss

When the melt rate is positive and melting is occurring, then there is no change in the sediment
concentration in the basal ice. The local form of the rate of change of mass and the change in
accreted ice thickness are, respectively,

{(
1− ni

p

) (
1− λi

)
ρi +

(
1− ni

p

)
λiρs + ni

pρ
w
}{
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∂t

}
=

−
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1 +
ni

pρ
w

(1− λi)(1− ni
p)ρi

]
m̃ + Ψ̃i

}
, (D.16a)
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λiρs + ni

pρ
w

{[
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w
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p)ρi

]
m̃ + Ψ̃i

}
,

(D.16b)

where Zb:e = zb:e− zb. Physically, Zb:e is the thickness of the basal ice layer. Equation (D.16b)
is equivalent to equation (4.16). If the right hand side of equation (D.16b) is negative and Zb:e

is less than an arbitrary height, then

∂Zb:e

∂t
=

1
τb:e

(
Zb:e

0 − Zb:e
)

, (D.17)

where Zb:e
0 is a minimum thickness and τb:e is a time constant. Equation (D.17) is a penalty

function that converges to Zb:e
0 .

Freezing conditions: mass gain

When ice is accreting, both the concentration of sediment in the ice and the thickness of the
basal ice can change simultaneously. In consequence, two simultaneous equations are necessary:

15An argument also exists that ρi, ρw, and ρs are spatially varying quantities. However, at no other point in
the thesis do I suggest this. The densities are taken as constant.
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one for the basal ice thickness, and one for the englacial sediment concentration. The local
balance from equation (D.15) is
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}
. (D.18)

Because there are two time derivatives in equation (D.18), the local form of the mass of the
sediment in the ice is also necessary,
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Substituting equation (D.19) into equation (D.18) gives
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(D.20)

D.2.2 Channel

For a subglacial semicircular channel, the mass of an accreted layer at the glacier base is

Mb:e =
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s
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r dr dθ ds, (D.21)

where θ is the azimuthal angle, Zb:e is the thickness of the accreted layer, and r dr dθ ds is the
differential volume of accreted ice. The quantities ni

p and λi represent local averages throughout
the remainder of this derivation.

Melting conditions: mass loss

Assuming that the concentration of sediment does not change with time in the accreted layer
as ice melts, the local rate of change of mass becomes
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where ∂Rb/∂t|close is the closure of the channel resulting from creep. This term is not the full
change in radius from the mass balance of the channel because the melt terms are on the right
hand side of these equations. Separating for the rate of accreted layer thickness change gives
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Freezing conditions: mass gain

The local form of the mass balance with a change in the concentration of sediment in the ice
becomes

d

dt




{(
1− ni

p

) (
1− λi

)
ρi +

(
1− ni

p

)
λiρs + ni

pρ
w
}{

π

2

[(
Rb + Zb:e

)2
−

(
Rb

)2
]}

 =

−
{[

1 +
ni

pρ
w

(1− λi)(1− ni
p)ρi

]
m + Ψi

}
, (D.24a)

{(
1− ni

p

) (
1− λi

)
ρi +

(
1− ni

p

)
λiρs + ni

pρ
w
}{

πZb:e ∂Rb

∂t

∣∣∣∣
close

+ π
(
Rb + Zb:e

) ∂Zb:e

∂t

}

+
π

2

{
2RbZb:e +

(
Zb:e

)2
}{(

1− ni
p

) (
ρs − ρi

) ∂λi

∂t

}
= −

{[
1 +

ni
pρ

w

(1− λi)(1− ni
p)ρi

]
m + Ψi

}
.

(D.24b)

The local balance is of sediment in the ice is
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ρsλi

[
2Zb:e ∂Rb

∂t

∣∣∣∣
close

+ 2
(
Rb + Zb:e

) ∂Zb:e

∂t

]
= −Ψi.

(D.25b)

From the local balance of sediment in the ice, the rate of change of sediment concentration is

∂λi

∂t
=

1

2RbZb:e + (Zb:e)2

{
− 2

πρs
Ψi − 2λi

[
Zb:e ∂Rb

∂t

∣∣∣∣
close

+
(
Rb + Zb:e

) ∂Zb:e

∂t

]}
. (D.26)

Substituting equation (D.26) into equation (D.24b) and rearranging gives

∂Zb:e

∂t
=

1
π {Rb + Zb:e}{(

1− ni
p

)
ρi + ni

pρ
w
}

{[
(
1− ni

p

) (
1− ρi

ρs

)
− 1

]
Ψi

−
[
1 +

ni
pρ

w

(1− λi)(1− ni
p)ρi

]
m

}
− Zb:e

Rb + Zb:e

∂Rb

∂t

∣∣∣∣
close

. (D.27)

This equation is similar to equation (D.20) with the main difference being that creep closure is
included in equation (D.27).
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Appendix E

Semiempirical sediment transport
relations

van Rijn (1984a,b) developed procedures to apply sediment transport relations. The aim of this
appendix is to present the transport relations rather then derive them. Because of this aim, the
procedures are presented first; and the supporting equations follow. This format is operationally
succinct. The derivations use theoretical and empirical considerations. I refer the reader to the
original papers for these derivations.

E.1 Bed load

Procedure

1. Compute the particle parameter D∗ using equation (E.1).

2. Compute the critical bed-shear velocity according to the Shields criterion (eq. E.7,
Fig. E.1, eq. E.5).

3. Compute Chézy coefficient related to grains C ′ using equation (E.8).

4. Compute the effective bed shear velocity using equation (E.3).

5. Compute the transport stage parameter T (E.2).

6. Compute the equilibrium bed load transport q̃e:b using equation (E.9).

Formulation

van Rijn advocated two nondimensional numbers to describe sediment motion. The particle
parameter describes the nondimensional grain size and is derived from the particle Froude and
Reynolds numbers,

D∗ = D





(
ρs

ρw
− 1

)
g

ν2





1
3

, (E.1)

where D is a characteristic grain size and ν is the kinematic viscosity of water. If this rela-
tionship is applied to the entire alluvial bed, D can be replaced with D50 the median of the
grain size distribution. This substitution implies that D50 is an accurate representation of the
sediment distribution. The second nondimensional number is transport stage parameter, which
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characterizes an excess shear stress available to move sediment,

T =
(u′∗)

2 − (u∗,cr)2

(u∗,cr)2
. (E.2)

The transport stage parameter is a normalized difference of shear stresses, where the bed shear
velocity accounts for the lessening of shear stress away from the bed. In (E.2),

u′∗ = ub

(
g

1
2

C ′

)
, (E.3)

is the bed shear velocity related to the grains where C ′ is the grain Chézy coefficient. The
maximum value of the bed shear velocity related to grains is the bed shear velocity,

u∗ =
√

τ0

ρw
, (E.4)

where τ0 is the shear along the hydraulic perimenter (eq. 2.24).
In equation (E.1), u∗,cr is the critical bed shear velocity from the Shields criterion

θcr =
u2∗,cr(

ρs

ρw
− 1

)
gD

, (E.5)

where θcr is a critical mobility parameter. The Shields threshold criterion is commonly used to
express the critical shear stress necessary for motion,

τcr = (ρs − ρw) gDθcr. (E.6)

Shear stresses below this critical value will not cause motion of the sediments. While arguments
against this criterion exist (e.g., Yang, 1996, p. 22–23), no relationship is in more common usage
for the initial motion of sediments. An analytic form of the critical mobility parameter is

θcr =





0.24 D−1∗ for D∗ ≤ 4.5,

0.14 D−0.64∗ for 4.5 < D∗ ≤ 10,

0.04 D−0.10∗ for 10 < D∗ ≤ 18,
0.013D0.29∗ for 18 < D∗ ≤ 144,

0.055 for 144 < D∗,

(E.7)

where I have modified the original form given by van Rijn (1984a) to make the curve smoother.
A value of 0.6 for D∗ > 144 indicates tightly packed, uniform beds. The gray area in Figure
E.1 represents a lower value because of mixed-sized beds. Values higher than 0.06 are possible
provided that the bed is structured in a way that reinforces the grains at the bed (for a review,
see Church 2006).

The Chézy coefficient related to the grains C ′ in the bed shear relationship is

C ′ = 18 log10

(
12Rh

3D90

)
, (E.8)
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Figure E.1: Shields diagram. An illustration of equation (E.7). The gray area represents the
range discussed by Church (2006) for a mixture of different sediment sizes.

where D90 is the size of the 90th percentile of the grain size distribution. The equivalent
sand roughness is 3D90 as reviewed by van Rijn (1984a). The grain C ′ is a form of the Chézy
coefficient parameterized to the original Nikuradse experiments of water flowing over a sand bed
(e.g., Henderson, 1966, p. 94). The grain Chézy coefficient can be converted to a grain Darcy-
Weisbach friction factor (eq. 2.24) via (f ′d)

−1/2 = C ′/
√

8g. However, the form of equation (4.33)
is the one that is most compatible with the equations presented thus far, and I opt for that
formulation rather than equation (E.8).

The bed load flux (eq. 4.19) is equal to the product of the concentration of bed load material
(eq. 4.22), bed load layer thickness (eq. 4.21), and bed load velocity (eq. 4.20). In terms of the
transport stage parameter and the grain size characteristics, the bed load flux is

q̃e:b = 0.053
T 2.1

D0.3∗

[(
ρs

ρw
− 1

)
g

] 1
2

D
3
2
50, (E.9)

where semiempirical relations are used for the concentration and bed load height relations. This
equation is the relation given in eq. (4.24). The bed load flux is in units of cubic meters per
second per meter channel width.
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E.2 Suspended load

van Rijn (1984b) developed a method of calculating the suspended sediment load for particles
in the size range 0.1–0.5 mm. The procedure presented here is taken from van Rijn (1984b).

Procedure

1. Compute the particle parameter D∗ using equation (E.1).

2. Compute the critical bed-shear velocity u∗,cr using equations (E.5) and (E.7).

3. Compute the transport stage parameter T (eq. E.2).

4. Compute the reference level δs using equation (E.17).

5. Compute the reference concentration λb
s:0 using equation (E.16).

6. Compute the particle size of suspended sediment using equation (E.19) or another
method.

7. Compute the fall velocity of suspended sediment ws using equation (E.11).

8. Compute the βs factor (eq. E.13).

9. Compute the overall bed shear velocity u∗ using equation (E.4).

10. Compute the ϕ factor using equation (E.15).

11. Compute the suspension parameters Z and Z ′ using equations (E.12) and (E.14),
respectively.

12. Compute the correction factor Fs using equation (E.23).

13. Compute the volumetric concentration of suspended sediment λb
s using equation

(E.22).

14. Compute the suspended load transport q̃s using equation (E.21)

Formulation

The initiation of suspended load is commonly given in terms of the fall velocity of a sediment
particle as well as the shear velocity of the water. Based on experimental results, van Rijn
(1984b) formulated his own criterion for the initiation of suspended load,

u∗,crs =

{4ws

D∗
for 1 < D∗ ≤ 10,

0.4ws for 10 < D∗,
(E.10)

where u∗,crs is the critical shear velocity necessary for entrainment into suspension, and ws is
the fall velocity of a grain. For large grain sizes, u∗,crs takes the value 0.4ws. The sediment fall
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velocity is

ws =





(
ρs

ρw
− 1

)
gD2

18ν for D ≤ 0.1 mm,

10 ν
D





1 +

0.01
(

ρs

ρw
− 1

)
gD3

ν2




1
2

− 1




for 0.1 < D ≤ 1.0 mm,

1.1
[(

ρs

ρw − 1
)

gD
] 1

2
for 1.0 < D.

(E.11)

A suspension parameter Z relates the downward fall of sediments to upward turbulent
motions,

Z =
ws

βsκsu∗
, (E.12)

where κs is von Karman’s constant and βs describes how the sediments interact with the individ-
ual turbulent eddies. Values of βs greater than unity indicate that the sediments are propelled
to the outside of the individual eddies. The justification is that sediments at the outside of the
eddies mix more readily in the flow (van Rijn, 1984b). The βs parameter is

βs = 1 + 2
(

ws

u∗

)2

for 0.1 <
ws

u∗
< 1. (E.13)

If the fall velocity is greater than the bed shear velocity in equation (E.13), then the particle
cannot be in suspension. Particles in the flow will occupy space, damp turbulence, and reduce the
particle fall velocity. As a result, a simple correction to the suspension parameter is introduced,

Z ′ = Z + ϕ, (E.14)

where ϕ is the correction for these additional effects. van Rijn developed this parameter to cor-
rect the theory relative to measured vertical profiles of sediment concentration. The correction
is

ϕ = 2.5
(

ws

u∗

)0.8 (
λb

s:0

λb
b:0

)0.4

for 0.01 ≤ ws

u∗
≤ 1, (E.15)

where λb
s:0 is the sediment concentration at reference level δs, and λb

b:0 is the maximum sediment
concentration of the bed. This maximum concentration is equivalent to the solid fraction of the
bed, (1− ns

p), commonly assumed to be 0.65. The reference value for suspended sediment is

λb
s:0 = 0.015

D50

δs

T 3
2

D0.3∗
. (E.16)

The suspended sediment reference level can take a reasonable value near the bed. This level
may be the bedform height ∆s, or the Nikuradse sand bed roughness ks. Because the sand bed
roughness appears in equation (E.8) as 3D90, that value may be applied here.

δs = 0.5∆s or δs = ks = 3D90 (E.17)
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such that min (δs) = 0.01db. The bedform height is not of significant interest here, but I keep
it in fairness to the original formulation. The bedform height can be approximated as

∆s = 0.11
(
db

)0.7
(D50)

0.3
(
1− exp {−0.5T }

)(
25− T

)
, (E.18)

where db is the water layer thickness. If the bed is flat, the bed load layer thickness (eq. 4.21)
can be used.

The mean size of the suspended load will most likely differ from the mean grain size of the
bed. To account for this difference, Ds is a characteristic suspended grain size,

Ds = D50 [1 + 0.011 (σs − 1) (T − 25)] . (E.19)

where σs is the geometric standard deviation of the sediment distribution. The standard devi-
ation is

σs = 0.5(D84/D50 + D16/D50), (E.20)

where D84 and D16 are the 84th and 16th percentile of the grain size distribution. Calculating
σs from equation (E.20) is excessive for this study. Arbitrarily choosing a pertinent grain size
from the fall velocities or the grain size range 0.1–0.5 mm, the which is the range of validity,
might yield more insight.

The suspended load can then be calculated as the product of the mean flow velocity ub, the
water depth db, and the suspended load concentration λb

s:0,

q̃e:s = ubdbλb
e:s. (E.21)

The volumetric sediment concentration is

λb
e:s = Fsλ

b
s:0, (E.22)

where the correction factor Fs is

Fs =

(
δs

db

)Z′
−

(
δs

db

)1.2

(
1− δs

db

)Z′ (
1.2−Z ′)

. (E.23)
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Numerical formulation

Balance law numerical formulation

Chapters 2, 4, and 5 are formulated in a similar fashion using the balance laws. Because all of
the equations are implemented using MATLAB, the formulation and averaging schemes are an
important component of the numerical implementation. These discretizations are made for use
with the numerical method of lines (Schiesser, 1991).

Use of MATLAB implies that the solution in time is relatively simple to implement using the
ODE15S package. This package is specifically for stiff numerical systems and uses a numerical
differentiation formula (NDF) that is similar in form to the more common backward differenti-
ation formulae (BDF) (Shampine & Reichelt 1997; see also Ascher & Petzold 1998, Chap. 5).
Both NDF and BDF are multistep methods. In addition, ODE15S uses an adaptive step to
advance in time.

F.1 Sheet and channel numerical formulation

Because the sheet and channel are one dimensional in that the quantities of interest vary in s,
both have similar discretizations and boundary conditions. I employ a staggered grid and assign
each of the variables to either the cell centers or cell edges (Patankar, 1980).

F.1.1 Grid and discretization

Implementation of the governing equations (eqs. 2.15–2.17, 2.27, and 2.29) requires an along-
path coordinate system. Generally, the path is regular in x, but not necessarily regular in s.
Figure F.1a illustrates a case where ∆s is regularly spaced in x. However, a change in z for any
of those points without a change in x would make the grid irregular (Fig. F.1b). The irregular
grid appears in all the s-derivatives.

For a general variable Ω that lies on the centered grid (Table F.1), first derivatives in s lie
on the staggered grid such that

∂Ω
∂s

=
∂Ω
∂x

∂x

∂s
' ∆Ω

∆x

∆x

∆s

∣∣∣∣
i+ 1

2

=
(

Ωi+1 − Ωi

xi+1 − xi

)(
xi+1 − xi

si+1 − si

)
. (F.1)

For a general variable ω that lies on the staggered grid the first derivative is

∂ω

∂s
=

∂ω

∂x

∂x

∂s
' ∆ω

∆x

∆x

∆s

∣∣∣∣
i

=

(
ωi+ 1

2
− ωi− 1

2

xi+ 1
2
− xi− 1

2

)(
xi+ 1

2
− xi− 1

2

si+ 1
2
− si− 1

2

)
. (F.2)

While these equations appear to be intuitive from the perspective of the chain rule, the ∆s/∆x
terms need to be calculated from the along-path coordinates. If s(x) only, then this term can
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Table F.1: Subglacial water flow quantities on the centered and staggered grids.

Centered Staggered

zb(x) Glacier base elevation ∂zb

∂s
(s, t) Gradient of the base

zs(x) Glacier sediment bed elevation
zr(x) Glacier surface elevation
Z i(x) Ice thickness
pi(x, t) Ice overburden pressure
pb(s, t) Subglacial water pressure

φb(s, t) Hydraulic potential ∂φb

∂s
(s, t) Potential gradient

T b(s, t) Water temperature ∂T b

∂s
(s, t) Temperature gradient

ni
p(s, t) Ice porosity

ub(s, t) Water velocity
Channel-specific quantities
Rb(s, t) Channel radius
Sb(s, t) Cross sectional area
m(s, t) Melt rate
Pw Hydraulic perimeter
P i Melting perimeter
Sheet-specific quantities
Hb(s, t) Mean sheet thickness
m̃(s, t) Melt rate per unit width
∂(Hbub)

∂s
(s, t) Flux divergence(

∂Hb

∂t
(s, t)

)

close

Closure rate
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Figure F.1: One dimensional grid for subglacial water flow. Centered values reside at points
denoted by integer values such as i− 1, i, and i + 1. Staggered values inhabit points at integer
values plus or minus one half such as i− 1

2 and i + 1
2 . (a) Illustration of a regular grid in x and

s. (b) A similar illustration where the grid in s is irregular. Note that the grid in x is exactly
the same for both cases.

be set prior to finding the numerical solution. However, if s(x, t), as in the case of an eroding
bed, then ∆s/∆x must be calculated at every time step.

Often there will be quantities that require values on both the centered and staggered grid.
For example, the melt rate is needed on both grids. In such cases, quantities on the centered
grid can be averaged according to

Ωi+ 1
2

=
Vi+1Ωi+1 + ViΩi

Vi+1 + Vi
, (F.3a)

Vi =Hb
i W

(
si+ 1

2
− si− 1

2

)
sheet, (F.3b)

Vi =Sb
i

(
si+ 1

2
− si− 1

2

)
channel, (F.3c)

where the overline denotes an average and Vi is the volume of the ith cell. Similarly, quantities
on the staggered grid are averaged to the centered grid according to

ωi =
Vi+ 1

2
ωi+ 1

2
+ Vi− 1

2
ωi− 1

2

Vi+ 1
2

+ Vi− 1
2

, (F.4a)

Vi+ 1
2

=Hb
i+ 1

2

W (si+1 − si) sheet, (F.4b)

Vi+ 1
2

=Sb
i+ 1

2

(si+1 − si) channel. (F.4c)
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Using equations (F.4) and (F.4), it is now possible to discretize the time derivatives for the
time derivatives. The discretized forms of the mass balance equations (eqs. 2.15–2.17) are

∂Hb

∂t i
=

m̃i(
1− ni

p:i

)
ρi

+
(

∂Hb

∂t

)

close:i

sheet, (F.5a)

∂Sb

∂t i
=

mi

ρi
(
1− ni

p:i

) − 2Sb
i sgn(pi

i − pb
i )

( |pi
i − pb

i |
nB

)n

channel, (F.5b)
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
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+

Hb
i+ 1

2

ub
i+ 1

2

−Hb
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2
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2
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2
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−

(
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p:i

)
ρi + ni

p:iρ
w

(
1− ni

p:i

)
ρiρw

m̃i



 sheet,

(F.5c)

∂pb
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=− 1

γbSb
i





∂Sb

∂t i
+

Sb
i+ 1

2

ub
i+ 1
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− Sb
i− 1

2

ub
i− 1

2

si+ 1
2
− si− 1

2

−

(
1− ni

p:i

)
ρi + ni

p:iρ
w

(
1− ni

p:i

)
ρiρw

mi



 channel.

(F.5d)

The melt rate and melt rate per unit width become

mi =
0.023

(
Rei

)4/5
Pr2/5Kw

T ∆Tmp:iP
i
i

4Rh:iL
channel, (F.6a)

m̃i =
0.023

(
Rei

)4/5
Pr2/5Kw

T ∆Tmp:i

Hb
i L

sheet, (F.6b)

which are not interesting except that the Reynolds number needs to be averaged such that,

Rei+ 1
2

=





4Rh:i+ 1
2

∣∣∣ub
i+ 1

2

∣∣∣ ρw

µ
channel,

Hb
i+ 1

2

∣∣∣ub
i+ 1

2

∣∣∣ ρw

µ
sheet.

(F.7)

In this equation, assignment of the Reynolds number to the staggered grid limits the number of
averaging steps necessary to obtain the melt rate on both the staggered and centered grids.

Physically, the melt rate must match on the staggered and centered grids; however, numer-
ically, the melt rate is more important on the centered grid than on the staggered grid. As a
result, the melt rate is defined on the centered grid. In the momentum equation, the melt rate
terms are small and can be approximated by the melt rate averages. Using the average melt
rate ensures that they are smooth on the staggered grid. The melt rate terms do not appear in
the steady state momentum equations (eqs. 2.26) because the assumption that the melt rate is
small is valid under most flow conditions.
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When discretized, the momentum equations (2.27) become

∂ub

∂t i+ 1
2

=− 1
2

(
ub

i+ 1
2

)2
−

(
ub

i− 1
2

)2

si+1 − si
−
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1− ni

p:i

)
ρi + ni

p:iρ
w
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1− ni

p:i

)
ρi

mi+ 1
2
ub

i+ 1
2

ρwSb
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2

− 1
ρw
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i+ 1

2

− pb
i+ 1

2

si+1 − si
− g

zb
i+1 − zb

i

si+1 − si
−

Pw
i+ 1

2

τ0:i+ 1
2

Sb
i+ 1

2

ρw
channel, (F.8a)
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−
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i
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2
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sheet, (F.8b)

where the first term on the right hand side is upwinded. Similarly, discretizing equations (2.29)
yields

∂T b

∂t i
=− ub

i− 1
2

T b
i − T b

i−1

si − si−1
− mi

ρwcw
p Sb

i





L + cw
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)
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p:iρ
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(
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

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+
Pw

i

Sb
i

(τ0ub)i

ρwcw
p

channel, (F.9a)
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2
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i

(τ0ub)i

ρwcw
p

sheet. (F.9b)

Overall, these equations strike the proper balance for the discretization of internal energy. How-
ever, one of the discouraging aspects of this energy discretization is that the ∂T b/∂s terms
lie on the staggered grid and are simply moved to the centered grid. This feature guarantees
upwinding but introduces a small amount of error to the second-order accurate scheme in space.
Any other scheme would require Ti−1, Ti, Ti+1, which arbitrarily bridges the solution from the
i − 1 to i + 1 nodes. Obviously, when water flow is opposite to the upwinding, the scheme
presented in equations (F.9) needs to be modified.

F.1.2 Boundary conditions

Upstream

Two conditions are necessary at the upstream boundary. These conditions are commonly em-
ployed as a condition on water pressure and water discharge.

Without a surface melt and infiltration condition applied to the model presented here, it is
useful to borrow ideas from outburst floods. Ice-dammed lakes release through a conduit where
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the temperature and configuration of the lake are either known or assumed at the upstream end
of the channel (e.g., Clarke, 2003). Instead of a lake, it is possible to create a similar situation
by imposing a crevasse at the upstream end of the subglacial water system such that,

dZc

dt
=

Qmelt −Qb

Ac
, (F.10)

where Zc = zc − zs is water depth in the crevasse, zc is the water elevation in the crevasse
relative to a fixed datum, Qmelt represents recharge from a supraglacial water system, Qb is a
water flux to the subglacial water system, Ac is the representative cross-sectional area normal to
z, and dzs/dt is the rate of change of the elevation of the bed below the crevasse (see Fig. F.2).
Equation (F.10) neglects any crevasse opening or closing mechanisms via melting/freezing or
mechanical opening/closing. Because this equation does not directly account for the boundaries
at the surface or base of the crevasse, penalty functions similar to equation (5.27) prevent the
crevasse water height from being above the surface of the glacier or below the bed elevation,

dZc

dt
=





1
τ c

(
Z i − Zc

)
for

[
Zc + τ c

(
Qmelt −Qb

Ac

)]
> Z i,

Zc

τ c for
[
Zc + τ c

(
Qmelt −Qb

Ac

)]
< 0.

(F.11)

In each of the cases, τ c is a characteristic time scale for the crevasse. These relations can be
implemented such that the penalty function is used when the water depth approaches the limits
in (F.11).

Alternatively, the rate of change of the crevasse water elevation can be prescribed directly
without the use of a recharge rate. The advantage of this method is that the crevasse water
height is known for all time. The disadvantage is that the water elevation change is not based
upon the outflow from the crevasse, which would be expected. I avoid this representation.

Figure F.2: Ice geometry with upstream crevasse. Water flows into the crevasse at a predeter-
mined rate, Qmelt (gray arrow) and flows out of the crevasse into the subglacial water system
at a rate Qb.

From the water depth in the crevasse, the upstream conditions of pressure and temperature
are

dpc

dt
=ρwg

dZc

dt
, (F.12a)

dT c

dt
=β

dpc

dt
. (F.12b)
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Equation (F.12a) states that the upstream pressure condition is hydrostatic, and equation
(F.12b) states that the upstream temperature evolution is based on the Clausius-Clapeyron
equation.

The discharge from the crevasse into the subglacial system is defined as

Qb
3
2

=Sb
2ub

3
2

channel, (F.13a)

Qb
3
2

=Hb
2 Wub

3
2

sheet, (F.13b)

where the implied boundary conditions16 are that ∂Sb/∂s = 0 and ∂Hb/∂s = 0 for the channel
and sheet, respectively. By setting the two mass balance equations (eqs. 2.14 and eqs. 2.16)
equal, the boundary conditions on ∂ub/∂s become

∂ub

∂s 3
2

=− 1
Sb

2

{(
1
ρi
− 1

ρw

)
m2 − 2Sb

2 sgn
(
pi − pb

2

)( |pi − pb
2 |

nB
)n}

channel, (F.14a)

∂ub

∂s 3
2

=− 1
Hb

2

{(
1
ρi
− 1

ρw

)
m̃2 +

(
∂Hb

∂t

)

close:2

}
sheet. (F.14b)

These relationships substitute directly into equations (F.8) for the divergence terms.

Downstream

Only a pressure boundary condition is necessary downstream. This condition can be either a
Dirichlet or Neumann condition. For the discretization employed here, this condition is applied
as a Dirichlet condition meaning that the outflow pressure must be known. Commonly, water
exits the glacier at atmospheric pressure, which is a natural choice for the pressure. In some
situations, water exits the subglacial water system into a lake. In addition, at some of the
hydraulic vents at the margin of Matanuska Glacier, water flow is artesian. Both the lake case
and the artesian case can be prescribed as Dirichlet boundary conditions.

The other boundary condition option is to prescribe the derivative as a Neumann boundary
condition. If Neumann boundary conditions are applied, it is possible that open channel flow
might occur. However, the equations presented in Chapter 2 are not compatible with open
channel flow. Thus, not only does a Dirichlet boundary condition approximate the bound, but
this condition also prevents the equations from behaving nonphysically. Open channel flow is
observed at many glaciers near the terminus, but its subglacial extent is not clear.

Both the ice mass balance (eqs. F.5a and F.5a) and the thermal energy balance (eqs. F.9)
require a melt rate at the exit. A Reynolds number appears in this melt rate and requires an
appropriate velocity at the final centered cell,

ub
N =

Qb
N− 1

2

Sb
N

channel, (F.15a)

ub
N =

Q̃b
N− 1

2

Hb
N

sheet, (F.15b)

where N denotes the final grid-centered cell, and Q̃b is the average discharge per unit width.
The discharge between cells is conserved, and as a result, dividing the discharge at the final

16In these equations, numbered subscripts indicate the relative position of the ith location on the grid. For
example Qb

3
2
is exactly Qb

i= 3
2
. Near the outflow boundary, i may take a value based on N .
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staggered point by the final cross-section is a reasonable approximation to the velocity there.
With the melt rate term defined and because the thermal energy balance is already upwinded
with respect to its divergence term, this equation can be applied at the outflow boundary without
complication. Similarly, the ice mass balance can be applied directly to the final centered grid
cell.

F.1.3 Initialization

Because a numerical model integrates over time, the initial conditions are paramount. Initial
conditions that are ill-posed will not be corrected by numerical integration.

Of the fields that need to be specified, the cross-sectional area Sb, and the water layer
thickness Hb, are the most difficult to ascertain. Essentially, reasonable guesses for these terms
are necessary. Both Clarke (2003) and Ng (1998) chose Sb to match known examples. Clarke
(2003) also tested initial values of Sb and concluded that the overall sensitivity was limited.
It stands to reason that Hb must also be chosen arbitrarily. For the velocity, pressure, and
temperature equations, natural initial conditions stem from applying the steady state velocities
(eqs. 2.26), setting the water pressure equal to ice overburden pressure, and then applying the
Clausius-Clapeyron relation (2.8), respectively.

F.2 Sediment transport numerical formulation

Governing equations for sediment in the subglacial water system are given by equations (4.11),
(4.12), (4.14), and (4.15). There are also the balances of sediment in the water (eqs. 4.10) and
the rate of change of the bed elevation (4.7). Other equations that are necessary are the supply
from the ice (4.34) as well as the semiempirical sediment transport relations (eqs. 4.19–4.30).
Many of these equations have a numerical formulation that parallels the formulation for water
flow without sediment transport. As a result, I only touch on the portions of the numerical
formulation that are either exclusive to sediment transport or require additional clarification.

F.2.1 Grid and discretization

The grid is the same as that of the subglacial water flow (Fig. F.1). Additional quantities that
fall on this grid are listed in Table F.2.

Table F.2: Sediment transport quantities on the centered and staggered grids.

Centered Staggered
∂qs

∂s
(s, t), ∂q̃s

∂s
(s, t) Sediment flux divergence qs, q̃s Sediment flux

qs
e, q̃s

e Equilibrium sediment flux
Ψi(s, t), Ψ̃i(s, t) Sediment supply from ice
λb(s, t) Sediment concentration in flow
λi(s, t) Sediment concentration in ice

In the four sets of governing equations (eqs. 4.11, 4.12, 4.14, and 4.15), there are necessary
modifications of the discretization presented for flow equations presented above because of the
inclusion of the sediment concentration λb and the source terms Ψ̃s, Ψ̃i, and Ψs. In the mass
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balance equations, λ and Ψ terms are straightforward with the exception of flux divergence of
sediment concentration ub(∂λb/∂s) in equations (4.11b) and (4.12b). In these equations, this
term averages via equations (F.4) to

(
ub

∂λb

∂s

)

i

=
Vi+ 1

2
ub

i+ 1
2

(
λb

i+1 − λb
i

si+1 − si

)
+ Vi− 1

2
ub

i− 1
2

(
λb

i − λb
i−1

si − si−1

)

Vi+ 1
2

+ Vi− 1
2

. (F.16)

In the momentum equations, Ψi, Ψ̃i, and Ψ̃s need to be averaged to the staggered grid via equa-
tions (F.3) to make Ψi

i+ 1
2

, Ψ̃i
i+ 1

2

, and Ψ̃s
i+ 1

2

. There are no additional discretizations necessary
for the balance of internal energy that are not discussed above.

The rate of change of the sediment concentration requires two modifications. The definition
of sediment flux appears in equation (4.3a) as q̃s = usλbHb, its numerical discretization on the
staggered grid is

q̃s
i+ 1

2

= us
i+ 1

2

(λbHb)i+ 1
2
, (F.17)

where averaging is done according to equation (F.3). Divergence of this flux then falls on the
centered grid.

The total sediment flux is the sum of the bed load and suspended load such that

q̃s =q̃s
b + q̃s

s, (F.18a)

q̃s =ubδbλ
b
b + ubHbλb

s sheet, (F.18b)

q̃s =ubδbλ
b
b + ub

(
πRb

4

)
λb

s semicircular channel. (F.18c)

To obtain the water depth in equation (F.18c), the semicircular cross sectional area is approxi-
mated by a rectangle of equal area whose width is the the width of the channel 2Rb. The water
depth is then the height of this rectangle πRb/4 or

(
πSb/2

) 1
2 in terms of Sb. A second modi-

fication appears in equation (4.4) where the difference of the equilibrium and actual sediment
fluxes yields a sediment supply. In this case,

Ψ̃s
i =

ρs

Ls

(
q̃s
e:i − q̃s

i

)
, (F.19)

where the fluxes are averaged from the staggered grid to the centered grid. Equation (4.10) does
not require additional modification.

The semiempirical bed load flux and suspended load flux equations (4.19)–(4.30) have cen-
tered and staggered quantities in them. In general, these can be moved via equations (F.3) and
(F.4) when necessary. There are also quantities such as δb and D50 that lie on the centered grid.
Treatment of these secondary quantities is not critical. Provided that they are all treated in a
careful systematic fashion relative to the other fields and fluxes, their discretization does not
merit further consideration.

Change in bed elevation and along-path coordinate

Erosion or deposition results in a change in zs. The change in zs results in a change in the path
length,

∆si+ 1
2

=
√(

zs
i+1 − zs

i

)2 + (xi+1 − xi)
2, (F.20)
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where the length of the ∆s array is one less than the length of the x or zs arrays. The along-path
coordinate is then

si+1 = s1 +
N−1∑

1

∆si+ 1
2
, (F.21)

where s1 = 0 and N is the number of grid cells. With zs defined on the centered grid, its
values on the the staggered grid are found using linear interpolation. The equivalent relations
to equations (F.20) and (F.21) are

∆si =

√(
zs
i+ 1

2

− zs
i− 1

2

)2

+
(
xi+ 1

2
− xi− 1

2

)2
, (F.22a)

si+ 1
2

=s 1
2

+
N−1∑

1

∆si. (F.22b)

F.2.2 Boundary conditions

Upstream

Several conditions are necessary at the upstream boundary. The crevasse boundary condi-
tions remain the same as in the case of clear water flows (eqs. F.10 and F.11). In addition,
the upstream pressure and temperature conditions are also exactly those for clear water flows
(eqs. F.12).

The discharge from the crevasse into the subglacial system is defined using equations (F.13)
where ∂Sb/∂s = 0 and ∂Hb/∂s = 0 for the channel and sheet, respectively. Using this condition,
the boundary conditions on ∂ub/∂s result from setting the two mass balance equations for the
channel (eqs. 4.11a and 4.11b) and sheet (4.12a and 4.12b) equal,

∂ub

∂s 3
2

=
1
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2

ρw

ρf
3
2
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1− λi
2
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)
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]
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+
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1− λi

2

) (
1− ni

p

)
ρi + ni

pρ
w + λi

2

(
1− ni

p

)
ρs

][
1 +

ni
pρ

w

(
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, (F.23a)
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+
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ρs

ρw
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)(
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∂s
−Hb

2 ub
3
2

∂λb

∂s

) }
, (F.23b)

where equations (F.23a) and (F.23b) are for the channel and sheet, respectively. The sediment
divergence terms ∂λb/∂s, ∂qs/∂s, and ∂q̃s/∂s can be estimated by assuming that the water flows
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in with an equilibrium concentration of sediment. Water velocities are estimated by assuming
that the discharge does not vary significantly over the first cell, such that

ub
1 =

Q 3
2

Sb
2

channel, (F.24a)

ub
1 =

Q 3
2

Hb
2 W

sheet. (F.24b)

Because sediment concentration is at equilibrium, the first cell cannot evolve its bed elevation
via equations (4.7) and (4.4) because Ψ̃s = 0. However, the spatial derivative of the bed figures
into equation (4.14). As a result, on the first cell ∂zs/∂s 1

2
= 0, which is equivalent to saying

that the erosion or aggradation rate in the first cell is equal to that of the second cell.

F.2.3 Initialization

The initialization of the subglacial velocity via equation (2.26) allows calculation of both bed and
suspended load via the semiempirical sediment transport relationships. The other important
initialization is the concentration of sediment in the ice λi, and it is not clear what this should
be set as. In consequence, I take it as a free parameter.

F.3 Englacial aquifer numerical formulation

Equations (5.1), (5.15), and (5.18) form the system of governing equations. These governing
equations are subject to the supplementary relations in equations (5.19), (5.23), and (5.25). The
conditions at the surface of the aquifer and base of the aquifer given in equations, (5.28–5.32,
5.26, and 5.27). The values of pressure and temperature at the top of the glacier are assumed
to be atmospheric and 0oC, respectively. Pressure and temperature values at the base of the
aquifer are given by equation (eqs. 2.16b and 2.29b). Note that at this point it must be clear
that the aquifer is only over the sheet. This prevents a correction for the radial divergence of
water over a channel.

F.3.1 Vertical coordinate transformation

Because the thickness of the englacial aquifer can evolve through time, and because the aquifer
is assumed to be contiguous, a vertical coordinate transformation is useful. This coordinate
transformation, and its resulting change in derivatives, is presented in Appendix G. Quantities
that vary in the vertical dimension transform via equation (G.1a). The irregularly spaced
vertical derivatives in z become regular vertical derivatives in ξw for numerical operations.
Terms containing ξw map directly back to z via

ξw =
z − zb

Ze
, (F.25)

where ξw takes values in the range (0, 1) dependent on the assignment of z. The vertical
derivative of (F.25) is

∂ξw

∂z
=

1
Ze

. (F.26)
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Equations (F.25) and (G.1a) can then be used to create the other derivatives according to

dξw

dX
= − 1

Ze

(
dzb

dX
+ ξw dZe

dX

)
, (F.27)

where X represents either x or t depending on the situation. When the independent variable
is time t or longitudinal position x, the derivatives gain an extra term based on this equation.
Because zb and Ze do not vary vertically, the derivatives in equation (F.27) are relatively simple
to calculate. Simple calculations such as these are some of the advantages of a vertical coordinate
transformation.

Each of the four governing equations for flow within the aquifer assumes a form in ξw.
Darcy’s law (eq. 5.1a) changes slightly with the change of variable,

qw
z = − 1

Ze

Kw
H

ρwg

∂φw

∂ξ
, (F.28a)
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. (F.28b)

Equations (5.15) and (5.18) become
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. (F.29c)

The divergence of specific discharge ∇·qw that appears in equations (5.15b) and its transformed
equivalent (eq. F.29b) expands to

∇ · qw =
∂qw

x

∂x
− 1

Ze

∂qw
z

∂ξ

(
dzb

dx
+ ξw dZe

dx

)
+

1
Ze

∂qw
z

∂ξ
. (F.30)

The other equations necessary for numerical implementation of the aquifer (eqs. 5.23, 5.25,
5.28, 5.30, 5.31, 5.26, 5.27) are either applied along the boundaries or do not have a dependence
on z. As a result, these equations are not transformed via equation (F.25) or its derivatives.

F.3.2 Discretization

In general, the englacial aquifer grid is positioned with respect to the subglacial sheet. The
staggered grid is similarly determined. With two grids, distinction must be made between the
values that reside on the centered grid and those that reside on the staggered grid. Figure
F.3 illustrates this grid. In addition, this figure illustrates the difference between the z- and
ξw-grids. The advantage of the ξw-grid is that it is regular and uniform.
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Figure F.3: Two dimensional grid for englacial water flow. Centered values reside at points
denoted with integer values such as i − 1, i, and i + 1 for x and j − 1, j, and j + 1 for ξw.
Staggered values inhabit points at integer values plus or minus one half such as i− 1

2 and i + 1
2

for x and j − 1
2 and j + 1

2 for ξw. (a) Illustration of a regular grid in x and z. (b) A similar
illustration where the grid in ξw is uniform.

For a general variable Ω, that lies on the centered grid in x–z coordinates, the vertical,
horizontal, and time derivatives can be approximated in x–ξ coordinates as,
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In equations (F.31b) and (F.31d), equation (F.27) has been substituted for the relevant deriva-
tive in x or t.

In equation (F.31b), the ∂Ω/∂ξ term lies on the vertical points of the staggered grid on
(i, j + 1

2). As a result, this term needs to be averaged to the (i + 1
2 , j) gridpoints in equation

(F.31c) using a four point average of differences,
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)
(F.32)

where the relevant vertical derivatives in ξ are given in equation (F.31a). The four differences
require six field points in this equation. Derivatives in t in equation (F.31d) require a simpler
stencil for the vertical averages,

∆Ω
∆ξw
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)
. (F.33)
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Table F.3: Englacial water flow quantities on the centered and staggered grids.

Centered Staggered

ni
p(x, ξ, t) Ice porosity

∂ni
p

∂ξ
(x, ξ, t) Vertical porosity gradient

pw(x, ξ, t) Water pressure ∂pw

∂x
(x, ξ, t), ∂pw

∂ξ
(x, ξ, t) Pressure gradient

∇ · qw Flux divergence qw
x (x, ξ, t), qw

ξ (x, ξ, t) Specific discharge
qw Magnitude of qw

Tw(x, ξ, t) Water temperature ∂Tw

∂x
(x, ξ, t), ∂Tw

∂ξ
(x, ξ, t) Temperature gradient

φw(x, ξ, t) Hydraulic potential ∂φw

∂x
(x, ξ, t), ∂φw

∂ξ
(x, ξ, t) Potential gradient

∂zb

∂x
(x, ξ, t) Gradient of glacier base

∂Ze

∂x
(x, ξ, t) Aquifer thickness gradient

F`, b Fracture parameters
Kw

H Hydraulic conductivity
dv, mv Source terms

If ∆ξw is constant, then equation (F.33) reduces to

∆Ω
∆ξw

i,j

=
Ωi,j+1 − Ωi,j−1

2∆ξw
. (F.34)

Both equations (F.32) and (F.34) utilize the fact that ξw is a uniform grid because additional
weightings are not necessary for the averages. At the boundary, either forward or backward
differences are necessary.

Discretizations for the water fluxes given by equations (F.28) follow as,

qw
z:i,j+ 1

2

=− 1
Ze

i

Kw
H:i,j+ 1

2

ρwg

(
φw

i,j+1 − φw
i,j

ξw
i,j+1 − ξw

i,j

)
, (F.35a)

qw
x:i+ 1

2
,j

=−
Kw

H:i+ 1
2
,j

ρwg





(
φw

i+1,j − φw
i,j

xi+1 − xi

)
− 1

Ze
i+ 1

2

∂φw

∂ξ i+ 1
2
,j

(
zb
i+1 − zb

i

xi+1 − xi

+ξw
i+ 1

2
,j

Ze
i+1 − Ze

i

xi+1 − xi

)

 . (F.35b)

The ∂φw/∂ξi+ 1
2
,j term can be constructed using equation (F.32). In addition, the hydraulic

conductivity in equations (F.35) is defined on the centered grid because equations (5.19) and
(5.20) are dependent on ni

p, F`, and b that reside on the centered grid (Table F.3). Typically,
harmonic averages are used for flux perpendicular to layering and arithmetic averages are used
for flux parallel to layering. For the anisotropic, nonlayered case, geometric averaging is appro-
priate. Without prior knowledge of the internal structure of the glacier, I assign the averages
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as geometric,

Kw
H:i,j+ 1

2

=
√

Kw
H:i,jK

w
H:i,j+1

√√√√Vi,jVi,j+1

V 2
i,j+ 1

2

, (F.36a)

Kw
H:i+ 1

2
,j

=
√

Kw
H:i,jK

w
H:i+1,j

√√√√Vi,jVi+1,j

V 2
i+ 1

2
,j

, (F.36b)

where V is the individual volume of the cell. These volumes are defined by,

Vi,j =W
(
xi+ 1

2
− xi− 1

2

)(
ξw
j+ 1

2
− ξw

j− 1
2

)
, (F.37a)

Vi+ 1
2
,j+ 1

2
=W (xi+1 − xi)

(
ξw
j+1 − ξw

j

)
, (F.37b)

where W indicates that the volumes have unit width. Combinations of subscripts are quickly
realized using equations (F.37) as a template.

The mass balances and the thermal balance (eqs. F.29) are all discretized using a second-
order finite volume technique. The evolution of porosity becomes,

∂ni
p

∂t i,j
=

mv:i,j − dv:i,j

ρi
− ∂ni

p

∂ξ i,j

1
Ze

i

(
dzb

dt i
+ ξw

j

dZe

dt i

)
, (F.38)

where the closure rate (eq. 5.23) has an obvious discretization,

dv:i,j = ρini
p:i,j sgn

(
pi

i,j − pw
i,j

)
(
|pi

i,j − pw
i,j |

nB

)n

. (F.39)

In this equation, there are no averages or gradients that require a special formulation. Addi-
tionally, the melt rate from equation (5.25) becomes,

mv:i,j = 1.27

(
ρwcw

p Kw
T qw

i,j

ni
p:i,jbi,j

) 1
2 F`:i,j∆Tmp:i,j

L
, (F.40)

where qw
i,j requires elucidation. Because qw lies on the staggered grid, qw

i is an averaged magni-
tude such that

qw
i =

1
2

{(
qw
x:i+ 1

2
,j

+ qw
x:i− 1

2
,j

)2
+

(
qw
z:i,j+ 1

2

+ qw
z:i,j− 1

2

)2
} 1

2

. (F.41)

The final term that is necessary in equation (F.38) is ∂ni
p/∂ξi,j , which is simply an average of

the differences via equation (F.33).
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The second mass balance equation and the thermal balance are discretized in a similar
fashion to equation (F.38),

∂pw

∂t i,j
=− 1

ni
p:i,jα

w + (1− ni
p:i,j)αi

{
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1
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)
, (F.42a)
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. (F.42b)

In equation (F.42a), averaging of ∂pw/∂ξi,j to the centered grid is accomplished via equation
(F.33). In equation (F.42b), ∂Tw/∂ξi,j is similarly averaged using equation (F.33), and qw

i,j is
obtained via equation (F.41). The difficulty in discretizing equation (5.18) is the first term,
−(qw · ∇Tw)/ni

p, which enlarges because of the coordinate transformation in equation (F.29c).
The result of this difficulty is that there are six averages in equation (F.42b) with one of these
being repeated. Luckily, these are simple averages where qw

x:i,j , ∂Tw/∂xi,j , dzb/dxi, and dZe/dxi

are averaged from the horizontal staggered grid to the centered grid. Similarly, ∂Tw/∂ξi,j and
qw
z:i,j are simple vertical averages from the vertical staggered grid to the centered grid.

Implementation of equations (F.38) and (F.42) and their supporting equations uses compu-
tational matrix operators as well as MATLAB’s sparse matrix functions. The discretization is
formally second-order accurate, but averages may slightly reduce this level of accuracy.

F.3.3 Boundary conditions

The upstream and downstream Dirichlet conditions on temperature and pressure outside the
aquifer are necessary. Downstream, the pressure is atmospheric, and the temperature is taken to
be zero degrees. Upstream, the hydrostatic pressure in the crevasse is the boundary condition.
Glaciers undoubtedly exchange water between a more rapidly filling and draining system of
crevasses and a slower englacial hydrology, and other models incorporate this feature (e.g.,
Flowers, 2000).

F.3.4 Initialization

From the initial water height, the initial temperature profile can be found by assuming that the
water is at the equilibrium zero. This assumption requires that the pressure in the water be
known. The obvious choice for the pressure is simply setting the englacial water pressure equal
to local hydrostatic pressure,

pe(x, z, 0) = ρwg (ze − z) . (F.43)

For a regular but nonuniform grid in z, an average pressure over the nonuniform portion of
the grid is necessary. The technique used to obtain this average pressure is shown in equation
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(G.5). Temperature is then found from pressures using the Clausius-Clapeyron relationship.
Initial porosities and fracture densities must be set arbitrarily.

F.4 Sheet closure

The discussion of subglacial sediments in Chapter 4 notes that large grains are poorly represented
by most sampling techniques. However, in Chapter 3, it is clear that larger grain sizes are
important for sheet closure. A reasonable way through this conundrum is to extend the grain
size distribution using the fractal distribution (eq. 3.23 or 4.18) along the Φ scale.

Grain sizes are commonly classified using the Φ scale where

Φ = − log2 D, (F.44)

and D is a characteristic grain diameter in millimeters. The Φ scale is usually constructed from
Φ = −8 (D = 0.256 m, boulder gravel) to Φ = 8 (D ' 0.91 × 10−6 m, clay) and centered at
Φ = 0 (D = 0.001 m, coarse sand) for a total of 17 grain sizes. Extending the scale to Φ = −9
(D = 0.512 m, boulder) gives a reasonable distribution for the closure relation (Fig. F.4). While
not a perfect match, any reported data for larger grain sizes would fall along or could be easily
converted to the Φ scale.
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Figure F.4: Grain size distribution used in the model. Vertical axis on the left size is linear and
corresponds to the black line. Right vertical axis is logarithmic and corresponds to the gray
line. Numbers along the gray line are the corresponding Φ values. Both lines contain the same
information. The number of grains corresponds to 100 m2 but will change depending on the
grid cell size. The relations among the points and curves will remain the same, however.

When the value of water pressure is lower than the value of ice overburden stress, sheet
closure occurs according to equations (3.17). Solution of these equations requires using Newton’s
method for N +1 variables, where N is the number of grain sizes on the bed exposed to the ice.
Performing these iterations for all spatial grid cells becomes computationally expensive within
a few time steps.

Equations (3.17) describe a steady-state process, and the erosion rules presented in Chapter
4 do not change the distribution of sediments governing sheet closure. These two details can
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be exploited to make a lookup table whereby the steady state values are computed for a range
of reasonable overburden stresses and water pressures prior to integrating the water flow model
through time. The closure rates should be insensitive to low erosion rates because sheet closure
depends more strongly on larger grains. Erosion will affect the grains smaller than Φ = −1.
Furthermore, the effective length scales (eqs. 3.18–3.22) are insensitive to a change in the grid
size provided that the grain size distributions are linked directly to Ai and that partial grains
are used in the grain size distributions. Physically, partial grains are those sediment grains that
intersect more than one grid cell or intersect the unit width of flow in the y-direction.

Closure velocities for the synthetic longitudinal section are presented in Figure F.5 (see also
Fig. A.1) where the half grain case is used (eqs. 3.20). The numerical solution in Figure F.5a
is calculated every 0.002 m from 0.001 m to 0.255 m. Driving stress is calculated at 25 equally
spaced points between zero and ten meters of ice equivalent driving stress (equivalent to spacing
0.42 m or 3750 Pa). From 10 meters of ice equivalent driving stress to the stress, there are 75
equally spaced points (equivalent to 0.56 m of ice equivalent driving stress or 5000 Pa). The
driving stress grid is intentionally tighter at lower driving stresses because water pressures in
subglacial sheets should be near the ice overburden stress. The maximum ice thickness for the
synthetic section is 46.86 meters (Table A.1). Because ice may accrete throughout a model run,
the maximum driving stress in Figures F.5 is 51.3 meters or 110% of the maximum ice thickness
in the synthetic section.
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Figure F.5: Comparison of calculated and interpolated closure schemes. Contours for Figures
(a) and (b) are spaced at 1.0 × 10−6 m s−1. (a) Calculated closure velocities. Regelation,
mixed, and creep regimes are delineated by white contours and denoted by white R, M, and C,
respectively. (b) Closure velocities interpolated from Figure (a). Closure regimes are the same
as in (a). (c) Normalized residual between the calculated and interpolated values. Contour
intervals are 0.025.

Between Figures F.5a and F.5b, there is little noticeable difference. Figure F.5b shows the
values interpolated halfway between the numerical solution points discussed above. Figure F.5c
shows the normalized residual. Horizontal lines are contours at 0.00 normalized error. The
importance of this figure is not in the values, but in the locations of the maximum errors. The
contours capture the seven largest grain sizes. The maximum errors for each of these grain sizes
at the radius height is recapitulated in Table F.4. The error results from the change in closure
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velocity as the number of grains touching the overlying ice changes. For r1 the maximum error
occurs at a low driving stress. Obviously, if the water depth meets or exceeds the maximum grain
size, there will be a numerical instability as the ice floats off its bed. Thus, error from the largest
grain size is not of principal concern because that grain size is problematic for physical reasons
ab initio. For all other grain sizes, maximum error occurs at the maximum driving stress. For
water depths at or below r3 the absolute value of the maximum error is less than 0.03 such that a
lookup table appears to be a reasonable approximation to the closure relationship. Furthermore,
the errors introduced by interpolation via a lookup table are much smaller than the probable
errors introduced by assuming a grain size distribution.

Note that when the value of water pressure is greater than the value of the ice overburden
stress, the closure relation reverts to creep closure (eq. 3.8). Because creep is not dependent
on a Newton-Raphson numerical iteration, creep velocities are computed whenever necessary in
the appropriate time step.

Table F.4: Maximum interpolation errors for each of the largest grain sizes.

Grain Radius (m) Error σe/(ρig) (m)
r1 0.256 1.220 0.21
r2 0.128 0.002 0.21
r3 0.064 0.001 51.3
r4 0.032 0.0004 51.3
r5 0.016 0.0003 51.3
r6 0.008 0.0001 51.3
r7 0.004 -0.0002 51.3

Negative error values indicate that the interpolated solution is
greater than the numerical solution.

F.4.1 Grain volume

Because the largest grains take a portion of the volume of the sheet the maximum thickness of
the sheet Hb

max, is not the same as the average thickness Hb. However, the closure relationship
acts on the maximum thickness rather than the average thickness. Because the distribution
of sediments that define the closure relationship is known a priori, the relationship between
the maximum and average thickness is also known a priori. For the half grain case with a
distribution given by Figure F.4, the average thickness is

Hb =
1
Ai

{
nw

a AiHb
max +

(
Ai − nw

a Ai
)
(

Hb
max −

18∑

i=1

N s
a:i

[
2
3
πr3

i − Ve:i

])}
(F.45)

where nw
a is the fractional area of the bed that is not covered by sediment, 18 is the number of

grain sizes, and Ve:i is the effective volume in the ice. The fractional area of the bed not covered
with sediment is equivalent to the fractional area of the bed covered by water in Chapter 3.
When the effective volume is zero, the volume of a grain in the flow is exactly half the volume
of the sphere. The volume of the water sheet is then solely dependent on nw

a , which forces the
thickness of the water sheet to always be finite. This relationship is plotted in Figure F.6.
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Figure F.6: Average sheet thickness versus maximum sheet thickness. The black line gives the
relationship in equation (F.45) where Ve:i is given by equation (3.20a). The dashed gray line
gives Hb = Hb

max. The average sheet thickness is less than the maximum sheet thickness.

The initialization of the sheet thickness and the closure relationship are done simultaneously
so that there are no inconsistencies in the volume of either. For example, the amount of obstacle
that is within the water layer must not cause the volume of water to be less or more than the
average value of Hb indicates.
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Additional discretization characteristics

G.1 Vertical coordinate transformation

For coordinates that change during the course of a simulation, mapping a grid that changes
with time to a set, regular grid is particularly useful. The idea is that a grid may be irregular,
but the these irregularly spaced points map to a regular grid. The regular grid remains constant
through time while the irregular coordinates evolve with time. Haltiner & Williams (1980,
p. 14–15) formulated grid mappings in general terms for partial and ordinary derivatives.

For a function f(X, z), where X represents time and/or additional space coordinates and z
is its vertical dependence, it is useful to have a set of mathematical rules for transforming the
derivatives from z to ξ or vice versa. I recapitulate Haltiner & Williams’s (1980) as well as parts
of Marshall’s (1996) derivation for completeness of the change of derivatives, where

∂f(X, z)
∂X

=
∂f̃(X, ξ)

∂X
+

∂f̃(X, ξ)
∂ξ

∂ξ

∂X
, (G.1a)

∂f(X, z)
∂z

=
∂f̃(X, ξ)

∂ξ

∂ξ

∂z
, (G.1b)
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∂f̃(X, ξ)

∂ξ

∂ξ

∂z

∂

∂ξ

(
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(
∂ξ

∂z

)2

+
∂f̃(X, ξ)

∂ξ

∂2ξ

∂z2
. (G.1c)

In these equations, f and f̃ have the same value but are be labeled as different variables because
of the change in vertical coordinate.

G.2 Finite volume averages on non-rectilinear meshes

For any two-dimensional mesh, the four corners around point (i, j) are defined as (i− 1
2 , j − 1

2),
(i+ 1

2 , j− 1
2), (i− 1

2 , j+ 1
2), and (i+ 1

2 , j+ 1
2) (Fig. G.1a). Each of these points has a corresponding

x and z that define mesh location. For a mesh with only a vertical transformation, xi− 1
2
,j− 1

2
and

xi− 1
2
,j+ 1

2
have the same numerical value; and xi+ 1

2
,j− 1

2
and xi+ 1

2
,j+ 1

2
have the same numerical

value (Fig. G.1). The numerical values of zi− 1
2
,j− 1

2
, zi− 1

2
,j+ 1

2
, zi+ 1

2
,j− 1

2
, and zi+ 1

2
,j+ 1

2
can all be

different.
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Figure G.1: Four-cornered two-dimensional grid. (a) Illustration of an irregular grid in x and
z. (b) A similar illustration where the grid in x is uniform.

The finite volume method relies on the smooth scalar quantity f(x, z) being represented
by a volume-average of that quantity placed at the centroid of the cell. Mathematically, this
integration looks like a two-dimensional average,

f(xij , zij) =
1

Aij

∫ x
i+1

2

x
i− 1

2

∫ zupper

zlower

f(x, z) dz dx, (G.2)

where the area Aij is simply the area of the trapezoid,

Aij =
1
2

(
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2
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2
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2
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2
,j− 1

2

)
+

(
zi− 1

2
,j+ 1

2
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2
,j− 1

2

)}
. (G.3)

In equation (G.2) the limits of integration in z are simply the lines associated with the lower
and upper limits of the trapezoid,

zupper =
zi+ 1

2
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2
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2
,j+ 1

2
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2
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, (G.4a)
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2
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2
, (G.4b)

where both equations are in standard linear notation.
An example of the usage of the integration in equation (G.2) is the averaging of a variable

that is linear in depth. One example of this type of variable is the gravitational potential ρwgz.
In this case f(x, z) is simply the vertical coordinate z, and integration yields

zij =
1
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
 .

(G.5)

Equation (G.5) can be expanded to include six vertices of an irregular solid volume. In its
present form, equation (G.5) is also the weighting per unit glacier width.
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G.3 Interpolation of bed and surface topography

For surface and bed topography data from glaciers without regular sampling, it is important
to interpolate the irregular sampling to a regular grid. For the purposes of presentation, the
irregular grid has M points and will be denoted with M when the grid is indicated. Similarly,
the regular grid N, has N points.

The M points of the irregular grid have an ordinate, zs
i , and an abscissa, xi. From these

values, an along path coordinate is, in a simple Pythagorean sense,

∆sM:i =
{(

zs
M:i+1 − zs

M:i

)2 + (xM:i+1 − xM:i)
2
} 1

2
, (G.6)

where the beginning of the grid is set at sM:1 = 0. The resulting values of sM:i are

sM:i+1 = sM:1 +
M−1∑

i=1

∆sM:i. (G.7)

The differenced regular grid between cell centers is

∆sN =
sM:M − s1

M − 1
. (G.8)

As opposed to the irregular grid, all points on the regular grid have a common spacing,

sN:i = sM:1 + (i− 1)∆sN, (G.9)

but both grids start at sM :1 = sN :1 = 0.
The staggered grid is computed via

sN:i+ 1
2

= sN:i +
∆sN

2
for i = 1 : N − 1. (G.10)

If any of the interpolated values for sN fall on the sM values, then xN:i and zN:i are assigned the
values of xM:i and zM:i, respectively. If a new grid point, sN:j falls between two old grid points,
sM:j and sM:j+1, then a linear interpolation scheme is used to find the new values for xN:j and
zs
N:j ,

xN:j =(sN:j − sM:i)
xM:i+1 − xM:i

sM:i+1 − sM:i
+ xM:i, (G.11a)

zs
N:j =(sN:j − sM:i)

zs
M:i+1 − zs

M:i

sM:i+1 − sM:i
+ zs

M:i. (G.11b)

Similarly, the surface topography of the glacier is interpolated with a linear scheme such that
zr
M is interpolated to zr

N. The thickness of the glacier is thus Z i
i = zr

N:i − zb
N:i. Terms on the

staggered grid xN:j+ 1
2
and zN:j+ 1

2
, are created in much the same way as sN:j+ 1

2
in equation

(G.10). From these relations, ∂z/∂sN:+ 1
2
can be created.
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