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Abstract. Pseudoproxy experiments (PPEs) have become aneconstructions on highly noisy data, but are subject to larger
important framework for evaluating paleoclimate reconstruc-stochastic variations across different realizations of pseudo-
tion methods. Most existing PPE studies assume constargroxy noise. Results collectively highlight the importance of
proxy availability through time and uniform proxy quality designing realistic pseudoproxy networks and implementing
across the pseudoproxy network. Real multiproxy networksmultiple noise realizations of PPEs. The results also under-
are, however, marked by pronounced disparities in proxyscore the difficulty in finding the proper bias-variance trade-
quality, and a steep decline in proxy availability back in time, off for jointly optimizing the spatial skill of CFRs and the
either of which may have large effects on reconstructionfidelity of the global mean reconstructions.

skill. A suite of PPEs constructed from a millennium-length
general circulation model (GCM) simulation is thus de-
signed to mimic these various real-world characteristics. Thel
new pseudoproxy network is used to evaluate four climate

field reconstruction (C_FR) techniques_: truncated total |e_asbver the past few decades, multiple methods have been pro-
squares embedded within the regularized EM (expectationpgsed to estimate hemispheric and global temperature vari-
maximization) algorithm (RegEM-TTLS), thBlann et al.  apjlity from proxy data over the Common Era (séanes
(2009 implementation of RegEM-TTLS (M09), canonical gt 51, 2009 Tingley et al, 2012, for comprehensive reviews).
correlation analysis (CCA), and Gaussian graphical mod-gycp reconstructions provide an important test bed for under-
els embedded within RegEM (GraphEM). Each method'Sgtanding multidecadal to centennial climate variability and
risk properties are also assessed via a 100-member noisge climate sensitivity to exogenous forcing, while providing
ensemble. o ~an extended context prior to the instrumental era for anthro-
Qontrary to expectation, it is fourjd that reconstruction hogenic warmingJansen et g12007). The majority of such
skill does not vary monotonically with proxy availability, reconstructions target an index (e.g., northern hemispheric
but also is a function of the type and amplitude of climate ,aan temperaturdriffa et al, 2001, Crowley and Lowery
variability (forced events vs. internal variability). The use >00q Mann and Jone003 D'Arrigo et al., 2006, while
of realistic spatiotemporal pseudoproxy characteristics alsq few are derived from climate field reconstruction (CFR)
exposes large inter-method differences. Despite the comMmethods that aim to estimate the spatial, as well as the tem-
parable fidelity in reconstructing the global mean lemper-noral aspects of large-scale temperature variabiltar(n
ature, spatial skill varies considerably between CFR techyt 51 1998 1999 Mann et al, 2009 Evans et al. 2002

niques. Both GraphEM and CCA efficiently exploit telecon- | \;terbacher et al2004 Rutherford et a].2005 Tingley and
nections, and produce consistent reconstructions across thﬁ’uybers 2013.

ensemble. RegEM-TTLS and MQ9 appear advantageous for
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2 J. Wang et al.: PPEs: spatial performance of CFRs in a realistic context

A leading challenge in producing credible real-world cli- aspects of real-world proxy networks, and reconstruction
mate reconstructions is the assessment of their uncertaintiealgorithms are applied to the data to backcast the GCM-
The uncertainty of a real-world reconstruction is a mixture simulated climate conditions. Thus PPEs allow for controlled
of two sources: the uncertainty associated with using necassessments of reconstruction methods with regard to the ge-
essarily imperfect proxy and target data, and the uncertaintypgraphical and temporal distribution of proxies, their qual-
associated with the employed statistical methodolofpasa ity, and the spectral characteristics of the noiSenérdon
uncertaintiednclude measurement errors in the proxies, un-2012. However, most PPEs to date have constructed pseu-
certainty in proxy-temperature relationships, sampling errorsdoproxies that are temporally invariant throughout the re-
in instrumental climate fields, chronological uncertainties, construction interval and have uniform proxy quality. Such
and the uncertainty resulting from the network’s coarse spanetworks under-represent the complexity of real-world proxy
tiotemporal coverageviethodological uncertaintiegiclude  networks, limiting the direct applicability of their results to
a given method’s sensitivity to input data (type of data, res-real-world reconstructions.
olution, noise level, and spatiotemporal variability), its sen- Here we construct more realistic pseudoproxy networks
sitivity to model parameters, and the uncertainty associatedhat mimic the key spatiotemporal characteristics of the mul-
with the choice of these parameters. tiproxy network used byMann et al.(2008 (hereinafter

Until recently, assessments of reconstruction uncertaintied108). Two novelties in pseudoproxy design are introduced
have primarily relied on cross-validation (C&ook et al, in this work: (1) the decrease in proxy availability over time
1994, which consists of calibrating CFR methods over a follows that of the M08 network; and (2) the spatial varia-
subset of the instrumental period, and then validating thetions of proxy quality mimic those found in M08. The more
methods with the remaining observations. This method hagealistic pseudoproxy design allows a more stringent test on
the advantage of being firmly grounded in statistical the-the performance of different CFR techniques, and provides
ory (e.g.,Hastie et al. 2008 Chap. 7) and it relies solely insights into at least three aspects: (1) assessing how the spa-
on actual observations; however, it was recently shown thatiotemporal characteristics of the proxy network affects re-
shortening the calibration interval can lead to estimates ofconstruction skill, (2) tracing factors that contribute to the
low-frequency skill that are biased loviEihile-Geay et al.  spatial variations of reconstruction skill, and (3) evaluating
20133. Temporal variations in reconstruction skill may be a method’s ability to produce skillful index and field recon-
crudely estimated from “frozen network” experimenierfes  structions. The four reconstruction techniques that we eval-
et al, 1998 Crowley and Lowery200Q Mann and Jones uate are (1) truncated total least squares regression embed-
2003 Hegerl et al. 2006 Mann et al, 2007 Emile-Geay ded within the regularized expectation-maximization algo-
et al, 20133, but because instrumental records are onlyrithm (Schneider2001, hereinafter RegEM-TTLS), (2) the
available since the 1850s, it is impossible to directly esti-Mann et al.(2009 implementation of RegEM-TTLS (here-
mate skill prior to the 19th century. Reconstruction uncer-inafter M09), (3) canonical correlation analysiSnjerdon
tainty, particularly on multidecadal to centennial timescales,et al, 201Q hereinafter CCA), and (4) Gaussian graphical
is thus difficult to quantify. models embedded within the EM algorithi@{illot et al,

In this study, we use pseudoproxy experiments (PPEs) t@013 hereinafter GraphEM). We first explore the spatiotem-
extend our skill assessments of CFRs to decadal and centeporal characteristics of MO8 proxies in Se2tand then de-
nial timescales and to isolate the impacts of the two prin-scribe the employed CFR techniques in S8ciVe present
cipal uncertainty sources discussed above. PPEs were origiesults in Sect4, followed by a discussion (Sed) and a
nally proposed byradley(1996 and adopted bivlann and  summary of our findings (Sed).

Rutherford(2002 as a means of methodological assessment,

and have been widely used to assess the performance of dif-

ferent CFRs in reconstructing global or hemispheric temper2  Properties of real-world proxy networks

ature (seeSmerdon 2012 and references therein for more

details). Only a few of these PPEs, however, have focusedVe consider the M08 proxy network as the basis for our
on comprehensive assessments of CFR spatial 3kilg(ey pseudoproxy emulation of a real-world proxy network. The
and Huybers2010h Smerdon et 2011, Li and Smerdon ~ MO8 proxy network has a relatively extensive spatial cover-
2012 Annan and Hargreave2012 Werner et al.2013. In age over land, and most proxies have a temporal resolution
keeping with these earlier investigations, we focus herein orof less than 10yr. More importantly, the M08 network has
direct assessments of the spatial skill associated with leadrecently been used to derive real-world CFR&ON et al,

ing CFR methods. Our approach nevertheless relies on mor2009, in which the authors reconstructed spatial patterns of
realistically designed pseudoproxy networks that give us betsurface temperature over the past 1500 yr and explored their
ter insights into the true spatial and temporal uncertainties irassociated dynamical causes. Out of the total 1209 proxies in
currently available CFR products. the network, we exclude 71 European composite surface tem-

Pseudoproxies typically are derived from the output of perature reconstruction recordsiferbacher et al2004), so
GCM simulations. The synthetic proxy data mimic some that only true natural proxies are used to as a basis for our
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Fig. 1. Temporal and spatial availability of the MO8 proxy network between 850-1800 AD. Top panel: the spatial distribution of the M08

proxies, with colored dots indicating the first year that each proxy record becomes available. Each marker represents a proxy class, as
indicated in the legend. Bottom panel: the temporal availability of each proxy class.

emulation. Figuré shows the spatiotemporal distribution of temperature observations and annual proxy ‘dateer the

the remaining 1138 proxies. Most proxies are concentrated irt850—1995 AD period. The statistical significance (ofs

extra-tropical land regions of the Northern Hemisphere, par-also taken into account, using a spectrum-preserving, non-

ticularly across North America and western Europe (E&). parametric testibisuzakj 1997).

Tree-ring width is the dominant proxy class, and fewer than In Fig. 2, |p|max iS plotted as a function oP-T distance,

200 proxies in total are available prior to 1400 AD (Flg). where | p|max(i) = _HE{JIX] lp(P;, T;)| is the highest absolute
JelLp

value of the estimated correlation coefficients between the
ith proxy and all temperature grid points. The total number
2.1 Spatial characteristics of temperature grid cells is=1732, as in M08. All the tem-
perature and proxy data can be downloadettsg://www.
ncdc.noaa.gov/paleo/pubs/mann2008/mann2008.html
Spatial relationships between proxie®)(and temperature Contrary to common assumptions (e.gpnes and Mann
(T) are explored by calculating the Pearson’s correlation co-2004, we find thato (P, T') is not a monotonically decreas-
efficient (p) between each proxy and the HadCRUT3v sur- ing function of distance. As in Fi@, the distribution ofP—T
face temperature fieldBfohan et al. 2006 the tempera- distance is bimodal: one cluster of proxies is well correlated
ture target used in the M08 and M09 studies). As in M08, to local temperature (distance shorter than 2000 km, similar
temperature grid boxes less than 10% complete were reto findings inHansen and Lebedeft987), but the majority
moved from the HadCRUT3v data set, and missing val-of proxies are at least 8000 km away from the temperature
ues were infilled with the RegEM algorithm using ridge re-
gression $chneider 2001 during the 1850-2006 AD pe- IMO08 interpolated non-annually resolved proxies to annual
riod. p is calculated between annually averaged HadCRUT 3wesolution.
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Max Ipl vs. P-T distance whereTs is a time-standardizédversion of 7. The primary
data of T are grid cells extracted from GCM fields in a way
that mimics instrumental data availability(x, ) are inde-
pendent realizations of a Gaussian white-noise process with
zero mean and unit variance, and the signal-to-noise ratio
(SNR) controls the amount of noise in the pseudoproxies
(Mann and Rutherford2002 von Storch et a.2004 Mann

et al, 2005 2007 Rutherford et a].2005 Kuttel et al, 2007,
Smerdon et al.2008 Smerdon et a).2011, Christiansen

et al, 2009 Emile-Geay et a.20133. SNR is related to
proxy-temperature correlatiopsvia

ol
i
(Mann et al, 2007). While most studies have heretofore
considered spatially uniform SNRs, it is clear that is
quite variable (Fig2), requiring pseudoproxy networks to
contain such variability. In this study, spatial variations of

§NRS and the bimodal pattern of FRjare explored via two
end-members:

SNR = )

Fig. 2. Maximum absolute correlation coefficigipt between prox-

ies of the M08 network and the HadCRUT3v grid point tempera-

tures vs. the corresponding distance between the proxy location an

the grid point. On the axis is the histogram of the maximujpy;

on thex axis is the histogram of distance between each pBxy 1. Local SNR: each proxy record is regressed onto tem-

and the corresponding temperature dridthat gives the highest perature at the closest HadCRUT3v grid point over

ol the 1850-1995 AD period, exposing each proxy’s abil-
ity to record local temperature conditions (Fg).top

point yielding the highesto|. On the other hand, the distri- panel);

bution of|p|max is unimodal and positively skewed. The dis- 5 \ax SNR: proxies are regressed onto all temperature
tribution exhibits a mode near 0.4, while high values are quite points in the HadCRUT3v data set. The highestor

rare (95 % ofp values are below 0.76). The averagémax each proxy is selected to constriit, ¢) at that point
is 0.45, corresponding toR-T distance of 11 000 km. (Fig. 3, bottom panel).

The counterintuitive pattern of Fi@.is a consequence of
two effects: many proxies indeed are primarily sensitive to Temperature grid points selected in each design are then
local temperature, but the probability of finding a spurious used to calculate SNR via E)( Their locations are also
(non-physical) correlation also increases as the search radiussed to select grid cells from the simulated temperature field,
increases. Some of the high non-local correlations may bavhich are assigned t6s in Eq. (1). In addition, the statistical
reflective of long-range temperature dependencies (telecorsignificance ofp is also incorporated into the construction
nections, c.fLiu and Alexander2007), such as precipita- of the PPEs. Proxies showing spurious correlations are ex-
tion proxies in the southwestern United States (eCpok  cluded based on thebisuzaki(1997) significance test. Only
et al, 2004 2007, see also Fig. S23, Supplement). Othersthe ones with a significant relationship to annual temperature
may arise by chance alone. Since we lack a theoretical critein the HadCRUT3v data set are retained. Based on the sig-
rion to distinguish real teleconnections from spurious corre-hificance test, only 312 out of 1138 M08 proxies exhibit a
lations, we constructed pseudoproxies representing two endsignificant correlation with local temperature, whereas 1121
member possibilities: one corresponding to local temperaturgroxies are significantly correlated to at least one temper-
associations, and the other mimicking each proxy’s highesature point on Earth. Pseudoproxies are therefore sampled
potential to capture large-scale teleconnections. An alternaonly at these proxy sites. Unique temperature grid points be-
tive network design, balancing the two extreme scenarios, isng used in the local and max SNR networks reduce to 128
explored in the supplementary information (SI, Sect. 3). and 551, respectively, i.e., only locations of these tempera-

Traditionally, pseudoproxied (x, r) are generated ac- ture grids are used to samglgin Eq. (1). As illustrated in

cording to Fig. 3, even in the best-case scenario (max SNR), SNR is on
average lower than 0.5, with fewer than 30 proxies exhibit-

P(x. 1) = Ts(x., 1) + 1 e(x. 1), (1) ?ng an SNR above 1.0. In the local SNR case, the mean SNR
SNR is even lower (0.27), close to the low end of SNRs usually

considered in pseudoproxy studies (0.25).

2In this case, over the period 850-1995 AD.

Clim. Past, 10, 149, 2014 www.clim-past.net/10/1/2014/



J. Wang et al.: PPEs: spatial performance of CFRs in a realistic context 5

Local SNR, 312 records a0 Local SNR
P N N L}f,, W‘a"

T 'v/é@ E%‘ 120
' & it S A mean SNR = 0.28
o o \‘;%4:0 *'“ig% . 100
% i S, vy \‘
{ NP \ A
f i \\“‘W\;Jx { \g/r \\,/\xgjﬂ% \\ é 50
: s o N } £
L. : R MERNG *&»Ebf\k | 5 e
\ . : &4 / 19 T [,
\® | \ - A N g
SN ﬁf L/ i 2]1 ¢ o
‘ . i i
N R "; - ¥ .~ A Tree Ring Width 20
™ " & Y .
e k//"’—‘/ = e v Tree Ring MXD
n:éjw T e ,%/’ ¥ Ice Core

@ Coral 0 02 04 06 08 1.0 12
Max SNR 1121 records ¢ Speleothem SNR
5 § B ~_ * Documentary 500 Max SNR
m Sediment
§- - * Composite
AN

450

mean SNR = 0.45

# of Proxies
N
a
3

0.4 . 02 04 06 08 10 12

SNR SNR

Fig. 3. Estimated signal-to-noise ratio (SNR) for proxies in the M08 network. Top panel: Local SNR scenario, in which SNR is calculated
between each proxy and its closest temperature grid. Bottom panel: max SNR scenario, in which the highest SNR for each proxy is chosen
from its correlations with all temperature grids available. Colors reflect the value of SNR assigned to each pseudoproxy, & .per Eq. (

We emphasize that neither choice of SNR design is phys2.2 Temporal characteristics
ically realistic — instead, each may only be viewed as an
end-member experiment of real-world conditions. A middle- Another realistic characteristic we incorporate into the PPE
ground scenario, balancing locality with the ability to capture design is the temporal heterogeneity of proxy availability. As
the largest correlations, is explored in the Sl (Sect. 3). Result§hown in Fig.1b, data availability decreases steeply back in
based on this intermediate SNR design are found to be ver§ime, and a staircase pattern is evident for all proxy classes.
similar to the max SNR case, and thus are not shown in thén @ similar manner, the effective SNR, which is the average
manuscript. SNR of all proxies available at a given time point, also de-

Similar characteristics were also considered in PPEs byelines back in time (Fig4). The pattern is consistent with
Christiansen et al(2009, in which empirical SNRs and properties of the M08 network: most of the high SNR prox-
noise values were used to reflect the heterogeneous proxs (such as tree rings and corals) are only available for sev-
quality in theMann et al (1998 proxy network. Their work, ~ €ral decades or centuries prior to widespread observational
however, did not model the temporal heterogeneity in proxydata. For instance, most tree-ring chronologies drop out of
availability, and the spatial skill evaluation was not their the network prior to the 16th century, with fewer than 100
main focus. Our Study here seeks to evaluate the impac&OUt of an original 1031) still available before the 14th cen-
of spatial heterogeneity in multiproxy networks and its im- tury. Overall, only 47 proxies are available throughout the en-
pact on derived CFRs. Six networks are designed to addred§e reconstruction period, of which 19 have decadal or lower
this problem, of which two model the spatial variation of resolution.
SNRs in real-world proxies (local SNR and max SNR) and To isolate the impact of temporal availability, we specify
four have uniform SNRs. Following previous studiéapn  two types of pseudoproxy networks:
and Rutherford2002 von Storch et a.2004 Mann et al,
2005 2007 Rutherford et al. 2005 Kduttel et al, 2007
Smerdon et al.2008 Smerdon et al.2011 Werner et al.
2013, the four networks of homogenous quality are designed 2. M08 “staircase” network: pseudoproxy availability

1. M08 “flat” network: pseudoproxy availability is uni-
form through time.

by assigning constant SNRs (SNRs 1.0, 0.5, 0.25) in matches the pattern of the M08 database (Hi).
Eq. (1). These six networks together provide the basis for
our experiments. Contrasting these two cases will therefore characterize the

impact of temporal heterogeneity on CFR performance.

www.clim-past.net/10/1/2014/ Clim. Past, 10, 19, 2014
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Effective network quality over time 3 Meth0d0|0gy

——SNR = 1.0

——SNR =0.5 .

(o) LA SR 3.1 CFR techniques
= Max SNR

Two classes of statistical methods are commonly used to
perform CFRs. One is based on multivariate linear regres-
sion models, where inference is performed in a frequen-
tist framework (e.g.Mann et al, 1998 Mann et al, 2008
2009 Schneider20031; Luterbacher et al.2004 Smerdon

et al, 201Q Guillot et al, 2013 and the other uses Bayesian
hierarchical models (BHMs, e.gLi et al,, 201Q Tingley

and Huybers2010g. We restrict our attention to frequentist
regression-based methods since only those have heretofore
. been used to derive global/hemispheric CFRs.

800 1000 1200 Hine 1600 1900 2000 Let P be annp x pp matrix of proxy values and” be an

) ] ) ] n; x p; matrix of instrumental temperature records, wheye
Fig. 4. Effective network quality expressed as SNR (Effor ide- 54, " are the number of years of available data (i.e., num-
alized pseudoproxy networks and observed networks. For the Obber of observationsy, and p, are the number of spatial lo-

served SNRs, we consider two possible scenarios as described In

Sect.2.1 Shaded areas correspond to the 2.5-97.5 percentile inter(-:atlons (i-e., number of variables), and the subscppigd

val, providing a complete picture of effective SNR across the 100-/ denote proxies and instrumental data, respectively. Tradi-
member noise ensemble. Dashed lines correspond to the values Pnal regression-based CFR methods assume a multivariate

SNR for temporally invariant networks. SNRx is not plotted. linear I'E|ati0n5hip between pl’OXieS and the climate variable
of interest: e.g., temperaturddnes and Manr2004 Na-
tional Research Counci200g Jones et al.2009 Tingley

2.3 Limitations etal, 2012. Additionally, each year is often treated as an in-
dependent observation. In this context, temperature may be

Despite the Spatiotemporal characteristics that are modelegstimated from the proxies via the regression equation:
in the pseudoproxies, the networks are still idealized in var-

ious respects. The pseudoproxy networks do not model thg = BP + ¢, 3)
temporal auto-correlation (persistence) present in real-world
temperature and proxy data, nor do they consider the effect ovheree is an error term following a multivariate normal dis-
using low-resolution data for reconstructions of annual tem-tribution with zero mean. In the sample-rich setting famil-
perature. All pseudoproxies are generated on an annual basigr to classic regression problems (eAngerson 2003, the
without regard for the proxies’ actual resolution (as done inoptimal estimate o would be given by the ordinary least
most other pseudoproxy studies). To more realistically modegquares (OLS) estimate:
real-world proxies, future PPE designs should represent the
actual resolution of each proxghristiansen2017). B — (pCT pc)
Using Gaussian white noise foin Eq. (1) is a natural first
step, but a more complex noise model could be used to betwhere P; is the submatrix ofP spanning the calibration
ter reflect real-world noisy proxieS(nerdon2012 and ref-  interval. This formulation is such that in order to estimate
erences therein), as doneTingley and Huyber2010ab) B, P/ P, must be invertible (non-singular). In paleoclimate
andChristiansen and Ljungqvig2012). Furthermore, mech-  applications, however, it is often the case thtP. is
anistic proxy models could be used to simulate syntheticrank-deficient, (i.e., not invertible): instrumental temperature
proxy records with more realistic propertiednCchukaitis  records are only available for the past 150 yr orga¥ 150),
etal, 2006 Evans 2007 Cobb et al.2008 Thompson etal.  and the number of proxies, is on the order of 1®(high di-
2011 Evans et a].2013. Finally, the target field is assumed mension, low-sample size). In this setting, the OLS estimate
to be noise-free, yet in reality, gridded instrumental observais no longer optimal, and may be wildly erroneous. Some
tions may contain substantial noise or interpolation errorsform of regularization is needed to make' P invertible,
yielding a large influence on the derived calibrations andand thus solving Eq.4j amounts to finding a regularized
thus the reconstruction in the preinstrumental éenile-  least squares solutioriansen1998. Each regression-based
Geay et al.2013a b). While we explore herein the impacts CFR technique accomplishes this in a different manner. Our
of significant advancements in PPE design, incorporation oktudy focuses on four such techniques: RegEM-TTLS, M09,
the above considerations will further improve the degree toGraphEM and CCA.
which PPEs can be interpreted as representative of real-world
CFR performance.

Average SNR
°
&

o
o

0.4

0.2

1
P.T. @)
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3.1.1 RegEM Although these ad hoc modifications are not grounded
in statistical theory, the M09 implementation of TTLS has
RegEM Schneider200]) is a variant of the EM algorithm  proven effective in practiceMann et al, 2009 Emile-Geay
(Dempster et a].1977 Little and Rubin 2002 designed for et al, 2013ab). Indeed, the M09 implementation is the only
the imputation of missing values in spatiotemporal data setsechnique that has ever been used for global-scale, real-world
typically encountered in climatology. Under the multivariate CFRs, so it is taken as the benchmark of our study. By com-
normal assumption, given an initial estimate of the mgan paring M09 to TTLS with fixed regularization (i.e., RegEM-
and the covariance matri, the RegEM algorithm reduces TTLS), we investigate the merits of the M09 approach to pa-
to regressing the missing values onto the available ones (inrameter selection in an ensemble framework, which is a novel

strumental temperature data and overlapping proXi@$e  assessment of this heuristic approach.
estimates oft andT. are updated at each iteration until con-

vergence is achieved. Two regularization methods have beeB.1.3 CCA

considered in RegEM: oneiiglge regressior{Tikhonov and

Arsenin 1977 Hoerl and Kennard1970a b), used in the ~CCA (Christiansen et gl.2009 Smerdon et al.2010 is
paleoclimate context bylann and Jone2003, Rutherford ~ based onideas presentedBiarnett and Preisendorfgr987).

et al.(2003, Mann et al (2005 andRutherford et al(2005); As discussed ismerdon et ali2010, CCA employs singu-
the other istruncated total least square®/an Huffel and  lar value decomposition (SVD) to perform dimensional re-
Vandewalle 1991 Fierro et al, 1997 hereinafter TTLS), ductions separately ofi, P, and B. The basic assumption,
used in the paleoclimate context Mann et al.(2007, 2008 as in most paleoclimate applications, is that the first few lead-
2009, Wilson et al.(2010 and Emile-Geay et al(2013a  ing modes of EOF-PC pairs contain most of the variance in
b). Rutherford et al(2010, Christiansen et al2010 and the target climate field and the multiproxy network. The al-
Tingley et al.(2012 have also discussed the relative mer- gorithm seeks an optimal set of truncation parametgrsig,

its of these methods. As explained 8merdon and Kaplan dccg) that yields good approximations @f P, andB, respec-
(2007, Mann et al.(2007) andSmerdon et al(2008, ridge  tively. These truncation parameters are chosen by minimiz-
regression can lead to overly damped reconstructions in veryng the area-weighted root mean square error (RMSE) of the
data-sparse scenarios such as paleoclimate reconstructiorféconstruction relative to the target field using a leave-half-
TTLS mitigates such variance losses, and therefore is choseput cross-validation procedure (e.g., ChapHastie et al.

as our regularization method for this study. We employ two 2008.

different styles of RegEM-TTLS: one following the standard ~ Smerdon et al2010; Smerdon et al2011) have only ap-
formulation described iSchneidef2001), and the other fol-  plied CCA on pseudoproxy networks with constant temporal
lowing its paleoclimate-specific implementation described inavailability. For this study, we modify the original CCA code

Mann et al.(2009. to make it applicable to real networks with variable temporal
availability, and also made it more computationally efficient.
3.1.2 M09 implementation of RegEM-TTLS Readers are referred to the Sl for more details.

The M09 implementation of TTLS uses a hybrid version of 3.1.4 GraphEM

RegEM-TTLS Mann et al, 2007 that treats low-frequency

and high-frequency signals separately (the domains are spliéraphEM Guillot et al, 2013 is based on the theory of
at a 20 yr period). The reconstruction is then performed in aGaussian graphical models (GGMs, a.k.a. Markov random
forward stepwise approach century by century. For each stedjelds, Whittaker, 199Q Lauritzen 1996. A GGM makes
the target data are compressed in that only theffirigading ~ use of the conditional independeficgtructure of the cli-
modes of surface temperature are retained, wheigan es- mate field, in order to reduce the dimensionality and obtain
timate of the number of degrees of freedom in the proxy net-a parsimonious estimate & = x~. The conditional inde-
work, determined by a fit to its log-eigenvalue spectrum. Ad- pendence relations are estimated by solving@apenalized
ditionally, semi-adaptive choices are adopted for both low-maximum likelihood problemKriedman et a).2008. X is
frequencyk and high-frequency truncation parametégs  then estimated in accordance with these conditional inde-
The method selects (&) to retain 33 % of the low-frequency pendence relations. The resultlrig is sparse and better-
multivariate data varianceMann et al, 2009 Rutherford  conditioned, and therefore is applicable within the OLS
et al, 2010; and (2)kn by detecting the first break in the framework. This procedure is implemented within the stan-
log-eigenvalue spectrum of high-frequency multivariate datadard EM algorithm without further need for regularization.
variance. GraphEM was extensively tested against RegEM-TTLS in

4Conditional independencéwo random variableX andY are
31 e ®IxP s the temporal mean of the= pp + p: variables “conditionally independent” given a random variatdef, once Z

to be estimated, whil& € %P *? is the corresponding covariance is known, the value of does not add additional information about

matrix. X.
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Guillot et al. (2013, albeit with the more idealized proxy Taple 1. Comparison betweeR?, RE, and CEy; denotes théth

design of Smerdon et al(2011). One goal of this study temperature grid point, angj denotes the estimation of. 3 and

is to document GraphEM’s performance in a more realisticy, refer to the mean ofyg, v, ..., y,) over the calibration pe-

context. riod and verification period, respectively. Adapted frdational
Research Counc{k006, Chap. 6.

3.2 Numerical experiments

Metric  Expression Range Tracks
As in Smerdon et al(2011), all of our pseudoproxy ex- B 2
periments target the annual surface temperature field com- [_gl(»—m (’“f"“v)}
puted from the NCAR CSM1.4 integration dtmmann * 5 007?35 (5= 5)°
et al. (2007, using the correctly oriented version of the = =
CSM1.4 field Emerdon et al2010. Although multiple last
millennium simulations are becoming publicly available as gg 1

[0,1] Phase

3 (i-)?
- =t [-00,1] Phase and amplitude

part of the Paleoclimate Modelling Intercomparison Project é(yfwz

Phase 3 (PMIP3) and through other projedter6andez-

Donado et a.2013, we selected the CSM1.4 model to en- S (= 31)2

able comparisons with previous worklénn et al, 2005 CE - [~oc0,1]  Phase, amplitude and mean
2007 Lee et al, 2008 Mann et al, 2009 Li et al., 201Q R

Ammann et al.201Q Smerdon et a).201Q Smerdon et a/.
2011). The target field was spatially masked to approximate
the availability of the HadCRUT3v data set used inlthenn (R?) (Cook et al, 1994 Biirger 2007). These validation
et al.(2009 study. We generated 100 realizations of pseudo-g;atistics (Tablel) are related to the mean squared error
proxy series for each SNR case (SNR=1.0,0.5,0.25,l0-  (\SE) that is commonly used for statistical analysis. They
cal SNR and max SNR) by varyingn Eq. (1), and then per- 5. calculated for both the global mean temperature index
fprmed reconstrucuon; with the four CFR tgchmques. Thegng the spatial field; the former provides an aggregate sum-
first four cases have f|xed SNR, corresponding to networksmary of a method’s ability to track global climate fluctua-
of homogeneous quality. o _ tions, and the latter evaluates a method’s spatial performance.
The ensemble approach allows us to identify Spurious re-rpe gjobal mean enables comparisons with index reconstruc-
construction skill arising from random noise, and to tegt thetions, which comprise the majority of published reconstruc-
robustness of each method. We also conducted experiment)ns of hemispheric and global temperatures (Fig. 6.10 in
using both the flat and staircase networks. Experiments usinggnsen et al2007).
the flat network, in which the spatial distribution of pseudo-  ag indicated in Fig.3, the quality of pseudoproxies in
proxies is temporally invariant, serve as the control groupihe |ocal SNR case, on average, is comparable with the
in this study. Experiments with the staircase network, corre-gnR = 0.25 network, and the average SNR of pseudoprox-
spondingly serve as the test group. By comparing results beg in the max SNR case is similar to the SNR=0.5 net-
tween these two experiments, we test the null hypothesis thaj ik Based on these considerations, we only show results

temporal heter.ogeneity dpes r_10t gffect reconstruction skill. fom the spatially heterogenous pseudoproxy networks. The
Reconstruction and calibration intervals are 850-1849 ADyaader is referred to the Sl for results on spatially homoge-

and 1850-1995 AD, respectively. Annual means of tempery,,s networks.

ature and pseudoproxies are used for the reconstructions.

The same input data are assigned to each CFR method, ang, Reconstructing the global mean

standardization (if necessary) is performed internally in each

method. Reconstructions are referenced to zero over the cajy, ihe global mean temperature reconstructions, the overall

ibration interval. Possible trends during the calibration inter'shape of low-frequency variability is reasonably well recon-
val are not removed. We also consider computational costgr,cted by all CFR methods (Fi§). Warm biases never-
and investigate numerical methods to speed up each CFRgjess are present in all of the reconstructed estimates (
technique. Further details are provided in the SI. Storch et al.2004 Smerdon et a).2011), as expected from
regression dilution (e.gFrost and Thompsqr200Q Tin-

4 Results gley et al, 2012. In the local SNR case (Fi%a), GraphEM
and CCA, in particular, underestimate the amplitude of vari-
4.1 Skill metrics ability by a factor of 3-5. The variance-bias decomposition

(Hastie et al.2008 Chap. 7) further shows that for GraphEM
As is common practice in paleoclimatology, we evaluate re-and CCA (Fig.6, right column), the bias contributes more
construction skill using the coefficient of efficiency (CE), re- than 75% to their MSE. RegEM-TTLS and M09, on the
duction of error (RE) and the coefficient of determination other hand, have a similar variance but a much smaller bias,
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Global mean temperature (20-year lowpass), staircase network

—— RegEM-TTLS

a) Local SNR Mo
—CCA
| : —— GraphEM ! 0.4
W' |

N

oD 'ul()U?d ~dwog,

o
N

. Temp. Anom. (K)

900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
Time (year A.D.)

Fig. 5. Area-weighted global mean time series comparison of the four CFR methods, with the staircase rfejMackl SNR,(b) max
SNR. Only the low-frequency (20 yr lowpass) signal is plotted. Black line: target temperature from the CSM1.4 model output; colored lines:

reconstructed temperature from median of the reconstruction ensembles; shaded areas: 2.5-97.5 percentiles derived from the reconstructic
ensembles.

and thus a correspondingly smaller MSE. Overall, M09 pro-significant contrast between methods (Table S1, Supple-

duces the most skillful global mean temperature series irment). Box plots characterize the full distribution of the 100-

both cases, closely followed by RegEM-TTLS. It would be member ensemble: the median of each distribution assesses

erroneous, however, to conclude that these two methods prahe tendency for temporal proxy availability to affect recon-

duce the closest match to the target, as there is a large spreattuction skill, while the spread yields information about the

between different noise realizations. consistency of each method. The impact of spatial hetero-
In assessing the risk properties of each method ®ay.  geneities is isolated by plotting spatial maps of CE using the

we find that GraphEM and CCA are more consistent estimaflat network in Figs.9 and 10, which help us trace spatial

tors than RegEM-TTLS and MO09: their ensemble spreads arerrors and inter-method similarities and differences.

much narrower, especially for early reconstruction intervals

(prior to 1600 AD). This indicates that any given RegEM- 4.3.1 Effect of temporal heterogeneities

TTLS or M09 reconstruction may yield an inaccurate depic-

tion of the true temperature, and this risk should be kept inAs evident in Figs7 and8, reconstruction skill varies sub-

mind especially when using M09 and RegEM-TTLS for real- stantially from century to century, even when proxy availabil-

world reconstructions. ity is time-invariant (gray box plots in Figg, 8, S13, S14,
and S3-S12, Supplement). In general, reconstruction skill is
4.3 Spatial performance highest in the most recent 100 yr slice (1750-1849 AD) but

does not decrease monotonically prior to this slice. For in-
We now examine the spatial performance of the four CFRsstance, reconstruction skill decreases from 1050 to 1450 AD,
In Figs.7 and8, we summarize the century-by-century skill but increases from 850 to 1049 AD. During this interval
variation and each CFR’s ensemble spread using box plots dfbroadly coincident with the “Medieval Climate Anomaly”),
the globally averaged CE statistic. CE is shown because it ishe NCAR CSM1.4 model is forced by relatively high solar
the most stringent metric among the three in Tab{€ook irradiance and frequent, high-amplitude volcanic eruptions,
et al, 1994 Ammann and Wahl2007, and thus exposes in particular during the 13th century. Such high-amplitude
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Verification statistics for the global mean time series (20-year lowpass)
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Fig. 6. Summary of verification statistics of the global mean temperature reconstruction ensemble. Note the range of ordinates for each metric

is different. MSE = variance bias®
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Fig. 7. Temporal variation of globally averaged CE, within CFRs derived from the local SNR network. Spatial CE is first calculated for each
grid box, and then global averages are calculated using area-weighted means. Each box plot represents CE scores from the 100-memb
ensemble for each 100 yr slice between 850 and 1850 AD. For example, the box plot with time slice 900 corresponds to the global mean CE
between 850- and 950 AD. Note that thecale for RegEM-TTLS is different from the other ones.

Clim. Past, 10, 149, 2014 www.clim-past.net/10/1/2014/



J. Wang et al.: PPEs: spatial performance of CFRs in a realistic context 11

, Max SNR
0.5 i
= 0.5
o ————— T _
B} 8# g = = = = _ =
-0.5 . 1 Bl 8 iB 8 - o ————— ?é’%éi ,,,,, j,,,,%,,f
W _ 1 w . -
o B‘ = 1 1 o B ?# =
: i 1 - _
asNL -~ 0.5 _ *
g = "
2 ‘ 1
- -1 L
P [ IRegEM-TTLS, flat network L [ 1MO09, flat network
Il RegEM-TTLS, staircase network I M09, staircase network
3 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 18 900 1000 1100 1200 1300 1400 1500 1600 1700 1800
Year A.D. Year A.D.
1 1
0.5 i 05 = = _ %{'
= = = & T = Z
= — — =
+ = == _ T + _ - 1
o ————————— i *#***E = | Og*? ********** Ej*fétiff:kfff
= = L -1 -
y |z = = 8 |z ® I
o o g = 0s *
1
1 1 -1
[ICCA, flat network [ ]GraphEM, flat network
Il CCA, staircase network I GraphEM, staircase network
5 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 8 900 1000 1100 1200 1300 1400 1500 1600 1700 1800
Year A.D. Year A.D.

Fig. 8. Same as Fig?, but for the max SNR network.

forcing events, which may have more coherent spatial ex+econstruction skill vs. data availability relationship is con-
pressions than other fluctuations, appear to be more easilgitionally dependent on data quality: when proxy quality is
captured by the proxy network. This suggests that recon+elatively high (max SNR), reconstruction skill is relatively
struction skill is not only affected by proxy availability and insensitive to the choice of truncation parameters in RegeM-
quality, but is also a function of the type and amplitude of TTLS, but — like other CFRs — the skill is still sensitive to
climate variations (i.e., internally generated vs. externally high-amplitude climate events.
forced variations). See Sect. 4 in the Sl for more discussions. Despite similarities across reconstructions of global mean
An additional important observation to note is that temperature (Figs5b, 6; max SNR columns), the spatial
RegEM-TTLS in the local SNR case is distinct from the metrics reveal large discrepancies among methods. Although
other three methods (Fi@) in that the temporal availabil- M09 and RegEM-TTLS perform well reconstructing the
ity of input data dominates the reconstruction skill, which global mean temperature, their globally averaged spatial skill
is a monotonically increasing function of time. The ensem-only breaches zero in the last two centuries of the reconstruc-
ble spread becomes wider back in time as well (consistention, even in the max SNR case (F8). GraphEM and CCA,
with Fig. 5a). The decreasing trend back in time for RegEM- on the other hand, display high spatial skill for most of the
TTLS is partially due to the fact that the method uses areconstruction period (in the max SNR case, Big.
fixed truncation parameter for the estimation f despite
the declining availability (Fig3) and quality (Fig.4) of  4.3.2 Effect of spatial heterogeneities
pseudoproxies back in time. Consequently, the TTLS solu-_ . . .
tion tends to be less regularized, and hence is dominated bgl-o isolate the effect of spatial heterogeneities, and to bet-
noise Gima and Van Huffel2007. For GraphEM, a fixed gr visualize spatial patterns, Figsand10 display the spa-
graph is used for the entire reconstruction interval. The grapijia! Pattern of CE using the flat network over the first (850~
identifies most of the significant proxy-temperature relation- 949 AD)_and last centuries (1750-1849 AD) of the recon-

ships and thus GraphEM is able to efficiently use the re-Structior?. In Fig. 9, a band of high CE scores connecting
lationships for reconstruction. M09 and CCA, on the other the eastern equatorial Pacific to North America is evident in

hand, have semi-adaptive and adaptive criteria respectivelflll €@ses, and appears to be a feature of CSM1.4's climate
when performing reconstructions, and are less sensitive tdSmerdon et al.2011). Similarly, there is some reconstruc-

temporal heterogeneities in the pseudoproxies. In the maXion skill over other oceans where no proxies are available.

SNR case (Fig8), RegEM-TTLS shows a similar pattern  5gpatiotemporal maps for each century of the entire reconstruc-
to the other CFRs. This implies that for RegEM-TTLS, the tjon interval are available in the Supplement, Figs. S3-S12
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A.D. 850 - 949 A.D. 1750 - 1849
global mean = 081 global melan =+0.25

RegEM-TTLS g

GraphEM

Fig. 9. Spatial pattern of CE, based on ensemble median using the local SNR flat network. 850-949 and 1750-1849 AD represent periods
with the minimum and maximum global mean CE over the entire reconstruction interval, respectively.

Collectively, this indicates that modeled teleconnections aredimension reduction in CCA is to increase the solution stabil-
effectively exploited by all methods to reconstruct surfaceity, and is achieved by pre-filtering noise and retaining only
temperature in regions with little to no proxy coverage. How- a few leading modes. Similarly, GraphEM filters out spuri-
ever, the pattern of enhanced skill associated with ENSQous proxy-temperature relationships and noise by assigning
(El Nifio—Southern Oscillation) teleconnections vanishes inzeros in the precision matri¥(iedman et aJ.2008 Hastie
the 850-949 AD interval when employing RegEM-TTLS or et al, 2008 Guillot et al, 2013. In the case of the local SNR
MQ9 on the max SNR network (Fid.0), but is still visible  network, most proxies have SNRs lower than 0.3 (or equiva-
in CFRs using CCA and GraphEM. This suggests that thdently, more than 92 % noi§g and hence are dominated by
latter two methods are more skillful in resolving such spatialrandom noise. As a consequence, both CCA and GraphEM
patterns. tend to treat those proxies as noise and filter them out, shrink-
Using the local SNR network, we find that RegEM- ing the reconstruction closer to the calibration mean. Fig-
TTLS and M09 both produce more skillful reconstructions ures9 and10 suggest that RegEM-TTLS and M09 are likely
than GraphEM and CCA. In the case of max SNR, how-to be more powerful when data are very noisy (the local SNR
ever, the results are opposite: reconstructions with CCA andhetwork). Nevertheless, the poor risk properties of these two
GraphEM are more skillful. In particular, GraphEM is the

most skillful method almost everywhere (Fif)) and across 6osnoise: the fraction of the variance in the proxy accounted for
all time intervals (Figs8, S10, Supplement). The goal of lznx(; (;f;)e noise component alone,formulatedﬂssﬁ (Mann et al,
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A.D. 1750 - 1849
global mean = +0.33

RegEM-TTLS

Mo09

CCA

GraphEM

Fig. 10.Same as Fig9, but for the max SNR flat network.

methods, as discussed above, indicate that single inferencé&s Discussion
drawn with these methods should be treated with caution.

Despite the differences among methods described abovén exploring the proxy-temperature relationship, we find that
some common features emerge when comparing reconstruéven in the max SNR network, where the highest possible
tions with the realistic SNRs to uniform SNR networks SNR is taken for each proxy, the average SNR is 0.47 (close
(Figs. S9-S12, Supplemeht)Compared with CFRs using to the SNR=0.5 case used in previous studies). Neverthe-
the SNR =0.25 network (Fig. S11, Supplement), CFRs usindess, some of the proxies on the right end of the distribu-
the local SNR network (Fig. S9, Supplement) produce simi-tion (Fig.3) may exhibit SNRs higher than 1.0; these proxies
lar results but are less skillful. This is primarily due to the fact drive reconstruction skill upward, so that reconstructions de-
that the local SNR network contains only 312 records, whilefived from the max SNR network are more skillful than using
the SNR =0.25 network includes all 1138 proxies in the M08 the SNR = 0.5 network (Figs. S10 and S12 in the Supplement,
database. The comparison between CFRs with SNR=0.Fable 2). In other words, a small number of high-quality
(Fig. S12, Supplement) and max SNR networks (Fig. S10proxies may contribute to a majority of the reconstruction
Supplement), however, shows that reconstructions using thekill. This is encouraging and suggests that global surface
max SNR network are much more skillful, especially during temperature may be skillfully reconstructed without requir-
early reconstruction periods. We discuss this point below.  ing uniform spatial sampling over the entire globe. Neverthe-
less, in our experimental settings, the number of unique tem-

’Reconstructed patterns are relatively consistent between mettperature grid cells used for samplifign Eq. (1) is only 128
ods, thus we only present results from GraphEM in this paper. and 551, in the local and max SNR networks, respectively.
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Sampling the same grid cells multiple times effectively in- and the absence of a theoretical justification for the selection
creases the SNR for those grid cells, and thus may contributeriterion makes it vulnerable. Given a different data set or
to the reconstruction skill. This feature is expected to oper-given a different noise model (by varyingin Eq. (1), for

ate in nature as well, however, and provides additional mo-instance, using red noise instead), the 20yr frequency split
tivation for replicating proxy records. Additionally, we note might no longer be optimal, and the “33 %-truncation” crite-
again that such conclusions might be model-dependent. Thaon might also need to change. For the global mean tempera-
skill observed here may result from the low internal variabil- ture, M09 produces the closest fit to the target overall (ig.

ity in the NCAR CSML1.4 model (partially a consequence of which is due to the fact that truncation parameters are opti-
its low resolution). To confirm these findings, similar experi- mized to fit the global mean. However, our results suggest
ments will be conducted with PMIP3-generation last millen- that the optimization comes at the expense of spatial skill, es-

nium simulationstfttp://pmip3.Isce.ipsl.fj/ pecially during the early reconstruction period (Fig)8, S5,
We also find that differences across CFRs are muchSupplement).
smaller in the case of the max SNR network (Fi), in- Reconstructions derived from CCA and GraphEM in gen-

dicating that, not surprisingly, reconstructions are much lessral show very similar results, with GraphEM slightly out-
sensitive to methodology when data quality is high. The spaperforming CCA. In particular, as shown in Figsand 10,
tial reconstruction skill, as expected, is highest in regionsin the max SNR case, GraphEM outperforms other meth-
of dense proxy availability (e.g., North America), which is ods at all locations across all time intervals. This indicates
consistent with previous findings t8merdon et al(2011). that given enough high-quality data, GraphEM can produce
The contrast between Figgand10, both assuming constant the most skillful reconstructions. The strength of GraphEM
time availability, suggests that our CFR methods, in partic-is especially noticeable in regions of dense proxy sampling.
ular GraphEM and CCA, are more sensitive to data qualityFor instance, over North America (Fig. S10, Supplement),
than to temporal availability. the other three methods display negative CE scores prior
As mentioned in Sec.3.], the ensemble spread for each to 1650 AD, yet GraphEM displays positive CE scores over
method is quite different. RegEM-TTLS consistently yields the entire reconstruction interval. Nevertheless, as noted in
the largest spread, followed by M09, CCA and GraphEM. Fig. 9, GraphEM does not perform as well in the local SNR
As an error-in-variable model (EVM), TTLS is designed to setting as it does using the max SNR network. GraphEM'’s
minimize the variance of residuals from both the predictandssuperior performances in the former case and unsatisfying
(f — T) and the predictorsﬁ( — P). The minimization is  performances in the latter are both largely due to the graphi-
subject to the estimates of regression coefficients, which ircal structure selected by the GraphEM algorithm. In the max
turn depend crucially on the choice of the truncation param-SNR case, pseudoproxies have, by design, much higher SNR
eter. Since the noise in Eq. (3) is randomly generated, it than they do in the local SNR case. Thus most of the sig-
is sometimes spuriously high in the calibration interval andnificant proxy-temperature relationships are effectively de-
makes the true signal too noisy for CFR methods to iden-tected and exploited by the method. In the local SNR case,
tify, especially in the local SNR network. Under such cir- on the other hand, very few significant relationships are de-
cumstances, reconstructions using TTLS with fixed truncatected and thus GraphEM fails to produce meaningful CFRs.
tion may therefore be over-fitting to noise. This confirms an Despite sensitivity to data quality, another potential cause of
important point made bZhristiansen et al2009: there is  GraphEM'’s poor performance in the local SNR cases is the
a substantial element of stochasticity in the reconstructionschoice of the graph. Currently, as describedsiuillot et al.
Hence, one might obtain very different results with the same(2013, the graph is a fixed choice for the entire reconstruc-
method applied to different pseudoproxy noise realizationgtion period, which is based solely on instrumental proxy-
or to different jackknifed proxy networks in real-world re- temperature relationships. To improve the performance of
constructions. In order to improve reconstruction skill when GraphEM-based CFRs, adaptive choices of the graph should
employing RegEM-TTLS, we suggest the development of anbe made for each century of the reconstruction. Through this
algorithm that adaptively selects the regularization parameapproach, available proxies from each century will be more
ters using standard statistical theory. effectively used. Alternative methods should also be explored
Compared with RegEM-TTLS, M09 produces more skill- to estimate the graph.
ful reconstructions. In particular, M09 appears advantageous As illustrated in Fig.6, both GraphEM and CCA suffer
at very high noise levels (local SNR; Figs. S6, Supple- from large mean biases, which contribute to more than 75 %
ment). This is not surprising in part due to the heuristic of the total MSE associated with reconstructions from each
truncation choices. M09 strongly benefits from the hybrid- method. It is well-known that introducing a certain amount
frequency approach to perform reconstructions, namelyof bias can lead to a reduction in MSE (compared to us-
white noise contained in the low-frequency pseudoproxies idng an unbiased estimator). However, this often results in the
effectively filtered out and hence the low-frequency compo-reduction of the corresponding variance, i.e., the amplitude
nents are better reconstructed in the PPEs. The noise-filteringf past climatic variations are underestimated (Bjg.CCA
advantage is likely not present in real-world reconstructions often does best by measure Bf values (Table2). This is
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Table 2. Verification statistics summary for the global mean tem- must be found between bias and variance. It therefore is most
perature time series, using the staircase network. CERREnd  likely that the lowest MSE for the spatial field and the global

bias are computed for the low-frequency component (20yr low-mean time series are not given by the same set of regulariza-
pass) of the reconstructed global mean. All numbers given outsidgjon parameters.

of parentheses are the mean of the 100-member ensemble; numbersWe also calculated a suite of diagnostics for reconstruc-
in parentheses are the corresponding standard deviation. tion skill and its dependence on (1) the number of proxies
(2) the average SNR, and (3) the sum of SNR in each grid

Method SNR CE RE R? bi : ; )
e 188 box. No apparent relationships between these variables and

00 +0.92000 +0.9%00 +0.92000 +0.0200 i i i _
1.0 408499, 409809 4091901 +0.0301 spatlgl skill were fo'und' (Figs. S15-S20, Supplemeqt). Our

RegEM-TTLs 05 +078%07 +09701 +08703 +00%0; experiments also highlight the need for methodological re-
025 405313 +094902 +0.70h0s +0.04902 finements, since no method can consistently perform well in
'r‘r’]‘;i' ;8-%-39 18-245805 Igg;ﬂw Igggﬂ% all cases for both index and field reconstructions. We find

o013 P02 TRToos TTTOOL that both RegEM-TTLS and M09 produce meaningful global

~ 183282 ig'g%gg Ig'ggg-gfl’ 18'8258-82 mean reconstructions, but do not perform as well in the spa-

MO9S 05 +06%0; +09no1 +08%02 +0.0501 tial field. The disagreement between the field and index re-
025 +0.30p21 +0.91p03 +0.6708 +0.07002 construction was explored @@uillot et al.(2013, in which it
local  —024p26 +0.83%04 +0.57006 +0.1l002 is found that the skillful performance of TTLS-based global

max  +07 1097001  +0.9 +00 S ;
fo0e oot %03 01 mean temperature reconstructions involves considerable can-
00 +0.96000 +1.00000 +0.97000 +0.01p00

10 107804 1097001 109401 00501 cellat!on between .posmvg anq negative deviations from the

CCA 05 —01812 +084902 +0.8802 +0.1301 true _flelql at any given grid point (see Suppl_ement). l_—|er_lce,

I%g; —g-ggg.zs 18-328.04 182418.06 18-5458.01 t_heﬂdehty (_)f the_recqnstructed global mean is a poor indica-

max +o:370f§ +oﬁ92012f +O:910:g€13 +O:O%:gi tion of_s_patlal skill (Figs. S21, S22, Supplement). _

10950 109%0 109700 +00kon Additionally, we note that all methods consistently intro-

10  +068&0; +096001 +0.95001 +0.06001 duce a warm bias to the global mean temperature recon-

05 +05%10 +09401 +09001 +0.0801 struction, even in the max SNR setting. As previously found

%g:l fg.ggg.ss ig.gég.os 18.2453.04 182412402 in von Storch et al(20049), Chr_istiansen et al(2009, and

i +0:530:23 +0:940:8‘11 +0i940:8i +0:080121 Smerdon et al(2_013, re_gresspn-based CFR methods are
generally associated with variance losses and large mean
biases. These are an inevitable by-products of linearly re-
gressing temperature onto proxies, and are especially se-

expected: the method regularizes by maximizing the crossvere if proxies are subject to extensive errors. This well-

correlation between the proxy and target matrices, but with-known problem is called regression dilution (e fgrost and

out further constraining the variance. One possible modifica-Thompson 200Q Tingley et al, 2012. It commonly trans-

tion would be matching the variance of CCA reconstructionslates into reconstructions that are always biased towards the

to the variance of the target data in each grid cell during themean of the calibration intervahmmann et al(2010 has

calibration interval. In doing this, more variance would be proposed a correction to regression dilution in the context of

preserved for networks affected by declining data availabil-index reconstructions, which minimizes out-of-sample bias

ity. However, this modification would inflate errors and the over subsets of the calibration interval. An alternative is to

solution could no longer be interpreted as minimizing the consider methods that respect the proxies’ physical depen-

calibration misfit. dence on temperature, and express proxies as a function of

By contrasting the CFRs derived from four methods in temperatureQhristiansen2011). Tingley and Li(2012) find

both the spatial and temporal context, we find that, despitehat this leads to a reduced bias but may also lead to infi-

some general agreements (Fsd) and reasonable skill (Ta- nite variance in very noisy cases. They suggest an alternative

ble 1) in the global mean temperature reconstruction, the foursolution leveraging Bayesian hierarchical models, wherein

methods yield large spatial differences, and their validationa proxy's dependence on temperature is formulated using

scores in terms of CE can still be large locally. This confirms process-based forward models at the data level, allowing for

previous findings irSmerdon et al(2011), that the global an elimination of the variance inflation and an internally con-

mean temperature series is a poor indicator of spatial skillsistent quantification of uncertainties (see a¥wistiansen

and that spatial performance metrics are crucial for the as2012 for more discussions).

sessment of different CFR techniques (eLgand Smerdon

2012. The results also highlight the difficulty in jointly op-

timizing the spatial skill and the global mean temperature.

Fundamentally, reconstruction skill can be assessed using

MSE. As discussed in the previous paragraph, in order to

find the lowest MSE (thus the best reconstruction), a tradeoff

GraphEM
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6 Conclusions regression coefficient8. Given enough high-quality data,
reconstructions using GraphEM display a higher spatial skill
An updated pseudoproxy network design has been conthan the other three methods everywhere in the field, and
structed with more realistic characteristics: for the firstin particular over the oceans and regions with denser proxy
time, pseudoproxies were sampled with spatiotemporakampling. This suggests that the reconstruction strongly ben-
characteristics that reflect heterogeneities in proxy qualityefits from the improved covariance estimation induced by the
and proxy attrition back in time. The updated network hasuse of Gaussian graphical models.
allowed an assessment of the spatial performance of four Given the large performance differences among various
different CFR techniques using a comprehensive suite ofCFR methods in the pseudoproxy context, we emphasize that
experiments. unless reconstructions with various methods provide very
Results based on the max SNR network show rela-similar spatiotemporal information, real-world reconstruc-
tively small CFR sensitivity to the choice of methodology tions derived from a single method should be viewed with
when SNR is high. However, results are strongly method-caution. In agreement witBmerdon et al(2011), we rec-
dependent in sample-starved settings. Overall, reconstruemmend applying as many methods as possible to make ro-
tions are generally better in regions with dense proxy sam-bust conclusions. Additionally, the exact pattern of spatial
pling, although teleconnections are also exploited by theseskill varies according to the GCM simulation used as the ba-
CFR methods, in particular CCA and GraphEM, to derive sis of the PPEs. Multiple PMIP3 last millennium simulations
spatial skill outside of directly sampled regions. should ideally be used to validate the present results. Future
The effect of temporal heterogeneities of proxy availabil- studies should also rigorously model real-world conditions,
ity is counterintuitive. We find that despite the declining including persistence, noise characteristics, and a mechanis-
data availability back in time, reconstruction skill does not tic representation of climate proxies. Finally, we emphasize
necessarily follow suit. Rather, our experiments show thatthe fundamental difficulty in finding a bias-variance trade-
forced, high-amplitude climatic events have a larger impactoff that optimizes the reconstruction of both the temperature
on reconstruction skill and are more easily resolved by thesdield and its global mean. Future studies should explore solu-
methods, even when data availability is low. This conclusiontions that jointly minimize spatial and temporal errors.
is nevertheless model-dependent, and needs to be verified
with PPEs using output from other GCMs. _ . o
Our experiments also show that no method universally Out_SuppIementgry material related_ to this article is
performs another, and that each method has its own strengtf?sva'lable online athttp://www.clim-past.net’10/1/2014/
and weaknesses. Overall, RegEM-TTLS and M09 producé:p-10-1-2014-supplement.pdf
more skillful index reconstructions (global mean tempera-

ture, Fig.6), and retain a _higher skill than other methods AcknowledgementsThe authors thank Sylvia Dee and
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