
Fast Bootstrapping and Permutation Testing for
Assessing Reproducibility and Interpretability of
Multivariate fMRI Decoding Models
Bryan R. Conroy*, Jennifer M. Walz, Paul Sajda

Department of Biomedical Engineering, Columbia University, New York, New York, United States of America

Abstract

Multivariate decoding models are increasingly being applied to functional magnetic imaging (fMRI) data to interpret the
distributed neural activity in the human brain. These models are typically formulated to optimize an objective function that
maximizes decoding accuracy. For decoding models trained on full-brain data, this can result in multiple models that yield
the same classification accuracy, though some may be more reproducible than others—i.e. small changes to the training set
may result in very different voxels being selected. This issue of reproducibility can be partially controlled by regularizing the
decoding model. Regularization, along with the cross-validation used to estimate decoding accuracy, typically requires
retraining many (often on the order of thousands) of related decoding models. In this paper we describe an approach that
uses a combination of bootstrapping and permutation testing to construct both a measure of cross-validated prediction
accuracy and model reproducibility of the learned brain maps. This requires re-training our classification method on many
re-sampled versions of the fMRI data. Given the size of fMRI datasets, this is normally a time-consuming process. Our
approach leverages an algorithm called fast simultaneous training of generalized linear models (FaSTGLZ) to create a family
of classifiers in the space of accuracy vs. reproducibility. The convex hull of this family of classifiers can be used to identify a
subset of Pareto optimal classifiers, with a single-optimal classifier selectable based on the relative cost of accuracy vs.
reproducibility. We demonstrate our approach using full-brain analysis of elastic-net classifiers trained to discriminate
stimulus type in an auditory and visual oddball event-related fMRI design. Our approach and results argue for a
computational approach to fMRI decoding models in which the value of the interpretation of the decoding model
ultimately depends upon optimizing a joint space of accuracy and reproducibility.
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Introduction

Multivariate pattern analysis (MVPA) is becoming a standard

tool for aggregating cortical activity across brain regions to predict

various markers of cognitive state related to a task or stimulus

condition [1–3]. In contrast to standard univariate statistical tests

based on the General Linear Model (GLM) [4], MVPA uses

machine learning techniques to extract task-relevant information

from spatially-distributed patterns of activity [1,5–14]. As a result,

it has the additional benefit of being able to exploit interactions

between voxels.

Oftentimes, a related goal of MVPA is to make inferences about

the workings of the brain and its underlying cognitive processes.

When the machine learning method produces its discriminating

component by taking linear combinations of voxels, questions of

inference center around interpreting the weights assigned to

voxels, which is often called a ‘‘brain map.’’ For this reason, a

wave of attention has recently been focused on developing models

that are both parsimonious and interpretable. Thus, model

prediction accuracy is not the only goal of the MVPA: the spatial

patterns themselves are just as important.

A wide array of MVPA methods has been proposed for

application to fMRI data [1,5–14]. Though they differ in the

assumptions made about the size and location of the spatial

pattern of activity, as well as its relationship to the brain state of

interest, all must grapple with the high dimensionality of the fMRI

data relative to the number of trials acquired throughout the

experiment. Without properly addressing this discrepancy, the

learning algorithm will tend to overfit to the training data and lack

generalization power. To overcome this obstacle, sometimes it is

possible to identify a pre-defined anatomical region-of-interest

(ROI), which greatly reduces the dimensionality of the feature

space [15]. Other methods average signals across multiple ROI’s

or utilize some classical form of dimensionality reduction as a first

step (e.g., PCA or ICA) [16]. Another option is searchlight analysis

[9], which learns many spatially-localized classifiers as a ‘‘search-

light’’ is swept across the brain. This analysis overcomes the

overfitting problem since each classifier is learned from a low-

dimensional subset of the brain, but the problem lies in how to
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properly statistically assess the thousands of classifiers learned

across the brain. By design, this method is also unable to capture

interactions between spatially remote regions of the brain.

This paper focuses instead on interpreting brain maps derived

from full-brain sparse regression models. In this case, feature

selection and dimensionality reduction are not specified a-priori

but must be learned, and are thus wrapped into the cross-

validation stage of the machine learning procedure. This is usually

accomplished in one of two ways. Feature selection techniques

[7,17] first perform a univariate selection strategy to identify voxels

that are strongly predictive of the brain state of interest. Once the

features are identified, a classifier is learned on this reduced data

space. Alternatively, a number of groups have applied sparse

regression models to full-brain fMRI analysis [13,14], which allows

for feature selection and classification to be performed simulta-

neously. This is achieved by an objective function that trades off

model fit with model complexity. Here, complexity is measured by

a regularization term that penalizes a combination of the length

(,1-norm) and squared energy (,2-norm) of the regression weights

[18,19]. This penalty, called the elastic net, is known to encourage

sparse solutions, so that the final predictor is derived from only a

small subset of the voxels. Thus, feature selection is performed

during the classification procedure. It also leads to a convex

optimization problem, which greatly simplifies the optimization

procedure. We restrict our attention to the latter method since it is

more flexible, but we note that our approach is equally valid for

the two-stage feature selection and classification procedure.

We focus on such full-brain classifiers for two reasons. First, they

are data-driven and make few assumptions about the location of

the brain signal of interest. This allows them to, with minimal

prior knowledge, be applied to a wide array of problems and

datasets. Second, interpreting brain maps from full-brain analyses

is still a challenging problem that lacks a systematic tool for

evaluation and interpretation.

Our approach uses a combination of bootstrapping and

permutation testing to provide both a measure of cross-validated

prediction accuracy and model reproducibility of the learned brain

maps. This requires re-training our classification method on many

re-sampled versions of the fMRI data. Given the size of fMRI

datasets, this is normally a time-consuming process. We, however,

make use of our recently proposed FaSTGLZ algorithm [20,21],

which was specifically designed to train many related sparse

classifiers on a single dataset simultaneously. This makes our

approach computationally efficient and feasible.

In conjunction with this approach, we also provide a

mechanism to better visualize classification results in two-

dimensions: prediction accuracy vs. model reproducibility. This

is useful not only as a diagnostic tool to better understand the

trade-off between these two possibly competing goals, but it also

serves as a means to better inform the model selection stage of

analysis. As with most discriminative methods, full-brain classifi-

cation models contain regularization parameters that must be

tuned [22]. The most common method is cross-validation, in

which models are compared based on their predictive power.

Given the present discussion, there are obvious limitations in this

approach: predictive accuracy addresses how much information is

encoded in the brain, but it does not speak to how reproducible

and robust the derived spatial patterns are. We consider model

selection as a multi-objective optimization problem and provide a

principled method to properly take into account both prediction

accuracy and model reproducibility. In applying this method to

real experimental fMRI datasets, we show empirically that

sacrificing a small reduction in cross-validated prediction accuracy

generally results in a large and significant improvement in model

reproducibility. This is particularly important when making

inferences about activated brain regions that are common to or

differ across groups. Furthermore, MVPA provides sufficient

sensitivity to identify individual differences within a group, but

interpretation of results is robust only when they are reproducible.

Materials and Methods

The data used in this paper are from a previous simultaneous

EEG-fMRI experimental study [23]. Only the fMRI data are used

in this paper. Details on the behavioral paradigm and data

preprocessing are reproduced here for completeness.

Ethics Statement
This study was approved by the Columbia University Institu-

tional Review Board and all subjects gave written informed

consent in accordance with the guidelines of the Columbia

University Institutional Review Board.

Behavioral Paradigm
Fourteen subjects (5 female, mean 27.4 years, range 20–40)

participated in three runs each of auditory and visual oddball

paradigms. For each oddball detection task, 375 (125 per run) total

stimuli were presented for 200 ms each with a 2–3 s uniformly

distributed variable inter-trial interval (ITI) and probability of

target 0.2. The first two stimuli of each run were constrained to be

standards. For the auditory oddball task, the standard stimulus was

a 390 Hz pure tone, and the target was a broadband ‘‘laser-gun’’

sound. These were selected based on troughs in the frequency

spectrum of the scanner noise, and to match visual discriminator

performance of the EEG data. For the visual task, the target and

standard stimuli were, respectively, a large red circle and a small

green circle on isoluminant gray backgrounds (3.45 and 1.15 visual

angles). Subjects were asked to respond to target stimuli only, using

a button press with the right index finger on an MR-compatible

button response pad. Stimuli were presented to subjects using E-

Prime software (PST, Pittsburgh, PA) and a VisuaStim Digital

System (Resonance Technology, Northridge, CA), comprised of

headphones and 6006800 goggle display.

fMRI Data Acquisition and Preprocessing
A 3T Philips Achieva MRI scanner (Philips Medical Systems,

Bothell, WA) was used to collect functional echo-planar image

(EPI) data with 3 mm in-plane resolution and 4 mm slice

thickness. We covered the entire cortex by obtaining 32 slices of

64664 voxels using a 2000 ms repetition time (TR) and 25 ms

echo time (TE). We also acquired a single-volume high resolution

(26262 mm) EPI image and a 16161 mm spoiled gradient

recalled (SPGR) image for each subject for purposes of registra-

tion.

Using FSL (Smith et al., 2004), we performed bias-field

correction on all images to adjust for artifacts caused by the

EEG wires. We performed slice-timing correction, motion

correction, 0.01-Hz high-pass filtering, and 5-mm full width half

max (FWHM) spatial smoothing on the functional data. The

structural images were later used to align the functional data to a

standard MNI brain.

fMRI Data Processing for MVPA
Classifying brain-state on a trial-to-trial basis requires associat-

ing brain data to each trial. In slow block designs this can be done,

for example, by averaging TR’s within each block. The oddball

detection tasks, however, are rapid event-related designs with

relatively short ITI’s (2–3 s). The temporal dynamics of the
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hemodynamic response function (HRF) evolve over much longer

time-scales than the ITI, which results in significant overlap in

BOLD response between adjacent trials. To un-mix these

overlapping responses, we employed the LS-S deconvolution

method proposed in [24]. For every trial, the time-series of each

voxel is regressed against a ‘‘signal’’ regressor and a ‘‘noise’’

regressor. The ‘‘signal’’ regressor is the modeled HRF response

due to that trial (a delta function centered at stimulus onset

Figure 1. Comparison of summary statistic results for the MaxAz and Joint sp model selection methods on the auditory oddball
data. Dotted horizontal lines indicate the p,0.01 significance levels. Cross-validated prediction accuracy (Az) results for each of 14 subjects under
each of the model selection strategies are provided in A for the without motor network data and C for the whole brain data. For both model
selection methods, prediction accuracy is significant at p,0.01 for all subjects. Reproducibility measure (mean probability of selection msp) results for
each of 14 subjects under each of the model selection strategies is provided in B for the without motor network data and D for the whole brain data.
Here, a more drastic difference is noticeable between the two model selection strategies. While the Joint sp method is always above the p,0.01 line,
the MaxAz method is significant at p,0.01 for only 7 (without motor network data) and 8 (whole brain data) of the 14 subjects.
doi:10.1371/journal.pone.0079271.g001

Figure 2. Comparison of reproducibility (mean absolute z-score mDzD) for both model selection methods on the auditory oddball
without motor network data A and auditory oddball whole brain data B. Dotted horizontal lines indicate the p,0.01 significance levels. In
both cases, reproducibility increases dramatically under Joint sp for many subjects.
doi:10.1371/journal.pone.0079271.g002
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convolved with a canonical HRF), while the ‘‘noise’’ regressor is

the modeled HRF response due to all other trials (superimposed

linearly). The resulting regression coefficients of the ‘‘signal’’

regressor represent the estimated voxel activations due to that trial.

It is important to note that only the trial timing information was

used in this step, and not the label information, so there is no need

to wrap this preprocessing step into the cross-validation procedure

described in the ‘‘Model Selection’’ section below.

Although the exact number of voxels and trials varied for each

subject, mean values were n = 36861.2 (s.e.) trials and

p = 51,8046859 (s.e.) voxels. The number of trials varied for each

subject because trials missing a button press response were

discarded, and trials for which the corresponding EEG data were

corrupted were also discarded. Note that classification was

performed for each subject in his/her ambient EPI image space

(36364 mm). When subsequently comparing across subjects,

brain maps were transformed to the standard MNI brain space

using the registrations derived from the structural scan.

Since the task involved a button press only for oddball trials, we

expected classifiers derived from the full-brain to be dominated by

motor areas. To instead identify regions that are specifically

involved in the cognitive task, we additionally performed the

classification on the brain data after excluding the ‘‘button press’’

network, which included postcentral and precentral gyrus,

thalamus, cerebellum, caudate, putamen, and pallidum. These

regions were identified using the MNI152 template brain.

Secondary somatosensory cortex was preserved to avoid excluding

the neighboring Heschl’s gyrus, which was hypothesized to be

important for the auditory oddball task. Overall, this reduced the

number of features for this secondary classification analysis to

p = 36,8066653 (s.e.) voxels. To differentiate between the two

datasets, we refer to the full analysis as ‘‘whole brain’’, and the

secondary analysis as ‘‘without motor network.’’

Figure 3. Reproducibility (msp) vs prediction accuracy (Az) curves for two subjects: A Subject S4 (without motor network), and B
Subject S5 (whole brain). Reproducibility (mDzD) vs prediction accuracy curves for two subjects: C Subject S4 (without motor network), and D Subject

S5 (whole brain). Thick lines indicate the p,0.01 significance thresholds. In each of the figures, the black curve delineates the convex hull of the 1,100
classifiers. Those classifiers that fall in the interior are plotted in gray, while those that lie on the boundary are highlighted. Despite the general trend
of a positive correlation between reproducibility and prediction accuracy measures, the MaxAz (red) and Joint sp (magenta) model selection
strategies select very different classifiers. In particular, the Joint sp method appears to tradeoff a small reduction in prediction accuracy for a much
larger improvement in reproducibility.
doi:10.1371/journal.pone.0079271.g003
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Classification Method
Our analysis focuses on the classification problem of predicting the

stimulus category (oddball/standard) from the full-brain fMRI data

acquired during the experiment. We based our classification model on

logistic regression, and treated each voxel as a feature. Thus, our goal

is to learn a p-dimensional weight map w on the voxel space that

defines a task discriminating ‘‘super-voxel.’’ To avoid overfitting and

promote sparse models, we regularized our model by the elastic net

penalty [19] so that our objective function may be expressed as:

w�~arg min
w
‘(w)zl1 wk k1zl2 wk k2

2 ð1Þ

where ‘(w) is the negative log-likelihood of the logistic regression

model. Specifically, given a set of p-dimensional voxel activation maps

x1, � � � ,xn for a set of n trials and their associated labels y1, � � � ,yn

(yi = 0 for standards and = 1 for oddballs), ‘(w) may be expressed as:

‘(w)~{
Xn

i~1

yi(x
T
i w){log(1zexp(xT

i w))

Although recent work in function-based registration methods

has shown progress in aligning functional areas across subjects

[25–28] classifiers were derived independently for each of the 14

subjects to avoid problems of inter-subject variability. In the

Results section, we evaluate the inter-subject overlap of areas

selected by the classifiers.

Model Selection
For both the auditory and visual oddball tasks, classifiers were

trained by 10-fold cross-validation, which was repeated on 10

random partitions. Classifier prediction accuracy was measured by

the area under the ROC curve (Az), averaged over the 10 cross-

validation runs.

Typically, model selection involves selecting the classifier with

maximal cross-validated prediction accuracy. However, since

interpretability of the brain map patterns is also important, we

take a similar approach to [29] and consider a balance of

prediction accuracy and reproducibility. Although there are many

ways to define reproducibility, we focus on a measure of how

robustly and reliably the sparse classifier selects voxels. Specifically,

let w1, � � � ,wB be a set of p-dimensional brain maps derived by

training a classifier on B different training datasets. In this

instance, each brain map corresponds to a result trained on one of

the cross-validation folds, and B = 100. In general, however, the

training sets may also be generated by bootstrap resampling [30].

From the B brain maps, we compute voxel selection probabilities

vi for each voxel i~1, � � � ,p as the proportion of times that voxel

was included in the model by the classifier. Ideally, vi is either 0 or

1 for all voxels, corresponding to perfect voxel selection reliability.

As a summary statistic for the classifier, we define the mean

selection probability, msp as:

msp~
1
�AA

Xp

i~1

v2
i

where �AA is the mean number of voxels selected by the classifier.

This statistic may be interpreted as the expected selection

probability of a voxel with nonzero weight selected at random

from one of the brain maps. Note that since
Pp

i~1 vi~�AA, we have

that msp is bounded between 0 and 1, with msp~1 only for perfect

voxel selection reliability (vi = 0 or 1 for all voxels).

Model selection is not as straightforward when considering both

prediction accuracy (Az) and reproducibility (msp). Unless the two

objectives are perfectly correlated, choosing the best classifier

Table 1. Number of significant voxels selected for each of 14 subjects.

Auditory oddball without motor network

# sig (|z|) # sig (sp) A # sig (|z|) # sig (sp) A

S1 44 123 633 S8 3 18 91

S2 23 148 993 S9 0 82 877

S3 51 156 808 S10 0 0 990

S4 125 141 312 S11 29 134 870

S5 46 49 104 S12 71 141 627

S6 12 76 461 S13 18 45 277

S7 117 190 720 S14 24 56 234

Auditory oddball whole brain

# sig (|z|) # sig (sp) A # sig (|z|) # sig (sp) A

S1 25 25 68 S8 21 94 521

S2 74 214 914 S9 2 72 853

S3 72 168 890 S10 7 17 82

S4 317 347 755 S11 18 119 934

S5 59 73 99 S12 61 161 780

S6 24 138 775 S13 19 44 223

S7 90 230 963 S14 43 109 433

# sig (|z|) and # sig (sp) denote the number of voxels deemed significant at FDR = 0.05 when testing z-scores and selection probabilities, respectively. ‘‘A’’ denotes the
average number of voxels selected.
doi:10.1371/journal.pone.0079271.t001
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entails a tradeoff, which, aside from being dependent on the

application, may also be difficult to quantify. In this setting of

multiple, possibly competing objectives, selecting a single ‘‘best’’

classifier is not well-defined; however, the set of candidate ‘‘best’’

classifiers are those that are Pareto optimal. These are classifiers that are

not dominated by any other classifier, meaning that no other classifier

achieves better performance on all of the objectives (reproducibility

and prediction accuracy, in this case). For further reference on

multi-objective optimization and Pareto optimality, see [31].

Three obvious Pareto optimal points to consider are: (1) the

classifier with maximum reproducibility (MaxReprod), (2) the

classifier with maximum prediction accuracy (MaxAz), and (3) the

classifier that is closest to the optimal point of (reproducibility,-

prediction accuracy) = (1,1) (Joint sp)). In this paper, we focus on

the latter two classifiers because it allows us to contrast the

standard model selection method with a method that takes into

account both objectives.

The reproducibility metric msp measures how robustly voxels are

selected in aggregate, but it does not consider the variability in the

weights assigned to these voxels. To take both sources of variability

into account, we also consider the mean absolute z-score, mDzD.

Given the w1, � � � ,wB brain maps and corresponding voxel

selection probabilities vi, i~1, � � � ,p, let mi and si denote the

mean and standard error of the weight for voxel i. A standard

score can then be assigned by taking the ratio zi~mi=si. We then

define mDzD as:

mDzD~
1
�AA

Xp

i~1

Dzi Dvi

Thus, mDzD is a weighted average of the magnitude of voxel z-scores

assigned by the classifier. Analogous to msp above, mDzD may be

interpreted as the expected z-score magnitude of a voxel with

nonzero weight selected at random from one of the brain maps.

Note that, depending on how the B training sets were derived (e.g.,

by bootstrap or jackknife sampling), the bootstrap or jackknife

estimate of variance can be used to estimate the standard errors si

[30]. Since mDzD is not bounded to a specific range, it is not clear

how to scale it in order to produce an appropriate trade-off against

the prediction accuracy measure for model selection purposes.

Moreover, there is no defined optimal (reproducibility,prediction

accuracy) point. For these reasons, we only use msp reproducibility

measure when performing joint model selection. However, we

show in the results section that, in aggregate, msp and mDzD are very

highly correlated, so that msp acts as a good surrogate measure.

Results and Discussion

Model Selection: Reproducibility vs. Prediction Accuracy
Tradeoff

Classifiers were trained across a set of 1,100 paired values for

(l1,l2) using 10-fold cross-validation repeated over 10 random

Figure 4. Group-level brain reproducibility maps evaluated on the auditory oddball without motor network data (MNI coordinates:
(0,244,28), R-L orientation). Reproducibility was evaluated at the voxel level by testing each voxel’s probability of selection or absolute z-score
statistic against a null distribution generated by a permutation test. Subject-specific significance masks were created by thresholding at FDR a= 0.05.
After transforming to MNI space, masks were summed so that the value at each voxel equals the number of subjects that declare it to be significant.
This group mask was then spatially clustered and each cluster reports the total number of subjects that contributed to it. (a) Clusters from the
selection probability statistic on the without motor network data; (b) Clusters from the absolute z-score statistic on the without motor network data.
Associated regions are listed in Table 2.
doi:10.1371/journal.pone.0079271.g004
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partitions. Based on previous studies [13] and for memory

considerations, we capped the maximum number of voxels to be

included by a classifier at 1,000. This resulted in, for each pairing

of regularization parameters, 100 brain maps from which to

compute reproducibility maps (based on both voxel selection

probability and z-scores), and cross-validated prediction accuracy

was averaged across the 10 cross-validation runs. Unless stated

otherwise, results on the auditory oddball experiment are

presented in the main text, while those from the visual oddball

experiment are provided in the supplementary material (see

Figure S1, Figure S2, Figure S3, Figure S4 and Table S1,
Table S2, Table S3).

To assess statistical significance, we contrasted the results

against a permutation test. For each subject, 300 permutations

were generated by randomly permuting the response (stimulus

category) across trials. The classifier was then re-trained for each

permutation along the same set of regularization parameters and

cross-validation partitions as the non-permuted case above. For

the purposes of generating distributions of summary statistics of

prediction accuracy and reproducibility under the null hypothesis

of independence between data and response, permutations were

pooled across subjects. Thus, to compute the distribution for

prediction accuracy, for example, we recorded its maximum value

attained over the grid of 1,100 regularization values for each of the

4,200 total permutations. From this distribution, one-tailed

significance thresholds were computed (Az = 0.60, p,0.05;

Az = 0.64, p,0.01). This process was repeated for the two

reproducibility measures: (msp = 0.59, p,0.05; msp = 0.60,

p,0.01) and (mDzD = 0.37, p,0.05; mDzD = 0.39, p,0.01).

Figure 1 contrasts the summary statistics produced by the

MaxAz and Joint sp model selection methods for each subject on

the auditory oddball data. In each of the plots, the dotted

horizontal lines indicate the p,0.01 significance thresholds. By

definition, the MaxAz classifier will outperform the Joint sp

method in terms of prediction accuracy (see Figure 1A and

Figure 1C), but under-perform on the reproducibility (msp) metric

(see Figure 1B and Figure 1D). The more interesting

characteristic of these plots is the degree of difference between

the two methods –switching to the joint method incurs a relatively

small loss in prediction accuracy in return for a much larger gain

in reproducibility. Specifically, prediction accuracy does not fall

under the p,0.01 significance line for any of the subjects in either

method; in contrast, the joint method is always above p,0.01 in

terms of reproducibility (msp), while the MaxAz method is above

p,0.01 for only 8 (without motor network) and 7 (whole brain) of

the 14 subjects. Moreover, mean (over subjects) prediction

accuracy is within the margin of standard error between the two

methods, while mean msp is significantly greater under the joint

method. Interestingly, the joint method also improves reproduc-

ibility in terms of mDzD quite substantially (see Figure 2A and

Figure 2B).

To better visualize this tradeoff, Figure 3 plots reproducibility

(msp) vs. prediction accuracy (Az) curves for two subjects. Since the

most interesting classifiers lie on the boundary, the figures outline

Figure 5. Group-level brain reproducibility maps evaluated on the auditory oddball whole brain data (MNI coordinates:
(2,220,210), R-L orientation). Reproducibility was evaluated at the voxel level by testing each voxel’s probability of selection or absolute z-score
statistic against a null distribution generated by a permutation test. Subject-specific significance masks were created by thresholding at FDR a= 0.05.
After transforming to MNI space, masks were summed so that the value at each voxel equals the number of subjects that declare it to be significant.
This group mask was then spatially clustered and each cluster reports the total number of subjects that contributed to it. (a) Clusters from the
selection probability statistic on the whole brain data; (b) Clusters from the absolute z-score statistic on the whole brain data. The absolute z-score
method appears to select a more focal subset. Associated regions are listed in Table 3.
doi:10.1371/journal.pone.0079271.g005
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the convex hull of the 1,100 classifiers for each subject as a black

curve, and those that lie on this boundary are highlighted. Other

classifiers that lie on the interior of the convex hull are plotted in

gray. The classifiers corresponding to the MaxAz and Joint sp

methods are highlighted in red and magenta, respectively. An

interesting characteristic of these plots is that although there is a

positive correlation trend between the two objectives, the model

selection methods tend to select very different classifiers. Specif-

ically, their prediction accuracies are similar but reproducibility

scores are much more variable. This suggests that there are a

number of models to choose from with competitive prediction

accuracies, but widely varying reproducibility scores. Thus,

selecting based on prediction accuracy alone is susceptible to

marginally improving prediction accuracy at the expense of

drastically reducing reproducibility. The joint method appears to

overcome this limitation and improve robustness. This is particu-

larly true for subjects S4 and S5 (see Figure 3A and Figure 3B), in

which the improvement in reproducibility is most dramatic.

We also assessed the relationship between the two reproduc-

ibility measures, msp and mDzD. As outlined in Section 4.3, only msp

was considered in the model selection stage even though mDzD is a

more informative measure of reproducibility. It turns out that both

measures are highly correlated, so that one may be used as a

surrogate for the other. Across all subjects and datasets, the

correlation between the two measures was never less than 0.95.

Figure 3C and Figure 3D verify that the Joint sp method selects

nearly optimal classifiers when reproducibility is evaluated as mDzD.

Voxel-Based Significance Analysis
The reproducibility measures considered so far provide

summaries over the entire brain, but lack specificity on which

clusters of voxels in particular are selected by the classifier. In this

section, we assess reliability in terms of the anatomical coordinates

of selected voxels. We obtained distributions for voxel-specific

selection probabilities and z-scores under the null hypothesis by

returning to the permutation analysis described in the previous

section. Since there are no spatial priors and voxels are treated

equally by the classifier, we assumed that the voxel statistics were

identically distributed, which allowed us to pool across voxels. For

each permutation, its best classifier was selected using the Joint sp

method, and the corresponding z-scores and selection probabilities

of any voxels with selection probability vi.0 were used to build the

distributions.

To evaluate voxel-specific significance of a brain map, we first

converted the voxel statistics (whether they be z-scores or selection

probabilities) of any voxel with vi.0 to p-values based on the null

distributions generated above. We then thresholded the brain map

at false discovery rate (FDR) a = 0.05 [32]. Specifically, let

p1ƒ � � �ƒpN denote the ordered p-values of the N voxels with

nonzero selection probabilities. Then voxels i~1, � � � ,k are

deemed significant, where k satisfies:

k~max j : pjƒ
j

N
a

� �

This controls the expected rate of false discoveries at a. This FDR

analysis was computed with respect to both voxel selection

probabilities and voxel z-scores.

Table 1 lists the number of significant voxels selected by the

selection probability and z-score FDR analysis for both the

auditory oddball without motor network and auditory oddball

whole brain data. Significant voxels were found for both data

except for subjects S9 and S10. Interestingly, these subjects also

had the weakest prediction accuracies (see Figure 1A and

Table 2. Group-level clusters of significant voxels on the auditory oddball without motor network data.

Auditory oddball without motor network

Using voxel-level probability of selection statistic

Region Size Total # Subjects Max Subj/Voxel

Central Opercular Cortex (L) 252 6 3

Insular Cortex (R) 162 6 2

Angular Gyrus (R) 133 6 2

Cingulate Gyrus (A) 445 5 2

Parietal Opercular Cortex (L) 145 5 2

Temporal Pole (R) 129 4 2

Using voxel-level absolute z-score statistic

Region Size Total # Subjects Max Subj/Voxel

Angular Gyrus (R) 797 12 3

Central Opercular Cortex (L) 1156 11 3

Insular Cortex (R) 640 10 3

Cingulate Gyrus (A) 745 9 3

Middle Temporal Gyrus (L) 354 7 2

Middle Temporal Gyrus (R) 352 5 2

Precuneous Cortex (R) 167 5 3

Superior Frontal Gyrus (L) 241 4 3

Cingulate Gyrus (P) 102 4 2

Associated brain map figures are provided in Figure 4 and Figure 5. Notation: (L) – left-lateralized, (R) right-lateralized, (A) anterior, (P) posterior.
doi:10.1371/journal.pone.0079271.t002
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Figure 1C). The selection probability analysis always selects more

voxels as significant, and we verified empirically that the voxels

selected by the z-score analysis were always a subset of those

selected by the selection probability analysis. This suggests a

hierarchy of significance testing, in which the selection probabil-

ities may be used to identify broad regions that contribute

consistently, while the z-scores further refine this to the most

reliable and focal regions. In this light, we view both analyses as

informative.

To evaluate the regional location and inter-subject spatial

overlap, we first transformed the FDR-thresholded brain maps of

each subject into MNI space and generated subject-specific brain

masks of significant voxels. These masks were then summed over

subjects so that the value at each voxel equals the number of

subjects that declare it to be significant. Since we do not expect

inter-subject spatial overlap on a voxel-by-voxel basis, we instead

clustered this group mask and reported the number of subjects that

contribute to each of the clusters. The cluster atlas labels, sizes,

total number of subjects contributing per cluster, and the

maximum number of subjects contributing to a given voxel in

the cluster are listed in Table 2 and Table 3. Note that since the

MNI space is at a higher spatial resolution, the sizes of clusters are

inflated. Brain map figures are also provided in Figure 4 and

Figure 5.

As expected for the whole brain data, we found large clusters in

regions related to the button press, including thalamus, cerebel-

lum, and left (contralateral) postcentral gyrus. For both datasets,

discriminating activity was found in central opercular cortex,

extending to include auditory regions. Insular cortices, anterior

cingulate, and angular gyrus were also consistently selected in both

datasets; these areas are commonly associated with the P300 EEG

response that is reliably generated in such oddball decision-making

tasks [33]. By excluding the motor network, we detected additional

discriminative regions that have been linked to auditory target

detection in fMRI data, including the posterior cingulate and right

middle temporal gyrus [34].

Summary/Conclusion
We have described an approach for leveraging permutation

testing and bootstrapping, together with a method for fast

simultaneous training of generalized linear models (FaSTGLZ)

to construct a large family of classifiers that we subsequently

mapped into a utility space. Within this space optimal classifiers

can be identified by considering their joint decoding accuracy and

reproducibility. As multivariate decoding models become more

prevalent in neuroimaging, and as the dimensions these datasets

increase, it is ever more important to systematically explore the

accuracy/reproducibility tradeoff. Finally, our methods extend to

a wide range of applications of decoding models, from basic

exploratory data analysis and inference in cognitive neuroscience

to brain computer interfaces and neurofeedback systems.

Supporting Information

Figure S1 Comparison of summary statistic results for
the MaxAz and Joint sp model selection methods on the
visual oddball without motor network data. Dotted

horizontal lines indicates the p,0.01 significance thresholds.

Cross-validated prediction accuracy (Az) results for each of 14

subjects under each of the model selection strategies. For both

Table 3. Group-level clusters of significant voxels on the auditory oddball whole brain data.

Auditory oddball whole brain

Using voxel-level probability of selection statistic

Region Size Total # Subjects Max Subj/Voxel

Central Opercular Cortex (L) 1153 12 3

Postcentral Gyrus (L) 1020 10 3

Cingulate Gyrus (A) 935 10 3

Insular Cortex (R) 695 9 3

Angular Gyrus (R) 410 9 3

Thalamus (R) 1210 7 4

Cerebellum (R) 262 7 2

Middle Temporal Gyrus (L) 122 7 2

Postcentral Gyrus (R) 528 4 2

Cerebellum (R) 311 4 2

Using voxel-level absolute z-score statistic

Region Size Total # Subjects Max Subj/Voxel

Postcentral Gyrus (L) 637 10 2

Postcentral Gyrus (L) 271 7 2

Supramarginal Gyrus (R) 157 6 2

Thalamus (L) 981 5 2

Central Opercular Cortex (L) 120 5 2

Cingulate Gyrus (A) 403 4 2

Temporal Pole (R) 144 4 2

Associated brain map figures are provided in Figure 4 and Figure 5. Notation: (L) – left-lateralized, (R) – right-lateralized, (A) anterior, (P) posterior.
doi:10.1371/journal.pone.0079271.t003
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model selection strategies are provided in (a) for the without motor

network data and (c) for the whole brain data. For both model

selection methods, prediction accuracy is significant at p,0.01 for

all subjects. Reproducibility measure (mean probability of

selection msp) results for each of 14 subjects under each of the

model selection strategies is provided in (b) for the without motor

network data and (d) for the whole brain data. Here, a more

drastic difference is noticeable between the two model selection

strategies. While the Joint sp method is always above the p,0.01

line, the MaxAz method is significant at p,0.01 for only 4

(without motor network data) and 5 (whole brain data) of the 14

subjects.

(TIF)

Figure S2 Comparison of reproducibility (mean abso-
lute z-score mDzD) for both model selection methods on the

visual oddball without motor network data (a) and visual
oddball whole brain data (b). Dotted horizontal lines

indicates the p,0.01 significance thresholds. In both cases,

reproducibility increases dramatically under Joint sp for many

subjects.

(TIF)

Figure S3 Group-level brain reproducibility maps eval-
uated on the visual oddball without motor network data
(MNI coordinates: (0,18,8), R-L orientation). For each of

14 subjects, reproducibility was evaluated at the voxel level by

testing each voxel’s probability of selection or absolute z-score

statistic against a null distribution generated by a permutation test.

Subject-specific significance masks were then created by thresh-

olding at false discovery rate a= 0.05 to correct for multiple

comparisons. After transforming to MNI space, masks were

summed so that the value at each voxel equals the number of

subjects that declare it to be significant. This group mask was then

spatially clustered and each cluster reports the total number of

subjects that contributed to it. (a) Group-level clusters derived

using the selection prob-ability statistic; (b) Group-level clusters

derived using the absolute z-score statistic. The absolute z-score

method appears to select a more focal subset. Associated regions

are listed in Table S2.

(TIF)

Figure S4 Group-level brain reproducibility maps eval-
uated on the visual oddball whole brain data (MNI
coordinates: (0,218,18), R-L orientation). For each of 14

subjects, reproducibility was evaluated at the voxel level by testing

each voxel’s probability of selection or absolute z-score statistic

against a null distribution generated by a permutation test.

Subject-specific significance masks were then created by thresh-

olding at false discovery rate a= 0.05 to correct for multiple

comparisons. After transforming to MNI space, masks were

summed so that the value at each voxel equals the number of

subjects that declare it to be significant. This group mask was then

spatially clustered and each cluster reports the total number of

subjects that contributed to it. (a) Group-level clusters derived

using the selection probability statistic; (b) Group-level clusters

derived using the absolute z-score statistic. The absolute z-score

method appears to select a more focal subset. Associated regions

are listed in Table S3.

(TIF)

Table S1 Number of significant voxels selected for each
of 14 subjects. # sig (|z|) and # sig (sp) denote the number of

voxels deemed significant at FDR = 0.05 when testing z-scores and

selection probabilities, respectively. ‘‘A’’ denotes the average

number of voxels selected.

(DOC)

Table S2 Group-level clusters of significant voxels on
the auditory oddball without motor network data.
Associated brain map figures are provided in Figure S3.

Notation: (L) – left-lateralized, (R) right-lateralized, (A) anterior,

(P) posterior.

(DOC)

Table S3 Group-level clusters of significant voxels on
the auditory oddball whole brain data. Associated brain

map figures are provided in Figure S4. Notation: (L) – left-

lateralized, (R) right-lateralized, (A) anterior, (P) posterior.

(DOC)
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