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We present a model of how objects can be visually discriminated based 
on the extraction of depth-from-occlusion. Object discrimination re- 
quires consideration of both the binding problem and the problem of 
segmentation. We propose that the visual system binds contours and 
surfaces by identifying "proto-objects"-compact regions bounded by 
contours. Proto-objects can then be linked into larger structures. The 
model is simulated by a system of interconnected neural networks. The 
networks have biologically motivated architectures and utilize a dis- 
tributed representation of depth. We present simulations that demon- 
strate three robust psychophysical properties of the system. The net- 
works are able to stratify multiple occluding objects in a complex scene 
into separate depth planes. They bind the contours and surfaces of 
occluded objects (for example, if a tree branch partially occludes the 
moon, the two "half-moons" are bound into a single object). Finally, 
the model accounts for human perceptions of illusory contour stimuli. 

1 Introduction ___ 

In order to discriminate objects in the visual world, the nervous sys- 
tem must solve two fundamental problems: binding and segmentation. 
The binding problem (Barlow 1981) addresses how the attributes of an 
object-shape, color, motion, depth-are linked to create an individual 
object. Segmentation deals with the converse problem of how separate 
objects are distinguished. These two problems have been studied from 
the perspectives of both computational neuroscience (Marr 1982; Gross- 
berg and Mingolla 1985; T. Poggio et al. 1988; Finkel and Edelman 1989) 
and machine vision (Guznian 1968; Rosenfeld 1988; Aloimonos and Shul- 
man 1989; Fisher 1989). However, previous studies have not addressed 
what we consider to be the central issue: how does the visual system 
define an object-i.e., what constitutes a "thing." 

Object discrimination occurs at an intermediate stage of the trans- 
formation between two-dimensional (2D) image intensity values and vi- 
sual recognition, and in general, depends on cues from multiple visual 
modalities. To simplify the problem, we restrict ourselves to discrimi- 
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nation based solely on occlusion relationships. In a typical visual scene, 
multiple objects may occlude one another. When this occurs, it creates 
a perceptual dilemma-to which of the two overlapping surfaces does 
the common border belong? If the border is, in fact, an occlusion border, 
then it belongs to the occluding object. This identification results in a 
stratification of the two objects in depth and a de facto discrimination of 
the objects. Consider the case of a tree branch crossing the face of the 
moon. We perceive the branch as closer and the moon more distant, but 
in addition, the two "half-moons" are perceptually linked into one ob- 
ject. The visual system supplies a virtual representation of the occluded 
contours and surfaces in a process Kanizsa (1979) has called "amodal 
completion." With this example in mind, we propose that the visual 
system identifies "proto-objects" and determines which proto-objects, if 
any, should be linked into objects. For present purposes, a proto-object 
is defined as a compact region surrounded by a closed, piecewise con- 
tinuous contour and located at a certain distance from the viewer. The 
contour can be closed on itself, or more commonly, it can be closed by 
termination on other contours. 

We will demonstrate how a system of interconnected, physiologically 
based neural networks can identify proto-objects, link them into objects, 
and stratify the objects in depth. The networks operate, largely in paral- 
lel, to carry out the following interdependent processes: 

0 discriminate edges 

0 segment and bind contours 

0 identify proto-objects (i.e., bind contours and surfaces) 

0 identify possible occlusion boundaries 

0 stratify occluding objects into different depth planes 

0 attempt to link proto-objects into objects 

0 influence earlier steps (e.g., contour binding) by results of later steps 
(e.g., object linkage). 

The constructed networks implement these processes using a relatively 
small number of neural mechanisms (such as detecting curvature, and 
determining which surface is inside a closed contour). A few of the 
mechanisms used are similar to those of previous proposals (Grossberg 
and Mingolla 1985; Finkel and Edelman 1989; Fisher 1989). But our par- 
ticular choice of mechanisms is constrained by two considerations. First, 
we utilize a distributed representation of depth-this is based on the ex- 
ample of how disparity is represented in the visual cortex (G. Poggio et 
al. 1988; Lehky and Sejnowski 1990). The relative depth of a particular 
object is represented by the relative activation of corresponding units in 
a foreground and background map. Second, as indicated above, we make 
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extensive use of feedback (reentrant) connections from higher level net- 
works to those at lower levels-this is particularly important in linking 
proto-objects. For example, once a higher level network has determined 
an occlusion relationship it can modify the way in which an earlier net- 
work binds contours to surfaces. 

Any model of visual occlusion must be able to explain the perception 
of illusory (subjective) contours, since these illusions arise from artificially 
arranged cues to occlusion (Gregory 1972). The proposed model can ac- 
count for the majority of such illusions. In fact, the ability to link contours 
in the foreground and background corresponds, respectively, to the pro- 
cesses of modal and amodal completion hypothesized by Kanizsa (1979). 
The present proposal differs from previous neural models of illusory 
contour generation (Ullman 1977; Grossberg and Mingolla 1985; von der 
Heydt et al. 1989; Finkel and Edelman 1989) in that it generates illusory 
objects-not just the contours. The difference is critical: a network which 
generates responses to the three sides of the Kanizsa triangle, for example, 
is not representing a triangle (the object) per se. To represent the triangle 
it is necessary to link these three contours into a single entity, to know 
which side of the contour is the inside, to represent the surface of the tri- 
angle, to know something about the properties of the surface (its depth, 
color, texture, etc.), and finally to bind all these attributes into a whole. 
This is clearly a much more difficult problem. We will describe, however, 
a simple model for how such a process might be carried out by a set of in- 
terconnected neural networks, and present the results of simulations that 
test the ability of the system on a range of normal and illusory scenes. 

2 Implementation 

Simulations of the model were conducted using the NEXUS Neural Simu- 
lator (Sajda and Finkel 1992). NEXUS is an interactive simulator designed 
for modeling multiple interconnected neural maps. The simulator allows 
considerable flexibility in specifying neuronal properties and neural ar- 
chitectures. The present simulations feature an interconnected system 
composed of 10 different network architectures, each of which contains 
one or more topographically organized arrays of 64 x 64 units. Two types 
of neuronal units are used. Standard neuronal units carry out a linear 
weighted summation of their excitatory and inhibitory inputs, and out- 
puts are determined by a sigmoidal function between voltage and firing 
rate. NEXUS also allows the use of more complex units called PGN (pro- 
grammable generalized neural) units that execute arbitrary functions or 
algorithms. A single PGN unit can emulate the function of a small circuit 
or assembly of standard units. 

PGN units are particularly useful in situations in which an intensive 
computation is being performed but the anatomical and physiological 
details of how the operation is performed in uiuo are unknown. Alterna- 
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Figure 1: Major processing stages in the model. Each process is carried out 
by one or more networks. Following early visual stages, information flows 
through two largely parallel pathways-one concerned with identifying and 
linking occlusion boundaries (left side) and another concerned with stratifying 
objects in depth (right side). Networks are multiply interconnected and note 
the presence of the two reentrant feedback pathways. 

tively, PGN units can be used to carry out functions in a time-efficient 
manner; for example, to implement a one-step winner-take-all algorithm. 
The PGN units used in the present simulations can all be replaced with 
circuits composed of standard neuronal units, but this incurs a dramatic 
increase in processing time and memory allocation with minimal changes 
in functional behavior at the system level. 

No learning is involved in the network dynamics. The model is in- 
tended to correspond to visual processing during a brief interval (less 
than 200 msec following stimulus presentation), and the interpretation 
of even complex scenes requires only a few cycles of network activity. 
The details of network construction will be described elsewhere; we will 
focus here on the processes performed and the theoretical issues behind 
the mechanisms. 

3 Construction of the Model 

The model consists of a number of stages as indicated in Figure 1. The 
first stage of early visual processing involves networks specialized for the 
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detection of edges, line orientation, and line terminations (endstopping). 
As Ramachandran (1987) observed, the visual system must distinguish 
several different types of edges: we are concerned here with the distinc- 
tion between edges due to surface discontinuities (transitions between 
different surfaces) and those due to surface markings (textures, stray 
lines, etc.). Only the former can be occlusion boundaries. The visual 
system utilizes several modalities to classify types of edges; we restrict 
ourselves to a single process carried out by the second processing stage, a 
network that determines which segments belong to which contours and 
whether the contours are closed. 

When two contours cross each other, forming an "X" junction, there 
are several possible perceptual interpretations of which arms of the "X" 
should be joined. Our networks carry out the simple rule that disconti- 
nuities should be minimized-i.e., lines and curves should continue as 
straight (or with as much the same curvature) as possible. Similar as- 
sumptions underlie previous models (Ullman 1977), and this notion is 
in accord with psychophysical findings that discontinuities contain more 
information than continuous segments (Attneave 1954; Resnikoff 1989). 
We are thus minimizing the amount of self-generated information. 

We employ a simple sequential process to determine whether a con- 
tour is closed-each unit on a closed contour requires that at least two of 
its nearest neighboring units also be on the contour. It is computationally 
difficult to determine closure in parallel. We speculate that, iiz uiuo, the 
process is carried out by a combination of endstopped units and large- 
receptive field cells arranged in an architecture similar to that described 
in Area 17 (Rockland and Lund 1982; Mitchison and Crick 1982; Gilbert 
and Wiesel 1989). Once closure is determined, it is computationally ef- 
ficient for the units involved to be identified with a "tag." Several of 
the higher level processes discussed below require that units responding 
to the same contour be distinguishable from those responding to differ- 
ent contours. There are several possible physiological mechanisms that 
could subserve such a tag-one possible mechanism is phase-locked fir- 
ing (Gray and Singer 1989; Eckhorn et al. 1988). We have implemented 
this contour binding tag through the use of PGN units (Section 2), which 
are capable of representing several distinct tags. It must be emphasized, 
however, that the model is compatible with a number of possible physi- 
ological mechanisms. 

Closed contours are a necessary condition to identify a proto-object, 
but sufficiency requires two additional components. As shown in Fig- 
ure 1, the remaining determinations are carried out in parallel. One stage 
is concerned with determining on which side of the contour the figure 
lies, i.e., distinguishing inside from outside. The problem can be alterna- 
tively posed as determining which surface "owns" the contour (Koffka 
1935; Nakayama and Shimojo 1990). This is a nontrivial problem that, in 
general, requires global information about the figure. The classic exam- 
ple is the spiral (Minsky and Papert 1969; Sejnowski and Hinton 1987) in 
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Figure 2: Neural circuit for determining direction of figure (inside vs. outside). 
Hypothetical visual stimulus consists of two closed contours (bold curves). The 
central unit of 3 x 3 array (shown below) determines the local orientation of the 
contour. Surrounding units represent possible directions (indicated by arrows) 
of the inside of the figure relative to the contour. All surrounding units are 
inhibited (black circles) except for the two units located perpendicular to local 
orientation of the contour. Units receive inputs from the contour binding map 
via dendrites that spread out in a stellate configuration, as indicated by clus- 
tered arrows (dendrites extend over long distances in map). Units inside the 
figure will receive more inputs than those located outside the figure. The two 
uninhibited units compete in a winner-take-all interaction. Note that inputs 
from separate objects are not confused due to the tags generated in the contour 
binding map. 

which it is impossible to determine whether a point is inside or outside 
based on only local information. The mechanism we employ, as shown 
in Figure 2, is based on the following simple observation. Suppose a unit 
projects its dendrites in a stellate configuration and that the dendrites are 
activated by units responding to a contour. Then units located inside a 
closed contour will receive more activation than units located outside 
the contour. A winner-take-all interaction between the two units will 
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Figure 3: Primary cues for occlusion. Tag junctions (shown in the inset) signal a 
local discontinuity between occluding and occluded contours. Concave regions 
and surrounded contours suggest occlusion, but are not as reliable indicators 
as tag junctions. Additional cues such as accretion/deletion of texture (not 
considered here) are used i l l  77iuo. 

determine which is more strongly activated, and hence which is inside 
the figure. As shown in Figure 2, it is advantageous to limit this compe- 
tition to the two units that are located at positions perpendicular to the 
local orientation of the contour. As will be shown below (see Figs. 5-71, 
this network is quite efficient at locating the interior of figures. It  also 
demonstrates deficiencies similar to those of human perception-for ex- 
ample, it cannot distinguish the inside from the outside of a spiral. The 
mechanism depends on the contour binding carried out above. Each unit 
only considers inputs with the appropriate tag-in this way, inputs from 
separate contours in the scene are not confused. 

Identification of a proto-object also requires that the relative depth 
of the surface be determined. This is carried out chiefly through the 
use of tag junctions. As shown in Figure 3, a tag junction is formed 
by the termination of an occluded boundary on an occluding boundary. 
Tag junctions generally correspond to T-junctions in the image, however, 
they arive from discontinuities in the binding tags and are therfore as- 
sociated with surface discontinuities as well. Note that tag junctions are 
identified at an intermediate stage in the sytem (see Fig. 1) and are not 
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constructed directly from end-stopped units in early vision. This accords 
with the lack of physiological evidence for "junction" detectors in striate 
cortex. 

In this model, tag junctions serve as the major determinant of relative 
depth. At such junctions, there is a change in the binding (or ownership) 
of contours, and it is this change which produces the discontinuity in 
perceived depth. Depth is represented by the relative level of activity 
in two topographic maps (called foreground and background). The closest 
object maximally activates foreground units and minimally activates back- 
ground units; the most distant object has the reverse values, and objects 
located at intermediate depths display intermediate values. The initial 
state of the two maps is such that all closed contours lie in the background 
plane. Depth values are then modified at tag junctions-contours cor- 
responding to the head of the "T" are pushed toward the foreground. 
Since multiple objects can overlap, a contour can be both occluding and 
occluded-therefore, the relative depth of a contour is determined in a 
type of push-pull process in which proto-objects are shuffled in depth. 
The contour binding tag is critical in this process in that all units with 
the same tag are pushed forward or backward together. (In the more 
general case of nonplanar objects, the alteration of depth values would 
depend on position along the contour.) 

Tag junctions arise in cases of partial occlusion; however, in some 
instances, a smaller object may actually lie directly in front of a larger 
object. In this case, which we call "surround" occlusion, the contour of 
the occluded object surrounds that of the occluding object. As shown 
in Figure 1, a separate process determines whether such a surround oc- 
clusion is present, and in the same manner as tag junctions, leads to a 
change in the representation of relative depth. The network mechanism 
for detecting surround occlusion is almost identical to that discussed 
above for determining the direction of figure (see Fig. 2). Note that a 
similar configuration of two concentric contours arises in the case of a 
"hole." The model is currently being extended to deal with such non- 
simply connected objects. 

These processes-contour binding, determining direction of the fig- 
ure, and determination of relative depth-define the proto-object. The re- 
mainder of the model is concerned with linking proto-objects into objects. 
The first step in this endeavor is to identify occlusion boundaries. Since 
occlusion boundaries are concave segments of contours, such segments 
must be detected (particularly, concave segments bounded by tag junc- 
tions). Although many machine vision algorithms exist for determining 
convexity, we have chosen to use a simple, neurally plausible mechanism: 
at each point of a contour, the direction of figure is compared to the direc- 
tion of curvature [which is determined using endstopped units (Dobbins 
et al. 198711. In convex regions, the two directions are the same; in con- 
cave regions, the two directions are opposed. A simple AND mechanism 
can therefore identify the concave segments of the contours. 
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Figure 4: Linking of occluded contours. Three possible perceptual interpreta- 
tions (below) of an occlusion configuration (above) are shown. Small arrows 
indicate direction of figure (inside/outside). Collinearity cannot be the sole cri- 
terion for linking occluded edges. Consistency in the direction of figure between 
linked objects rules out perception c. 

Once occlusion borders are identified, proto-objects can be linked by 
trying to extend, complete, or continue occluded segments. Linkage most 
commonly occurs between proto-objects in the background, i.e., between 
spatially separated occluded contours. For example, in Figure 3, the oc- 
cluded contours which terminate at the two tag junctions can be linked to 
generate a virtual representation of the occluded segment. Since it is im- 
possible to know exactly what the occluded segment looks like, and since 
it is not actually "perceived," we have chosen not to generate a repre- 
sentation of the occluded segment. Rather, a network link binds together 
the endpoints of the two tag junctions. In the case where multiple objects 
are occluded by a single object, the problem of which contours to link 
can become complex. As shown in Figure 4, one important constraint on 
this process is that the directions of figure be consistent between the two 
linked proto-objects. 

Another condition in which proto-objects can be linked involves the 
joining of occluding contours, i.e., of proto-objects in the foreground. This 
phenomenon occurs in our perception of illusory contours, for example, 
in the Kanizsa triangle (Kanizsa 1979) or when a gray disc is viewed 
against a background whose luminance changes in a smooth spatial gra- 
dient from black to white (Marr 1982; Shapley and Gordon 1987). In this 
case, a representation of the actual contour is generated. The conditions 
for linkage are that the two contours must be smoothly joined by a line 
or curve, and that the direction of figure be consistent (as in the case of 
occluded contours above). 
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The major difference between these two linking or completion pro- 
cesses is that contours generated in the foreground are perceived while 
those in the background are not. However, the same mechanisms are 
used in both cases. We have elected to segregate the foreground and 
background linking processes into separate networks for computational 
simplicity-it is possible, however, that in vivo a single population of 
units carries out both functions. 

Regardless of the implementation, the interaction between ongoing 
linking processes in the foreground and background is critical. Since 
these links are self-generated by the system (they do not exist in the 
physical world), they must be scrutinized to avoid false conjunctions. 
The most powerful check on these processes is their mutual consistency- 
an increased certainty of the occluded contour continuation being correct 
increases the confidence of the occluding contour continuation, and vice 
versa. For example, in the case of the Kanizsa triangle, the "pac-man"- 
like figures can be completed to form complete circles by simply con- 
tinuing the contour of the pac-man. The relative ease of completing the 
occluded contours, in turn, favors the construction of the illusory con- 
tours, which correspond to the continuations of the occluding contours. 
In fact, we believe that the interaction between these two processes de- 
termines the perceptual vividness of the illusion. 

The final steps in the process involve a recurrent feedback (or reentry, 
Finkel and Edelman 1989) from the networks that generate these links 
back to earlier stages so that the completed contours can be treated as 
real objects. Note that the occluded contours feedback to the contour 
binding stage, not to the line discrimination stage, since in this case, the 
link is virtual, and there is no generated line whose orientation, etc., can 
be determined. The feedback is particularly important for integrating 
the outputs of the two parallel paths. For example, once an occluding 
contour is generated, as in the illusory contours generated in the Kanizsa 
triangle, it creates a new tag junction (with the circular arc as the "tail" 
and the illusory contour as the "head" of the "T''). On the next iteration 
through the system, this tag junction is identified by networks in the 
other parallel path of the system (see Fig. 11, and is used to stratify the 
illusory contour in depth. 

4 Results of Simulations 

4.1 Linking Proto-objects. We present the results of three simula- 
tions which illustrate the ability of the system to discriminate objects. 
Figure 5 shows a visual scene that was presented to the system. The 
early networks discriminate the edges, lines, terminations, and junctions 
present in the scene. Figure 5A displays the contour binding tags as- 
signed to different scene elements (on the first and fifth cycle of activity). 
Each box represents active units with a common tag, different boxes rep- 
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resent different tags, and the ordering of the boxes is arbitrary. Note 
that on the first cycle of activity, discontinuous segments of contours are 
given separate tags. These tags are changed by the fifth cycle as a result 
of feedback from the linking processes. 

Figure 5B shows the output of the directioiz off igure network, for a 
small portion of the input scene (near the horse’s head). The direction of 
the arrows indicates the direction of figure determined by the network. 
The correct direction of figure is determined in all cases: for the horse’s 
head, and for the horizontal and vertical posts of the fence. Once the 
direction of figure is identified, occluded contours can be linked (as in 
Fig. 4), and proto-objects combined into objects. This linkage is what 
changes the contour binding tags, so that after several cycles (Fig. 5A, 
right), separate tags are assigned to separate objects-the horse, the gate 
posts, the house, the sun. 

The presence of tag junctions (e.g., between the horse’s contour and 
the fence, between the house and the horse’s back) is used by the system 
to force various objects into different depth planes. The results of this 
process are displayed in Figure 5C, which plots the firing rate (percent 
of maximum) of units in the foreground network. The system has suc- 
cessfully stratified the fence, horse, house, and sun. The actual depth 
value determined for each object is somewhat arbitrary, and can vary 
depending on minor changes in the scene-the system is designed only 
to achieve the correct relative ordering, not absolute depth. Note that 
the horizontal and vertical posts of the fence are perceived at different 
depths-this is because of the tag junctions present between them; in 
fact, the two surfaces do lie at slightly different depths. In addition, 
there is no way to determine the relative depth of the two objects in the 
background, the house and the sun, because they bear no occlusion rela- 
tionship to each other. Again, this conforms to human perceptions, e.g., 
the sun and the moon appear about the same distance away. The sys- 
tem thus appears to process occlusion information in a manner similar 
to human perception. 

4.2 Gestalt Psychology of a Network. The system also displays a re- 
sponse consistent with human responses to a number of illusory stimuli. 
Figure 6 shows a stimulus, adapted from an example of Kanizsa (19791, 
which shows that preservation of local continuity in contours is more 
powerful than global symmetry in perception (this is contrary to classi- 
cal Gestalt theory-eg., Koffka 1935). As shown in the middle panels, 
there are two possible perceptual interpretations of the contours-on the 
left, the two figures respect local continuity (this is the dominant human 
perception); on the right, the figures respect global symmetry. 

Figure 6A shows the contour binding tags assigned by the system to 
this stimulus, and Figure 6B shows the direction of figure that was deter- 
mined. Both results indicate that the network makes the same perceptual 
interpretation as a human observer. 
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4.3 Occlusion Capture. The final simulation shows the ability of the 
system to generate illusory contours and to use illusory objects in a 
veridical fashion. The stimulus is, again, adapted from Kanizsa (1979), 
and shows a perceptually vivid, illusory white square in a field of black 
discs. The illusory square appears to be closer to the viewer than the 
background, and, in addition, the four discs that lie inside its borders 
also appear closer than the background (some viewers perceive the four 
internal discs to be even closer than the illusory square). This is an exam- 
ple of what we call ”occlusion capture,” an effect related to the capture 
phenomena involving motion, stereopsis, and other submodalities (Ra- 
machandran and Cavanaugh 1985; Ramachandran 1986). In this case, 
the illusory square has “captured” the discs within its borders and they 
are thus pulled into the foreground. 

Figure 7A shows the contour binding tags after one (left) and three 
(right) cycles of activity. Each disc receives a separate tag. After the 
responses to illusory square are generated, the illusory contours are fed 
back to the contour binding network and given a common tag. Note that 
the edges of the discs occluded by the illusory square are now given the 
same tag as the square, not the same tags as the discs. 

The change in ”ownership” of the occluded edges of the discs is the 
critical step in defining the illusory square as an object. For example, 
Figure 7B shows the output of the direction o f f ip re  network after one 
and three cycles of activity. The large display shows that every disc is 
identified as an object with the inside of the disc correctly labeled in each 
case. The two insets focus on a portion of the display near the bottom 
left edge of the illusory square. At first, the system identifies the “L”- 
shaped angular edge as belonging to the disc, and thus the direction of 
figure arrows point “inward.“ After three cycles of activity, this same 
“L”-shaped edge is identified as belonging to the illusory square, and 
thus the arrows now point toward the inside of the square, rather than 
the inside of the disc. This change in the ownership of the edge results 
from the discrimination of occlusion-the edge has been determined to 

Figure 5:  Facing p g e .  Object discrimination and stratification in depth. Top 
panel shows a 64 x 64 input stimulus presented to the system. (A) Spatial his- 
togram of the contour binding tags (each box shows units with common tag, 
different boxes represent different tags, and the order of the boxes is arbitrary). 
Initial tags shown on left; tags after five iterations shown on right. Note that 
linking of occluded contours has transformed proto-objects into objects. (B) 
Magnified view of a local section of the direction of figure network correspond- 
ing to portion of the image near horse‘s nose and crossing fence posts. Arrows 
indicate direction of inside of proto-objects as determined by network. (C) Rel- 
ative depth of objects in scene as determined by the system. Plot of activity (% 
of maximum) of units in the foreground network after five iterations. Points 
with higher activity are ”perceived” as being relatively closer to the viewer. 
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be an occlusion border. The interconnected processing of the system then 
results in a change in the direction of figure and of the continuity tags 
associated with this edge. The illusory square is perceived as an object. Its 
four contours are bound together, the contours are bound to the internal 
surface, and the properties of the surface are identified. 

B C 
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Figure 7C displays the firing rate of units in the foreground map (as 
in 5C), thus showing the relative depths discriminated by the system. 
The discs are placed in the background, the illusory square and the four 
discs within its borders are located in the foreground. In this case, the 
depth cue which forces the internal discs to the foreground is not due to 
tag junctions, but rather to surround occlusion (see Figure 3) .  Once the 
illusory square is generated, the contours of the discs inside the square are 
surrounded by that of the square. The fact that the contour is “illusory” is 
irrelevant; once responses are generated in the networks responsible for 
linking occluding contours and are then fed back to earlier networks, they 
are indistinguishable from responses to real contours in the periphery. 
Thus the system demonstrates occlusion capture corresponding to human 
perceptions of this stimulus. 

5 Discussion 

In most visual scenes, the majority of objects are partially occluded. Our 
seamless perception of the world depends upon an ability to complete or 
link the spatially separated, non-occluded portions of an object. We have 
used the idea that the visual system identifies proto-objects (which may 
or may not be objects) and then attempts to link these proto-objects into 
larger structures. This linking process is most apparent in the perception 
of illusory contours, and our model can account for a wide range of these 
illusions. 

This model builds upon previous neural, psychological, and machine 
vision studies. Several models of illusory contour generation (Ullman 
1977; Peterhans and von der Heydt 1989; Finkel and Edelman 1989) have 
used related mechanisms to check for collinearity and to generate the 
illusory contours. Our model differs at a more fundamental level-we 
are concerned with objects not just contours. To define an object, sur- 
faces must also be considered. For example, in a simple line drawing, 
we perceive an interior surface despite the fact that no surface proper- 
ties are indicated. Thus, the model must be capable of characterizing a 
surface-and it does so, in a rudimentary manner, by determining the di- 
rection of figure and relative depth. Nakayama and Shimojo (1990) have 
approached the problem of surface representation from a similar view- 
point. They discuss how contours and surfaces become associated, how 
T-junctions serve to stratify objects in depth, and how occluded surfaces 
are amodally completed. Nakayama’s analysis concentrates on the exter- 
nal “ecological” constraints on perception. In addition to these Gibsonian 
constraints, we emphasize the importance of internal constraints imposed 
by physiological mechanisms and neural architectures. Nakayama has 
also explored the interactions between occlusion and surface attributes. 
A more complete model must consider such surface properties such as 
color, brightness, texture, and surface orientation. The examination of 
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Figure 6: Minimization of ambiguous discontinuities. Upper panel shows an 
ambiguous stimulus (adapted from Kanizsa 1979), two possible perceptual in- 
terpretations of which are shown below. The interpretation on the left is dom- 
inant for humans, despite the figural symmetry of the segmentation on the 
right. Stimulus was presented to the system, results shown after three itera- 
tions. (A) Spatial histogram showing the contour binding patterns (as in 5A). 
The network segments the figures in the same manner as human perception. 
(B) Determination of direction of figure confirms network interpretation (note 
at junction points, direction of figure is indeterminate). 
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how surface features might interact with contour boundaries has been 
pioneered by Grossberg (1987). Finally, in some regards, our model 
constitutes the first step of a "bottom-up" model of object perception 
(Kanizsa 1979; Biederman 1987). It is interesting that regardless of one's 
orientation (bottom-up or top-down) the constraints of the physical prob- 
lem result in certain similarities of solution as witnessed by the analogies 
present with A1 based models (Fisher 1989). 

One of the most speculative aspects of the model is the use of tags 
to identify elements as belonging to the same object. Tags linking units 
responding to the same contour are used to determine the direction of 
figure and to change the perceived depth of the entire contour based on 
occlusion relationships detected at isolated points (the tag junctions). It 
is possible to derive alternative mechanisms for these processes that do 
not depend on the use of tags, but they are conceptually inelegant and 
computationally unwieldy. Our model offers no insight as to the bio- 
physical basis of such a tag. However, the model does suggest that there 
should be a relatively small number of tags, on the order of 10, since 
this number corresponds to the number of objects that can be simultane- 
ously discriminated. This constraint is consistent with several possible 
mechanisms: tags represented by different oscillation frequencies, tags 
represented by different phases of firing, or tags represented by firing 
within discrete time windows (e.g., the first 10 msec of each 50 msec 
interval). The number of distinct tags generated by these various mech- 
anisms may depend on the integration time of the neuron, or possibly 
on the time constant of a synaptic switch, such as the NMDA receptor. 

At the outset, we discussed the importance of both binding and seg- 
mentation for visual object discrimination. Our model has largely dealt 
with the segmentation problem, however, the two problems are not en- 
tirely independent. For example, the association of a depth value with 
the object discriminated is, in essence, an example of the binding of an 
attribute to an object. Consideration of additional attributes makes the 

Figure 7: Facing p u p .  Occlusion capture. Upper panel shows stimulus (adapted 
from Kanizsa 1979) in which we perceive a white illusory square. Note that the 
four black discs inside the illusory square appear closer than the background. 
A 64 x 64 discrete version of stimulus was presented to the network. (A) Spa- 
tial histogram (as in 5A) of the initial and final (after three iterations) contour 
binding tags. Note that the illusory square is bound as an object. (B) Direc- 
tion of figure determined by the system. Insets show a magnified view of the 
initial (left) and final (right) direction of figure (region of magnification is in- 
dicated). Note that the direction of figure of the "mouth of the pac-man flips 
once the illusory contour is generated. (C) Activity in the foreground network 
(% of maximum) demonstrates network stratification of objects in relative depth. 
The illusory square has "captured" the background texture. 
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problem more complex, but it also aids in the discrimination of separate 
objects (Damasio 1989; Crick and Koch 1990). For example, we have 
only considered static visual scenes, but one of the major cues to the 
linking process is common motion of proto-objects. During development, 
common motion may, in fact, play the largest role in establishing our 
concept of what is an object (Termine et al. 1987). 

Object definition also clearly depends on higher cognitive processes 
such as attention, context and categorization (Rosch and Lloyd 1978). 
There is abundant evidence that "top-down'' processes can influence the 
discrimination of figure/ground as well as the perception of illusory fig- 
ures (Gregory 1972). The examples considered here (e.g., Figs. 5-7) rep- 
resent extended visual scenes, and perception of these stimuli would 
require multiple shifts of gaze and/or attention. The representation of 
such a scene in intermediate vision is thus a more dynamic entity than 
portrayed here. The processes we have proposed are rapid (all occur 
in several cycles of iteration), and thus might be ascribed to preatten- 
tive perception. However, such preattentive processing sets the stage for 
directed attention because it defines segmented objects localized to par- 
ticular spatial locations. Furthermore, the process of binding contours, 
surfaces, and surface features may be restricted to one or two limited spa- 
tial regions at any one time. Thus, feature binding may be a substrate 
rather than a result of the attentional process. 

We have implicitly assumed that object discrimination is a necessary 
precursor to object recognition. Ullman (1989) has developed a model of 
recognition that demonstrates that this need not logically be the case. The 
question of whether you have to know that something is a "thing" before 
you can recognize what kind of thing it is remains to be determined 
through psychophysical experiment. It is appealing, however, to view 
object discrimination as the function of intermediate vision, i.e., those 
processes carried out by the multiple extrastriate visual areas. In this 
view, each cortical module develops invariant representations of aspects 
of the visual scene (motion, color, texture, depth) and the operations of 
these modules are dynamically linked. The consistent representations 
developed in intermediate vision then serve as the substrate for higher 
level cognitive processes. 

In conclusion, we have shown that one can build a self-contained 
system for discriminating objects based on occlusion relationships. The 
model is successful at stratifying simple visual scenes, for linking the rep- 
resentations of occluded objects, and at generating responses to illusory 
objects in a manner consistent with human perceptual responses. The 
model uses neural circuits that are biologically based, and conforms to 
general neural principles, such as the use of a distributed representation 
for depth. The system can be tested in psychophysical paradigms and 
the results compared to human and animal results. In this manner, a 
computational model that is designed based on physiological data and 
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tested in comparison to psychophysical data offers a powerful paradigm 
for bridging the gap  between neuroscience and perception. 

Note Added i n  Proof The recent findings of dynamic changes in re- 
ceptive field structure in striate cortical neurons by Gilbert and  Wiesel 
(1992) indicates that long-range connections undergo context-dependent 
changes in efficacy. Such a mechanism may provide the biological ba- 
sis for the direction of figure and  linkage mechanisms proposed here. 
[Gilbert, C. D., and  Wiesel, T. N. 1992. Receptive field dynamics in adult 
primary visual cortex. Nnhire 356, 150-152.1 
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