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In many healthcare settings, patients visit healthcare profession-
als periodically and report multiple medical conditions, or symptoms,
at each encounter. We propose a statistical modeling technique, called
the Hierarchical Association Rule Model (HARM), that predicts a
patient’s possible future symptoms given the patient’s current and
past history of reported symptoms. The core of our technique is a
Bayesian hierarchical model for selecting predictive association rules
(such as “symptom 1 and symptom 2 — symptom 3”) from a large
set of candidate rules. Because this method “borrows strength” using
the symptoms of many similar patients, it is able to provide predic-
tions specialized to any given patient, even when little information
about the patient’s history of symptoms is available.

1. Introduction. The emergence of large-scale medical record databases
presents exciting opportunities for data-based personalized medicine. Predic-
tion lies at the heart of personalized medicine and in this paper we propose
a statistical model for predicting patient-level sequences of medical symp-
toms. We draw on new approaches for predicting the next event within a
“current sequence,” given a “sequence database” of past event sequences
(Rudin et al., 2010). Specifically we propose the Hierarchical Association
Rule Mining Model (HARM) that generates a set of association rules such
as dyspepsia and epigastric pain— heartburn, indicating that dyspepsia and
epigastric pain are commonly followed by heartburn. HARM produces a
ranked list of these association rules. Both patients and caregivers can use
the rules to guide medical decisions. Built-in explanations represent a par-
ticular advantage of the association rule framework—the rule predicts heart-
burn because the patient has had dyspepsia and epigastric pain.

In our setup, we assume that each patient visits a healthcare provider
periodically. At each encounter, the provider records time-stamped medical
symptoms experienced since the previous encounter. In this context, we
address several prediction problems such as:
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e Given data from a sequence of past encounters, predict the next symp-
tom that a patient will experience.

e Given basic demographic information, predict the first symptom that
a patient will report.

e Given partial data from an encounter (and possibly prior encounters)
predict the next symptom.

Though medical databases often contain records from thousands or even
millions of patients, most patients experience only a handful of the massive
set of potential symptoms. This patient-level sparsity presents a challenge
for predictive modeling. Our hierarchical modeling approach attempts to
address this challenge by borrowing strength across patients.

Applications of association rules usually do not usually concern super-
vised learning problems (though there exist some exceptions, e.g. Veloso
et al., 2008). The sequential event prediction problem is a supervised learn-
ing problem, that as far as we know, has been formalized only here and by
Rudin et al. (2010). DuMouchel and Pregibon (2001) presented a Bayesian
analysis of association rules. Their approach, however, does not apply in our
context because of the sequential nature of our data.

The experiments this paper presents indicate that HARM outperforms
several baseline approaches including a standard “maximum confidence,
minimum support threshold” technique used in association rule mining, and
also a non-hierarchical version of our Bayesian method (from Rudin et al.,
2010) that ranks rules using “adjusted confidence.”

More generally, HARM yields a prediction algorithm for sequential data
that can potentially be used for a wide variety of applications beyond symp-
tom prediction. For instance, the algorithm can be directly used as a rec-
ommender system (for instance, for vendors such as Netflix, amazon.com,
or online grocery stores such as Fresh Direct and Peapod). It can be used
to predict the next move in a video game in order to design a more inter-
esting game, or it can be used to predict the winners at each round of a
tournament (e.g., the winners of games in a football season). All of these
applications possess the same basic structure as the symptom prediction
problem: a database consisting of sequences of events, where each event is
associated to an individual entity (medical patient, customer, football team).
As future events unfold in a new sequence, our goal is to predict the next
event.

In Section 2 we provide basic definitions and present our model. In Sec-
tion 3 we evaluate the predictive performance of HARM, along with several
baselines through experiments on clinical trial data. Section 4 provides re-
lated work, and Section 5 provides a discussion and offers potential exten-
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sions.

2. Method. This work presents a new approach to association rule min-
ing by determining the “interestingness” of rules using a particular (hierar-
chical) Bayesian estimate of the probability of exhibiting symptom b, given
a set of current symptoms, a. We will first discuss association rule mining
and its connection to Bayesian shrinkage estimators. Then we will present
our hierarchical method for providing personalized symptom predictions.

2.1. Definitions. An association rule in our context is an implication
a — b where the left side is a subset of symptoms that the patient has expe-
rienced, and b is a single symptom that the patient has not yet experienced
since the last encounter. Ultimately, we would like to rank rules in terms of
“interestingness” or relevance for a particular patient at a given time. Using
this ranking, we make predictions of subsequent conditions. Two common
determining factors of the “interestingness” of a rule are the “confidence”
and “support” of the rule (Agrawal, Imielinski and Swami, 1993; Piatetsky-
Shapiro, 1991).

The confidence of a rule a — b for a patient is the empirical probability:

Number of times symptoms a and b were experienced

Conf(a = b) = Number of times symptoms a were experienced
= P (bla).
The support of set a is:
Support(a) := Number of times symptoms a were experienced
x  P(a),

where P (a) is the empirical proportion of times that symptoms a were expe-
rienced. When a patient has experienced a particular set of symptoms only
a few times, a new single observation can dramatically alter the confidence
P(b|a) for many rules. This problem occurs commonly in our clinical trial
data, where most patients have reported fewer than 10 total symptoms. The
vast majority of rule mining algorithms address this issue with a minimum
support threshold to exclude rare rules, and the remaining rules are eval-
uated for interestingness (reviews of interestingness measures include those
of Tan, Kumar and Srivastava, 2002; Geng and Hamilton, 2007). The defini-
tion of interestingness is often heuristic, and is often not even a meaningful
estimate of P(b|a).

It is well-known that problems arise from using a minimum support
threshold. For instance, consider the collection of rules meeting the min-
imum support threshold condition. Within this collection, the confidence



4 T. H. MCCORMICK ET AL.

alone should not be used to rank rules: among rules with similar confi-
dence, the rules with larger support should be preferred. More importantly,
“nuggets,” which are rules with low support but very high confidence, are
often excluded by the threshold. This is problematic, for instance, when a
symptom that occurs rarely is strongly linked with another rare symptom,
it is essential not to exclude the rules characterizing these symptoms. In our
data, the distribution of symptoms has a long tail, where the vast majority
of events happen rarely: out of 1800 possible symptoms, 1400 occur less than
10 times. These 1400 symptoms are precisely the ones in danger of being
excluded by a minimum support threshold.

Our work avoids problems with the minimum support threshold by rank-
ing rules with a shrinkage estimator of P(bla). These estimators directly
incorporate the support of the rule. One example of such an estimator is the
“adjusted confidence” (Rudin et al., 2010):

Number of times symptoms a and b were experienced

AdjConf(a = b, K):= Number of times symptoms a were experienced + K
The effect of the penalty term K is to pull low-support rules towards the
bottom of the list; any rule achieving a high adjusted confidence must over-
come this pull through either a high enough support or a high confidence.
Using the adjusted confidence avoids the problems discussed earlier: “inter-
estingness” is closely related to the conditional probability P(b|a), rules are
extremely interpretable, among rules with equal confidence the higher sup-
port rules are preferred, and there is no strict minimum support threshold.

In this work, we extend the adjusted confidence model in an important
respect, in that our method shares information across similar patients to
better estimate the conditional probabilities. The adjusted confidence is a
particular Bayesian estimate of the confidence. Assuming a Beta prior dis-
tribution for the confidence, the posterior mean is:

a+#(aUb)
a+pB++#a’

where #z is the support of symptom x, and « and 8 denote the parameters
of the (conjugate) beta prior distribution. Our model allows the parameters
of the binomial to be chosen differently for each patient and also for each
rule. This means that our model can determine, for instance, whether a
particular patient is more likely to repeat a symptom that has occurred
only once, and also whether a particular symptom is more likely to repeat
than another.

We note that our approach makes no explicit attempt to infer causal
relationships between symptoms. The observed associations may in fact arise

P(bla) :=
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from common prior causes such as other symptoms or drugs. Thus a rule
such as dyspepsia — heartburn does not necessarily imply that successful
treatment of dyspepsia will change the probability of heartburn. Rather the
goal is to accurately predict heartburn in order to facilitate effective medical
management.

2.2. Hierarchical Association Rule Model (HARM). For a patient ¢ and
a given rule, r, say we observe y;, co-occurrences (support for lhs N rhs) in
ng relevant previous encounters (support for lhs). We model the number
of co-occurrences as Binomial(n,., p;r) and then model p;, hierarchically to
share information across groups of similar individuals. Define M as a I x D
matrix of static observable characteristics for a total of I individuals and
D observable characteristics, where we assume D > 1 (otherwise we revert
back to a model with a rule-wise adjustment). Each row of M corresponds
to a patient and each column to a particular characteristic. We define the
columns of M to be indicators of particular patient categories (gender, or
age between 30 and 40, for example), though they could be continuous in
other applications. Let M; denote the i*" row of the matrix M. We model
the probability for the i*® individual and the r*" rule p;. as coming from a
beta distribution with parameters ;- and 7;,. We then define m;. through
the regression model m;, = exp(M,3, + ~;) where 83, defines a vector of
regression coefficients for rule r and ~; is an individual-specific random effect.
More formally, we propose the following model:

Yir ~ Binomial(ng., pi)

pi’/‘ ~ Beta(ﬂ-iTﬂ Tl)

Tir = exp(M;,BT + ’Yi)'
Under this model,

Yir + Tir

E' . . ,n»r =,
(Pirlyirs mir) = = —

which is a more flexible form of adjusted confidence. This expectation also
produces non-zero probabilities for a rule even if n;,. is 0 (patient ¢ has never
reported the symptoms on the left hand side of r before). The fixed effect
regression component, M3, adjusts m;, based on the patient characteristics
in the M matrix. For example, if the entries of M represented only gender,
then the regression model with intercept 3,9 would be 8,0+ 5r1 1. Where
1..... is one for male respondents and zero for females. Being male, therefore,
has a multiplicative effect of e®~! on ;. In this example, the M3, value
is the same for all males, encouraging similar individuals to have similar
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values of ;.. For each rule r, we will use a common prior on all coefficients
in B,; this imposes a hierarchical structure, and has the effect of regularizing
coefficients associated with rare characteristics.

The 7;,.’s allow rare but important “nuggets” to be recommended. Even
across multiple patient encounters, many symptoms occur very infrequently.
In some cases these symptoms may still be highly associated with certain
other conditions. For instance, compared to some symptoms, migraines are
relatively rare. Patients who have migraines however typically also experi-
ence nausea. A minimum support threshold algorithm might easily exclude
this rule if migraines if a patient hasn’t experienced many migraines in the
past. This is especially likely for patients who have few encounters. In our
model, the m;,. term balances the regularization imposed by 7; to, for certain
individuals, increase the ranking of rules with high confidence but low sup-
port. The 7; term reduces the probability associated with rules that have
appeared few times in the data (low support), with the same effect as the
penalty term (K) in the adjusted confidence. Unlike the cross-validation
or heuristic strategies suggested in Rudin et al. (2010), we estimate 7; as
part of an underlying statistical model. Within a given rule, we assume T7;
for every individual comes from the same distribution. This imposes addi-
tional structure across individuals, increasing stability for individuals with
few observations.

It remains now to describe the precise prior structure on the regression
parameters and hyperparameters. We assign Gaussian priors with mean 0
and variance o2 to the 7 on the log scale. Since any given patient is unlikely to
experience a specific medical condition, the majority of probabilities are close
to zero. Giving 7; a prior with mean zero improves stability by discouraging
excessive penalties. We assign all elements (3,4 of vectors @3, a common
Gaussian prior on the log scale with mean pg and variance U,%. We also
assume each ~; comes from a Gaussian distribution on the log scale with
common mean ji, and variance ag. FEach individual has their own ~; term,
which permits flexibility among individuals; however, all of the ~; terms come
from the same distribution, which induces dependence between individuals.
We assume diffuse uniform priors on the hyperparameters ., o2, Hg, and
O‘%. Denote Y as the matrix of y;,- values, N as the matrix of n;. values, and
B3 as the collection of 3, ..., 8. The prior assumptions yield the following
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posterior:

p, T, T, ,8|Y N M X H pr“‘+7r’”‘ _pir)nir_yir"rTi
i=1r=1

H H Normal IOg 67"d)|:uﬁao-ﬁ)

||:j~\

Normal(log(v;)| v, 3)Normal(log(n)\0,03).

HARM produces draws from the (approximate) posterior distribution for
each probability. In the context of symptom prediction, these probabilities
are of interest and we analyze our estimates of their full posterior distribu-
tions in Section 3.2. To rank association rules for the purpose of prediction,
however, we need a single estimate for each probability (rather than a full
distribution), which we chose as the posterior mode. We carry out our com-
putations using a Gibbs sampling algorithm, provided in Figure 1.

2.3. Online updating. Given a batch of data, HARM makes predictions
based on the posterior distributions of p;,. Since the posterior is not available
in closed form, predictions using HARM requires iterating the algorithm in
Figure 1 to convergence. The next time the patient visits the physician, p;,
could be updated by again iterating the algorithm in Figure 1 to conver-
gence. In some applications new data continue arrive frequently, making it
impractical to compute approximate posterior distributions using the algo-
rithm in Figure 1 for each new encounter. In this section we provide an
online updating scheme which incorporates new patient data after an initial
batch of encounters has already been processed.

Beginning with an initial batch of data, we run the algorithm in Figure 1
to obtain 7; and 7., which are defined to be posterior mean of the estimated
distributions for 7; and m;.. Given that up to encounter e — 1, we have

(e=1) (e=1)

observed y;, and n;. ~’, we are presented with new observations that
have counts y(newobs) and ng:ewobs.) so that y,(f) _ yz(f—l) + ygfewobs,) and

e

. In order to update the probability estimates to

reflect our total current data, y(e) (e)

i s Ny » we will use the following relationship:

A A b bs.
P(pir’yi(f) : nl(:)’ 2, 7Ti7‘) x P( (newo S.) |n§?ewo s )7pi7~)
CPlle ™, 7).

The expression P(p“n|y(e b nET R ,7i, Tir) is the posterior up to encounter

e — 1 and has a beta distribution. The likelihood of the new observations,
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For a suitably initialized chain, at step v:
1. Update p;, from the conjugate Beta distribution given 7,7, Y, N, M.
2. Update 7; using a Metropolis step with proposal 7;° where

log(7;) ~ N(7{"™V (scale of jumping dist)).
3. For each rule, update the vector 3, using a Metropolis step with

log(B7) ~ N(B"~, (scale of jumping dist)).
4. Update ~; using a Metropolis step with

log(y)) ~ N(’yi(”_l), (scale of jumping dist)).
5. Update pg ~ N(iig, 03) where

D
Z Bra-

=1

Mm

o = (D+R>

Il
—

6. Update o3 ~ Inv-x*(d — 1,63) where
D
= () S
D+ R —

r=1 1

d
. . I
7. Update 07 ~ Inv-x*(I — 1,67) where 67 = 1 > ., (1 — r)”.

8. Update iy ~ N(fi,02) where ji, = } Zz 17
9. Update O—’Y ~ InV—X (I — 170',\{) where O-’Y =7 Ez 1 ,U‘W

Fic 1. Gibbs sampling algorithm for hierarchical bayesian association rule mining for
sequential event prediction (HARM).
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P(yg1 ewobs.) |ng}eW°bs'), Dir), is binomial. Conjugacy implies that the updated
posterior also has a beta distribution. In order to update the probability esti-
mates for our hierarchical model, we use the expectation of this distribution,
that is -1

(e yifi ) 4 y?rewobs. 4 7%2'7“

E(purlyl? 0l 3, 7r) = :
ir ir n(efl) + n?TCWObS‘ + ﬁir + 7A_Z

ir

3. Application to repeated patient encounters. We present results
of HARM, with the online updating scheme in Section 2.3, on co-prescribing
data from a large clinical trial. These data are from around 42,000 patient
encounters from about 2,300 patients, all at least 40 years old. The matrix of
observable characteristics encodes the basic demographic information: gen-
der, age group (40-49, etc.), ethnicity. For each patient we have a record of
each medication prescribed and the symptom/chief complaint (back pain,
asthma, etc) that warranted the prescription. We chose to predict patient
complaints rather than prescriptions since there are often multiple prescrib-
ing options (medications) for the same complaint. Some patients had pre-
existing conditions that continued throughout the trial. For these patients,
we include these pre-existing conditions in the patient’s list of symptoms
at each encounter. Other patients have recurrent conditions for which we
would like to predict the occurrences. If a patient reports the same condi-
tion more than once during the same thirty day period we only consider the
first occurrence of the condition at the first report. If the patient reports the
condition once and then again more than thirty days later, we consider this
two separate incidents.

As covariates, we used age, gender, race and drug/placebo. We fit age
using a series of indicator variables corresponding to four groups (40-49,
50-59, 60-69, 70+).

Our experiments consider only the marginal probabilities (support) and
probabilities conditional on one previous symptom. Thus, the left hand side
of each rule contains either 0 items or 1 item.

In Section 3.1 we present experimental results to compare the predictive
performance of our model to other rule mining algorithms for this type of
problem. In Section 3.2 we use the probability estimates from the model to
demonstrate its ability to find new associations; in particular, we find asso-
ciations that are present in medical literature but that may not be obvious
by considering only the raw data.

3.1. Predictive performance. We selected a sample of patients by assign-
ing each patient a random draw from a Bernoulli distribution with success
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probability selected to give a sample of patients on average around 200. For
each patient we drew uniformly an integer t; between 0 and the number
of encounters for that patient. We ordered the encounters chronologically
and used encounters 1 through t; as our training set and the remaining
encounters as the test set. Through this approach, the training set encom-
passes the complete set of encounters for some patients (“fully observed”),
includes no encounters for others (“new patients”), and a partial encounter
history of the majority of the test patients (“partially observed patients”).
We believe this to be a reasonable approximation of the context where this
type of method would be applied, with some patients having already been
observed several times and other new patients entering the system for the
first time. We evaluated HARM'’s predictive performance using the top 50
most frequently reported conditions; these conditions represent 60% of all
conditions reported.

The algorithm was used to iteratively predict the condition revealed at
each encounter. For each selected patient, starting with their first test en-
counter, and prior to that encounters’ condition being revealed, the algo-
rithm made a prediction of ¢ possible conditions, where ¢ = 3. Note that
to predict the very first condition for a given patient when there are no
previous encounters, the recommendations come from posterior modes of
the coefficients estimated from the training set. The algorithm earned one
point if it recommended the current condition before it was revealed, and
no points otherwise. Then, y;- and n;. were updated to include the current
condition. This process was repeated for the patient’s remaining encounters.
We then moved to the next patient and repeated the procedure.

The total score of the algorithm for a given patient was computed as
the total number of points earned for that patient divided by the total
number of conditions experienced by the patient. The total score of the
algorithm is the average of the scores for the individual patients. Thus, the
total score is the average proportion of correct predictions per patient. We
repeated this entire process (beginning with selecting patients) 500 times and
recorded the distribution over the 500 scores. We compared the performance
of HARM (using the same scoring system) against an algorithm that ranks
rules by adjusted confidence, for several values of K. We also compared with
the “max confidence minimum support threshold” algorithm for different
values of the support threshold 6, where rules with support below 6 are
excluded and the remaining rules are ranked by confidence. For both of
these algorithms, no information across patients is able to be used.

Figures 2, 3, and 4 show the results. Figure 2 presents the distribution of
scores for the entire collection of partially observed, fully observed, and new
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FiGc 2. Predictive performance for all patients. Each boxplot represents the distribution
of scores over 500 runs. These plots include data from both partially observed and new
patients.
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patients. Paired t-tests comparing the mean proportion of correct predictions
from HARM to each of the alternatives had p-values for a significant differ-
ence in our favor less than 107'°. In other words, HARM has statistically
superior performance over all K and 0; i.e., better performance than either
of the two algorithms even if their parameters K and 6 had been tuned to
the best possible value. For all four values of K for the adjusted confidence,
performance was slightly better than for the plain confidence (K = 0). The
“max confidence minimum support threshold” algorithm (which is a stan-
dard approach to association rule mining problems) performed poorly for
minimum support thresholds of 2 and 3. This poor performance is likely
due to the sparse information we have for each patient. Setting a minimum
support threshold as low as even two eliminates many potential candidate
rules from consideration.

The main advantage of our model is that it shares information across pa-
tients in the training set. This means that in early stages where the observed
yir and n;,- are small, it may still be possible to obtain reasonably accurate
probability estimates, since when patients are new, our recommendations
depend heavily on the behavior of previously observed similar patients. We
consider the predictive performance of HARM with respect to partially ob-
served (Figure 3) and new (Figure 4) patients. Though our method overall
has a higher frequency of correct predictions than the other algorithms in
both cases, the advantage is more pronounced for new patients; in cases
where there is no data for each patient, there is a large advantage to sharing
information.

3.2. Association mining. The conditional probability estimates from our
model are also a way of mining a large and highly dependent set of associa-
tions.

Ethnicity, high cholesterol or hypertension — myocardial infarction: Figure
5 plot (a) shows the distribution of posterior median propensity for myocar-
dial infarction (heart attack) given two conditions previously reported as
risk factors for myocardial infarction: high cholesterol and hypertension (see
Kukline, Yoon and Keenan, 2010, for a recent review). Each bar in the fig-
ure corresponds to the set of respondents in a specified ethnic group. For
Caucasians, we typically estimate a higher probability of myocardial infarc-
tion in patients who have previously had high cholesterol. In African Ameri-
cans / Hispanics and Asian patients, however, we estimate a generally higher
probability for patients who have reported hypertension. This distinction
demonstrates the flexibility of our method in combining information across
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Fic 5. Propensity of myocardial infarction in patients who have reported high cholesterol
or hypertension using HARM (plot (a)) and (unadjusted) confidence (plot (b)). For each
demographic group, high cholesterol (HC) is on the left and hypertension (Hy) is on the
right. Thick lines represent the middle half of the posterior median propensities for re-
spondents in the indicated demographic group. Outer lines represent the middle 90% and
dots represent the mean. The vast magority of patients did not experience a myocardial
infarction, which places the middle 90% of the distribution in plot (b) approzimately at
zero.

respondents who are observably similar. Some other specific characteristics
of the estimated distributions vary with ethnicity, for instance, the propen-
sity distribution for Caucasians who have had high cholesterol has a much
longer tail than those of the other ethnic groups.

As a comparison, we also included the same plot using (unadjusted) con-
fidence, in Figure 5 (b). The black dots are the mean across all the patients,
which are not uniformly at zero because there were some cases of myocar-
dial infarction and hypertension or high cholesterol. The colored, smaller
dots represent the rest of the distribution (quartiles), which appear to be at
zero in plot (b) since the vast majority of patients did not have a myocardial
infarction at all, so even fewer had a myocardial infarction after reporting
hypertension or high cholesterol.

Age, high cholesterol or hypertension, treatment or placebo —

myocardial infarction: Since our data come from a clinical trial, we also in-
cluded an indicator of treatment vs. placebo condition in the hierarchical
regression component of HARM. Figures 6 and 7 display the posterior medi-
ans of propensity of myocardial infarction for respondents separated by age
and treatment condition. Figure 6 considers patients who have reported hy-
pertension, Figure 7 considers patients who have reported high cholesterol.
In both Figure 6 and Figure 7, it appears that the propensity of myocar-
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Fi1G 6. Propensity of myocardial infarction in patients who have reported hypertension, es-
timated by HARM (plot (a)) and (unadjusted) confidence (plot (b)). For each demographic
group, the placebo (P) is on the left and the treatment medication (T) is on the right. Thick
lines represent the middle half of the posterior median propensities for respondents in the
indicated demographic group. Outer lines represent the middle 90% and dots represent the
mean. Querall the propensity is higher for individuals who take the study medication that
those who do not.
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Fic 7. Propensity of myocardial infarction in patients who have reported high cholesterol,
estimated by HARM (plot (a)) and (unadjusted) confidence (plot (b)). For each demo-
graphic group, the placebo (P) is on the left and the treatment medication (T) is on the
right. Thick lines represent the middle half of the posterior median propensities for respon-
dents in the indicated demographic group. Outer lines represent the middle 90% and dots
represent the mean.

dial infarction predicted by HARM is greatest for individuals between 50
and 70, with the association again being stronger for high cholesterol than
hypertension.

For both individuals with either high cholesterol or hypertension, use
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of the treatment medication was associated with increased propensity of
myocardial infarction. This effect is present across nearly every age category.
The distinction is perhaps most clear among patients in their fifties in both
Figure 6 and Figure 7. The treatment product in this trial has been linked
to increased risk of myocardial infarction in numerous other studies. The
product was eventually withdrawn from the market by the manufacturer
because of its association with myocardial infarctions.

The structure imposed by our hierarchical model gives positive probabil-
ities even when no data are present in a given category; in several of the
categories, we observed no instances of a myocardial infarction, so estimates
using only the data cannot differentiate between the categories in terms of
risk for myocardial infarction, as demonstrated by Figures 6(b) and 7(b).

4. Related Works. As far as we know, the line of work by Davis et al.
(2009) is the first to use an approach from recommender systems to pre-
dict medical symptoms, though in a completely different way than ours; it
is based on vector similarity, in the same way as Breese, Heckerman and
Kadie (1998a) (also see references in Davis et al. (2009) for background on
collaborative filtering).

Three relevant works on Bayesian hierarchical modeling and recommender
systems are those of DuMouchel and Pregibon (2001, “D&P”), Breese, Heck-
erman and Kadie (1998b), and Condliff, Lewis and Madigan (1999). D&P
deal with the identification of interesting itemsets (rather than identification
of rules). Specifically, they model the ratio of observed itemset frequencies to
baseline frequencies computed under a particular model for independence.
Neither Breese et al. nor Condliff et al. aim to model repeat purchases (re-
curring symptoms). Breese et al. uses Bayesian methods to cluster users,
and also suggests a Bayesian network. Condliff, Lewis and Madigan (1999)
present a hierarchical Bayesian approach to collaborative filtering that “bor-
rows strength” across users.

5. Conclusion and Future Work. We have presented a hierarchical
model for ranking association rules for sequential event prediction. The se-
quential nature of the data is captured through rules that are sensitive to
time order, that is, a — b indicates symptoms a are followed by symptoms
b. HARM uses information from observably similar individuals to augment
the (often sparse) data on a particular individual; this is how HARM is
able to estimate probabilities P(b|a) before symptoms a have ever been re-
ported. In the absence of data, hierarchical modeling provides structure. As
more data become available, the influence of the modeling choices fade as
greater weight is placed on the data. The sequential prediction approach is
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especially well suited to medical symptom prediction, where experiencing
two symptoms in succession may have different clinical implications than
experiencing either symptom in isolation.

collaborative nature of medical symptoms make the sequential predidtion

There are several possible directions for future work. One possibility is to
investigate whether expanding the set of rules has an influence on prediction
accuracy. In the case that the set of rules is too large, it may be important
to develop parsimonious representations of these associations, potentially
through a method similar to model-based clustering (Fraley and Raftery,
2002). Another direction is to incorporate higher-order dependence, along
the line of work by Berchtold and Raftery (2002). A third potential future
direction is to design a more sophisticated online updating procedure than
the one in Section 2.3. It may be possible to design a procedure that directly
updates the hyperparameters as more data arrive.
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