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ABSTRACT 

Gene regulatory factors that control the  

identities of specific neuron types in Caenorhabditis elegans 

Feifan Zhang 

 

The nervous system is the most complex and diverse system of the human body. 

And so it is in the round worm Caenorhabditis elegans. The easy manipulation, 

maintenance and visualization features of the worm have made it one of the most 

understood metazoans for linking genetics, anatomy, development and behavior. This 

thesis work focuses on two aspects during neural development in C. elegans: neuronal 

asymmetry in the ASEL/R gustatory neurons and terminal fate determination of the AIA 

interneuron as well as the NSM neurosecretory motor neuron. I have cloned and 

characterized LSY-27, a C2H2 zinc finger transcription factor, which is essential in 

assisting the onset of the LIM homeodomain transcription factor lim-6 to repress ASER 

expressed genes in ASEL. I have also took part in characterizing LSY-12, a MYST 

family histone acetyltransferase, and LSY-13, a previously uncharacterized PHD finger 

protein, which cooperate with the bromodomain containing protein LIN-49 and form the 

MYST complex to both initiate and maintain the ASEL fate. I have also studied the fate 

determination of several distinct neuronal cell types. I dissected the cis-regulatory 

information of AIA expressed genes and identified that the LIM homeodomain 

transcription factor TTX-3 is required for AIA fate, possibly together with another yet 

unknown transcription factor. TTX-3 also acts synergistically with the POU-domain 



transcription factor UNC-86 as master regulators for NSM. TTX-3 may also act as the 

terminal selector for ASK. This work provides extra evidence for the terminal selector 

concept and further demonstrates that individual neurons use unique and combinatorial 

codes of transcription factors to achieve their terminal identities, and that the same 

regulatory factor can be reused as a terminal selector in distinct cell types through 

cooperation with different cofactors.  
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CHAPTER 1: INTRODUCTION 

Part I: Neural Development And Cell Fate Determination 

1. Neural complexity 

Neurons are individual and autonomous units that constitute the nervous system. 

All neurons share the same pan-neuronal features at certain level, and are physically 

connected by cellular extensions (axons/dendrites) that transmit information through 

presynaptic and postsynaptic specializations. The brain is often described as the most 

sophisticated system in the universe. As Santiago Ramón y Cajal stated in his Nobel 

lecture in 1906,  

“It would be very convenient and very economical from the point of view of 
analytical effort if all the nerve centres were made up of a continuous 
intermediary network between the motor nerves and the sensitive and sensory 
nerves. Unfortunately, nature seems unaware of our intellectual need for 
convenience and unity, and very often takes delight in complication and 
diversity.” 

Cajal’s groundbreaking work opened the era of studies on the nervous system. 

For decades, scientists have been fascinated by the depth and intricacy of the most 

complex organ across almost all animal species. If you are already astounded by the 

infinite Milky Way galaxy that consists of hundred billions of stars, the human brain has 

almost as many neurons, but within only 1.5 kilograms of flaccid mass, not to mention 

the hundreds of trillions of processes and interconnections among individual neurons 

(Herculano-Houzel, 2009; Koch and Laurent, 1999). 

The complexity of the nervous system does not merely lie in its vast number and 

there doesn’t seem to be a correlation (Herculano-Houzel, 2009). The nervous system is 

1



	
  

	
  

highly diverse in neuronal cell types. Take the very simple round worm C. elegans for 

example, among a total of only 302 neurons in am adult hermaphrodite, there are at least 

118 different neuronal classes (Hobert, 2005). At the structural level, its genome 

contains genes encoding 80 different types of potassium channels, 90 neurotransmitter-

gated ion channels, and around 1000 G-protein coupled receptors (Bargmann, 1998). 

Today, despite enormous amount of efforts made over the past hundred years, it remains 

obscure how many distinct cell types exist in the brain, with only crude estimates 

available. Extensive microscopic analysis has estimated that the mammalian brain 

consists approximately 500 to 1000 cell groups/regions/nodes with their own unique sets 

of axonal outputs. If five cell types per group is considered, the total number is then 

around 2500 to 5000, and many more if neuronal-subtype classifications are taken into 

account. The overall complexity can be even more staggering if considering the fact that 

each neuronal cell branches and projects onto other cell types (ten to twenty according to 

current observations, ranging from two to hundreds) (Bota et al., 2003).  

How does such complexity evolve? It is not difficult to imagine that only a 

system with many components not essential for survival can successfully undergo the 

selection pressure of gene mutation and modification that potentially harms viability. 

This drives the brain into evolving specialized circuits, parallel pathways and redundant 

mechanisms. Another point to take into account is that in order to increase efficiency of 

the incredibly fast information-processing system, the spatial wiring network of the 

neurons needs to be engineered and optimized to be precise, which enforces complexity 

during evolution (Koch and Laurent, 1999). It has been proposed that the existence and 

expression of consciousness as well as higher cognitive development and sociality are 

2



	
  

	
  

key players (Dunbar and Shultz, 2007; Tononi and Edelman, 1998) and higher cognitive 

functions seem to be associated with cortex expansion not only in neuron number, but 

also in neuronal diversity and connectivity (DeFelipe et al., 2002; Rakic, 2009; Roth and 

Dicke, 2005). Today's brains result from 0.6 to 1.2 billion years of metazoan evolution. 

This vast time span allowed incredible changes and adaptations. Although what we 

know now is still tip of the iceberg, the appreciation of neuronal complexity should help 

better understand what makes us human. 

 

2. Proneural fate determination 

2.1. Proneural genes  

The Basic Helix-Loop-Helix is characterized by two α-helices connected by a 

loop structure. bHLH genes encode proteins containing such motifs that are necessary 

and sufficient for promoting the generation of neuron progenitors, and are therefore 

considered “proneural”. Proneural genes were first identified in flies lacking a subset of 

the bristles back in the late 1920s, followed by later discoveries that identified a 

complex of genes involved in early regulation of neuronal fate development (Garcia-

Bellido, 1979). Most of these genes are expressed in clusters by groups of cells in the 

ectoderm before neural differentiation (Campuzano and Modolell, 1992), and further 

analysis suggested that such defects in bristle formation is due to the initial 

differentiation decision instead of any defects durint the differentiation process itself. 

 In flies, there are four components in the achaete-scute(asc) complex, achaete 

(ac), scute (sc), lethal of scute (lsc) and asense (ase) (Villares and Cabrera, 1987). A 

3



	
  

	
  

more recent PCR screen identified atonal (ato), which belongs to a distinct bHLH 

family (Jarman et al., 1993b). In vertebrates, many genes have been found related to asc 

and ato. The vertebrate asc family contains Ash1, Mash2, Xash3 and Cash4, and the ato 

related genes are categorized into the neurogenin (Ngn) family, the NeuroD family and 

the Olig family according to their consensus in specific residues within the bHLH 

doman (Bertrand et al., 2002).  

Similarly, the C. elegans bHLH genes are divided into two families, the achaete-

scute related family and the atonal related family, which can be further assigned to the 

Neurogenin group, the NeuroD group and the Atonal group (Ledent and Vervoort, 2001). 

There are six achaete-scute related genes: hlh-3, hlh-4, hlh-6, hlh-12, hlh-14 and hlh-19. 

It was predicted that there are approximately 42 bHLH genes in C. elegans (Reece-

Hoyes et al., 2005) that may play essential roles in proneuronal fate determination and 

nervous system patterning. Several bHLH factors have also been indicated to be 

involved in later neurogenesis decisions instead of being exclusively proneural. 

2.2. Expression and function of proneural genes 

Rich collections of fly mutants have allowed extensive understanding of 

proneural gene functions. It was shown that the formation of most fly embryonic and 

adult external sense organs as well as a subset of neuroblasts in the CNS require ac and 

sc gene activity, while lsc is essential for neuroblast generation from the CNS 

primordium (Jimenez and Campos-Ortega, 1990). Instead of ectodermal cells, the fourth 

component of the complex, ase, is expressed in all progenitors of the PNS and CNS only 

after they have been produced (Jarman et al., 1993a), and doesn’t seem to be required 

4



	
  

	
  

for the selection of the progenitors. The other family of bHLH factor ato is responsible 

for internal chordotonal organ formation and retinal founder photoreceptor development. 

Functions of the bHLH factors in vertebrates are highly diverse. The asc and Ngn are 

conserved in their proneural roles, other genes seem to have adopted divergent functions 

related to neuronal fate specification (Bertrand et al., 2002).  

The atonal family bHLH factor LIN-32 is the most extensively studied bHLH 

factor in C. elegans. It is required for ray formation and is expressed until the terminal 

division. Loss-of-function and ectopic expression analysis have shown that its function 

is necessary and sufficient for ray sublineage entry and is therefore a proneural gene 

(Zhao and Emmons, 1995). It forms heterodimer with the HLH2, the C. elegans 

ortholog of E protein/Daughterless, to bind to the E-box-containing elements and 

activate targets at multiple steps (Portman and Emmons, 2000). HLH-2 is also a 

candidate for dimerization with the achaete-scute homolog HLH-3 in neuronal 

precursors but not muscle cells (Krause et al., 1997). Proneural genes also take part in 

establishing neural lineage asymmetry during development. The Neurogenin homolog 

NGN-1 and HLH2 are expressed in the mother cell of MI, and loss of either of them 

results in e3D-like fate usually generated from its counterpart lineage on the left side. 

This asymmetry expression of NGN-1 and HLH-2 depends on the Otx/Otd 

homeodomain protein, which is expressed in the MI grandmother cell and MI mother 

cell cell-autonomously (Nakano et al., 2010).  

During motor neuron specification, the C. elegans NeuroD homolog CND-1 

plays a critical role. It is expressed very early in the embryo in many neuronal 

descendants of the AB lineage and becomes undetectable in most terminally 
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differentiated neurons. Loss of cnd-1 results in motor neuron number reduction, position 

change, neuronal feature defects and terminal selector spatial expression alteration. The 

wide range of defects observed in cnd-1 mutants suggest that it may have combined the 

roles of several vertebrate neurogenic proteins and may be an ancestral protein that 

combines the function of the vertebrate Neurogenin and NeuroD (Hallam et al., 2000). 

Aside from its earlier roles in neuronal lineage generation, neuroD also takes part in 

regulating terminal features of differentiated neurons (Hallam et al., 2000). It may also 

play roles in mature neurons as its expression has been seen in abundance in fully 

differentiated Xenopus adult brain structures (Lee et al., 1995), and NeuroD deficient 

mice rescued with early and transient expression of neuroD in the embryonic brain still 

display severe neurological phenotypes afterwards (Miyata et al., 1999).  

Another example is the C. elegans Achaete-Scute-like bHLH gene hlh-14, which 

has been shown to act together with HLH-2 to specify neuroblast lineages and to 

promote neurogenesis (Frank et al., 2003). It was also pulled out from a recent RNAi 

screen in search of neural specification factors of the ASE gustatory neuron. hlh-14 is 

bilaterally expressed in the ASEL/R lineage despite their asymmetric lineage origins and 

is required for neurogenesis of the ASE as well as several other neurons in the same 

branch. 4D microscopy revealed that hlh-14 mutants display hypodermal 

transformations and mis-positioning defects with higher frequency in more posterior 

descendants of the ABalpppp/ABpraaap neuroblasts in the ASE lineage. Together with 

expression data it indicates that HLH-14 is possibly a binary switch to determine 

neuronal fate versus hypodermal fate (Poole et al., 2011).  

2.3. Regulation of proneural gene activity  

6



	
  

	
  

Most proneural proteins act as transcriptional activators and only a few are 

repressors. They heterodimerize with ubiquitously expressed bHLH proteins (such as 

E2A/HEB/E2-2 in vertebrates, Daughterless in flies, and HLH-2 in worms) and 

specifically bind to the CANNTG core motif in the E-box. Subsequent upregulated 

Notch ligand results in lateral inhibition through activating Notch signaling pathway in 

neighboring cells. This leads to the expression of repressors (Espl genes in flies and 

Hes/Her/Esr in vertebrates) that down regulate proneural gene expression and usually 

results in epidermal fate in neighboring cells (Artavanis-Tsakonas et al., 1999).   

Once a neural progenitor is selected, positive-feedback mechanisms are required 

to increase and maintain the level of proneural genes. This can be achieved through 

activation of downstream transcription factors that in turn upregulate proneural gene 

expression. For example, the Drosophila zinc finger protein Senseleass represses Espl 

repressor genes to further inhibit the Notch signaling pathway (Nolo et al., 2000). 

Autoregulation may also play a role in maintaining high level of proneural gene activity. 

For example, the SMC enhancer of Scute contains functional E-boxes that mediate 

autoregulation in order to obtain high level of the proneural protein (Culi and Modolell, 

1998). EGF (Epidermal growth factor) signaling activated by asc genes can also act on 

the SMC enhancer to elevate Scute level (Culi et al., 2001). 

 

3. Pan-neuronal features 

The basic cellular organization of a neuron is not different from others. They all 

have similar organelles and subcellular components, such as Golgi apparatus, 
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mitochondria and a variety of vesicular structures. However, almost all neurons, 

regardless of the species and their origin, share certain defined features that make them 

unique from other cell types morphologically and functionally, such as cellular 

extensions like axons or dendrites that connect one neuron to another physically, and 

synapses made of complex pre-and post- synaptic specializations that transmit 

information from one neuron to another (Hobert et al., 2010). One tempting theory is 

that there might be a defined “pan-neuronal gene battery” that is shared among all 

neurons versus non-neuronal cells. However evidence suggests that this may not be the 

case. For example, proteins that are more restricted to neuronal cells may also be preset 

in other cell types (Iwasaki et al., 1997; Sieburth et al., 2005), including synaptic 

vesicle-associated proteins, ion channels, cytoskeleton proteins and so on. Moreover, 

none of the characteristic neuronal proteins are expressed across all neuronal species in a 

given organism. Therefore, those genes referred to as “pan-neuronal” might be better 

termed “broadly expressed” neuronal genes instead.   

How are the “pan-neuronal” genes regulated? Several studies indicates that the 

overall neuronal features seems genetically separable from a neuron’s terminal identity, 

as the loss of terminal selector genes that define the terminal identities of a neuron does 

not result in loss of its pan-neuronal features (Altun-Gultekin et al., 2001; Flames and 

Hobert, 2009; Uchida et al., 2003). Bioinformatics studies in C. elegans identified a ten-

nucleotide cis-regulatory motif named “N1 box” preferentially present in the promoters 

of many broadly expressed genes. Replacement of this site with a LexA site almost 

completely abolished or diminished neuronal expression. This suggests that there might 

be global trans-acting factors that coordinately control the expression of some or even 
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all broadly expressed neuronal genes (Ruvinsky et al., 2007).  Nevertheless, other 

mechanisms must exist because the N1 box is not present in all broadly expressed 

neuronal genes.  Pan-neuronal expression may also be accomplished through the “piece-

meal” or “modular” manner, in which case terminal selectors for different neuron types 

can bind additively to different elements of the promoter of a pan-neuronal gene to 

assemble much broader expression. For instance, there are at least six regulatory 

elements (two in the 5’ upstream region and four within the first intron) that are able to 

drive expression of the C. elegans RIC-4 protein in particular neuronal cell types 

(Hwang and Lee, 2003).  In flies, it is only the combination of the core promoter and far 

upstream enhancer elements as well as an intronic enhancer that could give rise to high 

expression level of β1 tubulin in most neuronal cells in the CNS (Kohler et al., 1996). 

However, there does not seem to be a universal strategy employed to achieve 

broad neuronal gene expression.  Hobert et al. proposed that parallel and diverse 

regulons that specify the terminal gene batteries of individual neurons might exist.  

There may or may not be a clear separation between the regulation of neuronal identity 

features, pan-neuronal features and pan-sensory features, each of which could be 

regulated by a distinct mechanism or by the same regulator (Etchberger et al., 2007; 

Hwang and Lee, 2003), and multiple selector genes may act on different part of the 

specific identity. Moreover, neurons can respond to extrinsic signals and change their 

gene expression profiles, which are also proposed to be organized into regulons (Hobert 

et al., 2010).  
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4. Neuronal fate restriction  

After specification of the neural progenitors that are limited in developmental 

potential, the next question is how to terminally differentiate the progenitor cells into the 

mature postmitotic neurons, which is very often accompanied by the graduate restriction 

of cell fates. This can take place at various stages and time, either before or after the 

final cell-cycle exit of a progenitor cell. The neurogenesis of C. elegans does not seem 

to require much of temporal control, as they are generated from stereotypic cell divisions. 

In Drosophila and vertebrates, the specification of the neuronal fate is dependent on the 

interplay between two sets of determinants: extrinsic (cell non-autonomous) signals and 

intrinsic (cell-autonomous) mechanisms. A neuron receives extrinsic signals presented 

by the environment both temporally and a cell can acquire its fate by utilizing various 

signaling strategies (Edlund and Jessell, 1999).  

These extrinsic signals are then cooperated and integrated by the nervous system. 

The neuron gradually loses dependence on extrinsic signals but reply more on its 

intrinsic signals to finally establish the identity and function of each single cell that later 

assembles the neuronal circuits. How does the progression/transition from extrinsic to 

intrinsic signaling occur? One mechanism involves persistent activation of intracellular 

cytoplasmic transduction proteins that are subject to post-translational regulation, such 

as photolytic processing and phosphorylation dependent activation of effector kinases 

that serve as mediators of extrinsic signaling. As a matter of fact, it has been suggested 

that the function of a lot of transcription factors functioning in neuronal cells are 

dependent on their state of phosphorylation (Fowles et al., 1998; Jacobs et al., 1998). 

Subsequent autoregulation of transcription factors that play a role in cell fate induction 
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and maintenance usually involves a positive feedback. Later, long term stabilization of 

initial state of gene expression pattern in either active or inactive state must be achieved. 

The final cell-cycle exit also contributes to neural fate differentiation, and may prevent 

neuronal cells from further receiving or responding to extrinsic signals. (Edlund and 

Jessell, 1999). 

 

5. Terminal fate specification 

Although much is known about the induction and specification of the developmentally 

restricted neuron progenitor cells, less is known about how the terminal differentiation 

of a mature post-mitotic neuron with a dedicated fate is achieved. The “terminal selector” 

concept is currently widely accepted and has been proposed to not only initiate but also 

maintain the terminal features of a neuron across species from invertebrates to 

vertebrates.  

5.1. Terminal gene batteries 

The last step of the neuronal cell fate specification is the expression of specific 

terminal gene batteries that encode proteins determining the fate and functions of a 

neuron. These proteins include neurotransmitters synthesis enzymes, neurotransmitter 

receptors, ion channels, signaling proteins, cytoskeleton proteins, adhesion molecules 

and et cetera (Figure 1A). However, it seems that none of these terminal features are 

exclusive to a particular neuron, and therefore it is the combination of those features that 

determines a neuron’s identity (Figure 1B).  
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The use of C. elegans as a model animal has greatly facilitated the study of cis-

regulatory mechanisms of terminal differentiated genes in vivo. Regulatory elements are 

fused to GFP to examine expression in specific neuron types, either by molecular 

cloning or reporter gene fusion (Boulin et al., 2006; Chalfie et al., 1994; Hobert, 2002). 

The transparency of the worm allows fast and direct visualization of the fluorescent 

protein in the whole animal. Comparison between the wild-type and the mutant 

constructs with sites mutated can be made to assess the functionality. Current findings 

suggest that cis-regulatory motifs usually reside within 1 kilobases to the start site, but 

there emerging evidence indicates that they could be located farther away (a few 

kilobases upstream) or within introns (Doitsidou et al., 2013). In the following section, I 

will give several examples of known terminal selectors that have come to light from 

recent studies in the worm. 

5.2. Examples of trans-acting factors that act as terminal selectors in C. elegans 

There is only a total number of 302 neurons in hermaphrodites and each single 

one of them has been precisely mapped with no variance (White et al., 1986). The 

simplicity and the relative short life cycle of the worm allows fast and large-scale 

forward genetic screens, which have contributed to the identification of a large number 

of trans-acting factors that are involved in neuronal differentiation. In combination of 

cis-regulatory analysis, these mutants have led to discoveries that reinforce the “terminal 

selector” hypothesis (Table1). 

5.2.1. che-1 
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The C2H2 Zinc finger-containing transcription factor CHE-1 is orthologous to 

the Drosophila GLASS protein, which is required for the differentiation of 

photoreceptors. The original “che-1” alleles were isolated in a screen seeking animals 

defective in chemotaxis to NaCl (Dusenbery et al., 1975). GFP reporters revealed that 

CHE-1 is expressed in the ASE neuron but che-1 mutants have no significant structural 

defects under the microscopes, and both ASEs remain at the correct position. Che-1 

mutants are chemotaxis defective to water-soluble attractants including Na+, Cl-, biotin 

and cAMP but not to volatile odorants (Bargmann et al., 1993), and was therefore 

suggested to be a transcription factor mainly required for the differentiation of ASE 

specific terminal fates (Uchida et al., 2003).  che-1 mutants lose ASE terminal gene 

expression, and ectopic expression of che-1 in other sensory neurons results in ectopic 

expression of the ASE specific gcy-5::gfp reporter.  

Comparison between SAGE library analyses on isolated gcy-5::gfp positive ASE 

neurons and the gcy-8 positive AFD thermosensory neurons derived from embryos 

defined a specific transcriptome of the ASE neuron, which consists of a broad and 

unbiased spectrum of neuron-type-specific gene profile that distinguishes ASE from 

other neurons. Further promoter dissection on a subset of the ASE-expressed genes 

reveals a conserved ASE motif that is shared by all but one cis-regulatory region, with a 

6-bp core at its 5’ end (GAADCC) followed by an additional A/T rich sequence. 

Deletion or mutation of this motif in multiple cis-regulatory contexts completely 

abolished ASE expression in most cases. The ASE motif is usually within 1 kb upstream 

of the start codon, and is mostly present as a single copy with no obvious orientation 

preference on a particular strand. Fusing this ASE motif in front of a small promoter of 
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another gene only expressed in the AWC shows strong and consistent ASE expression in 

AWC. Single or multimerized ASE motifs with minimal flanking sequences are also 

able to drive GFP expression in the ASE (Etchberger et al., 2007).   

Evidence suggests that CHE-1 directly controls the ASE motif via the third and 

the fourth of its Zn Fingers. The predicted CHE-1 binding site by probabilistic cognition 

code for C2H2 zinc finger transcription factors (Benos et al., 2002) shares striking 

similarity with the experimentally verified and derived ASE motif, and the CHE-1 

Drosophila ortholog GLASS is 100% identical to CHE-1 in the DNA contacting 

residues within the Zn fingers. In vitro electrophoretic mobility shift assays further 

support this idea. Full-length CHE-1 protein expressed and purified from Bacteria is 

able to bind the ASE motif present in all tested genes in a sequence-specific manner. 

The promoter of che-1 also contains an ASE motif that can be bound by CHE-1 itself 

selectively as shown in vitro. This ensures the persistence expression of CHE-1 

throughout the life of the animal, which is likely achieved through autoregulation. In 

che-1 mutants, transcriptional gfp reporter for che-1 fails to express.  

5.2.2. unc-3 

Cholinergic neurons are defined by the expression of genes that are involved in 

the synthesis, packaging and recycling of the neurotransmitter acetylcholine. C. elegans  

has eight classes of ventral nerve cord neurons that control locomotion through 

communicating with target muscles, out of which six are cholinergic (DA, VA, DB, VB, 

AS and VC). The COE (Collier/Olf/EBF)-type transcription factor UNC-3 was first 

identified as a factor required for wild-type locomotion, axon guidance and proper 
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differentiation of ventral cord motor neurons (Brenner, 1974; Herman, 1987; Prasad et 

al., 1998). Recent studies have shown that it is the terminal selector for a subset of the 

cholinergic motor neurons in the VNC. unc-3 mutants are defective in expression of a 

majority of the terminal differentiation genes (26 out of 30) in the A-, B- and/or AS- 

type motor neurons. These genes include the cholinergic pathway components, putative 

Ach autoreceptors, neurotransmitter receptors, ion channels, gap junction proteins, 

signaling proteins, axon path finding factors and so on. Pan-neuronally expressed genes 

(rab-3, unc-119 and ref-1) are not affected in unc-3 mutants, and molecular markers for 

other classes of ventral nerve cord neurons, the GABAergic neurons, are not ectopically 

expressed. This suggests that the neurons may still be physically present but remain in 

an undifferentiated state. UNC-3 is sufficient to induce cholinergic fate in other cells. 

Misexpression of UNC-3 in the glutamatergic sensory neurons ASE and AWC leads to 

ectopic expression of cholinergic markers, and misexpression of UNC-3 in D-type 

GABAergic motor neurons is also capable of inducing cholinergic fates in those cells 

(Kratsios et al., 2012). 

A consensus COE motif present in UNC-3 responsive genes was identified by 

Matinspector (Genomatrix) and Ebf1 chromatin immunoprecipitation analysis of the 

mouse B cells. UNC-3 directly regulates the cholinergic gene battery in the A-, B- and 

AS-type neurons via the phylogenetically conserved COE motifs present in the 

regulatory regions of those genes. Small fragments that contain these motifs are 

necessary and sufficient for expression in those cholinergic VNC neurons. Mutations of 

such sites lead to failure in correct reporter gene expression, while expression in other 

neuron types remain unaffected.  
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Kratsios et al. showed that UNC-3 is required not only to initiate but also to 

maintain the terminal features of the cholinergic fate. A fosmid-based reporter that 

contains about 40 kilobases of the genomic context surrounding the unc-3 locus display 

persistent expression in the A-, B- and AS- type neurons throughout adulthood. The 

continuous requirement for UNC-3 is further validated by the fact that heat shock-

induced UNC-3 activity around mid-larval stages is able to rescue unc-3 mutant 

phenotypes. 

The function of UNC-3 is conserved across phylogeny. Ciona intestinalis also 

contains a single UNC-3 ortholog COE that is expressed in cholinergic motor neurons, 

as assessed by the expression of the VAChT-ChAT locus that contains a copy of the 

COE recognition motif in the regulatory region. The C. intestinalis COE is sufficient 

and necessary to induce cholinergic fate, as VAChT expression of animals expressing a 

dominant negative form of COE is severely affected and cholinergic motor neurons 

seem to adopt a glia-like morphology other than remain cholinergic. Misexpression of 

the COE protein in non-cholinergic neurons is able to induce ectopic expression of the 

VAChT reporter. In addition, UNC-3 orthologs are present in vertebrate species. In 

mouse, the majority of them are expressed in cholinergic motor neurons in the spinal 

cord (Kratsios et al., 2012). 

5.2.3. unc-30 

GABAergic neurotransmission is widely used across species from invertebrates 

to vertebrates. In worms, GABAergic neurons can be categorized into several different 

classes, consisting of the single AVL and DVB, and RIS interneuron, fours RME motor 
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neurons, six DD (dorsal D) neurons, and thirteen VD (Ventral D) motor neurons. These 

neurons are required for different functions and behaviors of the worm. The Pitx family 

UNC-30 homeodomain protein was first identified as required for the differentiation of 

two classes, the DD and VD type neurons. Mutants of unc-30 display the shrinking 

defect, which phenocopies worms with DD and VD ablated, while the RME, AVL and 

DVB related foraging behavior as well as the defaecation cycle phenotype remain wild 

type (McIntire et al., 1993).  Electromotility gel shift assays as well as DNAase I 

footprinting analysis further demonstrates that UNC-30 directly acts on the core 

consensus sequence 5’-TAATCC-3’ in the promoter regions of GABA 

synthesis/packaging pathway genes, glutamic acid decarboxylase UNC-25 and vesicular 

GABA transporter UNC-47 (Eastman et al., 1999). Microarray analysis on cRNA 

library that yielded a full spectrum of gene battery of the GABAergic neurons as well as 

analysis of the 5’ upstream regions of six of the UNC-30 target genes further revealed 

the consensus sequence as “WNTAATCHH”, which is significantly enriched in the 

regulatory regions of UNC-30 target genes (Cinar et al., 2005). Therefore, UNC-30 

likely acts as a terminal selector in the VD- and DD- type GABAergic neurons. 

However, it does not seem to be required for the specification of other types of 

GABAergic neurons, and how the terminal fates of these neurons are regulated remain 

unclear. 

5.2.4. Combinatorial codes of gene regulatory factors 

Instead of being expressed in only one type of neurons, transcription factors are 

very often expressed in at least several more cell types. It is easy to imagine that it is 

economically more efficient to reuse the same transcription factor in different cell types. 
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In such cases, the terminal fate of a cell is adopted through cooperation between distinct 

transcription factors. In other words, how the terminal fate of a cell is determined 

depend on the combinatorial codes of transcription factors instead of one single master 

regulator (Figure 1B).  

The POU homeodomain protein UNC-86 and the LIM-homeodomain protein 

MEC-3 are both required for the terminal differentiation of the touch neurons (ALML/R, 

AVM, PLML/R and PVM) that are responsible for gentle touch to the body in a 

cooperative manner (Finney and Ruvkun, 1990; Way and Chalfie, 1988). The 

transcription of MEC-3 is dependent on UNC-86 (Xue et al., 1992). MEC-3 and UNC-

86 then bind synergistically as a heterodimer to the promoter of mec-3 to activate robust 

transcription (Lichtsteiner and Tjian, 1995). They also act in a cooperative manner to 

regulate downstream target genes required for the mechanosensory function of the touch 

cells, by direct binding to a conserved motif, AATGCAT(Duggan et al., 1998; Zhang et 

al., 2002). 

Similarly, the homeodomain transcription factors TTX-10 and CEH-10, which 

are homologs for the mouse Lhx2/9 and Chx10, are both required for the terminal 

differentiation of the AIY interneuron (Figure 1B). TTX-3 is required to directly restrict 

ceh-10 expression to AIY during the terminal division of the AIY mother (Bertrand and 

Hobert, 2009). Although expression of CEH-10 is only observed during embryogenesis 

and fades after hatching and TTX-3 expression is maintained throughout the life of the 

animal, both TTX-3 and CEH-10 are required for terminal differentiation of AIY 

(Altun-Gultekin et al., 2001). They form a heterodimer that binds to the AIY motif, 

which is present in the regulatory regions of the AIY gene battery (Wenick and Hobert, 
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2004). It is interesting that although AIY is also cholinergic, it utilizes a completely 

different motif from that of the A- and B- type cholinergic neurons controlled by unc-3, 

suggesting that the cis-regulatory regions of terminal genes expressed in multiple cell 

types may contain multiple distinct binding sites for different sets of terminal selectors 

depending on the cellular context (Hobert, 2011). 

The regulatory logic of the dopaminergic neurons in C. elegans is even more 

complex. There are eight dopaminergic neurons in the worm, namely CEPVL/R, 

CEPDL/R, ADEL/R and PDEL/R. The E-twenty six (ETS) transcription factor AST-1 

was the first player identified to be required for both the initiation and maintenance of 

dopaminergic (DA) fates. Loss of AST-1 result in terminal differentiation failure in all 

dopaminergic neurons and ectopic expression of AST-1 is able to drive DA fate in 

certain other cell types. Cis-regulatory informational analysis reveals the core cis-

regulatory module (CRM) present in the promoter of each dopaminergic pathway genes, 

which is sufficient and necessary to drive expression in all DA neurons (Flames and 

Hobert, 2009). Subsequent studies suggest that ast-1 is not the sole player. The C. 

elegans Distalless/Dlx ortholog ceh-43 is also partially responsible for the induction and 

maintenance of the DA fates through binding to the homeodomain sites on DA 

promoters (Doitsidou et al., 2008). AST-1 and CEH-43 act synergistically to control the 

fate of the CEPVS, although CEH-43 does not seem to be able to compensate for the 

loss of AST-1 in other DA neurons. Two Pbx factors, CEH-20 and CEH-40 also play a 

role in a partially redundant and subtype-specific manner through binding to the Pbx-

type homeodomain-binding sites. Yeast transcription assay (Topalidou et al., 2011) with 

AST-1, CEH-43 and CEH-20 suggests that neither of them alone is able to induce 
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efficient expression of β-galactosidase driven by the promoters of two DA pathway 

genes, while strong and synergistic induction was observed with coexpression of all of 

the three. This demonstrates that all three factors act in a cooperative fashion to control 

terminal differentiation of the DA neurons (Doitsidou et al., 2013). 

5.3. Terminal selector regulation in vertebrates 

Although complicated regulatory regions as well as time and cost considerations 

has somehow hampered studies on terminal fate differentiation in vertebrates, evidence 

has suggested that the terminal selector concept may also be very well extended to 

vertebrates.  

 The mouse ETS transcription factor Etv-1 (ER81) is a homolog of the C. 

elegans AST-1, and is able to rescue C. elegans ast-1 mutant phenotype in transgenic 

worms. In mice lacking Etv-1, dopamine neurons in the olfactory bulb of the brain are 

not properly differentiated. The number of tyrosine hydroxylase-positive cells is reduced, 

while other periglomerular interneuron subtypes and the DA progenitor cells in the 

lateral ganglionic eminence seem less affected or unaffected at all. In primary cell 

culture, ectopic expression of Etv-1 results in an increase in the number of cells 

expressing tyrosine hydroxylase-positive cells, which suggests that Etv-1 is not only 

necessary but also sufficient to induce DA fate in vivo. cis-regulatory information 

analysis further revealed that activation of AST-1 is through phylogenetically conserved 

motifs in the mouse TH locus and other mouse dopamine pathway genes (Flames and 

Hobert, 2009). 

Similarly, the orphan nuclear receptor Nurr1 and the homeobox transcription 
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factor Pitx3 are the terminal selectors for midbrain dopaminergic neurons (Smidt and 

Burbach, 2009). Combined lentiviral transduction of Nurr1 and Pitx3 at the neural 

precursor stage can synergistically induce the expression of markers for midbrain 

dopaminergic neurons and to promote neuron maturation in the murine and human ES 

cell culture. Transplantation of human or mouse ES-derived cultures that have been 

transduced with Pitx3 and Nurr1 together can rescue the contralateral turning behavior 

defects in DA neuron injured mice (Martinat et al., 2006). ChIP analysis has 

demonstrated that they directly control terminal differentiation via binding to the same 

promoter regions of the target genes such as Dlk1, Ptpru and Klhl1(Jacobs et al., 2009a; 

Jacobs et al., 2009b) 

The paired-like Orthodentical (Otx) homeoprotein CEH-36 act as a terminal 

selector in the C. elegans AWC neuron pair (Kim et al., 2010; Lanjuin and Sengupta, 

2004). Its ortholog, mouse Cone-rod homeobox protein Crx has also been demonstrated 

to have similar roles in the mouse retina by microarray, in situ hybridization analysis 

and ChIP-seq assays (Corbo et al., 2010; Hsiau et al., 2007). Crx is expressed in rods 

and cones in the retina and is required for proper photoreceptor differentiation and 

survival. Acting directly on the cis-regulatory elements distributed around each locus, it 

regulates hundreds of its target genes in the photoreceptor, including retinol-binding 

protein, rhodopsin, G protein Gnat1, phosphodiesterase, vesicular glutamate transporter, 

kinesin and so on. Crx also directly regulates photoreceptor transcription factors, as well 

as its own expression (Furukawa et al., 2002). Loss of Crx results in loss of expression 

of these genes although evidence suggests that there might be other compensatory 

mechanisms under certain circumstances (Nishida et al., 2003).  
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The ETS domain factor Pet1 is the terminal selector for all serotonergic neurons 

in the mouse. Pet1 is expressed in most of the serotonergic neurons but not other 

nonserotonergic neurons or neighboring cells in the rat brain, and its expression is about 

half day earlier than the onset of 5-HT. It directly regulates genes such as 5-HT 

synthesis pathway components as well as serotonin receptors through conserved binding 

sites in the regulatory regions of these genes in the mouse and human (Hendricks et al., 

1999). Due to inability to express genes required for 5-HT synthesis, uptake and storage 

machinery (Hendricks et al., 2003), Pet1 mutant mice have severe defects in 

serotonergic neuron differentiation, and therefore display heightened anxiety-like and 

aggressive behavior at adult stages. Engineered multimerized Pet1 binding sites from 

mouse and human 5-HT genes are able to drive reporter gene expression in vivo, and 

ChIP assays confirmed that Pet1 directly binds to promoters of its target genes. Aside 

from its role in initial 5-HT neuron generation, Pet1 is also required for the maturation 

of serotonergic neurons, and continuous Pet1 expression is essential for axon innervation 

of the somatosensory cortex, expression of firing properties as well as autoreceptors (Liu 

et al., 2010), all suggesting that Pet1 is the bona fide terminal selector for vertebrate 

serotonergic neurons. 

5.4. Maintenance of differentiated terminal state 

Terminal selectors are usually turned on around the terminal division of 

neuroblasts, possibly activated by transient regulatory signals and factors within a very 

short amount of time. Aside from their role in early initiation phase, terminal selectors 

are also required throughout the life of a neuron in both invertebrates and vertebrates. 

For example, in C. elegans, postembryonic removal of the terminal selector can result in 
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loss of the differentiated neuronal fate. RNAi (against che-1) treated L1 animals display 

significant defects in ASE marker expression (Etchberger et al., 2009), and temporal 

addition or removal of ast-1 gene activity by heat shock or utilizing a temperature 

sensitive allele of ast-1 correlates with the expression of DA terminal genes (Flames and 

Hobert, 2009).  Conditional deletion of Pet1 at E12.5 stage after 5-HT neuron generation 

also confirms that it is continuous required for serotonergic function, as the expression 

of its target genes became diminished in conditional KO mutants (Liu et al., 2010). 

Direct transcriptional autoregulation seems to be the most effective and efficient way of 

ensuring sustained expression of terminal selectors in order to lock in the initial 

regulatory state. For terminal selectors, there may be binding sites for themselves in 

their own regulatory regions in order to maintain their own expression throughout the 

life of an animal (Etchberger et al., 2007; Way and Chalfie, 1988; Wenick and Hobert, 

2004), and mutating these sites does not seem to affect initiation but the maintenance of 

their expression (Bertrand and Hobert, 2009).  

5.5. Parallel regulations 

In C. elegans, loss of a neuronal terminal selector leads to the loss of various 

terminal differentiated features of a neuron. However, other parallel regulations must 

exist, because at least in several demonstrated cases, such as removal of CHE-1 and 

AST-1, the pan-sensory features of those neurons remain intact. Loss of Pet1, the 

terminal selector for serotonergic neurons in mice, also does not affect the overall 

neuronal identity(Hendricks et al., 2003). The term “regulon” is employed to define a 

regulation unit, which consists of a terminal selector and all its downstream target genes 

(Hobert, 2011). A good example of a separate regulon involves genes that encode cilia 
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structures regulated through a common cis-regulatory motif (the X box) by the RFX 

family transcription factor DAF-19 in ciliated neurons (Swoboda et al., 2000). Such 

regulation is completely independent of neuronal terminal selectors, as the pan-sensory 

identities are entirely unaffected in terminal selector mutants (Etchberger et al., 2007). 

Another parallel regulation unit is the pan-neuronal identity regulon. In terminal selector 

mutants, pan-neuronal features are generally not affected (Altun-Gultekin et al., 2001; 

Etchberger et al., 2007; Flames and Hobert, 2009; Uchida et al., 2003) (Figure 2). 

Regulons may overlap with each other. In C. elegans, MEC-3/UNC-86 controls not only 

the terminal touch neuron features but also the expression of pan-neuronal genes such as 

snap-25/ric-4 (Hwang and Lee, 2003). The mouse Crx also regulates genes that control 

cilia structures (Swoboda et al., 2000), suggesting that regulons in terminally 

differentiated mature neurons do not act in a mutually exclusive manner. 
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Part II: Neuronal Asymmetry  

1. Biological asymmetry 

Three different axes define the animal body plan: the clearly defined anterior- 

posterior axis, the dorsal-ventral axis, and the left-right axis.  The A/P and D/V axes are 

unquestionably directionally asymmetric as they could be set by exogenous cues or 

gravity. Although the morphological body plans of most animals appear to be bilaterally 

symmetric along the L/R axis, both structural and functional L/R asymmetries have been 

observed from invertebrates to human (Hamada et al., 2002; Ramsdell and Yost, 1998; 

Wood, 1997). For example, the human heart, liver, stomach, pancreas and spleen are 

located only on one side of the body. Even paired organs such as the lungs could show 

structural asymmetry consisting of different numbers of lobes.  

The L/R asymmetry brought about the possibility of two alternative forms of the 

body plan, which are of opposite handedness and mirror images of each other. 

Handedness can be either directional or randomized. Although in animals such as mice, 

rats, cats and dogs, paw preference has been observed, there doesn’t seem to be a group 

bias. (Fabre-Thorpe et al., 1993) On the other hand, almost 90% of the human 

population are more skillful with their right hand than with the left (Corballis, 2003). 

How is handed asymmetry established and maintained? Evidence from multiple 

organism supports the theory that the polarity of the L/R axis is an early embryonic 

decision after A/P and D/V polarities have been established. It seems that handedness 

determination is an intrinsic process and is dependent on the establishment of the other 

axes. It is not difficult to imagine that a consistent mechanism is required to impose 

consistent differences between the two sides. It was proposed that the concentration of a 
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handed molecule can stay higher on one side than the other through a reaction-diffusion 

process, and that a tissue-specific response to the difference between the two sides can 

result in the development of differences on the left and right side (Brown and Wolpert, 

1990). The mouse lateral plate mesoderm formation is one such example. Nodal was 

identified as an essential signal in mesoderm formation during gastrulation and is a 

determinant of the left–right body axis (Collignon et al., 1996). Its activity is critical for 

the propagation of the left positional information from the node after L/R asymmetry 

establishment, and is upregulated on the left side, which then leads to the subsequent 

asymmetric gene expression and tissue-specific laterality decisions (Brennan et al., 

2002; Raya and Izpisua Belmonte, 2006; Shiratori and Hamada, 2006). 

 

2. Neuronal asymmetry 

The nervous system also displays levels of asymmetry that is fundamentally and 

evolutionarily important. Neuronal asymmetry are thought to play important roles in 

enhancing information processing as well as task and behavioral performances (Rogers, 

2000). The most commonplace example is that the human brain exhibits hemispheric 

asymmetry at both morphological and functional level. For instance, the left and the 

right temporal lobes display a size difference (Geschwind and Levitsky, 1968; Glick, 

1981; LeMay, 1982) (Figure 3A); and the two important regions related to speech and 

language, Broca’s area and Wernicke’s area, are located solely on the left side (Figure 

3B). As a matter of fact, such laterality in the nervous system is adopted not only by 
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human, but also by other vertebrates such as rodents and fish (Glick, 1981; Miklosi et al., 

1997).  

The zebrafish provides an excellent model to study neuronal laterality with its 

amenability to large-scale mutagenesis and direct visualization of fluorescent proteins. 

The vast number of defective mutant strains of zebrafish available allows extensive 

testing of neuronal asymmetry at the molecular, anatomical and behavioral level. The 

transforming-growth-factor β (TGF-β) family member Nodal, expressed on the lefts side 

of the diencephalon is used to form the laterality of the epithalamus during 

embryogenesis. The Nodal-related factor Cyclops (Cyc/Ndr2), Pitx2 and the Nodal 

antagonist Antivin/Lefty 1 (Lft1) are all transiently expressed on the left side of the 

bilateral pineal anlage (Liang et al., 2000). Asymmetric pineal complex formation in the 

epithalamus then results in the acquisition of different features of the adjacent 

diencephalic nuclei on the left and the right side, which may also have impact on other 

regions of the brain. The laterality of the epithalamus in zebrafish is very well preserved 

among individuals (99% of larvae develop asymmetry and 95% are left-biased) (Halpern 

et al., 2003). As a matter of fact, directional asymmetry is thought to be advantageous 

for the species. For example, the right eye use is associated with decision to bite in 

zebrafish (Miklosi and Andrew, 1999), and vibration-stimulated animals tend to bias on 

right-hand startle C-bends (Heuts, 1999). Behaviors such as schooling, feeding and 

escape responses have also been shown mediated by neuronal laterality. 

Neuronal asymmetry is also observed in invertebrates such as the round worm 

(Hobert et al., 2002). C elegans is especially suitable as an experimental organism for 

dissecting the effects of mutations in vivo, and therefore providing an exceptional tool to 
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study the correlations among molecular, morphological and functional asymmetries in 

the nervous system, which is poorly understood and difficult to study in vertebrates. In 

the following sections, I will discuss our current understanding of neuronal asymmetry 

in the nematode C. elegans. I will specifically focus on the ASE gustatory neuron, one 

of the most extensively studied neuron pair that display directional asymmetry in the 

head of the worm. 

2.1. C. elegans neuronal asymmetry 

One big advantage of studying the C. elegans nervous system is that the lineage 

information of all neurons has been mapped out precisely and the entire neuronal 

network has been revealed under their electron microscopes (Sulston, 1983; Sulston et 

al., 1983; White et al., 1982; White et al., 1976, 1986). The neurons are generated 

invariantly through defined patterns and display different levels of asymmetry with 

regard to cell body position and axon placement. The nervous system of a hermaphrodite 

C. elegans consists of 302 neurons. This a much smaller population compared to that of 

the Drosophila (100,000) and the mouse (75,000,000), but they consist of a third of the 

number of the somatic cells (about 1000) in the worm. 

Around a third of the neurons in the worm display morphological asymmetry.  

Seventy-five VNC neurons located on or very close to the midline do not have 

analogues. The retrovesicular ganglion neurons AVG and SABD are also single neurons 

close to the mid line. Four neurons in the head, namely AVL, RIS, RIH, RID, are 

unilateral, which means they are only present on one side of the animal. Not only can 

cell position be asymmetrical, axon placement may also display asymmetry. Most axons 

including those extending from some of those bilaterally symmetric neurons are solely 
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located on one side of the ventral nerve cord (White et al., 1986). Asymmetry also plays 

crucial roles in neural development. Out of the ninety-eight neurons present in 

symmetrical pairs in C. elegans, almost a third are generated in an asymmetric manner 

(Sulston et al., 1983).  For example, although the amphid chemosensory AWB neurons 

are morphologically and functionally symmetrical, they descend from asymmetric 

lineages. ABalpppppap and ABpraaappap (White et al., 1986).  

2.2. Asymmetrical differentiation of the ASE 

The ASE gustatory neuron pair is morphologically symmetric in terms of cell 

location, axonal and dendritic morphology, and synaptic connectivity. Yet they display 

laterality at different levels. Lineage, functional and neuron sub-type specification 

program asymmetries of ASE are discussed below.  

2.2.1. Lineage asymmetry 

As early as the four-cell stage, the two precursors of ASEL and ASER are 

directed to adopt distinct fates by a Notch signal from the P2 cell sent along the A/P axis. 

This signal represses expression of two T box genes in ABp but not ABa (Good et al., 

2004), which leads to the exclusive and transient expression of TBX-37/38 in the eight 

ABa great-granddaughters but not in their descendants. This somehow instructs the 

descents of the ABa and ABp blastomeres to adopt ASEL and ASER fate distinctly. 

After the eight-cell stage, the blastomere identities have been determined and ASEL/R 

fate develop cell autonomously, as ASE cell descending from an isolated ABalp 

blastomere can still correctly acquire the left fate and vice versa (Poole and Hobert, 

2006) (Figure 4). This early blastomere asymmetry is memorized until later 
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developmental stages when ASEL and ASER are born; and later embryonic signaling 

events do not change this identity (Poole and Hobert, 2006).  This mark of asymmetry is 

used to bias the miRNA lsy-6 controlled bistable regulatory feedback loop of gene 

expression program in the postmitotic cells to specify the ASEL and ASER distinct fates 

(Johnston et al., 2005), which will be discussed in 2.2.3. of this chapter.  

2.2.2. Functional asymmetry 

In contrast with “anti-asymmetry” in the AWC neuron pairs, the ASE neurons 

display “directional asymmetry”, which means that the handedness of their asymmetric 

functions is fixed on one side rather than random biased on either side. The left cell 

(ASEL) is the main sodium sensor, while the right cell (ASER) is primarily responsible 

for potassium and chloride detection (Bargmann and Horvitz, 1991; Suzuki et al., 2008; 

Wes and Bargmann, 2001). A subset of gcy genes that encode putative chemoreceptors 

displays asymmetrical expression pattern in the two ASEs. Out of the eleven receptor-

type guanylyl cyclase-encoding genes expressed in ASE, nine are highly biased between 

ASRL and ASER (Ortiz et al., 2006). This leads to the functional asymmetry of the two 

cells and allows the animals not only to detect, but also to discriminate between different 

sensory cues. Disruption of this asymmetry results in chemosensory discrimination 

defects. For example, gcy-22 mutants display chemotaxis defects in nearly all salt 

detection ability by ASER (Ortiz et al., 2006). 

2.2.3. Sub-differentiation program asymmetry 

Previously, by looking for aberrant expression of cell fate markers that are 

normally expressed specifically in the left or the right ASE, several graduate students 
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and postdocs in the lab have identified a collection of “lsy” (loss of asymmetry) genes 

required for ASE asymmetrical specification (Chang et al., 2004; Chang et al., 2003; 

Etchberger et al., 2007; Johnston and Hobert, 2003; Johnston et al., 2005; Johnston et al., 

2006; Johnston and Hobert, 2005; Sarin et al., 2007). These genes have been categorized 

into six different classes. In class I mutants, ASEL fate is ectopically executed in ASER; 

in class II mutants, ASER expression profile is ectopically expressed in the left cell; in 

class III mutants, no ASE fates are specified in both cells due to mutations in the master 

regulator che-1, which binds to its molecular signature, the ASE motifs in almost all 

ASE-specific genes; in class IV mutants, either cell adopts a mixed fate of ASEL and 

ASER, meaning ASEL fate is ectopically expressed in ASER with ASER fate 

unaffected, or vice versa; in class V mutants, ASEL fate is lost, ectopically gained or 

exclusively expressed in ASER, whereas ASER fate is never ectopically gained in 

ASEL; and in class VI mutants, the asymmetry of ASE neurons are not affected, but 

ASE cell fate markers are expressed in cells other than ASE. 

A “bistable feedback loop” model (Figure 5) downstream if CHE-1 has been 

proposed to control ASE laterality, with the miRNA lsy-6 and the C2H2 Zinc-finger 

transcription factor die-1 being the input and the output respectively (Hobert, 2006; 

Johnston et al., 2005). In ASEL, lsy-6 represses the transcription of the homeobox gene 

cog-1 through interaction with its 3’ UTR, while the ASEL-specific transcription factor 

DIE-1 activates the transcription of lsy-6 (Didiano and Hobert, 2008; Johnston and 

Hobert, 2003). This leads to the activation of downstream ASEL terminal genes such as 

lim-6 and gcy-7, and the repression of ASER specific genes such as gcy-5. In ASER, the 

lsy-6 switch is off and the suppression of cog-1 is removed, which leads to the negative 
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regulation of die-1 in ASER. In this case, ASER terminal differentiation markers are 

expressed while ASEL specific genes are now repressed.  

The C2H2 Zinc finger transcription factor CHE-1 is the master 

regulator/terminal selector for the ASE neurons. It is exclusively expressed in the two 

ASEs and autoregulates its own expression (See Chapter I for details). Loss of CHE-1 

results in a complete loss of the ASE terminal fate, while the two cells are still 

physically present and maintain pan-neuronal features (Etchberger et al., 2007). An 

unusual che-1 allele was recently retrieved from an extensive screen for symmetrized 

ASE mutants (Etchberger et al., 2009; Sarin et al., 2007). In this mutant, the ASEL fate 

marker lim-6::gfp is lost and the ASER maker gcy-5::gfp is ectopically expressed in 

ASEL, which reminds us of the genes that act within the downstream feedback loop. 

Additional mutants that display similar phenotype all harbor mutations that cluster 

around the second zinc finger of CHE-1. The structural features of the second zinc 

finger are affected in such mutants, which results in reduced DNA binding affinity to 

multiple tested ASE motifs. Taken together, this suggests that aside from its role in 

bilateral fate specification, CHE-1 also takes part in asymmetric subtype specification of 

ASE. 

 The screen (Sarin et al., 2007) also revealed another unusual allele lsy-9, which 

displays a complex phenotype (Sarin et al., 2009). In lsy-9 mutants, the left cell fate 

marker lim-6::gfp is unaffected, bilaterally expressed in both ASEL and ASER, 

expressed in neither ASEL nor ASER, or expressed exclusively in ASER, while the 

right cell fate marker (gcy-5::gfp) is either normal or lost. What makes it unusual is that 

a fraction of the lsy-9 mutants express the left fate marker lim-6::gfp exclusively in the 
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ASER rather than the ASEL neuron. This reversal defect has not been observed in any 

previously known mutants. Sarin et al. mapped lsy-9 to the nhr-67 locus, which encodes 

a tailless-related orphan nuclear receptor. A fosmid-based reporter suggests that nhr-67 

is bilaterally symmetric. It is turned on two divisions earlier in the grandmother of 

ASEL and ASER, and stays on until around the first larval stage. A fosmid based 

reporter for che-1 is turned off by nhr-67 in a substantial fraction of animals, while nhr-

67 expression is not affected in che-1 mutants. This suggests that NHR-67 positively 

regulates CHE-1 to induce ASE fate. Epistasis analysis suggests that nhr-67 may play 

another role downstream of the loop input lsy-6 and upstream of the loop output die-1, 

activating transcription of the Nkx6 homeodomain transcription factor cog-1 by directly 

binding to its promoter. This binding requires the NR2W motif for tailless-type orphan 

nuclear receptors (DeMeo et al., 2008; Yu et al., 1994). Therefore, nhr-67 is not solely 

required for CHE-1 to induce ASE fate, but also takes part in the downstream bistable 

feedback loop for biased ASE fate determination. 

As mentioned in chapter 2.2.1., the cell fates of ASEL and ASER might have 

already been determined very early on by the presence or absence of T-box transcription 

factors. This “identity mark” is somehow set but remembered until much later to take 

effect. How does this relate to the handedness of the bistable feedback programs in the 

two cells? Genetic epistasis analysis suggests that the miRNA lsy-6 is upstream of die-1 

and cog-1 (Johnston et al., 2005). By using a more recently developed technology that 

generates reporters (Tursun et al., 2009) in a much larger genomic context (20-40kb), it 

was shown that lsy-6 expression comes on at the end of gastrulation only in the ASEL 

mother. lsy-6 expression in ASEL is continuously on and maintained throughout the life 

33



	
  

	
  

of the animal, while the asymmetric die-1 and cog-1 expression is initiated later at 

around 3-fold stage in the postmitotic ASEs (Cochella and Hobert, 2012). This implies 

that lsy-6 may serve as the earliest switch as an entry point for asymmetry establishment. 

In fact, TBX-37/38 expression in the ABa lineage (Figure 5) primes the lsy-6 locus 

through a downstream primer element very early and establishes the open chromatin 

conformation in the ASEL precursor. This allows a later boost of expression of LSY-6 

through the C2H2 zinc finger transcription factor CHE-1, which binds to the upstream 

booster element. On the other hand, compacted lsy-6 locus in ASER does not respond to 

the presence of CHE-1 due to absence of priming from TBX-37/38 at earlier stages. 

Therefore, the very early “asymmetry mark” imposed by the first Notch signal at the 

four cell stage is indeed “memorized” and linked to later asymmetric fate determination 

of ASE, through the chromatin based initiation of the miRNA lsy-6. A recent genome 

wide RNAi screen in an attempt to find more ASE mutants utilizing the reverse genetics 

approach identified three more genes, ash-2, dpy-30 and rbbp-5 (Poole et al., 2011) that 

are components of the histone methyltransferase complex (COMPASS). Reporter and 

genetic analysis indicates that COMPASS may act upstream of the feedback loop input, 

the miRNA lsy-6, during early during embryogenesis to ensure ASE laterality, and that 

the COMPASS complex may possibly form a lineage specific “chromatin mark” to link 

the regulation between TBX-37/38 and lsy-6. 
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Part III: Summary of Thesis 

The purpose of this thesis is to use the model organism C. elegans to study how 

terminally differentiated neuronal fate are achieved throughout the life of an animal, and 

to investigate how asymmetric neuronal sub-types are controlled and maintained by 

looking for additional components of the ASE specification program. 

Chapter 2 takes the serotonergic neuron NSM and the cholinergic neuron AIA as 

a test paradigm to study terminal differentiation of the nervous system in C. elegans. 

Aside from the cholinergic interneuron AIY, TTX-3 also controls the terminal 

differentiation program of two additional, distinct neuronal cell types, the cholinergic 

AIA interneurons and the serotonergic NSM neurons. This is accomplished through 

collaborating with different regulatory factors in different cell types, such as UNC-86 in 

NSM and a yet unknown factor X in AIA. UNC-86 in turn collaborates with the ARID-

type transcription factor CFI-1 to control the fate of the IL2 cholinergic inner labial 

neuron and the URA motor neuron. Therefore, it is the different combinations of 

transcription factors in distinct cell types that define the terminal fate of a cell. Aside 

from its role in the cholinergic interneurons AIY and AIA, the serotonergic motor 

neuron NSM, ttx-3 is required for the specification of the glutamatergic amphid sensory 

neuron ASK. A set of terminal markers that are expressed in ASK are disrupted in ttx-3 

mutants, suggesting that TTX-3 may act as a terminal selector for ASK that utilizes 

another neurotransmitter system. (See appendix 1 for ASK specification.) 

Chapter 3 is a preliminary study on the fate determination based on my findings 

on the cholinergic ring motoneuron RMDD/RMDV. Five mutants defective in RMDD/V 
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were discovered by chance from a screen that looked for mutants defective in AIA 

specification using the marker otIs317 (mgl-1::mcherry). Genetic analysis and whole 

genome sequencing revealed three relevant genes: the vertebrate neuroD homolog cnd-1, 

the Beta3 and Olig family related gene hlh-16, and the Q50 class paired-like homeobox 

gene unc-42. UNC-42 is likely a terminal selector for the RMDs as it has been shown 

required for glr-1 expression in the RMDs (Baran et al., 1999). cnd-1 and hlh-16 are 

likely proneural regulators that act in earlier steps of cell fate specification. 

Chapter 4 describes the cloning and characterization of two phenotypically 

similar mutant C. elegans strains that are defective in asymmetric gene expression 

pattern of the ASE gustatory neurons with the right cell (ASER) fate depressed in the 

left neuron (ASEL). Classic mapping revealed that one of the mutants harbors a 

mutation in the LIM homeobox gene lim-6, while whole genome sequencing identified 

the other mutant to be an allele of a novel ASE fate determinant lsy-27, which encodes a 

member of a fast-evolving family of C2H2 zinc finger transcription factors. LSY-27 is 

broadly and exclusively expressed in the embryo. Temperature shift experiments suggest 

that it functions during the initiation, but not the maintenance phase of ASE laterality 

control, to assist the initiation of lim-6 expression. 

Chapter 5 describes the MYST-type histone acetyltransferase complex formed 

by the MYST-type histone acetyltransferase LSY-12, the ING-family PHD domain 

protein LSY-13 and the PHD/bromodomain protein LIN-49. This complex is required to 

not only induce, but also maintain lateralized gene expression in the ASE gustatory 

neurons. The defects due to mutations in the components of the complex are similar to 
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mutations in another zinc finger transcription factor DIE-1, which likely acts as a 

candidate recruiter for the MYST complex to the transcription activation site. 
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Figure 1: Terminal selectors directly control terminally differentiated genes 

 
(A)     

 

 

(B) 
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(A) Terminal selectors directly act on cis-regulatory motifs (black box) to control 
terminally differentiated genes that encode the terminal features of a neuron. These 
genes encode neurotransmitters synthesis enzymes, neurotransmitter receptors, ion 
channels, signaling proteins, cytoskeleton proteins, adhesion molecules and so on. 
(Hobert, 2011) 

 

(B) None of the terminal differentiated markers are exclusively expressed in one 
particular neuron. They are very often expressed in many other cells. It is the 
combination of the terminal features that determines a neuron’s identify. Similarly, a 
transcription factor is rarely only expressed in one particular cell type. It is the 
combinatorial code of transcription factors that determines the terminal differentiation 
program of a particular cell. (Hobert, 2011; Hobert et al., 2010) 
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Figure 2: Example of parallel regulons of the ASE gustatory neuron (Hobert, 2011). 

 

 

Multiple regulons act in parallel to define the terminal molecular features of the ASE 
neuron. The zinc-finger transcription factor CHE-1 controls the neuron-type specific 
identities via the ASE motif as a terminal selector, while the RFX-type transcription 
factor DAF-19 controls all ciliated neuronal structures via the X box. It has been 
proposed that there is a third regulon that consists of an unknown factor plus its target 
genes that encode pan-neuronal identities, with The N1 box as a shared motif for 
regulation. These regulons in combination determine the fate of a mature neuron. 
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Figure 3: The human brain is asymmetric at both morphological and functional level. 

 

(A) 

 

 

(B) 

 

(A) A human brain cross-section that reveals the superior temporal surface. The Planum 
temporal lobes and Sylvian fissures are significantly different in size. Image from 
(Hobert et al., 2002).  

(B) Two important regions related to human higher brain function, speech and language, 
Broca’s area and Wernicke’s area, are located solely on the left side. Images from 
(Purves, 2008). 
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Figure 4: Asymmetric lineage formation of the ASE neuron pair.  

 

 

 

The two precursors of ASEL and ASER are directed by the first NOTCH signal to adopt 
distinct cell fates, ABalp and ABpra. This early-established asymmetry mark is 
remembered until the two cells are born several divisions later. Image from (Poole and 
Hobert, 2006). 
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Figure 5: The asymmetric ASEL/R differentiation program. 

 

 

 

The ASE asymmetry started from the four-cell stage when directed by the first NOTCH 
signal to adopt distinct fates. Presence of TBX-37/38 in ASEL leads to the decompacted 
conformation of the lsy-6 locus and biases lsy-6 expression in the left cell. A bistable 
feedback loop is utilized to confer ASE laterality with the miRNA lsy-6 being the input 
and the C2H2 zinc finger transcription factor DIE-1 being the output. lsy-6 and DIE-1 
are expressed in the left cell to activate ASEL-specific terminal genes and to repress 
ASER-specific genes through the LIM homeodomain protein LIM-6. Expression of 
COG-1 and the absence of lsy-6 and DIE-1 result in the right cell fate in ASER. Worms 
defective in the handedness of this feedback loop display functional defects in sensing 
soluble salts. CHE-1 is the master regulator that binds to ASE motifs present in the 
promoters of all ASE specific genes. Image from (Ortiz et al., 2009). 
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Table1: Examples of invertebrate and vertebrate regulons in the nervous system. From 
(Hobert, 2011). 
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CHAPTER 2:  

The LIM and POU homeobox genes ttx-3 and unc-86 act as terminal selectors in 
distinct cholinergic and serotonergic neuron types 

Zhang F, Bhattacharya A, Nelson JC, Abe N, Gordon P, Lloret-Fernandez C, Maicas M, 
Flames N, Mann RS, Colón-Ramos DA and Hobert O. 

 

The “terminal selector” theory is a widely accepted concept on how the 

differentiated fate of a neuron is adopted at the very end of neural development stages. A 

dedicated transcription factor selectively binds to a common and usually evolutionarily 

conserved cis-regulatory DNA motif present in the regulatory regions of its target genes 

to turn on expression of terminal features of a specific neuron. This chapter looks into the 

question of how the same transcription factor can be responsible for distinct cell fates in 

different cell types, starting with the LIM homeodomain transcription factor TTX-3, 

which likely acts with different cooperative partners in different cell types to induce 

completely different sets of terminal gene expression. The POU homeodomain 

transcription factor UNC-86 works in a similar manner. It synergistically collaborates 

with TTX-3 in the serotonergic motoneuron NSM, while it partners with the transcription 

CFI-1 to control the fate of the cholinergic inner labial neuron IL2 and the ring 

motoneuron URA. This work supports the concept that the same transcription factor can 

be reused in distinct cell types, and that it is the combination of different transcription 

factors expressed in the same cell that defines neuron-type specific terminal identities.  

I performed genetic analysis of the AIA and NSM terminal fate, dissected the cis-

regulatory information in AIA terminal genes, and discovered the cooperative activity 

between TTX-3 and UNC-86. Bhattacharya A and Gordon P performed genetic analysis 
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on IL2 and URA neurons. Nelson JC examined the morphology defects in NSM mutants. 

Abe N performed EMSA experiments. Lloret-Fernandez C, Maicas M and Flames N 

tested and assessed the requirement of the POU binding sites in UNC-86 responsive 

genes. 
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ABSTRACT
Transcription factors that drive neuron type-specific terminal
differentiation programs in the developing nervous system are often
expressed in several distinct neuronal cell types, but to what extent
they have similar or distinct activities in individual neuronal cell types
is generally not well explored. We investigate this problem using, as
a starting point, the C. elegans LIM homeodomain transcription factor
ttx-3, which acts as a terminal selector to drive the terminal
differentiation program of the cholinergic AIY interneuron class. Using
a panel of different terminal differentiation markers, including
neurotransmitter synthesizing enzymes, neurotransmitter receptors
and neuropeptides, we show that ttx-3 also controls the terminal
differentiation program of two additional, distinct neuron types,
namely the cholinergic AIA interneurons and the serotonergic NSM
neurons. We show that the type of differentiation program that is
controlled by ttx-3 in different neuron types is specified by a distinct
set of collaborating transcription factors. One of the collaborating
transcription factors is the POU homeobox gene unc-86, which
collaborates with ttx-3 to determine the identity of the serotonergic
NSM neurons. unc-86 in turn operates independently of ttx-3 in the
anterior ganglion where it collaborates with the ARID-type
transcription factor cfi-1 to determine the cholinergic identity of the
IL2 sensory and URA motor neurons. In conclusion, transcription
factors operate as terminal selectors in distinct combinations in
different neuron types, defining neuron type-specific identity features.

KEY WORDS: Caenorhabditis elegans, Homeobox, Neuron
differentiation

INTRODUCTION
The development of the nervous system is a multistep process that
employs a series of sequentially acting regulatory factors that
successively restrict and determine cellular fates. During the process
of terminal differentiation, individual neuron types acquire specific,
hard-wired features that are maintained by the neuron type
throughout the life of the animal. A number of transcription factors
have been identified that initiate and maintain specific terminal
differentiation programs in the developing nervous system (Hobert,
2011). For example, in mouse, the Nurr1 (Nr4a2) transcription
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factor initiates and maintains the terminal differentiation program of
dopaminergic neurons in the midbrain (Smidt and Burbach, 2009),
whereas the Pet1 transcription factor initiates and maintains the
terminal differentiation program of serotonergic neurons (Liu et al.,
2010). However, few neuronal transcription factors are expressed
exclusively in only one specific neuronal cell type (Gray et al., 2004;
Lein et al., 2007). For example, in addition to being expressed in
midbrain dopaminergic neurons, Nurr1 is expressed in other non-
dopaminergic neuronal cell types in which its function is not well
understood, such as the adult olfactory bulb, specific cortical areas
and the hippocampus (Zetterström et al., 1996). The expression of a
given transcription factor in distinct neuronal populations poses the
fundamental question of whether there are underlying common
themes in the activity of the transcription factor in distinct neuronal
cell types.

We have undertaken a systematic, in-depth comparison of the
activity of two transcription factors in the development of several
distinct neuronal cell types in the nematode C. elegans, examining
whether there are indeed conceptual similarities in the activities of
a given transcription factor in distinct neuron types. We used, as a
starting point, a member of the LIM homeobox gene family, an
ancient family of neuronal patterning genes that display complex
expression patterns in the nervous system of many different species,
from invertebrates to vertebrates (Hobert and Westphal, 2000;
Simmons et al., 2012; Srivastava et al., 2010). One unifying theme
is their expression in terminally differentiating neurons (Hobert and
Ruvkun, 1998; Moreno et al., 2005). We focus here on the ttx-3 LIM
homeobox gene, which is the sole C. elegans member of the Lhx2/9
subclass of LIM homeobox genes. In vertebrates, Lhx2 is expressed
in multiple neuronal cell types and is required for the differentiation
of olfactory sensory neurons (Hirota and Mombaerts, 2004;
Kolterud et al., 2004), the specification of cortical neuron fate
(Mangale et al., 2008) and the differentiation of thalamic neurons
(Peukert et al., 2011). Whether there is a common theme in the
function of Lhx2 in these distinct neuronal cell types is not known.

The C. elegans Lhx2/9 ortholog ttx-3 is exclusively expressed in
a small number of neurons in distinct head ganglia (Altun-Gultekin
et al., 2001). ttx-3 null animals display broad differentiation defects
in the cholinergic AIY interneuron class. AIY interneurons of ttx-3
null mutants are generated and still express pan-neuronal features,
but fail to express scores of terminal identity markers that define the
functional properties of AIY, including genes required to synthesize
and package acetylcholine, genes encoding neuropeptide receptors,
various types of ion channels and many others (Altun-Gultekin et
al., 2001; Hobert et al., 1997; Wenick and Hobert, 2004). TTX-3
exerts this control through direct binding to a cis-regulatory motif
shared by all of its target genes. ttx-3 expression is turned on in the
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types
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neuroblast that generates AIY and its expression is maintained
throughout the life of the neuron through an autoregulatory feedback
loop (Bertrand and Hobert, 2009) to ensure persistent expression of
its target genes. A number of transcription factors have been
described in the C. elegans nervous system that display similar
broad-ranging effects on the terminal differentiation programs
executed by the neurons in which they are expressed. These
transcription factors have been called ‘terminal selectors’ (Hobert,
2008; Hobert, 2011). It is still an open question how broadly the
terminal selector concept applies throughout the nervous system;
that is, how common it is that many distinct and functionally
unrelated identity features of a specific neuron type are directly co-
regulated by a transcription factor or a combination of transcription
factors.

Here, we investigate the role of ttx-3 in two additional neuron
classes in which it is normally expressed, namely the cholinergic
AIA interneuron class and the serotonergic NSM neuron class. We
find in all three neuron classes that there is a common theme of ttx-
3 function in that it is broadly required to induce many distinct and
functionally unrelated terminal identity features of the respective
neuron class. Yet the downstream targets of ttx-3 in these neuron
classes are distinct and are determined by the cooperation of ttx-3
with a distinct set of transcription factors in different neuron classes.

One of these factors is the POU homeobox gene unc-86, which is
required together with ttx-3 to control the identity of the serotonergic
NSM neurons. unc-86 in turn cooperates with the ARID-type
transcription factor cfi-1 to control many terminal identity features
of the cholinergic IL2 sensory and URA motor neurons. Our studies
therefore provide further support for the terminal selector concept
and show that, in combination with other regulatory factors, one
factor can serve as terminal selector in distinct neuronal cell types
regulating distinct neuronal differentiation programs.

RESULTS
Expression pattern of ttx-3 in the C. elegans larval and
adult nervous system
A ttx-3 reporter gene that contains the ttx-3 locus together with a few
kilobases upstream but no downstream sequences (ttx-3promA::gfp;
Fig. 1) was previously shown to be continuously expressed in five
distinct neuronal cell types: the cholinergic AIY and AIA
interneuron classes, the ASI and ADL chemosensory neuron classes
and a previously uncharacterized neuronal pair in the pharyngeal
nervous system (Altun-Gultekin et al., 2001). Transient expression
was observed in the AIN and SMDD neurons at embryonic stages
(Bertrand and Hobert, 2009). A fosmid reporter construct, which
contains more than 30 kb surrounding the ttx-3 locus and which

Fig. 1. Expression pattern of the C. elegans ttx-3 LIM homeobox gene. (A) ttx-3 expression constructs and summary of neuronal expression pattern. The
promA::gfp and promB::gfp constructs were described previously (Altun-Gultekin et al., 2001; Wenick and Hobert, 2004) and are shown here for comparison
only. (B) ttx-3 fosmid expression (wgIs68) in first larval stage animals and in adult animals. D-V, dorsoventral. White asterisks indicate gut autofluorescence.
(C) The seventh intron of the ttx-3 locus contains cis-regulatory elements driving reporter gene expression in AIA and NSM neurons. These regulatory
elements do not depend on ttx-3. Expression is shown in adult animals. D
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rescues the AIY differentiation defect of ttx-3 mutant animals,
mirrors the expression of the smaller, locus-restricted reporter
construct in the AIY, the AIA, the AIN and the pharyngeal neuron
class (Fig. 1). Based on position, morphology and colabeling with
the NSM marker mgl-1::mCherry, we identified the pharyngeal
neurons that express ttx-3 as the NSM neuron pair. The NSM
neurons are serotonergic, neurosecretory cells that are thought to be
involved in sensing food (Albertson and Thomson, 1976; Harris et
al., 2011; Horvitz et al., 1982).

There are also notable differences in the expression pattern of the
fosmid reporter and the smaller reporters. First, expression in the
AIN neurons is maintained throughout development with the fosmid
reporter, whereas it is restricted to embryos with smaller reporters
(Bertrand and Hobert, 2009). Second, the expression in amphid
sensory neurons is markedly different. In larval and adult animals,
the fosmid reporter is expressed in the ASK neuron class, whereas
the smaller reporters are expressed in the ADL and ASI sensory
neurons (Fig. 1).

Previous studies have shown that ttx-3 expression in the AIY
interneuron pair is controlled by a distal initiator element ~1 kb
upstream of the ttx-3 locus and a maintenance element in the second
intron of the ttx-3 locus (Bertrand and Hobert, 2009; Wenick and
Hobert, 2004). We find that the expression of ttx-3 in the NSM and
AIA is controlled via regulatory elements present in the seventh
intron of the ttx-3 locus (Fig. 1). As mentioned above, ttx-3
expression is maintained throughout the life of the AIA and NSM
neurons, but maintained expression of a ttx-3 reporter gene construct
(ttx-3intron7::gfp; Fig. 1A) in the AIA and NSM neuron types does not
require ttx-3 gene activity (Fig. 1C).

ttx-3 controls the differentiation program of AIA
interneurons
We focused our analysis of ttx-3 mutants on the cholinergic AIA
interneurons and the serotonergic NSM neurons, which both
continuously express ttx-3 throughout their lifetime. We have
previously reported that expression of the marker of cholinergic
identity, unc-17 (vesicular ACh transporter), as well as the
expression of an orphan G protein-coupled receptor (GPCR), sra-
11, is reduced in the AIA neurons of ttx-3 mutants (Altun-Gultekin
et al., 2001). We extended this analysis by examining the expression
of seven additional markers of terminal AIA fate: the choline
reuptake transporter encoded by cho-1; the metabotropic glutamate
receptor mgl-1; the ionotropic glutamate receptor glr-2; the
neuropeptides flp-2 and ins-1; the receptor tyrosine kinase scd-2; and
the receptor guanylyl cyclase gcy-28d. Each of these markers is
expressed in terminally differentiated AIA interneurons and several
of them have previously been implicated in AIA interneuron
function (Shinkai et al., 2011; Tomioka et al., 2006). The expression
of each of these seven markers is affected in the AIA neurons of ttx-
3 mutants (Fig. 2). Their expression in other neuron types is
unaffected in ttx-3 mutants, with the exception of two markers that
are also downregulated in NSM neurons (mgl-1, scd-2, as described
below). ttx-3 is likely to act cell-autonomously since the AIA
differentiation defects are rescued in transgenic ttx-3 mutant animals
that express ttx-3 cDNA under control of the ins-1 promoter
(supplementary material Table S1).

AIA neurons remain present in the ttx-3 null mutant, as assessed
by the weak but recognizable expression of some terminal
differentiation genes (Fig. 2). However, their normally unipolar
neurite morphology appears disrupted; ectopic branches can be
observed to emanate from the cell body and the main neurite
appears blebbed in ttx-3 mutants (supplementary material Fig. S2).

The AIY interneurons, which have a unipolar axon morphology
similar to that of AIA interneurons in wild-type animals, display
similar morphological defects in ttx-3 mutants (Hobert et al., 1997).
The expression of terminal identity markers that label several
distinct neuron types that are lineally related to AIA is not altered
(data not shown) (Altun-Gultekin et al., 2001), suggesting that the
AIA neuron pair might remain in an undifferentiated state, rather
than switching to an alternate fate. Based on a more extensive cell
fate marker analysis, a similar conclusion was previously drawn
about the fate of the AIY neuron class in ttx-3 mutants (Altun-
Gultekin et al., 2001). Taken together, our fate marker and
morphological analyses indicate that ttx-3 broadly affects the AIA
terminal differentiation program. These effects are comparable to the
previously described broad effects that loss of ttx-3 has on the
terminal differentiation of AIY interneurons.

A shared cis-regulatory signature of AIA-expressed terminal
identity features
On a mechanistic level, ttx-3 operates in a distinct manner in the
AIA versus AIY neurons since it operates with distinct co-factors
and through distinct cis-regulatory elements. The co-factor of ttx-3
in AIY, the ceh-10 homeobox gene (Altun-Gultekin et al., 2001), is
not expressed in AIA neurons, and AIA neurons display no
differentiation defects in ceh-10 null mutants (two markers tested).
Moreover, the cis-regulatory motifs through which ttx-3 acts to
control AIY versus AIA identity are distinct. In the AIY neurons,
ttx-3 acts on its many target genes through a cis-regulatory motif,
termed the ‘AIY motif’, that provides a cooperative binding site for
a TTX-3–CEH-10 heterodimer (Wenick and Hobert, 2004).
Mutation of the AIY motif in a locus that is expressed in AIY and
AIA neurons, the cholinergic cho-1 locus, results in a severe
reduction in expression in the AIY interneurons but not in the AIA
interneurons (Fig. 3A).

In the AIA neurons, by contrast, ttx-3 acts through a distinct cis-
regulatory signature, which we deciphered through a mutational
analysis of the cis-regulatory control regions of three AIA-
expressed, ttx-3-dependent terminal differentiation genes: mgl-1, ins-
1 and cho-1. We generated transgenic animals that express nested,
shorter versions of these three reporters and identified a 259 bp
element in the cho-1 promoter, a 74 bp element in the mgl-1
promoter and a 68 bp element in the ins-1 promoter that are
sufficient to direct gfp expression to AIA neurons (Fig. 3A-C).
Examining these elements for common patterns, we noted that all
these elements contain a shared and phylogenetically conserved
G(A/G)ATC motif (Fig. 3D). Mutating this motif in the context of
any of the three promoters resulted in a reduction of AIA expression
of the respective reporter (Fig. 3A-C). In the case of mgl-1, two
G(A/G)ATC motifs are present in the minimal promoter; mutation
of either causes an intermediate reduction in reporter gene
expression, and mutation of both motifs results in complete loss of
expression (Fig. 3A-C).

Since G(A/G)ATC does not match the consensus binding site for
a LIM homeodomain transcription factor such as TTX-3, we also
examined the minimal reporters for the presence of conserved TAAT
motifs, which comprises the core consensus site for LIM
homeodomain transcription factors (Berger et al., 2008). We indeed
found several TAAT motifs in the three cis-regulatory modules and
for each of them we identified a TAAT motif that, when mutated,
affected reporter gene expression in vivo (Fig. 3A-C). These TAAT
motifs can be assembled into a larger sequence matrix, TAATTNGA
(Fig. 3D). In two cases, mutation of the TAATTNGA alone affected
reporter gene expression, whereas in the third case (cho-1) a D

ev
el

op
m

en
t

62



425

RESEARCH ARTICLE Development (2014) doi:10.1242/dev.099721

complete loss of expression can only be observed upon
simultaneous mutation of both the GAATC motif and the TAAT-
containing motif (Fig. 3A). The residual AIA expression of a cho-1
reporter construct in which the GAATC motif is mutated, but the
TAAT motif is left intact, is abolished in ttx-3 mutants (data not
shown), consistent with ttx-3 operating through the TAAT motif.

We examined whether the TAATTNGA motif is indeed a TTX-3
binding site using gel shift assays with bacterially produced TTX-3

protein and probes derived from the mgl-1 and cho-1 locus. We found
that TTX-3 is able to bind these sites in vitro (Fig. 3E). Deletion of the
TAAT site that is required for reporter gene expression in vivo resulted
in the loss of TTX-3 binding in vitro (Fig. 3E).

The combination of G(A/G)ATC and TAAT motifs might define
a cis-regulatory signature that is generally required for gene
expression in AIA neurons, since we found a combination of these
two motifs to be present in the cis-regulatory control regions of the

Fig. 2. ttx-3 affects the terminal differentiation of AIA
neurons. (A) Schematic representation of the AIA
interneuron pair [reproduced with permission (Altun et al.,
2002-2013)]. (B) The expression of terminal differentiation
markers of AIA identity is affected in ttx-3 mutants.
Reporter gene arrays were crossed into ttx-3(ot22) null
mutants. Positions of AIA neurons are outlined (dashed
circles). The fraction of animals that show the indicated
phenotype is presented in the bar charts. Transgenic
arrays are: otIs317 for mgl-1, otIs326 for ins-1, otIs379 for
cho-1, otEx4687 for glr-2 and otEx5056 for flp-2 (see
Materials and methods for more detail on the arrays; the
Ex[gcy-28d::gfp] and Ex[scd-2::gfp] arrays were kindly
provided by Takeshi Ishihara). Anterior is up in all panels. 
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other four ttx-3-dependent terminal AIA markers (Fig. 3D). Taken
together, these data show that AIA identity features are co-regulated
by a shared cis-regulatory signature that is controlled by TTX-3 and
an as yet unknown co-factor.

ttx-3 controls the terminal differentiation of serotonergic
NSM neurons
We next analyzed the effect of loss of ttx-3 on the terminal
differentiation program of the serotonergic NSM neurons, a neuron
type that has not previously been examined in ttx-3 mutants. Many
terminal identity markers of NSM have been described, including
the battery of genes that are required to synthesize, package and
reuptake serotonin: tph-1/TPH (tryptophan hydroxylase), cat-
4/GTPCH (GTP cyclohydrolase), cat-1/VMAT (vesicular
monoamine transporter), bas-1/AAAD (aromatic amino acid
decarboxylase) and mod-5/SERT (serotonin reuptake transporter)
(Fig. 4A) (Jafari et al., 2011; Ranganathan et al., 2001; Sze et al.,
2002). Previous expression analysis of a vesicular glutamate
transporter, eat-4, suggested that NSM might use the
neurotransmitter glutamate (Lee et al., 1999). However, a fosmid-
based eat-4 reporter does not show expression in NSM neurons
(Serrano-Saiz et al., 2013) (supplementary material Fig. S1A).

To broaden the spectrum of available terminal markers, we
analyzed the expression of other C. elegans orthologs of enzymes

involved in monoaminergic transmitter metabolism (Fig. 4A) and
identified another NSM-expressed terminal marker, ptps-1
(Fig. 4C; supplementary material Fig. S3). In addition to
examining these serotonin (5HT)-related markers, we also
examined the expression of three metabotropic neurotransmitter
receptors (mgl-1, mgl-3, dop-3), three neuropeptides (nlp-13, flp-
4, nlp-3), a glycoprotein hormone alpha subunit (flr-2) and a
receptor tyrosine kinase (scd-2). All of these genes are expressed
throughout the life of the NSM neurons. As mentioned above, scd-
2 and mgl-1 are also expressed in AIA neurons, where their
expression is affected by ttx-3. We find that the expression of five
of these 14 NSM terminal identity markers is either partially or
completely eliminated in the NSM neurons of ttx-3 null mutants
(Fig. 4C, Fig. 5, Table 1). ttx-3 is likely to act cell-autonomously
since we can rescue the NSM differentiation defects by driving ttx-
3 cDNA under the control of a cat-1 promoter fragment, which is
expressed in a subset of monoaminergic neurons of C. elegans
(supplementary material Table S1).

The POU homeobox gene unc-86 also controls NSM identity
We recently reported that the effects of the loss of a terminal selector
type transcription factor in dopaminergic neurons can be partially
compensated for by other, co-expressed terminal selectors
(Doitsidou et al., 2013). Therefore, we considered the possibility that

Fig. 3. Co-regulation of AIA-expressed genes by two cis-regulatory motifs. (A-C) Mutational dissection of the cis-regulatory elements of three AIA-
expressed terminal identity markers. (D) Position weight matrix of the two motifs required for AIA expression, based on the motifs from ins-1, cho-1 and mgl-1
and orthologs in other nematode species. Perfect (filled box) and imperfect (stippled box) matches to the two cis-regulatory motifs [blue, G(A/G)ATC; green,
TAATTNGA] in other AIA terminal identity markers are shown on the right. (E) TTX-3 binds to cho-1 and mgl-1 regulatory elements containing the HD (TAAT)
motif. Deletion of the HD motif abolishes binding. EMSA was performed with 250 nM and 750 nM TTX-3.
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Fig. 4. The effect of unc-86 and ttx-3 on the serotonergic identity of NSM neurons. (A) The 5HT pathway including tetrahydrobiopterin biosynthesis genes
(Deneris and Wyler, 2012). ‘?’ indicates that a unique homolog of SR could not be identified in the worm genome. (B) Schematic representation of the NSM
interneuron pair [reproduced with permission (Altun et al., 2002-2013)]. (C) The expression of serotonergic identity features of NSM (dashed circles) is affected
in unc-86(n846), ttx-3(ot22) or unc-86(n846); ttx-3(ot22) double-null mutants. Reporter gene arrays were crossed into the respective mutant backgrounds.
Transgenic arrays are: zdIs13 for tph-1; otEx4781 for mod-5; otIs225 for cat-4; otEx5280 for ptps-1; otIs226 for bas-1; and otIs224 for cat-1 (see Materials and
methods for more detail on the arrays). Images are only shown for mutant genotypes with effects on reporter expression. (D) Serotonin antibody staining. Thirty
animals were scored for each genotype. In the double mutant, no animal showed staining in NSM (circled), whereas in the other genotypes all animals showed
staining. D
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the lack of an impact of ttx-3 loss on nine out of 14 NSM markers
could be due to the activity of compensatory terminal selector type
transcription factors. We sought to identify such a factor, focusing
on two homeodomain transcription factors previously shown to be
expressed in NSM, namely the empty spiracles homolog ceh-2 and
the POU homeobox gene unc-86 (Aspöck et al., 2003; Finney and
Ruvkun, 1990). We observed no NSM differentiation defects in ceh-
2 null animals (data not shown), but we observed striking NSM
differentiation defects in unc-86 mutants. Loss of unc-86 was
previously shown to affect the expression of tph-1 and cat-1 in NSM
neurons, but without effect on 5HT antibody staining (Sze et al.,
2002). Other differentiation features of NSM neurons had not
previously been examined in unc-86 mutants. Upon examining the
expression of all 14 markers of NSM fate in unc-86 null mutants,

we found that the expression of eight is partially or completely
eliminated (Figs 4, 5, Table 1).

To examine whether unc-86 directly affects the expression of
these terminal identity features, we analyzed the cis-regulatory
control regions of four of them: tph-1, bas-1, cat-1 and cat-4.
Through mutational analysis, we defined small (~200 bp) elements
that still yielded expression in the NSM neurons (Fig. 6) and, within
each of these elements, we identified predicted POU homeodomain
binding sites (Rhee et al., 1998). We introduced mutations into these
sites in the context of two loci (tph-1 and bas-1) and found that these
mutations resulted in a loss of reporter gene expression in vivo
(Fig. 6A,B). Gel shift analysis further confirmed that these POU
homeodomain sites indeed bind bacterially produced UNC-86
protein in vitro (Fig. 6E).

Fig. 5. The effect of unc-86 and
ttx-3 on other identity features of
NSM neurons. The expression of
other identity features of NSM is
also affected in unc-86(n846), ttx-
3(ot22) or unc-86(n846); ttx-3(ot22)
double-null mutants. Reporter gene
arrays were crossed into the
respective mutant backgrounds.
Transgenic arrays are: vsIs33 for
dop-3; otIs317 for mgl-1; otEx5163
for nlp-3; otEx5364 for mgl-3;
otEx5163 for nlp-13; otEx5055 for
scd-2; and otEx5363 for flr-2 (see
Materials and methods for more
detail on the arrays). Micrographs
are only shown for mutant
genotypes with effects on reporter
expression. Dashed circles indicate
the position of NSM neurons. See
also Table 1. 
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unc-86 cooperates with ttx-3 to control NSM identity
We noted that terminal markers of NSM identity that were severely
affected in unc-86 mutants tended to be those that were weakly or
unaffected in ttx-3 mutants; vice versa, markers unaffected in ttx-3
mutants tended to be affected in unc-86 mutants (Table 1). Even
though this observation might simply indicate that unc-86 and ttx-3
act completely independently of one another, we considered the
possibility that unc-86 and ttx-3 might collaboratively control NSM
identity but that their relative importance may be distinct for
different target genes. To investigate this possibility, we examined
unc-86; ttx-3 double-null mutants and found that markers that are
either partially or unaffected in ttx-3 and unc-86 single mutants are
more strongly affected in the double mutant (Figs 4, 5, Table 1). This
also holds for 5HT antibody staining, which is not affected in either
single mutant but completely abrogated in the ttx-3; unc-86 double
mutant (Fig. 4D), probably owing to the combined effect that both
genes have on the expression of the 5HT reuptake transporter mod-
5. As summarized in Table 1, nine of the 15 tested identity features
(14 reporter genes and 5HT antibody staining) are affected by both
ttx-3 and unc-86, with effects either visible in both single mutants,
or as a non-additive, synergistic effect revealed in the double mutant.
As described below, there are also synergistic effects of ttx-3 and
unc-86 on NSM morphology. In six of the 15 cases, either ttx-3 or
unc-86 already has completely penetrant effects (Table 1). Taken
together, these data argue that unc-86 and ttx-3 jointly control
terminal NSM differentiation. The mechanistic basis of the
cooperation is unclear at present because we have so far not been
able to identify functional TTX-3 binding sites in terminal NSM
identity marker genes.

To further examine potential interactions of unc-86 and ttx-3, we
investigated whether they affect each others expression. We find that
continuous expression of unc-86 in NSM neurons depends on unc-
86 itself [autoregulation of unc-86 was also previously noted
(Baumeister et al., 1996)], but not on ttx-3 (supplementary material
Fig. S1B,C). Vice versa, ttx-3 expression in NSM neurons is not
affected in unc-86 or in unc-86; ttx-3 mutants (data not shown).

unc-86 and ttx-3 affect axonal arborization and presynaptic
specializations
Apart from affecting the expression of terminal identity markers,
loss of unc-86 and ttx-3 also results in specific effects on the
morphology of the NSM neurons. During embryonic stages, these

neurons normally extend a neurite posteriorly toward the nerve ring,
which then bifurcates to form a ventral and a dorsal neurite (Axäng
et al., 2008) (Fig. 4B). We observe that in unc-86(n846) mutants the
NSM somas are correctly positioned but there are significant defects
in outgrowth of the ventral neurite (61% of animals show outgrowth
defects; n=31). By contrast, in ttx-3(ot22) mutants, the primary
defect observed in ventral neurite outgrowth is the formation of
aberrant bifurcations (41% of animals show such defects; n=39).
Both ttx-3 and unc-86 single mutants also show defects in dorsal
axon termination [25% (n=32) of ttx-3 mutants and 29% (n=34) of
unc-86 mutants].

In early larval stages, ventral NSM neurites begin to extend
elaborate arbor structures onto the nerve ring target field (Axäng et
al., 2008). These axon arborizations require the NSM-expressed
netrin receptor UNC-40/DCC, which is tightly localized to puncta
within the main shaft of the NSM neurite and at the tips of axon
arbors (Nelson and Colón-Ramos, 2013). These arbor structures
persist into the adult stage and contain presynaptic sites, as assessed
with a rab-3 marker (Nelson and Colón-Ramos, 2013). In ttx-3
mutants, these ultrastructural features are unaffected, but unc-86
mutants display a highly penetrant defect in axon arborization
(Fig. 7A,C). Furthermore, unc-86 mutants display defects in the
dynamic regulation of UNC-40 localization (Fig. 7B,D). In wild-
type animals, UNC-40::GFP is diffusely distributed at the L1 stage
and becomes localized to bright puncta in the NSM neurite and at
the tips of axon arbors as axons are arborizing at the L4 stage. By
the adult stage, UNC-40::GFP again becomes diffusely distributed.
However, a significant fraction of unc-86 mutant NSMs retain a
juvenile-like pattern of UNC-40 localization during the adult stage,
in which UNC-40::GFP remains localized to bright puncta (Fig. 7B).

We observe synergistic morphological defects in unc-86(n846);
ttx-3(ot22) double mutants. Ventral neurites never reach the middle
of the pharyngeal isthmus and are often truncated immediately
following the guidance decision to turn posteriorly (100% premature
ventral neurite termination, n=18; Fig. 7E). Furthermore, neurites
contain large anterior swellings not seen in wild-type animals (33%
contain additional anterior swellings, n=18; Fig. 7E). The
morphological appearance of NSM neurites in unc-86; ttx-3 mutants
is reminiscent of the normal morphology of M3 neurons (Albertson
and Thomson, 1976), which are lineally related to NSM (Sulston et
al., 1983). M3 neurons are glutamatergic (Lee et al., 1999) and we
indeed find that in unc-86 mutants the vesicular glutamate

Table 1. Summary of the effects of ttx-3 and unc-86 null mutants on terminal NSM identity markers  
Identity feature Function ttx-3(–) unc-86(–) unc-86(–); ttx-3(–) Interaction 

cat-1 5HT pathway wt dim off Synergism 
cat-4 5HT pathway dim wt very dim 
mod-5 5HT pathway wt wt off 
nlp-13 Neuropeptide wt dim off 
nlp-3 Neuropeptide wt wt off 
flr-2 Transmembrane wt wt dimmer 
scd-2 Kinase wt dim off 
flp-4 Neuropeptide dim wt stronger expression 
5HT antibody staining Neurotransmitter wt wt off 
bas-1 5HT pathway off dim n.d.  ? 

?  ptps-1 5HT pathway off  dim n.d.  
tph-1 5HT pathway wt off n.d.  ? 

?  mgl-3 GPCR wt off n.d.  
dop-3 GPCR wt off n.d.  
mgl-1 GPCR off wt n.d.  
gfp reporter (or antibody staining): wt, as bright as in wild-type animals; dim, dimmer than in wild type; off, no expression observed. 
n.d., not determined because single mutant already shows completely penetrant loss of expression. 
Gray shading indicates presence of defect. 

? 
?

Synergism
Synergism
Synergism
Synergism
Synergism
Synergism
Synergism
Synergism
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transporter eat-4 is ectopically expressed in NSMs (supplementary
material Fig. S1A).

unc-86 controls terminal differentiation of the cholinergic
IL2, URA and URB sensory, motor and interneurons
Apart from our description of unc-86 terminal selector function in
the serotonergic NSM neurons, unc-86 had previously been
described to broadly affect the terminal differentiation program of
other serotonergic (Sze et al., 2002) as well as glutamatergic
(Duggan et al., 1998; Serrano-Saiz et al., 2013) neurons. We asked
whether unc-86 might affect the terminal differentiation program of
neurons that use yet another neurotransmitter system. We turned to
the six IL2 sensory neurons that are involved in nictation behavior
(Lee et al., 2012). The IL2 neurons express unc-86 throughout their
lifetime and have been inferred to be cholinergic (Lee et al., 2012).
We corroborated the cholinergic identity of the IL2s by finding that

reporter fusions to the unc-17/cha-1 locus and to the choline
reuptake transporter cho-1 are expressed in IL2 neurons (Fig. 8A).
The expression of these two key markers of cholinergic identity is
eliminated in unc-86 mutants (Fig. 8A). Expression of the nicotinic
acetylcholine receptor subunit des-2 is also lost in the IL2 neurons
of unc-86 mutants (Treinin et al., 1998).

In addition to these cholinergic markers, we examined the
expression of other genes previously shown to be expressed in IL2
neurons, namely the unc-5 netrin receptor, the guanylyl cyclase gcy-
19, the kinesin klp-6 and the Notch ligand lag-2 (which is expressed
in IL2 neurons at the dauer stage) (Leung-Hagesteijn et al., 1992;
Ortiz et al., 2006; Ouellet et al., 2008; Peden and Barr, 2005). The
expression of all of these terminal markers of IL2 identity is
eliminated in IL2 neurons of unc-86 mutants (Fig. 8A). IL2 neurons
also fail to take up dye in unc-86 mutants (Tong and Bürglin, 2010),
suggesting morphological defects. The IL2 neurons are nevertheless

Fig. 6. Cis-regulatory analysis of NSM identity specification. (A-D) Dissection of the cis-regulatory elements of four NSM-expressed serotonin pathway
genes. All minimal cis-regulatory elements contain predicted POU sites. (E) EMSAs with UNC-86 protein on bas-1 and tph-1 regulatory elements. Mutated
POU sites are those that also disrupt reporter gene activity when deleted from the gene contexts of bas-1 and tph-1 (A). EMSA was performed with 10 nM and
30 nM UNC-86. Arrowhead indicates UNC86-bound DNA probe.
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generated in unc-86 mutants, as assessed by intact expression of the
pan-neuronal marker rab-3 and the pan-sensory marker osm-6 (50
animals were scored for each marker).

unc-86 is expressed in two additional cholinergic neuron classes
in the anterior ganglion besides the IL2 sensory neurons, namely the
URA motoneurons [which are synaptically connected to the IL2
neurons (White et al., 1986)] and the URB interneurons. We found
that cholinergic identity was also strongly affected in both URA 
and URB neurons of unc-86(n846) loss-of-function mutants
(supplementary material Fig. S4).

unc-86 cooperates with the ARID transcription factor cfi-1
to control IL2 and URA identity
Since none of the previously known co-factors of unc-86 [mec-3 for
touch neurons (Duggan et al., 1998) and ttx-3 for NSM neurons (this

paper)] is expressed in IL2, URA or URB neurons, unc-86 is likely
to act with another co-factor in IL2 neurons. cfi-1 is an ARID
transcription factor previously shown to be co-expressed with unc-
86 specifically in IL2 and URA neurons (Shaham and Bargmann,
2002). Loss of cfi-1 results in ectopic expression of identity markers
for the CEM neuron in IL2 and URA neurons (Shaham and
Bargmann, 2002), which prompted us to investigate whether cfi-1
might also positively control their cholinergic identity. We find that
the cholinergic identity of both IL2 and URA neurons is affected in
cfi-1(ky651) loss-of-function mutants, albeit not as strongly as in
unc-86 null mutants (Fig. 8A; supplementary material Fig. S4). To
investigate whether unc-86 and cfi-1 genetically interact, we
examined non-additive synergistic interactions of the two genes
using a hypomorphic unc-86 allele, n848. Animals carrying this
allele show mild IL2 and URA differentiation defects, but in

Fig. 7. unc-86 and ttx-3 affect NSM
morphology. (A) unc-86(n846) mutant adults
display shorter ventral neurites and fewer and
shorter axon arbors. mod-5p::gfp (olaEx1446)
is used to visualize NSM morphology. (B) UNC-
40::GFP localization (transgene: olaEx1448)
remains in a juvenile state in unc-86 mutant
animals. White arrows indicate UNC-40::GFP
puncta. (C) Quantification of the unc-86(n846)
arborization phenotype. Displayed is the
fraction of animals with clusters of arbors in the
nerve ring region in wild-type and unc-86(n846)
animals. The difference between wild type and
unc-86 is significant (*P<0.0001).
(D) Quantification of the unc-86(n846) UNC-
40::GFP localization phenotype. The fraction of
animals with multiple, bright UNC-40::GFP
puncta in the nerve ring region is displayed.
The difference between wild type and unc-86 is
significant (*P=0.0017). Error bars indicate 95%
confidence intervals. (E) unc-86(n846); ttx-
3(ot22) double mutants display numerous NSM
morphology defects, as visualized with flp-
4::gfp (olaEx1485). In all images, anterior is to
the left and ventral down. Asterisks indicate cell
bodies (A,B) or additional cell-body-like
swellings (E). Brackets denote the nerve ring
terminal field where arbors form. White arrows
indicate NSM neurites, red arrows and
asterisks denote other non-NSM structures.
Fisher’s t-test was used for statistical analysis.
Scale bars: 5 μm.
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combination with the cfi-1(ky651) mutant allele there are strong
synergistic, i.e. non-additive, defects in IL2 and URA differentiation
(Fig. 8A; supplementary material Fig. S4). We conclude that unc-86
and cfi-1 cooperate to control IL2 and URA identity.

DISCUSSION
Two main conclusions can be drawn from the data presented in this
paper. First, our data provide general support for the terminal
selector concept. Second, our data show that a given transcription

Fig. 8. unc-86 and cfi-1 control cholinergic IL2 neuron identity. (A) Animals are late L4 or young adults, with the exception of the lag-2::gfp transgenic
animals which are dauers. The differential importance of cfi-1 in the dorsal IL2DL/R and ventral IL2VL/R neurons versus the lateral IL2L/R neurons mirrors
morphological differences of the ventral versus lateral neurons, with the lateral neurons having a distinct spectrum of synaptic partners (White et al., 1986). See
also supplementary material Fig. S4. IL2 schematic reproduced with permission (Altun et al., 2002-2013). (B) Summary of terminal selector combinatorial
codes in head ganglia of C. elegans. Colors refer to neurotransmitter identities: green, serotonergic; red, cholinergic; yellow, glutamatergic. Support or blast
cells are in gray.
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factor can operate as a selector of terminal neuron identity in distinct
neuronal cell types and that this is achieved through cooperation
with distinct co-factors (summarized in Fig. 8B). In other words,
individual neuronal cell types use distinct combinatorial codes of
terminal selectors, and individual components of the code are reused
in distinct combinations in different cell types.

The terminal selector concept was initially proposed based on a
relatively small number of C. elegans transcription factor mutant
phenotypes (Hobert, 2008). In each of these mutant backgrounds, a
neuronal cell is born and expresses pan-neuronal features but fails
to adopt neuron type-specific identity features. Importantly, terminal
differentiation is very broadly affected in terminal selector mutants,
such that not only functionally linked features (such as enzymes and
transporter in a neurotransmitter synthesis/transport pathway), but
also seemingly completely independent differentiation features that
have no obvious biochemical connection (e.g. sensory receptors,
neuropeptides and ionotropic neurotransmitter receptors) fail to be
expressed. That the removal of an individual transcription factor
results in such broad defects could not necessarily be assumed since
transcriptomic approaches generally show that individual cell types
expresses several dozen transcription factors (e.g. Etchberger et al.,
2007). This could be interpreted to mean that the identity features
of a neuron are regulated in a piecemeal manner, rather than being
‘mastered’ by a single transcription factor or a small combination
thereof (Hobert, 2011). Two major questions raised by the terminal
selector concept were how broadly it applies to different cell types
in the C. elegans nervous system and how it applies to transcription
factors expressed in distinct neuron types.

Here, we have shown that the terminal differentiation programs
of very distinct neuron types – a cholinergic interneuron (AIA), a
serotonergic sensory/motor neuron (NSM) and cholinergic sensory
and motor neuron classes (IL2 and URA) – are controlled by distinct
combinatorial codes of transcription factors. These factors regulate
many distinct identity features of these distinct neuron types,
ranging from neuropeptides to neurotransmitter synthesis pathway
genes to neurotransmitter receptors and other signaling molecules.

In the case of the cholinergic AIA interneuron, we found that the
expression of every tested terminal differentiation marker is affected
in ttx-3 mutants. Since the available AIA marker collection
essentially represents a random snapshot of terminal markers that
characterize AIA identity, one might extrapolate the regulatory
impact of ttx-3 on each one of these genes to the many hundreds, if
not thousands, of genes that are expressed in AIAs, such that ttx-3
is likely to affect a very large number of them. The estimated very
broad effect of ttx-3 on AIA identity is consistent with what we
observed for the cholinergic AIY interneuron, in which ttx-3
mutation also affects the expression of all known identity features
(Altun-Gultekin et al., 2001; Wenick and Hobert, 2004). Even
though both neuron types have similar morphologies, are
cholinergic, and are directly postsynaptic to various sensory neurons,
AIY and AIA have different functions (Hobert et al., 1997; Shinkai
et al., 2011; Tomioka et al., 2006), connect to a different spectrum
of synaptic partners (White et al., 1986) and express distinct gene
batteries. Yet, in both cases, ttx-3 very broadly affects the
differentiation of each neuron type.

The distinct target gene specificities of ttx-3 in AIA and AIY
neurons can be explained by neuron type-specific co-factors and by
ttx-3 acting through distinct cis-regulatory motifs. AIY-expressed
genes display a characteristic cis-regulatory signature that is
recognized by a combination of the TTX-3 and CEH-10
homeodomain proteins (Wenick and Hobert, 2004). As we have
shown here, AIA-expressed genes share a distinct cis-regulatory

signature that is composed of two separate motifs located in close
proximity, one a TTX-3 binding site and the other a binding site for
a presumptive TTX-3 co-factor. This is analogous to the situation in
the AIY interneuron class, in which TTX-3 and CEH-10 operate
through a bipartite motif (the ‘AIY motif’) composed of a TTX-3
and a CEH-10 binding site (Wenick and Hobert, 2004). Genes that
are expressed in both AIY and AIA neurons (e.g. cho-1) contain a
modular assembly of both the AIY and AIA cis-regulatory signature.

Similar to the ttx-3-dependent control of the central cholinergic
interneurons AIY and AIA, the mouse LIM homeobox gene Lhx7 is
required for the terminal differentiation of cholinergic striatal
interneurons (Lopes et al., 2012). As with other terminal selector
transcription factors, Lhx7 function appears to be continuously
required to maintain cholinergic identity. Co-factors that operate
together with Lhx7 are currently not known. Lhx7 is expressed in
many other neurons in the CNS. It will be interesting to determine
whether Lhx7 also operates as a terminal selector in these other
neuron types.

ttx-3 activity is not restricted to cholinergic neurons. We find that
ttx-3 is also a key regulator of serotonergic neuron identity. The
activity of ttx-3 in the serotonergic NSM neuron class is, however,
distinct from that of AIA and AIY. Whereas the expression of
several NSM-expressed effector genes is completely eliminated in
ttx-3 mutants, the expression of some effector genes is only partially
affected or not affected at all. In cases in which only partial or no
effect was observed, joint removal of another homeobox gene, unc-
86, resulted in much stronger or complete loss of effector gene
expression. Vice versa, the expression of effector genes that are
unaffected in expression in unc-86 mutants is lost in either ttx-3
mutants or in the ttx-3; unc-86 double mutant. Taken together,
elimination of both of the POU/LIM homeobox genes unc-86 and
ttx-3 has profound effects on NSM identity, paralleling the profound
effect that another POU/LIM homeobox combination (unc-86 and
mec-3) has on touch neuron differentiation (Duggan et al., 1998).
How unc-86 and ttx-3 interact to control NSM differentiation is
currently unclear. Both genes are continuously expressed in NSM
neurons, but do not regulate the expression of each other. Based on
the synergistic nature of the effect of joint ttx-3 and unc-86 removal
on the expression of some target genes (no or limited effect in single
mutants, complete loss in double mutant), we propose that both
transcription factors act jointly on common target gene promoters.
For some target genes, the loss of one regulatory factor can be
completely or partly compensated for by the other regulatory factor;
in other cases, such compensation is not possible. unc-86 and ttx-3
might therefore not always act in a strict cooperative sense, but
rather act independently on target gene promoters. There is already
a notable precedent for such a mechanism, as we recently found that
a combination of three different transcription factors controls
dopaminergic neuron identity. For some target genes, individual
transcription factor mutants display very limited effects, but double
mutants strongly affect target gene expression (Doitsidou et al.,
2013). In the case of NSM, we cannot however rule out the
possibility that some genes are exclusively regulated by unc-86
whereas others are exclusively regulated by ttx-3.

Apart from demonstrating ttx-3 terminal selector function in
distinct neuron types, we have also shown here that the POU
homeobox gene unc-86 can similarly act as a terminal selector in
distinct neuron types. A role of unc-86 in the differentiation of
serotonergic and glutamatergic touch neurons has been described
previously (Desai et al., 1988; Duggan et al., 1998; Sze et al., 2002;
Serrano-Saiz et al., 2013). We show here that unc-86 also controls
the terminal differentiation programs of three distinct cholinergic D
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neuron types. Two of these cholinergic neuron types are synaptically
connected and form a simple sensory-to-motor circuit (White et al.,
1986). The role of unc-86 in controlling cholinergic IL2 sensory
neuron specification is reminiscent of, and might even be
homologous to, the function of the POU homeobox gene acj6 in
controlling expression of the cholinergic gene locus in Drosophila
olfactory neurons (Lee and Salvaterra, 2002). The ARID-type
transcription factor cfi-1 cooperates with unc-86 to control the
cholinergic identity of IL2 and URA neurons. Although neuronal
differentiation functions have been reported for the cfi-1 homolog
dead ringer (retained – FlyBase) in Drosophila (Ditch et al., 2005),
the functions of vertebrate orthologs (Arid3 genes) in the nervous
system remain to be explored.

MATERIALS AND METHODS
Strains and transgenes
For a list of strains and transgenes and notes on their generation see
supplementary material Table S2.

Serotonin antibody staining
Young adult animals were fixed in 4% paraformaldehyde overnight and then
treated with 5% β-mercaptoethanol overnight followed by 1000 units/ml
collagenase (Sigma-Aldrich) treatment. Rabbit anti-serotonin whole serum
(Sigma-Aldrich, S5545) was used at 1:100 dilution. Worms were then
washed and incubated with Alexa Fluor 555 donkey anti-rabbit IgG (1:1000;
Life Technologies, A-31571).

Cis-regulatory analysis
DNA sequences were subcloned into pPD95.75 expression vector
(Addgene). For some smaller constructs, PCR products were directly
amplified from subcloned constructs that have the same 3′ end of the
promoter sequences. DNAs for injection were PCR amplified to eliminate
vector backbone, gel purified and then injected as complex arrays (10 ng/μl)
with digested rol-6(d) (3 ng/μl) as injection marker, or plasmid mix was
directly injected [50 ng/μl together with 100 ng/μl rol-6(d)].

Gel shift analysis
Full-length unc-86 cDNA was cloned into the pET-21b His tag expression
vector (EMD Millipore) and transformed into BL21(DE3) pLysS bacteria
(Novagen). Protein expression was induced using 1 mM IPTG for 4 hours
at 37°C and batch purified using Ni-NTA resin (Qiagen) under denaturing
conditions as described (Wenick and Hobert, 2004). TTX-3 was purified and
electrophoretic mobility shift assays (EMSAs) were performed as described
(Wenick and Hobert, 2004). Probe sequences are listed in supplementary
material Table S3.
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Suppl. Figure 1: Analysis of the NSM neurons.
A: A fosmid reporter of the eat-4 locus was kindly provided by E. Serrano and will be published elsewhere.
B: A unc-86 fosmid reporter construct is expressed in the NSM neurons of adult animals.
C: A cis-regulatory element from the unc-86 locus drives expression in NSM and this expression depends on unc-86.
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Suppl. Figure 2: AIA morphology in wildtype and ttx-3(ot22) mutant animals.
AIA morphology was visualized with ins-1::gfp (otIs326). Left panels shows AIA morphology schematically. White triangles 
in the gfp images indicate one of the main axons (normal axon). White arrows indicate the ectopic branching from the cell 
body in ttx-3 mutants. Note also the blebbing of the main axon.
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Suppl. Figure 3: BH4 pathway reporters.
Reporter genes and overview of expression pattern of BH4 pathway genes. Expression patterns were observed with 
multiple lines.
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Suppl. Figure 4: unc-86 controls the identity of the cholinergic URA and URB neurons.
A: unc-86 and cfi-1 affect URA identity. Lateral views (anterior to left) are shown. Bar graphs indicate average number of 
cells expressing gfp in the four URA neurons.
B: unc-86, but not cfi-1 affects URB identity as assessed with two different unc-86 allele, n846 and n848. Lateral views 
(anterior to left) are shown. Bar graphs indicate average number of cells expressing gfp in the two URB neurons.
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Table S1. Rescue of NSM and AIA differentiation defects of ttx-3 mutant animals 
 

 
% animals expressing 
mgl-1::mcherry in NSM 

% animals expressing 
mgl-1::mcherry in AIA 

n 

wild type 100 100 >100 
ttx-3(ot22)  0 0 >100 
    
ttx-3(ot22); Ex[cat-1prom::ttx-3cDNA] line1  92 0 36 
ttx-3(ot22); Ex[cat-1prom::ttx-3cDNA] line2  89 0 37 
    
ttx-3(ot22); Ex[ins-1prom::ttx-3cDNA] line1  0 79 38 
ttx-3(ot22); Ex[ins-1prom::ttx-3cDNA] line2  0 58 36 
ttx-3(ot22); Ex[ins-1prom::ttx-3cDNA] line3  0 79 38 

 
Injection marker: rol-6(d). Note that the ins-1 promoter is still weakly expressed in ttx-3 mutants and can hence 
be used to drive ttx-3 in ttx-3 mutants. 
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Table S2. Strains and transgenes used in this study 
Strain/Array  Notes 
ttx-3(ot22) Premature stop before the homeobox (Altun-Gultekin et al., 2001).  
unc-86(n846) A likely null allele resulting in protein loss (Röhrig, 2000). The 

molecular identity of this strong allele had not been previously 
described. We sequenced this alleles and it to harbor a G>A splice 
acceptor site mutation at end of the second intron of the C30H5.7a 
transcript in the middle of the POU domain (aatacttcagGCGG to 
aatacttcaaGCGG) 

unc-86(n848) The molecular nature of this temperature-sensitive allele is a GT to 
AT splice donor site mutation in intron 4 (Röhrig, 2000) 

cfi-1(ky651) A splice acceptor site mutation before the DNA binding domain 
(Shaham and Bargmann, 2002) 

otIs224   Is[cat-1::gfp]  (Flames and Hobert, 2009) 
otIs225 Is[cat-4::gfp] (Flames and Hobert, 2009) 
otIs226 Is[bas-1::gfp] (Flames and Hobert, 2009) 
zdIs13 Is[tph-1::gfp] (Clark and Chiu, 2003) 
wgIs68 Is[ttx-3fosmid::EGFP-FLAG, unc-119(+)]. Kindly provided by Valerie 

Reinke and the ModEncode consortium. Based on fosmid 
WRM064cD04. The tag was TY1 EGFP 3xFLAG and was added at 
the C-terminus. 

otIs337 
 

Is[unc-86 fosmid WRM0612cF07::NLS::YFP::H2B; ttx-3::mCherry]. The 
unc-86 fosmid reporter was generated bacterial recombineered as 
previously described (Tursun et al., 2009), fusing an 
SL2::NLS::YFP::H2B reporter cassette at the C-terminus of unc-86 
in fosmid WRM0612cF07. 

vsIs33 Is[dop-3::dsRed]. Kindly provided by Michael Koelle 
otIs317 Is[mgl-1long prom::mcherry, pha-1]. DNA kindly provided by Kaveh 

Ashrafi (Greer et al., 2008) 
otIs341 Is[mgl-1short prom::gfp] 

-1994 to -1374 bp upstream of ATG 
otIs379 Is[cho-1AIAprom::gfp; rol-6(d)] 

-3006 to -2642 bp upstream of ATG 
otIs326 Is[ins-1::gfp; rol-6(d)] 

-289 bp upstream of ATG 
otEx4687 Ex[glr-2::gfp; rol-6(d)] 

-1798 bp upstream of ATG 
otEx4886  Ex[ttx-3 intron7::gfp; rol-6(d)] 

GGAAG+intron7+CGTCTACCGATGAAGATG cloned into 
pPD95.75 

otEx5056 Ex[flp-2::gfp; rol-6(d)] 
-2002 bp upstream of ATG 

otEx4781 Ex[mod-5NSM prom::gfp; elt-2::gfp]. 
First intron of mod-5 cloned into 
pPD95.75(CACCAGCAGCTGCAAG+ intron1+ CTGAACTCTCC 
driving GFP) 

otEx5280 Ex[ptps-1::gfp; rol-6(d)] 
-2600 bp upstream of ATG 

otEx5163 Ex[nlp-3::gfp; rol-6(d)]. 
DNA kindly provided by Hart lab (Nathoo et al., 2001)  

otEx5364 Ex[mgl-3::gfp; rol-6(d)]. 
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DNA kindly provided by Ashrafi lab (Greer et al., 2008) 
otEx5163 [nlp-13::gfp; rol-6(d)] 

-1967 bp upstream of ATG 
otEx5055 [scd-2::gfp; rol-6(d)] 

-2045 bp upstream of ATG 
otEx5363 [flr-2::gfp; rol-6(d)] 

DNA kindly provided by Takeshi Ishihara 
otEx4917 
 

Ex[unc-86 intron1::gfp; rol-6(d)] 
GACGACAACCGCTTCAAAAATGCAACCT+intron1+TTCAACAAC
AGTTTATTTGGATCATTCGATGACCC cloned into pPD95.75 

otEx4969, 
otEx4970 

2 independent lines of Ex[cat-1prom14::ttx-3; rol-6(d)]  

otEx5073, 
otEx5074, 
otEx5075 

3 independent lines of Ex[ins-1457bp_prom::ttx-3; rol-6(d)] (-457 bp 
upstream of ATG) 

Ex[gcy-28.d::gfp] the complete genotype of this array is Ex[gcy-28.dp::gcy-28.d::GFP, 
AIA-specific ins-1p::SNB-1::mRFP,rol-6(+)] (transgene kindly 
provided by Takeshi Ishihara) 

Ex[scd-2::gfp] Ex[scd-2::gfp]: the complete genotype of this array is Ex[scd-
2p::scd-2::GFP, AIA-specific ins-1p::mRFP, lin-44::gfp] (transgene 
kindly provided by Takeshi Ishihara 

olaEx1446 Ex [mod-5p::egfp (2ng/ul)/unc-122p::gfp (20ng/ul)] 
olaEx1485 Ex[flp-4p::egfp (30ng/ul)/unc-122p::DSRED (20ng/ul) 
nuIs9 Is[unc-5::gfp] (transgene kindly provided by Josh Kaplan) 
otEx2310 Ex[gcy-19::gfp; unc-122::gfp] (Ortiz et al., 2006) 
lqIs3 Is[osm-6::gfp] (transgene kindly provided by Erik Lundquist) 
qIs56 Is[lag-2::gfp] (transgene kindly provided by Judith Kimble) 
vsIs48 Is[unc-17::gfp] (transgene kindly provided by Michael Koelle) 
otIs323 Is[cho-1_fosmid::gfp; elt-2::dsRed] (transgene kindly provided by 

Paschalis Kratsios) 
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Table S3. Probe sequences for gel shift analysis 
Probe  Sequence 
cho-1 wt: 5’tacacacacatcgaaatatgaatcttctcttaaaaagaaggttgtccaattagtttcccctattcaG

CTTTCGTTCGTCGCCT 

cho-1 TAAT del 5’tacacacacatcgaaatatgaatcttctcttaaaaagaaggttgtccagtttcccctattcaGCT
TTCGTTCGTCGCCT 

mgl-1 wt 5’gtttccatactcatagtgctcattagaatagcacggatcgtgtttcgcctctcgccttgttaaccgaa
tctgccGCTTTCGTTCGTCGCCT 

mgl-1 TAAT del 5’gtttccatactcatagtgctcgaatagcacggatcgtgtttcgcctctcgccttgttaaccgaatctg
ccGCTTTCGTTCGTCGCCT 

bas-1 wt 5’cccaacaccacattattcatgtatttcctccaaaccactgaaccatctcattctcaaaccagtttct
atccgtttgtttgcattcaattaaatttttGCTTTCGTTCGTCGCCT 

bas-1 HD mut 5’cccaacaccacgttattcatgtatttcctccaaaccactgaaccatctcattctcaaaccagtttct
atccgtttgtttgcattcagttgaattttt GCTTTCGTTCGTCGCCT 

bas-1 POU mut 5’cccaacaccacattattcccgtatttcctccaaaccactgaaccatctcattctcaaaccagtttct
atccgtttgtttgccctcaattaaattttt GCTTTCGTTCGTCGCCT 

tph-1 wt 5’tctttgtttgcgcataataaaacaatcaatcaacacagcaaagacccctctcaacctcatttcatg
attttctttGCTTTCGTTCGTCGCCT 

tph-1 HD mut 5’tctttgtttgcgcatagtaaaacaatcaatcaacacagcaaagacccctctcaacctcatttcatg
attttctttGCTTTCGTTCGTCGCCT 

tph-1 POU mut 5’tctttgtttgTgTataCCaCaacaaGcGatcaacacagcaaagacccctctcaacctcattt
cCCgattttctttGCTTTCGTTCGTCGCCT 
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CHAPTER 3:  

Cloning and characterization of genes required for the specification of the RMDD 
and RMDV motor neurons 

 

This chapter describes the cloning and characterization of three genes required 

for the specification of the RMD motor neurons. These mutants were initially isolated 

from a screen looking for mutants that are defective in the AIA interneurons with the 

transgene also expressed in the RMDD and RMDV neurons. Conventional genetic 

approaches and whole genome sequencing were both employed to identify the mutations. 

Three genes were identified: the vertebrate neuroD homolog cnd-1, the Beta3 and Olig 

family related gene hlh-16 and the Q50 class paired-like homeobox gene unc-42. 

Fosmid reporters of these factors suggest that cnd-1 and hlh-16 likely play proneural 

roles, while unc-42 may act as a terminal selector for the RMD neuron class. Many 

questions are left open, and further characterization of these genes will shed more light 

on the fate specification of the RMD motor neurons. 
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Results 

A genetic screen that identified RMDD/V mutants 

The metabotropic glutamate receptor mgl-1 is expressed in eight neurons: 

NSML/R, AIAL/R, RMDDL/R and RMDVL/R (Greer et al., 2008). The transgene 

otIs341 (mgl-1::gfp) was initially used in a non-clonal screen to search for mutants that 

are defective in AIA expression because we speculate that there is another transcription 

factor that cooperates with TTX-3 to specify the AIA cell fate (See Chapter 2). The 

transgene vsIs33 (dop-3::dsRed) was used as a background reference for future 

automatic screens using the worm sorter (Doitsidou et al., 2008). In short, synchronized 

P0s at late L4 stage were EMS mutagenized and egg prepped. F1 worms grown on 10 

mm plates at a density of about 10000/plate were then egg prepped and 10 plates of F2 

worms plated at a density of 10000/plate were collected (Density can be increased 

depending on the abundance of OP50.) F2s are then screened manually under a 

fluorescent dissecting scope (or they could be passed through the worm sorter given 

proper reference transgene is present in the background). 

Unexpectedly, five additional mutants that are deficient in RMDD/RMDV 

expression were identified. AIA and NSM fates remain intact in these mutants. The 

RMDs are ring motor neurons that utilize the neurotransmitter acetylcholine (Ach) 

(Duerr et al., 2008). There are 6 cells in total in the RMD neuron class: RMDD, RMD 

and RMDV. They have been shown to mediate head withdrawal responses to touch 

along the side of the nose, as well as foraging behaviors (the head of the worm moves in 
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a rhythmic motion). Both behaviors depend on the AMPA-type ionotropic glutamate 

receptor glr-1 (Hart et al., 1995). 

Mutants are then assigned to two categories (class I and II) according to their 

phenotypes. ot705 and ot712 are class I mutants; ot704 and ot711( mut5F and mut 5G 

turned out to carry the same mutation) are class II mutants. All class I mutants lose mgl-

1 expression in RMDD and RMDV completely (Figure 1A, C), while class II mutants 

display a mix of phenotypes, with none, one or both RMDVs affected. RMDDL/R are 

always absent in class II mutants (Figure 1B, C).  

Genetic analysis maps these five mutants to three different gene loci 

Complementation tests assigned the five mutants to three complementation 

groups. Mut 5F, mut 5G and ot704 failed to complement each other, while ot705 and 

ot712 belong to separate complementation groups. (See Table 1 for quantification of 

mutant phenotypes.) 

Aside from their defects in RMDD/V expression, ot705 and ot712 display severe 

unc phenotype. Moreover, ot712 does not seem to be separable from the transgene 

vsIs33 that has been mapped to chromosome V. The Q50 class paired-like homeobox 

gene unc-42 has been reported to affect gene expression in the RMDs. The expression of 

the ionotropic glutamate receptor GLR-1, GLR-4 and GLR-5 is disrupted in the six 

RMDs in unc-42 mutants (Baran et al., 1999; Brockie et al., 2001). Complementation 

test between ot712 and two alleles of unc-42 (e419 and e270) confirmed that ot712 is an 

allele of unc-42. The unc-42 allele e419 was then crossed to otIs341 and phenocopied 

ot712. Sanger sequencing revealed that ot712 harbors a late nonsense mutation 
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(W181>Stop) in exon 6. However, this mutation is not within the predicted 

homeodomain (Baran et al., 1999).   

Cloning of ot704 and ot705 using Whole genome sequencing and CloudMap  

ot704 and ot705 were cloned using the more recently developed one-step whole- 

genome-sequencing approach, taking advantage of the polymorphism between two 

isolated C. elegans strains (Doitsidou et al., 2010). In each experiment the mutant strain 

(in N2 bristol background) was crossed to the Hawaiian isolate and around 50-60 mutant 

F2 progeny were picked, amplified, and pooled for subsequent sequencing.  The ratio of 

N2 versus Hawaiian SNP was then calculated based on the sequence pile up. The closer 

the SNPs are to the causal mutation, the higher the N2/Hawaiian ratio is. Genome 

sequences were then analyzed by CloudMap, a Cloud-based pipeline that allows rapid 

candidate variant mapping (Minevich et al., 2012).  

ot704 was mapped to the 7.75-9MB region on linkage group I (Figure 2A), 

within which only one transcription factor-encoding gene, hlh-16 has a mutation in its 

coding region (Q118 > Stop). Sanger sequencing further revealed that mut5F and mut5G 

harbors a mutation in the same loci within the first exon of hlh-16 (R21>Stop) (Figure 3), 

and are likely siblings from the same heterozygous mother as the screen was non-clonal. 

Allele name ot711 was assigned to this mutation. 

ot705 was mapped to the 3-6 MB region on chromosome III (Figure 2B). Within 

this interval are two candidate transcription factors with mutations in their protein 

coding region, the fork head transcription factor encoding gene fkh-5 and the neuroD 
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homolog cnd-1.  Complementation against the deletion allele gk781 further confirmed 

that ot705 is an allele of cnd-1 (Table 3). 

Rescue experiments for ot704 and ot705 

Two different constructs were used to rescue ot704 animals. A PCR fragment of 

the genomic locus from 1206 bp upstream to 526 bp downstream of the hlh-16 locus 

was directly injected at 10 ng/ul into mutant animals using linearized rol-6(d) (1 ng/ul) 

as injection marker (otEx4943). This rescued 86% of the animals back to wild type. An 

available transgene (Bertrand and Hobert, 2009) that spans 514 bp upstream of hlh-16 to 

the next gene (~1.8kb downstream) rescued similarly when introduced to the mutant 

animals (Table 2).  

Two separate experiments were performed to rescue ot705. A PCR fragment of 

the genomic locus of cnd-1 from 3127 bp upstream to 500 bp downstream was injected 

as simple arrays in experiment 1. In both lines obtained a majority of the animals were 

partially rescued to intermediate phenotypes as apposed to wild type (2RMDD and 2 

RMDV). In experiment 2 the same PCR fragment was injected in complex arrays at 

3ng/ul, which was able to rescue 58% of the animals back to wild type (Table 3).  

Expression pattern of unc-42, hlh-16 and cnd-1 in RMDD/RMDV 

A fosmid gfp reporter was used to visualize unc-42 expression. UNC-42 is 

expressed in thirty or so cells in the head of the worm. Colocalization with a red reporter 

gene otIs317(mgl-1::mcherry) expressed in RMDD and RMDV confirms unc-42 

expression in these four cells, which persists through adulthood. 
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No postembryonic expression was observed with a translational reporter of hlh-

16, which rescues the defects in the left/right asymmetry in the interneuron AIY and the 

motoneuron SMDD (Bertrand and Hobert, 2009). This is consistent with the notion that 

hlh-16 as a proneural gene probably works at an earlier step before terminal 

differentiation takes place.  

cnd-1 expression was assessed using a transcriptional reporter as well as a 

fosmid based reporter. Based on a transcriptional and a semi-translational reporter 

expression, Hallam et al. reported that cnd-1 expression starts from the 14-cell stage in 

the embryo and persists throughout gastrulation and epidermal enclosure until hatching, 

but is completely gone by the end of the first larval stage. In my experiments, the 

transcription reporter stIs10055 (cnd-13.2kb prom::HIS-24::mCherry) is expressed 

throughout adulthood, with expression still seen in 7 day old adults. The fosmid reporter 

is not expressed post-embryonically.  Preliminary lineage tracing data (n=1) suggests 

that cnd-1 expression in the RMDDs and RMDVs start as early as two to three divisions 

earlier. For RMDDL and RMDVL, the expression starts in the grandmother cell, and 

persists until the last division, except that in RMDVL expression fades away soon after 

the birth of the cell (Figure 4A). In RMDDR and RMDVR, cnd-1 expression begins 

even earlier, at the great grandmother stage, and remains on until after the cell has 

terminally differentiated (Figure 4B). 

For future experiments and discussion see Chapter 6. 
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Figure 1: Class I and II phenotypes of RMDD/RMDV mutant animals. 

(A) Mutant phenotype of Class I mutants are 100% penetrant in RMDD/RMDV loss. 

(B)	
  Class	
  II	
  mutants	
  phenotypes.	
  Animals	
  lose	
  RMDDL/R,	
  but	
  can	
  have	
  zero,	
  one	
  or	
  

two	
  RMDVs.	
  	
  

(C) Effects of unc-42, ot704 and ot705 on otIs341 (mgl-1::gfp). 
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Figure 2: Scattered ratio plots of the ot704 and ot705 SNP reads. Y-axis: Hawaiian/total 
reads; X-axis: Location on the linkage group (Mb). 

(A) 

 

 

0 5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

LG I

Location (Mb)

H
A 

R
at

io
 [H

aw
ai

ia
n 

R
ea

ds
 / 

To
ta

l R
ea

d 
D

ep
th

]

91



	
  

	
  

(B) 

 

 

  

92



	
  

	
  

Figure 3:  Overview of the hlh-16 and cnd-1 locus and relevant alleles. 

(A) 

 

 

(B) 
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Figure 4: Preliminary lineage representation of cnd-1 expression in the RMDD and 
RMDV lineage (n=1).  

Note: only the RMDD and RMDV lineages were traced. Other lineages are not looked at 
and lack of green highlights in other lineages is not an indication of absence of 
expression.  

(A) Left side  

 

 

  

94



	
  

	
  

(B) Right side  
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Table 1: Quantification of unc-42, ot704 and ot705 mutant phenotypes 

 RMDD=0 

RMDV=0 

RMDD=0 

RMDV=1 

RMDD=0 

RMDV=2 

RMDD=2 

RMDV=2 

n 

wt - - - 100% >100 

ot704 14% 23% 63% - 65 

ot705 100% - - - 30 

e419(unc-42) 100% - - - 29 
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Table 2: ot704 rescue experiments 

  

 RMDD=
0 

RMDV=
0 

RMDD=
2 

RMDV=
2 

RMDD=
0 

RMDV=
1 

RMDD=
0 

RMDV=
2 

RMDD=
1 

RMDV=
2 

RMDD=
1 

RMDV=
1 

RMDD=
1 

RMDV=
0 

RMDD=
2 

RMDV=
1 

n 

wt - 100% - - - - - - >100 

ot704 14% - 23% 63% - - - - 65 

 

ot704; otEx4943 - 86% - 5% 7% - - 2% 44 

ot704; no Ex4943 7% 25% 7% 57% 4% - - - 44 

 

ot704; otEx4503 - 85% - 2% 11% 2% - - 47 

ot704; no Ex4503 42% 17% 36%    5% - 36 
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Table 3: ot705 rescue experiments  

 RMDD
=0 

RMDV
=0 

RMDD
=2 

RMDV
=2 

RMDD
=0 

RMDV
=1 

RMDD
=0 

RMDV
=2 

RMDD
=1 

RMDV
=2 

RMDD
=2 

RMDV
=0 

RMDD
=1 

RMDV
=1 

RMDD
=1 

RMDV
=0 

RMDD
=2 

RMDV
=1 

n 

wt - 100% - - - - - - - >100 

ot705 100% - - - - - - - - 30 

Simple 30ng/ul line1: 

ot705; otEx4952 17% - 23% 30% 4% 13% 11% 2% - 47 

ot705; no Ex4952 97% - 3% - - - - - - 31 

Simple 30ng/ul line2: 

ot705; otEx4953 9% 14% 6% 23% 23% 14% 3% - 9% 35 

ot705; no Ex4953 97% - 3% - - - - - - 34 

Complex 3 ng/ul line1: 

ot705; otEx4954 - 58% 2% 9% 17% 2% 2% - 9% 43 

ot705; no Ex4954 Did not score because “unc” phenotype is not well rescued. 
(Animals that do not roll may carry the transgene.) 
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CHAPTER 4: 

A left/Right asymmetric neuronal differentiation program is controlled by the 
Caenorhabditis elegans LSY-27 Zn finger transcription factor 

Zhang F, O'Meara MM, Hobert O. Genetics. 2011 Jul;188(3):753-9. 

	
  

ASEL and ASER are a pair of gustatory neurons in the head of the worm that 

express different sets of terminal genes and therefore carry out distinct functions. 

Unbiased forward genetic screens have been vigorously performed in search of mutants 

that disrupt ASE laterality. This chapter characterizes two previously uncloned mutants, 

in which ASEL adopts a “mixed” state. ASER terminal genes are ectopically expressed 

in ASEL, while ASEL terminal features remain intact. One mutant turns out to be the 

first allele of the LIM homeobox gene lim-6 that is pulled out from our screens. The 

other mutant has a lesion in the C2H2 zinc finger transcription factor lsy-27 and displays 

similar phenotypes to lim-6. lsy-27 also affects lim-6 expression. Based on expression 

pattern analysis and temperature-shift experiments we propose that LSY-27 function is 

restricted to assisting the initial onset of LIM-6 expression in the embryos but not the 

maintenance phase at later stages. 

I	
   cloned	
   and	
   characterized	
   lsy-­‐27,	
   and	
   conducted	
   all	
   related	
   genetic	
   and	
  

molecular	
   analysis	
   as	
   well	
   as	
   temperature	
   shift	
   experiments.	
   Maggie	
   O’Meara	
  

cloned	
  ot146,	
  and	
  updated	
  the	
  lim-­‐6	
  gene	
  structure. 
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NOTE

A Left/Right Asymmetric Neuronal Differentiation
Program Is Controlled by the Caenorhabditis elegans

LSY-27 Zinc-Finger Transcription Factor
Feifan Zhang, M. Maggie O'Meara, and Oliver Hobert1

Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center,
New York, New York 10032

ABSTRACT Functional diversification across the left/right axis is a common feature of many nervous systems. The genetic programs
that control left/right asymmetric neuron function and gene expression in the nervous system are, however, poorly understood. We
describe here the molecular characterization of two phenotypically similar mutant Caenorhabditis elegans strains in which left/right
asymmetric gene expression programs of two gustatory neurons, called ASEL and ASER, are disrupted such that the differentiation
program of the ASER neuron is derepressed in the ASEL neuron. We show that in one mutant strain the LIM homeobox gene lim-6 is
defective whereas in another strain a novel member of a nematode-specific, fast-evolving family of C2H2 zinc-finger transcription
factors, lsy-27, is mutated, as revealed by whole-genome sequencing. lsy-27 is broadly and exclusively expressed in the embryo and
acts during the initiation, but not during the maintenance phase of ASE asymmetry control to assist in the initiation of lim-6 expression.

LEFT/RIGHT asymmetric gene expression patterns in the
nervous system of invertebrate and vertebrates species

have been described and are generally thought to be the
foundation of the striking functional lateralization of many
nervous systems (Hobert et al. 2002; Sun et al. 2005; Sun
and Walsh 2006; Taylor et al. 2010). Yet it is not well un-
derstood how left/right gene expression patterns are regu-
lated. In the nematode Caenorhabditis elegans, a class of
putative chemoreceptors of the GCY family are expressed
in a left/right asymmetric manner in a bilateral pair of func-
tionally lateralized gustatory neurons, called ASEL and
ASER (Yu et al. 1997; Ortiz et al. 2006). These gcy genes
are required for the left/right asymmetric processing of che-
mosensory information by the two ASE neurons (Ortiz et al.
2009). Genetic mutant screens have revealed a number of
genes (called “lsy genes” for laterally symmetric) that con-
trol the left/right asymmetric expression of gcy genes (Sarin

et al. 2007). Phenotypic analysis of these mutants has re-
vealed several distinct types of asymmetry mutants. In class
I mutants, the gcy expression profile of the ASER neuron
completely converts to that of the ASEL neuron (“2 ASEL”
mutants). In class II mutants, the opposite occurs (“2 ASER”
mutants; e.g., die-1 as shown in Figure 1A). In class III mu-
tants, both ASEL and ASER gcy receptors are lost. In class IV
mutants, the ASER-specific gcy genes are derepressed in
ASEL, but the ASEL-specific gcy genes remain unaffected;
or vice versa, ASEL-specific gcy genes are derepressed in
ASER, but ASER-specific gcy genes remain unaffected (Sarin
et al. 2007). Either the ASEL or ASER neurons therefore
exist in a “mixed” state in class IV mutants (Figure 1A).
Due to their more limited phenotypic effects, class IV genes
would be expected to work downstream of class I and class
II genes, and indeed, the analysis of the expression of class
IV genes in class I or II mutant backgrounds confirmed this
notion (Johnston et al. 2005, 2006) (Figure 1A).

Class IV genes are essential for the appropriate function
of the ASE neurons. This was first demonstrated through
a detailed phenotypic analysis of animals that lack the
ASEL-expressed lim-6 LIM homeobox gene and that there-
fore display a class IV phenotype in which ASEL-expressed
gcy genes are unaffected, but ASER-expressed gcy genes are
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derepressed in ASEL (Figure 1A) (Hobert et al. 1999). Such
mutant animals are unable to discriminate between ASEL-
and ASER-sensed chemosensory cues (Pierce-Shimomura
et al. 2001).

lim-6 is not the only gene with such a function. Three
mutants retrieved from a previous large-scale mutagenesis
screen for the asymmetry mutants ot104, ot108, and ot146
(Sarin et al. 2007) display a phenotype similar to lim-6 (Fig-
ure 1B and Table 1). ot104 was found to be an allele of the
ubiquitously expressed ASH1-type histone methyltransfer-
ase lin-59 (Sarin et al. 2010), but the ot108 and ot146
alleles had not previously been molecularly characterized.
We present their characterization in this Note.

ot146 is an allele of the LIM homeobox gene lim-6

ot146 mutant animals are viable and fertile and display no
obvious morphological abnormalities. Their class IV Lsy phe-
notype is recessive. Due to its failure to complement what
turned out to be a very unusual allele, called ot101, of the
zinc (Zn)-finger transcription factor che-1, a terminal selec-
tor of ASEL and ASER neuron fate (Etchberger et al. 2009),
we had assumed that ot146 was located on chromosome I,
where che-1 is located (Sarin et al. 2007). However, subse-

quent mapping placed ot146 on chromosome X, where the
lim-6 locus resides. We find that ot146 contains a C83Y
change in the second LIM domain of lim-6 (supporting in-
formation, Figure S1). The mutated cysteine residue is
100% conserved in all LIM domains and is essential for
the structural integrity of a LIM domain through the coor-
dination of a Zn ion (Kadrmas and Beckerle 2004). The
ot146 allele fails to complement the lim-6 null allele
nr2073, and its Lsy phenotype is rescued by a genomic piece
of DNA that contains the lim-6 locus (Table 2). We conclude
that ot146 is an allele of lim-6. This is the first lim-6 allele
retrieved from our mutant screen [the only previously char-
acterized lim-6 allele, nr2073, is a reverse engineered allele
(Hobert et al. 1999)].

ot108 affects a member of a C2H2 Zn-finger
protein family

Like lim-6 mutant animals, ot108 mutant animals show de-
repression of the ASER marker gcy-5 in ASEL, while gcy-7
expression in ASEL is unaffected (Figure 1B and Table 1).
Other than the Lsy phenotype, ot108 mutants animals are
viable and fertile and display no obvious morphological
abnormalities. Aside from the effect of ot108 on gcy-5

Figure 1 lsy genes and mutant
phenotypes. (A) A simplified ver-
sion of the genetic pathway that
controls left/right asymmetry in
the ASE neurons. Loss of die-1,
a Zn-finger transcription factor,
results in a class II Lsy phenotype
(in which ASEL fate markers are
lost and ASER fate markers are
gained in ASEL), and loss of lim-
6, a LIM homeobox gene, results
in a class IV Lsy phenotype (in
which ASER fate markers are
gained in ASEL, but ASEL fate
markers unaffected) (Hobert
et al. 1999; Chang et al. 2004).
Loss of broadly expressed lin-59,
a histone methyltransferase, also
results in a class IV Lsy phenotype
(Sarin et al. 2007, 2010). (B) Ef-
fect of lsy-27(ot108) and lim-6
(ot146) mutant alleles on ASEL/
ASER asymmetry markers. otIs3
(gcy-7::gfp) labels ASEL and
ntIs1(gcy-5::gfp) labels ASER.
The phenotype is quantified in
Table 1. (C) ot108 also affects
lim-6::gfp (otIs114) expression.
In 57.4% of animals, lim-6::gfp
fails to be expressed, and in
27.7% of animals, expression is
visible but weaker than in wild
type (n ¼ 47).
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expression, ot108 animals also show a significant loss of
lim-6 expression in ASEL, thereby providing an explanation
of the lim-6-like phenotype of ot108 mutant animals (Figure
1C).

Upon isolation of ot108 mutant animals in our original
Lsy screen (Sarin et al. 2007), we noted that ot108 fails to
complement the derepression of ASER fate in the ASEL phe-
notype of a mutation in the die-1 Zn-finger transcription
factor, an inducer of lim-6 expression in ASEL (a class II
gene that also results in the loss of ASEL fate) (Figure
1A). Due to this lack of complementation, we had therefore
initially considered ot108 to be an allele of die-1 (Sarin et al.
2007). However, our subsequent analysis revealed no muta-
tion in the die-1 locus of ot108 mutant animals and, more-
over, the ot108 mutant phenotype could not be rescued with
a genomic piece of DNA that rescues a canonical die-1 allele
(data not shown). Subsequent chromosomal linkage analy-
sis showed that ot108 is linked to chromosome V, while
die-1 maps to chromosome II. After mapping ot108 to the
right arm of chromosome V using conventional SNP map-
ping (Wicks et al. 2001), we subjected the strain to whole-
genome sequencing using an Illumina GAII genome analyzer
(Sarin et al. 2008) and analyzed the data with MAQGene
(Bigelow et al. 2009). Sequencing parameters and results
are summarized in Table S1. In brief, within the genetically
defined interval, we detected 22 sequence variants pre-
dicted to affect protein-coding genes (missense, non-sense
or splice-site mutations). Nineteen of these variants were
found in other whole-genome sequencing data sets that
our lab has generated and were therefore considered back-
ground variants, leaving three protein-coding alterations.
One of these alterations is a Ser-to-Leu change in the pre-
dicted C2H2 Zn-finger transcription factor F47H4.1 (Figure
2A and Figure S2). F47H4.1 is a member of C2H2 Zn-finger
transcription factors with several paralogs in Caenorhabditis

elegans and orthologs in other nematode species, but no
apparent orthologs outside nematodes (Figure 2B and Fig-
ure S2). All members of this family contain three closely
clustered C2H2 Zn fingers at the N terminus of the protein,
but no other recognizable domains. The serine residue that
is mutated in ot108 is phylogenetically conserved (Figure
S2). The only gene in this family that had been previously
characterized is the ham-2 transcription factor, which is in-
volved in C. elegans HSN motor neuron specification (Baum
et al. 1999).

Both a fosmid spanning the entire F47H4.1 locus plus
neighboring genes and a genomic piece of DNA containing
2.6 kb upstream of F47H4.1 and the F47H4.1 locus (Figure
2A) rescue the ot108 mutant phenotype (Table 2). Animals
carrying a deletion allele of F47H4.1, tm593 (kindly pro-
vided by the C. elegans knockout facility at Tokyo Women's
Medical University School of Medicine) (Figure 2A), also
display a class IV Lsy phenotype (Table 1). Also, like
ot108 animals, tm593 animals are viable and fertile and
display no obvious morphological abnormalities. Taken to-
gether, we conclude that it is the mutation in F47H4.1 that
results in the class IV Lsy phenotype of ot108 mutant ani-
mals, and we therefore called this gene lsy-27 (Table S3
shows an updated numbering of lsy genes).

ot108 is an altered function allele

The tm593 deletion allele is a molecular null, as confirmed
by RT-PCR analysis, which revealed that only very short
(,37 amino acids), truncated forms of the protein are gen-
erated in tm593 animals, which do not contain any of the
DNA-binding Zn-fingers (see File S1). We were therefore
surprised to note that the Lsy phenotype of the tm593 de-
letion allele is notably milder than the ot108 missense allele
in terms of both expressivity and penetrance (Table 1). We

Table 1 Lsy phenotypes of lim-6 and lsy-27

% animals with the following phenotypes (at 25�):

ASEL only
(%)

ASEL . ASER
(%)

No expression
(%)

ASEL ¼ ASER
(%)

ASEL , ASER
(%)

ASER only
(%) n % Lsy

ASEL marker (gcy-7::gfp; otIs3)
Wild type 100 0 0 0 0 0 .100 0
lim-6(nr2073) 100 0 0 0 0 0 35 0
lim-6(ot146) 100 0 0 0 0 0 103 0
lsy-27(ot108) 100 0 0 0 0 0 45 0
lsy-27(tm593) 100 0 0 0 0 0 66 0

ASER marker (gcy-5::gfp; ntIs1)
Wild type 0 0 0 0 0 100 .100 0
lim-6(nr2073) 0 0 0 89 5 6 82 94
lim-6(ot146) 0 0 0 8 77 15 78 85
ot146/nr2073 0 0 0 0 56 44 50 56
lsy-27(ot108) 0 0 0 39 48 13 122 87
lsy-27(tm593) 0 0 0 0 62 38 117 62
ot108/tm593 0 0 0 3 6 91 31 9
ot108/1 0 0 0 0 0 100 56 0
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therefore considered the possibility that ot108 (which is re-
cessive) is an altered function allele (Table 1). We tested
this possibility by removing lsy-27 gene activity in ot108
mutant animals using RNA interference (RNAi) directed
against lsy-27. We found that RNAi treatment completely
reverted the ot108 phenotype (Table 2), suggesting that it
is indeed altered lsy-27 function that explains the ot108
phenotype.

We noted that animals that carry one copy of the ot108
allele and one copy of the tm593 allele display a phenotype
that is even milder than the phenotype of either allele alone
(Table 1). One copy of the ot108 allele alone is therefore not
enough to induce the altered function activity, but perhaps
may be enough to provide some wild-type gene activity,
thereby alleviating the tm593 phenotype. The need for suf-
ficient ot108 dosage is also illustrated by the fact that the
phenotype of ot108 mutant animals can be rescued through
supplying wild-type copies of the locus (Table 1).

We considered the possibility that the complete removal
of lsy-27 in tm593 animals may be mostly compensated for
by lsy-27 paralogs, while the ot108 allele may interfere with
the compensatory function of the paralogues. Through the
use of deletion alleles of these loci (again kindly provided by
the C. elegans knockout facility in Tokyo), we found that
neither of the two most closely related lsy-27 paralogs, ztf-
25 or ztf-28, either alone or in combination (i.e., ztf-25 ztf-28
double nulls) displayed a Lsy phenotype (Table S2). ztf-28
lsy-27 double-null mutant animals also display no Lsy phe-
notype. ztf-25 lsy-27 double mutants could not be built due
to close linkage of the two loci, and we therefore needed to
resort to RNAi. lsy-27 RNAi in a ztf-28 ztf-25 double-mutant
background also did not result in a Lsy phenotype, but we
note that even though lsy-27 RNAi does suppress the ot108
Lsy phenotype, it does not recapitulate the lsy-27(tm593)

phenotype (Table 2), thereby allowing no firm conclusion
about a triple loss of function of all three lsy-27 paralogs.

Expression pattern and timing of action of lsy-27

By recombineering yfp into the fosmid that contains the lsy-
27 locus and that rescues the lsy-27 phenotype (Table 2), we
generated a reporter with which we monitored lsy-27 ex-
pression (Figure 2A). We find that lsy-27 is expressed very
broadly throughout the embryo (Figure 3A). Expression can
already be observed in one-cell embryos and continues to
about the comma stage, when expression starts to fade out
(Figure 3A). By the comma stage, most neurons, including
ASEL/ASER, have terminally divided and begun to termi-
nally differentiate. No expression is observed after hatching
in larvae or in adult animals. Through colocalizing expres-
sion of the lsy-27 reporter with an ASE-specific mCherry
reporter, we confirmed that lsy-27 is expressed in both
ASE neurons in the comma-stage embryo when ASE later-
ality is established. As assessed with translational gfp report-
ers that fuse the entire loci to gfp, the most closely related
lsy-27 paralog, ztf-25, displays an essentially indistinguish-
able broad, embryo-restricted expression pattern (Figure
S3), while the more distant paralog ztf-28 shows no expres-
sion in embryos and postembryonically is expressed only in
the intestine (data not shown).

The expression pattern of lsy-27 suggests an embryonic
role for the gene. We sought to corroborate this notion by
exploiting the observation that the ot108 allele is strongly
temperature sensitive (Figure 3B). At 25�, 87% of animals
display a Lsy phenotype while 12% do at 15�. By altering lsy-
27 gene activity at different stages through temperature
shifts, we find that lsy-27 activity is required only during
embryogenesis, but not during postembryonic stages (Figure

Table 2 Transformation rescue and RNAi analysis

Genotype Lsy phenotypea (%) Wild-type phenotype (%) n

Wild type 0 100 .100
lim-6(ot146) 85 15 78
ot146; otEx3859 (Ex[lim-6 fosmid::yfp; rol-6(d)]) 0 100 41
lsy-27(ot108) 86.9 13.1 122
lsy-27(ot108); lsy-27(RNAi) 2.5 97.5 200
lsy-27(ot108); empty vector (RNAi) 86.8 13.2 111
lsy-27(RNAi) 0 100 71
lsy-27(ot108); Ex[lsy-27transl::gfp], line #1b 18.2 81.8 44
lsy-27(ot108); Ex[lsy-27transl::gfp], line #2 17.2 82.8 87
lsy-27(ot108); Ex[fosmid], line #1 5.6 94.4 18
lsy-27(ot108); Ex[fosmid], line #2 9.1 90.9 44
lsy-27(ot108); Ex[lsy-27fosmid::yfp], line #1b 0 100 70
Genotype as above but array not transmitted from parental generationc 0 100 11
lsy-27(ot108); Ex[lsy-27fosmid::yfp], line #2 0 100 54
Genotype as above but array not transmitted from parental generation 21.1 78.9 19

The ot108 and ot146 control data are repeated from Table 1 for comparison purposes. RNAi experiments were done by feeding, using standard protocols with a double-
stranded RNA clone obtained from Geneservice.
a Scored as a gcy-5 reporter (ntIs1 or otIs220) derepressed in ASEL in first eleven rows or loss of lim-6::gfp (otIs114) in remaining four rows.
b All expression constructs are shown in Figure 2A. See File S1 for details on the generation of the reporter constructs.
c Arrays contain the elt-2::gfp injection marker. Animals derived from elt-2::gfp(1) parents that have lost this array as assessed by lack of intestinal gfp expression were
scored.
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3B). This contrasts with the continuous requirement of other
lsy genes during postembryonic stages (O’Meara et al. 2010)
and demonstrates that laterality control can be divided into
initiation and maintenance phases.

The maternal loading of LSY-27 protein into oocytes as
well as the embryonic focus of action also prompted us to
ask whether lsy-27 gene activity can be solely maternally
supplied. Using transgenic lsy-27 mutant animals that carry
the germline-expressed lsy-27 reporter fosmid, we assayed
progeny that have lost the array and therefore contain only
maternally supplied gene activity. In such animals, the Lsy
phenotype is rescued (Table 2), corroborating maternal de-
position of lsy-27 gene activity.

Concluding remarks

We have described here a member of a nematode-specific
C2H2 Zn-finger transcription factor family, lsy-27, which
functions in ASE laterality control. The lsy-27 mutant phe-
notype is similar to that of the ASEL-restricted LIM homeo-
box gene lim-6, as well as the ubiquitously expressed lin-59
histone methyltransferase. We found that lsy-27 not only

affects the terminal gcy gene markers in a manner similar
to lim-6, but also affects lim-6 expression. The embryo-re-
stricted expression and function of lsy-27 contrasts with the
expression of lim-6, which is expressed continuously through-
out the life of the ASEL neuron. We propose that the function
of lsy-27 is restricted to triggering the initial onset of lim-6
expression. lsy-27 may cooperate with ASEL-expressed die-1
to trigger lim-6 expression in the embryo. Once lim-6 is
turned on, lsy-27 is no longer required to control laterality.
This maintenance role is carried out by die-1 (O'Meara et al.
2010) in conjunction with lim-6, which positively autoregu-
lates (Johnston et al. 2005). Interestingly, lsy-27 is not in-
volved in conveying other die-1 functions, such as the
induction of ASEL fate markers (e.g., gcy-7), since those are
affected only in die-1, but not in lsy-27 mutants.

With the molecular identification of ot108 and ot146,
we have identified all but one gene retrieved from our
large-scale screening of left/right asymmetry mutants (sum-
marized in Table S4). Due to some adjustments in allele
assignments as described here and elsewhere (Etchberger
et al. 2009; Sarin et al. 2009; Flowers et al. 2010), we have
recalculated saturation using various models (Sarin et al.

Figure 2 lsy-27 is a new C2H2 Zn-finger protein. (A) Genomic position of lsy-27 and rescue and reporter gene constructs. See File S1 for details on the
generation of the reporter constructs. (B) The lsy-27 gene family [modified from the TF317235 family tree generated by Treefam (http://www.treefam.
org)] (Li et al. 2006).
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2007) and retain our previous conclusion that the screen has
not yet reached saturation. Future genetic screens are likely
to provide further insights into the control of lateralized
gene expression in the nervous system.
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LSY-27         M-TSIHSP--------------VTRKEDTELKRPDLRGKFVCSSCSQNFQ
ZTF-25         M-TSILNP--------------VIRKEYSELKRPDLRGKFICASCGQHFQ
ZTF-28         MDTSDHKPLIDRFETEFAEKSSLLRKEESELKRPDLRGDFLCLSCGQNFK
               * **  .*              : *** :*********.*:* **.*:*:

LSY-27         HSASLNRHRQLMHSNEHTCMMCERALNQKETIREHMRNEHNLAQVFTCGC
ZTF-25         HNASLNRHRRLLHGNEHTCMMCDRKLNAKETIRDHMRNEHNLFQVFTCGC
ZTF-28         HGASLNRHRKLVHSDEYTCMLCARKLYLKETVRDHMRNEHYLGQVYTCGC
               *.*******:*:*.:*:***:* * *  ***:*:****** * **:****

LSY-27         CNWTFASKRQLTEHTKCIQGTGAPGDTIPIAKSINAPGSLIQSTIQGTPP
ZTF-25         CNWSFSSKRQLSEHTKCIQGTGAPGDTIPIAKSCNAPGSLIQSTIQGTPP
ZTF-28         CNWTFSNKKALTEHAKAIQETGAPGDANPIAKSGNSPGSLLKSPIQRAG-
               ***:*:.*: *:**:*.** ******: ***** *:****::*.** :  

LSY-27         VVKTGRKRPMGGSLSPSSSVS-TSISSRDASGSPP--------------P
ZTF-25         VVKTGRK--RGGSLSSSSSVS-TSISSRDVSGSPP--------------P
ZTF-28         -FKLNRL--LNKSLSPSTSNSTTSSSSRDASGSPQPELELKLEPEPEPEP
                .* .*    . ***.*:* * ** ****.****               *

LSY-27         TEEEAERKVLFDNAVDTILQSKFFTYQQITEVDTWVKIIESANTLADTLQ
ZTF-25         TEEEAERKVLFDNAVDTILQSKFFTYQQITEVDTWIKIIENANTLADTLQ
ZTF-28         NEEALEYKRFFNNAVDTILQRNFFTDQQITEVDTWVIIIESANALATALQ
               .**  * * :*:******** :*** *********: ***.**:** :**

LSY-27         RIKKSQKVKAEGPAVESKMIPEKHVKQEIE
ZTF-25         RINKTKKIKAEMPA----DKDVKRFKLEVE
ZTF-28         SYKKAQQIQPAEPA----MIPEKRIKPEIE
                 :*:::::.  **        *:.* *:*

 L in ot108

Suppl. Fig.2
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lsy-27 ztf-25
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Suppl. Fig.3
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CHAPTER 5: 

Maintenance of neuronal laterality in Caenorhabditis elegans through MYST 
histone acetyltransferase complex components LSY-12, LSY-13 and LIN-49 

O'Meara MM, Zhang F, Hobert O. Genetics. 2010 Dec;186(4):1497-502. 
 

This chapter describes the cloning and characterization of the MYST family 

histone acetyltransferase lsy-12. Loss of lsy-12 leads to complete conversion of the 

ASEL cell fate to the ASER fate without affecting any bilateral features. LSY-12 forms 

a complex with the PHD/bromodomain protein LIN-49 and the ING-family PHD 

domain protein LSY-13, which also affect ASE laterality when mutated. Post-embryonic 

temperature shift experiments with a ts allele of lsy-12, ot563, demonstrates that LSY-12 

is required continuously. The ASE master regulator CHE-1 likely cooperates with DNA-

binding proteins such as DIE-1 to control asymmetric gene expression and is also 

required throughout development. Post-developmental dsRNA treatment directed 

against die-1 results in ASEL to ASER conversion.  Therefore, it is likely that CHE-1 

and DIE-1 recruit the MYST-HAT complex to regulatory sites to maintain terminal 

differentiated neuronal features of ASEL. 

In this paper, I conducted genetic analysis, rescue experiments related to the 

ING-like genes lsy-13 and ing-3, and constructed the GFP reporter for lsy-13. I also 

analyzed the effects of lsy-12 and lin-49 mutants on die-1. Maggie O’Meara cloned and 

characterized lsy-12 and performed temperature-shift experiments. 
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ABSTRACT

Left/right asymmetrically expressed genes permit an animal to perform distinct tasks with the right vs.
left side of its brain. Once established during development, lateralized gene expression patterns need to
be maintained during the life of the animal. We show here that a histone modifying complex, composed
of the LSY-12 MYST-type histone acetyltransferase, the ING-family PHD domain protein LSY-13, and
PHD/bromodomain protein LIN-49, is required to first initiate and then actively maintain lateralized
gene expression in the gustatory system of the nematode Caenorhabditis elegans. Similar defects are
observed upon postembryonic removal of two C2H2 zinc finger transcription factors, die-1 and che-1,
demonstrating that a combination of transcription factors, which recognize DNA in a sequence-specific
manner, and a histone modifying enzyme complex are responsible for inducing and maintaining
neuronal laterality.

FEATURES of terminally differentiated cells not only
need to be initiated through cell type-specific

regulatory programs but also need to be continuously
maintained throughout the life of the cell (Blau 1992).
The mechanisms that maintain the identity of post-
mitotic, fully differentiated cells are, however, incom-
pletely understood. We provide here some insights into
these mechanisms, using a specific differentiation event
in the nervous system of Caenorhabditis elegans. This
neuronal differentiation event occurs differentially
across the left/right axis of the animal and results in
the left/right asymmetric expression of putative
chemoreceptors (gcy genes) in the left vs. right ASE
gustatory neuron (Figure 1A). This laterality, i.e., the
left/right asymmetric expression of the gcy genes, is
controlled by several gene regulatory factors that act in
a bistable feedback loop (Figure 1, A and B) ( Johnston

and Hobert 2003; Johnston et al. 2005; Hobert

2006). Components of the bistable feedback loop are
only transiently required around the time the ASE
neurons are born in the embryo (Sarin et al. 2007).
Postembryonic mechanisms that robustly and repro-

ducibly maintain laterality throughout the life of the
animal are unknown, yet must exist, considering the
importance of ASE laterality for adult nervous system
function (Suzuki et al. 2008). We describe here a locus,
lsy-12, that executes such a maintenance function.

Laterality defects in animals lacking lsy-12, a histone
acetyltransferase: lsy-12 mutants were initially identi-
fied in a screen for ASEL/R laterality defects (Lsy
phenotype) (Sarin et al. 2007). We characterized the
lsy-12 defects in more detail by examining a panel of
left/right asymmetrically expressed genes. We find that
lsy-12 broadly affects lateralized gene expression; termi-
nal markers (such as the gcy chemoreceptors), as well as
upstream regulators, such as the miRNA lsy-6 or the die-1
zinc finger transcription factors, are affected (Figure
1C). All the defects sum up to a complete conversion
of the ASEL state to the ASER state (‘‘2-ASER’’
phenotype) (Figure 1B). Bilateral ASE fate is un-
affected, as assessed by correct, bilateral expression
of the Otx-type ceh-36 homeobox gene (Figure 1C).

lsy-12 was cloned in parallel by two independent
strategies, one being classic fine mapping and ensuing
transformation rescue (supporting information, Figure
S1). The other strategy involved whole genome se-
quencing (Sarin et al. 2008). Both approaches showed
that lsy-12 corresponds to the previously uncharacter-

Supporting information is available online at http://www.genetics.org/
cgi/content/full/genetics.110.123661/DC1.

1Corresponding author: Columbia University, 701 W. 168th St., HHSC
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ized R07B5.9 locus, a notion confirmed by multiple
alleles of lsy-12 each showing molecular lesions in
R07B5.9, rescue experiments, and phenocopy of the
lsy-12 defects by RNAi against R07B5.9 (Figure 1D, Table
S1) (Sarin et al. 2008).

The R07B5.9 protein, as originally predicted in
WormBase (WS215), codes for a 657-amino-acid protein
with some limited homology to the C-terminal half of
MYST-type histone acetyltransferases, yet it contains no
predicted acetyltransferase domain or any other protein
domain present in the databases. However, we noted
that the gene predicted by WormBase to reside up-
stream of lsy-12 (R07B5.8) encodes a protein with a

MYST-type histone acetyltransferase domain (previously
called mys-3; Ceol and Horvitz 2004), which was not
previously characterized with mutant alleles. Sequenc-
ing of available EST clones (kindly provided by Yuji
Kohara) as well as our own RT–PCR analysis reveals that
R07B5.9 and R07B5.8 were mispredicted as separate
genes and that the downstream predicted gene R07B5.9
is always fused to the upstream R07B5.8 gene (we now
refer to this gene as the ‘‘a’’ form of the lsy-12 locus)
(Figure 1D). R07B5.8 in turn, is not always fused to
R07B5.9 and can produce a smaller splice form with an
alternative 39-UTR (we refer to this variant now as the
‘‘b’’ form of the lsy-12 locus) (Figure 1D). The start site

Figure 1.—lsy-12, a MYST-type histone acetyltransferase, affects ASE laterality. (A) Genes known to be involved in controlling
ASEL/R laterality (Hobert 2006; Didiano et al. 2010). (B) Schematic representation of phenotype of representative ‘‘2 ASEL’’
and ‘‘2 ASER’’ mutants. (C) Effects of lsy-12 on ASEL/R laterality markers. A subset of the defects were already reported, upon
the initial identification of the lsy-12 locus (Sarin et al. 2007). Numbers below the panels indicate the penetrance of the phe-
notype, i.e., the fraction of animals that display the phenotype shown in the fluorescent image above. Data on other lsy-12 alleles
were reported in Sarin et al. (2007, 2008, 2010). Animals that express the die-1 reporter fosmid also contain a ASEL/
R-expressed red fluorescent reporter (che-1TmCherry) for cell identification. A list of transgenes used in the study is provided
in the File S1. Animals were scored as adults. (D) lsy-12 encodes a MYST-type histone acetyltransferase. Analysis of ESTs, ex-
pression tiling array clones, PCR specific rescue, and RT–PCR (see File S1 for more details) revealed that R07B5.8 and
R07B5.9 are one genetic locus encoding at least two major splice isoforms. The 39, polyadenylated end of yk82d06 and
EX1785569 provide evidence for the existence of the lsy-12b, while other clones provide evidence of the lsy-12a isoform.
RT–PCR data suggest that additional splice variants may be produced by the lsy-12 locus (some possibly even including the
more upstream predicted gene T11A5.1), but we have not been able to conclusively identify the start and end of such alternative
transcripts (data not shown; see also www.wormbase.org). The arrow indicates the predicted translational start site. lsy-12 ex-
pression constructs are shown in the lower part of the panel, with the bottom one being a negative control. Staggered red lines
indicate that these constructs were generated by in vivo recombineering of co-injected, overlapping PCR fragments (Boulin

et al. 2006), some of which were generated by an in vitro PCR fusion approach (Hobert 2002). The generation of constructs is
described in File S1. Rescuing data is quantified in Table S1.
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of lsy-12a and lsy-12b is confirmed by the presence of
SL1 splice leader sequences. All six mutant alleles of
lsy-12 locate to the long variant, lsy-12a (Figure 1D).
None of the available lsy-12 alleles are unambiguous
molecular nulls (Figure 1D). Attempts to retrieve such
alleles by transposon mobilization have failed.

lsy-12 encodes one of four MYST-type histone acetyl-
transferase (HAT) proteins in the C. elegans genome
(Ceol and Horvitz 2004). Other MYST family members
have previously been implicated in vulval and ectoder-
mal patterning (Ceol and Horvitz 2004; Shibata et al.
2010). On the basis of overall sequence homology, lsy-12/
mys-3 (from here on referred to as lsy-12) and mys-4 are
both members of the MOZ/MORF subfamily of MYSTs
(Lee and Workman 2007). A deletion allele of mys-4
does not display a Lsy phenotype (data not shown).

Reporters of the lsy-12 locus that only contain up-
stream regulatory information showed restricted expres-
sion patterns and no expression in ASE (data not shown),
likely because not all regulatory elements of this large
locus are located in the 59 upstream region. A fosmid-
based gfp reporter rescues the lsy-12 mutant phenotype,
and is expressed broadly throughout the animal; yet its
expression was too weak to unambiguously assess expres-
sion in ASEL/R. To assess whether lsy-12 indeed acts
in the ASE neurons, we expressed the lsy-12 coding
region under control of the bilateral ASE promoter from
the ceh-36 locus and found that this construct rescued the
Lsy phenotype, demonstrating that lsy-12 acts cell auton-
omously within the ASE neuron class (Figure 1D; Table
S1).

lsy-12 is continuously required to maintain ASE
laterality: Examining the onset of left/right asymmetric
gene expression in the ASE neurons in the embryo, we
find that in lsy-12 mutants the normally ASER-specific
gcy-5 gene is expressed bilaterally from the onset of its
expression in threefold embryos (Figure 2A). To address
whether lsy-12 may not be involved only in the initial
establishment of asymmetry but also in maintaining ASE
asymmetry, we used an allele of lsy-12, ot563, which is
strongly temperature sensitive. This allele was retrieved
as a modifier of the lin-59 locus but was not yet
characterized (Sarin et al. 2010). We find that animals
continuously raised at 15� show a very lowly penetrant Lsy
phenotype (�10%), while animals continuously raised at
25� show an almost completely penetrant Lsy phenotype
(Figure 2B). Animals shifted from the permissive tem-
perature (15�) to the nonpermissive temperature (25�)
at the postembryonic L4 stage or even the adult stage
(i.e., long after ASE laterality has been established in the
embryo) show an �50% penetrant ASEL-to-ASER con-
version (Figure 2B). Similarly, animals grown at 25� until
late larval or adult stages (at which animals would
normally display an almost completely penetrant ASEL-
to-ASER conversion), show a partial rescue of the mutant
phenotype when shifted to 15� (Figure 2B). These
findings underscore the plasticity and bipotentiality of

the system in that it can revert from one state to the other
even after the initial choice has been made.

Other known components of MOZ/MORF-type
HATs also display Lsy phenotypes: Work in other
systems has revealed three proteins that functionally
associate with MYST/LSY-12-type HATs namely the EAF6
protein, the BRPF1 bromodomain protein, and a PHD
finger protein of the ING family (Doyon et al. 2006; Lee

and Workman 2007; Ullah et al. 2008). There are
C. elegans orthologs for each of the three proteins. Mutant
alleles are available for the BRPF1 ortholog lin-49 and
the ING-like genes T06A10.4 and ing-3. We had pre-
viously reported that mutant alleles in one of them, the
bromodomain-encoding lin-49 locus, display Lsy defects
(Chang et al. 2003). These defects are the same as in lsy-
12 mutants: the fate of the ASEL neuron converts to that
of the ASER neuron (Chang et al. 2003). We extended
this previous observation by showing that not just
terminal fate (as shown in Chang et al. 2003) is affected
in lin-49 mutants, but that lin-49, like lsy-12, also affects
the activity of the bistable feedback loop: ASEL-specific

Figure 2.—lsy-12 is continually required in ASE but may
also act early. (A) lsy-12 is required for the initial manifesta-
tion of asymmetry, as assessed by gcy-5Tgfp expression (otIs220
transgene). In wild-type animals, gcy-5 expression is first ob-
served exclusively in ASER in threefold-stage embryos; in lsy-
12(ot563) animals, expression of gcy-5Tgfp is bilateral from
the onset. (B) Temperature-shift experiments indicate a sus-
tained requirement for lsy-12 activity. lsy-12(ot563) animals that
had been grown for several generations at either 15� or 25�
were plated and temperature shifted up to 25� or down to
15� at the following timepoints: Embryo, 2-cell; pre-comma;
two- to threefold; threefold (those embryos were collected from
dissected adult) and postembryonic, L1; L2; L3; L4; and 2-day-
old adult. All animals were then scored as 3-day-old adults.
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lsy-6 miRNA and die-1 expression is lost in lin-49 mu-
tants (Figure S2A). Moreover, the laterality defects of a
hypomorphic allele of lsy-12 allele are enhanced by lin-
49 (Figure S2B; since stronger alleles of lsy-12 are
completely penetrant, other interaction tests of this sort
could not be performed).

T06A10.4 and ing-3 encode PHD domain-containing
proteins related to the ING subunit of MYST-type HAT

complexes, with T06A10.4 being closer to the ING1/2/
4/5 genes (http://www.treefam.org/cgi-bin/TFinfo.
pl?ac¼TF352014) and ing-3 being closer to the ING3
gene (http://www.treefam.org/cgi-bin/TFinfo.pl?ac¼
TF106497). The PHD domain is thought to recognize
histone methylation marks and thereby recruit HAT
activity to methylated histone substrates (Doyon et al.
2006; Ullah et al. 2008). Even though ING-like

Figure 3.—The MYST-complex component
lsy-13 affects ASE laterality. (A) lsy-13 controls
ASE laterality. The upper panel shows the struc-
ture of the lsy-13 locus and the lsy-13 null allele.
The gene structure is confirmed by EST clones
(www.wormbase.org). All other panels show the
head regions of adult animals. Numbers below
the panels indicate the penetrance of the pheno-
type, i.e. the fraction of animals that display the
phenotype shown in the fluorescent image
above. The die-1 and lsy-6 wild-type control im-
ages are the same as in other figures and shown
for comparison only. The red fluorescent marker
in the lsy-6 panel (ceh-36promTdsRed2) allows iden-
tification of the ASE neurons. Animals that ex-
press the die-1 reporter fosmid also contain a
ASEL/R-expressed red fluorescent reporter
(che-1TmCherry). A list of transgenes used in
the study is provided in File S1. We note that
lsy-13 function can be maternally supplied (ho-
mozygous offspring of a heterozygous lsy-13 par-
ent does not display a mutant phenotype). In
contrast to the lin-49 null mutant animals,
lsy-13(ok1475) null mutant animals are viable
and display no obvious morphological abnormal-
ities. (B) A reporter gene which contains 2.8 kb
of 59 sequences to the first exon of lsy-13, gener-
ated by PCR fusion (Hobert 2002), is broadly ex-
pressed, including in the two ASE neurons,
marked with a red fluorescent reporter gene.
Primer sequences for the construct are provided
in File S1. (C) Model for lsy-12/lsy-13/lin-49
function, based on the phenotypic similarities
between the genes shown here. che-1 directly
regulates expression of terminal differentiation
genes—both symmetrically and asymmetrically
expressed ones—as well as regulators of the
bistable feedback loop (Etchberger et al.
2007, 2009). Left/right asymmetrically expressed
genes, contain cis-regulatory elements (indicated
by ‘‘?’’) in addition to the CHE-1 binding site (the
ASE motif) that restrict CHE-1 activity to ASEL or
ASER (Etchberger et al. 2009). Genetically, die-1
controls the activity of the factors that restrict
che-1 activity, but it is not known whether die-1 ful-
fills this function directly (through binding to
these additional motifs) or indirectly through
the regulation of other factors. Since die-1 autor-
egulates its own transcription (L. Cochella and
O. Hobert, unpublished data), the HAT complex
also impinges on die-1 expression itself.
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proteins have been shown to be involved in cell growth,
apoptosis, and tumorgenesis (Coles and Jones 2009),
their role in pattern formation and cell fate specifica-
tion have been little explored. Deletion alleles of
T06A10.4 and ing-3 were generated by the C. elegans
knockout consortia. ing-3(tm2530) mutants display no
Lsy phenotype (data not shown). In contrast,
T06A10.4(ok1475) mutant animals display a ‘‘2 ASER’’
Lsy phenotype, such that expression of a terminal ASEL
marker is lost while there is ectopic gain of a terminal
ASER marker in ASEL (Figure 3A). This phenotype is
indistinguishable from lsy-12/HAT and lin-49/BRPF
mutants. Again similar to lsy-12 and lin-49 mutants,
the expression of the ASEL inducers lsy-6 and die-1 is
also lost in T06A10.4(ok1475) mutants, albeit at lower
penetrance as observed in lsy-12 mutants. The Lsy
phenotype of T06A10.4(ok1475) mutant animals can
be rescued by a 4.4-kb PCR fragment spanning the
entire locus [2.3 kb upstream of start codon to 0.7 kb
downstream of stop; the 86% penetrant gcy-5 misexpres-
sion (n ¼ 50) is rescued to 0% misexpression (n ¼ 28)].
We therefore named the T06A10.4 locus lsy-13. A re-
porter construct for the lsy-13 locus displays a broad
expression pattern throughout many tissue types, in-
cluding expression in the two ASE neurons (Figure 3B),
therefore resembling the broad expression of lin-49
(Chamberlin et al. 1999).

Taken together, the phenotypic similarity of lsy-12,
lsy-13, and lin-49 in controlling terminal ASEL/R fate,
together with the reported physical and functional
interactions of their vertebrate homologs (Doyon

et al. 2006; Ullah et al. 2008), suggest that LSY-12,
LSY-13, and LIN-49 proteins act together in a complex
to control ASEL/R lateralization. We note that lsy-13 is
the only ING-like gene with a reported role in nervous
system development and our studies provide the first
phenotypic side-by-side comparisons of HAT and ING
gene activities in a metazoan organism, thereby pro-
viding in vivo support for the biochemical studies that
link these two proteins (Doyon et al. 2006; Ullah et al.
2008).

The die-1 Zn finger transcription factor is also
continuously required to maintain ASE laterality and
is a candidate recruiter of the MYST complex: How
could the maintenance function of the MYST complex
be explained? Generally, the phenotypic specificity of
histone-modifying enzymes must be conferred by tran-
scription factors that recognize DNA in a sequence-specific
manner (Struhl 1998). For example, the MYST-type
HAT Tip60 is recruited to DNA via diverse transcription
factors, such as nuclear hormone receptors or c-Myc
(Sapountzi et al. 2006). In the context of ASE laterality
control, the C2H2 die-1 Zn finger transcription factor
may be such a recruiter. This is because, first, the lsy-12,
lsy-13, and lin-49 phenotypes described here resemble
those of the die-1 Zn finger transcription factor in that
mutant alleles in all these loci display an ASEL-to-ASER

fate conversion (‘‘2 ASER’’ phenotype) (Chang et al.
2004). Second, both die-1 and lsy-12 are continuously
required to maintain ASE laterality. In the case of lsy-12,
this is demonstrated by the temperature-shift experi-
ments described above; in the case of die-1, we uncovered
such requirement through postdevelopmental treat-
ment of animals with dsRNA directed against die-1.
Using a nre-1 lin-15b RNAi hypersensitive background
(Schmitz et al. 2007) and the ASER-expressed gcy-
5promTgfp transgene otIs186, we observed an ASEL-to-
ASER conversion in the P0 generation of dsRNA treated
animals [45% (n ¼ 62) of animals showed such a
conversion]. The maintained requirement of die-1 is
also illustrated by the maintained expression of die-1 in
ASEL throughout larval and adult stages (Figure 1C).

The che-1 C2H2 Zn finger transcription factor, a
terminal selector for ASE fate, which acts through a
cis-regulatory motif, the ASE motif, present in bilaterally
and left/right asymmetrically expressed terminal differ-
entiation genes, is, like die-1, also continuously required
to maintain the differentiated state of the ASE neurons
(Etchberger et al. 2007, 2009). In the case of asym-
metrically expressed genes, CHE-1 cooperates with
additional DNA-binding proteins—possibly DIE-1—to
ensure left/right asymmetric expression (Etchberger

et al. 2009). We therefore propose that continuously
required CHE-1 and DIE-1 are the sequence-specific
DNA binding proteins that recruit the LSY-12/LSY-13/
LIN-49 MYST–HAT complex to maintain terminal
differentiation features (Figure 3C).

A role in maintaining differentiated cellular states has
also been recently reported for another MYST–HAT
complex, composed of the C. elegans Bromodomain
protein BET-1 (a paralog of LIN-49) and its associated
MYST-type histone acetyltransferase mys-2 (a paralog of
lsy-12) (Shibata et al. 2010). The vertebrate LIN-49
homolog BRPF1 and the histone acetyltransferase
Myst3, as well as the fly MYST family member Chameau,
are required to maintain HOX gene expression during
development (Grienenberger et al. 2002; Laue et al.
2008), and the vertebrate MYST family member MOZ is
required for the generation and maintenance of hema-
topoietic stem cells (Katsumoto et al. 2008). Together,
these findings suggest that MYST function in mainte-
nance of gene expression patterns has been broadly
conserved during evolution and is employed in many
different cell types.
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FILE S1 

Supporting Material and Methods 

 

Transgenes 

 Transgenes that label ASEL and ASER fates include ASEL markers otIs114 = Is[lim-6prom::gfp; rol-6(d)], otIs160 = Is[lsy-6prom::gfp; 

unc122prom::gfp], ASER markers include otIs186 =Is[gcy-5prom::gfp; rol-6(d)], otIs274 = [die-1::yfp recombineered fosmid; che-1::mCherry:che-1_3’UTR; 

rol-6(d)](kindly provided by Baris Tursun), ntIs1 = [gcy-5prom::gfp; lin-15(+)], otIs220 = Is[gcy-5prom::mCherry; rol-6(d)]; ASEL/R markers 

otIs151 = Is[ceh-36prom::DsRed2; rol-6(d)], otIs232 = Is[che-1promA::mCherry::che-1_3’UTR; rol-6(d)]. otIs186 =Is[gcy-5prom::gfp; rol-6(d)]. lsy-12-

containing fosmid rescuing lines otEx3510-2 = three independent lines of Ex[fosmid WRM061aF10; elt-2::gfp] (SARIN et al. 2008). Additional 

transgenes generated in this study: otEx3676; otEx3677; otEx3678= three independent rescue lines of Ex[lsy-12(R07B5.8 & R07B5.9 

overlapping PCR genomic regions); elt-2::gfp]; otEx4330, otEx4330 = Ex[ceh-36prom2::lsy-12a; elt-2::dsRed2]; otEx4317-21= five independent lines of 

Ex[ceh-36prom2::lsy-12b; elt-2::dsRed2]. otEx4366-68= three independent lines of Ex[nonprom_lsy-12a; elt-2::gfp]; otEx4418= Ex[lsy-13 4.4 kb genomic 

locus; elt-2::gfp]; otEx4417 = Ex[lsy-13prom::gfp:unc-543’UTR; elt-2::gfp]. 

 

Expression constructs 

 ceh-36prom2::lsy-12, nonprom_lsy-12a, and lsy-13prom::gfp were constructed by a combination of an in vitro PCR fusion approach 

(HOBERT 2002) and an in vivo recombineering approach, in which overlapping PCR fragments recombine after injection into worms 

(BOULIN et al. 2006). Rescue constructs are shown in Fig.2. ceh-36prom2::lsy-12a was generated by PCR fusing a 1.8kb promoter region of 

ceh-36 with the 3.6kb genomic region of R07B5.8 (12ng/ul) and was coinjected with a 3.8 PCR fragment including the entire R07B5.9 

genomic locus with endogenous 3’UTR with 110bp overlap with the R07B5.8 fragment (12ng/μl). elt-2::dsRed2 (3ng/μl) was used as an 

injection marker. ceh-36prom2::lsy-12b is the same construct injected without the R07B5.9 fragment. nonprom_lsy-12a construct was made by 

coinjecting a 3.6 kb promoterless fragment of the R07B5.8 genomic locus (12.5 ng/μl), the entire R07B5.9 genomic locus as described 

above (12.5 ng/μl) and elt-2::gfp (50ng/μl) as injection marker.  

 lsy-13prom::gfp was generated by PCR-fusing 2.8kb of sequences upstream of the first predicted exon of the lsy-13 locus to the gfp 

coding region and unc-543’UTR (20ng/μl) and was coinjected with elt-2::gfp (50ng/μl) as injection marker.  

Primer sequences for each construct are as follows (primer name-sequence 5’ to 3’): 

R07B5.8 PCR rescue fragment: 

R07B5.8RescueFwd – ggctcgcttcatttagac 

R07B5.8RescueRev – ggtgcggattgatgtgagg 

 

R07B5.9 PCR rescue fragment: 

R07B5.9RescueFwd – gtcacattccccggttatgc 

R07B5.9RescueRev – cgtctatgatgcctattgcc 

 

ceh-36prom2::lsy-12a 

 ceh36p2_5A – ttAAGCTTATCCGATAAGGCTG 

 ceh36R07B58pB – cttgagaagggaacacatagGGATCcgcaaatgggcggagggtg 

R07B5.8tnslC - ctatgtgttcccttctcaag 

R07B5.8rescRevout (use as D) - gacgagcatagaatacgtgc 

R07B5.8RescueRev (use as D*) – ggtgcggattgatgtgagg 

coinject with R07B5.9 overlapping PCR rescue fragment 
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ceh-36prom2::lsy-12b 

 Same as ceh-36prom2::lsy-12a but no R07B5.9 overlapping rescue fragment 

 

nonprom_lsy-12a  

R07B5.9 genomic region primers: 

R07B5.9RescueFwd: cgtctatgatgcctattgcc 

R07B5.9RescueRev: cgtctatgatgcctattgcc 

 

R07B5.8 genomic region without promoter: 

7R07B5.8tnslC: ctatgtgttcccttctcaag 

R07B5.8RescueRev: ggtgcggattgatgtgagg 

 

lsy-13prom::gfp 

 T06A10.4_A: cacagtgacttttccccg 

 T06A10.4_A*: gagatgagtggcgatgg 

 T06A10.4_B: agtcgacctgcaggcatgcaagcttcacttcttcttcttcaatccctttcg 

C – agcttgcatgcctgcaggtcgact   

D – aagggcccgtacggccgacta 

 D* – ggaaacagttatgtttggtatattggg 

 

lsy-12 transcript analysis  

 RT-PCR analysis was performed with the Invitrogen Superscript one-step RT-PCR System with Platinum Taq Polymerase. 

RT-PCR primers include:  

lsy12RTfullp1: cggtcagtgatagaaacg 

lsy12RTfullp2: caaccattatcggaactcgg 

lsy12RTfullp3: gctgctagagatctcactg 

lsy12RTfullp4: cttgagagtaagcctggac 

lsy12RTfullp5: gccgttgattgctccaattg 

lsy12RTfullp6: cctccaattccacctgcac 

R07B5.9end: gaactgattggtggcagttcc 

R07B5.9endNest: ggtggcagttccatttgtttg 

 

lsy-12 cloning 

 The lsy-12 alleles ot89 and ot170 alleles were mapped to one map unit on LGV by traditional three factor mapping using 

physical markers dpy-11 and unc-76. Hawaian SNP mapping was performed as described (WICKS et al. 2001), which narrowed the interval 

to 0.07 map units on LGV. lsy-12 was rescued by transgenic lines containing fosmid WRM0610aF10 with 39.3 kb of genomic sequences 

including R07B5.8 and R07B5.9 (SARIN et al. 2008). Two overlapping PCR fragments containing the entire R07B5.8 (8.3kb) and 

R07B5.9 (3.9kb) loci also rescued the lsy-12 phenotype (Fig.2, primers listed above). This procedure happened in parallel to a whole 

genome sequencing approach for mutant identification on lsy-12(ot177), previously mischaracterized as being in a distinct 

complementation group (SARIN et al. 2008). 
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MYST domain

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE S1.—Mapping lsy-12. The lsy-12 alleles ot89 and ot170 alleles were both mapped to one map unit on LGV by traditional three 

factor mapping using physical markers dpy-11 and unc-76. SNP mapping with the polymorphic Hawaiian C.elegans isolate CB4856 

narrowed the interval to 0.07 map units on LGV. lsy-12 was rescued by transgenic lines containing fosmid WRM0610aF10 with 39.3 kb 

of genomic sequences including R07B5.8 and R07B5.9. 
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lsy-6prom::gfp

(otIs160)

81% (n=47) defective

44% (n=27) defective

die-1fosmid::yfp

(otIs274)

wild type

Suppl. Figure 3

A

B

lin-49(ot78)

Genotype ASEL only ASEL=ASER no express. n

wild type 100% 0% 0% >100

lsy-12(ot154) 58% 0% 42% 50

lin-49(ot78) 84%                                         0% 16% 52

lsy-12(ot154); lin-49(ot78) 12% 0% 88% 33

lim-6::gfp (otIs114) expression

     100% (n=52) WT 

    100% (n=26) WT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE S2.—The MYST complex component lin-49 affects ASE laterality. A: lin-49 controls lsy-6 and die-1 expression. The effect of 

lin-49 on other laterality markers was previously reported in (CHANG et al. 2003). Numbers below the panels indicate the penetrance of 

the phenotype, i.e. the fraction of animals that display the phenotype shown in the fluorescent image above. The die-1 wild-type control 

images are the same as in Fig.1 and shown for comparison only. B: Partial loss of function alleles of lsy-12 and lin-49 enhance one 

another. Since stronger alleles of lsy-12 are completely penetrant, other interaction tests of this sort could not be performed. 
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TABLE S1 

Laterality phenotype of lsy-12 transgenic animals 

 lim-6prom::gfp (otIs114) expression 

genotype ASEL only ASEL=ASER no express. n 

     

wild type 100% 0% 0% >100 

lsy-12(ot170) 0% 0% 100% >100 

     

fosmid rescue     

lsy-12(ot170); otEx3510 100% 0% 0% 52 

lsy-12(ot170); otEx3511 90% 0% 10% 30 

lsy-12(ot170); otEx3512 94% 0% 4% 26 

     

lsy-12a/b PCR rescue     

lsy-12(ot170); otEx3676 97% 3% 0% 33 

lsy-12(ot170); otEx3677 78% 22% 0% 36 

lsy-12(ot170); otEx3678 84% 16% 0% 32 

     

ceh-36prom2::lsy-12a     

lsy-12(ot170); otEx4330 84% 10% 6% 31 

     

ceh-36prom2::lsy-12b     

lsy-12(ot170); otEx4318 62% 0% 38% 26 

lsy-12(ot170); otEx4319 36% 0% 64% 25 

lsy-12(ot170); otEx4320 18% 0% 82% 33 

     

no prom lsy-12a     

lsy-12(ot170); otEx4366 2.6% 0% 97.4% 39 

lsy-12(ot170); otEx4367 0% 0% 100% 21 

lsy-12(ot170); otEx4368 0% 0% 100% 26 

     

 

See Fig.1 for schematic representation of constructs. Note that animals that express the 

genomic lsy-12 locus from a multicopy transgenic array not only rescue the loss of ASEL fate 

in ASEL, but also show a partially penetrant and partially expressive conversion of ASER to 

ASEL. Similar ASER to ASEL conversions can be observed in transgenic animals expressing 

the lsy-12 locus under control of the bilaterally expressed ceh-36 promoter. Within the 
appropriate cellular context, lsy-12 is therefore not only required but, at least to some extent, 

sufficient to induce ASEL fate. The potential link of lsy-12 with die-1 and che-1 may explain the 

overexpression effect of lsy-12. We have previously shown that die-1 or che-1 gene action is 

dosage sensitive such that overexpression of either gene can induce ASER to ASEL cell fate 

alterations (ETCHBERGER et al. 2009; JOHNSTON et al. 2005). Perhaps the overexpression of lsy-
12 raises the activity of die-1 and/or che-1 gene activity in ASER above a certain threshold, 

resulting in an ASER to ASEL conversion. Overexpression of the mouse homolog of lsy-12, 
Querkopf, also results in effects that are reciprocal to the loss of function phenotype (MERSON 
et al. 2006). We also find that both the lsy-12a and the lsy-12b isoform can rescue the laterality 

defect, even though mutant alleles are restricted to the lsy-12a isoform. Perhaps lsy-12a and lsy-
12b are functionally equivalent, but lsy-12a is the only isoform that is expressed in ASEL. 
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CHAPTER 6: DISSCUSSION AND FUTURE DIRECTIONS 

Combinatorial codes of terminal selector regulation: 

The nervous system employs a series of sequentially acting factors that 

successively restrict and determine cellular fates in multiple steps. Despite the fact that 

much is known about the early steps, it remains obscure how a mature neuron achieves 

its terminally differentiated state and how this state is maintained at later stages. The 

same transcription factor is very often expressed in distinct cell types, yet it is unclear 

how these cells acquire different differentiated fates and whether the same transcription 

factor carries out the same function in different cell types. Chapter 2 takes the LIM 

homeodomain transcription factor TTX-3 as a starting point to test the proposed concept 

that combinatorial codes of transcription factors control the adoption of distinct neuronal 

cell types. This notion can also be expanded to other transcription factors such as UNC-

86, which not only cooperates with TTX-3 but also collaborates with other regulatory 

factors in other cell types in a synergistic manner. Therefore, it is the combinatorial 

codes of transcription factors that restrict and define the terminal differentiated fate of a 

neuron. 

 

Continuous requirement of terminal selector transcription factors 

Another key feature of terminal selectors is that they are continuously required 

throughout the life of an animal, suggesting that they are not only involved in initiating 

expression of terminal differentiated genes, but also responsible for maintaining such 

identities (Etchberger et al., 2009; Flames and Hobert, 2009; Kratsios et al., 2012). 

Utilizing fosmid based reporters, maintained expression of both UNC-86 and TTX-3 at 

131



	
  

	
  

later stages of the worm has been observed. Further experiments could be done to 

address the question. For example, temperature-sensitive alleles, if available, can be 

used to temporally remove or provide gene activities to assess its roles in neuronal 

maintenance. Other experiments such as heat-shock induced expression of proteins at 

post-embryonic stages may also provide some insight into this question. 

 

Target gene specificities 

Our promoter bashing analysis suggests that although the same transcription 

factor TTX-3 is expressed in both AIY and AIA, it binds to different cis-regulatory 

motifs to achieve specificity. In AIY, together with the homeodomain protein CEH-10, 

TTX-3 recognizes the “AIY motif” present in its target genes (Wenick and Hobert, 

2004). In AIA, TTX-3 utilizes a different signature that is shared by AIA-specific genes. 

In the case of cho-1, which is expressed in both AIA and AIY, both the “AIY motif” and 

the “AIA motif” are present in the regulatory region, but deleting either of the two 

motifs only affects expression in one of the two neurons, while the other remain present. 

Therefore, we propose that aside from cooperating with a cofactor, the specificities of 

the same transcription factor in different cell types is achieved by utilizing different and 

dedicated regulatory motifs that respond to this transcription factor.   

 

Looking for cofactors 

We have shown that TTX-3 is required for the expression of the terminal gene 

battery in the AIA interneuron. However, evidence suggests that it is likely that ttx-3 

acts with another yet unknown factor to jointly control AIA fate, as majorities of the 
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AIA-expressed genes assessed with fluorescent reporters are not completely abolished in 

ttx-3 mutants. I have performed a preliminary screen using two reporters, mgl-

1::mcherry (or mgl-1::gfp) and ins-1::gfp. Several mutants were retrieved but no 

mutants aside from ttx-3 alleles have been found.  It is possible that the locus encoding 

such a factor small or difficult to hit. One can also argue that the other factor when 

mutated may lead to sterility or lethality. This problem can be overcome by performing 

manual clonal screens instead of automatic screens utilizing the Biometrica worm sorter, 

which pools the F2 generation and does not allow recovery of the heterozygous mother. 

It is also possible that the other factor has much weaker or no effect alone when mutated, 

and only when ttx-3 is also mutated, a much stronger effect could be observed. Further 

screens in the ttx-3 mutant background shall help identify such mutants. This requires a 

reporter that is not expressed in too many cells (easy for AIA identification), and is 

weakly affected by mutations in ttx-3. Appendix 1 of this thesis also describes TTX-3 as 

a terminal selector required for the specification of the glutamatergic chemosensory 

neuron ASK. Similar to AIA, the expression of several ASK terminal identities are not 

completely eliminated by the absence of ttx-3 activity, which indicates that TTX-3 may 

as well collaborates with a cofactor in ASK. Screens with a fluorescent reporter in which 

ASK is weakly affected by ttx-3 may provide some clues for identification of the 

unknown factor. 

 

TTX-3 function in AIN 

AIN has been previously thought to be glutamatergic, but our data suggests that 

it may instead be cholinergic, because we observe GFP expression in AIN with a short 
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version of transcriptional GFP reporter for the choline transporter cho-1 (otIs379). This 

could be easily confirmed by looking at a red fosmid-based reporter of cho-1 to see if 

there is colocalization or by performing antibody staining against the synaptic vesicle 

acetylcholine transporter UNC-17.  

Aside from its expression in NSM, AIA, AIY and ASK, our observation with the 

fosmid reporter wgIs68 suggests that TTX-3 is also expressed in the motoneuron AIN in 

the head of the worm. The question is then whether TTX-3 has similar functions in AIN, 

and if so, whether it collaborates with another unknown factor to determine AIN fate. 

With our short cho-1 reporter that is only expressed in AIY, AIA and AIN, we know that 

although AIA and AIY are affected in ttx-3 mutants, AIN remain intact. Therefore, 

TTX-3 is at least not the sole terminal selector for AIN, but may still partner with 

another factor to determine the fate of AIN in synergy. Baran et al. has reported that 

AIN express a high level of the homeodomain protein UNC-42. Then is unc-42 the 

cofactor? What is the role of unc-42? Future genetic screens for AIN mutants in the ttx-3 

mutant background may also shed some light on this question. Another possibility is that 

TTX-3 plays a different role other than a transcription activator in AIN. For example, it 

may act as a repressor, similarly to what unc-3 does in the ASI sensory neuron, to 

repress genes specific to other neuron types (Kim et al., 2005).  

 

Considerations in other systems 

We have shown that in the nematode C. elegans, the POU homeodomain 

transcription factor UNC-86 is required for the fate specification of the cholinergic IL2 

neurons, which likely have sensory roles in response to chemical cues such as salts. This 
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is achieved through cooperation with the ARID-type transcription factor CFI-1. In 

Drosophila, the POU homeobox protein abnormal chemosensory jump 6 (Acj6) is a 

positive transcription regulator of the cholinergic gene locus in primary olfactory 

neurons (Lee and Salvaterra, 2002). The homolog for CFI-1 in flies, Dead Ringer (Ditch 

et al., 2005) has been reported to function in neuronal differentiation as well. It is 

interesting to examine whether these two proteins in flies have any overlap in their 

expression pattern and whether there is any cooperativity between them.  Moreover, it 

may be worthy of looking into the vertebrate homolog of CFI-1, the ARID3 genes, 

whose role in neural development hasn’t been very well explored yet. 

 

 

Specification of the RMD neuron class 

Terminal selector for the RMD neuron class 

unc-42 encodes a paired-like homeodomain protein of the Q50 class related to 

the mammalian protein Prop1. It is required for the proper specification of the terminal 

features of the ASH sensory neurons, AVA, AVD, and AVE interneurons, two RME 

neurons and all six RMD neurons based on expression of the ionotropic glutamate 

receptors GLR-1, GLR-4 and GLR-5 (Baran et al., 1999; Brockie et al., 2001; Serrano-

Saiz E, 2013). It is likely that unc-42 serves as the terminal selector for the RMD neuron 

class especially when considering that unc-42 is expressed throughout adult hood, since 

terminal selectors are generally thought to be continuously required at later stages. All 

six RMD neuron utilize acetylcholine. It is yet unknown whether cholinergic fate of 

these neurons depend on unc-42, which could be tested with reporters for the choline 
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transporter cho-1 and for the synaptic vesicle acetylcholine transporter unc-17. unc-42 

has been reported to severely affect its own expression when mutated (autoregulation) 

(Baran et al., 1999), but whether this holds true in all six RMDs remain unclear and 

needs to be further examined.  

 

Transcriptional regulation of gene expression 

There are six neurons in total in the RMD neuron class. According to previous 

studies, it seems that unc-42 could potentially be the terminal selector for all six RMD 

class neurons. Although terminal genes such as glr-1, glr-4 and glr-5 are expressed in all 

six neurons, the transgene otIs317 (mgl-1::cherry) only labels RMDDL/R and RMDV/R, 

which suggests that gene expression profiles of distinct subtypes of neurons within this 

class are not entirely identical. It has also been reported that the LIM homeobox gene 

lim-4 is expressed in RMDL and RMDR (Sagasti et al., 1999) and that glr-2 expression 

in a subset of RMD neurons is not dependent on unc-42 (Brockie et al., 2001). This 

prompted the question whether there are different layers of terminal fate regulation. For 

example, although all AIY terminal genes are under the control of the CHE-10/TTX-3 

heterodimer, another transcription factor, ceh-23 also plays a role, although only 

required to maintain the expression of one defined AIY terminal feature, the orphan 

serpentine receptor sra-11 (Altun-Gultekin et al., 2001). Similarly, Does lim-4 have 

roles only in RMD specification? Where does it act and is it dependent on unc-42?  

Moreover, does lim-4 contribute to distinguishing RMD from other neurons in the same 

class? It would also be interesting to look into the gene expression profiles of different 

RMD neurons, and try to distinguish features that are shared by all six neurons from 
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those only expressed in a subset, in order to study whether there is any differential gene 

expression and regulation that exist.  

 

Proneural roles of cnd-1 and hlh-16 

As mentioned previously, cnd-1 and hlh-16 mutants were retrieved by utilizing a 

reporter gene that is only expressed in the RMDV and RMDD neuron class. The roles of 

cnd-1 and hlh-16 in the RMD lineages remain unknown, which could be assessed by 

using reporter genes that labels all six neurons, namely glr-1, glr-4 or glr-5, or by 

looking at a terminal marker that is expressed only in RMD if available in future 

experiments.  

According to their expression patterns and timing, neural bHLH factors are often 

considered to have roles in the generation of neuron progenitors and therefore 

considered “proneural” during metazoan development. In C. elegans, for example, the 

achaete-scute family member hlh-14 is expressed in neuron precursors and is required 

for neurogenesis. hlh-14 mutants do not generate three lineally related neurons, the PVQ 

interneuron, the HSN motor neuron and the PHB sensory neuron, and possibly 

transformed the neuroblast of the whole branch into a hypodermal blast cell (Frank et al., 

2003).  Similar phenotype was observed in hlh-14 mutants within the neuronal lineage 

branch that generates ASE, OLL and AFD, with neuron-to-hypodermal transformation 

observed (Poole et al., 2011). It is possible that hlh-16 as well as cnd-1 exert similar 

functions on promoting neuroblast formation and therefore have roles in neuronal 

lineage specification of the RMD neuron class. Lineaging tracing experiments with hlh-

16 and cnd-1 mutants may help answer the question of whether or not similar neuronal 
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to hypodermal lineage transformation is observed. It would be interesting to examine 

lineally related neurons in the RMD lineages as well, such as SMBD and SMBV in the 

RMDD lineage, SAAD in the RMDV lineage, and AFD and ASK in the RMD lineage 

(See Chapter 3, Figure 4). Lastly, looking at terminal markers for these neurons might 

provide further information on whether the whole lineage is specified in cnd-1 and hlh-

16 mutants, and where and how early do they act.  

Studies have shown that in VNC motor neurons, expression of neuronal specific 

transcription factors/terminal selectors unc-3, unc-4 and unc-30 is altered in cnd-1 

mutants (Hallam et al., 2000). If unc-42 is the terminal selector for the RMD class, then 

one should examine whether the expression of unc-42 is affected in cnd-1 or hlh-16 

mutants. In a broader view, all neurons that are most closely related to RMDD and 

RMDV are cholinergic (SMBV, SMBD, SAA, SMDV). One bold but legitimate 

speculation in the bigger picture would be that cnd-1 and/or hlh-16 are required for 

generating cholinergic features of these lineages. This can be tested by building reporters 

for the choline transporter cho-1 and the synaptic vesicle acetylcholine transporter unc-

17 into cnd-1 and hlh-16 mutants. 

If both cnd-1 and hlh-16 are involved in the specification of the RMD lineages, 

another interesting question is what the relationship between the two factors is? 

Evidence has suggested that NeuroD can be activated by neurogenin, another member of 

the bHLH transcription factor family (Huang et al., 2000). In vertebrates, the NeuroD 

family genes have been reported to have roles in promoting differentiation as well as 

acting in neuroepithelial cells. Studies in the amacrine interneurons have demonstrated 

that, instead of proneural functions, genes in the NeuroD family can have differentiation 
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roles in specifying neuronal identity (Morrow et al., 1999). Studies in Xenopus and the 

mouse also reported that NeuroD can act downstream of or subsequent to other bHLH 

factors. Then does hlh-16 act upstream of cnd-1 in C. elegans? Or do they cooperate 

with each other synergistically or work in a complementary manner?  

It has also been pointed out that non-proneural bHLH factors need to work 

together with homeobox genes to specify retinal neuron fates (Bertrand et al., 2002). 

NeuroD or Math3 can induce amacrine cell fate with the homeobox protein Chx10 or 

induce bipolar cell fate with Pax6 (Hatakeyama et al., 2001; Inoue et al., 2002). If cnd-1 

is involved in cell fate restriction, then it would be curious to ask whether in C. elegans 

it requires a cofactor as well. 

Another question worth considering is that RMDD, RMDV and RMD are not 

closely and lineally related, and they descend from quite distinct lineages. However they 

seem to be under the control of the same set of transcription factor cnd-1 and hlh-16. 

How is the lineage specificity achieved? Is there any other cofactor that is also involved? 

Future experiments using available fosmid reporters for these genes might help address 

these questions. 

 

The screen 

All RMD mutants that are alleles of unc-42, cnd-1 and hlh-16 are retrieved quite 

unexpectedly from a screen for another purpose (for AIA mutants). Due to the nature of 

the screen (non-clonal), the number of genomes cannot be properly calculated. However, 

all mutants were found from the same round of preliminary screen (See Chapter 3 for 

details). Based on the allele frequency and the number of loci hit from limited numbers 
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of genomes screened, it is very likely that more alleles and more novel genes will be 

uncovered in future screens. One could also take advantage of using the worm sorter to 

automate and facilitate the sorting process. Another advantage of continuing doing a 

screen using the same strain otIs317 (mgl-1::mcherry) is that one could potentially 

retrieve mutants that are affected in the NSM and AIA from the same screen. 

 

ASE asymmetry 

Considerations on ASE screens: manual clonal screen vs. automatic non-clonal 

Recently, the COPAS Biosort System (Union Biometrica), also called the “worm 

sorter” was made available for high-throughput mutant screening (Doitsidou et al., 2008). 

It is a special flow cytometry machine that is designed for sorting larger particles 

including living organisms like C. elegans, based on parameters such as size, particle 

density and fluorescent intensity. This can markedly speed up the screening process and 

alleviate tedious and laborious manual screening. All can be done within a significant 

shorter amount of time. Doitsidou et al. demonstrated that they were able to retrieve a 

variety of mutnats that display various abnormal neuronal phenotypes, some which were 

not picked up in the previous manual screen with the same reporter gene.  

Although the use of the worm sorter has been quite successful in looking for 

dopaminergic mutants, it is not always the case for all screens. A previous large-scale 

screen that went through approximately 120, 000 haploid genomes manually reported 

around 120 alleles with disrupted ASE asymmetry (Sarin et al., 2007). Aside from low-

penetrance and multiple-loci mutants, a total of 14 regulatory genes have been identified, 

12 of them hit multiple times. However, in a subsequent automatic screen that sought to 
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identify more mutants involved in the ASE regulatory network, out of the 49 alleles 

identified (across 15 different runs of experiments, non-clonal), 48 most of them are 

alleles of either fozi-1 or cog-1 alleles (See appendix 3), suggesting that automated 

screens are probably more biased than manual clonal screens in at least some cases.  

There are also certain drawbacks with the automated approach. First, in order to 

sort more efficiently and to grow worms in larger quantity, all screens need to be non-

clonal. This biases on F2 homozygous animals that are viable, and therefore lethal	
  or	
  

sterile	
  mutants	
  might	
  be	
  selected	
  against	
  because	
  they	
  are	
  not	
  able	
  to	
  grow	
  or	
  to	
  

propagate.	
   Although	
   not	
   entirely	
   impossible,	
   it	
   is	
   extremely	
   difficult	
   to	
   recover	
  

viable	
  but	
  sterile	
  mutants	
  from	
  a	
  pooled	
  population	
  consisting	
  of	
  complex	
  genetic	
  

makeups.	
  One	
  could	
  argue	
  that	
  the	
  lethality	
  or	
  sterility	
  issue	
  may	
  be	
  compensated	
  

by	
   the	
   much	
   larger	
   number	
   of	
   genomes	
   screened	
   in	
   the	
   hope	
   of	
   obtaining	
  

hypomorphic	
  alleles	
   that	
   are	
  healthier	
  and	
  viable,	
  but	
   a	
   full	
   spectrum	
  of	
  mutants	
  

would	
  still	
  be	
  favorable,	
  and	
  genes	
  with	
  severe	
  pleitropies are less likely to be picked 

up by the machine, because a worm would have to go through multiple steps before it 

can be finally sorted onto a plate. Moreover,	
   conducting	
  a	
  non-­‐clonal	
   screen	
   leaves	
  

the	
   number	
   of	
   genomes	
   screened	
   incalculable,	
   which	
   makes	
   the	
   estimation	
   of	
  

mutation	
  rate	
  and	
  saturation	
  degree	
  difficult.	
  Second,	
  although	
  it	
  is	
  much	
  faster	
  for	
  

the	
  machine	
  to	
  sort	
  out	
  mutant	
  candidates,	
  the	
  rate	
  of	
  getting	
  false	
  positive	
  hits	
  is	
  

relatively	
   high.	
   This	
   is	
   inevitable	
   because	
   of	
   the	
   variability	
   among	
   individual	
  

animals,	
   even	
   if	
   they	
   haven	
   been	
   synchronized.	
   Third,	
   compared	
   to	
   the	
  machine,	
  

the	
   human	
   eyes	
   are	
  more	
   capable of performing multiple sophisticated tasks at the 

same time without complicated parameter setups. Just by looking at a worm, one could 
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easily identify gain/loss of expression, cell mispositioning, or any visible phenotypes, 

while the machine can only handle one task at a time. Therefore, one could probably get 

a better spectrum of mutants by screening manually, although the automatic screen can 

increase the chance of hitting rare alleles. 

 

Whole genome sequencing: 

lsy-27 was cloned taking advantage of the newly developed high-throughput 

whole genome sequencing approach. Mutant animals were analyzed by direct 

sequencing instead of the conventional and somewhat tedious mapping and rescuing 

approach. More recently, methods that utilizing either polymorphism (Doitsidou et al., 

2010) or mutagen induced nucleotide changes (Zuryn et al., 2010) have been introduced. 

In the old days, characterization of a particular mutant can be extremely time consuming, 

which could take up to several years and is very often the time-limiting step of a project. 

With whole genome sequencing (WGS), all can be done within a much shorter amount 

of time, on the scale of weeks. The cloning of lsy-12 is another good example of how 

WGS can be extremely beneficial.  It was mapped independently by two parallel 

strategies. Both conventional genetic mapping methods followed by rescue experiments 

and the WGS approach were able to pinpoint he mutation to the same locus but the 

difference is striking. It only took a couple of months for WGS as opposed to years spent 

on traditional mapping by a former graduate student. Now the only limiting step is to 

retrieve mutants. This is extremely useful when dealing with an organism such as C. 

elegans, with which large collections of mutants are relatively easy to obtain. It is even 

possible to streamline the mutant cloning process, which can potentially lead to much 
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greater productivity in a time and cost efficient manner.  

 

LSY-27 function in triggering lim-6 initiation 

Based on reporter analysis, lsy-27 not only affects terminal markers for ASE 

neurons, but is also required for lim-6 expression. The embryonic-restricted LSY-27 

expression provides further support for the speculation that LSY-27 only has an earlier 

role in ASE fate specification, and is only required for the onset but not the maintenance 

phase of lim-6 expression, while lim-6 expression persists throughout the life of ASEL. 

The C2H2 zinc finger transcription factor DIE-1 is also required for triggering the 

expression of lim-6 expression. It is possible that LSY-27 assists DIE-1 to exert such a 

role only in the initiation phase, as DIE-1 is also expressed throughout adulthood.  

 

The LSY-12/LSY-13/LIN-49 complex and its function 

The phenotypic similarity and the reported functions in their vertebrate homologs 

of LSY-12, LSY-13 and LIN-49 suggests that these three factors may act in a complex 

to control the establishment and maintenance of ASE laterality In C. elegans. Yet the 

interactions among the components of this MYST histone acetyltransferase complex 

haven’t been fully explored. In zebrafish, the LIN-49 homolog BRPF1 (bromodomain-

PHD finger protein 1) recruits the LSY-12 homolog MOZ (monocytic leukemia zinc 

finger protein), and is able to directly bind to acetylated histone through the 

bromodomain (Kim et al., 2005).  It has also been shown that mammalian BRPF1 serves 

as a scaffold to bridge the formation of the complex, which also involves MOZ/MORF 

and the lsy-13 homolog ING-5 (inhibitor of growth protein 5) (Morrow et al., 1999). We 
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have demonstrated the enhancement between a partial loss of function allele of lsy-12 

and a lin-49 allele. This suggests that they may play similar roles in C. elegans. Other 

genetic tests could be performed to further assess the interactions between lsy-12 and 

lsy-13, and between lin-49 and lsy-13, and among all of the three if possible. 

Biochemical approaches such as co-immunoprecipitation and chromatin-

immunoprecipitation experiments may be a great tool to determine how closely these 

proteins are associated and what the specific targets of this complex are. 

Another unanswered question is that what recruits the complex to specific sites 

and how this is achieved. The ASEL-expressed C2H2 zinc finger protein DIE-1, and the 

master regulator CHE-1, are candidate transcription factors for such activities, as 

transcription factors that recognize specific DNA sequences are generally considered to 

be required for the specificity and activity of histone-modifying proteins (Inoue et al., 

2002). In die-1 mutants, ASEL are converted to ASER, and an unusual allele of che-1, 

ot101, has revealed an additional role of CHE-1 in establishing L/R asymmetry 

(Etchberger et al., 2009).  Defects resulted from mutations in either die-1 and che-

1(ot101) are similar to the phenotypes induced by mutations in the components of the 

HAT complex. Another piece of evidence is that DIE-1 and CHE-1 activities are 

required throughout the life of an animal, which is similar to the continuous expression 

pattern of lsy-12. Taken together, it is suggested that DIE-1 and CHE-1 may act as 

sequence-specific adaptors that recruit the LSY-12/LSY-13/LIN-49 DNA-modifying 

complex to the DNA to maintain terminal differentiated features of the ASE.  
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APPENDIX 1: 

Modular control of glutamatergic neuronal identity in C.elegans by distinct 
homeodomain proteins 
 
Esther Serrano-Saiz, Richard J. Poole, Terry Felton, Feifan Zhang, Estanisla Daniel De 
La Cruz and Oliver Hobert. Cell. 2013 Oct 24;155(3):659-73.  

 

In this paper, Serrano-Saiz et al. mapped out all the glutamatergic neurons that 

are categorized into 38 neuron classes by examining the expression of EAT-4/VGLUT, 

the vesicular glutamate transporter. The expression of EAT-4 is controlled in a modular 

fashion, with different regulatory modules responsible for expression in distinct 

glutamatergic neuron classes. Based on observation made in C. elegans, the vertebrate 

ortholog, Lim homeodomain protein LHX1 was identified as a regulator of 

glutamatergic neurons in the brainstem of the mouse. 

I identified expression of TTX-3 in the ASK sensory neuron by diI staining, and 

performed genetic analysis on ttx-3 mutants with GFP reporters for eat-4 as well as three 

additional markers for ASK. 
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SUMMARY

The choice of using one of many possible neuro-
transmitter systems is a critical step in defining the
identity of an individual neuron type. We show here
that the key defining feature of glutamatergic neu-
rons, the vesicular glutamate transporter EAT-4/
VGLUT, is expressed in 38 of the 118 anatomically
defined neuron classes of the C. elegans nervous
system. We show that distinct cis-regulatory mod-
ules drive expression of eat-4/VGLUT in distinct glu-
tamatergic neuron classes. We identify 13 different
transcription factors, 11 of them homeodomain pro-
teins, that act in distinct combinations in 25 different
glutamatergic neuron classes to initiate andmaintain
eat-4/VGLUT expression. We show that the adoption
of a glutamatergic phenotype is linked to the adop-
tion of other terminal identity features of a neuron,
including cotransmitter phenotypes. Examination of
mouse orthologs of these homeodomain proteins
resulted in the identification of mouse LHX1 as a
regulator of glutamatergic neurons in the brainstem.

INTRODUCTION

A key identity feature of an individual neuron type is its neuro-
transmitter phenotype. Most classic neurotransmitters are syn-
thesized by specialized enzymes, loaded by specific transporter
proteins into synaptic vesicles and taken back into the neuron by
specialized plasma membrane transporters. In many cases, the
neurotransmitter identity of a specific neuron type is therefore
defined by the coordinated expression of genes coding for spe-
cific enzymes and transporters. Understanding the regulatory
mechanisms that control expression of these enzymes and
transporters presents a fruitful ‘‘bottom-up’’ approach that will
help explain how a specific neuronal identity is imposed onto a
neuron type during development and how this identity is main-
tained throughout the life of a neuron.
Glutamate is the most broadly employed excitatory neuro-

transmitter inmost vertebrate and invertebrate nervous systems.

In contrast to other neurotransmitter systems, the identity of glu-
tamatergic neurons is not defined by the expression of specific
biosynthetic enzymes and reuptake transporters. Since gluta-
mate is present in all cells, its utilization as a neurotransmitter
critically depends on the ability of a neuron to load glutamate
into synaptic vesicles. This is achieved by a vesicular transporter
for glutamate of the SLC17 family of solute carriers, called
VGLUT (Takamori et al., 2001). Ectopic expression of VGLUT is
sufficient to confer the glutamatergic phenotype (i.e., synaptic
release of glutamate) onto heterologous neurons (Takamori
et al., 2000, 2001). Consistent with the sufficiency of VGLUT to
determine the glutamatergic phenotype, there are no pan-gluta-
matergic markers other than the VGLUT genes (see Supple-
mental Information).
Given the importance of VGLUT genes in defining the glutama-

tergic phenotype of a neuron, it is perhaps surprising that very
little is known about how VGLUT expression is regulated in the
nervous system of any vertebrate or invertebrate species,
including mouse, Drosophila and C. elegans. In the mouse,
several transcription factors have been described to be involved
in the generation of glutamatergic neurons in different areas of
the developing central nervous system (Brill et al., 2009; Cheng
et al., 2004; Englund et al., 2005; Lou et al., 2013; Ma and Cheng,
2006), but it is not clear whether any of these factors directly
initiates and maintains VGLUT expression or whether they act
transiently at earlier stages of differentiation and operate through
intermediary factors.
The nematode C. elegans contains one well-characterized

VGLUT-encoding gene, eat-4 (Lee et al., 1999). eat-4/VGLUT en-
ables glutamatergic transmission in various neuronal circuits that
control distinct behaviors (e.g., Chalasani et al., 2007; Lee et al.,
1999) and the eat-4mutant phenotype can be rescued by human
VGLUT (Lee et al., 2008). How C. elegans eat-4/VGLUT expres-
sion is regulated in distinct neuronal cell types has not previously
been investigated, mirroring the absence of insight into the regu-
lation of Drosophila or vertebrate VGLUT gene expression.
In principle, one could imagine several distinct scenarios by

which VGLUT gene expression is controlled in different neuronal
cell types. A dedicated regulatory factor (or combination thereof)
could exist to control VGLUT expression in all different glutama-
tergic neuron types (model #1 in Figure 1A). This dedicated fac-
tor could be turned on by distinct sets of earlier acting factors in
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distinct glutamatergic neuron populations. Alternatively, VGLUT
gene expression could be regulated in different manners in
distinct glutamatergic neuron types (Figure 1A, model #2 and
#3). Furthermore, VGLUT expression may be controlled sepa-
rately from the expression of other identity features of a neuron
(Figure 1A, model #2) or its expression could be tightly linked
with the expression of other cell-specific identity features of
particular glutamatergic neuron types (Figure 1A, model #3).
Whether distinct terminal identity features of a neuron are sepa-

rately regulated or whether they are coregulated via a common
(set of) trans-acting factor(s) (model #2 versus #3) are funda-
mental but little understood neurodevelopmental problems.
Here, we approach these questions using two conceptually

distinct but converging approaches. First, we elucidate the cis-
regulatory logic of eat-4/VGLUT expression by defining cis-reg-
ulatory regions in the eat-4 locus that are required for expression
of eat-4 in distinct glutamatergic neurons. If one common regu-
latory mechanism exists (model #1) that controls eat-4/VGLUT
expression in all glutamatergic neurons, such cis-regulatory
analysis should reveal a specific cis-regulatory element required
for expression in all eat-4/VGLUT expressing neurons. Alterna-
tively, if distinct glutamatergic neuron types employ distinct
regulatorymechanisms (model #2 and #3), the eat-4/VGLUT reg-
ulatory elements should be complex and modular in nature, with
different elements driving expression in different neurons types.
Second, we analyzed the effect of removal of a number of tran-
scription factors on the expression of not only eat-4/VGLUT but
also on the expression of other identity markers of the respective
glutamatergic neuron type (hence distinguishing model #2 and
#3) and we report evidence of pervasive coregulation. Further-
more, we provide evidence of the conservation of regulatory
mechanisms in the mouse. Our analysis reveals a comprehen-
sive picture of the regulation of glutamatergic neuronal identity
in the nervous system.

RESULTS

eat-4/VGLUT Expression Defines 38 Glutamatergic
Neuron Classes
We defined the glutamatergic nervous system of C. elegans by
examining the expression of a fosmid-based eat-4 reporter
construct (Figures1B and 2). This reporter is expressed in 78 of
the 302 neurons of the adult hermaphrodite, which fall into 38
neuron classes (out of a total of 118 anatomically defined neuron
classes in thehermaphrodite; Table 1andFigures1Band2).Most
of these neurons are either sensory- or interneurons. Only two
motorneurons utilize glutamate; both are located in the pharynx.
If the eat-4/VGLUT expressing neurons that we describe here

indeed use glutamate as neurotransmitter, one would expect
that synaptically connected neurons should express ionotropic
glutamate receptors. Based on the complete synaptic connec-
tivity diagram of the C. elegans hermaphrodite (White et al.,
1986) and previously described expression patterns of all known
glutamate-gated ion channels (Brockie and Maricq, 2006), we
infer that each of the eat-4/VGLUT- expressing cells is presynap-
tic to at least one neuron (or pharyngeal muscle in the case of the
pharyngeal motor neurons) that expresses glutamate-gated ion
channels (Table 1). This corroborates the glutamatergic identity
of the eat-4/VGLUT expressing neurons. Similar to vertebrates,
we found that the expression of C. elegans glutaminases does
not track with glutamatergic neuronal identity (Supplemental
Information and Figure S1 available online).
The identity of other neurotransmitter systems (cholinergic,

GABAergic, dopaminergic, serotonergic, tyraminergic, octopa-
minergic) has been described in great detail in C. elegans
(http://www.wormatlas.org). The pattern of eat-4/VGLUT
expression that we describe here is complementary and not
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Figure 1. eat-4/VGLUT Expression
(A) Three different models for regulation of VGLUT expression in different

glutamatergic neuron types.
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overlapping with the expression of markers for these other, pre-
viously described neurotransmitter identities, with four excep-
tions (Table 1). The glutamatergic AIM and I5 interneurons are
also serotonergic (Jafari et al., 2011; Sawin et al., 2000) and so
is the glutamatergic ASG sensory neuron under hypoxic condi-
tions (Pocock and Hobert, 2010). The eat-4/VGLUT-expressing
RIM motorneurons also employ the monoamine tyramine
(Alkema et al., 2005).

Dissecting cis-Regulatory Control Regions of eat-4/
VGLUT Reveals a Modular Logic of Expression
To dissect the cis-regulatory information content of the eat-4
locus, we first compared expression of the eat-4 fosmid reporter
and a reporter containing most of the 50 intergenic region up-
stream of eat-4, the eat-4 locus, and 500 bp of downstream
sequences (Figure 2). This reporter is still expressed in all but
two neurons classes compared to the fosmid reporter (Figure 2).
A previously described, much smaller transcriptional reporter
(adIs1240) is expressed in a much more restricted manner (Fig-
ure 2) (Lee et al., 1999).
We generated a series of reporter genes that encompasses

various overlapping and nonoverlapping pieces of the eat-4
locus and examined their expression pattern in transgenic ani-
mals. We find that the broad expression generated from the
upstream cis-regulatory region can be broken into much smaller
elements that direct expression to very small numbers of specific
glutamatergic neuron classes (Figure 2). The modularity of the
cis-regulatory control logic is further underscored by a more
fine-grained mutational dissection in which we mutated
conserved small motifs that constitute predicted binding sites

for transcription factors whose identity we will describe further
below. Mutations of such motifs abrogate expression in even
smaller numbers of neuron classes, in some cases single neuron
classes (Figure 2). The modular structure of cis-regulatory con-
trol regions of the eat-4 locus, with individual cis-regulatory ele-
ments driving expression in distinct glutamatergic neuron types,
rules out the master regulatory model #1 (Figure 1A) and argues
for neuron-type specific control mechanisms (model #2 ormodel
#3 in Figure 1A).
We furthermore note that our mutational analysis did not reveal

derepression in other neuronal or nonneuronal cell types, indi-
cating that eat-4 expression is sculpted by activating rather than
repressive regulatory inputs. Our previous analysis of the regula-
tion of other neurotransmitter systems (e.g., genes controlling
dopamine or acetylcholine biosynthesis) derived similar conclu-
sions (Flames and Hobert, 2009; Kratsios et al., 2012), thereby
corroborating the previously proposed concept that gene acti-
vation, rather than gene repression, is the predominant mode of
controlling terminal identity features of a neuron (Hobert, 2011).

Known Terminal Selector-Type Transcription Factors
Control eat-4/VGLUT Expression
To identify the trans-acting factors that operate through the
modular cis-regulatory elements in the eat-4 locus, we first
turned to eight distinct, terminal selector-type transcription fac-
tors that have previously been shown to define the identity of
distinct neuron types that we determine here to be glutamater-
gic: the che-1 Zn finger transcription factor (controls ASE gusta-
tory neuron differentiation; [Etchberger et al., 2007]), the unc-86
POU homeodomain and mec-3 LIM homeobox genes (light
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Table 1. eat-4 Expressing Neurons, Their Regulators, and Postsynaptic Targets

eat-4-Expressing

Neuron Class eat-4 Regulator Identified in This Study Postsynaptic Target Based on EM Analysisa,b Cotransmitter

ADA interneuron c AVB, AVJ, RIM, SMD, RIP

ADL sensory neuron lin-11 Lim homeodomain gene AIA, AIB, AVD, AVB, AVA

AFD sensory neuron ttx-1/ceh-14 Otx-type/LIM homeodomain AIY

AIB interneuron RIM, RIB, AVB, SAAD

AIM interneuron unc-86 POU homeodomain AIA, ASG, ASK, ASJ, AVF Serotonin

AIZ interneuron unc-86 POU homeodomaind RIA, SMB, AIB, RIM, AIY, AVE

ALM sensory neuron unc-86/mec-3 POU/LIM homeodomain BDU, PVC, CEP

AQR sensory neuron unc-86 POU homeodomain AVA, AVB, RIA, BAG, PVC, AVD

ASE sensory neuron che-1 Zn finger & ceh-36 Otx-type

homeodomain

AIY, AIA, AIB, RIA

ASG sensory neuron lin-11 LIM homeodomain + ceh-37 Otx-type
homeodomain

AIA, AIB Serotonine

ASH sensory neuron unc-42 Prd-type homeodomain AIA, AIB, RIA, AVA, AVB, AVD

ASK sensory neuron ttx-3 LIM homeodomain AIA, AIB, AIM

AUA interneuron ceh-6 POU homeodomain RIA, RIB, AVA, AVE

AVM sensory neuron unc-86/mec-3 POU/LIM homeodomain AVB, PVC, BDU, ADE, PVR

AWC sensory neuron ceh-36 Otx-type homeodomain AIY, AIA, AIB

BAG sensory neuron ets-5 Ets + ceh-37 Otx-type homeodomain RIA, RIB, AVE, RIG

DVC interneuron ceh-14 LIM homeodomain RIG, AVA, AIB, RMF f

FLP sensory neuron mec-3 LIM homeodomaind AVA, AVD, AVB, AIB, ADE

IL1 sensory neuron RMD, RIP

LUA interneuron Unknown homeodomain proteing AVA, AVD, PVC, AVJ

OLL sensory neuron vab-3 Prd homeodomain SMD, AVE, RIB, RMD, CEP

OLQ sensory neuron RMD, RIC, SIB, RIH

PHA sensory neuron ceh-14 LIM homeodomain PHB, AVG, PVQ, DVA, AVF, AVH

PHB sensory neuron ceh-14 LIM homeodomain AVA, PVC

PHC sensory neuron ceh-14 LIM homeodomaind DVA, PVC, DA9

PLM sensory neuron unc-86/mec-3 POU/LIM homeodomain AVA, AVD, DVA, PDE

PQR sensory neuron unc-86 POU homeodomain AVA, AVD

PVD sensory neuron mec-3 LIM homeodomain AVA, PVC

PVQ interneuron c AIA

PVR interneuron unc-86/ceh-14 POU/LIM homeodomain AVB, RIP, AVJ

RIA interneuron SMD, RMD, RIV

RIG interneuron AVE, AIZ, AVK, RIB, BAG, RIR, RMH

RIM motor neuron head muscle, SMD, RMD, SAA, AVB Tyramine

URY sensory neuron vab-3 Pax homeodomain SMD, RMD, RIB, AVE

Pharyngeal neurons:

M3 motor neuron c pharyngeal muscle, M3

I2 interneuron NSM, I4, I6, M1

MI motor neuron pharyngeal muscle, NSM,
M1, M2, M3, MC, I4, I5

I5 interneuron M1, M3, M4 Serotonin

In addition to the neurons listed in this table, males show eat-4 expression in about 20 unidentified male-specific tail neurons. A recent report using a

different, smaller eat-4 reporter also identified AVA, AVE, SIB, RMD and ASJ neurons as eat-4-expressing (Ohnishi et al., 2011). We found that expres-

sion of this reporter perfectly overlaps with our fosmid-based reporter, but we could not confirm expression in any of these cells.
aBased on White et al., 1986.
bBold indicates postsynaptic target expresses ionotropic GluR. glc/avr (glutamate-gated ion channel), glr (AMPA/Kainate-type), nmr (NMDA-type

glutamate receptor) (Brockie and Maricq, 2006).
cCandidate regulators expressed in this cell, but found to have no effect on eat-4 expression: unc-86 (ADA), ceh-2 (M3), ceh-14 (PVQ).

(legend continued on next page)
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touch receptor differentiation; [Duggan et al., 1998]), the ceh-36
Otx-type homeobox gene (ASE and AWC chemosensory neuron
differentiation [Chang et al., 2003; Lanjuin et al., 2003]), the ttx-1
Otx-type and ceh-14 LIM homeobox transcription factors (AFD
thermosensory neuron identity; [Cassata et al., 2000; Satterlee
et al., 2001; H. Kagoshima, personal communication]), the lin-
11 LIM homeodomain transcription factor (ASG chemosensory
neuron identity; [Sarafi-Reinach et al., 2001]) and the ets-5 ETS
domain transcription factor (BAG CO2/O2 sensory neurons
[Brandt et al., 2012; Guillermin et al., 2011]). Each of these tran-
scription factors is continuously expressed in mature neuron
types to control the expression of various terminal identity fea-
tures of these individual neurons (e.g., neurotransmitter recep-
tors, neuropeptides, ion channels, sensory receptors, etc.), but
in none of these cases is it known whether the glutamatergic
phenotype, i.e., expression of eat-4/VGLUT, is affected. We
crossed eat-4 reporter genes into the respective mutant back-
grounds and found that each of the eight terminal selector tran-
scription factors is required for eat-4 expression in the neuron
types in which these factors were known to act as terminal selec-
tors (Figure 3; Table 1). Using mec-3 as an example, we
confirmed through temporally controlled addition and removal
of mec-3 that mec-3 is required continuously to maintain eat-4
expression (Figure S2A). These findings demonstrate that the in-
duction and maintenance of the glutamatergic phenotype is
linked to the induction andmaintenance of other terminal identity
features of specific glutamatergic neuron types.
Ectopic misexpression of terminal selector-type transcription

factors has been shown to impose specific neuronal identities
on other cell types (e.g., Flames and Hobert, 2009; Kratsios
et al., 2012). Using che-1, mec-3, and ceh-36 as examples, we
confirmed that misexpression of these terminal selectors is
also able to induce ectopic eat-4/VGLUT expression (Figures
S2D–S2F).

Dual Neurotransmitter Identity Is Coregulated via
Common trans-Acting Factors
The glutamatergic ASG neuron pair displays the intriguing
property of upregulating an additional neurotransmitter system
under specific environmental conditions in order to improve
chemosensory acuity (Pocock and Hobert, 2010). Specifically,
in hypoxic conditions, 5HT antibody staining and expression of
tryptophan hydroxylase (tph-1), the rate-limiting enzyme of
5HT biosynthesis, are significantly upregulated in ASG. We find
that in addition to regulating eat-4/VGLUT and other terminal fea-
tures of ASG, lin-11 is also required for the upregulation of tph-1
in ASG under hypoxic conditions (Figure 4A). Therefore, both
glutamatergic and serotonergic identity of the ASG neurons are
coregulated by a common trans-acting factor.
A similar coregulation of dual neurotransmitter identities is

observed in the AIM neurons. These neurons were previously

reported to be serotonergic and to require the POU homeobox
gene unc-86 to acquire their serotonergic identity (Jafari et al.,
2011) (Figure 4B). We find that eat-4/VGLUT expression in AIM
is also abolished in unc-86mutant animals (Figure 4B). Addition-
ally, we observe loss of the flp-10 neuropeptide-encoding gene
in AIM in unc-86 mutants, mirroring the previously reported
impact of unc-86 on specific morphological features of AIM
(Kage et al., 2005) (Figure 4B). As in the case of lin-11 and
ASG, these findings indicate coregulation of distinct neuro-
transmitter identities within a single neuron class by a common
trans-acting factor.

Identification of New Regulators of Glutamatergic
Neuronal Identity
We next examined the function of three transcription factors that
previous studies had found to be expressed postmitotically and
continually in what we define here as eat-4(+), glutamatergic
neurons but whose impact on the identity of these neurons has
either not been studied in detail or not studied at all.
unc-42Controls the Identity of theASHSensoryNeurons
unc-42 encodes a Paired-type homeodomain transcription fac-
tor related to mammalian PROP1 (Baran et al., 1999). unc-42 is
expressed in the ASH nociceptive sensory neurons and its
expression persists throughout adulthood due to autoregulation
(Baran et al., 1999). unc-42 is required for the expression of two
orphan seven transmembrane receptors of the odorant receptor
family, sra-6 and srb-6, in ASH (Baran et al., 1999) but since the
expression of odorant receptor family members in sensory neu-
rons is strongly activity dependent (Nolan et al., 2002; Peckol
et al., 2001), it was unclear if unc-42 broadly affects neuronal
identity or whether it has a narrower role in controlling sensory
responsiveness or neuronal activity. We find that unc-42
controls eat-4/VGLUT expression in ASH (Figure 3F). Through
postembryonic removal of unc-42, we found that unc-42 is
continuously required to maintain eat-4 expression (Figure S2B).
unc-42 also affects the expression of all other terminal identity
markers tested, including the three Ga-encoding genes gpa-
11, gpa-13, gpa-15 and the neuropeptide flp-21 (Figure 4C).
The loss of terminal identity features is not indicative of a loss
of these neurons since ASH neurons still take up dye in unc-
42 mutants (Baran et al., 1999).
ceh-6 Controls the Identity of the AUA Interneurons
ceh-6 is a POU homeobox gene expressed in a small number of
head neuron classes (Bürglin and Ruvkun, 2001), one of them the
AUA interneuron class, which regulates aggregation behavior
(Coates and de Bono, 2002). ceh-6 expression in AUA and other
head neurons is maintained throughout adulthood (Bürglin and
Ruvkun, 2001). We find that in ceh-6 null mutant animals eat-4/
VGLUT expression in the AUA neurons is abrogated (Figure 3G).
We tested a number of additional terminal markers of AUA iden-
tity (neuropeptide-encoding genes flp-8, flp-10, and flp-11) and

dApart from earlier functions of unc-86 in this lineage, unc-86may also have late roles in terminal differentiation. See Figure S6 for more information on

this subject.
eUnder hypoxic conditions (Pocock and Hobert, 2010).
fReported to be cholinergic (Duerr et al., 2008) but based on unc-17 and cho-1 reporter expression, we believe that DVA and not DVC is cholinergic.
gInferred from requirement of TAAT homeodomain consensus site for eat-4 expression in LUA.
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Figure 3. Regulators of eat-4/VGLUT Expression
eat-4 reporter lines where crossed into the null mutant backgrounds indicated. Percentage (%) of animals (n = 20–40) that express the reporter in both cells of the

respective left/right neuron pair (‘‘2 on’’) or one of the two neurons of a neuron pair (‘‘1 on’’) or in neither (‘‘0 on’’) are indicated.

(A–E) Known terminal selectors of individual neuronal identities control eat-4 expression. See also Figure S2. (A) che-1 affects eat-4 expression (assayedwith eat-

4prom6 reporter transgene otIs392) in the ASE neurons. (B) ceh-36 affects eat-4 expression (assayed with eat-4prom6 reporter transgene otIs392) in the ASE and

(legend continued on next page)
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found that the expression of each of them was also strongly
affected in the AUA neuron class of ceh-6 mutants (Figure 4D).
The AUA neuron is not absent in ceh-6 mutants, since we find
that expression of the panneuronal marker rab-3 is unaffected
in AUA (Figure 2G). Like other terminal selectors (Hobert,
2011), ceh-6 therefore affects the adoption of a specific identity
while panneuronal identity is unaffected.
ceh-14 Controls the Identity of Phasmid Sensory
Neurons
ceh-14 is a LIM homeobox gene that is expressed in a small
number of head and tail neurons, including the PHA, PHB, and
PHC tail phasmid sensory neurons (Cassata et al., 2000). Using
a fosmid-based reporter, we confirmed that ceh-14 expression
is maintained throughout the life of these neurons (data not
shown). We find that eat-4 expression is affected in all three
phasmid sensory neurons of ceh-14 null mutants (Figure 3H).
The expression of additional identity markers for PHA and PHB
(GPCR srb-6 and neuropeptide flp-4) and PHC (tyrosine phos-
phatase ida-1 and the dopamine receptor dop-1) is also affected
in ceh-14 mutants (Figures 4E and 4F). PHA and PHB also
display dye filling defects in ceh-14 mutants (Kagoshima et al.,
2013). Panneuronal features (rab-3 expression) of the phasmid
neurons are unaffected in ceh-14 null mutants (Figure S2H).
We also observed an effect of loss of ceh-14 on eat-4 expres-

sion in the DVC interneurons (Figure 4H). Another DVC cell fate
marker, the GPCR srab-12, also displays defective expression
in DVC (Figure 5G). We observed no defects in eat-4 expression
in the normally ceh-14 expressing PVQ neurons of ceh-14
mutant animals. Joint removal of ceh-14 and ttx-1, a previously
described regulatory of AFD neuron identity (Satterlee et al.,
2001), results in loss of eat-4 expression in AFD (Figure 3D).
ceh-14 and ttx-1 also collaborate in the activation of other
AFD-expressed terminal effector genes (H. Kagoshima, personal
communication).
vab-3 Controls the Identity of theOLL andURYVNeurons
In addition to pursuing candidate genes, we identified an addi-
tional regulator of glutamatergic neuron identity through an
unbiased screen for EMS-induced mutants in which the gluta-
matergic OLL neurons, sensors of bacterial pathogens (Chang
et al., 2011), do not adopt their identity. This screen identified
the vab-3Paired homeobox gene (Figure 5; see Extended Exper-
imental Procedures). In vab-3 mutants, the expression of eat-4,
as well as the tyramine receptor ser-2, the acetylcholinesterase
ace-1, and the groundhog gene grd-8 fail is affected in the OLL
neurons (Figure 5A). The OLL neurons are generated in these an-
imals as assessed by unaffected expression of both ift-20 and

the panneuronal rab-3 marker in the anterior ganglion
(Figure S2I).
A fosmid-based vab-3 reporter is expressed in the OLL neu-

rons, and this expression is maintained throughout the life of
these neurons, consistent with a role of vab-3 in not only initiating
but also maintaining the OLL differentiation program (Figures 5B
and 5C). Apart from OLL, we also observe expression of vab-3 in
the glutamatergic ventral URY neuron class, which are lineally
unrelated sensory neurons of unknown function. Expression of
eat-4/VGLUT expression, as well as the expression of two addi-
tional markers of ventral URY fate, the pdfr-1 neuropeptide
receptor and the Toll receptor tol-1 is lost in vab-3 mutants
(Figure 5A).
Taken together, our candidate as well as genetic screening

approaches have revealed four additional regulators of the iden-
tity of multiple distinct glutamatergic neuron types. Each factor is
expressed in the respective neuron class during its entire post-
mitotic life span. Each of these factors not only controls eat-4
expression but also several additional identity features of the
respective glutamatergic neuron type. Due to their broad effect
on distinct terminal identity features, each of these factors can
therefore be considered a terminal selector-type transcription
factor.

Redundancy of Glutamatergic Identity Regulators
The expression of a number of the transcriptional regulators of
glutamatergic identity that we have identified here is restricted
to one class of glutamatergic neurons (che-1 in ASE, ets-5 in
BAG, ttx-1 in AFD, and mec-3 in touch neurons). In contrast,
unc-86, lin-11 and ceh-14 are expressed in multiple very distinct
glutamatergic neuron classes, and we examined whether these
regulators generally affect glutamatergic identity in all neurons
in which they are expressed. Genetic elimination of unc-86 re-
sults in no effect on eat-4/VGLUT expression in the URY sensory
neurons, the I2 pharyngeal interneurons or the tail sensory
neuron PVR (Figure S3). Similarly, the LIM homeobox gene
ceh-14 affects glutamatergic identity in PHA, PHB, and PHC,
but not in PVQ or PVR neurons (Figure 3H and data not shown).
Likewise, the LIM homeobox gene lin-11 affects ASG glutama-
tergic identity, but not AIZ glutamatergic identity (data not
shown).
We considered the possibility that potential functions of these

regulators may be masked by redundancies with other glutama-
tergic regulators. To address this possibility, we specifically
focused on the PVR tail sensory neuron because it coexpresses
unc-86 and ceh-14, each of which acts as a glutamatergic

AWC neurons. The control for the ceh-36 panel is shown in (A). (C) ets-5 affects eat-4 expression (assayed with eat-4prom6 reporter transgene otIs392) in the BAG

neurons. (D) ttx-1 affects eat-4 expression (assayed with eat-4 fosmid reporter transgene otIs388) in the AFD neurons. The animals shown were also stained with

DiI, which labels other sensory neurons to facilitate cell identification. (E) The collaboratingmec-3/unc-86 genes affect eat-4 expression (assayedwith the reporter

transgene adIs1240) in different types of touch receptor neurons. The effect of unc-86 was not examined in FLP neurons due to a previously described lineage

transformation that eliminates the FLP neuron. See also Figure S3.

(F–K) Novel regulators of specific neuronal identities. (F) unc-42 controls eat-4 expression (assayedwith eat-4 prom2 reporter transgene otIs376). (G) ceh-6 controls

eat-4 expression (assayed with eat-4 prom2 reporter transgene otIs376). (H) The LIM homeobox gene ceh-14 and the POU homeobox gene unc-86 regulate

glutamatergic identity of several tail sensory neurons. The effect of unc-86 in PHC could be the result of unc-86 function at earlier stages in the PHC-producing

lineage (see Figure S3). The effect of ceh-14 and unc-86 either alone or in combination on eat-4 expression in PVR is assayed using the eat-4prom10 reporter

transgene otEx5301. (I) ceh-37 affects eat-4 expression (assayed with eat-4prom6 reporter transgene otIs392) in the BAG and ASG neurons. (J) lin-11 affects eat-4

expression (eat-4prom6 transgene otIs392) in the ASG neurons. (K) unc-86 affects eat-4 expression (eat-4 fosmid reporter transgene otIs388) in the AIZ and AIM

neurons. See Figure S3 for more notes on unc-86 function in AIZ.
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Figure 4. Adoption of Glutamatergic Identity Is Linked to the Adoption of other Neuronal Identity Features
(A) In the ASG sensory neurons, lin-11 affects expression of the serotonergic marker tph-1 that is induced under hypoxic conditions in ASG (tph-1::gfp transgene

zdIs13).

(B) unc-86 affects serotonin staining and another identity marker of AIM (flp-10::gfp transgene otIs92).

(C) unc-42 controls several features of ASH identity (gpa-11prom2::gfp transgene otEx5336, gpa-13::gfp transgene ofEx213, gpa-15::gfp transgene pkIs591,

flp-21::gfp transgene ynIs80). See also Figure S2.

(D) ceh-6 controls several features of AUA identity (flp-8::gfp transgene ynIs2022, flp-10::gfp transgene otIs92, flp-11::gfp transgene ynIs40).

(legend continued on next page)
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identity regulator in other neuron types, as described above.
PVR coexpresses unc-86 and ceh-14 throughout its life, consis-
tent with a role for these factors in controlling the terminal differ-
entiation state of PVR (data not shown). While neither single
unc-86 or ceh-14 null mutations affects eat-4 expression, unc-
86;ceh-14 double mutants show a dramatic loss of eat-4
expression in PVR (Figure 3H). Three additional terminal
markers of PVR identity (flp-10, flp-20, dkf-2) are also redun-
dantly controlled by ceh-14 and unc-86 (Figure 3H). The loss
of marker gene expression in unc-86; ceh-14 double mutants
is not due to loss of the neurons, since we were able to detect
generation of the cell by lineage analysis using Nomarski optics.
Taken together, the redundancy of unc-86 and ceh-14 function
in PVR suggests that glutamatergic neurons not affected by a
transcription factor that has a glutamatergic control function
in other neuron types may be masked by redundantly acting
factors.

Requirement for Specific cis-Regulatory Motifs in the
eat-4/VGLUT Locus Argues for Direct Regulation by
Specific Transcription Factors
We next asked whether any of the glutamatergic identity regu-
lators may control eat-4/VGLUT expression directly. To this
end, we made use of the knowledge of the binding sites for
six of the above mentioned transcription factors, ETS-5,
UNC-86, CEH-6, CEH-36, TTX-1, and CEH-14 (Baird-Titus
et al., 2006; Brandt et al., 2012; Duggan et al., 1998; Etchberger
et al., 2007; Kim et al., 2010; Wingender et al., 1996). We indeed
found binding sites for each of these factors in the eat-4
modular elements that drive expression in the respective neu-
rons types, and we found that deletion of these binding sites re-
sulted in a loss of expression in the respective neuron types
(Figure 2), thereby providing a strong indication that these tran-
scription factors directly control eat-4 expression. For example,
deletion of an Otx/K50-type homeodomain site (TAATCC) af-
fects expression exclusively in the ASE and AWC neuron clas-
ses (Figure 2), which both require ceh-36/Otx for correct eat-4
expression (Figures 3A and 3B). Mutation of another K50-type
homeodomain binding also affected eat-4 expression in the
ASE and AWC neurons, but additionally in the AFD neurons,
which require the K50-type ttx-1/Otx homeobox gene for cor-
rect eat-4 expression (Figures 2 and 3). Mutation of an ETS
domain binding site affected expression exclusively in the
BAG neurons that require the ETS-5 transcription factor for
eat-4 expression (Figure 2). Mutation of a predicted POU home-
odomain sites affected unc-86- and ceh-6-dependent eat-4
expression in touch neurons, PVR, and AUA (Figure 2). Lastly,
ceh-14-dependent eat-4 expression in PHA, PHB, PHC, and
DVC expression is controlled by a cis-regulatory module, eat-
4prom5, and ModEncode data (Niu et al., 2011) reveals several
CEH-14 binding peaks that map onto this module (Figure S4),
providing additional support for ceh-14 directly regulating eat-
4/VGLUT.

Redeployment of the Same cis-Regulatory Motif in
Distinct Neuron Types
Our cis-regulatory analysis also revealed that distinct transcrip-
tion factor family members apparently use the same cis-regula-
tory sites to control eat-4 expression in distinct neuron types. For
example, deletion of the putative POU homeobox site in the eat-
4prom2module affects expression of eat-4/VGLUT in the light and
harsh touch receptor neurons that require the POU homeobox
gene unc-86 for correct eat-4 expression. This deletion also
affects eat-4/VGLUT expression in the AUA neurons that require
the POU homeobox gene ceh-6 for correct eat-4 expression
(Figures 2 and 3). The same scenario applies for TAATCC K50-
homeodomain sites in the eat-4prom6 module: as mentioned
above, deletion of one of the two sites abrogates ceh-
36K50-homeodomain-dependent eat-4 expression in the ASE and
AWC neurons, while a mutation in the other site also abrogates
ttx-1K50-homeodomain-dependent expression in AFD (Figure 2).
Intriguingly, mutation of this second TAATCC site also
abrogates eat-4 expression in the BAG and ASG neurons, sug-
gesting that these neurons utilize another K50 homeodomain
protein.
We tested whether ceh-37, the third Otx/K50 ortholog in

C. elegans besides ceh-36 and ttx-1, could be involved in con-
trolling eat-4 expression in ASG and BAG. ceh-37 is expressed
in the nonglutamatergic AWB neurons as well as ASG and
BAG (Lanjuin et al., 2003; Y.G. Tong and T. Bürglin, personal
communication). We find that ceh-37 is indeed required for
eat-4 expression in both the ASG and BAG neuron classes (Fig-
ure 3I), likely through its cognate binding site TAATCC. Hence,
the glutamatergic identity of five different neuron classes is
controlled by three distinct Otx-type homeodomain transcription
factors (ceh-36: AWC and ASE, ttx-1: AFD, ceh-37: ASG and
BAG), operating through at least partially shared TAATCC sites.
Each of these Otx factors may collaborate with distinct cofactors
in these distinct cell types (e.g., ceh-37 with ets-5 in BAG and
with lin-11 in ASG; Figure S5).

Additional Homeodomain Regulators of eat-4
Expression
The striking preponderance of homeodomain transcription
factors in the collection of transcription factors that we found to
control eat-4 expression prompted us to search for additional
predicted homeodomain binding sites that may be required for
eat-4 expression in neurons for which we had not yet identified
regulatory factors. We focused on the eat-4prom2 module, which
drives expression in a number of distinct neuron classes (Fig-
ure 2). This module contains two sets of palindromic, predicted
homeodomain binding sequences (ATTAN2-3TAAT). Mutation of
oneof these homeodomain bindingpalindromes resulted in com-
plete elimination of eat-4 reporter expression in the ASK neurons,
while mutation of the other homeodomain binding palindrome
(located !200 bp away) resulted in very strong reduction of
eat-4 expression in the ADL sensory neurons (Figure 2). ASK

(E–G) ceh-14 controls several identity features of the PHB, PHC, and DVC neurons (ida-1::gfp transgene inIs179, dop-1::gfp transgene vsIs28, srab-12::gfp

transgene sEx12012).

(H) ceh-14 and unc-86 redundantly control the identity of the PVR neuron (flp-10::gfp transgene otIs92, flp-20::gfp transgene ynIs54, dkf-2b::gfp transgene

otEx5323).
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Figure 5. vab-3 Is a Novel Candidate Terminal Selector for the Glutamatergic OLL and URY Neurons
(A) vab-3(ot569) affects eat-4 expression in the OLL and URY neurons, as well as other identity markers of OLL and URY. Standard whisker-and-box plots of total

counts of gfp-expressing cells in the anterior ganglia are presented. The vab-3(ot569) allele was used except where indicated otherwise.

(B) Diagram of VAB-3 protein structure and the genomic locus encompassed by the rescuing fosmid WRM0628bC03.

(C) Expression of vab-3 in adult OLL and URY neurons. The OLL neurons were identified by overlap with ace-1::tagrfp and the URY neurons were identified by

position and cell body morphology.

668 Cell 155, 659–673, October 24, 2013 ª2013 Elsevier Inc.
158



andADL express distinct LIM homeobox genes thatmay operate
through these sites. Basedona fosmid reporter geneprovidedby
theModEncode consortium, theASKneurons express andmain-
tain theLIMhomeoboxgene ttx-3, thewormorthologof the verte-
brate LHX2/9 gene (F.Z. and O.H., unpublished data). eat-4/
VGLUT expression is abolished in the ASK neurons of ttx-3 mu-
tants (Figure S6). The ADL neurons express the LHX1/5 ortholog
lin-11 (Hobert et al., 1998) andwefindeat-4/VGLUT expression in
this neuron class to be reduced in lin-11 mutants (Figure S6). In
the case of ASK and ttx-3, we examined four additional terminal
identity features of ASK in ttx-3 mutants (neuropeptides flp-13
and nlp-14, guanylyl cyclase gcy-27 and dye filling of the neuron)
and found expression of each identity feature to be also defective
(Figure S6). Hence, neurotransmitter identity is also linked in this
case to the adoption of other identity features through coregula-
tion of these distinct features by ttx-3.
Mutation of yet another predicted homeodomain binding site

in the eat-4prom2 cis-regulatory module eliminated expression
of eat-4 exclusively in the LUA tail interneurons (Figure 2). It is
not yet known which homeobox genes are expressed in LUA.

Potential Conservation of Homeodomain Regulation of
Glutamatergic Identity in Mouse
The preponderance of homeodomain transcription factors
among the glutamatergic identity regulators in C. elegans is
remarkable. Every single glutamatergic neuron differentiation
program that we have described here depends on at least one
homeodomain protein. Eleven out of the 13 factors (85%)
described here to control terminal neuron identity are homeodo-
main transcription factors. This proportion far exceeds the pro-
portions (!11%) of homeodomain transcription factors (!100)
relative to other types of transcription factors (!900) in the
C. elegans genome. This preponderance of homeodomain regu-
lators of glutamatergic identity in C. elegans prompted us to ask
whether homeodomain proteins may also control glutamatergic
identity in vertebrates. Indeed, the Otx-type protein CRX is
known to control the identity of glutamatergic photoreceptors
in the mouse retina (Furukawa et al., 1997). To show that homeo-
domain proteinsmaybemore commonly employed as regulators
of glutamatergic neurons, we examined the expression of mouse
homologs of the two most prominent homeodomain subtypes
that we identified as glutamatergic regulators in C. elegans,
Brn-type POU homeodomain proteins (unc-86 and ceh-6 ortho-
logs) and LIMhomeodomain proteins (ceh-14,mec-3, lin-11, and
ttx-3 orthologs). We focused on examining expression in adult
neurons because we aimed to avoid identifying factors with
only transient roles in glutamatergic neuron development and
because our C. elegans studies suggested that glutamatergic
identity regulators are continuously expressed throughout the
life of the neuron to maintain their identity.
We stained adult mice with antibodies directed against three

Brn-type POU (BRN3a,b,c) and four LIM-type homeodomain
proteins (LHX1, LHX2, LHX3, and LHX5). We found expression
of five of these seven proteins in adult CNS neurons (data not
shown). We then made use of the observation made in
C. elegans that in several cases LIM and POU homeodomain
work together to determine glutamatergic identity (unc-86/
mec-3 in touch neurons; unc-86/ceh-14 in PVR neurons) and

sought to identify regions of overlap of POU and LIM homeodo-
main expression in adult glutamatergic CNS neurons. Antibody
costaining revealed that the BRN3a and LHX1 are coexpressed
in two sets of adult glutamatergic neuron types, one in the hippo-
campus (data not shown) and one in the largest nucleus of the
olivary body, the inferior olive (Figure 6A). To examine whether
one of these genes may indeed have a role in these glutamater-
gic neurons, we used a floxed, tamoxifen-inducible LHX1
knockout allele (Kwan and Behringer, 2002) to conditionally re-
move LHX1 in 8-week-old mice. We find that 10 days after
tamoxifen treatment, BRNA3a and VGLUT2-expressing gluta-
matergic neurons have disappeared from the inferior olive (Fig-
ure 6B). Whether these cells have died because LHX1 is directly
involved in controlling survival or whether they have died due to a
neuronal identity loss is not clear at present. In either case, this
data strongly implies an important function of LHX1 in defining
the existence of this glutamatergic neuron type.
As it is the case forC. elegans LIM homeobox genes, there are

glutamatergic CNS neurons that do not express LHX1 and, vice
versa, LHX1 is also expressed in nonglutamatergic neurons (Fig-
ure S7) (Lein et al., 2007; Zhao et al., 2007). This supports the
existence of neuron-type specific combinatorial codes for the
regulation of glutamatergic identity in the vertebrate nervous
system akin to what we observe in the C. elegans system.

DISCUSSION

We have revealed insights into how glutamatergic neuron iden-
tity is controlled. Throughmutational analysis of the cis-regulato-
ry control regions of eat-4/VGLUT as well as through genetic
loss of function analysis of trans-acting factors, we have ruled
out the possibility that eat-4/VGLUT expression is controlled
by one global, glutamatergic regulator in C. elegans (see model
#1 in Figure 1A). Instead, the eat-4/VGLUT locus operates as
an integrator device that samples distinct regulatory inputs in
distinct cellular contexts through a modular arrangement of
cis-regulatory elements.
We have described here more than a dozen terminal selector-

type transcription factors that act through these modular cis-reg-
ulatory elements to control VGLUT expression in two thirds of all
glutamatergic neurons (Table 1). All of these transcription factors
are continuously expressed throughout the life of the respective
neuron type suggesting they do not only initiate but also main-
tain VGLUT expression. Moreover, all the transcription factors
described here affect not only VGLUT expression, and hence
the glutamatergic phenotype, but also a number of additional
terminal differentiation genes that define the specific identify
features of distinct glutamatergic neurons. This is in line with
model #3 described in the introductory Figure 1A and further sup-
ports the terminal selector concept that posits the existence of
master regulatory-type transcription factors that coregulate a
multitude of terminal identity feature of a mature neuron (Hobert,
2011). In the absence of these terminal selectors, neurons appear
to remain in an undifferentiated neuronal ground state and do not
usually display obvious switches in identity (see Supplemental
Information).
Coregulation of neuronal identity features also extends to

multiple transmitter identities of an individual neuron type, as
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exemplified by lin-11 and unc-86, which control the glutama-
tergic/serotonergic identity of the ASG sensory and AIM inter-
neurons, respectively. Neurons have long thought to be only
employing one neurotransmitter system (‘‘Dale’s principle’’),
but over the last several years more than one transmitter system
has been found to be employed simultaneously in a number of
distinct neuron types in vertebrates and invertebrates, including
the cousage of glutamate and serotonin in some regions of the
vertebrate CNS (Seal and Edwards, 2006). However, in none of
these cotransmitter cases has it been reported whether the
two neurotransmitter phenotypes of a given neuron type are
independently regulated or controlled by the same trans-acting
factor. We have provided here two examples of coregulation of
two distinct neurotransmitter identities by a common trans-
acting factor.

Our analysis of trans-acting factors also illustrates the combi-
natorial coding nature of neuronal identity control. This is illus-
trated with the POU homeobox gene unc-86 and the LIM
homeobox genes mec-3 and ceh-14. unc-86 and mec-3 coop-
erate to control glutamatergic touch neurons, such as the ALM
neurons. In the PVR neuron and possibly also in the PHC neu-
rons, unc-86 cooperates with another LIM homeobox gene,
ceh-14. In yet other neurons (phasmid neurons), ceh-14 controls
glutamatergic identity independently of unc-86 (which is not
expressed in phasmid neurons).

The observation that mutation of the same cis-regulatory motif
can affect eat-4 expression in multiple distinct neuron types indi-

cates that there are limits to modularity. That is, cis-regulatory
information is not always encoded by distinct cis-regulatory
modules but may be encoded by a similar grammar to be read
out by different trans-acting factors in different neuron types.
For example, the same POU homeobox site is apparently recog-
nized by unc-86 in light touch receptor neurons and by ceh-6 in
the AUA neurons. Three distinct Otx-type transcription factors
read out the same cis-regulatory motif to control eat-4
expression in distinct sensory neuron classes. Each of these
Otx genes appear to cooperate with distinct cofactors in
different neuron types (Figure S5). Otx genes are expressed in
several distinct sensory neuron structures in the mouse (Acam-
pora et al., 2001), most of which likely use glutamate as
neurotransmitter.
Every single C. elegans glutamatergic neuron differentiation

program that we have described here depends on at least one
homeodomain protein. This remarkable preponderance of
homeodomain transcription factors led us to explore the expres-
sion and function of homeodomain transcription factors in termi-
nal differentiation ofmouse glutamatergic neurons. Following the
C. elegans lead of POU and LIM homeodomain proteins working
together in distinct glutamatergic neuron types, we identified a
glutamatergic neuron type in the inferior olive of the brainstem
that coexpresses POU and LIM homeobox genes and requires
the LIM homeobox genes LHX1 for its continuous presence.
Even though our mouse findings do not yet prove that verte-
brate POU/LIM homeodomain proteins directly activate VGLUT
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Figure 6. The Loss of Lhx1 Gene in the Adult Mouse Brain Affects the Survival of Glutamatergic Neurons in the Inferior Olive
(A) LHX1 and BRN3A colocalize in neurons of the inferior olive in the brain stem. See also Figure S7.

(B) Double immunostaining of VGLUT2 and glutaminase with BRN3A demonstrates the glutamatergic identity of the BRN3A/LHX1-positive neurons in the inferior

olive (yellow overlap).

(C) Loss of glutamatergic inferior olive neurons upon postdevelopmental removal of LHX1. Immunostaining analysis and Nissl staining of the inferior olive nucleus

in LHX1flox;R26CreER animals compared to LHX1flox siblings. Eight- to ten-week-old adult animals were administered tamoxifen for 10 days and analyzed shortly

thereafter. In the wild-type, tamoxifen-treated animals the neurons show LHX1, BRN3a, and VGLUT2 staining (upper), but LHX1flox;R26CreER animals do not.

Nissl staining reveals that in these animals there is a massive loss of cells in the inferior olive nucleus compared with the wild-type brains. Five animals were

analyzed for each group.
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expression, they are consistent with such a notion. The selective
loss of inferior olive glutamatergic neurons and the restricted
expression of LHX1 in only some glutamatergic neuron types in
the CNS is also consistent with a conservation of the modular,
piece-meal regulatory logic of VGLUT regulation.
Previous work on terminal selector-type transcription factors,

further extended here, has shown that they operate through
simple cis-regulatory motifs (Hobert, 2011). Terminal differentia-
tion genes that are expressed in multiple distinct neuron types,
such as the eat-4/VGLUT gene described here, contain a
modular assembly of simple terminal selector motifs that are
read out in individual neuron types by specific terminal selectors.
Gene expression profiles may be able to rapidly evolve through
the gain and loss of terminal selector motifs. In the context of
eat-4/VGLUT this means that on an evolutionary time scale the
glutamatergic phenotype of a neuron can be rapidly gained (or
lost) through the acquisition (or loss) of terminal selector motifs
in eat-4/VGLUT. Compared to other neurotransmitters, gluta-
mate is different because its employment as a neurotransmitter
does not require the presence of a specialized synthesis and
recyclingmachinery; rather, the only determinant of the glutama-
tergic phenotype is the expression of VGLUT (Takamori et al.,
2000, 2001). Hence, to gain a glutamatergic phenotype, only
the VGLUT locus rather than an entire pathway of neurotrans-
mitter synthesizing enzymes and transporters needs to acquire
responsiveness to a neuron-type specific terminal selector.
Since glutamate is a very widely employed neurotransmitter in
many different nervous systems, our findings—and the terminal
selector gene concept in general—provide a straight-forward
conceptual framework for how neurotransmitter phenotypes
and neuronal gene expression patterns in general can rapidly
evolve to generate the enormous diversity of neuronal cell types.

EXPERIMENTAL PROCEDURES

C. elegans Strains and Transgenes
A list of strains and transgenes can be found in the SupplementalInformation.

eat-4/VGLUT Reporter Transgenes
The eat-4 fosmid reporter was generated by fosmid recombineering using fos-

mid WRM0623aF12 and an SL2-based, nuclear localized yfp reporter (Tursun

et al., 2009). The eat-4 locus reporter was generated by in vivo recombination

(Boulin et al., 2006), using two overlapping fragments of the eat-4 locus (see

Extended Experimental Procedures).

The 50 eat-4 reporter constructs were generated by PCR and subcloning into

the standard pPD95.75-based expression vectors and mutagenized with the

QuickChangeII XL Site-Directed Mutagenesis Kit (Stratagene). Constructs

were injected at 50 ng/ml with rol-6(su1006) or ttx-3::dsRed as coinjection

marker. The resulting transgenic arrays are listed in the Supplemental Informa-

tion. All strains were scored as young adults.

Genetic Screen
otIs138 transgenic animals (ser-2prom::gfp) were EMS-mutagenized and ani-

mals with loss of expression in OLL were isolated a Copas Biosort machine

(Doitsidou et al., 2008). Whole-genome sequencing followed by data analysis

with MAQGene (Bigelow et al., 2009) was used to determine the molecular

identity of ot569, a new vab-3 allele. See Supplemental Information.

Analysis of Serotonergic Fate of ASG Neurons
Young adult wormswere incubated at 1%oxygen for 24 hr at 25"C in a hypoxic

semisealed chamber (oxygen levels were controlled by a ProOx P110 compact

oxygen controller [BioSpherix]) and compared to 21% oxygen incubated

worms at 25"C. Antibody staining was performed using a tube fixation protocol

described in more detail in the Supplemental Information.

Mouse Genetics
Weused two previously generatedmouse lines, LHX1flox (Kwan andBehringer,

2002) and ROSA26CreER (Badea et al., 2003). Tamoxifen was administrated

orally in the diet at a dose of 80 mg/kg/day (Harlan tamoxifen diet). Animals

were treated when they reached 8–10 weeks of age. After 10 days they were

perfused and analyzed. For each condition, five animals were used.

Mouse brain sections were stained with antibodies, in situ hybrization

probes, or other strains using standard procedure, described in the Supple-

mental Information, which also contain details on antibodies and probes.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Results, Extended Experimental

Procedures and six figures and can be foundwith this article online at http://dx.

doi.org/10.1016/j.cell.2013.09.052.
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Supplemental Information

SUPPLEMENTAL RESULTS

Markers of Glutamatergic Identity
The enzyme glutaminase generates 70% of all neuronal glutamate in vertebrates (Hertz, 2004). However, the expression of gluta-
minase is not restricted to glutamatergic neuronswithin the vertebrate nervous system (e.g., Kaneko et al., 1990; Kaneko andMizuno,
1992). Glutaminase also does not serve as a selective marker for C. elegans glutamatergic neurons. Sequence homolog searches
identify three glutaminase-encoding genes in the C. elegans genome, glna-1, glna-2 and glna-3. glna-1 and glna-2 reporter genes
are expressed outside the nervous system and in very small (<5) number of neurons, while a glna-3 reporter is expressed in many
neuron types (Figure S1). However, colabeling transgenic glna-3::gfp worms with markers that label other neurotransmitter popula-
tions show that glna-3 is not restricted to glutamatergic neurons (Figure S1). The nonselectivity of glutaminase expression for gluta-
matergic neurons mirrors the situation in the vertebrate nervous system and argues that like in vertebrates, the VGLUT gene eat-4 is
the only currently available identity marker of glutamatergic neurons.
Glutamate plasmamembrane reuptake transporters are also not goodmarkers of glutamatergic neurons since, unlike the reuptake

transporters for other neurotransmitters, glutamate reuptake transporters are primarily expressed in cells surrounding glutamatergic
neurons, rather than in the glutamatergic neurons themselves (Huang and Bergles, 2004; Mano et al., 2007).

Examination of the Antagonism of Glutamatergic and GABAergic Identity
In several distinct regions of the vertebrates CNS, excitatory glutamatergic and inhibitory GABAergic identity of neuron types can be
controlled in an antagonistic, binary switch-type manner, such that loss of glutamatergic identity is accompanied by gain of
GABAergic fate (for example in the dorsal spinal horn of Tlx mutant mice; Ma and Cheng, 2006). A similar excitatory/inhibitory antag-
onism is also observed in the cholinergic system of the basal ganglia, where loss of cholinergic identity of a neuron type can result in a
switch to a GABAergic identity (Fragkouli et al., 2009). We examined whether such antagonism is built into the glutamatergic differ-
entiation programs of C. elegans neurons as well. Aside from the 38 classes of glutamatergic neurons described above, the
C. elegans nervous system contains 26 GABAergic neurons (defining six different classes) (McIntire et al., 1993). We examined po-
tential switches of glutamatergic to GABAergic identity in eight mutant strains that lack distinct regulators of 18 distinct glutamatergic
neuron classes (ceh-36, ttx-1, ceh-37, vab-3, unc-42, ets-5, che-1, ceh-14) using anti-GABA immunostaining. We observed no
ectopic GABA staining (data not shown). Considering the number of cells and regulators we examined, we can conclude that
GABAergic and glutamatergic identity are not commonly executed in an antagonistic, binary switch-type manner in C. elegans.
This is consistent with previous studies of terminal selector transcription factors, whose disruption does not usually result in cell iden-
tity switches, but mere failures to differentiate into any specific state (Hobert, 2011).

EXTENDED EXPERIMENTAL PROCEDURES

eat-4 Reporter Genes
The eat-4 fosmid reporter was generated by fosmid recombineering using fosmid WRM0623aF12 and an SL2-based, nuclear local-
ized yfp reporter (Tursun et al., 2009). The reporter was injected at 15 ng/uL into pha-1(e2123) mutant animals with pBX as injection
marker (2 ng/uL) [100 ng/uL OP50 gDNA as filling DNA]. One extrachromosomal array was integrated to yield otIs388 III.
The eat-4 locus reporter (shown in Figure 2) was generated by in vivo recombination (Boulin et al., 2006), using two overlapping

fragments of the eat-4 locus. Briefly, a 50-eat-4prom-mChOpti[1-516] fragment was generated by PCR fusing an upstream eat-4 region
from position !5.6 kb to the eat-4 start codon (using the primer 50-GGATTGAAGTAGCTCACTGATGGATCG !30) to the first two-
thirds of the codon-optimized mCherry. A second fragment, mChOpti[116-861Dstop codon] –EAT-4::eat-4 30-UTR, was generated
PCR fusing a C terminus fragment (+116-861 bp) of codon-optimized mCherry to the 50 end of the eat-4 locus plus 560 bp of eat-
4 30UTR (using the primer 50- GAACATCCTTGATTTCCTTCTTGCTCA !30). Both fragments contained a 400 bp overlap within the
mCherry sequence, so only upon successful in vivo recombination an intact fluorescent protein can be generated. Both fragments
were injected at equal molar ratios with rol-6 (su1006) (50 ng/ul) as a coinjection marker. One extrachromosomal array was integrated
to yield otIs292.
We identified neurons that express eat-4 reporter constructs based on their cell position and, in many cases, by colabeling indi-

vidual neurons with mCherry-based reporters.
The eat-4 reporter transgenes are as follows:
otIs388 III: eat-4FOS::sl2::yfp::H2B; injected in pha-1(e2123); pBX
otIs292: eat-4 in vivo recombineered reporter; rol-6
adIs1230: eat-4 reporter construct from Lee et al., 1999.
otIs376: eat-4prom2::gfp; rol-6
otIs392: eat-4prom6::gfp; ttx-3::dsRed
otEx4478, otEx4479, otEx4480: 3 lines for eat-4prom1::gfp; rol-6
otEx4492, otEx4432, otEx4494: 3 lines for eat-4prom12::gfp; rol-6
otEx5292, otEx5293, otEx5294:: 3 lines for eat-4prom5::gfp; ttx-3::dsRed
otEx5298, otEx5299, otEx5300: 3 lines for eat-4prom6D3::gfp; ttx-3::dsRed
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otEx5311, otEx5312: 2 lines for eat-4prom6D4::gfp; rol-6
otEx5295, otEx5296, otEx5297: 3 lines for eat-4prom7::gfp; ttx-3::dsRed
otEx4488, otEx4489, otEx4490: 3 lines for eat-4prom8::tagRFP; rol-6
otEx5301, otEs5310: 2 lines for eat-4prom10::gfp; rol-6
otEx5098, otEx5099, otEx5100: 3 lines for eat-4prom2D7::gfp; rol-6
otEx5313, otEx5314, otEx5315: 3 lines for eat-4prom16; ttx-3::dsRed
otEx5316, otEx5316: 2 lines for eat-4prom2D11; rol-6
otEx5318, otEx5319, otEx5320: 3 lines for eat-4prom2D12; rol-6
otEx5345, otEx5346, otEx5347: 3 lines for eat-4prom2D6; rol-6
otEx5330, otEx5331, otEx5332: 3 lines for eat-4prom10D6; rol-6
otEx5333, otEx5334, otEx5335: 3 lines eat-4prom10D7; rol-6

Serotonin and GABA Antibody Staining
Antibody staining was performed using a tube fixation protocol (adapted from McIntire et al., 1992). Briefly, young adult worms well
fed were fixed with paraformaldehyde (PFA) 4% for 24 hr at 4"C; for GABA staining animals were fixed with PHA 4% -Glutaraldehyde
1%. The next day they were washed with 1% PBS – 0.5% Triton X-100 three times and incubated for 18 hr at 37"C in a nutator mixer
with 5% b-mercapto-ethanol-1% Triton X-100 - 0.1 M Tris (pH 7.5). The third day the worms were rinsed three or four times with 1%
PBS!0.5% Triton X-100 and treated with collagenase type IV (Sigma Aldrich, C-5138) in collagenase buffer (1% Triton X-100/0.1 M
Tris, pH 7.5/1 mM CaCl2) for 1 hr at 37"C/700 rpm. Worms were washed with 1% PBS – 0.5% Triton X-100 and proceeded to stain.
Blocking solution (PBS 1X – 0.2% Gelatin - 0.25% Triton X-100) was added to the worms for 30 min at room temperature and then
they were incubated for 24 hr at 4"C in primary antibody [anti-5HT antibody 1/100 (Sigma Aldrich, S-5545); anti-GABA antibody 1/500
(AbCam, ab17413)] in PBS 1X - 0,1% Gelatin - 0.25% Triton X-100. The worms were washed three times and incubated with
secondary antibody [anti-rabbit Alexa Fluor 1/1,000 (BD Biosciences) for anti-5HT and anti-guinea pig Alexa Fluoro 1/100
(BD Biosciences) for anti-GABA] for 2 hr at room temperature. Finally worms were washed three times and mounted on Fluoro-
Gel II with DAPI (EMS).

Isolation, Identification, and Characterization of vab-3
We utilized a transgenic strain that expresses a reporter gene for the tyramine receptor ser-2 (otIs138 transgenic animals), which is
exclusively expressed in the OLL and PVD sensory neuron classes (Tsalik et al., 2003). After EMS mutagenesis, we identified with a
Copas Biosort machine (Doitsidou et al., 2008) three nonallelic mutant strains in which expression of ser-2::gfp is lost specifically in
the OLL neurons. The mutation ot569 completely abolishes ser-2::gfp expression in the OLL but not the PVD neurons (Figure 5A).
Whole-genome sequencing was used to determine the molecular identity of ot569. DNA from ot569 mutants was sequenced to
an average depth of 8x in an Illumina GA2 sequencer as previously described (Doitsidou et al., 2010). Analysis of the WGS data
with MAQGene (Bigelow et al., 2009) resulted in the identification of 280 variants on the X chromosome, to which the mutant had
been previously mapped genetically. A list of background variants was compiled by combining variants present in the whole-genome
sequencing data of two other mutants isolated in the same screen and subtracted from the ot569 data set. Of the resulting 85 variants
only 9 are predicted to be splice site or protein coding variants and only one of these affected a transcription factor, namely the vab-3
locus, which codes for the C. elegans ortholog of the vertebrate Pax6/Drosophila Eyeless gene (Chisholm and Horvitz, 1995). The
mutation converts a highly conserved glycine residue in the linker region of the paired domain to a serine. The linker region makes
extensive contacts with the minor groove of DNA suggesting this mutation affects the ability of VAB-3 to bind DNA (Cohen and
Melton, 2011). A canonical allele of vab-3, e648 showed a similar OLL differentiation defect as ot569 and the ot569 allele can be
rescued with a fosmid that contains the vab-3 locus (Figures 5A and 5B).

The vab-3 fosmid reporter was generated by fosmid recombineering based in fosmid WRM0623aF12 (Tursun et al., 2009) using a
gfp reporter fused to the N terminus of the protein and replacing the stop codon. It was injected at a concentration of 15 ng/ml, in
combination with 2 ng/ml of elt-2::DsRed and 100 ng/ml OP50 gDNA (as filling DNA) to generate 3 extrachromosmal arrays
(otEx5057, otEx5058, otEx5059) none of which rescue the vab-3(ot569) phenotype. An untagged fosmid array does rescue the
mutant phenotype (Figure 5A).

Neuronal Identity Markers
The following neuronal identity markers were used: otIs92 [flp-10::gfp], inIs179 [ida-1::gfp], ynIs30 [flp-4::gfp], gmIs12 [srb-6::gfp],
otIs33 [kal-1::gfp], otIs358 [ser-2prom2::gfp], gmIs21 [nlp-1::gfp], ynIs80 [flp-21::gfp], ynIs2022 [flp-8::gfp], ynIs40 [flp-11::gfp],
vsIs28 [dop-1::gfp], sEx12012 [srab-12::gfp], zdIs13 [tph-1::gfp], otEx5336 [gpa-11prom2::gfp], pkIs589 (gpa-13::gfp), pkIs591(gpa-
15::gfp), otEx5323 (dkf-2b::gfp), ynIs54 (flp-20::gfp), otIs138 and otEx449 [ser-2prom3::gfp], otIs396 [ace-1prom2::tagrfp], sEx15238
[grd-8::gfp], myEx741[pdfr-1::NLS::rfp], vdEx078 [tol-1::gfp], otEx2540 [gcy-23::gfp], ynIs37 [flp-13::gfp], rtEx247 [nlp-14::gfp],
otEx5428[glna-1::NLS::gfp], sEx10131[glna-2::gfp], otEx5429[glna-3prom1::NLS::gfp].

The ace-1 reporter was generated by PCR fusion of 697 bp promoter sequence to NLS::tagRFP. This construct was injected in
pha-1(e2123) and in combination with wild-type pha-1 (pBX plasmid). One extrachromosomal array line spontaneously integrated
to generate otIs396 [ace-1prom2::NLS::tagRFP; pha-1(+)].
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The gpa-11 reporter was generated by amplifying 1,603 bp of the promoter cloned into pPD95.77. The PCR was injected in N2 at
5 ng/ml with rol-6 (su1006) and 100 ng/ml OP50 gDNA as filling DNA.
The glna-1 reporter was generated by PCR fusion of 2,103 bp promoter sequence to NLS::gfp. The PCR was injected in N2 at

15 ng/ml with rol-6 (su1006) and 100 ng/ml OP50 gDNA as filling DNA.
The glna-3prom1 reporter was generated by PCR fusion of 1,300 bp of the promoter sequence, the first exon of the gene and the first

intron to NLS::gfp. The PCR was injected in N2 at 15 ng/ml with rol-6 (su1006) and 100 ng/ml OP50 gDNA as filling DNA.

Staining of Mouse Brain Sections
Primary antibodies used in this study are anti-BRN3a (1:50, mouse monoclonal; Santa Cruz Biotechnology), anti-VGLUT2 (1:100,
guinea pig polyclonal) (Brumovsky et al., 2007), anti-glutaminase (1:600, rabbit polyclonal) (Kaneko and Mizuno, 1992) and LHX1
(1:20,000, kindly provided by Jane Dodd). Secondary antibodies were donkey antisera coupledwith Alexa dyes (Invitrogen). Sections
were counter-stained with DAPI (1:1,000) (Invitrogen).
Animals were perfused intracardially with 4% paraformaldehyde. Brains were cryoprotected in Optimal Cutting Temperature com-

pound (Tissue-Tek) and sectioned in 12 mm sections.
In situ hybridization was performed as previously described (Wallén-Mackenzie et al., 2006). The VGLUT2 probe was kindly pro-

vided by Dr. Kullander, Uppsala University, Sweden (Wallén-Mackenzie et al., 2006). Neurons in the inferior olive were visualized us-
ing the Nissl staining with cresyl violet (Sigma).
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Figure S1. Expression Pattern of Glutaminase Genes, Related to Figure 1 and 2
We examined whether glutaminase could perhaps serve as a marker for C. elegans glutamatergic neurons. Sequence homolog searches identified three

glutaminase-encoding genes in the C. elegans genome, glna-1, glna-2 and glna-3.

(A) Expression pattern of a glna-1 reporter that contains 2.1 kb sequences upstream of the first exon of the gene. Expression is observed in a very small number of

neurons in the head (white arrowheads).

(B) Expression pattern of a glna-2 reporter that contains 3 kb sequences upstream of the first exon of the gene. Expression is observed in a very small number of

neurons in the head (white arrowheads).

(C) Expression pattern of a glna-3 reporter that contains 1.3 kb sequences upstream of the first exon of the gene and the first intron. Expression of the gfp reporter

is seen in many neuron types in the head (as seen in the yellow overlap of the green gfp reporter and a red fluorescent marker that labels all neurons). Middle and

lower: the overlap of the gfp reporter with cholinergic neurons (cho-1::rfp) and GABAergic neurons (unc-47::rfp) is shown. Some examples of clear overlaps in

expression are indicated with white arrowheads. The nonselectivity of glutaminase expression for glutamatergic neurons mirrors the situation in the vertebrate

nervous system and argues that like in vertebrates, the VGLUT gene eat-4 is the only currently available identity marker of glutamatergic neurons.
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Figure S2. The Role of Terminal Selectors in Maintaining and Ectopically Inducing Neuronal Identity and Their Effect on Panneuronal Identity
Features, Related to Figure 3, 4, and 5
(A and B)mec-3 and unc-42 are required to maintain the expression of eat-4/VGLUT. (A) Temporally controlledmec-3 expression was achieved through driving

mec-3 expression under the control of the heat shock promoter in a mec-3(e1338) mutant background. A brief pulse of mec-3 expression, achieved through

30min of heat shock, is able to partially restore the expression of eat-4 (assayed with the adIs1240 transgene) in the touch receptor neurons 24 hr after heat shock

(comparisons between heat-shocked and non-heat-shocked animals performed using student’s t test, in both cases p values < 0.05). Three days after the

transient, 30min-pulse ofmec-3 expression (whenmec-3 expression has presumably faded away), eat-4 expression is reduced compared with the expression at

24 hr after heat shock (comparisons between values 24 hr after heat shock and 3 days after heat shockwere performed using student’s t test, both * p values are <

0.05). (B) Postembryonic removal of unc-42 results in a decrease of eat-4 expression (assayed with the otIs376 array) in the ASH neurons. RNAi-sensitized nre-1

lin-15; otIs376 animals were fed with unc-42(dsRNA) from the L1 stage onward and assayed 4 days later. As an internal control, gfp expression in ASH was

compared to gfp expression in the AUA neurons. RNAi against unc-42 showed a reduction in the expression of eat-4 in ASH compared to AUA fluorescence. In

animals fed with control (empty vector) RNAi the GFP intensity in ASH is always higher or similar to that of AUA.

(C–E) Ectopic expressionofeat-4/VGLUT regulators induces ectopic eat-4/VGLUTexpression.ceh-36, ceh-37 andche-1weremisexpressedwith thepansensory

promoters osm-6 and ift-20, andmec-3was misexpressed using the heat-shock promoter. Heat shock was induced at the L1 stage for 30 min and animals were

scored 48 hr later at the L4 stage. (C)Quantification of effects ofmisexpression of glutamatergic regulators.We ascribe the cellular context-dependency of ectopic

eat-4 expression to the limited availability of cofactors with which these factors act in their normal cellular context. n.a.: not applicable because promoter is not

expressed in these cells. n.d.: not determined. (D and E) Representative examples of the effects of misexpression of glutamatergic regulators.

(F–H): Expression of the panneuronal marker rab-3 is unaffected in terminal selector mutants. (F) rab-3 expression (monitored with otIs356 = rab-3::NLS::tagRFP)

is unaffected in phasmid sensory neurons in 3/3 ceh-14 null mutant animals. (G) rab-3 expression (monitored with otIs291 = rab-3::NLS::yfp) is unaffected in the

AUA neurons of 6/6 ceh-6 null mutant animals. Identification of AUA was facilitated by DiI staining (red), which labels a closely neighboring neuron. (H) rab-3

expression (monitored with otIs291(rab-3::NLS::yfp); otIs396(ace-1prom2::NLS::tagRFP) is unaffected. Since the position of neuronal cell bodies is somewhat

variable in vab-3 mutants, it is difficult to unambiguously identify OLL in these animals. We therefore counted overall rab-3::yfp(+) neuron number in the anterior

ganglion. Adult wild-type animals (n = 22) have an average of 37.8 neurons in the anterior ganglion and vab-3mutants have an average of 36.9 (n = 51), which is not

statistically significantly different.
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Figure S3. unc-86 and Neuroblast Identity of Glutamatergic Lineages, Related to Figure 3
(A) Expression of unc-86 (diagram taken from Finney and Ruvkun, 1990) and its overlap with eat-4 expression. While unc-86 affects the terminal differentiation

programs of specific neuron types (e.g., ALM and PLM), in a small number of cases, it is expressed and acts earlier in the lineage to affect neuroblast identity

(Chalfie et al., 1981; Finney and Ruvkun, 1990). Considering the expression pattern analysis of UNC-86, the common theme emerges that whenever UNC-86 is

expressed through 3 cell generations, its loss results in a reiteration of the fate of the mother cell. To corroborate the loss of glutamatergic neuron identity in these

lineage-defectivemutants with amolecular marker, we examined eat-4/VGLUT expression in these lineages in unc-86mutants.We indeed observed a loss of eat-

4/VGLUT expression in the Q neuroblast-derived AVM touch receptors neuron, in the T lineage-derived PHC tail sensory neurons and in the AIZ interneurons

(Figure 3). In the Q neuroblast-derived AVM and PVM neurons, unc-86 is known to not only affect neuroblast identity, but to also act later during terminal dif-

ferentiation (Duggan et al., 1998). It is possible that in the PHC and AIZ lineages unc-86may also have late roles in controlling terminal differentiation via regulating

eat-4 expression in addition to defining neuroblast identity. Notable, unc-86 appears to cooperate with distinct LIM homeobox genes in distinct neuron types. In

the case of the Q lineage that produces the AVM/PVM neuron, unc-86 has been found to cooperate with the LIM homeobox genemec-3 to control the terminal

identity state of the neuron. In the lineage that produces PHC, a similar cooperation with ceh-14may occur. In the lineage that produces AIZ, such a cooperation

with the resident LIM homeobox gene lin-11 appears, however, less likely since AIZ identity is not affected in lin-11mutants (data not shown) (Tsalik et al., 2003).

(B) unc-86 does not affect expression of eat-4 in I2 or URY. The effect of unc-86 on eat-4 expression in AQR, PQR and ADA was inconclusive.
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Figure S4. ModEncode Data Reveals CEH-14 Binding Sites in the eat-4 Locus
Related to Figure 2. Wormbase genome browser representation of ceh-14 binding sites (dark blue boxes in genome browser image) and their specific location in

eat-4prom5. The picture shows a representative projection of the expression of eat-4prom5 in the tail in PHC, PHB and DVC. The expression of eat-4 (otIs388) was

abolished in these neurons in a ceh-14 null mutant. The light blue bars in the promoter represent TAAT homeodomain binding sequences corresponding to the

region within the blue boxes.
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Figure S5. Summary of the Effect of Regulation of eat-4 Expression in Distinct Neuron Types by Distinct Transcription Factor Combinations,
Each Involving an Otx-Type Homeodomain Transcription Factor
Related to Figure 2 and 3. Figure 2 shows the data for the involvement of the TAATCC and the ETS domain binding sites. We hypothesize that other, as yet

unidentified TFs act in parallel. The cofactor of ceh-36 in the AWC neurons is likely sox-2 (B. Vidal-Iglesias, personal communication).
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Figure S6. The LIM Homeobox Genes lin-11/LHX1/5 and ttx-3/LHX2/9 Control the Identity of the ADL and ASK Sensory Neurons, Related to
Figure 2 and 3
(A) ttx-3 affects expression of eat-4 (assayed with the otIs376 transgene) and several other terminal features (gcy-27::gfp transgene otEx2540, nlp-14::gfp

transgene rtEx247 and flp-13::gfp transgene ynIs37) of the ASK neurons.

(B) lin-11 affects eat-4 expression (assayed with the otIs392 transgene) in the ASK neurons.
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Figure S7. LHX1 Is Not Expressed in All Glutamatergic Neurons and Not All Glutamatergic Neurons Are LHX1-Positive, Related to Figure 6
Immunostaining analysis for LHX1 and BRN3A and VGLUT2 in situ hybridization in sequential coronal sections of different regions of the adult mouse brain.
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APPENDIX 2:   

Table 1: List of 2ASEL mutants retrieved from lsy-6(ot71); otIs4(gcy-7::gfp); 
vsIs33(dop-3::dsRed) using the COPAS worm sorter. 
 

strain name allele genetuc trait cog-1 allele fozi-1 allele Notes 
OH8114 ot424 recessive  +  
OH8115 ot425 recessive +   
OH8149 ot426 recessive, not on X +   
OH8150 ot427 recessive, not on X  +  
OH8151 ot428 recessive, not on X  +  
OH8152 ot429 recessive, not on X +   
OH8153 ot430 recessive, not on X +   
OH8180 ot440 recessive, not on X  +  
OH8181 ot441 recessive, not on X +   
OH8182 ot442 recessive, not on X  +  
OH8226 ot444 recessive, not on X  +  
 OH8227 ot445 recessive, not on X  +  
OH8228 ot446 recessive, not on X  +  
OH8229 ot447 recessive, not on X  +  
OH8230 ot448 recessive, not on X  +  
OH8231 ot449 recessive, not on X   +  
OH8232 ot450 recessive, not on X  +  
OH8407 ot459     sick, lost 
OH8324 ot451 recessive, not on X  +  
OH8325 ot452 recessive, not on X +   
OH8326 ot453 recessive, not on X  +  
OH8361 ot457    +  
OH8330 ot454 recessive, not on X   +  
OH8331 ot455 recessive, not on X  +  
OH8332 ot456 recessive, not on X  +  
OH8377 ot458 recessive, not on X +   
OH8410 ot460 recessive, not on X +   
OH8411 ot461 recessive, not on X  +  
OH8412 ot462 recessive, not on X  +  
OH8413 ot463 recessive, not on X  +  
OH8437 ot464 recessice, not on X +   
OH8438 ot465 recessice, not on X  +  
OH8468 ot466 recessive, not on X +   
OH8469 ot467 recessive, not on X  +  
OH8485 ot468 recessive, not on X +   
OH8486 ot469 recessive, not on X  +  
OH8516 ot470 recessive, not on X  +  
OH8517 ot471 recessive, not on X +   
OH8518 ot472 recessive, not on X  +  
OH8519 ot473 recessive, not on X  +  
OH8536 ot474 recessive, not on X  +  
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OH8537 ot475   +   
OH8573 ot483 recessive, not on X  +  
OH8574 ot484 recessive, not on X     
OH8575 ot485 recessive, not on X  +  
OH8576 ot486 recessive, not on X  +  
OH8577 ot487 recessive, not on X  +  
OH8578 ot488 recessive, not on X  +  
OH8579 ot489 Semi-dominant   che-1 allele 

 

Notes: 
1. Mutant animals were first mated with N2 males to assess whether a mutation is 

recessive or on X chromosome. Complementation tests were then performed by 
mating fozi-1/+ (ot131) or cog-1/+ (ot28) males to mutant hermaphrodites. F1 male 
progeny were scored. Duplicate tests were made for each mutant. 

2. “+” means that a mutant is an allele of either  fozi-1 or cog-1. 
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Table 2: List of ASEL off che-1 mutants retrieved from otIs4; vsIs33 using the COPAS 
worm sorter. 
 
strain name genotype phenotype n= % off Notes 
OH8111 ot421; otIs4 ASEL off 56 100 

 OH8112 ot422; otIs4 ASEL/R off 67 100 
 OH8113 ot423; otIs4 ASEL/R off 54 100 
 OH8159 ot431; otIs4; vsIs33 ASEL off 22 100 
 OH8160 ot432; otIs4; vsIs33 ASEL off 21 95 
 OH8161 ot433; otIs4; vsIs33 ASEL off 27 93 
 OH8174 ot435; otIs4; vsIs33 ASEL off 

  
likely che-1 

OH8176 ot436; otIs4; vsIs33 ASEL off 
  

likely che-1 
OH8177 ot437; otIs4; vsIs33 ASEL off 

  
likely che-1 

OH8178 ot438; otIs4; vsIs33 ASEL off 
  

did not grow 
OH8179 ot439; otIs4; vsIs33 ASEL off 

  
likely che-1 

 

 

Notes: 

Complementation tests were performed by mating che-1(ot66) males to mutant 
hermaphrodites. F1 male progeny were scored. Duplicate tests were made for each 
mutant. “Likely che-1” means complementation tests were not performed but based on 
the observation of high penetrance and lack of sickness, these mutants are likely che-1 
alleles. “+” means that a mutant is an allele of che-1. 
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Table 3: List of ASEL off che-1 mutants retrieved from otIs243.  

Strain Name Genotype Chromosome che-1 allele Notes 
EMS treated 
OH8661 ot490; otIs114 not X +   
OH8662 ot491; otIs114 not X +   
OH8714 ot504; otIs114; otIs243 not X +   
OH8715 ot505; otIs114 not X +   
OH8760 ot512; otIs114; otIs243 not X +   
OH8761 ot513; otIs114 not X +   
OH8763 ot514; otIs114; otIs243 not X + Him? 
OH8764 ot515; otIs114 not X ? did not grow 
OH8781 ot516; otIs114 not X +   
OH8782 ot517; otIs114 not X +   
OH8783 ot518; otIs114 not X +   
OH8784 ot519; otIs114 not X +   
OH8799 ot521; otIs114 not X +   
OH8800 ot522; otIs114 not X +   
OH8801 ot523; otIs114; otIs243 not X +   
OH8809 ot524; otIs114 not X +   
OH8815 ot525; otIs243 not X +   
OH8825 ot527; otIs243   +   
OH8826 ot528; otIs243   +   
OH8827 ot529; otIs243 not X +   
OH8828 ot530; otIs243   +   
OH8829 ot531; otIs243   +   
OH8830 ot532; otIs243 not X +   
OH8831 ot533; otIs243 not X +   
OH8832 ot534; otIs243 not X     
OH8841 ot535; otIs243 not X +   
ENU treated 
OH8842 ot536; otIs243     likely che-1 
OH8843 ot537; otiS243     likely che-1 
OH8844 ot538; otIs243     likely che-1 
OH8845 ot538; otIs243     likely che-1 

 
 
Notes:  

1. otIs243= che-1_fosmid::venus gcy-7::gfp rgef-1::dsred2 
2. Number of genomes screened: 48,000  
3. Some strains have been outcrossed (otIs114 used).  
4. Complementation tests were performed by mating che-1(ot66) males to mutant 

hermaphrodites. F1 male progeny were scored. Duplicate tests were made for 
each mutant. “Likely che-1” means complementation tests were not performed 
but based on the observation of high penetrance and lack of sickness, these 
mutants are likely che-1 alleles.  
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Figure 1: ot489 is a semi-dominant allele of che-1. 

 

 

 

ot489 was originally uncovered from a screen looking for 2ASEL mutants using lsy-

6(ot71); otIs4(gcy-7::gfp); vsIs33(dop-3::dsRed). Preliminary analysis indicated that 

this mutation is not on LG X. The strain displays “2ASEL” and “ASEL off” phenotypes 

and is semi-dominant. The phenotype of ot489/ot489 homozygous animals is “ASEL 

off”, while ot489/+ worms are “2 ASEL” or ”1 ASEL”. Sanger sequencing of the che-1 

locus reveals a mutation in one of the highly conserved DNA contacting residues (T, 

Threonine to N, Asparagine) in the 3rd zinc finger of che-1. 
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Figure 2: The molecular nature of ot489. Gene structure adapted from (Etchberger et al., 
2007). 

 

 

 

 

 

Reference: 

Etchberger, J.F., Lorch, A., Sleumer, M.C., Zapf, R., Jones, S.J., Marra, M.A., Holt, 
R.A., Moerman, D.G., and Hobert, O. (2007). The molecular signature and cis-
regulatory architecture of a C. elegans gustatory neuron. Genes Dev 21, 1653-1674. 

  

179



	
  

	
  

APPENDIX 3:   

Table 1: List of variants in ot219 from CloudMap (WS235 genome release). 
 

Position Reference Change Gene_name Bio_type Trancript_ID old/new_AA Old/New_codon 
Codon_ 
Number 

12587247 C T E02A10.3 protein_coding E02A10.3a Q/* Cag/Tag 56 
12587247 C T E02A10.3 protein_coding E02A10.3b Q/* Cag/Tag 60 
12587247 C T E02A10.3 protein_coding E02A10.3c Q/* Cag/Tag 56 
12729626 C T R11D1.10 protein_coding R11D1.10a.2 A/V gCc/gTc 21 
12729626 C T R11D1.10 protein_coding R11D1.10a.1 A/V gCc/gTc 21 

 
Note: All variants are between 12.5- 12.75 on LG V (100-recombinant experiment). 
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Table 2: List of uncovered regions within mapped region on LG V in ot219. 
              (WS235 genome relese). 
  

  

Start End Size Gene_ID Gene_name Bio_type Trancript_I
D Effect 

12576011 12576082 71 E02A10.8 E02A10.8 ncRNA E02A10.8 UPSTREAM: 872 bases 
12576011 12576082 71 E02A10.4 E02A10.4 protein_coding E02A10.4 UPSTREAM: 8060 bases 
12576011 12576082 71 E02A10.10 E02A10.10 ncRNA E02A10.10 UPSTREAM: 2200 bases 
12576011 12576082 71 E02A10.9 E02A10.9 ncRNA E02A10.9 UPSTREAM: 2588 bases 
12576011 12576082 71 E02A10.5 E02A10.5 protein_coding E02A10.5 UPSTREAM: 3663 bases 
12576011 12576082 71 E02A10.7 E02A10.7 ncRNA E02A10.7 UPSTREAM: 7397 bases 
12576011 12576082 71 E02A10.3 E02A10.3 protein_coding E02A10.3b UPSTREAM: 7825 bases 
12576011 12576082 71 E02A10.3 E02A10.3 protein_coding E02A10.3c UPSTREAM: 8819 bases 
12576011 12576082 71 E02A10.3 E02A10.3 protein_coding E02A10.3a UPSTREAM: 9088 bases 

12576011 12576082 71 E02A10.2 grl-23 protein_coding E02A10.2a Exon_V_12575852_125
76114 

12576011 12576082 71 E02A10.2 grl-23 protein_coding E02A10.2b INTRON 
12579753 12579771 18 E02A10.7 E02A10.7 ncRNA E02A10.7 UPSTREAM: 3655 bases 
12579753 12579771 18 E02A10.3 E02A10.3 protein_coding E02A10.3b UPSTREAM: 4083 bases 
12579753 12579771 18 E02A10.3 E02A10.3 protein_coding E02A10.3c UPSTREAM: 5077 bases 
12579753 12579771 18 E02A10.3 E02A10.3 protein_coding E02A10.3a UPSTREAM: 5346 bases 

12579753 12579771 18 E02A10.10 E02A10.10 ncRNA E02A10.10 DOWNSTREAM: 1405 
bases 

12579753 12579771 18 C14C10.1 C14C10.1 protein_coding C14C10.1 UPSTREAM: 8675 bases 

12579753 12579771 18 E02A10.9 E02A10.9 ncRNA E02A10.9 DOWNSTREAM: 1009 
bases 

12579753 12579771 18 C14C10.7 ttr-43 protein_coding C14C10.7 DOWNSTREAM: 9959 
bases 

12579753 12579771 18 E02A10.6 E02A10.6 ncRNA E02A10.6 DOWNSTREAM: 6775 
bases 

12579753 12579771 18 E02A10.2 grl-23 protein_coding E02A10.2a UPSTREAM: 2858 bases 
12579753 12579771 18 E02A10.2 grl-23 protein_coding E02A10.2b UPSTREAM: 2858 bases 

12579753 12579771 18 E02A10.8 E02A10.8 ncRNA E02A10.8 DOWNSTREAM: 2656 
bases 

12579753 12579771 18 E02A10.5 E02A10.5 protein_coding E02A10.5 Exon_V_12579674_125
79979 

12647810 12647882 72 F56H9.2 F56H9.2 protein_coding F56H9.2b DOWNSTREAM: 9573 
bases 

12647810 12647882 72 F56H9.2 F56H9.2 protein_coding F56H9.2a DOWNSTREAM: 9572 
bases 

12647810 12647882 72 W05B10.6 W05B10.6 protein_coding W05B10.6 DOWNSTREAM: 9064 
bases 

12647810 12647882 72 F56H9.5 lin-25 protein_coding F56H9.5 UPSTREAM: 2048 bases 
12647810 12647882 72 F56H9.3 gpa-8 protein_coding F56H9.3 UPSTREAM: 7340 bases 
12647810 12647882 72 F56H9.8 F56H9.8 protein_coding F56H9.8a DOWNSTREAM: 1178 
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bases 

12647810 12647882 72 F56H9.8 F56H9.8 protein_coding F56H9.8b DOWNSTREAM: 1178 
bases 

12647810 12647882 72 F56H9.4 gpa-9 protein_coding F56H9.4a INTRON 

12647810 12647882 72 F56H9.4 gpa-9 protein_coding F56H9.4b UTR_5_PRIME: 526 
bases from TSS 

12866663 12866732 69 T07F10.3 T07F10.3 protein_coding T07F10.3 DOWNSTREAM: 1363 
bases 

12866663 12866732 69 T07F10.6 T07F10.6 protein_coding T07F10.6 INTRON 

12866663 12866732 69 T07F10.1 T07F10.1 protein_coding T07F10.1a DOWNSTREAM: 2830 
bases 

12866663 12866732 69 T07F10.1 T07F10.1 protein_coding T07F10.1b DOWNSTREAM: 2830 
bases 

12866663 12866732 69 T07F10.12 T07F10.12 ncRNA T07F10.12 UPSTREAM: 8233 bases 

12866663 12866732 69 T07F10.10 T07F10.10 ncRNA T07F10.10 DOWNSTREAM: 8235 
bases 

12866663 12866732 69 T07F10.5 T07F10.5 protein_coding T07F10.5.2 DOWNSTREAM: 116 
bases 

12866663 12866732 69 T07F10.5 T07F10.5 protein_coding T07F10.5.1 DOWNSTREAM: 107 
bases 

12975514 12975570 56 R186.7 R186.7 protein_coding R186.7 DOWNSTREAM: 2231 
bases 

12975514 12975570 56 R186.14 R186.14 ncRNA R186.14 DOWNSTREAM: 8085 
bases 

12975514 12975570 56 R186.10 R186.10 ncRNA R186.10 DOWNSTREAM: 1205 
bases 

12975514 12975570 56 R186.13 R186.13 ncRNA R186.13 UPSTREAM: 69 bases 

12975514 12975570 56 R186.2 srd-35 protein_coding R186.2a DOWNSTREAM: 9492 
bases 

12975514 12975570 56 R186.2 srd-35 protein_coding R186.2b DOWNSTREAM: 9492 
bases 

12975514 12975570 56 R186.3 R186.3 protein_coding R186.3.1 UPSTREAM: 8304 bases 
12975514 12975570 56 R186.3 R186.3 protein_coding R186.3.2 UPSTREAM: 8302 bases 
12975514 12975570 56 R186.8 R186.8 protein_coding R186.8.2 UPSTREAM: 7625 bases 
12975514 12975570 56 R186.8 R186.8 protein_coding R186.8.1 UPSTREAM: 7532 bases 

12975514 12975570 56 R186.4 lin-46 protein_coding R186.4 DOWNSTREAM: 4782 
bases 

12975514 12975570 56 R186.5 shw-3 protein_coding R186.5 INTRON 
 

 

 

 

 

 

182


	Cover pages_V1
	Table of Contents
	Thesis Final PDF V1
	Chapter 1_introduction_V5
	CHAPTER 2_NSM,AIA
	Chapter 2 paper
	Fig./1. Expression
	ttx-3 controls the differentiation program of AIA interneurons
	A shared cis-regulatory signature of AIA-expressed terminal identity features
	Fig./2. ttx-3
	ttx-3 controls the terminal differentiation of serotonergic NSM neurons
	The POU homeobox gene unc-86 also controls NSM identity
	Fig./3. Co-regulation
	Fig./4. The
	Fig./5. The
	unc-86 cooperates with ttx-3 to control NSM identity
	unc-86 and ttx-3 affect axonal arborization and presynaptic specializations
	unc-86 controls terminal differentiation of the cholinergic IL2, URA and
	Fig./6. Cis-regulatory
	unc-86 cooperates with the ARID transcription factor cfi-1 to control
	Fig./7. unc-86
	Fig./8. unc-86
	Serotonin antibody staining
	Cis-regulatory analysis
	Gel shift analysis

	Chapter 3_RMD
	Chapter 4 LSY-27
	gen129064_SI.pdf
	FiguresandTables
	TableS4
	References


	Chapter 4_Lim-6 and Lsy-27
	Chapter 5_Lsy-12_Lsy-13_Lin-49
	CHAPTER 5 Lsy-12_Lsy-13_Lin-49
	Chapter 6 Discussion and future directions
	Appendix 1_ ASK
	Appendix eat-4
	Modular Control of Glutamatergic Neuronal Identity in C. elegans by Distinct Homeodomain Proteins
	Introduction
	Results
	eat-4/VGLUT Expression Defines 38 Glutamatergic Neuron Classes
	Dissecting cis-Regulatory Control Regions of eat-4/VGLUT Reveals a Modular Logic of Expression
	Known Terminal Selector-Type Transcription Factors Control eat-4/VGLUT Expression
	Dual Neurotransmitter Identity Is Coregulated via Common trans-Acting Factors
	Identification of New Regulators of Glutamatergic Neuronal Identity
	unc-42 Controls the Identity of the ASH Sensory Neurons
	ceh-6 Controls the Identity of the AUA Interneurons
	ceh-14 Controls the Identity of Phasmid Sensory Neurons
	vab-3 Controls the Identity of the OLL and URYV Neurons

	Redundancy of Glutamatergic Identity Regulators
	Requirement for Specific cis-Regulatory Motifs in the eat-4/VGLUT Locus Argues for Direct Regulation by Specific Transcript ...
	Redeployment of the Same cis-Regulatory Motif in Distinct Neuron Types
	Additional Homeodomain Regulators of eat-4 Expression
	Potential Conservation of Homeodomain Regulation of Glutamatergic Identity in Mouse

	Discussion
	Experimental Procedures
	C. elegans Strains and Transgenes
	eat-4/VGLUT Reporter Transgenes
	Genetic Screen
	Analysis of Serotonergic Fate of ASG Neurons
	Mouse Genetics

	Supplemental Information
	Acknowledgments
	References

	Supplemental Information

	Extended Experimental Procedures

	Markers of Glutamatergic Identity
	Examination of the Antagonism of Glutamatergic and GABAergic Identity
	eat-4 Reporter Genes
	Serotonin and GABA Antibody Staining
	Isolation, Identification, and Characterization of vab-3
	Neuronal Identity Markers
	Staining of Mouse Brain Sections
	Supplemental References



	Appendix 2+3 GENETIC SCREENS
	Blank Page
	Blank Page
	Blank Page




