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ABSTRACT

Interaction-Based Learning for High-Dimensional

Data with Continuous Predictors

Chien-Hsun Huang

High-dimensional data, such as that relating to gene expression in microarray ex-

periments, may contain substantial amount of useful information to be explored.

However, the information, relevant variables and their joint interactions are usually

diluted by noise due to a large number of non-informative variables. Consequently,

variable selection plays a pivotal role for learning in high dimensional problems. Most

of the traditional feature selection methods, such as Pearson’s correlation between re-

sponse and predictors, stepwise linear regressions and LASSO are among the popular

linear methods. These methods are effective in identifying linear marginal effects

but are limited in detecting non-linear or higher order interaction effects. It is well

known that epistasis (gene - gene interactions) may play an important role in gene

expression where unknown functional forms are difficult to identify. In this thesis,

we propose a novel nonparametric measure to first screen and do feature selection

based on information from nearest neighborhoods. The method is inspired by Lo and

Zheng’s earlier work (2002) on detecting interactions for discrete predictors. We apply



a backward elimination algorithm based on this measure which leads to the identifica-

tion of many influential clusters of variables. Those identified groups of variables can

capture both marginal and interactive effects. Second, each identified cluster has the

potential to perform predictions and classifications more accurately. We also study

procedures how to combine these groups of individual classifiers to form a final pre-

dictor. Through simulation and real data analysis, the proposed measure is capable

of identifying important variable sets and patterns including higher-order interaction

sets. The proposed procedure outperforms existing methods in three different mi-

croarray datasets. Moreover, the nonparametric measure is quite flexible and can be

easily extended and applied to other areas of high-dimensional data and studies.
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Chapter 1

Introduction

1.1 Background

Developments in technology have led to an increasing amount of data available in

many scientific fields. The relevant researchers are typically required to carry out

their analysis in this data-rich environment. High-dimensional data, such as genome-

wide human SNP array and DNA microarray, may contain a vast amount of useful

information to be explored. However, the true relevant and influential features are

always concealed by a huge number of noisy and irrelevant features. Furthermore,

identifying epistasis and high order interactions also creates a new challenge for sci-

entific works. Large numbers of variables and the small number of observations make

it more difficult to identify true signals. To deal with these problems, many variable

selection methods are proposed and developed. The merits of carrying out feature

selection are several fold. First, it can avoid overfitting problems and reduce the noise

to improve model performance. Second, it can reduce the computational complexity

by fitting models with a subset of important variables. Third, it can improve the

interpretability of the models.

Most existing feature selection methods are based on the assumption that a linear
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relationship holds between response and explanatory variables. For example, the

measure of similarity, Pearson’s correlation coefficient defined as the following:

cor(x, y) =
E[(x− E[x])(y − E[y])]√

V ar[x]V ar[y]
,

is one of the most commonly used measure to screen the significant variables. It

assesses the relevance between variables and response one at a time. To carry out

the screening, the absolute correlation scores of all variables are first calculated and

the low-scoring variables treated as unrelated with the response are removed. The

main advantage of this method is that it can be applied in order to screen a large

number of variables easily and quickly. However, there are some limitations. First, it

can only evaluate the association between one predictor and response one at a time.

Second, it can evaluate linear effects only. Third, outliers may have great influence on

it. Fourth, it fails to detect interactive effects when interactions of several variables

play an important role and the marginal effect is low.

Stepwise regression in a linear regression model is another popular method com-

monly used in feature selection. The forward stepwise selection is a greedy algorithm

that produces a nested sequence of models that adds one new variable at a time

based on indices such as deviance, Aikaike’s Information Criterion (AIC) or Bayesian

Information Criterion (BIC). For high dimensional data, the computation is easier

and the solution is stable. As for backward selection, on the contrary, it sequentially

deletes the predictor that has least impact. However, it cannot be used for data with

more predictors than observations that make it infeasible in current high dimensional

environment.

Another linear approach of variable selection is based on regularization method

such as LASSO (i.e. least absolute shrinkage and selection operator) (Tibshirani,

1996). The LASSO (L-1 regularization) estimates based on optimizing the loss func-
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tion

(α̂, β̂) = arg min

{ N∑
i=1

(
yi − α−

∑
j

βjxij

)2}
s.t.

∑
j

|βj| ≤ t

where t ≥ 0 is a tuning parameters. As t goes to infinity, the solution will be the

same as linear regression estimates. Letting t be sufficiently small will automatically

eliminate irrelevant variables shrinking their coefficient to zero. The LASSO does

not pre-select a subset of variables but carries out a continuous shrinking operation.

Unlike the backward stepwise selection method, it avoids the singularity issue by

solving an optimization problem.

Classification is a specialty for supervised learning problems. In real world, the

size of a dataset is so large that learning might not work as well before removing

irrelevant variables. Therefore, many different methods are proposed to perform

variable selection in the literatures. These methods can be organized into three

categories (Saeys et al, 2007).

Filtering method includes Pearson’s correlation, t-test, signal-to-noise ratio (Gloub

et al, 1999), information gain (Ben-Bassat, 1982), wilcoxon rank sum (Dettling &

Buhlmann, 2003), Significance Analysis of Microarray (SAM) (Tusher et al, 2001)

and Threshold Number of Misclassification (TNoM) scores (Ben-Dor et al, 2000).

These methods are used to compute a score for each variable and those of highly

relevant variables are selected. Although boosting the advantage of computational

efficiency, these measures are independent of classifiers and ignore the dependencies

among predictors.

Wrapper methods search the best subsets by greedy algorithms. For instance,

there are sequential forward/backward selection (Kittler, 1978) and supervised clus-

tering of genes (Dettling & Buhlmann, 2003), which defines a score function to find

the most informative groups of subset. Another popular wrapper method, genetic
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algorithm (Holldan, 1975), is used to search large spaces with little known in prior.

In general, the wrapper methods are more computationally intensive.

The embedded methods search the optimal subset of predictors as part of model

construction. The selected predictors interact with used classifiers well but may not

work well with other classifiers. Many methods have been developed based on existing

classifiers, such as the variable importance that measure the contribution each variable

makes in randomforest and classification and regression tree (CART). SVM recursive

feature elimination (SVM-RFE), which ranks the predictors based on the weight of

coefficient and eliminates the one with lowest weight (Guyon et al, 2002); Recursive

SVM (R-SVM) evaluates the contribution of predictors by the weight of coefficient

and the difference of two class mean (Zhang et al, 2006).

Besides the variable selection methods, some dimension reduction techniques are

introduced to perform a linear mapping of data to a lower dimensional space, such as

principal component analysis (PCA) and singular value decomposition (SVD) (Wall,

2001). Both of the methods are used to find a small set of orthogonal linear combina-

tions of the original predictors that are optimal at capturing the underlying variance

of the data. However, they only measure the variability of the predictors without con-

sidering the contribution of variables towards the responses. In classification problem,

ignoring the relation to the response may make the key components suffer from losing

the information of the classes and consequently lead to inaccuracy in classification.

1.2 Organization of the Thesis

In this thesis, we proposed a novel influence measure and its applications. The re-

mainder of this thesis is organized as follows. In Chapter 2 we discuss related studies

and propose the nonparametric variable selection measure based on neighborhood

information to identify influential variables and their interactions. In Chapter 3 we

discuss the asymptotic property of proposed influence measure. In Chapter 4 we
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propose backward elimination algorithm and discuss the details of this algorithm. In

Chapter 5, an interaction-based classification framework is proposed to perform clas-

sification as follows. First, we perform pairwise-screening the variables by proposed

measure and select high return frequency variables. Second, a backward elimination

algorithm is applied to the selected variables to form informative building blocks.

Third, filtering out non-overlapped building blocks and aggregate them to perform

prediction by a classifier aggregation method. Chapter 6 we provide a discussion and

concluding remarks.
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Chapter 2

Nonparametric Influence Measure

- I Score

In this chapter, we first introduce our basic tool, a novel influence measure I for

continuous variables. The main properties of it will be outlined and discussed.

2.1 Relations with Previous Studies

Given a vector of predictors X={X1, X2, . . . , Xm} where m is the total number of

continuous explanatory variables, we want to predict a real-value dependent variable

Y, which is a vector of n observations. In general, the model between (Y , X) can be

formulated as

Y = f(X) + ε, (2.1)

where ε is an error vector with each element εi as N(0, σ2), i=1,..., n and the function

f(.) can be any form. One special case of the model involves the assumption of

function fL(.) to be linear additive relationship between Y and X. If the number of

observations n is greater than the number of variables m, the functional form of f̂L(.)
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is estimated by least square methods. The relevant properties in the linear model are

well documented.

To evaluate the adequacy of the fitted model under the linear assumption, the

coefficient of multiple determination is commonly used and defined as follows:

R2 =
V ar(f̂L(X))

V ar(Y )
= cor2(Y, f̂L(X)) = cor2(Y, Ŷ ) (2.2)

where Ŷ=f̂L(X). The R2 is not merely a measure of the strength of the linear

relationship but also gives the fraction of the variability of Y that is explained by

X ∈ Rm (or linear joint effect of X on Y ). The coefficient of multiple correlation, R,

can be treated as an index to examine the strength of association between response

(Y ) and estimated value (Ŷ ). In the multiple linear regression model, R is always

between 0 and 1. R = 1 indicates the model is a perfect fit and higher positive value

of R indicate Y and Ŷ are close to each other.

Other than the linear additive assumption, Doksum and Samarov (1995) pro-

posed the nonparametric coefficient of determination similar to (2.2) to evaluate the

importance of a subset of covariates where the estimates (f̂(Xi)) are computed wtih

“leave-one-out” kernel estimators:

f̂(Xi) =
(n− 1)−1

∑n
j 6=i YiKh(||Xj −Xi||)

(n− 1)−1
∑n

j 6=iKh(||Xj −Xi||)
, where i = 1, ..., n (2.3)

where Kh(||Xj−Xi||) is the kernel density function with bandwidth h computed based

on the distance between ith and jth observations. However, the kernel estimators

using a variable bandwidth may be less efficient since it is computational expensive

to optimally tune the bandwidth by cross-validation methods. This method might

also ignore the local patterns since the effective number of observations that are used

to estimate f̂(Xi) varies with the distribution of X. In the high dimension problem,

instead of screening the important variable sets, the method with varied bandwidth

will increase the computational burden and hence is not efficient. Furthermore, the

defined nonparametric coefficient of determination based on correlation square may
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have chances to select a subset lacking of predictive power when unsimilar responses

are prone to cluster together in such a selected subset. To ensure the predictive power,

only those with positive correlation are necessary to be considered.

On the other hand, when the explanatory variables X are discrete, Chernoff, Lo

and Zheng (2009) proposed the Partition Retention method to detect both marginal

and high-order interaction effects based on Lo and Zheng’s earlier work (2002). As-

sume that {Xj, j = 1, ...,m} and that all the explanatory variables only take on the

values 0 and 1. Then there will be 2m possible partitions for each set of m explanatory

variables. The n observations are partitioned into the 2m partition elements or cells.

They define the normalized influence score as:

I =
Σ2m

k=1n
2
k(Ŷk − Ȳ )2

nσ2
Y

, (2.4)

where Ŷk, the estimated value, is the average of the nk observations on Y falling in

the kth partition cell, Ȳ is the grand mean of Y and σ2
Y is the variance of Y . It can

be shown (Chernoff, 2009) that under the null hypothesis that there is no influence

among the X, the asymptotic distribution of I is very close to that of a weighted

average of independent chi-squares with one degree of freedom each and their weights

are proportional to the nk (i.e. Σ2m

k=1
nk

n
χ2

1).

In fact, the score I and R2 are similar. If the explanatory variables are continuous,

each observation forms an individual cell by itself (i.e. nk=1). Therefore, there will

be n cells and the influence score is:

I =
Σn
k=1(Ŷk − Ȳ )2

nσ2
Y

=
1
n
Σn
k=1(Ŷk − Ȳ )2

σ2
Y

=
V ar(f̂(X))

V ar(Y )
(2.5)

If we further assume that Ŷk in (2.5) is estimated by linear function f̂L(.), the two

scores I and R2 in (2.2) are nearly equivalent.
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2.2 Nonparametric Influence Measure

When the explanatory variables are continuous, we propose a nonparametric method

based on nearest neighborhood information that accommodates a flexible form of the

regression curve or specific patterns in the space. Let Xi = (Xi1, Xi2, . . . , Xim) as ith

X-observation in m dimensional Euclidean space. Denote the distance between ith

and jth point as:

d(Xi,Xj) = Σm
r=1(Xir −Xjr)

2.

For each ith X-observation, the kth nearest neighbors of Xi are denoted by {Xi(1),Xi(2),

...,Xi(k)} and their responses are denoted by {Yi(1),Yi(2),. . .,Yi(k)}. We also define a

generalized weighting matrix

W = {wij, wij ≥ 0,∀i, j },

where the weight wij denotes the effects of observation j on the ith observation.

The weight wi,i(s) assigned to the sth nearest neighbor is determined by a monotonic

decreasing function K(Xi,Xi(s)) as s increases.

Let Ỹi be the estimate of Yi by the weighted average of the remaining n-1 obser-

vations as follows:

Ỹi = Ê(Y |X = Xi) = Σn−1
s=1wi,i(s)Yi(s) (2.6)

where

wi,i(s) =


0 s = 0

K(Xi,Xi(s))

Σn−1
s=1K(Xi,Xi(s))

otherwise,

n−1∑
s=1

wi,i(s) = 1 ∀i = 1, 2, . . . , n, and

s = 0 indicates the ith point itself.
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X1

X2

Yi(1)

Yi(2)

Yi(3)

Yi

wi(2)

wi(1)
wi(3)

Figure 2.1: 3-NN rule in 2 dimensional spaces

The weight matrixW is determined by the data distributed in the space. The diagonal

elements of the matrix are 0 and the elements of each row are normalized so that sum

of the weights from each row is 1. In addition, W may not be symmetric, that is

wij 6= wji for i 6= j.

Figure 2.1 shows an illustration of 3NN rule of two dimensional spaces {X1, X2}.

For observation i, the 3 nearest points located inside the circle are {Yi(1), Yi(2), Yi(3)}

with the corresponding weights {wi(1), wi(2), wi(3)}. The estimated value Ỹi of Yi is the

weighted sum of them Σ3
s=1wi,i(s)Yi(s). Methods of assigning weights are discussed in

the next section.

For each observation Yi, i = {1, . . . , n}, its corresponding estimate Ỹi is ob-

tained by (2.6). Based on similar idea to the general marginal correlation method
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(i .e. cor(Y ,Xi)) which is applied to measure the effect of Xi on Y , we propose the

following correlation coefficient as a measure of joint influence of X on Y.

I = cor(Y, Ỹ ) (2.7)

where Ỹ is a vector of estimate on Y .

2.3 Basic Properties of Influence Measure

The influence score I has a number of desirable properties:

Property 1. I score takes values between -1 and 1

Under the linear assumption, the definition of I is similar to coefficient of multiple

correlation R, which is never a negative value since it is the fraction of variance

explained over total variance. However, the nonparametric I score is not guaranteed

to be positive since the score depends on the underlying data distribution and the

selected parameters.

Property 2. Only variable set with high positive values of I have predictive power.

Higher positive value of I indicates a stronger influence and predictive power of the

joint X. That means similar responses of Y cluster together in the joint variable

space. On the contrary, the score that is close to zero or even negative suggests a

weak prediction.

Property 3. I score has the ability to detect both linear and non-linear patterns.

Property 4. I score is capable to identify local and global patterns.

I is able to capture both local or global patterns by adjusting the weight of nearest

neighbors. If the data shows obvious local pattern, we can choose small k to catch

the pattern. If there are strong global patterns, both large and small k are able to

capture influential variables.

Property 5. I is easily computed

The score is easy and fast to compute, it is efficient to preliminarily screen potential
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marginal or interaction effects in a high dimension data set.

Property 6. Important information remains if noisy variables are removed

If X1 is not important, the I score based on the joint set X(1) = X\{X1} will remain

strong.

2.4 Inverse Distance Weighted Function

In general, the k nearest neighborhood method takes an average of the k nearest

points with equal weight to the estimation. All of these k observations make the

same contributions to estimate the target. If the data is distributed in a sparse

region, some of the k nearest points may be located far away from the target and are

irrelevant to it. It does not make much sense that these points have the same impact

as the first few nearest neighbors. Therefore, we will discuss a number of weighting

functions in this section:

Inverse Rank Weights (Ir)

This weight function assigns weights based on their inverse rank. More specifically,

the estimated value Ỹi of Yi is calculated by the function:

Ỹi = Σk
s=1(Yi(s) ·

k + 1− s
k(k + 1)/2

) (2.8)

where Yi(s) is the response of the sth neighbor corresponding to observation i. For

example if k =3, the weight is assigned as (3
6
, 2

6
, 1

6
) to the three neighbors such that

the numerator is rank of the k nearest neighbors and the denominator is sum of all

ranks.

Inverse Distance Weights (Id)

This weight function assigns weights proportional to the inverse distance of the target

and Ỹi, and is defined as

Ỹi =
Σk
s=1wsYi(s)

Σk
s=1ws

(2.9)
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where

ws =
1

d(Xi,Xi(s))
(2.10)

where d(Xi, Xi(s)) is the Euclidean distance of the ith observation and its sth nearest

neighbor.

Nadaraya-Watson Kernel-Weighted Average (Ik)

The weight function uses the Epanechnikov quadratic kernel with certain window

size function hλ(x):

Kλ(Xi,Xi(s)) = D(
|Xi(s) −Xi|

hλ(x)
) (2.11)

D(t) =

 3
4
(1− t2) |t| ≤ 1;

0 otherwise

hλ(x) is set as a constant if only fixed window size is considered. The estimated value

Ỹi is calculated as (2.6). For k nearest neighborhoods, hλ(x) = |Xi − Xi(k)| where

Xi(k) is the kth nearest neighbors of the ith observation.

2.5 Simulation Studies of Proposed Influence Mea-

sure

In this section, a few one-dimension and two-dimension functional relationships are

used to illustrate the capability to catch the influential variable by the I score with

varied weight functions. Given that the influential predictor X is from uniform distri-

bution with an appropriate ranges and the random noise (ε) is chosen from standard

normal distribution with N=200 observations. In table 2.1, we compare marginal

correlation score (i.e. Pearson’s correlation) and influence scores by three different

kernels with varied k=3, 5, 10. The scatterplots of simulated data and their under-

lying functions are plotted in figure 2.2.
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Table 2.1: Correlation and influence measures in one dimensional functions

N=200 Underlying Model (Y)
X + ε X2 + ε eX + ε log(X) + ε cosX + ε

cor(y,x) 0.9363 -0.0148 0.5870 0.5596 0.0008
k = 3
Ir(x) 0.9172 0.9502 0.9398 0.5684 0.5686
Id(x) 0.8969 0.9389 0.9282 0.5237 0.5299
Ik(x) 0.9056 0.9430 0.9316 0.5216 0.5447

k = 5
Ir(x) 0.9232 0.9464 0.9552 0.6118 0.5918
Id(x) 0.8993 0.9309 0.9411 0.5346 0.5386
Ik(x) 0.9198 0.9437 0.9529 0.5914 0.5815

k = 10
Ir(x) 0.9303 0.9511 0.9550 0.6563 0.6349
Id(x) 0.9015 0.9324 0.9402 0.5434 0.5482
Ik(x) 0.9303 0.9512 0.9550 0.6552 0.6284

Ir: Score with inverse rank weight
Id: Score with inverse distance weight
Ik: Score with Epanechnikov kernel weight

The marginal correlation score may capture the influences of linear relations, expo-

nential and log functional effects. For the proposed influence scores, the three higher

influence scores demonstrate the capability of detecting the effects of X on Y under

both linear and nonlinear situations. In addition to that, the proposed method is able

to detect signals based on other nonlinear functional forms. Furthermore, in general,

the scores increase as k increases since simulated functions exhibit global patterns.

In reality, there might be specific local patterns for which moderate k is preferred. In

addition, we also observed that these influence scores with different kernels are quite

similar, while Ir tends to be slightly higher than the other two.

It is expected, in practice, that a wide array of nonlinear associations may exist

besides linearity. The marginal correlation score or other methods based on linear

assumptions will fail to detect strong nonlinear association and other joint effects.



15

It is entirely possible that cor(Y,Xi) = 0 or near zero while Xi and Y are function-

ally dependent. The key advantage of proposed influence measure I is its ability to

identify influences in arbitrarily specific global and local structures. Furthermore,

it automatically considers interaction effects among predictors when calculating the

scores with neighborhood information.

Figure 2.2: Scatterplot and underlying curve (orange) of different functional forms

Table 2.2 lists the pearson’s correlation of each individual variable and proposed
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influence scores with two variables in different models. Assume that the two variables

(X1, X2) have certain effects on response (Y) in different functional forms and the

number of observation N = 200. Beside the log functional form that X1 and X2

are generated from U(0, 10), all the models have X1, X2 and random noise ε from

standard normal distribution N(0, 1).

Table 2.2: Correlations and influence measures in two dimensional functions

N = 200 Underlying Model (Y)
X1 +X2 X1X2 X2

1 +X2
2 eX1X2 log(X1X2) sin(X1X2) + cos(X1X2)

cor(y,x1) 0.5900 0.0848 -0.1176 -0.1513 0.4100 0.1512
cor(y,x2) 0.5537 -0.0664 -0.0082 -0.1417 0.5162 -0.0152
k = 3

Ir(x1, x2) 0.7431 0.5863 0.8064 0.7224 0.6686 0.4775
Id(x1, x2) 0.7386 0.5777 0.8001 0.7321 0.6309 0.4737
Ik(x1, x2) 0.7126 0.5535 0.7876 0.7429 0.6233 0.4459

k = 5
Ir(x1, x2) 0.7615 0.6029 0.8167 0.6909 0.6966 0.4966
Id(x1, x2) 0.7532 0.5889 0.8084 0.7218 0.6454 0.4902
Ik(x1, x2) 0.7529 0.5952 0.8157 0.6901 0.6809 0.4874

k = 10
Ir(x1, x2) 0.7771 0.6246 0.8214 0.6723 0.7061 0.5159
Id(x1, x2) 0.7649 0.6069 0.8117 0.7218 0.7209 0.5012
Ik(x1, x2) 0.7764 0.6211 0.8243 0.6901 0.6795 0.5170

We observe that the magnitude of marginal correlation coefficients shows signals

in both linear and log functional relationships, but fail to capture other effects like

joint and high order. Applying proposed influence measure by including these two

influential variables to high order or interactive functional form, these scores are all

high enough, demonstrating the method’s ability to identify potential joint effects of

multiple variables. In addition, with different values of k, the scores among different

weight functions perform similarly.

Figure 2.3 also shows two different functional plots with two predictors. In the
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Figure 2.3: Scattplots and underlying surfaces (red) of two dimensional functions

first function, the response has joint effects from both X1 and X2, and the second

function is a paraboloid function. Both of them are undetectable by linear screening

methods without knowing the specific functional form. The proposed method takes

advantage of neighborhood information that helps us identify many different nonlinear

or interactive effects.

From these simulations, the proposed influence measures are able to spot the

influential variable sets by recognizing the specific patterns between response and

predictors. In high dimensional data sets, they provide novel and effective ways to

screen the potential important variables. Compared with the Pearson’s correlation,

the proposed measure I is able to locate important variables under either linear or

nonlinear relations. It also provides an efficient and flexible way to screen variables

with higher order and interactive effects.
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Chapter 3

Asymptotic Property of Measure I

In this part, we shall discuss the asymptotic properties of the proposed influence

measure.

3.1 Asymptotic Distribution of I

Let Y1, Y2, . . . , Yn be independent identically distributed with mean µ and variance

σ2. Without lose of generality, we can define the centered variates Zi corresponding

to the observed values zi = yi - ȳ. Therefore

E[Zi] = E[yi − ȳ] = 0

E[Z2
i ] = E[(yi − ȳ)2] = E[y2

i ]− E[ȳ2] = (µ2 + σ2)− (
σ2

n
+ µ2) = (1− 1

n
)σ2

E[ZiZj] = E[(yi − ȳ)(yj − ȳ)] = E[yiyj]− E[yiȳ]− E[yj ȳ] + E[ȳ2]

= µ2 − 2
nµ2 + σ2

n
+ (

σ2

n
+ µ2) = −σ

2

n

Define wi = {wi1, wi2, . . . , win} as the vector of weight between ith subject and all

the other n − 1 observations where wii = 0 and Σn
j=1wij = 1 ∀i ∈ {1, . . . , n}. Many

different weighting methods have been discussed in section 2.4 to assign the vector

of wi. In the following, we provide the asymptotic property of proposed influence



19

measure. First, we introduce the theorem:

Theorem 3.1.(Guyon,1995)

Consider S ⊂ Rd an infinite nonnecessarily regular lattice without accumulation points

and Dn be an increasing sequence of finite subsets of S . Let W be a matrix of known

bounded weights over S 2 such that

{W = (wij), Xi, Xj ∈ S} wii = 0, wij = 0 if ||Xi −Xj|| > R

Define the measure

ρn = Σi∈D ′n ΣjwijZiZj

where D
′
n = {Xk ∈ Dn for all X` ∈ Dn that wk` 6= 0}.

In addition, for cn = Σi∈D ′n Σj (w2
ij + wijwji) and V ar(Zi) = σ2 for all i . If

(i) The variables Zi are centered, independent and ∃δ > 0 that ||Z||2+δ = supi||Zi||2+δ <

∞

(ii) lim infn cn |D
′
n |−1 > 0, then

(cn)−1/2(ΣDnZ
2
i )−1ρn

D−→ N(0, 1) (3.1)

Consider the data set (Z, X) where Z is a vector of n centered variable of Y and

X is n by m matrix of m predictors. Z̃ is the vector of estimated value where Z̃i is

the estimated value of observation i defined as the weighted sum of all other n − 1

responses.

Z̃i =
n∑
j=1

wijZj ∀ i = 1, . . . , n (3.2)

The proposed influence measure can be expressed as:

În = cor(Z, Z̃)

=
1

n−1
ΣiZiZ̃i

SZSZ̃

=
1

n−1
ΣiΣj wijZiZj

SZSZ̃
(3.3)
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where

S2
Z =

1

n− 1
ΣiZ

2
i (3.4)

S2
Z̃

=
1

n− 1
(ΣiZ̃i

2 − n ¯̃Z2) (3.5)

To ease the display, we define the following notations:

Σ(2) =
n∑
i=1

n∑
j=1
i 6=j

(3.6)

Σ(3) =
n∑
i=1

n∑
k=1
i 6=k 6=j

n∑
j=1

(3.7)

Σ(4) =
n∑
i=1

n∑
`=1

n∑
k=1

n∑
j=1
l 6=j

(3.8)

Theorem 3.2

Under the assumption stated in theorem 3.1, we have

(c−1
n WS2

Z̃
)1/2În

D−→ N(0, 1) (3.9)

where WS2
Z̃

= (n−1)
n2 Σ(2)w

2
ij − 1

n(n−1)
Σ(3)wikwij − 1

n2 Σ(3)wijwkj + 1
n2(n−1)

Σ(4)wi`wkj

Proof:

To find the asymptotic distribution of În, the two estimated value SZ and SZ̃ have to
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be formulated.

E[S2
Z ] =

1

n− 1
ΣiZ

2
i = σ2

E[Z̃i] = E[Σj wijZj] = 0 ∀i ∈ {1, . . . , n}

E[ ¯̃Z2] = E[(
ΣiZ̃i
n

)2]

= E[(
Σ(2)wijZj

n
)2]

=
1

n2
E[Σ(2)w

2
ijZ

2
j + Σ(3)wijwkjZ

2
j + Σ(4)wi`wkjZ`Zj]

=
1

n2
[Σ(2)w

2
ij(
n− 1

n
σ2) + Σ(3)wijwkj(

n− 1

n
σ2) + Σ(4)wi`wkj

−σ2

n
]

=
(n− 1)σ2

n3
(Σ(2)w

2
ij + Σ(3)wijwkj)−

σ2

n3
(Σ(4)wi`wkj) (3.10)

E[S2
Z̃

] = E[
1

n− 1
(ΣiZ̃i

2 − n ¯̃Z2)]

=
1

n− 1
(E[Σi(ΣjwijZj)

2]− nE[ ¯̃Z2])

=
1

n− 1
(E[Σ(2)w

2
ijZ

2
j + Σ(3)wikwijZkZj])− nE[ ¯̃Z2])

=
1

n− 1
(Σ(2)w

2
ij(
n− 1

n
σ2) + Σ(3)wikwij(

−σ2

n
))

− n

n− 1
(
(n− 1)σ2

n3
(Σ(2)w

2
ij + Σ(3)wijwkj)−

σ2

n3
Σ(4)(wi`wkj))

=
σ2

n
Σ(2)w

2
ij −

σ2

n(n− 1)
Σ(3)wikwij −

σ2

n2
(Σ(2)w

2
ij + Σ(3)wijwkj)

+
σ2

n2(n− 1)
Σ(4)wi`wkj

= σ2(
(n− 1)

n2
Σ(2)w

2
ij −

1

n(n− 1)
Σ(3)wikwij −

1

n2
Σ(3)wijwkj

+
1

n2(n− 1)
Σ(4)wi`wkj)

= σ2WS2
Z̃

(3.11)
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Since S2
Z = 1

n−1
Σn
i=1Z

2
i is a consistent estimator of σ2, (3.11) implies E[S2

Z̃
] can also

be estimated by WS2
Z̃
( 1
n−1

Σn
i=1Z

2
i ). The weight WS2

Z̃
is data dependent and different

weighting mechanisms will lead to different values. A special case occurs when we do

assume equal weights (i.e. 1
n−1

) on all the points beside observation i. The WS2
Z̃

is

reduced to 1
(n−1)

.

By Slutsky′s theorem and theorem 3.1, the asymptotic distribution of proposed

measure În is approximated to a normal distribution as follows:

(
WS2

Z̃

cn
)1/2În = (

WS2
Z̃

cn
)1/2

1
n−1

ΣiΣj wijZiZj

SZSZ̃

= (
WS2

Z̃

cn
)1/2

1
n−1

ΣiΣj wijZiZj

(ΣiZ2
i /(n− 1))1/2(WS2

Z̃
ΣiZ2

i /(n− 1))1/2

= (cn)−1/2(ΣiZ
2
i )−1ρn

D−→ N(0, 1) (3.12)
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Chapter 4

Backward Elimination Algorithm

by I score

In this chapter, a heuristic backward variable selection algorithm based on the in-

fluence score is proposed. The algorithm aims to delete non-informative variables

that will boost the influence score and return the variable set with the highest score

during the elimination procedure. As the number of explanatory variables is large,

due to the curse of dimensionality, we propose the backward eliminating algorithm

based on random subset selection to detect important variable sets. The algorithm

tends to keep the influential variables in the end; whereas, the noise terms are always

identified and eliminated. In the following section, we will discuss the algorithm, the

parameters related to the algorithm, and the algorithm’s computational complexity.

We also provide many different examples and applications based on different usages

of the score.
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4.1 Algorithm Based on Influence Score I

A large positive I score indicates the existence of informative variables included in

current variable set and deleting noisy variables is likely to increase the score. To

crystallize this property, we propose the following algorithm:

Algorithm 4.1: Backward elimination algorithm B times based on influence

score

Step 1: Randomly select a subset of d variables from total m dimensional variables.

Xd = {x1, ..., xd} where xi indicates the ith variable of the selected subset. To

avoid the curse of dimensionality, d is usually set as a moderate number such

as between 5 and 10;

Step 2.1: To backward eliminate noisy variables within current d-dimensional variable

set Xd, compute the score I(Xd) and I(Xd[−i]) ∀i = 1, ..., d where I(Xd[−i])

represents the score computed without variable xi. Delete jthvariable having

maximum difference I(Xd[−j]) - I(Xd);

Step 2.2: If there is no variable remaining in the set, stop; otherwise repeat Step 2.1 with

d = d[−j];

Step 2.3: Return d1 variables that attain the highest influence score as the returned vari-

able set in the eliminating procedure;

Step 3: Repeat Step 1 - Step 2.3 B times;

Step 4: Do further analysis and applications (i.e. feature selection or classification)

based on the returned variable sets with the highest B1 (B1 << B) scores among

the B repeat times.
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Given a small set of total explanatory variables (i.e. m is not large), the algorithm

can apply to the entire set and will return the most influential variable subset related

to response. For large datasets, however, it is not practical to capture all high order

interactions even when the repeat time B is set to an extremely high value. In some

situations, to reduce the computational complexity, instead of backward eliminat-

ing the noisy features in d-dimensional subspace, we may use pairwise or triple-wise

screening based on an evaluation of all lower order interaction effects.

Illustration of Backward Elimination Algorithm

The backward elimination algorithm is illustrated by the following simulated data set

with response variable Y and independent variable set X7 ={x1, x2, . . . , x7} where all

the xi were generated independently from N(0,1) and x1, x2 are the only two influ-

ential variables. Consider the nonlinear relationship where Y is normally distributed

with mean (x1 +x2)2 and variance 1 for N = 400 observations. The two variables con-

tribute both nonlinear and interactive effects to responses. The traditional correlation

measure fails to identify these two influential variables since all absolute Pearson’s

correlations are smaller than 0.07. Among the variables, the maximum correlation

is cor(Y, x7) = 0.0643. Both of these two influential variables only show very weak

signals, with cor(Y, x1) = 0.0256 and cor(Y, x2) = 0.0624, respectively.

By the algorithm, we first compute the joint influence score I (X7) with current

variable set X7. To evaluate the influence of x1, we remove variable x1 and compute

the new influence score I(X7[−1]) with the remaining variables. If this new score

decreases substantially, it implies x1 is important that similar responses Y cluster

together in the space when it is included. On the other hand, increase of the new

score indicates x1 may contain noisy information in current variable set. We further

compute new scores by removing one of the remaining variables. Every time, we

eliminate the variable that boosts the score most. By repeating this procedure, we
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continue discarding less informative variables until only one variable remains. Finally,

the variable set that contains those variables leading to the highest influence score

during the eliminating procedure is retained.

Table 4.1: History of the eliminating procedure for four cases with k = 5 N = 400
Initial set:{1,2,3,4,5,6,7}
Influence before drop 0.6783 0.7968 0.8363 0.8503 0.8734 0.8883 0.4050
Dropped variable 6 7 4 5 3 2 1

Initial set:{1,3,4,5,6,7}
Influence before drop 0.1419 0.2146 0.2549 0.2467 0.2561 0.4050
Dropped variable 7 4 5 3 6 1

Initial set:{2,3,4,5,6,7}
Influence before drop 0.1429 0.2728 0.2952 0.2936 0.2928 0.3420
Dropped variable 7 6 4 5 3 2

Initial set:{3,4,5,6,7}
Influence before drop -0.0725 0.0374 0.0984 0.0504 0.0809
Dropped variable 5 6 7 4 3

In this simulated data set, we first centered the response value and then computed

proposed influence measure although the score will not make any essential differences

by centerizing Y . Table 4.1 presents the history of the change of influence score I and

dropped variables step by step during the eliminating procedure. The first case shows

the eliminating procedure if we include all seven variables in the initial set. Including

all variables, we obtain I (X7) = 0.6783. In the next step, we compute all seven

scores by eliminating each variable and removing the one that increases the score

most. Therefore, in the first step, we dropped variable x6 which led to an increase of

the new score to 0.7968 with all the remaining variables {x1, x2, x3, x4, x5, x7} to the

next step. Continuing the algorithm, we observed that it attains the highest influence

score when only x1 and x2 remained in the set. After one of the jointly influential

variable x2 is eliminated, the influence score dropped sharply, though it still maintain
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in high value.

In the following, the algorithm is also applied to the different cases. We consider

the cases that one of the two influential variables is not included in our initial set. We

observed that the highest influence score attained when the only influential variable

is kept in final step. In these cases, the algorithm will retain x1 and x2, respectively.

Finally, we consider the case that only noninfluence variables are included in the initial

set. The highest score is merely 0.0984 indicating the retained variable set does not

contain much information. In addition, compared to these four cases, we observed

that the initial score is the largest when both of the influential variables are selected

in our initial set. When only one of the variable is present in the initial set, the initial

score drops sharply to about 0.14, but is still larger than when none of influential

variables are included. The initial score is the lowest one when the algorithm started

by the set with all noninfluential variables. The negative starting value indicates the

initial set has very poor predictive power and the score does not grow significantly

by the algorithm. The highest score in the last case is smaller than any of the values

when at least one of the influential variables is included. This simulated result also

demonstrates the capability of proposed algorithm to detect influential variables if

any of them are selected in the initial set.

4.2 Discussion on Repeat Time B

The backward elimination algorithm, depending on random sampling, is required to

sample as many different combinations of the variables as possible. Assume there is

an l-order interaction and it will pop out and be captured only when these l variables

are selected simultaneously. In general, the repeat time B should be set large enough

to capture the interaction effects, and it is related to the variable size of the data

(m), the order of interaction (l) and number of variable selected(d) for each random

sampling where d << m. Given a data set with m variables, to capture certain
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l-order interaction by the algorithm with at least certain probability p, this implies

the following inequality:

P (capture l-order interaction) = 1− (1−
(
m−l
d−l

)(
m
d

) )B > p (4.1)

Therefore, we have

B >
log(1− p)

log(1− (m−l
d−l)
(m
d)

)
(4.2)

Table 4.2 shows the number of repeat time B required to catch potential l-order in-

teractions. For example, when m=200, d=5 and p=0.75, we have to random sample

at least 182,076 times to capture certain triple interactions. As both m and l get

larger, the highly intensive computational burden may hinder the strategy. However,

depending on different purposes, the algorithm is still worthwhile to apply. Further-

more, d value is inversely proportional to B and the effect will be shown in the next

section.

Table 4.2: Number of Repeat Time B Needed

p=0.5 p=0.75
m d\l 2 3 4 2 3 4

200 5 1380 91038 >8.967*106 2759 182076 >1.793*107

10 307 7587 213506 613 15173 427011
15 132 2001 32847 263 4001 65694

500 5 8647 1435404 >3.566*108 17294 2870807 >7.133*108

10 1922 119617 8492806 3843 239234 >1.698*107

15 824 31547 1306586 1647 63094 2613171
1000 5 34623 >1.151*107 >5.741*109 69245 >2.303*107 >1.148*1010

10 7694 959818 >1.367*108 15388 1919636 >2.734*108

15 3298 253139 >2.103*107 6595 506278 >4.206*107
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4.3 Discussion on Number of Selected Variables d

In high dimensional dataset like gene expression microarray data, the number of

observations, n, is usually small, only tens or hundreds. The number of variables m

is usually very large ranging from several hundreds to more than ten thousand. The

nearest-neighbor method suffers severely from the curse of dimensionality. Including

all m variables together or using a large value of d will make the contained information

diluted and slow the calculation of proposed algorithm. In addition, incorporating

too much noise may lead to falsely eliminating true influential variables during the

procedure. It is due to the reason that in a high-dimensional space, all points tend

to be far away from each other. The nearest neighbors method based on the distance

metric are not effective and meaningful.

To avoid the curse of dimensionality, we may only consider applying the procedure

with a lower d-dimensional variable set, where d= 1, 2,...,L � m. In table 4.2, we

observe large d eases the computational burden making the repeat time decrease

remarkably. It is not always beneficial to increase d at will because the algorithm

may fail to identify true interaction effects and influential variables in high dimension

space.

Consider a simple triplet interaction example: Y = X1X2X3 + ε with N = 400

where the variables and ε are N(0,1). Including these three influential variables,

different numbers of random Gaussian variables (i.e. d - 3 variables) are added to our

candidate variable subsets. The simulations perform the proposed procedure with

k = 5. We simulate the model 1,000 times to examine how different d affects the

variable selection results.

In figure 4.1, the vertical axis is the proportion among the 1,000 simulations and

horizontal axis is the number of total variables (d) included in our procedure. The

solid line indicates the proportion of instances that the return set is exact the correct

subset {X1, X2, X3} and dashed line shows the proportion of times that the final rough
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set includes the exact set. It is obvious that both of the proportions deteriorate as the

number of noisy variables increases. When d=5, the procedure is capable to identify

the correct variable set accurately. In addition, as d is less than 20, the return set

is still able to include the exact set and it has high possibility (>70 %) to precisely

identify these three variables. If d is greater than 25, the algorithms starts to perform

increasingly poorly and is gradually unable to include the exact set. When d starts at

100, although about 55 percent of the simulated results are able to include the exact

set, less than 30 percent of them can identify the exact set.
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Figure 4.1: Proportion of influential variables left among 1,000 simulated return set

The mean and standard deviation of number of variables left in the 1,000 simulated

return sets are shown in table 4.3. Both average and standard deviation grow as d

increases; that implies more noisy variables are included in the return set. Compared

to large d which may cause a deterioration of the proposed algorithm, smaller d leads
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to relatively stable results.

Table 4.3: Summary of number of variables left in 1,000 simulated return set

d
5 7 10 15 25 35 50 75 100

mean 3 3.229 3.331 3.458 3.976 4.963 8.059 16.541 27.432
sd 0 0.4824 0.6130 0.8324 2.1817 4.1209 8.3427 15.4703 20.7668

The simulations suggest that d should be set to a moderate number in order to

improve the likelihood of identifying real influential variables. There is a trade-off

between d and the number of total variables. For accurate identification of true

influential variables, d should be set as a small value but the number of repeat times

will increase significantly to capture the real effects. Furthermore, since the proposed

algorithm has a higher chance to include true important variables, incorporating

return frequency may be another option to supplement proposed procedure that is

discussed in section 4.6.

4.4 Computational Complexity of Algorithm 4.1

As discussed in the previous sections, many factors will affect the computational

complexity, including number of observation (n), number of selected variables (d)

and repeat time B. The algorithm depends on the random sampling and there is a

high chance that the random subsets may not contain any important information. In

general, the repeat time should be set large enough and only the top B1 highest score

subsets should be chosen for further applications. The computational complexity

required to find the top B1 informative variable subsets involves two main parts:

B times backward elimination algorithm and sorting the B variable subsets by the

influence scores.

B times backward elimination algorithm
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In each random subset, the complexity of backward elimination algorithm includes

nearest neighbor searching, estimating the target, and computing the influence score

with a decreasing number of dimensions. For n observations, not taking allm variables

into account, we only randomly select d variables (d << m). The computational

complexity of the influence score given d dimensional space includes:

(a) The distance calculation of each observation to all remaining (n-1) points is

O((n − 1)d). For all n observations, the computational complexity is O(n2d)

(i.e. O(n(n−1)
2

d))

(b) Sorting by the distance to find the nearest neighbors of every observation can be

found in O(nlogn) time (i.e. O(kn) if k << logn) and it takes O(n2logn) for all

n observations.

(c) Estimating and computing the influence score with all n observations leads to a

the complexity that is O(n)

Combining all the computations, the total complexity is O(n2d + n2logn + n)

where the search of k nearest neighbors of all observations can be found by the sum of

computations in (a) and (b) with O(n2(d+ logn)) time. The time complexity in (c) is

negligible compared to nearest neighbors computation. Hence, the approximated time

for computing the influence score with d variables is O(n2(d+ logn)) (or O(n2(d+k))

if k << logn)

The time complexity in each random subset is computed by the following ways.

In the first step, the influence score is computed only once with all d variables. To

find the one irrelevant variable at a time, the procedure is repeated with the next

step computing the score with d− 1 variables d times, so that each variable removed

once. Therefore, the computational complexity with d − 1 variables is O(d(n2(d −

1) + n2logn)). Continuing to eliminate each less informative variable until the last

stage with one variable remains, the total complexity for one backward elimination
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algorithm is O((d+d(d−1)+(d−1)(d−2)+. . .+2)n2+(1+d+(d−1)+. . .+2)n2logn),

which is bounded by O(d3n2 + d2n2logn) = O(d2n2(d+ logn)) (i.e. O(d2n2(d+ k)) if

k << logn). In a high dimensional data set such as microarray, n is usually not very

large with n << m. Setting d to be a smaller number like 5 to 10 or log(n) will ease

the computational time and also avoid curse of dimensions. If we set d = logn, the

computation time for the algorithm is bounded by O(n2log3n).

For B times backward elimination algorithm, the complexity for the first part is

O(Bd2n2(d+ logn)). In order to explore highly informative subsets, the repeat time

B should be set to a large value in order to make the random sampling cover as many

combinations of variables as possible.

Finding the top B1 informative variable subsets

In general, B1 << B, to find the top B1 variable subsets is just sorting for the B

variable subsets and it takes O(BlogB).

Combining these two terms together, the overall computational time is O(Bd2n2(d+

logn)) +O(BlogB) = O(B(d2n2(d+ logn) + logB)). In generally, logB << d2n2(d+

logn), the complexity for finding the topB1 building blocks is bounded byO(Bd2n2(d+

logn)).

4.5 Backward Elimination with Different k

Consider there to be two classes having response variable Y which behave differently.

Given there are 400 observations and the number of classes is selected from a binomial

distribution with probability 0.6 to be first class. Suppose that the data has inde-

pendent variable set X ={X1, X2, . . . , X10} where all Xi are generated independently

from N(0,1). The response value are generated by Yi = Xi1Xi2 + εi, i = 1, . . . , n1 and

Yi = (1−Xi3)(1−Xi4)+ εi, i = n1 +1, . . . , n for class 1 and class 2 respectively where

εi is N(0,1). There are four influential variables and each class is affected by different

pairs of independent variables.
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Figure 4.2: Backward elimination with various parameter k

Applying backward elimination algorithm to the simulated data set, figure 4.2

shows the backward elimination result with different numbers of nearest neighbors.

The number in the upper side of each box indicates the eliminated variables step by

step. We observe that all the irrelevant variables {X5, . . . , X10} are eliminated in the

first few steps across all the different k. When k = 1, the initial influence score with

all X is 0.1859. After removing X5, the influence score increases to 0.2993 and so on.

However, the measure does not increase a lot but fluctuates in this case since using 1

nearest neighbor may include more noise and it may not be reliable. The procedure

with k=1 reaches the peak of 0.3492 after eliminating {X5, X10, X8, X6}. The score

starts to decrease and drops sharply once informative variables are eliminated in step

7.

The influence score is generally become larger as k increases. For example, the ini-
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tial and peak scores are higher with larger k compared to smaller one. In addition, the

score drops sharply with larger k than when k = 1 once any informative variables are

discarded. In general, the influence score curves have similar pattern across different

k and the four influential variables are always kept after step 6 (i .e. after eliminat-

ing all non-informative variables.) If we select the remaining variables as the score

attains the peak with different value of k, all the influential variables are returned by

applying our algorithm. However, the exact influential variable set is obtained when

k= 3 or 10. For k=1 and 5, the return set will include additional variables {X9, X7}

and {X10} correspondingly. We also notice the influence scores decrease to their low-

est value when only 1 variable is contained in the end, though it is a true influential

variable, the joint effect disappears making the individual variable non-informative.

This is caused by signal from interactive but not a marginal effect. The influential

variable set is impossible to be identified if we apply marginal method without prior

knowledge of the functional form. For example, by the Pearson’s correlation, the

signal is very weak X1 (-0.007), X2 (0.021).

4.6 Return Frequency in Screening

With moderate sample size n and number of variables m, the return frequency is

another choice to screen important variables. As shown in section 4.3, the influential

variables are high likely to be included in the returned set. If some variables have

strong marginal effects or may only appear when considering the joint effects, the

variables will consistently be returned with higher scores. Therefore, we develop

another strategy by computing the top list pair or triplet and select variables with

higher ranks of return frequency. It is not practical to simply report the top score

pair or triplet as influential variables since a strong marginal effect variable is likely to

carry some noninfluential variables with it. Return frequency will be a conservative

choice for the purpose of avoiding the selection of false signals that would appear with
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strong marginal effect.

Consider we randomly assign c = 6 different clusters and the number of each cluster

is distributed by multinomial distribution with probability (0.3, 0.2, 0.15, 0.15, 0.1,

0.1). The response values are normally distributed with center ȳci from uniform(0, 5)

and σ2
ci

from uniform(0.3, 1.5). As for the influential variables, let P1 be a randomly

selected orthonomal matrix of dimension m by m matrix (i.e. m = 10) among S=500

variables. The center Ci for 1 ≤ i ≤ c with m dimensional space have distribution

Ci = P1D
1/2
1 Wi

where D1 is a diagonal matrix with the elements independently distributed as expo-

nential with mean 1 and all Wi are independent N(0, 1). Conditional on P1 and D1,

the center Ci comes from multivariate normal distribution N(0, P1D1P
′
1). Given the

ith cluster ci, the influential variables Xci are generated as

Xci = Ci + P2D
1/2
2 Wci

where D2 has the same distribution as D1 and P2 is another randomly orthonormal

matrix of dimension m by m. Wci are also independent N(0, 1). In this setting, a few

of influential variables may have effect due to interactions. In addition, the remaining

490 variables are random noise from N(0, 1).

It is easy to compute exhaustively such as marginal and pairwise scores. For

the higher dimensions interaction like triplet are also possible to calculate. Here, we

compare the selection results for different methods. First, I1 is computed based on

marginal influential scores (d = 1). I2, pairwise score, is computed for total S(S-1)/2

pairs. To evaluate the rank of individual variables based on pairwise score, we count

the return frequency (i.e. rI2f ) of an individual variable appearing in the top nr

scores where nr is an essential portion of the number of total pairs. In this example,

nr = 5000 is used.
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The ranks of influential variables with different sample size (n=200, 400) are listed

in Table 4.4 with marginal correlation and rI1, rI2f .

Table 4.4: Rank of influential variables
Variable 1 2 3 4 5 6 7 8 9 10
n=200
r|cor(y, xi)| 1 5 2 340 138 4 11 3 104 17
k=1
rI1 1 19 23 5 204 122 318 10 55 352
rI2f 1 7 3 2 11 5 101.5 4 6 19
k=3
rI1 1 25 3 2 50 177 369 11 114 372
rI2f 1 7 2 3 8 5 34 4 6 10
k=5
rI1 1 11 3 2 24 104 295 10 75 265
rI2f 2 7 2 2 8 5 39 4 6 11.5
k=10
rI1 1 4 3 2 10 20 162 5 44 90
rI2f 2 7 2 2 12 5 35 4 6 8

n=400
r|cor(y, xi)| 1 5 3 485 59 4 6 2 83 29
k=1
rI1 1 48 2 123 218 115 130 4 3 10
rI2f 1.5 5 1.5 6 8 9.5 7 3 4 9.5
k=3
rI1 1 9 2 17 98 86 90 4 3 16
rI2f 1.5 5 1.5 7 9 8 6 3 4 10
k=5
rI1 1 5 2 10 49 61 42 3 4 19
rI2f 1.5 5 1.5 7 9 8 6 3 4 10
k=10
rI1 1 5 2 8 26 18 13 3 4 15
rI2f 2 5 2 6 9 8 7 2 4 10

As n = 200, the marginal correlation methods identify some of the strong marginal

effects but fail to identify other effects such as X4, X5, X9, X10, where the ranks are all

much higher than 10. These might be due to non linear or interactive relationships.
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On the contrary, with one dimensional influence measure rI1, X4 is ranked as 5th

indicating a strong non-linear effect which will only be identified by proposed measure.

In general, the marginal and high degree (i.e. polynomial) effects can be identified

by rI1 with moderate k. However, some variables such as X5 and X9 show strong

signals only when we consider rI2f . The effects may come from interactions. With a

small number of k, proposed influence score does not perform well compared to the

marginal method. The result improves as k becomes larger in both rI1 and rI2f . It

is also obvious that rI2f is overall better than rI1 with different k although one or

two variables may fail to be selected if the threshold of rank is set stringently. For

example, in k=10, selecting the 10 highest rank variables will lead to missing two

influential variables X5, X7.

As sample size n grows to 400, the marginal correlation method shows very con-

sistent results as that with n = 200. rI1 also shows some obvious improvement as

k gets large. For rI2f with large sample size, the signals of influential variables are

strong enough to be captured with different k since all the ranks of these variables are

within the top 10. With larger sample size, rI2f computed by smaller k is sufficient

to find influential variables from various types of effects, but rI1 perform well only

with larger k.

Furthermore, table 4.5 lists the ranks of a few non-influential variablesX11, . . . , X20.

We observed all the variables do not exhibit strong signal in any of the methods since

almost all the ranks are very high. Generally, with larger sample size and moderate

k, return frequency computed from high order interactive scores have strong power

to discriminate the true influential variables from noisy variables.
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Table 4.5: Rank of non-influential variables
Variable 11 12 13 14 15 16 17 18 19 20
n=200
r|cor(y, xi)| 240 497 347 372 431 449 206 176 378 454

k=1
rI1 351 94 183 136 128 469 453 74 174 284

rI2f 400.5 11 94.5 158.5 133.5 80 400.5 19.5 346 68.5

k=3
rI1 349 37 169 69 76 253 454 150 258 331

rI2f 441.5 12 82.5 239 121.5 97 239 27 121.5 46.5

k=5
rI1 485 189 241 266 207 249 312 104 326 149

rI2f 306 42 226 63 84 245 397 288 348 394

k=10
rI1 466 92 210 198 246 115 192 38 302 122

rI2f 142 94 404 123 154 221 411 417 362 432

n=400
r|cor(y, xi)| 286 270 86 93 182 200 137 240 173 29

k=1
rI1 9 451 366 362 206 386 238 343 40 299

rI2f 277 234 234 330.5 43.5 234 114.5 454 277 234

k=3
rI1 145 412 385 160 73 342 241 320 56 261

rI2f 329.5 380 191.5 234.5 22.5 191.5 88 431 431 234.5

k=5
rI1 237 405 444 94 26 335 209 352 110 177

rI2f 306 306 159.5 361.5 22 250 54 418.5 465 199.5

k=10
rI1 192 433 417 67 24 284 90 373 288 81

rI2f 210.5 210.5 157.5 275.5 33.5 121 79.5 346 346 413.5
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Chapter 5

Application to Classification

Problems

In previous chapters, we show that the influence score I is a measure of associa-

tion between a subset of variables and continuous responses. It can be applied to

classification problems with dichotomous responses and continuous predictors like

microarrays. It is known that there are quite a number of influential genes in gene

expression datasets and many of them contribute somewhat to the diseases in differ-

ent ways. In addition, many studies show that epistasis occurs when a certain gene

is modified or regulated by one or more modifier genes (Phillips, 2007). The phe-

nomenon may imply potential functional interaction of certain gene sets in complex

diseases. In this chapter, we discuss and apply the proposed influence score I with

inverse rank weight function to screen informative building blocks (i.e. influential

variable sets) in classification problems and study a new classification procedure in

three gene expression data sets.
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5.1 Illustrations of Influence Score in Two Class

Problems

The proposed influence score can be applied to screen potential important variables

with both marginal and interactional effects. The main advantage of using it is similar

to that of filtering method in classification, they are benefit from their simplicity

and computational efficiency. The screening method, unlike other methods using

searching algorithms in possible subsets of variable space, needs less computational

time. Another advantage is the capability to catch those variables with nonlinear

relationship with the output labels, especially specific local structure. When we use

other linear methods, such as Pearson’s correlation, to screen the nonlinear variables

that will result in a lower score, we then treat them as noisy variables leading to a

loss of some important signals. With the new influence measure, the nonlinear and

important effects will be captured. Furthermore, the proposed score is able to detect

high order joint effects. In the following, we illustrate proposed scores in the context

of two examples.

5.1.1 One Dimension - Marginal Effect

Similar to traditional filtering methods, the influence measure also provides an effi-

cient way to do screening as the number of variables is large. After calculating the

scores of the variables, the ranks of the variables are obtained by sorting these scores.

Those of top rank variables can be used as informative predictors to build the clas-

sifiers. Most of the existing filtering methods are independent of the choice of the

classifier and are focusing on global patterns such as a linear separable condition. In

reality, it is impossible to find a clear cut example of a two class problem. Therefore,

the proposed influence measure takes advantage of neighborhood information, which

may help identify variables with both global and local patterns.
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(a)

(b)

(c)
cor(x,y)=-0.004; I(x)=0.994

cor(x,y)=0.449; I(x)=0.889

cor(x,y)=0.877; I(x)=0.988

5

(d)

-5 X

cor(x,y)=0.429; I(x)=0.990

1

-1

Figure 5.1: Two class problem in different one dimensional examples with Pearson’s
correlation and influence scores by k=5

Consider a few one dimensional distributions of two-class data set in figure 5.1

where the two difference classes with predictor X distributed in the range (-5, 5).

The correlation score and proposed I(X) score with k = 5 are computed. In (a),

the data can be clearly separated by any points between the two classes. Both the

Pearson’s correlation (0.877) and proposed influence score (0.988) are high enough to

indicate the importance of X. However, if there is an additional outlier such as (b),

the pattern is still very similar to (a). The correlation score drops a lot from 0.877 to

0.449; and that may lead to neglecting the variable although the pattern is still very
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clear. As for I(X), it drops a little to 0.889 and the outlier only has a minor effect

such that we can still catch the signal. In (c), there are three clusters of the two

classes. The right and left ends belong to the same class. The Pearson’s correlation

is close to 0 but I maintains a large value to indicate the significance of the predictor.

Actually, the marginal nonlinear effect in this example is very clear but we may ignore

it by traditional screening methods. For (d), four clusters are distributed alternatively

with the two classes. The Pearson’s correlation score is moderate, and may fail to be

treated as informative but the high score of I(X) implies specific local patterns may

exist. From these different situations in figure 5.1, we observe the proposed I score

is able to capture important marginal effects of both global and local patterns in two

class problem. In addition, the existence of an outlier effect will be alleviated by the

proposed I score.

Once we identified the important predictor, in (a) and (b) of figure 6, almost all

of the existing classifiers are capable of strong performance. However, in(c) and (d),

only the classifiers taking local patterns into consideration such as tree, k nearest

neighbors can do well. Therefore, to take advantage of the proposed I score after

screening out the informative variables, those classifiers adopting both global and

local structures are suggested for further applications.

5.1.2 Two Dimensions - Marginal and Joint Effects

In this section, we illustrate classification problem with two input variables. The

first one involves only one variable having marginal effects and the second is the

XOR problem with strong joint effects. The simulated predictors are from different

bivariate normal distributions with mean values set to be (0, 0) and (0, 3) for class

1 and class 2, respectively. In addition, the standard deviations of both variables are

1. The number of observations in each class is 200.

Figure 5.2 shows the distributions of these two classes. The absolute Pearson’s
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Figure 5.2: Scatterplot of two dimensional problem with one variable associating with
class labels.

correlation of each individual variables is |c(X1)| = 0.0049 and |c(X2)| = 0.8169. For

our influential score with k = 5, I(X1) = 0.0027, I(X2) = 0.8586 and I(X1, X2) =

0.8116. From the figure, X1 is pure noise if the class label is projected to X1 that

leads to both c(X1) and I(X1) are very low. Since X2 is linearly correlated with the

target labels, the two scores corresponding to c(X2) and I(X2) are relative high. The

joint score I(X1, X2) is still very high, however, due to including the noisy variable

X1, which makes the score a little lower than that when only considering X2.

For non-linear relationships as in figure 5.3, the XOR classification problem is

generated. There is no prediction power when considering each variable individually,

but it will be boosted when both of them are included. We can find the scores with

only one individual variable are all very low c(X1) = 0.0092, c(X2) = 0.0179, I(X1)



45

−2 0 2 4 6

−
2

0
2

4
6

X1

X
2

Figure 5.3: Scatterplot of two dimensional problem with joint effects: XOR problem.

= 0.1150 and I(X2) = 0.0051. The influence measure is flexible to compute joint

influential score I(X1, X2) = 0.7643. It is relatively high compared to the case when

only a single variable is included.

In summary, both correlation and influential score can distinguish clearly between

a noisy variable and the one with linear association with target values. The proposed

score is able to detect strong nonlinear effects and especially boosts the ability to

identify joint effects of a variable subset in two dimensions and more. In reality, not

only pairwise but higher order interactions play an important role in classification

problems, especially gene expression microarray. The backward elimination algorithm

will help detect higher order interaction sets called building blocks. We can further

construct a strong classifier by aggregating those highly informative building blocks,

in an effort to do prediction.
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5.2 Microarray Data Set

In complex diseases, as in microarray data, not only marginal and pairwise interaction

effects but various combinations of genes may form an influential set. Many studies

(Li, 2009; Oti, 2007) show pathway and genes are functionally related, contributing

to the causes of complex diseases. These studies suggest higher order interactions

may benefit prediction.

In this study, three gene expression datasets are analyzed via our proposed pro-

cedure. The first dataset is a breast cancer data first analyzed in Van ’t Veer et

al. (2002) and re-analyzed in Tibshirani and Efron (2002). There are 4918 genes

included in this data set. The training portion of the data set contains 78 patients,

34 of which are patients who had developed metastases within 5 years (relapse). The

remaining 44 samples are from patients who remained healthy from the disease after

their initial diagnosis. In addition, the testing set contains 12 relapse and 7 non-

relapse samples. Overall, 4918 gene expression profiles for 51 good prognosis breast

cancer samples (non-relapse) and 46 poor prognosis breast cancer samples (relapse)

are included. The second data set involves prostate cancer analyzed in Singh et al.,

(2002). The data set consists 12,533 gene expression profiles for 52 prostate tumors

and 50 non-tumor prostate samples. The third dataset is a collection of gene expres-

sion measurements from colon cancer reported by Alon et al., (1999). This dataset is

relatively unbalanced since it consists of 42 tumor tissues and 22 normal colon tissues,

and the final assignments of the disease status were made by pathological examina-

tion. Originally, 6000 genes are measured by high density oligonucleotide arrays and

2000 genes across 62 samples were selected based on the confidence in the measured

expression level.
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5.3 Classification Procedure

Figure 5.4 shows our proposed classification procedure. It includes many parts. First,

we perform an interaction-based screening by pairwise scores to select variables and,

second, we apply the backward elimination algorithm to find informative sets of vari-

ables (building blocks) and filter these sets to find independent building blocks. Fi-

nally, we aggregate them to form a stronger classifier by boosting. We illustrate this

procedure in breast cancer data with a 78 patient training set to find the building

blocks, and tune the weights in boosting algorithm to aggregate them by different

classifiers and predict the 19 patient testing set. Furthermore, we use 10-fold cross-

validation to evaluate the performances of proposed procedure in three microarrays.

5.3.1 Pairwise-Based Screening

In section 4.1, we propose a backward elimination algorithm to screen important

building blocks (i.e. subset of variables). The purpose is to find the most informative

sets to assure the capability to accurately predict the outcome. In section 4.2, to

capture complicated patterns in complex data set, we show the number of repeat time

B will increase if too many candidate variables are included. In high dimensional data

set, due to the large number of variables in gene expression datasets, directly applying

the algorithm with all genes without preliminary screening is not efficient. Important

information may be missed due to its chance to be selected and eventually diluted by

including many noise variables. In the following, the 78 training set subjects with 4918

genes of breast cancer training set are used to illustrate the procedure of screening

building blocks and constructing a weighted classifier by boosting algorithm.

We carried out the variable screening based on the return frequency of pairwise in-

fluence scores discussed in section 4.6 in order to filter informative subset of candidate

variables. The higher return frequency of a variable, the stronger implication that it
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Figure 5.4: Procedure of classification: identifying independent building blocks and
aggregating classifiers
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has the potential to be an important variable and to form an informative building

block. Given 4918 genes in the data set, there are more than 12 million pairs. We

choose the top 1% pairwise scores and count the return frequency of the 4918 genes to

pre-select the genes with highest return frequency and reduce the number of variables

to be an arbitrary value 300 for different screening parameter k=(1,3,5) during the

pairwise screening step.

Compared to the regular absolute Pearson’s correlation measure, we observe more

than half among the top 300 variables are different from the top 300 variables chosen

by return frequency computed by Ir with varied k. We also observed a few genes

with weak marginal effects but having very high return frequency, which implies the

existence of nonlinear or joint effects. For example, gene 4836 has absolute Pearson’s

correlation 0.1112 that ranked 1159 among 4918 genes. However, its return frequency

is extremely high for k = (1, 3, 5). That (202, 343, 373) are all ranked within top

25 among the returned variables. The reason that the Pearson’s correlation is small

might be due to an outlier (i.e. training sample 54) of gene 4836 that is 6 standard

deviations away from the mean. It affects the computation of correlation based on

the assumption of linear relationship. Our proposed influence measure can ease such

effects since the assumption is relaxed.

5.3.2 Identifying Building Blocks

By setting the repeat time to be a large value (B=5,000,000) and a moderate value

of d=6 (i.e. blog2nc), the backward elimination algorithm is applied with varied

k = (1, 3, 5). Setting d as a moderate value has many advantages. First, to avoid

the curse of dimensionality. Second, to facilitate the computation time. Third, we

avoid the false elimination of influential variables by including too many variables to

the algorithm. The top 20 unique influence scores identified by backward elimination

algorithm and subsets of variables by k = 5 are listed in table 5.1. Some clusters of
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Table 5.1: Top 20 scores of marginal, pairwise and informative building blocks in
breast cancer data with k = 5

Marginal Pairwise Backward Elimination Algorithm
Rank Genes Scores Genes Scores Genes Scores

1 450 0.5155 2819,4055 0.6945 1904,2737,3481,4055,4705 0.8210

2 4055 0.5110 45,4096 0.6815 549,1951,4138,4836,4913 0.8103

3 1419 0.4642 1148,2294 0.6786 11,4040,4096,4705 0.8072

4 4570 0.4477 2729,4055 0.6785 323,2335,2751,2826 0.7986

5 4868 0.4442 2895,4096 0.6749 11,3423,3733,4040 0.7959

6 798 0.4418 1953,4096 0.6702 400,2294,3355,3807 0.7907

7 2294 0.4405 3154,4055 0.6665 934,1859,4096,4533 0.7869

8 3495 0.4384 4055,4101 0.6619 489,1450,3004,4305 0.7863

9 3897 0.4334 3758,4405 0.6595 298,488,2006,4096 0.7799

10 1241 0.4313 618,3398 0.6579 787,1935,4096,4533 0.7790

11 4405 0.4287 323,2751 0.6562 323,798,2751,3722 0.7789

12 45 0.4243 1818,3733 0.6537 323,1175,1744,2751 0.7768

13 3358 0.4208 437,1969 0.6537 400,2183,3657,4096,4204 0.7766

14 1175 0.4208 400,3807 0.6534 400,3484,3807 0.7762

15 1951 0.4200 4055,4076 0.6528 323,475,2888,4740 0.7756

16 4308 0.4182 2888,4405 0.6524 323,2025,2230,4378,4916 0.7752

17 3649 0.4172 3381,4055 0.6516 1374,3484,3499,4096 0.7729

18 4014 0.4160 849,1404 0.6513 323,2025,3423,3733 0.7707

19 298 0.4131 4096,4570 0.6512 400,989,2470,3807 0.7706

20 4374 0.4106 3040,4096 0.6507 2737,3481,4055,4226 0.7698

Pairwise: Top 20 scores of all pairwise combinations (12,090,903 pairs)

Backward Elimination Algorithm: Top 20 scores with B=5,000,000 and d=6

variables among the top 20 are returned many times, but we only list the unique one.

The table also includes the top 20 marginal and pairwise influence scores. We can eas-

ily observe that the top scores increase greatly when taking higher order interactions

into consideration.

Among the 4918 variables, the two strongest marginal influence scores are 0.5155

and 0.5110 for gene 450 and gene 4055. We also observed that many high pairwise

score pairs are related to gene 4055. In addition, combining two strong marginal

effects does not guarantee higher pairwise effects since the highest pairwise score is
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a confluence of one strong and one moderate marginal effects. For example variable

2819 has marginal score only 0.1969 but the joint score with gene 4055 increases to

0.6945. In addition, the proposed algorithm shows that many strong joint effects of

higher order interaction exist in the top informative set since all the top 20 scores are

all greater than the highest pairwise influence score 0.6954.

We also observe some combinations of genes appear many times by proposed

algorithm. The rank 11th and 14th building blocks appear 9 and 23 times, respectively.

This also indicates the strength of the joint effects of such gene sets. They are always

returned once the combinations of such gene sets are included in random sampling.

The informative building blocks usually have size between 3 to 5 genes. Some of

them consist of genes with only moderate marginal effects but showing strong joint

effects. For instance, the 3rd subset has joint score 0.8072, but all these four genes (11,

4040, 4096, 4705) do not have very strong marginal scores (0.2898, 0.1591, 0.3668,

0.0541). If we only consider gene selection with marginal methods, due to the weak

marginal signal, many variables would be eliminated and we would not have been able

to find such a strong building block. The joint effects may play an important role

since gene 4705 survives in the candidate variable set by pairwise based screening.

The ideal aggregated classifier is to have the basic units of building blocks uncor-

related. We found there are many overlapped variables among the top 20 building

blocks like genes 323, 400, 4055, 4096. We should not directly aggregate all of the top

informative building blocks to make our final classifier since they have common vari-

ables leading to correlated issue. Instead, we only keep one of those return building

blocks containing common variables. This can be completed by removing those hav-

ing variables in common with higher scored building blocks. If we set the threshold

at 0.7, there are tens of thousands of building blocks that have scores greater than

0.7. After the filtering procedure with common variables, only a few dozen building

blocks remain.
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5.3.3 Classification Algorithm

Methods of classifier Aggregation

There are many methods developed to aggregate classifiers to produce a final predic-

tion. The most simple one is majority vote with equal weight which is based on the

law of large numbers that follows if the classifiers are independent. Aggregating the

classifiers will improve prediction accuracy if their capability to pinpoint the right

decision is better than random guessing. Given there are M building blocks based on

the same classifier G(.) in two class problem, each of them forms a classifier Ĝ(b1),

Ĝ(b2), . . . , Ĝ(bM), the prediction rule can be expressed as:

Ĝ∗ = sign

(
M∑
m=1

Ĝ(bm)

)
(5.1)

If each independent classifier has the same probability p ∈ [0, 1] to make a correct

decision, the probability to do the right prediction called Condorcet’s jury theorem is

Pr{majority make correct decision} = ΣM
bM

2
c+1

(
M

i

)
pi(1− p)M−i (5.2)

In addition to equal weight, stacking is another model averaging method that

searches the best weights w = (w1, w2 ,. . ., wM) among the classifiers by solving the

quadratic programming problem:

ŵ = argminw ΣN
i=1[yi − ΣM

m=1wmĜ
−i(bm)]2 (5.3)

s.t.
M∑
m

wm = 1

wm ≥ 0 m = 1, 2, . . . ,M

where Ĝ−i(bm) m = 1,2...M are estimated by q-fold cross-validation and the fi-

nal prediction function is ΣM
m=1ŵmĜ(bm). Therefore, we avoid giving unfairly high

weight to specific classifier with higher complexity. However, the key drawback of this

aggregating algorithm is the singularity when we search the best weights by solving
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quadratic programming. This may be due to either perfect classification of a few

strong classifiers from a cross-validation estimate, or identical estimates of misclassi-

fication rate from different classifiers. In such situations, the weights may concentrate

on only a few classifiers that make the “optimal weights” subject to high variability

and may mean they might no longer be optimal.

Boosting (Schpaprie 1990, Freund and Schapire, 1997), one of the most powerful

learning methods, is adopted to aggregate the important building blocks. One ad-

vantage is that many studies observed empirically that boosting does not overfit the

data (Leo Breiman, 1998; Drucker et al, 1996). Boosting builds an additive model

that sequentially adds one classifier to reweighted versions of the training data, and

takes the weighted majority vote of the selected sequence of classifiers:

G(b) =
M∑
m=1

αmG(bm) (5.4)

where the impact parameters of each classifier α1, α2, . . . , αM are constants tuned by

the boosting algorithm. The higher the alpha is, the more informative the building

block in the sequence. Ideally, the parameters {αi, ∀ i = 1, 2, . . . , M } are generated

by minimizing an exponential loss function:

min
N∑
j=1

L(yj, G(b)) = min E(e−yG(b)) y ∈ {1,−1} (5.5)

where

G(b) =
1

2
log

P (y = 1|b)
P (y = −1|b)

The solution is approximated by iteratively adding a single building block one at

a time to the aggregated model without adjusting the parameters of those having

already been included. That is, when adding new building blocks k+1, we minimize

N∑
j=1

L(yj,
k∑

m=1

αmG(bm) + αk+1G(bk+1)) (5.6)
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as a function of αk+1 and holding α1, . . ., αM fixed. After M iterations, (5.6) will

have the final form as in (5.5). The final prediction rule is determined by the sign of

the weighted sum of these M classifiers G(bm),m = 1, 2, . . . ,M :

Ĝ∗ = sign

(
M∑
m=1

αmĜ(bm)

)
(5.7)

Since the importance of identified building blocks is different with regard to the

influence scores, different weights are assigned to each building block. To take the

importance of the building blocks and avoid the singularity problem by stacking

method, boosting method is a better choice in aggregating these building blocks. We

discuss different classifiers used by boosting in the following section.

Boosting KNN classifier

Since the building blocks identified by the proposed influence score may include global

or local patterns of specific forms, one of the best classifiers to use is K-nearest

neighbor classifier, which takes advantage of the structure and specific high order

interactions in each building block. However, directly applying the KNN classifier in

boosting is not effective. The K-nearest neighbor method is a memory-based method

that makes use of all training samples to predict the class label of testing set. Tuning

the {αi, ∀i = 1, 2, . . . ,M} is not feasible because, not omitting some instances, the

KNN classifier will always achieve 100% training set accuracy with K=1 (i.e. the

training instance help classify itself.), making boosting not feasible. Therefore, we

will compute the weighted error rate by cross-validation instead of using the whole

set in boosting. To best maintain the structures of identified building blocks, we

use leave-one-out cross-validation during the boosting KNN algorithm to compute

weighted error rate and to tune the best weight of {αi, ∀i = 1, 2, . . . ,M}. The de-

tailed algorithm is described as follows:
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Algorithm 5.1: Boosting Based on KNN classifier

Step 1: Initialize observations with equal weights wi = 1
N

, i=1,2,...,N with pre-selected

training set;

Step 2: For m = 1 to M iterations (M is the number of input classifiers);

a. Fit classifiers G(.) with training set using wi

a1. For t = m to M classifiers, fit classifier G(bt) (i.e G(.) is KNN)

a2. Predict ŷt(i) = G(bt[−i]), ∀i = 1, . . . , N observations by LOOCV

where t[−i] indicates that fitting with tth classifier without observation i

a3. Compute

errt =


∑N

i=1wi1(yi 6= ŷt(i))/Σ
N
i=1wi ΣN

i=11(yi 6= ŷt(i)) 6= 0

1/2N ΣN
i=11(yi 6= ŷt(i)) = 0

b. From the family of classifiers Gt, find the classifier G(bm) that minimizes

the weighted error rate (errt):

G(bm) = argmin
G(bm)∈Gt

errt

c. αm = log 1−errm
errm

d. Set wi =wi exp [αm1(yi 6= ŷi(m))], i=1,2,...,N

Step 3: Output

G(x) =

1
∑M

m=1 αmG(bm) ≥ 0

−1 Otherwise

In this algorithm, the input order of each building block is determined by the

minimized weighted error rate. In general, the misclassified training sets in previous

building blocks will have their weights increased; whereas, the weights are decreased
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for those which have been classified correctly. After the stage of filtering independent

building blocks, we notice that occasionally the building blocks achieve perfect pre-

diction with a zero weighted error rate. For such jth classifier, in Step a3, the error

rate is set as 1
2N

. The classifier G(bj) will not affect the weight of each data point and

its weight αj is set as a constant proportional to sample size (i.e. αj = log(2N − 1)).

In step 2b, if there are ties among the input classifiers, the most informative one with

higher influence score is chosen first. In general, as the building blocks are added

one by one to the classification rule via the boosting algorithm, the training error is

expected to decrease quickly, which would reflect an improvement of the fit to the

training set. However, the testing sample error rate obtained by sequentially adding

the building blocks is not guaranteed to decrease since the information of testing

samples are not used to construct the prediction rule.

We have to tune the {αi, ∀i = 1, 2, . . . ,M} by cross-validation in boosting al-

gorithm with KNN classifier. Other methods that are not memory-based classifiers

can skip step a2. We apply the other two methods, the logistic regression incorpo-

rating interactive effects in Wang et al (2012) and classification and regression tree

(CART), to evaluate the performance with regard to identified building blocks. The

former classifier with higher order interactions included has the capability to generate

classifiers of global structure, and the latter one is able to adopt both global and local

structure into the classifier dependent on the specific building blocks.

Logistic Regression Classifier

Logistic regression is a general method to evaluate performance based on global struc-

ture. Wang et al (2012) applied logistic regression to a few two-class classification

problems. They generated an exhaustive model with all higher order interaction

effects based on the variable modules they identified. For example, if the variable
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module consists of 3 variables {X1, X2, X3}, the full model is as follows:

ln{ P (Y = 1)

P (Y = −1)
} = β0 + β1X1 + β2X2 + β3X3 + β4X1X2 + β5X1X3 + β6X2X3

+β7X1X2X3 (5.8)

Where P (Y = 1) is the probability of class 1 and P (Y = −1) is the probability of

class 2. In addition, by stepwise selection via AIC score, the submodel with lowest

AIC was further used. Therefore, each input classifier in the boosting algorithm

may contain different interactive effects. They further aggregated these classifiers to

perform prediction on the testing set.

In Wang et al (2012), the boosting algorithm with refined logistic regression clas-

sifiers performs very well with identified variable modules; however, there are some

potential drawbacks to fit an exhaustive model if the number of variables of a certain

variable module is huge.

First, the model complexity grows exponentially, if the sample size is small and the

variable module consists of too many variables, it is impossible to fit an exhaustive

model when n < 2p − 1 (where p is the number of variables in the variable module.)

Second, there is an overfitting issue when fitting the model in the training set. We

observed that the model including higher order interactions is inclined to separate the

training set perfectly when n is close to the number of parameters used in the model.

This will lead to overfitting in prediction. Although the generalized error in testing

set is controlled well when the classifiers are added in boosting algorithm, we also

observe that the testing error rate of logistic regression classifier fluctuates greatly

over the first few iterations.

Classification and Regression Tree

Classification and regression tree (CART) is a nonparametric method that produces

either classification or regression trees, depending on whether the dependent variable
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is categorical or numerical, respectively. Both recursively make binary splits based

on the predictors such that at each division, the resulting two subsets of data are

as homogeneous as possible. CART aims to best minimize residual deviance for

each split with the response of interest. For 2-class classification tree, the outcome

only takes values -1, 1. The region m is defined as Rm with Nm observations. The

proportion of class 1 and class -1 in node m is defined as the following

pm(1) =
1

Nm

∑
xi∈Rm

I(yi = 1)

pm(−1) = 1− pm(1)

The observations in node m are classified by:

Ŷ(Rm) =

1 pm(1) > pm(−1)

−1 Otherwise

In general, there are no ties in the nodes since each split will make class distri-

bution as homogeneous as possible. Similar to the KNN method, CART is also a

nonparametric and nonlinear classifier. It can capture local patterns of the data.

Boosting with tree classifiers may allow one to take advantage of the patterns iden-

tified in the informative building blocks. The key disadvantage is that CART splits

only by one variable at a time. If higher order interactions exist, in fitting a better

model, the model complexity grows, possibly leading to overfitting

The figure 5.5 is the result of CART based on the first building block (g1904,

g2737, g3481, g4055, g4705) shown in table 5.1. The tree has 4 levels and the label of

the node or leaf is the predicted class if the subject satisfies the rules and is assigned

to specific node. The subjects will go to the left branch if they satisfy the criteria,

otherwise they will be assigned to the right branch. For example, the subject is

assigned as class 1 if the expression of g4055>0.082 and g3481<-0.2225. We observe

the constructed tree only involves 4 genes. Although there are 5 genes in this building

block, gene 1904 may not be informative in tree classifiers where it is not used to split
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Figure 5.5: Classification tree based on the first building block identified with k=5

in the classifier. The misclassification error rate in 78 training subjects is 0.0513

(4/78).

5.3.4 Performance Evaluation

To evaluate the performance of the proposed procedure, we have to define the loss

function. The typical loss function in classification is 0-1 loss function such as:

L(y, ŷ) =

1 y 6= ŷ

0 otherwise

where ŷ is the prediction based on the classifiers.

If there is no independent testing set, q-fold cross-validation (q-fold CV) is used

to evaluate performance. Many studies use q = n, the so called leave-one-out cross-

validation (LOOCV). In this procedure, one uses a single sample from the original
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sample set as the testing sample and builds the model based on the remaining samples

from the training set. The procedure will repeat such that each sample is used exactly

once as the testing sample. However, LOOCV has a few shortcomings. First, it does

not perturb the data enough and will lead to higher variance in spite of the estimator

being approximately unbiased for the prediction error. Second, the estimates in each

fold are highly correlated. Third, the generalization error is underestimated. Zhu

(2008) suggested a good compromise of q = 5 or 10 to avoid too much information

incorporated during the training stage.

For q-fold CV (q 6= n), the dataset is approximately equally divided into q subsets.

Each time one of the q subsets is treated as the test set and the remaining subsets are

combined to form the training set. Every sample gets to be in a test set exactly once

and in the training set q− 1 times. In our procedure, besides the testing set in breast

cancer, we use q = 10 fold cross-validation to evaluate classification performance in

the three data set. For each fold, the 90% training set is used to tune our mod-

els, first screening the potential variables and obtaining the top B2 informative and

non-overlapped building blocks. Second, within the training set, we further tune the

boosting parameters {αj, j=1,2...,B2}. In general, the internal cross-validation error

evaluated by training subjects will keep decreasing as more and more classifiers be-

come involved. Therefore, the performance was evaluated by external cross-validation

error rate defined as:

Err(CV E) =
1

n
Σn
i=1L

(
yi, sign

(
ΣB2
j=1α̂jĜ(bj)

))
(5.9)

where {G(bj), j=1,2...,B2} is the classifier constructed based on the building blocks

identified in the screening procedure. In this thesis, we first evaluate the breast cancer

data with a 19 subjects testing set with the prediction rules built by 78 subjects

training set. We further evaluate the results by 10-fold cross-validation to 97 breast

cancer, 62 colon cancer and 102 prostate cancer microarrays.
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5.3.5 Performance on Breast Cancer Testing Set

As discussed in previous sections, 78 training subjects are used to find independent

building blocks and to tune the parameters in boosting algorithm. With varied k= 1,

3, 5, we first select 300 genes with highest return frequency calculated from top 1%

pairwise scores and further apply our backward elimination algorithm to find impor-

tant building blocks. The parameters used in the algorithm are set as B=5,000,000

and d = 6 (i.e. blog2nc). We observe that tens of thousands of the building blocks

have an influence score greater than 0.7. After filtering out the correlated building

blocks with common genes, there are (50, 42, 35) building blocks left with screening

parameters k=(1, 3, 5). We apply the boosting algorithm with KNN, refined logistic

regression and CART, based on these independent building blocks. The aggregated

classifier was used to predict 19 testing subjects. Table 5.2 shows the best result by

the proposed procedure with different screening parameters k, minimized error rates

and their corresponding numbers of building blocks used. Figure 5.6 also shows the

detail performance of different classifiers using the boosting algorithm.

In figure 5.6, we observe that performance among different classifiers improves

as the number of building blocks is increased, especially after about 15 of them are

included. Boosting with these classifiers leads to large fluctuations in the first few

steps, and the refined logistic regression classifier has the largest fluctuations. The

logistic regression classifier constructed based on identified building blocks has poor

prediction power in the first few steps across different k. It performs the poorest as

k=1 compared to all the other classifiers. The higher error rates in the first few steps

across different classifiers also indicate the difficulty of classification in breast cancer

microarray. Although it becomes stable when more building blocks are included, the

error rate remains high in this breast cancer data set. For example, by 1NN classifier

with k=1, the error rate starts with 31.58% (i.e. 6/19) and reaches the minimized

error rate 10.53% (i.e. 2/19) when 16 building blocks are included, and become stable
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Figure 5.6: Performance of classifiers on 19 breast cancer testing set with screening
parameters k=1 (upper), k=3 (middle), k=5 (bottom)
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Table 5.2: The best performance for 19 breast cancer testing subjects
Screening (k) Classifier Error Rate Number of

building blocks

1NN 0.1053 (2) 16

3NN 0.1579 (3) 10

1 5NN 0.1579 (3) 30

Logistic 0.3158 (6) 14

CART 0.1579 (3) 9

1NN 0.2105 (4) 8

3NN 0.2105 (4) 17

3 5NN 0.1579 (3) 24

Logistic 0.1579 (3) 21

CART 0.1053 (2) 11

1NN 0.2105 (4) 24

3NN 0.1579 (3) 9

5 5NN 0.2632 (4) 11

Logistic 0.2105 (4) 5

CART 0.2105 (4) 11

with 3 wrong predictions after more than 18 clusters added.

The minimized error rate in table 5.2 is 10.53% as k=1 by 1NN with 16 building

blocks and k=3 by CART classifiers when 11 building blocks are included. The

best performance of the 19 subjects testing set is comparable to a many existing

studies. Pochet et al (2004) applied SVM with RBF kernel and reached the minimized

error rate with 31.58%. Yeung (2005) used bayesian model averaging method and

obtained 15.8%. Li and Yang (2005) applied the SVM recursive feature elimination

method and reached the same error rate as our best result. Wahde and Szallasi

(2006) applied evolutionary algorithm to select important features and also attained

10.53% prediction error with the LDA classifier. Wang et al (2012) used a very

similar concept but with discrete information measure (i.e. GTD scores) to select

variable modules and applied boosting logistic regression classifier to reach a perfect

error rate. However, unlike their methods, which focus on finding global pattern

of variable modules such that they dichotomized each gene into 2 groups, high and
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low with two means clustering algorithm, our screening methods focus more on the

local structures with specific numbers of k. This might explain why, in this testing

set, k=1 with boosting logistic has 31.58 % error rate, which is the worst among all

other results. It may also imply the local structure k=1 is not able to cooperate

well with the classifiers focusing on global structure, especially in this data set. As

k increases in the screening step, the best prediction result with logistic regression

classifier improves. In addition, KNN classifier with k=1 and CART classifier with

k=1, 3 work well with identified building blocks in this testing set. Their error rates

are all smaller than 20%, with 3 or less prediction errors among 19 testing subjects.

In general, the building blocks work better with the nearest neighborhood and CART

classifiers in this dataset. This result may also indicate that specific local patterns

exist in breast cancer, and combine these classifiers with identified building blocks

will take advantage of this situation.

5.3.6 Cross-Validation for Microarrays

In this section, we evaluate the proposed procedure with external 10-fold cross-

validations on three microarrays. With similar setting in finding the independent

building blocks, in the pairwise screening step, the top 1% highest pairwise scores are

used to compute the return frequency and those with top 300 high returned genes are

considered in the next step. The parameters in the backward elimination algorithm

are set as B=5,000,000 and d=blog2nc. Due to the weak signal of breast cancer the

building blocks with score greater than 0.7 are retained. For the other two microar-

rays, 0.8 are used as the threshold to select building blocks. We further filter the

non-overlapped building blocks and the total number of them retained in the 1st fold

with k=5 are (23, 35, 28) for breast, colon and prostate cancers, respectively.

Table 5.3 lists the top 10 non-overlapped building blocks in the 1st fold of each

data set with screening parameter k=5. It shows that the strongest signals contained
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in breast cancer are relatively weak compared to those identified in colon cancer and

prostate cancer data. The highest score in breast cancer is only 0.8151 with 5 genes

(g547, g771, g4055, g4226, g4916) forming the building block, and there are only

three of them having scores greater than 0.8. As for the other two microarrays, the

information contained in the top building blocks is relatively strong. Especially for

prostate cancer data, the top 10 joint influence scores are all greater than 0.9.

Table 5.3: Top 10 non-overlapped building blocks of 1st fold with k=5
Breast Prostate Colon

Genes Scores Genes Scores Genes Scores

547,771,4055,4226,4916 0.8151 5754,6118,10167,10605 0.9541 513,1221,1328,1346 0.9343

141,243,1601,1609 0.8124 4371,5972,9105,10225,10470 0.9486 1042,1260,1668,1843 0.9240

59,2294,3108,4504,4836 0.8031 2772,7000,7076,11804,11875 0.9388 572,1210,1400 0.9101

1763,2202,2283,3104,3315 0.7971 6648,10682,11791,12086 0.9372 1360,1597,1728,1873 0.9093

934,1331,2922,4120,4912 0.7781 4174,6841,11751,12428 0.9240 14,187,1060,1990 0.9005

2259,3381,4025,4096 0.7680 6445,8885,8932,9994 0.9232 520,1487,1582,1836 0.8908

795,1727,1897,3095,4705 0.7608 6365,8898,10610 0.9182 70,581,1466,1924 0.8903

33,1419,1615,4054,4374 0.7564 652,4215,4766,8967 0.9146 377,627,796,1465,1560 0.8897

698,1334,1345,1681,2751 0.7446 3767,5195,7453,9783 0.9123 493,889,1233,1380 0.8868

98,3685,4489 0.7368 6395,6814,10071,11414 0.9063 32,279,365,732,1504 0.8860

The number of non-overlapped building blocks varies in different folds with the

same thresholds. Table 5.4 lists the summary statistics of the number of non-

overlapped building blocks identified based on their corresponding thresholds.

Table 5.4: Summary of non-overlapped building blocks in 10-fold cross-validation
Breast Prostate Colon

Screening (k) 1 3 5 1 3 5 1 3 5

Max 47 43 39 47 41 36 51 46 41

Median 40 34 28 42.5 38 34.5 46 41 34.5

Min 32 27 23 39 34 31 40 33 28

AvgSize 4.054 4.217 4.419 4.018 4.121 4.443 3.602 3.839 3.969

SDSize 0.128 0.105 0.139 0.048 0.091 0.083 0.061 0.075 0.089

AvgSize: Average number of genes included in building block

SDSize: Standard deviation of genes included in building block
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We observe that the number of non-overlapped building blocks decreases as the

screening parameter k increases. With k=5, the numbers are overall less than those

identified with smaller k. Furthermore, the average size of genes included in each

building block increases as k gets larger. In breast cancer, the standard deviation of

the genes involved in each building block is larger than that in the other two data

sets.

We finally construct classifiers from these non-overlapped building blocks identified

in each fold and aggregate them to form a final prediction rule. The results are listed

in table 5.5. In addition, we apply our influence score and Pearson’s correlation to

screen their corresponding top 50 informative variables marginally. Similarly, we use

the same classifiers with individual genes and further aggregate them by the boosting

algorithm. Table 5.6 and table 5.7 list the best results of these two gene sets.

Table 5.5: The best performance of 10-fold cross-validation by proposed procedure
Screening (k) Classifier Breast Prostate Colon

1NN 0.1856 (18) 0.0686 (7) 0.1129 (7)

3NN 0.2371 (23) 0.0588 (6) 0.0806 (5)

1 5NN 0.2062 (20) 0.0588 (6) 0.0968 (6)

Logistic 0.2245 (22) 0.0588 (6) 0.0806 (5)

CART 0.2245 (22) 0.0686 (7) 0.1129 (7)

1NN 0.1546 (15) 0.0392 (4) 0.0968 (6)

3NN 0.2371 (23) 0.0392 (4) 0.1129 (7)

3 5NN 0.2371 (23) 0.0490 (5) 0.1129 (7)

Logistic 0.2474 (24) 0.0490 (5) 0.0968 (6)

CART 0.2474 (24) 0.0686 (7) 0.0806 (5)

1NN 0.2061 (20) 0.0196 (2) 0.0968 (6)

3NN 0.1959 (19) 0.0294 (3) 0.0806 (5)

5 5NN 0.1856 (18) 0.0392 (4) 0.0645 (4)

Logistic 0.1959 (19) 0.0490 (5) 0.0645 (4)

CART 0.1959 (19) 0.0588 (6) 0.0968 (6)

Sample size: Breast Cancer (97), Prostate Cancer (102), Colon Cancer (62)

Logistic: Logistic regression model is constructed by the same procedure as Wang et al (2012).
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Table 5.6: The best performance of 10-fold cross-validation with top 50 genes selected
by marginal influence scores

Screening (k) Classifier Breast Prostate Colon
1NN 0.1959 (19) 0.0588 (6) 0.1613 (10)

3NN 0.1959 (19) 0.0588 (6) 0.1129 (7)

1 5NN 0.2371 (23) 0.0588 (6) 0.1613 (10)

Logistic 0.2268 (22) 0.0490 (5) 0.1129 (7)

CART 0.2268 (22) 0.0686 (7) 0.1452 (9)

1NN 0.1856 (18) 0.0490 (5) 0.1290 (8)

3NN 0.2268 (22) 0.0588 (6) 0.1129 (7)

3 5NN 0.2784 (27) 0.0490 (5) 0.1290 (8)

Logistic 0.1959 (22) 0.0392 (4) 0.1290 (8)

CART 0.2474 (24) 0.0686 (7) 0.1613(10)

1NN 0.1856 (18) 0.0490 (5) 0.1129 (7)

3NN 0.2165 (21) 0.0392 (4) 0.1129 (7)

5 5NN 0.2990 (29) 0.0490 (5) 0.1613 (10)

Logistic 0.1959 (19) 0.0392 (4) 0.1290 (8)

CART 0.2886 (28) 0.0686 (7) 0.1452 (9)

Table 5.7: The best performance of 10-fold cross-validation with top 50 genes selected
by absolute Pearson’s correlation

Classifier Breast Prostate Colon
1NN 0.2784 (27) 0.0882 (9) 0.1774 (11)
3NN 0.2886 (28) 0.0686 (7) 0.1452 (9)
5NN 0.3093 (30) 0.0686 (7) 0.1290 (8)

Logistic 0.2680 (26) 0.0588 (6) 0.1452 (9)
CART 0.2784 (27) 0.0784 (8) 0.1613 (10)

Breast Cancer

In table 5.5, the error rate in breast cancer is relatively high which implies the difficulty

in classification of this microarray. The result with 1NN classifier attains 15.46% error

rate when screening with k=3. As k=5, 3NN, 5NN, logistic and CART classifiers

have accuracies all higher than 80%. The accuracies with building blocks identified

by k=5 are more stable than those with k=1, 3. Figure 5.7 shows the cross-validation
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Figure 5.7: 10-fold cross-validation for breast cancer with k=5 : misclassifications vs.
number of building blocks

with screening parameter k=5. These classifiers behave differently in each fold and

most of the folds are challenging to predict correctly. In general, we observe there

are large fluctuations if only a few building blocks included. As the number of the

building blocks increases, the performances improve and approach stability although

the number of misclassified subjects in some folds is still very high. For example, in

fold 4, all the classifiers have at least 3 misclassified subjects and 1NN has half of the

subjects misclassified. We also observe the results with 10-15 building blocks by 5NN

classifier are relative stable and have better performance in this dataset.

In table 5.6, boosting with genes selected by marginal influence scores, the mini-

mized error rates is 18.56% by 1NN classifier with k=3, 5 but 5NN and CART have

higher error rates. When k=1, the performances are relatively stable compared to

that with k=3, 5. The results with top 50 strongest genes screened by Pearson’s

correlation are shown in table 5.7, the error rates by these aggregated classifier are

consistently high. The logistic regression classifier reached 26.8% error rate and other
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classifiers are even higher. From these results, we observe the performances of the

building blocks identified by k=5 are more stable and the data may have specific non-

linear effects leading to the higher error rate by genes with high Pearson’s correlation.

Many classification methods are applied to this data and most of them do not have

attractive results. In table 5.8, many studies select features with filtering methods

such as Pearson’s correlation (Van’t Veer, 2002), signal-to-noise ratio (Peng, 2005)

and F-ratio (Diaz-Uriarte & de Anres, 2007). Their error rates are about 20% to

35%. Other studies have significant results. Song et al (2007) applied SVMRFE and

reached error rate of only 7.7%, but they used full set to do feature selection which

may have lead to an optimistic result. Wang et al (2012) used logistic regression

based on variable modules and reached 8% but they use 10 random sampling which

may have potential advantage that the chance of selecting difficult samples is small.

Our best performance 15.46% by building blocks is also among the top list.

Table 5.8: Comparisons with other existing methods of breast cancer data set
Author Feature Selection Classifier CV Min Error(%)

Van’t Veer et al. (2002) Correlation Correlation LOO 27

Peng (2005) SNR SVM LOO 24.7

SNR Bagging SVM LOO 21.6

SNR Boosting SVM LOO 21.6

SNR Ensemble SVM LOO 18.6

Alexe et al (2006) LAD LAD CV 18.3

Diaz-Uriarte & de Anres Random Forest bootstrap 34.2

(2007) F-ratio SVM bootstrap 32.5

F-ratio KNN bootstrap 33.7

Zhu et al. (2007) RFE SVM 10-fold 29

Hewett et al. MDR* MDR 10-fold 37.11

Ng (2010) Clustering LR LOO 28.2

Wang et al (2012) Retention Frequency Boosting logistic 10-fold rCV 8

Huang and Lo I score (k=3) 1NN 10-fold 15.46

I score (k=5) 5NN 10-fold 18.56

LAD:Logical analysis of data; SNR:Singal-to-noise ratio; MDR:Multi-Dimension Ranker;
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Prostate Cancer

The prostate cancer microarray is an easier dataset for classification compared to

breast and colon cancers since the error rate in table 5.5 are low. With k equal to

3 or 5 in screening step, most of the error rates by nearest neighbor and logistic

regression classifiers with interactive effects in our proposed procedure are less than

5%. The minimized error rate is 1.96% by 1NN classifier with k=5. The accuracies

of boosting with CART are slightly lower but all of them are better than 95% with

different corresponding k.

Figure 5.8 shows the 10-fold cross-validation result with k=5 in the screening

step. The 1NN classifier performs very well in prostate cancer with identified building

blocks. There are only 2 subjects never predicted correctly in fold 5 and 7. In fold

2, there are 4 initially misclassified subjects, but all are correctly classified after 8

building blocks have been included.
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Figure 5.8: 10-fold cross-validation for prostate cancer with k=5 : misclassifications
vs. number of building blocks

We also observe that the best predicted accuracy appears as 10-20 building blocks
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involved by nearest neighborhood classifiers. The logistic regression classifier exhibits

large fluctuations in the first few steps of many folds, and this might imply the

input building blocks contain local signals, so that the logistic classifiers have diverse

predictions in the beginning and the results improves as the number of building blocks

increases. In general, the number of misclassified subjects decreases as the number of

building blocks increases.The predicted results become stable when 10 to 20 building

blocks are involved.

In table 5.6, the genes are selected with marginal influence measure, and the error

rates are also around 5% but slightly higher than the error rates by building blocks.

In table 5.7, the logistic regression classifier reached 5.88% error rate and the nearest

neighborhood classifier performs slightly better than that in Singh et al (2002). They

also used Pearson’s correlation to select important genes and reach 8% error rate

with LOOCV by nearest neighbor method. From table 5.5, 5.6 and 5.7, the proposed

measure has slightly better performance if we includes the interactive effects. This

may indicate that the local and interactive effects exist in the identified building

blocks, leading to enhanced predictive power, which is not captured by the genes

selected by linear screening method.

Many variable selection methods are used with different classifiers to evaluate the

performance in prostate cancers as in table 5.9. Those methods explored the joint

interactions among genes and most of them performed well. For example, Dettling

and Buhlmann (2003) used wilcoxon statistics as a criterion to identify clusters of

variables. With 15 clusters of variables, they reached error rate of 4.9%. Wang et al

(2013) found top score gene group based on chi-square statistics and Tan et al (2005)

applied a rank based method to identified top informative pairs of genes. Both of

them attained 4.9% LOOCV.

Zhang et al (2012) applied binary matrix shuffling filter to find potential inter-

actions with SVM classifier and attained 3.24% 10-fold cross-validation error rate.
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Dagliyan et al (2010) applied information gain to do pre-screen and by solving an

optimization problem (hyper-box enclosure method) to find interactive effects among

genes and reached error rate less than 4%. Other studies not considering interaction

in the data set have higher error rate. For example, Liu et al (2011) had 13.82% with

10NN, Statnikov (2005) reached 8% by SVM, and Dagliyan had 7.84% error rate with

logistic regression classifier.

Table 5.9: Comparisons with other existing methods of prostate cancer data set
Author Feature Selection Classifier CV Min Error(%)

Singh et al. (2002) correlation KNN LOO 8.00

Dettling & Wilcoxon 1NN LOO 4.9

Buhlmann(2003) Trees LOO 5.88

Tan et al. TSP * LOO 4.9

(2005) k-TSP * LOO 8.82

kNN LOO 23.53

Statnikov et al. SVM 10 folds 8.00

(2005)

Kucukural et al. GA* SVM 10-fold 3.92

(2007)

Hewett et al. (2008) MDR* MDR 10-fold 11.76

Ahdesmaki & CAT score* LDA 10-fold 7.07

Strimmer (2010) DDA 10-fold 4.97

Dagliyan et al. Information gain HBE* LOO 3.92

(2011) LR LOO 7.84

RF LOO 5.88

Liu et al. SVM-RBF-RFE 5NN 10-fold 14.82

(2011) 10NN 13.82

Zhang et al. BMSF* SVM 10-fold 3.24

(2012) BMSF NB 10-fold 10.4

BMSF LDA 10-fold 4.51

Wang et al. Chi-TSG* 5-fold 9.8

(2013) LOO 4.9

Huang and Lo I score (k=5 ) 1NN 10-fold 1.96

3NN 10-fold 2.94

BMSF: Binary Matrix Shuffling Filter; CAT score: correlation adjusted t score;

Chi-TSG: Chi-square top scoring genes; GA:Genetic Algorithm; HBE: hyper-box enclosure method;

k-TSP: k - top scoring pairs; MDR:Multi-Dimension Ranker; TSP: Top scoring pairs;
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Colon Cancer

In table 5.5, our procedures achieved around 90% accuracy with different combina-

tions of screening parameters k and classifiers. Screening with k=5, boosting with

both 5NN and logistic regression have the minimized error rate 6.45%. The best

result with CART is 8.06% error rate when k=3.

Figure 5.9 shows the detailed cross-validation result with k=5. We observe the

number of misclassifications decreases as more building blocks are added across all

folds. There are 4 subjects in folds 4, 5, 8 and 10 that are difficult to be predicted

accurately by 5NN classifier. As for logistic regression classifier, one subject in folds

4, 8 and two subjects in fold 10 are not classified correctly. In addition, with at least

20 building blocks included in each fold, both 5NN and logistic regression classifier

have the best performances among all other classifiers.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 6 Fold 7 Fold 8 Fold 9 Fold 10

1

2

3

4

5

6

1

2

3

4

5

6

0 10 20 0 10 20 30 0 10 20 30 0 10 20 30 40 0 10 20 30 40

0 10 20 30 0 10 20 0 10 20 30 400 10 20 30 0 10 20 30 40
Number of Building Blocks

N
um

be
r 

of
 M

is
cl

as
si

fic
at

io
n

classifier

1NN

3NN

5NN

Logistic

CART

Figure 5.9: 10-fold cross-validation for colon cancer with k=5 : misclassifications vs.
number of building blocks

On the contrary, the results with marginal signals in table 5.6 and 5.7 show that

the prediction accuracies deteriorate generally compared to the results with building
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blocks. All the error rates are greater than 10%. In colon cancer, boosting with

building blocks having better results that might be due to the existence of higher

order interactions that doing prediction based on important marginal variables may

lose important interactions among the genes.

Table 5.10: Comparisons with other existing methods of colon cancer data set
Author Feature Selection Classifier CV Min Error(%)

Ben-Dor et al. TNoM scores Clustering LOO 11.3

(2000) KNN LOO 19.4

Boosting LOO 27.4

Furey et al. (2000) Globe SVM LOO 9.68

Zhang et al.(2001) Purity Decision Tree 5-fold 6.45

Dettling & Buhlmann Wilcoxon 1NN LOO 16.13

(2003) Trees LOO 16.13

Lee et al.(2003) Soft-thresholding SVM(RBF) 3-fold 12

Wilcoxon kNN(5) 3-fold 13

Liu et al. (2004) Ranksum Ensemble NN LOO 8.06

PCA 10-fold 9.68

Tan et al. (2005) TSP * LOO 8.9

k-TSP* LOO 9.7

kNN LOO 25.81

Zhang et al.(2007) BBF* 5NN LOO 9.68

BBF SVM LOO 12.90

Alladi et al. (2008) t LR 10-fold 21.82

NN 10-fold 19.09

SVM(RBF) 10-fold 14.55

Wang et al. (2013) CV Chi-TSG* 5-fold 15.2

LOO 6.45

Huang and Lo I score (k=5 ) 5NN 10-fold 6.45

LR 10-fold 6.45

BBF:Based Bayes error Filter; NN: Neural network; TNoM: Threshold number of missclassification;

Table 5.10 lists many different methods applied to prediction of the disease status

in colon cancer. Filtering important features by marginal methods such as Ben-Dor

et al (2000), Furey et al (2000), Zhang et al (2007) and Alladi (2008), result in

the performances having error rates higher than 9.68%. Zhang el al(2001) applied

a decision tree method with 5-fold cross-validation and reached 6.45% error rate.
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However, they applied the method only the steps that occurred after selection of the

informative genes. In other words, the full dataset was used to identify the informative

genes, which leads to optimistic performance since the testing information is included

in feature selection during training stage. Wang et al (2013) takes advantage of top

informative genes and their joint interactions. It works well in prediction with error

rate 6.45% in LOOCV, but the 5-fold cross-validation are relatively weak (15.2%).

Dettling and Buhlmann (2003) used 10 clusters of genes and reached the leave-one-

out error rate at 16.13% with both nearest neighbor and tree methods. We observe

most of the method taking interaction effects into consideration perform well with

error rate less than 10% (Zhang et al (2003), Tan et al (2005) and Wang et al (2013)).

Our method also takes advantage of interactive effects by applying I scores (k=5) to

screen important building blocks outperforms most of the studies in accuracy.

From the above results, there are many advantages of our proposed measures

and framework. First, as the screening parameter k increases the building block

may capture more useful information, so that the performance in the 10-fold cross-

validation is better as k=5 compared to that with k=1,3. Second, the performances

improve and become stable as more and more informative building blocks are added.

Third, taking higher order interactions into consideration will benefit prediction ac-

curacy. Ultimately, the microarray studies demonstrate the applicability of the pro-

posed screening method, which works well in many different classifiers with identified

important building blocks.
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5.3.7 Variable Relevance

The proposed measure is evaluated on breast cancer, prostate cancer and colon cancer

data sets. Due to the large number of features in these gene expression datasets, a

two-stage analysis is adopted. On the first stage, we use an interaction-based pairwise

screening with proposed influence measures. The top 300 highest return frequency

genes in each fold were chosen to advance the second stage. In the second stage, we

applied backward elimination algorithm with genes random selected from the refined

variable subsets. After filtering out the non-overlapped building blocks from the top

informative modules, the gene relevance is evaluated by calculating the average score

of ith gene from the folds:

Relevance of ith gene =
1

q

q∑
l=1

i∈blj ,j={1,2,..,B2}

I(blj) (5.10)

Where the I(blj) is the score of jth building block in lth fold that gene i belongs

to. The relevance score considers both the number of returns in each fold and the

influence score of building block that ithgene belong to. It is possible that some genes

show significant impacts in only a few folds that might be due to random splits. We

should not just compute the relevance score of ith gene from the folds it returned as

that will lead to a biased evaluation of such gene. The relevance score aims to have

the important genes returned consistently no matter what the samples were split.

Therefore, with higher score of the variable relevance, the higher number of returns

and score of the gene in the identified building blocks of each fold.

Breast Cancer

In breast cancer, we observe that only the top 12 genes were consistently returned in

all the 10 folds and only gene 4836 has relevance score greater than 0.8. Gene 4836

is an example of having the weaker marginal information, but it shows importance

by its relevance score. Its marginal information is not strong but it is rank 1 in gene
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Figure 5.10: Top 20 relevant genes in breast cancer with k=5

relevance. That indicates the strong interaction effects of Gene 4836 and other genes.

Figure 5.10 shows the top list of gene relevance, gene/systematic names and their

corresponding variable id’s. We found many of the high relevance genes have been

studied in relation to breast cancer.

TGFβ family belongs to signaling pathway (KEGG) which, acts as a suppressor

of primary tumor initiation during early and late stage of tumourigenicity, is known

to regulate many cellular processes involved in carcinogenesis (Blobe 2000 and Itoh

2012). Hoshino et al (2011) demonstrated this in highly metastatic breast cancer

cells from which TGF-β1 and TGF-β3 (NM003239) are abundantly expressed. Im-

munostaining for TGF-β3 was inversely correlated with survival and the expression

of TGF-β3 in breast cancer tumors was shown as an independent predictor of overall

survival (Ghellal A et al, 2000). The fibroblast growth factors (FGFs) play key roles

in controlling tissue growth, morphogenesis, and repair in animals. No direct study
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shows the FGF18 (NM003875) has any relationship with breast cancer; however, it

has been recently identified as an abnormal expressed gene within an expression sig-

nature predicting poor rate of survival in patients with ovarian cancers (Wei et al,

2012). MMP9 (NM004994) involved in cancer invasion and metastasis, has been ex-

tensively explored and deemed relevant to breast cancer. The expression of MMP9

was a prognostic marker in node-negative breast cancer (Scorilas et al., 2001) and

mailgnant breast tumors increase MM9 activity compared to benign breast tumors

(Hanemaaijer et al., 2000). It might be associated with breast cancer development

and tumor progression (Khrmann, 2009). MM9 levels have positive correlation with

metastatic disease and reduced relapse-free survival in patients with breast cancer

(Vizoso et al. 2007; Wu et al. 2008). A recent study showed PHDGG (NM006623) is

in a genomic region of recurrent copy number gain in breast cancer and PHGDH pro-

tein levels are elevated in 70 % of ER-negative breast cancers (Possemato et al, 2011).

It also suggested that targeting the serine synthesis pathway may be therapeutically

valuable in breast cancers with elevated PHGDH expression.

Prostate Cancer

In figure 5.11, we observe that all the gene relevance scores of the top list all very

high (> 0.9) and all of them show the importance in 10 folds.

Many genes in the list are related to prostate cancer in existing literatures. For

example, MAF plays a role in pathways of tumorigenesis (Sharad et al, 2011) and has

a tumor suppressor role because it participates in TP53-mediated cell death (Hale et

al., 2000). HPN is shown to be associated with prostate cancer (Burmester et al, 2004)

and can be used as early detection of prostate cancer (Kimberly et al, 2008). From

the genomewide studies, it is shown to be an important gene related with prostate

cancer both in European (Pal et al, 2006) and Korea men (Kim et al, 2012). ERG

is extensively explored and considered a prostate cancer biomarker. Over-expression
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Figure 5.11: Top 20 relevant genes in prostate cancer with k=5

of ERG has also been considered as a specific prostate cancer biomarker which is

rarely found in other cancers or normal tissues (Demichelis et al, 2007). TMPRSS2-

ERG gene fusion is the most common variant observed in about 50% of all prostate-

specific antigen screened prostate cancer patients in the United States (Mosquera et

al, 2009), (Tomlins et al, 2009). PTGDS was one of three genes that expressed at

consistently lower levels in prostate cancer compared to normal patients (Thompson,

2012). RGS10 has been shown to be related with human colon (Lu et al, 2008) and

ovarian (Hooks et al, 2010) cancers, but no direct evidence demonstrates its influence

on prostate cancer. PLA2G7, one of the members in arachidonic acid pathway, is

considered an important biomarker in 50% of prostate cancers and associates with

aggressive disease (Vainio, 2011). GSTP1 DNA methylation and protein expression

status is correlated with DNA methyltransferase inhibitors treatment response in

prostate cancer cells (Chiam 2011) and it is a reliable molecular biomaker for early
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detection of prostate cancer among Egyptians with 90.9% sensitivity (Essawi, 2010).

HSPD1 was found to be associated with prostate cancer risk by RT-PCR (Hu, 2013).

EPB41L3 plays an important role in tumor progression including prostate cancer and

the potential therapy to upregulate EPB41L3 gene expression in prostate cancer cells

are currently being developed(Bernkopf, 2008). S100A4 is a member of S100 family

of calcium-binding proteins that is directly involved in tumor metastasis (Garrett

2006). It is overexpressed during the progression of prostate cancer and could be a

novel therapeutic target for human prostate cancer treatment (Saleem, 2006).

Colon Cancer

The top 20 relevant genes in colon cancer show consistent importance in 10-fold cross-

validation. We observe that of the highest relevance genes as shown in figure 5.12,

15 of them have relevance score greater than 0.9. Many of them have been explored

and appropriate experiments on their biological relations with colon cancer have been

undertaken.

HIVEP2 (R39209) has been implicated in the regulation of immune responses and

cellular proliferation (Fujii el al, 2005), and was found to be lower in cells transduced

with the miR-155, which is expressed at elevated levels in human diseases including

lung, breast, colon cancers (Yin et al, 2010); Gelsolin Precursor (H06524) helps main-

tain the integrity of cell cytoskeleton (Sun, 1999), and was found to downregulate in

several tumors and its abnormal expression is among the most common defects found

in human bladder and colon cancer (Porter et al, 1993; Rao, 2002); By northern

blot hybridization, Hill et al (1995) revealed a high level expression of the GUCA2B

gene in human colon and indicated a pivotal role in cGMP-mediated functions of the

colon. In addition, GUCA2B (Z50753) (uroguanylin) is an endogenous activator of

the guanylate cyclase-2C receptor, and it could be used as a non-invasive biomarker

for the early detection of colorectal cancer (Liu et al, 2009); COL1A2 (H08393) is
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Figure 5.12: Top 20 relevant genes in colon cancer with k=5

a collagen alpha 2 chain which is involved in cell adhesion, and collagen degrading

activity have been shown as part of the metastatic process for colon carcinoma cells

(Guyon et al 2002; Karakiulakis 1997). RPL24 (T62947) may play a role in controlling

cell growth and proliferation through the selective translation of particular classes of

mRNA (Guyon et al 2002). These two genes of colon cancer biomarkers, COL1A2 and

RPL24, had been applied for United States patent whose number is 20050165556 in

2005; Vasoactive intestinal peptide (VIP, M36634) is indicated to promote the growth

and proliferation of tumor cells and patients with colorectal cancer inclined to have a

higher serum level of VIP and a higher density of VIP receptors in cancer cells (Hejna

et al., 2001). MXI1 (L07648), MAX interacting protein 1, which decreased 2-fold in

the colorectal cancer samples, is an antagonist of c-myc oncogene. Down-regulation

of MXI1 further is likely to enhance the activity of MYC, which was observed to be

overexpressed in the colorectal tumors (Zervos, 1993).
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Chapter 6

Discussion and Conclusion

In this thesis, inspired by Lo and Zheng’s initiative work (2002), we propose a novel

and heuristic variable selection measure based on nearest neighborhood information.

The nonparametric measure has many good properties, while not being restricted to

the assumption of linearity. In addition, the measure can identify informative patterns

in low dimensional variable subspaces and capture high order interaction at the same

time. As discussed, the genetic diseases were affected by many functional pathways

(i.e. group of genes). Interactions, especially the epistasis, come in various forms.

The proposed influence measure I is flexible to accommodate groups of variables and

evaluate their joint association with responses making it ideal for gene expression

data analysis.

The proposed measure has advantage of capturing continuous predictors compared

to the original categorical score (Zheng, 2006). To apply the categorical influence

measure in continuous predictors, the first step is to discretize the predictors by

specific quantile or by clustering. Based on the same simulated data set in table 4.1,

we dichotomize the predictors by the mean of each variable and the history of the

eliminating procedure is shown in table 6.1. We observe that when either one of the

influential variable is not selected, the influential variables are not have strong signal
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any more even there is strong non-linear marginal effects. On the contrary, proposed

continous measure is able to capture and retain the influential variables as in table

4.1.

Table 6.1: History of the eliminating procedure for four cases with categorical I score
Initial set:{1,2,3,4,5,6,7}
Influence before drop 1.7614 2.5927 3.8500 6.6239 10.4370 20.2258 0.5268
Dropped variable 6 3 7 4 5 1 2

Initial set:{1,3,4,5,6,7}
Influence before drop 0.9759 1.2073 1.2944 1.1753 1.002 1.1127
Dropped variable 1 4 6 3 5 7

Initial set:{2,3,4,5,6,7}
Influence before drop 1.2036 1.4604 1.5069 1.8810 0.8297 0.5268
Dropped variable 6 3 7 4 5 2

Initial set:{3,4,5,6,7}
Influence before drop 1.2073 1.2944 1.1753 1.0016 1.1127
Dropped variable 4 6 3 5 7

As for other simulation studies, with various value k, the high order information

will be detected by our measures no matter what the relations are. In addition

to assign the k arbitrarily, we can also apply the cross-validation method to find a

suitable k. However, to reduce the computation burden and improve the variable

selection procedure, moderate value of k is enough to identify importan variables.

In simulation studies, we found the influential variables are always included in the

returned set with different k. The microarray studies also demonstrate its capability

to identify relevant genes to different kinds of complex diseases. Furthermore, various

forms of joint effects among variables are able to be captured.

We also proposed a new procedure to do classification in gene expression microar-

rays. To reduce the computational complexity, a two stage analysis is adopted. We

first screen and detect potentially important genes by interaction-based screening.
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By return frequency, those genes that consistently appear with jointly high influence

scores have higher potential to form influential building blocks. Secondly, the infor-

mative building blocks are generated based on a computationally intensive method,

the backward elimination algorithm. In the algorithm, the repeat time B has to

be set as a large number to ensure the ability to find true and informative interac-

tions. Although the heavy burden of computations are needed in this step, taking

advantage of high performance computing cluster (i.e. parallel programming environ-

ment) makes the step manageable. With the growing of advanced technology such as

graphics processing unit (GPU) with thousands of cores, the computational burden in

backward elimination algorithm will be further eased in the future. Based on the two

stage analysis, we finally construct many different classifiers by the identified infor-

mative building blocks, and combine them into a final classification rule by boosting

algorithm. The performance of proposed procedure that incorporates higher inter-

active effects to do classification is strong compared to many existing methods. In

addition, it also outperforms the results by boosting algorithm with strong marginal

effect genes selected by Pearson’s correlation (i.e. assume linear relationship) and

those identified by proposed influence score. That may imply the interactive effects

play a role in gene expression data.

The proposed influence score is one way to evaluate the association between a set

of variables and response. An alternative influence score similar to (2.4) defined as

follows:

I =
Σn
i=1k(Ŷi − Ȳ )2

nσ2
Y

, (6.1)

where Ŷi is the average of Yi and its (k-1) nearest neighbors. However, unlike the influ-

ence score of (2.4) used with categorical predictors that every observation is counted

exactly once, (6.1) may have observations assigned to more than one partitions. The

detailed properties of (6.1) are still need to be explored.

In addition, we use Euclidean distance to evaluate the similarity of observations.
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There are still many distance measurements can be explored to evaluate how the

observations cluster together in the variable space. For example, Pearson’s correlation

to cluster together observations with similar behaviors, Spearman correlation cluster

together observations whose profiles have similar shapes or show similar general trends

and cosine similarity measures the cosine of the angle between two vectors of an inner

product space which is popular in text mining. These different similarity measures

may provide a different perspective to apply our influence scores in diverse research

areas.
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