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be generally true and could depend on the magnitude of 
the liquid-liquid interactions. In the light of these obser- 
vations it was decided not to extend the theory a t  this 
time to encompass ternary systems as such. 

Further work is in progress to establish the validity of 
the various points raised in this study. 
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Computer Graphics in the Solution of the Chain Deformation 
Problem 

Steven D. Stellman 
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Princeton, New Jersey 08540. Received July 2, 1973 

ABSTRACT: GO and Scheraga have given a general solution for determining the possible conformations of a sec- 
tion of a flexible polymeric chain between two fixed bonds (if the bonds coincide, the problem is equivalent to 
ring closure). Often, the fixed bonds are related by symmetry, such as that imposed by helicity or folding of anti- 
parallel chains. A technique is shown for obtaining solutions using interactive computer graphics, whereby a 
plausible chain conformation or fold is approximated manually and completed by mathematical minimization. 
The procedure allows rapid, repetitive exploration of multiple solutions, and has many options for changing con- 
straints. As an example, the backbone conformation of GpC, a dinucleoside phosphate, is used as a starting 
model, and gives upon minimization a set of backbone angles in the range of 11-fold helical RNA. 

The chain deformation problem and the mathematical- 
ly equivalent ring closure problem are of great importance 
in studies of biopo1ymers.l The problem arises whenever 
the geometrical relationship of two monomeric units to 
each other is known, for example, through a postulated 
hydrogen-bonding scheme, or by symmetry, and it is re- 
quired to find the coordinates of atoms along or connected 
to the backbone chain between the fixed units. 

A simple method of solution would obviously be of ben- 
efit in building models for chain folding of tRNA2 or pro- 
t e i n ~ , ~  and indeed any case where the groups (nucleotide 
bases or amino acids) on either side of the fold region are 
fixed with respect to each other. 

In this paper we demonstrate a simple yet effective 
method for determining possible conformations of back- 
bone atoms between fixed base units of a helical polynu- 
cleotide chain. The method is perfectly general and could 
be applied to any other polymeric system, such as a pro- 
tein. While we have exploited the method specifically in 
our model building work with computer graphics, the 
mathematics are perfectly adaptable to nongraphical sys- 
tems. However, computer graphics has unique advantages 
in the applications for which our model-building programs 
were developed. 

Conformations of Polynucleotides 
The backbone chain of a helical polynucleotide such as 

DNA contains many bonds about which semihindered or 
free rotation can occur. Consequently, a large (perhaps in- 
finite) number of conformations exists which satisfy rea- 
sonable stereochemistry. 

If the helix pitch and unit cell length in the fiber axis 

direction are determined for fibers of this polymer through 
X-ray fiber diffraction, then the cylindrical coordinates of 
the base and backbone atoms are usually obtained by 
manually building wire models consistent with these data, 
ruling out those models which are stereochemically im- 
possible, and refining the remaining models through a 
least-squares p r o ~ e d u r e . ~ , ~  

The deformation problem enters the situation because, 
given the absolute orientation of, say, one base with re- 
spect to the fiber axis, the coordinates of the next and 
every succeeding base are uniquely fixed by helical sym- 
metry. The problem is then to find possible conformations 
of the sugar-phosphate backbone which fit in between two 
adjacent bases and which are stereochemically acceptable 
(in terms of near-standard bond lengths and bond angles). 

Digital computers have long been used to generate the 
accurate coordinates of such models from initial data 
measured on stiff-wire models, and to refine the models 
against observed X-ray diffraction data.6 Recently, com- 
puters employing interactive three-dimensional graphics 
have been used to generate complete models t hem~e lves .~  
An obvious advantage of this procedure is to circumvent 
the hazards of real models, such as gravitational collapse, 
inflexible bond lengths and bond angles, and poorly mea- 
surable dihedral angles. Fast calculation of interatomic 
overlaps is also possible.* 

In the following section we describe a method for con- 
structing such models directly comparable with X-ray dif- 
fraction data. Given the screw and fiber axis length as ini- 
tial conditions, and allowing the orientation of the base 
with respect to the fiber axis and its distance therefrom as 
adjustable parameters, the deformation problem is solved 
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to give the allowable conformations of DNA or RNA 
sugar-phosphate backbone. 

Mathematical Statement of the Problem 
A typical base-ribos'e-phosphate unit is shown in Figure 

1, with the definition of dihedral angles. We define the 
helix parameter A 2  as the fiber repeat distance (z axis 
taken to be the fiber axis or c axis), and A@ equal to 
360"/p,  where p is the unit repeat or "foldness" of the 
helix (e.g., p = 12 for a 12-fold helix, A@12 = 360"/12 = 
30"). Assuming all bas'es are planar, we use the notation of 
Arnott5 for defining tlhe orientation of the base plane by 
three angles: 81 (tilt), 82 (twist), and 03 (swivel). The dis- 
tance D of the base from the fiber axis is the fourth re- 
quired parameter. 

When the coordinates of any nucleotide are given, then 
the cylindrical Coordinates of every atom of the next nu- 
cleotide are uniquely determined from the corresponding 
atoms in the first by the relations 

Counting the C3'-C4' bond as the first, there are six 
consecutive bonds about which more or less free dihedral 
rotation may occur. The glycosidic angle connecting sugar 
with base and the puckering of the sugar are additional 
variables. However, the values which all those angles may 
simultaneously assume is severely limited by the back- 
bone's connectivity. In practice, there is usually only a 
small finite number o!f possible conformations of the back- 
bone which satisfy stereochemistry, and yet preserve con- 
nectivity. 

GO and Scheraga dletermined these solutions in the fol- 
lowing manner. They placed a local Cartesian coordinate 
system on each backbone-chain atom, and considered the 
possibility of changing the n consecutive dihedral angles 
01, - - -, wn located in the middle of a long-chain molecule 
without disturbing the locations and orientations of the 
local coordinate systems other than those numbered 1 to n 
- 1. In particular, the locations and orientations of the 
local coordinate systems numbered 0 and n should remain 
fixed for any deformations of the intervening atoms. 

Let sn be the position vector of the nth coordinate sys- 
tem, un be the unit vector in the x direction for that sys- 
tem (taken to be along the bond connecting'atom n - 1 
with n) ,  and vn the unit vector in the local y direction. 
The set of vectors isn, un, vnj exactly specifies the posi- 
tion and orientation of the nth local coordinate system. 
This vector set contains only six degrees of freedom, be- 
cause of the internal relations 

U ' U  = V ' V  = 1 
U ' V  = 0 

Since coordinate systems 0 and n are fixed, and as- 
sumed known, the location and orientation of coordinate 
system n relative to coordinate system 0 is given by 

si,, = p = const 
u,, = Tel = const 
v, ,  = Te2 = const 

where p is a constant vector and T a constant orthogonal 
transformation matrix. el and e2 are column vectors 
whose transposes are given by elT = ( l , O , O ) ,  ezT = (O,l,O). 

The connectivity of the chain itself acts as a constraint 
on eq 2, so that the vector connecting atoms 0 and n can 
be written as the sum of all the intermediate bond vec- 
tors. If each of these bond vectors is referred to the frame 

BASE 

+ x  

Figure 1.  Stereochemically independent backbone unit of DNA 
or RNA, showing dihedral angles. Angle naming convention is 
that of A r n ~ t t . ~  

of reference of atom 0, then the three vectors Sn, un, and 
vn can be written as an iterated matrix expression con- 
taining the individual matrices and vectors for successive 
transformation by orthogonal rotation and translation all 
along the chain. In other words 

(3) 

The matrices T and R are given by 

cos 8, -sin 8, 0 
T, = sin 8, cos8, 

[o 0 P] 

LO sin w, cos w ,  1 
The translation vector p is given by 

PI = [I;] 
In the above expressions, d,,  8,, and w1 are the bond dis- 
tance, angle, and dihedral angle relating the ( i  - 1) coor- 
dinate system to the ith. Equating quantities in (2) and 
(3) gives a system of nine equations, containing three de- 
pendent relationships among the center dot products, or 
six independent equations altogether. Therefore, the num- 
ber of independent  unknowns is n - 6. 

GO and Scheraga Solution 
The procedure adopted by GO and Scheraga for the so- 

lution of eq 3 is first to select arbitrarily n - 6 of the n di- 
hedral angles as the independent variables. An arbitrary 
set of values is then assigned to those variables, and the 
six independent equations are solved for the remaining six 
dihedral angles. 

Because of the transcendental nature of the equations, 
there are often multiple solutions which satisfy the origi- 
nal constraints. It occasionally happens that no solutions 
exist. Conditions for the existence of solutions are stated 
in ref 1 as a set of rather complicated algebraic inequali- 
ties; it  may take nearly as much computation to deter- 
mine the existence of solutions as to obtain the solutions 
themselves. Actual solution of the equations is performed 
by first blocking out eq 3 so that four of the equations 
contain only four variables, uiz., w 1  to w4. Then w z ,  w3,  

and w 4  are each expressed in terms of w 1 ,  and the equa- 
tion for s is written as a function of w 1  only. Provided so- 
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Table I 
Results of Minimization of Two Trial Conformations for RNA 

Macromolecules 

Helix parameters 
AZ = 3 0 . 0  A, A +  = 360”/11 
Base orientation parameters 

D = 4 . 4 1  A, o1 = 13.53”,  e2 = -4.62O, e3 = -74.5O 
Dihedral Angles (deg) 

X E 8 * 9 H Ref 

Initial 
Final 

Trial 1 
74.76 49.46 186.47 293.97 292.96 9 . 8 1  
93 .31  5 . 0 3  69.57 75.11 248.68 2 x 10-7 

Trial 2 
GpC (mol 1) 7 4 . 9  4 4 . 9  175.1 293.6 287.4 12 

Final 73.50 53.11 185.21 292.88 289.91 1 . 1  x 10-3 
Initiala 73.48 50.27 173.32 281.60 271.76 1 .52  

(11-fold helical 74.9  4 8 . 1  179.8 297.9 285.7 13 
RNA) 

Q Set as close as possible to GpC, within error of potentiometer knobs. 

lution(s) exist for w1, the remaining unknowns are ob- 
tained by substituting solved values of w 1  in the respective 
equations. 

Solution by Computer Graphics 
Despite the obvious importance of the Go-Scheraga so- 

lution as an advance in model building and geometric 
construction techniques for macromolecules, it has several 
disadvantages which limit its general usefulness. (1) 
There is no systematic search procedure for multiple solu- 
tions. For example, for a polypeptide, there are a t  least 
two independent angles which must be chosen arbitrarily 
and given arbitrary values. “Best” choices of those angles 
and values can be a matter of luck. (2) Analytical indica- 
tion that no solution exists for given values of the inde- 
pendent w ’s cannot reveal the possibility that  acceptable 
solutions exist nearby. (3) Relaxation of assumed con- 
straints such as fixed bond angles is not a part of their 
scheme, although it could obviously be programmed. In 
this case, however, we mean changes of constraints sug- 
gested by closeness to a solution. Here, visualization of a 
model is critical, since the number of possible parameters 
which could be allowed to vary is quite large. 

In this section we present a new approach to modeling 
of helical macromolecules which is mathematically equiv- 
alent to the Gb-Scheraga method for dealing with chain 
deformation. The method has proved useful in the trial- 
and-error method of Fourier structure analysis5 based on 
models constructed by computer graphics. 

We have previously described a computer system for in- 
teractive three-dimensional computer graphics in molecu- 
lar biology.’ Briefly stated, computer graphics is a system 
for displaying programmed coordinates and lines in per- 
spective on a television-type screen. Use of specialized 
input devices such as knobs and switches in a time-shared 
environment provides a continuous means of updating the 
computer memory with fresh input, such as bond angles, 
or logical values to control the course of program execu- 
tion. 

The model-building program, called HLX, allows the 
user to specify the c-axis repeat and number of nucleo- 
tides per repeat ( A 2  and A + ) .  The orientation of the base 
(any of A, G, C, or U-the choice does not matter) is de- 
fined by tilt, twist, swivel, and distance from the helix 
axis, which may be set by the user. Ribose puckering may 
be selected from among 40 different conformations, span- 
ning a complete pseudorotation c ~ o r d i n a t e . ~  

The viewer now observes two nucleotide units on the 
screen, one displaced from the other by the specified 
screw-axis symmetry. A photograph of the screen a t  this 

stage is displayed in Figure 2a. The user’s task is to con- 
nect the sugar-phosphate-sugar backbone connecting the 
two bases by joining the loose end of the first base to the 
appropriate atom of the second. The individual bonds 
comprising the backbone chain may be manipulated by 
potentiometer knobs acting as input devices. Each knob 
can be rotated a full 360°, and the value of the knob a t  a 
given instant is read by the computer and translated into 
a dihedral angle rotation on the screen. Angles controlled 
by different knobs are x, E ,  0,  $, and 6 (see Figure 1 for 
definitions). Because of eq 1, the angle w depends implic- 
itly on the others and is not needed for input. Values of 
the current orientation parameters are displayed as text. 

The actual coordinates of the sugar and phosphate 
atoms are calculated from the input dihedral angles using 
the iterated transform method of Scott and Scheraga,lo 
with fixed bond lengths and bond angles adopted from 
known geometries of small molecules, or from previously 
refined polynucleotide data. 

The 01-C3’ bond of the second nucleotide is brightened 
on the screen and acts as a target for the last bond of the 
adenosine phosphate tail. The degree of coincidence of 
these two bonds is calculated by a “helix criterion func- 
tion” 

where j runs over x, y, and z coordinates, the superscript 
(1) applies to the atom a t  the tail of the first nucleotide, 
and (2) refers to the same atom a t  the beginning of the 
second nucleotide. 

H is a nonnegative function of all the independent vari- 
ables (dihedral angles). When H is exactly zero, the two 
bonds (calculated and target) exactly coincide, and the 
helical constraints are thereby satsified. Any set of angles 
for which this is true is thus a solution of the Go-Scheraga 
problem. That the two methods are mathematically 
equivalent is seen by the fact that H depends on six inde- 
pendent coordinates, uiz., the three Cartesian coordinates 
for O1 and the three for C3’. Specification of these six 
variables, which depend implicitly on all the intervening 
dihedral angles in between the two bases, requires the 
same amount of information implied in eq 2, and in fact 
could be used to calculate s, u, and v .  

The problem is slightly complicated by the fact that the 
knob reading for x must also be transmitted to the second 
displayed nucleotide. The brightened bond can thus 
change position whenever x is changed, and becomes a 
moving target. 

Once the user has come close to a solution, as evidenced 
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Figure 2. Example of interactive computer' graphics solution of polynucleotide conformation. Programmer specifies helix parameters 52 
and A @ ,  and orientation parameters D, 81, 82, and 8 3  (distance from helix axis, tilt, twist, and swivel). (a-c) Successive stages of manual 
adjustment of backbone 'dihedral angles. The object is to make the trailing bond Ol+-C3+ coincide with the intensified target bond on 
the next nucleotide unit, as calculated from the first unit by eq 1. (d) Results of numerical minimization of H uia eq 4, using values dis- 
played in (c)  as input. 

visually (see Figure 2 for an example), and by a low value 
of H, connectivity is completed by numerical minimiza- 
tion of H. The most recent manually set values of the di- 
hedral angles serve as the initial conformation for this 
routine. The subroutine itself is the Courant-AEC version 
of Powell's method folr minimizing a function of several 
variables without calculating derivatives.ll Typical values 
of H after minimization are of the order Dividing by 
four (one less than five dihedral angles) and taking the 
square root, we have a typical standard deviation in the 
result of 5 x 10-5 A, ;a quantity only slightly greater than 
the machine accuracy. 

Fur ther  Options 
The above description encompasses the essential fea- 

tures of the method. In applying it to polynucleotides, we 
have found the following options to be useful. (1) The 
number of angles varied in minimization of H may be 
chosen prior to minimization. For example, the user may 
decide to fix x in the anti conformation. (2) The pucker- 
ing  of the sugar may be changed a t  any time. (3) The base 
orientation (tilt, twist swivel, and D) may be changed S I -  

multaneousl3 with minimization. Thus, the range of ori- 
entation parameters which are consistent with chain con- 
nectivity may be explored. (4) The three adjacent bond 
angles about the phosphorus atom can also be varied. 
This is helpful after a structure has already been mini- 
mized once, and typically decreases H by a factor of 10- 
100, while relaxing the phosphodiester bond angles by no 
more than 2-3". 

Example: A Model for 11-fold Helical RNA 
As G6 and Scheraga pointed out, several different sets 

of dihedral angles satisfying the chain connectivity con- 
straint may be possible, corresponding to multiple solu- 
tions of the matrix equations for the positions of the chain 
backbone atoms. Many of these can often be eliminated on 
the basis of atomic overlaps observed on the display, or 
calculated energetically. Each remaining solution must 
then be considered a possibility and tested against experi- 
mental data, such as X-ray fiber diffraction data, to deter- 
mine whether it is the correct one. Furthermore, many dif- 
ferent starting conformations such as the one displayed in 
Figure 2a must be selected and minimized, to assure that 
most possibilities have been found. The interactive graphics 
makes this particularly convenient, for the minimization 
time rarely exceeds 15 sec. 

As an example, Table I shows the results of- two trials in 
which AZ was set to 30 A for an 11-fold helix, with the 
base orientation parameters set close to those reporteds 
for helical RNA. In the second trial the initial conforma- 
tional angles were set as close as possible to those re- 
ported by Stellman et ~ 1 . ~ ~  for the crystal structure of the 
dinucleoside phosphate, GpC. The minimization results 
for this trial compare favorably with the most recent set 
of angles reported for A-RNA by Arnott, Hukins, 
and Dover.13 

Discussion of Technique 
The use of these programs has opened up an entirely 

new approach to helix model building for comparison with 
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experiment. Besides the substantial reduction in compu- 
tational time, we have found that the ability to display 
and calculate properties of models almost instantly has 
given us insights into the geometric and energetic proper- 
ties of the molecules, and enables us to survey and com- 
pare more quickly the possible solutions and choose the 
most likely ones for further study. There are many intra- 
molecular relationships which are immediately obvious 
when visually displayed but which are obscure or invisible 
when expressed on paper as numerical c00rdinates.l~ 

The most pressing application is in solution of the 
structures of crystalline polynucleotides, such as tRNA. 
Yeast tRNAPhe has been shown to crystallize in a confor- 
mation containing two helical regions orientated at right 
angles to each other. The solution reported by Rich et d2  
is a t  3-A resolution, which does not enable precise defini- 
tion of atomic coordinates. Further refinement against 
higher angle X-ray data, essential for comparison with 
monomer or- dimer structures, requires a very good atomic 
model for a trial structure. The graphical method present- 
ed here would be ideal for developing such models, using 
the helicity parameters and phosphorus atom positions in 
the helical regions of the 3-A structure as constraints. 
This possibility is now being explored with crystallograph- 
ic data for tRNA available in our laboratory. 
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ABSTRACT: The equations of polymer hydrodynamics formulated by Kirkwood and Riseman utilize a collection 
of point forces which act as centers of frictional resistance. This model has been shown by Zwanzig, Kiefer, and 
Weiss to possess unphysical singularities when the segmental friction constant is high. Here, it is shown that, for 
the rigid rod molecule, the singularities are artifacts of the model. The singularities disappear if the segment rep- 
resented by the point force is small, and if the segment has a finite cross section. 

The methods of macroscopic hydrodynamics have been 
applied with considerable success to particles of molecular 
size. A procedure developed by Kirkwood and Risemad 
(KR) from earlier work of Burgers2 and Oseen3 has been 
applied widely to polymer solutions, and a variety of re- 
sults by different workers attest to the success of the pro- 
cedure.l 

One of the steps in the KR calculation is based on the 
solution of a Set of simultaneous equations. In an impor- 
tant critical paper, Zwanzig, Kiefer, and Weiss4 (ZKW) 
showed, that for both rigid rod and coiling macromole- 
cules, the equations become singular for certain values of 
the segmental friction constant. In such a case there is no 
solution of the equations, and serious doubt is thrown on 
the logical structure of the Kirkwood-Riseman method. 

It is our objective here to show, for the particular case 
of the rigid rod molecule, that the singularities disappear 
if the finite cross section of the macromolecule is intro- 
duced in the model, and if the segmental unit of the rod is 
sufficiently small. 

In the KR equations for the translational diffusion prob- 
lem, the mean force exerted on the fluid by segment num- 

ber 1 is 

1: is the segmental friction constant, 7 0  is the viscosity of 
the solvent, ex is a unit vector in the x direction, Ri, is the 
distance between segments 1 and s, angular brackets sig- 
nify an average value taken over all possible orientations 
and internal configurations of the molecule, 2' signifies a 
sum over all segments s # 1. It is understood that the sys- 
tem is subject to overwhelming Brownian motion, and 
therefore the molecules are not preferentially oriented. 
Equation 1 may be written in matrix form 

M x = y  (2a)  

M = IM,<I (2b)  

( 2 C )  

A similar set of equations apply to intrinsic viscosity. 
The vectors x and y differ from those of the diffusion 
problem. However, the point of crucial significance is that 
the matrix M remains the same. The existence of a soh -  

M , .  = 61, + (1 - 6, , ) ({ /6~") (1 /R, . )  


