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Figure 9. Effect of the addition of water on the rate of formation 
of isotactic and syndiotactic dyad units in water-addition proce- 
dure. 

but we propose a anionic mechanism for the initial slow 
reaction observed in this work, in referring to the rate 
constant of the reaction of propylene oxide with alcohols 
which is larger with cationic catalyst than with anionic 

The rate of formation of isotactic dyad units in the first 
stage (R,l), that in the second stage (R12) and that of the 
syndiotactic dyad unit ( R s )  are plotted against the molar 
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ratio of water to catalyst (see Figure 9). These values in- 
creases with the increase in the ratio of water to catalyst. 

Thus, a t  least two kinds of active species, one for 
isotactic and the other for atactic polymer, are considered 
to exist in the polymerization system. According to the 
nmr and ir spectroscopic data on the reaction of the cata- 
lyst and water (molar ratio, 1:0.5), the main reaction is 
written as 

2EtZnNBu'ZnEt + H,O - 2EtZnNHBu' + (EtZn),O 

The presence of I in the products was identified by com- 
paring the nmr spectrum with that of the authentic sam- 
ple8 prepared by the reaction of diethylzinc and tert-bu- 
tylamine (molar ratio, 1:l). The presence of I1 could not 
be identified for reasons pointed out by other workers.9 
Nevertheless, I1 was assumed by them to be an active cat- 
alyst for the polymerization of propylene oxide.9 While 
the reaction product of diethylzinc and water is insoluble 
in common organic solvents, the reaction products of 
EtZnNBut ZnEt and water are soluble in organic solvents 
such as benzene, hexane, and toluene. This phenomenon 
suggests complex formation between I and 11. The nature 
of the stereospecifically active catalyst species and the 
mechanism of stereoselection of the enantiomeric mono- 
mers remains to be determined. 
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ABSTRACT: Heat capacity measurements of melt crystallized poly( trans-1,4-butadiene) (PTBD) were carried 
out in the 50-130" region and the entropy change from 73" to the melting point, 139", was calculated. A value of 
the entropy change obtained using the rotational isomeric state approximation is found to underestimate the ex- 
perimental entropy change. Theoretical energy calculations were carried out using empirical potential energy 
functions for a single PTBD chain, a unit cell and a lattice of cells. Minimization of the lattice energy with re- 
spect to two of the monoclinic cell constants for the low-temperature crystal form gave results in good agreement 
with X-ray diffraction data.  The energy of transition from the low-temperature form was calculated and a theo- 
retical heat capacity curve was obtained. 

Recent studies of poly( trans-1,4-butadiene) single crys- 
tals (PTBD) have led to an assessment of surface and in- 
terior amorphousness and to a determination of the aver- 
age number of monomer units in the fold surface.*a,b It 
seems a logical next step to see whether or not the 
thermodynamic properties of PTBD crystals can be pre- 
dicted from the postulated molecular structure. 

One of the major problems encountered in performing 
theoretical calculations is the difficulty of doing theoreti- 
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cal "experiments" which can be compared to a laboratory 
experiment without the use of drastic approximations. 
With PTBD, however, many of these approximations can 
be avoided, since it undergoes a solid-solid phase transi- 
tion between two forms for which thermodynamic and 
structural data are available.2b~3~4 Therefore, theoretical 
calculations of transitional energies can be made which 
are not based on assuming any hypothetical conformation 
for the polymer. PTBD thus provides a system for testing 
energy functions and single-chain approximations com- 
monly used by workers in the field. 

(3) S. Iwayanagi, I. Sakurai, T. Sakurai, and T. Seto, J .  Macromol. Sei., 
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There are several open questions concerning the formu- 
lation of theoretical energy functions. One concerns the 
form of the energy functions used and the representation 
of contributions to  the energy by chain motions and lat- 
tice vibrations. Torsional contributions are generally rep- 
resented as a constant factor, the magnitude of which is 
determined by the torsional angles of the molecule. Since 
the unit cell parameters of PTBD as a function of temper- 
ature are known,4 the potential energy can be calculated 
as a function of distance and can be compared to the 
energy obtained from experimental heat capacity mea- 
surements. The difference between the two can be used as 
an  estimate of the contribution of the torsional modes. 

A second important question which can be answered 
with PTBD is whether or not single-chain energy calcula- 
tions can be used for describing the energy of a crystalline 
system. Some of the calculations to be described here are 
based on a three-dimensional lattice of identical unit 
cells. The energy minima and the lattice dimensions and 
chain orientation a t  these minima for the entire lattice 
can be compared with like values for the single chain and 
the unit cell. Since the single-chain intramolecular calcu- 
lations occupy such a large part of the literature, this 
study should provide a critical evaluation of those calcula- 
tions. 

Having decided upon a classical potential function with 
suitable parameters, it is necessary to have a method for 
calculating thermodynamic properties from structure. Two 
well-known approaches are open to us. The first is the 
rotational isomeric state theory, developed by Volken- 
shtein5 and by Flory,G which is essentially a single-chain 
(intramolecular) calculation that does not take into ac- 
count effects of packing within the upit cell of the crystal. 
It will be seen that these calculations are sufficient to pre- 
dict statistical properties for PTBD such as the entropy, 
but inclusion of intermolecular effects, as Mark7 has 
pointed out, is necessary in order to predict the internal 
structure of the crystal itself. 

An alternative approach to the energy function problem 
is the one largely developed by Scott and Scheraga in a 
series of papers.*-11 This point of view is that  when 
stereoregular polymers crystallize, they assume the con- 
formation which achieves the minimum free energy of the 
system. The total conformational energy, U,  is considered 
to be a sum of the energy due to nonbonded interactions 
(interactions among all the atoms not covalently bonded), 
U n b ,  and the torsional energy (energy due to the ethane- 
like rotational barriers in the molecule), Utorq, where 

ut,,,, , = $ (1 + cos 3WL)  

where w z  is the value of the ith dihedral angle. The value 
VO = 2.0 kcal/mol was used in all calculations of U t o r s .  

Two energy functions were used in this study. One was 
the Scott and Scheraga function and the second was that 
derived by Kitaigorodsky and others,l2J3 which was 
parameterized from the Van der Waals radii collected 
from crystal lattice data, and does not consider the lattice 
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energy separately. Kitaigorodsky’s equation is 

v,, = 3.5(8600 exp(1-132) - 0.O4C6) (2 )  
where r is the distance between two nonbonded atoms, R 
is the sum of their Van der Waals radii or contact dis- 
tances, and z = r/R. Vnb is the energy of interaction in 
kcal/mole, and can obviously be negative (attraction) or 
positive (repulsion). 

In this paper heat capacity measurements for PTBD 
from 50-130” are presented; the entropy change over part 
of this temperature range, as calculated from the heat ca- 
pacity and the heats of transition and melting, is com- 
pared with that calculated using the rotational isomeric 
state approximation. Energies of the two crystal forms of 
PTBD are calculated as functions of structural parameters 
and it is concluded that intramolecular interactions are 
not sufficient to account for the internal structure of the 
crystal, but that it is necessary to include intermolecular 
interactions as well. 

Experimental Section 
The PTBD used was described previously (sample K ) . 2 a  The 

specimens used for heat capacity measurements were melt recrys- 
tallized single crystals prepared from heptane. Heats and en- 
tropies of transition and fusion for such samples were reportedzb 
earlier. Specific hdat data were collected in the 50-130” tempera- 
ture range with a Perkin-Elmer DSC-1B scanning calorimeter 
using a sapphire reference. This temperature range was divided 
into four stages in order to minimize the machine base-line drift, 
which was also measured in each range. 

The main geometrical parameters of PTBD used in calculations 
are shown as 

definition of s t ruc tura l  parameters  

Other relevant parameters are defined as follows, where the 
values of the angles are based on the experimentally determined 
structure: dH,’C,H,” = 109.5”; LH,”C,C,-I = LHl’C,C,+l = 
LCL-lCIHI’ = 108.3”; -C-C- = 1.54 A; -C-H = 1.08 A; -C=C- 
= 1.32 A; =C-H = 1.08 A. 

The linear monomeric unit, -CHzCH=CHCHz-, contains four 
dihedral angles which must be specified. The central double bond 
of course is fixed a t  trans (180”) for PTBD. The CHz-CHz single 
bond has been observed a t  180” in both solid-state forms.3 4 By 
symmetry, the two remaining CH2-CH single bonds must have 
equal but opposite values, fw, to generate a helical structure. 
Hence a single parameter, w ,  suffices to fix the geometry of the 
entire PTBD chain. The two crystalline forms of PTBD have di- 
hedral angles, u,  equal to 109” (low temperature), and 80” (high 
temperature) . 3 ,4  

Results 
Heat Capacity and  Entropy Change. The heat capaci- 

ty, Cp, of two melt recrystallized PTBD single crystal 
samples is shown in Figure 1 as a function of temperature. 
Cp rises very quickly a t  the transition, then drops to a 
value of about 0.4 cal/(g deg), and rises slowly until the 
melting point is reached. The entropy change in going 
from the crystalline solid in form I a t  the transition tem- 
perature to the melt at the final melting temperature can 
be calculated from the experimental results as follows 

ASexp = AStr + (Cp/T)dT + AS, = 

0.079 i- 0.056 + 0.039 ( 3 )  

= 0.174 ca l / (g  deg) = 9.38 f 1.8 ca l /  (mol deg) 

where ASt,. and ASm are experimental entropies of transi- 
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Figure 1. Experimental specific heat as a function of temperature 
for melt recrystallized PTBD: [B] sample 1; [O] sample 2.  

tion and melting, respectively;2b mean values of the ex- 
perimental Cp values for the two samples studied (see 
Figure 1) were used to evaluate the above integral. T t ,  
and T, are 7 3  and 139", respectively. 

To compute the error in AS,,,, we have added up  the 
possible errors for the two transitions, plus the relative 
average deviation of three estimates of S90-1220, com- 
puted by taking each of two runs independently, plus a 
pooled data set. 

Theoretical Calculation of Entropy of Fusion. A 
method for calculating the entropy of fusion of a polymer 
has recently been applied successfully by Tonellil* to a 
variety of polymers, including poly( cis-butadiene) . 

The total entropy of fusion is believed15 to consist of 
two contributions, the entropy change a t  con- 
stant temperature due to volume expansion, and AS,, the 
entropy gain due to the increase in conformational free- 
dom. KirshenbaumlG has demonstrated several useful ap- 
proximations to ( A S V ) T l t r I  for materials whose compressi- 
bility and expansion coefficients are not available. In par- 
ticular, he states that use of 0.18 SV,, where SV, is the 
molar volume change on melting, should lead to errors no 
greater than 0.2-0.6 cal/(mol deg). Taking the volume 
change as the increase in the unit cell volume going from 
low- to high-temperature forms, and using the density 
data of Natta et al.17 (VI = 1.03 cm3/g, VI, = 1.08 cm3/g, 
we find 0.43 cal/(deg mol) for ( A S V ) T ~ ~ ~ ) .  According to 
Tonelli,l4 the entropy change ASa due to conformational 
freedom is calculated by the ordinary thermodynamic for- 
mula 

(4) 

where Z is the partition function of the polymer. To eval- 
uate this quantity we employ the rotational isomeric state 
methods developed by Abe and Floryls for PTBD. Some 
of the details of this calculation are given in Appendix I. 
By this method, the estimate of ASa near the melting 

AS, = R[ln Z + (T/Z)(dZ/dT)] 

(14) A. Tonelli. J .  Chem. Phys. ,  52,4749 (1970); ibid., 54,4637 (1971). 
(151 L. Mandlekern, "Crystallization of Polymers," McGraw-Hill, Sew 
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Lincei, CI. Sei. Fis.,  Mat. Natur., Rend., 20, 728 (1956). (h )  G. Katta,  
L. Porri, P .  Corradini, and D. Morero, Chim. Ind. IMilanJ, 40, 362 
( 1958). 

(18) Y. Ahe and P. J. Flory, Macromolecules, 4,219'(1971). 

B 

Figure 2. The energy of a single PTBD chain as a function of di- 
hedral angle. 

Table I 
Calculated Energies of a PTBD Single Chain 

Dihedral Energy 
Potential Function Angle (deg) (kcal/mol) 

SS (no torsional term) 109 
80 

109 
80 

80 

80 

K (no torsional term) 

SS (with torsional term) 109 

K (with torsional term) 109 

-63.198 
-68.001 
-37.726 
-41.781 
-13.454 
-48.001 
-36.913 
-21.781 

point (T  = 139") is 5.3 cal/(deg mol). Therefore, the pre- 
dicted entropy of fusion is 5.7 f 0.6 cal/(deg mol). 

Considering first of all the approximation of the volume 
expansion contribution, AS", and secondly the fact that a 
rotational isomeric model by its very nature restricts the 
number of allowed states, of which the entropy is a mea- 
sure, the theoretical value is in favorable agreement with 
experiment. 

Single-Chain Energy Calculations. The results of 
energy calculations for a single PTBD chain 20 monomer 
units in length as a function of the dihedral angle w ap- 
pear in Figure 2. The graph shows that both the Scott and 
Scheraga (SS) function and the Kitaigorodsky (K) func- 
tion without the torsional term predict that  the chain has 
a poorly defined minimum energy at a dihedral angle of 
60" but that  all angles above 60" are energetically easily 
accessible to the chain. When the torsional term is added, 
the energy curves then take on a sinusoidal character and 
energy minima and maxima are clearly defined. The SS 
and K functions predict minima a t  60" and maxima a t  
120". 

The effect of chain length on single-chain intramolecu- 
lar energy calculations was studied, using the K function 
including the torsional term. The results indicated that a 
20 monomer unit chain length is sufficient to overcome 
end effects on the chain energy. The calculated single- 
chain energies a t  the dihedral angles found experimentally 
for the two crystalline forms are of special interest and are 
given in Table I. 

I t  can be seen that a calculation of the enthalpy of tran- 
sition using energy values from Table I would yield a neg- 
ative result, indicating that the low-temperature form is 
less stable than the high-temperature form, except when a 
torsional term is added to the K function. 

Unit  Cell Energy Calculations. Energies were calcu- 
lated for the PTBD unit cell of the low- and high-temper- 
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b 9.45 
1 9.50 

(A) 9.55 
9.60 
9.65 

Table I1 
Comparison of the Value and Location of the Energy Minima 

-40.170 - 40.179 - 40.158 -40.072 -39.920 
-40.182 - 40.2 1 2b - 40.209 - 40.126 - 40.006 
-40.115 -40.184 - 40.203 - 40.136 -40.020 
-39.982 -40.087 -40.109 -40.070 -39.982 
-39.820 -39.967 -39.985 - 39.965 -39.860 

Potential Lattice Energy Energy of Unit Cell Cell Parameters 
Function Temp Form (kcal/mol) (kcal/mol) b (A) 

(a )  Monoclinic Lattice and the Unit Cell 

ss Low 

ss High 

K Low 

K High 

-69.577" 
-67.544 
-76.017" 
- 75.654 
- 40.212" 
-39.449 
- 43.289" 
-29.33 

-11.146 
- 11 .592a 
-12.146 
-12.362" 
-6.942" 
-7.247" 
-7.548 
-8.629 

8.70 
8.50 
9.85 
9.85 
8.65 
8.45 
9.70 
9.10 

9.60 
9.60 
8.50 
8.60 
9.50 
9.50 
8.50 
8.70 

Interchain Distance (A) 

(b) Hexagonal Lattice and the Unit Cell 

K Low -41.761" -7.090 4.60 
-41.559 -rm" 4.64 

K High -42.78Eia -4.192 4.67 
-38.531 -6.273" 4.94 

K High -39.411 -6.225 4.90b 

Energy minima. b The experimental data indicate that the high-temperature form does not exist below an interchain distance of 4.90 A. 
Thus only the local minimum, not the absolute minimum makes sense experimentally. 

Table I11 
Energy Surface of Monoclinic PTBD Lattice around Minimum Calculated with Kitaigorodsky Function" 

a - (A) Low-Temperature Form" 
8.60 8.65 8.70 8.75 8.80 

8.70 1 -37.886 -41.610 

Energy in kcal/mole. b Energy minimum. 

ature forms using the SS and K functions. In these calcu- 
lations the dihedral angle was fixed and the a and b unit 
cell parameters varied. The minimum energies and the 
corresponding a and b parameters are given in Table 11. 
The space group and unit cell parameters are not known 
for the high-temperature form of PTBD. However, it was 
shown4 earlier that  in this form each chain is ,hexagonally 
surrounded by equidistant chains. Therefore, calculations 
were also carried out assuming a hexagonal lattice for 
which the unit cell energy was obtained as a function of 
interchain distance taking four monomer units per cell. 
The minimum energies calculated in this manner are 
shown in Table II. 

Energy Calculations for a PTBD Crystal  Lattice. 
Preliminary calculations were carried out on a lattice of 
243 cells and . a  lattice of 125 cells. The energies were 

-42.691 -42.530 

found to be very close, indicating that interactions beyond 
three nearest neighbors did not appreciably affect the 
energy. All further calculations were carried out on a lat- 
tice of 125 unit cells. The same type of calculations car- 
ried out for the unit cell alone were done using the lattice 
of 125 unit cells. Some results of this minimum energy 
search appears in Tables I11 and IV and Figure 3. The ta-  
bles consist of that  portion of the energy surface that  sur- 
rounds the energy minimum. The minimum energies are 
also given in Table II for comparison with the unit cell 
energy values. 

The observed a and b unit cell parameters for the low- 
temperature form are given3 as a = 8.63 and b = 9.11 
f\. The coordinates of the calculated energy minima for 
both functions are quite close to the experimental value. 
The lattice constants found by the SS function deviate 
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’ Surface of Monoclinic PTBD around 
Table IV 

Minimum Calculated with Scott and Scheraga Functiona 

a - (A) Low-Temperature Forma 
8.50 8.55 8.60 8.65 8.70 8.80 

b 9.40 
9.50 
9.60 

(A )  9.70 

b 8.30 
8.40 ‘ 8.50 

(A) 8.60 

-67.544 

-68.175 

-69.041 
-68.427 

-68.293 -67.879 
- 69.293 -69.363 -69.091 

-69.577b -69.459 
- 69.201 -69.252 

a- (A) High-Temperature Form 
9.70 9.75 9.80 9.85 9.90 10.00 

-74.896 -74.607 
-75.508 -75.584 -75.804 - 75.649 - 75.108 

-75.861 -76.014 -76.0176 -75.904 
-75,591 -75.654 -75.181 

0 Energy in kcal/mole. b Energy minimum, 

a -  

I 8i50 9;oo 9;50 
8.00 

- 3.00 A 

Figure 3. The energy of a monoclinic low-temperature PTBD lat- 
tice as a function of the a and b crystallographic parameters, cal- 
culated using the Kitaigorodsky potential function. 

0.01 A for the a constant and 0.49 A for the b constant. 
The deviation of the a constant is 0.07 A and the b con- 
stant is 0.37 8, for the minimum energy found with the K 
function. 

Energy calculations were also made for a lattice con- 
taining the hexagonal array of chains; the results are given 
in Figures 4 and 5 for the low- and high-temperature 
forms, respectively; the minimum energies are given in 
Table 11. From the figures it can be seen that there are 
clearly defined minima at 4.60 and 4.67 A for the low- and 
high-temperature forms, respectively. The observed inter- 
chain distance for the low-temperature form is the same 
as that found in the computer fit. The observed value4 for 
the high-temperature form of 4.90 A, however, deviates 
considerably from the fitted one. 

Upon comparison of the values in Table 11, it is seen 
that the energy of the lattice represents a structure that is 
well over six times as stable as the structure correspond- 
ing to the minimum value calculated for the unit cell. 
When the energy of the unit cell is compared with the 
energy calculated for four single chains, it is seen that the 
unit cell is in turn far more stable than the sum of the 
energies of the four chains, as shown in Table V. 

Figure 4. Energy of a hexagonal low-temperature PTBD lattice 
as a function of interchain distance calculated using the Kitaigo- 
rodsky potential function. 

In the hexagonal lattice calculation the minimum ener- 
gy for the unit cell in the high-temperature form occurs a t  
an interchain distance of 4.94 A while the minimum for 
the lattice is a t  4.67 A (see Table 11). Thus, unlike the lat- 
tice, the coordinates of the minimum for the unit cell are 
very close to the experimentally observed interchain dis- 
tance.4 The heat of transition calculated from the hexago- 
nal lattice data given in Table I1 is in reasonable agree- 
ment with experiment. The difference between the energy 
minimum of the low-temperature form and the energy of 
the lattice a t  4.90 A, the experimental interchain dis- 
tance, is equal to 43.5 cal/g. If one uses the energy of the 
lattice a t  the coordinates of the calculated energy mini- 
mum for the unit cell (4.97 A),  the heat of transition is 
found to be 59.8 cal/g. The heat of transition found exper- 
imentallyzb for melt recrystallized PTBD was 27 cal/g. 

Calculation of Heat Capacity. In order to get a theo- 
retical estimate of the heat capacity, it is necessary to 
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488 ,~ INTERCHAIN DISTANCE ( A )  

Figure 5. Energy of a hexagonal high-temperature PTBD lattice 
as a function of the interchain distance calculated using the 
Kitaigorodsky potential function. 

know the lattice energy as a function of temperature. The 
lattice energy as a function of the interchain distance 
given in Figures 3 and 4 can be converted to plots of ener- 
gy us. temperature, through use of the X-ray crystallogra- 
phy data of Suehiro and Takayanagi.4 The results of this 
transformation are given in Figure 6. The high-tempera- 
ture portion of curve is linear, and its slope, the heat ca- 
pacity, Cv is 0.13 cal/(g deg). This differs from the exper- 
imental C, value by about 0.3 cal/(g deg). 

Discussion 
The entropy change, calculated using the isomeric state 

approximation is that  for a perfect crystal going to the 
melt. Since final melting of PTBD takes place from the 
highly disordered high-temperature form,4 it is not ex- 
pected that AScalcd will equal A s r n .  However, AScalrd 
should agree with the entropy change on taking the crys- 
tal from the low-temperature form a t  the transition tem- 
perature to  the melt uia the high-temperature form. As 
noted above, it is found that AScalcd underestimates the 
entropy change by a factor of two. Therefore, a single-chain 
model suffices to  approximate a statistical property such as 
the entropy. 

On the other hand the single-chain model is not suffi- 
cient for calculation of the energy. Even when torsional 
energy terms are included, the conformations predicted to 
be the most stable are not those found experimentally for 
the crystal lattice. If the energy is calculated taking inter- 
molecular interactions into account, then the unit cell pa- 
rameters which are found a t  the energy minimum for the 
low-temperature form are in close agreement with those 
from X-ray analysis. This close agreement for form I indi- 

Table V 
Calculated Energies of a Unit Cell and Four Single Chains 

Min Energy Unit Energy of Four 
Function Cell (cal/g) Chains (cal/g) 

Low Temperature 
ss - 11.592 -4.618 
K -7.247 -2.602 

High Temperature 
ss -12.363 . -5.041 
K -8.625 -2.887 

4 0  60 80 100 120 140 
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Figure 6. Energy as a function of temperature.for PTBD. 

cates that the potential energy function may be used with 
confidence to study other properties. Why then does it not 
appear to predict the structure of form II? One possibility 
is simply that the proposed structure of form I1 is incor- 
rect (Le,, some other set of internal angles exists which. 
give the same repeat distance of 4.67 A) .  What is more 
likely is the following. The conformation of the macromol- 
ecules a t  equilibrium is that  for which the free energy is a 
minimum. But the free energy, AC, has two thermody- 
namic components, the enthalpy, AH, and entropy, TAS. 
Minimizing the potential energy deals only with the en- 
thalpic contribution to the free energy while totally ignor- 
ing the entropic term. This contribution, as experimental 
results sh0w,~J9 is quite large and certainly not negligi- 
ble, when form I1 is considered. Thus it is necessary to ex- 
amine the entropy itself, and also the heat capacity, 
which measures the accessibility of conformational states 
of the polymer. 

The difference of 0.28 cal/(g deg) or 60 cal/(mol deg) 
between theoretical and experimental heat capacity-tem- 
perature plots suggests that  about two-thirds of the heat 
capacity of the high-temperature form is due to  lattice mo- 
tions. If, as a first approximation, one uses the law of Du- 
long and Petit for an estimate of the heat capacity due to 
lattice motions, about 54 cal/(mol deg) are left for low- 
energy vibrations. The Dulong-Petit value of 6 cal/(mol 
deg) is an estimate for monatomic crystals and probably 
underestimates the energy of the modes of a polymer lattice. 
However, the approximate value of 54 cal/(mol deg) indi- 
cates the probability of finding several chain vibrations 
below 200 cm-l in the far-ir spectrum. 

The fact that the Kitaigorodsky function accurately 
predicted the interchain distance of form I indicates that  

(19) G .  Moraglio. G .  Polizzotti,  and F. Danusso, Eur. Po/>rn J ,  1, 183 
(1965). 
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it is a “good” energy function for the system, and that 
models can be inferred from these calculations with rea- 
sonable confidence. Using the K function, minimum ener- 
gies for a monoclinic and a hexagonal lattice were calcu- 
lated, and the difference in energies for these structures is 
1.549 kcal/mol for form I and 0.501 kcal/mol for form 11. 
In the case of the high-temperature form, the difference in 
energy is less than kT at experimental temperatures, indi- 
cating that both forms are energetically accessible in the 
crystal, and justifying our use of the Suehiro-Takayanagi 
temperature data in constructing our energy-temperature 
plots. 

The energy minima for PTBD are actually quite shallow 
in comparison with other materials for which lattice ener- 
gy minimizations such as these have been performed. For 
example, Ahmed, Kitaigorodsky, and Mirskayalz calcu- 
lated the energies of tetraphenyltin as a function of two ori- 
entation parameters and observed that a change in only 
0.39 8, in one lattice parameter gave rise to a 10-kcal/mol 
energy change near the minimum. Tetraphenyltin, as well 
as many other molecules, has a much deeper energy well 
than does PTBD. 

The shallowness of the energy well indicates that PTBD 
has considerable freedom of motion, even at  the configu- 
ration corresponding to the potential minimum, because 
the energy barriers between configurations are compara- 
tively low. Thus even with an energy difference of about 
2kT for form I, both the hexagonal and monoclinic struc- 
tures are energetically accessible, and much interconver- 
sion between these forms and various other configurations 
can be expected. This could explain the “pseudohexago- 
nal” crystal structure attributed to PTBD in the X-ray in- 
vestigation. It could also explain the difficulty in ob- 
taining a specific crystallographic space group for the 
high-temperature form. The interconversion between the 
two lattices may be so great as to make it extremely diffi- 
cult to obtain a clear pattern. 

We conclude the following. The calculated minimum 
energy configuration for form I coincides with the ob- 
served X-ray structure. Increasing the temperature of 
form I leads to an  increase in interchain distance and in- 
tramolecular conformational freedom. Above the solid- 
solid transition temperature,_the possibilities of many dif- 
ferent configurations of approximately equal energy leads 
to a variety of conformations for the individual chains. 
MandelkernIs has pointed out that “hexagonal packing 
allows a greater amount of rotational freedom about the 
chain axis and thus an increased entropy in the crystalline 
state.” This is in fact what is observed for PTBD. This 
large increase in entropy contributes a major portion of 
the crystalline free energy, and explains the fact that 
minimization of AH (rather than AG) cannot predict the 
molecular structure for form 11. However, the entropy 
change is approximated by a rotational isomeric state (sin- 
gle-chain) calculation. 

Appendix I 

CH&H=(CHCH&H&H=),-ICHCH3, is given by 
The partition function for a chain of x butadiene units, 

X - 1  

k-1 
( 5 )  = n 2k(4)  = (2(4))x-1 

where z(4) is the partition function for a single unit con- 
sisting of four bonds: [CHCH&H&H=]. Consideration of 
rotational isomerism about each of the four bonds within 

the unit leads to assignment of statistical weights, p ,  p, 
and u, related to the relative conformational energies by 
expressions such as p = exp(-Ep/RT). Ep is the energy 
difference between skew and cis forms of the single bonds 
adjacent to the double bonds. EP is the amount by which 
the gauche conformation exceeds trans about the central 
bond, and Es is the energy factor bias against Cg*C con- 
formations, corresponding roughly to Ew in alkanes.18 In 
view of experimental results and prior computational suc- 
cesses, Abe and Floryl* assigned the values: E ,  = 0-200 
cal/mol, Ep = 300 cal/mol, and Ea = 2000 cal/mol. The 
unit partition function is then equal to 

. z ( ~ )  UaUbUcUd (6) 
where 

u, = co 111 ( 7 )  

(9) 

To calculate ~ ( 4 1 ,  we multiply out the matrices and ob- 
tain 

(2 + P)’ + 2a(4 + 4 p / 3  + p 2 P )  (11) 
2(4) = 

The temperature derivative for a single unit is then 

RT2 d~ = 2(2 + p)pE, + 2[ap/3[4(E, + E ,  + Eo) -I- d d 4 )  

_- 

p(3E, + Ep)] + 4aECI (12) 
and that for the polymer is 

dZ/dT = ( x  - l ) [ ~ ( ~ ) ] ~ - ~ d z ( ~ ) / d T  (13) 

Finally, eq 5 and 13 are evaluated and the resulting 
values of 2 and dZ/dT substituted into eg 4 for the con- 
formational entropy change. In the computer program, the 
number of monomer units is increased in successive calcu- 
lations until AS, does not change with increased x .  

The value of AS, thus found was 5.68 eu/mol, with E, 
= 0; increasing E ,  to 200 cal/mol changed ASa by less 
than 0.02 eu/mol. Because the low-temperature form (w = 
108”) differs from the energy minimum for a single chain 
by 0.171 kcal/mol, a zero-point entropy correction term of 
171/412 = 0.42 eu/(mol monomer unit) is to be substract- 
ed, giving AS, = 5.26 eu/mol. 


