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content (oh), and the last one is plotted against 6h. The 
results for the mean-square radii of gyration ( S 2 ) ~ ,  (So2)*, 
and (Sot) are also shown in a similar manner in Figure 5 .  It 
should be noted that (Ro2)* and (So2)* calculated for a 
finite number of samples by the Monte Carlo method were, in 
good agreement with (RoZ) and (Soz), respectively, from 
the exact calculation for chain length N = 151. It was also 
found that the mean helical content (6,) obtained by the 
Monte Carlo generation for N = 151 under the conditional 
probabilities for infinite chain length was in good agreement 
with F h  or & calculated exactly by the matrix multiplication 
methodfor N = 151. 

Figure 6 illustrates the dependence of the mean-square end- 
to-end distances in the helix-coil transition region relative to 
that in the randomly coiling conformation, ( R 2 ) ~ /  
( R z ) ~ ; e o l l ,  (Ro2)*/(Ro2)*coil, and (Ro2)/(Ro2)e,li, on the 
helical content (6,) or &. In Figure 7 relations for the 
mean-square radius of gyration are shown in a similar fashion. 
The dimensions of ( R 2 ) ~ , ~ ~ i i  and (S2)~ ,ool i  are those ob- 
tained in our previous study24 on non-self-intersecting chains 
for a randomly coiling polypeptide, and hence include the ex- 
cluded-volume effect. The unperturbed dimensions in the 
random-coil form, (R02)*COl 1 ,  (So2) *eol 1 ,  ( RO 2)coli, and 
 SO^)^^^^, are also cited from the same As shown 
by Nagai,Zo the unperturbed chain dimensions during the 
transition from coil to helix pass through a minimum. In 

the model used here we cannot detect the minimum of the un- 
perturbed dimensions in the figure, although they are present. 
Therefore, we could not compare the dimensions in the un- 
perturbed state with those for non-self-intersecting chains in 
this respect. 

The results on the mean-square end-to-end distance 
( R ~ ) v , D ,  which was evaluated for k = 100, in eq 29 by 
taking into account the contribution of conformational en- 
ergies calculated from eq 1 and 2, are plotted against the mean 
helical content in Figure 8. The unperturbed dimen- 
sions (Ro2) obtained from an exact calculation with eq 30 
are also shown as the solid curve in the same figure. The re- 
sults for the mean-square radius of gyration are shown in a 
similar manner in Figure 9. The excluded-volume effect 
during the helix-coil transition could be qualitatively ob- 
served in Figure 8, and more distinctly for the case of 
(S~)V,D in Figure 9. Some points for (S~)V,D are located 
below the solid curve, i.e., the unperturbed dimension, (So2), 
in the region of helical content near unity; this results from 
the fact that the rodlike conformation abruptly bends at the 
middle point of the chain. The position of the junction and 
the orientation of bending significantly affect ( R 2 )  and 
(S2) in the region of high helical content. The results on 
( R ~ ) v , D  and {S~)V,D, as seen in Figure 8 and 9, were 
therefore scattered. More refined results may be obtained by 
increasing the number of samples. 
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ABSTRACT: Numerical distributions of end-to-end distances were generated by a Monte Carlo method for hard-sphere 
off-lattice polymers of length N = 20, 40, 60, 80, 98, and 298 atoms. Comparison by xz tests against five recently proposed 
theoretical distribution functions showed that for N = 80 and N = 98, the data could be described, with 95% confidence, by 
the equation f(r) = exp[ -(ar2 + br + c)], where a and b are fitted parameters and c is a normalization constant. For N = 
298, limitations of sample size lead to lower confidence limits (about 8Ox), but good fit. The above equation, and not its 
gaussian counterpart exp( -&), is probably the limiting distribution function. The function accurately predicts the 1st 
through 12th observed moments at all chain lengths. 

he distribution function for the end-to-end distance of a T polymer with excluded volume has been the subject of 
many recent investigations. 4-15 Nevertheless, its theory re- 
mains very much an open question. The importance of 
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knowing the correct function arises from the relationship of 
its moments, (r2) ,  (r4) ,  etc., to observable physical quan- 
tities. Some geometric properties which could be predicted 
with the aid of the correct distribution function are the mean- 
squared radius of gyration,le light scattering curves,l7 average 
dipole moment,18 and viscosity.1g 
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In recent years, many hypothetical functions have been 
proposed on various theoretical or empirical grounds. 
Workers have converged on this problem mainly by three 
paths : analytical theory, exact enumeration, and Monte 
Carlo simulation. The goal of the theoretical approach is 
presently to obtain an asymptotic form of the distribution 
function, in terms of the expansion coefficient a and excluded- 
volume parameter z. Enumeration and Monte Carlo studies 
attack the problem from the opposite end, riz., extrapolation 
of shorter chain results ( N  = 1 to ca. 5000, where N is the 
chain length) to chain lengths more representative of real 
polymers. In all cases, the goal is to obtain a closed distri- 
bution function of reasonable mathematical form on which to 
base predictions of polymer dimensions. 

In paper I of this series,2 details of a Monte Carlo method 
for studies of a hard-sphere off-lattice polymer model were 
given, and the dependence of the mean-squared end-to-end 
distance and radius of gyration were presented and discussed. 
In the present work the actual distributions of the end-to-end 
distance for various chain lengths are compared with several 
proposed distribution functions, for the purpose of choosing a 
"best" function consistent with our model and data. Com- 
parison of trial to observed distributions is made by x 2  tests 
and by comparison of predicted to observed moments. We 
further examine the possibility that one or more of these func- 
tions predict the limiting distribution for the excluded volume 
problem, the principal assumption being that if any of the 
proposed forms is a true asymptotic one, then x2 ought to de- 
crease as the chain length N increases. 

The first was done 
for the functions exactly as proposed by their authors, so that 
their applicability to our model could be directly tested. A 
second set of calculations was made on the same functions, 
but with variation of the function parameters. In this case 
we are testing the form of the equation, and search for those 
values of the parameters which minimize x2. 

Trial Distribution Functions 

The trial distribution functions selected for this study are 
listed along with their sources in Table I, and are numbered 
I-V. One or two examples of each of the three approaches, 
analytical, exact enumeration, and Monte Carlo, were se- 
lected. 

The analytical method first proposed by Kuhn2O uses a 
gaussian distribution function 

Two sets of comparisons were made. 

f(r) = c1 exp(-c2r2) (1) 
where r is the end-to-end distance and 4arZf(r)dr is the prob- 
ability that r falls in the range r, r + dr. The normalization 
constant c1 is equal to (3/2~N12)~/~,  and c2 = 3/2NlZ for a 
freely jointed chain. For chains with restricted bond angles 
but without excluded volume, the quantity NP is usually re- 
placed by the distribution function second moment. How- 
ever, for such models Floryz1,*Z has shown that 

lim (r2)/N12 

is finite, and that such chains can still be treated with 
gaussian statistics. 

It has long been known that the nonbonded interactions in 
polymers destroy the gaussian character of the distribution 
function. The most successful analytical approaches have 

s--. m 
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TABLE I 
DISTRIBUTION FUNCTIONS USED IN THIS STUDY 

Param- 
Eq Function eters" Ref 

I f(r) = exp(-czrZ) CP 20 
I1 f(r) = exp(-aan2r2/h*2 + an, / I *  10 

111 f(r) = exp[-&(r - di)2] 4 ,  dz 9 
IV f(r) = (r/u)'/Z exp [ - - ( r /~ )~ /~ ]  U 8 

V f(r) = exp(-a.+) t ,  a 7 

2(an2 - l)r/h*) 

a Defined in the text. 

treated this excluded-volume effect as a perturbation of the 
normal random walk. Alexandrowiczlo has obtained his 
equation (eq I1 in Table I) by treating the distribution of in- 
ternal segmental distances as gaussian, and expanding and 
averaging the intramolecular energy factor, exp[ - f iZk<l  . 
26(hlk)], where h l k  is the separation of segments 1 and k ,  and fl  
is the binary cluster integral. The equation obtained by 
Edwards9 (eq I11 of Table I) was derived by treating the inter- 
action of the polymer with itself as a self-consistent field, ob- 
taining an equation for p(r, L),  the probability of a polymer of 
length L having end-to-end distance r, also as a function of the 
intramolecular energy expression. 

For our numerical study we can consider Alexandrowicz's 
and Edwards' distribution functions to have the single form 

f(r) = k exp[-(ar2 + br + c)] (2) 

differing only in the assignment of physical meaning to the 
constants a, b, and c as follows: gaussian, a = c2, b = 0, 
c = 0;  Alexandrowicz, a = c2, b = -2(an2 - l) /h*,  c = 0; 
and Edwards, a = 0.9c2, b = -2(0.9~)[(5N1/3)~ '(P/3~1)"~], 
c = (0 .9cz)[(5Nl/3)"~~((p/3~1) '~5].  Here cu is the same as in eq 
1, h* is the most probable end-to-end distance, i.e., that finite 
distance for which bf(r)/dr = 0, and an2 is the squared expan- 
sion factor, an2 = h*2/ (2 /3Nlz) ,  the denominator being the 
most probable squared end-to-end distance for gaussian statis- 
tics. Also, (p, the binary cluster integral, reduces to 4id3/3 for 
the hard-sphere model adopted for our Monte Carlo studies. 

In addition to the analytical approaches taken by Alex- 
androwicz and Edwards, a variation-principle treatment was 
performed by Reissl la and carried out to zero-order approxi- 
mation in a self-consistent field. The resulting density func- 
tion was found to have the form 

f(r) = k exp[-(ar2 + b/r)] (3) 

However, Reiss's calculations using this lowest order ap- 
proximation predicted a second-moment dependence (r z, 
N4Ia, which is not consistent with the widely accepted value 
(r2) a N - ~  . Furthermore, other inconsistencies later 
pointed outllb leave this form somewhat in doubt. There- 
fore, we have somewhat arbitrarily chosen to omit eq 3 in this 
study. 

In contrast to analytical studies, which attempt to derive 
the distribution function from first principles, exact enumera- 
tionZ3 and Monte C a r 1 0 ~ ~ z 4  studies simulate mathematically 
the geometric properties of the polymer and deduce after- 
wards the function which must have given rise to the observed 
distribution. Enumeration methods are limited to assess- 
ment of random walks on a space-filling lattice, where the ex- 

(23) C. Dornb, Adcan. Chem. P ~ J J ~ . ,  15, 229 (1969), and references 

(24) P.  J. Gans, J .  Chem. P h ~ s . ,  42, 4159 (1965), and references cited 
cited therein. 

therein. 
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TABLE I1 
OBSERVED MONTE CARLO DISTRIBUTIONS OF THE SQUARED ENDTO-END DISTANCE, r2, SHOWING THE UPPER LIMIT 

OF EACH GROUP, rut, AND THE FRACTION OF POLYMERS OBSERVED IN EACH GROUP, f, 
~~~ 

Croup number 7 

N 1 2 3 4 5 6 7 8 9 10 11 12 

20 ru2 

40 ru2 

60 ru2 

80 ru2 

98 rU2 

298 ru2 

f, 

fg 

fg 

fu 

fu 

f, 

19.02 
0.0393 

48.0 
0.0411 

78.9 
0,0464 
113.2 

0.0461 
144.2 

0.0476 
764 

0.0842 

38.04 
0.0811 

96.1 
0,0923 

157.8 
0.0897 
226.4 

0.0837 
288.5 

0.0905 
1145 

0.0726 

57.05 
0.1105 

144.1 
0.1111 

236.6 
0.1132 
339.6 

0.1110 
432.7 

0.1159 
1527 

0.0767 

76.07 
0.1011 

192.1 
0.1091 

315.5 
0.1095 
452.9 

0.1180 
576.9 

0.1174 
1909 

0.0815 

95.09 
0.1096 

240.2 
0.1142 

394.4 
0.1088 

566.1 
0.1178 

721.2 
0.1082 

2482 
0.1112 

cluded volume is fulfilled by the constraint of self-avoidance 
of the walks. They are also limited to extremely short 
lengths (for 13 steps, nearly a billion self-avoiding walks are 
possible on the simple cubic lattice). The properties of 
longer walks must then be extrapolated from enumeration 
data. 

To represent this type of study, we have chosen the func- 
tions proposed in the investigations of Domb, Gillis, and 
Wilmers; who performed exact enumerations of self-avoiding 
walks of up to 13 steps on the simple cubic lattice (eq IV of 
Table I) 

f(r) = k(r/u)’” expi- (r/r)s’z~ (4) 

where u is the standard deviation of the distribution. A 
function having the same form was also adopted by Hioe and 
Wall16 to describe their enumeration results. 

Finally, Monte Carlo studies of self-avoiding walks are 
similar to exact enumeration in that they produce an ob- 
served set of walks and attempt to fit proposed functions to 
the data. The first such Monte Carlo distributions reported 
by Wall, et a1.,2b could not be fit to any functions because of 
the severe scatter of the data. The scatter itself was due to the 
inefficient sampling method; the data obtained in the present 
study are far more adequate, owing to the improved sampling 
methods described in paper I. 

In Monte Carlo studies of self-avoiding walks on a tetra- 
hedral lattice, Mazur7 proposed the function (eq V of Table I) 

f(r) = k exp(-aNr‘) ( 5 )  

where aN is a function only of chain length (and is not the ex- 
pansion factor), and the exponent t is a “shape factor.” This 
factor adds an additional degree of freedom to the function of 
Domb, Gillis, and Wilmers, to which eq 5 reduces for the 
special case f = 2.5, aN = ( ~ - 2 . ~ .  Extrapolating his Monte 
Carlo data to N = a, Mazur found the best value of t to be 
3.2, and required the second moment of f(r) to coincide with 
the observed value of (rz), so that 

aN = [r(5/t)/r(3/t)(rz)]”z (6) 

@(r) = r(3/t, aNrt)/I’(3/t) (7) 

By use of the incomplete r function,20 one can show that 

(25) F. T. Wall, L. A. Hiller, Jr., and W. F. Atchison, ibid., 23, 913, 

(26) The incomplete r function is defined by the relation 

2314 (1955); 26, 1742 (1957). 

r ( y ,  X )  = J,”e-~t~--Idt 

114.1 
0.1078 

288.2 
0.0997 
473.3 

0.0984 
679.3 

0.1043 
865.4 

0.1012 
2863 

0.0727 

133.1 
0.0962 

336.2 
0.0838 

552.1 
0.0955 

792.5 
0.0864 

1010 
0.0925 

3436 
0.0966 

152.1 
0.0834 

384.3 
0.0825 

631 .O 
0.0739 
905.7 

0.0743 
1154 

0.0669 
4009 

0.0828 

190.2 
0.1300 

480.3 
0.1177 

788.8 
0.1146 

1132 
0.1099 

1442 
0.1074 

4581 
0.0709 

247.2 
0.1017 

624.4 
0.0938 

1025 
0.0978 

1472 
0.0894 

1875 
0.0868 

5536 
0.0902 

342.3 
0,0373 

864.6 
0.0475 

1420 
0.0432 

2038 
0.0497 

2596 
0.0529 

6681 
0.0740 

m 

0.0020 

0.0072 

0.0090 

0.0094 

0.0127 

0.0866 

m 

0) 

m 

m 

03 

where @(r) is the fraction of walks having end-to-end distance 
of r or more. 

Finally, Schatzki27 has reported Monte Carlo distribution 
function data for lengths of up to 100 steps on a tetrahedral 
lattice. These data were fit by least squares to a four-term 
orthogonal function expansion, four being the number of 
terms needed to reduce the sum of the squared residuals below 
about 0.5%. The numerical results are compared with our 
own in a later section. 

Method of Calculation 

Numerical distributions of end-to-end distances were ob- 
tained by the Monte Carlo method described in paper I of 
this series.2 The polymer model used was a chain of 
(= 20,40,60,80,98,298) atoms with fixed bond length 1.54 A, 
fixed tetrahedral bond angles, and continuously variable 
dihedral angles (off-lattice model). The excluded-volume 
effect was imposed by a hard sphere of diameter 1.54 A cen- 
tered on each backbone atom. The Monte Carlo experiment 
consisted of varying the dihedral angles at random and av- 
eraging the properties of those generated conformations 
which were free of hard-sphere overlaps. Importance sam- 
pling was employed to reduce sampling variance and increase 
efficiency, and sample weights were biased to reflect a canon- 
ical ensemble. 

For each length N ,  data consisting of individual values of 
r2, the end-to-end distance of a single polymer, were collected 
at each step of the simulation, arranged in order of increasing 
magnitude, and then divided into 12 groups of approximately 
equal numbers of data points. The Monte Carlo results are 
displayed in Table 11. 

Each function in turn was subjected to the following statis- 
tical analysis at each chain length. The null hypothesis, Ho, 
that the given function gave rise to the observed distribution 
of data, was tested by computing the statistic2* 

and comparing x0Z to the value of xz given by standard 
tablesz9 at the 95 In eq 8, d, is the number 
of observed samples falling into the j th  group (listed in 

confidence level. 

(27) T. F. Schatzki, J .  Polym. Sci., 57, 337 (1962). 
(28) The zero subscript signifies that XO* is an estimator for the true 

(29) E. Kreyszig, “Advanced Engineering Mathematics,” Wiley, 
x2 which would be observed with an infinite number of samples. 

New York, N. Y., Chapter 18. 
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TABLE I11 
VALUES OF xo2 FOR FUNCTIONS USING THEORETICAL PARAMETERS DEFINED IN TEXT 

--- I- 
N ’  c2a 

~ 

20 1.581 X 

60 5.271 X 

98 3.227 X 
298 1.061 X 

40 7 . 9 0 6 ~  10-3 

80 3.953 x 10-3 

P 

xo2 

1,892 
4,327 
6,640 
9,624 

12,600 
97,000 

- 

7- I1 
h*b a, xoz 

9.497 1.648 272.2 
15.299 1.900 369.2 
19.689 2.005 694.7 
23.660 2.091 1002 
26.747 2.138 1729 
52.949 2.435 7132 

10.735 2.846 x 
16.272 1.423 X 
20.753 9.487 X 
24.663 7.115 X 
27.857 5.809 X 

- 
xo2 

11,500 
8,980 
9,580 
8,880 

10,000 

7-IV-7 
u(r)c xo2 

7- 

t 

8.197 3156 
13.487 1716 
17.524 1268 
21.133 1083 
24.137 904 
47.972 1326 

a c1 = ( C ~ / T ) ’ / ~ .  Most probable end-to-end distance estimated with eq 11. c u(r)  estimated as u1lZ(r2). 

Table II), and ej  is the number of sample values expected in 
the j th  group if the null hypothesis is true, i.e. 

(9) 
Smi 4ar2f(r)dr 

e’ = Lm4ar2f(r)dr 

mi-1 Yj = I , ,  . ., 12 

where mi is the upper limit of groupj (mo = 0) and f(r) = Ho. 
For the 11 degrees of freedom here,29 XO.05,1l2 = 19.68. 

This means that if the computed x02 value exceeds 19.68, the 
null hypothesis, H,,, is to be rejected with 95x confidence. 
The tabulated values of the x 2  statistic measure the statistical 
scatter which may reasonably be expected if the data are nor- 
mally distributed about the assumed distribution function, 
Ho. Since we are explicitly concerned with this scatter, in the 
discussion which follows we will limit ourselves to noting and 
comparing trends within a function and to a lesser degree the 
relative magnitudes of xo2. We note that when comparing 
values for a given function at different chain lengths, if x o 2  

values are very close together, prediction of a trend may not 
be justified. 

Results of xz Tests 

A. Direct x 2  Tests. The values of xo2 computed by the 
method described above are reported in Table 111. The 
degree of fit may be observed in Figure 1, where we have 
plotted the observed distribution as a bar-type histogram, 
superimposed on plots of the five functions, for the point 

On the basis of the x2 criterion, Table I11 shows that none 
of the functions gave a statistically acceptable fit to the data. 
However, this single statistic does not tell the whole story, as 
examination of the individual functions shows. 

Function I. Because all bond angles in our model were 
tetrahedral, the following equation was used in place of eq 1 

N = 98. 

fI(r) = cl’ exp(-3r2/4N12) (10) 

From Table I11 it is seen that the attempted fit to the gaussian 
function begins poorly and becomes worse as N increases. 
Hence, the freely jointed chain model is utterly without value 
for describing real chain statistics. 

Function 11. The xo2 for Alexandrowicz’s function begins 
at about 272 and increases steadily with N. This behavior 
may be traced to the fact that function I1 depends on two 
parameters, one of which is fitted to the experimental mean, 
h*, and the other of which is the analogous value for the 
gaussian case. But from the curve-fitting point of view, this 
value is purely arbitrary. 

3 .2  
3 .2  
3 .2  
3 .2  
3 .2  
3 .2  

V- 
ffN 

3.979 x 10-4 

2.292 x 10-5 
1.556 x 10-5 
1.794 x 10-6 

9.037 X 10-5 
4.086 X 10-5 

‘ 0 6 e  .O 6 

P 

X 0 2  

223.1 
57.58 
37.52 
42.64 
50.19 
38.01 

Figure 1. Normalized radial distribution functions, 4?rr2f(r), cs. 
end-to-end distance r for the five functions, at data point N = 98. 
Observed distribution is shown as a histogram. 

Since the xo2 values themselves were much lower than for 
function I, we examined the theoretical constants more closely 
to see whether refinement of the derivation could lead to 
better fit. Three major assumptions were made in that der- 
ivation. The first was in its being carried to first order only. 
Secondly, the approximation r << NP was used, a condition 
which may mar the fit near the upper tail of the distribution. 
Finally, the function as reported by Alexandrowicz calls for 
the parameter h*, the most probable end-to-end distance, 
rather than the ordinarily observed rms value, (r2)’”. As 
we did not measure h* directly, we were obliged to estimate 
its value before computing the degree of fit. This was done 
by using Alexandrowicz’s eq 17-19, in which h*2 and (r2) 
respectively are expanded to two terms in z, the well-known 
excluded-volume parameter. Eliminating z between the two 
equations, one obtains 

Substitution of the observed values of (rz) yields the h* 
entries of Table 111. It can be seen from eq 11 that the asymp- 
totic dependence of the predicted second moment on N is un- 
disturbed by this approximation. 

Function 111. The xo2 values obtained with Edwards’ 
parameters cluster about lo4 and exhibit little variation with 
chain length. The relevant constants contain a variety of 
factors, many of which result from approximations and esti- 
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TABLE IV 
VALUES OF xo2 FOR FUNCTIONS USING BEST-FIT VALUES OF PARAMETERS 

7- Function- --. 
I------.. --- 11, IIIG’b- . ----IV- 7 V 7 

N c2 XO‘ h* a n  a m i n  brninlarnin XO’ U xo2 t f f N  xoz 
____ 

20 1.265 X 1160 9.827 1.748 3.164 X 13.2206 173.91 9.608 302.2 3.73 9.071 X 81.67 
40 5.060 x 721 15.448 1.622 1 . 1 0 2 X  19.1561 53.76 15.210 78.39 3.51 3.267 X 10-5 35.56 
60 3 . 1 6 2 X  667 19.650 1.590 6 . 5 4 7 X  23.7513 55.50 19.493 64.44 3.41 1 . 9 5 4 X  25.23 
80 2.214 X 634 23.526 1.590 4.568 X low3 28.4370 18.48 23.250 37.45 3.31 1.538 X 1O-j 38.32 
98 1.678 x 10-3 475 26.341 1.510 3 .286X 29.5800 13.62 26.290 14.83 3.04 2.890 x 42.61 

298 4.488 X lo-‘ 255 51.281 1.432 7.798 X 53.2749 32.81 51.980 31.82 3.015 4.180 X 22.73 

a Minimizing parameters for function I11 are given by: d1 = h*(l - d2 = anz/h*2. * amin and b,,, are minimizing paramzters 
for eq 2: a = d2, b = 2dldz. 

mations carried out in the derivation. Function I11 does not 
seem to be the limiting distribution. 

Function IV. The function proposed by Domb, et al., 
shows a fit at N = 20 only moderately better than that of 
function 111, but steadily improves to N = 98. Further- 
more, the slight regression at N = 298 may be due only to 
insufficient samples, a point we shall take up again in con- 
nection with function I1 in the next section. 

One major approximation was required with function IV. 
Equation 4 calls for (T, the standard deviation of the observed 
distribution. In our Monte Carlo studies, we observed not 
n(r), but g(r2), so we have estimated u(r) as [(~(r~)]”’. This 
could not have been too serious, for the xo2 values listed in 
Table IV for the optimum (T’S show the same trend as those in 
Table 111, and differ from the latter by generally no more than 

Function V. The best raw fit was obtained with the func- 
tion and parameters of Mazur, as Figure 1 clearly illustrates. 
At N = 20, xo2 begins at about the same level as for function 
11, but drops to a steady, low value near 50. This is en- 
couraging, especially in view of the fact that one degree of 
freedom is lost due to forced fit to the observed second mo- 
ment (eq 6). It is not possible at these lengths to test whether 
the fit will improve as Nincreases without bound. 

B. Minimization of xo2. Each of the five trial functions 
contains one or two parametric constants which are in prin- 
ciple functions of the physical attributes of the molecular 
geometry. However, it is possible to view them merely as 
adjustable parameters, and correspondingly to adjust their 
values so as to minimize xa2, and hence to obtain the best fit 
possible with each functional form. We assume that this 
minimum value represents the best fit that can be hoped for at 
a given chain length, and, consequently, if such minimum 
values decrease as N increases, we can speculate on the asymp- 
totic fit for the given function. 

The minimization results are shown in Table IV and for the 
data points N = 98 in Figure 2. The observed distribution 
for N = 98 is also shown in Figure 2, as circles centered at the 
midpoints of the histogram bars which were shown in Figure 
1. (The bars themselves were omitted for pictorial clarity.) 

For the one-parameter functions (I and IV), the minimiza- 
tion was performed simply by recomputing xoz for different 
values of that one parameter. For two-parameter functions, 
it was necessary to compute a grid for x02(pl, p ~ ) ,  mapping the 
contours of the xo2 space formed by.varying the two param- 
eters p1 and p2 ,  and gradually tightening the grid around the 
deepest observed minima. Standard numerical minimization 
procedures failed because the space is so “bumpy” and 
studded with dozens of local minima of nearly equal mag- 
nitude. We can assert that the values of minimizing param- 
eters reported in Table IV are accurate to 2% or less. A 

10%. 

r (A.) 

Figure 2. Normalized radial distribution function for the same 
functions with best-fit parameters (I1 = 111). Observed distribution 
is shown as circles. 

contour map for the minimization of function I1 for N = 20 is 
shown in Figure 3. 

In addition to the described minimization, the 1st through 
12th moments of the functions were computed using both 
theoretical and best-fit parameters, according to the following 
equation for thepth moment of f(r) 

c 4 s r p + 2 f ( r )  dr 

1 4srZf(r) dr 
(rP) = (12) 

Once again, the results are best explained by considering 
the functions individually. 

Function I. The gaussian distribution has only one param- 
eter to be fit, c2, since c1 is merely a normalization constant. 
The effect of adjusting cp is to broaden the frequency-function 
curve by fitting the function mean to the observed (rz). 
Thus, from Table IV we find that 

(1 3) l/cz,,,,in = 2.12N1.226 0: (r2) 

while for the normal random walk l/cz is also proportional 
to (r2). 

While it appears that the degree of fit improves with in- 
creasing chain length N, this improvement is very slow, and 
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Contour grid for xo2 for function 11, as a function of 

we cannot predict whether xo2 willever drop below x o . ~ , ~ , ~ ~ ~  in 
the limit of infinite N .  This point is important, because it is 
precisely this condition which is implied by any theoretical 
treatment which purports to reduce to the gaussian case in the 
limit of large N .  The issue will be settled, however, in the 
discussion of higher moments in a later section. 

Functions I1 and 111. Since these two functions are equiv- 
alent, we list a single set of x o 2  values in Table IV. The best- 
fit parameters are presented in two ways, first as values of 
h*min and an,min for eq I1 of Table I,  and also for cornparison 
with eq 2. 

Table IV shows not only that goodness of fit improves with 
N ,  but that by the time N = 80, xo2 has dropped below the 
critical value of 19.68, and thus justifies acceptance of eq 2 as 
the parent distribution of the observed data. Furthermore, 
the slightly higher value of xo2 at N = 298 does not necessarily 
preclude eq 2 as the limiting distribution. Judging from the 
large variance of the actual distribution (the standard devia- 
tion at N = 298 was 19.7, or 35 of the observed mean, indi- 
cating a quite broad peak), it may well be that insufficient 
samples were taken at N = 298. In support of this conjec- 
ture, it was observed that xo2 decreased from 52.51 for 6740 
samples to the tabulated value of 32.81 when an additional 
14,300 samples were obtained. This may also be an explana- 
tion for correspondingly higher values of xo* (raw and best 
fit) for function IV at N = 298. 

The values of h*N,min* which minimize xo2 at each N are not 
equal to the ( rz )N but, as Alexandrowicz predicted, are di- 
rectly proportional to them. From the data it was observed 
that 

(rz).%T = aNb (14) 
and that 

TABLE V 
VALUES OF f AND (YN FOR FUNCTION V COMPUTED 
FROM OBSERVED FIRST AND SECOND MOMENTS 

20 4.6009 7.957 x 10-6 31.88 
40 3.8154 1.201 x 10-5 54.55 
60 3.5289 1.276 x 10-6 29.67 
80 3.4981 7.561 x 46.49 
98 3.2396 1.336 x 10-5 54,43 

298 2.9895 4.662 x 23.66 

It was found by least-squares analysis that b’ = 1.195, with 
u(b’) = 0.021. This lies close enough to our observed values 
b = 1.221, a(b) = 0.021, to justify our concluding that 

a 
h*,v,min2 = - ( r 2 )  

a’ 

for this region of N .  However, the ratio (r2)/h*’ actually 
increases very slowly with N ,  so it is not safe to assume this re- 
lationship beyond the given range. 

Function IV. The fit obtained with the function proposed 
by Domb, et al., improves as chain length increases, and 
becomes statistically acceptable at N = 98. For N = 298 
the fit worsens, however. Therefore, on this information 
alone it is not possible to judge whether function IV is an 
acceptable limiting distribution, since the high value of x o 2  at 
N = 298 could be attributed to insufficient samples. It will 
be necessary to calculate higher moments of the distribution 
for comparison with observed values. This is done in the 
following section. 

Function V. Mazur’s function tests an interesting hy- 
pothesis, because it predicts a distribution whose shape is inde- 
pendent of N .  That is, except for a scaling factor which 
depends only on (r2),..,, the distribution of end-to-end dis- 
tances is an unvarying function for all N .  We need only 
show that if the group limits are preset as fractions of (r2)N, 
then function I1 predicts group occupation numbers which are 
independent of N .  From the definition of aN given by eq 6, 
for any two chain lengths Nl and NZ 

where x , , . ~ ~  is the upper limit for group i at chain length .vl. 

If we set 

x ~ , N I  = k(rz).v, 

and 

x i , ~ 2  = k(r*)N, 

with k a constant, then 

a d k ( r * ) . d ‘ ’ *  = a N , ( k ( r 2 ) . d 1 / 2  

by eq 15. Since this quantity is the lower limit of integration 
in the evaluation of the incomplete r function, the assertion 
is proved. 

As may be observed from Table 111, the value of xo2 drops 
with increasing N to a minimum of 37.52 at N = 60, increases 
slightly, then falls to 38.01 at N = 298. Although these 
values never fall below 19.68, they compare favorably with 
those given by function 11, and hence neither justify nor 
negate the hypothesis that the functional shape depends on N .  
To be conclusive, further data at N = 298 and higher are 
needed. 
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TMLE VI 
OBSERVED FIRST AND SECOND MOMENTS, ALONG WITH THOSE COMPUTED FOR GIVEN FUNCTIONS 

WITH BOTH THEORETICAL AND BEST-FIT VALUES OF PARAMETERS 

r Function---------- > 

N Moment Obsd I I1 I11 1v V“ 

20 1 
2 

40 1 
2 

60 1 
2 

80 1 
2 

98 1 
2 

298 1 
2 

10.170 

16.084 

20.565 

24.627 

27.723 

54.303 

114.11 

288.19 

473.26 

679.28 

865.39 

3339.21 

20 1 
2 

40 1 
2 

60 1 
2 

80 1 
2 

98 1 
2 

298 1 
2 

a Fit to (r2). * Same as function 11. 

With Theoretical Parameters 
8.97 9.898 

94.86 109.21 
12.69 15.725 

189.73 271.19 
15.54 20.152 

284.59 442.72 
17.95 24.146 

379.46 632.68 
19.86 27.257 

464.83 804.32 
34.64 53.595 

1413.47 3068.45 
With Best-Fit Parameters 

10.033 10.178 

15.863 16.130 

20.067 20.566 

23.981 24.622 

27.546 27.747 

53.263 54.408 

118.58 114.70 

296.44 290.53 

474.38 473.36 

677.51 678.53 

893.92 866.79 

3342.25 3353.10 

13.577 

20.086 

25.280 

29.772 

33.420 

198.46 

432.25 

682.74 

945.10 

1189.21 

b 

8.604 
83.437 
14.158 

18.395 

22.184 

25.337 

50.357 

225.88 

381.34 

554.59 

723.47 

2857.8 

10.086 

15.966 

20.462 

24.406 

27.597 

54.565 

114.63 

287.28 

471.85 

671.27 

858.29 

3355.2 

10.064 

15.994 

20.497 

24.555 

27.715 

54.437 

10.073 

16.032 

20.504 

24.502 

27.649 

54.200 

113.15 

287.75 

471.55 

674.77 

864.59 

3324.37 

As an alternative approach, we may inquire whether an 
improvement is obtained by fitting f(r) to two observed mo- 
ments. Using the experimental first and second moments, it 
was possible to derive new values for the parameters t and a 
in function V, using the method of moments. ao For function 
V, the pth moment is given by 

Therefore 

Our Monte Carlo experiments provided average values of 
the first and second moments (see Table VI), ml and m2, 
which are unbiased estimators for pl and ~ 2 ,  respectively. 
Substituting ml for pl and m2 for p ~ ,  and solving for CY, we have 

To find t for the given distribution, then, one need only sub- 
tract the t / 2  term in eq 17 from the t term, set the difference 
equal to zero, and solve the resulting equation for t. CY is then 
found by substituting t back into eq 17. This procedure was 
done numerically by the method of secants,31 with results 

(30) J. E. Freund, “Mathematical Statistics,” Prentice-Hall, Engle- 

(3 1) A. Ralston, “A First Course in Numerical Analysis,” McGraw- 
wood Cliffs, N .  J., Chapter 9 .  

Hill, New York, N. Y., Chapter 8. 

shown in Table V. For the most part, these results improve 
on the theoretical fit (Table 111), but, with the exception of 
N = 20, do not do quite so well as the empirical best-fit ob- 
tained by minimization. 

Moments 

The ultimate test of acceptibility for a given probability 
density function such as eq I-V is how well the given function 
reproduces the independently observed moments of the dis- 
tribution. Table VI shows the observed first and second mo- 
ments, as well as values predicted by the functions for their 
theoretical and best-fit forms. Interest in polymer statistics 
centers around the second moments, so we will discuss this 
point separately from the higher moments. 

A. Second Moments. The Exponent b. The exponential 
dependence of (r*) on chain length, given by eq 14, has not 
been critically studied in Monte Carlo experiments until re- 
cently2r32 because the large standard deviation of (r2) at 
each N (see paper I) necessitates an exceptionally large 
sample size to assure the goodness of (r2)obad as an esti- 
mator of the true (rz). 

Table VI1 shows the results of a least-squares analysis on 
the second moments of Table VI. As a general rule, the 
smaller the standard deviation, ~ ( b ) ,  the more reliable the ex- 
ponent b and the narrower the confidence limits which can be 
placed on it. The figures shown represent a five-point fit. 
We chose to exclude the point N = 20 because of the well- 
known physical “induction period,” the region of small N for 
which the (r2) relationship is erratic and the value of b it- 
self changes rapidly with N .  (Numerical justification of this 
was already given in paper I.) 

(32) E. Loftus and P. J. Gam, J .  Chem. Phys. ,  49, 3828 (1968). 



Vol. 5 ,  No.  6, November-December 1972 COMPUTER SIMULATION OF POLYMER CONFORMATION 727 

TABLE VI1 
LEAST-SQUARES VALUES OF FACTOR a AND EXPONENT b IN THE EQUATION ( r 2 )  = aNb, WITH STANDARD DEVIATION IN b, u(b) 

Function ---. 
Observed I I1 I11 IV V 

With Theoretical Parameters 
a 3.205 4.743 3.148 6.793 0.779 3.207 
b 1 I221 1 .Ooo 1.209 1.126 1 ,262 1.220 
d b )  2.07 x 5.06 x 10-4 1.76 x 1.74 x 10-3 1.06 X 2.08 x 

a 3.402 3.235 a 1.146 3.209 
b 1.210 1.219 1 ,224 1 ,220 
4 b )  5 . 5 5  x 10-2 1.44 x 10-2 3.85 x 10-4 1.74 x 10-2 

With Best-Fit Parameters 

a Same as 11. 

TABLE VI11 
VALUES OF REDUCEDMOMENT FUNCTION 6(4, 2) OBSERVED, AND 

PREDICTED BY FUNCTIONS I-V WITH BEST-FIT PARAMETERS 

7 Function 7 

N Obsd I 11, 111 IV V 

20 1.3467 1.6667 1.3933 1.4618 1.3897 
40 1.3984 1.6667 1.4282 1.4618 1.4075 
60 1.4210 1.6667 1.4376 1.4618 1.4165 
80 1.4321 1.6667 1.4376 1.4618 1.4262 
98 1.4531 1.6667 1.4624 1.4618 1.4560 

298 1.4749 1.6667 1.4881 1.4618 1.4591 

The interesting features of Table VI1 may be summarized 
as follows. It has been widely suggested that b = for three- 
dimensional la t t i~es .2~  In fact, functions IV and V were ob- 
tained in consideration of the simple cubic and tetrahedral 
lattices, respectively, while functions I, 11, and I11 were ob- 
tained without reference to any lattice. With the exception 
of the admittedly inapplicable gaussian function, and func- 
tion 111-theoretical, both the observed and predicted values of 
b are significantly higher than for all other functions, indi- 
cating a value of b 2 1.22, in good agreement with the resuks 
of paper I and with the value found by Loftus and Gans.32 
The latter authors used a Monte Carlo model similar to ours, 
but an entirely different sampling procedure. By contrast, 
our Monte Carlo results were obtained for free dihedral rota- 
tion (not on a lattice), and our highest chain length is 298, not 
infinity. Nevertheless, the standard deviation in b of 1 or 
less indicates to us a strict adherence to eq 14, with no change 
in slope even for much higher N .  

The functional dependence of (r2) on N for functions I, 
IV, and V is easily derived. The three equations are 

(r2)I = 1.5/cz 

It is striking that function IV predicts ( r 2 )  to be propor- 
tional to the variance, a fact borne out by our data. The 
corresponding expressions for functions I1 and 111 are far 
more complicated and are not given here. 

As Table VI shows, all five functions accurately reproduced 
the observed second moments, even though the parameters 
were adjusted to fit the overall distribution function shape, 
and not the second moments explicitly. In order to achieve 
greater discrimination among the functions we need to ex- 
amine the higher moments. 

B. Higher Moments. To avoid dealing with extremely 
large numbers, we adopt Mazur's practive and define a 
reduced moment function 

Observed and computed values of 6(4,2) are given in Table 
VIII. The observed 6(4, 2) increases with N ,  but appears to 
approach an upper limit which unfortunately our data are 
insufficient to extrapolate. Functions I and IV both predict 
this limiting behavior, since (r4)1 = 15/4cS2 and ( r 4 ) l v  = 
r(3)a4/r(7/5). Hence 

61(4, 2) = 5/3 = 1.6667 

and 

By working out several examples, one quickly observes that 
all the 6's for eq IV are constants, completely independent of 
U. This will in general be true for one-parameter functions. 

The values of 6(4, 2) predicted by functions 11 and V are 
functions of their respective parameters, of course, but 6v 
(4,2) is a function only oft, and not aN. 

If t were always equal to 3.2, as Mazur states, then 6v(4,2) = 
1.4376 for all N .  Conversely, the limiting values of t com- 
puted from the constant values of 6(4, 2) given by functions I 
and IV should be 2.0 and 2.5, respectively. We can conclude 
not only that f must be significantly less than 3.2, but also that 
at least two parameters are needed in order to describe the ob- 
served nonconstant 6(4, 2) and the higher reduced moments 
as well. 

The higher order reduced moments are given in Table IX. 
The best-fit functions 11-111 predicted these moments quite 
well, as the table shows. The moments are plotted against 
N-1 in Figure 4. Table IX also shows the constant reduced 
moments predicted by function IV. It can be seen that in 
every case they fall below the observed values for N = 298 
(and hence even farther below any possible extrapolated 
limit), and below the values predicted by 11-111. 

C. Approach to Gaussian Behavior. A number of ob- 
servations have already been made which seem to rule out 
the gaussian function, I, as the limiting function for an 
infinite chain. The only arguments which might be raised in 
favor of function I are that x o 2  drops slowly with increasing 
N and that t of function V also drops slowly. However, as 
we have seen, a far more likely limiting value for t is some- 
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TABLE IX 
VALUES OF THE REDUCED MOMENT FUNCTION S(p, s) OBSERVED IN 

MONTE CARLO POLYMER GENERATION, AND PREDICTED BY 
FUNCTIONS 11, 111, AND Iv  USING BEST-FIT PARAMETERS 

N 6(2, 1) 6(4, 2) 6(6, 3) S(6, 2) 6(8, 4) S(10, 5 )  

20 
40 
60 
80 
98 

298 

20 
40 
60 
80 
98 

298 

All N 

1.103 
1.114 
1.119 
1.120 
1.126 
1.132 

1.106 
1.117 
1.119 
1.119 
1.125 
1.133 

1.113 

Observed 
1.347 1.710 2.178 
1.398 1.846 2.420 
1.421 1.919 2.547 
1.432 1.969 2.625 
1.453 2.007 2.710 
1.475 2.068 2.827 

Predicted (11-111) 
1.394 1.886 2.457 
1.428 1.971 2.618 
1.437 1.995 2.662 
1.437 1.993 2.662 
1.462 2.052 2.782 
1.488 2.116 2.909 

Predicted (IV) 
1.462 2.038 2.763 

2.212 
2.491 
2.693 
2.853 
2.873 
3.059 

2.683 
2.858 
2.903 
2.903 
3.028 
3.164 

2.968 

2.898 
3.393 
3.883 
4.341 
4.179 
4.716 

3.953 
4.287 
4.382 
4.387 
4.632 
4.902 

4.452 

thing between 2.5 and 3.0, rather than the gaussian value of 
2.0. 

The arguments against function I are strong. First, 
observed and predicted second moments indicate that (rz) a 
Nb, where b > “15 > 1, that is, that the limit as N + of 
(rz)/NIz diverges. Secondly, if eq 2 is rewritten 

f(r) = k exp[ -a(rz - i r ) ]  

then even though the coefficient b decreases, the ratio b/a ac- 
tually increases. As Table IV shows, this perturbing influence, 
which results physically from the introduction of excluded 
volume, increases approximately as ~ ‘ 1 ~ .  

D. Comparison with Other Numerical Studies. In addi- 
tion to those of Mazur, Monte Carlo studies of the distribu- 
tion function on a tetrahedral lattice have been performed by 
Schatzkizl and by Gam. a 3  Schatzki’s data for walks of up to 
100 steps were fit by standard least-squares techniques to a 
complete set of orthogonal functions, @,(r), with coefficients 
a,, based on an expansion of f(r) in terms of Hermite poly- 
nomials 

The order of the Hermite functions, 2m + 1, was chosen to 
make fo*lz(r) = &(I) (i .e. ,  M = 1, a. = 1) coincide with the 
gaussian distribution, eq 1. The number of terms, M ,  was 
chosen as that value beyond which the sum of the squared 
residuals, Az(M), changed by less than 0.01 %, and turned out 
to be M = 4. 

Least-squares residuals and xz values are closely related 
statistics, as eq 8 shows, the latter measuring the probability 
that observed data arose from a hypothetical distribution. 
For walks of 20, 40, 60, 80, and 100 steps, Schatzki’s least- 
squares residuals were 0.037, 0.005, 0.001, 0.001, and 0.001, 
respectively. Some corresponding xo* values, computed 
from his data by us, are 40:503, 60:102, 80:21.96, and 100: 
36.86, reflecting the trend of the A2 values. (The indepen- 
dently observed data of Gans at N = 100 gave x o 2  = 41.37.) 
The exception to this trend is N = 100, probably due, as 

c z 
w r  

a 
c o l  I I I 1 
w 

.02 .03 .04 .OS 
I / N  

U 

Figure 4. 
of reciprocal chain length. 

Various observed reduced moments plotted as a function 

Schatzki himself suggests, to the smallest number of samples 
(12,000), and hence insufficient representation in the tails of 
the distribution. None of these xo* values fall below the 
statistically acceptable level, although the trend is clearly to- 
wards good fit for longer walks, Whether this lack of fit is 
due to the number M of terms taken, insufficient samples, or 
inherent numerical error in the least-squares procedure we 
cannot tell. 

The reason for mentioning this study is to assess the pre- 
dictive properties of eq 19. Assuming good fit above N = 
100, the data would be completely described by the con- 
stants a, = a,(M, N). As N increased, it was observed that 
a3 quickly vanished, and that az also approached zero, though 
much more slowly. Hence, above a certain point, No,  only 
two terms of eq 19 are needed, the first corresponding to a 
gaussian term and the second amounting to a nonnegligible 
perturbation. In fact, a. was found to fluctuate about 0.97 
for small N and then to decrease nonlinearly from 0.974 at 
N = 35 to 0.948 at N = 100. In addition, al was found to in- 
crease with N .  In other words, above about 35 steps, both 
the gaussian term, ao, and the perturbation term, al, depart 
significantly from their gaussian values, namely unity and 
zero, respectively. 

The second moments could be computed from the pub- 
lished a, and eq 19, and were found to fit (r2)  = 3.99Nb (in 
units of 3’12), where b = 1.191, ~ ( b )  = 0.013. In particular, 
(rz)loo = 960.47 for Schatzki’s data, in excellent agreement 
with the value 953.98 observed by G a n ~ . ~ ~  Our own data at 
N = 98 were found to fit eq 19 with Schatzki’s a, (4.100), but 
with a slight reduction of his parameter E .  The corre- 
sponding xoz value was 54.8, and ( r*)  was computed to be 
862.98 A2, which agrees well with our observed values. 

In the absence of analytical expressions for a. and al, this 
empirical distribution can be of value only in confirming 
existing independently observed data, such as those of Mazur 
or Gans, since at present the only way to obtain the a, is 
actually to perform the analysis on collected data. Ob- 
viously, once the data have been obtained, the properties are 
already available and further analysis in unnecessary. 

Let us note that any continuous function can be expanded 
in terms of a complete orthogonal set, so that eq 19 is truly a 
general form for a distribution function. However, even if a 
1 wo-, three-, or four-parameter fit is statistically “good,” our 
purpose is better served if we can attach physical meaning to 
those parameters. 

Discussion 
Returning to the success of function 11-111 (best fit), SUC- 

cessful fit of distributions and higher moments by two-pa- (33)  P. J. Gam, unpublished data. 
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rameter functions gives numerical support for the two-pa- 
rameter theory of polymer solutions. 3 4  The form of the best 
function is a perturbed gaussian, exp( - ar* - br - c), with c 
a normalizing factor. Because the numerical Monte Carlo 
distribution is observed for a model with explicit long-range 
correlation, there is no need to resort to the usual series ex- 
pansion35 for (r2)/(rZ)O in terms of the parameter z = 
(c2/lr)”?/3. The major analytical problem with such an ex- 
pansion arises from the slow convergence of the series, and 
implies validity of the expansion only near the 0 point. 

The form of eq 2 also suggests that a should be a gaussian- 

(34) H .  Yamakawa, “Modern Theory of Polymer Solution,” Harper 

(35) H. Yamakawa, A. Aoki, and G .  Tanaka, J .  Chem. Phys., 45, 
and Row, New York, N. Y., 1971. 

1938 (1966). 

like parameter which pertains to the molecular geometry, and 
b a perturbation parameter which contains the “hardness” of 
the excluded-volume effect. In fact, data from Table IV 
obey the relation 

l/amin = 0.645N‘/3 

Thus, the best-fit values of the parameter a are proportional 
to Nb//“, which is the known N dependence of first-order 
perturbation theory. 
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ABSTRACT: The hydrodynamic properties of poly(N5-w-hydroxyethyl-L-glutamine) and ionized poly(L-glutamic acid) 
in water differ in a manner which reflects the polyelectrolyte properties of poly(L-glutamic acid). However, the circular 
dichroism spectra of these two polypeptides are affected in a similar manner by increasing temperature and salt concentra- 
tion. The ability of increasing temperature and increasing potassium chloride concentration to reduce the intensity of the 
positive circular dichroism band are cumulative for both poly(N5-w-hydroxyethyl-L-glutamine) and ionized poly(L-glutamic 
acid), On the other hand, in the helix-coil transition of poly(N5-w-hydroxypropyl-L-glutamine), the effects of increasing 
temperature and increasing potassium chloride concentration offset each other. It is conclufied that the effects of salts on 
the circular dichroism of charged polypeptides cannot be accounted for by the formation of (Y helices and that the salt effect 
must be more complex than a simple shielding of electrostatic charges on the side chains. 

he conformational properties of fully ionized homopoly- T pept ides , notably poly(L-glutamic acid) and poly@- 
lysine), have been of interest recently because of the sugges- 
tions that they may become partially ordered in dilute aqueous 
solution when the concentration of added electrolyte is pro- 
perly chosen. 2-7 

On theoretical grounds Krimm and Mark2 predicted that, 
in the absence of added salt, the repulsions between the 
charges in the side chains would lead to the formation of 
short ordered regions in the polypeptide backbone with 
values of the torsion angles cp and +* similar to those observed 
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versity. 

(1) This work was supported by a contract with the Division of 
Biology and Medicine, Atomic Energy Commission (L. M,), a Public 
Health Service Postdoctoral Fellowship from the National Institute of 
Geqeral Medical Sciences (W. L. *M.), and a Frederick Gardner Cottrell 
grant in aid (W. L .  M,). 

( 2 )  S. Krimm and J. E. Mark, Proc. Nat. Acud. Sci. U .  S., 60, 1122 
(1968). 

(3) M. L. Tiffany and S.  Krimm, Biopolymers, 6, 1379 (1968). 
(4) M. L. Tiffany and S. Krimm, ibid., 8, 347 (1969). 
(5) S. Krimm, J .  E. Mark, and M. L. Tiffany, ibid., 8, 695 (1969). 
(6) Y. P. Myer, Macromolecules, 2, 624 (1969). 
(7) D .  G. Dearborn and D.  B. Wetlaufer, Biochem. Biophys. Res. 

(8) IUPAC-IUB Commission on Biochemical Nomenclature, Bio- 
Commim., 39, 314 (1970). 

chentistry, 9 ,  3471 (1970); J .  Mol. Bid. ,  52, 1 (1970). 

for c0 l l agen~~1~  and poly@-proline) I1 in the solid state.” 
In the absence of added salt, the circular dichroism of fully 
ionized poly@-glutamic acid) and poly@-lysine), as well as 
native collagen and poly@-proline) with all peptide bonds 
in the trans configuration, exhibits a weak positive band 
followed by a strong negative band about 20 nm toward 
shorter wavelengths. 3--j In the presence of sufficiently high 
salt concentrations, the circular dichroism exhibits only a 
single moderately strong negative band near 200 nm. 3--j 

The salt was believed to reduce the electrostatic interaction 
of the side chains, leading to the formation of a true random 
coil and the simultaneous loss of the positive circular di- 
chroism band. 3-5 Recently electron micrographs of poly- 
(L-glutamic acid) precipitated from calcium acetate have been 
interpreted as being consistent with the extended helical 
conformation proposed by Krimm and coworkers.12 

Myere and Dearborn and Wetlaufer’ have observed sim- 
ilar effects of salts on the circular dichroism of ionized homo- 
polypeptides, but they have offered a different interpreta- 
tion. Curve fitting could hypothetically account for the 

(9) A. Rich and F. H. C. Crick, J .  Mol. Biol., 3,483 (1961). 
(10) G. N. Ramachandran in “Treatise on Collagen,” Vol. 1, G. N. 
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