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Abstract 
 

Single-Molecule Analysis of Ribosome and Initiation Factor Dynamics 
during the Late Stages of Translation Initiation 

 
Daniel David MacDougall 

 
 

Protein synthesis in all organisms is catalyzed by a highly-conserved 

ribonucleoprotein macromolecular machine known as the ribosome. Prior to each round 

of protein synthesis in the cell, a functional ribosomal complex is assembled from its 

component parts at the start site of a messenger RNA (mRNA) template during the 

process of translation initiation. In bacteria, rapid and high-fidelity translation initiation is 

promoted by three canonical initiation factors: IF1, IF2, and IF3. In this thesis, I report 

the use of single-molecule fluorescence methods to study the role of the initiation factors 

and ribosome-factor interactions in regulating molecular events that occur during late 

stages of the translation initiation pathway. 

 In Chapter 1, I provide a structural and biochemical framework for understanding 

one of the key events of the initiation pathway: docking of the large (50S) ribosomal 

subunit with the small subunit 30S initiation complex (30S IC). The 50S subunit joining 

reaction is catalyzed by GTP-bound IF2 and results in formation of a 70S initiation 

complex (70S IC) that contains an initiator transfer RNA (tRNA) and is primed for 

formation of the first peptide bond. During 50S subunit joining, IF2-GTP establishes 

interactions with RNA and protein components of the 50S subunit’s GTPase-associated 

center (GAC), which play an important role in subunit recruitment as well as the 

subsequent activation of GTP hydrolysis by IF2.  



In Chapter 2, I describe the development of a single-molecule fluorescence 

resonance energy transfer (smFRET) signal to monitor the interactions between IF2 and 

the ribosome’s GAC during real-time 50S subunit joining reactions. Specifically, the role 

of the L11 region, comprising ribosomal protein L11 and its associated ribosomal RNA 

(rRNA) helices, was investigated. The L11 region is a prominent structural component of 

the GAC that is believed to undergo large-scale conformational changes during protein 

synthesis; however, the nature and timescale of these conformational dynamics, and their 

role in regulating the biochemical activities of IF2 during initiation, are not known. I 

demonstrate that my smFRET-based 50S subunit joining assay is sensitive to 

conformational rearrangements between IF2 and L11 within the 70S IC and can thus be 

used as a tool for characterizing GAC dynamics and elucidating their function during 

initiation. Furthermore, my smFRET approach is shown to provide information on the 

rate of 50S subunit joining as well as the rate of IF2 dissociation from the 70S IC. 

Notably, IF2-dependent GTP hydrolysis was found to influence the extent of 70S IC 

conformational dynamics as well as the dissociation rate of IF2.  

The role of IF3 in regulating 50S-subunit joining dynamics is discussed in 

Chapter 3. IF3 plays an important role in ensuring the fidelity of translation initiation by 

preventing the formation of initiation complexes containing a non-initiator tRNA and/or a 

non-canonical mRNA start codon. Inclusion of IF3 within the 30S IC in the smFRET 

experiments was found to render the IF2-catalyzed 50S subunit joining reaction highly 

reversible. Direct observation of repetitive docking and undocking of the 50S subunit 

with the 30S IC indicates that IF3 may modulate translation initiation efficiency by 

influencing the stability of the 70S IC. The individual 50S subunit docking events were 



found to result in the formation of very different classes of 70S IC, characterized by 

different stabilities and unique patterns of IF2-L11 interactions. I propose that these 

dynamics reflect an underlying conformational equilibrium of the IF3-bound 30S IC that 

is read out during 50S subunit joining, and that this equilibrium could be modulated in 

order to regulate the efficiency of translation initiation. 

Following initiation-factor mediated assembly of the 70S IC, the first aminoacyl-

tRNA is delivered to the ribosome in ternary complex with elongation factor Tu (EF-Tu) 

and GTP. Accommodation of aminoacyl-tRNA into the ribosome’s peptidyl transferase 

center leads to formation of the first peptide bond, which signals the end of initiation and 

entry into the elongation phase of protein synthesis. The ternary complex binding site on 

the ribosome overlaps with that of IF2 at the GAC; a question of key mechanistic 

importance in understanding how the ribosome coordinates the transition from initiation 

to elongation thus concerns the relative timing of ternary complex binding with respect to 

IF2 dissociation from the 70S IC. In Chapter 4, I present preliminary results from two- 

and three-color fluorescence co-localization experiments aimed at characterizing the 

timing of these events at the single-molecule level. The data strongly suggest the 

occurrence of simultaneous occupancy of the ribosome by IF2 and ternary complex, 

implying that the ribosome is structurally capable of recruiting ternary complex prior to 

IF2 release from the 70S IC. The observation that the ribosome can accommodate more 

than one translation factor at a time may have important implications for understanding 

how it efficiently coordinates factor binding and release throughout protein synthesis, and 

opens the door to mechanistic studies of the ribosomal L7/L12 stalk, presumed to play a 

prominent role in these processes.                                    
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Chapter 1 

Introduction 

 
1.1 Protein synthesis and the translational machinery 

The flow of genetic information in the cell from DNA to protein comprises two 

major steps. In the first, gene sequences are transcribed from DNA into temporary 

messenger RNA (mRNA) copies by RNA polymerase, and in the second, the nucleotide 

sequence of the mRNA is translated into a sequence of amino acids by the ribosome. The 

ribosome is a highly conserved macromolecular machine composed of numerous 

ribosomal RNA (rRNA) and protein molecules, which is responsible for catalyzing the 

process of protein synthesis, or translation, in all organisms. During translation, the 

ribosome incorporates amino acids into a growing polypeptide chain as specified by the 

sequence of triplet-nucleotide codons on the mRNA. Individual amino acids are delivered 

to the ribosome by transfer RNA (tRNA) molecules, which are selected based on 

Watson-Crick base pairing between the tRNA anticodon and the mRNA codon. Thus, 

during each round of protein synthesis, the ribosome translocates in the 5’ to 3’ direction 

along the mRNA template and repetitively catalyzes selection of aminoacyl-tRNA (aa-

tRNA) substrates and peptide bond formation in order to faithfully synthesize the mRNA-

encoded gene product [1]. 

The translation cycle can be divided into four major stages: initiation, elongation, 

termination, and ribosome recycling (Figure 1.1). During each stage, essential protein 

translation factors interact with the ribosome and its aa-tRNA substrates in order to 
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catalyze different steps of the translation process. Translation factors thus constitute an 

important part of the translational machinery essential for achieving rapid and tightly 

controlled protein synthesis. In the initiation stage of protein synthesis, initiation factors 

IF1, IF2, and IF3 promote assembly of a functional ribosomal complex at the correct start 

site on the mRNA. During the elongation stage, elongation factor Tu (EF-Tu) catalyzes 

delivery of aa-tRNA substrates to the ribosome, while elongation factor G (EF-G) 

catalyzes translocation of the mRNA-tRNA complex through the ribosome in steps of 

precisely one codon. When synthesis of the mRNA-encoded polypeptide has been 

completed, the termination stage ensues, which involves release of the nascent 

polypeptide from the ribosome catalyzed by a class I release factor (RF1 or RF2) 

followed by recycling of RF1/2 by the class II release factor RF3. Finally, during the 

ribosome recycling stage of protein synthesis, the joint action of ribosome recycling 

factor (RRF) and EF-G promotes splitting of the ribosome into subunits; the subunits can 

then be reassembled at a new mRNA start site in order to begin the process anew [2]. 
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Figure 1.1: The ribosome and the protein synthesis cycle. 
(A) X-ray crystallographic structure of the 70S ribosome from Thermus thermophilus (PDB ID: 
2J00 and 2J01) depicting the three tRNA binding sites. (B) Cartoon schematic of the protein 
synthesis cycle. The stages of initiation, protein chain elongation, termination, and ribosome 
recycling are depicted, as well as the translation factors involved at each step. Components of the 
translational machinery are identified in the legend to the lower left. Figure reproduced from [3]. 
 

 

The multitude of biochemical and mechanical tasks that the ribosome must 

accomplish during the protein synthesis cycle is reflected in the complexity of its 

molecular architecture. The ribosome is composed of two subunits, which, in 

prokaryotes, are termed the large, 50S and small, 30S subunits, according to their 

respective sedimentation coefficients. The 30S subunit comprises one rRNA molecule 
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(16S, ~1500 nts) and about 20 ribosomal proteins (r-proteins), while the 50S subunit 

comprises two rRNA molecules (23S, ~2900 nts and 5S, ~120 nts) and over 30 r-proteins 

[4]. The two subunits associate to form the intact 70S ribosome, which is a roughly 

spherical, 2.5 MDa ribonucleoprotein complex. Subunit association is mediated through 

the formation of twelve RNA-RNA, RNA-protein, and protein-protein contacts at the 

subunit interface called intersubunit bridges (see Figure 1.6 and Table 1.1) [5-7]. The 

two-subunit architecture of the ribosome, which is conserved in all organisms, is 

intimately tied to ribosome function during all stages of protein synthesis: a relative 

rotation of the subunits plays a critical role in the ribosome’s ability to translocate along 

the mRNA template during peptide chain elongation [8, 9], recycling of ribosomes 

following completion of protein synthesis entails a splitting of the subunits [10], and the 

start of a new round of protein synthesis involves reassembly of the intact ribosome from 

its subunits onto a new mRNA start site [11].  

X-ray crystal structures of ribosomal subunits and the intact ribosome have 

revealed atomic-level details of its functional centers, as well as its interactions with 

mRNA, tRNA, and translation factor ligands [12, 13]. In addition, cryogenic electron 

microscopy (cryo-EM) reconstructions of ribosomal complexes have brought our 

structural understanding of translation into clearer focus [14]. Within the intact ribosome, 

the mRNA threads through a channel located between the head and body domains of the 

30S subunit [15]. Three tRNA binding sites span the intersubunit space, termed the A 

(aminoacyl-tRNA binding), P (peptidyl-tRNA binding), and E (tRNA exit) sites, which 

are traversed sequentially as tRNAs make their way through the ribosome during the 
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elongation cycle (Figure 1.1). Two important functional centers of the ribosome—the 

decoding center within the small ribosomal subunit and the peptidyl transferase center of 

the large ribosomal subunit—were found to be composed largely of rRNA, indicating 

that the ribosome acts as a ribozyme in catalyzing the essential reactions of protein 

synthesis. In the decoding center, the universally conserved 16S rRNA nucleotides G530, 

A1492, and A1493 inspect the geometry of the codon-anticodon minihelix formed during 

aa-tRNA delivery as part of the mechanism for achieving high accuracy aa-tRNA 

selection [16]. In the peptidyl transferase center, interactions between the so-called A-

loop of 23S rRNA (residues U2552-C2556) with the 3’ CCA end of aa-tRNA at the A 

site, and between the P-loop of 23S rRNA (G2250-C2254) with the 3’ CCA end of 

peptidyl tRNA at the P site, orient the two tRNAs to promote the chemistry of peptide 

bond formation, which involves nucleophilic attack of the peptidyl-tRNA ester linkage by 

the α-amine of the amino acid on the A-site tRNA [17].  

The functional core of the ribosome is flanked by two highly mobile regions 

known as the L1 stalk and the GTPase-associated center (GAC). The L1 stalk, which 

forms part of the ribosomal E site, is composed of 23S rRNA helices 76 to 78 (H76-78, 

where capital “H” refers to 23S rRNA helices within the 50S subunit) and r-protein L1. 

Movements of the L1 stalk are thought to play a role in promoting translocation of 

deacylated tRNA from the P to the E site following peptide bond formation as well as 

subsequent release of the E-site tRNA from the ribosome [18, 19]. The GAC is located 

on the other side of the 50S subunit, near the A site. It serves as the ribosomal binding 

site for translation factors, many of which, such as IF2, EF-Tu, EF-G, and RF3, 
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hydrolyze GTP as part of their catalytic cycle. Binding to the ribosome is required to 

stimulate the GTPase activity of the translation factors, which exhibit very low levels of 

GTP hydrolysis on their own [20]. The most prominent feature of the GAC is the L7/L12 

protein stalk, which consists of, depending on the species, between four and six copies of 

r-protein L12 (L7 is the same as L12, except with an acetylated N-terminus). The 

individual copies of L12 form dimers that associate with r-protein L10, which, in turn, 

binds to the surface of the ribosome via contacts with 23S rRNA [21]. The L7/L12 stalk 

promotes translation factor binding to the ribosome and has been demonstrated to play a 

role in the stimulation of GTP hydrolysis by EF-G and EF-Tu [22, 23]. The region at the 

base of the L7/L12 stalk comprising helices H42-44 of 23S rRNA (nucleotides 1030-

1124, E. coli numbering) serves as the binding site for the L10-(L7/L12) complex as well 

as r-protein L11 (Figure 1.2) [21]. L11 binds specifically to an rRNA platform composed 

of H43/44 at the tip of the stalk base through interactions with its C-terminal domain 

(CTD). Another prominent structural component of the GAC is the sarcin-ricin stemloop 

of 23S rRNA (SRL, nucleotides 2654-2665) located within helix H95, so-called because 

it is the target for cleavage or chemical modification by the cytotoxins α-sarcin and ricin, 

respectively [24, 25]. The role of the GAC in factor recruitment and GTPase activation is 

well-established, though the precise mechanistic contribution of the individual GAC 

components to these processes is still being delineated.  
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Figure 1.2: Structural depiction of the ribosomal GTPase-associated center. 
(A) X-ray crystallographic structure of the Haloarcula marismortui 50S ribosomal subunit (PDB 
ID: 1S72), which contains one of the more complete high-resolution depictions of ribosomal 
GAC components in the context of the intact 50S subunit. The sarcin-ricin stemloop (SRL: H95, 
nucleotides A2654 to A2665 of 23S rRNA) is colored orange; the stalk base comprising H42, 43, 
and 44 of 23S rRNA (nucleotides G1034 to C1121) is colored light purple. N- and C-terminal 
fragments, respectively, of r-proteins L10 (yellow) and L11 (green) bind to the stalk base rRNA, 
thereby forming a bifurcated stalk that projects away from the ribosome’s core into solution. The 
L11 NTD, as well as the L10 CTD and associated L7/L12 stalk, were not able to be modeled due 
to missing electron density. (B) The boxed area corresponding to the stalk base is enlarged and 
rotated to better visualize the L10 and L11 binding sites.         
 
 

The structural description of the ribosome and its functional centers provided by 

X-ray crystallography and cryo-EM sets the stage for detailed mechanistic studies of 

ribosome dynamics. Protein synthesis is an inherently dynamic process in which 

movements of ribosomal domains regulate mechanical events such as mRNA-tRNA 

translocation and factor binding/release, and conformational changes of the translational 

machinery limit the rates of biochemical steps such as GTP hydrolysis and peptide bond 

formation [26]. A thorough characterization of the ribosomes’s structural dynamics, and 

its interactions with translation factor and tRNA ligands, will thus be critical for gaining a 
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better understanding of the molecular mechanisms underlying rapid and accurate protein 

synthesis. This thesis presents efforts aimed at characterizing ribosome dynamics and 

ribosome-factor interactions during the late stages of translation initiation. 

 

1.2 The prokaryotic translation initiation pathway 

Translation initiation is a multi-step process in which 30S and 50S ribosomal 

subunits, mRNA, and the initiator N-formylmethionyl-tRNA (fMet-tRNAfMet) are 

brought together to form a functional 70S initiation complex (70S IC). Initiation is 

considered to be the rate-limiting step of translation, taking several seconds in vivo [27]. 

It represents an important hub for post-transcriptional regulation of gene expression. The 

efficiency of initiation on a particular mRNA transcript can be modulated by both cis- 

and trans-acting elements to control whether the encoded protein is expressed, and if so, 

at what levels [28]. Furthermore, initiation establishes the reading frame on the mRNA 

and is thus of critical importance in ensuring the fidelity of protein synthesis. In bacteria, 

three essential initiation factors, IF1, IF2, and IF3 guide the translation initiation process, 

helping to achieve the requisite levels of speed and accuracy.  

The prokaryotic translation initiation pathway is schematized in Figure 1.3 and 

reviewed in [11]. In the first major step of the pathway, IF1, IF2, IF3, mRNA, and fMet-

tRNAfMet associate with the 30S ribosomal subunit to form a 30S initiation complex (30S 

IC). The precise order of ligand binding events leading to 30S IC formation, however, 

remains unclear. The mRNA is initially bound in a standby site, and the initiator tRNA in 

a codon-independent manner. A rate-limiting conformational change takes place that 
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promotes formation of the codon-anticodon interaction in the 30S P site and a 

concomitant stabilization of the 30S IC. Selection of the correct initiator tRNA and 

mRNA start codon (typically AUG) is promoted by the synergistic action of IF1, IF2, and 

IF3 at the level of 30S IC assembly.   

 

 

Figure 1.3: Overview of the prokaryotic translation initiation pathway. 
Cartoon schematic of major molecular events during translation initiation. As noted in the text, 
the precise order and timing of ligand binding and dissociation events is still being delineated. 
The extent of reversibility for each step is also unclear. Step 1→2: Assembly of the 30S initiation 
complex (30S IC) containing mRNA, initiator fMet-tRNAfMet, IF1, IF2-GTP, and IF3. Step 2→3: 
Joining of the 50S subunit to the 30SIC to form the 70S initiation complex (70S IC). 50S subunit 
joining stimulates IF2-dependent hydrolysis of GTP to GDP and Pi. Step 3→4: Dissociation of 
initiation factors from the ribosome. Step 4 → 5: Delivery of aa-tRNA to the ribosome and 
formation of the initiation dipeptide. The first elongator aa-tRNA is brought to the ribosome in 
ternary complex with EF-Tu and GTP. Following GTP hydrolysis and dissociation of EF-Tu, aa-
tRNA is accommodated into the A site and peptide bond formation is catalyzed at the peptidyl 
transferase center.      
 

 

The next major event in the initiation pathway is joining of the 50S subunit to the 

30S IC, which is catalyzed by IF2 in its GTP-bound form. The subunit docking event 

results in formation of a 70S IC in which interactions between IF2 and the 50S GAC 

stimulate rapid GTP hydrolysis by IF2. Inorganic phosphate (Pi) is released, and IF2 

undergoes a conformational change from its GTP- to its GDP-bound form, followed by 
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its dissociation from the ribosome. The order and timing of IF1, IF2, and IF3 release from 

the ribosome has not been well-characterized, and in some cases, represents a point of 

dispute in the field. For example, different research groups are at odds regarding whether 

IF3 dissociation precedes or occurs subsequent to 50S subunit joining [29, 30]. Another 

critical event during 70S IC formation is adjustment of fMet-tRNAfMet within the 

ribosomal P site, which places it in a configuration conducive to formation of the first 

peptide bond. The 70S IC can then bind and incorporate the first elongator aa-tRNA, 

which is delivered to the ribosome in complex with GTP-bound EF-Tu (the so-called EF-

Tu:GTP:aa-tRNA ternary complex). Accommodation of aa-tRNA into the ribosomal A 

site proceeds through a process involving ribosome-dependent GTP hydrolysis by EF-Tu 

[31], and results in formation of the initiation dipeptide catalyzed by the ribosomal 

peptidyl transferase center. This event signals completion of initiation and entry into the 

elongation phase of translation.   

 

1.3 Structure and function of the initiation factors 

IF1, IF2, and IF3 are encoded by the infA, infB, and infC genes, respectively, all 

of which are essential in E. coli [11]. The three bacterial initiation factors have structural 

or functional counterparts in archaea and eukaryotes: a/eIF1A and a/eIF5B are homologs 

of IF1 and IF2, respectively [32-34], and a/eIF1 is a functional analog of IF3 that binds to 

the same site on the 30S subunit platform and has similar activities in proofreading of the 

codon-anticodon interaction at the P site [35]. Although the eukaryotic translation 

initiation pathway exhibits marked differences from the bacterial pathway (e.g. the 
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mechanisms of 5’ cap loading and 5’ to 3’ mRNA scanning, and the larger collection of 

initiation factors involved), the presence of eukaryotic IFs with sequence, structure, and 

function reminiscent of IF1, IF2, and IF3 suggests that investigations of the bacterial 

system could shed light on highly conserved features of initiation applicable to higher 

organisms. In the following sections, I discuss structural and functional characteristics of 

the bacterial initiation factors. The localization of the initiation factors in the context of 

the 30S IC is depicted in Figure 1.4.    

 

Figure 1.4: Localization of initiation factors and fMet-tRNAfMet on the 30S IC.  
Top: Cryo-EM reconstruction of the 30S IC from Thermus thermophilus containing IF1, IF2, 
mRNA and fMet-tRNAfMet. Atomic models of the individual components have been fitted into the 
electron density. The 30S subunit is colored blue; IF1 and fMet-tRNAfMet are red; IF2 is green. 
The putative binding site for IF3 is indicated by a brown oval at the platform region of the 30S 
interface. Bottom: Magnified view of the atomic structures of IF1 (red), IF3N (brown), and IF3C 
(orange). Figure reproduced from [36].   
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1.3.1 Initiation Factor 1 (IF1) 

IF1, the smallest of the initiation factors, is an 8.2 kDa protein in E. coli. Its 

solution structure has been determined by nuclear magnetic resonance (NMR) 

spectroscopy, showing a compact five-stranded beta barrel in which beta strands β3 and 

β4 are connected by a loop that contains a short 310 helix [37]. A crystal structure of the 

T. thermophilus 30S subunit in complex with IF1 details its binding site in a cleft 

between r-protein S12, the 530 loop of 16S rRNA, and helix h44 (where lower-case “h” 

is used to denote 16S rRNA helices within the 30S subunit), overlapping with the A site 

[38]. The major role attributed to IF1 during translation initiation is the stimulation of IF2 

and IF3 functions. IF1 binding to the 30S subunit increases the binding affinity of IF2, 

and it has been shown to enhance IF3’s anti-subunit association activity (see section 

1.3.3) [39, 40]. Interestingly, mammalian mitochondria do not possess a stand-alone IF1 

homolog, but instead, genetic and biochemical data suggest that a conserved 37 amino 

acid insertion in mitochondrial IF2 substitutes for the IF1 function [41]. These studies 

lend support to the notion that the primary role of IF1 is the enhancement of IF2 binding 

and activity.    

 

1.3.2 Initiation Factor 2 (IF2) 

IF2 is the largest of the initiation factors, and it plays a central role during 

formation of both the 30S IC and 70S IC [11, 42]. Three isoforms of IF2 have been 

identified in E. coli (IF2-α, IF2-β, and IF2-γ), which are translated from three different 

but in-frame start sites on the same infB mRNA transcript. The isoforms thus contain the 
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same C-terminal amino acid sequence but differ in the length of their N-termini: IF2-β 

and IF2-γ lack the first 157 and 164 amino acids encoded by infB, respectively (Figure 

1.5B) [43]. The presence of all three isoforms is required for optimal growth in E. coli 

[44], though the functional difference between them has yet to be established, and each 

isoform is independently capable of promoting in vitro translation initiation [45].  

The domain organization of IF2 is depicted in Figure 1.5. The N-terminal region 

of the protein (domains I-III, following the numbering scheme of Mortensen, et al. [46]) 

is highly variable across species both in terms of length and amino acid composition. The 

C-terminal region, on the other hand (domains IV, V, VI-1, and VI-2), is more conserved. 

IF2 homologs from bacteria, archaea, and eukaryotes possess high levels of amino acid 

sequence identity in the C-terminal region, suggesting that they share a common tertiary 

structure [47].  

There is currently no high-resolution structure available of full-length prokaryotic 

IF2, though the three-dimensional solution structures of isolated domains VI-1 and VI-2 

from Bacillus stearothermophilus have been solved independently by NMR spectroscopy 

[48, 49]. Additionally, three X-ray structures of Methanobacterium thermoautotrophicum 

aIF5B (the archaeal homolog of IF2) have been solved, corresponding to the GTP-bound, 

GDP-bound, and nucleotide-free forms of the factor [47]. aIF5B lacks the extended N-

terminus found in prokaryotic and eukaryotic IF2, and the X-ray structures thus 

correspond to the conserved C-terminal domains IV, V, VI-1, and VI-2 of E. coli IF2.  

The crystal structures reveal a “chalice-shaped” enzyme in which domains IV, V, 

and VI-1 cluster together, and domain VI-1 is connected to domain VI-2 via an extended 
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~100 amino acid long α-helix (Figure 1.5A) [47]. Domain IV is the GTP binding domain 

(G domain), which contains the highest level of interspecies sequence conservation 

among the IF2 homologs. Additionally, it exhibits structural similarity to the G domains 

of p21Ras as well as EF-Tu and EF-G. It is an eight-stranded beta-sheet flanked by six α-

helices and a 310 helix, and it contains the four conserved sequence elements 

characteristic of the guanine-nucleotide binding site of GTPases (G1/P loop, G2, G3, and 

G4). The G1/P loop motif participates in phosphate binding, making contacts with the α- 

and β-phosphates of GTP, while the G3 and G4 loops form the walls of a hydrophobic 

pocket in which the guanine nucleotide is bound. The G domain contains two segments 

known as Switch 1 and Switch 2 which change conformation depending on whether GTP 

or GDP is bound at the active site. The Switch 2 region contains the G2 motif, which 

coordinates an essential Mg2+ ion required for catalysis of GTP hydrolysis.   

Domain V of aIF5B is a β-barrel similar to the analogous domain II of EF-G and 

EF-Tu. It was proposed, based on the similarity in structure and organization of the G-

domain/domain II module of EF-G and EF-Tu with the corresponding domains of IF2, 

that all three translation factors participate in a similar set of interactions with the 

ribosome [47]. Domain VI-1 has an α/β/α-sandwich fold, while the C-terminal domain 

VI-2 is a closed beta barrel, which, in the case of the bacterium B. stearothermophilus, 

consists of six anti-parallel β-strands [48]. 
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Figure 1.5: IF2 domain architecture. 
(A) IF2 structural model. IF2 is divided into domains based on sequence and biochemical data. It 
consists of a highly conserved C-terminal portion (domains IV, V, VI-1, and VI-2) and an N-
terminal portion (domains I, II, and III) that is highly variable in both length and sequence. Right: 
The X-ray crystal structure of aIF5B from Methanobacterium thermoautotrophicum (PDB ID: 
1G7T). Based on sequence homology, the C-terminal portion of bacterial IF2 is expected to have 
a similar structure. Left: A small ~50 amino acid N-terminal subdomain, found in all bacterial 
IF2s, was solved by NMR spectroscopy (PDB ID: 1ND9). (B) IF2 domain numbering and 
comparison of the three IF2 isoforms found in E. coli. Compared to full-length IF2-α, IF2-β and 
IF2-γ lack 157 and 164 amino acids from their N-termini, respectively. All three isoforms can 
perform all biochemical functions attributed to IF2 in vitro. Figure adapted from [11]. 
     
  

At the level of 30S IC assembly, one of the main functions of IF2 is the 

recruitment and stabilization of fMet-tRNAfMet on the 30S ribosomal subunit. IF2 has a 

weak, micromolar affinity for fMet-tRNAfMet in solution, so it is unlikely that IF2 acts as 

a tRNA carrier that actively delivers fMet-tRNAfMet to the ribosome. Instead, rapid 
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kinetics measurements suggest that binding of IF2-GTP to the 30S subunit precedes and 

subsequently promotes fMet-tRNAfMet binding [50]. IF2 is, by itself, capable of 

discriminating against elongator tRNAs and preferentially selecting the correct initiator 

tRNA for incorporation into the 30S IC [51]. Specific recognition of the initiator tRNA 

by IF2 is based on interactions between domain VI-2 of IF2 and the 3’ CCA acceptor 

stem and amino acid of fMet-tRNAfMet [52]. The presence of the formyl group blocking 

the α-NH2 group of the amino acid plays a key role in this recognition [53].  

The cryo-EM reconstruction of the 30S IC from T. thermophilus adds a level of 

structural detail that helps to explain the mutual stabilization of IF2 and fMet-tRNAfMet 

on the small subunit (Figure 1.4). The intermolecular contacts that bridge domain VI-2 of 

IF2 with the aminoacyl-acceptor stem region of fMet-tRNAfMet generate an IF2–fMet-

tRNAfMet sub-complex that is bound to the 30S subunit through two anchor points [54, 

55]. The first anchor point consists of domains IV and V of IF2 bound to the 30S subunit 

in the vicinity of helices h5 and h14 of the 16S rRNA. The second anchor point is 

established through binding of the tRNA’s decoding stem at the P site near the neck 

region of the 30S subunit, within a pocket formed by 16S rRNA helices h24, h29, h30, 

h31, h34, and h44, and r-proteins S9 and S13.   

 Following 30S IC formation, IF2 is responsible for catalyzing 50S subunit 

joining. Rapid docking of the 50S subunit to the 30S IC has been shown by light 

scattering measurements to be completely dependent on the presence of both IF2 and 

fMet-tRNAfMet (Figure 1.7) [56]. Additionally, subunit association has been shown to 

occur ~20-fold faster in the presence of GTP versus GDP [57]. In the context of a 
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completely assembled 30S IC, IF2 is likely present in the GTP-bound form, since its 

affinity for GTP, but not GDP, is enhanced in the presence of 30S subunits and fMet-

tRNAfMet [57]. Thus, correct assembly of a 30S IC containing fMet-tRNAfMet and IF2-

GTP will be quickly followed by joining of the 50S subunit. During the subunit docking 

event, formation of interactions between IF2’s G-domain and the 50S subunit’s GAC 

lead to rapid GTPase activation and GTP hydrolysis by IF2 [58]. The functional 

consequences of IF2-dependent GTP hydrolysis during initiation will be discussed below 

in Section 1.5.2. In addition to stimulating fMet-tRNAfMet binding to the 30SIC and rapid 

50S subunit joining, IF2 has been proposed to play a role in positioning of fMet-tRNAfMet 

within the P site during the late stages of 70S IC formation, such that it can act as an 

efficient donor in the first peptidyl transfer reaction [59]. 

 

 1.3.3 Initiation Factor 3 (IF3)  

IF3 is a 20.4 kDa protein of 180 amino acids that consists of two globular 

domains of roughly equal size (IF3C and IF3N) connected by a long, flexible, lysine-rich 

linker [60]. The structures of isolated IF3C and IF3N have been solved by X-ray 

crystallography and NMR [61-63]. The IF3C domain folds into a structure in which two 

parallel α-helices pack against a mixed four-stranded β-sheet. The IF3N domain exhibits 

a similar globular α/β fold in which a single α-helix packs against a five-stranded 

antiparallel β-sheet. The flexible linker connecting IF3C and IF3N is highly conserved in 

both length and hydrophilic character, and is essential for the function of IF3 in vivo [64]. 
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Data from chemical probing and hydroxyl radical footprinting of the 16S rRNA 

[65, 66], as well as a low-resolution cryo-EM reconstruction of the 30S-IF3 complex 

[67], place the binding site for IF3C at the platform on the interface side of the 30S 

ribosomal subunit. The binding site for IF3N, on the other hand, is less certain. Some of 

the data suggest that it is located at the neck region of the small subunit near the P site 

[66], while other data would place it near the E site, neighboring r-proteins S7 and S11 

[65]. In theory, discrepancies regarding the specifics of IF3 localization on the 30S IC 

could be resolved if IF3 or its isolated domains could populate different binding sites on 

the 30S subunit. In support of this possibility, single-molecule fluorescence resonance 

energy transfer (smFRET) data from our laboratory suggests that the IF3-bound 30S 

subunit can adopt at least three distinct conformations, corresponding to different 

interdomain distances between IF3C and IF3N [68]. These data are indicative of 

conformational rearrangements of the IF3-30S complex, which could correspond to 

conformational changes of the 30S subunit itself and/or transitions of one or both IF3 

domains between different 30S binding sites.   

 Multiple functions have been ascribed to IF3 at different stages of the translation 

initiation pathway. Binding of IF3 to the 30S subunit inhibits association of the 50S 

subunit, and this anti-association function may play a role in splitting of the 70S 

ribosome into subunits during ribosome recycling [40, 69]. By preventing premature 

binding of the 50S subunit and thus shifting the 30S + 50S ←
→  70S equilibrium toward 

free subunits, IF3 supplies the cell with a pool of free 30S subunits on which the other 

initiation factors, mRNA, and fMet-tRNAfMet can assemble to form the 30S IC. Light 
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scattering studies have shown that the presence of IF3 prevents the formation of aberrant 

70S ICs lacking initiator tRNA: an IF3-dependent blockage of 50S subunit joining to 30S 

ICs containing only mRNA, IF1, IF2, and IF3 is alleviated through the additional 

inclusion of fMet-tRNAfMet [70]. The location of IF3’s binding site at the interface side of 

the 30S platform suggested that IF3 may sterically occlude the formation of several 

intersubunit bridges, in particular bridge B2b comprising RNA-RNA contacts between 

H69 of the 23S rRNA with h23, h24, and h25 of the 16S rRNA [65]. Given the critical 

role of intersubunit bridges in subunit association (see [71-73], Figure 1.6, and Table 

1.1), this was proposed as a mechanism to explain IF3’s anti-association properties.  

 

 

Figure 1.6: Intersubunit bridges play an important role in subunit association. 
Interface view of the 30S (left) and 50S (right) subunits highlighting the twelve intersubunit 
bridges in the E. coli ribosome (PDB ID: 2AVY and 2AW4). rRNA components of the bridges 
are colored red and protein components are colored pink. IF3 has been proposed to exert its anti-
association function by sterically blocking formation of B2b, B2c, and/or B7a (underlined). 
Figure provided by Mr. Wei Ning. 
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Table 1.1: Catalog of intersubunit bridges in the E. coli 70S ribosome. 
List of the 30S and 50S components comprising the twelve intersubunit bridges of the E. coli 
ribosome. Interaction types: P-P, protein-protein; P-R, protein-RNA; R-R, RNA-RNA. Table 
reproduced from reference [71].  
 

 

 

During assembly of the 30S IC, IF3 additionally plays a prominent role in 

maintaining the fidelity of initiator tRNA and start codon selection. The presence of IF3 

causes preferential destabilization of initiation complexes containing non-canonical 

codon-anticodon interactions at the P site, on account of incorrectly bound elongator 

tRNAs or start codons other than AUG, GUG, and UUG [74, 75]. The infC gene 

encoding IF3 possesses a non-canonical AUU start codon, which allows for 

autoregulation of IF3 expression at the level of translation initiation in vivo [76, 77]. IF3 

has also been shown to dissociate 30S ICs formed at the 5’ AUG start codon of so-called 

leaderless mRNAs [78]. 
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1.4 IF2-catalyzed 50S subunit joining       

Docking of the 50S ribosomal subunit to the 30S IC represents a critical 

regulatory checkpoint in the translation initiation pathway. The 50S docking event leads 

to formation of a 70S IC that can enter into the elongation phase of protein synthesis. It is 

therefore essential that the formation of aberrant 70S complexes—either missing tRNA 

or containing an incorrect tRNA and/or start codon at the P site—be prevented. 

Regulation of 50S subunit joining involves the interplay of IF2 and IF3 activities, which 

oppose each other in promoting and inhibiting this process, respectively. As described 

above, IF3 prevents the docking of 50S subunits to 30S ICs lacking initiator tRNA, while 

IF2-GTP is required for acceleration of this process following correct assembly of a 

complete 30S IC [70].  

Translation initiation efficiency can be affected by differences in components 

within the mRNA’s translation initiation region (TIR), such as variations in the Shine-

Dalgarno sequence and initiation codon. These features of the TIR have been shown to 

modulate the efficiency of 70S IC formation by altering the kinetics of 50S subunit 

joining [29]. Thus, mRNAs with favorable TIRs undergo subunit association more 

rapidly than mRNAs with unfavorable TIRs. These differing kinetics were attributed to 

IF1- and IF3-induced conformational rearrangements of the 30S ribosomal subunit that 

regulate 50S docking as well as IF3 dissociation. Similarly, another study concluded that 

IF3-mediated inhibition of translation initiation at the non-canonical AUU start codon 

occurs not at the level of 30S IC assembly, but rather due to a reduction in the rate of 70S 

IC formation [79].   
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IF2 counterbalances the inhibitory effect of IF3 by serving to accelerate subunit 

joining to the 30S IC. Subunit joining is most rapid in the presence of both IF2 and fMet-

tRNAfMet [30, 56, 70]. Cryo-EM reconstructions of IF2 bound to the 30S IC and 70S IC 

offer insight into the mechanism by which this occurs (Figure 1.7). The 30S IC 

reconstruction contains IF2 in its GTP-bound form [54], while the 70S IC reconstruction 

contains IF2 bound to the non-hydrolyzable GTP analog GDPNP, thus trapping it in the 

pre-GTP hydrolysis state [80]. In the context of the 30S IC, an intermolecular interaction 

between IF2’s C-terminal domain VI-2 and the aminoacyl-acceptor stem of fMet-

tRNAfMet positions the tRNA so that it adopts a binding configuration that the authors 

refer to as the 30S P/I state. In this configuration, the tRNA’s anticodon stem-loop is 

bound to the 30S P site, but the tRNA body is tilted such that its elbow region and 

acceptor stem lie between the P and E sites. This orientation of the IF2–fMet-tRNAfMet 

sub-complex was proposed to optimally position both the tRNA body and IF2 surface for 

interfacing with the 50S subunit to guide rapid subunit association. The presence of IF2 

on the 30S IC increases the surface area available for interactions with the 50S subunit by 

approximately 25%, and a high degree of shape complementarity between IF2 and the 

50S subunit interface was observed, helping to explain how IF2 accelerates this process. 

The cryo-EM reconstruction of the 70S IC reveals that, following subunit association, IF2 

buries ~2600 Å2 of the 50S subunit surface area that was formerly solvent accessible. The 

authors thus liken IF2-catalyzed subunit joining to a high-affinity dimerization process in 

which the burial of large surfaces at the dimerization interface is driven by a large, 

favorable change in Gibb’s free energy (∆G  < -10 kcal/mole). 
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Figure 1.7: The IF2–fMet-tRNAfMet subcomplex promotes 50S subunit joining to the 30S IC.  
(A) Cryo-EM reconstruction of the 30S IC from T. thermophilus. IF2 (green) and fMet-tRNAfMet 
(red) bind to the interface side of the 30S subunit where they are oriented so as to promote rapid 
docking of the 50S subunit. Figure reproduced from [54]. (B) Cryo-EM reconstruction of the 70S 
IC from E. coli, representing the state immediately following 50S subunit joining. Electron 
density corresponding to IF2 and fMet-tRNAfMet (red) is observed spanning the interface between 
the 30S (yellow) and 50S (blue) subunits, suggesting that the IF2–fMet-tRNAfMet sub-complex 
promotes subunit docking in a process akin to protein-protein dimerization. Figure adapted from 
[80]. (C) Light scattering experiments demonstrate the dependence of 70S IC formation on IF2 
and fMet-tRNAfMet. An increase in light scattering upon rapid mixing of 30S ICs with 50S 
subunits indicates the formation of 70S particles. For the red, blue, and green curves, varying 
concentrations of 50S subunit (0.6 μM, 0.3 μM, and 0.15 μM, respectively) were mixed with 30S 
ICs containing IF1, IF2, IF3, mRNA, fMet-tRNAfMet, and GTP. The grey and orange curves arise 
from experiments conducted at 3.0 μM 50S subunits and in the absence of either fMet-tRNAfMet 
or IF2, respectively. Figure reproduced from [56].     
 

The L7/L12 protein stalk of the 50S subunit’s GAC was recently shown to play a 

key role in IF2-catalyzed subunit joining [81]. Association of 50S subunits with 30S ICs 

containing IF2-GTP was found to be ~40-fold slower in the presence of 50S subunit 

cores depleted of L7/L12, and this effect could be reversed by reconstitution of the 50S 

cores with L7/L12. No effect of L7/L12 depletion was seen in the rate of 50S subunit 

association with 30S ICs in the absence of IF2 or in the presence of IF2 in its GDP-bound 

or nucleotide-free forms. Therefore, it was concluded that rapid subunit association 

depends on the formation of specific interactions between IF2-GTP and the L7/L12 stalk 

[81]. These interactions are likely mediated by a conserved region of the L7/L12 C-
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terminal domain shown previously by NMR to bind to IF2, EF-Tu, EF-G, and RF3 [82]. 

Analogous to the proposal that the L7/L12 stalk serves as an initial ribosomal binding site 

for EF-G and EF-Tu:GTP:aa-tRNA ternary complex preceding their accommodation into 

the ribosome’s A site [21], interactions between L7/L12 and IF2 may correspond to a 

first step in the subunit association process that would rapidly bring the 30S IC and 50S 

subunit into close proximity in roughly the correct relative orientation. Formation of 

specific interactions between IF2 and the 50S subunit core could then more readily occur 

to lock into place the precise inter-subunit orientation required to form an elongation-

competent 70S IC.   

The notion that the presence of IF2-GTP, as opposed to IF2-GDP or the 

nucleotide-free form of the factor, is required for rapid 50S subunit docking represents 

the consensus view in the literature [57, 81]. (It should be noted, however, that there are 

conflicting reports which state that the guanine-nucleotide state of IF2 has no effect on 

70S IC formation [58].) This suggests that binding of GTP to IF2, which is favored in the 

presence of 30S subunits and fMet-tRNAfMet [57], results in a conformational change of 

the factor that is required to accelerate the subunit joining reaction. Recently, IF2 

mutations were identified outside of its C-terminal tRNA-binding domain that allow it to 

bypass the dual requirement of formylated initiator tRNA and GTP for the switch from its 

inactive to its active form [83, 84]. Several of these mutants exhibited high levels of 

subunit joining activity even in the absence of initiator tRNA. These findings suggested 

that under normal conditions, fMet-tRNAfMet and GTP indirectly affect subunit joining by 

promoting “activation” of IF2 on the 30S IC.   
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1.5 Ribosome-dependent GTP hydrolysis by IF2 

IF2 has no intrinsic GTP hydrolysis activity, and stimulation of this activity 

requires the presence of 70S ribosomes. Thus, during initiation, the GTP molecule is 

hydrolyzed only upon association of the 30S–IF2-GTP complex with the 50S subunit 

during 70S IC formation. Interactions between IF2-GTP and the 50S subunit’s GAC lead 

to rapid hydrolysis of GTP to GDP and Pi, with a rate of 30 ± 5 sec-1 at room temperature. 

Subsequent release of Pi occurs more slowly at a rate of 1.5 ± 0.5 sec-1 [58]. Components 

of the GAC such as L7/L12, L11 and its associated rRNA, and/or the SRL probably 

interact with the guanine-nucleotide binding pocket of IF2 in order to induce structural 

rearrangements required to activate hydrolysis. Based on the position and orientation of 

IF2-GTP seen in the cryo-EM reconstruction of the 30S IC, it was proposed that domains 

IV and V of IF2 interact with the GAC immediately upon 50S subunit docking, which 

would rationalize the rapid rate of GTP hydrolysis observed biochemically (Figure 1.7A) 

[54].       

 

1.5.1 Mechanism of GTP hydrolysis    

The hydrolysis of GTP to GDP and Pi take place through in-line attack on the γ-

phosphate by an activated nucleophilic water molecule. It proceeds through a 

pentacoordinate transition state in which the γ-phosphate is surrounded by a trigonal 

bipyramid of oxygen atoms. Important elements of the catalytic mechanism include 

activation of the water molecule and its correct positioning for direct, in-line attack, and 

stabilization of the transition state through neutralization of negative charge build-up on 
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the β- and γ-phosphates [85, 86]. Magnesium is an essential cofactor for catalysis of GTP 

hydrolysis, and in the X-ray structure of aIF5B/IF2-GDPNP, the catalytic Mg2+ ion is 

located in a cleft between the GTP binding site and the switch 2 loop. It is stabilized by 

contacts with the β- and γ-phosphates of GTP, a hydroxyl group of Thr19 within the P 

loop, and a water molecule coordinated by Asp76 of switch 2 [47].   

 The GTPase activity of translation factors is dependent on their binding to the 

ribosome, and the role of ribosomal components and ribosome-translation factor 

interactions in the catalytic mechanism has been investigated in some detail for the case 

of EF-Tu. The results from these studies may apply to IF2 as well, as it has been 

suggested that ribosome-catalyzed GTP hydrolysis may occur via a similar mechanism 

for all of the translation factor GTPases, which have overlapping binding sites at the 50S 

GAC. The structural similarity between the G domain and domain II of EF-Tu and EF-G 

with the corresponding domains of IF2 points towards a shared mechanism of GTPase 

activation via a common set of interactions with the ribosome [11].  

An invariant histidine residue has been identified within the G-domain of the 

translation factors (His84 in EF-Tu and His448 in IF2) which may act as a general base 

during catalysis that activates the water molecule to OH- through abstraction of a proton 

[87-89], though it should be noted that this proposal has recently been challenged [90]. 

The crystal structure of Trp-tRNATrp, EF-Tu, and the antibiotic paromomycin bound to 

the 70S ribosome, stalled by the non-hydrolyzable GTP analog GDPCP, depicts the state 

just before GTP hydrolysis by EF-Tu [89] (Figure 1.8).  
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Figure 1.8: Proposed mechanism for ribosome- and translation-factor mediated GTP 
hydrolysis. 
(A) View of EF-Tu’s GTP-binding pocket in the state just prior to GTP hydrolysis, from the X-
ray crystal structure of Trp-tRNATrp, EF-Tu-GDPCP, and paromomycin bound to the 70S 
ribosome. The catalytic water molecule is positioned by interactions with Thr61, Gly83, and 
His84 for inline attack on the γ-phosphate. His84 (His448 in IF2) was proposed to act as a general 
base that deprotonates and thus activates the water molecule for nucleophilic attack. His84 is 
stabilized in its active conformation through an interaction with A2662 of the SRL. (B) Chemical 
structure diagram of the interactions between EF-Tu and GTP which help position and activate 
the catalytic water molecule and stabilize the transition state for GTP hydrolysis through 
neutralization of negative charge build-up at the β- and γ-phosphates. Figure reproduced from 
[89].     
 

In this structure, EF-Tu’s catalytic His84 is stabilized in its active conformation 

via an interaction with A2662 of the SRL. Prior to ribosome binding, His84 is rotated 

away from the GTP binding site, where its access to GTP is likely blocked by a 

“hydrophobic gate” formed by Val20 of the P loop and Ile60 within switch 1 [91]. 
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Therefore, when EF-Tu binds to the ribosome, interactions between His84 and A2662 of 

the SRL promote the reorientation of His84 into the active site where it can interact with 

the catalytic water molecule [89]. Interactions between A2662 of the SRL and His448 of 

IF2 likely play an analogous role in inducing the catalytic conformation of His448 during 

GTPase activation of IF2. Mutation of His448 to Glu in IF2 results in severely impaired 

ribosome-dependent GTP hydrolysis without affecting IF2’s affinity for GTP, which 

underscores the importance of this residue for GTPase activation [88]. Interestingly, a 

mutation of the corresponding residue in human eIF5B (His706 to Gln mutation) also 

causes a substantial reduction in GTP hydrolysis activity, suggesting a highly conserved 

mechanism [92].   

 

1.5.2 Role of GTP hydrolysis during initiation   

There is strong evidence that GTP hydrolysis is necessary for IF2 dissociation 

from the 70S IC. This was suggested by early experiments which showed that, in the 

presence of GDPNP, formation of 70S ICs containing fMet-tRNAfMet is stoichiometric 

with IF2 concentration, but that in the presence of GTP, IF2 can function catalytically 

[93]. Dissociation of IF2 from the ribosome is usually considered to be a prerequisite for 

accommodation of the first elongator aa-tRNA into the ribosomal A site and formation of 

the first peptide bond. Luchin, et al. showed that peptide bond formation was blocked 

completely in the presence of the GTPase-deficient His448Glu IF2 mutant, despite the 

fact that this mutant promoted fMet-tRNAfMet binding to 70S ICs at near-wild type levels 

[88]. Combined with the observation that His448Glu IF2, but not wild-type IF2, stably 
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associates with the ribosome following 70S IC formation, this suggested that the 

dominant negative phenotype of His488Glu IF2 observed in vivo [94] is a consequence of 

its inability to recycle off of the ribosome. The same conclusion was reached by Antoun, 

et al., whose light-scattering data indicated that 50S subunit joining is fast in the presence 

of both IF2-GDPNP and IF2-GTP, but that subsequent initiation dipeptide formation is 

inhibited with IF2-GDPNP [57].  

The explanation for why GTP hydrolysis is required for dissociation of IF2 is 

likely tied to the conformational changes expected to occur following Pi release as IF2 

transitions from its GTP- to its GDP-bound form [47]. Comparison of two cryo-EM 

reconstructions of the T. thermophilus 70S IC—one trapped in the pre-hydrolysis state 

with IF2-GMPPCP and the other in the post-hydrolysis state with IF2-GDP—suggested 

that the transition of IF2 to the GDP-bound form involves conformational changes of 

both IF2 and the ribosome which alter their intermolecular contacts and cause IF2 to 

undergo a shift of ~10 Å outwards from the intersubunit space, adopting a “ready-to-

leave” conformation [95].      

GTP hydrolysis, transition to the GDP-bound state, and release of IF2 from the 

ribosome may have additional mechanistic consequences. For example, the cryo-EM 

reconstruction of the 70S IC from E. coli containing IF2-GDPNP shows that the position 

of IF2’s C-terminal domain sterically occludes fMet-tRNAfMet binding to the 50S P site, 

such that the tRNA is bound in a P/I hybrid configuration in which its anticodon sits at 

the 30S P site and its 3’ aminoacyl-acceptor stem resides between the 50S subunit P and 

E sites [80]. Accommodation of fMet-tRNAfMet into the classical P/P configuration, 
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which would require a movement of its acceptor stem by ~28 Å, is thus prevented prior 

to GTP hydrolysis by IF2. Adjustment of tRNA into the P/P configuration may be 

coupled to the conformational changes of IF2 following GTP hydrolysis and/or its 

dissociation from the ribosome. In a separate study, single-molecule data suggested that 

GTP hydrolysis by IF2 is additionally required to promote an intersubunit rearrangement 

of the ribosome necessary for forming a 70S IC that can efficiently bind the first EF-

Tu:GTP:aa-tRNA ternary complex and enter into the elongation cycle [96].   

 

1.6 Interactions between IF2 and the GTPase-associated center  

IF2’s binding site on the 70S ribosome overlaps with that of numerous other 

translation factors (e.g. EF-Tu, EF-G, RF1, RF2, and RF3). Cryo-EM density maps have 

provided a low-resolution view of IF2 at the factor-binding site following 50S subunit 

joining to the 30S IC [80, 95]. The relative positioning of IF2’s domains with respect to 

structural features of the 30S and 50S ribosomal subunits can be gleaned, including a 

close approach between IF2’s G domain and the 50S subunit’s GAC. Chemical probing 

and crosslinking data have proven useful in identifying specific interactions between IF2 

and the individual structural components of the GAC. IF2 was crosslinked to L7/L12 

[97], and binding of IF2 protects residues in the SRL (G2655, A2665, and G2661) from 

chemical modification [98]. In another study, chemical nucleases tethered to a cysteine 

residue introduced into domain VI-1 of IF2 cleaved positions C1076 and G1068 within 

the L11 region of 23S rRNA [99]. 
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Despite these studies, a detailed structural understanding of IF2’s interactions 

with the GAC during initiation is lacking. A major reason for this is the inherently 

dynamic nature of the GAC, in particular the L11 region and the L10-(L7/L12) protein 

stalk, which are poorly resolved in the available cryo-EM reconstructions. Similarly, 

clear electron density for the GAC is lacking in the majority of X-ray crystal structures of 

50S subunits and the 70S ribosome. This implies a high degree of conformational 

flexibility of L11 and L10-(L7/L12), and suggests that conformational rearrangements of 

the GAC may play an important functional role during the interaction of translation 

factors with the ribosome. For example, conformational changes of the GAC may help 

promote and/or be coupled to IF2 activities during initiation, such as GTP hydrolysis, Pi 

release, and factor dissociation. 

Efforts to better understand the mechanistic role of GAC components during IF2-

catalyzed 50S subunit joining and 70S IC formation will benefit from a characterization 

of their structural dynamics and the timing of their interactions with IF2. While IF2’s 

GAC interaction partners can be ascertained from the cryo-EM, chemical probing, and 

crosslinking studies, other methods will be required to gain access to this dynamic 

information. It is likely that IF2’s interaction with the 50S subunit during initiation is far 

more complex than a simple one-step binding reaction, and that it instead comprises a 

complex sequence of interactions between IF2 and different GAC components. I envision 

a scenario in which intermolecular contacts between IF2 and the different GAC 

components are formed, broken, and rearranged over the course of subunit joining, GTP 

hydrolysis, Pi release, and factor dissociation. In this thesis, I describe the development of 
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single-molecule methods to monitor interactions between IF2 and the GAC during real-

time initiation reactions, in an attempt to characterize these dynamics and gain insights 

into the mechanistic role of the GAC during 50S subunit joining and 70S IC formation. 

Specifically, I have focused on the interactions between IF2 and r-protein L11. 

 

1.7 L11 structure and function  

As described above, the L7/L12 stalk has been shown to play a prominent role in 

IF2-GTP–dependent recruitment of the 50S subunit to the 30S IC, and the SRL is 

probably involved in the mechanism of GTPase activation. The mechanistic function of 

L11 and its associated rRNA helices H43 and H44, however, is less clear. L11 binds 

cooperatively with L10-(L7/L12) to 23S rRNA at the stalk base [100]. It is anchored to 

the H43/44 platform at the tip of the stalk base through interactions with its C-terminal 

domain (CTD). L11 is disordered in the majority of X-ray crystal structures of the 

ribosome, but a crystal structure of the isolated complex between L11 and H43/44 from 

Thermotoga maritima has been solved at 2.6 Å resolution, offering a glimpse of the full-

length protein and its interactions with the rRNA [101] (Figure 1.9). The L11 protein is 

composed of two globular domains connected by a short linker region. The CTD binds to 

H43/44 through recognition of the A1067 stem-loop’s minor groove, and in so doing 

stabilizes a compact rRNA tertiary fold [102]. The N-terminal domain (NTD), on the 

other hand, makes very few contacts with H43/44, resulting in a gap between the NTD 

and the rRNA in the crystal structure of the isolated L11-rRNA complex [101]. This lack 

of stabilizing interactions allows for conformational flexibility of the NTD, as evidenced 
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by relatively poor electron density and a higher average B factor for this domain (Figure 

1.9A). This conformational flexibility was proposed to play a functional role during the 

interaction of translation factors with the ribosome [101]. Specifically, it was suggested 

that reversible association of the NTD with the H43/44 rRNA platform could serve as a 

molecular switch; conformational switching of the NTD between open and closed states, 

for example, might serve to alter the accessibility or conformation of the rRNA and thus 

promote or inhibit binding of the translation factors.   

The L11 region of the ribosome constitutes the binding site for the thiazole family 

of antibiotics, the most well-studied being thiostrepton, initially identified as an inhibitor 

of mRNA-tRNA translocation [103]. Thiostrepton resistance mutations cluster around a 

cleft between the A1067/A1095 stem-loops of rRNA and the proline-rich helix 1 of the 

L11 NTD [101]. Thiostrepton-producing Streptomyces strains possess a 2’-O-methylation 

of A1067 as a natural resistance mechanism, and mutations within the rRNA 

(transversion mutations of A1067 or A1095) as well as the L11 NTD (Pro22 to Ser/Thr 

substitutions) have additionally been shown to confer resistance [104-106]. These results 

suggested that thiostrepton binds within the cleft between L11’s NTD and H43/44. This 

was recently confirmed by X-ray crystal structures of thiostrepton, as well as the related 

drugs micrococcin and nosiheptide, in complex with the Deinococcus radiodurans large 

ribosomal subunit [107]. Thiostrepton may inhibit protein synthesis by sterically blocking 

the formation of interactions between translation factors and L11 and/or H43/44; 

alternatively, the drug could prevent conformational switching of the L11 NTD by 

stabilizing it in a fixed conformation with respect to the rRNA.  
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Figure 1.9: Inter-domain flexibility of r-protein L11. 
(A) X-ray crystal structure of L11 from Thermotoga maritima bound to a 58-nucleotide stretch of 
23S rRNA (nucleotides 1051-1108 in E. coli) corresponding to helices H43/44 (PDB ID: 1MMS). 
L11 residues are colored according to B-factor, with a color scale ranging from blue (B ≤ 20 Å2) 
to red (B ≥ 100 Å 2). The average main chain B-factor is 40 Å2 for the CTD and 85 Å2 for the 
NTD. (B) Different L11 inter-domain configurations determined using NMR spectroscopy. 
Structures were calculated for free L11 (blue), L11 bound to a 60-nucleotide rRNA fragment 
(nucleotides 1050-1109, red), and L11 in complex with rRNA and the antibiotic thiostrepton 
(green). Bundles of the twenty best structures were aligned based on stable secondary structural 
elements within the CTD and are shown here as backbone traces. Figure reproduced from [108].  
 

 

Since thiostrepton binds to the L11 region of the ribosome, the effect of this drug 

on IF2 activities could indirectly shed light on the mechanistic role of L11 during 

translation initiation. There are multiple reports that thiostrepton does indeed affect IF2 

functions on the ribosome, but unfortunately, the data are conflicting: independent studies 

have concluded that thiostrepton enhances [109, 110], inhibits [111], or has no effect 

[112] on the multiple-turnover, ribosome-dependent GTP hydrolysis activity of IF2. 

Similarly, there are studies indicating that the ability of IF2 to function catalytically in 

70S IC formation is prevented [112] [113] or enhanced [110] in the presence of 
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thiostrepton. The reason for the conflicting results, and thus a clear description of the 

effect of thiostrepton on IF2-ribosome interactions, remains to be resolved.        

Several investigations making use of L11-depleted ribosomes have also yielded 

data attesting to the functional importance of L11-IF2 interactions. Sucrose density 

gradient analysis showed that efficient association of the 30S IC with the 50S subunit 

requires the presence of both L11 and IF2, suggesting that L11 represents an important 

binding partner for IF2-GTP during subunit joining [114]. In another study, the multiple-

turnover GTP hydrolysis activity of IF2 elicited by L11(-) ribosomes was found to be 

four-fold less than with wild-type ribosomes, and near wild-type levels of activity could 

be restored through reconstitution of the L11(-) ribosomes with purified L11 [110]. The 

lower GTP hydrolysis activity observed with L11(-) ribosomes was not due to a lower 

affinity of IF2 for the ribosome, as indistinguishable binding curves were generated for 

IF2 in the presence of L11(-) and wild-type ribosomes.   

The function of the L11 region is expected to be intimately tied to conformational 

change of its rRNA and/or protein components. Several modes of conformational 

flexibility have been proposed for the L11 region. As noted above, movements of the 

flexible L11 NTD could result in different orientations with respect to the CTD and 

H43/44. Solution-state NMR data provide evidence for a relative reorientation of the 

CTD and NTD upon binding of the free protein to RNA, and again upon addition of 

thiostrepton, the latter of which causes the NTD to bend closer to the CTD and RNA 

(Figure 1.9B) [108]. Similarly, a comparative analysis of L11 NTD conformations among 

numerous X-ray crystal structures and cryo-EM reconstructions representing different 
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functional states of the ribosome suggested a wide dynamic range of L11 movements 

[115]. The specific configuration of the NTD with respect to the CTD and RNA was 

found to be correlated with the ligand-bound state of the ribosome. In general, translation 

factor binding was accompanied by movement of the L11 NTD towards the body of the 

50S subunit, while in the factor-free “resting state” the L11 NTD moved away from the 

50S subunit. These movements are apparently facilitated by a rotation around the 

protein’s hinge region and an accompanying twist of the NTD [115]. The NTD 

orientation may also change depending on the nucleotide bound state of the translation 

factor, as was noted by Agrawal, et al. based on a comparison of cryo-EM 

reconstructions of the 70S ribosome bound to either EF-G–GDPNP or EF-G–GDP. 

Following GTP hydrolysis by EF-G, a ~5 Å downwards movement of the NTD occurs, 

resulting in the formation of an intermolecular “arc-like connection” between the tip of 

the NTD and the G’ subdomain of EF-G–GDP [116].   

The 23S rRNA components of the L11 region may also undergo functionally 

important conformational changes. For example, molecular dynamics simulations suggest 

that nucleotide A1067 within the H43/44 L11-binding platform may reversibly flip out 

and adopt a solvent-exposed conformation in order to contact the elbow region of the A/T 

hybrid-state tRNA during aa-tRNA accommodation [117].  

Finally, large-scale movements of the entire L11 arm with respect to the body of 

the 50S subunit may occur during translation. The crystal lattice of the vacant E. coli 70S 

ribosome contained two independent copies of the ribosome per asymmetric unit, which 

differed from each other by, among other things, a ~15 Å movement of the L11 arm 



Chapter 1 – Introduction 
________________________________________________________________________ 

37 

towards the A site (Figure 1.10). The point of flexibility permitting this structural 

rearrangement was identified as the region comprising base pairs U1035/G1120 through 

C1041/G1114 at the base of H42 [5]. This region includes two consecutive G-U wobble 

base pairs (U1035/G1120 and G1036/U1121), which are known to promote 

conformational flexibility of RNA [4].  

 

 

Figure 1.10: Conformational flexibility of the L11 arm. 
Different conformations of the L11 arm (23S rRNA helices H42-44) were observed for two 
unique copies of the ribosome within the asymmetric unit of crystals formed with vacant E. coli 
ribosomes. The structures of ribosome I (PDB ID: 2AVY and 2AW4) and ribosome II (PDB ID: 
2AW7 and 2AWB) were aligned based on total 23S rRNA using PyMOL [121]. Compared to the 
L11 arm in ribosome II (dark blue), the L11 arm in ribosome I (pink) has moved ~15 Å towards 
the A site. The L11 protein has been removed from the figure for clearer visualization of the 
rRNA.        

 

Notably, the L11 arm contains additional rRNA structural motifs known to facilitate 

conformational flexibility, namely a kink-turn motif at the internal loop of H42, and a G-

ribo motif at nucleotide 1042 near the junction between H41 and H42 [4, 118]. The large-

scale rearrangements of the L11 arm seen in the crystal structures are likely related to the 



Chapter 1 – Introduction 
________________________________________________________________________ 

38 

“inward curling” of the L11 region observed by cryo-EM to occur upon binding of 

translation factors RF1/2 [119], EF-G [116], and EF-Tu:GTP:aa-tRNA [120]. 

The conformational changes described above may be required for L11 to interact 

with each translation factor in a unique way and/or to change its interaction pattern with 

translation factors over the course of their residency on the ribosome. Conformational 

changes of the L11 region could be coupled to and/or actively promote IF2 

conformational rearrangements associated with factor binding, GTP hydrolysis, Pi 

release, or dissociation. Similarly, these conformational changes could facilitate the 

reversibility of L11-IF2 interactions; reversible formation and disruption of IF2-L11 

contacts could stabilize or destabilize IF2’s binding to the ribosome and thus serve to 

modulate its association and dissociation kinetics. The observation that IF2 increases the 

accessibility of H43 and H44 to cleavage by hydroxyl radicals strongly suggests that 

conformational changes within the L11 region do in fact occur upon IF2 binding to the 

ribosome [110].   

In summary, the L11 region of the 50S subunit’s GAC likely plays an important 

role in regulating IF2-mediated processes during translation initiation, but its precise 

mechanistic function remains to be clarified. There is evidence for conformational 

changes of the L11 protein, its associated rRNA binding platform, and the entire L11 

arm, which are presumably intimately tied to L11 function. A better understanding of the 

mechanistic role of L11 during initiation will thus require a detailed characterization of 

L11 dynamics, as well as the timing of its interactions with IF2. Investigations into the 

nature and timescale of IF2-L11 interactions, including how these interactions change as 
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a function of the individual biochemical steps of the initiation pathway, should prove 

useful in building a detailed mechanistic model for IF2-mediated formation of the 70S 

IC.   

 

1.8 smFRET and TIRF microscopy: tools for studying dynamics 

Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful 

biophysical technique for studying conformational dynamics [122, 123]. FRET is based 

upon energy transfer between two fluorophores, a donor and an acceptor [124, 125]. The 

energy transfer is a non-radiative process that occurs via dipole-dipole interactions 

between the donor in its excited electronic state and the acceptor in its ground state. It 

depends upon significant overlap between the emission spectrum of the donor and the 

absorbance spectrum of the acceptor (Figure 1.11A). The rate of energy transfer from 

donor to acceptor, kT(r), depends on the inter-fluorophore distance according to the 

equation:   
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where r is the distance between the two fluorophores, τD is the lifetime of the donor in the 

absence of acceptor, and R0 is the Förster distance, the distance at which the energy 

transfer efficiency is 50%. The value of R0 is different for each donor-acceptor pair and is 

described by the following equation: 
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Here, κ2 is a geometric factor that describes the relative orientation of the donor and 

acceptor transition dipoles; n is the refractive index of the medium; QD is the quantum 

yield of the donor in the absence of acceptor; and J(λ) is the “overlap integral”, a measure 

of the amount of spectral overlap between the donor emission and acceptor absorption 

profiles. Values of R0 typically range from 20 to 60 Å, with R0 ≈ 55 Å for the commonly 

used Cy3-Cy5 donor-acceptor pair. This means that the efficiency of energy transfer 

EFRET, given by  

 66
0

6
0

rR
REFRET +

=  (3) 

will be most sensitive to distance changes in the range of ~35 to 75 Å for Cy3-Cy5 

(Figure 1.11B). This window of sensitivity is often ideal for probing structure and 

dynamics of biological molecules. Thus, by attaching donor and acceptor fluorophores to 

appropriate regions of a biomolecule of interest, measurements of EFRET can be used to 

monitor conformational changes occurring on the Å length scale. FRET can also be used 

to study the association and dissociation of two binding partners, with non-zero FRET 

efficiencies reporting on the bound state. 
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Figure 1.11: Physical principles of fluorescence resonance energy transfer. 
(A) FRET is dependent on significant spectral overlap between the donor emission spectrum and 
the acceptor absorbance spectrum. AD: donor absorbance, ED: donor emission, AA: acceptor 
absorbance, EA: acceptor emission. (B) Plot of FRET efficiency versus distance for a donor-
acceptor pair with R0 = 55 Å.  
 

 

Probing conformational dynamics and substrate-ligand binding at the level of 

single molecules permits access to mechanistic information that is often difficult or 

impossible to extract from ensemble measurements. For example, the ensemble may be 

composed of two subsets of molecules, those in conformational state A and those in 

conformational state B. This so-called static heterogeneity would be clearly identifiable 

from smFRET measurements, and the relative occupancy of each subpopulation could be 

readily tabulated. In contrast, the population-weighted average FRET value generated by 

an ensemble measurement may hide the presence of subpopulations completely. 

Similarly, dynamic heterogeneity might exist, in which individual molecules within the 

ensemble fluctuate stochastically between two or more conformational states.  

Asynchronous fluctuations would be masked by ensemble averaging, but are readily 

observed in single-molecule time trajectories, allowing for a straightforward analysis of 



Chapter 1 – Introduction 
________________________________________________________________________ 

42 

their underlying thermodynamic and kinetic parameters. Finally, rare and short-lived 

events, such as infrequent substrate-ligand binding events or transiently sampled 

conformational intermediates, might only be observable using techniques with single-

molecule resolution [126, 127]. 

Detection of fluorescence from single molecules is often accomplished using total 

internal reflection fluorescence (TIRF) microscopy [128]. In a commonly implemented 

TIRF microscope configuration, a focused laser beam is introduced onto a quartz 

microfluidic flowcell through a prism attached to the flowcell surface. When the laser 

beam encounters the interface between the quartz microscope slide (index of refraction n1 

≈ 1.5) and aqueous buffer (n2 ≈ 1.3), it will either be transmitted into the sample or, at 

incidence angles past a certain critical angle θC (Equation 4), totally reflected from the 

interface back into the quartz slide.   

 







= −

2

11sin
n
n

Cθ  (4) 

Total internal reflection of the incident laser beam generates a weak electromagnetic field 

within the sample called the evanescent field. The intensity of the evanescent field decays 

exponentially with distance from the quartz-buffer interface, and can be used to 

selectively excite fluorescence from molecules within ~100 nm of the surface. TIRF 

thereby increases the signal-to-noise of the measurements and permits detection of 

fluorescence from single molecules near the microscope slide surface. 

Fluorescently labeled molecules can be immobilized on the surface, thus 

preventing diffusion and permitting imaging of individual molecules with observation 
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times (~10s of sec to min) limited by fluorophore photobleaching. Fluorescently labeled 

ribosomal complexes are often assembled on an mRNA with a 5’ biotin modification, 

which allows surface tethering via a biotin-streptavidin interaction. Using wide-field 

optics combined with an electron-multiplying charge coupled device (EMCCD) camera 

as the detector, fluorescence emission from hundreds of spatially separated ribosomal 

complexes can be collected simultaneously as a function of time [126, 127].   

In a typical smFRET experiment, the Cy3 donor fluorophore is directly excited 

with green, 532 nm laser illumination, and can either fluoresce itself or transfer energy 

through FRET to a nearby Cy5 acceptor. Cy3 and Cy5 emission are collected 

simultaneously and separated using dual-view optics onto two halves of the EMCCD 

detector. Following data acquisition, the Cy3 and Cy5 fields of view are aligned to 

identify co-localized Cy3 and Cy5 fluorescence spots originating from single ribosomal 

complexes. From this data, fluorescence intensity versus time trajectories are produced, 

as well as the corresponding FRET efficiency versus time trajectories (Figure 1.12). 
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Figure 1.12: TIRF microscopy and smFRET data collection.  
(A) Principles of operation and typical optical setup of a prism-based TIRF microscope. See text 
for detailed description. (B) Inset showing an enlargement of the quartz-buffer interface of the 
sample flowcell. Fluorescently labeled ribosomal complexes are tethered to the polyethylene 
glycol (PEG)/biotin PEG-passivated quartz surface through a biotin-streptavidin-biotin bridge 
and are thereby confined within the effective excitation volume of the evanescent field. (C) Inset 
showing an enlargement of a typical dual-view fluorescence image recorded by the EMCCD 
detector. Individual frames contain donor and acceptor signals from hundreds of spatially 
localized molecules. Images are collected at a frame rate of 10s to 100s of msec to follow the 
time evolution of the fluorescence signals. (D) Representative donor and acceptor emission 
intensities versus time trajectory derived from a single fluorescently labeled ribosomal complex 
within the field-of-view. Figure reproduced from [127].  
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The same experimental set-up can also be used for single-molecule fluorescence 

co-localization measurements. In this case, both Cy3- and Cy5-labeled species are 

directly excited using a combination of 532 nm and 635 nm laser illumination. Detection 

of co-localized Cy3 and Cy5 fluorescent spots indicates binding of Cy3- and Cy5-labeled 

species to the same surface-immobilized ribosome. Co-localization experiments lack the 

structural information inherent to FRET, but can be useful in investigating, for example, 

the temporal organization of ligand binding events or the assembly/disassembly of multi-

component macromolecular complexes. Notably, this technique has recently been applied 

to dissect the spliceosome assembly pathway by following the ordered association of 

fluorescently labeled spliceosomal sub-complexes onto a pre-mRNA substrate in real 

time [129].   

 

1.9 Summary and motivation for my Ph.D. work 

Docking of the 50S subunit to the 30S IC is a critical checkpoint along the 

translation initiation pathway. This event is highly regulated by the initiation factors in 

order to ensure efficient formation of a 70S IC that is correctly assembled, with fMet-

tRNAfMet bound at the mRNA’s start codon, and is primed for in-frame synthesis of the 

encoded protein. IF2 plays a central role in accelerating subunit joining and guiding 

formation of the elongation-competent 70S IC. During its catalytic cycle, IF2 interacts 

with multiple components of the GAC; how each of these components collaborates with 

IF2 in order to direct subunit joining, GTP hydrolysis, and IF2 recycling is a question of 

key mechanistic interest for understanding ribosome function. Particularly unclear is the 
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mechanistic role of the L11 region in these processes, due in part to conflicting reports in 

the literature regarding the effect of L11-targeting antibiotics on IF2 activities. However, 

based on its structurally dynamic nature, it is likely that conformational rearrangements 

of the L11 region help to coordinate one or more of IF2’s activities. It is unlikely that 

IF2’s interaction with the GAC can be depicted as a one-step binding event; instead, it 

probably involves a stepwise series of interactions with the different GAC components. 

In other words, the binding site of IF2 at the 50S GAC is likely dynamically remodeled 

during subunit joining and 70S IC formation, with the formation, breakage, and 

rearrangement of intermolecular contacts between IF2 and different GAC components 

serving to direct and regulate biochemical and mechanical events.   

I thus hypothesized that conformational rearrangements between IF2 and L11 

help guide IF2 activities during the late stages of translation initiation. This thesis 

presents the development of an smFRET signal between IF2 and L11 to test this 

hypothesis. Based on smFRET measurements, it may be possible to characterize the 

interaction patterns between IF2 and L11, including the timing of the formation and 

disruption of IF2-L11 intermolecular contacts and how they change along the reaction 

pathway leading to 70S IC formation. This approach could ultimately help clarify the 

mechanistic function of the L11 region during initiation. Development and validation of 

the smFRET signal is presented in Chapter 2 of this thesis, and its sensitivity to IF2-L11 

conformational dynamics is demonstrated. An experimental platform is then described 

which was implemented to follow real-time, IF2-catalyzed subunit joining reactions. The 
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smFRET signal is additionally shown to be useful in characterizing the lifetime of IF2 on 

the 70S IC prior to its release.   

The ability to observe 50S subunit joining to the 30S IC in real time with my 

smFRET assay opens the door to investigations of how other components of the 

translational machinery regulate 70S IC formation. In Chapter 3, the regulatory effect of 

IF3 on this process is specifically addressed. IF3 is known to have anti-subunit 

association properties, and observation of this activity at the level of single molecules has 

yielded insights into IF3’s mechanism of action. This approach has allowed direct 

observation of reversible 50S subunit docking to the 30S IC, and in so doing, provides a 

unique perspective with which to interpret bulk biochemical data on subunit joining.  

Additionally, identification of subunit joining intermediates emphasizes the idea that 

formation of an elongation-competent 70S IC is a multi-step process, with opportunities 

for positive or negative regulation at each point along the pathway. Finally, the data have 

implications with regards to the stimulus and timing of IF3 dissociation from the 

ribosome during initiation.   

In general, the order and timing of ligand binding and dissociation during 

translation initiation has not been well characterized, though this information is crucial 

for a detailed understanding of the initiation mechanism and its regulation. Of particular 

interest is the relative timing of IF2 dissociation with respect to the arrival of the first EF-

Tu:GTP:aa-tRNA ternary complex. IF2 and ternary complex bind to partially overlapping 

sites at the 50S GAC, and it is often assumed that IF2 dissociation from the ribosome 

must precede ternary complex binding. To directly test this idea, I have designed single-
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molecule fluorescence co-localization experiments, which are described in Chapter 4.  By 

investigating the temporal relationship between IF2 release and ternary complex arrival, I 

hope to gain insight into how the ribosome coordinates the transition from initiation into 

elongation. My single-molecule approach could yield insights into questions such as: 

Does the presence of ribosome-bound IF2 preclude ternary complex binding completely, 

or are transient binding events possible? Does ternary complex affect the dissociation rate 

of IF2 from the 70S IC? More generally, these experiments may provide a clearer picture 

of how the ribosome efficiently coordinates the sequential binding of translation factors 

to overlapping sites at the GAC over the course of protein synthesis.    
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Chapter 2 

Interaction of IF2 with the GTPase-associated center 
during 70S IC formation 

 
2.1 Introduction 

Following correct assembly of a 30S IC containing fMet-tRNAfMet bound to the 

mRNA start codon, 50S subunit joining is catalyzed by IF2 [1, 2]. The subunit joining 

event represents an important step in the translation initiation pathway that is regulated in 

order to prevent formation of improperly assembled ribosomal complexes and to 

selectively accelerate the formation of properly assembled 70S ICs [3-5]. This chapter 

reports the development of an experimental platform to monitor IF2-catalyzed subunit 

joining in real time at the single-molecule level, based upon a FRET signal between IF2 

and r-protein L11. The design and generation of fluorescently labeled constructs is 

discussed (Sections 2.2 and 2.3), as well as the results from biochemical assays that 

demonstrate full biochemical activity of these components (Section 2.4). The smFRET 

labeling scheme was initially validated in the context of a stable 70S IC containing IF2 

bound to the non-hydrolyzable GTP analog GDPNP (Section 2.5). Then, an experimental 

platform was developed for observing real-time subunit joining reactions. The results 

from these experiments demonstrate that this approach is useful for studying the rate of 

subunit joining, the lifetime of IF2 on the ribosome prior to dissociation, and 

conformational dynamics between L11 and IF2 within the 70S IC (Section 2.6). Finally, 

IF2 has been shown to hydrolyze GTP in a ribosome-dependent, multiple-turnover 

reaction that is uncoupled from translation initiation [6]; using the IF2-L11 smFRET 
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signal, I demonstrate that IF2’s interactions with the GAC during multiple-turnover GTP 

hydrolysis are much different from those that occur during 50S subunit joining and 70S 

IC formation (Section 2.7).   

Bulk fluorescence experiments have suggested that, following subunit joining, 

large-scale conformational changes of the ribosome and its initiation factor and tRNA 

ligands are involved in formation of the elongation-competent 70S IC [7, 8]. The known 

conformational flexibility of the L11 region of the 50S GAC (see Chapter 1 and 

references cited therein) suggested that L11 dynamics may be involved in this process. 

By monitoring the interactions between L11 and IF2, therefore, I hoped to take a first 

step toward characterizing GAC dynamics during 70S IC formation and understanding 

the mechanistic role that L11 plays during this process. Following 70S IC assembly one 

molecule at a time has provided direct access to static and dynamic heterogeneity within 

the population of initiating ribosomes, allowing, for example, detection and 

characterization of stochastic conformational fluctuations between L11 and IF2 prior to 

IF2 dissociation.            

 

2.2 Design of smFRET probes 
 

In order to monitor the interaction between IF2 and the ribosome’s GAC during 

translation initiation, smFRET probes were site-specifically attached to appropriate 

positions on the surface of IF2 and r-protein L11. The distance between donor and 

acceptor fluorophores should ideally be close to the Förster distance (R0, ~60 Å for the 

Cy3-Cy5 FRET pair) [9, 10], where small changes in inter-fluorophore distance result in 
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large changes in FRET efficiency. Currently, only low-resolution cryo-EM 

reconstructions of IF2 in the context of a 70S IC are available [11, 12], which allowed 

only an approximate prediction of the distance between L11 and IF2. Therefore, to 

maximize the probability of obtaining a mechanistically informative labeling scheme, 

three candidate labeling positions were chosen on IF2 at residues Arg561, Ser566, and 

Ser672 (the amino acid numbering convention used here assigns as residue 1 the N-

terminal methionine of IF2-α) (Figure 2.1).  

 

 

Figure 2.1: Fluorophore labeling positions on L11 and IF2.  
(A) Model of the relative orientation of IF2 and the 50S subunit within the 70S IC. The model 
was constructed through the superposition of multiple cryo-EM and X-ray crystallographic 
structures in order to approximate distances between potential fluorophore labeling positions on 
L11 and IF2. PDB files used to construct the model were 1ZO1, 1ZO3, 2J00, 2J01, 2AW7, and 
2AWB. The 50S subunit (PDB ID: 2AWB) is shown in an interface view with rRNA colored 
gray and r-proteins colored in lavender. IF2 (PDB ID: 1ZO1) is colored in orange. (B) Based on 
this model, approximate distances between labeling positions on L11 and IF2 were ~45 Å from 
Cys38 to Arg561, ~44 Å from Cys38 to Ser566, and ~48 Å from Cys38 to Ser672.         
 
 
All three residues are located within IF2’s domain V, which is C-terminal to the GTP-

binding domain [13]. Labeling of the G domain itself was avoided in order to minimize 
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the risk of fluorophore labeling interfering with IF2’s GTP hydrolysis activity. These 

three residues were chosen due to their low level of conservation in bacteria, as well as 

their expected surface accessibility and proximity to L11 in the 70S IC (Figure 2.1). r-

protein L11 contains a single, wild-type cysteine residue (Cys38) in its NTD, which was 

chosen as the L11 labeling position. 

 

2.3 Generation of fluorescently labeled constructs    

2.3.1 (Cy3/Cy5)-L11 50S subunits 

Preparation of site-specifically labeled 50S subunits was a two-step process that 

involved fluorescent labeling of L11 with Cy3 or Cy5 followed by in vitro reconstitution 

of (Cy3/Cy5)-L11 with 50S subunits lacking L11, termed L11(-). First, the rplK gene 

encoding r-protein L11 was PCR-amplified from E. coli genomic DNA and cloned into 

an overexpression vector that introduces a six-histidine (6xHis) affinity tag followed by a 

tobacco etch virus (TEV) protease cleavage site at the N-terminus of the cloned protein 

(Section 5.1.4.1). Recombinant, 6xHis-tagged L11 was overexpressed and affinity-

purified over a Ni2+-nitrilotriacetic acid (NTA) column under denaturing conditions, 

followed by protein renaturation, cleavage of the 6xHis-tag with TEV protease, and 

removal of the cleaved 6xHis-tags with a second Ni2+-NTA column (Section 5.1.4.2). 

Purified L11 was then fluorescently labeled at its unique cysteine residue (Cys38) by 

reaction with Cy3 or Cy5-maleimide conjugated fluorophores to generate (Cy3/Cy5)-

L11. Separation of (Cy3/Cy5)-L11 from free, unreacted dye was achieved by gel 
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filtration chromatography, which was incidentally found to separate unlabeled- and 

(Cy3/Cy5)-labeled species (Section 5.1.4.3).    

L11(-) ribosomes were purified from the strain NVD005, a derivative of E. coli 

K-12 from which the rplK gene has been deleted from the chromosome [14, 15]. The 

corresponding wild-type strain NVD001 was used to purify wild-type ribosomes using 

the same methodology. Tight-coupled 70S ribosomes were first purified using sucrose 

density gradient ultracentrifugation. These were subsequently split into 30S and 50S 

subunits by resuspension in low (1 mM) Mg2+ buffer and isolated through another round 

of sucrose density gradient ultracentrifugation. L11(-) 50S subunits were then 

reconstituted with (Cy3/Cy5)-L11 and purified through another sucrose density gradient, 

thereby generating 50S subunits site-specifically labeled at Cys38 of L11’s NTD (Section 

5.1.5). L11(-) 50S subunits were also reconstituted with recombinant, unlabeled L11 as a 

control to test for the effect of fluorophore labeling in the biochemical assays described 

below.  

 

2.3.2 (Cy3/Cy5)-IF2 

Site-directed mutagenesis of wild-type IF2 (γ isoform) was performed in order to 

generate R561C, S566C, and S672C mutants (Section 5.1.3.1). These point mutants were 

purified using a combination of Ni2+-NTA affinity chromatography and cation-exchange 

chromatography (Section 5.1.3.2). Wild-type IF2 contains three cysteine residues, at 

positions 599 (domain V), 815 (domain VI-2), and 861 (domain VI-2), which have 

previously been shown in our laboratory to be inaccessible to the fluorophore labeling 
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reaction under particular conditions [16]. These conditions were employed to 

fluorescently label each of the three mutants with Cy3/Cy5; labeled IF2 was then 

separated from free, unreacted dye by gel filtration chromatography (Section 5.1.3.3). A 

negative-control labeling reaction using wild-type IF2 demonstrates highly specific 

labeling of the engineered cysteines (Figure 2.2). Fluorophore labeling efficiencies were 

estimated to be ~60% for IF2 R561C, ~85% for IF2 S566C, and ~90% for IF2 S672C.   

   

 

Figure 2.2: Site-specific fluorescent labeling of IF2. 
Mutant and wild-type IF2 were incubated with Cy3-maleimide under identical reaction 
conditions, followed by separation of IF2 from free, unreacted dye using gel filtration 
chromatography. IF2 elutes at ~67 mL and was detected by absorbance at 280 nm (blue curve). 
Cy3 was detected by absorbance at 550 nm (red curve). AU=arbitrary units. (A) Chromatogram 
from the IF2 S672C labeling reaction. Based on integration of the A280 and A550 peaks, the 
labeling efficiency for IF2 S672C was ~90%. (B) Chromatogram from the wild-type IF2 labeling 
reaction. The absence of an A550 peak co-migrating with wild-type IF2 demonstrates that the 
three wild-type cysteines are labeled with very low efficiency, if at all.          
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2.4 Biochemical testing of fluorescently labeled components 

 Following generation and purification of Cy3/Cy5-labeled IF2 and 50S subunits, 

it was necessary to test whether the fluorophores and/or labeling procedures affected their 

biochemical activities. Three independent activity assays were performed that tested 

IF2’s ribosome-dependent GTP hydrolysis activity (Section 2.4.1), IF2-promoted 

selection of fMet-tRNAfMet on the 30S IC (Section 2.4.2), and IF2-mediated formation of 

an elongation-competent 70S IC (Section 2.4.3). The fluorescently labeled constructs 

exhibited wild-type levels of activity in all three assays. A low-salt version of the 

standard Tris-polymix buffer system developed for in vitro translation work [17-19] was 

employed in all biochemical experiments. It contains 10 mM Tris-acetate (pH25°C = 7.5), 

20 mM KCl, 5-15 mM Mg(OAc)2, 1 mM NH4OAc, 0.1 mM Ca(OAc)2, 0.1 mM EDTA, 6 

mM β-mercaptoethanol, 5 mM putrescine-HCl, and 1 mM spermidine free-base. Detailed 

protocols for these assays can be found in Section 5.2 of the Materials and Methods. 

 

2.4.1 GTP hydrolysis assay 

A GTP-hydrolysis assay was performed to test the ability of fluorescently labeled 

IF2 to hydrolyze GTP in a ribosome-dependent manner [20]. In this assay, radiolabeled 

[α-32P]GTP is incubated with IF2 in the presence or absence of ribosomes. GTP 

hydrolysis by IF2 leads to the accumulation of [α-32P]GDP, which can be separated from 

unreacted [α-32P]GTP by thin layer chromatography (TLC) and quantified by 

phosphorimaging. This is a multiple-turnover assay, in which IF2 recycles on and off the 

ribosome. The multiple-turnover GTP hydrolysis activity of IF2 has been shown to be 
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affected by the presence or absence of L11, with L11(-) ribosomes eliciting less GTP 

hydrolysis than wild-type ribosomes, apparently without affecting IF2’s ribosomal 

binding affinity [21]. Therefore, this assay can report on the biochemical activity of 

fluorescently labeled IF2 as well as (Cy3/Cy5)-L11 reconstituted ribosomes.  

The results from a timecourse are shown in Figure 2.3. High levels of GTP 

hydrolysis requires the presence of both ribosomes and IF2, while incubation of [α-

32P]GTP with ribosomes or IF2 alone results in only basal levels of hydrolysis. L11(-) 

ribosomes were found to be impaired in their ability to stimulate multiple-turnover GTP 

hydrolysis, with the observed four-fold effect in complete agreement with that reported 

by Brandi, et al [21]. The dual-labeled system, consisting of (Cy3)-IF2 and ribosomes 

reconstituted with (Cy5)-L11, exhibits wild-type levels of GTP hydrolysis, indicating 

both a lack of interference of the fluorescent labels with this biochemical activity and a 

high (Cy5)-L11 reconstitution efficiency. 
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Figure 2.3: GTP hydrolysis assay. 
(A) Sample phosphor image showing the conversion of [α-32P]GTP to [α-32P]GDP. 30S and 50S 
ribosomal subunits (0.4 μM) were incubated with IF2 (0.8 μM) and [α-32P]GTP (25 μM) in Low-
Salt Tris-polymix buffer at room temperature. Reactions were quenched at the indicated time 
points, and [α-32P]GDP was separated from [α-32P]GTP by TLC. (B) Timecourse of GTP 
hydrolysis with different combinations of ribosomes and IF2. wt70S refers to ribosomes from 
strain NVD001, L11(-) 70S refers to ribosomes purified from strain NVD005, (Cy5)-70S refers to 
NVD005 ribosomes reconstituted with (Cy5)-L11, and (Cy3)-IF2 corresponds to the Cy3-labeled 
S672C mutant. Phosphor images were quantified using ImageQuant, and percent GTP hydrolyzed 
was calculated as intensity of the GTP spot divided by the sum of GTP and GDP spots, multiplied 
by 100. Error bars represent the standard deviation of three independent measurements. 
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2.4.2 Selection of fMet-tRNAfMet on the 30S IC 

IF2 plays an important role in the recruitment of fMet-tRNAfMet to the 30S 

ribosomal subunit as well as its stabilization on the 30S IC [1, 22]. Even in the absence of 

the other initiation factors, IF2 imparts selection of fMet-tRNAfMet over elongator tRNAs 

at the level of 30S IC assembly. The ability of IF2 to select fMet-tRNAfMet on the 30S IC 

can be tested using a primer extension inhibition assay called “toeprinting” [23, 24]. In 

this assay, the 30S IC is assembled on an mRNA that has been pre-annealed with a 32P-

labeled DNA primer complementary to the mRNA’s 3’ end. Following 30S IC assembly, 

reverse transcriptase is added to extend the 32P-labeled DNA primer, thus generating 32P-

labeled cDNA products. Extension of the cDNA is halted when the reverse transcriptase 

encounters a ribosomal complex bound to the mRNA; thus, the length of cDNA product 

generated provides a readout for the position of the 30S IC on the mRNA (Figure 2.4).  

The mRNA used in the toeprinting experiments contains an AUG start codon, 

which codes for tRNAfMet, followed by a UUC codon, which codes for tRNAPhe. All 

mRNAs used in this thesis were derived from the mRNA encoding gene product 32 from 

T4 bacteriophage (T4gp32), and their full sequences are reported in Appendix A. In the 

absence of initiation factors, the 30S subunit can form a complex on the mRNA with 

either tRNAfMet or tRNAPhe bound to their cognate codons in the P site. If the 30S IC 

contains tRNAfMet bound to the AUG start codon at the P site, reverse transcription is 

halted at a position 15 nucleotides downstream of the first nucleotide of the start codon, 

thereby generating a +15 toeprint. If, instead, the 30S IC contains tRNAPhe bound to the 
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UUC codon at the P site, reverse transcription is halted three nucleotides sooner, thereby 

generating a +18 toeprint (Figure 2.4A). 

In the toeprinting reactions, 30S subunits and 32P-primer annealed T4gp32 mRNA 

were incubated with an equimolar mixture of tRNAPhe and fMet-tRNAfMet in the absence 

or presence of IF2. Subsequent reverse transcription yielded a mixture of 32P-labeled 

cDNA products, which were separated on a 9% sequencing PAGE gel (Figure 2.4B). The 

relative intensities of the +15 and +18 toeprints reports on the relative efficiency of 

initiation with fMet-tRNAfMet versus tRNAPhe. In the absence of IF2, roughly equal 

intensities of the +15 and +18 toeprints were observed (lane 1), demonstrating that the 

30S subunit by itself does not discriminate fMet-tRNAfMet from tRNAPhe. Addition of 

IF2, however, leads to preferential selection of fMet-tRNAfMet, as indicated by a large 

shift in the +15/+18 ratio towards the +15 toeprint (lane 2). Furthermore, the intensity of 

the +15 toeprint in the presence of IF2 is higher than the total initiation signal (i.e. the 

sum of +15 and +18 toeprints) in the absence of IF2, which is consistent with an 

enhancement of fMet-tRNAfMet binding and 30S IC stability promoted by IF2. Similar 

results were obtained in the presence of either mutant IF2 (lane 3) or fluorescently 

labeled IF2 (lane 4) constructs, demonstrating that neither mutation nor fluorophore 

labeling impair the ability of IF2 to select initiator tRNA on the 30S IC.  
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Figure 2.4: Toeprinting activity assay. 
(A) Cartoon depiction of the toeprinting assay. See text for details. “R.T.” denotes reverse 
transcriptase. (B) Initiation complex formation reactions were performed by incubating 30S 
ribosomal subunits (0.7 μM) with 32P-primer annealed mRNA (0.3 μM), fMet-tRNAfMet (1 μM) 
and tRNAPhe (1 μM) for 10 min at 37°C in the presence or absence of IF2 (7 μM). Reverse 
transcription reactions were then performed by adding reverse transcriptase and dNTPs and 
incubating for 15 min at 37°C. cDNA products from the reverse transcription reaction were 
resolved on a 9% sequencing PAGE gel, which was dried and used to expose a Phosphor Imaging 
screen. The region of the resulting phosphor image containing the +15 and +18 bands, 
corresponding to initiation at the AUG codon with fMet-tRNAfMet and initiation at the UUC 
codon with tRNAPhe, respectively, is shown. Lane 1: Reaction was performed in the absence of 
IF2. Lanes 2-4: Reactions were performed in the presence of wild-type IF2, unlabeled IF2 
R561C, or Cy3-labeled R561C IF2 as indicated.      
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2.4.3 Dipeptide formation assays 

The ability of IF2 to promote formation of a correctly assembled 70S IC capable 

of entering into elongation was tested using a dipeptide formation assay. First, 30S ICs 

were prepared by incubating 30S ribosomal subunits (0.9 μM), IF1 (0.9 μM), mRNA (1.8 

μM), and radiolabeled 35S-fMet-tRNAfMet (0.6 μM), in the presence or absence of IF2 (0.9 

μM), in Low-Salt Tris-polymix buffer supplemented with GTP (1 mM). The procedure 

for 30S IC formation employed here was the same as that used to prepare fluorescently 

labeled 30S ICs for microscope experiments, with the exception that non-biotin mRNA 

was used and 35S-fMet-tRNAfMet, rather than (Cy3)-IF2, was limiting. The pre-formed 

30S ICs were then reacted with a mixture of 50S subunits and either EF-Tu:GTP:Phe-

tRNAPhe ternary complex or the antibiotic puromycin. Puromycin is an analog of the 3’-

acceptor end of aminoacyl-tRNA. It binds to the 50S subunit at the peptidyl transferase 

center, participates in peptide bond formation, thereby deacylating the P-site tRNA, and 

subsequently dissociates from the ribosome [25]. In this assay, before peptidyl transfer to 

puromycin can occur, the 50S subunit must dock with the 30S IC and 35S-fMet-tRNAfMet 

must be accommodated into the P site. Thus, formation of fMet-puromycin is commonly 

used to monitor the completion of 70S IC formation and the proper positioning of fMet-

tRNAfMet in the peptidyl transferase center [6, 26]. When EF-Tu:GTP:Phe-tRNAPhe 

ternary complex is used instead of puromycin, peptide bond formation requires, in 

addition to 50S subunit joining and placement of fMet-tRNAfMet in the P site, EF-Tu–

catalyzed accommodation of Phe-tRNAPhe into the A site.   
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Peptidyl transfer results in deacylation of the P-site 35S-fMet-tRNAfMet and 

formation of either 35S-fMet-puromycin or 35S-fMet-Phe dipeptide. The radiolabeled 

dipeptide products can be separated from unreacted 35S-fMet using electrophoretic TLC 

(eTLC) [27]. The results from eTLC analysis of dipeptide formation time courses are 

shown in Figure 2.5. The reactions were largely complete at the earliest, 15 sec time 

point, which precluded analysis of their initial rates. The extent of both fMet-puromycin 

and fMet-Phe formation, however, was shown to depend strongly on IF2, whose presence 

stimulated dipeptide formation ~5-fold. The low levels of dipeptide formation observed 

in the absence of IF2 are likely a consequence of inefficient 50S subunit joining. This 

interpretation is consistent with light scattering data showing that formation of 70S 

complexes from 30S and 50S subunits is highly dependent on the presence of both IF2 

and fMet-tRNAfMet [4, 8]. Fluorescent labeling of neither IF2 nor L11 interferes with 70S 

IC formation, as the dipeptide formation time courses generated using (Cy3)-IF2 and 

(Cy5)-L11 reconstituted 50S subunits are indistinguishable from those obtained with 

wild-type ribosomes and IF2. Furthermore, the extent of fMet-puromycin and fMet-Phe 

formation observed here is comparable to that observed previously under similar 

conditions [6, 26]. The eTLC results thus demonstrate full activity of fluorescently 

labeled components in all of the biochemical steps leading to formation of a 70S IC that 

is competent to enter into the elongation phase of protein synthesis.    
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Figure 2.5: eTLC analysis of dipeptide formation. 
(A) fMet-puromycin reaction. Preformed 30S ICs (1.5 pmol) were mixed with 50S subunits (2.25 
pmol) and puromycin (10 nmol) in Low-Salt Tris-polymix buffer. The reaction was incubated at 
room temperature and quenched with base at 15 sec, 30 sec, 1 min, and 5 min time points. 
Dipeptide fMet-puromycin (fMet-pmn) was separated from unreacted fMet by eTLC (left panel). 
The two fMet spots correspond to oxidized and reduced forms of the amino acid. Reactions 
contained 30S ICs formed in the absence of IF2 (Lanes 1-4), wild-type IF2 (Lanes 5-8), IF2 
S672C (Lanes 9-12), and (Cy3)-IF2 S672C (Lanes 13-16). Wild-type 50S subunits were used in 
all reactions except those in Lanes 13-16, where (Cy5)-L11 reconstituted 50S subunits were used. 
Phosphor images were quantified and the percent of fMet converted to dipeptide was calculated 
as intensity of the fMet-pmn spot divided by the sum of fMet-pmn and unreacted fMet spots, 
multiplied by 100 (right panel). Plotted data represents the mean and standard deviation from 
three independent experiments. (B) fMet-Phe reaction. Preformed 30S ICs (1.5 pmol) were mixed 
with 50S subunits (2.25 pmol) and preformed EF-Tu:GTP:Phe-tRNAPhe ternary complex (6 pmol) 
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in Low-Salt Tris-polymix buffer. The reaction was incubated at room temperature and quenched 
with base at 15 sec, 30 sec, 1 min and 5 min time points, and formation of fMet-Phe was 
monitored by eTLC (left panel). Reactions contained 30S ICs formed in the absence of IF2 
(Lanes 2-5), wild-type IF2 (Lanes 6-9), and (Cy3)-IF2 S672C (Lanes 10-13). Wild-type 50S 
subunits were used in all reactions except those in Lanes 10-13, where (Cy5)-L11 reconstituted 
50S subunits were used. Lane 1 is a negative control in which Phe-tRNAPhe ternary complex (T3) 
was omitted. Phosphor images were quantified and the percent of fMet converted to dipeptide 
was calculated as intensity of the fMet-Phe spot divided by the sum of fMet-Phe and unreacted 
fMet spots, multiplied by 100 (right panel). Plotted data represents the mean and standard 
deviation from three independent experiments.     
 

2.5 Characterization of L11-IF2 smFRET signals within 70SICGDPNP 

Initial steady-state smFRET measurements were performed on 70S ICs formed 

using (Cy3)-IF2 bound to the non-hydrolyzable GTP analog GDPNP. The GDPNP-

bound form of IF2 promotes 50S subunit joining to the 30S IC, but remains stably bound 

to the ribosome following 70S IC formation [12, 28]. It was thus expected that (Cy3)-

IF2-GDPNP should bind stably enough to 70S ICs to allow surface immobilization of 

ribosomal complexes and smFRET imaging for an extended period of time (~minutes) 

prior to (Cy3)-IF2-GDPNP dissociation. These 70S ICs, referred to here as 70SICGDPNP, 

were formed using (Cy5)-L11 reconstituted 50S subunits and provided a robust platform 

for initial validation and preliminary characterization of the three IF2-L11 smFRET 

signals.  

70SICGDPNP complexes were formed in a two-step process comprising 30S IC 

assembly and 50S subunit joining (Section 5.3.2). They were then surface immobilized 

and imaged under steady-state conditions (Section 5.4.2) in order to confirm that the 

chosen fluorophore labeling positions on the surface of IF2 are indeed within FRET 

distance of the fluorophore attached to L11’s NTD in the context of a 70S IC. Complexes 
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were immobilized via their biotinylated-mRNA to the surface of a streptavidin-coated 

flowcell and (Cy3)-IF2 was directly excited with 532 nm TIR illumination. Cy5 emission 

via FRET was observed for 70SICGDPNP complexes formed with all three of the 

individual (Cy3)-IF2 constructs (Figure 2.6). The EFRET distributions were centered at 

0.64 FRET for (Cy3)-IF2 R561C, 0.74 FRET for (Cy3)-IF2 S566C, and 0.68 FRET for 

(Cy3)-IF2 S672C. The similarity in EFRET distributions among the three (Cy3)-IF2/(Cy5)-

L11 signals suggests that the distance between the L11 NTD and the three IF2 labeling 

positions is similar within 70SICGDPNP;  assuming a Förster distance of 60 Å and free 

rotation of the fluorophores (i.e. κ2 = 2/3) [29, 30], these EFRET ratios suggest an inter-

fluorophore distance of ~50-55 Å.   

Based on comparison of the data collected for the three (Cy3)-IF2 constructs 

within 70SICGDPNP, (Cy3)-IF2 S672C was chosen for the majority of the smFRET 

experiments presented in this thesis, for two main reasons. First, the (Cy3)-IF2 R561C 

construct was ruled out because of its relatively low brightness and signal-to-noise ratio, 

which is probably caused by an unfavorable local environment of the Cy3 fluorophore 

that leads to more rapid fluorophore quenching. Second, the average EFRET ratio of 0.68 

observed for (Cy3)-IF2 S672C was preferred over the EFRET ratio of 0.74 observed for 

(Cy3)-IF2 S566C, since it is closer to 0.5, where EFRET is most sensitive to small changes 

in inter-fluorophore distance. Thus, the smFRET signal between (Cy3)-IF2 S672C and 

(Cy5)-L11 might be expected to provide a more sensitive probe of conformational change 

between IF2 and the GAC.     
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Figure 2.6: Steady-state FRET measurements on 70SICGDPNP. 
70SICGDPNP complexes were prepared which contained 30S subunits, (Cy5)-L11 reconstituted 
50S subunits, biotin-mRNA, fMet-tRNAfMet, IF1, and either (Cy3)-IF2-GDPNP R561C (A), 
S566C (B), or S672C (C). The preformed complexes were then surface immobilized and imaged 
using TIRF microscopy. Top Row: Representative Cy3 (green) and Cy5 (red) fluorescence 
intensity versus time trajectories. Second row: The corresponding smFRET versus time 
trajectories, where FRET is calculated as ICy5/(ICy3 + ICy5). Third row: Time evolution of 
population FRET histograms, generated by superimposing all of the individual smFRET versus 
time trajectories. Surface contours are plotted from tan (lowest population) to red (highest 
population) as indicated by the color bar. The number of trajectories used to construct each 
contour plot is indicated by “N.”  
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2.6 Real-time observation of IF2-catalyzed 50S subunit joining 

2.6.1 Development of experimental platform 

Having validated the IF2-L11 smFRET signal, I next aimed to use it for 

characterization of the interaction between IF2 and the GAC during IF2-catalyzed 

docking of the 50S subunit to the 30S IC and subsequent formation of the 70S IC. This 

was accomplished by surface-immobilization of 30S ICs containing (Cy3)-IF2-GTP, 

followed by stopped-flow delivery of (Cy5)-L11 labeled 50S subunits and observation of 

the time-evolution of the smFRET signal. Within this experimental set-up, the 50S 

subunit docking event should be signaled by the appearance of Cy5 fluorescence 

resulting from FRET between (Cy3)-IF2 and (Cy5)-L11. Subsequent fluctuations of the 

smFRET signal would report on conformational dynamics between IF2 and L11 within 

the 70S IC, and loss of the fluorescence signal would contain information on the lifetime 

of (Cy3)-IF2 on the 70S IC prior to dissociation.  

30S ICs were prepared which contained IF1, (Cy3)-IF2-GTP, biotin-mRNA with 

an AUG start codon, and fMet-tRNAfMet (Section 5.3.1). It should be noted that for the 

experiments described in this chapter, 30S ICs contained all components of the canonical 

30S IC with the exception of IF3. 30S ICs formed in the absence of IF3 (i.e. 30SIC-IF3) 

exhibit full biochemical activity with regards to formation of a 70S IC that is competent 

for initiation dipeptide formation (see Section 2.4.3) and are thus reasonable substrates to 

use for studying 50S subunit joining and 70S IC assembly. Furthermore, 30SIC-IF3 

possesses the advantage of having higher stability than complexes formed in the presence 

of all initiation components including IF3 (i.e. 30SIC+IF3). The regulatory effect of IF3 on 
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the assembly and conformational dynamics of the 70S IC was investigated in detail and 

will be discussed separately in Chapter 3.  

In order to make measurements of 50S subunit joining, it was first necessary to 

establish conditions under which (Cy3)-IF2 is stably bound to the surface-immobilized 

30S IC on a timescale long enough to allow rinsing of the flowcell, assembly of the 

stopped-flow apparatus, and other steps preceding smFRET imaging (~5-10 min). It is 

known that the presence of IF1 and GTP enhance IF2’s affinity for the 30S subunit [28, 

31-33], which suggested that (Cy3)-IF2 could be kept stably bound to surface-

immobilized 30S ICs by including high concentrations of IF1 (0.9 μM) and GTP (1 mM) 

in all dilution, wash, and imaging buffers. Under these conditions, the 30S ICs could be 

diluted to ~100s of pM and surface immobilized to yield ~200-300 spatially separated 

fluorescence spots per field-of-view, corresponding to stably and specifically bound 

(Cy3)-IF2-GTP (Figure 2.7). 

Following surface-immobilization of 30S ICs containing (Cy3)-IF2-GTP, (Cy5)-

L11 labeled 50S subunits were stopped-flow delivered into the flowcell. The resulting 

smFRET trajectories exhibit an initial dwell with an EFRET ratio of zero, corresponding to 

the waiting time before 50S subunit joining, followed by a sharp transition to non-zero 

EFRET ratios, which indicates the subunit joining event. Similar data was obtained with all 

three of the (Cy3)-IF2 constructs (Figure 2.8). Thus, surface-immobilized 30S ICs are 

capable of participating in IF2-catalyzed 50S subunit joining. The smFRET versus time 

trajectories obtained from these experiments contain a wealth of mechanistic information 

on the rate of subunit joining, conformational dynamics between IF2 and the GAC during 
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70S IC formation, and the lifetime of IF2 on the 70S IC, as described in the following 

sections. 

        

 

Figure 2.7: Stability of (Cy3)-IF2-GTP binding to 30SIC-IF3 and biotin specificity of surface 
immobilization.  
(A) Sample field-of-view (FOV) depicting several hundred fluorescent spots originating from 
individual surface-bound, (Cy3)-IF2–containing 30S ICs. (B) The number of (Cy3)-IF2 
molecules per FOV was quantified under various conditions. Following surface immobilization of 
30SIC-IF3 and rinsing of the flowcell, ten separate FOVs were imaged. Fluorescent spots were 
identified by applying an intensity threshold and selecting regions containing at least two 
contiguous pixels above the threshold. The average and standard deviation for the number of 
(Cy3)-IF2 spots per FOV is depicted in the bar graph. 30SIC-IF3 complexes contained fMet-
tRNAfMet, IF1, (Cy3)-IF2, GTP, and either biotin- or non-biotin mRNA as indicated. Inclusion of 
IF1 (0.9 μM) and GTP (1 mM) in the dilution, wash, and imaging buffers caused an ~8-fold 
increase in the number of surface-bound (Cy3)-IF2 molecules observed. Only background levels 
of fluorescence were observed for 30SIC-IF3 formed with non-biotin mRNA. This suggests that 
~98% of the (Cy3)-IF2 spots correspond to (Cy3)-IF2 that is bound to the 30S IC, which in turn 
is specifically tethered to the flowcell surface via the biotin-streptavidin interaction.  
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Figure 2.8: Real-time smFRET measurements of IF2-catalyzed 50S subunit joining. 
(A) Cartoon depicting the stopped-flow delivery of (Cy5)-L11 labeled 50S subunits to 30S ICs 
carrying (Cy3)-IF2-GTP, IF1, mRNA, and fMet-tRNAfMet. Three different IF2 constructs were 
used, with data for (Cy3)-IF2 R561C, (Cy3)-IF2 S566C, and (Cy3)-IF2 S672C shown in panels 
(B), (C), and (D), respectively. Second row: Representative Cy3 (green) and Cy5 (red) 
fluorescence intensity versus time trajectories. Third row: The corresponding smFRET versus 
time trajectories, where FRET is calculated as ICy5/(ICy3 + ICy5). Fourth row: Post-synchronized 
time evolution of population FRET histogram, made by superimposing individual smFRET 
trajectories after synchronizing the first FRET event > 0.2 to time = 1 sec. The number of 
trajectories used to construct each contour plot is indicated by “N.” Contours are plotted from tan 
(lowest population) to red (highest population).    
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2.6.2 Rate of subunit joining 

50S subunit joining to 30S ICs has previously been investigated at the single-

molecule level by Marshall, et al. using smFRET probes attached to the 30S and 50S 

ribosomal subunits [34, 35]. In these studies, fluorescently labeled DNA oligonucleotides 

were hybridized to rRNA hairpin extensions that had been engineered into helix 44 on the 

30S subunit and helix 101 on the 50S subunit, thus generating a (Cy3)-h44/(Cy5)-H101 

intersubunit FRET signal. Stopped-flow delivery of (Cy5)-H101 50S subunits to surface-

tethered (Cy3)-h44 30S ICs led to onset of FRET upon 50S subunit docking. Since my 

50S subunit joining experiments were conducted under similar Tris-polymix buffer 

conditions and at the same concentration of Cy5-labeled 50S subunits (20 nM) used by 

Marshall, et al., a comparison of their measurements on the apparent rate of subunit 

joining with my measurements using the (Cy3)-IF2/(Cy5)-L11 smFRET signal could 

provide insight into the mechanism of the IF2-catalyzed reaction.  

Subunit joining times were defined as the FRET arrival time corrected for the 

dead-time of our stopped-flow apparatus (see Section 5.5.1.3), and were measured for 

hundreds of individual 30S ICs under a range of magnesium ion concentrations (3.5 to 15 

mM Mg2+, Figure 2.9 and Table 2.1). The apparent first order rate of subunit joining, 

calculated as the inverse of the mean FRET arrival time, was ~0.4 sec-1 at 20 nM 50S 

subunit concentration and room temperature, and does not exhibit a strong magnesium 

dependence. This corresponds to a bimolecular rate of ~20 μM-1sec-1, which falls within 

the range of 12 to 120 μM-1sec-1 reported based on ensemble light scattering 

measurements of 50S subunit docking to 30S subunits in the presence of IF1, IF2, 
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mRNA, fMet-tRNAfMet, and GTP [3, 4]. The fact that the rate measured here lies near the 

lower end of the range of ensemble values is likely due to steric and surface effects 

associated with tethering of the 30S ICs [36]. Subunit joining times were also measured 

for 30SIC+IF3 complexes (see Chapter 3 and Appendix B). The mean subunit joining time 

was found to decrease as a function of increasing (Cy5)-50S concentrations, consistent 

with a bimolecular association reaction.  

 

 

Figure 2.9: Histogram of subunit joining times. 
Subunit joining times were determined for experiments in which (Cy5)-L11 reconstituted 50S 
subunits were stopped-flow delivered to surface-immobilized 30S ICs containing (Cy3)-IF2 
S672C-GTP in Low-Salt Tris-polymix buffer with 15 mM Mg2+. FRET arrival times were 
calculated as the time of the first data point > 0.2 FRET, minus the estimated dead time of our 
stopped-flow instrument (~2.0 sec). Data from 604 subunit joining events was distributed among 
20 equally spaced bins spanning the range of 0 to 10 sec.     
 

There are two notable differences between the data presented in Table 2.1 and that 

reported by Marshall, et al. using the (Cy3)-h44/(Cy5)-H101 smFRET signal [35]. First, 

the mean FRET arrival times reported here are generally faster, for example, ~3.5-fold 
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faster at 5 mM Mg2+ using similarly prepared 30S ICs. Second, whereas Marshall, et al. 

report a ~3-fold acceleration of subunit joining at 15 mM versus 5 mM Mg2+, my results 

indicated little difference in the apparent rate of subunit joining over an even wider 

concentration range (3.5 mM to 15 mM Mg2+). These differences may reflect the fact that 

all subunit joining events detected using my (Cy3)-IF2/(Cy5)-L11 smFRET signal arise 

from surface-immobilized 30S ICs that already contain IF2, which, once bound to the 

30S subunit, can rapidly promote subunit joining. Subunit association, however, does not 

explicitly require IF2; it does occur, albeit more slowly, in the absence of initiation 

factors [37]. Therefore, it seems likely that a non-negligible subset of the subunit joining 

events observed by Marshall et al. correspond to 50S subunits that associate with IF2-free 

30S ICs. These 30S ICs would exhibit a slower rate of subunit joining, thereby shifting 

the mean FRET arrival time for the entire population towards higher values. In support of 

this interpretation, 50S subunit joining events were observed with the (Cy3)-h44/(Cy5)-

H101 signal even in the absence of initiation factors, but the association rate was slowed 

~3-fold [35].   

This interpretation would suggest that, under certain conditions, the binding of 

IF2 to the 30S IC may limit the apparent rate of 50S subunit joining. Indeed, there is 

evidence from our laboratory that tuning IF2’s binding kinetics to the 30S IC may 

constitute a regulatory mechanism for modulating the rate of subunit joining. IF2’s 

binding affinity was found to be dramatically weakened on incorrectly assembled 30S 

ICs, which may inhibit the 50S subunit joining reaction and thus discourage assembly of 

aberrant 70S ICs [16]. The (Cy3)-IF2/(Cy5)-L11 smFRET signal reported here, however, 
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requires that (Cy3)-IF2 be bound to the 30S IC at the onset of data collection, and 

consequently, is not sensitive to this level of regulation. 

 
Table 2.1: Subunit joining times at different Mg2+ ion concentrations.  
Mean FRET arrival times were calculated at four different Mg2+ concentrations (3.5, 5, 10, and 15 
mM Mg2+) as described in the text. Data were compiled from at least two independent 
experiments. Errors were estimated by splitting the data into three equal parts and calculating the 
average and standard deviation. 
 

[Mg2+] (mM) Number of Molecules Mean FRET Arrival Time (sec) 

3.5 245 2.1 ± 0.2 

5 258 3.9 ± 0.6 

10 320 3.5 ± 0.2 

15 604 2.0 ± 0.2 
    
  

The higher degree of Mg2+-dependence observed by Marshall et al. on the rate of 

subunit joining can be explained in a similar light. Mg2+ ions act to shield the negative 

charge of rRNA phosphate groups that come into close contact at the interface between 

30S and 50S ribosomal subunits, thereby reducing the energetic barrier for subunit 

association [37, 38]. Even in the absence of initiation factors, the equilibrium between 

70S complexes and free subunits can be shifted towards full association at high (>10 

mM) concentrations of Mg2+ [39]. As noted above, it is possible that a significant fraction 

of the subunit joining events observed using the (Cy3)-h44/(Cy5)-H101 signal occur 

when a 50S subunit docks to a 30S IC that does not contain IF2. It may be that these 

slower, uncatalyzed docking events are more sensitive to Mg2+ concentration than the 

IF2-catalyzed events, and that the observed ~3-fold acceleration of subunit joining at 

high Mg2+ observed by Marshall, et al. largely reflects the effect of Mg2+ on this 
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subpopulation of complexes. When bound to the 30S IC, IF2 likely reduces the activation 

energy for subunit joining to such an extent that it can occur rapidly regardless of the 

specific Mg2+ concentration.    

 

2.6.3 Lifetime of IF2 on the 70S IC   

The smFRET versus time trajectories shown in Figure 2.8 contain information 

about the lifetime of IF2 on the 70S IC following 50S subunit joining. Dissociation of 

(Cy3)-IF2 from surface-immobilized ribosomes should lead to loss of spatially localized 

Cy3 fluorescence and termination of the smFRET signal. Interpretation of loss of Cy3 

fluorescence as corresponding to the dissociation of (Cy3)-IF2, however, is complicated 

by the fact that signal loss may also occur as a result of fluorophore photobleaching. 

Nevertheless, it was evident from the individual smFRET trajectories that, on average, 

IF2 remains bound to the 70S IC for a longer period of time (~10s of sec) than 

anticipated. Based on ensemble biochemical measurements, GTP hydrolysis by IF2 

occurs rapidly following 50S subunit joining, with an apparent rate of 30 ± 5 sec-1. This is 

followed by a slower release of inorganic phosphate (Pi), which occurs with a rate of 1.5 

± 0.5 sec-1 after a lag phase of 200 msec [6]. These biochemical events are thought to 

result in a conformational change of IF2 from its GTP-bound form to its GDP-bound 

form, initiated by changes in the Switch 2 loop of IF2’s G-domain, and propagated via 

coupled domain movements to affect a large-scale rearrangement of the entire IF2 

structure [40]. The extended residency of IF2 on the 70S IC observed here suggests that 

even after GTP hydrolysis, Pi release, and IF2’s conformational change, IF2-GDP 
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maintains a sufficient number of contacts with the 30S and 50S ribosomal subunits, and 

possibly fMet-tRNAfMet, which slow its passive dissociation from the ribosome. 

To better characterize the lifetime of IF2 on the 70S IC, it was necessary to limit 

the effects of photobleaching on the observed lifetime of the Cy3 signal. This was 

achieved by shuttering the laser excitation source at regular intervals, which allows 

extended observation times at the expense of reduced time resolution. The strategy that 

was employed involved collecting data frames (100 msec exposure) continuously under 

constant laser excitation for five seconds (i.e. 50 frames) at the beginning of the 

experiment before starting the shuttering routine, at which point single, 100 msec 

exposure data frames were collected at regular intervals with the laser light blocked in 

between. Continuous data collection at the beginning of the experiment was necessary to 

resolve the rapid subunit joining event, which occurs within the first five seconds for the 

vast majority (92%) of (Cy3)-IF2–bound 30S ICs (Figure 2.9). Additionally, it minimizes 

the risk of failing to observe fast-dissociating (Cy3)-IF2 molecules, in case this subset of 

molecules were to become significantly populated under certain experimental conditions.  

The data show that, as the time interval between data frames is increased, the 

observed lifetime of the (Cy3)-IF2 fluorescence signal following subunit joining initially 

increases, confirming the hypothesis that the original measurements were limited by 

photobleaching (Figure 2.10 and Table 2.2). However, as the time interval is further 

increased past ~1 sec, the measured lifetime begins to plateau at values of ~100 sec, 

indicating that, after subunit joining, IF2 likely remains bound to the ribosome on the 

minutes timescale prior to passive dissociation. As a control, the same experiment was 
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performed using 30S ICs containing (Cy3)-IF2-GDPNP (with a time delay between data 

frames of 4 sec). GTP hydrolysis is a prerequisite for dissociation of IF2 from the 

ribosome [28, 41]; by preventing this biochemical step using a non-hydrolyzable GTP 

analog, the observed lifetime of (Cy3)-IF2 was extended by an order of magnitude to 

~1200 sec. This measurement is likely limited by photobleaching and thus probably 

represents a lower limit to the actual residency time of IF2-GDPNP on the ribosome 

following subunit joining. 

 

Figure 2.10: Lifetime of (Cy3)-IF2 on the 70S IC following 50S subunit joining. 
(Cy5)-L11 labeled 50S subunits were stopped-flow delivered to surface-immobilized 30S ICs 
containing (Cy3)-IF2. All experiments were performed in the presence of GTP, except as 
indicated in the legend. 100 msec exposures were collected under continuous laser excitation for 
5 sec, followed by 100 msec exposures separated by time delays during which the laser light was 
shuttered. The time delay between exposures used for each experiment is indicated in the legend. 
Molecules with an observed FRET event > 0.2 occurring within the first 5 sec of data acquisition 
were selected for analysis. The time from the FRET event to the loss of spatially localized Cy3 
fluorescence signal was calculated for each molecule and data were plotted as a normalized 
population decay histogram (bin size = 15 sec). Data for each shuttering condition were compiled 
from three independent experiments comprising hundreds of single molecules.     
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 In summary, my results confirm that GTP hydrolysis by IF2 is required for its 

dissociation from the 70S IC, but suggest that even in the presence of GTP hydrolysis, 

passive dissociation is quite slow. This is consistent with the results from a cryo-EM 

reconstruction of Thermus thermophilus IF2 bound to the 70S ribosome in the post-GTP 

hydrolysis state, in which stable binding of IF2-GDP was a necessary requirement for 

data collection [11]. A comparison of the reconstruction with IF2-GDP to one with IF2-

GMPPCP (mimicking the pre-GTP hydrolysis state) revealed conformational 

rearrangements of IF2 following GTP hydrolysis which involved a ~20° rotation of IF2 

relative to the ribosome and a ~10 Å shift outwards from the intersubunit space. These 

movements break contacts between IF2’s G domain and 30S subunit rRNA helices h8 

and h14, between domain VI-1 and h5 and h15, and between domain VI-2 and h44 and 

fMet-tRNAfMet [11]. Apparently, despite the disruption of IF2-ribosome and IF2-tRNA 

contacts during the transition of IF2 from its GTP- to GDP-bound conformation, the 

remaining contacts between IF2-GDP and the ribosome are sufficient to keep it bound for 

an extended period of time (~100 sec), at least at room temperature. In the future, it may 

be interesting to study the dissociation time of IF2 as a function of temperature in order to 

estimate the free energy barrier to IF2 release following GTP hydrolysis.   

 Based on these results, I speculated that the next event in the translation initiation 

pathway, binding of EF-Tu:GTP:aa-tRNA ternary complex to the ribosome, might 

accelerate IF2 dissociation. To test this possibility, ternary complexes were prepared 

containing Phe-tRNAPhe, which is encoded by the second, UUC codon of the T4gp32 

mRNA. Phe-tRNAPhe ternary complex was then co-delivered with (Cy5)-50S subunits to 
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surface-immobilized 30S ICs containing (Cy3)-IF2-GTP, and the loss of (Cy3)-IF2 

fluorescence after subunit joining was followed as before. In the presence of ternary 

complex, the measured (Cy3)-IF2 residency time decreased only modestly, by ~1.4-fold 

at 1 μM ternary complex (Table 2.2). These data suggest that ternary complex can in fact 

bind to a 70S IC containing IF2-GDP and promote its dissociation, but that this effect is 

small. There are several potential reasons for this, including slow and/or inefficient 

binding of ternary complex to 70S ICs assembled on the flowcell surface. Nevertheless, 

these data imply that simultaneous binding of IF2 and ternary complex can occur, a 

notion that is somewhat surprising considering their partially overlapping binding sites on 

the ribosome [12, 42]. I sought to test this idea by fluorescently labeling the ternary 

complex so as to directly monitor its binding to the 70S IC. These experiments, which are 

ongoing, aim to explore the relative timing of ternary complex binding with respect to 

IF2 dissociation, and will be discussed later in Chapter 4.  

While my data suggest that ternary complex might be able to bind to the 70S IC 

prior to IF2 dissociation, the position of IF2 observed in the cryo-EM reconstructions [11, 

12] certainly precludes final accommodation of aa-tRNA into the ribosomal A site and 

participation in peptide bond formation at the peptidyl transferase center. The observation 

of a delayed release of IF2 from the ribosome following 50S subunit joining is thus 

consistent with the idea that dissociation of initiation factors from the 70S IC may limit 

the rate of initiation dipeptide formation [6, 28]. 
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Table 2.2: Lifetime of the (Cy3)-IF2 fluorescence signal following 50S subunit joining. 
 

Complex Time delay (sec)a [Ternary complex] 
(μM)b 

(Cy3)-IF2 
fluorescence signal 

lifetime (sec)c 

30S IC with (Cy3)-
IF2-GTP 

None - 25 
0.2 - 56 
0.5 - 58 
1 - 83 
2 - 102 
4 - 87 
6 - 115 
4 0.25 73 
4 0.5 68 
4 1 61 

30S IC with (Cy3)-
IF2-GDPNP 

 
4 

 
- 

 
1186 

        
(a) Experiments began with 50 frames of continuous data acquisition (100 msec exposure), followed by a 

shuttering routine in which 100 msec exposures were separated by time delays of varying length during 

which the laser light was blocked.  

(b) When included, preformed ternary complex consisting of EF-Tu, GTP, and Phe-tRNAPhe was co-

delivered with (Cy5)-labeled 50S subunits to surface-immobilized 30S ICs. 

(c) For all 30S ICs that show a FRET event >0.2 within the first 5 sec of data acquisition, the time from the 

onset of FRET to loss of the (Cy3)-IF2 fluorescence signal was calculated, and these values were plotted as 

a normalized population decay histogram (see Figure 2.10). These curves were fit with a single exponential 

decay of the form y=A1*exp(-x/t1) + y0, and the average lifetime of the decay, t1, is reported here.    

                   
 
2.6.4 Conformational dynamics within the 70S IC 
  

Following subunit joining to 30S ICs containing IF2-GTP (referred to in this 

section as 30SICGTP), fluctuations were observed between at least two discrete non-zero 

FRET states in a subpopulation of the time trajectories (Figure 2.11). Fluctuations 

between different non-zero FRET states were interpreted as corresponding to transitions 

between different conformational states of the 70S IC encompassing different distances 

between IF2’s domain VI-1 and r-protein L11. The dynamic transitioning between 
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different FRET states within the 70S IC indicates that conformational rearrangements of 

IF2 with respect to L11 occur following 50S subunit joining to 30SICGTP and prior to 

release of IF2. In other words, the intermolecular interactions between IF2 and the GAC 

are dynamically remodeled during IF2’s residency on the 70S IC.   

This interpretation is in accord with results from a bulk FRET study in which 

Bacillus stearothermophilus IF2, labeled at amino acid position 378 with Cy3, was used 

in conjunction with an E. coli translation system that included 50S subunits reconstituted 

with L11, labeled at position 38 with Cy5. The authors observe an increase in EFRET 

following 70S IC formation, which they conclude results from a relative movement of the 

L11 NTD towards the G domain of IF2 following GTP hydrolysis and preceding Pi 

release [43]. My single-molecule data also support the idea that a conformational 

rearrangement of the GAC occurs with respect to IF2; furthermore, they provide evidence 

that this rearrangement is reversible during the residency of IF2 on the 70S IC.  

Since my one-dimensional smFRET signal reports only on the relative distance 

change between IF2 and L11, it is not possible, based on the present data, to 

unambiguously determine whether movements of IF2, the GAC, or both, are involved. 

However, based on the known conformational flexibility of the L11 region [44, 45], it 

seems likely that the FRET fluctuations arise at least in part from dynamics of the GAC. 

This possibility receives support from the observation that the conformation of the L11 

arm is altered in response to binding of other translation factors to the ribosome: an 

“inward curling” of the L11 arm has been observed structurally, which helps to facilitate 

contacts of L11 with the elbow region of aa-tRNA during decoding at the A site [42], 
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with EF-G’s G’ domain during translocation [46], and with domain 1 of the Class 1 

release factors RF1 and RF2 during translation termination [47]. To more clearly define 

the conformational changes occurring between IF2 and the GAC within the 70S IC, it 

will be necessary to devise and implement additional labeling schemes to probe the 

transitions from different structural perspectives. This approach could additionally prove 

useful in exploring if and how the conformational fluctuations between IF2 and L11 are 

related to other important conformational events occurring during 70S IC formation, such 

as adjustment of fMet-tRNAfMet from the P/I hybrid configuration into the P/P 

configuration [12, 26].    

In an attempt to gain insight into the nature and mechanistic role of the FRET 

fluctuations, I performed experiments monitoring subunit joining to 30SICGDPNP, in 

which the guanine nucleotide bound to IF2 was changed from GTP to GDPNP. I 

hypothesized that the conformational fluctuations between IF2 and L11 might be 

dependent on the GTP hydrolysis event and/or on the nucleotide bound to IF2. The 

results from these experiments revealed that, even in the presence of GDPNP, similar 

fluctuations between non-zero FRET states could be observed within individual 70S ICs 

(Figure 2.11). This indicates that the FRET fluctuations do not require GTP hydrolysis to 

be activated. Despite this, I suspected that there may be subtle differences in the dynamic 

behavior of 70SICGTP and 70SICGDPNP and thus sought to characterize the FRET 

fluctuations more quantitatively.   
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Figure 2.11: Conformational fluctuations within 70SICGTP and 70SICGDPNP 
Top Panel: Sample Cy3 (green) and Cy5 (red) fluorescence intensity versus time trajectories and 
the corresponding FRET versus time trajectory (blue) for molecules exhibiting discrete transitions 
between at least two non-zero FRET states. FRET is calculated as ICy5/(ICy3+ICy5). Middle Panel: 
One-dimensional histogram of the population’s FRET distribution. Following idealization of 
smFRET trajectories with vbFRET, the histogram was constructed using all data points prior to 
Cy3 photobleaching for all trajectories in the dataset. Data was distributed among 35 equally 
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spaced bins spanning the range of -0.2 to 1.2 FRET and normalized to the most populated bin. 
The number of idealized trajectories used to construct the histograms is indicated by “N.” Bottom 
Panel: Transition density plots (TDPs) were generated by plotting the “Starting FRET” versus 
“Ending FRET” for transitions within the idealized smFRET versus time trajectories as a contour 
plot representation of a two-dimensional histogram. The lower- and upper-bound thresholds for 
plotting the data were 30% and 100% of the most populated bin, respectively, which were chosen 
so as to highlight the most frequently observed transitions. Data are plotted from white (lowest 
population) to red (highest population) as indicated by the color bar. The number of transitions 
used to construct the TDP is indicated in the upper right corner. 
 

 

In order to compare conformational dynamics within 70SICGTP and 70SICGDPNP, 

the individual smFRET versus time trajectories were first idealized to a hidden Markov 

model using the vbFRET software package [48]. This software uses a maximum-

evidence based algorithm to calculate the most probable number of FRET states, and the 

path through these FRET states, for each time trajectory. The analysis settings used for 

the fitting procedure instructed the software to fit a minimum of one state and a 

maximum of five states to the data, with 25 fitting attempts per trajectory. Using this 

approach, the majority (57%) of smFRET versus time trajectories for 70SICGDPNP were 

best fit with a two-state model, while 39% were fit with a three-state model and 4% were 

fit with a four-state model. In all cases, at least one of the states corresponds to the 30S 

IC prior to docking of the 50S subunit (i.e. a zero-FRET state). Therefore, these results 

suggested that, following subunit joining, the majority of 70SICGDPNP complexes sample 

either one or two non-zero FRET states during the observation time. Similar results were 

obtained from vbFRET modeling of smFRET trajectories corresponding to formation of 

70SICGTP, in which 44% of trajectories were fit with a two-state model, 46% with a three-

state model, and 9% with a four-state model.      
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The idealized smFRET trajectories generated by vbFRET allow construction of 

transition density plots (TDPs) [49], which provide a graphical representation of the 

frequency of transitions between different FRET states (Figure 2.11). The most 

prominent peaks on the TDP for 70SICGTP are those corresponding to transitions between 

EFRET ratios of ~0.6 and ~0.8. For 70SICGDPNP, the most prominent peaks correspond to 

transitions between EFRET ratios of ~0.7 and ~0.8. Since the non-zero FRET fluctuations 

generally occur between such closely spaced FRET states, although discrete transitions 

are clearly identifiable in individual smFRET versus time trajectories, individual states 

are not separable in the one-dimensional histogram of EFRET ratios (Figure 2.11). For 

example, the distribution of non-zero FRET values for 70SICGTP is asymmetrical, with a 

large peak at ~0.8 FRET and a shoulder extending toward ~0.5-0.6 FRET, which likely 

corresponds to two FRET states centered at EFRET ratios of ~0.8 and ~0.6 that have broad, 

overlapping distributions. Assuming R0 ≈ 60 Å for this Cy3/Cy5 labeling scheme, 

transitions between states centered at EFRET ratios of ~0.8 and ~0.6 would correspond to 

distance changes of ~9 Å. 

It is possible that separation between FRET states could be improved by using 

different fluorophore labeling positions on IF2 and/or L11 that report on the same 

dynamics but exhibit a larger change in distance as a result of the conformational 

changes. Similarly, alternative labeling schemes might be found that reduce the width of 

the FRET distribution for one or more states, thus leading to better peak definition. For 

example, it is possible that the flexibility of the L11 NTD gives rise to conformational 

noise that broadens the FRET peaks, and that better peak resolution would be obtained by 
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moving the Cy5 fluorophore to L11’s CTD. Regardless, with the current labeling scheme, 

the fact that discrete states are not resolved in the histogram of EFRET ratios complicates 

detailed kinetic analysis of transition rates from one well-defined state to another. 

Instead, the overall dynamic behavior of 70SICGTP and 70SICGDPNP was compared in a 

more general way, as described in the following paragraph.  

Trajectories for which vbFRET identified transitions between at least two non-

zero FRET states with ΔEFRET ≥ 0.05 were selected so that they could be analyzed 

separately (see Section 5.5.1.8). For 70SICGDPNP, 29% of the trajectories were found to 

undergo transitions between at least two non-zero FRET states. The remaining 71% of 

the trajectories for 70SICGDPNP, therefore, sample only one non-zero FRET state prior to 

loss of the fluorescence signal. For 70SICGTP, 43% of the trajectories were found to 

exhibit transitions between at least two non-zero FRET states, with the remaining 57% of 

trajectories sampling only one non-zero FRET state prior to signal loss. Thus, the 

presence of GDPNP in place of GTP led to a slight decrease in the subpopulation of 

ribosomes that exhibited conformational fluctuations within the 70S IC during the 

experimental observation window. Furthermore, within this fluctuating subpopulation, 

the average transition rate between non-zero FRET states (defined as the total number of 

transitions divided by the total time spent in non-zero FRET states, see Section 5.5.1.8) 

was more than two-fold slower in the presence of GDPNP (0.06 transitions sec-1) versus 

GTP (0.15 transitions sec-1).  

Taken together, the observations that FRET fluctuations within 70SICGDPNP occur 

more slowly and in a smaller fraction of the molecules (within the experimental 
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observation window) compared with 70SICGTP suggest that the presence of GDPNP may 

dampen dynamic behavior of the 70S IC and reduce the probability that fluctuations will 

be observed. In other words, IF2-dependent GTP hydrolysis somehow increases the 

probability of activating conformational fluctuations within the 70S IC. GTP hydrolysis 

by IF2 occurs rapidly upon subunit joining and is followed shortly thereafter by Pi release 

[6]; thus, IF2 is expected to be present in the GDP-bound form for the majority of the 

experimental observation window. This would suggest that the transition of IF2 from the 

GTP- to GDP-bound form is accompanied by an increase in conformational dynamics of 

the 70S IC. 

IF2-GDP adopts an alternate conformation within the 70S IC corresponding to a 

different network of IF2-ribosome interactions [11]. Based on my smFRET data, I 

propose that one of the structural changes that occurs after GTP hydrolysis and Pi release 

involves a reconfiguration of L11-IF2 intermolecular contacts. The observed increase of 

conformational fluctuations in the presence of GTP hydrolysis (i.e. within 70SICGTP) may 

arise from fewer and/or weaker contacts formed between L11 and IF2-GDP in the post-

hydrolysis state. This could provide a mechanistic explanation for why IF2 dissociates 

more quickly from the ribosome in the presence of GTP versus GDPNP (Figure 2.10) and 

would suggest that one function of L11 is to regulate the stability of IF2 on the ribosome. 

This model would predict that the rate of IF2 dissociation from the 70S IC should be 

accelerated, even in the absence of GTP hydrolysis, by weakening or disrupting the 

interactions between IF2 and L11. Future experiments to test this hypothesis will make 

use of L11-binding thiazole antibiotics such as thiostrepton, as well as an L11-NTD 
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truncation mutant, both of which should lead to altered and presumably weakened 

interactions between L11 and the GAC.  

 

2.7 Interaction of IF2 with the GAC during multiple-turnover GTP 
hydrolysis 
 
 Even in the absence of fMet-tRNAfMet and mRNA, IF2 can bind to the 70S 

ribosome and hydrolyze GTP catalytically [6]. In other words, IF2 can hydrolyze GTP in 

a multiple-turnover reaction that is uncoupled from the initiation pathway. Such 

uncoupled GTP hydrolysis is also observed for EF-G and EF-Tu in the presence of vacant 

70S ribosomes [50]. I designed an experiment to characterize IF2’s interactions with the 

GAC during multiple-turnover GTP hydrolysis, to see if and how they differ from the 

IF2-GAC interactions established during IF2-catalyzed subunit joining and 70S IC 

formation. To do so, (Cy5)-labeled IF2 and 50S subunits reconstituted with (Cy3)-L11 

were prepared, thus reversing the fluorophore labeling scheme used for the 50S subunit 

joining assays. The (Cy3)-L11 reconstituted 50S subunits were used to enzymatically 

prepare 70S ICs containing biotin-mRNA and fMet-tRNAfMet in the P site, which were 

purified by sucrose-density gradient ultracentrifugation prior to immobilization on the 

surface of the flowcell (Section 5.3.3). Following surface immobilization of (Cy3)-L11 

labeled 70S ICs, (Cy5)-IF2 was introduced into the flowcell at nanomolar concentrations 

along with 1 mM GTP, and steady-state smFRET data was collected under continuous 

532 nm laser illumination.  
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The smFRET versus time trajectories collected under these conditions revealed 

extended dwells in a zero-FRET state with intermittent and transient excursions to non-

zero EFRET ratios. Within a given smFRET trajectory, multiple such excursions could be 

observed (Figure 2.12). This data was initially interpreted as corresponding to successive 

binding and dissociation events of different (Cy5)-IF2 molecules from the same 

ribosomal complex, with the free state of the complex indicated by dwells with an EFRET 

ratio of zero and the bound state indicated by dwells with non-zero EFRET ratios. 

 

 

Figure 2.12: Repetitive binding and dissociation of (Cy5)-IF2 on pre-formed 70S ICs. 
Top row: Cartoon depicting the experimental set-up used to monitor IF2’s interaction with the 
GAC during multiple-turnover GTP hydrolysis. 70S ICs containing (Cy3)-L11, biotin-mRNA, 
and fMet-tRNAfMet in the P site were assembled, purified, and tethered to the surface of the 
flowcell. (Cy5)-IF2 and GTP were introduced into the flowcell and data were collected under 
steady-state conditions.  Bottom row: Sample (Cy3)-L11 and (Cy5)-IF2 fluorescence versus time 
trajectory (left) and the corresponding smFRET versus time trajectory (right). These data were 
collected with 10 nM free (Cy5)-IF2 present in the flowcell. Dwells in the zero-FRET state 
correspond to the unbound state of the 70S IC (OFF dwells), while dwells of non-zero FRET 
correspond to the (Cy5)-IF2 bound state (ON dwells). Multiple transitions between the bound and 
unbound state were observed for individual 70S ICs, indicative of repetitive binding and 
dissociation cycles of (Cy5)-IF2.     
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To verify this interpretation, a (Cy5)-IF2 titration was performed in which the free 

(Cy5)-IF2 concentration within the flowcell was varied from 2.5 to 40 nM (Figure 2.13). 

The data reveal that as the free concentration of (Cy5)-IF2 is increased, dwell times in the 

zero-FRET state decrease, as would be expected for a bimolecular binding reaction. 

Conversely, dwell times in the non-zero FRET state were concentration independent, as 

predicted for a unimolecular dissociation reaction. The smFRET data are thus consistent 

with repetitive binding and dissociation of (Cy5)-IF2 to the ribosome, with each cycle 

likely resulting in the hydrolysis of one molecule of GTP. 

 

Figure 2.13: Dependence of ON- and OFF-state lifetimes on free (Cy5)-IF2 concentration. 
(A) A threshold of FRET=0.2 was used to define “OFF state dwells” and “ON state dwells” as 
corresponding to the amount of time spent in states with FRET≤0.2 and FRET>0.2, respectively. 
Dwell times in the ON and OFF states were extracted from idealized smFRET versus time 
trajectories, and population decay histograms were constructed from these dwell times. The 
curves were fit with single exponential decay of the form y=A1*exp(-x/t1) + y0, and the average 
lifetime of the decay, t1, is reported here. Errors were estimated by randomly splitting all 
smFRET trajectories into three equally sized sets, analyzing each set independently, and taking 
the average and standard deviation of the resulting lifetimes. Error bars are plotted in the figure 
but are smaller than the symbol size. (B) Estimate of the second-order rate constant (ka, app) for 
(Cy5)-IF2 binding to the pre-formed 70S IC. For each dataset, the pseudo-first order rate constant 
(k’a, app) was calculated by taking the inverse of the calculated OFF-state lifetime. The resulting 
values were plotted as a function of free (Cy5)-IF2 concentration. The data were fit with a linear 
regression equation of the form y = mx + b, where m = 0.0170 ± 0.0009 nM-1sec-1 and b = 0.14 ± 
0.02 sec-1. The slope provides an estimate for ka,app of ~17 μM-1sec-1.   
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The observation of transient binding interactions between IF2 and the post-

initiation ribosome during multiple-turnover GTP hydrolysis (300 msec lifetime) is in 

stark contrast to the very long-lived binding of IF2 observed following 50S subunit 

docking to the 30S IC during translation initiation (~100 sec lifetime, Section 2.6.3). This 

large difference in apparent binding affinities implies two quite different interaction 

modes between IF2 and the ribosome’s GAC. During 50S subunit joining and formation 

of the 70S IC, IF2 serves as a giant intermolecular bridge that brings the two subunits 

together, and in so doing, becomes sandwiched between them, positioned within a cavity 

that extends from the GAC at the ribosome’s surface all the way into the P site [12]. I 

speculate that during the short-lived binding events observed in the context of multiple-

turnover GTP hydrolysis, IF2 does not insert into this cavity but instead only interacts 

with GAC components at the ribosome’s surface. In this scenario, contacts between IF2’s 

C-terminal region and fMet-tRNAfMet and the 30S/50S subunit interface would not be 

formed, and binding would occur primarily through formation of contacts between the N-

terminal region of IF2 (i.e. the G domain and domain V) and the GAC. This model would 

suggest that the C-terminal region of IF2 may not be explicitly required for ribosome 

binding and GTP hydrolysis. Indeed, the isolated 40 kDa G-domain fragment of IF2, 

obtained by limited proteolysis, was shown to be, by itself, capable of binding to the 

ribosome and catalyzing ribosome-dependent GTP hydrolysis [51]. Therefore, I 

hypothesize that a C-terminal truncation mutant of IF2 would show very similar binding 

behavior to the post-initiation ribosome as full-length IF2 in my smFRET assay.  
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These results demonstrating two different binding modes of IF2 with the 

ribosome raise several important points. First, they suggest that care should be taken in 

interpreting the results from experiments performed in the presence of IF2 and 70S 

ribosomes (for example, in references [21, 28]) as reporting on the mechanism of 

translation initiation per se. Second, they raise the question of whether the short-lived 

binding events of IF2 with 70S ribosomes occur in vivo, and if so, what their function 

might be. It is entirely possible that there is no in vivo function for this binding mode of 

IF2, and that its occurrence is simply an incidental byproduct of the high degree of 

structural similarity between domains IV and V of IF2 and the corresponding domains of 

EF-G and EF-Tu [40], the latter which bind to the intact 70S ribosome as part of their 

normal catalytic cycle. If this were the case, however, it would imply that either IF2 

undergoes energetically costly cycles of ribosome binding and futile GTP hydrolysis, or 

alternatively, that a cellular mechanism exists to prevent IF2 binding to the elongating 

70S ribosome and competing with EF-Tu and EF-G.  
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Chapter 3 

IF3-mediated regulation of 70S IC formation 
 
3.1 Introduction 

Having established a single-molecule platform for studying 50S subunit joining 

and 70S IC formation, I was next interested in using this set-up to explore the regulatory 

effect exerted by IF3 on these processes. It is known that IF3 plays an important role in 

ensuring the fidelity of start codon and initiator tRNA selection [1, 2]. Some of these 

effects appear to be exerted at the level of 30S IC assembly since IF3 has been shown to 

preferentially destabilize 30S ICs formed with elongator tRNAs or non-canonical start 

codons [3-5]. In addition, IF3 impacts 70S IC formation by negatively regulating 50S 

subunit joining to incomplete or incorrectly assembled 30S ICs. For example, light 

scattering measurements have shown that IF3 blocks subunit joining to 30S ICs formed 

in the absence of initiator tRNA [6]. IF3 probably exerts its anti-association function by 

sterically blocking the formation of several key intersubunit bridges at the interface 

between the 30S and 50S subunits [7].  

Several questions remain, however, about the mechanism by which IF3 regulates 

the 50S subunit joining event. One especially controversial point involves the timing of 

IF3 dissociation in relation to other events of the initiation pathway, which has important 

implications as to IF3’s mechanism of action. It has been proposed that spontaneous 

release of IF3 from the 30S IC is a prerequisite for 50S subunit joining, and that the 

presence of initiator tRNA increases the rate of subunit joining by speeding up IF3 
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release [8]. In contrast, other research groups have suggested that IF3 dissociation occurs 

during and not before 70S IC formation [9], and that the presence of IF3 within the 70S 

complex prevents conversion from a labile to a more stable form of the 70S IC [10].  

Recent single-molecule data from our laboratory using a fluorescently labeled IF3 

construct has suggested that, under the conditions employed in our microscope 

experiments, IF3 does not spontaneously dissociate from the 30S IC in response to 

binding of fMet-tRNAfMet [11]. This implied that IF3 should be present, at least 

transiently, during the 50S subunit docking event. I reasoned that, if this is the case, the 

presence of IF3 on the 30S IC could have a detectable effect on the dynamics of 50S 

subunit joining and 70S IC formation as read out by my IF2-L11 smFRET signal. This 

chapter reports the results from experiments designed to test this hypothesis.  

Addition of IF3 is shown to have dramatic effects on 70S IC formation, 

converting a largely irreversible process into a dynamic equilibrium in which 50S 

subunits reversibly dock and undock from the IF2-bound 30S IC. IF3-induced dynamic 

instability of the 70S IC is shown to be correlated with a change in the distribution of 

EFRET ratios reporting on the relative conformation of IF2 and the 50S subunit’s GAC. 

The results thus shed light on IF3’s mode of action and the timing of IF3 release, as well 

as the mechanism of subunit joining. Most importantly, they highlight the reversibility of 

the IF2-catalyzed subunit joining reaction.       

 
3.2 Preparation and Surface Immobilization of 30SIC+IF3 

30SIC+IF3 complexes containing IF1, (Cy3)-IF2-GTP, IF3, biotin-mRNA, and 

fMet-tRNAfMet were prepared following the procedure described in Section 5.3.1 of the 
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Materials and Methods. These complexes were then diluted to nanomolar concentrations 

in buffer containing IF1, IF3, and GTP, and introduced into the microfluidic flowcell to 

allow surface immobilization for TIRFM imaging (Section 5.4). In order to obtain an 

appropriate spot density of ~200-400 30S-bound (Cy3)-IF2 molecules per field-of-view, 

it was necessary to deliver approximately an order of magnitude higher concentration of 

30SIC+IF3 into the flowcell compared with 30SIC-IF3 (nM versus 100s of pM, 

respectively). Since observation of Cy3 fluorescence requires that (Cy3)-IF2 be bound to 

a surface-immobilized 30S subunit at the beginning of the experiment, this suggests that 

the presence of IF3 destabilizes IF2 binding to the 30S subunit and/or decreases 30S IC 

stability in general. This is likely related to IF3’s propensity to destabilize the binding of 

tRNAs to the 30S subunit [12]. IF3-induced dissociation of fMet-tRNAfMet could 

indirectly accelerate (Cy3)-IF2 dissociation, since the interaction between IF2’s C-

terminal domain VI-2 with the aminoacyl acceptor end of fMet-tRNAfMet constitutes one 

of the two major points of contact anchoring IF2 to the 30S IC surface [13]. Despite the 

higher concentrations of 30SIC+IF3 introduced into the flowcell, non-specific binding of 

(Cy3)-IF2 to the flowcell surface was negligible (Figure 3.1). The results suggest that 

~99% of the (Cy3)-IF2 fluorescence spots observed originate from (Cy3)-IF2 bound to a 

30S subunit, which in turn is tethered to the surface via the biotin-mRNA. 
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Figure 3.1: Stability of (Cy3)-IF2 binding to 30SIC+IF3 and biotin specificity of surface 
immobilization.  
30SIC-IF3 contained fMet-tRNAfMet, IF1, (Cy3)-IF2, and GTP, and either biotin- or non-biotin 
mRNA as indicated. 30SIC-IF3 was diluted to ~200 pM and introduced into the flowcell to allow 
surface immobilization. Buffers used for dilutions, rinsing of the flowcell, and fluorescence 
imaging contained high concentrations of IF1 (0.9 μM) and GTP (1 mM). 30SIC+IF3 contained 
fMet-tRNAfMet, IF1, (Cy3)-IF2, IF3 and GTP, and either biotin- or non-biotin mRNA as 
indicated. In order to obtain an appropriate number of Cy3 spots per FOV, 30SIC+IF3 was diluted 
to ~3 nM concentration before being introduced into the flowcell. Buffers used for dilutions, 
rinsing of the flowcell, and fluorescence imaging contained high concentrations of IF1 (0.9 μM), 
IF3 (0.9 μM), and GTP (1 mM). Sample number 5 corresponds to a negative control in which 
imaging buffer containing IF1 (0.9 μM), IF3 (0.9 μM), and GTP (1 mM) was introduced into the 
flowcell in the absence of (Cy3)-IF2. Five separate FOVs were imaged for each experiment. 
Fluorescent spots were identified by applying an intensity threshold and selecting regions 
containing at least two contiguous pixels above the threshold. The number of (Cy3)-IF2 
molecules per FOV was quantified and the average and standard deviation for the five FOVs is 
depicted in the bar graph. Experiments were performed using five individual flowcells from the 
same microscope slide.    
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3.3 Direct observation of reversible 50S subunit docking to 30SIC+IF3 

 In order to characterize the effect of IF3 on IF2-catalyzed subunit joining, pre-

steady state smFRET experiments were performed in which (Cy5)-L11 labeled 50S 

subunits were delivered to surface-immobilized 30SIC+IF3 complexes containing (Cy3)-

IF2-GTP. High concentrations of unlabeled IF1 (0.9 μM), IF3 (0.9 μM), and GTP (1 

mM) were kept in solution at all times during the experiment in order to ensure that the 

majority of 30S ICs on the surface were bound with these ligands. In addition, all 

observed 30S ICs necessarily contain (Cy3)-IF2, the 30S subunit, and the biotin-mRNA 

which specifically anchors the complex to the surface (Figure 3.1). fMet-tRNAfMet was 

assumed to be present on the majority of 30S ICs observed to participate in subunit 

joining, since fMet-tRNAfMet is stabilized on the 30S subunit by IF2 [8, 12] and 

formation of the 70S IC is dependent on the presence of both IF2 and fMet-tRNAfMet 

[14]. This assumption seems justified based on control experiments in which high 

concentrations of fMet-tRNAfMet (0.9 μM) were included in all dilution, wash, and 

imaging buffers and shown to have little effect on the observed smFRET signal (see the 

Appendix, Tables C.1 and C.2). Therefore, it is expected that under these conditions, I am 

observing 50S subunit joining to “complete” 30S ICs containing all canonical initiation 

components [15].   

 As before, the subunit joining event was indicated in the smFRET versus time 

trajectories by a sharp transition from zero to non-zero EFRET ratios. However, in contrast 

to the long-lived excursions to non-zero EFRET ratios observed upon subunit docking to 

30SIC-IF3 (see Chapter 2), transient excursions to non-zero EFRET ratios were observed 
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with 30SIC+IF3, and individual 30SIC+IF3 complexes were observed to undergo multiple 

transitions between zero and non-zero EFRET ratios during the observation period (Figure 

3.2). These transient excursions to non-zero EFRET ratios were initially interpreted as 

corresponding to individual instances of subunit docking and dissociation from the 30S 

IC. This interpretation is consistent with the known anti-subunit association properties of 

IF3. Thus, dwells at an EFRET ratio of zero were initially assigned to an unbound state of 

the 30S IC and dwells at non-zero EFRET ratios were assigned to a state in which the 50S 

subunit is bound. This would predict that the lifetime of dwells at an EFRET ratio of zero 

should decrease with increasing concentrations of free (Cy5)-50S subunits in the 

flowcell, since subunit association is a bimolecular process whose rate should increase 

along with (Cy5)-50S concentration. On the other hand, the lifetime of dwells at non-zero 

EFRET ratios would be expected to be independent of (Cy5)-50S concentration, since 

subunit dissociation is a unimolecular process whose rate should be unaffected by the 

concentration of free (Cy5)-50S subunits in solution.  

A (Cy5)-50S titration was performed in order to test this prediction. The data 

reveal that, indeed, as the concentration of (Cy5)-50S subunits is increased, the dwell 

time between FRET events decreases and the average number of FRET events observed 

per 30S IC increases (Figure 3.2). Thus, the rate of transition from zero to non-zero EFRET 

ratios increases with increasing (Cy5)-50S subunit concentrations, verifying that each 

FRET event corresponds to a separate 50S subunit docking event. Quantitative dwell 

time analysis was performed to calculate the lifetime of the 50S-subunit bound and free 

forms of 30SIC+IF3 (Figure 3.3A). The apparent pseudo-first order rate constant for the 
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subunit association reaction (k’a, app) was calculated by taking the inverse of the lifetime 

in the zero-FRET state. The slope of a linear fit to the plot of k’a, app versus (Cy5)-50S 

concentration then provides an estimate of the apparent second-order rate constant for 

subunit association (ka, app) (Figure 3.3B). The value of ka, app thus obtained was ~3.5 μM-

1sec-1. This apparent association rate on the order of 106 M-1sec-1 is considerably slower 

than the expected diffusion-controlled rate for the encounter of an enzyme and substrate 

in solution, which is on the order of 108 to 109 M-1sec-1 [16, 17]. This suggests that the 

rate of association between 30SIC+IF3 and (Cy5)-50S subunits is slower than the diffusion 

limit and that not every collision between 30SIC+IF3 and (Cy5)-50S results in the 

formation of a 70S IC.  

In contrast to the lifetime of dwells at an EFRET ratio of zero, the lifetime of dwells 

at non-zero EFRET ratios was independent of (Cy5)-50S concentration, consistent with a 

unimolecular process, in this case dissociation of the transiently formed 70S ICs back 

into free 30SIC+IF3 and (Cy5)-50S subunits.  The average lifetime of the non-zero FRET 

state was 0.77 ± 0.08 sec. The inverse of this value yields an estimate for the apparent 

dissociation rate (kd, app) of 1.3 ±  0.1 sec-1. The 50S subunit association and dissociation 

events are indicated in TDPs as peaks centered at transitions between EFRET ratios of zero 

and ~0.6 and between EFRET ratios of ~0.6 and zero, respectively (Figure 3.2, bottom 

panel). Correspondingly, the time evolution of population FRET histograms display a 

distribution of EFRET ratios for the 70S ICs that is centered at ~0.6 (Figure 3.2, middle 

panel). 
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Figure 3.2: Reversible subunit docking to 30SIC+IF3 
Increasing concentrations of (Cy5)-L11 50S subunits were delivered to surface immobilized, 
(Cy3)-IF2–bound 30SIC+IF3s, and Cy3 and Cy5 fluorescence emission was recorded as a function 
of time. The free (Cy5)-L11 50S subunit concentrations were 10 nM (A), 20 nM (B), 40 nM (C), 
and 60 nM (D). First row: Sample Cy3 (green) and Cy5 (red) fluorescence intensity versus time 
trajectories. Second row: The corresponding smFRET versus time trajectories, where FRET is 
calculated as ICy5/(ICy3 + ICy5). Third row: Time evolution of population FRET histograms, made 
by superimposing individual smFRET trajectories. Unlike the time evolution of population FRET 
histograms presented in Chapter 2, these are not post-synchronized. The number of trajectories 
used to construct each plot is indicated by “N.” Contours are plotted from tan (lowest population) 
to red (highest population) as indicated by the color bar. Fourth row: Transition density plots 
(TDPs) were generated by first idealizing the raw smFRET trajectories with vbFRET software 
and then plotting the “Starting FRET” versus “Ending FRET” for all transitions within the 
idealized trajectories as a contour plot representation of a two-dimensional histogram. Data are 
plotted from white (lowest population) to red (highest population) as indicated by the color bar. 
The number of transitions used to construct the TDP is indicated in the upper right corner.     
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These data suggest a different relative orientation of (Cy3)-IF2 with respect to 

(Cy5)-L11 within 70S ICs formed via subunit docking to 30SIC+IF3 versus 30SIC-IF3, 

since the distribution of EFRET ratios for the latter is weighted towards higher values of 

~0.8 (Chapter 2). This shift in the distribution of EFRET ratios is correlated with a much 

higher stability of the 70S ICs formed in the absence versus the presence of IF3, which 

may indicate that optimal positioning of IF2 with respect to the GAC is one of the 

structural determinants of stable 70S IC formation. The IF3-promoted shift in the 

distribution of EFRET ratios could be explained if IF3 binding induced or stabilized a 

conformation of the entire 30S IC that affected the positioning of IF2 and thus altered its 

interactions with the incoming 50S subunit.  

Alternatively, IF3 could act by modulating the reaction kinetics underlying a 

multi-step subunit association process. In this scenario, IF3 would block the transition 

from an initially formed, unstable intermediate state (characterized by a distribution of 

EFRET ratios shifted towards ~0.6 FRET) to a more stable state of the 70S IC 

(characterized by a distribution of EFRET ratios shifted towards ~0.8 FRET). By inhibiting 

the forward reaction, the presence of IF3 would cause stalling in the intermediate state 

and thus preferential dissociation of the 50S subunit. This latter model requires that the 

unstable 70S intermediate state be traversed during both IF3-inhibited and uninhibited 

50S subunit joining. Interestingly, a small percentage of the smFRET trajectories 

acquired for 30SIC-IF3 exhibit features which suggest that this could be the case. First, 

some of the trajectories exhibit a short but unambiguous dwell of ~100s of msec in a mid-

FRET state (~0.5-0.6 FRET) prior to transitioning to a long-lived high FRET state (~0.8 
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FRET). Second, on occasion, a long-lived subunit joining event is preceded by a transient 

excursion to non-zero EFRET ratios similar to those observed in the presence of IF3 (see 

Figure D.1 in the Appendix). These observations are consistent with the possibility, 

though they do not prove, that an obligatory subunit-joining intermediate is sampled en 

route to formation of the 70S IC even in the absence of IF3. If true, in the absence of IF3 

the rate of exiting the intermediate state in the forward direction must be much faster than 

the rate of exiting in the reverse direction, such that subunit dissociation events are rarely 

observed. Additionally, the rate of the forward reaction must be too rapid to resolve 

intermediate-state dwells for the majority of ribosomes at the current time resolution. 

Conversely, in the presence of IF3, the rate of exiting the intermediate state in the 

forward direction would be slowed to such an extent that the reverse reaction (subunit 

dissociation) would occur almost exclusively. This model calls to mind the quantitative 

kinetic scheme for 70S IC formation put forth by Cooperman and coworkers on the basis 

of bulk fluorescence and light scattering measurements [10, 14]. Their model posits that 

50S subunit joining to the IF2-bound 30S IC results in formation of an initially labile 70S 

IC, which stimulates GTP hydrolysis by IF2 and then either dissociates reversibly into 

30S and 50S subunits or is converted into a more stable form.  
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Figure 3.3: Lifetime analysis of dwells in the zero and non-zero FRET states observed upon 
delivery of varying concentrations of (Cy5)-50S subunits to 30SIC+IF3 
(A) Dependence of lifetimes in the zero and non-zero FRET states on free (Cy5)-50S 
concentration. Dwell times were extracted from idealized smFRET versus time trajectories. A 
threshold of FRET=0.2 was used to define “zero FRET dwells” and “non-zero FRET dwells” as 
corresponding to the total amount of time spent in states with FRET ≤ 0.2 and FRET > 0.2, 
respectively. Population decay histograms were constructed from the dwell times spent in the 
zero-FRET state and the non-zero FRET state. These curves were fit with a single exponential 
decay of the form y=A1*exp(-x/t1) + y0, and the average lifetime of the decay, t1, is reported here. 
Errors were estimated by randomly splitting the traces into three equally sized sets, analyzing 
each set independently, and taking the average and standard deviation of the resulting lifetimes. 
(B) Estimate of the second-order rate constant (ka, app) for (Cy5)-50S subunit association with 
30SIC+IF3. The pseudo-first order rate constant (k’a, app) was calculated by taking the inverse of the 
lifetime of the zero FRET state and plotted as a function of the (Cy5)-50S concentration. The data 
were fit with a linear regression equation of the form y = mx + b, where m = 0.0035 ± 0.0003  
nM-1sec-1 and b = 0.10 ± 0.01 sec-1. The slope provides an estimate for ka,app of ~3.5 μM-1sec-1.         

 

Regardless of whether the transient subunit docking events observed for 30SIC+IF3 

correspond to an on-pathway intermediate toward 70S IC formation or represent a dead-

end complex, these smFRET data provide direct visualization of the effect of IF3 in 

antagonizing formation of a stable 70S IC. By binding to the 30S subunit at the platform 

interface, IF3 likely acts by sterically blocking formation of contacts between the 30S and 

50S subunits required for stable subunit association. IF3 protects many of the 16S rRNA 

nucleotides at the 30S interface that are protected upon association of the 30S and 50S 
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subunits [7, 18]. In particular, the binding site of IF3 would appear to sterically occlude 

formation of intersubunit bridges B2b, B2c, and B7a [7]. Based on my data, I suggest that 

IF2 can promote initial docking of the 50S subunit to the 30S IC, but that if IF3 is bound 

to the 30S subunit, formation of these intersubunit bridges is prevented, the 70S complex 

is not adequately stabilized, and consequently, dissociates into its constituent parts. In 

other words, IF3 directly competes with the 50S subunit for stable binding to the 30S IC. 

In the experiments described above, this competition was artificially biased in favor of 

IF3 by including unlabeled IF3 in solution at high excess over both 30S ICs and 50S 

subunits. This was done in order to saturate 30S subunits with IF3 and allow visualization 

of what happens when 50S subunits encounter an IF3-bound 30S IC.  

Under these circumstances, the 50S subunit is not able to bind stably, which 

suggested that stable subunit association can only occur when the 50S subunit encounters 

an IF3-free 30S IC (i.e. 30SIC-IF3). In other words, IF3 must dissociate from the 30S IC 

before subunit docking occurs for the latter to result in formation of a stable 70S 

complex. This proposal is largely similar to that put forth by Ehrenberg and coworkers, 

who argue that spontaneous release of IF3 from the 30S IC is required to allow 50S 

subunit docking [8]. My data suggest a modification of this model by specifying that 

prior release of IF3 is not required for 50S subunit docking per se, but that it is required 

for stable subunit joining. 50S subunit docking to the 30S IC is in fact unimpeded by the 

presence of bound IF3, and the effect of IF3 is to instead dramatically reduce the lifetime 

of the resulting 70S complex. The brief, ~800 msec lifetime 50S subunit association 
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events with 30SIC+IF3 are likely uniquely observable using my single-molecule approach 

due to their transience and non-accumulating nature.  

Working within the conceptual framework outlined above, I hypothesized that the 

reason stable subunit association events to 30SIC+IF3 were rarely seen in my smFRET 

assay was due to the ~45-fold molar excess of IF3 over (Cy5)-50S subunits in solution. 

When one molecule of IF3 dissociates from a surface-immobilized 30S IC, binding of a 

new IF3 molecule from solution occurs more quickly than, and effectively outcompetes, 

binding of a (Cy5)-50S subunit. On the other hand, if IF3 rebinding were disallowed by 

flushing the free IF3 out of the flowcell upon delivery of (Cy5)-50S subunits, one might 

expect to see the appearance of stable 50S subunit joining events. The results from this 

experiment will be presented in the next section.  

In summary, smFRET interrogation of 30SIC+IF3 has highlighted the inherent 

reversibility of the IF2-promoted 50S subunit joining reaction. Ensemble measurements 

by Cooperman and coworkers had previously suggested that 50S subunits can transiently 

and reversibly associate with the IF2-bound 30S IC during the early stages of the 

pathway leading to 70S IC formation [14]. My single-molecule approach has allowed 

confirmation of this feature of the initiation pathway through direct observation. One 

noteworthy question that remains, however, is whether GTP is hydrolyzed during the 

multiple cycles of 50S docking and undocking, or whether stable subunit association is 

required for GTPase activation of IF2. Answering this question will require the 

development of a surface-based readout for GTPase activation and/or hydrolysis, perhaps 

involving the use of a fluorescent GTP analog such as mant-dGTP [19].  
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While my results demonstrating an IF3-dependent inhibition of stable 50S subunit 

joining are in line with IF3’s known anti-subunit association properties, the effect 

observed here is considerably more pronounced than that reported from an independent 

single-molecule study of 70S IC formation [20]. In this study, subunit joining was 

monitored via FRET between fluorophore-labeled 30S and 50S subunits. 50S subunit 

delivery to surface-immobilized 30S ICs was performed in the presence of all initiation 

components under conditions very similar to those reported here. The authors also report 

the observation of fluctuations between non-zero and zero EFRET ratios within individual 

smFRET versus time trajectories. However, they observed such fluctuations only rarely 

(12% of the trajectories), whereas I observed them for the majority of 30SIC+IF3 

complexes (65% of the trajectories). Even more strikingly, the lifetime reported for the 

dwells at non-zero EFRET ratios within this subset of fluctuating trajectories was 46 sec, 

which is roughly two orders of magnitude longer than the 0.77 sec lifetime for the dwells 

at non-zero EFRET ratios measured here. Therefore, it seems that the dynamics of 50S 

subunit joining, when probed with my single-molecule assay, are much more sensitive to 

the inclusion of IF3. The origins of this discrepancy between my results and those 

reported by Marshall et al. are yet to be determined.         

 
3.4 Partitioning of 50S subunit joining to 30SIC+IF3 into short and long 
association events 
 
 50S subunit delivery to 30SIC+IF3 in the presence of high concentrations of free 

IF3, conditions which should allow rapid recycling of IF3 on the 30S subunit, resulted in 

the repetitive docking and dissociation of (Cy5)-50S, with each docking event 
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represented by a brief (~100s of msec) burst of non-zero FRET. I hypothesized that stable 

subunit joining rarely occurs under these conditions because IF3 and the 50S subunit are 

in direct competition for stable binding to the 30S IC, and that if IF3 were to dissociate 

from the 30S IC, free IF3 from solution could rapidly rebind, thereby perpetuating the 

block on stable subunit association for an extended period of time. To test this 

hypothesis, I designed an experiment in which rebinding of IF3 to the 30S IC would be 

prevented. In this experiment, 30SIC+IF3 complexes were prepared identically as before 

and immobilized on the surface of the flowcell in the presence of high concentrations of 

IF3 in solution. (Cy5)-50S subunits were then stopped-flow delivered in a buffer from 

which IF3 had been omitted, such that free IF3 present in the flowcell would be flushed 

out at the beginning of data collection. This setup ensures that at time zero, the surface-

immobilized 30SIC+IF3 complexes are saturated with IF3 but that at subsequent time 

points, following buffer-exchange, IF3 dissociation from the 30S IC will be essentially 

irreversible.  

 The resulting smFRET versus time trajectories (Figure 3.4) exhibited a number of 

distinguishing features. First, 50S subunit docking was still readily reversible, as 

evidenced by multiple fluctuations between zero and non-zero EFRET ratios in the 

majority (~52%) of the trajectories. It should be noted that this value represents a lower 

limit to the actual fraction of 30S ICs that reversibly bind 50S subunits, since the 

observation time is limited by fluorophore photobleaching, which may occur before 

multiple FRET events can be observed.  
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Figure 3.4: Delivery of (Cy5)-50S subunits to 30SIC+IF3 in the absence of free IF3.  
Top panel: Raw Cy3 (green) and Cy5 (red) fluorescence intensity versus time trajectories. Second 
row: The corresponding smFRET versus time trajectories, where FRET is calculated as  
ICy5/(ICy3 + ICy5).   
 

 
The interpretation of reversible subunit docking was once again confirmed by 

performing lifetime analysis for data collected over a range of (Cy5)-50S concentrations 

(Figure 3.5). The lifetime of the zero-FRET state decreased with increasing 

concentrations of free (Cy5)-50S subunits, which is equivalent to an increase in the rate 

of subunit association. The estimated apparent second-order rate of subunit association 

(ka, app ≈ 2.3 μM-1sec-1) was very similar to the value obtained in the previous section, 

indicating that the presence or absence of free IF3 in solution does not significantly alter 

the association kinetics of the 50S subunit with the 30S IC. 
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Figure 3.5: Population FRET behavior observed upon delivery of varying concentrations of 
(Cy5)-50S subunits to 30SIC+IF3 in the absence of free IF3.    
The (Cy5)-L11 50S subunit concentrations were 10, 20, 40, and 60 nM as indicated. Top panel: 
Time evolution of population FRET histograms. Bottom panel: Transition Density Plots (TDPs). 
Plots were generated as described in the caption to Figure 3.2.  

 

The dissociation kinetics, on the other hand, were markedly affected by the 

absence of IF3 in solution. In this case, two different types of non-zero FRET events 

were readily apparent in the data, which differed significantly in their duration (Figures 

3.4 and 3.6). Thus, both transient and long-lived FRET events were observed, 

corresponding to short- and long-lived association of the 50S subunit with the 30S IC, 

respectively. Lifetime analysis was performed for dwells in the non-zero FRET states 

(Figure 3.6). The population histogram constructed from these dwells was best fit with a 

double-exponential decay in which the lifetimes for the two components (t1 = 0.8 sec and 

t2 = 11 sec, see Table 3.1) differed by over an order of magnitude. Attempts to model the 
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data with a single-exponential decay resulted in a much-reduced goodness of fit. These 

results strengthen the argument that the smFRET data are composed of two distinct 

classes of non-zero FRET states, namely, one class corresponding to unstable subunit 

association and a second class corresponding to relatively stable subunit association. 

Importantly, both short- and long-lived FRET events can be observed within individual 

smFRET versus time trajectories (Figure 3.4), meaning that single 30SIC+IF3 complexes 

are capable of participating in both stable and transient binding to the 50S subunit. 

Several features of the longer-lived subunit association events deserve special 

attention. First, like the shorter-lived subunit association events, they too are apparently 

reversible within the experimental observation window. This is evidenced by smFRET 

versus time trajectories in which a long-lived dwell is followed by a transition to an EFRET 

ratio of zero, and, subsequently, one or more fluctuations back to non-zero EFRET ratios 

(e.g. Figure 3.4A and B). This scenario is contrasted with smFRET versus time 

trajectories in which the last dwell at non-zero EFRET ratios of the trajectory is long-lived 

(e.g. Figure 3.4C), in which case it is necessarily ambiguous whether the transition to an 

EFRET ratio of zero is caused by (Cy5)-50S subunit dissociation or fluorophore 

photobleaching. Since this latter behavior is observed in a significant subpopulation of 

the trajectories, it is likely that observation of some of the longer-lived dwells is 

prematurely truncated by photobleaching and, consequently, that the estimated lifetime 

for these dwells is a lower limit on the true lifetime. Nevertheless, it is evident that 

formation of these relatively stable 70S complexes constitutes a reversible step within the 

70S IC assembly pathway.  
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Figure 3.6: Lifetime analysis of the unbound and 50S-subunit bound states of 30SIC+IF3 in 
the absence of free IF3.  
(A) Sample smFRET versus time trajectory (blue) overlayed with the corresponding idealized 
trajectory (red). Dwells in the zero and non-zero FRET states were separated by a threshold of 
FRET=0.2 and the corresponding dwell times were extracted from the idealized smFRET 
trajectories. Dwells in the zero-FRET state (purple) correspond to the unbound state of 30SIC+IF3 
and dwells in the non-zero FRET state (orange) correspond to the 50S-subunit bound state. (B) 
Population decay histograms were constructed from dwell times spent in the unbound and bound 
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states. The histogram of dwell times in the unbound state (left) was well fit by a single 
exponential decay of the form y=A1*exp(-x/t1) + y0, with t1 providing an estimate of the state’s 
average lifetime. The histogram for the 50S-subunit bound state (right), however, was better fit 
by a double exponential decay of the form y=A1*exp(-x/t1) + A2*exp(-x/t2) + y0. The parameters 
t1 and t2 provide an estimate for the average lifetime of 70S complexes with low and intermediate 
stability, respectively. As described in the text, t2 is likely limited by fluorophore photobleaching 
and thus represents a lower limit to the true lifetime. (C) Dependence of the average lifetimes on 
the concentration of (Cy5)-50S subunits. Left: average lifetime (t1) of the unbound state. Right: 
average lifetimes for bound states with low (t1, red) and intermediate (t2, orange) stability. Errors 
were estimated as described in the caption to Figure 3.3.         
  

 
A second notable feature of the longer-lived subunit association events is the 

presence of fluctuations between at least two non-zero FRET states, which appear as 

prominent peaks in the TDPs corresponding to transitions from EFRET ratios of ~0.6 to 0.8 

and from EFRET ratios of ~0.8 to 0.6 (Figures 3.4 and 3.5). These FRET fluctuations are 

indicative of conformational dynamics within the 70S IC, in particular changes in 

distance between L11 and IF2. This suggests a relative rearrangement of the GAC with 

respect to IF2 that involves at least two interconvertible structural configurations. These 

dynamics are reminiscent of the non-zero FRET fluctuations between states centered at 

EFRET ratios of ~0.6 and ~0.8 observed in a subset of the molecules upon subunit joining 

to 30SIC-IF3 complexes (Chapter 2). The distribution of EFRET ratios for 30SIC+IF3 is 

weighted towards the ~0.6 FRET state, whereas for 30SIC-IF3, it is weighted towards the 

~0.8 FRET state (see Figure 3.8 below). Subunit association and dissociation appear to 

occur preferentially from the ~0.6 FRET state for 30SIC+IF3, as evidenced by the 

predominance of ~0 to 0.6 and ~0.6 to 0 FRET transitions in the TDPs (Figure 3.5), 

suggesting that the major pathway for these events involves a specific interaction mode 

between IF2 and the 50S subunit’s GAC.  
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A simple explanation for the observation of both short- and long-lived subunit 

association with 30SIC+IF3 would be that the short-lived events arise from subunit 

docking to the IF3-bound 30S IC while the long-lived events correspond to subunit 

docking to IF3-free 30S ICs from which the factor had previously dissociated. However, 

there is reason to believe that such a simple model does not adequately account for all of 

the data. If IF3 were released from 30SIC+IF3, the resulting complex would be 

compositionally identical to 30SIC-IF3. It would therefore be expected that the long-lived 

dwells at non-zero EFRET ratios should resemble the analogous dwells observed upon 

subunit delivery to 30SIC-IF3 (Chapter 2). In reality, however, they are significantly 

different, both in terms of their distributions of EFRET ratios and their apparent lifetimes. 

When the long-lived dwells within the 30SIC+IF3 dataset were isolated and analyzed 

independently, their distribution of EFRET ratios was characterized by two roughly equally 

sized peaks centered at EFRET ratios of ~0.6 and 0.8 (Figure 3.7). (For the sake of this 

analysis, “long-lived” non-zero FRET events were defined as those lasting longer than 

four seconds; see caption to Figure 3.7 and in-text discussion below.) The distribution of 

EFRET ratios for long-lived dwells within the 30SIC-IF3 dataset, on the other hand, was 

shifted towards EFRET ratios of ~0.8. The long-lived dwells for 30SIC+IF3 also appear to 

have a shorter characteristic lifetime than the long-lived dwells for 30SIC-IF3, as is 

evidenced by occurrences of 50S subunit dissociation from these dwells in the former, 

but not the latter, dataset. Taken together, these results suggest that the long-lived subunit 

association events observed with 30SIC+IF3 and 30SIC-IF3 correspond to the formation of 

structurally and dynamically distinct 70S complexes. This, in turn, leads me to suspect 
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that IF3 is not released from the 30S IC prior to subunit docking and that it is, in fact, 

physically present on the 70S IC influencing ribosome conformation and stability. 

Assuming this to be the case, the partitioning between short- and long-lived 50S subunit 

association events to 30SIC+IF3 could be explained by an underlying dynamic equilibrium 

between two conformations of the IF3-bound 30S IC, one which binds to the 50S subunit 

stably and one that does not. I expound upon this mechanistic model for IF3-dependent 

regulation of 50S subunit joining in Section 3.5.     

The degree of partitioning between relatively stable and unstable subunit 

association events was quantitatively estimated from the amplitudes of the slow and fast 

components, respectively, of the double-exponential fit to the dwell time histograms. The 

fast component accounts for roughly two-thirds of the decay and the slow component 

accounts for the remaining one-third, for all concentrations of free (Cy5)-50S tested 

(Table 3.1). This result suggests that approximately two out of every three 50S subunit 

docking events are short-lived, or in other words, that each attempt at 50S subunit joining 

to the 30S IC has a ~33% chance of resulting in the formation of a relatively stable 70S 

IC. Similar results were obtained when this ratio was estimated by defining “long-lived” 

events as those lasting more than four seconds, and counting the number of short- and 

long-lived events observed across the entire dataset. The four second cut-off was chosen 

based on the fact that, for datasets in which the dwell time histogram is well-described by 

a single-exponential decay containing only a fast time constant (i.e. 30SIC+IF3 in the 

presence of saturating concentrations of free IF3, see Section 3.3), this cut-off results in 

nearly all (≥95%) of the dwells at non -zero EFRET ratios being categorized as short-lived. 
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Using this approach, roughly three-quarters of the 50S subunit docking events were 

classified as short-lived and one-quarter as long-lived, again independent of the free 

(Cy5)-50S concentration (see the Appendix, Table C.3). In summary, the data suggest 

that, on average, approximately two to three transient 50S docking events occur for every 

instance of stable 70S IC formation.  

 
 
Figure 3.7: Short- and long-lived subunit association events are characterized by different 
FRET distributions.  
(A) Raw smFRET versus time trajectories (blue) were idealized to a hidden Markov model (red), 
and subunit association events were identified as dwells with FRET > 0.2. Individual subunit 
association events were sorted into two categories, short- and long-lived, based on their 
dwelltimes. Short-lived subunit association events were defined as those with dwelltime < 4 sec 
(highlighted in pink) and long-lived events were defined as those with dwelltime ≥4 sec 
(highlighted in light blue). (B) FRET distributions for the short- (left) and long-lived (right) 
subunit association events. FRET data from the idealized smFRET trajectories for all (Cy5)-50S 
concentrations was plotted and normalized to the most populated bin. The distributions were fit 
with a single Gaussian (left) or a sum of two Gaussians (right). 
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I next tested whether the identity of the mRNA’s start codon affects the 

partitioning between long and short subunit association events by repeating the 

experiment with 30SIC+IF3 complexes assembled on an mRNA bearing a non-canonical 

AUU start codon ( AUU
IFS 330 + ). The gene encoding IF3 (infC) begins with an AUU start 

codon, and its expression is autoregulated at the level of translation initiation by IF3 in 

vivo [21]. IF3-dependent repression of infC translation is specifically dependent on the 

identity of the start codon, since its mutation from AUU to AUG results in a loss of 

regulation [22]. Recent biochemical experiments have suggested that IF3’s discrimination 

of the start codon is achieved during the conversion of the 30S IC to the 70S IC, through 

a mechanism in which transition of the 70S IC from a labile to a stable form is inhibited 

in the presence of IF3 and an AUU-bearing mRNA [10]. I thus sought to investigate 

whether subunit joining, as probed by my smFRET assay, would show a similar 

sensitivity to the substitution of AUU for AUG.  

However, no significant differences were detected between the smFRET versus 

time trajectories generated upon delivery of (Cy5)-50S subunits to AUU
IFS 330 +  versus 

AUG
IFS 330 + . Indeed, the apparent subunit association rates were very similar, as were the 

average lifetimes and relative occupancies of the short- and long-lived association events 

(Table 3.1). This may suggest that discrimination of the AUU start codon happens at a 

step along the initiation pathway that is not being probed by my smFRET assay. One 

possibility is that IF3-mediated discrimination takes place at the level of 30S IC 

assembly. Biochemical experiments have demonstrated that IF3 preferentially dissociates 

30S ICs containing codons other than AUG, GUG, or UUG and/or tRNA other than 
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tRNAfMet at the P site [3, 23, 24]. Additionally, IF2’s binding affinity to the 30S IC is 

decreased when AUG is replaced with AUU, according to steady-state smFRET 

experiments conducted in our laboratory [25]. In either of these cases, an overall decrease 

in translation initiation could be accounted for by a reduction in the fraction of 30S ICs 

that are fully assembled and primed for 50S subunit joining. My smFRET assay, 

however, would not report on this level of regulation, since data is only collected from 

the subpopulation of 30S ICs that are still intact at the beginning of the experiment. 

It is also possible that differences in subunit joining behavior for AUU
IFS 330 +  and 

AUG
IFS 330 + exist, but do not become manifest during the short observation window (~20 sec 

on average) to which my measurements are confined. Ensemble measurements are 

typically conducted at 50S subunit concentrations one to two orders of magnitude higher 

than the small, ~10s of nM concentrations of (Cy5)-50S subunits used here in order to 

minimize background fluorescence in the single-molecule experiments. Therefore, the 

subunit association rate will be much faster, and the number of subunit association events 

per unit time will be much higher, in the context of an ensemble experiment. This could 

cause differences between AUU and AUG to become apparent at earlier time points in 

the ensemble version of the experiment than in the single-molecule version. One way to 

investigate this possibility, which is currently being pursued, is to use a laser shuttering 

strategy in which, rather than imaging during the first ~20 sec following delivery of 

(Cy5)-50S subunits, the image acquisition is delayed so as to capture the subunit 

association behavior at later periods of time.     
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Table 3.1: Lifetime analysis of the 50S-subunit bound state of 30SIC+IF3 under various 
conditions.  
When IF3 was not included in solution, the dwell time histograms were best fit by a double 
exponential decay with fast and slow components t1 and t2. When 0.9 μM IF3 was included in 
solution, the dwell time histograms were well described by a single exponential decay with 
average lifetime t1.    
 

IF3 in 
solutiona Start codon [Cy5-50S], nM t1, sec (A1, %)b,c t2, sec (A2, %)b,c 

- AUG 10 0.7 ± 0.2 (64 ± 4%) 11 ± 2 (36 ± 4%) 

- AUG 20   1.1 ± 0.3 (68 ± 4%) 13 ± 3 (32 ± 4%) 

- AUG 40 0.7 ± 0.3 (60 ± 4%) 10 ± 2 (40 ± 4%) 

- AUG 60 0.7 ± 0.2 (59 ± 4%) 9 ± 1 (41 ± 4%) 

- AUU 20 1.3 ± 0.4 (67 ± 5%) 15 ± 4 (33 ± 5%) 

+ AUG 10 0.9 ± 0.1 N.A. 

+ AUG 20 0.8 ± 0.1 N.A. 

+ AUG 40 0.7 ± 0.1 N.A. 

+ AUG 60 0.8 ± 0.1 N.A. 

+ AUU 20 0.6 ± 0.1 N.A. 

 

(a) In all experiments, IF3 was included in the buffers used to dilute 30SIC+IF3s and to rinse the flowcell 

following surface immobilization. The stopped-flow buffer delivered into the flowcell contained (Cy5)-50S 

subunits, IF1, and GTP, either in the presence or absence of IF3 as indicated. fMet-tRNAfMet was not 

included in wash, dilution, or stopped-flow buffers except for the experiment in the last row. Control 

experiments in which fMet-tRNAfMet was included in all buffers demonstrated little impact on the measured 

lifetimes (see Table C.2 in the Appendix).    

(b) When IF3 was not included in solution, dwell time histograms were fit with a double exponential decay 

of the form y=A1*exp(-x/t1) + A2*exp(-x/t2) + y0. The percent contribution of the fast and slow 

components to the decay were estimated as A1/(A1+A2)*100 and A2/(A1+A2)*100, respectively. 

(c) Errors were estimated by bootstrapping 1000 random samples of the experimental dwell times and 

determining the mean and standard deviation of the resultant values. Bootstrapping procedures were 

implemented using code written in R [26].     
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Finally, I am looking into the possibility that the specific step at which IF3 

discriminates the codon-anticodon interaction, as well as the extent of discrimination, is 

dependent on additional features of the mRNA’s translation initiation region (TIR) 

besides just the start codon, such as the strength of the Shine-Dalgarno (SD) sequence 

and the length of the spacer between SD sequence and start codon, which have been 

shown to have a large impact on translation initiation efficiency [27]. The T4gp32 

mRNAs used for the smFRET experiments reported here have a five-nucleotide SD 

sequence and a seven-nucleotide spacer (Table A.1). The sequence context of the start 

codon is thus different from that of the mRNAs used in the in vitro studies where IF3-

mediated repression of translation starting from AUU was traced to the subunit joining 

step of the initiation pathway [10, 27]. In the future, I plan to vary these components of 

the mRNA’s TIR in order to seek an explanation for the apparent discrepancies between 

my single-molecule data with others’ ensemble results, and to gain an understanding of 

whether and how they influence the subunit joining reaction.         

 
3.5 Mechanistic model for IF3-dependent regulation of 50S subunit 
joining 
 

As demonstrated above, 50S subunit joining is highly sensitive to the presence or 

absence of IF3 on the 30S IC as well as the presence or absence of free IF3 in solution. 

Depending on the conditions, 50S subunit docking to the 30S IC can be transient and 

reversible or stable and largely irreversible. Figure 3.8 summarizes the smFRET data 

collected under the various conditions. When (Cy5)-50S subunits were delivered to 

30SIC+IF3 in the presence of saturating concentrations of free IF3, transient subunit 
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association and dissociation events were observed, with a lifetime for the bound complex 

of ~800 msec. These short-lived interactions were characterized by EFRET ratios of ~0.6. 

When, instead, free IF3 was not kept in solution—conditions under which recycling of 

IF3 was prevented—delivery of (Cy5)-50S subunits to 30SIC+IF3 led to the observation of 

two types of subunit association events. The first type was characterized by a short, ~800 

msec lifetime and an EFRET ratio of ~0.6; these events were thus indistinguishable from 

the transient association events observed previously. The second type was characterized 

by an intermediate lifetime (~11 sec, though likely underestimated due to fluorophore 

photobleaching, see above) and a distribution of EFRET ratios with two peaks centered at 

~0.6 and 0.8. Finally, when Cy5-50S subunits were delivered to 30S ICs devoid of IF3 

(i.e. 30SIC-IF3), subunit association resulted in the formation of very stable 70S ICs 

(estimated lifetime of ~100 sec, see Section 2.6.3) whose distribution of EFRET ratios was 

shifted towards ~0.8. Taken together, the smFRET data indicate the presence of at least 

three distinct classes of 70S IC, possessing either low, intermediate, or high stability.  
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Figure 3.8: The stability and FRET distribution of 70S complexes formed upon 50S subunit 
joining depend on the presence and concentration of IF3. 
Top row: Cartoons of the various conditions tested. (Cy5)-50S subunits were delivered to (A) 
30SIC+IF3 in the presence of saturating concentrations of free IF3, (B) 30SIC+IF3 in the absence of 
free IF3, or (C) 30SIC-IF3. Bottom row: Time evolution of population FRET histograms, 
generated and plotted as described in the caption to Figure 3.2. The pink dashed line at FRET=0.7 
is drawn to illustrate the shift of the distribution from ~0.6 to ~0.8 FRET. All data were collected 
at a (Cy5)-50S subunit concentration of 20 nM. 
 

 

These observations could be explained by a model in which the 30S IC can adopt 

three separate compositionally and/or conformationally distinct states, each of which 

interacts with the incoming 50S subunit in a unique way (Figure 3.9). According to this 

model, a transient association event would occur when the 50S subunit encounters a 30S 

IC in an “inhibitory” state, such that relatively few and/or weak intersubunit contacts are 
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formed. Conversely, stable subunit association would occur when the 50S subunit binds 

to a “productive” state of the 30S IC that can participate in rapid formation of an optimal 

pattern of intersubunit interactions. In the absence of IF3, the vast majority of 30S ICs 

appear to occupy a productive conformation that can efficiently bind the 50S subunit and, 

presumably, quickly form the full complement of intersubunit bridges along the subunit 

interface. Binding of IF3 switches the 30S IC from the productive state to less productive 

ones. IF3’s binding site at the platform region of the 30S subunit interface overlaps with a 

subset of intersubunit bridges, and the presence of IF3 could sterically block their 

formation during subunit association [7]. In addition, IF3-induced structural changes of 

the 30S subunit [28, 29] could contribute to its assuming an inhibitory conformation. 

An important finding from my data is that binding of IF3 does not impart uniform 

destabilization of the 70S IC. Instead, the data suggest that the IF3-bound 30S IC can 

assume at least two distinct conformations that inhibit subunit association to different 

degrees. The idea that the IF3-bound 30S IC can adopt multiple conformations has strong 

support from smFRET data collected in our laboratory using a doubly labeled IF3 

construct containing donor and acceptor fluorophores attached to its N- and C-terminal 

domains [11]. Steady-state smFRET experiments revealed the existence of multiple 

discreet, slowly interconverting conformations of the IF3-bound 30S IC, characterized by 

different distances between IF3’s two domains. These large-scale interdomain 

rearrangements of IF3 are likely facilitated by the long and flexible linker region that 

connects IF3’s globular C- and N-terminal domains [30, 31]. The interdomain 

rearrangements of IF3 might be coupled to structural changes of the 30S subunit, or 
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alternatively, might allow IF3’s globular domains to sample different binding sites on the 

30S platform. The latter explanation could help account for apparent discrepancies in the 

literature regarding the precise location of IF3’s binding site, as well as the fact that IF3 

has been crosslinked to r-proteins and rRNA elements spread over such a wide area of the 

30S subunit interface [32-35]. Based on these considerations, I speculate that 

transitioning of the IF3-30S complex between different conformations could be 

accompanied by steric occlusion of more or less intersubunit bridges by IF3, which 

would result in the formation of 70S ICs with low or intermediate stability, respectively 

(Figure 3.9). 

Another notable feature of the smFRET data is that, in the presence of high 

concentrations of free IF3, nearly all observed 50S subunit docking events result in 

formation of 70S ICs with low stability. In the context of the mechanistic model outlined 

above, this indicates that the dynamic equilibrium of the IF3-30S complex is shifted 

heavily towards the inhibitory conformation, which in turn implies that the presence of 

free IF3 in solution somehow increases the occupancy of this conformation over the 

alternate one. This is a curious finding, since, as discussed above, both conformations are 

expected to correspond to IF3-bound 30S ICs. In other words, in order for free IF3 to 

influence the conformational equilibrium, it apparently must interact with a 30S IC that 

already contains a bound molecule of IF3. This suggests that the 30S IC may be able to 

simultaneously accommodate more than one IF3 molecule at a time, a hypothesis for 

which there are, in fact, glimmers of support in the literature.  
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Figure 3.9: Mechanistic model for IF3-mediated regulation of 70S IC formation. 
In this model, the 30S IC exists in a dynamic equilibrium between at least three compositionally 
and conformationally distinct states: two conformations of the IF3-bound 30S IC and the IF3-free 
30S IC. Each state of the 30S IC interacts with the incoming 50S subunit in a unique way, 
resulting in the formation of 70S complexes with low, intermediate, or high stability and a 
corresponding shift in the equilibrium between 70S complexes and free subunits. I propose that 
more stable 70S complexes have a higher probability of binding the first ternary complex and 
entering into the elongation stage of protein synthesis. Transitions between the two conformations 
of the IF3-bound 30S IC are depicted in the cartoon as an interdomain reconfiguration of IF3’s N- 
and C-domains that results in the occlusion of more or less intersubunit bridges.    
      
    

One line of evidence is the X-ray crystallographic study in which IF3’s isolated 

C-domain was soaked into 30S subunit crystals and found to bind to the solvent side, 

rather than the interface side, of the 30S platform, between h23, h26, and the 3’ end of 

h45 [36]. It has been noted that binding of IF3 to the interface side of the platform— 
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where it has been localized by multiple chemical probing [7, 37] and cryo-EM [15, 29] 

studies—would not be possible within the context of the crystal lattice due to crystal 

contacts between neighboring 30S subunits [38]. Despite this, the localization of IF3’s C-

domain to the solvent side of the platform as seen in the crystal structure is consistent 

with crosslinks identified between IF3 and certain rRNA nucleotides and r-proteins [32, 

39], and could correspond to a second, low-affinity binding site that only becomes 

substantially occupied at high concentrations of IF3. In this scenario, free IF3 would bind 

to the secondary site and cause stabilization of the inhibitory conformation of 30SIC+IF3, 

thereby resulting in a near-complete block of stable subunit association.  

A second possibility arises from the finding that IF3’s two domains bind 

independently to the 30S subunit and with different affinities [40]. Titration of 

isotopically labeled IF3 with 30S subunits was followed by two-dimensional 

heteronuclear NMR spectroscopy, with the results suggesting the existence of an 

equilibrium between two species of IF3 on the 30S subunit: a “partly bound” species in 

which only IF3’s C-domain interacts with the 30S surface, and a “fully bound” species in 

which the 30S binding sites for both the C-domain and N-domain are occupied. 

According to this model, the C-domain is tightly anchored to the 30S subunit, while the 

lower affinity N-domain reversibly interacts with its binding site in order to modulate the 

thermodynamic stability of IF3 on the ribosome [4, 40]. It seems reasonable to speculate 

that 50S subunit association would be more strongly opposed when both the C-domain 

and N-domain are bound to the 30S surface; if so, the fully bound species of IF3 may 

correspond to the inhibitory conformation of 30SIC+IF3. In this scenario, occupancy of the 
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inhibitory conformation could be maintained by saturating the binding sites for both the 

C-domain and N-domain. This would be facilitated by the presence of free IF3 in solution 

if the N-domain from one molecule of IF3 were able to bind to its site even when the C-

domain binding site is occupied by a separate IF3 molecule. This idea could be tested in 

the future by including the isolated N-domain in solution rather than full-length IF3, to 

see if the same effect on subunit joining is observed.  

 In summary, my data show that stable subunit joining is inhibited by IF3 and that 

this inhibition is strengthened at high IF3:ribosome ratios. The presence of IF3 on the 

30S IC converts IF2-catalyzed subunit joining from a largely irreversible reaction into a 

dynamic equilibrium between 70S ICs and free subunits, thereby providing an 

opportunity for regulation of translation initiation at the subunit joining step. Since only 

70S ICs can enter into the elongation phase of protein synthesis, the efficiency with 

which a given mRNA is translated could be modulated by shifting the equilibrium in one 

direction or the other (Figure 3.9).  

My data further suggest a model in which the productivity of 50S subunit docking 

is controlled through IF3-dependent changes in the compositional and conformational 

state of the 30S IC, a proposal which is very similar to that put forth by Rodnina and 

coworkers [27]. The IF3-free 30S IC forms stable 70S ICs, while two interconverting 

conformations of the IF3-bound 30S IC form 70S ICs of either low or intermediate 

stability. By controlling the fractional occupancy of the different 30S IC conformations, 

the efficiency of 70S IC formation and thus translation initiation could be manipulated. 

Future experiments will be geared toward testing this hypothesis by making use of 
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mRNA constructs that are translated with different efficiencies in vitro [27] and by 

extending my single molecule assay to monitor incorporation of  the first EF-Tu:GTP:aa-

tRNA ternary complex into the 70S IC.  

Previous single-molecule studies have suggested that the formation of a 70S 

complex per se may not be sufficient for entry into elongation, since the 70S IC must 

acquire a particular conformation to efficiently accommodate the first ternary complex 

into the ribosomal A site [20, 41]. In this regard, it seems worth revisiting the observation 

that my IF2-L11 smFRET data indicates the presence of at least two interconvertible 

conformations of IF2 with respect to the GAC within the 70S IC, characterized by EFRET 

ratios of ~0.6 and ~0.8. In addition, the progression from strong inhibition of subunit 

association to stable subunit joining coincides with a gradual shift in the distribution of 

EFRET ratios to higher occupancy of the ~0.8 FRET state (Figure 3.8). Therefore, it could 

be that this conformational equilibrium of the 70S IC plays an additional role in 

regulating the efficiency of entry into elongation, and this possibility will serve to 

motivate future experiments. 

 
 
3.6 Open questions and future directions 

3.6.1 Timing of IF3 release from the ribosome 

 The presence of IF3 on the 30S IC alters the stability and distribution of EFRET 

ratios for the 70S ICs formed upon 50S subunit docking, as outlined above. Both the 

short- and intermediate-lifetime 70S ICs observed with 30SIC+IF3 are unique compared 

with the stable, long-lifetime 70S ICs formed with 30SIC-IF3. The simplest explanation 
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for this observation is that, when included, IF3 is physically present on the 70S ICs so as 

to directly affect their dynamics. Thus, my data strongly suggest that IF3 does not 

dissociate from the 30S IC prior to 50S subunit docking. This has not been directly 

demonstrated, however, and alternative mechanisms to account for IF3’s regulatory 

effects cannot be entirely ruled out, such as the possibility that the presence of IF3 causes 

an irreversible conformational change of the 30S IC that affects its subunit joining 

capacity and persists even after IF3 has been released.  

The answer to the question of when IF3 dissociates from the ribosome is of 

importance for understanding the factor’s mechanism of action, and it is, furthermore, a 

matter of considerable controversy in the literature. Ehrenberg and coworkers have 

argued that release of IF3 from the 30S IC is a prerequisite for 50S subunit docking, and 

that the presence of fMet-tRNAfMet favors the latter reaction by causing an increase in the 

rate of IF3 dissociation from the 30S subunit [8]. On the other hand, results from Rodnina 

and coworkers have suggested that IF3 is tightly associated with the 30S IC and that 

binding of fMet-tRNAfMet does not cause any significant dissociation of the factor. In 

their model, 50S subunits bind to the IF3-bound 30S IC and actually slow the rate of IF3 

release [27]. The presence of IF3 within the 70S IC was also suggested by bulk 

biochemical data from Cooperman and coworkers [10], and the cryo-EM reconstruction 

of the E. coli 70S IC contains electron density that may be attributable to one of IF3’s 

globular domains [42]. 

 I plan to directly test for the presence of IF3 on the 70S IC through a modification 

of my (Cy3)-IF2/(Cy5)-L11 smFRET subunit joining assay that makes use of an IF3 
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construct labeled with Atto488, whose fluorescence emission (λmax = 523 nm) is 

spectrally separable from that of Cy3 and Cy5. In this experiment, 30SIC+IF3 complexes 

will be assembled using both (Atto488)-IF3 and (Cy3)-IF2, and (Cy5)-L11 50S subunits 

will be stopped-flow delivered to surface-immobilized complexes as before. In addition 

to the green, 532 nm laser used to excite Cy3 for a typical smFRET experiment, a blue, 

488 nm laser will be used to directly excite Atto488. Fluorescence from all three dyes can 

be spectrally separated and imaged onto three independent quadrants of the EMCCD 

detector. Given an appropriately low spot density within the field-of-view, co-localization 

of (Cy3)-IF2 and (Atto488)-IF3 should indicate the presence of both initiation factors on 

the same 30S IC. By directly probing the presence of (Atto488)-IF3, it should be possible 

to determine conclusively whether IF3 remains bound during the FRET events 

corresponding to formation of short- and intermediate-lifetime 70S ICs. It will probably 

be necessary to shutter the 488 nm laser at regular intervals in order to compensate for the 

relatively fast photobleaching rates of green-fluorescing dyes such as Atto488, so that 

IF3’s presence or absence can be reliably determined over the course of multiple subunit 

docking events. If, as is suspected, IF3 remains bound to the 70S IC, downstream events, 

such as translocation of tRNAfMet from the P to the E site during the first elongation 

cycle, may be required for its ejection. As a first step toward implementing these 

proposed three-color experiments, an (Atto488)-IF3 construct has been generated and 

purified by Dr. Margaret Elvekrog in our laboratory.  

 

 



 Chapter 3 – IF3-mediated regulation of 70S IC formation 
________________________________________________________________________ 

146 

3.6.2 Regulation of subunit joining dynamics by TIR elements, 30S IC 
composition, and antibiotics 
 
 The notion of IF3 being bound within the 70S IC may seem at odds with the 

factor’s known anti-subunit association properties. My data, however, offer an 

explanation for this apparent discrepancy by suggesting a model in which the IF3-bound 

30S IC can adopt two conformations, one that is compatible with simultaneous binding of 

the 50S subunit and one that is not. By switching between these two conformations, IF3 

can either allow stable subunit association to occur or strongly impede 70S IC formation 

by permitting only transient sampling of the 30S IC by the 50S subunit. This behavior is 

manifested in the data as the partitioning of 50S docking events into two separate 

categories, namely short-lived and relatively long-lived FRET events. I hypothesize that 

the efficiency of translation initiation can be up-regulated or down-regulated at the 

subunit joining step by shifting the conformational equilibrium of the IF3-bound 30S IC 

to favor either shorter- or longer-lived subunit association events, respectively.  

 The efficiency of 70S IC formation on a given mRNA has been shown to depend 

on features within the mRNA’s TIR, such as the strength of the SD–anti-SD interaction, 

the length of the spacer between SD and start codon, and the start codon’s identity [27]. 

Thus, one way to test my hypothesis is to introduce alterations into the mRNA’s TIR 

which have been shown to either promote or impede 70S IC formation. For example, an 

mRNA with a strong SD–anti-SD interaction was found to strongly inhibit 70S IC 

formation in the presence of IF3 [27]. From this, it might be predicted that by increasing 

the strength of the SD–anti-SD interaction, a decrease in the percentage of longer-lived 

subunit association events would be observed in my smFRET assay. 
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   In addition to the mRNA’s TIR elements, one could test the effect on 50S subunit 

joining dynamics of other components of the 30S IC. For example, since IF3 has been 

shown to prevent the formation of aberrant 70S ICs by antagonizing 50S subunit joining 

to 30S ICs lacking fMet-tRNAfMet [6], one could conduct experiments using 30S ICs 

formed in the presence of elongator tRNAs or in the absence of tRNA altogether. 

Similarly, one could test the regulatory effects of IF1 by excluding it from the 30S IC. 

IF1 cooperates with IF3 to enhance its biochemical activities, and it might therefore be 

predicted that omission of IF1 would result in relaxation of the IF3-dependent inhibition 

of 50S subunit joining. If IF3 does in fact regulate 70S IC formation based on variations 

in mRNA TIR elements and tRNA identity in a way that is detectable by my smFRET 

assay, one could then assess to what extent IF1 contributes to this regulation.   

Whereas IF1 enhances IF3 activities, the antibiotic streptomycin has been shown 

to suppress IF3-dependent regulation of translation initiation efficiency [27]. The 

streptomycin binding site encompasses interactions with 16S rRNA helices h27, h18 and 

h44, and r-protein S12 [43]. This antibiotic does not significantly impair 30S IC 

assembly, and was suggested to instead exert its effects on initiation by stabilizing a 

particular conformation of the 30S subunit [27]. Streptomycin would thus be predicted to 

counteract IF3-dependent regulatory effects in my smFRET assay, and could serve as a 

particularly useful tool for testing the hypothesis that partitioning between short- and 

long-lived 50S subunit docking events is controlled by an underlying conformational 

equilibrium of the IF3-bound 30S IC. 
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     One set of conditions under which the fraction of short- and long-lived subunit 

docking events is altered has already been identified, namely saturating concentrations of 

IF3. The observed shift towards short-lived events is consistent with the results from 

ensemble light scattering measurements demonstrating stronger inhibition of subunit 

association as a function of increasing IF3 concentrations [8]. I have so far only collected 

smFRET data on 30SIC+IF3 at two concentrations of IF3 in solution, corresponding to the 

extremes of very high and very low molar excess over 30S and 50S subunits. In the 

future, one might consider performing an IF3 titration to better characterize the 

concentration dependence of subunit joining inhibition.  

Finally, as discussed in Section 3.5, my results have led to the suggestion that at 

high molar excess of IF3, more than one IF3 molecule may bind to the 30S IC at a time. 

This idea could be tested in the future through fluorescence co-localization experiments 

in which IF3 is labeled with two different fluorophores. For example, 30SIC+IF3 

complexes could be prepared and surface-immobilized in the presence of (Cy3)-labeled 

IF3. (Cy5)-labeled IF3 could then be delivered into the flowcell, and the co-existence of 

both IF3 species on the same 30S IC could be probed through simultaneous excitation 

with green and red lasers. 

 

3.6.3 Incorporation of aa-tRNA into the A site and entry into elongation 

 To convincingly demonstrate that the changes in 50S subunit joining dynamics 

observed using my smFRET assay correlate with changes in the overall efficiency of 

translation initiation, it will be necessary to probe the final step of the initiation pathway: 
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incorporation of the first elongator aa-tRNA into the ribosomal A site. Thus, surface-

based methods to monitor binding of fluorescently labeled EF-Tu:GTP:aa-tRNA ternary 

complex to the ribosome are currently being developed; preliminary work toward this end 

is described in Chapter 4. In one approach, the EF-Tu–catalyzed incorporation of Cy5-

labeled Phe-tRNAPhe into the A site will be followed through the appearance of Cy5 spots 

under direct red laser illumination. One might predict that accumulation of Cy5 spots 

within the field-of-view will occur more quickly under conditions in which subunit 

docking events have a higher probability of resulting in formation of stable 70S ICs. 

These experiments might also shed light on whether the unstable 70S ICs formed almost 

exclusively at high IF3 concentrations are competent to bind and incorporate the ternary 

complex, or alternatively, whether their metastable nature indicates that they have failed 

to undergo a conformational change necessary for entry into elongation. In a second 

approach, a three-color experiment will be implemented in which (Atto488)-labeled 

ternary complex is co-delivered with (Cy5)-L11 50S subunits to 30S ICs bearing (Cy3)-

IF2, under green and blue laser excitation. In this set-up, subunit joining should be 

signaled by the onset of FRET and subsequent incorporation of aa-tRNA should be 

indicated by the appearance of co-localized spots of Atto488 fluorescence. The three-

color experiment should eventually allow us to answer such questions as: Are the short-, 

intermediate-, and long-lifetime 70S ICs all capable of incorporating the ternary 

complex? Does the ternary complex exhibit a preference toward binding to 70S ICs in the 

~0.6 versus the 0.8 FRET conformational state?  
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Chapter 4 

Transition from initiation to elongation: timing of 
ternary complex binding to the 70S IC 

 
4.1 Introduction 

 Following initiation-factor mediated assembly of a 70S IC, entry into the 

elongation phase of protein synthesis is signaled by accommodation of an aa-tRNA into 

the ribosomal A site and formation of the first peptide bond. The first elongator aa-tRNA 

is delivered to the ribosome by EF-Tu in ternary complex with GTP. The EF-Tu:GTP:aa-

tRNA ternary complex binds to the ribosome’s GAC at a location that is at least partially 

overlapping with the binding site for the other translation factors, including IF2 [1-3]. A 

question of key mechanistic importance for understanding how the ribosome coordinates 

the transition from initiation into elongation thus concerns the relative timing of ternary 

complex binding with respect to IF2 dissociation from the 70S IC. This is associated with 

the more general problem of how the ribosome coordinates the sequential binding of 

translation factors to the GAC throughout protein synthesis in order to efficiently 

incorporate the appropriate translation factor at the correct time and to avoid a molecular 

“traffic jam” on the ribosome’s surface [4].  

 Due to the overlapping nature of the binding sites for IF2 and ternary complex, it 

is generally assumed that binding of the ternary complex will be inhibited until IF2 is 

released from the ribosome [5, 6]. Dissociation of IF2 would remove the steric block 

towards ternary complex binding and thus allow unimpeded interactions between ternary 

complex and components of the GAC, and accommodation of aa-tRNA into the A site. 
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Indeed, formation of the initiation dipeptide is slowed dramatically when IF2 is bound to 

the ribosome in the presence of the non-hydrolyzable GTP analog GDPNP, and under 

these conditions, the rate of IF2 dissociation was found to be rate-limiting for dipeptide 

formation [7]. This observation implies that full accommodation of aa-tRNA into the A 

site and subsequent peptide bond formation can only occur upon IF2 release, but does not 

necessarily mean that IF2 and ternary complex cannot simultaneously be bound to the 

ribosome. In fact, my smFRET results indicated that IF2 dissociation from the 70S IC is 

modestly accelerated in the presence of ternary complex, which suggested that the ternary 

complex may be able to interact productively with an IF2-bound 70S IC (see Section 

2.6.3). Incorporation of ternary complex into the ribosome proceeds in a series of steps 

[8, 9], and it is possible that one or more early steps in this pathway are permitted even in 

the presence of bound IF2.    

I was therefore interested in exploring in greater detail the possibility that the 

ribosome might be capable of simultaneously accommodating both IF2 and the ternary 

complex. In this chapter, I report the development of surface-based single molecule 

approaches to directly probe the relative timing of ternary complex binding with respect 

to IF2 release during the transition from initiation into elongation. One approach involves 

fluorescence co-localization of IF2 and ternary complex, each labeled with a different 

colored fluorophore (Section 4.2). In a second approach, my standard 50S subunit joining 

assay, based on FRET between donor-labeled IF2 and acceptor-labeled L11, is expanded 

to include direct detection of ternary complex labeled with a third fluorophore (Section 

4.3). This three-color approach potentially provides a means to monitor IF2-catalyzed 
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50S subunit joining to the 30S IC, IF2 release from the 70S IC, and ternary complex 

binding, all within the same experiment. Importantly, the single-molecule sensitivity of 

these experiments should permit detection of even transient co-occupancy of IF2 and 

ternary complex on the same ribosome, which would likely be difficult or impossible to 

achieve using traditional bulk biochemical techniques.  

I therefore aimed to directly test whether ternary complex can bind to the IF2-

bound 70S IC, and if so, to characterize the duration of its binding events as well as the 

timing of its binding with respect to IF2 release. The preliminary results from these 

experiments suggest that ternary complex can indeed bind to a 70S IC containing IF2, 

and that these binding events correlate with the timing of IF2 dissociation. Thus, the data 

are beginning to provide important insights into the sequence of events that occurs during 

the final stages of translation initiation and the entry into elongation. Additionally, they 

highlight the capacity of the ribosome to simultaneously interact with more than one 

translation factor at a time, which I postulate may have important implications for 

understanding how the ribosome rapidly and efficiently coordinates the sequential 

shuttling of translation factors into and out of the GAC throughout the entire protein 

synthesis cycle. I discuss in structural terms how the ribosome might accommodate 

multiple translation factors simultaneously, and how dynamics of structural components 

within the ribosome’s GAC might be involved in regulating translation factor binding and 

dissociation events.        

 



 Chapter 4 – Timing of ternary complex binding to the 70S IC 
________________________________________________________________________ 

157 

4.2 Two-color fluorescence co-localization experiments to investigate the 
timing of ternary complex binding to the 70S IC with respect to IF2 
release 
 
 Based on the observation that the presence of ternary complex causes a modest 

acceleration of IF2 release from the 70S IC following 50S subunit joining, I reasoned that 

binding of ternary complex might occur prior to IF2 dissociation. The idea that ternary 

complex may be able to bind ribosomes still containing IF2 has been proposed previously 

by Ehrenberg and coworkers [7]. I sought to test this idea directly by labeling IF2 and the 

ternary complex with different color fluorophores and monitoring their presence or 

absence on single, surface-immobilized ribosomes during the final stages of translation 

initiation using multiwavelength fluorescence microscopy. The efficacy of single-

molecule, multiwavelength fluorescence co-localization for monitoring the order and 

timing of macromolecular binding and dissociation events has recently been 

demonstrated by Hoskins, et al., who used this approach to study the assembly of 

spliceosomal subcomplexes onto a surface-immobilized pre-mRNA substrate [10]. 

 The experimental set-up employed to study the timing of ternary complex binding 

and IF2 release was similar to that used to monitor IF2-catalyzed subunit joining 

(Chapters 2 and 3; Figure 4.1). 30S ICs containing IF1, (Cy3)-labeled IF2-GTP, fMet-

tRNAfMet, and 5’-biotinylated mRNA were prepared and immobilized on the surface of 

the microfluidic flowcell. This was followed by stopped-flow delivery of a mixture 

containing unlabeled 50S subunits, IF1, GTP, and pre-formed, Cy5-labeled Phe-tRNAPhe 

ternary complex (referred to hereafter as (Cy5)-T3), which is cognate to the UUC codon 

at the second position on the mRNA. The ternary complex was site-specifically labeled 
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with Cy5 within the elbow region of the tRNA, at position acp3U47 [11]. Fluorescence 

from (Cy3)-IF2 and (Cy5)-T3 was directly excited by simultaneous illumination with 532 

nm and 635 nm lasers, respectively. Fluorescence emission from the two fluorophores 

was separated using dual-view optics and imaged onto separate halves of the EMCCD 

camera detector, and fluorescence images were collected as a function of time at a frame 

rate of 10 sec-1. When a fluorophore-labeled factor binds to a surface-immobilized 

ribosome, it will be confined within the evanescent field and generate a spatially 

localized fluorescent spot. Conversely, dissociation of the fluorophore-labeled factor 

from the ribosome will lead to its diffusion out of the evanescent field and disappearance 

of the fluorescence signal. 

Since (Cy3)-IF2 is bound to the surface-immobilized 30S ICs, fluorescent spots 

are present in the Cy3 channel from the onset of data acquisition. Following stopped-flow 

delivery of unlabeled 50S subunits and (Cy5)-T3, fluorescent spots begin to accumulate 

in the Cy5 channel as well (Figure 4.2). In order to clearly visualize discrete Cy5 

fluorescent spots at the surface, it was necessary to reduce the background fluorescence 

within the Cy5 channel. This was accomplished by both attenuating the excitation power 

of the 635 nm laser and by delivering only low concentrations (~500 pM) of (Cy5)-T3 

into the flowcell. Higher concentrations, in addition to decreasing the signal-to-noise 

ratio of the observed (Cy5)-T3 binding events, resulted in a decrease in their specificity, 

as judged based on the criteria described below. 
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Figure 4.1: Timing of ternary complex binding to the 70S IC with respect to IF2 release. 
Cartoon schematic of the two-color fluorescence co-localization approach used to monitor the 
binding and dissociation of IF2 and ternary complex from single ribosomes. Following IF2-
catalyzed formation of the 70S IC, aa-tRNA is delivered to the ribosome in ternary complex with 
EF-Tu and GTP. The aa-tRNA is accommodated into the ribosomal A site in a process that 
involves GTP hydrolysis, conformational change, and dissociation of EF-Tu. Successful 
accommodation of aa-tRNA into the A site results in formation of the first peptide bond catalyzed 
by the ribosome’s peptidyl transferase center. The precise sequence of events leading from 70S 
IC formation to peptide bond formation is not well defined. Here, the relative timing of IF2 
dissociation and ternary complex binding was investigated by labeling IF2 with Cy3 (green star) 
and Phe-tRNAPhe with Cy5 (red star) and co-localizing Cy3 and Cy5 fluorescence to single, 
surface-immobilized ribosomes.   
 
 

Image analysis was performed using SFTracer software, implemented in Java, 

which is currently being developed by Victor Naumov in our laboratory for fully 

automated analysis of smFRET data (Section 5.5.2). In the first step, the alignment 

parameters that result in the best overlay of the Cy3 and Cy5 images were determined in 

a process termed “mapping”. This was achieved by imaging a control sample of surface-

tethered, 5’-end labeled (Cy3)-DNA oligonucleotide at high laser power, conditions 

under which fluorescent molecules are visible in both images due to significant 

bleedthrough of Cy3 emission into the Cy5 channel. The alignment parameters defining 

the relationship between the Cy3 and Cy5 channels (translation, rotation, and skew) are 
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then varied to maximize the degree of overlap between the two images. Fluorescent spots 

in the images were identified by an algorithm that searches for 2x2 pixel regions whose 

mean intensity exceeds a background threshold.   

The specificity of (Cy5)-T3 binding to the surface was assessed by performing 

several control experiments (Figure 4.2). When (Cy5)-T3 was stopped-flow delivered 

into a surface-passivated flowcell in the absence of surface-immobilized 30S ICs and 50S 

subunits, there was minimal accumulation of fluorescent Cy5 spots within the field-of-

view. This demonstrates that (Cy5)-T3 does not non-specifically bind to the surface to an 

appreciable extent. Furthermore, significant accumulation of Cy5 spots was shown to 

require the presence of both 30S ICs and 50S subunits; relatively few binding events 

were observed when (Cy5)-T3 was delivered to surface-tethered (Cy3)-IF2–bound 30S 

ICs in the absence of 50S subunits, or to 30S IC-free surfaces in the presence of 50S 

subunits. Taken together, these results suggest that the observed binding events 

correspond to (Cy5)-T3 association with the 70S IC following IF2-catalyzed 50S subunit 

joining.
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Figure 4.2: Specificity of (Cy5)-T3 binding to surface-immobilized ribosomes. 
(A) Stopped-flow delivery of (Cy5)-labeled Phe-tRNAPhe ternary complex and 50S subunits to 
surface-immobilized 30S ICs containing IF1, (Cy3)-IF2-GTP, fMet-tRNAfMet, and biotin-mRNA. 
The flowcell was simultaneously illuminated with 532 nm and 635 nm lasers to directly excite 
fluorescence from Cy3 and Cy5, respectively. Sample dual-view images are shown at t=0, 20, 40, 
and 60 sec, demonstrating the disappearance of fluorescent spots from the Cy3 channel and 
appearance of fluorescent spots in the Cy5 channel as a function of time. The sample images were 
obtained by calculating the average intensity of each pixel over ten consecutive data frames in 
order to increase the image contrast for ease of viewing. Each image corresponds to half of the 
actual experimental field-of-view (256 x 128 pixels with 2 x 2 binning). (B) (Cy5)-T3 was 
delivered into flowcells with or without immobilized 30S ICs, and in the presence or absence of 
50S subunits as indicated. When present, surface-immobilized 30S ICs contained IF2 in either the 
GTP- or GDPNP-bound form as indicated. The number of fluorescent spots within the Cy5 
channel was counted for each frame of the movie using SFTracer software and plotted as a 
function of time. High levels of (Cy5)-T3 binding were observed only in the presence of both 30S 
ICs and 50S subunits.          
 
 

Under these conditions, co-localized Cy3 and Cy5 fluorescent spots are 

interpreted to report on association of (Cy5)-T3 and (Cy3)-IF2 with the same ribosomal 

complex. As a precaution to ensure that this was the case, experiments were conducted at 
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a low surface density of (Cy3)-IF2–containing 30S ICs, which minimizes the probability 

of multiple 30S ICs being located within the region corresponding to a diffraction-limited 

(Cy3)-IF2 fluorescent spot. To confirm the low probability that co-localization of Cy3 

and Cy5 fluorescence would be observed by random chance, the movies corresponding to 

delivery of (Cy5)-T3 to (Cy3)-IF2–containing 30S ICs in the presence and absence of 

50S subunits were analyzed as follows. It was expected that a high degree of fluorescence 

co-localization would be observed only in the presence of 50S subunits, when 70S ICs 

are able to form. For the sake of this analysis, regions of interest (ROIs) were identified 

based on the presence of (Cy3)-IF2 fluorescent spots at the beginning of the experiment, 

and a (Cy5)-T3 binding event was defined as a burst of Cy5 fluorescence within the ROI 

in which five or more consecutive data frames exceed an intensity threshold. Using these 

criteria, only 5% of the ROIs in the absence of 50S subunits exhibited a (Cy5)-T3 binding 

event over the course of the 1200 frame movie, compared with 54% of the ROIs in the 

presence of 50S subunits. These results suggest a greater than 10-fold specificity and 

provide further evidence that the majority of (Cy5)-T3 binding events occur subsequent 

to 50S subunit joining and formation of the 70S IC. 

While the majority (57%) of fluorescence versus time trajectories exhibited only 

one burst of Cy5 fluorescence over the course of the two minute long observation 

window, a large sub-population (43%) of trajectories exhibited multiple bursts (Figure 

4.3). There are two possible explanations for the latter behavior. The first is that the 

disappearance and reappearance of Cy5 fluorescence represents multiple cycles of (Cy5)-

T3 binding and dissociation from the 70S IC. If this were the case, it would imply that the 
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observed binding events correspond to relatively unstable and reversible association of 

(Cy5)-T3 with the ribosome, perhaps during an early stage of the multi-step ternary 

complex accommodation pathway [8, 9]. The estimated average lifetime of the 

fluorescence bursts is ~15 sec, which would correspond to a dissociation rate constant of 

kd, app ≈ 0.068 sec-1, though this value may represent an upper limit due to photobleaching 

of the Cy5 fluorophore. The second possible origin of the observed Cy5 intensity 

fluctuations is fluorophore photoblinking. Under direct 635 nm laser excitation, Cy5 is 

known to undergo reversible transitions into long-lived dark states with a duration of 

seconds to tens of seconds [12-15], and there is evidence that simultaneous excitation 

with 532 nm light may exacerbate these Cy5 blinking dynamics [14, 15]. Future 

experiments will be required to distinguish between these two possibilities. Fluorophore 

blinking dynamics, but not biochemical association/dissociation kinetics, are expected to 

be sensitive to laser excitation power. Thus, conducting experiments using different laser 

powers and/or alternative laser shuttering strategies may provide information on the 

relative contribution of fluorophore blinking to the observed Cy5 intensity fluctuations. 

Regardless, inspection of the individual fluorescence versus time trajectories 

revealed numerous instances in which a burst of Cy5 fluorescence occurs prior to loss of 

the Cy3 signal (Figure 4.3). This strongly suggested that, in agreement with my 

hypothesis, ternary complex binding to the 70S IC can precede IF2 release, which implies 

that the ribosome is able to accommodate more than one translation factor at a time. For 

the subset of ribosomes that exhibited (Cy5)-T3 binding, the binding event occurred 

before (Cy3)-IF2 signal loss in 21% of the trajectories, after (Cy3)-IF2 signal loss in 78% 
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of the trajectories, and rarely, within the same data frame (~1% of the trajectories). In 

order to quantify the timing of (Cy5)-T3 binding with respect to (Cy3)-IF2 signal loss, 

the arrival time of the Cy5 signal was subtracted from the departure time of the Cy3 

signal on a molecule-by-molecule basis. The values thus obtained were plotted as a 

histogram, where negative and positive values represent (Cy5)-T3 binding to the 

ribosome before and after (Cy3)-IF2 signal loss, respectively (Figure 4.4). Interestingly, 

ternary complex binding appears to occur with the highest probability shortly before or 

shortly after (Cy3)-IF2 signal loss. This may be indicative of a temporal correlation 

between ternary complex binding and IF2 release from the 70S IC. In other words, 

binding of ternary complex could enhance the rate of IF2 dissociation, and conversely, 

IF2 dissociation might facilitate more rapid binding of the ternary complex. 

 

 
 
Figure 4.3: Sample fluorescence intensity versus time trajectories from co-localized (Cy3)-
IF2 and (Cy5)-T3. 
Fluorescence intensities from co-localized (Cy3)-IF2 (green) and (Cy5)-T3 (red) are plotted as a 
function of time. Loss of the (Cy3)-IF2 signal results from either Cy3 photobleaching or 
dissociation of (Cy3)-IF2 from the ribosome, while bursts of Cy5 fluorescence correspond to 
(Cy5)-T3 binding. Various types of fluorescence trajectories were observed. (Cy5)-T3 binding 
was observed to occur either after or before (Cy3)-IF2 signal loss (Panels A and B, respectively). 
Additionally, a significant subset of the trajectories (43%) exhibited multiple bursts of (Cy5)-T3 
fluorescence (Panel C).        
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The most important observation from the data is that the 70S IC can apparently 

interact productively with both IF2 and the ternary complex simultaneously. 

Unambiguous co-occupancy of IF2 and ternary complex on the same ribosome based on 

temporal overlap of Cy3 and Cy5 fluorescence was only observed in roughly one-fifth of 

the trajectories, but this likely represents a lower limit for the fraction of ribosomes that 

actually bind ternary complex prior to IF2 release and/or that are capable of doing so. 

This is due to certain limitations inherent to the experimental set-up. Specifically, 

visualization of ternary complex binding to an IF2-bound ribosome would only be 

expected to occur with a high probability under conditions where the rate of (Cy5)-T3 

binding is significantly faster than the composite rate of (Cy3)-IF2 dissociation plus Cy3 

photobleaching, both of which contribute to loss of the Cy3 fluorescence signal. I 

therefore speculated that the reason co-residency of ternary complex and IF2 was not 

observed on a larger fraction of ribosomes was not because bound IF2 significantly 

impedes ternary complex binding, but rather that (Cy3)-IF2 dissociated or the Cy3 

fluorophore photobleached faster than ternary complex could associate with the 70S IC. 

In support of this notion, the average lifetime of the (Cy3)-IF2 signal for the 

subpopulation of molecules exhibiting (Cy5)-T3 binding before (Cy3)-IF2 signal loss 

(39.9 sec) was ~3.2-fold longer than the corresponding lifetime for the subpopulation 

where (Cy5)-T3 binding was observed only after (Cy3)-IF2 signal loss (12.6 sec). This 

implies that the probability of observing co-localization increases as the lifetime of the 

(Cy3)-IF2 fluorescence signal increases. 
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Figure 4.4: Analysis of the time difference between (Cy5)-T3 binding and (Cy3)-IF2 signal 
loss on single ribosomes. 
(A) For each co-localized (Cy3)-IF2/(Cy5)-T3 pair, the timepoints corresponding to (Cy3)-IF2 
signal loss (tIF2, green dashed line) and the first instance of (Cy5)-T3 binding (t3, red dashed 
lined) were identified. The time difference between these events (tT3 - tIF2) was calculated on a 
trace-by-trace basis. Negative values correspond to occurrences of (Cy5)-T3 binding to the 70S 
IC prior to (Cy3)-IF2 release. (B, C) Histogram of the time difference (tT3 - tIF2) for experiments 
performed in the presence of 30S ICs containing either (Cy3)-IF2-GTP or (Cy3)-IF2-GDPNP, 
respectively. The total number of single-molecule trajectories used to generate the histograms is 
indicated by “N”.        
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Based on these results, I predicted that simultaneous binding of IF2 and ternary 

complex could be observed for a higher percentage of ribosomes under conditions in 

which the association rate of (Cy5)-T3 is increased, the dissociation rate of (Cy3)-IF2 is 

decreased, and/or the photobleaching rate of Cy3 is decreased. In theory, this prediction 

could be tested by delivering a higher concentration of (Cy5)-T3 into the flowcell and 

thereby increasing its rate of association with the ribosome. This was not possible in the 

context of the current experimental setup, however, as delivery of (Cy5)-T3 

concentrations higher than ~500 pM led to a decrease in the binding specificity.  

Instead, I sought to test my prediction by slowing the dissociation rate of (Cy3)-

IF2 by substituting GTP with the non-hydrolyzable GTP analog GDPNP. The GDPNP-

bound form of IF2 promotes rapid 50S subunit joining, but is subsequently stabilized on 

the 70S IC (see Chapter 2 and references [7, 16]). When (Cy5)-T3 and 50S subunits were 

co-delivered to surface-immobilized 30S ICs containing (Cy3)-IF2-GDPNP, co-localized 

ternary complex binding events were again observed for roughly half (48%) of the (Cy3)-

IF2–bound 30S ICs. Among this subset of ribosomes, (Cy5)-T3 binding occurred before 

(Cy3)-IF2 signal loss in 42% of the fluorescence versus time trajectories, compared with 

21% of the trajectories in the experiments with (Cy3)-IF2-GTP (Figure 4.4). This two-

fold increase paralleled the increase in lifetime of the (Cy3)-IF2 signal in the presence of 

GDPNP versus GTP (30 sec versus 18 sec, respectively). Thus, in agreement with my 

prediction, slowing the rate of IF2 dissociation from the 70S IC leads to an increase in the 

fraction of ribosomes on which co-residency of ternary complex and IF2 is observed.  
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I hypothesize that if the rate of (Cy3)-IF2 signal loss were decreased even further, 

by, for example, shuttering the 532 nm laser at regular intervals to extend the survival 

time of the Cy3 fluorophore, the frequency with which co-residency of ternary complex 

and IF2 is observed would continue to increase. Higher concentrations of ternary 

complex would be expected to have the same effect by speeding up its rate of association 

with the ribosome. In this regard, it is interesting to note that EF-Tu is the most abundant 

protein in E. coli, with an estimated in vivo concentration of ~100 μM [17], and tRNA 

concentrations are likely on the order of ~10s of μM [18, 19]. I speculate that, at such 

high concentrations, formation of the 70S IC would be followed almost immediately by 

binding of ternary complex. In this case, binding of ternary complex prior to IF2 release 

may represent the predominant sequence of events occurring during the late stages of 

translation initiation in vivo. 

 

4.3 Three-color experiments 

 Results from the two-color fluorescence co-localization experiments described 

above strongly suggested that, following 50S subunit joining to the 30S IC, ternary 

complex can bind to the 70S IC before IF2 is released. However, since the fluorescent 

probes were attached to IF2 and ternary complex, the 50S subunit joining event was not 

directly visualized and its occurrence could only be inferred. A three-color approach was 

designed in order to allow direct visualization of both IF2-catalyzed 50S subunit joining 

and ternary complex binding to the 70S IC within the same experiment. In this approach, 

subunit joining was detected based on FRET between (Cy3)-IF2 and (Cy5)-L11 
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reconstituted 50S subunits, while ternary complex binding was monitored by co-

localization of a third fluorophore, Atto488, attached to the tRNA. Atto488 can be 

directly excited with a blue, 488 nm laser, and its fluorescence emission (λmax = 523 nm) 

has sufficient spectral separation from that of Cy3 and Cy5 (λmax = 570 and 670 nm, 

respectively) to allow for three-color imaging. Thus, tRNAPhe was labeled with Atto488 

at position acp3U47, charged with phenylalanine, and used to form ternary complexes. 

This triple-labeled translation system was shown to retain wild-type levels of activity in 

IF2-dependent 70S IC formation as judged by the initiation dipeptide assay (Figure 4.5).  

 

 
 
Figure 4.5: The triple-labeled translation initiation system exhibits wild-type levels of 70S 
IC formation and initiation dipeptide formation.  
30S ICs were formed by incubating 30S subunits with IF1, mRNA, 35S-fMet-tRNAfMet, with or 
without IF2, in Low-Salt Tris-polymix buffer supplemented with GTP. These 30S ICs (1.5 pmol) 
were then mixed with 50S subunits (2.25 pmol) and preformed EF-Tu:GTP:Phe-tRNAPhe ternary 
complex (6 pmol). The reaction was incubated at room temperature and quenched with base at 15 
sec, 30 sec, 1 min and 5 min time points, and formation of 35S-fMet-Phe was monitored by eTLC 
(Panel A). Lanes 1-4: 30S ICs formed in the absence of IF2 were mixed with unlabeled, wild-type 
50S subunits and ternary complex. Lanes 5-8: 30S ICs formed in the presence of IF2 were mixed 
with unlabeled, wild-type 50S subunits. Lanes 9-12: Triple-labeled system. 30S ICs containing 
(Cy3)-IF2 were mixed with (Cy5)-L11 reconstituted 50S subunits and (Atto488)-labeled ternary 
complex. Panel B: Results from quantification of the eTLC phosphor images. The percent of fMet 
converted to dipeptide was calculated by dividing intensity of the fMet-Phe spot by the sum of 
fMet-Phe and unreacted fMet spots, and multiplying by 100. The resulting values were plotted as 
a time course. Data points and error bars represent the mean and standard deviation from three 
independent experiments.   
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Single-molecule experiments were performed by stopped-flow delivering a 

mixture of (Cy5)-L11 50S subunits and (Atto488)-T3 to surface-immobilized 30S ICs 

containing IF1, (Cy3)-IF2-GTP, biotin-mRNA, and fMet-tRNAfMet in the P site. 

Constant, simultaneous illumination with 488 nm and 532 nm lasers was used to excite 

fluorescence from (Atto488)-T3 and (Cy3)-IF2, respectively. Fluorescence emission from 

the three fluorophores was separated using a series of dichroic filters and imaged onto 

three separate quadrants of the EMCCD detector. The procedure for mapping the three 

fields-of-view was analogous to that described above for the two-color co-localization 

experiments. In this case, however, two different control samples were imaged: a surface-

tethered (Cy3)-labeled DNA oligonucleotide excited with the 532 nm laser and an 

(Atto488)-labeled oligo excited with the 488 nm laser. SFTracer software was then used 

to calculate the alignment parameters that maximize overlap of the three images based on 

bleedthrough of Cy3 emission into the Cy5 channel and bleedthrough of Atto488 

emission into the Cy3 channel. 
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Figure 4.6: Three-color observation of IF2-catalyzed 50S subunit joining and ternary 
complex binding to the 70S IC. 
Top row: Cartoon schematic of the experimental set-up. 30S ICs containing biotin-mRNA, fMet-
tRNAfMet, IF1, and (Cy3)-IF2-GTP were tethered to the surface of the flowcell. A mixture of 
(Cy5)-L11 reconstituted 50S subunits and (Atto488)-labeled Phe-tRNAPhe ternary complex was 
stopped-flow delivered into the flowcell, and data was collected under dual-illumination with 488 
nm and 532 nm lasers. Cy3 and Atto488 fluorescence results from direct laser excitation, whereas 
Cy5 fluorescence arises via FRET between Cy3 and Cy5. Fluorescence emission from the three 
dyes was separated using quad-view optics and imaged onto three separate quadrants of the CCD 
detector. Bottom row: Sample quad-view image showing discrete fluorescent spots from (Cy3)-
IF2 (top left quadrant), (Cy5)-50S subunits (top right quadrant), and (Atto488)-T3 (bottom left 
quadrant). The image was obtained by calculating the average intensity of each pixel over ten 
consecutive data frames (frames 101-110, t=10-10.1 sec) of the movie. This was done in order to 
increase the image contrast such that fluorescent spots could be easily discerned in all three 
channels. 
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Fluorescence versus time trajectories that exhibited a decrease in Cy3 intensity 

and concomitant increase in Cy5 intensity—the signature for IF2-catalyzed subunit 

joining—were selected for further analysis. Many of these trajectories exhibited discrete 

bursts of co-localized Atto488 fluorescence, indicative of Phe-tRNAPhe ternary complex 

binding to the ribosome. The bursts of Atto488 fluorescence almost always occurred after 

the 50S subunit joining event (~99% of the trajectories), implying that ternary complex is 

indeed binding to the 70S IC, rather than the 30S IC. Notably, many of the same features 

characterizing (Cy5)-T3 fluorescence bursts in the two-color experiment were observed 

for the (Atto488)-T3 fluorescence bursts in the three-color experiment. Specifically, the 

majority of the trajectories (~80%) exhibited (Atto488)-T3 binding subsequent to (Cy3)-

IF2 signal loss, while in a smaller but significant subpopulation (~20%), ternary complex 

binding occurs after subunit joining but before (Cy3)-IF2 signal loss. The latter finding 

provides direct evidence that the ribosome is capable of recruiting ternary complex prior 

to IF2 release from the 70S IC. Another parallel between the two- and three-color 

experiments is the presence of multiple (Atto488)-T3 fluorescence bursts within 

individual fluorescence versus time trajectories (Figure 4.7). As before, this could 

theoretically arise from either a series of (Atto488)-T3 association/dissociation events or, 

alternatively, fluorophore photoblinking. However, the fact that very similar fluorescence 

behavior was observed, and in a comparable percentage of the trajectories, for two quite 

different fluorophores seems to suggest that its origin is more biochemical than 

photophysical. The fluorescence fluctuations may therefore be reporting on reversible 



 Chapter 4 – Timing of ternary complex binding to the 70S IC 
________________________________________________________________________ 

173 

binding of ternary complex to the 70S IC, perhaps at an early stage of the aa-tRNA 

accommodation pathway. 

 

 
 
Figure 4.7: Sample three-color fluorescence intensity versus time trajectories. 
Fluorescence intensities from co-localized (Cy3)-IF2 (green), (Cy5)-50S subunits (red), and 
(Atto488)-T3 (light blue) spots are plotted as a function of time. Cy3 and Cy5 traces are 
overlayed, while the Atto488 trace is shifted down on the y-axis for clearer visualization. The 
anticorrelated drop in Cy3 intensity and jump in Cy5 intensity at the beginning of the trace 
indicates the IF2-catalyzed 50S docking event. Bursts of Atto488 fluorescence indicate binding of 
ternary complex to the surface-tethered 70S IC. The time corresponding to the first (Atto488)-T3 
binding event is indicated by a vertical dashed line. (A) Three example traces in which (Atto488)-
T3 binding occurs after (Cy3)-IF2 signal loss. (B) Three example traces in which (Atto488)-T3 
binding occurs before (Cy3)-IF2 signal loss, indicating co-occupancy of IF2 and ternary complex 
on the 70S IC.   
 
 

Although the three-color approach allows direct observation of 50S subunit 

joining and ternary complex binding within the same experiment, it has a number of 

disadvantages compared with the analogous two-color approach. First, since the size of 

the field-of-view is reduced by half, it is more difficult to obtain a statistically significant 
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number of single-molecule fluorescence trajectories. Second, three-color imaging suffers 

from lower signal-to-noise ratios on account of the greater number of optical components 

placed in the emission path for wavelength separation. Third, probing ternary complex 

binding with Atto488 versus Cy5 is less robust, since Atto488 has significantly lower 

fluorophore brightness and photostability. Finally, shorter fluorophore survival times 

were observed for both Cy3 and Cy5 under the dual 488 nm and 532 nm illumination 

conditions used for the three-color experiments. This limits the effective experimental 

observation window and decreases the probability of detecting the overlap of IF2 and 

ternary complex binding to the ribosome when it occurs. In the future, it may be possible 

to address this problem by using an alternating laser excitation (ALEX) strategy for 

fluorophore excitation [20].                          

       

4.4 Mechanistic implications and future directions 

 The two- and three-color co-localization experiments described above have 

provided direct evidence that, following IF2-catalyzed 50S subunit joining, the first EF-

Tu:GTP:aa-tRNA ternary complex can bind to the 70S IC prior to IF2 release. This 

finding adds a new level of detail to our understanding of the sequence of events 

occurring during the late stages of the translation initiation pathway. It suggests that 

models in which IF2 dissociation precedes ternary complex binding [5, 6] may amount to 

an oversimplification of how the transition from initiation to elongation actually proceeds 

on the ribosome. Taken one step further, my results might suggest that ribosome-
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translation factor interactions during protein synthesis are more complex than a stepwise 

binding of factors to the ribosome one at a time. 

Structurally, the observation of IF2 and ternary complex co-residency on the 

ribosome means that the GAC is able to accommodate at least two translation factors 

simultaneously. In other words, the ribosome’s translation factor binding region must 

contain at least two separate binding sites. In support of this notion, the accommodation 

of aa-tRNA into the ribosomal A site is believed to proceed in a series of steps that 

involve interaction of ternary complex with different structural components of the GAC 

[8, 9]. In the first step, ternary complex binds to the ribosome’s L7/L12 stalk, a protein-

rich protuberance that extends from the body of the 50S subunit out into solution, via 

protein-protein interactions between L7/L12 and EF-Tu. This is followed by formation of 

the codon-anticodon interaction within the 30S subunit’s decoding center, and 

subsequently, GTPase activation of EF-Tu. In the GTPase-activated state, the aa-tRNA 

adopts the so-called A/T hybrid configuration, and EF-Tu interacts with 50S GAC 

components closer to the 50S subunit core, such as L11, 23S rRNA helices H42-44, and 

the sarcin-ricin loop [21-23]. 

I propose that the L7/L12 stalk plays a major role in facilitating ternary complex 

binding to the ribosome prior to IF2 release. In E. coli, the L7/L12 stalk is composed of 

four copies of the highly acidic L12 protein (L7 is an N-terminally acetylated form of 

L12), which assemble as two dimers onto an α-helical extension of r-protein L10 [24, 

25]. This L10-(L7/L12)4 pentameric complex, in turn, binds to the surface of the 50S 
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subunit via interactions between L10 and 23S rRNA nucleotides 1030-1124, at the base 

of the stalk proximal to L11 (Figure 4.8) [26-28].  

 
 
Figure 4.8: Structural model of the L7/L12 protein stalk. 
A model of the complete L7/L12 protein stalk on the 50S ribosomal subunit, built from 
independently determined structures of the 50S ribosomal subunit and isolated stalk components. 
These include a refined crystal structure of the Haloarcula marismortui 50S subunit, crystal 
structures of the L10-(L7/L12NTD)6 complex and the L11-rRNA complex from Thermotoga 
maritima, and the NMR solution structure of L12 from E. coli. The individual structures contain 
overlapping structural features, which were superimposed to build the model. The stalk is 
composed of three major regions: 1) the stalk base comprising the L10/L11 binding region of 23S 
rRNA, L11, and the L10 NTD, 2) the L10 CTD helix α8 bound to L12NTD dimers, and 3) the L12 
CTDs. The L12 CTDs are connected to the NTDs via a flexible hinge region. They are highly 
mobile with respect to the ribosome and are depicted here in a random orientation. This model 
contains six copies of L12, as found in T. maritima ribosomes, though E. coli ribosomes contain 
only four copies. Figure reproduced from [28]. 

 
 
Each copy of L12 is comprised of an N-terminal dimerization domain connected 

to a globular C-terminal domain via a flexible hinge region. The highly mobile CTDs 

extend away from the ribosome into solution, and are thought to “catch” diffusing 

translation factors and deliver them to the ribosome’s factor binding site [28]. The role of 

the L12 CTDs in promoting rapid translation factor recruitment was demonstrated by 
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biochemical experiments in which ribosomes reconstituted with L12 CTD-truncation 

mutants were found to bind EF-Tu:GTP:Phe-tRNAPhe over ten times slower than wild-

type ribosomes [28]. Additionally, point mutations in both EF-Tu and the L12 CTD were 

identified that cause a slower rate of ternary complex association with the ribosome [29]. 

Heteronuclear NMR spectroscopy demonstrated that isolated L12 in solution binds to EF-

Tu and EF-G with sub-millimolar affinity, and the binding site was mapped to a 

conserved region of the L12 CTD [30]. 

The L12 CTDs exhibit a high degree of rotational diffusion and move rather 

independently of the rest of the ribosome, which suggested that in the extended 

conformation, they are far away from, and do not interact significantly with, the 

ribosomal core [31, 32]. It therefore seems possible that, by extending out into solution, 

one or more copies of the L12 CTD could associate with the ternary complex without 

generating a prohibitive steric clash between ternary complex and an IF2 molecule 

positioned within the ribosome’s interior [16, 33]. Based on these considerations, I 

hypothesize that the occurrences of (Cy5)-T3 association with (Cy3)-IF2–bound 70S ICs 

observed in my experiments correspond to interactions of ternary complex with L12 

during the first step of the aa-tRNA accommodation pathway. This hypothesis could be 

tested by depleting the 50S subunit of L7/L12 by NH4Cl/ethanol treatment [34, 35], 

reconstituting the ribosome with L12 CTD-truncation mutants [28], or by introducing 

mutations into L12 or EF-Tu that affect the association rate of ternary complex [29]. One 

might predict that removal or truncation of L7/L12 would result in a loss of the 

ribosome’s ability to bind ternary complex before IF2 dissociation, while the use of L12 
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and EF-Tu point mutants might alter the kinetics and stability of ternary complex binding 

to the IF2-bound 70S IC. 

Less than half of the ribosomes in my single-molecule assay exhibited clear co-

residency of (Cy5)-T3 and (Cy3)-IF2, but this could be due in large part to a competition 

between the rates of (Cy5)-T3 association and (Cy3)-IF2 dissociation/photobleaching that 

disfavors observation of temporally overlapping fluorescence signals in the current 

experimental set-up. Higher concentrations of (Cy5)-T3 would increase the association 

rate, which, I predict, would lead to the observation of a greater number of ternary 

complex association events that occur prior to (Cy3)-IF2 signal loss. The implementation 

of zero-mode waveguide technologies, which allow for single-molecule detection at 

higher, micromolar concentrations of fluorophore-labeled molecules [36, 37], should 

allow testing of this hypothesis.  

Assuming that all ribosomes within the population are indeed capable of binding 

ternary complex and IF2 simultaneously, and given the very high in vivo concentrations 

of EF-Tu and tRNA, it seems likely that ternary complex binding to the 70S IC occurs 

immediately after 50S subunit joining, and thus precedes IF2 release, during initiation of 

protein synthesis in the cell. Such a sequence of events could be mechanistically 

important in facilitating a seamless transition from initiation into elongation. If ternary 

complex is already pre-bound to the ribosome, accommodation of aa-tRNA into the A 

site could proceed immediately after it is vacated by IF2, without requiring a “wait time” 

for ternary complex recruitment. Under these circumstances, the rate-limiting step for aa-

tRNA accommodation and peptide bond formation would likely be dissociation of IF2. 
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Binding of ternary complex to L7/L12 may also play the role of accelerating IF2 release, 

as suggested by results from us and others (see Chapter 2 and reference [7]). While the 

exact mechanism underlying this acceleration is not known, the interconnectivity of r-

protein and rRNA components within the 50S subunit’s GAC suggests that allosteric 

mechanisms could play a role, perhaps by communicating ternary complex binding at 

L7/L12 to the stalk base via coupled conformational changes that disrupt IF2-ribosome 

interactions. 

 

 
 
Figure 4.9: Possible mechanistic role for L7/L12 in the transition from initiation to 
elongation. 
Cartoon schematic highlighting a potential role for the L7/L12 protein stalk in recruiting the first 
ternary complex to the IF2-bound 70S IC. The ribosome is shown in gray, IF2 in light violet, L11 
in yellow, L10 in blue, L7/L12 in red, EF-Tu in light green, and aa-tRNA in brown. During 
initiation, 50S subunit joining to the 30S IC is promoted by the formation of interactions between 
L7/L12 and IF2-GTP [38]. Subsequent recruitment of the first ternary complex could occur prior 
to IF2 dissociation, through formation of an L12CTD–EF-Tu interaction, facilitated by an arm of 
L12 that extends out into solution. Ternary complex pre-bound to L7/L12 would be at a high 
local concentration relative to the ribosomal A site and could rapidly proceed along the aa-tRNA 
accommodation pathway following IF2 release, thereby promoting efficient factor exchange and 
a seamless transition from initiation into elongation. The rightmost cartoon depicts an early state 
of the aa-tRNA accommodation pathway corresponding to tRNA binding in the A/T hybrid state.   
 
 
 

Since translation factors bind to the GAC during all phases of translation, I 

speculate that similar mechanisms might help to regulate the efficiency of translation 

factor turnover throughout all of protein synthesis. For example, during each round of the 

elongation cycle, the correct aa-tRNA substrate must be selected based on basepairing of 
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the mRNA codon and tRNA anticodon at the 30S subunit’s decoding center. Selection of 

the correct substrate from the cellular pool of non- and near-cognate aa-tRNAs likely 

requires many A-site sampling events for each amino acid incoporated into the nascent 

polypeptide. Rapid sampling of different aa-tRNA species would be facilitated if the next 

ternary complex in queue were pre-bound to L7/L12 and could probe the A-site codon 

immediately after the previous ternary complex has been ejected. In this context, it seems 

noteworthy that, given its sub-millimolar affinity and high in vivo concentrations (~10s of 

μM), ternary complex would likely saturate its putative L7/L12 binding sites in the cell.  

After aa-tRNA accommodation and peptide bond formation, EF-G–GTP binds to 

the ribosome and catalyzes translocation of the mRNA-tRNA complex by precisely one 

codon, which is followed by another round of aa-tRNA selection. During the elongation 

cycle, therefore, ternary complex and EF-G repetitively and successively associate and 

dissociate from overlapping sites at the GAC. The efficiency of peptide chain elongation 

might therefore be enhanced through a mechanism in which the ability of the ribosome to 

bind multiple translation factors at a time allows ternary complex and EF-G to increase 

the rate of their own recycling. For example, the overall rate of translation could be sped 

up if binding of ternary complex to the post-translocation ribosome accelerated the 

dissociation of EF-G–GDP. Such a mechanism could provide a rationale for the observed 

cooperativity between the GTPase activities of EF-Tu and EF-G on empty ribosomes, 

whereby inclusion of EF-G decreases the apparent KM for EF-Tu–dependent GTP 

hydrolysis and vice versa [39]. Single-molecule co-localization experiments utilizing 

fluorescently labeled EF-G and EF-Tu would provide a means to test this idea.  
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In summary, I propose that the observation of simultaneous binding of IF2 and 

ternary complex to the 70S IC is indicative of a more general capability of the ribosome 

to accommodate multiple translation factors at a time, and that this could have important 

implications for understanding how the ribosome efficiently coordinates shuttling of 

translation factors into and out of the A site during in vivo protein synthesis. I predict that 

the L7/L12 stalk represents the key structural component of the ribosome that enables 

this functionality, in effect acting as a standby binding site for translation factors prior to 

their interactions with ribosomal elements at the stalk base. Future efforts will thus be 

geared toward characterizing the role of the L7/L12 stalk in translation factor 

recruitment, and investigating putative L7/L12 conformational changes whose functional 

significance is not yet known.     

 
4.5 References 
 
1. Moazed, D., J.M. Robertson, and H.F. Noller, Interaction of elongation factors 

EF-G and EF-Tu with a conserved loop in 23S RNA. Nature, 1988. 334(6180): p. 
362-4. 

2. La Teana, A., C.O. Gualerzi, and A.E. Dahlberg, Initiation factor IF 2 binds to 
the alpha-sarcin loop and helix 89 of Escherichia coli 23S ribosomal RNA. Rna, 
2001. 7(8): p. 1173-9. 

3. Marzi, S., W. Knight, L. Brandi, E. Caserta, N. Soboleva, W.E. Hill, C.O. 
Gualerzi, and J.S. Lodmell, Ribosomal localization of translation initiation factor 
IF2. Rna, 2003. 9(8): p. 958-69. 

4. Brandi, L., S. Marzi, A. Fabbretti, C. Fleischer, W.E. Hill, C.O. Gualerzi, and J. 
Stephen Lodmell, The translation initiation functions of IF2: targets for 
thiostrepton inhibition. J Mol Biol, 2004. 335(4): p. 881-94. 

5. Luchin, S., H. Putzer, J.W. Hershey, Y. Cenatiempo, M. Grunberg-Manago, and 
S. Laalami, In vitro study of two dominant inhibitory GTPase mutants of 
Escherichia coli translation initiation factor IF2. Direct evidence that GTP 



 Chapter 4 – Timing of ternary complex binding to the 70S IC 
________________________________________________________________________ 

182 

hydrolysis is necessary for factor recycling. J Biol Chem, 1999. 274(10): p. 6074-
9. 

6. Tomsic, J., L.A. Vitali, T. Daviter, A. Savelsbergh, R. Spurio, P. Striebeck, W. 
Wintermeyer, M.V. Rodnina, and C.O. Gualerzi, Late events of translation 
initiation in bacteria: a kinetic analysis. Embo J, 2000. 19(9): p. 2127-36. 

7. Antoun, A., M.Y. Pavlov, K. Andersson, T. Tenson, and M. Ehrenberg, The roles 
of initiation factor 2 and guanosine triphosphate in initiation of protein synthesis. 
Embo J, 2003. 22(20): p. 5593-601. 

8. Rodnina, M.V. and W. Wintermeyer, Ribosome fidelity: tRNA discrimination, 
proofreading and induced fit. Trends Biochem Sci, 2001. 26(2): p. 124-30. 

9. Rodnina, M.V., K.B. Gromadski, U. Kothe, and H.J. Wieden, Recognition and 
selection of tRNA in translation. FEBS Lett, 2005. 579(4): p. 938-42. 

10. Hoskins, A.A., L.J. Friedman, S.S. Gallagher, D.J. Crawford, E.G. Anderson, R. 
Wombacher, N. Ramirez, V.W. Cornish, J. Gelles, and M.J. Moore, Ordered and 
dynamic assembly of single spliceosomes. Science, 2011. 331(6022): p. 1289-95. 

11. Fei, J., J. Wang, S.H. Sternberg, D.D. MacDougall, M.M. Elvekrog, D.K. 
Pulukkunat, M.T. Englander, and R.L. Gonzalez, Jr., A highly purified, 
fluorescently labeled in vitro translation system for single-molecule studies of 
protein synthesis. Methods Enzymol, 2010. 472: p. 221-59. 

12. Rasnik, I., S.A. McKinney, and T. Ha, Nonblinking and long-lasting single-
molecule fluorescence imaging. Nat Methods, 2006. 3(11): p. 891-3. 

13. Aitken, C.E., R.A. Marshall, and J.D. Puglisi, An oxygen scavenging system for 
improvement of dye stability in single-molecule fluorescence experiments. 
Biophys J, 2008. 94(5): p. 1826-35. 

14. Dave, R., D.S. Terry, J.B. Munro, and S.C. Blanchard, Mitigating unwanted 
photophysical processes for improved single-molecule fluorescence imaging. 
Biophys J, 2009. 96(6): p. 2371-81. 

15. Sabanayagam, C.R., J.S. Eid, and A. Meller, Long time scale blinking kinetics of 
cyanine fluorophores conjugated to DNA and its effect on Forster resonance 
energy transfer. J Chem Phys, 2005. 123(22): p. 224708. 

16. Allen, G.S., A. Zavialov, R. Gursky, M. Ehrenberg, and J. Frank, The cryo-EM 
structure of a translation initiation complex from Escherichia coli. Cell, 2005. 
121(5): p. 703-12. 



 Chapter 4 – Timing of ternary complex binding to the 70S IC 
________________________________________________________________________ 

183 

17. Pedersen, S., P.L. Bloch, S. Reeh, and F.C. Neidhardt, Patterns of protein 
synthesis in E. coli: a catalog of the amount of 140 individual proteins at different 
growth rates. Cell, 1978. 14(1): p. 179-90. 

18. Soutourina, O., J. Soutourina, S. Blanquet, and P. Plateau, Formation of D-
tyrosyl-tRNATyr accounts for the toxicity of D-tyrosine toward Escherichia coli. J 
Biol Chem, 2004. 279(41): p. 42560-5. 

19. Ikemura, T., Correlation between the abundance of Escherichia coli transfer 
RNAs and the occurrence of the respective codons in its protein genes. J Mol 
Biol, 1981. 146(1): p. 1-21. 

20. Kapanidis, A.N., N.K. Lee, T.A. Laurence, S. Doose, E. Margeat, and S. Weiss, 
Fluorescence-aided molecule sorting: analysis of structure and interactions by 
alternating-laser excitation of single molecules. Proc Natl Acad Sci U S A, 2004. 
101(24): p. 8936-41. 

21. Moazed, D. and H.F. Noller, Interaction of tRNA with 23S rRNA in the ribosomal 
A, P, and E sites. Cell, 1989. 57(4): p. 585-97. 

22. Valle, M., A. Zavialov, W. Li, S.M. Stagg, J. Sengupta, R.C. Nielsen, P. Nissen, 
S.C. Harvey, M. Ehrenberg, and J. Frank, Incorporation of aminoacyl-tRNA into 
the ribosome as seen by cryo-electron microscopy. Nat Struct Biol, 2003. 10(11): 
p. 899-906. 

23. Voorhees, R.M., T.M. Schmeing, A.C. Kelley, and V. Ramakrishnan, The 
mechanism for activation of GTP hydrolysis on the ribosome. Science, 2010. 
330(6005): p. 835-8. 

24. Wahl, M.C. and W. Moller, Structure and function of the acidic ribosomal stalk 
proteins. Curr Protein Pept Sci, 2002. 3(1): p. 93-106. 

25. Chandra Sanyal, S. and A. Liljas, The end of the beginning: structural studies of 
ribosomal proteins. Curr Opin Struct Biol, 2000. 10(6): p. 633-6. 

26. Egebjerg, J., S.R. Douthwaite, A. Liljas, and R.A. Garrett, Characterization of the 
binding sites of protein L11 and the L10.(L12)4 pentameric complex in the 
GTPase domain of 23 S ribosomal RNA from Escherichia coli. J Mol Biol, 1990. 
213(2): p. 275-88. 

27. Klein, D.J., P.B. Moore, and T.A. Steitz, The roles of ribosomal proteins in the 
structure assembly, and evolution of the large ribosomal subunit. J Mol Biol, 
2004. 340(1): p. 141-77. 



 Chapter 4 – Timing of ternary complex binding to the 70S IC 
________________________________________________________________________ 

184 

28. Diaconu, M., U. Kothe, F. Schlunzen, N. Fischer, J.M. Harms, A.G. Tonevitsky, 
H. Stark, M.V. Rodnina, and M.C. Wahl, Structural basis for the function of the 
ribosomal L7/12 stalk in factor binding and GTPase activation. Cell, 2005. 
121(7): p. 991-1004. 

29. Kothe, U., H.J. Wieden, D. Mohr, and M.V. Rodnina, Interaction of helix D of 
elongation factor Tu with helices 4 and 5 of protein L7/12 on the ribosome. J Mol 
Biol, 2004. 336(5): p. 1011-21. 

30. Helgstrand, M., C.S. Mandava, F.A. Mulder, A. Liljas, S. Sanyal, and M. Akke, 
The ribosomal stalk binds to translation factors IF2, EF-Tu, EF-G and RF3 via a 
conserved region of the L12 C-terminal domain. J Mol Biol, 2007. 365(2): p. 468-
79. 

31. Christodoulou, J., G. Larsson, P. Fucini, S.R. Connell, T.A. Pertinhez, C.L. 
Hanson, C. Redfield, K.H. Nierhaus, C.V. Robinson, J. Schleucher, and C.M. 
Dobson, Heteronuclear NMR investigations of dynamic regions of intact 
Escherichia coli ribosomes. Proc Natl Acad Sci U S A, 2004. 101(30): p. 10949-
54. 

32. Mulder, F.A., L. Bouakaz, A. Lundell, M. Venkataramana, A. Liljas, M. Akke, 
and S. Sanyal, Conformation and dynamics of ribosomal stalk protein L12 in 
solution and on the ribosome. Biochemistry, 2004. 43(20): p. 5930-6. 

33. Myasnikov, A.G., S. Marzi, A. Simonetti, A.M. Giuliodori, C.O. Gualerzi, G. 
Yusupova, M. Yusupov, and B.P. Klaholz, Conformational transition of initiation 
factor 2 from the GTP- to GDP-bound state visualized on the ribosome. Nat 
Struct Mol Biol, 2005. 12(12): p. 1145-9. 

34. Mohr, D., W. Wintermeyer, and M.V. Rodnina, GTPase activation of elongation 
factors Tu and G on the ribosome. Biochemistry, 2002. 41(41): p. 12520-8. 

35. Tokimatsu, H., W.A. Strycharz, and A.E. Dahlberg, Gel electrophoretic studies 
on ribosomal proteins L7/L12 and the Escherichia coli 50 S subunit. J Mol Biol, 
1981. 152(2): p. 397-412. 

36. Levene, M.J., J. Korlach, S.W. Turner, M. Foquet, H.G. Craighead, and W.W. 
Webb, Zero-mode waveguides for single-molecule analysis at high 
concentrations. Science, 2003. 299(5607): p. 682-6. 

37. Uemura, S., C.E. Aitken, J. Korlach, B.A. Flusberg, S.W. Turner, and J.D. 
Puglisi, Real-time tRNA transit on single translating ribosomes at codon 
resolution. Nature, 2010. 464(7291): p. 1012-7. 



 Chapter 4 – Timing of ternary complex binding to the 70S IC 
________________________________________________________________________ 

185 

38. Huang, C., C.S. Mandava, and S. Sanyal, The ribosomal stalk plays a key role in 
IF2-mediated association of the ribosomal subunits. J Mol Biol, 2010. 399(1): p. 
145-53. 

39. Mesters, J.R., A.P. Potapov, J.M. de Graaf, and B. Kraal, Synergism between the 
GTPase activities of EF-Tu.GTP and EF-G.GTP on empty ribosomes. Elongation 
factors as stimulators of the ribosomal oscillation between two conformations. J 
Mol Biol, 1994. 242(5): p. 644-54. 

 
 



Chapter 5 – Materials and Methods 
______________________________________________________________________________ 

186 

Chapter 5 
Materials and Methods 

 
5.1 Reagent preparation 

5.1.1 tRNAs 
tRNAfMet was purchased from MP Biomedicals and tRNAPhe was purchased from Sigma 

or Chemical Block. tRNAs were dissolved in nanopure water, aliquoted, and stored at  

-20°C until use in labeling or charging reactions, which are described below.  

 

5.1.1.1 Aminoacylation and formylation of tRNAfMet 
tRNAfMet was aminoacylated and formylated following procedures described previously 

[1, 2]. Aminoacylation and formylation efficiency of fMet-tRNAfMet was assessed using 

hydrophobic interaction chromatography (HIC) as described [1], and found to be >95%.  

Radiolabeled 35S-fMet-tRNAfMet used in the eTLC dipeptide formation assays (Sections 

2.4.3 and 5.2.3) was kindly provided by Dr. Michael Englander.  

 

5.1.1.2 Fluorescent labeling and aminoacylation of tRNAPhe 
Both labeled and unlabeled tRNAPhe species were used in the work described in this 

thesis. The labeled species were generated by first fluorescent labeling and then charging 

with phenylalanine. tRNAPhe was labeled at the primary amine of the 3-(3-amino-3-

carboxypropyl)-uridine residue at position 47 within the tRNA’s elbow region (acp3U47) 

using NHS-ester linked Cy3, Cy5, and Atto488 fluorophores. The procedure for 

fluorescent labeling with Cy3/Cy5 has been described previously [1], and the procedure 

for labeling with Atto488 is described below. Labeling efficiencies were typically ~30-

40% (Figure 5.1). Aminoacylation of tRNAPhe was performed according to the procedure 

described in reference [1]. Charging efficiencies for unlabeled tRNAPhe were >90%, 

while charging efficiencies were typically slightly lower for fluorescently labeled 

tRNAPhe (~70%) (Figure 5.1). 
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Figure 5.1: Preparation of fluorescently labeled Phe-tRNAPhe 
(A, B): HIC purification of tRNAPhe following fluorescent labeling with Cy5 or Atto488 NHS 
ester, respectively. (Cy5)-tRNAPhe elutes at 56 mL/ 58% Buffer B and (Atto488)-tRNAPhe elutes 
at 32 mL/ 34% Buffer B. (C, D): Analytical HIC chromatograms used to assess charging 
efficiency for (Cy5)-Phe-tRNAPhe and (Atto488)-Phe-tRNAPhe, respectively. (Cy5)-Phe-tRNAPhe 

elutes at 60 mL/ 62% Buffer B and (Atto488)-Phe-tRNAPhe elutes at 38 mL/ 39% Buffer B.    
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Labeling tRNAPhe with Atto488: 
Buffers: 

HIC Buffer A: 10 mM NH4OAc (pH = 6.3*), 1.7 M (NH4)2SO4 

HIC Buffer B: 10 mM NH4OAc (pH = 6.3*), 10% methanol 
*Note: the 1 M NH4OAc stock solution used to make HIC Buffers A and B, rather than 

the final buffers, was adjusted to pH = 6.3. 

Procedure: 

tRNAPhe was labeled with Atto488 NHS ester (Sigma) using a procedure similar to that 

recommended by the manufacturer. 

1. Dissolve 6 nmol of lyophilized tRNAPhe in 60 μL of Na2CO3 buffer (pH = 8.4).    

2. Prepare dye solution by dissolving 0.2 mg dried dye pellet in 36 μL of anhydrous 

DMSO.   

3. Combine tRNA and dye solutions and mix by pipetting up and down. 

4. Incubate reaction at room temperature for two hours, with additional mixing every 

half hour. 

5. Quench reaction with 1x volume (~10 μL) 3M NaOAc (pH = 5.2).     

6. Extract six times with 1x volume (110 μL) Tris-buffered phenol. Save both aqueous 

and phenol phases. 

7. Back-extract phenol phases with 30 μL of 0.4 M NaOAc. Combine the aqueous phase 

with the original aqueous phase.  

8. Perform two chloroform extractions with 1x volume (140 μL).  

9. Ethanol precipitate by adding 3x volumes (420 μL) -20°C ethanol, mixing 

thoroughly, and incubating at -80°C for at least one hour. 

10. Pellet the tRNA by centrifuging for 20 min at 18,000 x g and 4°C. Carefully remove 

and discard supernatant. 

11. Resuspend pellet in 50 μL of HIC Buffer A and inject onto the TSKgel Phenyl-5PW 

column (Tosoh Bioscience) pre-equilibrated with HIC Buffer A.  
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12. Elute the unlabeled and labeled species over a linear gradient of 0-100% HIC Buffer 

B. Monitor absorbance at 260 nm (tRNA) and 500 nm (Atto488). Due to the added 

hydrophobicity, Atto488-labeled tRNAPhe elutes after unlabeled tRNAPhe.  

13. Collect and pool fractions corresponding to (Atto488)-tRNAPhe. Concentrate and 

buffer-exchange into nanopure water using an Amicon Ultra Centrifugal Filter device 

(MWCO 10,000; Millipore).  

14. Measure concentration using UV-Vis (ε260 ≈ 760,000 M-1cm-1), and store at -20°C.    

 

5.1.2 mRNAs 
All mRNAs were derived from the sequence of the mRNA encoding gene product 32 of 

T4 bacteriophage. They were either chemically synthesized and purchased from 

Dharmacon, or in vitro transcribed. The sequences of all mRNAs used are provided in 

Appendix A.  

 

5.1.3 Translation factors  
Initiation factors IF1 and IF3 were provided by Dr. Margaret Elvekrog, and elongation 

factors EF-Tu and EF-Ts were provided by Dr. Michael Englander. The procedures used 

to prepare IF2 constructs, which were initially developed by Dr. Jiangning Wang [3], are 

described below. 

 

5.1.3.1 Generation of IF2 mutants 
The pProEX-HTb expression vector harboring the cloned gene for wild-type IF2 (γ-

isoform) was obtained from Dr. Jiangning Wang. The pProEX-HTb vector introduces a 

six-histidine (6xHis) affinity tag at the N-terminus of the cloned protein, followed by a 

tobacco etch virus (TEV) protease cleavage site. These features allow for efficient 

affinity purification on Ni2+-nitrilotriacetic acid (Ni2+-NTA) resin followed by subsequent 

cleavage and removal of the affinity tag. Expression of the cloned protein is placed under 

control of the Trc promoter, allowing overexpression to be induced with β-D-1-

thiogalactopyranoside (IPTG). Additionally, the pProEX-HTb vector harbors the 
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ampicillin resistance gene, which allows selection of transformants based on antibiotic 

resistance. The cloned IF2-γ construct contains five extra non-wild-type amino acids at 

the N-terminus, with an N-terminal sequence of G-A-Q-D-D-M1, where M1 is the first 

methionine of the wild-type sequence. 

Beginning with this construct, three IF2 point mutants were generated: IF2 

R561C, IF2 S566C, and IF2 S672C. These residues were chosen due to their low level of 

conservation among bacterial sequences, their expected surface accessibility, and, in the 

case of the S566C and S672C mutants, the conservative nature of a Ser-to-Cys mutation. 

Mutations were introduced into the vector using the QuikChange II-E Site-Directed 

Mutagenesis Kit (Stratagene) according to the manufacturer’s protocol. The primers used 

for mutagenesis are shown in Table 5.1. The full sequence of all IF2 constructs was 

verified by DNA sequencing.  

 
Table 5.1: Primers used for the generation of IF2 point mutants by PCR. 
 

Primer Sequence 
R561C p1 
R561C p2  5’-GGAGCTGAAAGCGGTATGTAAAGGTATGGCGAGCG-3’ 

5’-CGCTCGCCATACCTTTACATACCGCTTTCAGCTCC-3’ 

S566C p1 
S566C p2  5’-CGTAAAGGTATGGCGTGCGGTGCGGTTATCGAATCC-3’ 

5’-GGATTCGATAACCGCACCGCACGCCATACCTTTACG-3’ 

S672C p1 
S672C p2  5’-GCGCGTCAGCAGAAATGTAAACTCGAGAACATGTTCG-3’ 

5’-CGAACATGTTCTCGAGTTTACATTTCTGCTGACGCGC-3’ 

 

5.1.3.2 IF2 purification 
Wild-type and mutant IF2 constructs were purified according to the same procedure, 

which involves a combination of Ni2+-NTA affinity chromatography and cation-exchange 

chromatography, and is described in detail in reference [1]. Purified IF2 constructs are 

stored as a 50% glycerol stock in Initiation Factor Buffer (10 mM Tris-OAc (pH4°C = 

7.5), 50 mM KCl, 10 mM Mg(OAc)2, 5 mM BME) at -20°C.  
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5.1.3.3 Labeling of IF2 constructs with Cy3/Cy5 
IF2 constructs are labeled at the mutagenized Cys residue with Cy3 or Cy5 maleimide. 

Wild-type IF2 contains three Cys residues, at positions 599 (domain V), 815 (domain VI-

2), and 861 (domain VI-2), which are present in the IF2 mutants as well. However, these 

cysteines have been shown to be relatively inaccessible to fluorophore labeling, and 

reaction conditions have been developed in which the surface-exposed, mutagenized Cys 

residue is selectively labeled. These reactions conditions should be followed closely so as 

to avoid labeling of the wild-type cysteines, and a side-by-side labeling reaction should 

always be performed with wild-type IF2 to confirm that it does not get labeled. 

Buffers: 

Factor Labeling Buffer: 100 mM Tris-OAc (pHRT = 6.9), 50 mM KCl, 300 μM tris(2-

carboxyethyl)phosphine (TCEP) 

IF2 Gel Filtration Buffer (from reference [4]) : 40 mM Tris-Cl (pHRT = 6.9), 80 mM 

NaCl, 40 mM NH4Cl, 5 mM MgCl2, 2 mM BME 

2x Initiation Factor Buffer: 20 mM Tris-OAc (pH4°C = 7.5), 100 mM KCl,  20 mM 

Mg(OAc)2, 10 mM BME 

Procedure: 

1. Make aliquots of Cy3/Cy5 maleimide: Dissolve ~0.2 mg dye pellet in anhydrous 

DMSO. Take a small amount (0.5 μL) of the dissolved dye, and serially dilute 

10,000-fold in nanopure water. Measure the dye concentration by UV-Vis (Cy3: 

ε(550) = 150,000 M-1cm-1, Cy5: ε(650) = 250,000 M-1cm-1). Make 60 nmol aliquots 

of the original dye solution and lyophilize. Work quickly to avoid 

degradation/hydrolysis of the dye. Store wrapped in foil at 4°C prior to use. 

2. Equilibrate several Micro Bio-Spin P6 gel filtration columns (BioRad) with Factor 

Labeling Buffer. Buffer-exchange ~10 nmol IF2 into Factor Labeling Buffer. 

Measure IF2 concentration by UV-Vis (ε(280) = 27,450 M-1cm-1).   

3. Take 6 nmol of buffer-exchanged IF2 and dilute to a final volume of 200 μL with 

Factor Labeling Buffer (IF2 concentration = 30 μM; TCEP concentration = 300 μM). 

4. Incubate for 30 min at room temperature to reduce any disulfide bonds.  
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5. Dissolve 60 nmol Cy3/Cy5 dye pellet in 5 μL anhydrous DMSO. Add to the IF2 

solution and mix by pipetting up and down. 

6. Incubate reaction overnight (~12 hr) at 4°C. 

7. Inject labeling reaction onto FPLC. Use the HiLoad Superdex 200 prep grade column 

(GE Healthcare) pre-equilibrated with IF2 Gel Filtration Buffer to separate IF2 from 

free dye. Monitor absorbance at 280 nm (IF2) and 550 or 650 nm (for Cy3 or Cy5, 

respectively). Labeled and unlabeled IF2 will elute as one peak well before the dye 

peak (Figure 5.2). 

 

  
 
Figure 5.2: Gel filtration purification of fluorescently labeled IF2. 
IF2 S672C (A) and wild-type IF2 (B) were incubated with Cy3 maleimide side-by-side under 
identical reaction conditions, followed by purification using gel filtration chromatography. IF2 
elutes at 67 mL and free Cy3 elutes at 110 mL. Labeling was highly specific for the engineered 
Cys residue, as indicated by the absence of an A550 peak co-migrating with wild-type IF2. A 
zoomed-in view of the IF2 peaks is shown in Figure 2.2.  
  
 
8. Collect and combine the fractions corresponding to IF2. Concentrate and buffer-

exchange into 2x Initiation Factor Buffer through an Amicon Ultra Centrifugal Filter 

device (MWCO 10,000). 
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9. Dilute two-fold by adding sterile, 100% glycerol. Measure concentration of protein 

and dye with UV-Vis, and use these values to calculate labeling efficiency. Store 

(Cy3/Cy5)-labeled IF2 glycerol stocks in the dark at -20°C.  

 

5.1.4 L11 
The gene encoding r-protein L11 (rplK) was PCR-amplified from E. coli genomic DNA 

and cloned into the pProEX-HTb vector. The N-terminal amino acid sequence of the 

recombinant L11 construct is G-A-M1, where M1 is the first amino acid of the wild-type 

sequence. L11 contains a single wild-type Cys residue within its NTD (Cys38), which 

can be specifically labeled with CyDye maleimides. The protocols for cloning, 

purification, and fluorescent labeling of L11 are described below.               

 

5.1.4.1 Cloning of L11 
1. The rplK gene was PCR-amplified from E. coli K12 genomic DNA using the 

following primers:  

L11 p1:  5’-AAAAGGCGCCATGGCTAAGAAAGTACAAGCCTAT-3’ 

L11 p2:  5’-AAAATCTAGATTAGTCCTCCACTACCAGGCC-3’ 

L11 p1 and L11 p2 contain KasI and XBaI restriction sites, respectively, at their 5’ 

ends, which facilitates insertion into the pProEX-HTb vector’s multiple cloning site.  

2. The PCR product was run on a 1% agarose gel and purified using the QIAquick Gel 

Extraction Kit (Qiagen).  

3. The PCR product and pProEX vector were restriction-digested with KasI and XBaI 

(New England BioLabs, 2 Units per μg DNA) at 37°C overnight. Restriction enzymes 

were subsequently inactivated by heating at 65°C for 20 min.  

4. Restriction-digested pProEX was treated with calf intestinal alkaline phosphatase 

(CIP, New England BioLabs, 1 Unit per μg DNA) in order to remove DNA 5’-

phosphates and thus help prevent recircularization of the cloning vector during the 

subsequent ligation step.  
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5. Restriction-digested and CIP-treated vector and restriction-digested PCR product 

were purified using the QIAquick PCR purification kit (Qiagen). 

6. The PCR-amplified rplK gene was inserted into the pProEX vector and ligated. 20 μL 

ligation reactions were prepared containing 50 ng of restriction-digested and CIP-

treated pProEX, restriction-digested rplK insert at 1:3 or 1:5 vector:insert molar 

ratios, 1 μL T4 DNA ligase (New England BioLabs), and T4 DNA ligase reaction 

buffer at 1x final concentration. Ligation reactions were incubated overnight at 16°C, 

followed by heat-inactivation of the DNA ligase by incubation at 65°C for 10 min. 

The ligation reaction mixture was buffer-exchanged into nanopure water through a 

Micro Bio-Spin P6 column. Desalting can help to improve transformation efficiency 

in the subsequent step.   

7. The ligation reaction products were transformed into Zapper electrocompetent cells 

(Novagen) by electroporation. The cells were then mixed with 1 mL SOC media and 

incubated at 37°C for ~1 hr with shaking, followed by dilution and plating on agarose 

plates supplemented with 100 μg/mL carbenicillin. Plates were incubated overnight at 

37°C.  

8. Single colonies were picked and used to inoculate 5 mL LB starter cultures 

supplemented with carbenicillin. The cultures were grown overnight at 37°C with 

shaking, and subsequently used to prepare 20% glycerol stocks that were flash-frozen 

and stored at -80°C.  

9. Plasmid DNA was isolated using the QIAprep Miniprep kit (Qiagen). Presence of the 

insert was verified by analytical restriction digest of the plasmid with KasI and XbaI. 

The correct sequence of the insert was verified by DNA sequencing. 

 

5.1.4.2 Purification of recombinant L11 under denaturing conditions 
Buffers: 

r-protein Buffer A: 50 mM Tris-Cl (pH4°C = 8.0), 5 mM MgCl2, 0.1 mM phenylmethyl 

sulfonyl fluoride (PMSF, from a 100 mM stock solution in ethanol), 5 mM BME 
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r-protein Buffer B: 10 mM Tris-Cl (variable pH; pH4°C = 8.0, 6.8, or 5.5), 100 mM 

NaH2PO4, 6 M urea, 5 mM BME 

r-protein Buffer C: 50 mM Na2HPO4 (pHRT = 7.0), 100 mM NaCl, 2 mM BME 

Procedure: 

1. Transform BL21(DE3) cells with the plasmid containing cloned rplK from above. 

Plate on agarose plates supplemented with 100 μg/mL carbenicillin. Incubate 

overnight at 37°C.  

2. Pick single colonies and use to inoculate 5 mL starter cultures in TB media 

supplemented with carbenicillin. Grow overnight at 37°C with shaking.  

3. Use starter cultures to inoculate a 1L TB culture supplemented with carbenicillin.   

4. Grow at 37°C with shaking. When cells reach OD600 = 0.8, add 1 mL of 1 M IPTG 

dissolved in water to induce overexpression. Grow cells for an additional four hours.  

5. Harvest cells by centrifuging for 20 min at 4,000 rpm and 4°C. Freeze in liquid 

nitrogen and store at -20°C overnight. 

6. Thaw cell pellet and resuspend in ~30-40 mL r-protein Buffer A. Note: This and all 

subsequent steps should be performed either on ice or in the cold room at 4°C. 

7. Lyse cells by passing through French press 3x at a gauge pressure of 1,100 psi. 

8. Clear lysate by centrifugation at 7,500 rpm for 45 min at 4°C in JA17 rotor. 

9. Discard supernatant, since overexpressed L11 is found predominately in the cell 

pellet. Scrape pellet out of the tube and mix with 35 mL of r-protein Buffer B (pH4°C 

= 8.0, supplemented with 0.1 mM PMSF) in a beaker. Break apart the pellet a little 

bit with a spatula. Stir overnight at 4°C to allow the pellet to dissolve completely. 

10. Clear mixture again by centrifugation at 7,500 rpm for 30 min at 4°C in JA17 rotor.    

11. Equilibrate Ni2+-NTA resin (~2-3 mL, Qiagen) with r-protein Buffer B (pH4°C = 8.0).  

12. Mix resin with the resuspended and cleared cell pellet, transfer to a Falcon tube, and 

place on rocker for 1 hr to allow binding of 6xHis-tagged L11. 

13. Transfer mixture to a disposable polypropylene column. Wash resin with 5 column 

volumes Buffer B (pH4°C = 8.0), then with 8 column volumes of Buffer B (pH4°C = 

6.8). Elute protein with 5 column volumes of Buffer B (pH4°C = 5.5).  
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14. Pool elution fractions and measure protein concentration with the Bradford assay [5]. 

Dilute to ~0.1-0.2 mg/mL with Buffer B (pH4°C = 5.5).  

15. Place in dialysis tubing (MWCO 8,000) and dialyze extensively against r-protein 

Buffer C to remove urea and renature the protein. Some protein precipitation will 

occur. 

16. Following dialysis, concentrate to ~30 mL using an Amicon Ultra Centrifugal Filter 

device and place in new dialysis tubing. Save a small aliquot for gel analysis of the 

uncleaved L11 construct. Then, add TEV protease (.05 mg per 1 mg of L11) to affect 

cleavage of the 6xHis tag. Dialyze overnight against r-protein Buffer C. 

17. Assess the extent of cleavage by running samples collected before and after TEV 

cleavage on a Tris-Tricine gel. If cleavage is <90% complete, add more TEV protease 

and continue dialysis for another overnight period. 

18. Pre-equilibrate fresh Ni2+-NTA resin (~2-3 mL) with r-protein Buffer C. Mix with the 

dialyzed protein sample in a Falcon tube and place on rocker for ~2 hr to allow 

binding of cleaved 6xHis tags and 6xHis-tagged TEV protease to the resin. 

19. Transfer mixture to a disposable polypropylene column. Collect the flow-through and 

two washes with two column volumes Buffer C each. This solution contains cleaved 

L11.  

20. Concentrate solution using an Amicon Ultra Centrifugal Filter device. Dilute two-fold 

with sterile, 100% glycerol. Measure concentration with the Bradford assay, and store 

glycerol stocks at -20°C until use.       

 

5.1.4.3 Labeling of L11 with Cy3/Cy5 
Buffers: 

L11 Labeling Buffer: 50 mM Na2HPO4 (pHRT = 7.0), 100 mM NaCl, 300 μM TCEP 

L11 Gel Filtration Buffer: 50 mM Tris-Cl (pH4°C = 7.5), 100 mM KCl, 2 mM BME 

Procedure: 

1. Buffer-exchange ~15 nmol L11 into Labeling Buffer using an Amicon Ultra 

Centrifugal Filter device. Replace buffer at least 3x for complete buffer exchange. 
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This is necessary to remove BME from the buffer, which, if present, will quench the 

labeling reaction. 

2. Measure concentration of buffer-exchanged L11 with the Bradford assay. Typically, 

~30% of the protein is lost on the filter.  

3. Dilute to ~30 μM in labeling buffer. Incubate at room temperature for 30 min to allow 

reduction of any disulfide bonds. 

4. Dissolve 0.1 mg of Cy3/Cy5 maleimide in 5 μL anhydrous DMSO, add to L11 

solution and mix by pipetting up and down. Incubate for one hour at room 

temperature.  

5. Dissolve a second 0.1 mg aliquot of Cy3/Cy5 maleimide in 5 μL anhydrous DMSO 

and add to the reaction. Incubate for an additional hour at room temperature, then 

transfer to 4°C overnight. 

6. A considerable amount of protein was found to precipitate during the labeling 

reaction. Centrifuge the sample at 18,000 x g for 1 min to pellet precipitate. Carefully 

remove supernatant, transfer to a new tube, and centrifuge again.  

7. Inject the supernatant onto the FPLC. Use the HiLoad Superdex 75 prep grade 

column (GE Healthcare) pre-equilibrated with L11 Gel Filtration Buffer. Monitor 

absorbance at 280 and/or 230 nm (L11) and 550 or 650 nm (for Cy3 or Cy5, 

respectively). Three peaks are observed to elute from the column prior to the free dye. 

From left to right, these peaks correspond to aggregated (Cy3/Cy5)-L11, which elutes 

in the column void volume, soluble (Cy3/Cy5)-L11, and unlabeled L11 (Figure 5.3). 

The peak identities were confirmed by concentrating the corresponding fractions and 

analyzing them on a Tris-tricine gel with fluorescence scanning and Coomassie 

staining.  

8. Collect and pool the fractions corresponding to soluble (Cy3/Cy5)-L11. Concentrate 

to ~200 μL using an Amicon Ultra Centrifugal Filter device. Measure protein 

concentration with the Bradford assay. Make 2 nmol aliquots, freeze in liquid 

nitrogen, and store at -80°C.   
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Figure 5.3: Gel filtration purification of fluorescently labeled L11. 
Wild-type L11 was reacted with Cy5 maleimide followed by purification with gel filtration 
chromatography. Three different L11 species were separated, which are labeled in the figure. 
Unincorporated Cy5 elutes as two peaks. 
 
 
5.1.5 Ribosomes and ribosomal subunits 
Ribosomes and ribosomal subunits were purified from the wild-type strain NVD001 or 

the L11-knockout strain NVD005 [6, 7], which were kindly provided by the laboratory of 

Professor Walter Hill (University of Montana). Both strains were derived from E. coli K-

12. NVD005 was generated by an in-frame deletion within the L11 gene (rplK) that 

removes a 249 nucleotide fragment comprising codon positions 40-122. Cells were 

grown in TB media supplemented with 7 μg/mL tetracycline (for NVD001) or 100 

μg/mL carbenicillin (for NVD005). Ribosomes were purified using sucrose density 

gradient ultracentrifugation according to the protocol described in the thesis of Dr. Jingyi 

Fei [8]. In this procedure, tight-coupled 70S ribosomes are first purified, then split into 
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30S and 50S ribosomal subunits by resuspension in low, 1 mM Mg2+ buffer. The isolated 

subunits are then purified by sucrose density gradient ultracentrifugation, flash-frozen, 

and stored at -80°C. 50S subunits purified from strain NVD005 were reconstituted with 

recombinant wild-type L11 or (Cy3/Cy5)-labeled L11 according to a procedure similar to 

that used by Seo et al [9], as described below.  

 

Reconstitution of 50S subunits with (Cy3/Cy5)-L11: 
Buffers: 

Reconstitution Buffer (“W Buffer” from reference [9]): 50 mM Tris-Cl (variable pH; 

pHRT = 6.9 or 7.6), 30 mM NH4Cl, 70 mM KCl, 7 mM MgCl2, 1 mM DTT 

Ribosome Storage Buffer: 10 mM Tris-OAc (pH4°C = 7.5), 60 mM NH4Cl, 7.5 mM 

Mg(OAc)2, 0.5 mM EDTA, 6 mM BME 

Procedure: 

1. Mix 1 nmol of purified NVD005 50S subunits, 2 nmol of (Cy3/Cy5)-L11, and 

Reconstitution Buffer (pHRT = 7.6) to a final volume of 400 μL.   

2. Incubate reaction for 15 min at 37°C on a heat block. 

3. Load entire sample onto the top of a chilled SW28 sucrose gradient (10-40% w/v 

sucrose in Reconstitution Buffer (pHRT = 6.9)).  

4. Centrifuge in SW28 rotor for 17 hr at 22,000 rpm and 4°C. Set acceleration to “slow” 

and deceleration to “no brake”.  

5. Analyze the gradient with the following gradient analyzer settings: 

wavelength= 260 nm 

pathlength = 5 mm 

sensitivity = 2.0 

flow rate = 1.5 mL/min 

chart speed = 15 cm/h 

reference cell = air 

slit 1/8-1/4 open  
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6. Collect 50S peak. Transfer to Ti70.1 tube and fill with Reconstitution Buffer (pHRT = 

6.9,  -sucrose). 

7. Centrifuge in Ti70.1 rotor for 24 hr at 50,000 rpm and 4°C to pellet the reconstituted 

subunits. Use maximum acceleration and deceleration. 

8. Remove and discard supernatant. Invert tube on clean paper towel and allow to drain 

for 10 min. Add ~100 μL Ribosome Storage Buffer to the ribosome pellet. Place 

centrifuge tube on ice for ~2-3 hr to allow pellet to dissolve. 

9. Measure 50S subunit concentration with UV-Vis (1 A260 Unit ≈ 38 nM). 

10. Make aliquots, freeze in liquid nitrogen, and store at -80°C.  

 
 
5.2 Biochemical activity assays 

5.2.1 Toeprinting 
The toeprinting assay tests the ability of IF2 to promote selection of fMet-tRNAfMet over 

elongator tRNAPhe during 30S IC assembly [10, 11]. 30S ICs are formed on an mRNA 

(mRNA #4 in Appendix A) which has been pre-annealed to a 32P-labeled DNA primer. 

Subsequent reverse transcription of the primer-annealed mRNA generates radiolabeled 

cDNA products of defined length, which can be separated with single-nucleotide 

resolution on a 9% denaturing PAGE gel. Reverse transcription is strongly blocked when 

the reverse transcriptase encounters a 30S IC bound to the mRNA, thereby generating a 

strong cDNA band, or “toeprint.” When the 30S IC contains tRNAfMet bound to the AUG 

start codon at the P site, reverse transcription is stalled at a position 15 nucleotides 

downstream of the first nucleotide of the start codon, yielding a +15 toeprint. If, instead, 

the 30S IC contains tRNAPhe bound to the second, UUC codon at the P site, a +18 

toeprint is generated. In the absence of initiation factors, little selectivity is shown 

towards initiation with fMet-tRNAfMet versus tRNAPhe. The addition of IF2, however, 

promotes selection of fMet-tRNAfMet and stabilization of the resulting 30S IC, thus 

providing a readout for IF2 activity at the level of 30S IC assembly. The toeprinting assay 

was performed as previously described [1], with minor modifications.    
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Buffers and Reagents: 

5x Polymix (-Mg2+, -BME): 250 mM Tris-OAc (pHRT = 7.0), 500 mM KCl, 25 mM 

NH4OAc, 2.5 mM Ca(OAc)2, 0.5 mM EDTA, 25 mM putrescine-HCl, 5 mM spermidine 

free-base, and 5% β-D-glucose.  

5x Initiation Polymix: 5x Polymix (-Mg2+, -BME), 15 mM Mg(OAc)2, and 18.5 mM 

BME. 

5x Sequencing Polymix: 5x Polymix (-Mg2+, -BME), 50 mM Mg(OAc)2, and 30 mM 

BME. 

10x dNTP Mix: 5 mM dGTP, dTTP, dCTP, and dATP in nanopure water. 

Procedure: 

1. Primer-annealed mRNA was obtained from Dr. Jingyi Fei and prepared according to 

the protocol described in her thesis [8]. 

2. Initiation reactions contained 3.5 pmol 30S subunits, 1.25 pmol primer-annealed 

mRNA, 5 pmol fMet-tRNAfMet, 5 pmol tRNAPhe, and 35 pmol IF2 in 1x Initiation 

Polymix Buffer with 1 mM GTP. The final reaction volume was 5 μL. Reaction 

components were added in a series of three steps. First, 30S subunits, IF2, buffer, and 

GTP were mixed and incubated for 10 min at 37°C. Second, primer-annealed mRNA 

was added, followed by another 10 min incubation at 37°C. Third, fMet-tRNAfMet and 

tRNAPhe were added and the reaction was incubated for 10 more min at 37°C. Control 

initiation reactions were performed identically except with the omission of one or 

more of the components as indicated in Figure 2.4. 

3. To the 5 μL initiation reaction, add 4 μL 5x Sequencing Polymix, 2 μL 10x dNTP 

Mix, 0.25 μL 100 mM ATP, and nanopure water to a final volume of 20 μL. Then 

add 0.63 μL AMV reverse transcriptase (Promega, final concentration of 0.25 U/μL), 

mix, and incubate for 15 min at 37°C. 

4. Quench reactions with 1x volume phenol. Perform two phenol extractions and one 

chloroform extraction. Add 0.1x reaction volume 3 M NaOAc (pH = 5.2), then 1x 

volume 100% ethanol. Incubate at room temperature for 10 min to precipitate cDNA. 

Centrifuge at 18,000 x g for 10 min. Decant supernatant, wash pellet with 70% 
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ethanol, and centrifuge again at 18,000 x g for 10 min. Decant supernatant, allow 

pellet to air dry, then resuspend in 4 μL of denaturing PAGE loading buffer. 

5. Separate cDNA fragments on a 9% denaturing PAGE gel run at 55 W constant 

power. Dry gel on the gel dryer for 2 hr, expose phosphorimaging screen overnight, 

and scan using the Storm 860 Phosphorimager (Molecular Devices). 

 

5.2.2 GTP hydrolysis assay 
The ribosome-dependent GTPase activity of IF2 is tested under multiple-turnover 

conditions by incubating IF2 and ribosomes with [α-32P]GTP. GTP hydrolysis by IF2 

results in formation of [α-32P]GDP, which is separated from [α-32P]GTP by thin layer 

chromatography (TLC). Ribosomes missing L11 exhibit a four-fold defect in promoting 

multiple-turnover GTP hydrolysis by IF2, and full activity can be restored by 

reconstitution with purified L11 [12]. Therefore, this assay allows testing of L11 

reconstitution efficiency in addition to IF2’s GTP hydrolysis activity. The procedure is 

based on that described by Brandi et al. [12], with several modifications. 

Buffers and Reagents: 

Hot/Cold GTP Mix: Mix 977 μL nanopure water, 20 μL of 50 mM GTP, and 3 μL of 

~3.33 mM [α-32P]GTP (Perkin Elmer, 3000 Ci/mmol, 10 mCi/mL). This gives final 

concentrations of 1 mM cold and 10 nM hot GTP. The Hot/Cold GTP Mix is aliquoted 

and stored at -20°C prior to use. 

5x Low-Salt Polymix (-Mg2+, -BME): 50 mM Tris-OAc (pHRT = 7.5), 100 mM KCl, 5 

mM NH4OAc, 0.5 mM Ca(OAc)2, 0.5 mM EDTA, 25 mM putrescine-HCl, 5 mM 

spermidine free-base, and 5% β-D-glucose. 

Procedure:  

1. Dilute Hot/Cold GTP Mix three-fold in nanopure water (333 μM final concentration). 

2. Mix 6 pmol 70S ribosomes (or equal amounts of 30S and 50S subunits) and 12 pmol 

IF2 in 1x Low-Salt Polymix Buffer (15 mM Mg2+, 6 mM BME) to a final volume of 

13.88 μL. Control reactions are performed by omitting ribosomes, IF2, or both. 

3. Add 1.12 μL of 333 μM Hot/Cold GTP Mix, and mix by pipetting up and down.  
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4. Incubate at room temperature. Remove 2 μL aliquots at 1, 2, 5, 10, and 20 min time 

points, and quench with 2 μL 100 mM EDTA (pH = 9.5). 

5. Heat samples on heat block at 95°C for 1 min.  

6. Centrifuge at 18,000 x g for 5 min.  

7. Spot 1 μL of the supernatant onto a PEI-F cellulose TLC plate (EMD Chemicals). 

Wait for the spots to dry. 

8. Place TLC plate in tank with 0.9 guanidine HCl mobile phase. Remove plate when 

solvent front is ~1” from the top of the plate.  

9. Allow TLC plate to dry. Expose phosphorimager screen overnight. Scan with Storm 

860 Phosphorimager. Quantify [α-32P]GTP and [α-32P]GDP spots using ImageQuant 

software (Molecular Dynamics). 

 

5.2.3 Dipeptide formation assay 
IF2-mediated formation of an elongation-competent 70S IC is tested by reaction with 

puromycin or Phe-tRNAPhe ternary complex. Mix A (30S ICs containing 35S-fMet-

tRNAfMet) is combined with Mix B (50S subunits and either puromycin or ternary 

complex). Assembly of the 70S IC and subsequent peptide bond formation generates 

radiolabeled 35S-fMet-puromycin or 35S-fMet-Phe dipeptide. Reaction products can then 

be separated using electrophoretic TLC (eTLC) [13] and quantified by phosphorimaging. 

Buffers and Reagents: 

5x Low-Salt Polymix (-Mg2+, -BME): 50 mM Tris-OAc (pHRT = 7.5), 100 mM KCl, 5 

mM NH4OAc, 0.5 mM Ca(OAc)2, 0.5 mM EDTA, 25 mM putrescine-HCl, 5 mM 

spermidine free-base, and 5% β-D-glucose 

Buffer 6: 50 mM Tris-OAc (pHRT = 7.5), 100 mM KCl, 50 mM NH4OAc, 0.5 mM 

Ca(OAc)2, 0.1 mM EDTA, 5 mM Mg(OAc)2, and 6 mM BME.   

10x GTP Charging Mix: 10 mM GTP, 30 mM phosphoenolpyruvate, and 12.5 U/mL 

pyruvate kinase (Sigma), prepared in 1x Buffer 6 
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Procedure: 

1. Preparation of 30S ICs 

The procedure used to form 30S ICs for the dipeptide formation assay was the same as 

that used to form 30S ICs for microscope experiments (see Section 5.3.1 below), with the 

exception that 35S-fMet-tRNAfMet, rather than (Cy3/Cy5)-IF2, was limiting. 30S ICs were 

prepared by mixing IF1 (0.9 μM), IF2 (0.9 μM), 35S-fMet-tRNAfMet (0.6 μM), non-biotin 

mRNA (1.8 μM, mRNA #3 in Appendix A), GTP (1 mM), and 30S subunits (0.6 μM) in 

1x Low-Salt Polymix Buffer (15 mM Mg2+, 6 mM BME) to a final volume of 20 μL. Add 

all reaction components except for 30S subunits and mix by pipetting up and down. Then 

add 30S subunits and mix again. This procedure was chosen so as to not bias the order in 

which the initiation components associate with the 30S subunit during the assembly 

process. Incubate the reaction for 10 min at 37°C. Place tube on ice, quickly make 2.5 μL 

aliquots, snap freeze, and store at -80°C until use. 

2. Initiation Dipeptide Reactions 

1) Make 5 μL of Mix A: prepare a mixture of pre-formed 30S ICs from above (300 

nM final concentration) in 1x Low-Salt Polymix (15 mM Mg2+,  6 mM BME). 

2) Prepare 5 μM Phe-tRNAPhe ternary complex: First, mix EF-Tu, EF-Ts, and GTP 

Charging Mix (1x final concentration) in 1x Buffer 6 to a final volume of 10 μL 

(1:1 EF-Tu:EF-Ts ratio; specific concentrations should be chosen so as to yield a 

~2:1 EF-Tu:Phe-tRNAPhe ratio in the next step). Incubate for 1 min at 37°C, then 

1 min on ice. Next, mix this EF-Tu/EF-Ts/GTP mixture with Phe-tRNAPhe (final 

concentrations of ~11 μM EF-Tu and 5 μM Phe-tRNAPhe; ~2.1-fold excess of EF-

Tu). Incubate for 1 min at 37°C, then 1 min on ice. Store ternary complex on ice 

prior to use.  

3) Make 5 μL of Mix B: mix 50S subunits (450 nM final concentration) and either 

puromycin (2 mM) or pre-formed Phe-tRNAPhe ternary complex (1.2 μM) in 1x 

Low-Salt Polymix (15 mM Mg2+, 6 mM BME) to a final volume of 5 μL.  

4) Incubate Mix A and Mix B separately at room temperature for 5 min. 
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5) Combine Mix A and Mix B, and mix by pipetting up and down. Incubate the 

reaction at room temperature.  

6) Remove 2 μL aliquots at 15 sec, 30 sec, 1 min, and 5 min time points and quench 

with 2 μL of 1 M KOH. Place quenched reactions on ice. 

3. eTLC analysis 

1) Spot 0.5 μL of the quenched reactions in a line along the center of a CCM 

cellulose TLC plate (EMD Chemicals). Allow spots to dry. 

2) Pipet 0.5% pyridine/20% glacial acetic acid buffer onto the edges of the TLC 

plate above and below the line of spotted samples at the plate’s center. Slowly roll 

the solvent from the edges towards the center of the TLC plate with a 10 mL 

pipet. Allow the two solvent fronts to migrate towards each other and merge at the 

center of the plate. Avoid rolling the pipet over the line of spotted samples in the 

center of the plate, as this will result in poor spot definition in the eTLC analysis. 

3) Place TLC plate in the eTLC tank. Run at 1200 V for 30 min. 

4) Remove plate and allow to air dry. Expose phosporimaging screen overnight, 

scan, and quantify 35S-fMet and 35S-fMet-puromycin or 35S-fMet-Phe spots using 

ImageQuant software. 

 

5.3 Preparation of ribosomal complexes for TIRF imaging 

5.3.1 Preparation of 30S ICs 
Buffer: 

5x Low-Salt Polymix (-Mg2+, -BME): 50 mM Tris-OAc (pHRT = 7.5), 100 mM KCl, 5 

mM NH4OAc, 0.5 mM Ca(OAc)2, 0.5 mM EDTA, 25 mM putrescine-HCl, 5 mM 

spermidine free-base, and 5% β-D-glucose. 

Procedure: 

30S ICs were prepared by mixing IF1 (0.9 μM), (Cy3)-IF2 (0.6 μM), IF3 (when included, 

0.9 μM),  fMet-tRNAfMet (0.6 μM), biotin mRNA (1.8 μM), GTP (1 mM), and 30S 

subunits (0.6 μM) in 1x Low-Salt Polymix buffer (15 mM Mg2+, 6 mM BME) to a final 

volume of 20 μL. Add all reaction components except for 30S subunits and mix by 
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pipetting up and down. Then add 30S subunits and mix again. As mentioned above, this 

procedure was chosen to avoid biasing the order in which the initiation components 

associate with the 30S subunit during the assembly process. The specific order of ligand 

binding events occurring during 30S IC assembly, and, indeed, whether assembly occurs 

through one major pathway or multiple parallel pathways, is not well understood [1]. By 

adding 30S subunits last to the reaction mixture, the mRNA, initiation factors, and fMet-

tRNAfMet are free to bind in whatever their preferred order may be. Incubate the reaction 

for 10 min at 37°C. Place tube on ice, quickly make 1 μL aliquots, freeze with liquid 

nitrogen, and store at -80°C until use. 

 

5.3.2 Preparation of 70SICGDPNP  

Buffer: 

5x Low-Salt Polymix (-Mg2+, -BME): 50 mM Tris-OAc (pHRT = 7.5), 100 mM KCl, 5 

mM NH4OAc, 0.5 mM Ca(OAc)2, 0.5 mM EDTA, 25 mM putrescine-HCl, 5 mM 

spermidine free-base, and 5% β-D-glucose. 

Procedure: 

70S ICs with IF2 stalled in its GDPNP-bound form (70SICGDPNP) were prepared in two 

steps comprising 30S IC assembly and 50S subunit joining. The final reaction was 20 μL 

in 1x Low-Salt Polymix buffer (15 mM Mg2+, 6 mM BME).  First, prepare 30S ICs by 

mixing IF1 (0.9 μM), (Cy3)-IF2 (0.6 μM), IF3 (when included, 0.9 μM), fMet-tRNAfMet 

(0.6 μM), biotin mRNA (1.8 μM), GDPNP (1 mM), and 30S subunits (0.6 μM). Add all 

reaction components except for 30S subunits and mix by pipetting up and down. Then 

add 30S subunits and mix again. Incubate for 10 min at 37°C. Next, add (Cy5)-L11 

reconstituted 50S subunits (0.6 μM), mix, and incubate for another 10 min at 37°C. Make 

1 μL aliquots, freeze with liquid nitrogen, and store at -80°C. 70SICGDPNP complexes 

were diluted, surface-immobilized, and imaged without further purification.  
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5.3.3 Preparation of sucrose-gradient purified 70S ICs 
The 70S ICs used for studying IF2’s interaction with L11 during multiple-turnover GTP 

hydrolysis (Section 2.7) were enzymatically prepared and purified by sucrose density 

gradient ultracentrifugation following a procedure adapted from that described in the 

thesis of Dr. Jingyi Fei [8]. These 70S ICs contain biotin-mRNA and fMet-tRNAfMet in 

the P site; they are expected to be free of initiation factors following the sucrose density 

gradient purification. 

Buffer: 

8.5x Polymix (-glucose, -Mg2+, -BME): 425 mM Tris-OAc (pHRT = 7.0), 850 mM KCl, 

42.5 mM NH4OAc, 4.25 mM Ca(OAc)2, 0.85 mM EDTA, 42.5 mM putrescine-HCl, and 

8.5 mM spermidine free-base. 

Procedure: 

70S ICs were formed with two separate incubations. Reported concentrations represent 

the final concentration of each component in the 20 μL reaction. In the first step, 30S 

subunits and (Cy3)-L11 reconstituted 50S subunits (1.3 μM each) were incubated in 1x 

Polymix buffer (5 mM Mg2+, 6 mM BME) for 10 min at 37°C in the presence of IF1, IF2, 

and IF3 (1.7 μM each) and GTP (1 mM). In the second step, fMet-tRNAfMet and biotin-

mRNA were added (2 μM each), and the reaction was incubated for 20 min at 37°C. The 

tube was placed on ice, and the mixture was diluted five-fold by adding 80 μL of ice-cold 

1x Polymix (25 mM Mg2+, 6 mM BME). This mixture was loaded onto the top of a 

chilled SW40 sucrose gradient (10-40% w/v sucrose in 1x Polymix buffer with 20 mM 

Mg2+ and 6 mM BME). The sample was centrifuged for 15 hr at 23,000 rpm and 4°C and 

then analyzed with the following gradient analyzer settings: 

wavelength= 260 nm 

pathlength = 5 mm 

sensitivity = 0.5 

flow rate = 0.75 mL/min 

chart speed = 15 cm/h 

reference cell = air 
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slit 1/4 open  

The 70S IC peak was collected and its concentration measured by UV-Vis (1 A260 Unit ≈ 

20 nM). Complexes were aliquoted, flash-frozen, and stored at -80°C. 

 

5.4 Microscope data collection procedures 
 All single-molecule fluorescence data were collected on a wide-field, prism-based 

TIRF microscope. The laser beam used for fluorophore excitation is directed through the 

prism onto the surface of the microscope slide. The angle of incidence is greater than the 

critical angle, such that the laser beam is totally internally reflected from the interface of 

the quartz microscope slide and aqueous buffer within the flowcell. This generates a 

weak, evanescent field that penetrates ~100 nm into solution and is used to selectively 

excite fluorescence from fluorescently labeled ribosomal complexes tethered to the 

surface of the flowcell. The shallow penetration depth of the evanescent field greatly 

reduces background fluorescence from the bulk solution and allows for high signal-to-

noise single molecule fluorescence detection. 

Fluorescently labeled ribosomal complexes are assembled on a 5’-biotinyated 

mRNA and tethered to the surface of a polyethylene glycol (PEG)-passivated flowcell 

through the biotin-streptavidin interaction (Figure 1.12). Protocols for the preparation of 

quartz microscope slides derivatized with PEG/biotin-PEG and construction of flowcells 

can be found in Section 4.14 of Dr. Jingyi Fei’s thesis [8]. Fluorescence emission from 

Cy3 and Cy5 is collected with the microscope’s 1.2 numerical aperture/60x magnification 

water-immersion objective, spectrally separated with a Dual-View imager 

(Photometrics), and detected with an EMCCD camera (Cascade II: 512, Photometrics). 

The camera is cooled to -80°C and operated at a rate of 10 frames sec-1 with 2x2 binning. 

This set-up allows the visualization of donor and acceptor fluorescence from ~300-400 

individual ribosomal complexes within a 60 x 120 μm2 observation area. In the three-

color experiments, fluorescence emission from Cy3, Cy5, and Atto488 was collected and 

spectrally separated onto three independent quadrants of the EMCCD camera using a 

Quad-View imager (Photometrics).  
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 Detailed protocols and specific considerations for the various single-molecule 

fluorescence experiments described in this thesis are presented below. 

 

5.4.1 Buffers and reagents 
TP 50: 10 mM Tris-OAc (pHRT = 7.5) and 50 mM KCl 

100 μM DNA duplex: 50-nucleotide DNA duplex (sequence: 5’-CGT TTA CAC GTG 

GGG TCC CAA GAC CGC GGC TAC TAG ATC ACG GCT CAG CT-3’), prepared as 

described in the thesis of Dr. Jingyi Fei (Section 4.14.1) [8].  

Block Solution: 10 μM bovine serum albumin (BSA, Molecular Probes) and 10 μM DNA 

duplex in TP50.  

Streptavidin/Block Solution: 1 μM streptavidin (Molecular Probes), 10 μM BSA, and 10 

μM DNA duplex in TP50. 

5x Low-Salt Polymix (-Mg2+, -BME): 50 mM Tris-OAc (pHRT = 7.5), 100 mM KCl, 5 

mM NH4OAc, 0.5 mM Ca(OAc)2, 0.5 mM EDTA, 25 mM putrescine-HCl, 5 mM 

spermidine free-base, and 5% β-D-glucose. Store at -20°C. 

1x Low-Salt Polymix (+Mg2+, +BME): Dilute 5x Low-Salt Polymix (-Mg2+, -BME) 

stock with nanopure water. Add X mM Mg(OAc)2 (Mg2+ concentrations ranged from 3.5 

to 15 mM depending on the experiment; typically 15 mM Mg2+ was used) and 6 mM 

BME. Do not freeze and thaw; prepare fresh every time. 

1,000x COT/NBA: Mix 115 μL of 8.7 M COT (1,3,5,7-cyclooctatetraene, Aldrich), 119 

μL of 8.4 M NBA (3-nitrobenzyl alcohol, Fluka), and 766 μL ethanol. The NBA needs to 

be dissolved by incubating at 37°C prior to preparation of the COT/NBA solution. Store 

at -20°C.     

Trolox: 100 mM Trolox (6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid, 97% 

from Sigma) dissolved in DMSO.   

80x GOD/CAT:  

1. Make GOD/CAT Storage Buffer: 50 mM Tris-OAc (pHRT = 7.0), 50 mM KCl, 500 

mM BME, and 50% glycerol.  
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2. Prepare GOD and CAT stocks: Weigh Glucose Oxidase (GOD, Type VII from 

Aspergillus niger, Sigma) into a tared microcentrifuge tube. Dissolve in GOD/CAT 

storage buffer to a concentration of 5 U/μL and final volume of 500 μL. Weigh 

Catalase (CAT, from bovine liver, Sigma) into a separate tared tube. Dissolve in 

GOD/CAT storage buffer to a concentration of 200 U/μL and final volume of 500 μL. 

Do not vortex samples; mix by pipetting up and down, trying not to introduce air 

bubbles. Spin for 30 sec at 18,000 x g in tabletop centrifuge and incubate overnight at 

4°C. Next, spin for 5 min at 18,000 x g to pellet any insoluble material. Transfer top 

400 μL of solution to a new tube and store in an enzyme box at -20°C.  

3. The 80x GOD/CAT solution is prepared by mixing 42.7 μL of GOD stock and 7.3 μL 

of CAT stock. Mix thoroughly by pipetting up and down. Spin for 30 sec at 18,000 x 

g, and store at -20°C. 

End-labeled DNA oligo: A 15 nucleotide, single-stranded DNA oligo with a 5’-amino 

modification and 3’-biotin (5’-/5AmMC6/GTA AGT TTT AGG TTG/3Bio-3’, purchased 

from IDT DNA) was labeled with Cy3 or Atto488 NHS ester. The DNA oligo was 

diluted to 25 μL and 0.1 mM concentration in 0.2 M Na2CO3 (pH = 8.4). A 0.1 mg 

aliquot of dye was resuspended in 20 μL anhydrous DMSO. 25 μL of the DNA solution 

was mixed with 15 μL of the dye solution, and the reaction was incubated for two hours 

at room temperature with additional mixing every 30 min. The labeling reaction was 

passed through two consecutive Micro Bio-Spin P6 gel filtration columns (BioRad) 

equilibrated with 1x TE Buffer (pH = 7.4) to remove unincorporated dye. The labeling 

efficiency was determined to be >95% by UV-Vis.  

 

5.4.2 Steady-state experiments 
Steady-state conditions were employed to collect smFRET data from 70SICGDPNP 

complexes (Section 2.5), and to probe IF2’s interaction with the GAC during multiple-

turnover GTP hydrolysis (Section 2.7). 

1. Prepare a microscope slide with five microfluidic flowcells separated by double-sided 

tape according to the protocol described in Section 4.14 of Dr. Jingyi Fei’s thesis [8]. 
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The volume of each flowcell is ~7 μL. Samples are introduced slowly by pipet. Place 

a folded Kimwipe on the outlet hole to soak up buffer that flows through.      

2. Wash flowcell with 200 μL TP50 Buffer 

3. Deliver 20 μL Block Solution. Incubate for 5 min. 

4. Deliver 20 μL Streptavidin/Block Solution. Incubate for 5 min.   

5. Wash with 200 μL TP50 Buffer 

6. Equilibrate flowcell with 100 μL 1x Low-Salt Polymix (+Mg2+, +BME) 

7. Serially dilute an aliquot of ribosomal complex to ~100-200 pM final concentration in 

1x Low-Salt Polymix (+Mg2+, +BME) in two steps. For 70SICGDPNP, the buffer was 

supplemented with 1 mM GDPNP. The final volume of the diluted sample was 20 

μL. Add 2 μL of Block Solution to the diluted sample, mix, and pipet into the 

flowcell. Inclusion of Block Solution helps to reduce non-specific adsorption of the 

complex to the surface. Incubate for 5 min to allow binding of complexes to the 

surface via the biotin-streptavidin interaction. 

8. Wash flowcell with 100 μL 1x Low-Salt Polymix (+Mg2+, +BME) supplemented with 

1x GOD/CAT, 1 mM Trolox, and 1x COT/NBA. For experiments with 70SICGDPNP, 

the buffer was additionally supplemented with 1 mM GDPNP. The enzymatic oxygen 

scavenging system (50 U/mL glucose oxidase, 365 U/mL catalase, and 1% β-D-

glucose) used here helps extend the lifetime of Cy3 and Cy5 fluorophores before 

photobleaching [14]. Trolox, COT, and NBA are triplet-state quenchers that help 

suppress fluorophore blinking and photobleaching [15, 16]. Different combinations of 

triplet-state quenchers in the imaging buffer were tested, and the presence of all three 

was found to be most effective, markedly improving the lifetime before fluorophore 

photobleaching for experiments with the (Cy3)-IF2/(Cy5)-L11 FRET pair.  

9. For experiments probing the interaction between IF2 and the GAC during multiple-

turnover GTP hydrolysis, 40 μL of filling solution was introduced into the flowcell 

prior to imaging. The filling solution contained (Cy5)-IF2 (concentrations ranged 

from 2.5-40 nM depending on the experiment), 1 mM GTP, 1 mM Trolox, 1x 

COT/NBA, and 1x GOD/CAT prepared in 1x Low-Salt Polymix (+Mg2+, +BME).      
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10. Image sample: collect data with 532 nm laser excitation (6 mW laser power, 

measured at the prism). Image acquisition is controlled by MetaMorph online 

software, version 6.3r7 (Molecular Devices). For 70SICGDPNP complexes, which 

contained (Cy5)-L11, one frame was collected with red, 640 nm excitation followed 

by stream acquisition with 532 nm excitation. This facilitates rapid identification of 

ribosomes containing an active Cy5 fluorophore during image analysis.   

 

5.4.3 Real-time subunit joining experiments 
1. Follow steps 1-6 from Section 5.4.2 above to prepare flowcell. 

2. Serially dilute an aliquot of pre-formed 30S IC containing (Cy3)-IF2 in 1x Low-Salt 

Polymix (+Mg2+, +BME) in two steps. 30SIC-IF3 complexes were diluted to a final 

concentration of ~100-200 pM; the dilution buffer was supplemented with IF1 (0.9 

μM) and GTP (1 mM). 30SIC+IF3 complexes were diluted to a final concentration of 

~1-2 nM; the dilution buffer was supplemented with IF1 (0.9 μM), IF3 (0.9 μM), 

GTP (1 mM), and, when included, fMet-tRNAfMet (0.9 μM). Add 2 μL of Block 

Solution to the diluted sample, mix, and pipet into the flowcell. Incubate for 5 min. 

3. Wash flowcell with 60 μL Wash Buffer: 1x Low-Salt Polymix (+Mg2+, +BME) 

containing IF1 (0.9 μM), IF3 (0.9 μM), fMet-tRNAfMet (0.9 μM), and GTP (1 mM) 

when required, and supplemented with 1 mM Trolox, 1x COT/NBA, and 1x 

GOD/CAT.  

4. Fill stopped-flow tubing with Syringe Buffer: Wash Buffer containing (Cy5)-L11 

reconstituted 50S subunits (concentrations ranged from 10 to 60 nM depending on the 

experiment; typically, 20 nM was used). When included, pre-formed Phe-tRNAPhe 

ternary complex was additionally added to a final concentration of 0.25 to 1 μM 

depending on the experiment. Ternary complex was prepared as described above in 

Section 5.2.3, with the exception that the final concentrations of EF-Tu, EF-Ts, and 

Phe-tRNAPhe in the final reaction mixture were two-fold higher (~21 μM EF-Tu and 

EF-Ts, 10 μM Phe-tRNAPhe). This was done so as to minimize the amount of glycerol 

from the EF-Tu/EF-Ts stocks that was added into the Syringe Buffer. 60 μL of 
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Syringe Buffer was prepared and pipetted into the cap of an opened microcentrifuge 

tube. Hold stopped-flow tubing in the sample, and withdraw 50 μL into the tubing.  

5. Place a drop (~1 μL) of Wash Buffer on the microscope slide flowcell’s inlet hole and 

another drop at the end of the stopped-flow tubing to ensure a drop-to-drop 

connection and to minimize the chance of introducing air bubbles. Connect the 

stopped-flow tubing to the flowcell’s inlet hole. Place a folded filter paper lightly on 

the outlet hole to soak up buffer that flows through. 

6. Acquire data using a MetaMorph journal: Deliver 40 μL of Syringe Buffer at a flow 

rate of 0.39 mL/min. Delay for 1 sec, then open the green laser shutter, and stream 

acquire data under 532 nm laser illumination (6 mW power, measured at the prism).  

 

5.4.4 Two-color co-localization experiments 
1. Follow steps 1-6 from Section 5.4.2 above to prepare flowcell. 

2. Serially dilute an aliquot of pre-formed 30S IC containing (Cy3)-IF2 to ~100 pM 

final concentration in 1x Low-Salt Polymix (+Mg2+, +BME) supplemented with IF1 

(0.9 μM) and GTP (1 mM). To 20 μL of the diluted sample, add 2 μL of Block 

Solution, mix, and pipet into the flowcell. Incubate for 5 min. 

3. Prepare Wash Buffer: 1x Low-Salt Polymix (+Mg2+, +BME) containing IF1 (0.9 

μM), GTP (1 mM), Trolox (1 mM), 1x COT/NBA, and 1x GOD/CAT. Wash flowcell 

with 60 μL Wash Buffer. 

4. Prepare 60 μL Syringe Buffer: Wash Buffer containing dark 50S subunits (20 nM), 

EF-Tu:GTP:Phe-(Cy5)tRNAPhe ternary complex (500 pM), and Block Solution (10% 

v/v). Ternary complex was prepared fresh before each experiment according to the 

procedure described in Section 5.2.3 above. The 5 μM ternary complex stock was 

diluted 25-fold in 1x Low-Salt Polymix (+Mg2+, +BME) supplemented with 1 mM 

GTP before adding it to the Syringe Buffer.  

5. Fill stopped-flow tubing with 50 μL Syringe Buffer. 

6. Connect stopped-flow tubing to inlet hole of flowcell on the microscope stage.  
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7. Acquire data using a MetaMorph journal: Deliver 40 μL of Syringe Buffer at a flow 

rate of 0.39 mL/min. Delay for 1 sec, then open the green and red laser shutters. 

Stream acquire data under dual-excitation with 532 and 640 nm lasers. The laser 

power was adjusted by placing neutral density filters in the optical path, and was 4 

mW for both the green and red laser, measured at the prism. 

8. On the same day, image several fields-of-view of surface-tethered, (Cy3)-DNA oligo 

at high 532 nm laser power (~40 mW). These movies can be used for automated 

calculation of the Dual-View alignment parameters using SFTracer software based on 

bleedthrough of Cy3 fluorescence into the Cy5 channel (see Section 5.5.2.1 below). 

The (Cy3)-DNA oligo is diluted to ~10 pM prior to surface-immobilization to yield 

~300-400 molecules within the field-of-view. 

 

5.4.5 Three-color experiments 
The procedure for three color-experiments was the same as that described above for the 

two-color co-localization experiments (5.4.4), with the following exceptions: 1) The 

Syringe Buffer contained EF-Tu:GTP:Phe-(Atto488)tRNAPhe ternary complex instead of 

(Cy5)-ternary complex, and (Cy5)-50S subunits instead of dark 50S subunits. 2) Data 

were acquired under dual-illumination with 488 and 532 nm lasers. The 488 nm laser was 

operated at 30% power, and the 532 nm laser was operated at 6 mW power, measured at 

the prism. A Quad-View imager was used in place of the Dual-View to separate 

fluorescence emission from Cy3, Cy5, and Atto488. 3) On the same day, surface-tethered 

(Cy3)-DNA oligo was imaged at high 532 nm laser power (40 mW) to facilitate 

alignment of the Cy3 and Cy5 channels during image analysis. In addition, surface-

tethered (Atto488)-DNA oligo was imaged at high 488 nm laser power (90% power) to 

facilitate alignment of the Atto488 and Cy3 channels.   

 

 

 

 



Chapter 5 – Materials and Methods 
______________________________________________________________________________ 

215 

5.5 Data analysis procedures 

5.5.1 Analysis of smFRET data  
The smFRET data analysis procedures described below make use of a variety of software 

programs, namely MetaMorph (Molecular Devices), Microsoft Excel, Matlab 

(MathWorks), vbFRET, OriginPro (OriginLabs), and “R”. The Matlab scripts used for 

data analysis are compiled in Appendix E and the “R” scripts are compiled in Appendix 

F. Many of the scripts and data analysis procedures employed here were initially 

developed by Dr. Jingyi Fei, Mr. Pallav Kosuri, Dr. Jonathan Bronson, and Dr. Jiangning 

Wang. Likewise, many of the procedures outlined in this section have previously been 

described in the theses of Dr. Fei (reference [8], Section 4.16) and Dr. Wang (reference 

[3], Section 5.10). They are presented again below in order to give a complete description 

of the methods used to analyze my smFRET subunit joining data, and to highlight the 

specific additions and changes I have made to the scripts and procedures.     

 

5.5.1.1 Generation and selection of Cy3 and Cy5 fluorescence versus 
time trajectories 
1.  Channel alignment: Open .stk image file in MetaMorph. Split the stack of images into 

Cy3 and Cy5 fields-of-view using “Display → Split View” and the appropriate 

alignment parameters. The parameters were determined during alignment of the Dual-

View optics, which was performed following the manufacturer’s protocol. The Cy3 

and Cy5 fields are called “W1” and “W2” by default.  

2.  Region Selection: Fluorescent spots are usually selected from the first 300 frames of 

W2. To do so, select frames 1-300 with “Stack → Keep Planes”. Create a maximum 

image from these frames using “Process → Stack Arithmetic → Maximum”. For each 

pixel in the image, this operation finds the pixel which has the highest intensity value 

out of all of the frames, and outputs that value to a new image. Select regions from 

the maximum image using “Threshold Image,” which highlights pixels whose 

intensity is above a set threshold. The threshold was chosen manually in order to 

selectively highlight pixels corresponding to fluorescent spots (typically two to four 
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contiguous bright pixels). Create regions using “Regions → Create Regions Around 

Objects” and transfer regions to the original W1 and W2 fields using “Regions → 

Transfer Regions.” The channel alignment is not perfect, and it will usually be 

necessary to manually move some of the regions within W1 one or two pixels so that 

they overlap with the Cy3 spots. 

3.  Plot the Cy3 and Cy5 intensities for each region as a function of time using “Apps → 

Graph Intensities.” Place cursor over the graph, right-click, and select “Show Graph 

Data.” Copy and paste Cy3 time and intensity data from W1 into Sheet 1 of an Excel 

workbook. Copy and paste Cy5 time and intensity data from W2 into Sheet 2 of the 

same Excel workbook. In older versions of Excel (e.g. Excel 2000), each workbook 

can hold data from 116 traces; if the dataset contains more than 116 traces, use 

multiple workbooks. Graph overlayed Cy3 and Cy5 intensity versus time trajectories 

in Excel by running the macros “graph” and then “FRET” (“Tools → Macro → 

Macros”). 

4.  Select traces according to the following criteria: (i) The fluorescence intensities of 

Cy3 and Cy5 should fall within the range expected for single fluorophores; (ii) there 

should be evidence of anti-correlated changes in Cy3 and Cy5 fluorescence intensity; 

(iii) loss of the Cy3 and Cy5 signals (via photobleaching or factor dissociation) 

should occur in a single time step. The Cy3/Cy5 intensity data for the traces that meet 

these selection criteria are highlighted and then combined in a new Excel workbook. 

The data is formatted to two decimal places by highlighting, right-clicking, and 

choosing “Format Cells → Number → Decimal Places=2 ”. Save as a Text (Tab 

delimited) file and append “.dat” to the file name (e.g. kepttraces.dat). Different files 

from the same dataset are indicated by adding a file number (n=1,2,3…) to the 

filename (e.g. kepttraces-1.dat).   

5.  Import the Cy3/Cy5 intensity data into Matlab. To do so, copy and paste the 

“loadTraces” m-file into the folder with the .dat files and set the Current Directory to 

this folder. Load traces into the Matlab workspace: 

 >> X = loadTraces(‘kepttraces-’, n); 
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 where “n” is the number of files comprising the dataset to be analyzed.  

6.  Set Current Directory to the folder containing the smFRET data analysis scripts. 

7. Separate the Cy3 and Cy5 data: 

 >> [cy3x, cy5x] = SeparateCy(X); 

 where “x” is a suffix of choice.  

8.  Plot the Cy3 and Cy5 intensity versus time trajectories: 

 >> plotTraces(cy3x, cy5x); 

9.  Visually inspect the traces. If traces are identified that should be discarded from the 

analysis, do so using the J-filter:  

 >> [cy3x, cy5x] = J_Filter(cy3x, cy5x, J); 

where “J” is a vector containing the trace labels of all traces to discard, e.g. 

J=[1034,1081,2009…]. 

10. Traces corresponding to a particular sub-population of molecules (e.g. fluctuating 

traces) to be analyzed separately can be selected and grouped together using the J2-

filter: 

 >> [cy3x, cy5x] = J2_Filter(cy3x, cy5x, J2); 

 where “J2” is a vector containing the trace labels of the traces to keep. 

11. Bleedthrough and baseline correct the traces: 

 >> [cy3x, cy5x] = correctBaseline_end(cy3x, cy5x, nobleach); 

where “nobleach” is a vector that contains trace labels for those traces that do not 

exhibit photobleaching of Cy3 and/or Cy5. This script first corrects bleedthrough of 

Cy3 emission into the Cy5 channel by subtracting 7% of Cy3 intensity from the Cy5 

trace at each data point. The bleedthrough coefficient can be changed in the m-file; by 

default it is set as “BLEED_COEF = 0.07”. The Cy3 and Cy5 traces are then 

baseline-corrected. For traces that exhibit photobleaching, the average intensity of the 

last 20 data points is calculated and set as the baseline. This parameter can be 

changed in the m-file to average more or fewer data points; by default it is set as 

“AVER = 20.” Trace labels for traces that do not exhibit photobleaching, or that 

contain aberrant data points within the last 20 frames that would skew the average, 
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should be stored in the variable “nobleach”. These traces are baseline-corrected using 

the average of the baseline values calculated for the other traces.        

12. Save the traces: 

 >> saveTraces(cy3x, cy5x, ‘filename.dat’); 

13. Also save the Matlab workspace, so that all variables created during the analysis (not 

just the final set of traces) can be recalled later. 

 

5.5.1.2 Basic plotting functions for smFRET data 
1.  Plot the smFRET versus time trajectories: 

 >> plotFRETtraces(cy3x, cy5x);  

FRET efficiency is calculated as EFRET = ICy5/(ICy3 + ICy5) for each data point within a 

trace. When the sum of Cy3 and Cy5 intensities drop below a threshold, the trace will 

be truncated. The threshold can be changed in the m-file “getFRET”; by default it is 

set to “MININT=250”.   

2.  Plot a one-dimensional FRET histogram: 

 >> FH = plotFRET(cy3x, cy5x, bins); 

where “bins” is the number of FRET bins (typically 35), which are equally spaced 

from EFRET = -0.2 to 1.2. Column 1 (FRET) and Column 2 (normalized population) 

from “FH” can be copied to Origin 8 and fit to the sum of multiple Gaussians. 

3.  Plot a two-dimensional time evolution of population FRET histogram:  

 >> plotTimeFRET(cy3x, cy5x, FRETbins, Tbinsize, cutoffT); 

where “FRETbins” is the number of bins in the FRET dimension (typically 24); 

“Tbinsize” indicates over how many time points EFRET is averaged to generate the plot 

(typically 2); and “cutoffT” is the cutoff time in seconds (typically 20). 

4. Plot a post-synchronized, two-dimensional time evolution of population FRET 

histogram:  

 >> plotTimeFRET_ps(cy3x, cy5x, FRETbins, Tbinsize, cutoffT); 
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This script post-synchronizes all traces to the first data point above a FRET threshold. 

For subunit joining data, the first data point above EFRET = 0.2 (set in m-file: “LIMIT 

= 0.2”) was post-synchronized to t = 1 sec in the plot.  

 

5.5.1.3 Calculation of subunit joining times  
Procedure: 

1.  Calculate the FRET arrival times: 

 >> G = getFRETon(cy3x, cy5x); 

This script returns a row vector “G” containing the frame number at which the onset 

of FRET occurs for each trace. If a FRET event is not identified for a given trace, that 

trace’s entry will be bookmarked with “NaN”. Two consecutive data points must 

exceed the threshold FRET value (typically EFRET = 0.2), which is set in the m-file 

(i.e., “LIMIT=0.2”). Before running the script, set the threshold for summed Cy3 and 

Cy5 intensities below which the trace should be truncated in “getFRET3.m” 

(typically, “MININT=250”).  

2.  Change subunit joining times to units of seconds by multiplying by the exposure time 

(sec frame-1):  

 >> fretON = G * 0.1; 

3.  Correct for the dead-time of the stopped-flow instrument: 

 >> fretON = fretON - 1;  

The dead-time was estimated to be ~2.0 sec based on the time delay before the spike 

in the fluorescence signal when free Cy5 maleimide was delivered into the flowcell. 

In a typical subunit joining experiment, (Cy5)-50S subunits were delivered into the 

flowcell, followed by a 1 sec time delay and then data acquisition (Section 5.4.3). 

Therefore, 1 sec of the dead-time is already accounted for by the time delay, and an 

additional 1 sec is subtracted from the raw FRET arrival times to get the dead-time–

corrected values. 

4.  Calculate the average FRET arrival time:      

 >> mean(fretON) 
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Error analysis:  

Errors were estimated by splitting the data into three equally sized sets, calculating the 

average FRET arrival time for each set, and taking the mean and standard deviation of the 

resultant values. To randomly split the data into three equal sets: 

>> [A, B, C] = SplitData(fretON); 

where A, B, and C each contain one-third of the FRET arrival times. 

 

5.5.1.4 Calculation of (Cy3)-IF2 signal lifetime subsequent to subunit 
joining 
For stream-acquisition data: 

1.  Run “getFLUORlifetime” script with two input arguments: 

 >> H = getFLUORlifetime(cy3x, cy5x); 

This script returns a row vector “H” where each entry is the total time in frames 

between the onset of FRET and (Cy3)-IF2 signal loss (resulting from (Cy3)-IF2 

dissociation or Cy3 photobleaching) or termination of data acquisition—whichever 

comes first—for each individual trace. The script identifies the frame at which 

subunit joining occurs using “getFRETon.m” (see Section 5.5.1.3), and it identifies 

the frame at which the (Cy3)-IF2 signal is lost when the summed intensity of Cy3 and 

Cy5 drops below a specified threshold (set in “getFRET3.m”, typically “MININT = 

250”); two consecutive data points must drop below the threshold to be counted as 

(Cy3)-IF2 signal loss.   

2.  Construct a population decay histogram from these dwell times: 

 >> [t, N] = PopDecay(H); 

“t” contains the dwell time in units of frames. “N” contains the number of counts, i.e. 

N(i) is the number of traces for which the (Cy3)-IF2 signal lasts at least i frames after 

subunit joining.  

3.  Convert time data into units of seconds: 

 >> t = t * 0.1;    



Chapter 5 – Materials and Methods 
______________________________________________________________________________ 

221 

4.  Copy and paste data from “t” and “N” into Origin 8. Curves were fit with a single 

exponential decay of the form y=A1*exp(-x/t1) + y0, and the average lifetime of the 

decay, t1, was reported.  

 

For shuttered data: 

As described in Section 2.6.3, data frames were collected continuously under constant 

laser excitation for five seconds (i.e. 50 frames) at the beginning of the experiment before 

starting a shuttering routine in which single 100 msec data frames were collected at 

regular intervals with the laser light blocked in between. Therefore, data were collected at 

two different time resolutions within the same experiment. To analyze this data, it is 

necessary to obtain the timestamps corresponding to each frame of the movie from 

MetaMorph. The timestamps are imported into Matlab and stored within a row vector. 

Then, lifetime of the (Cy3)-IF2 signal subsequent to subunit joining was calculated using 

a procedure similar to that described above: 

1.  Run “getFLUORlifetime” script with three input arguments: 

 >> H = getFLUORlifetime(cy3x, cy5x, timestamps); 

where “timestamps” is a row vector in which timestamps(i) is the timestamp for the 

ith frame of the movie. As before, set the appropriate thresholds in “getFRETon.m” 

(i.e., “LIMIT=0.2”) and “getFRET3.m” (i.e., “MININT = 250”) before running the 

script. The script returns a row vector “H” where each entry is the total time in 

seconds between the onset of FRET and (Cy3)-IF2 signal loss. 

2.  Construct a population decay histogram from the dwell times: 

 >> [t, N] = PopDecay(H, timestamps); 

Here, “t” contains the dwell time in units of seconds, and “N” contains the number of 

counts. For analysis of the shuttering series data (Figure 2.10), a bin size of 15 sec 

was used to construct the histograms. This was so that dwell times from each dataset 

would have the same binning and so that all datasets (including that acquired at the 

slowest shuttering rate of 6 sec frame-1) would have at least two data points per bin.  
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3. Copy and paste data from “t” and “N” into Origin 8. Curves were fit with a single 

exponential decay of the form y=A1*exp(-x/t1) + y0, and the average lifetime of the 

decay, t1, was reported.  

 

5.5.1.5 Idealization of smFRET versus time trajectories with vbFRET 
Raw smFRET versus time trajectories were idealized to a hidden Markov model using 

the vbFRET software package [17], following the procedure outlined in the instruction 

manual. vbFRET uses a maximum-evidence–based method to identify the number of 

discrete conformational states within each smFRET trajectory and the most probable path 

through those states. The resulting idealized trajectories are then processed using a series 

of Matlab scripts to extract dwell times and calculate transition rates between particular 

conformational states. 

1. Change the Matlab Current Directory to the folder with vbFRET. Open the vbFRET 

GUI by typing: 

 >> vbFRET; 

2.  Load the .dat file of the traces to be analyzed: “File → Load Data  → Add Files.” 

Check “Relabel Traces” so that traces will be numbered as 1, 2, 3…n, where n is the 

total number of traces. Click “Load Data.” 

3.  Under “Analysis Settings” set “Number of FRET states possible” to “Min: 1” and 

“Max: 5”. For subunit joining data, it is expected that there will be at least three 

FRET states in the smFRET trajectories, i.e. one zero-FRET state and two non-zero 

FRET states. These settings therefore allow vbFRET the freedom to potentially model 

an additional two states. Set “Fitting attempts per trace” to 25. 

4. Truncate traces upon fluorophore photobleaching using “Traces  → Remove 

Photobleaching.” Standard settings were as follows:  

  Photobleach identification method: summed channel  

  Truncate data when Channel 1 + Channel 2 is less than: 100  

  Smooth traces before looking for photobleaching: checked  

  Smooth over 2 time steps  
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  Truncate an extra 2 time steps  

  Minimum trace length: 20 

 Click “Remove Photobleaching!” 

5.  Click “Analyze Data!” 

6.  Save data when analysis is finished: “File Save → Save Data”. Select “Save Session 

(.mat file)” so that analysis can be resumed at a later time. Also select “Save Idealized 

Traces- Save as concatenated text file (.dat)” to save the path data for subsequent 

post-processing steps. 

 

5.5.1.6 Dwell time analysis 
This section describes the dwell time analysis procedures that were used to calculate 

average lifetimes of the zero- and non-zero FRET states observed for reversible binding 

of (Cy5)-IF2 to 70S ICs during multiple-turnover GTP hydrolysis (Section 2.7) and for 

reversible docking of (Cy5)-50S subunits to 30SIC+IF3 (Sections 3.3 and 3.4). In both 

cases, the zero-FRET state represents the unbound, “OFF” state of the complex, while the 

non-zero FRET state represents the bound, “ON” state of the complex.  

Procedure: 

1.  Import path data from vbFRET into Matlab: “File → Import Data.” The path data is 

stored in a two-column matrix where the first column contains the trace labels and the 

second column contains the idealized FRET efficiency at each time point.   

2.  Change the Current Directory to the folder with the lifetime analysis scripts.  

3.  Extract dwell times in each FRET state before transitioning to a new FRET state: 

 >> dwellData = getRawDwell_all(pathData);  

The output variable “dwellData” is a four-column matrix of the form: [Trace label, 

FRET(i), FRET(i+1), n] where “FRET(i)” is EFRET for the current dwell, “FRET(i+1)” 

is EFRET for the next dwell, and “n” is the number of time steps spent in state i before 

transitioning to state i+1. This script does not discard the first or last dwells of the 

traces. For the last dwell of a trace, the entry for “FRET(i+1)” will be “NaN.” 
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4.  For analysis of binding and dissociation kinetics, combine contiguous dwells in zero- 

and non-zero FRET states. To do so, first choose a threshold that optimizes separation 

between the zero- and non-zero FRET states based on a one-dimensional FRET 

histogram: 

 >> FH = plot_idealizedFRET_hist(dwellData, bins); 

where “bins” is the number of FRET bins, equally spaced from -0.2 to 1.2.  

For all data presented in this thesis, the threshold separating the zero- and non-zero 

FRET states was determined to be EFRET  = 0.2. Thus, contiguous dwells with EFRET  

≤ 0.2 and contiguous dwells with EFRET  > 0.2 were combined by typing: 

 >> dwellData = purifyOnOffDwell(dwellData, threshold); 

 where “threshold” = 0.2. 

5.  Plot population decay histograms of dwell times in the zero- and non-zero FRET 

states: 

 >> [ts, N] = getDecay_DM(dwellData, bounds); 

where “bounds” is the range of FRET values defining each state, i.e. [-0.2, 0.2] for 

the zero-FRET state and [0.2, 1.2] for the non-zero FRET state. “ts” is the dwell time 

in seconds and “N” is the total number of dwells that last at least that long. 

6.  Copy and paste data from “ts” and “N” into Origin 8. Typically, curves were fit with 

a single exponential decay of the form y=A1*exp(-x/t1) + y0, and the average lifetime 

of the decay, t1, was reported. However, two different types of 70S IC were formed 

upon delivery of (Cy5)-50S subunits to 30SIC+IF3 in the absence of free IF3, with low 

and intermediate stability, respectively (Section 3.4). Therefore, for this dataset, the 

population decay histograms of dwell times spent in the non-zero FRET state were fit 

with a double exponential decay of the form y=A1*exp(-x/t1) + A2*exp(-x/t2) + y0, 

and the two lifetimes  t1  and t2 were reported.  

7.  The procedures used to calculate ka, app and kd, app from lifetimes of the zero- and non-

zero FRET states are described in the main text (Section 3.3).   
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Error Analysis: 

Two different methods were used to estimate errors in the calculated lifetimes. In the first 

method, the idealized smFRET traces were randomly split into three equally sized sets. 

Each set was subjected independently to the lifetime analysis procedure described above, 

and the average and standard deviation of the resulting lifetimes were reported. To split 

the vbFRET path data into three sets of randomly selected traces, type: 

>> [A, B, C] = SplitPathData(pathData); 

where A, B, and C each contain one-third of the traces from pathData.  

In the second method, resampling of the experimental dwell times was performed with 

replacement to generate 1000 bootstrap datasets. Population decay histograms were 

constructed from each dataset, lifetimes were determined by exponential fitting, and the 

mean and standard deviation of the resultant values were reported. Bootstrapping was 

performed in “R” version 2.12.2 [18] using the scripts provided in Appendix F and 

according to the following procedure:  

1.  Follow steps 1-4 of the dwell time analysis procedure above. 

2.  Copy and paste purified dwellData from Matlab into WordPad. In the first row, add 

labels for each of the four columns of data. Save as a .txt file. Copy to a folder for 

“R” input data files (e.g., “…/R-codes/Data”).  

3.  Open “R” and choose the script to run: “File → Open Script .” There are three options 

to choose from: 1) Use “ka_bootstrap_sample_dwells.R” to calculate the lifetime of 

the unbound state and ka, app with single exponential fitting to population decay 

histograms of dwell times in the zero-FRET state; 2) Use 

“ON_dwell_bootstrap_sampleDwells_singleExp.R” to calculate the lifetime of the 

bound state with single exponential fitting to population decay histograms of dwell 

times in the non-zero FRET state; and 3) Use 

“ON_dwell_bootstrap_sampleDwells_doubleExp.R” to calculate bound-state 

lifetimes with double exponential fitting to population decay histograms of dwell 

times in the non-zero FRET state for experiments in which two bound states with 

different lifetimes were observed.  
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4.  Update the following lines of the “R” code before running it: 

 i)  Set the working directory: 

  >setwd(dir = “C:/Documents and Settings/Administrator/Desktop/R-codes”)   

 ii) Update the name and location of the file to be analyzed: 

  >dwellData = read.table(file = “data/test.txt”, header = TRUE) 

 iii)  Enter initial guesses for the fitting parameters of the exponential decay: 

  >iguessyo = 0 

  >iguessAs1 = 150 

  >iguesslt1 = 1 

  >iguessAs2 = 350 

  >iguesslt2 = 10 

 iv)  Enter the number of bootstrap datasets to construct: 

  >nstep = 1000 

v)  For “ka_bootstrap_sample_dwells.R”, which calculates ka, app, enter the (Cy5)-50S 

subunit concentration in units of nM: 

  >subunitconc = 20 

5.  Highlight the whole script and run it by pressing “Ctrl+R” 

6.  The mean and standard deviations of the lifetimes will be printed. For 

“ON_dwell_bootstrap_sampleDwells_doubleExp.R”, the mean and standard 

deviation for the percent contribution of fast and slow components to the decay will 

also be printed.     

  

5.5.1.7 Construction of transition density plots 
Transition density plots (TDPs) [19] are generated by plotting the “Starting FRET” 

versus “Ending FRET” for all transitions within the idealized traces as a contour plot 

representation of a two-dimensional histogram: 

1.  Import vbFRET path data into Matlab. 

2.  Extract dwell times in each FRET state before transitioning to a new FRET state, and 

remove the last dwell from each trace: 
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 >> dwellData = getRawDwell_DeleteLastDwell(pathData); 

3.  Plot the TDP: 

 >> plotTDP(dwellData, bins); 

where “bins” is the number of FRET bins, equally spaced from -0.2 to 1.2. Typically, 

bins = 24.  

 

5.5.1.8 Calculation of average transition rate between non-zero FRET 
states within the 70S IC 
This analysis was performed in order to quantify the conformational dynamics observed 

within 70SICGTP and 70S ICGDPNP, formed upon docking of (Cy5)-50S subunits to  

30SIC-IF3 complexes containing mRNA, fMet-tRNAfMet, IF1 and (Cy3)-IF2 (see Section 

2.6.4).   

1.  Manually select smFRET trajectories in which vbFRET models transitions between 

two or more non-zero FRET states within the 70S IC. The criteria used for trace 

selection were as follows: (i) At least one transition must occur between contiguous 

non-zero FRET states. On occasion, vbFRET models dwells in two different non-zero 

FRET states that are separated by a dwell in a zero-FRET state (~1% of the time); this 

behavior may represent undocking of one 50S subunit and docking of a new 50S 

subunit to the same 30S IC, and thus does not qualify as good evidence for the 

presence of two non-zero FRET states within the same 70S IC. (ii) The non-zero 

FRET states must be separated by ΔEFRET ≥ 0.05. (iii) Dwells in each non-zero FRET 

state must be longer than one data point, since one-frame events may arise from a 

camera blurring artifact [17]. (iv) Occasionally, vbFRET does not accurately identify 

the photobleaching event where the trace should be truncated. When this is the case, 

aberrant data points downstream of the photobleaching event can be incorrectly 

modeled with transition(s) to new non-zero FRET states; this behavior was identified 

and was not considered to be a real transition.  

 Scroll through the traces overlayed with their corresponding viterbi paths in the 

vbFRET GUI and write down the Trace Number for all traces which exhibit 

transitions between two or more non-zero FRET states based on the above criteria. 
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Note: The Trace Number is displayed in the lower-right hand corner of the GUI (e.g., 

“trace 200 of 264”). 

2.  Import vbFRET path data into Matlab.  

3.  Create a new path data file containing data from the traces that were identified above 

as exhibiting one or more significant non-zero FRET transitions within the 70S IC: 

 >> pathData = J2_Path(pathData, J2); 

where “J2” is a row vector containing the Traces Numbers for the traces that should 

be kept, e.g., J2=[2, 4, 5, 10,…].  

4.  For this subset of traces, extract dwell times in each FRET state before transitioning 

to a new FRET state: 

 >> dwellData = getRawDwell_all(pathData); 

5.  Calculate the average transition rate between non-zero FRET states within the  

 70S IC: 

 >> R = AverageTransitionRate(pathData, signif_trans); 

where “signif_trans” is the minimum change in EFRET considered to represent a 

significant transition (typically 0.05). The threshold defining zero- and non-zero 

FRET states is set in the m-file (i.e., “KEY = 0.2”). This script identifies the total 

number of non-zero FRET transitions that occur and divides by the total time spent in 

non-zero FRET states, and outputs the average transition rate with units of transitions 

per second. 

 

5.5.1.9 Analysis of short- and intermediate-lifetime 70S ICs 
When (Cy5)-50S subunits were delivered to 30SIC+IF3 in the absence of free IF3, 50S 

subunit docking was observed to result in the formation of two different classes of 70S 

IC, whose respective lifetimes differed by more than an order of magnitude; these were 

termed short- and intermediate-lifetime 70S ICs, respectively (see Chapter 3.4). 

Following trace idealization with vbFRET (Section 5.5.1.5), non-zero FRET dwells 

corresponding to short- and intermediate-lifetime 70S ICs were parsed so that their 

lifetimes and FRET distributions could be analyzed separately. To do so, short-lifetime 
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70S ICs were defined as non-zero FRET dwells lasting less than 4 sec, and intermediate-

lifetime 70S ICs were defined as non-zero FRET dwells lasting longer then 4 sec. This 

threshold was chosen because, for experiments in which (Cy5)-50S subunits were 

delivered to 30SIC+IF3 in the presence of free IF3—where the dwell time histograms are 

well-described by a single-exponential decay with a fast time constant—it results in 

classification of ≥95% of non-zero FRET dwells as short-lived.  

1.  Import path data from vbFRET into Matlab. 

2.  Extract dwell times in each FRET state before transitioning to a new FRET state: 

 >> dwellData = getRawDwell_all(pathData);  

3.  Separate dwellData into two matrices containing the data for dwells in zero-FRET 

states (OFF dwells) and non-zero FRET states (ON dwells), respectively: 

 >> [ONdwells, OFFdwells] = separateOnOffDwells(dwellData, threshold); 

where “threshold” defines the boundary between OFF and ON dwells (typically, 

threshold = 0.2). The output variables “ONdwells” and “OFFdwells” are four-column 

matrices of the form: [t, FRET(i), FRET(i+1), n] where each row contains the data for 

an individual ON or OFF dwell. “FRET(i)” is EFRET for the current dwell, 

“FRET(i+1)” is EFRET for the next dwell, and “n” is the number of time steps spent in 

the state i before transitioning to state i+1. “t” is a unique identifier for the cumulative 

ON or OFF dwell to which the individual dwells belong. For example, consecutive 

dwells in a 0.6 and a 0.8 FRET state within the same trajectory would be assigned the 

same value of “t”.    

4.  Separate dwellData for the ON dwells further according to whether the individual 

dwells belong to a relatively long or relatively short cumulative ON dwell: 

>> [longONdwells, shortONdwells] = parse_cumeONdwells_length(ONdwells, 

cutoff); 

where “cutoff” is the dwell time in seconds above which a cumulative ON dwell is 

considered to be long; here, cutoff = 4. The output matrices have the same form as 

those in Step 3.  
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5.  Plot the FRET distributions of the short- and intermediate-lifetime 70S ICs 

separately:         

 >>FH_short = plot_idealizedFRET_hist(shortONdwells, bins); 

 >>FH_intermediate= plot_idealizedFRET_hist(longONdwells, bins); 

where “bins” is the number of FRET bins, equally spaced from -0.2 to 1.2; typically, 

bins = 35. Column 1 (FRET) and Column 2 (normalized population) from “FH” can 

be copied to Origin 8 and fit to a Gaussian or sum of Gaussians. 

6.  Calculate the fraction of short- and intermediate-lifetime 70S ICs based on the 4 sec 

threshold (Table C.3 in the Appendix): 

Start with the original dwellData from Step 2 above. Combine contiguous ONdwells 

and OFFdwells: 

 >> dwellData = purifyOnOffDwell(dwellData, threshold); 

 where threshold = 0.2. 

 Construct a column vector containing the dwell times of all cumulative ON dwells: 

 >> ONdwells = getDwellHist(dwellData, bounds); 

where “bounds” gives the range of FRET efficiencies defining an ON dwell; typically 

bounds = [0.2, 1.2]. 

 Calculate the percentage of relatively short-lived and relatively long-lived ON dwells: 

 >> getLongDwells(ONdwells, cutoff); 

where “cutoff” is the dwell time in seconds above which a cumulative ON dwell is 

considered to be long; here, cutoff = 4. This script prints the number of long and short 

ON dwells, and the percentage of each.  

 

5.5.2 Analysis of two-color fluorescence co-localization data 
Image analysis of two-color co-localization data was performed using SFTracer software, 

currently being developed by Mr. Victor Naumov in our laboratory. Post-processing of 

Cy3 and Cy5 fluorescence intensity versus time trajectories was performed in Matlab. 
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5.5.2.1 Analysis of Cy3 and Cy5 fluorescence intensity versus time 
trajectories 
1.  Calculate the Dual-View alignment parameters based on bleedthrough from the Cy3 

channel into the Cy5 channel:  

Load .stk image file of (Cy3)-DNA oligo imaged at high laser power (see Section 

5.4.4) into SFTracer. Click “Load Stack” button in the SFTracer GUI, select the file, 

and load 20 frames of the movie. To automatically calculate the alignment 

parameters, click “Alignment”, select “two channels” option, and click “Auto.” The 

alignment parameters for the Cy3 channel (channel 0) and the Cy5 channel (channel 

1) will appear in the dialog box. Repeat for three separate movies to make sure that 

the same alignment parameters are obtained for each. The SFTracer channel-

alignment function takes the highest intensity value for each pixel across the entire 

stack, histograms these values for the Cy3 and Cy5 channels, and sets a threshold 

equal to the mean plus three standard deviations. The alignment parameters (i.e., 

translation, rotation, and skew) are then varied to maximize the overlap of above-

threshold pixels between the two channels.  

2.  Load the .stk file for the two-color experiment into SFTracer.  

3.  Align the Cy3 and Cy5 channels by entering the parameters determined above into 

the “Alignment” dialog box and clicking “OK.” 

4.  Define regions of interest (ROIs) by selecting fluorescent spots from the Cy3 channel. 

In the upper-right-hand corner of the GUI, select “Channel: green” and “Averaging: 

first 20 frames,” and click “Find.” SFTracer calculates the average intensity for each 

pixel within the Cy3 channel over the first 20 frames of the movie. It then uses a 

scoring function to assign a score to each pixel. The score is increased for pixels 

within a 2x2 region of foreground-intensity pixels surrounded by a 4x4 square of 

background-intensity pixels. The background and foreground levels are set in the GUI 

under “spotBg” and “spotFg”, respectively, and the default values were used for this 

analysis. The algorithm then searches for high-scoring 2x2 pixel regions and 

highlights them as the ROIs.    
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5.  Plot Cy3 and Cy5 fluorescence intensity versus time trajectories for each ROI: Click 

“Calculate traces.” Click “Save traces” and save the trajectories as a .tsv file (e.g., 

“SFTraces.tsv”). 

6.  Copy the “loadSFTraces” m-file into the folder with the saved trajectories. Set the 

Matlab Current Directory to this folder. Load the trajectories into the Matlab 

workspace: 

 >> [cy3x, cy5x] = loadSFTraces(‘SFTraces.tsv’); 

7.  Bleedthrough and baseline correct the traces: 

 >> [cy3x, cy5x] = correctBaseline (cy3x, cy5x); 

This script first corrects bleedthrough of Cy3 emission into the Cy5 channel by 

subtracting 7% of Cy3 intensity from the Cy5 trajectory at each data point. The 

bleedthrough coefficient can be changed in the m-file (i.e., “BLEED_COEF = 0.07”). 

The script then builds a histogram of Cy3 and Cy5 intensities and uses the most 

populated bin to baseline correct the traces.   

8.  Plot the traces:  

 >> plotTraces(cy3x, cy5x); 

9.  Select traces according to the following criteria: (i) The Cy3 signal should exhibit 

single step photobleaching. If Cy3 does not photobleach, the signal should be stable 

and fall within the range expected for single Cy3 molecules (typically 1000-3000 

units for the experimental conditions employed here). (ii) The Cy3 signal should last 

for more than 20 frames. (iii) For traces in which bursts of Cy5 fluorescence above 

the baseline are observed, the Cy5 intensity should increase and decrease in a 

stepwise manner. (iv) The Cy3 and Cy5 baselines should be roughly centered at zero 

intensity, deviating no more than approximately ±500 units.      

Store the trace labels for the traces that meet these criteria in a vector, e.g., 

J2=[10114, 10204, 10378…] and select this subset of traces for further analysis: 

 >> [cy3x, cy5x] = J2_filter(cy3x, cy5x, J2);  

10. Identify traces which exhibit one or more (Cy5)-T3 binding event. For this purpose, a 

(Cy5)-T3 binding event was defined as five or more consecutive Cy5 data points 
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above an intensity threshold. The threshold was chosen by first building a histogram 

of Cy5 intensity from all traces in the dataset:  

 >> [N, X] = hist(cy5x(:), 500); 

 >> N=N’; X=X’; 

The histogram typically contains two major peaks, corresponding to the Cy5 

fluorescence background and signal from surface-bound (Cy5)-T3, respectively. 

Copy and paste the data into Origin 8 and fit the histogram to the sum of two 

Gaussians. The intensity threshold used to define (Cy5)-T3 binding was set as the 

background peak’s center plus 1.25 times the peak width (i.e., xc1 + 1.25*w1). For 

control experiments in which very little (Cy5)-T3 binding was observed, the 

histogram contained only one major peak, corresponding to the Cy5 fluorescence 

background. In this case, the histogram was fit with a single Gaussian function for 

thresholding purposes.    

Once the threshold has been determined, traces are selected which contain bursts of 

Cy5 fluorescence with five or more consecutive data points above the threshold, 

indicative of (Cy5)-T3 binding events: 

 >> [cy5y, frameno_cy5] = parseTraces_T3binding(cy5x); 

The output variable “cy5y” contains Cy5 fluorescence intensity versus time data for 

those traces which exhibit at least one (Cy5)-T3 binding event. The variable 

“frameno_cy5” contains the frame number at which the first (Cy5)-T3 binding event 

occurs for each of these traces. The intensity threshold and number of consecutive 

data points used to define a (Cy5)-T3 binding event are set within the m-file (e.g., 

“IntensityThreshold = 1200” and “TimeThreshold = 5”).   

For datasets with especially low signal-to-noise Cy5 versus time trajectories, it may 

be necessary to smooth the Cy5 versus time trajectories before conducting this 

analysis in order to achieve accurate identification of the (Cy5)-T3 binding events: 

 >> cy5x = RollingAvg(cy5x, 3);  

 where the second input argument denotes the span for the rolling average.  
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The smoothed data can then be used to generate a Cy5 intensity histogram, calculate 

the intensity threshold, and select traces exhibiting (Cy5)-T3 binding events as 

described above.  

11. Sub-populate Cy3 and Cy5 versus time trajectories based on whether or not (Cy5)-T3 

binding events were identified: 

 >> [cy3y, cy5y] = J2_filter(cy3x, cy5x, J2); 

where “J2” is a vector containing the trace labels for those traces identified in Step 10 

to contain at least one (Cy5)-T3 binding event. The output variables “cy3y” and 

“cy5y” contain the Cy3 and Cy5 intensity versus time trajectories, respectively, for 

these traces. 

 >> [cy3n, cy5n] = J_filter(cy3x, cy5x, J);   

where “J” is a vector containing the trace labels for the traces that do not exhibit a 

(Cy5)-T3 binding event, and the output variables “cy3n” and “cy5n” contain the 

intensity versus time trajectories for this subpopulation of traces. 

12. For each trace, identify the frame at which the (Cy3)-IF2 signal is lost: 

 >> frameno_cy3 = getCY3lifetime(cy3y); 

This script returns a vector containing the frame number at which the (Cy3)-IF2 

signal is lost for each trace. If the (Cy3)-IF2 signal persists for the entire experimental 

observation time, the total number of data frames collected (typically 1200) will be 

returned for that trace. Three consecutive data points must drop below a Cy3 intensity 

threshold to be identified as (Cy3)-IF2 signal loss. The intensity threshold is 

determined by inspection of a Cy3 intensity histogram constructed from all traces in 

the dataset, and it is entered in the m-file “getCy3” (e.g., “MININT” = 800). 

13. Visually inspect traces to confirm that the first (Cy5)-T3 binding event and the loss of 

(Cy3)-IF2 signal have been correctly identified: 

 >> plotTraces(cy3y, cy5y, frameno_cy3, frameno_cy5); 

Blue and black vertical lines will be overlayed on the Cy3 and Cy5 fluorescence 

intensity versus time trajectories at the frames where (Cy3)-IF2 signal loss and the 

first (Cy5)-T3 binding event were identified, respectively.   
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14. Calculate the time difference between (Cy3)-IF2 signal loss and the first (Cy5)-T3 

binding event on a trace-by-trace basis: 

 >> diff = frameno_cy5 - frameno_cy3; 

The vector “diff” contains the time difference in frames for each trace. Negative 

values indicate that (Cy5)-T3 binding precedes (Cy3)-IF2 signal loss, while positive 

values indicate that (Cy5)-T3 binding occurs after (Cy3)-IF2 signal loss. These values 

can then be converted into units of time and plotted as a histogram. 

 

5.5.2.2 Procedure for counting Cy3 and Cy5 fluorescent spots as a 
function of time 
SFTracer was used to count the number of fluorescent spots within the Cy5 FOV for each 

data frame over the course of whole movies in order to assess the specificity of (Cy5)-T3 

binding to the surface (Figure 4.2). It is similarly possible to count the number of Cy3 

spots per FOV for each frame of a movie. The procedure used for automated spot-

counting with SFTracer is described below: 

1.  Load .stk files from two-color co-localization experiments into the SFTracer GUI.  

2.  Calculate the spot background and spot foreground values (“spotBg” and “spotFg”) to 

be used for ROI identification:  

If Cy5 spots are to be counted, calculate the spotBg and spotFg values by selecting 

“channel: red” and “averaging: last frame” and then clicking “Find.” The last frame 

of the movie was used for the calculation since it typically contained a relatively large 

number of (Cy5)-T3 spots within the FOV. Record the calculated values. Repeat for 

all movies recorded on the same day and under the same imaging conditions for 

which (Cy5)-T3 spots were observed to accumulate within the FOV over the course 

of the movie. Take the average of the resulting spotBg and spotFg values, and use 

these average values for spot-counting analysis of all movies to be compared.     

If Cy3 spots are to be counted, calculate the spotBg and spotFg values by selecting 

“channel: green” and “averaging: first frame” and then clicking “Find.” Here, the first 

frame should be used since the FOV contains a large number of (Cy3)-IF2 spots at 

the beginning of the movie prior to (Cy3)-IF2 signal loss via photobleaching or factor 
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dissociation. Record the calculated values. As before, average spotBg and spotFg 

values should be calculated and used uniformly for spot-counting analysis of all 

movies to be compared. 

3.  Access the SFTracer directory on the lab server via the command line with PuTTY. 

Then, count the number of Cy3 or Cy5 spots for each frame of a movie by typing a 

command of the following form: 

 ~/sftracer$  java SFTracer  -numspots  -channel right  -sbg 1835  -sfg 2561   

  ../Data/movie1.stk > numspots_movie1.txt 

Here, “right” refers to the right channel of the Dual-View image and indicates that 

Cy5 spots should be counted. Enter “left” to count Cy3 spots instead. The numbers 

following “-sbg” and “-sfg” are the spotBg and spotFg values from Step 2 above. The 

next entry (i.e., “../Data/movie1.stk”) is the pathname of the .stk image file to be 

analyzed. The final entry (i.e., “numspots_movie1.txt”) is the name of the output data 

file, which will automatically be saved in the current directory. The second column of 

the output .txt file contains the number of fluorescent spots identified for each frame 

of the movie. 

4.  Download all output files from the server using WinSCP, and plot the number of 

Cy3/Cy5 spots versus time.   

 

5.5.3 Analysis of three-color fluorescence data 
Preliminary image analysis, comprising channel alignment, region selection, and 

generation of three-color fluorescence intensity versus time trajectories was performed 

using SFTracer software. Bleedthrough and baseline corrections and plotting of the 

trajectories was carried out in Matlab.   

1. Channel alignment: Quad-View alignment parameters were calculated based on 

bleedthrough of Cy3 fluorescence into the Cy5 channel and bleedthrough of Atto488 

fluorescence into the Cy3 channel. First, load the .stk image file of (Cy3)-DNA oligo 

imaged at high green laser power (see Section 5.4.5) into the SFTracer GUI. Click 

“Alignment”, select “three channels” option, and click “Auto.” Record the alignment 
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parameters for the Cy3 channel (channel 0) and the Cy5 channel (channel 1). Then, 

load the .stk image file of (Atto488)-DNA oligo imaged at high blue laser power 

(Section 5.4.5), and auto-calculate the alignment parameters as before. Record the 

parameters for the Cy3 channel (channel 0) and the Atto488 channel (channel 2).  

Open the three-color movie to be analyzed with SFTracer. Perform channel alignment 

by entering the alignment parameters calculated above into the “Alignment” dialog 

box and clicking “OK.” 

2.  Region selection: Define ROIs by picking fluorescent spots from the Cy5 channel. In 

the upper-right-hand corner of the GUI, select “Channel: red” and “Averaging: max 

all frames,” and click “Find.” 

3.  Plot the Cy3, Cy5, and Atto488 intensity versus time trajectories for each ROI by 

clicking “Calculate traces.” Click “Save traces” and save the trajectories in a .tsv file 

(e.g., “SFTraces.tsv”).  

4.  Load the trajectories into the Matlab workspace: 

 >> [cy3x, cy5x, atto488x] = loadSFTraces(‘SFTraces.tsv’); 

5.  Plot the trajectories: 

 >> plotTraces_3color(cy3x, cy5x, atto488x); 

6.  Select traces that exhibit FRET as indicated by anticorrelation of the Cy3 and Cy5 

signals, i.e., a drop in Cy3 intensity and concomitant rise in Cy5 intensity upon 50S 

subunit docking to the 30S IC:    

 >> [cy3x, cy5x, atto488x] = J2_Filter_3color(cy3x, cy5x, atto488x, J2); 

 where “J2” is a vector containing the trace labels of the traces to keep.  

 Alternatively, traces can be discarded from the analysis using the J-filter: 

 >> [cy3x, cy5x, atto488x] = J_Filter_3color(cy3x, cy5x, atto488x, J); 

 where “J” is a vector containing the trace labels for the traces to be discarded.   

7.  Bleedthrough- and baseline-correct the traces. First, bleedthrough- and baseline-

correct the Cy3 and Cy5 intensity versus time trajectories: 

 >> [cy3x, cy5x] = correctBaseline_end(cy3x, cy5x, nobleach_cy3cy5); 
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where “nobleach_cy3cy5” is a vector that contains trace labels for those traces that do 

not exhibit photobleaching of Cy3 and/or Cy5, or that contain aberrant data points 

within the last 20 frames that would affect calculation of the baseline. This script first 

subtracts 7% of Cy3 intensity from the Cy5 trajectory at each data point to correct for 

bleedthrough of Cy3 emission into the Cy5 channel. It then performs the baseline 

correction by taking the average intensity over the last 20 data points for each Cy3 

trajectory and each Cy5 trajectory and subtracting the resultant values from each data 

point of the trajectories. For traces that do not exhibit photobleaching, the average 

Cy3 and Cy5 baselines from the rest of the traces in the dataset is used for the 

baseline correction.  

Baseline-correction of the Atto488 intensity versus time trajectories was performed 

separately: 

 >> atto488x = correctBaseline_end_1color(atto488x, nobleach_atto488);    

where “nobleach_atto488” is a vector that contains trace labels for those traces that 

do not exhibit photobleaching of Atto488, or that contain aberrant data points within 

the last 20 frames that would affect calculation of the baseline. This script calculates 

the baseline for each Atto488 trajectory based on the average of the last 20 data 

points as before.  
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Appendix A – mRNA sequences 
 
 
Table A.1: mRNA sequences.  
mRNAs used for all biochemical and microscope work were derived from the mRNA encoding 
gene product 32 from T4 bacteriophage. mRNAs #1 and 2 contain a 5’-biotin modification (Bi) 
and an AUG or AUU start codon, respectively. They were used to assemble ribosomal complexes 
for smFRET experiments. mRNA #3 was used in the GTP hydrolysis and dipeptide formation 
assays, while mRNA #4 was used in the toeprinting assay. mRNAs #1-3 were chemically 
synthesized and purchased from Dharmacon, Inc., and mRNA #4 was generated by in vitro 
transcription. The Shine-Dalgarno (SD) sequence is underlined, the spacer region is italicized, 
and the start codon is bold and underlined.  
  
# mRNA nucleotide sequence 
1 5’-Bi.CAACCUAAAACUUACACAAAUUAAAAAGGAAAUAGACAUGUUCAAAGUCGAAAAAU 

CUACUGCU-3’ 
2 5’-Bi.CAACCUAAAACUUACACAAAUUAAAAAGGAAAUAGACAUUUUCAAAGCGAAAAAUC 

UACUGCU-3’ 
3 5’-GCAACCUAAAACUUACACAGGGCCCUAAGGAAAUAAAAAUGUUUAAA-3’ 
4 5’-GGCAACCUAAAACUUACACAGGGCCCUAAGGAAAUAAAAAUGUUUAAAGAAGUAUACA 

CUGCUGAACUCGCUGCACAAAUGGCUAAACUGAAUGGCAAUAAAGGUUUUUCUUCUGAA
GAUAAAGGCGAGUGGAAACUGAAACUCGAUAAUGCGGGUAACGGUCAAGCAGUAAUUC
GUUUUCUUCCGUCUAAAAAUGAUGAACAAGCACCAUUCGCAAUUCUUGUAAAUCACGGU
UUCAAGAAAAAUGGUAAAUGGUAUAUUGAAACAUGUUCAUCUACCCAUGGUGAUUACG
AUUCUUGCCCAGUAUGUCAAUACAUCAGUAAAAAUGAUCUAUACAACACUGACAAUAAA
GAGUACAGUCUUGUUAAACGUAAAACUUCUUACUGGGCUAACAUUCUUGUAGUAAAAG
ACCCAGCUGCUCCAGAAAACGAAGGUAAAGUAUUUAAAUACCGUUUCGGUAAGAAAAUC
UGGGAUAAAAUCAAUGCAAUGAUUGCGGUUGAUGUUGAAAUGGGUGAAACUCCAGUUG
AUGUAACUUGUCCGUGGGAAGGUGCUAACUUUGUACUGAAAGUUAAACAAGUUUCUGG
AUUUAGUAACUACGAUGAAUCUAAAUUCCUGAAUCAAUCUGCGAUUCCAAACAUUGACG
AUGAAUCUUUCCAGAAAGAACUGUUCGAACAAAUGGUCGACCUUUCUGAAAUGACUUCU
AAAGAUAAAUAAGG-3’ 
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Appendix B – FRET arrival times for 30SIC+IF3 
 
 
Table B.1: FRET arrival time for 30SIC+IF3 as a function of (Cy5)-50S concentration. 
Different concentrations of (Cy5)-L11 reconstituted 50S subunits were stopped-flow delivered to 
surface-immobilized 30SIC+IF3 complexes containing IF1, (Cy3)-IF2-GTP, IF3, biotin-mRNA, 
and fMet-tRNAfMet. The stopped-flow buffer did not contain IF3 or fMet-tRNAfMet. FRET arrival 
times were calculated for each smFRET versus time trajectory as the time of the first data point > 
0.2 FRET, minus the estimated dead time of our stopped-flow instrument (~2.0 sec). Data were 
compiled from three independent experiments. Errors were estimated by splitting the data into 
three equal parts and calculating the average and standard deviation. The decrease in the mean 
FRET arrival time with increasing (Cy5)-50S concentrations is consistent with a bimolecular 
association reaction. 
 

[Cy5-50S], nM Number of Molecules Mean FRET Arrival Time (sec) 

10 209 5.8 ± 0.3 

20 262 4 ± 1 

40 231 3.5 ± 0.4 

60 217 3.0 ± 0.4 
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Appendix C – Lifetime analysis of zero- and non-zero 
FRET dwells for 30SIC+IF3 

 
 
Table C.1 Dwell times spent in the zero-FRET state for 30SIC+IF3 complexes under varying 
conditions. 30SIC+IF3 complexes contained IF1, (Cy3)-IF2-GTP, IF3, fMet-tRNAfMet, and 
biotinylated mRNA with either an AUG or AUU start codon as indicated.      
 

Start 
codon 

IF3 in 
solutiona 

fMet-tRNAfMet in 
solutionb 

[Cy5-50S], 
nM 

Number of 
dwells 

t1, secc 

AUG - - 10 515 8.85 
AUG - - 20 744 6.98 
AUG - - 40 592 5.59 
AUG - - 60 570 4.55 
AUG - + 20 713 7.11 
AUU - - 20 392 6.87 
AUU - + 20 462 9.45 
AUG + - 10 501 8.52 
AUG + - 20 1024 5.76 
AUG + - 40 1641 3.8 
AUG + - 60 1858 3.44 
AUG + + 20 1091 7.02 
AUU + + 20 826 7.55 

 
(a) In all experiments, IF3 (0.9 μM) was included in the buffers used to dilute 30SIC+IF3s and to rinse the 

flowcell following surface immobilization. The stopped-flow buffer delivered into the flowcell contained 

(Cy5)-50S subunits, IF1, GTP, either in the presence or absence of IF3 as indicated.      

(b) fMet-tRNAfMet (0.9 μM) was either included or omitted from all dilution, rinsing, and stopped-flow 

buffers as indicated. 

(c) Dwell times spent at FRET ≤ 0.2 were extracted from idealized smFRET trajectories and plotted as a 

population decay histogram. The number of dwells comprising each histogram is indicated. The histograms 

were fit with a single exponential decay of the form y=A1*exp(-x/t1) + y0, and the average lifetime, t1, is 

reported here. 
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Table C.2 Dwell times spent in the non-zero FRET state for 30SIC+IF3 complexes under varying 
conditions.  
 

Start 
codon 

IF3 in 
solutiona 

fMet-tRNAfMet 
in solutionb 

[Cy5-50S], 
nM 

Number 
of dwells 

t1, sec 
(A1, %)c 

t2, sec 
(A2, %)c 

AUG - - 10 322 0.7 (64%) 10.9 (34%) 
AUG - - 20 497 1.1 (68%) 13.3 (32%) 
AUG - - 40 436 0.7 (61%) 9.6 (39%) 
AUG - - 60 484 0.7 (59%) 9.2 (41%) 
AUG - + 20 458 0.8 (67%) 15.6 (33%) 
AUU - - 20 249 1.3 (67%) 14.4 (33%) 
AUU - + 20 298 1.6 (69%) 19.7 (31%) 
AUG + - 10 281 0.9 N.A. 
AUG + - 20 643 1.0 N.A. 
AUG + - 40 1099 0.7 N.A. 
AUG + - 60 1331 0.8 N.A. 
AUG + + 20 601 0.6 N.A. 
AUU + + 20 462 0.6 N.A. 

 
(a) In all experiments, IF3 (0.9 μM) was included in the buffers used to dilute 30SIC+IF3s and to rinse the 

flowcell following surface immobilization. The stopped-flow buffer delivered into the flowcell contained 

(Cy5)-50S subunits, IF1, GTP, either in the presence or absence of IF3 as indicated.      

(b) fMet-tRNAfMet (0.9 μM) was either included or omitted from all dilution, rinsing, and stopped-flow 

buffers as indicated. 

(c) Dwell times spent at FRET > 0.2 were extracted from idealized smFRET trajectories and plotted as a 

population decay histogram. The number of dwells comprising each histogram is indicated. When IF3 was 

not included in solution, dwell time histograms were fit with a double exponential decay of the form 

y=A1*exp(-x/t1) + A2*exp(-x/t2) + y0. The percent contribution of the fast and slow components to the 

decay were estimated as A1/(A1+A2)*100 and A2/(A1+A2)*100, respectively. When IF3 was included in 

solution, the dwell time histograms were fit with a single exponential decay of the form  

y=A1*exp(-x/t1) + y0.        
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Table C.3 Quantification of the partitioning between short- and long-lived (Cy5)-50S subunit 
docking events based on a 4 sec threshold. This threshold was chosen because, for experiments in 
which IF3 was kept in solution, where the dwell time histograms are well-described by a single-
exponential decay with a fast time constant, it results in classification of ≥95% of non-zero FRET 
dwells as short-lived.          
 
Start 

codon 
IF3 in 

solutiona 
fMet-tRNAfMet in 

solutionb 
[50S], nM Number of 

dwells 
Short 

dwells (%)c 
Long dwells 

(%)c 
AUG - - 10 367 76 24 
AUG - - 20 574 76 24 
AUG - - 40 506 76 24 
AUG - - 60 560 76 24 
AUG - + 20 483 84 16 
AUU - - 20 297 76 24 
AUU - + 20 337 73 27 
AUG + - 10 337 95 5 
AUG + - 20 800 97 3 
AUG + - 40 1426 95 5 
AUG + - 60 1757 95 5 
AUG + + 20 831 98 2 
AUU + + 20 657 98 2 

 
(a) In all experiments, IF3 (0.9 μM) was included in the buffers used to dilute 30SIC+IF3s and to rinse the 

flowcell following surface immobilization. The stopped-flow buffer delivered into the flowcell contained 

(Cy5)-50S subunits, IF1, GTP, either in the presence or absence of IF3 as indicated.      

(b) fMet-tRNAfMet (0.9 μM) was either included or omitted from all dilution, rinsing, and stopped-flow 

buffers as indicated. 

(c) Dwell times spent at FRET > 0.2 were extracted from the idealized smFRET trajectories and classified 

as short- or long-lived if they lasted less or more than 4 sec, respectively.   
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Appendix D – Example smFRET traces of rare  
subunit-joining dynamics observed for 30SIC-IF3 

 

 
 
Figure D.1: Example smFRET traces from 30SIC-IF3 suggesting the presence of a transient 
subunit-joining intermediate. 
(Cy5)-L11 labeled 50S subunit were stopped-flow delivered to 30SIC-IF3 complexes containing 
IF1, (Cy3)-IF2-GTP, biotin-mRNA, and fMet-tRNAfMet. In a small subpopulation of the traces, 
FRET behaviors indicative of a transient conformational intermediate along the 70S IC formation 
pathway were observed. (A) Upon subunit joining, ~1 sec dwells in a mid-FRET state were 
followed by a transition to a longer lived high-FRET state. (B) Short, ~100 msec FRET events 
occasionally preceded stable subunit joining, reminiscent of the transient subunit docking events 
observed with 30SIC+IF3.   
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Appendix E – Matlab scripts 
 
The Matlab scripts used for the data analysis procedures described in Section 5.5 are 
presented below. These include the scripts that were specifically mentioned as well as 
those that are executed through internal function calls. Many of the scripts were written 
by Mr. Pallav Kosuri and Dr. Jingyi Fei as part of the FRET data analysis package 
(FDAP v1.7). Others were written by Dr. Jiangning Wang and yet others by myself. 
Specific authorship details are included in the first comment field of all scripts below. 
The scripts are presented in alphabetical order as follows: 
  
Script Page     
addLabels.m .....................................................................................................................248  
addLabels_1color.m .........................................................................................................248 
addLabels_3color.m .........................................................................................................249 
AverageTransitionRate.m ................................................................................................249 
correctBaseline.m.............................................................................................................251 
correctBaseline_end.m .....................................................................................................251 
correctBaseline_end_1color.m.........................................................................................252 
getCy3.m ..........................................................................................................................253 
getCY3lifetime.m.............................................................................................................254 
getDecay.m ......................................................................................................................255 
getDwellHist.m ................................................................................................................255 
getFLUORlifetime.m .......................................................................................................256 
getFRET.m .......................................................................................................................257 
getFRET2.m .....................................................................................................................258 
getFRET3.m .....................................................................................................................258 
getFRETon.m ...................................................................................................................259 
getLongDwells.m .............................................................................................................260 
getRawDwell_all.m .........................................................................................................261 
getRawDwell_DeleteLastDwell.m ..................................................................................262 
getTimeFRET.m ..............................................................................................................262 
J_filter.m ..........................................................................................................................263 
J_filter_3color.m ..............................................................................................................263 
J_Path.m ...........................................................................................................................264 
J2_filter.m ........................................................................................................................264 
J2_filter_3color.m ............................................................................................................265 
J2_Path.m .........................................................................................................................265 
loadSFTraces.m ...............................................................................................................266 
loadTraces.m ....................................................................................................................267 
parse_cumeONdwells_length.m ......................................................................................269 
parseTraces_T3binding.m ................................................................................................270 
plotFRET.m .....................................................................................................................270 
plotFRETtraces.m ............................................................................................................271 



Appendix E 
______________________________________________________________________________ 

248 

plot_idealizedFRET_hist.m .............................................................................................271 
plotTDP.m ........................................................................................................................272 
plotTimeFRET.m .............................................................................................................273 
plotTimeFRET_ps.m .......................................................................................................274 
plotTraces.m.....................................................................................................................276 
plotTraces_3color.m ........................................................................................................278 
PopDecay.m .....................................................................................................................278 
postSync_3.m ...................................................................................................................279 
purifyOnOffDwell.m .......................................................................................................280 
removeEntry.m.................................................................................................................281 
removeLabels.m ...............................................................................................................282 
removeLabels_1color.m...................................................................................................282 
removeLabels_3color.m...................................................................................................282 
removeTrace.m ................................................................................................................282 
removeTrace_3color.m ....................................................................................................283 
RollingAvg.m...................................................................................................................283 
saveTraces.m ....................................................................................................................284 
separateCy.m ....................................................................................................................284 
separateOnOffDwells.m...................................................................................................284 
SplitData.m ......................................................................................................................285 
SplitPathData.m ...............................................................................................................286 
 
 
addLabels.m 
 
%From FDAP v1.7 
  
function [cy3, cy5]=addLabels(cy3, cy5, labels) 
             
        %add labels 
    cy3=[labels; cy3]; 
    cy5=[labels; cy5]; 
 
 
 

addLabels_1color.m 
 
%same as addLabels from FDAP v1.7, modified for 1-color data 
  
function [cy3]=addLabels_1color(cy3, labels) 
             
        %add labels 
    cy3=[labels; cy3]; 
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addLabels_3color.m 
 
%same as addLabels from FDAP v1.7, modified for 3-color data 
  
function [cy3, cy5, cy2]=addLabels_3color(cy3, cy5, cy2, labels) 
     
        %add labels 
    cy3=[labels; cy3]; 
    cy5=[labels; cy5]; 
    cy2=[labels; cy2]; 
 
 
 

AverageTransitionRate.m 
 
%AverageTransitionRate will calculate the average number of transitions 
%sec-1 for transitions between two non-zero FRET states within the same 
%70SIC. Input argument "pathData" should have the four column format, 
i.e. 
%[fileno FRET(i) FRET(i+1) n] and should be generated by using 
getRawDwell_all  
%such that first and last dwells of each trace are kept. The latter is 
%important since AverageTransitionRate will identify the last dwell of 
a 
%given trace by the fact that FRET(i+1) is NaN. This script sums 
together 
%the length of all ON dwells that contain at least one significant 
%transition between non-zero FRET states (deltaFRET for what qualifies 
as a significant 
%transition is defined with input parameter "signif_trans") and divides 
the 
%total number of such transitions observed by this value.  
%Written by DDM 
  
function R = AverageTransitionRate(pathData, signif_trans) 
  
KEY = 0.2;  %Threshold separating bound and unbound states 
  
pathData = pathData(:,[1,2,3,4]); 
  
fileno = pathData(:,1); 
  
t = 1; %current dwell 
  
numtransitions = 0;  %counter for number of transitions between non-
zero FRET states 
  
spf = 0.1;  %exposure time 
  
%to hold path data for dwells comprising ON dwells that have at least 
one 
%significant transition between non-zero FRET states   



Appendix E 
______________________________________________________________________________ 

250 

SavedData = ones(1,4);   
  
while t <= length(fileno) 
     
    flag = 0;  %flags if a significant transition has been detected 
     
    if pathData(t, 2) <= KEY %If current dwell is an OFF dwell  
        t = t + 1;  %Go to next dwell without saving entry 
    else 
        if pathData(t, 3) <= KEY | isnan(pathData(t,3))  %If current 
dwell is an isolated ON dwell followed by an OFF dwell or a new trace 
            t = t +1;  %Go to next dwell without saving entry  
             
        elseif pathData(t, 3) > KEY   %If current dwell is an ON dwell 
followed by another ON dwell 
            i = 1; 
            while pathData(t,2) > KEY 
                 
                tempSavedData(i, :) = pathData(t,:);   
                 
                if pathData(t,3) > KEY && abs(diff([pathData(t,2) 
pathData(t,3)])) > signif_trans 
                    flag = 1; 
                    numtransitions = numtransitions + 1; 
                end 
                 
                i = i + 1; 
                t = t + 1; 
                 
                if t > length(fileno) 
                    break; 
                end 
            end 
        end 
    end 
     
    if flag == 1 
        SavedData = [SavedData; tempSavedData]; 
    end 
end 
  
SavedData = SavedData(2:end, :); 
  
totalONdwell_frames = sum(SavedData(:,4)); 
         
totalONdwell_sec = totalONdwell_frames * spf; 
  
R = numtransitions / totalONdwell_sec; 
  
disp(['R =  ' num2str(R) ' transitions per sec']); 
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correctBaseline.m 
 
%From FDAP v1.7 
  
function [cy3, cy5] = correctBaseline(cy3, cy5) 
     
    BLEED_COEF = 0.07 
  
    [cy3, cy5, labels]=removeLabels(cy3, cy5); 
     
    X = linspace(0,18000,360);  
     
    H3 = hist(cy3(:), X); 
        %truncation correction 
    H3(length(H3))=H3(length(H3)-1); 
    figure, bar(X, H3), title('Cy3 Intensity Histogram'); 
     
        %Cy3 baseline correction 
    Cy3_Baseline = X(find(H3==max(H3))) 
    cy3 = cy3 - Cy3_Baseline;     
    
        %Cy5 bleedthrough correction 
    cy5 = cy5 - BLEED_COEF*cy3; 
    
    H5 = hist(cy5(:), X); 
        %truncation correction 
    H5(length(H5))=H5(length(H5)-1); 
    figure, bar(X, H5), title('Cy5 Intensity Histogram'); 
         
        %Cy5 baseline correction 
    Cy5_Baseline = X(find(H5==max(H5))) 
    cy5 = cy5 - Cy5_Baseline;     
     
    [cy3, cy5]=addLabels(cy3, cy5, labels); 
 
 
 

correctBaseline_end.m 
 
%the argument noBleach is a list of all the traces that do not show 
%photobleaching 
%From FDAP v1.7 
  
function [cy3, cy5] = correctBaseline_end(cy3, cy5, noBleach) 
     
        %AVER specifies how many datapoints at the end of the trace 
that 
        %are averaged to get the baseline. 
    BLEED_COEF = 0.07 
    AVER = 20 
     
    [cy3, cy5, labels]=removeLabels(cy3, cy5); 
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    ms = size(cy3); 
     
        %individually correct all traces that show photobleaching 
    for i = 1:ms(2) 
        if find(noBleach==labels(i)) 
            cy3_baseline(i)=0; 
            cy5_baseline(i)=0; 
        else 
            %disp(labels(i)); 
             
            cy3_baseline(i) = mean(cy3((ms(1)-AVER):ms(1), i)); 
            cy3(:, i) = cy3(:, i) - cy3_baseline(i); 
             
            cy5(:, i) = cy5(:, i) - BLEED_COEF*cy3(:, i); 
            cy5_baseline(i) = mean(cy5((ms(1)-AVER):ms(1), i)); 
            cy5(:, i) = cy5(:, i) - cy5_baseline(i); 
        end 
    end 
     
        %correct all non-photobleaching traces using an average 
    cy3_average = 
mean(cy3_baseline)*length(cy3_baseline)/(length(cy3_baseline)-
length(noBleach)); 
    cy5_average = 
mean(cy5_baseline)*length(cy5_baseline)/(length(cy5_baseline)-
length(noBleach)); 
    no = find(cy3_baseline == 0); 
    cy3(:, no) = cy3(:, no) - cy3_average; 
    cy5(:, no) = cy5(:, no)-BLEED_COEF*cy3(:, no)- cy5_average; 
    [cy3, cy5]=addLabels(cy3, cy5, labels); 
     
%base_list = [labels; cy3_baseline; cy5_baseline]; 
 
 
 

correctBaseline_end_1color.m 
 
%the argument noBleach is a list of all the traces that do not show 
%photobleaching 
%correctBaseline_end from FDAP v1.7, modified for 1-color data 
  
function [cy3] = correctBaseline_end_1color(cy3, noBleach) 
     
        %AVER specifies how many datapoints at the end of the trace 
that 
        %are averaged to get the baseline. 
    AVER = 20 
     
    [cy3, labels]=removeLabels_1color(cy3); 
     
    ms = size(cy3); 
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        %individually correct all traces that show photobleaching 
    for i = 1:ms(2) 
        if find(noBleach==labels(i)) 
            cy3_baseline(i)=0; 
        else 
            cy3_baseline(i) = mean(cy3((ms(1)-AVER):ms(1), i)); 
            cy3(:, i) = cy3(:, i) - cy3_baseline(i);             
        end 
    end 
     
        %correct all non-photobleaching traces using an average 
    cy3_average = 
mean(cy3_baseline)*length(cy3_baseline)/(length(cy3_baseline)-
length(noBleach)); 
    no = find(cy3_baseline == 0); 
    cy3(:, no) = cy3(:, no) - cy3_average; 
     
    [cy3]=addLabels_1color(cy3, labels); 
 
 
 

getCy3.m 
 
%getCy3 will take a matrix of Cy3 intensity traces, remove labels, and  
%enter a 0 whenever Cy3 intensity drops below the minimum. This 
facilitates  
%identifying the specific frame where the minimum threshold is 
breached.  
%To be used in conjunction with getCY3lifetime. 
%Written by DDM 
  
function F = getCy3(cy3) 
     
    cy3=cy3(2:end,:); %Remove labels 
     
    %minimum total intensity 
    MININT=800; 
     
    ms=size(cy3); 
    cols=ms(2); 
    rows=ms(1); 
     
    for j=1:cols 
        for i=1:rows 
            if cy3(i,j) > MININT 
               F(i,j)=cy3(i,j); 
            else 
                    %too low total intensity, Cy3 has photobleached 
               F(i,j)=0; 
            end 
        end 
    end 
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getCY3lifetime.m 
 
%getCY3lifetime returns a row vector where each entry gives the 
lifetime 
%of the Cy3 fluorescence signal before photobleaching 
%Written by DDM 
  
function L = getCY3lifetime(cy3,X); 
    %Input variable X is a row vector containing the timestamps in sec 
    %corresponding to each frame of the movie 
  
    F=getCy3(cy3); 
     
    ms=size(F); 
    cols=ms(2); 
    rows=ms(1); 
     
    if nargin==1 %Results output in units of frame number 
        for j=1:cols 
        %If cy3 does not photobleach, the array entry will be the total  
        %number of frames in the movie 
            L(j)=rows; 
        %If cy3 does photobleach, the array entry will be the number of  
        %frames before photobleaching. 
            for i=1:(rows-1) 
                if F(i,j)==0 & F(i+1,j)==0 & F(i+2,j)==0 
                L(j)=i; 
                break; 
                end 
            end 
        end 
         
    elseif nargin==2 %Results output in units of seconds 
        for j=1:cols 
        %If cy3 does not photobleach, the array entry will be the final 
        %timestamp of the movie 
            endtime=X(rows); 
            L(j)=endtime; 
        %If cy3 does photobleach, the array entry will be the time in   
        %seconds before photobleaching. 
            for i=1:rows 
                if F(i,j)==0 & F(i+1,j)==0 & F(i+2,j)==0 
                L(j)=X(i); 
                break; 
                end 
            end 
        end 
    end 
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getDecay.m 
 
%From Jiangning Wang, modified by DDM 
  
function [ts, N] = getDecay_DM(dwellData, bounds) 
     
    start_low = bounds(1); 
    start_high = bounds(2); 
     
    selection = find(dwellData(:,2) > start_low & dwellData(:,2) < 
start_high); 
    maxT = max(dwellData(selection,4)); 
    t = 1:(maxT-1); 
    ts = t*0.1; 
    for i = t 
        N(i) = length(find(dwellData(selection, 4) >= t(i))); 
    end 
     
    figure, plot(ts, N, '.') 
    title(['Decay curve for state bounded by: start=[' 
num2str(start_low) ', ' num2str(start_high) ']']) 
    ylabel('Population') 
    xlabel('t (s)') 
    DC=[ts;N].'; 
    save('decaycurvedata.dat', '-ascii', 'DC'); 
     
    ts=ts'; 
    N=N'; 
 
 
 

getDwellHist.m 
 
%getDwellHist takes purified dwell data in the four column format, i.e. 
%[fileno, FRET(i), FRET(i+1), dwelltime_in_frames] and returns a column 
vector N 
%containing dwelltimes (in seconds) for all dwells with a starting FRET 
value that 
%falls within the range defined by input argument "bounds" 
%Written by DDM 
  
function N = getDwellHist(dwellData, bounds) 
     
    start_low = bounds(1); 
    start_high = bounds(2); 
     
    selection = find(dwellData(:,2) > start_low & dwellData(:,2) < 
start_high); 
     
    fps= 0.1; %enter frame rate 
       
    N = dwellData(selection, 4); 
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    N = N*fps; 
 
 
 

getFLUORlifetime.m 
 
%getFLUORlifetime returns a row vector where each entry gives the total 
%duration of the fluorescence signal (including cy3 fluorescence after 
%cy5 photobleaching) for a given trace. To be used for stopped-flow  
%delivery experiment with cy3-IF2 and cy5-50S subunits 
%Written by DDM 
  
function H = getFLUORlifetime(cy3,cy5,X); 
    %Input variable X is a row vector containing the timestamps in sec 
    %corresponding to each frame of the movie 
  
    F=getFRET3(cy3,cy5); 
     
    ms=size(F); 
    cols=ms(2); 
    rows=ms(1); 
     
    
    if nargin==2 %Results output in units of frame number 
        G=getFRETon(cy3,cy5); 
        for j=1:cols 
        %If cy3 does not photobleach, the array entry will be the 
number 
        %of frames after initial FRET onset until data acquisition was   
        %terminated. This will necessarily be an underestimation of the  
        %true fluorescence lifetime. 
            H(j)=rows-G(j); 
        %If cy3 does photobleach, the array entry will be the number of  
        %frames from the onset of FRET to the cy3 photobleaching event. 
            for i=1:(rows-1) 
                try if F(i,j)==0 & F(i+1,j)==0 & i>G(j); 
                    H(j)=i-G(j); 
                    break; 
                    end 
                catch 
                    H(j)=rows-G(j); 
                    disp(lasterr) 
                end 
            end 
        end 
    elseif nargin==3 %Results output in units of seconds 
        Gframes=getFRETon(cy3,cy5); 
        G=getFRETon(cy3,cy5,X); 
        for j=1:cols 
        %If cy3 does not photobleach, the array entry will be the time 
in  
        %seconds between initial FRET onset and termination of data  
        %acquisition 
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            endtime=X(rows); 
            H(j)=endtime-G(j); 
        %If cy3 does photobleach, the array entry will be the time in 
        %seconds between the onset of FRET and the cy3 photobleaching 
        %event. 
            for i=1:(rows-1) 
                try if F(i,j)==0 & F(i+1,j)==0 & i>Gframes(j); 
                    H(j)=X(i)-G(j); 
                    break; 
                    end 
                catch 
                    H(j)=endtime-G(j); 
                    disp(lasterr) 
                end 
            end 
        end 
    end  
 
 
 

getFRET.m 
 
%getFRET will identify the first instance where the sum of cy3+cy5 
drops below the threshold and mark 
%that data frame and all subsequent data frames with NaN.  
%In contrast, getFRET2 checks each data frame individually to see if 
sum of cy3+cy5 
%intensity drops below threshold and marks them as NaN accordingly.  
%From FDAP v1.7 
  
function F = getFRET(cy3, cy5) 
     
    [cy3, cy5, labels]=removeLabels(cy3, cy5); 
     
    %minimum total intensity 
    MININT=250; 
     
    ms=size(cy3); 
    cols=ms(2); 
    rows=ms(1); 
     
    summ=cy3+cy5; 
     
    for j=1:cols 
        for i=1:rows 
            if summ(i,j) > MININT 
                F(i,j)=cy5(i,j)/summ(i,j); 
            else 
                    %too low total intensity to be FRET 
                    %delete rest of trace 
                F(i:rows,j)=NaN; 
                break; 
            end 
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        end 
    end 
 
 
 

getFRET2.m 
 
%getFRET2 checks each data frame individually to see if sum of cy3+cy5 
%intensity drops below threshold and marks them as NaN accordingly; in 
contrast, getFRET will identify the 
%first instance where the sum of cy3+cy5 drops below the threshold and 
mark 
%that data frame and all subsequent data frames with NaN.  
%From FDAP v1.7 
  
function F = getFRET2(cy3, cy5) 
     
    [cy3, cy5, labels]=removeLabels(cy3, cy5); 
     
    %minimum total intensity 
    MININT=250; 
     
    ms=size(cy3); 
    cols=ms(2); 
    rows=ms(1); 
     
    summ=cy3+cy5; 
     
    for j=1:cols 
        for i=1:rows 
            if summ(i,j) > MININT 
                F(i,j)=cy5(i,j)/summ(i,j); 
            else 
                    %too low total intensity to be FRET 
                F(i,j)=NaN; 
            end 
        end 
    end 
 
 
 

getFRET3.m 
 
%getFRET3 is the same as getFRET2 except instead of entering NaN when 
the 
%sum of cy3 and cy5 intensities drops below the threshold, it enters 0. 
%This facilitates identifying the specific frame where the minimum  
%threshold is breached. To be used in conjunction with getFRETon and  
%getFLUORlifetime 
%Written by DDM 
  
function F = getFRET3(cy3, cy5) 
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    [cy3, cy5, labels]=removeLabels(cy3, cy5); 
     
    %minimum total intensity 
    MININT=250 
     
    ms=size(cy3); 
    cols=ms(2); 
    rows=ms(1); 
     
    summ=cy3+cy5; 
     
    for j=1:cols 
        for i=1:rows 
            if summ(i,j) > MININT 
                F(i,j)=cy5(i,j)/summ(i,j); 
            else 
                    %too low total intensity to be FRET 
                F(i,j)=0; 
            end 
        end 
    end 
 
 
 

getFRETon.m 
 
%getFRETon returns a row vector where each entry is either the frame 
number  
%or time in seconds at which the onset of FRET occurs. Frame number is  
%returned when two inputs are specified, and seconds are returned if 
three 
%inputs are specified. If FRET does not occur above the chosen 
threshold  
%for a given trace, NaN will be inserted as the entry for that trace 
%Written by DDM 
  
function G = getFRETon(cy3,cy5,X);  
    %getFRET3 is used here. It will mark data points that drop below 
min 
    %intensity as 0, but will not delete subsequent data. 
    %Input variable X is a row vector containing the timestamps in sec 
    %corresponding to each frame of the movie 
    F=getFRET3(cy3,cy5); 
     
    %Threshold FRET value 
    LIMIT=0.20 
     
    ms=size(F); 
    cols=ms(2); 
    rows=ms(1); 
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    for j=1:cols 
        %Entry will be NaN if trace does not attain threshold FRET 
value 
        G(j)=NaN; 
        %Otherwise entry will be the frame number at which FRET 
        %value above threshold is first observed 
        for i=1:rows 
            if F(i,j)>LIMIT & F(i+1,j)>LIMIT 
                G(j)=i; 
                break;     
            end 
        end 
    end 
    %If the array of timestamps X is provided as the third function 
input,  
    %output entries are reassigned to be the time in seconds at which 
FRET  
    %above the threshold is first observed 
    if nargin==3 
        for j=1:cols 
            if ~isnan(G(j)) 
                ontime=X(G(j)); 
                G(j)=ontime; 
            end 
        end 
    end 
 
 
 

getLongDwells.m 
 
%getLongDwells returns a column vector containing all dwell times 
%that are longer than a specified threshold.  
%Input argument ONdwells is a column vector containg dwell times in 
units of 
%sec, i.e. the the output from getDwellHist. Input argument "threshold" 
%defines long versus short dwells and should be given in sec. 
%On-screen display provided of the number of long and short dwells, and 
the 
%percentage of the total for each 
%Written by DDM 
  
function N = getLongDwells(ONdwells, threshold) 
  
LongDwells = find(ONdwells(:) > threshold); 
  
N = ONdwells(LongDwells); 
  
NumLong = length(LongDwells); 
  
disp(['Number of long dwells = ' int2str(NumLong)]) 
  
ShortDwells = find(ONdwells(:) <= threshold); 
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NumShort = length(ShortDwells); 
  
disp(['Number of short dwells = ' int2str(NumShort)]) 
  
TotalDwells = NumLong + NumShort; 
  
PerLong = (NumLong/TotalDwells)*100; 
PerShort = (NumShort/TotalDwells)*100; 
  
disp([int2str(PerLong) '% Long']); 
disp([int2str(PerShort) '% Short']); 
 
 
 

getRawDwell_all.m 
 
%From Jiangning Wang, modified by DDM 
  
function dwellData = getRawDwell_all(pathData) 
     
    fileno = pathData(:, 1); 
    FRET = pathData(:, 2); 
     
        %transition no 
    t = 1; 
        %frame no in current transition 
    n = 1; 
    for (i=(1:(length(FRET)-1))) 
         
            %new file 
        if diff(fileno(i:i+1)) | ((i==(length(FRET)-1)) & 
(fileno(i)==fileno(i+1))); 
            dwellData(t, :) = [fileno(i) FRET(i) NaN n]; 
            t = t + 1; 
            n = 1; 
            continue; 
        end 
             
            %transition 
        if diff(FRET(i:i+1)) 
            dwellData(t, :) = [fileno(i) FRET(i) FRET(i + 1) n]; 
            t = t + 1; 
            n = 1;         
            %no transition 
        else 
            n = n + 1; 
        end 
    end 
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getRawDwell_DeleteLastDwell.m 
 
%From Jiangning Wang, modified by DDM 
  
function dwellData = getRawDwell_DeleteLastDwell(pathData) 
     
    fileno = pathData(:, 1); 
    FRET = pathData(:, 2); 
     
        %transition no 
    t = 1; 
        %frame no in current transition 
    n = 1; 
    for (i=(1:(length(FRET)-1))) 
         
            %new file 
        if diff(fileno(i:i+1)) 
            n = 1; 
            continue; % skip the last dwell of each trace without 
saving it,  
            %equivalent to removing the last dwell 
        end 
  
            %transition 
        if diff(FRET(i:i+1)) 
            dwellData(t, :) = [fileno(i) FRET(i) FRET(i + 1) n]; 
            t = t + 1; 
            n = 1;         
            %no transition 
        else 
            n = n + 1; 
        end 
    end 
 
 
 

getTimeFRET.m 
 
%From FDAP v1.7 
  
function H = getTimeFRET(F, FRETbins, Tbs) 
     
    ms=size(F); 
     
        %no of timesteps after binning 
    nt=floor(ms(1)/Tbs); 
     
        %apply binning in time dimension 
    Fb = zeros(nt, ms(2)); 
    for i = (1:nt) 
        Fb(i,:) = mean(F((i-1)*Tbs+1:i*Tbs,:));   
    end 
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        %build histogram 
    Y = linspace(-0.2, 1.2, FRETbins); 
    H = zeros(FRETbins, nt); 
    for i = 1:nt 
        H(:, i) = hist(Fb(i, :), Y)'; 
    end 
     
%Final matrix H: Number of rows is equal to number of FRET bins. 
%Number of columns is equal to the number of time bins. Any given 
column 
%is the population FRET distribution for a particular binned timepoint 
 
 
 

J_filter.m 
 
%Takes the cy3 and cy5 traces as well as a vector with the 
%J-selections (bad traces) as arguments and returns the filtered 
traces. 
%From FDAP v1.7 
  
function [cy3, cy5] = J_filter(cy3, cy5, J) 
  
    ms=size(cy3); 
     
        %selective filter 
    for i = 1:length(J) 
        [cy3, cy5]=removeTrace(cy3, cy5, J(i)); 
    end 
     
        %display results 
    ms2=size(cy3); 
    total=ms(2) 
    discarded=ms(2)-ms2(2) 
    kept=total-discarded 
 
 
 

J_filter_3color.m 
 
%Takes cy3, cy5, and cy2 traces as well as a vector with the 
%J-selections (bad traces) as arguments and returns the filtered 
traces. 
%same as J_filter from FDAP v1.7, modified for 3-color data 
  
function [cy3, cy5, cy2] = J_filter_3color(cy3, cy5, cy2, J) 
  
    ms=size(cy3); 
     
        %selective filter 
    for i = 1:length(J) 
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        [cy3, cy5, cy2]=removeTrace_3color(cy3, cy5, cy2, J(i)); 
    end 
     
        %display results 
    ms2=size(cy3); 
    total=ms(2) 
    discarded=ms(2)-ms2(2) 
    kept=total-discarded 
 
 
 

J_Path.m 
 
%J_Path will discard a subset of the idealized traces from vbFRET. 
%"pathData" is the two-column vector of path data output from vbFRET. 
%"selection" is a vector containing the trace labels for the idealized 
traces that 
%you want to delete. It is a good idea to make sure that the trace 
labels you  
%wrote down correspond to the trace labels that show up in the path 
data 
%file, since things can get messed up if traces were relabeled prior to 
or during  
%the vbFRET session. 
%Written by DDM 
  
function pathData = J_Path(pathData, selection) 
  
pathData = pathData(:, [1,2]); 
fileno = pathData(:, 1); 
sizePath = size(pathData); 
numrows = sizePath(1); 
selind = 1; 
  
for i=1:numrows 
    if find(selection == fileno(i)); 
    else selind = [selind; i]; 
    end 
end 
  
lensel = length(selind); 
rowind = selind(2:lensel); 
  
pathData = pathData(rowind, :); 
 
 
 

J2_filter.m 
 
%Keep selected traces and discard the rest. 
%From FDAP v1.7 
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function [cy3, cy5] = J2_filter(cy3, cy5, select) 
  
    [cy3a, cy5a, labels]=removeLabels(cy3, cy5); 
    ms = size(cy3); 
    for i = 1:ms(2) 
        if find(select==labels(i)) 
        else 
            [cy3, cy5]=removeTrace(cy3, cy5, labels(i)); 
        end 
    end 
    ms2=size(cy3); 
    total_kept=ms2(2) 
 
 
 

J2_filter_3color.m 
 
%Keep selected 3-color traces and discard the rest. 
%same as J2_filter from FDAP v1.7, modified for 3-color data 
  
function [cy3, cy5, cy2] = J2_filter_3color(cy3, cy5, cy2, select) 
  
    [cy3a, cy5a, cy2a, labels]=removeLabels_3color(cy3, cy5, cy2); 
    ms = size(cy3); 
    for i = 1:ms(2) 
        if find(select==labels(i)) 
        else 
            [cy3, cy5, cy2]=removeTrace_3color(cy3, cy5, cy2, 
labels(i)); 
        end 
    end 
    ms2=size(cy3); 
    total_kept=ms2(2) 
 
 

 
J2_Path.m 
 
%J2_Path will select a subset of the idealized traces from vbFRET. 
Input 
%should be the two-column vector of path data output from vbFRET. 
%"selection" is a vector containing the trace labels for the idealized 
traces that 
%you want to keep. It is a good idea to make sure that the trace labels 
you  
%wrote down correspond to the trace labels that show up in the path 
data 
%file, since things can get messed up if traces were relabeled prior to 
or during  
%the vbFRET session. 
%Written by DDM 
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function pathData = J2_Path(pathData, selection) 
  
pathData = pathData(:, [1,2]); 
fileno = pathData(:, 1); 
sizePath = size(pathData); 
numrows = sizePath(1); 
selind = 1; 
  
for i=1:numrows 
    if find(selection == fileno(i)); 
    selind = [selind; i]; 
    end 
end 
  
lensel = length(selind); 
rowind = selind(2:lensel); 
  
pathData = pathData(rowind, :); 
 
 
 

loadSFTraces.m 
 
%From Victor Naumov 
  
function [green, red, blue, magenta] = loadSFTraces(filePrefix, 
numFiles) 
  traces=[]; 
  if (nargin<2) 
    numFiles=1; 
  end 
  numChannels=1; 
  for fileNum = 1:numFiles 
    if (nargin==1) 
      fileName=filePrefix 
    else 
      fileName=[filePrefix int2str(fileNum) '.tsv'] 
    end 
    handle=fopen(fileName); 
    if (~(handle>0)) 
      error('file cannot be opened'); 
    end 
    token=fscanf(handle,'%s',1); 
    while ~strcmp(token,'volumes') 
      token=fscanf(handle,'%s',1); 
    end 
  
    [region, hasdata]=fscanf(handle, '%d', 1); 
    while hasdata>0 
      channel=fscanf(handle, '%d', 1); 
      if (channel+1>numChannels) %channel numbering starts at zero 
    numChannels=channel+1; 
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      end 
      area=fscanf(handle, '%d', 1); 
      length=fscanf(handle, '%d', 1); 
      background=fscanf(handle, '%d', 1); 
  
      %unlike in loadTraces.m, the labels contain the region ID rather 
than count up sequentially 
      %also, file IDs increase in increments of 10000, not 1000 
      label=fileNum*10000+region; 
      volumes=[label; fscanf(handle, '%d', length)-0];  
      sizedif=size(volumes,1)-size(traces,1); 
      if (sizedif > 0) 
        traces=[traces; zeros(sizedif, size(traces,2))]; 
      end 
      if (sizedif < 0) 
        volumes=[volumes; zeros(-sizedif,1)]; 
      end 
      traces=[traces volumes]; 
      [region, hasdata]=fscanf(handle, '%d', 1); 
    end 
    fclose(handle); 
  end 
  
  for i = (1:size(traces,2)/numChannels) 
    green(:,i) = traces(:, (i-1)*numChannels+1); 
    if (numChannels>=2) 
      red(:,i) = traces(:, (i-1)*numChannels+2); 
    end 
    if (numChannels>=3) 
      blue(:,i) = traces(:, (i-1)*numChannels+3); 
    end 
    if (numChannels>=4) 
      magenta(:,i) = traces(:, (i-1)*numChannels+4); 
    end 
  end 
  
  traces=size(traces,2)/numChannels 
  
end 
 
 
 

loadTraces.m  
 
%Loads traces from multiple files with filenames formatted as  
%"<filename>#.dat", where # is the index number. The traces are  
%returned as columns in a matrix with the first row as a label  
%formatted as: "<file#>*1000 + <trace#>" 
%From FDAP v1.7 
  
function traces = loadTraces(filename, no) 
     
        %one file 



Appendix E 
______________________________________________________________________________ 

268 

    if nargin == 1 
        newTraces=load([filename '.dat']); 
        ms=size(newTraces); 
            %create labels as [1 1 2 2 3 3 ...] 
        labels=1:ms(2)/2; 
        labels=[labels; labels]; 
        labels=labels(:)'; 
            %insert labels as the first row 
        newTraces=[labels; newTraces]; 
        traces=newTraces; 
  
        %multiple files 
    elseif nargin == 2 
     
            %first file 
        i=1; 
        reading_file=i 
        newTraces=load([filename int2str(i) '.dat']); 
        ms=size(newTraces); 
            %create labels as [1 1 2 2 3 3 ...] 
        labels=i*1000+(1:ms(2)/2); 
        labels=[labels; labels]; 
        labels=labels(:)'; 
            %insert labels as the first row 
        newTraces=[labels; newTraces]; 
        traces=newTraces; 
     
     
            %if more than one file 
        if no > 1 
            for i = 2:no 
                reading_file=i 
                newTraces=load([filename int2str(i) '.dat']); 
                ms=size(newTraces); 
                    %create labels as [1 1 2 2 3 3 ...] 
                labels=i*1000+(1:ms(2)/2); 
                labels=[labels; labels]; 
                labels=labels(:)'; 
                    %insert labels as the first row 
                newTraces=[labels; newTraces]; 
             
                traces=[traces newTraces]; 
            end 
        end 
    end 
     
    ms=size(traces); 
    number_of_traces=ms(2)/2 
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parse_cumeONdwells_length.m 
 
%parse_cumeONdwells_length will separate dwellData for ON dwells into 
%two separate matrices: "longONdwells," which contains the data for 
those individual  
%dwells that comprise long cumulative ON dwells, and "shortONdwells," 
which contains  
%the data the for those individual dwells that comprise short 
cumulative ON dwells.  
%The input variable "threshold" is used to define short and long 
cumulative ON dwells 
%and should be entered in seconds. The input "ONdwells" should be the 
%output from separateOnOffDwells, which is a four-column matrix of the 
form 
%[i FRET(t) FRET(t+1) n] where i is the unique identifier for each 
%cumulative ON dwell and n is the number of time points spent within 
each 
%individual dwell. 
%Written by DDM 
  
function [longONdwells, shortONdwells] = 
parse_cumeONdwells_length(ONdwells, threshold) 
     
    fps = 10; %time resolution 
     
    ONdwells = ONdwells(:, [1,2,3,4]); 
    dwellno = ONdwells(:, 1); 
    numdwells = length(unique(dwellno));  
     
    longONdwells = ones(1,4); 
    shortONdwells = ones(1,4); 
     
    for t=1:numdwells 
        rowind = find(dwellno == t); 
        tempDwellData = ONdwells(rowind, :); 
        n_cumedwell = sum(tempDwellData(:,4)); 
        if n_cumedwell >= threshold*fps 
            longONdwells = [longONdwells; tempDwellData]; 
        else 
            shortONdwells = [shortONdwells; tempDwellData]; 
        end 
    end 
     
    longONdwells = longONdwells(2:end, :); 
    shortONdwells = shortONdwells(2:end, :); 
     
end 
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parseTraces_T3binding.m 
 
%Written by DDM 
  
function [cy5, frameno] = parseTraces_T3binding(cy5) 
  
ms=size(cy5); 
rows=ms(1); 
cols=ms(2); 
  
IntensityThreshold = 1200;   
TimeThreshold = 5; %Number of consecutive data points above intensity 
threshold to be counted as a binding event. 
  
keptTraces = ones(rows,1); %To store those traces that show a Cy5-T3 
binding event 
frameno = ones(1,1); %To store the corresponding frame number where 
Cy5-T3 binding event is first observed. 
  
for j = 1:cols 
    for i=2:(rows - TimeThreshold + 1) 
        if cy5(i:(i + TimeThreshold - 1),j) > IntensityThreshold 
            keptTraces = [keptTraces, cy5(:,j)]; 
            frameno = [frameno, i - 1]; 
            break 
        end 
    end 
end 
  
cy5 = keptTraces(:,2:end); 
frameno = frameno(2:end); 
  
end 
 
 
 

plotFRET.m 
 
%calculates FRET and plots a histogram with 'n' bins. 
%returns the histogram data as a two-column matrix  
%with x-values in column 1 and y-values in column 2 
%From FDAP v1.7 
  
function FH = plotFRET(cy3, cy5, n) 
     
    F=getFRET(cy3, cy5); 
  
    X=linspace(-.2,1.2,n); 
     
    H=hist(F(:),X); 
        %normalize 
    H=H/max(H); 
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    figure, bar(X, H, 'k'); %third argument indicates the color~ black 
in this case 
    axis([-0.2 1.2 0 max(H)*1.05]); 
    xlabel('FRET'); 
    ylabel('normalized frequency'); 
    title('FRET histogram') 
     
    FH=[X', H']; 
 
 
 

plotFRETtraces.m 
 
%From FDAP v1.7 
  
function plotFRETtraces(cy3, cy5) 
     
    F = getFRET(cy3, cy5); 
    [cy3, cy5, labels]=removeLabels(cy3, cy5); 
     
    ms=size(F); 
    cols=ms(2); 
    rows=ms(1); 
     
        j=1; 
        while j <= cols 
            figure; 
            for n = 1:9 
                subplot(3,3,n); 
                plot(F(:,j), 'b'); 
                axis([0 rows -0.2 1.2]); 
                title(labels(j)); 
                j=j+1; 
                if j > cols, break, end 
            end 
        end 
 
 
 

plot_idealizedFRET_hist.m 
 
%plot_idealizedFRET_hist will plot a 1D FRET histogram based on data 
from 
%the idealized traces. Input ONdwells can be dwellData post-processed 
to 
%any extent, so long as the second column is the current dwell's FRET 
value  
%and the fourth column is n (the number of time points spent in that 
%dwell).  
%Written by DDM 
  
function FH = plot_idealizedFRET_hist(ONdwells, bins); 
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    ONdwells = ONdwells(:,[1,2,3,4]); 
    FRETvalue = ONdwells(:,2); 
    numtimepoints = ONdwells(:,4); 
    numdwells = length(FRETvalue); 
    i = 1;  
     
    %Extract each data point of the viterbi path from dwellData  
    for t=1:numdwells 
        n = numtimepoints(t); 
        F(i:i+n-1) = FRETvalue(t); 
        i = i+n; 
    end     
     
    %Plot the data as a histogram 
    X=linspace(-.2,1.2,bins); 
     
    H=hist(F(:),X); 
        %normalize 
    H=H/max(H); 
    figure, bar(X, H, 'k'); %third argument indicates the color~ black 
in this case 
    axis([-0.2 1.2 0 max(H)*1.05]); 
    xlabel('FRET'); 
    ylabel('normalized frequency'); 
    title('FRET histogram') 
     
    FH=[X', H']; 
End 
 
 
 

plotTDP.m 
 
%From Jiangning Wang 
  
function [X, Y, Z] = plotTDP(dwellData, res) 
     
        %size of gaussians in TDP 
    VAR = 0.00075 
     
    RESOLUTION = 800; 
     
    X = linspace(-0.2, 1.2, res)'; 
    Y = X'; 
  
        %remove NaN transitions 
    n = 1; 
    ms = size(dwellData); 
    while n <= ms(1) 
        if isnan(dwellData(n, 2)) 
            if n == 1 
                dwellData = dwellData(2:ms(1), :); 
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            elseif n == ms(1) 
                dwellData = dwellData(1:(n-1), :); 
                break; 
            else 
                dwellData = [dwellData(1:(n-1), :); 
dwellData((n+1):ms(1), :)]; 
            end 
            ms = size(dwellData); 
        else 
            n = n + 1; 
        end 
    end 
     
        %start and stop vectors 
    start = dwellData(:, 2); 
    stop = dwellData(:, 3); 
     
    size(start) 
     
        %build TDP function 
    for j = (1:res) 
        for i = (1:res) 
            Z(j, i) = sum((1/(2*pi*VAR))*exp(-((X(i) - start).^2 + 
(Y(j) - stop).^2)/(2*VAR))); 
        end 
    end 
       
        %interpolate 
    XI = linspace(-0.2, 1.2, RESOLUTION); 
    ZI = interp2(X, Y, Z, XI', XI, 'cubic'); 
    figure, pcolor(XI', XI, ZI), colormap([1 1 1; jet]), shading flat, 
axis tight square  
    colorbar; 
    hold on 
    MINCOUNT = max(max(Z))*0.3 
    MAXCOUNT = max(max(Z))*1.0; 
     
        %minimum intensity: MINCOUNT 
        %minimum intensity: MAXCOUNT 
    caxis([MINCOUNT MAXCOUNT]); 
 
 
 

plotTimeFRET.m 
 
%Generates and plots a 2D histogram of the FRET time evolution. 
%'FRETbins' and 'Tbins' are the number of bins in each dimension. 
%cutoffT is the cutoff time in seconds. If no cutoff time is given, 
%no cutoff is applied. 
%From FDAP v1.7 
  
function [T, Y, H] = plotTimeFRET(cy3, cy5, FRETbins, Tbinsize, 
cutoffT) 
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        %Exposure time = 100 ms 
    FPS = 10; 
     
        %Minimum count shown 
    MINCOUNT = 1; 
    RESOLUTION = 800; 
     
        %calculate FRET 
    F = getFRET(cy3, cy5); 
    ms=size(F); 
  
        %generate the histogram 
    T = (Tbinsize:Tbinsize:ms(1))'/FPS; 
    Y = linspace(-0.2, 1.2, FRETbins)'; 
    H = getTimeFRET(F, FRETbins, Tbinsize); 
     
        %apply cutoff in time dimension 
    if nargin == 5 
        cutoffT = cutoffT*FPS; 
        T = T(1:min(floor(cutoffT/Tbinsize),ms(1)));  
        H = H(:, 1:min(floor(cutoffT/Tbinsize), ms(1)));  
    end 
     
        %creation of interpolated data 
    TI = linspace(min(T), max(T), RESOLUTION); 
    YI = linspace(-0.2, 1.2, RESOLUTION); 
    HI = interp2(T', Y, H, TI', YI,'cubic');  
  
        %plot figure 
    figure, pcolor(TI',YI,HI);   
    colormap([1 1 0.8; ones(4,3); jet]);    
    hold on 
     
    MAXCOUNT = max(max(H))*0.85 
     
        %minimum intensity: MINCOUNT 
        %maximum intensity: MAXCOUNT 
    caxis([MINCOUNT MAXCOUNT]); 
    axis([min(T) max(T) min(Y) max(Y)]); 
         
    colorbar; shading interp; axis tight square;  
     
        %add labels 
    xlabel('T (seconds)') ; ylabel('FRET') ; title('FRET Time Evolution 
Histogram'); 
 
 
 

plotTimeFRET_ps.m 
 
%Generates and plots a post-synchronized 2D histogram of the FRET time 
evolution. 
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%'FRETbins' and 'Tbins' are the number of bins in each dimension. 
%cutoffT is the cutoff time in datapoints. If no cutoff time is given, 
%no cutoff is applied. 
  
%default parameters: 
%plotTimeFRET_ps(cy3x, cy5x, 24, 2, 20); 
%Use postSync3 function- delete the traces that don't show the 
%transition to the limit FRET value 
  
%From FDAP v1.7 
  
function [T, Y, H] = plotTimeFRET_ps(cy3, cy5, FRETbins, Tbinsize, 
cutoffT) 
  
        %Post-synchronization limit 
    LIMIT = 0.2; 
  
        %Exposure time = 100 msec 
    FPS = 10; 
     
        %Minimum count shown 
    MINCOUNT = 1; 
    RESOLUTION = 800; 
  
    F = postSync_3(cy3, cy5, LIMIT); 
    ms=size(F); 
  
        %generate the histogram 
    T = (Tbinsize:Tbinsize:ms(1))'/FPS; 
    Y = linspace(-0.2, 1.2, FRETbins)'; 
    H = getTimeFRET(F, FRETbins, Tbinsize); 
     
        %apply cutoff in time dimension 
    if nargin == 5 
        cutoffT = cutoffT*FPS; 
        T = T(1:min(floor(cutoffT/Tbinsize), ms(1))); 
        H = H(:, 1:min(floor(cutoffT/Tbinsize), ms(1))); 
    end 
     
        %generate interpolated data 
    TI = linspace(min(T), max(T), RESOLUTION); 
    YI = linspace(-0.2, 1.2, RESOLUTION); 
    HI = interp2(T', Y, H, TI', YI, 'cubic'); 
  
        %plot figure 
    figure, pcolor(TI', YI, HI);  
    colormap([1 1 0.8; ones(4, 3); jet]); 
    hold on 
     
    MAXCOUNT = max(max(H))*0.85; 
     
        %minimum intensity: MINCOUNT 
        %maximum intensity: MAXCOUNT 
    caxis([MINCOUNT MAXCOUNT]); 
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    axis([min(T) max(T) min(Y) max(Y)]); 
      
    colorbar; shading interp; axis tight square; 
     
        %add labels 
    xlabel('T (seconds)') ; ylabel('FRET') ; title('FRET Time Evolution 
Histogram') ; 
 
 
 

plotTraces.m 
 
%From FDAP v1.7 
  
function plotTraces(cy3, cy5, len1, len2) 
     
    [cy3, cy5, labels]=removeLabels(cy3, cy5); 
  
    ms=size(cy3); 
    cols=ms(2); 
    rows=ms(1); 
     
        %no photobleach specified 
    if nargin==2  
        j=1; 
        while j <= cols 
            figure; 
            for n = 1:9 
                subplot(3,3,n); 
                plot(cy3(:,j), 'g'), hold on, plot(cy5(:,j), 'r'); 
                %axis([0 rows -1000 5000]); 
                title(labels(j)); 
                j=j+1; 
                if j > cols, break, end 
            end 
        end 
     
        %1 photobleach event specified 
    elseif nargin==3 
        tLength=0; 
             
            %remove labels 
        ms1=size(len1); 
        if ms1(1) == 2 
            ind=len1(1,:); 
            for i = 1:length(ind) 
                tLength(i)=len1(2,find(labels==ind(i))); 
            end 
        else 
            tLength=len1; 
        end 
         
            %plot traces 
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        j=1; 
        while j <= cols 
            figure; 
            for n = 1:9 
                subplot(3,3,n); 
                plot(cy3(:,j), 'g'), hold on, plot(cy5(:,j), 'r'); 
                title(labels(j)); 
                v=axis; 
                plot([tLength(j) tLength(j)], [v(3) v(4)], '--') 
                j=j+1; 
                if j > cols, break, end 
            end 
        end 
         
        %2 photobleach events specified 
    elseif nargin==4 
        tLength1=0; 
        tLength2=0; 
         
            %remove labels 
        ms1=size(len1); 
        if ms1(1) == 2 
            ind=len1(1,:); 
            for i = 1:length(ind) 
                tLength1(i)=len1(2,find(labels==ind(i))); 
            end 
        else 
            tLength1=len1; 
        end 
        ms2=size(len2); 
        if ms2(1) == 2 
            ind=len2(1,:); 
            for i = 1:length(ind) 
                tLength2(i)=len2(2,find(labels==ind(i))); 
            end 
        else 
            tLength2=len2; 
        end 
         
            %plot traces 
        j=1; 
        while j <= cols 
            figure; 
            for n = 1:9 
                subplot(3,3,n); 
                plot(cy3(:,j), 'g'), hold on, plot(cy5(:,j), 'r'); 
                title(labels(j)); 
                v=axis; 
                plot([tLength1(j) tLength1(j)], [v(3) v(4)], '--b') 
                plot([tLength2(j) tLength2(j)], [v(3) v(4)], '--k') 
                j=j+1; 
                if j > cols, break, end 
            end 
        end 
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    end 
     
    [cy3, cy5]=addLabels(cy3, cy5, labels); 
 
 
 

plotTraces_3color.m 
 
%plotTraces from FDAP v1.7, modified for 3-color data 
  
function plotTraces_3color(cy3, cy5, cy2) 
     
    [cy3, cy5, cy2, labels]=removeLabels_3color(cy3, cy5, cy2); 
  
    ms=size(cy3); 
    cols=ms(2); 
    rows=ms(1); 
     
    if nargin==3  
        j=1; 
        while j <= cols 
            figure; 
            for n = 1:9 
                subplot(3,3,n); 
                plot(cy3(:,j), 'g'), hold on, plot(cy5(:,j), 'r'), hold 
on, 
                plot(cy2(:,j), 'b'); 
                %axis([0 rows -1000 5000]); 
                title(labels(j)); 
                j=j+1; 
                if j > cols, break, end 
            end 
        end 
     
    end 
     
    [cy3, cy5, cy2]=addLabels_3color(cy3, cy5, cy2, labels); 
 
 
 

PopDecay.m 
 
%PopDecay is used to build a histogram of population decay for dwell 
times 
%or total fluorescence on times. For fluorescence on times, input 
should 
%be matrix H from getFLUORlifetime. Gives the total dwell time in 
number of 
%frames or seconds (t) and the corresponding number of traces (N) with 
a  
%dwell that is at least that long 
%Written by DDM 
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function [N, t] = PopDecay(H,X) 
    if nargin == 1 %Array H should contain dwell times in frames  
        %Find longest dwell time (in frames) 
        maxT=max(H(:)); 
        %Dwell time (in frames) 
        t=0:1:maxT; 
     
        l=length(t); 
        %Construct histogram 
        for i=1:l 
            N(i)= length(find(H(:)>=t(i))); 
        end 
     
    elseif nargin == 2 %Array H should contain dwell times in seconds 
        %Array X should contain frame timestamps 
        %histogram parameters 
        bins= 81; 
        endtime= round(X(end)); 
        t= [0:15:1224]; %linspace(0,endtime,bins); 
        %Find longest dwell (in sec) 
        maxT= max(H(:)); 
         
        i=1; 
        %Construct histogram 
        while t(i)<= maxT 
            N(i)= length(find(H(:)>=t(i))); 
            i=i+1; 
            if i==bins+1 
                break; 
            end 
        end 
         
        l=length(N); 
        %Dwell times (in sec) 
        t=t(1:l); 
         
    end 
 
 
 

postSync_3.m 
 
%From FDAP v1.7 
  
function F = postSync_3(cy3, cy5, LIMIT) 
     
    Fs = getFRET2(cy3, cy5); 
     
    DELETE=1; 
    AVER=0; %Mean of AVER+1 consecutive frames must be above LIMIT    
    KEEP=10; %First FRET event above LIMIT will occur at frame KEEP+1 
in post-synchronized plot 
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    ms=size(Fs); 
    cols=ms(2); 
    rows=ms(1); 
     
        %delete the first x frames (x=DELETE-1), right now it doesn't 
delete 
        %anything, the whole trace is kept. 
    Fs=Fs(DELETE:ms(1), :); 
     
    ms=size(Fs); 
    cols=ms(2); 
    rows=ms(1); 
    k=1; 
     
    for j = 1:cols 
        for i = 1:(rows-AVER) 
            if mean(Fs(i:i+AVER,j))>LIMIT  
                    %make timepoint (i-KEEP) time zero if it is 
positive 
                newTrace = Fs(max((i-KEEP), 1):rows, j); 
                F(:, k) = NaN; 
                F(1:length(newTrace), k) = newTrace; 
                k=k+1;  
                    %skip to next trace 
              break; 
            end 
        end 
    end 
 
 
 

purifyOnOffDwell.m 
 
%combine all the successive high and low FRET states(defined by the 
threshold) 
%From Jiangning Wang, modified by DDM 
  
function dwellData = purifyOnOffDwell(dwellData, Filter) 
     
    if nargin==2  
        KEY = Filter;  
    else  
        KEY = 0.20; 
    end 
     
    dwellData = dwellData(:,[1,2,3,4]);  
    fileno = dwellData(:,1); 
     
    sizedw = size(dwellData); 
    selind = 1;   
     
    for t = 1:sizedw(1)-1  
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        if diff(fileno(t:t+1)) %If last dwell of trace  
            continue; 
        elseif dwellData(t,2)>KEY %ON dwells 
            if dwellData(t,3)>KEY && dwellData(t+1,2)>KEY   
                selind = [selind; t]; 
                dwellData(t+1,4) = dwellData(t,4)+dwellData(t+1,4); 
            end 
        else  
            if dwellData(t,3)<=KEY && dwellData(t+1,2)<=KEY %OFF dwells 
                selind = [selind; t];  
                dwellData(t+1,4) = dwellData(t,4)+dwellData(t+1,4); 
            end  
        end 
    end 
     
    lensel = length(selind); 
     
    selind = selind(2:lensel);  
     
    mergeind = selind; 
    lenmerg = length(mergeind); 
     
    rowind = [1:sizedw(1)]; 
    for k = 1:lenmerg 
        rowind = removeEntry(rowind, mergeind(k)); 
    end 
    dwellData = dwellData(rowind, :); %Keep all 4 columns in case trace 
number needs to be identified 
 
 
 

removeEntry.m 
 
%From Jiangning Wang 
  
function [labels] = removeEntry(labels, key) 
  
    mc=length(labels); 
    no=find(labels==key); 
     
    if no 
  
        labels=[labels(1:no-1) labels(no+1:mc)]; 
         
    else 
     
        disp(['Trace ' int2str(key) ' does not exist']) 
         
    end 
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removeLabels.m 
 
%From FDAP v1.7 
  
function [cy3, cy5, labels]=removeLabels(cy3, cy5) 
             
        %remove labels 
    ms=size(cy3); 
    labels=cy3(1,:); 
    cy3=cy3(2:ms(1), :); 
    cy5=cy5(2:ms(1), :); 
 
 
 

removeLabels_1color.m 
 
%same as removeLabels from FDAP v1.7, modified for 1-color data 
  
function [cy3, labels]=removeLabels_1color(cy3) 
             
        %remove labels 
    ms=size(cy3); 
    labels=cy3(1,:); 
    cy3=cy3(2:ms(1), :); 
 
 
 

removeLabels_3color.m 
 
%same as removeLabels from FDAP v1.7, modified for 3-color data 
  
function [cy3, cy5, cy2, labels]=removeLabels_3color(cy3, cy5, cy2) 
             
        %remove labels 
    ms=size(cy3); 
    labels=cy3(1,:); 
    cy3=cy3(2:ms(1), :); 
    cy5=cy5(2:ms(1), :); 
    cy2=cy2(2:ms(1), :); 
 
 
 

removeTrace.m 
 
%From FDAP v1.7 
  
function [cy3, cy5] = removeTrace(cy3, cy5, selected) 
    ms=size(cy3); 
    labels=cy3(1,:); 
    no=find(labels==selected); 
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    if no 
        cy3=[cy3(:,1:no-1) cy3(:,no+1:ms(2))]; 
        cy5=[cy5(:,1:no-1) cy5(:,no+1:ms(2))]; 
         
    else 
        disp(['Trace ' int2str(selected) ' does not exist']) 
         
    end 
 
 
 

removeTrace_3color.m 
 
%same as removeTrace from FDAP v1.7, modified for 3-color data 
  
function [cy3, cy5, cy2] = removeTrace_3color(cy3, cy5, cy2, selected) 
    ms=size(cy3); 
    labels=cy3(1,:); 
    no=find(labels==selected); 
     
    if no 
        cy3=[cy3(:,1:no-1) cy3(:,no+1:ms(2))]; 
        cy5=[cy5(:,1:no-1) cy5(:,no+1:ms(2))]; 
        cy2=[cy2(:,1:no-1) cy2(:,no+1:ms(2))]; 
         
    else 
        disp(['Trace ' int2str(selected) ' does not exist']) 
         
    end 
 
 
 

RollingAvg.m 
 
%Written by DDM 
  
function cy5 = RollingAvg(cy5, span); 
  
ms = size(cy5); 
rows = ms(1); 
cols = ms(2); 
labels = cy5(1,:); 
  
cy5=cy5(2:rows,:); 
  
for j=1:cols 
    cy5(:,j) = smooth(cy5(:,j), span); 
end 
  
cy5=[labels;cy5]; 
end 
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saveTraces.m 
 
%From FDAP v1.7 
  
function saveTraces(cy3, cy5, filen) 
    merged=mergeCy(cy3, cy5); 
    save(filen, 'merged',  '-ASCII'); 
 
 
 

separateCy.m  
 
%From FDAP v1.7 
  
function [cy3, cy5] = separateCy(in) 
  
    ms=size(in); 
    for i = (1:ms(2)/2) 
        cy3(:,i)=in(:,i*2-1); 
        cy5(:,i)=in(:,i*2); 
    end 
     
    traces=ms(2)/2 
 
 
 

separateOnOffDwells.m 
 
%separateOnOffDwells parses dwellData into two separate matrices, one 
containing  
%the ON dwells and the other containing the OFF dwells. The threshold 
FRET value  
%separating ON and OFF dwells is the input parameter "KEY". Input 
"dwellData"  
%should be in the four column format, i.e. [fileno FRET(t) FRET(t+1) n] 
and 
%should be generated by using getRawDwell_all. Contiguous ON and OFF 
dwells within 
%the same trace will be identified, and all dwells comprising the same 
%cumulative ON dwell will be marked with the same index i. The output 
%matrix ONdwells will have a four-column format different from that of 
the 
%input matrix, i.e. [i FRET(t) FRET(t+1) n]. 
%Written by DDM 
  
function [ONdwells, OFFdwells] = separateOnOffDwells(dwellData, KEY) 
  
    dwellData = dwellData(:,[1,2,3,4]);  
    fileno = dwellData(:,1); 
    sizedw = size(dwellData); 
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    t = 1; %current dwell 
    i = 1; %new index for cumulative ON dwells   
    j = 1; %new index for cumulative OFF dwells 
     
    ONdwells = ones(1,4);  
    OFFdwells = ones(1,4); 
     
    while t <= sizedw(1);  
        if dwellData(t,2)>KEY %ON dwells 
            tempONdwells = ones(1,4); 
            while dwellData(t,2)>KEY   
                tempONdwells = [tempONdwells; i, dwellData(t,2), 
dwellData(t,3), dwellData(t,4)]; 
                if t==sizedw(1) | diff(fileno(t:t+1))  
                    t=t+1; 
                    break; 
                else 
                    t=t+1; 
                end 
            end 
            tempONdwells = tempONdwells(2:end, :);  
            ONdwells = [ONdwells; tempONdwells]; 
            i=i+1; 
         
        elseif dwellData(t,2)<=KEY %OFF dwells 
            tempOFFdwells = ones(1,4); 
            while dwellData(t,2)<=KEY 
                tempOFFdwells = [tempOFFdwells; j, dwellData(t,2), 
dwellData(t,3), dwellData(t,4)]; 
                if t==sizedw(1) | diff(fileno(t:t+1)) 
                    t=t+1; 
                    break; 
                else 
                    t=t+1; 
                end 
            end 
            tempOFFdwells = tempOFFdwells(2:end, :); 
            OFFdwells = [OFFdwells; tempOFFdwells]; 
            j=j+1; 
        end 
    end 
     
    ONdwells = ONdwells(2:end, :); 
    OFFdwells = OFFdwells(2:end, :); 
End 
 
 
 

SplitData.m 
 
%SplitData will split FRET on times or IF2 residency times into three 
random groups so 
%that mean and standard deviation can be calculated. Input should be G 
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%containing FRET on times or H containing IF2 residency times (units of 
%seconds). Returns three separate vectors containing one third of the 
randomized data.  
%Written by DDM 
  
function [A, B, C] = SplitData(G); 
  
numtraces = length(G); 
  
randomizedData = randsample(G, length(G)); 
  
numSplitTraces = floor(numtraces/3); 
  
A = randomizedData(1:numSplitTraces); 
  
B = randomizedData((numSplitTraces+1):(numSplitTraces*2)); 
  
C = randomizedData(((numSplitTraces*2)+1):(numtraces)); 
 
 
 

SplitPathData.m 
 
%SplitPathData takes pathData from vbFRET and splits the idealized 
%trajectories into three separate arrays, each containing the same 
number 
%of idealized trajectories. Trace sorting is done randomly so that 
output arrays 
%can be treated as three independent datasets. Input data should be 
concatenated  
%idealized traces where col1=tracelabel and col2=FRETvalue. Traces 
should be 
%labeled consecutively as 1->n, where n is the total number of traces.  
%Output traces will have the same format, i.e. with 2 cols, and the 
traces 
%will be relabeled as 1->n/3.  
%Written by DDM 
  
function [A,B,C] = SplitPathData(pathData); 
  
    traceno = pathData(:, 1); 
    FRET = pathData(:, 2); 
     
    numtraces = max(traceno); 
     
    rdmsample = randsample(numtraces,numtraces); %randomize traces 
     
    lensample = length(rdmsample); 
     
    numsplittraces = floor(lensample/3); %number of traces to be put in 
A,B,and C 
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    extratraces = rem(lensample,3); %leftover traces after dividing 
total by 3 
     
    A=ones(1,2); 
    B=ones(1,2); 
    C=ones(1,2); 
     
    i = 1; 
     
    for n = 1:numsplittraces  %Separate path data into A, B, and C 
         
        rowind = find(traceno == rdmsample(i)); 
        A = [A; pathData(rowind,:)];  
         
        i=i+1; 
         
        rowind = find(traceno == rdmsample(i)); 
        B = [B; pathData(rowind,:)]; 
         
        i=i+1; 
         
        rowind = find(traceno == rdmsample(i)); 
        C = [C; pathData(rowind,:)]; 
         
        i=i+1; 
    end 
     
    %Place extra traces (if total number of traces was not divisible by 
3) 
    if extratraces == 0 
    elseif extratraces == 1 
        rowind = find(traceno == rdmsample(i)); 
        A = [A; pathData(rowind,:)];  
         
    elseif extratraces == 2     
        rowind = find(traceno == rdmsample(i)); 
        A = [A; pathData(rowind,:)];  
         
        i=i+1; 
         
        rowind = find(traceno == rdmsample(i)); 
        B = [B; pathData(rowind,:)]; 
    end 
     
    A= A(2:end,:); 
    B= B(2:end,:); 
    C= C(2:end,:); 
     
    %Reformat trace labels for matrix A  
    tracenoA = A(:,1); 
    lenA = length(tracenoA); 
     
    rows = [1:lenA]; 
     



Appendix E 
______________________________________________________________________________ 

288 

    for n=1:lenA-1  
        if tracenoA(n)== tracenoA(n+1) 
            rows = removeEntry(rows,n); 
        end 
    end 
    oldtraceidA = tracenoA(rows);  %Original trace labels from vbFRET 
    numtracesA = length(oldtraceidA); 
     
    for n=1:numtracesA  %Relabel traces from 1->n 
        rowind = find(tracenoA == oldtraceidA(n)); 
        A(rowind,1) = n; 
    end 
     
  %Reformat trace labels for matrix B 
    tracenoB = B(:,1); 
    lenB = length(tracenoB); 
     
    rows = [1:lenB]; 
     
    for n=1:lenB-1 
        if tracenoB(n)== tracenoB(n+1) 
            rows = removeEntry(rows,n); 
        end 
    end 
    oldtraceidB = tracenoB(rows); 
    numtracesB = length(oldtraceidB); 
     
    for n=1:numtracesB 
        rowind = find(tracenoB == oldtraceidB(n)); 
        B(rowind,1) = n; 
    end 
     
    %Reformat trace labels for matrix C 
    tracenoC = C(:,1); 
    lenC = length(tracenoC); 
     
    rows = [1:lenC]; 
     
    for n=1:lenC-1 
        if tracenoC(n)== tracenoC(n+1) 
            rows = removeEntry(rows,n); 
        end 
    end 
    oldtraceidC = tracenoC(rows); 
    numtracesC = length(oldtraceidC); 
     
    for n=1:numtracesC 
        rowind = find(tracenoC == oldtraceidC(n)); 
        C(rowind,1) = n; 
    end 
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Appendix F – “R” scripts 
 

Three “R” scripts were used to estimate errors for the lifetimes calculated using dwell 
time analysis, as outlined in Section 5.5.1.6. These scripts were written by Dr. Jiangning 
Wang and modified by myself, and are presented below. 
 
 
ka_bootstrap_sample_dwells.R 
 
#Script for bootstrapping OFF dwell lifetimes obtained from single 
exponential fits to dwell time population decay histograms. 
#Also returns ka values in units of uM-1sec-1 
#Sampling of dwells with replacement 
 
#Script from Jiangning Wang, modified by DDM 
 
#Input data are saved in .txt file in matrix form. There are four 
columns, the 1st is 'Trace ID'  
#the 2nd is 'starting FRET' the 3rd is 'ending FRET' and the fourth is 
'number of frames' 
 
#Set working directory 
 
setwd(dir = "C:/Documents and Settings/Administrator/Desktop/R-codes") 
 
#Import data, data is saved in folder named 'data' as a .txt file  
dwellData = read.table(file = "data/test.txt", header = TRUE) 
 
assign("traceID", dwellData[,1]) 
assign("startF", dwellData[,2]) 
assign("endF", dwellData[,3]) 
assign("Ldwell", dwellData[,4]) 
 
#Set boundaries for start FRET value 
start_low <- -0.25 
start_high <- 0.2 
     
selection <- which(dwellData[,2] > start_low & dwellData[,2] < 
start_high) 
dwelltimes <- dwellData[selection, 4] 
maxT <- max(dwelltimes) 
t <- c(1:1:(maxT-1)) 
time <- t*0.1 
population <- rep(0, length(t)) 
for(i in 1:length(t)){ 
population[i] <- length(which(dwelltimes >= t[i])) 
} 
 
Decaycurvedata <- as.data.frame(cbind(time, population)) 
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#Initial guess on the parameters (y_off(yo), Asym(As) and lifetime(lt)) 
for the exponential decay 
iguessyo = 0 
iguessAs = 3000 
iguesslt = 4 
 
#fit the raw data with single exponential decay, return the fitting 
result 
mod1 <- nls( population ~ y_off + Asym*exp( -time/lifetime ), 
                  data = Decaycurvedata, 
                  start = list( y_off = iguessyo, Asym = iguessAs, 
lifetime = iguesslt ), 
                  trace = TRUE ) 
 
#the fitting result output 
summary( mod1) 
lifetime = coef(mod1)[3] 
 
#calculate ka in units of uM-1sec-1. Subunit concentration given in 
units of nM 
subunitconc = 20 
ka = 1000/(as.numeric(coef(mod1)[3])*subunitconc) 
ka 
 
#plot the decay fitting graph 
par(lwd = 3, cex.axis = 1.5, cex.lab = 1.5, mar = c(5,5,2,2)) 
plot(population ~ time, lwd = 3, pch = 20, bty = "n",xlab = "time", 
ylab = "population") 
lines(predict(mod1)~time, lwd = 3, pch = 20, bty = "n", xlab = "time", 
ylab = "population") 
 
 
#Bootstrap to obtain SD of lifetime and rate  
n = length(dwelltimes) 
lifetime_bs = c() 
ka_bs = c() 
number = (1:1:n) 
 
#number of bootstrap datasets to construct 
nstep = 1000 
 
for(i in 1:nstep) {  
  numbernew = sample(number, n, replace=TRUE) 
  dwelltimesnew = dwelltimes[numbernew] 
  maxT <- max(dwelltimesnew) 
  t <- c(1:1:(maxT-1)) 
  time <- t*0.1 
  population <- rep(0, length(t)) 
  for(j in 1:length(t)){ 
    population[j] <- length(which(dwelltimesnew >= t[j])) 
  } 
 
  Decaycurvedata <- as.data.frame(cbind(time, population)) 
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  mod2 = nls( population ~ y_off + Asym*exp( -time/lifetime ), 
                   data = Decaycurvedata, 
                   start = list( y_off = iguessyo, Asym = iguessAs, 
lifetime = iguesslt ), 
                   trace = TRUE ) 
  
 lifetime_bs = append(lifetime_bs, coef(mod2)[3]) 
 ka_bs = append(ka_bs, 1000/(as.numeric(coef(mod2)[3])*subunitconc)) 
}  
 
#plot the rate frequency histogram  
hist(ka_bs) 
 
#compare the mean of the bootstrapped parameters to those estimated 
from sample and get sd of bootstrapped parameters 
lifetime 
mean(lifetime_bs) 
sd(lifetime_bs) 
 
ka 
mean(ka_bs) 
sd(ka_bs) 
 
 
 

ON_dwell_bootstrap_sampleDwells_singleExp.R 
 
#Script for bootstrapping ON dwell lifetimes obtained from single 
exponential fits to dwell time population decay histograms. 
#Also returns the kd values 
#Sampling of dwells with replacement 
 
#Script from Jiangning Wang, modified by DDM 
 
#Input data are saved in .txt file in matrix form. There are four 
columns, the 1st is 'Trace ID'  
#the 2nd is 'starting FRET' the 3rd is 'ending FRET' and the 4th is 
'number of frames' 
 
#Set working directory 
setwd(dir = "C:/Documents and Settings/Administrator/Desktop/R-codes") 
 
#Import data, data is saved in folder named 'data' as a .txt file  
dwellData = read.table(file = "data/AUG_plusIF3_60nM_data.txt", header 
= TRUE) 
 
assign("traceID", dwellData[,1]) 
assign("startF", dwellData[,2]) 
assign("endF", dwellData[,3]) 
assign("Ldwell", dwellData[,4]) 
 
#Set boundaries for start FRET value 
start_low <- 0.2 
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start_high <- 1.2 
     
selection <- which(dwellData[,2] > start_low & dwellData[,2] < 
start_high) 
dwelltimes <- dwellData[selection, 4] 
maxT <- max(dwelltimes) 
t <- c(1:1:(maxT-1)) 
time <- t*0.1 
population <- rep(0, length(t)) 
for(i in 1:length(t)){ 
population[i] <- length(which(dwelltimes >= t[i])) 
} 
 
Decaycurvedata <- as.data.frame(cbind(time, population)) 
 
#Initial guess on the parameters for the exponential decay (y_off(yo), 
Asym(As), lifetime(lt))  
iguessyo = 0 
iguessAs = 1800 
iguesslt = .8 
 
#fit the raw data with exponential decay, return the fitting result 
mod1 <- nls( population ~ y_off + Asym*exp( -time/lifetime ), 
                  data = Decaycurvedata, 
                  start = list( y_off = iguessyo, Asym = iguessAs, 
lifetime = iguesslt ), 
                  trace = TRUE ) 
 
#the fitting result output 
summary(mod1) 
lifetime = coef(mod1)[3] 
kd = 1/as.numeric(lifetime) 
 
 
#plot the decay fitting graph 
par(lwd = 3, cex.axis = 1.5, cex.lab = 1.5, mar = c(5,5,2,2)) 
plot(population ~ time, lwd = 3, pch = 20, bty = "n",xlab = "time", 
ylab = "population") 
lines(predict(mod1)~time, lwd = 3, pch = 20, bty = "n", xlab = "time", 
ylab = "population") 
 
 
#Bootstrap to obtain SD of lifetime and rate  
n = length(dwelltimes) 
lifetime_bs = c() 
kd_bs = c() 
number = (1:1:n) 
 
#number of bootstrap datasets to construct 
nstep = 1000 
 
for(i in 1:nstep) {  
  numbernew = sample(number, n, replace=TRUE) 
  dwelltimesnew = dwelltimes[numbernew] 
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  maxT <- max(dwelltimesnew) 
  t <- c(1:1:(maxT-1)) 
  time <- t*0.1 
  population <- rep(0, length(t)) 
  for(j in 1:length(t)){ 
    population[j] <- length(which(dwelltimesnew >= t[j])) 
  } 
 
  Decaycurvedata <- as.data.frame(cbind(time, population)) 
    
  mod2 = nls( population ~ y_off + Asym*exp( -time/lifetime ), 
                  data = Decaycurvedata, 
                  start = list( y_off = iguessyo, Asym = iguessAs, 
lifetime = iguesslt ), 
                  trace = FALSE ) 
 
 lifetime_bs = append(lifetime_bs, coef(mod2)[3]) 
 kd_bs = append(kd_bs, 1/as.numeric(coef(mod2)[3])) 
}  
 
#compare the mean of the bootstrapped parameters to those estimated 
from sample and get sd of bootstrapped parameters 
lifetime 
mean(lifetime_bs) 
sd(lifetime_bs) 
 
kd 
mean(kd_bs) 
sd(kd_bs) 
 
 
 

ON_dwell_bootstrap_sampleDwells_doubleExp.R 
 
#Script for bootstrapping ON dwell lifetimes obtained from double 
exponential fits to dwell time population decay histograms. 
#Also returns the corresponding kd values 
#Sampling of dwells with replacement 
 
#Script from Jiangning Wang, modified by DDM 
 
#Data are saved in .txt file in matrix form. There are four columns, 
the 1st is 'Trace ID'  
#the 2nd is 'starting FRET' the 3rd is 'ending FRET' and the 4th is 
'number of frames' 
 
#Set working directory 
setwd(dir = "C:/Documents and Settings/Administrator/Desktop/R-codes") 
 
#Import data, data is saved in folder named 'data' as a .txt file  
dwellData = read.table(file = "data/AUU_minIF3_plusTRNAi_20nM.txt", 
header = TRUE) 
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assign("traceID", dwellData[,1]) 
assign("startF", dwellData[,2]) 
assign("endF", dwellData[,3]) 
assign("Ldwell", dwellData[,4]) 
 
#Set boundaries for start FRET value 
start_low <- 0.2 
start_high <- 1.2 
     
selection <- which(dwellData[,2] > start_low & dwellData[,2] < 
start_high) 
dwelltimes <- dwellData[selection, 4] 
maxT <- max(dwelltimes) 
t <- c(1:1:(maxT-1)) 
time <- t*0.1 
population <- rep(0, length(t)) 
for(i in 1:length(t)){ 
population[i] <- length(which(dwelltimes >= t[i])) 
} 
 
Decaycurvedata <- as.data.frame(cbind(time, population)) 
 
#Initial guess on the parameters for the double exponential decay 
(y_off(yo), Asym1(As1), lifetime1(lt1), Asym2(As2), lifetime2(lt2))  
iguessyo = 0 
iguessAs1 = 150 
iguesslt1 = 1 
iguessAs2 = 350  
iguesslt2 = 10 
 
#fit the raw data with double exponential decay, return the fitting 
result 
mod1 <- nls( population ~ y_off + Asym1*exp( -time/lifetime1 ) + 
Asym2*exp( -time/lifetime2 ), 
                  data = Decaycurvedata, 
                  start = list( y_off = iguessyo, Asym1 = iguessAs1, 
lifetime1 = iguesslt1, Asym2 = iguessAs2, lifetime2 = iguesslt2 ), 
                  trace = TRUE ) 
 
#the fitting result output 
summary(mod1) 
Asym1_percent = (coef(mod1)[2])/((coef(mod1)[2])+(coef(mod1)[4])) 
Asym2_percent = (coef(mod1)[4])/((coef(mod1)[2])+(coef(mod1)[4])) 
Asym1_percent 
Asym2_percent 
 
#ON dwell times 
lifetime1 = coef(mod1)[3] 
lifetime2 = coef(mod1)[5] 
 
#Dissociation rates 
kd1 = 1/as.numeric(lifetime1) 
kd2 = 1/as.numeric(lifetime2) 
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#plot the decay fitting graph 
par(lwd = 3, cex.axis = 1.5, cex.lab = 1.5, mar = c(5,5,2,2)) 
plot(population ~ time, lwd = 3, pch = 20, bty = "n",xlab = "time", 
ylab = "population") 
lines(predict(mod1)~time, lwd = 3, pch = 20, bty = "n", xlab = "time", 
ylab = "population") 
 
 
#Bootstrap to obtain SD of lifetimes and amplitudes  
n = length(dwelltimes) 
Asym1_percent_bs = c() 
lifetime1_bs = c() 
kd1_bs = c() 
Asym2_percent_bs = c() 
lifetime2_bs = c() 
kd2_bs = c() 
 
number = (1:1:n) 
 
#number of bootstrap datasets to construct 
nstep = 1000 
 
for(i in 1:nstep) {  
  numbernew = sample(number, n, replace=TRUE) 
  dwelltimesnew = dwelltimes[numbernew] 
  maxT <- max(dwelltimesnew) 
  t <- c(1:1:(maxT-1)) 
  time <- t*0.1 
  population <- rep(0, length(t)) 
  for(j in 1:length(t)){ 
    population[j] <- length(which(dwelltimesnew >= t[j])) 
  } 
 
  Decaycurvedata <- as.data.frame(cbind(time, population)) 
    
  mod2 = nls( population ~ y_off + Asym1*exp( -time/lifetime1 ) + 
Asym2*exp( -time/lifetime2 ), 
                  data = Decaycurvedata, 
                  start = list( y_off = iguessyo, Asym1 = iguessAs1, 
lifetime1 = iguesslt1, Asym2 = iguessAs2, lifetime2 = iguesslt2 ), 
                  trace = FALSE ) 
 
 Asym1_percent_new = (coef(mod2)[2])/((coef(mod2)[2])+(coef(mod2)[4])) 
 Asym1_percent_bs = append(Asym1_percent_bs, Asym1_percent_new) 
 Asym2_percent_new = (coef(mod2)[4])/((coef(mod2)[2])+(coef(mod2)[4])) 
 Asym2_percent_bs = append(Asym2_percent_bs, Asym2_percent_new) 
 lifetime1_bs = append(lifetime1_bs, coef(mod2)[3]) 
 kd1_bs = append(kd1_bs, 1/as.numeric(coef(mod2)[3])) 
 lifetime2_bs = append(lifetime2_bs, coef(mod2)[5]) 
 kd2_bs = append(kd2_bs, 1/as.numeric(coef(mod2)[5])) 
}  
 
#compare the mean of the bootstrapped parameters to those estimated 
from sample and get sd of bootstrapped parameters 
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Asym1_percent 
mean(Asym1_percent_bs) 
sd(Asym1_percent_bs) 
 
lifetime1 
mean(lifetime1_bs) 
sd(lifetime1_bs) 
 
kd1 
mean(kd1_bs) 
sd(kd1_bs) 
 
Asym2_percent 
mean(Asym2_percent_bs) 
sd(Asym2_percent_bs) 
 
lifetime2 
mean(lifetime2_bs) 
sd(lifetime2_bs) 
 
kd2 
mean(kd2_bs) 
sd(kd2_bs) 
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