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ABSTRACT 

Synthesis and Coordination Chemistry of Oxygen Rich Ligands: 

Bis(oxoimidazolyl)hydroborato, Tris(oxoimidazolyl)hydroborato and Tris(2-

pyridonyl)methane 

Ahmed Al-Harbi 

In Chapter One, the sodium salt of tris(2-oxo-1-t-butylimidazolyl) hydroborate, 

[ToBut]Na, as an [O3] donor ligand has been prepared. The yield for this reaction was 

low because there is a significant amount of side product in which the double bond of 

the oxoimidazole starting material is reduced. Treatment of sodium borohydride with 

bezannulated oxoimidazole at high temperature leads to the generation of the sodium 

salt of tris(2-oxo-1-R-methylbenimidazolyl) hydroborate in high yield, [ToRBenz]Na. 

These ligands have been prepared with different alkyl substituents, methyl, t-butyl and 

adamantyl, to achieve the desired steric environment. Furthermore, these 

benzannulated ligand have been used to synthesize a series [ToRBenz]Tl complexes, 

which exist as a discrete mononuclear complexes in the solid state. Finally, [ToRBenz]Tl 

complexes are more pyramidal than the sulfur counterpart, [TmRBenz]Tl, but less 

pyramidal than those in the tris(pyrazolyl)hydroborato counterpart, [TpR,R]Tl. 

In Chapter Two, the properties of [ToR] ligands have been evaluated versus related L2X 

ligands. [ToR] ligands are substantially more sterically demanding than the 

corresponding [TmR] sulfur donor ligand and related [O3] donor ligands. However, 



electronically, the [ToR] ligands exhibit weaker electron donating properties than other 

L2X type ligands. Finally, the coordination chemistry of [ToR] ligands with various metal 

compounds has been briefly investigated. 

The synthesis of a new class of bidentate ligands has been detailed in Chapter Three. 

Namely the bis(2-oxo-1-t-butylimidazolyl)hydroborato and bis(2-oxo-1-

alkylbenzimidazolyl)hydroborato, [BoBut] and [BoRBenz], have been synthesized via the 

reaction of MBH4 with two equivalents of the respective 2-imidazolone.  Chelation of 

[BoBut] and [BoMeBenz] to a metal center results in a flexible 8-membered ring that is 

capable  of  adopting  a  “boat-like”  conformation  that  allows  for  secondary M•••H–B 

interactions. 

Chapter Four describes the synthesis of [BoRBenz]2Zr(CH2Ph)2 and [ToRBenz]Zr(CH2Ph)3 

with different alkyl substituents. Treatment of [ToButBenz]Zr(CH2Ph)3 with 

([PhNHMe2][B{C6F5}4]) in a coordinating solvent, Et2O, generates 

{[ToButBenz]Zr(CH2Ph)2(OEt2)}{B(C6F5)4} which exhibit a very low activity for ethylene 

polymerization. However, a coordinatively unsaturated cationic zirconium alkyl 

complex was obtained by the treatment of ([PhNHMe2][B{C6F5}4]) with 

[ToButBenz]Zr(CH2Ph)3 or [ToAdBenz]Zr(CH2Ph)3 which generate 

[ToButBenz]Zr(CH2Ph)2[B(C6F5)4] or [ToAdBenz]Zr(CH2Ph)2[B(C6F5)4], respectively. Moderate 

activity for ethylene polymerization was obtained for t-butyl while high activity was 

obtained for the adamantyl derivatives.  



Finally, Chapter Five describes the synthesis of new oxygen-rich ligands, namely tris(2-

pyridonyl)methane, [TpomR]H. They are obtained via the reaction of 2-pyridones with 

CHX3 and K2CO3 in the presence of [Bun
4N]Br, followed by acid-catalyzed isomerization 

with camphorsulfonic acid. These compounds provide access to a new class of L3X alkyl 

ligands that feature oxygen donors and are capable of forming metallacarbatranes, as 

exemplified by [N4-TpomBut]ZnOC6H4But.  In addition, the [TpomBut] ligand also allows 

isolation of a monovalent thallium alkyl compound, [TpomBut]Tl, in which the Tl–C 

bond is long and has little covalent character.  
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1.1 Introduction 

Since the discovery of the hydrotris(pyrazolyl)borate anion, [TpR,R]1, by Trofimenko in 

1966 as a C3 symmetric [N3] donor ligand system, tripodal boron-centered ligands have 

become an active field of research whether in developing a new class of ligands donors 

or in their use as a molecular support for different transition and main group metals.2 

They are of significant interest for many reasons, including the fact that they are 

electronically analogous to the cyclopentadienyl ligand, L2X class according to the 

covalent bond classification,3 which has been the center of investigation in the 

organometallic field since the discovery of metallocenes. [TpR,R] ligands have been 

employed in diverse applications, such as homogeneous catalysis and modeling of 

biological systems.2 Approximately three decades after Trofimenko’s discovery, 

Riordan et al.4 and Spicer et al.5 have developed poly(methylthiomethyl)borate [RTt] 

and hydrotris(mercaptoimidazolyl)borate [TmR], respectively. In both cases, they are 

[S3] donor ligands and softer L2X ligands than the [Tp]. In 1999, Nocera et al. developed 

an anionic [P3] tripodal boron centered ligand.6 Six years later, Smith and coworker 

developed a carbene based [C3] donor ligand that is boron-centered.7 Finally, 

hydrotris(selenoimidazolyl)borate, [TseR], one of the most electron donating L2X type 

ligands, was developed in our lab as a [Se3] donor ligand8 (Figure 1). 
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Figure 1. Examples of tripodal boron-centered ligands with different donor arrays. 

In this chapter, we extend the series of chalcogen donor ligands, [TmR] and [TseR], to 

that of the lightest member, with the synthesis of the [O3] donor counterpart, namely 

the tris(oxoimidazolyl) ligand system, [ToR]. 

1.1.1 Motivation for The Synthesis of an Oxygen Rich L2X type ligand 

By a method analogous to the synthesis of [TmR]5 and [TseR]8 via the reaction of 

borohydride with mercapto or selenoimidazole, respectively, we predicted that an [O3] 

donor ligand could be obtained via the reaction of borohydride and an oxoimidazole. 

Our motivation came from the fact that tripodal L2X [O3] donors are not common; the 

field is dominated by the [CpCo{P(O)(OR)2}3] ligand system (Figure 2) which comes 

from an inefficient synthetic pathway.9 The tris(phthalimidyl)hydroborato ligand has 

been reported.10 However, since there is no structural verification of either the ligand or 

its complexes, the true nature of these compounds remains unknown. 
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Figure 2. The Kläui ligand, [CpCo{P(O)(OR)2}3]. 

One key feature of the [TpR,R], [TmR] and [TseR] ligands is that the sterics can be easily 

tailored for many different applications. For example in the [TpR,R] case, substitution at 

the 3-position of the pyrazolyl group provides an effective method to manipulate the 

steric environment around the metal center.2 On the contrary, the location of the R 

substituents of [CpCo{P(O)(OR)2}3] are such that they do not create a sterically 

demanding binding pocket, as we will see in chapter 2. An L2X [O3] donor ligand that is 

more sterically demanding than [CpCo{P(O)(OR)2}3] would, therefore, provide a means 

for developing the coordination chemistry of metal centers in an oxygen rich 

environment. Such ligands have the potential for mimicking molecular species that are 

grafted to oxide surfaces via three oxygen atoms, as illustrated by the binding of 

zirconium hydride, alkoxide, and acetylacetone moieties to silica surfaces.11 
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1.2 Reaction of 1-tert-butyl-1,3-dihydro-2H-imidazol-2-one with Sodium 

Borohydride 

In order to synthesize the [ToR] ligand, we initially set out to synthesize the 

oxoimidazolyl precursor of the ligand, 1-tert-butyl-1,3-dihydro-2H-imidazol-2-one, 

following a published procedure.12 The imidazole was synthesized via a two-step 

reaction: first, the t-butylamine was treated with tert-butyl isocyanate,13 one of the 

common isocyanates, and then the intermediate was cyclized under acidic conditions 

(Scheme 1). 

 

Scheme 1. Two-step synthesis of 1-tert-butyl-1,3-dihydro-imidazol-2-one. 

During efforts to optimize the reaction conditions of this reaction, we noticed that it is 

important to use a dilute solution for the cyclization step, (< 0.25 M), in order to avoid 

an intermolecular reaction which produces a polymeric side product14 (Scheme 2). 

 

Scheme 2. Intra vs. intermolecular products for ring closing step. 
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Based on a CSD search,15 there are few structurally characterized 2-imidazolone 

compounds in the literature. Therefore, yellow block crystals of 1-t-butyl-1,3-dihydro-

2H-imidazol-2-one suitable for X-ray diffraction were obtained from slow evaporation 

of CH2Cl2 solution (Figure 3). 

 

Figure 3. Hydrogen bonded dimeric structure of 1-tert-butyl-1,3-dihydro-imidazol-2-

one. 

Treatment of 1-tert-butyl-4-imidazolin-2-one with different metal borohydrides, Na, Li 

or K, in different solvent systems leads to the desired products along with an 

unexpected side product, 1-tert-butylimidazolidinone. This side product was formed as 

a result of the reduction of the 1-tert-butyl-1,3-dihydro-imidazol-2-one’s  double  bond 

during a period of extended heating (Scheme 3). This result was established by 1H NMR 

spectroscopy and by X-ray diffraction (Figure 4). 
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Scheme 3. Reaction of 3 eq. of 1-tert-butyl-1,3-dihydro-imidazol-2-one and NaBH4. 

 

Figure 4. Molecular structure of 1-t-butylimidazolidinone. 

Though the side product was generated in high yield, we managed to obtain [ToBut]Na 

in adequate purity. The volatile matter was removed from the reaction mixture and the 

residue was dissolved in pentane. The pentane solution generated colorless block 

crystals of [ToBut]Na. X-ray diffraction indicates that [ToBut]Na is dinuclear in the solid 

state (Figure 5). 
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Figure 5. Molecular structure of {[ToBut]Na}2. 

1.3 Synthesis of Benzannulated Ligands: [ToMeBenz]Na 

We searched for an alternative to 1-tert-butyl-1,3-dihydro-imidazol-2-one as a building 

block for constructing the [ToR] ligands due to i) production of a side product in a 

significant amount as result of the reduction of the double bond ii) difficulty in 

obtaining pure product of the ligand. We thought that the annulation of the imidazole 

ring might help to circumvent this unwanted side-product since aromatic rings are less 

prone to reduction than isolated double bonds. A survey of the literature revealed that 

one of the most practical ways to synthesize 1-methylbenzimidazolinone is via a 

Hofmann-type-rearrangement of 2-methylaminobenzamide16 (Scheme 4). 
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Scheme 4. Synthesis of 1-methyl-1,3-dihydro-benzimidazol-2-one. 

The X-ray structure was not previously reported and we were able to crystalize 1-

methyl-1,3-dihydro-2H-benzimidazol-2-one from CH2Cl2 (Figure 6). 

 

Figure 6. Hydrogen bonded dimeric structure of 1-methyl-1,3-dihydrobenzimidazol-2-

one. 

The dimeric structure of the methylbenzimidazolone compound, H(obenzimMe), is 

distinct from those of both the mercapto17 and seleno18 counterparts which possess 

polymeric  “head-to-tail”  structures. 



11 

Treatment of NaBH4 with three equivalents of 1-methyl-2-benzimidazolinone in either 

benzene or tetrahydrofuran at elevated temperatures (140 ˚C) led only to the formation 

of bis(oxobenzoimdazolyl)borate, [BoMeBenz]Na, rather than the desired product, namely 

tris(oxobenzoimdazolyl)borato [ToMeBenz]. This result was established by 1H NMR 

spectroscopy (Scheme 5). 

 

Scheme 5. Treatment of 3 eq. of 1-methy-1,3-dihydro-benzimidazol-2-one and NaBH4 at 

elevated temperature. 

Additional evidence supporting the formation of [BoMeBenz] ligands was provided by a 

test reaction with ZnI2, which produced crystals of composition {[BoMeBenz]ZnI}2, which 

were isolated and characterized by X-ray diffraction. Chapter 3 will be devoted to the 

synthesis and characterization of the bidendate version of the ligand, bis(2-

oxoimidazolyl)hydroborato ligand. 

A suggestion by a coworker, Wesley Sattler, led to an examination of the effects of using 

a higher boiling, coordinating solvent. Indeed, diglyme offered a reproducible synthesis 

of [ToMeBenz]Na•diglyme in excellent yield of greater than 80% (Scheme 6). 
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Scheme 6. Synthesis of [ToMeBenz]Na•diglyme. 

The X-ray structure of [ToMeBenz]Na•diglyme, (Figure 7), reveals a fully coordinated 

diglyme molecule. The ability to obtain the tris motif when diglyme is used as solvent 

may be attributed to the enhanced reactivity of NaBH4 by chelation of the sodium 

cation. 

 

Figure 7. Molecular structure of [ToMeBenz]Na•diglyme. 
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1.4 Preparation of [ToRBenz]Na (But, Ad) 

Increasing the steric bulk of the [ToR] ligand by replacing the methyl substituent with a 

bulkier alkyl group, for example tert-butyl or adamantyl, may cause the ligand to bond 

with different coordination modes, which may result in metal complexes that have 

different properties. For example, replacing the methyl group with mesityl in the case of 

[TmR] has allowed the isolation of monomeric species of {[TmMes]Zn(HOMe)}+.19 

Therefore, 1-tert-butyl-1,3-dihydro-benzimidazol-2-one was prepared in order to 

examine the tert-butyl substituent steric bulk impact. It was synthesized according to 

reported procedure20 by Benjamin Kriegle, a visiting summer undergraduate, under my 

supervision (Scheme 7). Crystals of 1-tert-butyl-1,3-dihydro-benzimidazol-2-one were 

obtained from CH2Cl2 solution (Figure 8). 

 

 

Scheme 7. Synthesis of 1-t-butyl-1,3-dihydro-benzimidazol-2-one. 
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Figure 8. Hydrogen bonded dimeric structure of 1-t-butyl-1,3-dihydro-benzimidazol-2-

one. 

We then employed this procedure to synthesize a bulkier derivative, namely the 1-

adamantyl-1,3-dihydro-benzimidazol-2-one,21 and crystals suitable for X-ray diffraction 

were obtained from CH2Cl2 solution (Figure 9)  
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Figure 9. Hydrogen bonded dimeric structure of 1-adamantyl-1,3-dihydro-

benzimidazol-2-one. 

Benzannulated oxoimidazole compounds with different alkyl groups can be 

synthesized from the alkyl amine precursor (Scheme 7). However, we still find that the 

Hofmann-type-rearrangement of 2-methylaminobenzamide is the preferred method for 

the synthesis of 1-methyl-1,3-dihydro-benzimidazol-2-one since methylamine is a gas 

which has a strong fish odor (Scheme 4). The [ToButBenz]Na and [ToAdBenz]Na complexes 

have been synthesized by a method similar to [ToMeBenz]Na, by the reaction of NaBH4  

with the appropriate benzimidazole-2-one in diglyme at 185 ˚C (Scheme 8). The X-ray 

structures of [ToButBenz]Na and [ToAdBenz]Na reveal that, unlike the methyl version, the 

sodium is not fully coordinated by diglyme, since only two out of the three oxygen 
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atoms coordinate in the solid state (Figures 10 and 11). This might be due to the steric 

bulk created by t-butyl or adamantyl groups.  

 

Scheme 8. Synthesis of [ToRBenz]Na(diglyme), R = But, Ad. 

 

Figure 10. Molecular structure of [ToButBenz]Na•diglyme. 
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Figure 11. Molecular structure of [ToAdBenz]Na•diglyme. 

1.5 Synthesis of the Thallium Counterpart: [ToRBenz]Tl 

The alkali metal complexes, [ToRBenz]Na, are useful ligand-transfer reagents for the 

synthesis of the thallium derivative. There are many motivating factors for obtaining 

the thallium derivative. First, we are interested in how [ToR] ligands bind to thallium 

versus other related L2X ligands, eg. [TpR,R] and [TmR]. Second, in many cases thallium 

derivatives are of use as ligand-transfer reagents due to the driving force provided by 

the precipitation of TlX or decomposition of TlR.22  Finally, the process of converting 

[ToRBenz]Na to its thallium counterpart is an effective means for purifying the ligand by 

removing excess starting materials or coordinating solvent.2  
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Treatment of [ToRBenz]Na ,dissolved in methanol or THF with an aqueous solution of 

TlOAc led to immediate precipitation of the [ToRBenz]Tl (Scheme 9). The suspension was 

filtered and the precipitate was washed with water and dried in vacuo to generate the 

product with good yield and excellent purity. Crystals of [ToMeBenz]Tl (Figure 12), 

[ToButBenz]Tl (Figure 13) and [ToAdBenz]Tl (Figure 14) may be obtained from diffusion of 

pentane into a benzene solution, ether, and diffusion of pentane into a toluene solution, 

respectively, and their molecular structures were determined via X-ray diffraction. 

 

Scheme 9. Synthesis of [ToRBenz]Tl, R = Me, But or Ad. 
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Figure 12. Molecular structure of [ToMeBenz]Tl. 

 

Figure 13. Molecular structure of [ToButBenz]Tl. 
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Figure 14. Molecular structure of [ToAdBenz]Tl. 

Interestingly, [ToRBenz]Tl ,where R = Me, But , Ad, exist as discrete mononuclear 

complexes in the solid state since the shortest Tl•••Tl contact is 4.88 Å for [ToMeBenz]Tl, 

6.81 Å for [ToButBenz]Tl and 7.41 Å for [ToAdBenz]Tl. Therefore, it is evident that there is no 

direct interaction. This is in marked contrast to [TmR]Tl. For example, when R = Ph, But, 

{[TmR]Tl}2 is dinuclear in which two sulfurs of the ligand span the two metal centers 

whereas the third sulfur bridges them.23 The coordination geometry of [ToRBenz]Tl more 

closely resembles the tris(pyrazolyl)-hydroborato counterparts, [Tp]Tl,24 since they exist 

as monomeric complexes with symmetrically coordinated tridentate ligands.  

The average O–Tl–O bond angles in [ToRBenz]Tl are quite acute, since it is 79.09˚ for 

[ToMeBenz]Tl, 79.77˚ for [ToButBenz]Tl and 78.41˚ for [ToAdBenz]Tl, and thus the thallium 
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centers are highly pyramidal (Table 1). Degree of pyramidality for MX3 center can be 

obtained by measuring how much the sum of E–Tl–E departs from 360˚, i.e. P = 360˚ – 

6(E–M–E).25 Similar values of pyramidality were obtained for (Py)Fe(P-ArTolCO2)3Tl26 

where the thallium(I) center is fused between three Fe(II) carboxylate moties. [ToRBenz]Tl 

complexes are more pyramidal than the sulfur counterpart, [TmRBenz]Tl,27 but less 

pyramidal than those in the tris(pyrazolyl)hydroborato counterpart, [Tp]Tl.28 

Table 1. Metric data and pyramidality (P) of various tripodal thallium compounds. 

 (Tl–Eav)/Å Tl•••B/Å (E–Tl–Eav)/˚ Pyramidality (P) 

P = 360˚– 6(E–Tl–E) 

[ToMeBenz]Tl 2.56 4.02 79.09 122.7 

[ToButBenz]Tl 2.52 4.14 79.77 120.7 

[ToAdBenz]Tl 2.51 4.17 78.41 124.8 

[TmMeBenz]Tl 3.00 4.39 85.53 103.4 

[TmButBenz]Tl 2.90 4.14 88.81 93.6 

[TpMe2]Tl 2.52 3.62 74.64 136.09 

[TpBut,Me]Tl 2.50 3.53 77.87 126.39 

[TpTripp]Tl 2.74 3.63 76.01 131.98 

(Py)Fe(P-ArTolCO2)3Tl 2.65 – 78.8 123.6 

 

1.6 Conclusion 

The sodium salt of tris(2-oxo-1-t-butylimidazolyl) hydroborato, [ToBut], as an [O3] donor 

ligand has been prepared. The yield for this reaction is low because there is a significant 
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amount of side product in which the double bond of the oxoimidazole starting material 

is reduced. Treatment of sodium borohydride with benzannulated oxoimidazole at high 

temperature leads to the generation of tris(2-oxo-1-R-methylbenzimidazolyl) 

hydroborate in high yield. These ligands have been prepared with different alkyl 

substituents, methyl, t-butyl and adamantyl, to achieve the desired steric environment. 

Furthermore, these benzannulated ligands have been used to synthesize a series of 

[ToRBenz]Tl complexes, which exist as discrete mononuclear complexes in the solid state. 

Finally, the [ToRBenz]Tl complexes are more pyramidal than the sulfur counterparts, 

[TmRBenz]Tl, but less pyramidal than those in the tris(pyrazolyl)hydroborato, [TpR,R]Tl. 

1.7 Experimental Section 

1.7.1 General Considerations 

All manipulations were performed using a combination of glovebox, high vacuum, and 

Schlenk techniques under a nitrogen or argon atmosphere unless otherwise specified.29  

Solvents were purified and degassed by standard procedures. 1H NMR spectra were 

measured on Bruker 300 DRX, Bruker 300 DPX, Bruker 400 DRX, Bruker 400 AVIII, 

Brucker 400 Cyber-enabled Avance III and Bruker Avance 500 DMX spectrometers. 1H 

NMR chemical shifts are reported in ppm relative to SiMe4 (G = 0) and were referenced 

internally with respect to the protio solvent impurity (G 7.16 for C6D5H; 7.26 for CHCl3 

and 2.50 for d6-DMSO).30  13C NMR spectra are reported in ppm relative to SiMe4 (G = 0) 

and were referenced internally with respect to the solvent (G 77.16 for CDCl3, 128.06 for 



23 

C6D6, 54.00 for CD2Cl2 and 39.52 for d6-DMSO).30  Coupling constants are given in hertz.  

Infrared spectra were recorded on a Nicolet Avatar 370 DTGS spectrometer and are 

reported in cm–1. Mass spectra were obtained on a Jeol JMS-HX110H Tandem Double-

Focusing Mass Spectrometer with a 10 kV accelerated voltage equipped with FAB 

ion source.  1-tert-Butyl-1,3-dihydro-2H-imidazol-2-one,12 1-methyl-1,3-dihydro-2H-

benzimidazol-2-one16 and 1-t-butyl-1,3-dihydro-2H-benzimidazol-2-one20 were prepared 

by the literature methods. NaBH4 (Aldrich), TlOAc (Aldrich) and 1-methyl-1,3-dihydro-

2H-benzimidazol-2-thione (Aldrich) were obtained commercially and used as received. 

1.7.2 X-ray Structure Determinations 

Single crystal X-ray diffraction data were collected on a Bruker Apex II diffractometer 

and crystal data, data collection and refinement parameters are summarized in Table 2.  

The structures were solved using direct methods and standard difference map 

techniques, and were refined by full-matrix least-squares procedures on F2 with 

SHELXTL (Version 2008/4).31 

1.7.3 Synthesis of 1-tert-butyl-1,3-dihydro-2H-imidazol-2-one 

A mixture of N-(2,2-ethoxylethyl)-N-t-butylurea (7.0 g, 30 mmol), 1M H2SO4 (4 mL) and 

water  (5 mL) in MeOH (200 mL) was heated at 60 ˚C for overnight. Then the mixture 

was cooled to room temperature and neutralized with NaOH (1 M). The volatile 

components were removed in vacuo and the residue was dissolved in CH2Cl2 (ca. 500 

mL) and washed with saturated solution of NaHCO3 (ca. 500 mL). The organic layer 
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was collected and dried over Na2SO4, after which the volatile components were 

removed in vacuo to leave behind yellow solid. The solid was dissolved in a minimum 

amount of CH2Cl2 for crystallization to obtained yellow crystals of 1-tert-butyl-1,3-

dihydro-2H-imidazol-2-one (3.0 g, 71.0%). 

1.7.4 Synthesis of {[ToBut]Na}2  

A mixture of 1-tert-butyl-1,3-dihydro-2H-imidazol-2-one (200 mg, 1.43 mmol) and 

NaBH4 (18 mg, 0.47 mmol) was placed in an ampoule and treated with THF (4 mL).  The 

mixture  was  heated  at  180  ˚C  for  9  days  and cooled to room temperature. The volatile 

components were removed in vacuo and the residue obtained was crystallized from 

pentane (ca. 5 mL) and dried to give [ToBut]Na as colorless crystals (14 mg, 7%). 1H NMR 

(C6D6): 1.37 [s, 27H of HB{C2N2H2[C(CH3)3]CO}3], 6.08 [d, 3JH-H = 3, 3H of 

HB{C2N2H2[C(CH3)3]CO}3], 6.62 [br, 3H of HB{C2N2H2[C(CH3)3]CO}3]. 13C{1H} NMR 

(C6D6): 28.5 [9 C, HB{C2N2H2[C(CH3)3]CO}3], 53.9 [3 C, HB{C2N2H2[C(CH3)3]CO}3], 107.7 

[3 C, HB{C2N2H2[C(CH3)3]CO}3], 112.3 [3 C, HB{C2N2H2[C(CH3)3]CO}3], 157.6 [3 C, 

HB{C2N2H2[C(CH3)3]CO}3]. FAB-MS: m/z = 475.3 [M + Na]+, M = [ToBut]Na. The formation 

of [ToBut]Na, however, is accompanied side reactions, in one of which the C=C double 

bond of the imidazolone ring is reduced, thereby resulting in the formation of 1-t-

butylimidazolidinone, which was identified by 1H NMR spectroscopy and X–ray 

diffraction.  1H NMR  for 1-t-butylimidazolidinone (C6D6): 1.29 [s, 9H of 
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C2H4NHN[C(CH3)3]CO], 2.43 [t, 3JH-H = 8, 2H of C2H4NHN[C(CH3)3]CO], 2.69 [t, 3JH-H = 8, 

2H of C2H4NHN[C(CH3)3]CO], NH not observed. 

1.7.5 Synthesis of 1-methyl-1,3-dihydro-benzimidazol-2-one  

Iodobenzene diacetate (6.4g, 20 mmol) was added portion wise to ice cooled mixture of 

2-methylaminobenzamide (3.0g, 20 mmol) and KOH (2.6g, 40 mmol) in 100 mL MeOH. 

The ice was removed and the mixture was stirred for one hour. The mixture was 

neutralized with HCl (1 M). Then hexane (ca. 100 mL) was added and stirred for one 

hour to extract the formed iodobenzene. The methanol layer was collected and the 

volatile components were removed in vacuo. The resulted residue was dissolved in 

CH2Cl2 (ca. 500 mL) and washed with saturated aqueous solution of NaHCO3 (400 mL). 

The organic layer was collected and dried over Na2SO4, after which the volatile 

components were removed in vacuo leaving behind light brown solid. The solid was 

dissolved in a minimum amount of CH2Cl2 for crystallization to obtained off-white 

crystals of 1-methyl-1,3-dihydro-benzimidazol-2-one (2.0 g, 68%). 

1.7.6 Synthesis of [ToMeBenz]Na(diglyme)   

A mixture of 1-methyl-2-benzimidazolinone (700 mg, 4.73 mmol) and NaBH4 (51 mg, 

1.35 mmol) was placed in an ampoule and treated with diglyme (ca. 10 mL).  The 

mixture was heated at 175 ˚C for 1 week, cooled to room temperature and filtered. The 

precipitate was washed with pentane (ca. 5 mL) and dried in vacuo, yielding 

[ToMeBenz]Na•diglyme as a white solid (650 mg, 79%). Analysis calcd. for 
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[ToMeBenz]Na•diglyme: C, 59.0%; H, 5.9%; N 13.8%. Found: C, 58.8%; H, 4.9%; N 14.6%.  

1H NMR (C6D6): 2.74 [s, 9H of HB{(C4H4)C2N2(CH3)CO}3], 3.10 [s, 6H of 2CH3 for 

diglyme], 3.30 [t, 3JH-H = 5, 4H of 2CH2 for diglyme], 3.43[t, 3JH-H = 5, 4H of 2CH2 for 

diglyme], 5.40 [b,  1H of HB{(C4H4)C2N2(CH3)CO}3], 6.54 [d, 3JH-H = 7, 3H of 

HB{(C4H4)C2N2(CH3)CO}3], 6.94 [m, 6H of HB{(C4H4)C2N2(CH3)CO}3], 7.59[d, 3JH-H = 7, 3H 

of HB{(C4H4)C2N2(CH3)CO}3]. 13C{1H} NMR (C6D6): 26.2[3 C, HB{(C4H4)C2N2(CH3)CO}3], 

58.7 [2 C, methyl of the diglyme], 70.6 [2 C, methylene of the diglyme], 72.0[2 C, 

methylene of the diglyme], 106.9 [3 C, HB{(C4H4)C2N2(CH3)CO}3], 111.8 [3 C, 

HB{(C4H4)C2N2(CH3)CO}3], 120.4 [3 C, HB{(C4H4)C2N2(CH3)CO}3], 121.6[3 C, 

HB{(C4H4)C2N2(CH3)CO}3], 131.9 [3 C, HB{(C4H4)C2N2(CH3)CO}3], 134.8[3 C, 

HB{(C4H4)C2N2(CH3)CO}3], 159.7 [3 C, HB{(C4H4)C2N2(CH3)CO}3].  FAB-MS: m/z = 476.3 

[M]+, M = [ToMeBenz]Na. IR Data (KBr disk, cm-1): 3424 (br), 3054 (w), 2931 (m), 2887 (m), 

2425 (w) [Q%+], 1699 (s), 1674 (s), 1602 (m), 1544 (w), 1495 (s), 1433 (s), 1390 (s), 1377 (s), 

1316 (m), 1299 (s), 1212 (m), 1160 (m), 1121 (s), 1088 (s), 1017 (m), 853 (m), 768 (s), 736 (s), 

693 (m), 669 (w), 620 (m), 564 (m),  511 (m), 445 (m). Colorless blocks of 

[ToMeBenz]Na•diglyme suitable for X-ray were obtained from diglyme. 

1.7.7 Synthesis of [ToButBenz]Na(diglyme)  

A mixture of 1-tert-Butyl-2-benzimidazolinone (824 mg, 4.33 mmol) and NaBH4 (54.0 

mg, 1.44 mmol) was placed in an ampoule and treated with diglyme (ca. 10 mL). The 

mixture was heated at 190 ˚C for 4 days, cooled to room temperature where yellow 
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crystals formed. The crystals were filtered and washed with Et2O (ca. 5 mL) and dried in 

vacuo, yielding [ToButBenz]Na•diglyme as a yellow crystals (790 mg, 74.5%). Analysis 

calcd. for [ToButBenz]Na•diglyme: C, 63.6%; H, 7.4%; N, 11.4. Found: C, 62.8%; H, 7.2%; N, 

11.0%.  1H NMR (C6D6): 1.58 [s, 27H of HB{(C4H4)C2N2[C(CH3)3]CO}3], 3.15 [s, 6H of 

2CH3 for diglyme], 3.18 [t, 3JH-H = 5, 4H of 2CH2 for diglyme], 3.39 [t, 3JH-H = 5, 4H of 2CH2 

for diglyme], 6.90 [m, 6H of HB{(C4H4)C2N2[C(CH3)3]CO}3], 7.19 [m, 3H of 

HB{(C4H4)C2N2(CH3)CO}3], 7.54 [d, 3JH-H = 7, 3H of HB{(C4H4)C2N2(CH3)CO}3]. 13C{1H} 

NMR (C6D6): 29.7 [9 C, HB{(C4H4)C2N2[C(CH3)3]CO}3], 56.9 [3 C, 

HB{(C4H4)C2N2[C(CH3)3]CO}3], 59.1 [2 C, methyl of the diglyme], 69.4 [2 C, methylene of 

the diglyme], 71.1 [2 C, methylene of the diglyme], 110.9 [3 C, 

HB{(C4H4)C2N2[C(CH3)3]CO}3], 111.9 [3 C, HB{(C4H4)C2N2[C(CH3)3]CO}3], 119.2 [3 C, 

HB{(C4H4)C2N2[C(CH3)3]CO}3], 120.7 [3 C, HB{(C4H4)C2N2[C(CH3)3]CO}3], 131.6 [3 C, 

HB{(C4H4)C2N2[C(CH3)3]CO}3], 136.0 [3 C, HB{(C4H4)C2N2[C(CH3)3]CO}3], 160.0 [3C, 

HB{(C4H4)C2N2[C(CH3)3]CO}3]. FAB-MS: m/z = 602.3 [M]+, M = [ToButBenz]Na. Yellowish 

blocks of [ToButBenz]Na•diglyme suitable for X-ray were obtained from diglyme. 

1.7.8 Synthesis of 1-Adamantyl-1,3-dihydro-benzimidazol-2-one 

1.7.8.1 Synthesis of Adamantyl-(2-nitrophenyl)-amine  

A mixture of 1-fluoro-2-nitrobenzene (10.0 g, 70.4 mmol) and 1-adamantylamine (9.5g , 

63.0 mmol) was placed in round-bottom flask and treated with DMF (ca. 70 mL). The 

mixture was heated at 70 ˚C for 4 days during which a precipitate was formed. The 
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mixture was cooled to room temperature where more precipitate formed. The mixture 

was filtered and the solid was collected and added to saturated aqueous solution of 

NaCl (200 mL) in erlenmeyer flask. The resulted mixture was extracted with ethyl 

acetate (ca. 700 mL). The organic layer was collected and dried over Na2SO4, after which 

the volatile components were removed in vacuo to yield adamantyl-(2-nitrophenyl)-

amine as an orange crystalline material (10.0g, 58.4%). Analysis calcd. for adamantyl-(2-

nitrophenyl)-amine: C, 70.6%; H, 7.4%; N, 10.3% Found: C, 70.6%; H, 7.6%; N, 10.3%. 1H 

NMR (C6H6): 1.42 [m, 6H of (C4H4)C2(NO2)(NHC10H15)], 1.73 [br, 6H of 

(C4H4)C2(NO2)(NHC10H15)], 1.80 [br, 3H of (C4H4)C2(NO2)(NHC10H15)], 6.20 [m, 1H of 

(C4H4)C2(NO2)(NHC10H15)], 6.89 [m,  2H of (C4H4)C2(NO2)(NHC10H15)], 8.20 [dt, 3JH-H = 8, 

4JH-H = 1, 1H of (C4H4)C2(NO2)(NHC10H15)], 8.35 [br, 1H of (C4H4)C2(NO2)(NHC10H15)]. 

13C{1H} NMR (C6H6): 29.8 [3C of (C4H4)C2(NO2)(NHC10H15)], 36.3 [3C of 

(C4H4)C2(NO2)(NHC10H15)], 42.3 [3C of (C4H4)C2(NO2)(NHC10H15)], 52.5 [1C of 

(C4H4)C2(NO2)(NHC10H15)], 114.8 [1C of (C4H4)C2(NO2)(NHC10H15)], 116.8 [1C of 

(C4H4)C2(NO2)(NHC10H15)], 127.8 [1C of (C4H4)C2(NO2)[NHC10H15]], 133.5 [1C of 

(C4H4)C2(NO2)(NHC10H15)], 134.7 [1C of (C4H4)C2(NO2)(NHC10H15)], 144.9 [1C of 

(C4H4)C2(NO2)(NHC10H15)]. FAB-MS: m/z = 272.15 [M]+, M = Adamantyl-(2-nitrophenyl)-

amine. 
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1.7.8.2 Synthesis of N-adamantyl-benzene-1,2-diamine  

Methanol (40.0 mL) was added in a dropwise manner to a mixture of adamantyl-(2-

nitrophenyl)-amine (4.5 g, 16.5 mmol), NaBH4 (2.0 g, 52.9 mmol) and 5% Pd/C (2 gram) 

in THF (ca. 150 mL). The addition was slow enough to prevent overheating of the 

mixture. The addition, also, was carried out in an open system due to the continuous 

generation of hydrogen gas. After the complete addition of methanol, the mixture was 

stirred for one hour then filtered through pad of celite. The filtrate was collected and 

poured into saturated solution of ammonium chloride (200 mL) and extracted with 

ethyl acetate (2 u ca. 100 mL). The organic layer was collected and dried over Na2SO4, 

after which the volatile components were removed in vacuo to yield a brown powder of 

crude N-adamantyl-benzene-1,2-diamine (3.8 g, 95.0%) which is used for the next step 

without any further purification. 1H NMR (C6H6): 1.47 [m, 6H of 

(C4H4)C2(NH2)(NHC10H15)], 1.70 [br, 6H of (C4H4)C2(NH2)(NHC10H15)], 1.90 [br, 3H of 

(C4H4)C2(NH2)(NHC10H15)], 6.54 [dd, 3JH-H = 8, 4JH-H = 1, 1H of (C4H4)C2(NH2)(NHC10H15)], 

6.77 [dt, 3JH-H = 8, 4JH-H = 1,  1H of (C4H4)C2(NH2)(NHC10H15)], 6.89 [dd, 3JH-H = 8, 4JH-H = 1, 1H 

of (C4H4)C2(NH2)(NHC10H15)], 6.94 [dt, 3JH-H = 8, 4JH-H = 1, 1H of 

(C4H4)C2(NH2)(NHC10H15)]. 13C{1H} NMR (C6H6): 30.1 [3C of (C4H4)C2(NH2)(NHC10H15)], 

36.8 [3C of (C4H4)C2(NH2)(NHC10H15)], 43.6 [3C of (C4H4)C2(NH2)(NHC10H15)], 53.4 [1C 

of (C4H4)C2(NH2)(NHC10H15)], 116.2 [1C of (C4H4)C2(NH2)(NHC10H15)], 118.4 [1C of 

(C4H4)C2(NH2)(NHC10H15)], 124.1 [1C of (C4H4)C2(NH2)(NHC10H15)], 126.6 [1C of 

(C4H4)C2(NH2)(NHC10H15)],  131.9 [1C of (C4H4)C2(NH2)(NHC10H15)], 143.6 [1C of 
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(C4H4)C2(NH2)(NHC10H15)].  FAB-MS: m/z = 242.37 [M]+, M = N-adamantyl-benzene-1,2-

diamine. 

1.7.8.3 Synthesis of 1-Adamantyl-1,3-dihydro-benzimidazol-2-one   

A mixture of N-adamantyl-benzene-1,2-diamine (3.8 g, 15.7 mmol) and 1,1´-carbonyl-

diimidazole (4.2 g, 25.9) was treated with anhydrous THF (150 mL). The mixture was 

stirred for 48 hours at room temperature then poured into 1M aqueous solution of HCl 

(ca. 200 mL). The resulted mixture was extracted with ethyl acetate (2 u ca. 200 mL). The 

organic layer was collected and dried over Na2SO4 after which the volatile components 

were removed in vacuo to give of 1-adamantyl-2-benzimidazolinone as a light brown 

powder (4.0g, 95.1%). Analysis calcd. for 1-adamantyl-2-benzimidazolinone: C, 76.1%; 

H, 7.5%; N, 10.4 Found: C, 76.2%; H, 7.6%; N, 10.4%. 1H NMR (C6D6): 1.57 [m, 6H of 

(C4H4)C2N2H[C10H15]CO], 1.97 [br, 3H of (C4H4)C2N2H[C10H15]CO], 2.55 [br, 6H of 

(C4H4)C2N2H[C10H15]CO], 6.86 [m, 3H of (C4H4)C2N2H[C10H15]CO], 7.26 [m, 1H of 

(C4H4)C2N2H[C10H15]CO], 10.54 [br, 1H of (C4H4)C2N2H[C10H15]CO]. 13C{1H} NMR (C6D6): 

30.2 [3C of (C4H4)C2N2H[C10H15]CO], 36.4 [3C of (C4H4)C2N2H[C10H15]CO], 40.8 [6C of 

(C4H4)C2N2H[C10H15]CO], 60.2 [1C of (C4H4)C2N2H[C10H15]CO], 109.7 [1C of 

(C4H4)C2N2H[C10H15]CO], 112.7 [1C of (C4H4)C2N2H[C10H15]CO], 120.5 [1C of 

(C4H4)C2N2H[C10H15]CO], 120.9 [1C of (C4H4)C2N2H[C10H15]CO], 129.5 [1C of 

(C4H4)C2N2H[C10H15]CO], 130.6 [1C of (C4H4)C2N2H[C10H15]CO], 156.3 [1C of 

(C4H4)C2N2H[C10H15]CO]. FAB-MS: m/z = 268.33 [M]+, M = 1-admantyl-2- 
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benzimidazolinone. Colorless blocks of 1-adamantyl-2-benzimidazolinone suitable for 

X-ray were obtained from CH2Cl2. 

1.7.9 Synthesis of [ToAdBenz]Na(diglyme)   

A mixture of 1-adamantyl-2-benzimidazolinone (700 mg, 2.6 mmol) and NaBH4 (33 mg, 

0.9 mmol) was placed in an ampoule and treated with diglyme (ca. 6 mL). The mixture 

was heated at 190 ˚C for 4 days, cooled to room temperature where yellow crystals 

formed. In case of no crystals formed at room temperature, the mixture can be cooled in 

an ice-bath to 0 ˚C to enhance the formation of crystals of the product. The crystals were 

filtered and dried in vacuo, yielding [ToAdBenz]Na•diglyme as a yellow crystals (400 mg, 

45.8%).  Analysis calcd. for [ToMeBenz]Na•1.5diglyme: C, 69.4 %; H, 7.7 %; N, 8.1 % Found: 

C, 68.9%; H, 6.9%; N, 8.01%. 1H NMR (C6D6): 1.54 [m, 18H of 

HB{(C4H4)C2N2[C10H15]CO}3], 1.90 [br, 9H of HB{(C4H4)C2N2[C10H15]CO}3], 2.45 [br, 18H 

of HB{(C4H4)C2N2[C10H15]CO}3], 3.18 [s, 6H of 2CH3 for diglyme], 3.29 [t, 3JH-H = 4, 4H of 

2CH2 for diglyme], 3.46[t, 3JH-H = 4, 4H of 2CH2 for diglyme], 6.92 [m, 6H of 

HB{(C4H4)C2N2[C10H15]CO}3], 7.33 [m, 3H of HB{(C4H4)C2N2[C10H15]CO}3], 7.55 [d, 3JH-H = 

6,  3H of HB{(C4H4)C2N2[C10H15]CO}3] . 13C{1H} NMR (C6D6): 30.4 [9C of 

HB{(C4H4)C2N2[C10H15]CO}3], 36.7 [9C of HB{(C4H4)C2N2[C10H15]CO}3], 40.9 [9C of 

HB{(C4H4)C2N2[C10H15]CO}3], Not showing [3C of HB{(C4H4)C2N2[C10H15]CO}3], 59.1 [2 

C, methyl of the diglyme], 70.0 [2 C, methylene of the diglyme], 71.4 [2 C, methylene of 

the diglyme], 111.6 [3C of HB{(C4H4)C2N2[C10H15]CO}3], 112.0 [3C of 
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HB{(C4H4)C2N2[C10H15]CO}3], 119.2 [3C of HB{(C4H4)C2N2[C10H15]CO}3], 120.6 [3C of 

HB{(C4H4)C2N2[C10H15]CO}3], 131.3 [3C of HB{(C4H4)C2N2[C10H15]CO}3],  136.0 [3C of 

HB{(C4H4)C2N2[C10H15]CO}3], 159.9 [3C of HB{(C4H4)C2N2[C10H15]CO}3].  FAB-MS: m/z = 

836.46 [M]+, M = [ToAdBenz]Na. Yellowish blocks of [ToAdBenz]Na•diglyme suitable for X-

ray were obtained from diglyme. 

1.7.10 Synthesis of [ToMeBenz]Tl  

[ToMeBenz]Na•diglyme (230 mg, 0.38 mmol) was dissolved in MeOH (ca. 22 mL) and 

filtered to obtain clear solution. The clear solution was treated with solution of TlOAc 

(149 mg, 0.57 mmol) in distilled water (ca. 80 mL), resulting in the formation of a white 

precipitate in a colorless solution. The mixture was stirred at room temperature for 30 

minutes then filtered. The precipitate was washed with water (2 u ca. 10 mL) and dried 

in air overnight then dried in vacuo yielding off-white powder of [ToMeBenz]Tl (180 mg, 

72.0%). Analysis calcd. for [ToMeBenz]Tl•0.5C6H6: C, 46.6%; H, 3.6%; N, 12.1%. Found: C, 

46.2%; H, 3.4%; N, 11.8%. 1H NMR (C6D6): 2.74 [s, 9H of HB{(C4H4)C2N2(CH3)CO}3], 6.58 

[m, 3H of HB{(C4H4)C2N2(CH3)CO}3], 6.98 [m, 6H of HB{(C4H4)C2N2(CH3)CO}3], 7.63 [d, 

3H of HB{(C4H4)C2N2(CH3)CO}3]. 13C{1H} NMR (C6D6): 26.2[3 C, 

HB{(C4H4)C2N2(CH3)CO}3], 107.2 [3 C, HB{(C4H4)C2N2(CH3)CO}3], 111.9 [3 C, 

HB{(C4H4)C2N2(CH3)CO}3], 120.5 [3 C, HB{(C4H4)C2N2(CH3)CO}3], 121.7 [3 C, 

HB{(C4H4)C2N2(CH3)CO}3], 131.9 [3C, HB{(C4H4)C2N2(CH3)CO}3], 134.4 [3C, 

HB{(C4H4)C2N2(CH3)CO}3], 159.8 [3C, HB{(C4H4)C2N2(CH3)CO}3]. FAB-MS: m/z = 658.2 
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[M]+, M = [ToMeBenz]Tl. Colorless block of [ToMeBenz]Tl suitable for X-ray were obtained 

from diffusion of pentane into solution of [ToMeBenz]Tl in benzene. 

1.7.11 Synthesis of [ToButBenz]Tl  

[ToButBenz]Na•diglyme (500 mg, 0.68 mmol) was dissolved in MeOH (ca. 8 mL) and 

filtered to obtain clear solution. The resulted clear solution was treated with a solution 

of thallium (I) acetate (357 mg, 1.36 mmol)  in water (ca. 10 mL), resulting in the 

formation of a yellow precipitate in a light yellow solution. The mixture was stirred at 

room temperature for 30 minutes then filtered. The precipitate was washed with water 

(2 u ca. 10 mL) and dried in air overnight then dried in vacuo yielding yellow powder of 

[ToButBenz]Tl (440 mg, 82.6%). Analysis calcd. for [ToButBenz]Tl: C, 50.6%; H, 5.1%; N, 10.7%. 

Found: C, 50.8%; H, 5.2%; N, 10.6%.  1H NMR (C6D6): 1.47 [s, 27H of 

HB{(C4H4)C2N2[C(CH3)3]CO}3], 6.90 [m, 6H of HB{(C4H4)C2N2[C(CH3)3]CO}3], 7.15 [d, 3JH-

H = 10, 3H of HB{(C4H4)C2N2(CH3)CO}3], 7.56 [d, 3JH-H = 10, 3H of 

HB{(C4H4)C2N2(CH3)CO}3]. 13C{1H} NMR (C6D6): 30.1 [m, 9 C, 

HB{(C4H4)C2N2[C(CH3)3]CO}3], 57.6 [3 C, HB{(C4H4)C2N2[C(CH3)3]CO}3], 111.8 [3 C, 

HB{(C4H4)C2N2[C(CH3)3]CO}3], 112.2 [3 C, HB{(C4H4)C2N2[C(CH3)3]CO}3], 120.1 [3 C, 

HB{(C4H4)C2N2[C(CH3)3]CO}3], 121.2 [3 C, HB{(C4H4)C2N2[C(CH3)3]CO}3], 131.3 [3 C, 

HB{(C4H4)C2N2[C(CH3)3]CO}3], 135.0 [3 C, HB{(C4H4)C2N2[C(CH3)3]CO}3], 160.2 [3C, 

HB{(C4H4)C2N2[C(CH3)3]CO}3].  FAB-MS: m/z = 784.3 [M]+, M = [ToButBenz]Tl. Colorless 

plate of [ToButBenz]Tl suitable for X-ray were obtained from diethylether. 
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1.7.12 Synthesis of [ToAdBenz]Tl  

[ToAdBenz]Na•diglyme (218 mg, 0.22 mmol) was dissolved in THF (ca. 75 mL) and filtered 

to obtain clear solution. The resulted clear solution was treated with a solution of 

thallium (I) acetate (90.0 mg, 0.34 mmol) in water (ca. 100 mL), resulting in the 

formation of a white precipitate in a colorless solution. The mixture was stirred at room 

temperature for one hour then filtered. The precipitate was washed with water (2 u ca. 

25 mL) and dried in air overnight and then dried in vacuo yielding off-white powder of 

[ToAdBenz]Tl•THF (150 mg, 67.1%). Analysis calcd. for [ToAdBenz]Tl•THF: C, 60.6 %; H, 

6.1%; N, 7.7. Found: C, 60.7%; H, 6.1%; N, 7.4%. 1H NMR (C6H6): 1.42 [m, 4H of 2CH2 for 

THF], 1.47 [m, 18H of HB{(C4H4)C2N2[C10H15]CO}3], 1.85 [br, 9H of 

HB{(C4H4)C2N2[C10H15]CO}3], 2.42 [br, 18H of HB{(C4H4)C2N2[C10H15]CO}3], 3.58 [m, 4H 

of 2CH2 for THF], 6.95 [m, 6H of HB{(C4H4)C2N2[C10H15]CO}3], 7.33 [dd, 3JH-H = 8, 4JH-H = 1, 

3H of HB{(C4H4)C2N2[C10H15]CO}3], 7.59 [dd, 3JH-H = 8, 4JH-H = 1,  3H of 

HB{(C4H4)C2N2[C10H15]CO}3]. 13C{1H} NMR (C6H6): 25.8 [2 C, methylene of the THF], 30.2 

[9C of HB{(C4H4)C2N2[C10H15]CO}3], 36.4 [9C of HB{(C4H4)C2N2[C10H15]CO}3], 41.4 [br, 9C 

of HB{(C4H4)C2N2[C10H15]CO}3], 60.0 [3C of HB{(C4H4)C2N2[C10H15]CO}3], 67.8 [2 C, 

methylene of the THF], 112.3 [3C of H2B{(C4H4)C2N2[C10H15]CO}3], 112.5[3C of 

HB{(C4H4)C2N2[C10H15]CO}3], 120.0 [3C of HB{(C4H4)C2N2[C10H15]CO}3], 121.1 [3C of 

HB{(C4H4)C2N2[C10H15]CO}3],  131.1 [3C of HB{(C4H4)C2N2[C10H15]CO}3], 135.0 [3C of 

HB{(C4H4)C2N2[C10H15]CO}3], 160.0 [3C of HB{(C4H4)C2N2[C10H15]CO}3].  FAB-MS: m/z = 
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1018.44 [M]+, M = [ToAdBenz]Tl. Colorless plates of [ToAdBenz]Tl suitable for X-ray were 

obtained from toluene. 
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1.8 Crystallographic Data 

Table 2. Crystal, intensity collection and refinement data. 

 H(obenzimBut) 
 

[ToBut]Na 
 

lattice Monoclinic Triclinic 
formula C11H14N2O2 C42H68B2N12O6Na2 
formula weight 190.24 904.68 
space group P21/n P-1 

a/Å 11.2515(19) 10.357(3) 
b/Å 7.9498(14) 10.900(3) 
c/Å 11.536(2) 12.135(4) 
D/˚ 90 104.306(5) 
E/˚ 106.507(2) 92.511(5) 
J/˚ 90 108.015(5) 
V/Å3 989.3(3) 1251.6(6) 
Z 4 1 
temperature (K) 125(2) 150(2) 
radiation (O, Å) 0.71073 0.71073 
U (calcd.), g cm-3 1.277 1.200 
P (Mo KD), mm-1 0.084 0.096 
T�max, deg. 29.57 26.37 
no. of data 
collected 

14457 15155 

no. of data used 2766 5123 
no. of parameters 134 302 
R1 [I > 2V(I)] 0.0389 0.0568 
wR2 [I > 2V(I)] 0.1090 0.0784 
R1 [all data] 0.0463 0.1517 
wR2 [all data] 0.1154 0.0932 
GOF 1.063 1.092 
Rint 0.1007 0.0880 
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Table 2. (cont.) Crystal, intensity collection and refinement data. 

 1-t-butyl-
imidazolidinone 

H(obenzimMe) 
 

lattice Monoclinic Monoclinic 
formula C7H14N2O C8H8N2O 
formula weight 142.20 148.16 
space group P21/c P21/n 

a/Å 12.2165(13) 9.2105(16) 
b/Å 6.1075(3) 5.5849(10) 
c/Å 10.7386(11) 13.456(2) 
D/˚ 90 90 
E/˚ 96.338(2) 91.481(2) 
J/˚ 90 90 
V/Å3 796.33(14) 707.0(2) 
Z 4 4 
temperature (K) 125(2) 125(2) 
radiation (O, Å) 0.71073 0.71073 
U (calcd.), g cm-3 1.186 1.392 
P (Mo KD), mm-1 0.081 0.095 
T�max, deg. 30.50 30.69 
no. of data 
collected 

12129 10956 

no. of data used 2430 2181 
no. of parameters 98 105 
R1 [I > 2V(I)] 0.0473 0.0478 
wR2 [I > 2V(I)] 0.1277 0.1057 
R1 [all data] 0.0655 0.0752 
wR2 [all data] 0.1420 0.1183 
GOF 1.037 1.040 
Rint 0.0431 0.0623 
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Table 2. (cont.) Crystal, intensity collection and refinement data. 

 [ToMeBenz]Na 
 

H(obenzimBut) 
 

lattice Triclinic Monoclinic 
formula C30H36BN6O6Na C11H14N2O 
formula weight 610.45 190.24 
space group P-1 P21/n 

a/Å 13.7551(9) 11.2515(19) 
b/Å 14.9081(10) 7.9498(14) 
c/Å 15.2676(10) 11.536(2) 
D/˚ 82.3230(10) 90 
E/˚ 89.7710(10) 106.507(2) 
J/˚ 81.6210(10) 90 
V/Å3 3069.2(4) 989.3(3) 
Z 4 4 
temperature (K) 200(2) 125(2) 
radiation (O, Å) 0.71073 0.71073 
U (calcd.), g cm-3 1.321 1.277 
P (Mo KD), mm-1 0.105 0.084 
T�max, deg. 32.57 29.57 
no. of data 
collected 

52297 14457 

no. of data used 20703 2766 
no. of parameters 811 134 
R1 [I > 2V(I)] 0.0494 0.0392 
wR2 [I > 2V(I)] 0.1178 0.1090 
R1 [all data] 0.1003 0.0463 
wR2 [all data] 0.1427 0.1154 
GOF 1.021 1.063 
Rint 0.0373 0.0289 
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Table 2. (cont.) Crystal, intensity collection and refinement data. 

 H(obenzimAd) 
 

[ToButBenz]Na 
 

lattice Monoclinic Monoclinic 
formula C30H36BN6NaO6 C39H54BN6O6Na 
formula weight 610.45 736.68 
space group C2/c P21/n 

a/Å 19.693(5) 14.4606(17) 
b/Å 6.7643(16) 16.942(2) 
c/Å 21.751(5) 16.2001(19) 
D/˚ 90 90 
E/˚ 112.503(3) 104.238(2) 
J/˚ 90 90 
V/Å3 2676.9 3847.0(8) 
Z 8 4 
temperature (K) 130(2) 150(2) 
radiation (O, Å) 0.71073 0.71073 
U (calcd.), g cm-3 1.332 1.272 
P (Mo KD), mm-1 0.084 0.095 
T�max, deg. 28.28 28.28 
no. of data 
collected 

17902 53216 

no. of data used 3310 9555 
no. of parameters 185 493 
R1 [I > 2V(I)] 0.0593 0.0563 
wR2 [I > 2V(I)] 0.1049 0.0849 
R1 [all data] 0.1423 0.1641 
wR2 [all data] 0.1316 0.1092 
GOF 1.029 1.043 
Rint 0.1388 0.1615 
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Table 2. (cont.) Crystal, intensity collection and refinement data. 

 [ToAdBenz]Na 
 

[ToMeBenz]Tl 
 

lattice Monoclinic Triclinic 
formula C57H72BN6 O6Na C27H25BN6O3Tl 
formula weight 971.01 696.71 
space group Cc P-1 

a/Å 12.591(5) 8.9623(7) 
b/Å 22.702(10) 11.8473(9) 
c/Å 17.362(7) 12.5574(9) 
D/˚ 90 88.5470(10) 
E/˚ 96.671(6) 88.3440(10) 
J/˚ 90 75.8500(10) 
V/Å3 4929(4) 1292.11(17) 
Z 4 2 
temperature (K) 150(2) 150(2) 
radiation (O, Å) 0.71073 0.71073 
U (calcd.), g cm-3 1.308 1.791 
P (Mo KD), mm-1 0.092 6.292 
T�max, deg. 26.80 30.51 
no. of data 
collected 

10239 20917 

no. of data used 5221 7831 
no. of parameters 647 350 
R1 [I > 2V(I)] 0.0730 0.0207 
wR2 [I > 2V(I)] 0.1461 0.0501 
R1 [all data] 0.1175 0.0235 
wR2 [all data] 0.1629 0.0511 
GOF 1.036 1.037 
Rint 0.1105 0.0209 
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Table 2. (cont.) Crystal, intensity collection and refinement data. 

 [ToButBenz]Tl 
 

[ToAdBenz]Tl 
 

lattice Monoclinic Triclinic 
formula C37H50BN6O6Na C54.5H62BN6O3Tl 
formula weight 858.01 1064.28 
space group P21/c P-1 

a/Å 16.633(3) 13.1614(17) 
b/Å 17.757(3) 15.858(2) 
c/Å 12.807(2) 23.642(3) 
D/˚ 90 98.831(2) 
E/˚ 103.682(2) 101.050(2) 
J/˚ 90 101.050(2) 
V/Å3 3675.3(10) 102.309(2) 
Z 4 4 
temperature (K) 150(2) 130(2) 
radiation (O, Å) 0.71073 0.71073 
U (calcd.), g cm-3 1.551 1.526 
P (Mo KD), mm-1 4.442 3.538 
T�max, deg. 28.28 32.79 
no. of data 
collected 

50589 80820 

no. of data used 9125 31750 
no. of parameters 488 1117 
R1 [I > 2V(I)] 0.0602 0.0368 
wR2 [I > 2V(I)] 0.1307 0.0825 
R1 [all data] 0.1294 0.0578 
wR2 [all data] 0.1579 0.0878 
GOF 1.023 1.013 
Rint 0.1432 0.0409 
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2.1 Introduction 

As described in chapter one of this thesis, tris(2-oxo-1-alkylimidazolyl)hydroborato 

ligands have been successfully synthesized in good yields. This has been mainly 

achieved by annulation of the oxoimidazole starting materials which avoids any side 

products. The primary goal of this chapter is to study the properties of these ligands in 

terms of sterics and electronics, which may provide important information to help 

harness the [ToR] ligand in the best way possible.  Specifically, the electronic and steric 

properties of these new ligands will be compared to those of other relevant L2X1 donors 

by using the [L2X]Re(CO)3 framework. The assessment of the electron donation ability 

of [ToR] ligands to that of other L2X ligands can be achieved by the observation of the 

QCO frequency of a series of related metal carbonyl derivatives.2 On the other hand, the 

Tolman cone angle,3 a steric hindrance indicator, can be measured by using simple 

geometrical calculations based on the molecular structure determined by X-ray 

crystallography.4 Fortunately, there is a library of reported X-ray structures and infrared 

data of various [L2X]Re(CO)3
5 complexes which enable us to evaluate the [ToR] ligands. 

Finally, the coordination chemistry of [ToR] ligands with various metal compounds will 

be investigated. 

2.2 Preparation of [ToR]Re(CO)3 and Relevant L2XRe(CO)3 Complexes  

[ToMeBenz]Re(CO)3 and [ToBut]Re(CO)3 were prepared by the treatment of Re(CO)5Br with 

[ToMeBenz]Na•diglyme and [ToBut]Na, respectively (Scheme 1). The molecular structures 
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of [ToBut]Re(CO)3 (Figure 1) and [ToMeBenz]Re(CO)3 (Figure 2)  have been determined by X-

ray diffraction. 

 

Scheme 1. Synthesis of [ToR]Re(CO)3 and related [L2X]Re(CO)3 complexes. 
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Figure 1. Molecular structure of [ToMeBenz]Re(CO)3. 

 

 

Figure 2. Molecular structure of [ToBut]Re(CO)3. 
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We also synthesized [TmMeBenz]Re(CO)3 and [CpCo{P(O)(OEt)2}3]Re(CO)3 for comparison 

purposes since the former complex represents the corresponding [TmR]6 sulfur donor 

and the latter is the only related L2X type [O3] donor ligands.7 [ToMeBenz]Re(CO)3 and 

[CpCo{P(O)(OEt)2}3]Re(CO)3 were prepared by the treatment of Re(CO)5Br with 

{[TmMeBenz]Na}2(THF)3 and [CpCo{P(O)(OEt)2}3]Na, respectively (Scheme 1). Crystals of 

[TmMeBenz]Re(CO)3 (Figure 3)  and [CpCo{P(O)(OEt)2}3]Re(CO)3 (Figure 4) suitable for X-

ray diffraction were obtained by slow evaporation from benzene solution. 

 

 

Figure 3. Molecular structure of [TmMeBenz]Re(CO)3. 
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Figure 4. Molecular structure of [CpCo{P(O)(OEt)2}3]Re(CO)3. 

[TmMeBenz]Na was synthesized via the reaction of NaBH4 with three equivalents of 1-

methyl-1,3-dihydro-2H-benzimidazole-2-thione in THF at elevated temperature 

(Scheme 2). 

 

Scheme 2. Synthesis of {[TmMeBenz]Na}2(THF)3. 

Colorless crystals of {[TmMeBenz]Na}2(THF)3 suitable for X-ray diffraction of  were 

obtained by cooling down the reaction mixture to room temperature (Figure 5). 
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Figure 5. Molecular structure of {[TmMeBenz]Na}2(THF)3. 

2.3 Steric Properties of [ToBut] and [ToMeBenz] Ligands 

The steric properties of the [ToBut] and [ToMeBenz] ligands have been assessed by analysis 

of the crystallographic cone angles of the rhenium carbonyl compounds, [ToBut]Re(CO)3 

and [ToMeBenz]Re(CO)3. Crystallographic cone angles (4) were measured by using the 

procedure described by Mingos.4 Specifically, the half-angle (Ti) for each arm of the 

ligand is calculated as the maximum value of � B–Re–H, where the hydrogen atom 

position takes into account the van der Waals radius of hydrogen (1.2 Å). The 

crystallographic cone angle for the ligand is then defined as 4 = (2/3) 6Ti (Figure 6). 
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Figure 6. Tolman half cone angle for a complex of the type [L2X]Re(CO)3. 

The cone angles of selected [L2X]Re(CO)3 compounds are summarized in Table 1. These 

cone angle values reveal that the [ToBut] (229˚)  and  [ToMeBenz]  (196˚) ligands are 

substantially more sterically demanding than the related [O3] donor ligand, 

[CpCo{P(O)(OEt)2}3] (174˚). In addition, [ToR] ligands are more sterically demanding 

than the corresponding [TmR] sulfur donor ligands based on the pairs comparison of the 

cone angles of [ToR]Re(CO)3 and [TmR]Re(CO)3 (Table 1). This is a consequence of the 

fact that the Re–O bonds are ca. 0.35 Å shorter than the Re–S bonds. 
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Table 1. Carbonyl QCO stretching frequency and cone angle values for various 

[L2X]Re(CO)3 compounds. 

[L2X] QCO (cm-1) QCO(av) (cm-1) 4 (˚) 

[ToBut] 2018, 1887 1953 229 

[TmBut]a 2008, 1880 1944 213 

[ToMeBenz] 2026, 1894 1960 196 

[TmMeBenz] 2014, 1895 1955 189 

[TmMe]b 2007, 1888 1948 191 and 

183b 

[TmAd]a 2005, 1887 1946 232 

[CpCo{P(O)(OEt)2}3] 2015, 1880 1948 174 

a) Reference 5a. b) values for two crystallographically independent molecules in the 

same asymmetric unit (CSD# QUSNOH).8 

2.4 Electronic Properties of [ToBut] and [ToMeBenz] Ligands 

2.4.1 General Trend. 

As mentioned previously, comparison of the electron donating properties of [ToBut] and 

[ToMeBenz] ligands to relevant L2X ligands may be achieved by comparing the carbonyl 

QCO stretching frequencies of [ToR]Re(CO)3 with other [L2X]Re(CO)3 compounds      

(Table 1).5 Specifically, comparison of the QCO stretching frequencies of [ToR]Re(CO)3 and 

[CpCo{P(O)(OEt)2}3]Re(CO)3 indicates that the metal centers of [ToR]Re(CO)3 are less 

electron rich than that of [CpCo{P(O)(OEt)2}3]Re(CO)3 (Table 1). Also the [ToR] oxygen 

ligand is less electron donating than the corresponding [TmR] sulfur ligand based on 
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comparing the QCO stretching frequencies of [ToR]Re(CO)3 and [TmR]Re(CO)3. Based on 

these results and results that have been obtained by my colleagues Dr. Victoria Landry9 

and Dr. Kevin Yurkerwich,5a a general trend for electron donability of L2X ligands can 

be established as follows:  [ToR] < [CpCo{P(O)(OEt)2}3] < [TmR] < [TseR]. This trend is in 

accord with the electronegativity of the donor atoms. However, it is worth noting that 

S-donor effects could exert an opposite effect. For instance, W(EBut)3(NO)(py)10 and 

[TpMe2]Mo(NO)(ER)X11 show lower stretching frequencies for QNO when E = O than when 

E = S. This was justified by alkoxide being a better S-donor than the thiolate. The 

relative S-donor abilities of oxygen and sulfur are not well established though, with 

there being contradictory reports in the literature.12 It is also worth noting that S-donor 

effects have been invoked to rationalize why [TmR] ligands are generally more strongly 

electron donating than [TpR] ligands.13 However, based on the QCO stretching frequencies 

we obtained, it appears that S-donation is not a dominant factor when comparing 

[ToR]Re(CO)3 with its sulfur counterpart.    

2.4.2 Benzannulation Impact on [ToR] and [TmR] Ligands. 

It is also worth noting that annulation of the imidazole ring has an impact on the 

electron donor properties of the [ToR] ligands.  Thus, [ToMeBenz] is less electron donating 

than [ToBut] (Table 1). Likewise, benzannulation impacts the electron donor ability of 

[TmR] in the same manner as [ToR]. For example, the QCO stretching frequencies of 

[TmMeBenz]Re(CO)3 (2014 and 1895 cm-1) are higher than those of [TmMe]Re(CO)3 (2007 



58 

and 1888 cm-1), [TmBut]Re(CO)3 (2008 and 1880 cm-1)5a and [TmAd]Re(CO)3 (2005 and1887 

cm-1).5a This indicates that benzannulation decreases the electron donating properties of 

the ligand. Furthermore, the similar electronic properties of the non-benzannulated 

[TmR] ligands with different alkyl derivatives may be attributed to the fact that the alkyl 

groups are well separated from the metal by four bonds.5a  

2.5 Coordination Chemistry of [ToR] Ligands with Various Metal Compounds 

2.5.1 [ToR] Complexes of Zirconium 

We are particularly interested in the application of [ToR] ligands to early transition 

metal chemistry on the basis that these ligands could allow access to analogues of bent 

metallocenes in an oxygen rich environment.  In this regard, the zirconium compounds 

[ToBut]ZrCl3 and [ToMeBenz]ZrCl3  may be obtained via the reactions of ZrCl4 with [ToBut]Na 

and [ToMeBenz]Na, respectively (Scheme 3).   
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Scheme 3. Synthesis of [ToR] zirconium complexes. 

The molecular structures of [ToBut]ZrCl3 and [ToMeBenz]ZrCl3 have been determined by X–

ray diffraction, as illustrated in Figures 7 and 8, respectively. The two pseudoctahedral 

complexes are clearly similar to the half-sandwich compound, CpZrCl3. However, 

CpZrCl3 exists as a dimer14 in the solid state unless a bulky CpR ligand such as the 

pentaphenylcyclopentadienyl ligand is used.15 The benzannulation has no impact on the 

molecular structure of [ToMeBenz]ZrCl3 which has a geometry and dimensions very 

similar to [ToBut]ZrCl3. 
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Figure 7. Molecular structure of [ToBut]ZrCl3. 

 

Figure 8. Molecular structure of [ToMeBenz]ZrCl3. 

Furthermore, the hybrid complex Cp[ToMeBenz]ZrCl2 may be obtained via the reaction of 

[ToMeBenz]Na with CpZrCl3 (Scheme 3). The molecular structure of Cp[ToMeBenz]ZrCl2 has 

been determined by X–ray diffraction, as illustrated in Figure 9. 
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Figure 9. Molecular structure of Cp[ToMeBenz]ZrCl2. 

The ability to isolate Cp[ToMeBenz]ZrCl2 is noteworthy because the corresponding 

reaction of CpZrCl3 with [CpCo{P(O)(OEt)2}3]Na does not yield 

Cp[CpCo{P(O)(OEt)2}3]ZrCl2, but results in preferential displacement of the 

cyclopentadienyl ligand and the formation of [CpCo{P(O)(OEt)2}3]ZrCl3.16 The [ToMeBenz] 

ligand provides a sought-after zirconocene analogue in which one of the 

cyclopentadienyl ligands is replaced with an [O3] donor array. In support of this 

analogy, the geometry of Cp[ToMeBenz]ZrCl2 bears a close resemblance to that of the bent 

metallocene, Cp2ZrCl2 (Table 2).17  For example, the Cpcent–Zr–B angle of 

Cp[ToMeBenz]ZrCl2 (130.5˚) is similar to the Cpcent–Zr–Cpcent angle of Cp2ZrCl2 (129.2˚),17a 

while a bigger angle is observed in the case of Cp[TmMe]ZrCl2 (133.5˚).18 The Cl–Zr–Cl 

bond angles are 93.9˚ for Cp[ToMeBenz]ZrCl2 and 97.0˚ for Cp2ZrCl2.  
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Table 2. Comparison of metrical data for Cp[ToMeBenz]ZrCl2, Cp[TmMe]ZrCl2 and 

Cp2ZrCl2.  

 Cp[TmMe]ZrCl2 Cp2ZrCl2 Cp[ToMeBenz]ZrCl2 

Zr–Crange/ Å 2.51-2.57 2.47-2.52 2.51-2.57 

Zr–Cav/ Å 2.54 2.50 2.54 

Zr–Ccent/ Å 2.26 2.20 2.24 

Zr–Cl/ Å 2.52 2.45 2.48 

Cl–Zr–Cl/deg 97.9˚  97.0˚  93.9˚  

Cpcent–Zr–Y/deg 133.5˚ (Y = B) 129.2˚ (Y = Cpcent) 130.5˚ (Y = B) 

 

2.5.2 Complexes of the [ToMeBenz] ligand with Fe, Co and Zn 

Less oxophilic metals have also been coordinated to the [ToR] ligands. For example, 

treatment of [ToMeBenz]Na with ZnI2 led to the generation of pseudotetrahedral complex 

of [ToMeBenz]ZnI (Scheme 4). The molecular structure of [ToMeBenz]ZnI (Figure 10) has been 

determined by X-ray diffraction. It resembles the [TmMe]ZnI19 complex since both of 

them adopt a N3-coordination mode. However, the geometry of [TmMe]ZnI is more 

tetrahedral than that of [ToMeBenz]ZnI, with a four-coordinate W4 geometry index20 of 0.92 

versus 0.86 for [ToMeBenz]ZnI. This is mainly because the average S–Zn–S angle, 105.61˚, in 

[TmMe]ZnI is closer to a tetrahedral value than the average angle O–Zr–O in 

[ToMeBenz]ZnI, 99.97˚. 
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Scheme 4. Reaction of [ToMeBenz]Na with ZnI2 and MCl2 (M = Fe, Co). 
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Figure 10. Molecular structure of [ToMeBenz]ZnI. 

Also, treatment of [ToMeBenz]Na with FeCl2 and CoCl2 led to paramagnetic complexes of  

[ToMeBenz]2Fe and [ToMeBenz]2Co, respectively (Scheme 4). The molecular structures of 

[ToMeBenz]2Fe (Figure 11) and [ToMeBenz]2Co (Figure 12) have been determined by X-ray 

diffraction. In the case of [ToMeBenz]2Fe, the [ToMeBenz] ligand adopts a N3-coordination 

mode that resembles the coordination mode of the [TmMe] ligand in [TmMe]2Fe.21 The 

isolation of [ToMeBenz]2Co is of interest because the sulfur counterpart, namely [TmMe]2Co, 

has not been isolated.22,23 In addition, [ToMeBenz]2M (M = Fe, Co) adopts a totally different 

type of structure to that of  [TmPh]2M. Specifically, while both [ToMeBenz]2Fe and 

[ToMeBenz]2Co adopt octahedral structures with N3-O3 coordination of the ligand, 

[TmPh]2Fe and [TmPh]2Co exhibit coordination via only two of the sulfur donors of each 

ligand with the coordination sphere being completed by interaction with the two B–H 

groups.24  



65 

 

Figure 11. Molecular structure of [ToMeBenz]2Fe. 

 

Figure 12. Molecular structure of [ToMeBenz]2Co. 
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2.5.3 Complexes of the [ToMeBenz] ligand with Cu 

We have also obtained a [ToR] copper complex by the treatment of [ToMeBenz]Na with 

[Me3PCuCl]4 in benzene to yield [ToMeBenz]Cu(PMe3) (Scheme 5).  The molecular 

structure of [ToMeBenz]Cu(PMe3) has been determined by X–ray diffraction (Figure 13). 

For comparison purposes, we have synthesized the sulfur counterpart. Specifically, the 

treatment of {[TmMeBenz]Na(THF)3}2 with [Me3PCuCl]4 produces the copper compound, 

[TmMeBenz]CuPMe3 (Scheme 5). Also, the molecular structure of [TmMeBenz]CuPMe3 has 

been determined by X-ray diffraction, as illustrated in Figure 14. Both structures adopt a 

N3-coordination mode; however, the tetrahedral [S3P] motif in [TmMeBenz]CuPMe3 is much 

closer to an ideal tetrahedron with a four-coordinate W4 geometry index20 of 0.96 

compared to that of [ToMeBenz]CuPMe3 (0.73).    

 

 

Scheme 5. Synthesis of [ToMeBenz]CuPMe3 and [TmMeBenz]CuPMe3. 
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Figure 13. Molecular structure of [ToMeBenz]CuPMe3. 

 

Figure 14. Molecular structure of [TmMeBenz]CuPMe3. 
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2.6 Conclusion 

After describing the synthesis of [ToR] ligands in the previous chapter, we have shown 

in this chapter that these ligands are substantially more sterically demanding than the 

corresponding [TmR] sulfur donor ligands and the related [O3] donor ligands. However, 

electronically, the [ToR] ligands exhibit weaker electron donating properties than related 

L2X type ligands. Finally, the coordination chemistry of [ToR] ligands with various metal 

compounds has been briefly investigated. 

2.7 Experimental Section 

2.7.1 General Considerations 

All manipulations were performed using a combination of glovebox, high vacuum, and 

Schlenk techniques under a nitrogen or argon atmosphere unless otherwise specified.25  

Solvents were purified and degassed by standard procedures. 1H NMR spectra were 

measured on Bruker 300 DRX, Bruker 300 DPX, Bruker 400 DRX, Bruker 400 AVIII, 

Brucker 400 Cyber-enabled Avance III and Bruker Avance 500 DMX spectrometers.  1H 

NMR chemical shifts are reported in ppm relative to SiMe4 (G = 0) and were referenced 

internally with respect to the protio solvent impurity (G 7.16 for C6D5H, 7.26 for CHCl3 

and 2.50 for d6-DMSO).26 13C NMR spectra are reported in ppm relative to SiMe4 (G = 0) 

and were referenced internally with respect to the solvent (G 77.16 for CDCl3, 128.06 for 

C6D6, 54.00 for CD2Cl2 and 39.52 for d6-DMSO).26  Coupling constants are given in hertz.  

31P chemical shifts are reported in ppm relative to 85% H3PO4 (G = 0) and were 
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referenced using P(OMe)3 (G = 141.0) as an external standard.27 Infrared spectra were 

recorded on a Nicolet Avatar 370 DTGS spectrometer and are reported in cm–1.  Mass 

spectra were obtained on a Jeol JMS-HX110H Tandem Double-Focusing Mass 

Spectrometer with a 10 kV accelerated voltage equipped with a FAB ion source.  

[Me3PCuCl]4,28 1-tert-butyl-1,3-dihydro-2H-imidazol-2-one,291-methyl-1,3-dihydro-2H-

benzimidazol-2-one30 and 1-t-butyl-1,3-dihydro-2H-benzimidazol-2-one were prepared 

by the literature methods. NaBH4 (Aldrich), ZnI2 (Aldrich), CoCl2 (Aldrich), FeCl2 

(Strem Chemicals), ZrCl4 (Aldrich), CpZrCl3 (Aldrich), Re(CO)5Br (Strem Chemicals) 

and 1-methyl-1,3-dihydro-2H-benzimidazol-2-thione (Aldrich) were obtained 

commercially and used as received. 

2.7.2 X-ray Structure Determinations 

Single crystal X-ray diffraction data were collected on a Bruker Apex II diffractometer 

and crystal data, data collection and refinement parameters are summarized in Table 1.  

The structures were solved using direct methods and standard difference map 

techniques, and were refined by full-matrix least-squares procedures on F2 with 

SHELXTL (Version 2008/4).31 

2.7.3 Synthesis of [ToMeBenz]Re(CO)3  

A mixture of [ToMeBenz]Na•diglyme (40 mg, 0.07 mmol) and Re(CO)5Br (27 mg, 0.07 

mmol) was placed in an ampoule, treated with benzene (ca. 5 mL) and heated overnight 

at  70  ˚C.    The  reaction  mixture  was  filtered  and  the  volatile  components  were  removed  
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from the filtrate in vacuo.  The residue obtained was washed with acetonitrile (ca. 5 mL) 

to give [ToMeBenz]Re(CO)3 as a white powder (24 mg, 50%).  Analysis calcd. for 

[ToMeBenz]Re(CO)3: C, 44.8%; H, 3.1%; N 11.6%. Found: C, 44.6%; H, 3.2%; N, 11.4%.  1H 

NMR (C6D6) : 2.81 [s, 9H of HB{(C4H4)C2N2(CH3)CO}3], 6.37 [d, 3JH-H = 8, 3H of 

HB{(C4H4)C2N2(CH3)CO}3], 6.88 [t, 3JH-H = 8, 3H of HB{(C4H4)C2N2(CH3)CO}3], 6.99 [t, 3JH-H 

=8, 3H of HB{(C4H4)C2N2(CH3)CO}3], 7.57 [d, 3JH-H =8, 3H of HB{(C4H4)C2N2(CH3)CO}3]. 

13C{1H} NMR (C6D6): 27.0 [3 C, HB{(C4H4)C2N2(CH3)CO}3], 109.1 [3 C, 

HB{(C4H4)C2N2(CH3)CO}3], 112.2 [3 C, HB{(C4H4)C2N2(CH3)CO}3], 122.1 [3 C, 

HB{(C4H4)C2N2(CH3)CO}3], 122.7 [3C, HB{(C4H4)C2N2(CH3)CO}3], 131.2 

[HB{(C4H4)C2N2(CH3)CO}3], 132.8 [HB{(C4H4)C2N2(CH3)CO}3], 161.0 

[HB{(C4H4)C2N2(CH3)CO}3].  FAB-MS: m/z = 724.1 [M]+, M = [ToMeBenz]Re(CO)3.  IR Data 

(KBr disk, cm-1): 2938 (w), 2457(w) [Q%+], 2022 (s) [QCO], 1911 (s) [QCO], 1637 (s), 1588 (s), 

1490 (m), 1448 (m), 1399 (m), 1302 (w), 1232 (w), 1158 (w), 1126 (w), 1099 (w), 764 (w).  

IR Data (CH2Cl2, cm-1):  2026 (m) [QCO], 1894 (s) [QCO]. 

2.7.4 Synthesis of [ToBut]Re(CO)3  

A mixture of [ToBut]Na (14 mg, 0.03 mmol) and Re(CO)5Br (15 mg, 0.04 mmol) was 

treated with benzene (ca. 1  mL)  and  heated  at  70  ˚C  overnight,  during  which  period  a  

small amount of colorless crystals of [ToBut]Re(CO)3 suitable for X-ray diffraction were 

deposited and isolated by filtration.  The filtrate was lyophilized, resulting in a white 

powder.  The residue was dissolved in hexane/Et2O (ca. 50:50) to give a solution from 
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which colorless crystals of [ToBut]Re(CO)3 were obtained by slow evaporation (8 mg, 

37%).  1H NMR (C6D6): 1.29 [s, 27H of HB{C2N2H2[C(CH3)3]CO}3], 5.87 [d, 3JH-H = 3, 3H of 

HB{C2N2H2[C(CH3)3]CO}3], 6.28 [d, 3JH-H = 3, 3H of HB{C2N2H2[C(CH3)3]CO}3].  13C{1H} 

NMR (C6D6): 29.1 [9 C, HB{C2N2H2[C(CH3)3]CO}3], 55.9 [3 C, HB{C2N2H2[C(CH3)3]CO}3], 

110.4 [3 C, HB{C2N2H2[C(CH3)3]CO}3], 116.8 [3 C, HB{C2N2H2[C(CH3)3]CO}3], 157.0 [3 C, 

HB{C2N2H2[C(CH3)3]CO}3].  FAB-MS: m/z = 700.6 [M]+, M = [ToBut]Re(CO)3 superimposed 

by [M+1]+; m/z = 672.6 [M-CO]+, M = [ToBut]Re(CO)3.  IR Data (KBr disk, cm-1):  IR Data 

(KBr disk, cm-1): 2979 (m), 2925 (m), 2431 (w) [Q%+], 2017 (vs) [QCO], 1879 (vs) [QCO], 1621 

(s), 1587 (s), 1436 (m), 1370 (w), 1215 (m), 1194 (m), 1085 (w), 805 (w), 773 (w), 743 (w), 

680 (w).  IR Data (CH2Cl2, cm-1):  2018 (m) [QCO], 1887 (s) [QCO]. 

2.7.5 Synthesis of [TmMeBenz]Na  

A mixture of 1-methyl-2-benzimidazole-2-thione (300 mg, 1.83 mmol) and NaBH4 (22 

mg, 0.58 mmol) was placed in an ampoule and treated with THF (ca. 5 mL).  The 

mixture was heated at 160 ˚C for 1 week.  After this period, the mixture was filtered and 

the precipitate was dried in vacuo to give {[TmMeBenz]Na}2(THF)3 as an off-white powder 

(200 mg, 56%).  Analysis calcd. for {[TmMeBenz]Na}2(THF)3: C, 56.7%; H, 5.9%; N, 13.2%. 

Found: C, 56.6%; H, 5.2%; N, 13.5%.  1H NMR for {[TmMeBenz]Na}2(THF)3 (d6-DMSO): 1.76 

[m, 12H of 3CH2 of THF], 3.60 [m, 12H of 3CH2 of THF], 3.64 [s, 18H of 

HB{(C4H4)C2N2(CH3)CS}3], 6.74 [t, 3JH-H = 7, 6H of HB{(C4H4)C2N2(CH3)CS}3], 6.86 [b, 6H 

of HB{(C4H4)C2N2(CH3)CS}3], 6.94 [t, 3JH-H = 8, 6H of HB{(C4H4)C2N2(CH3)CS}3], 7.19 [d, 3JH-
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H = 8, 6H of HB{(C4H4)C2N2(CH3)CS}3]. 13C{1H} NMR (C6D6): 25.1 [6 C, CH2 of the THF], 

30.3 [6 C, HB{(C4H4)C2N2(CH3)CS}3], 67.0 [6 C, CH2 of the THF], 107.7 [6 C, 

HB{(C4H4)C2N2(CH3)CS}3], 112.6 [6 C, HB{(C4H4)C2N2(CH3)CS}3], 120.3 [6 C, 

HB{(C4H4)C2N2(CH3)CS}3], 121.0 [6 C, HB{(C4H4)C2N2(CH3)CS}3], 133.8 [6 C, 

HB{(C4H4)C2N2(CH3)CS}3], 136.6 [6 C, HB{(C4H4)C2N2(CH3)CS}3], 172.8 [6 C, 

HB{(C4H4)C2N2(CH3)CS}3].  FAB-MS: m/z = 525.2 [M+1]+, M = [TmMeBenz]Na. IR Data (KBr 

disk, cm-1): 3450 (br), 3052 (w), 2929 (w), 2868 (w), 2423 (w) [Q%+], 1620 (m), 1544 (w), 

1484 (s), 1460 (w), 1432 (s), 1344 (s), 1293 (s), 1230 (m), 1190 (m), 1158 (m), 1092 (m), 997 

(m), 858 (w), 813 (m), 742 (s), 620 (m), 555 (m), 421 (m).  

[TmMeBenz]Na free of THF may be obtained by washing with Et2O. 1H NMR for 

[TmMeBenz]Na (d6-DMSO): 3.64 [s, 9H of HB{(C4H4)C2N2(CH3)CS}3], 6.74 [t, 3JH-H = 7, 3H of 

HB{(C4H4)C2N2(CH3)CS}3], 6.87 [b,3H of HB{(C4H4)C2N2(CH3)CS}3], 6.94 [t, 3JH-H = 8, 3H of 

HB{(C4H4)C2N2(CH3)CS}3], 7.18 [d, 3JH-H = 8, 3H of HB{(C4H4)C2N2(CH3)CS}3]. 13C{1H} 

NMR (d6-DMSO): 30.3 [3 C, HB{(C4H4)C2N2(CH3)CS}3], 107.7 [3 C, 

HB{(C4H4)C2N2(CH3)CS}3], 112.6 [3 C, HB{(C4H4)C2N2(CH3)CS}3], 120.3 [3 C, 

HB{(C4H4)C2N2(CH3)CS}3], 121.0 [3 C, HB{(C4H4)C2N2(CH3)CS}3], 133.8 [3 C, 

HB{(C4H4)C2N2(CH3)CS}3], 136.6 [3 C, HB{(C4H4)C2N2(CH3)CS}3], 172.8 [3 C, 

HB{(C4H4)C2N2(CH3)CS}3]. 
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2.7.6 Synthesis of [TmMeBenz]Re(CO)3   

A mixture of [TmMeBenz]Na•1.5THF (50 mg, 0.08 mmol) and Re(CO)5Br (33 mg, 0.08 

mmol) was placed in an ampoule, treated with THF (ca. 5 mL) and heated overnight at 

70  ˚C.  The mixture was filtered and the volatile components were removed from the 

filtrate in vacuo.  The residue obtained was washed with acetonitrile (ca. 5 mL) to give 

[TmMeBenz]Re(CO)3 as white powder (20 mg, 33%).  Crystals suitable for X-ray diffraction 

were obtained from slow evaporation from a solution in benzene.  Analysis calcd. for 

[TmMeBenz]Re(CO)3•1.8C6H6: C, 49.8%; H, 3.6%; N, 9.2%. Found: C, 49.4%; H, 4.6%; N, 

9.0%. 1H NMR (C6D6): 3.08 [s, 9H of HB{(C4H4)C2N2(CH3)CS}3], 6.54 [d, 3JH-H = 8, 3H of 

HB{(C4H4)C2N2(CH3)CS}3], 6.96 [m, 6H of HB{(C4H4)C2N2(CH3)CS}3], 7.58 [d, 3JH-H = 8, 3H 

of HB{(C4H4)C2N2(CH3)CS}3]. 13C{1H} NMR (C6D6): 30.6 [3 C, HB{(C4H4)C2N2(CH3)CS}3], 

110.8 [3C, HB{(C4H4)C2N2(CH3)CS}3], 113.3 [3C, HB{(C4H4)C2N2(CH3)CS}3], 123.7 [3C, 

HB{(C4H4)C2N2(CH3)CS}3], 124.1 [3C, HB{(C4H4)C2N2(CH3)CS}3], 133.7 

[HB{(C4H4)C2N2(CH3)CS}3], 135.7 [HB{(C4H4)C2N2(CH3)CS}3], 167.5 

[HB{(C4H4)C2N2(CH3)CS}3].  FAB-MS: m/z = 772.1 [M]+, M = [TmMeBenz]Re(CO)3. IR Data 

(KBr disk, cm-1): 2925 (m), 2010 (s) [QCO], 1922 (s) [QCO], 1478 (m), 1439 (m), 1409 (m), 1363 

(m), 1293 (m), 1233 (w), 1193 (w), 1149 (w), 1120 (w), 1094 (w), 1014 (w), 853 (m), 812 

(m), 749 (m), 672 (w), 624 (m), 556 (w), 516 (w), 482 (w), 437 (w), 420 (w). IR Data 

(CH2Cl2, cm-1):  2014 (m) [QCO], 1895 (m) [QCO]. 
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2.7.7 Synthesis of [CpCo{P(O)(OEt)2}3]Re(CO)3  

A mixture of [CpCo{P(O)(OEt)2}3]Na (69 mg, 0.12 mmol) and Re(CO)5Br (50 mg, 0.12 

mmol) was placed in an ampoule, treated with THF (ca. 8 mL) and heated for 3 days at 

60 ˚C. After this period, the mixture was filtered and the volatile components were 

removed from the filtrate in vacuo. The residue was washed with hexane and dissolved 

in benzene for crystallization to yield yellow crystals (40 mg, 41%). Analysis calcd. 

[LOET]Re(CO)3: C, 29.8% ; H, 4.4%. Found: C, 29.6%; H, 4.1%. 1H NMR (C6D6): 1.15 [t, 3JH-H 

= 7, 18 H of C5H5Co{OP(CH2CH3)2}3], 4.07 [m, 12 H of C5H5Co{OP(CH2CH3)2}3], 4.76 [s, 

5H of C5H5Co{OP(CH2CH3)2}3]. 13C{1H} NMR (C6D6): 13C{1H} NMR (C6D6): 16.8 [m, 6 C of 

C5H5Co{OP(CH2CH3)2}3], 61.4 [m, 6 C of C5H5Co{OP(CH2CH3)2}3], 89.3 [s, 5 C of 

C5H5Co{OP(CH2CH3)2}3]. IR Data (KBr disk, cm-1): 2982 (s), 2903 (m), 2367 (w), 2346 (w), 

2013 (vs) [QCO], 1873 (vs) [QCO], 1688 (vw), 1656 (vw), 1478 (w), 1441 (m), 1388 (m), 1115 

(vs), 1041 (vs), 936 (vs), 839 (s), 776 (s), 740 (s), 671 (vw), 655 (w), 631 (m), 590 (s), 529 

(w), 510 (m).  IR Data (CH2Cl2, cm-1):  2015 (s) [QCO], 1880 (s) [QCO]. MS: m/z = 806.38 [M]+, 

M = [CpCo{P(O)(OEt)2}3]Re(CO)3. 

2.7.8 Synthesis of [ToBut]ZrCl3   

A mixture of [ToBut]Na (16 mg, 0.04 mmol) and ZrCl4 (12.3 mg, 0.05 mmol) was treated 

with benzene (ca. 1  mL)  and  heated  at  60  ˚C  for  4  hours,  during  which  period  a  small 

amount of colorless crystals of [ToBut]ZrCl3 suitable for X-ray diffraction were deposited.  

The mixture was filtered and the residue was extracted with chloroform (3 u ca. 3 mL). 
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The volatile components were removed in vacuo and the residue obtained was washed 

with hexanes (ca. 3 mL), yielding  [ToBut]ZrCl3 as an off-white powder (6 mg, 27%). 1H 

NMR (C6D6): 1.66 [s, 27H of HB{C2N2H2[C(CH3)3]CO}3], 6.46 [d, 3JH-H = 3, 3H of 

HB{C2N2H2[C(CH3)3]CO}3], 6.50 [d, 3JH-H = 3, 3H of HB{C2N2H2[C(CH3)3]CO}3]. 13C{1H} 

NMR (C6D6): 29.4 [9 C, HB{C2N2H2[C(CH3)3]CO}3], 57.9 [3 C, HB{C2N2H2[C(CH3)3]CO}3], 

110.7 [3 C, HB{C2N2H2[C(CH3)3]CO}3], 119.0 [3 C, HB{C2N2H2[C(CH3)3]CO}3], 152.7 [3 C, 

HB{C2N2H2[C(CH3)3]CO}3]. 

2.7.9 Synthesis of [ToMeBenz]ZrCl3   

A mixture of [ToMeBenz]Na•diglyme (40 mg, 0.07 mmol) and ZrCl4 (18 mg, 0.08 mmol) 

was placed in an ampoule, treated with dichloromethane (ca. 6 mL) and heated 

overnight at 50  ˚C. After this period, the mixture was filtered and the volatile 

components were removed from the filtrate in vacuo. The solid residue was washed 

with acetonitrile (ca. 3 mL) and hexane (ca. 3 mL) to yield [ToMeBenz]ZrCl3 as a white 

powder (14 mg, 33%). 1H NMR (C6D6): 2.96 [s, 9H of HB{(C4H4)C2N2(CH3)CO}3], 6.33 [d, 

3JH-H = 8, 3H of HB{(C4H4)C2N2(CH3)CO}3], 6.85 [t, 3JH-H = 8, 3H of 

HB{(C4H4)C2N2(CH3)CO}3], 7.00 [t, 3JH-H = 8, 3H of HB{(C4H4)C2N2(CH3)CO}3], 7.56 [d, 3JH-H 

= 8, 3H of HB{(C4H4)C2N2(CH3)CO}3]. 13C{1H} NMR (CDCl3): 28.9 [3 C, 

HB{(C4H4)C2N2(CH3)CO}3], 109.8 [3 C, HB{(C4H4)C2N2(CH3)CO}3], 113.2 [3 C, 

HB{(C4H4)C2N2(CH3)CO}3], 123.5 [3 C, HB{(C4H4)C2N2(CH3)CO}3], 123.7 [3C, 

HB{(C4H4)C2N2(CH3)CO}3], 128.5 [3 C, HB{(C4H4)C2N2(CH3)CO}3], 130.7 [3 C, 
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HB{(C4H4)C2N2(CH3)CO}3], [3 C,HB{(C4H4)C2N2(CH3)CO}3] not observed. 13C{1H} NMR 

(CD2Cl2): 29.2 [3 C, HB{(C4H4)C2N2(CH3)CO}3], 110.3 [3 C, HB{(C4H4)C2N2(CH3)CO}3], 

113.7 [3 C, HB{(C4H4)C2N2(CH3)CO}3], 123.9 [3 C, HB{(C4H4)C2N2(CH3)CO}3], 124.1 [3C, 

HB{(C4H4)C2N2(CH3)CO}3], 131.2 [3 C, HB{(C4H4)C2N2(CH3)CO}3], 132.6 [3 C, 

HB{(C4H4)C2N2(CH3)CO}3], 158.8 [3 C,HB{(C4H4)C2N2(CH3)CO}3].  Analysis calcd. for 

[ToMeBenz]ZrCl3•CH2Cl2: C, 40.8%; H, 3.3%; N, 11.4%. Found: C, 41.0%; H, 3.4%; N, 11.0%. 

2.7.10 Synthesis of Cp[ToMeBenz]ZrCl2   

A mixture of CpZrCl3 (18 mg, 0.07 mmol) and [ToMeBenz]Na•diglyme (40 mg, 0.07 mmol) 

was placed in an ampoule and treated with benzene (ca. 5 mL). The mixture was stirred 

at room temperature for a period of 2 hours during which it became a suspension. The 

mixture was treated with n-hexane (ca. 5 mL) to precipitate more material, which was 

isolated by filtration.  The precipitate was washed with n-hexane, dried in vacuo, and 

then extracted with dichloromethane (ca. 5 mL). The volatile components were removed 

in vacuo to give [ToMeBenz]CpZrCl2 as a white powder (30 mg, 67%). Crystals suitable for 

X-ray diffraction were obtained from slow evaporation from a solution in benzene.  

Analysis calcd. for Cp[ToMeBenz]ZrCl2: C, 51.2%; H, 4.0%; N, 12.3%. Found: C, 50.8%; H, 

3.9%; N, 11.3%.  1H NMR (C6D6): 2.88 [s, 6H of HB{(C4H4)C2N2(CH3)CO}3], 3.23 [s, 3H of 

HB{(C4H4)C2N2(CH3)CO}3], 6.31 [d, 3JH-H = 8, 1H of HB{(C4H4)C2N2(CH3)CO}3], 6.51 [d, 3JH-

H = 8, 2H of HB{(C4H4)C2N2(CH3)CO}3], 6.69 [s, 5H of C5H5], 6.78 [t, 3JH-H = 8, 1H of 

HB{(C4H4)C2N2(CH3)CO}3], 6.95 [m, 4H of HB{(C4H4)C2N2(CH3)CO}3], 7.06 [t, 3JH-H = 8, 1H 
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of HB{(C4H4)C2N2(CH3)CO}3], 7.48 [d, 3JH-H = 8, 1H of HB{(C4H4)C2N2(CH3)CO}3], 7.67 [d, 

3JH-H = 8, 2H of HB{(C4H4)C2N2(CH3)CO}3]. 13C{1H} NMR (C6D6): 28.0 [2 C, 

HB{(C4H4)C2N2(CH3)CO}3], 29.1 [1 C, HB{(C4H4)C2N2(CH3)CO}3], 109.2 [2 C, 

HB{(C4H4)C2N2(CH3)CO}3], 109.4 [1 C, HB{(C4H4)C2N2(CH3)CO}3], 111.6 [1 C, 

HB{(C4H4)C2N2(CH3)CO}3], 112.9 [2 C, HB{(C4H4)C2N2(CH3)CO}3], 118.2 [5 C, C5H5], 

122.1 [1 C, HB{(C4H4)C2N2(CH3)CO}3], 122.4 [1 C, HB{(C4H4)C2N2(CH3)CO}3], 122.6 [2 C, 

HB{(C4H4)C2N2(CH3)CO}3], 123.1 [2C, HB{(C4H4)C2N2(CH3)CO}3], 131.0 [2C, 

HB{(C4H4)C2N2(CH3)CO}3], 131.5 [1C, HB{(C4H4)C2N2(CH3)CO}3], 132.6 [1C, 

HB{(C4H4)C2N2(CH3)CO}3], 133.1 [2C, HB{(C4H4)C2N2(CH3)CO}3], 159.1 [1C, 

HB{(C4H4)C2N2(CH3)CO}3], 159.6 [2C, HB{(C4H4)C2N2(CH3)CO}3]. 

2.7.11 Synthesis of [ToMeBenz]ZnI   

A mixture of [ToMeBenz]Na•diglyme (40 mg, 0.07 mmol) and ZnI2 (21 mg, 0.07 mmol) was 

treated with dichloromethane (ca. 8 mL) resulting in the immediate deposition of a 

white precipitate. The mixture was stirred for ca. 4 hours at room temperature, allowed 

to settle and then filtered. The filtrate was concentrated to ca. 3 mL and treated with 

pentane (ca. 10 mL), thereby resulting in the formation of a precipitate. The mixture was 

filtered and the volatile components were removed from the filtrate in vacuo to give 

[ToMeBenz]ZnI as white powder (20 mg, 47%). Crystals of composition 

[ToMeBenz]ZnI•CH2Cl2 suitable for X-ray diffraction were obtained from a solution in 

dichloromethane. Analysis calcd. for [ToMeBenz]ZnI•CH2Cl2: C, 41.1%; H, 3.3%; N, 11.5%. 
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Found: C, 41.7%; H, 3.1%; N, 11.1. 1H NMR (C6D6): 2.48 [s, 9H of 

HB{(C4H4)C2N2(CH3)CO}3], 6.37 [d, 3JH-H = 8, 3H of HB{(C4H4)C2N2(CH3)CO}3], 6.88 – 7.00 

[m, 6H of HB{(C4H4)C2N2(CH3)CO}3], 7.60 [d, 3JH-H = 8, 3H of HB{(C4H4)C2N2(CH3)CO}3]. 

13C{1H} NMR (C6D6): 26.6 [9 C, HB{(C4H4)C2N2(CH3)CO}3], 109.0 [3 C, 

HB{(C4H4)C2N2(CH3)CO}3], 112.4 [3 C, HB{(C4H4)C2N2(CH3)CO}3], 122.1 [3 C, 

HB{(C4H4)C2N2(CH3)CO}3], 122.6 [3C, HB{(C4H4)C2N2(CH3)CO}3], 131.3 [3C, 

HB{(C4H4)C2N2(CH3)CO}3], 133.3[3C, HB{(C4H4)C2N2(CH3)CO}3], [3C, 

HB{(C4H4)C2N2(CH3)CO}3] not observed. 

2.7.12 Synthesis of [ToMeBenz]2Co  

A mixture of [ToMeBenz]Na•diglyme (40 mg, 0.07 mmol) and CoCl2 (4 mg, 0.03 mmol) was 

placed in an ampoule, treated with dichloromethane (ca. 5 mL) and heated overnight at 

60  ˚C.    After  this  period,  the  volatile  components  were  removed  in vacuo and the solid 

residue was washed sequentially with hexane (ca. 3 mL) and acetonitrile (ca. 5 mL). The 

residue was extracted into warm chloroform (2 u ca. 5 mL) and the volatile components 

were removed from the extract in vacuo to give [ToMeBenz]2Co as a lilac powder (20 mg, 

67%). Crystals suitable for X-ray diffraction were obtained from a solution in 

chloroform. Analysis calcd. [ToMeBenz]2Co: C, 59.7%; H, 4.6%; N, 17.4%. Found: C, 59.3%; 

H, 4.1%; N, 16.1 %.  Peff (Evans Method, room temperature): 5.5 PB. 1H NMR (CDCl3): 

-7.01 [s, 18H of HB{(C4H4)C2N2(CH3)CO}3], 2.07 [d, 3JH-H = 7, 6H of 

HB{(C4H4)C2N2(CH3)CO}3], 6.72 [t, 3JH-H = 7, 6H of HB{(C4H4)C2N2(CH3)CO}3], 8.67 [d, 3JH-H 
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= 7, 6H of HB{(C4H4)C2N2(CH3)CO}3], 16.75 [t, 3JH-H = 7, 3H of HB{(C4H4)C2N2(CH3)CO}3]. 

FAB-MS: m/z = 965.3 [M]+, M = [ToMeBenz]2Co.  IR Data (KBr disk, cm-1): 3446  (br), 3054 

(w), 2927 (m), 2855 (w), 2426 (w) [Q%+], 2228 (w), 1629 (s), 1601 (s), 1544 (w), 1494 (s), 

1440 (m), 1397 (m), 1300 (m), 1223 (m), 1148 (m), 1124 (m), 1095 (m), 1013 (w), 996 (w), 

847 (m), 771 (m), 735 (m). 

2.7.13 Synthesis of [ToMeBenz]2Fe  

A mixture of [ToMeBenz]Na•diglyme (50 mg, 0.08 mmol) and FeCl2 (5 mg, 0.04 mmol) was 

placed in an ampoule, treated with chloroform (ca. 5 mL) and heated overnight at 60  ˚C.    

After this period, the volatile components were removed in vacuo and the solid residue 

was washed sequentially with hexane (ca. 5 mL) and acetonitrile (ca. 5 mL). The residue 

was extracted into warm chloroform (2 u ca. 5 mL) and the volatile components were 

removed from the extract in vacuo to give [ToMeBenz]2Fe as a very pale  powder (24 mg, 

61%). Crystals suitable for X-ray diffraction were obtained from a solution in 

chloroform. Peff (Evans Method, room temperature): 3.8 PB. 1H NMR (CDCl3): -23.3 [s, 

18H of HB{(C4H4)C2N2(CH3)CO}3], 0.5 [br, 6H of HB{(C4H4)C2N2(CH3)CO}3], 7.4 [br, 6H 

of HB{(C4H4)C2N2(CH3)CO}3], 11.9 [br, 6H of HB{(C4H4)C2N2(CH3)CO}3], 25.7 [br, 6H of 

HB{(C4H4)C2N2(CH3)CO}3]. FAB-MS: m/z = 962.3 [M]+, M = [ToMeBenz]2Fe.  IR Data (KBr 

disk, cm-1): 3450  (br), 2923 (m), 2848 (w), 2434 (w) [Q%+], 1637 (s), 1629 (s), 1601 (m), 1544 

(w), 1510 (w), 1493 (m), 1440 (m), 1397 (m), 1299 (w), 1219 (w), 1152 (w), 1124 (m), 1094 

(w), 1014 (w), 844 (w), 769 (m), 735 (m). 
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2.7.14 [ToMeBenz]CuPMe3  

A mixture of [ToMeBenz]Na•diglyme (20 mg, 0.03 mmol) and [Me3PCuCl]4 (5.7 mg, 0.008 

mmol) was treated with benzene (ca. 3 mL). The resulting suspension was mixed with a 

pipette for several minutes and then filtered. Then the filtrate was lyophilized and the 

solid obtained was washed with pentane (ca. 3 mL) to give [ToMeBenz]CuPMe3 as white 

powder (10 mg, 51 %). Crystals suitable for X-ray diffraction were obtained by slow 

diffusion of pentane into a benzene solution. 1H NMR (C6D6): 0.82 [d, 2JP-H= 4, 9H of 

HB{(C4H4)C2N2(CH3)CO}3CuP(CH3)3], 2.76 [s, 9H of 

HB{(C4H4)C2N2(CH3)CO}3CuP(CH3)3], 6.53 [“d”,  3JH-H = 8,  3H of 

HB{(C4H4)C2N2(CH3)CO}3CuP(CH3)3], 6.98 [m,  6H of 

HB{(C4H4)C2N2(CH3)CO}3CuP(CH3)3],  7.66  [“d”, 3JH-H = 8, 4JH-H = 1, 3H of 

HB{(C4H4)C2N2(CH3)CO}3CuP(CH3)3]. 13C{1H} NMR (C6D6): 14.9 [d, 1JP-C = 25,  3 C, 

HB{(C4H4)C2N2(CH3)CO}3CuP(CH3)3], 26.2 [3 C, HB{(C4H4)C2N2(CH3)CO}3CuP(CH3)3], 

107.0 [3 C, HB{(C4H4)C2N2(CH3)CO}3CuP(CH3)3], 111.7 [3 C, 

HB{(C4H4)C2N2(CH3)CO}3CuP(CH3)3], 120.3 [3 C, HB{(C4H4)C2N2(CH3)CO}3CuP(CH3)3], 

121.5 [3 C, HB{(C4H4)C2N2(CH3)CO}3CuP(CH3)3], 132.0 [3 C, 

HB{(C4H4)C2N2(CH3)CO}3CuP(CH3)3], 134.8 [3C, HB{(C4H4)C2N2(CH3)CO}3CuP(CH3)3], 

159.9 [3C, HB{(C4H4)C2N2(CH3)CO}3CuP(CH3)3]. 31P{1H} NMR (C6D6): -46.9. 
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2.7.15 [TmMeBenz]CuPMe3   

A mixture of {[TmMeBenz]Na}2(THF)3 (23 mg, 0.02 mmol) and [Me3PCuCl]4 (4.0 mg, 0.006 

mmol) was treated with benzene (ca. 3 mL). The resulted suspension was mixed with a 

pipette for several minutes and then filtered. Then the filtrate was lyophilized and the 

solid obtained was washed with pentane (ca. 3 mL) to give [TmMeBenz]CuPMe3 as white 

powder (8 mg, 55%). Crystals suitable for X-ray diffraction were obtained by slow 

diffusion of pentane into a benzene solution. Analysis calcd. for [TmMeBenz]CuPMe3: C, 

50.6%; H, 4.9%; N, 13.1%. Found: C, 50.9%; H, 4.9%; N, 12.8%. 1H NMR (C6D6): 1.09 [d, 

2JP-H= 5, 9H of HB{(C4H4)C2N2(CH3)CS}3CuP(CH3)3], 3.18 [s, 9H of 

HB{(C4H4)C2N2(CH3)CS}3CuP(CH3)3], 6.63  [“d”,  3JH-H = 8,  3H of 

HB{(C4H4)C2N2(CH3)CS}3CuP(CH3)3], 6.93 [dt, 3JH-H = 8, 4JH-H = 1,  3H of 

HB{(C4H4)C2N2(CH3)CS}3CuP(CH3)3], 6.97 [dt, 3JH-H = 8, 4JH-H = 1, 3H of 

HB{(C4H4)C2N2(CH3)CS}3CuP(CH3)3],  7.59  [“d”,  3JH-H = 8,  3H of 

HB{(C4H4)C2N2(CH3)CS}CuP(CH3)3]. 13C{1H} NMR (C6D6): 15.9 [d, 1JP-C = 15,  3 C, 

HB{(C4H4)C2N2(CH3)CS}3CuP(CH3)3], 30.3 [3 C, HB{(C4H4)C2N2(CH3)CS}3CuP(CH3)3], 

108.8 [3 C, HB{(C4H4)C2N2(CH3)CS}3CuP(CH3)3], 112.9 [3 C, 

HB{(C4H4)C2N2(CH3)CS}3CuP(CH3)3], 122.3 [3 C, HB{(C4H4)C2N2(CH3)CS}3CuP(CH3)3], 

122.9 [3 C, HB{(C4H4)C2N2(CH3)CS}3CuP(CH3)3], 134.3 [3 C, 

HB{(C4H4)C2N2(CH3)CS}3CuP(CH3)3], 137.5 [3C, HB{(C4H4)C2N2(CH3)CS}3CuP(CH3)3], 

171.2 [3C, HB{(C4H4)C2N2(CH3)CS}3CuP(CH3)3]. 31P{1H} NMR (C6D6): -49.6. IR Data 

(ATR, cm-1): 3057 (w), 2962 (w), 2935 (w), 2898 (w), 2449 (w), 2431 (w), 1483 (m), 1430 
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(m), 1399 (m), 1342 (vs), 1294 (m), 1231 (w), 1191 (m), 1156 (w), 1123 (w), 1090 (m), 1015 

(m), 998 (w), 950 (s), 855 (m), 813 (m), 736 (s), 668 (w), 632 (w), 619 (s), 568 (m), 557 (m), 

437 (m), 419 (s).  
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2.8 Crystallographic Data 

Table 3. Crystal, intensity collection and refinement data. 

 [ToMeBenz]Re(CO)3 
 

[ToBut]Re(CO)3 
 

lattice Rhombohedral Trigonal 
formula C27H22BN6O6Re C42H52BN6O6Re 
formula weight 723.52 933.91 
space group R-3 P-3 

a/Å 15.5893(14) 16.131(2) 
b/Å 15.5893(14) 16.131(2) 
c/Å 19.0929(14) 9.6857(14) 
D/˚ 90 90 
E/˚ 90 90 
J/˚ 120 120 
V/Å3 4018.4(6) 2182.6(6) 
Z 6 2 
temperature (K) 123(2) 200(2) 
radiation (O, Å) 0.71073 0.71073 
U (calcd.), g cm-3 1.794 1.421 
P (Mo KD), mm-1 4.590 2.835 
T�max, deg. 32.71 30.71 
no. of data 
collected 

23365 34854 

no. of data used 3200 4523 
no. of parameters 127 175 
R1 [I > 2V(I)] 0.0167 0.0363 
wR2 [I > 2V(I)] 0.0410 0.0586 
R1 [all data] 0.0187 0.0822 
wR2 [all data] 0.0418 0.0714 
GOF 1.063 1.131 
Rint 0.0271 0.0818 
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Table 3 (cont.) Crystal, intensity collection and refinementdata. 

 [TmMeBenz]Na 
 

[TmMeBenz]Re(CO)3 
 

lattice Triclinic Monoclinic 
formula C30H36BN6NaO6 C33H28BN6O3ReS3 
formula weight 610.45 849.80 
space group P-1 P21/c 

a/Å 13.7551(9) 16.147(3) 
b/Å 14.9081(10) 10.510(2) 
c/Å 15.2676(10) 19.719(4) 
D/˚ 82.3230(10) 90 
E/˚ 89.7710(10) 93.087(3) 
J/˚ 81.6210(10) 90 
V/Å3 3069.2(4) 3341.5(12) 
Z 4 4 
temperature (K) 200(2) 125(2) 
radiation (O, Å) 0.71073 0.71073 
U (calcd.), g cm-3 1.321 1.689 
P (Mo KD), mm-1 0.105 3.868 
T�max, deg. 32.57 32.75 
no. of data 
collected 

52297 56925 

no. of data used 20703 11778 
no. of parameters 811 431 
R1 [I > 2V(I)] 0.0494 0.0311 
wR2 [I > 2V(I)] 0.1178 0.0577 
R1 [all data] 0.1003 0.0516 
wR2 [all data] 0.1427 0.0635 
GOF 1.021 1.000 
Rint 0.0373 0.0557 
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Table 3 (cont.) Crystal, intensity collection and refinement data. 

 [CpCo{P(O)(OEt)2}3]-

Re(CO)3 
[ToBut]ZrCl3 

 
lattice Monoclinic Trigonal 
formula C20H35CoO12P3Re C39H52BCl3N6O3Zr 
formula weight 805.52 861.25 
space group P21/n P-3 

a/Å 11.4131(7) 16.242(2) 
b/Å 18.4005(11) 16.242(2) 
c/Å 13.6761(8) 9.4661(14) 
D/˚ 90 90 
E/˚ 92.8560(10) 90 
J/˚ 90 120 
V/Å3 2868.5(3) 2162.6(5) 
Z 4 2 
temperature (K) 125(2) 150(2) 
radiation (O, Å) 0.71073 0.71073 
U (calcd.), g cm-3 1.865 1.323 
P (Mo KD), mm-1 5.018 0.482 
T�max, deg. 32.48 30.50 
no. of data 
collected 

48946 35051 

no. of data used 10043 4410 
no. of parameters 341 111 
R1 [I > 2V(I)] 0.0355 0.0436 
wR2 [I > 2V(I)] 0.0601 0.1087 
R1 [all data] 0.0694 0.0607 
wR2 [all data] 0.0686 0.1139 
GOF 1.001 1.093 
Rint 0.0705 0.0541 
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Table 3. (cont.) Crystal, intensity collection and refinement data. 

 Cp[ToMeBenz]ZrCl2 
 

[ToBut]ZrCl3 
 

lattice Triclinic Triclinic 
formula C35H33BCl2N6O3Zr C25.5H25BCl3IN6O3Zn 
formula weight 758.60 772.95 
space group P-1 P-1 

a/Å 10.0122(17) 9.361(5) 
b/Å 12.326(2) 11.221(7) 
c/Å 15.991(3) 17.165(13) 
D/˚ 69.229(2) 96.785(11) 
E/˚ 72.820(2) 103.212(11) 
J/˚ 71.988(2) 113.522(8) 
V/Å3 1716.0(5) 1564.5(18) 
Z 2 2 
temperature (K) 125(2) 200(2) 
radiation (O, Å) 0.71073 0.71073 
U (calcd.), g cm-3 1.468 1.641 
P (Mo KD), mm-1 0.521 2.065 
T�max, deg. 30.61 30.15 
no. of data 
collected 

28027 24328 

no. of data used 10491 9138 
no. of parameters 439 368 
R1 [I > 2V(I)] 0.0483 0.0520 
wR2 [I > 2V(I)] 0.0798 0.1122 
R1 [all data] 0.0939 0.1108 
wR2 [all data] 0.0922 0.1336 
GOF 1.002 1.009 
Rint 0.0722 0.0531 
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Table 3. (cont.) Crystal, intensity collection and refinement data. 

 [ToMeBenz]2Fe 
 

[ToMeBenz]2Co 
 

lattice Triclinic Triclinic 
formula C50H46B2Cl6FeN12O6 C50H46B2Cl6CoN12O6 
formula weight 1201.16 1204.24 
space group P-1 P-1 

a/Å 9.765(7) 11.027(2) 
b/Å 11.496(8) 11.171(2) 
c/Å 13.698(9) 11.536(2) 
D/˚ 87.906(10) 85.955(3) 
E/˚ 69.479(10) 78.386(3) 
J/˚ 72.277(10) 74.761(3) 
V/Å3 1367.6(16) 1342.8(4) 
Z 1 1 
temperature (K) 125(2) 160(2) 
radiation (O, Å) 0.71073 0.71073 
U (calcd.), g cm-3 1.458 1.489 
P (Mo KD), mm-1 0.629 0.680 
T�max, deg. 30.62 30.47 
no. of data 
collected 

16628 21660 

no. of data used 8255 8101 
no. of parameters 356 356 
R1 [I > 2V(I)] 0.0670 0.0637 
wR2 [I > 2V(I)] 0.1219 0.1400 
R1 [all data] 0.1569 0.1520 
wR2 [all data] 0.1527 0.1701 
GOF 1.000 1.000 
Rint 0.0727 0.0761 
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Table 3. (cont.) Crystal, intensity collection and refinement data. 

 [ToMeBenz]CuPMe3 
 

[TmMeBenz]CuPMe3 
 

lattice Triclinic Trigonal 
formula C50H34BCuN6O3PCu C96H104B2N12S6P2Cu2 
formula weight 631.95 1828.91 
space group P-1 P-3 

a/Å 9.463(2) 15.4166(7) 
b/Å 11.773(3) 15.4166(7) 
c/Å 15.140(4) 11.4883(6) 
D/˚ 91.189(4) 90 
E/˚ 103.845(4) 90 
J/˚ 103.714(4) 120 
V/Å3 1585.8(6) 2364.6(2) 
Z 2 1 
temperature (K) 150(2) 150(2) 
radiation (O, Å) 0.71073 0.71073 
U (calcd.), g cm-3 1.324 1.284 
P (Mo KD), mm-1 0.779 0.668 
T�max, deg. 31.51 32.60 
no. of data 
collected 

27076 40931 

no. of data used 10413 5563 
no. of parameters 389 215 
R1 [I > 2V(I)] 0.0498 0.0321 
wR2 [I > 2V(I)] 0.1209 0.0804 
R1 [all data] 0.0970 0.0447 
wR2 [all data] 0.1414 0.0890 
GOF 1.024 1.051 
Rint 0.0422 0.0261 
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3.1 Introduction 

One major advantage of the boron-centered synthetic strategy is that X, LX, and L2X 

type ligands, according to the covalent bond classification system,1 can be obtained by 

simply altering the stoichiometry of the reaction. The synthesis of the 

bis(pyrazolyl)borate, bis(mercaptoimidazolyl)borate and bis(selenoimidazolyl)borate as 

bidentate donors ligands of [N2],2 [S2]3 and [Se2]4, respectively, have been published. 

Among the ligands, the [N2]2 and [S2]5,6 donors have enjoyed widespread applications. 

 We have described in chapter one the synthesis of the tris(oxoimidazolyl)borate ligands 

which provide L2X type tridentate [O3] donors ligands. In this chapter, we will present 

the logical extension of this synthesis by reporting the related [O2] donor, 

bis(oxoimidazolyl)borate [BoR], via treatment of two equivalents of imidazolone and 

metal borohydride.   

Bidentate ligands with [O2] donors that belong to the LX class are dominated by N2-

carboxylate7 and N2-acetylacetonate8 that respectively result in 4 and 6-membered rings 

upon coordination. However, coordination of the [BoR] ligands to a metal center results 

in a flexible 8-membered ring.9,10 This helps in the adoption of a  “boat-like”11 

conformation that allows for secondary M•••H–B interactions  (Figure 1). Similar 3-

center–2-electron M•••H–B interactions have been observed in the structure of several 

bis(pyrazolyl)hydroborato,2 bis(mercaptoimidazolyl)hydroborato3 and 

bis(selenoimidazolyl)hydroborato4  metal complexes. 
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Figure 1. Coordination geometries of a. N2-carboxylate, b. N2-acetylacetonate,                   

c. bis(oxoimidazolyl)borate. 

The coordination chemistry of the [BoR] ligand with various metal compounds, mainly 

main group metals, will be investigated to provide a complete profile for this type of 

ligand. In addition, the [BoR] ligands will be compared to the sulfur and selenium 

counterpart in terms of coordination chemistry when applicable.  

3.2 Alkali Metal Bo Complexes 

3.2.1 Lithium Complexes of [BoR] ligands  

3.2.1.1 [BoBut]Li 

Treatment of two equivalents of 1-tert-butyl-2-imidazolin-2-one with MBH4 , M = Li, 

Na, in THF at elevated temperatures results in the formation of [BoBut]M (Scheme 1). 

Unlike [ToBut]Na, [BoBut]M was obtained in good yield without any major side products 

resulting from the reduction of the double bond of imidazolone. The reduction of the 



99 

double bond of imidazolone when making [ToR] ligand may be attributed to the high 

temperature needed.  

 

Scheme 1. Synthesis of [BoR]M. 

Colorless crystals of composition [BoBut]Li suitable for X-ray diffraction were obtained 

by vapor diffusion of pentane into a benzene solution (Figure 2.). The molecular 

structure is dinuclear in nature where one of the oxygen atoms serves as a bridge 

between the two metal centers, resulting in an [M2O2] core. This type of bridging mode 

has been observed previously in [BmR] systems.3 
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 A common feature of the molecular structures of many [BoR] compounds is that the 

[O2] bidentate coordination is supplemented by interaction with one of the H–B groups. 

Therefore, besides the fact that the lithium is supported by three oxygens (one terminal 

and two bridging) a secondary Li•••H–B interaction (dLi•••H = 2.11 Å and dLi•••B = 2.81 Å) is 

observed. This interaction is associated with a “boat-like”  conformation of the [BoBut] 

ligand that allows the H–B group to be in proximity to the lithium center.  

 

 

 Figure 2. Molecular structure of {[BoBut]Li}2 (only one of the crystallographically 

independent molecules is shown). 
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Crystals of composition [BoBut]Li•CH2Cl2 suitable for X-ray diffraction were also 

obtained by vapor diffusion of pentane into a solution of [BoBut]Li in CH2Cl2 (Figures 3 

and 4). The asymmetric unit possesses two crystallographically independent dimeric 

molecules of which one exhibits interactions between the lithium centers and CH2Cl2 

molecules. Despite this interaction, the structures of the {[BoBut]Li}2 moieties are very 

similar. 

 

Figure 3. Molecular structure of {[BoBut]Li}2•(CH2Cl2)2 (only one of the 

crystallographically independent molecules is shown). 
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Figure 4. Molecular structure of {[BoBut]Li}2•(CH2Cl2) (only one of the 

crystallographically independent molecules is shown). 

3.2.2 Sodium Complexes of [BoR] ligands 

3.2.2.1 [BoBut]Na 

Similar to the synthesis of [BoBut]Li, treatment of two equivalents of 1-tert-butyl-2-

imidazolin-2-one with NaBH4 in THF at elevated temperature results in the formation 

of [BoBut]Na. Crystals of composition [BoBut]Na•diglyme suitable for X-ray diffraction 

were obtained from a solution of [BoBut]Na in hexane and diglyme (Figure 5). X-ray 

diffraction indicates that [BoBut]Na•diglyme is mononuclear in the solid state and 

sodium metal is supported by five oxygen atoms, two from the ligand and three from 
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diglyme, along with a 3-center–2-electron Na•••H–B secondary interaction (dNa•••H = 2.37 

Å and dNa•••B = 3.20 Å). 

 

Figure 5. Molecular structure of [BoBut]Na•diglyme. 

However, a dinuclear structure of composition {[BoBut]Na}2•diglyme was obtained from 

a 2:1 ratio of [BoBut]Na and diglyme in hexane (Figure 6). Three-center–2-electron 

M•••H–B interactions are observed in both molecular structures; the M•••H bond 

distance for the mononuclear complex is 2.37 Å, but the M•••H distances are 2.53 and 

2.47 Å for the dinuclear complex. 
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Figure 6. Molecular structure of {[BoBut]Na}2•diglyme. 

3.2.2.2 [BoRBenz]Na, R = Me, t-Bu and Ad 

We have also used an annulated imidazolone as precursor for the synthesis of [BoRBenz] 

ligands. Specifically, treatment of 1-R-1,3-dihydro-benzimidazol-2-one with NaBH4 in 

toluene (when R = methyl) or THF (when R = t-But or Adamantyl) result in the 

generation of the respective ligand. Toluene is used as the reaction solvent in the methyl 

case because the product precipitates out from the reaction mixture which makes it easy 

for product isolation. For the methyl case, crystals of composition 

{[BoMeBenz]Na(diglyme)}2 suitable for X-ray diffraction were obtained from mixture of 

diglyme and hexane (Figure 7). The molecular structure is dinuclear in nature but the 
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two sodium metals are in different coordination environments. One of the sodium 

centers is fully coordinated by diglyme and has no M•••H–B interaction (dNa•••H = 2.80 Å 

and dNa•••B = 3.50 Å) while the other sodium center is involved in a more pronounced 3-

center–2-electron M•••H–B interaction (dNa•••H = 2.48 Å and dNa•••B = 3.20 Å) and only two 

of the three oxygens of diglyme coordinate to the metal center. 

 

Figure 7. Molecular structure of {[BoMeBenz]Na(diglyme)}2. 

On the other hand, crystals of composition {[BoRBenz]Na•THF}2, R = t-But or Ad, suitable 

for X-ray diffraction were obtained from a THF solution (Figures 8 and 9). In both cases, 
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the molecular structures are dimeric in nature. Although the coordination number of 

the sodium in this complex is only four, the 3-center–2-electron M•••H–B interaction is 

less pronounced than the previous cases. For example, the M•••H–B distance for 

{[BoButBenz]Na•THF}2 is 3.10 Å while it is 3.49 Å for {[BoAdBenz]Na•THF}2. This difference 

may be attributed to the steric bulk of the alkyl group. 

 

Figure 8. Molecular structure of {[BoButBenz]Na•THF}2. 
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Figure 9. Molecular structure of {[BoAdBenz]Na•THF}2. 

3.3 [BoR]Tl 

The alkali metal complexes, [BoR]M, are useful ligand transfer reagents for the synthesis 

of other derivatives. For example, treatment of {[BoBut]Li}2 with TlOAc gives [BoBut]Tl 

(Scheme 2). [BoMeBenz]Tl, [BoButBenz]Tl and [BoAdBenz]Tl have also been synthesized. All of 

the [BoR]Tl complexes have been structurally characterized by X-ray diffraction, Figures 

10, 11 and 12, except the [BoAdBenz]Tl complex due to the inability to grow crystals 

suitable for X-ray diffraction. Notably, [BoR]Tl exists as a discrete mononuclear complex 

with the shortest Tl•••Tl contact being 5.99 Å for [BoBut]Tl, 4.63 Å for [BoMeBenz]Tl and 
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5.42 Å for [BoButBenz]Tl. The coordination geometry of thallium in [BoR]Tl is also 

supplemented by a secondary Tl•••H–B interaction, which results in a “boat-like”  

conformation of the [BoR] ligand and allows the B–H group to be in proximity to the 

metal center. This coordination geometry resembles that of the 

bis(pyrazolyl)hydroborato counterparts, [BpR]Tl.12 However, the structures of the sulfur 

counterparts, {[BmR]Tl}x, exist in totally different coordination geometries. For example, 

for the t-butyl-substituted derivative, {[BmBut]Tl}2, the structure is dimeric where one of 

the sulfur atoms of the [BmBut] ligand bridges the two thallium centers.13 On the other 

hand, the methyl-substituted derivative {[BmMe]Tl}x is polymeric with bridging 

mercaptoimidazolyl groups.3a,14 Tl(I) compounds supported by bidentate [O2] donor LX 

type ligands have been previously reported; however, unlike the [BoR]Tl, these 

complexes exhibit a variety of intermolecular interactions.15 

 

 

Scheme 2. Synthesis of [BoR]Tl. 
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Figure 10. Molecular structure of [BoBut]Tl. 

 

 

Figure 11. Molecular structure of [BoMeBenz]Tl. 
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  Figure 12. Molecular structure of [BoButBenz]Tl. 

3.4 {[BoMeBenz]ZnI}2  

The zinc iodide compound, {[BoMeBenz]ZnI}2, may be obtained via the treatment of 

[BoMeBenz]Na with ZnI2 (Scheme 3). The molecular structure of {[BoMeBenz]ZnI}2 has been 

determined by X–ray diffraction (Figure 13), demonstrating that the compound is 

dinuclear with an oxygen atom of each [BoMeBenz] ligand bridging the two metal centers. 

The selenium counterpart has similar dimeric coordination geometry.4a An interesting 

difference between the two structures is that the two Zn-O bond lengths in the [Zn2O2] 

core of {[BoMeBenz]ZnI}2 are much more similar than the two pairs of Zn–Se bond lengths 

in the [Zn2Se2] core of {[BseMe]ZnI}2. Specifically, the two pairs of Zn–O bond lengths are 

2.008(2) Å and 2.201(2) Å, whereas the two pairs of Zn–Se bond lengths are 2.452(1) Å 
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and 2.826(1) Å. This trend is in accord with density functional theory calculations 

performed on {[BoMeBenz]ZnI}2 (0.083 Å, average value) and {[BseMe]ZnI}2 (0.415 Å, 

average value).16  On the other hand, these dinuclear structures, {[BoMeBenz]ZnI}2 and 

{[BseMe]ZnI}2, are distinct from the monomeric mercapto counterpart, [BmMe]ZnI.3a,b 

 

Scheme 3. Synthesis of {[BoMeBenz]ZnI}2. 
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Figure 13. Molecular structure of {[BoMeBenz]ZnI}2. 

A 3–center–2–electron Zn•••H–B interaction (dZn•••H = 1.97 Å and dZn•••B = 2.85 Å)17 

occupies an axial position in the trigonal bipyramid coordination environment of the 

zinc. The trigonal plane is occupied by [O,O,I] whereas the apical positions are occupied 

by the bridging oxygen and the Zn•••H–B interaction. There are other reported zinc 

complexes that exhibit 3–center–2–electron B–H•••Zn interactions.3a,b 

3.5 Gallium Iodide Supported by [BoMeBenz] Ligand 

The [BoMeBenz] ligand is also effective for coordinating gallium metal. For example, 

treatment of [BoMeBenz]Na with GaI3 results in the formation of [BoMeBenz]GaI2 while 

{[BoMeBenz]GaI}2 is formed as result of the reaction of [BoMeBenz]Na and  “GaI”18,19,20 (Scheme 

4). The latter gallium complex features a Ga–Ga bond and the transformation is 
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formally accompanied by disproportionation, in accord with the previously reported 

reactivity  of  “GaI”.5b,19,20  Also, the [BoR] ligand is effective in supporting a 

interconversion between the two gallium complexes, [BoMeBenz]GaI2 and {[BoMeBenz]GaI}2.  

Specifically, the Ga–Ga bond of {[BoMeBenz]GaI}2 can be cleaved by I2 to give 

[BoMeBenz]GaI2, while {[BoMeBenz]GaI}2 can be regenerated by treatment of [BoMeBenz]GaI2 

with KC8 (Scheme 4). 

 

Scheme 4. Synthesis and interconversion of [BoMeBenz]GaI2 and {[BoMeBenz]GaI}2.   

The molecular structures of [BoMeBenz]GaI2 (Figure 14) and {[BoMeBenz]GaI}2 (Figure 15) 

have been determined by X-ray diffraction. Even though there is no Ga•••H–B 

interaction, a noteworthy feature of both structures is that the [BoMeBenz]Ga moieties 

adopt  a  “boat-like”  conformation, whereas those for [BmR]Ga in the mercapto 

counterparts, [BmR]GaI2 and {[BmR]GaI}2 are  “chair-like” (Figure 16).5b  
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Figure 14. Molecular structure of [BoMeBenz]GaI2. 

 

Figure 15. Molecular structure of {[BoMeBenz]GaI}2. 
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Figure 16. Coordination geometry of [BoMeBenz]Ga and [BoMeBenz]Ga  motives:  “boat-like”  

vs.  “chair-like”. 

This is not the only difference in conformation between the structures of {[BoMeBenz]GaI}2 

and {[BmR]GaI}2, since the two [BmR]GaI moieties of the latter adopt a trans 

conformation while the two [BoMeBenz]GaI moieties adopt an approximately eclipsed 

conformation in which the I–Ga–Ga–O torsion angles are  18.9˚  and  20.8˚.  Also, the I–

Ga–Ga–I  torsion  angle  is  101.9˚,  in  contrast  to  a  value  of  180˚  for  {[BmR]GaI}2.5b Despite 

all these conformational differences, however, the Ga–Ga bond length for 

{[BoMeBenz]GaI}2 [2.3995(6) Å] is comparable to the values in the mercapto counterparts, 

{[BmBut]GaI}2 [2.423(2) Å] and {[BmMe]GaI}2 [2.414(2) Å].5b  

3.6  [BoMeBenz]CuPMe3 

The use of [BoR] ligands is not restricted to main group metals; the ligands are also of 

use in transition metal chemistry. For example, treatment of [BoMeBenz]Na with 

[Me3PCuCl]4 yields [BoMeBenz]Cu(PMe3) (Scheme 5). The molecular structure of 

[BoMeBenz]Cu(PMe3) has been determined by X–ray diffraction (Figure 17). For 
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comparison purposes, we have also synthesized the sulfur counterpart. Specifically, 

{P-[BmMeBenz]Na(THF)2}2 has been treated with [Me3PCuCl]4 to produce the copper 

compound, [BmMeBenz]CuPMe3 (Scheme 5). The molecular structure of [BmMeBenz]CuPMe3 

has been determined by X-ray diffraction, as illustrated in Figure 18. In both cases, the 

trigonal planar primary coordination sphere is supplemented by a Cu•••H–B 

interaction [dCu•••H = 1.81 for [BoMeBenz]Cu(PMe3) and dCu•••H = 1.90 Å for 

[BmMeBenz]Cu(PMe3)]. In accord with the presence of a Cu•••H–B interaction, the 

[BoMeBenz] and [BmMeBenz] ligands adopt a boat-like configuration. Furthermore, the 

Cu•••H–B interactions result in overall geometries that are trigonal monopyramidal. 

The W4 geometric indices of [BoMeBenz]CuPMe3 and [BmMeBenz]CuPMe3, 0.73 and 0.79 

respectively, indicate that [BmMeBenz]CuPMe3 is closer to a trigonal monopyramid (0.85) 

than is [BoMeBenz]CuPMe3.22 This is mainly due to the primary trigonal planar 

coordination of the [O2CuP] core, deviating more from planarity than the [S2CuP] core, 

as evidenced by the sums of the E–Cu–E and E–Cu–P angles in [BoMeBenz]Cu(PMe3) 

(350.6˚)  and  [BmMeBenz]Cu(PMe3)  (355.8˚). The difference in the two P–Cu–O bond angles 

(15.3˚)  is  considerably greater than the difference in the two P–Cu–S  bond  angles  (2.0˚). 

Comparing the primary trigonal planar coordination of [O2CuP] in [BoMeBenz]CuPMe3 to 

that in [acacR2]Cu(PR’3),23 we find that both classes have O–Cu–O bond angles that are 

close  to  90˚. However, the Cu–O bond lengths for [BoMeBenz]Cu(PMe3) [2.017(2) Å and 

2.073(2) Å] are slightly longer than those of [acacR2]Cu(PR’3), e.g. [acac(CF3)2]Cu(PMe3) 

[1.990(8) Å and 2.034(7) Å].23b  
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Scheme 5. Synthesis of [BoMeBenz]CuPMe3 and [BmMeBenz]CuPMe3. 

 

Figure 17. Molecular structure of [BoMeBenz]CuPMe3. 
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Figure 18. Molecular structure of [BmMeBenz]CuPMe3. 

3.7 General Structural Features for the [BoR] Ligand 

A summary of the key structural data for various {[BoR]M} is illustrated in Table 1. As 

expected, the C–O bonds are slightly longer than those of the respective oxoimidazole. 

Secondly, the M–Obridge bonds are slightly longer than the corresponding M–Oterm bonds 

in structures where one of the oxygen donors bridge two metal centers. Finally as 

mentioned before, one of the most important features of the [BoR] ligand and also its 

selenium and sulfur counterparts is a flexible 8-membered ring. 
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Table 1. Selected metrical data for [BoR]M Complexes.a 

 d(M–Oterm)/Å d(M–Obr)/Å d(M•••B)/Å d(M•••H)/Å 'd/Åb 

[[BoMeBenz]Cu(PMe3) 2.05  2.78 1.81 0.73 

{[BoMeBenz]ZnI}2 1.96 2.11 2.85 1.97 0.89 

[BoBut]Tl 2.51  3.41 2.49 0.90 

[BoBut]Na(dig) 2.25  3.20 2.37 0.95 

{[BoBut]Li}2 1.83 1.90 2.81 2.11 0.98 

{[BoBut]Na}2(dig) 2.24 2.31 3.23 2.49 0.99 

{[BoMeBenz]Na(dig)}2 2.32 2.32 3.35 2.64 1.03 

{[BoMeBenz]GaI}2 1.90  3.32 2.75 1.42 

[BoMeBenz]GaI2 1.86  3.40 2.79 1.54 

(a) Average values listed where appropriate. (b) 'd = d(M•••B) - d(M–Oterm).  

This allows the B–H moiety to adjust its position to accommodate a 3-center-2-electron 

M•••H–B interaction if required to supplement the bidentate [O2] coordination. For 

example, the M•••B distance is 2.78 Å for [BoMeBenz]Cu(PMe3) and 3.41 Å for [BoBut]Tl 

where both complexes possess M•••H–B interaction. We devised a numerical gauge to 

indicate the significance of M•••H–B interactions. This is simply accomplished by 

comparing the M•••B distance relative to the average terminal M–O distances, i.e. 'd = 

d(M•••B) –  d(M–Oterm). Based on this gauge, the most significant M•••H–B interaction is 

in [BoMeBenz]Cu(PMe3) ('d = 0.73 Å), while the least significant interaction is in 
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[BoMeBenz]GaI2 ('d = 1.54 Å). Both results are reasonable with respect to common 

coordination modes for each metal. The M•••H–B interaction in the former case leads to 

a ML3X complex, which is common for copper(I). For the latter complex, four-

coordinate gallium is a common motif and results due to the absence of any interaction 

with the B–H group.24 

3.8 Conclusion 

A new class of bidentate ligands that features oxygen donors, namely the bis(2-oxo-1-t-

butylimidazolyl)hydroborato and bis(2-oxo-1-alkylbenzimidazolyl)hydroborato ligands, 

[BoBut] and [BoRBenz], has been synthesized via the reaction of MBH4 with two equivalents 

of the respective 2-imidazolone. Chelation of [BoBut] and [BoRBenz] to a metal center 

results in a flexible 8-membered  ring  that  is  capable  of  adopting  a  “boat-like”  

conformation that allows for secondary M•••H–B interactions. 

3.9 Experimental Section 

3.9.1 General Considerations 

All manipulations were performed using a combination of glovebox, high vacuum, and 

Schlenk techniques under a nitrogen or argon atmosphere.25  Solvents were purified and 

degassed by standard procedures. 1H NMR spectra were measured on Bruker 300 DRX, 

Bruker 400 DRX, Bruker 400 Cyber-enabled Avance III and Bruker Avance 500 DMX 

spectrometers. 1H NMR chemical shifts are reported in ppm relative to SiMe4 (G = 0) and 

were referenced internally with respect to the protio solvent impurity (G 7.16 for C6D5H, 
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5.32 for CDHCl2 and 2.50 for d6-DMSO).26  13C NMR spectra are reported in ppm relative 

to SiMe4 (G = 0) and were referenced internally with respect to the solvent (G 128.06 for 

C6D6, 53.84 for CD2Cl2 and 39.52 for d6-DMSO).26  31P chemical shifts are reported in ppm 

relative to 85% H3PO4 (G = 0) and were referenced using P(OMe)3 (G = 141.0) as an 

external standard.27  Coupling constants are given in hertz.  Infrared spectra were 

recorded on PerkinElmer Spectrum Two spectrometer and are reported in cm-1. Mass 

spectra were obtained on a Jeol JMS-HX110H Tandem Double-Focusing Mass 

Spectrometer with a 10 kV accelerated voltage equipped with FAB ion source. NaBH4 

(Aldrich), LiBH4 (Strem), GaI3 (Strem), ZnI2 (Aldrich) and TlOAc (Aldrich) were 

obtained commercially and used as received while 1-tert-butyl-1,3-dihydro-2H-

imidazol-2-one,28 1-methyl-1,3-dihydro-2H-benzimidazol-2-one,29 1-tert-butyl-1,3-

dihydro-benzimidazol-2-one,30 [Me3PCuCl]4,
31

 and  “GaI”18 were prepared by the 

literature methods. 

3.9.2 X-ray Structure Determinations 

Single crystal X-ray diffraction data were collected on a Bruker Apex II diffractometer 

and crystal data, data collection and refinement parameters are summarized in Table 2.  

The structures were solved using direct methods and standard difference map 

techniques, and were refined by full-matrix least-squares procedures on F2 with 

SHELXTL (Version 2008/4).32 
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3.9.3 Computational Details 

Calculations were carried out using DFT as implemented in the Jaguar 7.6 (release 110, 

2009) suite of ab initio quantum chemistry programs.33 Geometry optimizations were 

performed with the B3LYP density functional34 using the 6-31G** (H, C, N, O, B) and 

LAV3P (Se, Zn, I)  basis sets,35 and atomic coordinates are listed in Table 3. 

3.9.4 Synthesis [BoBut]Li  

A mixture of 1-tert-butyl-1,3-dihydro-2H-imidazol-2-one (440 mg, 3.14 mmol) and 

LiBH4 (34.1 mg, 1.57 mmol) was placed in a Fischer-Porter style bottle (3 oz),36 treated 

with THF (ca. 6 mL) and  heated  at  100  ˚C  overnight.  The solvent was removed in vacuo 

and the residue obtained was extracted into benzene (ca. 6 mL) and lyophilized to yield 

{[BoBut]Li}2(THF) as a white powder (350 mg, 67%). Analysis calcd. for 

[BoBut]Li•0.1CH2Cl2: C, 55.2%; H, 8.0%; N, 18.3%. Found: C, 55.2%; H, 7.9%; N, 18.0%. 1H 

NMR (C6D6): 1.28 [s, 18H of H2B{C2N2H2[C(CH3)3]CO}2], 1.38 [m, 2H of 0.5 THF], 3.60 

[m, 2H of 0.5 THF], 5.96 [d, 3JH-H = 3, 2H of H2B{C2N2H2[C(CH3)3]CO}2], 6.50 [d, 3JH-H = 3, 

2H of H2B{C2N2H2[C(CH3)3]CO}2].  13C{1H} NMR (C6D6): 25.7 [2 C, 0.5 THF], 28.6 [6 C, 

H2B{C2N2H2[C(CH3)3]CO}2], 54.4 [2 C, H2B{C2N2H2[C(CH3)3]CO}2], 68.0 [2 C, 0.5 THF],  

108.1 [2 C, H2B{C2N2H2[C(CH3)3]CO}2], 116.3 [2 C, H2B{C2N2H2[C(CH3)3]CO}2], 157.4 [2 C, 

H2B{C2N2H2[C(CH3)3]CO}2].  IR Data (ATR, cm-1): 2972 (m), 2935 (w), 2878 (w), 2378 (w), 

2340 (w), 1628 (s), 1595 (vs), 1480 (m), 1427 (s), 1396 (w), 1366 (m), 1270 (m), 1216 (m), 

1184 (s), 1138 (s), 1078 (m), 1054 (w), 1029 (w), 982 (w), 900 (w), 828 (w), 796 (m) 776 (m), 
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664 (vs), 585 (m), 554 (m), 458 (s).  FAB-MS: m/z = 297.3 [M-1]+, M = [BoBut]Li. Crystals of 

composition [BoBut]Li were obtained by vapor diffusion of pentane into a solution of 

[BoBut]Li in benzene. Crystals of composition [BoBut]Li•CH2Cl2 were obtained by vapor 

diffusion of pentane into a solution of [BoBut]Li in CH2Cl2. 

3.9.5 Synthesis of [BoBut]Na  

A mixture of 1-tert-butyl-1,3-dihydro-2H-imidazol-2-one (410 mg, 2.93 mmol) and 

NaBH4 (55.4 mg, 1.46 mmol) was placed in a Fischer-Porter style bottle (3 oz),36 treated 

with THF (ca. 6 mL) and  heated  at  100  ˚C  overnight.  The solvent was removed in vacuo 

and the residue obtained was extracted into benzene (ca. 5 mL) and lyophilized to yield 

[BoBut]Na as white powder (320 mg, 70%). 1H NMR (C6D6): 1.37 [s, 18H of 

H2B{C2N2H2[C(CH3)3]CO}2], 6.02 [d, 3JH-H = 3, 2H of H2B{C2N2H2[C(CH3)3]CO}2], 6.52 [d, 

3JH-H = 3, 2H of H2B{C2N2H2[C(CH3)3]CO}2]. 13C{1H} NMR (C6D6): 28.7 [6 C, 

H2B{C2N2H2[C(CH3)3]CO}2], 53.8 [2 C, H2B{C2N2H2[C(CH3)3]CO}2], 107.0 [2 C, 

H2B{C2N2H2[C(CH3)3]CO}2], 116.6 [2 C, H2B{C2N2H2[C(CH3)3]CO}2], 157.5 [2 C, 

H2B{C2N2H2[C(CH3)3]CO}2].  IR Data (ATR, cm-1): 2972 (m), 2926 (br), 2368 (br), 1617 

(vs), 1480 (w), 1454 (m), 1421 (vs), 1364 (s), 1264 (s), 1214 (s), 1182 (vs), 1138 (vs), 1075 

(m), 1027 (m), 976 (m), 790 (m), 774 (m), 700 (m), 654 (vs), 555 (m), 463 (w), 430 (w). 

FAB-MS: m/z = 337.3 [M+Na]+, 313.3 [M–1]+, M = [BoBut]Na..  Crystals of composition 

[BoBut]Na•diglyme were obtained from a solution of [BoBut]Na (ca. 50 mg, 0.16 mmol) 

and  excess of diglyme (ca. 50 mg, 0.37 mmol) in hexane (ca. 2 mL), while crystals of 
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composition {[BoBut]Na}2•diglyme were obtained from a solution of [BoBut]Na (50 mg, 

0.16 mmol) and diglyme (10 mg, 0.07 mmol) in hexane (ca. 2 mL).  

3.9.6 Synthesis of [BoMeBenz]Na  

A mixture of 1-methyl-1,3-dihydro-2H-benzimidazol-2-one (520 mg, 3.51 mmol) and 

NaBH4 (66.4 mg, 1.76 mmol) was placed in a thick-walled ampoule capable of 

withstanding pressure and treated with toluene (ca. 10 mL). The mixture was heated at 

145  ˚C  for  4  days in a fume hood (CAUTION!), allowed to cool to room temperature and 

then filtered. The precipitate was washed sequentially with CH2Cl2 (ca. 10 mL)  and 

pentane (ca. 10 mL) and dried in vacuo to give [BoMeBenz]Na as a white solid (370 mg, 

64%). 1H NMR (DMSO): 3.22 [s, 6H of H2B{(C4H4)C2N2(CH3)CO}2], 6.82 [m, 6H of 

H2B{(C4H4)C2N2(CH3)CO}2], 7.47 [d, 3JH-H = 7, 2H of H2B{(C4H4)C2N2(CH3)CO}2]. 13C{1H} 

NMR (DMSO): 26.5 [2 C, H2B{(C4H4)C2N2(CH3)CO}2], 105.5 [2 C, 

HB{(C4H4)C2N2(CH3)CO}3], 110.9 [2 C, H2B{(C4H4)C2N2(CH3)CO}2], 118.3 [2 C, 

H2B{(C4H4)C2N2(CH3)CO}2], 119.5[2 C, H2B{(C4H4)C2N2(CH3)CO}2], 131.3 [2 C, 

H2B{(C4H4)C2N2(CH3)CO}2], 135.2 [2 C, H2B{(C4H4)C2N2(CH3)CO}2], 158.2 [2C, 

H2B{(C4H4)C2N2(CH3)CO}2].  IR Data (ATR, cm-1): 3649 (w), 3238 (br), 3060 (w), 2412 (br), 

2383 (br), 1620 (vs), 1596 (vs), 1488 (s), 1440 (s), 1393 (s), 1320 (m), 1216 (m), 1140 (s), 

1122 (s), 1097 (s), 1020 (w), 1002 (m), 983 (w), 914 (w), 870 (w), 821 (w), 794 (w), 766 (s), 

729 (vs), 717 (vs), 657 (w), 630 (w), 611 (m), 576 (m), 554 (s), 442 (m). FAB-MS: m/z = 
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329.2 [M-1]+, M = [BoMeBenz]Na. Crystals of composition {[BoMeBenz]Na(diglyme)}2 suitable 

for X-ray diffraction were obtained from a mixture of diglyme and hexanes. 

3.9.7 Synthesis of [BoButBenz]Na  

A mixture of 1-tert-butyl-2-benzimidazolinone (700 mg, 3.68 mmol) and NaBH4 (69.6 

mg, 1.84 mmol) was placed in an ampoule and treated with THF (ca. 10 mL). The 

mixture was heated at 140 ˚C for one day, and then cooled to room temperature. 

Addition of pentane (ca. 10 mL) results in the formation of an off-white precipitate. The 

precipitate was filtered and dried in vacuo, yielding [BoButBenz]Na•THF as an off-white 

powder (600 mg, 67%). Analysis calcd. for [[BoButBenz]Na: C, 63.8%; H, 6.8%; N 13.5%. 

Found: C, 62.9%; H, 7.7%; N 11.5%. 1H NMR (C6D6): 1.37 [m, 4H of 2CH2 for THF], 1.52 

[s, 18H of H2B{(C4H4)C2N2[C(CH3)3]CO}2], 3.54 [m, 4H of 2CH2 for THF], 6.87 [t, 2H of 

H2B{(C4H4)C2N2[C(CH3)3]CO}2], 7.06 [t, 2H of H2B{(C4H4)C2N2(CH3)CO}2], 7.15 [d, 2H of 

H2B{(C4H4)C2N2(CH3)CO}2], 8.05 [d, 3JH-H = 7, 2H of H2B{(C4H4)C2N2(CH3)CO}2]. 13C{1H} 

NMR (C6D6): 25.7 [2 C, methylene of the THF], 29.7 [6 C, H2B{(C4H4)C2N2[C(CH3)3]CO}2], 

57.4 [2 C, H2B{(C4H4)C2N2[C(CH3)3]CO}2], 67.9 [2 C, methylene of the THF], 111.8 [2 C, 

H2B{(C4H4)C2N2[C(CH3)3]CO}2], 112.5 [2 C, H2B{(C4H4)C2N2[C(CH3)3]CO}2], 119.7 [2 C, 

H2B{(C4H4)C2N2[C(CH3)3]CO}2], 121.1 [2 C, HB{(C4H4)C2N2[C(CH3)3]CO}2], 131.2 [2 C, 

H2B{(C4H4)C2N2[C(CH3)3]CO}2], 135.9.0 [2 C, H2B{(C4H4)C2N2[C(CH3)3]CO}2], 160.7 [2C, 

H2B{(C4H4)C2N2[C(CH3)3]CO}2]. FAB-MS: m/z = 413.3 [M-1]+, M = [ToButBenz]Na.  
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Yellowish blocks of [BoButBenz]Na•2THF suitable for X-ray diffraction were obtained from 

the reaction mixture. 

3.9.8 Synthesis of [BoAdBenz]Na  

A mixture of 1-admantyl-2-benzimidazolinone (478 mg, 1.78 mmol) and NaBH4 (33.7 

mg, 0.89 mmol) was placed in an ampoule and treated with THF (ca. 7 mL). The mixture 

was heated at 150 ˚C for one day, and then cooled to room temperature. Addition of 

pentane (ca. 20 mL) results in the formation of off-white precipitate. The precipitate was 

filtered and dried in vacuo, yielding [BoAdBenz]Na•2THF as an off-white powder (400 mg, 

70%).  Analysis calcd. for [[BoAdBenz]Na•2THF: C, 70.6%; H, 7.2%; N 7.8%. Found: C, 

69.1%; H, 7.2%; N 8.3%.  1H NMR (DMSO): 1.73 [m, 12H of 

H2B{(C4H4)C2N2[C10H15]CO}2], 1.78 [m, 4H of 2CH2 for THF], 2.15 [br, 6H of 

H2B{(C4H4)C2N2[C10H15]CO}2], 2.51 [br, 12H of H2B{(C4H4)C2N2[C10H15]CO}2], 3.62 [m, 4H 

of 2CH2 for THF], 6.62 [t, 3JH-H = 8,  2H of H2B{(C4H4)C2N2[C10H15]CO}2], 6.72 [t, 3JH-H = 8,  

2H of H2B{(C4H4)C2N2[C10H15]CO}2], 7.22 [d, 3JH-H = 8, 2H of H2B{(C4H4)C2N2[C10H15]CO}2], 

7.62 [t, 3JH-H = 8,  2H of H2B{(C4H4)C2N2[C10H15]CO}2] . 13C{1H} NMR (DMSO): 25.1 [2 C, 

methylene of the THF], 29.3 [6C of H2B{(C4H4)C2N2[C10H15]CO}2], 35.9 [6C of 

H2B{(C4H4)C2N2[C10H15]CO}2], 40.3 [6C of H2B{(C4H4)C2N2[C10H15]CO}2], 57.9 [2C of 

H2B{(C4H4)C2N2[C10H15]CO}2], 67.0 [2 C, methylene of the THF], 109.5 [2C of 

H2B{(C4H4)C2N2[C10H15]CO}2], 111.4 [2C of H2B{(C4H4)C2N2[C10H15]CO}2], 117.4 [2C of 

H2B{(C4H4)C2N2[C10H15]CO}2], 118.5 [2C of H2B{(C4H4)C2N2[C10H15]CO}2],  130.1 [2C of 
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H2B{(C4H4)C2N2[C10H15]CO}2], 135.8 [2C of H2B{(C4H4)C2N2[C10H15]CO}2], 157.7 [2C of 

H2B{(C4H4)C2N2[C10H15]CO}2]. FAB-MS: m/z = 593.6 [M+Na]+, M = [BoMeBenz]Na. Colorless 

blocks of [[BoAdBenz]Na•THF suitable for X-ray differaction were obtained from reaction 

mixture at room temperature. 

3.9.9 Synthesis of [BoBut]Tl  

A filtered solution of {[BoBut]Li}2(THF) (95 mg, 0.14 mmol) in MeOH (ca. 2 mL) was 

treated with a solution of thallium(I) acetate (125 mg, 0.47 mmol) in water (ca. 10 mL), 

thereby resulting in the immediate formation of a white precipitate. The mixture was 

stirred for one hour and filtered. The precipitate was dried in vacuo overnight yielding 

[BoBut]Tl as a white powder (55 mg, 40%). Analysis calcd. for [BoBut]Tl: C, 33.9%; H, 4.9%; 

N, 11.3%. Found: C, 33.7%; H, 4.6%; N. 11.1%. 1H NMR (C6D6): 1.32 [s, 18H of 

H2B{C2N2H2[C(CH3)3]CO}2], 6.09 [d, 3JH-H = 3, 2H of H2B{C2N2H2[C(CH3)3]CO}2], 6.52 [d, 

3JH-H = 3, 2H of H2B{C2N2H2[C(CH3)3]CO}2]. 13C{1H} NMR (C6D6): 28.3 [6 C, 

H2B{C2N2H2[C(CH3)3]CO}2], 54.0 [2 C, H2B{C2N2H2[C(CH3)3]CO}2], 108.1 [2 C, 

H2B{C2N2H2[C(CH3)3]CO}2], 116.2 [2 C, H2B{C2N2H2[C(CH3)3]CO}2], 159.3 [2 C, 

H2B{C2N2H2[C(CH3)3]CO}2]. FAB-MS: m/z = 496.2 [M]+ and 495.2 [M-1]+ (overlapping), M 

= [BoBut]Tl. Crystals of composition [BoBut]Tl suitable for X-ray diffraction were obtained 

by vapor diffusion into a benzene solution. 
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3.9.10 Synthesis of [BoMeBenz]Tl  

[BoMeBenz]Na (200 mg, 0.61 mmol) was dissolved in MeOH (ca. 10 mL) and filtered to 

obtain a clear solution. The clear solution was treated with solution of thallium(I) 

acetate (200 mg, 0.76 mmol)  in water (ca. 10 mL) which results in the immediate 

formation of a white precipitate. The mixture was stirred for 30 minutes and then 

filtered. The residue was washed with water (2 u ca. 50 mL) and dried in vacuo 

overnight yielding an off-white powder of [BoMeBenz]Tl (220 mg, 71%). Analysis calcd. for 

[BoMeBenz]Tl: C, 37.6%; H, 3.2%; N, 11.0%. Found: C, 37.8%; H, 3.0%; N, 10.9%. 1H NMR 

(DMSO):  3.32 [s, 6H of H2B{(C4H4)C2N2(CH3)CO}2], 6.80 [m, 6H of 

H2B{(C4H4)C2N2(CH3)CO}2], 7.47 [m, 2H of H2B{(C4H4)C2N2(CH3)CO}2]. 13C{1H} NMR 

(DMSO): 26.4[2 C, H2B{(C4H4)C2N2(CH3)CO}2], 105.4 [2 C, HB{(C4H4)C2N2(CH3)CO}3], 

111.0 [2 C, H2B{(C4H4)C2N2(CH3)CO}2], 118.2 [2 C, H2B{(C4H4)C2N2(CH3)CO}2], 119.5 [2 C, 

H2B{(C4H4)C2N2(CH3)CO}2], 131.3 [2 C, H2B{(C4H4)C2N2(CH3)CO}2], 135.1 [2 C, 

H2B{(C4H4)C2N2(CH3)CO}2], 158.3 [2C, H2B{(C4H4)C2N2(CH3)CO}2]. Colorless plate of 

[BoMeBenz]Tl suitable for X-ray were obtained from CH2Cl2 solution.  

3.9.11 Synthesis of [BoButBenz]Tl  

[BoButBenz]Na•THF (200 mg, 0.41 mmol) was dissolved in MeOH (ca. 5 mL) and filtered to 

obtain a clear solution. The clear solution was treated with a solution of thallium(I) 

acetate (130 mg, 0.49 mmol)  in water (ca. 5 mL) which results in immediate formation 

of white precipitate. The mixture was stirred for one hour and then filtered. The residue 
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was washed with water (ca. 10 mL) and dried in vacuo overnight yielding an off-white 

powder of [BoButBenz]Tl (200 mg, 82%). Analysis calcd. for [BoButBenz]Tl: C, 44.4%; H, 4.7%; 

N 9.4%. Found: C, 44.5%; H, 4.64%; N 9.2%.1H NMR (C6D6): 1.53 [s, 18H of 

H2B{(C4H4)C2N2[C(CH3)3]CO}2], 6.88 [t, 3JH-H = 8, 2H of H2B{(C4H4)C2N2[C(CH3)3]CO}2], 

7.09 [t, 3JH-H = 9,  2H of H2B{(C4H4)C2N2[C(CH3)3]CO}2], 7.15 [d, 3JH-H = 8, 2H of 

H2B{(C4H4)C2N2(CH3)CO}2], 8.00 [d, 3JH-H = 8, 2H of H2B{(C4H4)C2N2(CH3)CO}2]. 13C{1H} 

NMR (C6D6): 29.6 [m, 6 C, H2B{(C4H4)C2N2[C(CH3)3]CO}2], 57.6 [2 C, 

H2B{(C4H4)C2N2[C(CH3)3]CO}2], 111.9 [2 C, H2B{(C4H4)C2N2[C(CH3)3]CO}2], 112.6 [2 C, 

H2B{(C4H4)C2N2[C(CH3)3]CO}2], 119.8 [2 C, H2B{(C4H4)C2N2[C(CH3)3]CO}2], 121.1 [2 C, 

H2B{(C4H4)C2N2[C(CH3)3]CO}2], 131.6 [2 C, H2B{(C4H4)C2N2[C(CH3)3]CO}2], 135.6 [2 C, 

H2B{(C4H4)C2N2[C(CH3)3]CO}2], 162.1 [2C, H2B{(C4H4)C2N2[C(CH3)3]CO}2]. FAB-MS: m/z 

= 596.3 [M]+, M = [BoButBenz]Tl. Colorless plate of [BoButBenz]Tl suitable for X-ray diffraction 

were obtained from benzene. 

3.9.12 Synthesis of [BoAdBenz]Tl  

[BoAdBenz]Na•THF (300 mg, 0.47 mmol) was dissolved in THF (ca. 18 mL) and filtered to 

obtain a clear solution. The clear solution is treated with solution of thallium(I) acetate 

(330 mg, 1.25 mmol)  in water (ca. 50 mL) which result in immediate formation of a 

white precipitate. The mixture was stirred for one hour and then filtered. The residue 

was washed with water (2 u ca. 50 mL) and dried in vacuo overnight yielding an off-

white powder of {[BoAdBenz]Tl}2•THF (290 mg, 79%). Analysis calcd. For 
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{[BoAdBenz]Tl}2•THF: C, 54.9%; H, 5.6%; N 7.1%. Found: C, 55.0%; H, 5.6%; N 6.9%. 1H 

NMR (DMSO): 1.73 [m, 12H of H2B{(C4H4)C2N2[C10H15]CO}2], 1.78 [m, 4H of 2CH2 for 

THF], 2.15 [br, 6H of H2B{(C4H4)C2N2[C10H15]CO}2], 2.52 [br, 12H of 

H2B{(C4H4)C2N2[C10H15]CO}2], 3.62 [m, 4H of 2CH2 for THF], 6.62 [t, 3JH-H = 8,  2H of 

H2B{(C4H4)C2N2[C10H15]CO}2], 6.72 [t, 3JH-H = 8,  2H of H2B{(C4H4)C2N2[C10H15]CO}2], 7.22 

[d, 3JH-H = 8, 2H of H2B{(C4H4)C2N2[C10H15]CO}2], 7.62 [t, 3JH-H = 8,  2H of 

H2B{(C4H4)C2N2[C10H15]CO}2]. 13C{1H} NMR (DMSO): 25.1 [2 C, methylene of the THF], 

29.3 [6C of H2B{(C4H4)C2N2[C10H15]CO}2], 35.9 [6C of H2B{(C4H4)C2N2[C10H15]CO}2], 40.3 

[6C of H2B{(C4H4)C2N2[C10H15]CO}2], 57.9 [2C of H2B{(C4H4)C2N2[C10H15]CO}2], 67.0 [2 C, 

methylene of the THF], 109.4 [2C of H2B{(C4H4)C2N2[C10H15]CO}2], 111.6 [2C of 

H2B{(C4H4)C2N2[C10H15]CO}2], 117.3 [2C of H2B{(C4H4)C2N2[C10H15]CO}2], 118.4 [2C of 

H2B{(C4H4)C2N2[C10H15]CO}2], 130.1 [2C of H2B{(C4H4)C2N2[C10H15]CO}2], 135.9 [2C of 

H2B{(C4H4)C2N2[C10H15]CO}2], 157.6 [2C of H2B{(C4H4)C2N2[C10H15]CO}2].  FAB-MS: m/z = 

957.7 [M+Tl]+, M = [BoAdBenz]Tl. 

3.9.13 Synthesis of {[BoMeBenz]ZnI2]}2   

A mixture of [BoMeBenz]Na (30 mg, 0.09 mmol) and ZnI2 (40 mg, 0.13 mmol) was placed in 

a thick-walled ampoule capable of withstanding pressure and treated with CH2Cl2 (ca. 2 

mL). The mixture was heated  at  60˚C  for 2 hours in a fume hood (CARE!) and allowed 

to cool to room temperature.  CH2Cl2 (ca. 10 mL) was added to the mixture, which was 

stirred for few minutes and then filtered. The solvent was removed in vacuo and the 



131 

residue obtained was dissolved in benzene (ca. 5 mL) and then lyophilized to yield 

{[BoMeBenz]ZnI}2 as a white powder (22 mg, 49%). Analysis calcd. for 

{[BoMeBenz]ZnI}2•2(CH2Cl2): C, 34.9%; H, 3.1%; N, 9.6%. Found: C, 34.4%; H, 2.6%; N, 

9.5%.  1H NMR (CD2Cl2):  3.50 [s, 6H of H2B{(C4H4)C2N2(CH3)CO}2], 7.06 [d, 3JH-H = 8, 2H 

of H2B{(C4H4)C2N2(CH3)CO}2], 7.12 [t, 3JH-H = 8, 2H of H2B{(C4H4)C2N2(CH3)CO}2] ], 7.18 [t, 

3JH-H = 8, 2H of H2B{(C4H4)C2N2(CH3)CO}2] ], 7.65 [d, 3JH-H = 8, 2H of 

H2B{(C4H4)C2N2(CH3)CO}2]. 13C{1H} NMR (CD2Cl2): 27.9 [2 C, 

H2B{(C4H4)C2N2(CH3)CO}2], 108.3 [2 C, HB{(C4H4)C2N2(CH3)CO}3], 112.5 [2 C, 

H2B{(C4H4)C2N2(CH3)CO}2], 121.6 [2 C, H2B{(C4H4)C2N2(CH3)CO}2], 122.2 [2 C, 

H2B{(C4H4)C2N2(CH3)CO}2], 131.4 [2 C, H2B{(C4H4)C2N2(CH3)CO}2], 133.7 [2 C, 

H2B{(C4H4)C2N2(CH3)CO}2], 159.8 [2C, H2B{(C4H4)C2N2(CH3)CO}2].  IR Data (ATR, cm-1): 

3334 (br), 2936 (w), 2439 (br), 2288 (br), 1613 (s), 1591 (vs), 1556 (vs), 1488 (s), 1453 (s), 

1405 (s), 1325 (m), 1298 (m), 1257 (m), 1235 (m), 1120 (s), 1100 (s), 1046 (m), 998 (m), 926 

(m), 873 (m), 821 (w), 789 (m), 746 (vs), 718 (s), 656 (m), 620 (m), 592 (m), 577 (s), 560 (s), 

519 (s), 497 (m), 445 (s), 430 (s). FAB-MS: m/z = 497.2 [M]+, M= [BoMeBenz]ZnI.  Crystals of 

composition {[BoMeBenz]ZnI}2 were obtained from pumping down solution of CH2Cl2 and 

crystals of composition {[BoMeBenz]ZnI}2•2(CH2Cl2) were obtained from the reaction 

mixture. 
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3.9.14 Synthesis of [BoMeBenz]GaI2   

A mixture of [BoMeBenz]Na (20 mg, 0.06 mmol) and GaI3 (27 mg, 0.06 mmol) was treated 

with benzene (ca. 4 mL).  The resulting suspension was mixed with a pipette for several 

minutes and then filtered.  The filtrate was lyophilized and the solid obtained was 

washed with pentane (ca. 2 mL) to give [BoMeBenz]GaI2 as a white powder (10 mg, 26%). 

1H NMR (C6D6):  2.58 [s, 6H of H2B{(C4H4)C2N2(CH3)CO}2], 6.33 [d, 3JH-H = 8, 2H of 

H2B{(C4H4)C2N2(CH3)CO}2], 6.88 [dt, 3JH-H = 8, 4JH-H = 1,  2H of H2B{(C4H4)C2N2(CH3)CO}2], 

7.05 [dt, 3JH-H = 8, 4JH-H = 1, 2H of H2B{(C4H4)C2N2(CH3)CO}2], 7.77 [d, 3JH-H = 8, 2H of 

H2B{(C4H4)C2N2(CH3)CO}2]. 13C{1H} NMR (C6D6): 27.4 [2 C, H2B{(C4H4)C2N2(CH3)CO}2], 

109.3 [2 C, HB{(C4H4)C2N2(CH3)CO}3], 113.8 [2 C, H2B{(C4H4)C2N2(CH3)CO}2], 122.8 [2 C, 

H2B{(C4H4)C2N2(CH3)CO}2], 123.5 [2 C, H2B{(C4H4)C2N2(CH3)CO}2], 130.4 [2 C, 

H2B{(C4H4)C2N2(CH3)CO}2], 133.0 [2 C, H2B{(C4H4)C2N2(CH3)CO}2], 156.3 [2C, 

H2B{(C4H4)C2N2(CH3)CO}2]. Crystals of composition [BoMeBenz]GaI2 were obtained by 

vapor diffusion of hexane into a benzene solution. 

3.9.15 Synthesis of {[BoMeBenz]GaI}2  

A mixture of [BoMeBenz]Na (10  mg,  0.03  mmol)  and  “GaI”  (6.0  mg,  0.03 mmol) was treated 

with benzene (ca. 1 mL).  The mixture was stirred for ca. 30 minutes and filtered.  

Hexane was was added and allowed to diffuse into the benzene solution, thereby 

resulting in the formation of colorless crystals of {[BoMeBenz]GaI}2 (6.0 mg, 40%). Analysis 

calcd. for {[BoMeBenz]GaI}2•0.8C6H6: C, 41.3%; H, 3.5%; N, 10.5%. Found: C, 40.9%; H, 
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3.4%; N, 10.0%. 1H NMR (C6D6): 2.75 [s, 6H of H2B{(C4H4)C2N2(CH3)CO}2], 6.23 [d, 3JH-H = 

8, 2H of H2B{(C4H4)C2N2(CH3)CO}2], 6.78 [t, 3JH-H = 8, 2H of H2B{(C4H4)C2N2(CH3)CO}2], 

6.91 [t, 3JH-H = 7, 2H of H2B{(C4H4)C2N2(CH3)CO}2, 7.48 [d, 3JH-H = 8, 2H of 

H2B{(C4H4)C2N2(CH3)CO}2]. 13C{1H} NMR (C6D6): 27.4 [2 C, H2B{(C4H4)C2N2(CH3)CO}2], 

109.0 [2 C, HB{(C4H4)C2N2(CH3)CO}2], 112.7 [2 C, H2B{(C4H4)C2N2(CH3)CO}2], 122.1 [2 C, 

H2B{(C4H4)C2N2(CH3)CO}2], 122.8 [2 C, H2B{(C4H4)C2N2(CH3)CO}2], 130.7 [2 C, 

H2B{(C4H4)C2N2(CH3)CO}2], 133.0 [2 C, H2B{(C4H4)C2N2(CH3)CO}2], 157.6 [2C, 

H2B{(C4H4)C2N2(CH3)CO}2]. 

3.9.16 Interconversion of {[BoMeBenz]GaI}2 and [BoMeBenz]GaI2  

A solution of {[BoMeBenz]GaI}2 (ca. 10 mg, 0.01 mmol) in C6D6 (ca. 1 mL) was titrated with 

a solution of I2 in C6D6 (ca. 0.01 M).  The reaction was monitored by 1H NMR 

spectroscopy, thereby demonstrating the formation of [BoMeBenz]GaI2. The solution was 

then treated with KC8 (ca. 4 mg), thereby resulting in the regeneration of {[BoMeBenz]GaI}2 

as indicated by 1H NMR spectroscopy. 

3.9.17 Synthesis of [BoMeBenz]CuPMe3  

A mixture of [BoMeBenz]Na (40 mg, 0.12 mmol) and [Me3PCuCl]4 (15.9 mg, 0.02 mmol) 

was treated with benzene (ca. 2 mL). The suspension was mixed with a pipette for 

several minutes and then filtered. Pentane (ca. 2 mL) was added slowly to the filtrate 

until the solution became turbid, which was then placed at -16  ˚C, thereby depositing 

colorless crystals of [BoMeBenz]CuPMe3 (15.0 mg, 37%). Analysis calcd. for 
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[BoMeBenz]CuPMe3•0.3C6H6: C, 53.1%; H, 5.7%; N, 11.9%. Found: C, 53.5%; H, 5.6%; N, 

11.5%.  Crystals of composition [BoMeBenz]CuPMe3•0.5C5H12 suitable for X-ray diffraction 

were obtained from diffusion of pentane into toluene at -16  ˚C.  1H NMR (C6D6): 0.81 [d, 

2JP-H=7, 9H of H2B{(C4H4)C2N2(CH3)CO}2CuP(CH3)3], 2.85 [s, 6H of 

H2B{(C4H4)C2N2(CH3)CO}2CuP(CH3)3], 6.45 [d, 3JH-H = 8,  2H of 

H2B{(C4H4)C2N2(CH3)CO}2CuP(CH3)3], 6.92 [t, 3JH-H = 8,  2H of 

H2B{(C4H4)C2N2(CH3)CO}2CuP(CH3)3], 7.11 [t, 3JH -H = 8,  2H of 

H2B{(C4H4)C2N2(CH3)CO}2CuP(CH3)3], 7.99 [d, 3JH-H = 8,  2H of 

H2B{(C4H4)C2N2(CH3)CO}2CuP(CH3)3]. 13C{1H} NMR (C6D6): 15.5 [3 C, 1JP-C = 23, 

H2B{(C4H4)C2N2(CH3)CO}2CuP(CH3)3], 26.7 [2 C, H2B{(C4H4)C2N2(CH3)CO}2CuP(CH3)3], 

107.2 [2 C, H2B{(C4H4)C2N2(CH3)CO}2CuP(CH3)3], 112.2 [2 C, 

H2B{(C4H4)C2N2(CH3)CO}2CuP(CH3)3], 120.4 [2 C, H2B{(C4H4)C2N2(CH3)CO}2CuP(CH3)3], 

121.6 [2 C, H2B{(C4H4)C2N2(CH3)CO}2CuP(CH3)3], 132.1 [2 C, 

H2B{(C4H4)C2N2(CH3)CO}2CuP(CH3)3], 134.7 [2C, H2B{(C4H4)C2N2(CH3)CO}2CuP(CH3)3], 

161.7 [2C, H2B{(C4H4)C2N2(CH3)CO}2CuP(CH3)3]. 31P NMR (C6D6): –47.3. 

3.9.18 Synthesis of [BmMeBenz]Na  

A mixture of 1-methyl-2-benzimidazole-2-thione (500 mg, 3.05 mmol) and NaBH4 (57.6 

mg, 1.52 mmol) was placed in a Fischer-Porter style bottle (3 oz),36 treated with THF (ca. 

4 mL) and heated  at  100  ˚C  overnight.  The mixture was allowed to cool to room 

temperature and then placed at –10  ˚C,  thereby  depositing  large  colorless  crystals  of  
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{P-[BmMeBenz]Na(THF)2}2. The mixture was then placed at –78  ˚C,  resulting  in  further  

deposition.  The mixture was filtered and the precipitate was dried in vacuo to give 

{P-[BmMeBenz]Na(THF)2}2 as a white solid (300 mg, 39%).  The filtrate was allowed to sit at 

room temperature for two days, over which period additional {P-[BmMeBenz]Na(THF)2}2 

was deposited, isolated by filtration and dried in vacuo (160 mg, total yield 60%).  

Analysis calcd. for {P-[BmMeBenz]Na(THF)2}2: C, 56.9%; H, 6.4%; N, 11.1%. Found: C, 

56.8%; H, 6.1%; N, 11.0%. 1H NMR for {BmMeBenz]Na}(THF)2 (d6-DMSO):  1.76 [m, 8H of 2 

THF], 3.60 [m, 8H of 2 THF], 3.64 [s, 6H of H2B{(C4H4)C2N2(CH3)CS}2], 6.93 [m, 4H of 

H2B{(C4H4)C2N2(CH3)CS}2],  7.09  [“d”,  3JH-H = 7, 2H of H2B{(C4H4)C2N2(CH3)CS}2], 8.18 

[“d”,  3JH-H = 7, 2H of H2B{(C4H4)C2N2(CH3)CS}2]. 13C{1H} NMR (DMSO): 25.1 [4 C, CH2 of 

the THF], 30.5 [2 C, H2B{(C4H4)C2N2(CH3)CS}2], 67.0 [4 C, CH2 of the THF], 107.2 [2 C, 

H2B{(C4H4)C2N2(CH3)CS}2], 114.3 [2 C, H2B{(C4H4)C2N2(CH3)CS}2], 120.4 [2 C, 

H2B{(C4H4)C2N2(CH3)CS}2], 120.8 [2 C, H2B{(C4H4)C2N2(CH3)CS}2], 133.4 [2 C, 

H2B{(C4H4)C2N2(CH3)CS}2], 137.2 [2 C, H2B{(C4H4)C2N2(CH3)CS}2], 172.3 [2C, 

H2B{(C4H4)C2N2(CH3)CS}2]. FAB-MS: m/z = 385.1 [M + Na]+, M = [BmMeBenz]Na.  IR Data 

(ATR, cm-1): 3051 (w), 3016 (w), 2969 (m), 2875 (m), 2444 (br), 1607 (w), 1483 (m), 1461 

(w), 1435 (m), 1422 (w), 1388 (m), 1337 (vs), 1311 (s), 1238 (m), 1178 (m), 1156 (w), 1117 

(m), 1092 (m), 1044 (m), 1023 (m), 1018 (w), 980 (m), 917 (w), 887 (m), 767 (s), 745 (s), 652 

(w), 420 (s). 
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3.9.19 Synthesis of [BmMeBenz]CuPMe3   

A mixture of {P-[BmMeBenz]Na(THF)2}2 (30 mg, 0.03 mmol) and [Me3PCuCl]4 (9.0 mg, 0.01 

mmol) was treated with benzene (ca. 4 mL). The resulted suspension was mixed with a 

pipette for several minutes and then filtered. The filtrate was lyophilized and the solid 

obtained was washed with pentane (ca. 3 mL) to give [BmMeBenz]CuPMe3 as a white 

powder (15 mg, 61%). Crystals suitable for X-ray diffraction were obtained by slow 

diffusion of pentane into a benzene solution. Analysis calcd. for [BmMeBenz]CuPMe3: C, 

47.7%; H, 5.3%; N, 11.7%. Found: C, 47.9%; H, 5.0%; N, 11.5%. 1H NMR (C6D6): 0.91 [d, 

2JP-H= 5, 9H of H2B{(C4H4)C2N2(CH3)CS}2CuP(CH3)3], 3.10 [s, 6H of 

H2B{(C4H4)C2N2(CH3)CS}2CuP(CH3)3], 6.43 [d, 3JH-H = 8,  2H of 

H2B{(C4H4)C2N2(CH3)CS}2CuP(CH3)3], 6.87 [t, 3JH-H = 8,  2H of 

H2B{(C4H4)C2N2(CH3)CS}2CuP(CH3)3], 7.01 [t, 3JH -H = 8,  2H of 

H2B{(C4H4)C2N2(CH3)CS}2CuP(CH3)3], 7.96 [d, 3JH-H = 8,  2H of 

H2B{(C4H4)C2N2(CH3)CS}2CuP(CH3)3]. 13C{1H} NMR (C6D6): 15.6 [d, 1JP-C = 19, 3 C, 

H2B{(C4H4)C2N2(CH3)CS}2CuP(CH3)3], 30.7 [2 C, H2B{(C4H4)C2N2(CH3)CS}2CuP(CH3)3], 

108.8 [2 C, H2B{(C4H4)C2N2(CH3)CS}2CuP(CH3)3], 114.0 [2 C, 

H2B{(C4H4)C2N2(CH3)CS}2CuP(CH3)3], 122.0 [2 C, H2B{(C4H4)C2N2(CH3)CS}2CuP(CH3)3], 

122.6 [2 C, H2B{(C4H4)C2N2(CH3)CS}2CuP(CH3)3], 134.7 [2 C, 

H2B{(C4H4)C2N2(CH3)CS}2CuP(CH3)3], 137.5 [2C, H2B{(C4H4)C2N2(CH3)CS}2CuP(CH3)3], 

not showing [2C, H2B{(C4H4)C2N2(CH3)CS}2CuP(CH3)3]. 31P{1H} (C6D6): -47.9.  IR Data 

(ATR, cm-1): 3059 (w), 2965 (w), 2900 (w), 2390 (br), 2260 (br), 1613 (w), 1483 (m), 1436 



137 

(m), 1398 (m), 1376 (m), 1344 (s), 1301 (m), 1235 (m), 1176 (w), 1153 (w), 1116 (m), 1097 

(m), 1017 (w), 981 (w), 952 (m), 845 (w), 794 (w), 734 (vs), 700 (w), 650 (w), 612 (w), 553 

(m), 435 (w), 419 (s), 402 (w). 
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3.10 Crystallographic Data 

Table 2. Crystal, intensity collection and refinement data. 

 [BoBut]Li 

 
[BoBut]Li•0.5CH2Cl2 

lattice Triclinic Triclinic 
formula C28H48B2Li2N8O4 C29H50B2Cl2Li2N8O4 
formula weight 596.24 681.17 
space group P-1 P-1 

a/Å 9.7018(13) 9.4956(11) 
b/Å 11.7027(16) 12.2278(14) 
c/Å 15.355(2) 16.2888(18) 
D/˚ 101.550(2) 89.903(2) 
E/˚ 100.886(2) 74.243(2) 
J/˚ 96.742(2) 85.331(2) 
V/Å3 1655.4(4) 1813.8(4) 
Z 2 2 
temperature (K) 130(2) 130(2) 
radiation (O, Å) 0.71073 0.71073 
U (calcd.), g cm-3 1.196 1.247 
P (Mo KD), mm-1 0.079 0.223 
T�max, deg. 25.51 31.02 
no. of data 
collected 

18873 30106 

no. of data used 6184 11448 
no. of parameters 425 452 
R1 [I > 2V(I)] 0.0504 0.0590 
wR2 [I > 2V(I)] 0.0794 0.1450 
R1 [all data] 0.0952 0.1094 
wR2 [all data] 0.0909 0.1694 
GOF 1.165 1.056 
Rint 0.0692 0.0488 
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Table 2. (cont.) Crystal, intensity collection and refinement data. 

 [BoBut]Na•diglyme 

 
{[BoBut]Na}2•diglyme 

 
lattice Monoclinic Monoclinic 
formula C20H38BN4NaO5 C40H76B2N8Na2O7 

formula weight 448.34 848.69 
space group P21/n Cc 

a/Å 9.546(2) 23.626(3) 
b/Å 9.704(2) 15.8447(18) 
c/Å 27.190(6) 17.432(2) 
D/˚ 90 90 
E/˚ 97.744(4) 128.969(2) 
J/˚ 90 90 
V/Å3 2495.9(10) 5073.7(10) 
Z 4 4 
temperature (K) 130(2) 150(2) 
radiation (O, Å) 0.71073 0.71073 
U (calcd.), g cm-3 1.193 1.111 
P (Mo KD), mm-1 0.099 0.090 
T�max, deg. 31.09 28.28 
no. of data 
collected 

40047 34739 

no. of data used 7870 12506 
no. of parameters 296 509 
R1 [I > 2V(I)] 0.0617 0.0513 
wR2 [I > 2V(I)] 0.1145 0.0628 
R1 [all data] 0.1640 0.0995 
wR2 [all data] 0.1450 0.0687 
GOF 1.003 1.016 
Rint 0.1159 0.0706 
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Table 2. (cont.) Crystal, intensity collection and refinement data. 

 {[BoMeBenz]Na(diglyme)}2 

 
{[BoButBenz]Na(THF)}2 

lattice Triclinic Monoclinic 
formula C44H60B2N8Na2O10 C26H36BN4O3Na 

formula weight 928.60 486.39 
space group P-1 P21/c 

a/Å 11.2105(11) 10.097(2) 
b/Å 11.7527(11) 12.902(3) 
c/Å 19.0172(18) 20.081(5) 
D/˚ 76.2150(10) 90 
E/˚ 79.2350(10) 91.683(4) 
J/˚ 82.7380(10) 90 
V/Å3 2381.8(4) 2614.7(11) 
Z 2 4 
temperature (K) 130(2) 150(2) 
radiation (O, Å) 0.71073 0.71073 
U (calcd.), g cm-3 1.295 1.236 
P (Mo KD), mm-1 0.107 0.095 
T�max, deg. 32.02 31.58 
no. of data 
collected 

41548 43750 

no. of data used 16150 8728 
no. of parameters 619 330 
R1 [I > 2V(I)] 0.0599 0.0595 
wR2 [I > 2V(I)] 0.1377 0.1619 
R1 [all data] 0.1233 0.0907 
wR2 [all data] 0.1658 0.1860 
GOF 1.024 1.059 
Rint 0.0516 0.0495 
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Table 2. (cont.) Crystal, intensity collection and refinement data. 

 {[BoAdBenz]Na(THF)}2 [BoBut]Tl 

 
lattice Triclinic Monoclinic 
formula C84H110B2N8O8Na2 C14H24BN4O2Tl 

formula weight 1427.40 495.55 
space group P-1 P21/c 

a/Å 11.5310(9) 13.5424(10) 
b/Å 12.0586(9) 5.9912(5) 
c/Å 15.2849(12) 22.3075(17) 
D/˚ 104.8730(10) 90 
E/˚ 98.0770(10) 105.2950(10) 
J/˚ 110.0860(10) 90 
V/Å3 1867.0(2) 1745.8(2) 
Z 1 4 
temperature (K) 150(2) 150(2) 
radiation (O, Å) 0.71073 0.71073 
U (calcd.), g cm-3 1.270 1.885 
P (Mo KD), mm-1 0.091 9.262 
T�max, deg. 31.14 32.80 
no. of data 
collected 

30965 29121 

no. of data used 11834 6148 
no. of parameters 538 207 
R1 [I > 2V(I)] 0.0603 0.0263 
wR2 [I > 2V(I)] 0.1588 0.0512 
R1 [all data] 0.0860 0.0406 
wR2 [all data] 0.1768 0.0549 
GOF 1.058 1.025 
Rint 0.0276 0.0433 
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Table 2. (cont.) Crystal, intensity collection and refinement data. 

 {[BoMeBenz]Tl 

 
{[BoButBenz]Tl 

 
lattice Triclinic Monoclinic 
formula C16H16BN4O2Tl C22H28BN4O2Tl 

formula weight 511.51 595.66 
space group P-1 P21/c 

a/Å 8.7572(13) 9.6961(10) 
b/Å 8.8944(13) 26.190(3) 
c/Å 11.2406(16) 9.8721(10) 
D/˚ 111.184(2) 90 
E/˚ 94.055(2) 118.0950(10) 
J/˚ 102.591(2) 90 
V/Å3 785.9(2) 2211.5(4) 
Z 2 4 
temperature (K) 150(2) 130(2) 
radiation (O, Å) 0.71073 0.71073 
U (calcd.), g cm-3 2.162 1.789 
P (Mo KD), mm-1 10.292 7.329 
T�max, deg. 31.50 30.75 
no. of data 
collected 

13257 35591 

no. of data used 5163 6872 
no. of parameters 227 316 
R1 [I > 2V(I)] 0.0398 0.0374 
wR2 [I > 2V(I)] 0.0669 0.0750 
R1 [all data] 0.0625 0.0524 
wR2 [all data] 0.0723 0.0798 
GOF 1.040 1.069 
Rint 0.0503 0.0386 
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Table 2. (cont.) Crystal, intensity collection and refinement data. 

 {[BoMeBenz]ZnI}2 

 

{[BoMeBenz]ZnI}2 

•2(CH2Cl2) 

lattice Triclinic Triclinic 
formula C32H32B2I2N8O4Zn2 C34H36B2Cl4I2N8O4Zn2 

formula weight 998.82 1168.67 
space group P-1 P-1 

a/Å 8.797(3) 8.9863(11) 
b/Å 10.599(4) 10.5954(13) 
c/Å 11.305(4) 12.2767(14) 
D/˚ 68.735(5) 74.050(2) 
E/˚ 78.585(5) 72.881(2) 
J/˚ 67.408(5) 68.703(2) 
V/Å3 904.8(5) 1022.2(2) 
Z 1 1 
temperature (K) 200(2) 130(2) 
radiation (O, Å) 0.71073 0.71073 
U (calcd.), g cm-3 1.833 1.899 
P (Mo KD), mm-1 3.080 2.994 
T�max, deg. 29.57 31.02 
no. of data 
collected 

13690 16936 

no. of data used 5055 6444 
no. of parameters 236 263 
R1 [I > 2V(I)] 0.0344 0.0408 
wR2 [I > 2V(I)] 0.0739 0.0675 
R1 [all data] 0.0556 0.0694 
wR2 [all data] 0.0811 0.0748 
GOF 1.008 1.071 
Rint 0.0333 0.0510 
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Table 2. (cont.) Crystal, intensity collection and refinement data. 

 [BoMeBenz]GaI2 

 

{[BoMeBenz]GaI}2 

 
lattice Orthorhombic Monoclinic 
formula C16H16BGaI2N4O2 C47H51B2Ga2I2N8O4 

formula weight 630.66 1206.82 
space group Pbca P21/n 

a/Å 20.5059(18) 16.6643(12) 
b/Å 15.3790(14) 16.3434(11) 
c/Å 24.714(2) 18.5556(13) 
D/˚ 90 90 
E/˚ 90 96.9820(10) 
J/˚ 90 90 
V/Å3 7793.7(12) 5016.2(6) 
Z 16 4 
temperature (K) 130(2) 150(2) 
radiation (O, Å) 0.71073 0.71073 
U (calcd.), g cm-3 2.150 1.598 
P (Mo KD), mm-1 4.599 2.355 
T�max, deg. 23.26 28.28 
no. of data 
collected 

68595 68652 

no. of data used 5600 12435 
no. of parameters 467 555 
R1 [I > 2V(I)] 0.0682 0.0458 
wR2 [I > 2V(I)] 0.1618 0.0758 
R1 [all data] 0.1268 0.0959 
wR2 [all data] 0.1912 0.0853 
GOF 1.230 1.029 
Rint 0.2089 0.0798 
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Table 2. (cont.) Crystal, intensity collection and refinement data. 

 [BoMeBenz]CuPMe3 

 
{P-[BmMeBenz]Na(THF)2}2 

lattice Triclinic Triclinic 
formula C21.50H31BCuN4O2P C48H64B2N8Na2O4S4 
formula weight 482.82 1012.91 
space group P-1 P-1 

a/Å 8.8727(12) 10.2914(9) 
b/Å 10.0513(14) 10.6050(9) 
c/Å 14.569(2) 12.5970(11) 
D/˚ 90.266(2) 111.1290(10) 
E/˚ 101.055(2) 94.9240(10) 
J/˚ 112.945(2) 95.1530(10) 
V/Å3 1169.8(3) 1266.85(19) 
Z 2 1 
temperature (K) 130(2) 130(2) 
radiation (O, Å) 0.71073 0.71073 
U (calcd.), g cm-3 1.371 1.328 
P (Mo KD), mm-1 1.027 0.257 
T�max, deg. 30.97 30.51 
no. of data 
collected 

19535 20510 

no. of data used 7374 7686 
no. of parameters 266 317 
R1 [I > 2V(I)] 0.0576 0.0500 
wR2 [I > 2V(I)] 0.0879 0.1268 
R1 [all data] 0.1226 0.0718 
wR2 [all data] 0.0981 0.1396 
GOF 1.009 1.077 
Rint 0.0761 0.0356 
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Table 2. (cont.) Crystal, intensity collection and refinement data. 

 [BmMeBenz]CuPMe3 

 
lattice Monoclinic 
formula C19H25BN4S2PCu 
formula weight 478.87 
space group P21/c 

a/Å 15.943(2) 
b/Å 8.8788(11) 
c/Å 16.066(2) 
D/˚ 90 
E/˚ 103.346(2) 
J/˚ 90 
V/Å3 2212.7(5) 
Z 4 
temperature (K) 150(2) 
radiation (O, Å) 0.71073 
U (calcd.), g cm-3 1.437 
P (Mo KD), mm-1 1.261 
T�max, deg. 32.73 
no. of data 
collected 

37547 

no. of data used 7811 
no. of parameters 266 
R1 [I > 2V(I)] 0.0310 
wR2 [I > 2V(I)] 0.0789 
R1 [all data] 0.0432 
wR2 [all data] 0.0848 
GOF 1.041 
Rint 0.0359 
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Table 3. Cartesian coordinates for geometry optimized structures of {[BoMeBenz]ZnI}2 and 

{[BseMe]ZnI}2. 

{[BoMeBenz]ZnI}2  

 (-2181.80813350053 Hartrees) 

atom x y z 
Zn 3.261304282 5.689300341 0.290430918 
B 3.070991509 8.359393026 -0.899339917 
H 3.333955752 9.520188815 -0.746008397 
H 3.447463046 7.743544471 0.082822383 
I 3.806442841 5.823746711 2.8617267 
O 1.341701745 5.916938715 -0.551322617 
O 4.483470108 5.697785236 -1.315610639 
N 1.522386324 8.207111944 -1.020766748 
N -0.51048119 7.290452266 -1.045757043 
N 3.822739151 7.805526282 -2.144212145 
N 5.141718312 6.504784911 -3.393045003 
C -1.588464531 6.31494868 -0.951154376 
H -1.375440848 5.605239307 -0.152228125 
H -1.722477571 5.781598149 -1.896109429 
H -2.508289738 6.846248581 -0.699542645 
C 0.824435964 7.056947394 -0.857692294 
C -0.677285583 8.645574677 -1.338670543 
C 0.601862497 9.222237987 -1.298433143 
C 0.767953606 10.59287122 -1.494062585 
H 1.746040912 11.05290131 -1.419300666 
C -0.37278647 11.35087208 -1.759797417 
H -0.272654896 12.42066679 -1.916624833 
C -1.644559489 10.76297271 -1.823462492 
H -2.510779664 11.38131392 -2.03841594 
C -1.818912843 9.395196121 -1.609626104 
H -2.803057341 8.94099628 -1.657694589 
C 5.928315391 5.359813392 -3.808373459 
H 5.853322811 4.596571284 -3.034583748 
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H 6.978613209 5.64086328 -3.939625243 
H 5.543922484 4.955173133 -4.74981545 
C 4.468315272 6.608746149 -2.201077914 
C 4.917943257 7.666634278 -4.130151475 
C 4.086958602 8.481531083 -3.342150994 
C 3.676401665 9.727742078 -3.806376071 
H 3.026801507 10.36064083 -3.214546046 
C 4.121464519 10.12865019 -5.068509582 
H 3.813871818 11.09599292 -5.454359492 
C 4.950825517 9.310728066 -5.846802251 
H 5.27707248 9.653305706 -6.824072682 
C 5.364905788 8.05788787 -5.387231225 
H 6.006904089 7.420279898 -5.98655755 
Zn 0.725105587 3.800896138 -0.597217662 
B 0.931542178 1.381295999 1.103913551 
H 0.615673468 0.227995657 1.208220948 
H 0.486763393 1.821717951 0.056634943 
I 0.03826053 3.281561456 -3.072186162 
O 2.707879882 3.598637549 0.078516753 
O -0.341829147 4.133060933 1.090292759 
N 2.491387788 1.472829142 1.055558483 
N 4.54364929 2.278133574 0.72669728 
N 0.333627446 2.209725966 2.276293924 
N -0.753591449 3.833425141 3.357921699 
C 5.636071187 3.158936065 0.346016909 
H 5.296911667 3.856696292 -0.418009447 
H 6.004206601 3.717024319 1.212262519 
H 6.445275568 2.55244135 -0.069528699 
C 3.205708551 2.524738829 0.594382256 
C 4.69715388 1.01975998 1.307605925 
C 3.40389127 0.505145058 1.489042346 
C 3.219917079 -0.777841297 2.003174486 
H 2.228299424 -1.202481585 2.1036531 
C 4.359230543 -1.501039335 2.357760473 
H 4.245175815 -2.50140767 2.764356006 



149 

C 5.646742004 -0.967407646 2.198489141 
H 6.510595984 -1.55579609 2.492427784 
C 5.83831788 0.306546776 1.663201871 
H 6.83288261 0.721431783 1.536666641 
C -1.397902164 5.106017315 3.61383516 
H -1.413177761 5.673243816 2.683785826 
H -2.424720973 4.954574834 3.963095489 
H -0.839677533 5.669878267 4.367755651 
C -0.248760852 3.432373608 2.146657652 
C -0.475348628 2.846418093 4.301279068 
C 0.206826669 1.82535647 3.617621184 
C 0.625360682 0.683832232 4.295182492 
H 1.161522481 -0.106839024 3.785737407 
C 0.343423898 0.598919809 5.660943502 
H 0.663213845 -0.280108627 6.212648067 
C -0.335439535 1.622828401 6.334069509 
H -0.534315197 1.526121267 7.39713339 
C -0.75875494 2.770850112 5.660246026 
H -1.282612463 3.568528073 6.177206912 

 
{[BseMe]ZnI}2 

(-1303.12161101306 Hartrees) 
atom x y z 
Zn -0.216378136 2.716238423 -1.426464843 
I 0.259902668 3.556350515 -3.884133142 
B -3.053808921 3.599415392 -0.346403118 
H -2.206895928 3.455352502 -1.195178991 
H -4.057564956 4.056547982 -0.827364369 
Se 0.329730279 3.954435121 0.776873603 
Se -1.531919273 0.456363862 -1.16129541 
N -2.562794521 4.593485664 0.752488885 
N -1.387837704 5.724698927 2.219473429 
N -3.409806685 2.207304165 0.301918199 
N -3.67421734 0.067813806 0.72179909 
C -1.318001021 4.772098779 1.250236502 
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C -3.41651215 5.466349163 1.413059505 
H -4.460556274 5.526257179 1.151981452 
C -2.698000631 6.16474896 2.327858576 
H -2.985172957 6.929826649 3.03106472 
C -0.259302207 6.212515997 3.002592302 
H 0.504547939 6.630116722 2.342328441 
H 0.183292654 5.39578435 3.578112778 
H -0.620635807 6.985312033 3.682453376 
C -2.936633138 0.973164737 0.0285486 
C -4.455380922 2.065348407 1.200857065 
H -5.000425316 2.919468818 1.567140098 
C -4.620674252 0.745411435 1.468379566 
H -5.313328635 0.226758279 2.111255224 
C -3.508640089 -1.384252747 0.702204649 
H -3.340033022 -1.719121718 -0.322587064 
H -4.425536992 -1.835077329 1.084975295 
H -2.662983212 -1.678172361 1.329300742 
Zn 0.666963352 -0.776286336 0.413967688 
I -0.136503637 -1.089312899 2.92411404 
B 3.550771032 -2.056902902 -0.040350362 
H 2.679904911 -1.619828832 0.673434466 
H 4.55477921 -2.268208147 0.589781229 
Se 0.381889065 -2.58166372 -1.45665574 
Se 2.239780498 1.228499679 -0.224414115 
N 3.093321685 -3.410948565 -0.667412978 
N 1.92959339 -5.004460713 -1.622698832 
N 3.870782892 -1.027127094 -1.186808832 
N 4.113727878 0.796993201 -2.383005859 
C 1.895437502 -3.705490384 -1.219751311 
C 3.882635198 -4.549741401 -0.71641457 
H 4.878145413 -4.552894481 -0.303112774 
C 3.170801813 -5.541046839 -1.312274607 
H 3.42040517 -6.565578401 -1.53687047 
C 0.829691718 -5.716278192 -2.259904024 
H -0.064193006 -5.658011822 -1.634869219 
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H 0.603648964 -5.277004868 -3.234893283 
H 1.121952177 -6.759484787 -2.388337707 
C 3.456452355 0.249968464 -1.328047515 
C 4.796967499 -1.28394544 -2.184113784 
H 5.269726605 -2.248281676 -2.275590984 
C 4.951669337 -0.159350633 -2.929179425 
H 5.569597732 0.051077405 -3.787110356 
C 3.979245077 2.172743479 -2.856816169 
H 4.166869552 2.868320374 -2.035800795 
H 4.716976697 2.334042132 -3.643994168 
H 2.977708091 2.352525763 -3.254257712 
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4.1 Introduction 

In the previous three chapters, we detailed the synthesis and the structural 

characterization of bis and tris(oxoimidazolyl)hydroborato ligands. We have also 

studied the coordination chemistry of these ligands with various main group and 

transition metals. Eager to find an application for these oxygen rich and hard donor 

ligands,1 we decided to employ them for early transition metals in olefin 

polymerization.  

Following the Ziegler-Natta discovery of the TiCl4/Al(C2H5)3 system, olefin 

polymerization has become one of the most active areas in the field of organometallic 

and polymer chemistry.2,3 Since the Ziegler-Natta system is heterogeneous, 

understanding of the polymerization mechanism is limited. The later discovery of a 

homogeneous single-site system based on metallocene4 catalysts brought this process to 

the molecular level. The replacement of the activator, methylaluminoxane, (MAO) with 

fluoroaryl boranes or borates made it possible to monitor this homogeneous system via 

spectroscopy.5 However, due to the growing patent minefield around the metallocene 

systems, the use of non-metallocene catalyst systems has increased over the last two 

decades.6 For example, tris(pyrazolyl)borate ([TpR,R]) ligands have been used in olefin 

polymerization since they are electronically analogous to the cyclopentadineyl ligand.7 

Good ethylene polymerization activities have been obtained from [TpR,R]ZrCl3/MAO7a or 

[Tp*]Zr(CH2Ph)3/[Ph3C][B{C6F5}4]7n systems. 
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In this chapter, we describe the synthesis and structural characterization of 

[BoRBenz]2Zr(CH2Ph)2 and [ToRBenz]Zr(CH2Ph)3. In addition, they are examined as olefin 

polymerization precatalysts. 

4.2 Synthesis of [BoRBenz] and [ToRBenz] Zirconium Benzyl Complexes 

There are two possible routes that can be considered for the synthesis of 

[ToRBenz]Zr(CH2Ph)3 (Scheme 1). The first one is alkylation of [ToRBenz]ZrCl3
8 while the 

second is via treatment of [ToRBenz]Tl with tetrabenzylzirconium to generate 

[ToRBenz]Zr(CH2Ph)3 and bibenzyl as a by-product. We found that the latter is more 

convenient since the reaction of [ToRBenz]Tl and tetrabenzylzirconium is instantaneous 

and the purification of the product is straightforward.   

 

 

Scheme 1. Different possible routes for the synthesis of [ToRBenz]Zr(CH2Ph)3. 

4.2.1 Synthesis and Structural Characterization of Tetrabenzylzirconium 

The synthesis of tetrabenzylzirconium was reported in 1969.9 Zr(CH2Ph)4 was 

synthesized via the reaction of PhCH2MgCl10 with ZrCl4 by a modification of the 
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literature method.9b During the work-up process, orange block crystals of the 

Zr(CH2Ph)4 were obtained by removing the volatile component from toluene solution. 

Based on X-ray diffraction examination, the crystals are a monoclinic form of 

Zr(CH2Ph)4 (Figure 1).  

 

Figure 1. Molecular structure of monoclinic Zr(CH2Ph)4. 

This crystal form differs from a previously reported orthorhombic structure11 with 

respect to the benzyl conformation and the zirconium–benzyl interactions. Specifically, 

The benzyl ligands in orthorhombic Zr(CH2Ph)4 are arranged in such a manner as to 

give an approximate S4 molecular symmetry, the molecular structure in the monoclinic 

form (Figure 1) deviates considerably from the orthorhombic form (Figure 2). One of the 

major factors that remove the S4 symmetry for the monoclinic structure is that one of the 



163 

benzyl ligands points in a direction that destroys the C2 axis. In addition to this 

variation in conformation, the zirconium–benzyl interactions in the two polymorphs are 

also different. For example, the Zr–CH2–Ph bond angles for the monoclinic form span a 

range of 25.1˚,  which  is  substantially greater than those spanned in the orthorhombic 

form (12.1˚).  Furthermore, acute  (81.6˚)  and  obtuse  (106.7˚) bond angles for Zr–CH2–Ph 

are observed in the monoclinic Zr(CH2Ph)4 form while a narrow range of Zr–CH2–Ph 

bond angle is observed for the orthorhombic form, 87.0˚  – 99.1˚. My colleague Yi Rong 

conducted a full analysis of the M•••C distances involving the phenyl group for the two 

crystal forms to investigate the hapticity of the benzyl ligands prompted by a report by 

Andersen.12 She concluded that in the monoclinic form, two of the benzyl ligands 

coordinate in an K2 manner while the other two coordinate in an K1 manner. However, in 

the orthorhombic crystal form, three of the benzyl ligands coordinate in an K2 fashion 

and one in an K1 fashion. 
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Figure 2. Comparison of the molecular structures of monoclinic (left) and orthorhombic 

(right) forms of Zr(CH2Ph)4. 

Finally, It also worth noting that in solution the benzyl ligands are chemically 

equivalent on the NMR time-scale while the solid state 13C{1H} NMR spectrum exhibits 

a 1:1:2 set of signals for the four methylene carbon atoms at 76.4, 74.2 and 70.9 ppm, 

respectively (Figure 3). This is consistent with the inequivalent nature of the benzyl 

ligands. 

 

Figure 3. Methylene region of solid state 13C NMR spectrum of Zr(CH2Ph)4. 
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4.2.2  Synthesis and Structural Characterization of [BoRBenz]2Zr(CH2Ph)2 

Treatment of two equivalents of [BoRBenz]Tl (R = Me or Ad) with tetrabenzylzirconium in 

benzene at room temperature leads to the generation of [BoRBenz]2Zr(CH2Ph)2, along with 

thallium and bibenzyl as by-products (Scheme 2). However, isolation of 

[BoRBenz]Zr(CH2Ph)3 by the reaction of one equivalent of [BoRBenz]Tl with 

tetrabenzylzirconium proved to be difficult since it produces a mixture of products. 

[BoRBnez]2Zr(CH2Ph)2 was simply purified by filtering the mixture to remove the thallium 

by-product followed by addition of pentane to the filtrate to precipitate the product. 

Crystals of composition [BoMeBenz]2Zr(CH2Ph)2 (Figure 4) and [BoAdBenz]2Zr(CH2Ph)2  

(Figure 5) suitable for X-ray diffraction were obtained by vapor diffusion of pentane 

into toluene at -15 ˚C. In both alkyl derivatives, the zirconium benzyl motif is supported 

by four oxygen atoms and two 3-center–2-electron Zr•••H–B secondary interactions. 

The Zr•••H–B distances for both alkyl derivatives are similar despite the big difference 

in steric bulk between the methyl (dZr•••H1 = 2.46 Å, dZr•••H2 = 2.68 Å) and adamantyl 

groups (dZr•••H1 = 2.45 Å, dZr•••H2 = 2.65 Å). However, there is clearly an impact on the M–

CH2–Ph bond angles as a result of steric bulk since the bond angles for the methyl 

derivative are 119.3˚ and 119.4˚, while the M–CH2–Ph bond angles for the adamantyl 

derivative are 121.1˚ and 128.0˚. 
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Scheme 2. Synthesis of [BoRBenz]2Zr(CH2Ph)2. 

 

Figure 4. Molecular structure of [BoMeBenz]2Zr(CH2Ph)2. 
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Figure 5. Molecular structure of [BoAdBenz]2Zr(CH2Ph)2.  

4.2.3  Synthesis and Structural Characterization of [ToRBenz]Zr(CH2Ph)3 

Treatment of [ToRBenz]Tl , where R = Me, But and Ad, with tetrabenzylzirconium in 

benzene or toluene results in the generation of [ToRBenz]Zr(CH2Ph)3 along with bibenzyl 

and thallium as by-products (Scheme 3). The products are purified in a very similar 

way to the purification of [BoRBenz]2Zr(CH2Ph)2. Fortunately, we were able obtain 

molecular structures of all the three different alkyl derivatives via X-ray diffraction 

(Figures 6, 7 and 8). From the X-ray structures of [ToRBenz]Zr(CH2Ph)3, we can clearly 

observe the influence of the alkyl group steric bulk on the Zr–CH2–Ph bond angles. For 

example, the Zr–CH2–Ph bond angles in the C3 rhombohedral crystalline forms of t-

butyl and adamantyl derivatives are 120.9˚ and 122.7˚ respectively, while the same 
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angles in the monoclinic crystalline form of [ToMeBenz]Zr(CH2Ph)3 are 94.5˚, 115.6˚ and 

121.4˚. Thus in the methyl case, one of the benzyl ligands coordinates in an K2  manner 

since the Zr–CH2–Ph bond angle is less than 97˚ while the other two benzyl ligands 

coordinate in an  K1 manner. All the benzyl ligands for the t-butyl and adamantyl 

derivative coordinate in an K1 manner.    

 

Scheme 3. Synthesis of [ToRBenz]Zr(CH2Ph)3. 

 

Figure 6. Molecular structure of [ToMeBenz]Zr(CH2Ph)3. 
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Figure 7. Molecular structure of [ToButBenz]Zr(CH2Ph)3. 

 

Figure 8. Molecular structure of [ToAdBenz]Zr(CH2Ph)3. 
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4.3 Activation of Tris(2-oxoimidazolyl)borate Zirconium Benzyl Complexes: 
Generation of Polymerization Catalysts 

Active olefin polymerization catalysts from [LnMRm] are normally obtained by alkyl 

abstraction or protonolysis to generate the unsaturated cationic alkyl complex     

[LnMRm-1]+. Alkyl abstraction is normally achieved via the treatment of metal alkyl with 

trityl tetrakis(pentafluorophenyl)borate ([Ph3C][B{C6F5}4]) or 

tris(pentafluorophenyl)borane (B{C6F5}3), while alkyl protonolysis is achieved by the use 

of dimethylanilinium tetrakis(pentafluorophenyl)borate ([PhNHMe2][B{C6F5}4]) or 

Brookhart’s  acid  ([{Et2O}2H][B{C6F5}4]).5 

Treatment of [ToButBenz]Zr(CH2Ph)3 with [PhNHMe2][B{C6F5}4] in diethylether leads to the 

protonolysis of one of the benzyl ligands generating the cationic species 

{[ToButBenz]Zr(CH2Ph)2(OEt2)}{B(C6F5)4} (Scheme 4). Yellow blocks suitable for X-ray 

diffraction were obtained by slow diffusion of pentane into ether solution (Figure 9). 

However, this species, {[ToButBenz]Zr(CH2Ph)2(OEt2)}{B(C6F5)4}, exhibits very low activity 

for ethylene polymerization at  25 ˚C and 1 atm of ethylene. This might be explained by 

the strong coordination of Et2O to zirconium which prevents the monomer insertion. 
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Scheme 4. Synthesis of {[ToButBenz]Zr(CH2Ph)2(OEt2)}{B(C6F5)4}. 

 

 Figure 9. Molecular structure of {[ToButBenz]Zr(CH2Ph)2(OEt2)}{B(C6F5)4}. 
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In contrast, treatment of [ToButBenz]Zr(CH2Ph)3 or [ToAdBenz]Zr(CH2Ph)3 with 

([PhNHMe2][B{C6F5}4]) in a non-coordinating solvent ,benzene, result in the in situ 

generation of {[ToButBenz]Zr(CH2Ph)3}{B(C6F5)4} and {[ToAdBenz]Zr(CH2Ph)3}{B(C6F5)4}, 

respectively (Scheme 5).  According to 1H NMR spectra, the generated dimethylaniline 

as a by-product for both protonolysis does not coordinate to the activated species which 

makes  the  active  species  a  truly  “coordinatively  unsaturated  cationic  alkyl  complex”.13 

Addition of ethylene to {[ToButBenz]Zr(CH2Ph)2}{B(C6F5)4} results in the production of 

polyethylene with moderate activity, 45 kg PE [mol Zr]-1[h]-1[atm C2H4]-1, while a higher 

activity was obtained in the case of {[ToAdBenz]Zr(CH2Ph)2}{B(C6F5)4},                                                                       

160 kg PE [mol Zr]-1[h]-1[atm C2H4]-1.14 

 

 

Scheme 5. In situ generation of {[ToButBenz]Zr(CH2Ph)2}{B(C6F5)4} and 

{[ToAdBenz]Zr(CH2Ph)2}{B(C6F5)4}. 
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4.4 Conclusion 

We have described the synthesis of [BoRBenz]2Zr(CH2Ph)2 and [ToRBenz]Zr(CH2Ph)3 with 

different alkyl substituents. Treatment of [ToButBenz]Zr(CH2Ph)3 with 

([PhNHMe2][B{C6F5}4]) in a coordinating solvent, Et2O, generates 

{[ToButBenz]Zr(CH2Ph)2(OEt2)}{B(C6F5)4} which exhibits a very low activity for ethylene 

polymerization. However, a coordinatively unsaturated cationic zirconium alkyl 

complex was obtained by the use of ([PhNHMe2][B{C6F5}4]) with [ToButBenz]Zr(CH2Ph)3 or 

[ToAdBenz]Zr(CH2Ph)3 generating [ToButBenz]Zr(CH2Ph)2[B(C6F5)4] or 

[ToAdBenz]Zr(CH2Ph)2[B(C6F5)4], respectively. Moderate activity for ethylene 

polymerization was obtained for t-butyl while high activity was obtained for the 

adamantyl derivatives.   

4.5 Experimental Section 

4.5.1 General Considerations 

All manipulations were performed using a combination of glovebox, high vacuum, and 

Schlenk techniques under an argon atmosphere.15  Solvents were purified and degassed 

by standard procedures.  1H NMR spectra were measured on Bruker 300 DRX, Bruker 

400 DRX, Bruker 400 Cyber-enabled Avance III and Bruker Avance 500 DMX 

spectrometers. 1H NMR chemical shifts are reported in ppm relative to SiMe4 (G = 0) and 

were referenced internally with respect to the protio solvent impurity (G 7.16 for C6D5H 

and 5.32 for CDHCl2 ).16 13C NMR spectra are reported in ppm relative to SiMe4 (G = 0) 
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and were referenced internally with respect to the solvent (G 128.06 for C6D6, 53.84 for 

CD2Cl2).16 Coupling constants are given in hertz. Solid-state 13C{1H} NMR experiments 

were performed on a Bruker 400 Cyber-enabled Avance III at a field of 9.40 T 

(corresponding to a 13C resonance frequency of 100.62 MHz) using the CP-MAS pulse 

sequence, with an acquisition time of 0.03 seconds and a spin rate of 104 Hz.  Solid state 

13C NMR spectra are reported in ppm relative to SiMe4 (G = 0) and were referenced 

externally to the methylene peak of adamantane (G = 38.5).17 

4.5.2 X-ray Structure Determinations 

Single crystal X-ray diffraction data were collected on a Bruker Apex II diffractometer 

and crystal data, data collection and refinement parameters are summarized in Table 1.  

The structures were solved using direct methods and standard difference map 

techniques, and were refined by full-matrix least-squares procedures on F2 with 

SHELXTL (Version 2008/4).18 

4.5.3 Synthesis of Tetrabenzylzirconium 

A solution of benzylchloride (13.6 g, 0.11 mol) in THF (200 mL) was slowly added to a 

stirred suspension of magnesium turnings (11.0 g, 0.45 mol) in THF (50 mL) over a 

period for ca. 1 hour, such that the temperature of the reaction vessel was maintained at 

ca. 25 ˚C.  The mixture was stirred at room temperature overnight and then filtered.  

The volatile components were removed from the filtrate in vacuo to give PhCH2MgCl as 

an off-white powder that was treated sequentially with ZrCl4 (6.0 g, 0.026 mol) and Et2O 
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(150 mL) at -15 ˚C. The mixture was stirred at -15 ˚C overnight and filtered at 0 ˚C.  The 

precipitate was washed with Et2O (200  mL)  at  0˚C  and  then  extracted  into toluene (200 

mL and 100 mL). The volatile components were removed from each extraction in vacuo, 

resulting in the formation of Zr(CH2Ph)4 as orange crystalline blocks suitable for X-ray 

diffraction (2.1 g and 1.0 g, 26 %). The synthesis and the purification of 

tetrabenzylzirconium were conducted in the absence of light to avoid any 

photochemical decomposition. 1H NMR (C6D6): 1.55 [s, 8H of Zr{(CH2)C6H5}4], 6.38 [d, 

3JH-H = 7, 8Hortho of Zr{(CH2)C6H5}4], 6.96 [t, 3JH-H = 7, 4Hpara of Zr{(CH2)C6H5}4], 7.06 [t, 3JH-H = 

7, 8Hmeta of Zr{(CH2)C6H5}4]. 13C NMR (C6D6): 72.5 [tt, 1JC-H= 135, 3JC-H = 4,  4C of 

Zr{(CH2)C6H5}4], 124.5 [dt, 1JC-H= 162, 3JC-H = 8, 4Cpara of Zr{(CH2)C6H5}4], 128.7 [m, 8Cortho of 

Zr{(CH2)C6H5}4], 131.0 [dd, 1JC-H= 159, 3JC-H = 8, 8Cmeta of Zr{(CH2)C6H5}4], 139.5 [s, 4Cipso of 

Zr{(CH2)C6H5}4]. Solid-state 13C{1H} NMR (only CH2 group listed): 76.4 (1C), 74.0 (1C), 

70.4 (2C) at –10˚C;  76.4  (1C),  74.2  (1C),  70.9  (2C)  at  room  temperature;  76.4  (1C),  74.4  

(1C),  71.1  (2C)  at  50˚C. 

4.5.4 Synthesis of [BoMeBenz]2Zr(CH2Ph)2   

A mixture of Zr(CH2Ph)4 (17.8 mg, 0.04 mmol) and [BoMeBenz]Tl (40.0 mg, 0.04 mmol) was 

treated with benzene (ca. 2 mL). The mixture was stirred for 5 minutes, which resulted 

in the immediate formation of Tl. The mixture was filtered to remove the Tl, then 

pentane (ca. 20 mL) was added to the filtrate to precipitate out the product. The mother 

liquor was decanted from the final product. The product was washed with pentane (ca. 
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10 mL) and dried in vacuo to remove any volatile matter yielding a yellow powder of 

[BoMeBenz]2Zr(CH2Ph)2 (18.0 mg, 52%). 1H NMR (C6D6): 2.76 [s, 12H of 

{H2B[(C4H4)C2N2(CH3)CO]2}2Zr{CH2(C6H5)}2], 3.21 [s, 4H of 

{H2B[(C4H4)C2N2(CH3)CO]2}2Zr{CH2(C6H5)}2], 6.35 [d, 3JH-H = 8, 4H of 

{H2B[(C4H4)C2N2(CH3)CO]2}2Zr{CH2(C6H5)}2], 6.70 [t, 3JH-H = 8, 2H of 

{H2B[(C4H4)C2N2(CH3)CO]2}2Zr{CH2(C6H5)}2], 6.88 [“dt”, 3JH-H = 8,  4JH-H = 1, 4H of 

{H2B[(C4H4)C2N2(CH3)CO]2}2Zr{CH2(C6H5)}2], 7.08 [m, 8H of 

{H2B[(C4H4)C2N2(CH3)CO]2}2Zr{CH2(C6H5)}2], 7.33 [d, 3JH-H = 8, 6H of 

{H2B[(C4H4)C2N2(CH3)CO]2}2Zr{CH2(C6H5)}2], 7.83 [d, 3JH-H = 8, 4H of 

{H2B[(C4H4)C2N2(CH3)CO]2}2Zr{CH2(C6H5)}2]. 13C{1H} NMR (C6D6): 34.5 [4 C, 

{H2B[(C4H4)C2N2(CH3)CO]2}2Zr{CH2(C6H5)}2], 71.2 [2 C, 

{H2B[(C4H4)C2N2(CH3)CO]2}2Zr{CH2(C6H5)}2], 108.6 [4 C, 

{H2B[(C4H4)C2N2(CH3)CO]2}2Zr{CH2(C6H5)}2], 112.5 [4 C, 

{H2B[(C4H4)C2N2(CH3)CO]2}2Zr{CH2(C6H5)}2], 120.1 [2 C, 

{H2B[(C4H4)C2N2(CH3)CO]2}2Zr{CH2(C6H5)}2], 121.7 [4 C, 

{H2B[(C4H4)C2N2(CH3)CO]2}2Zr{CH2(C6H5)}2], 122.7 [4 C, 

{H2B[(C4H4)C2N2(CH3)CO]2}2Zr{CH2(C6H5)}2], 127.1 [4 C, 

{H2B[(C4H4)C2N2(CH3)CO]2}2Zr{CH2(C6H5)}2], 127.4 [4 C, 

{H2B[(C4H4)C2N2(CH3)CO]2}2Zr{CH2(C6H5)}2], 131.2 [4C, 

{H2B[(C4H4)C2N2(CH3)CO]2}2Zr{CH2(C6H5)}2], 133.4 [4C, 

{H2B[(C4H4)C2N2(CH3)CO]2}2Zr{CH2(C6H5)}2], 152.1 [2C, 
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{H2B[(C4H4)C2N2(CH3)CO]2}2Zr{CH2(C6H5)}2], 160.5 [4C, 

{H2B[(C4H4)C2N2(CH3)CO]2}2Zr{CH2(C6H5)}2]. Yellow block crystals of 

[BoMeBenz]2Zr(CH2Ph)2 suitable for X-ray diffraction were obtained from slow diffusion of 

pentane into a toluene solution of [BoMeBenz]2Zr(CH2Ph)2 at -15  ˚C. 

4.5.5 Synthesis of [BoAdBenz]2Zr(CH2Ph)2   

A mixture of Zr(CH2Ph)4 (17.3 mg, 0.04 mmol) and [BoAdBenz]Tl•0.5THF (60 mg, 0.08 

mmol) was treated with toluene (ca. 4 mL). The mixture was stirred for 10 minutes, 

which resulted in the immediate formation of Tl. The mixture was filtered to remove 

the Tl, and pentane (ca. 20 mL) was added to the filtrate to precipitate out the product. 

The mother liquor was decanted from the final product. The product was washed with 

pentane (ca. 10 mL) and dried in vacuo to remove any volatile matter yielding a yellow 

powder of [BoAdBenz]2Zr(CH2Ph)2 (25.0 mg, 49%). 1H NMR (C6D6): 1.46 [br, 3H of 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 1.54 [br, 3H of 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 1.60 [m, 18H of 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 1.95 [br, 18H of 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 2.15 [br, 6H of 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 2.71 [m, 12H of 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 2.92 [d, 2JH-H = 10, 2H of 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 3.77 [d, 2JH-H = 10, 2H of 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 6.54 [t, 2JH-H = 8, 2H of 



178 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 6.80 [t, 2JH-H = 10, 2H of 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 6.93 [t, 2 H of 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 7.06 [overlapped peaks, 10 H of 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 7.33 [d, 2JH-H = 8, 2H of 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 7.44 [d, 2JH-H = 7, 4H of 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 7.75 [d, 2JH-H = 8, 2H of 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 7.97 [d, 2JH-H = 8, 2H of 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2]. 13C{1H} NMR (C6D6): 30.2 [6 C, 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 30.3 [6 C, 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 36.2 [6 C, 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 36.3 [6 C, 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 40.3 [6 C, 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 41.2 [6 C, 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 60.9 [2 C, 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 61.1 [2 C, 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 74.3 [2 C, 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 113.1 [2 C, 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 113.2 [2 C, 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 113.8 [2 C, 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 114.2 [2 C, 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 119.9 [2 C, 
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{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 120.7 [2 C, 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 120.9 [2 C, 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 121.6 [2 C, 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 121.8 [2 C, 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 126.6 [4 C, 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 127.1 [4 C, 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 130.3 [2 C, 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 130.6 [2 C, 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 133.7 [2 C, 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 133.8 [2 C, 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 153.1 [2 C, 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 160.2 [2 C, 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2], 162.0 [2 C, 

{H2B[(C4H4)C2N2(C10H15)CO]2}2Zr{CH2(C6H5)}2]. Yellow block of [BoAdBenz]2Zr(CH2Ph)2  

suitable for X-ray were obtained from a mixture of pentane/toluene solution of 

[BoAdBenz]2Zr(CH2Ph)2 at -15  ˚C. 

4.5.6 Synthesis of [ToMeBenz]Zr(CH2Ph)3   

A solution of Zr(CH2Ph)4 (27.7 mg, 0.06 mmol) in benzene (ca. 6 mL) was added to 

[ToMeBenz]Tl (40.0 mg, 0.06 mmol). The mixture was stirred for 10 min, which resulted in 

the immediate formation of Tl. The mixture was filtered to remove the Tl, and pentane 
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(ca. 20 mL) was added to the filterate to precipitate out the product. The mother liquor 

was decanted from the final product. The product was washed with pentane (ca. 5 mL) 

and dried in vacuo to remove any volatile matter yielding a yellow powder of 

[ToMeBenz]Zr(CH2Ph)3 (20.0 mg, 40%). Analysis calcd. for [ToMeBenz]Zr(CH2Ph)3: C, 64.5%; 

H, 5.5%; N, 10.8%. Found: C, 5.4%; H, 6.1%; N, 10.6%. 1H NMR (C6D6): 2.41 [s, 9H of 

HB{(C4H4)C2N2[CH3]CO}3Zr{CH2(C6H5)}3], 2.99 [s, 6H of 

HB{(C4H4)C2N2[CH3]CO}3Zr{CH2(C6H5)}3], 6.51 [d, 3JH-H = 7, 3H of 

HB{(C4H4)C2N2[CH3]CO}3Zr{CH2(C6H5)}3], 6.87 [t, 3JH-H = 7, 3H of 

HB{(C4H4)C2N2[CH3]CO}3Zr{CH2(C6H5)}3], 6.92 [dt, 3JH-H = 7,  4JH-H = 1, 3H of 

HB{(C4H4)C2N2[CH3]CO}3Zr{CH2(C6H5)}3], 6.99 [dt, 3JH-H = 7, 4JH-H = 1, 3H of 

HB{(C4H4)C2N2[CH3]CO}3Zr{CH2(C6H5)}3], 7.11 [t, 3JH-H = 7, 6H of 

HB{(C4H4)C2N2[CH3]CO}3Zr{CH2(C6H5)}3], 7.18 [d, 3JH-H = 7, 6H of 

HB{(C4H4)C2N2[CH3]CO}3Zr{CH2(C6H5)}3], 7.62 [d, 3JH-H = 8, 3H of 

HB{(C4H4)C2N2[CH3]CO}3Zr{CH2(C6H5)}3]. 13C{1H} NMR (C6D6): 27.0 [9 C, 

HB{(C4H4)C2N2[CH3]CO}3Zr{CH2(C6H5)}3], 75.9 [3 C, 

HB{(C4H4)C2N2[CH3]CO}3Zr{CH2(C6H5)}3], 108.9 [3 C, 

HB{(C4H4)C2N2[CH3]CO}3Zr{CH2(C6H5)}3], 112.5 [3 C, 

HB{(C4H4)C2N2[CH3]CO}3Zr{CH2(C6H5)}3], 120.7 [3 C, 

HB{(C4H4)C2N2[CH3]CO}3Zr{CH2(C6H5)}3], 122.4 [3 C, 

HB{(C4H4)C2N2[CH3]CO}3Zr{CH2(C6H5)}3], 122.9 [3 C, 

HB{(C4H4)C2N2[CH3]CO}3Zr{CH2(C6H5)}3], 127.6 [6 C, 
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HB{(C4H4)C2N2[CH3]CO}3Zr{CH2(C6H5)}3], under solvent peak [6C, 

HB{(C4H4)C2N2[CH3]CO}3Zr{CH2(C6H5)}3], 131.0 [3C, 

HB{(C4H4)C2N2[CH3]CO}3Zr{CH2(C6H5)}3], 133.0 [3C, 

HB{(C4H4)C2N2[CH3]CO}3Zr{CH2(C6H5)}3], 148.5 [3C, 

HB{(C4H4)C2N2[CH3]CO}3Zr{CH2(C6H5)}3], 159.9 [3C, 

HB{(C4H4)C2N2[CH3]CO}3Zr{CH2(C6H5)}3]. Yellow block crystals of [ToMeBenz]Zr(CH2Ph)3  

suitable for X-ray were obtained from a CH2Cl2 solution of [ToMeBenz]Zr(CH2Ph)3. 

4.5.7 Synthesis of [ToButBenz]Zr(CH2Ph)3   

A solution of Zr(CH2Ph)4 (23 mg, 0.05 mmol) in benzene (ca. 6 mL) was added to 

[ToButBenz]Tl (40mg, 0.05). The mixture was stirred for 10 min, which resulted in the 

immediate formation of Tl. The mixture was filtered to remove the Tl. Slow diffusion of 

pentane to the toluene solution at -15  ˚C leads to the growth of yellow block crystals. 

The crystals were washed with pentane (ca. 5 mL) and dried in vacuo to remove any 

volatile matter yielding [ToButBenz]Zr(CH2Ph)3 (27.0 mg, 57%). Analysis calcd. for 

[ToButBenz]Zr(CH2Ph)3: C, 68.5%; H, 6.5%; N, 8.9%. Found: C, 67.5%; H, 6.5%; N 8.5%. 1H 

NMR (C6D6): 1.36 [s, 27H of HB{(C4H4)C2N2[C(CH3)3]CO}3Zr{CH2(C6H5)}3], 3.20 [s, 6H of 

HB{(C4H4)C2N2[C(CH3)3]CO}3Zr{CH2(C6H5)}3], 6.82 [t, 3JH-H = 8, 3H of 

HB{(C4H4)C2N2[C(CH3)3]CO}3Zr{CH2(C6H5)}3], 6.89 [t, 3JH-H = 8, 3H of 

HB{(C4H4)C2N2[C(CH3)3]CO}3Zr{CH2(C6H5)}3], 6.94 [t, 3JH-H = 7, 3H of 

HB{(C4H4)C2N2[C(CH3)3]CO}3Zr{CH2(C6H5)}3], 6.99 [d, 3JH-H = 8, 3H of 
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HB{(C4H4)C2N2[C(CH3)3]CO}3Zr{CH2(C6H5)}3], 7.20 [d, 3JH-H = 7, 6H of 

HB{(C4H4)C2N2[C(CH3)3]CO}3Zr{CH2(C6H5)}3], 7.26 [d, 3JH-H = 7, 6H of 

HB{(C4H4)C2N2[C(CH3)3]CO}3Zr{CH2(C6H5)}3], 7.50 [d, 3JH-H = 8, 3H of 

HB{(C4H4)C2N2[C(CH3)3]CO}3Zr{CH2(C6H5)}3]. 13C{1H} NMR (C6D6): 29.7 [9 C, 

HB{(C4H4)C2N2[C(CH3)3]CO}3Zr{CH2(C6H5)}3], 59.4 [3 C, 

HB{(C4H4)C2N2[C(CH3)3]CO}3Zr{CH2(C6H5)}3], 79.8 [3 C, 

HB{(C4H4)C2N2[C(CH3)3]CO}3Zr{CH2(C6H5)}3], 113.1 [3 C, 

HB{(C4H4)C2N2[C(CH3)3]CO}3Zr{CH2(C6H5)}3], 114.2 [3 C, 

HB{(C4H4)C2N2[C(CH3)3]CO}3Zr{CH2(C6H5)}3], 120.9 [3 C, 

HB{(C4H4)C2N2[C(CH3)3]CO}3Zr{CH2(C6H5)}3], 122.0 [3 C, 

HB{(C4H4)C2N2[C(CH3)3]CO}3Zr{CH2(C6H5)}3], 122.7 [3 C, 

HB{(C4H4)C2N2[C(CH3)3]CO}3Zr{CH2(C6H5)}3], 126.8 [6 C, 

HB{(C4H4)C2N2[C(CH3)3]CO}3Zr{CH2(C6H5)}3], 128.4 [6C, 

HB{(C4H4)C2N2[C(CH3)3]CO}3Zr{CH2(C6H5)}3], 130.6 [3C, 

HB{(C4H4)C2N2[C(CH3)3]CO}3Zr{CH2(C6H5)}3], 134.0 [3C, 

HB{(C4H4)C2N2[C(CH3)3]CO}3Zr{CH2(C6H5)}3], 151.2 [3C, 

HB{(C4H4)C2N2[C(CH3)3]CO}3Zr{CH2(C6H5)}3], 159.9 [3C, 

HB{(C4H4)C2N2[C(CH3)3]CO}3Zr{CH2(C6H5)}3]. Yellow block of [ToButBenz]Zr(CH2Ph)3 

suitable for X-ray were obtained from slow diffusion of pentane into a toluene solution 

of [ToButBenz]Zr(CH2Ph)3 at -15  ˚C. 
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4.5.8 Synthesis of [ToAdBenz]Zr(CH2Ph)3   

A solution of Zr(CH2Ph)4 (17.2 mg, 0.038 mmol)  in benzene (ca. 4 mL) was added to 

[ToAdBenz]Tl•THF (41.0 mg, 0.038 mmol). The mixture was stirred for 10 min, which 

resulted in the immediate formation of Tl. The mixture was filtered to remove the Tl, 

and pentane (ca. 15 mL) was added to the mixture to precipitate out the product. The 

mother liquor was decanted from the final product. The product was washed with 

pentane (ca. 5 mL) and dried in vacuo to remove any volatile matter yielding a yellow 

powder of [ToAdBenz]Zr(CH2Ph)3 (27 mg, 61%). Analysis calcd. for 

[ToAdBenz]Zr(CH2Ph)3•0.4CH2Cl2: C, 71.7%; H, 6.6%; N, 6.9%. Found: C, 71.7%; H, 7.1%; 

N, 6.9 %. 1H NMR (C6D6): 1.40 [m, 18H of HB{(C4H4)C2N2[C10H15]CO}3Zr{CH2(C6H5)}3], 

1.87 [br, 9H of HB{(C4H4)C2N2[C10H15]CO}3Zr{CH2(C6H5)}3], 2.37 [br, 18H of 

HB{(C4H4)C2N2[C10H15]CO}3Zr{CH2(C6H5)}3], 3.18 [s, 6H of 

HB{(C4H4)C2N2[C10H15]CO}3Zr{CH2(C6H5)}3], 6.90 [dt, 3JH-H = 8, 4JH-H = 1, 3H of 

HB{(C4H4)C2N2[C10H15]CO}3Zr{CH2(C6H5)}3], 6.95 [m, 6H of 

HB{(C4H4)C2N2[C10H15]CO}3Zr{CH2(C6H5)}3], 7.09 [dd, 3JH-H = 7,  4JH-H = 1,  6H of 

HB{(C4H4)C2N2[C10H15]CO}3Zr{CH2(C6H5)}3], 7.26 [t, 3JH-H = 7, 6H of 

HB{(C4H4)C2N2[C10H15]CO}3Zr{CH2(C6H5)}3], 7.30 [d, 3JH-H = 8, 3H of 

HB{(C4H4)C2N2[C10H15]CO}3Zr{CH2(C6H5)}3], 7.58 [dd, 3JH-H = 8, 4JH-H = 1, 3H of 

HB{(C4H4)C2N2[C10H15]CO}3Zr{CH2(C6H5)}3]. 13C{1H} NMR (C6D6): 30.1 [9 C, 

HB{(C4H4)C2N2[C10H15]CO}3Zr{CH2(C6H5)}3], 35.9 [9 C, 

HB{(C4H4)C2N2[C10H15]CO}3Zr{CH2(C6H5)}3], 40.8 [9 C, 
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HB{(C4H4)C2N2[C10H15]CO}3Zr{CH2(C6H5)}3], 61.9 [3 C, 

HB{(C4H4)C2N2[C10H15]CO}3Zr{CH2(C6H5)}3], 80.0 [3 C, 

HB{(C4H4)C2N2[C10H15]CO}3Zr{CH2(C6H5)}3], 113.2 [3 C, 

HB{(C4H4)C2N2[C10H15]CO}3Zr{CH2(C6H5)}3], 115.2 [3 C, 

HB{(C4H4)C2N2[C10H15]CO}3Zr{CH2(C6H5)}3], 120.9 [3 C, 

HB{(C4H4)C2N2[C10H15]CO}3Zr{CH2(C6H5)}3], 121.7 [3 C, 

HB{(C4H4)C2N2[C10H15]CO}3Zr{CH2(C6H5)}3], 122.7 [3 C, 

HB{(C4H4)C2N2[C10H15]CO}3Zr{CH2(C6H5)}3], 126.8 [6 C, 

HB{(C4H4)C2N2[C10H15]CO}3Zr{CH2(C6H5)}3], under solvent peak [6 C, 

HB{(C4H4)C2N2[C10H15]CO}3Zr{CH2(C6H5)}3], 130.1 [3 C, 

HB{(C4H4)C2N2[C10H15]CO}3Zr{CH2(C6H5)}3], 134.2 [3 C, HB 

HB{(C4H4)C2N2[C10H15]CO}3Zr{CH2(C6H5)}3], 151.1 [3C, HB 

HB{(C4H4)C2N2[C10H15]CO}3Zr{CH2(C6H5)}3] 160.1 [3C, HB 

HB{(C4H4)C2N2[C10H15]CO}3Zr{CH2(C6H5)}3]. Yellow block crystals of 

[ToAdBenz]Zr(CH2Ph)3 suitable for X-ray were obtained from a CH2Cl2 solution of 

[ToAdBenz]Zr(CH2Ph)3. 

4.5.9 Synthesis of {[ToButBenz]Zr(CH2Ph)2(OEt2)}{B(C6F5)4}  

Et2O (ca. 4 mL) was added to a solid mixture of [ToButBenz]Zr(CH2Ph)3 (29.5 mg, 0.03 

mmol) and [PhNHMe2][B(C6F5)4] (25.0 mg, 0.03  mmol). The mixture was stirred for ca. 2 

min and filtered. Slow diffusion of pentane to the ether filtrate solution at -15  ˚C  leads to 
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yellow block crystals of {[ToButBenz]Zr(CH2Ph)2}{Et2O}{B(C6F5)4}. The crystals were washed 

with pentane (ca. 3 mL) and left to dry (15.0 mg, 30%). 1H NMR (CD2Cl2): 1.23 [6H, 

methyl of the ether], 1.71 [s, 27H of HB{(C4H4)C2N2[C(CH3)3]CO}3Zr{CH2(C6H5)}2], 2.38 

[s, 4H of HB{(C4H4)C2N2[C(CH3)3]CO}3Zr{CH2(C6H5)}2], 3.85 [4H, methylene of the 

ether], 6.84 [d, 3JH-H = 8, 4H of HB{(C4H4)C2N2[C(CH3)3]CO}3Zr{CH2(C6H5)}2], 7.01 [t, 3JH-H = 

8, 2H of HB{(C4H4)C2N2[C(CH3)3]CO}3Zr{CH2(C6H5)}2], 7.24 [t, 3JH-H = 8, 4H of 

HB{(C4H4)C2N2[C(CH3)3]CO}3Zr{CH2(C6H5)}2], 7.30 [m, 6H of 

HB{(C4H4)C2N2[C(CH3)3]CO}3Zr{CH2(C6H5)}2], 7.54 [m, 3H of 

HB{(C4H4)C2N2[C(CH3)3]CO}3Zr{CH2(C6H5)}2], 7.64 [m, 3H of 

HB{(C4H4)C2N2[C(CH3)3]CO}3Zr{CH2(C6H5)}2]. Yellow block crystals of 

{[ToButBenz]Zr(CH2Ph)2}{Et2O}{B(C6F5)4} suitable for X-ray were obtained from slow 

diffusion of pentane into an Et2O solution of {[ToButBenz]Zr(CH2Ph)2(Et2O)}{B(C6F5)4} at -15 

˚C. 

4.5.10 Generation of {[ToButBenz]Zr(CH2Ph)2}{B(C6F5)4}  

A solution of [ToButBenz]Zr(CH2Ph)3 (10 mg, 0.01 mmol) in C6D6 (ca. 2 mL) was added to 

[PhNHMe2][B{C6F5}4] (8.5 mg, 0.01 mmol). The mixture was mixed with a pipet for two 

minutes for ca. 2 min then filtered. 1H NMR (C6D6) for the mixture 

({[ToButBenz]Zr(CH2Ph)2}{B(C6F5)4} + Me2NPh + Toluene): 1.71 [s, 27H of 

HB{(C4H4)C2N2[C(CH3)3]CO}3Zr{CH2(C6H5)}2], 2.11 [s, 3H for the methyl group in 

toluene], 2.16 [s, 4H of HB{(C4H4)C2N2[C(CH3)3]CO}3Zr{CH2(C6H5)}2], 2.52 [s, 6H for the  
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dimethyl groups in dimethylaniline], 6.64 [d, 3H], 6.81 [m, 6H], 6.87 [m, 4H], 6.93 [m, 

6H], 7.02 [m, 9H], 7.13 [m, 3H], 7.24 [m, 2H], 7.40 [m, 2H]. 

4.5.11 Generation of {[ToAdBenz]Zr(CH2Ph)2}{B(C6F5)4}  

A solution of [ToAdBenz]Zr(CH2Ph)3 (7 mg, 0.006 mmol) in C6D6 (ca. 2 mL) was added to 

[PhNHMe2][B{C6F5}4] (4.7 mg, 0.006 mmol). The mixture was mixed with a pipet for ca. 2 

minutes then filtered and filtered. 1H NMR (C6D6) for the mixture 

({[ToAdBenz]Zr(CH2Ph)2}{B(C6F5)4} + Me2NPh + Toluene): 1.43 [m, 18H of 

HB{(C4H4)C2N2[C10H15]CO}3Zr{CH2(C6H5)}3], 1.86 [br, 9H of 

HB{(C4H4)C2N2[C10H15]CO}3Zr{CH2(C6H5)}3], 2.09 [br, 18H of 

HB{(C4H4)C2N2[C10H15]CO}3Zr{CH2(C6H5)}3], 2.11 [s, 3H for the methyl group in toluene], 

2.12 [s, 4H of HB{(C4H4)C2N2[C10H15]CO}3Zr{CH2(C6H5)}2], 2.53 [s, 6H, Me2NPh], 6.64 [d, 

2H, Me2NPh],6.80 [d, 1H, Me2NPh], 7.00 [overlapped peaks, 14H], 7.14 [peak under 

solvent],  7.19  [“t”,  2H], 7.24 [d, 2H, Me2NPh], 7.31 [d, 3H], 7.45 [d, 3H]. 

4.5.12 Ethylene Polymerization using {[ToButBenz]Zr(CH2Ph)2}{B(C6F5)4}  

Benzene (ca. 4mL) was added to the generated solution in section 4.5.10 (0.007 mmol of 

{[ToButBenz]Zr(CH2Ph)2}{B(C6F5)4} in ca. 2 mL C6D6) to make up the total solution volume 

of ca. 6 mL and poured into a schlenck. The mixture was stirred at room temperature 

then degassed and treated with 1 ethylene (1 atm). The reaction mixture was stirred at 

room temperature for 10 minutes while the pressure of ethylene was maintained at 1 

atm. Then the mixture was quenched with methanol (ca. 5 mL) followed by dilute HCl 



187 

(1M, 20 mL).  The polymer was collected by filtration and washed again by methanol 

(ca. 10 mL) then dried in vacuo to constant weight. The yield of polyethylene is 80 mg, 

corresponding to activity of 45 kg PE [mol Zr]-1[h]-1[atm C2H4]-1.  

4.5.13 Ethylene Polymerization using {[ToAdBenz]Zr(CH2Ph)2}{B(C6F5)4} 

Benzene (ca. 4mL) was added to the generated solution in section 4.5.11 (0.007 mmol of 

{[ToAdBenz]Zr(CH2Ph)2}{B(C6F5)4} in ca. 2 mL C6D6) to make up the total solution volume 

of ca. 6 mL and poured into a schlenk. The mixture was stirred at room temperature 

then degassed and treated with 1 ethylene (1 atm). The reaction mixture was stirred at 

room temperature for 10 minutes while the pressure of ethylene was maintained at 1 

atm. Then the mixture was quenched with methanol (ca. 5 mL) followed by dilute HCl 

(1M, 20 mL).  The polymer was collected by filtration and washed again by methanol 

(ca. 10 mL) then dried in vacuo to constant weight. The yield of polyethylene is 160 mg, 

corresponding to activity of 160 kg PE [mol Zr]-1[h]-1[atm C2H4]-1. 
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4.6 Crystallographic Data 

Table 1. Crystal, intensity collection and refinement data. 

 Zr(CH2Ph)4 

 
[BoMeBenz]2Zr(CH2Ph)2 

lattice Monoclinic Triclinic 
formula C28H28Zr C56.50H58B2N8O4Zr 
formula weight 455.72 1025.95 
space group P21 P-1 
a/Å 10.2238(10) 11.2036(7) 
b/Å 9.6635(9) 13.1590(9) 
c/Å 11.2356(2) 20.7159(14) 
D/˚ 90 106.9080(10) 
E/˚ 101.2950(2) 97.3150(10) 
J/˚ 90 96.3260(10) 
V/Å3 1088(18) 2863.2(3) 
Z 2 2 
temperature (K) 150(2) 150(2) 
radiation (O, Å) 0.71073 0.71073 
U (calcd.), g cm-3 1.390 1.190 
P (Mo KD), mm-1 0.516 0.241 
T�max, deg. 32.45 30.68 
no. of data 
collected 

18886 46845 

no. of data used 7475 17593 
no. of parameters 262 571 
R1 [I > 2V(I)] 0.0377 0.0472 
wR2 [I > 2V(I)] 0.0640 0.0869 
R1 [all data] 0.0560 0.0790 
wR2 [all data] 0.0697 0.0934 
GOF 1.012 1.019 
Rint 0.0414 0.0546 
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Table 1. (cont.) Crystal, intensity collection and refinement data. 

 [BoAdBenz]2Zr(CH2Ph)2 [ToMeBenz]Zr(CH2Ph)3 
 

lattice Orthorhombic Monoclinic 
formula C89H101B2N8O4Zr C46.5H46BN6O3ZrCl3 

formula weight 1459.62 945.27 
space group Pbca P-1 
a/Å 19.8594(16) 12.421(15) 
b/Å 22.5384(18) 13.7095(16) 
c/Å 34.248(3) 14.3580(17) 
D/˚ 90 64.594(2) 
E/˚ 90 72.960(2) 
J/˚ 90 78.419(2) 
V/Å3 15329(2) 2158.0(4) 
Z 8 2 
temperature (K) 150(2) 130(2) 
radiation (O, Å) 0.71073 0.71073 
U (calcd.), g cm-3 1.265 1.455 
P (Mo KD), mm-1 0.201 0.490 
T�max, deg. 24.71 31.31 
no. of data 
collected 

156891 36500 

no. of data used 13077 13915 
no. of parameters 862 539 
R1 [I > 2V(I)] 0.1027 0.0605 
wR2 [I > 2V(I)] 0.2336 0.1440 
R1 [all data] 0.1793 0.0978 
wR2 [all data] 0.2619 0.1596 
GOF 1.219 1.023 
Rint 0.2446 0.0629 
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Table 1. (cont.) Crystal, intensity collection and refinement data. 

 [ToButBenz]Zr(CH2Ph)3 

 

[ToAdBenz]Zr(CH2Ph)3 

lattice Rhombohedral Rhombohedral 
formula C77.50H91BN6O3Zr C75.50H86BN6O3ZrCl7 

formula weight 1256.59 1475.68 
space group R-3 R-3 

a/Å 18.7511(13) 19.462(3) 
b/Å 18.7511(13) 19.462(3) 
c/Å 33.834(2) 31.762(4) 
D/˚ 90 90 
E/˚ 90 90 
J/˚ 120 120 
V/Å3 10302.4(12) 10418(2) 
Z 6 6 
temperature (K) 150(2) 150(2) 
radiation (O, Å) 0.71073 0.71073 
U (calcd.), g cm-3 1.215 1.411 
P (Mo KD), mm-1 0.212 0.481 
T�max, deg. 32.03 26.37 
no. of data 
collected 

49968 42344 

no. of data used 7747 4752 
no. of parameters 265 279 
R1 [I > 2V(I)] 0.0474 0.0566 
wR2 [I > 2V(I)] 0.1344 0.1334 
R1 [all data] 0.0626 0.0829 
wR2 [all data] 0.1429 0.1437 
GOF 1.083 1.058 
Rint 0.0384 0.0975 
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Table 1. (cont.) Crystal, intensity collection and refinement data. 

 {[ToButBenz]Zr(CH2Ph)2(OEt2)}{B(C6F5)4} 

 
lattice Triclinic 
formula C85H86.93B2N6O4ZrF20  

formula weight 1749.38 
space group P-1 

a/Å 16.257(2) 
b/Å 17.277(3) 
c/Å 18.379(3) 
D/˚ 65.836(2) 
E/˚ 66.000(2) 
J/˚ 89.873(2) 
V/Å3 4218.1(11) 
Z 2 
temperature (K) 150(2) 
radiation (O, Å) 0.71073 
U (calcd.), g cm-3 1.377 
P (Mo KD), mm-1 0.227 
T�max, deg. 26.37 
no. of data 
collected 

50995 

no. of data used 17251 
no. of parameters 996 
R1 [I > 2V(I)] 0.0587 
wR2 [I > 2V(I)] 0.0859 
R1 [all data] 0.1259 
wR2 [all data] 0.0951 
GOF 1.005 
Rint 0.0942 
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5.1 Introduction 

Development of facially-coordinating C3 L2X type tripodal ligands is currently an active 

field, among which, ligands that encompass nitrogen [N3]1 or sulfur [S3]2 donor arrays 

have enjoyed widespread applications. We have contributed to these activities by 

developing new [O3] donor ligands that belong to the L2X type, namely 

tris(oxoimidazolyl)borate.  

Multidentate oxygen-donor ligands are well established and have diverse applications, 

as illustrated by their use to mimic oxide surfaces.3,4 They have been synthesized in 

many different electronic forms including L2X5, L3,6 X3,7 X4
8 and LX3

9,10, but not L3X 

according to covalent bond classifications (L = 2-electron donor, X = 1-electron donor).11  

In addition to simple tridentate [O3] donor ligands, C3 symmetric tetradentate tripodal 

variants are also known, in which the bridgehead donor may also bind to the metal.  

The majority of such ligands, however, belong to the classification LX3, in which the 

bridgehead is an L-type nitrogen atom donor.12,13  Therefore, we set out to develop a C3 

symmetric tetradentate tripodal oxygen rich donor ligand that belongs to the L3X14 

donor system (Figure 1).              
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Figure 1. Different type of oxygen rich ligands according to the CBC method: a. L2X, b. 

X4, c. L3X (target complex). 

In addition to creating a new class of L3X [CO3] donor ligands in which the X-type 

bridgehead donor is a carbon atom, these ligands have enabled the isolation of a new 

class of metallacarbatrane compounds, including a monovalent thallium alkyl 

compound. 

5.2 Synthesis of the ligands 

Based on previous reports for the acid catalyzed rearrangement of tris(1-R-organo-

imidazol-2-ylthio)methanes to tris(imidazole-2-thione)methanes,15 we apply the same 

synthetic approach to obtain our target ligand, tris(2-pyridonyl)methane. Specifically, 

tris(pyridin-2-yloxy)methane was synthesized first, followed by treatment with acid to 

generate the thermodynamic product as shown in Scheme 1. 
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Scheme 1. Retrosynthetic analysis of tris(2-pyridonyl)methane. 

Specifically, treatment of 2-pyridone with CHCl3 and K2CO3 in the presence of 

[Bun
4N]Br as a phase transfer agent yields an isomeric mixture of HC(OC5H4N)3 and 

HC(OC5H4N)2(NC5H4O), as shown in Scheme 2. Treatment of HC(OC5H4N)3 

HC(OC5H4N)2(NC5H4O), or a mixture of the two, with camphorsulfonic acid (CSA) in a 

THF and toluene mixture at reflux leads to HC(OC5H4N)(NC5H4O)2. However, tris(2-

pyridonyl)methane, [Tpom]H, is obtained when the isomerization reaction conducted 

at higher temperature, 175 ˚C (Scheme 2). 
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Scheme 2. Reaction of 2-pyridone with CHX3 followed by acidic isomerization of the 

products. 

 Fortunately, we obtained crystals and determined the molecular structures of all of the 

isomeric products via X-ray diffraction as shown in Figures 2, 3, 4 and 5. 
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Figure 2. Molecular structure of HC(OC5H4N)3. 

 

 

Figure 3. Molecular structure of HC(OC5H4N)2(NC5H4O). 
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Figure 4. Molecular structure of HC(OC5H4N)(NC5H4O)2. 

 

Figure 5. Molecular structure of HC(NC5H4O)3. 

Due to solubility issues associated with tris(2-pyridonyl)methane, we used 4-tert-butyl-

2-[1H]-pyridone instead of 2-pyridone as a starting material to produce a more soluble 

ligand. It is synthesized according to the reported procedure16 where 4-t-butylpyridine-
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N-oxide17 is generated by the oxidation of the 4-tert-butylpyridine. Then the N-oxide 

compound reacts with acetic anhydride at high temperature followed by hydrolysis to 

generate the pyridone derivative. (Scheme 3) 

 

Scheme 3. Synthesis of 4-tert-butyl-2-[1H]-pyridone. 

Colorless crystals of 4-tert-butyl-2-[1H]-pyridone were obtained from a hexane solution 

and the molecular structure was determined by X-ray diffraction (Figure 6). 

 

Figure 6. Molecular structure of 4-tert-butyl-2-[1H]-pyridone. 
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The t-butyl derivative, [TpomBut]H, was obtained via a synthetic procedure similar to 

[Tpom]H which result in [TpomBut]H being more soluble than [Tpom]H, Scheme 2. The 

molecular structures of all the isomeric products of the t-butyl derivative have been 

determined by X-ray diffraction as shown in Figures 7, 8, 9 and 10. 

 

 

Figure 7. Molecular structure of HC(OC5H3ButN)3. 

 



206 

 

Figure 8. Molecular structure of HC(OC5H3ButN)2(NC5H3ButO). 

 

 

Figure 9. Molecular structure of HC(OC5H3ButN)(NC5H3ButO)2. 
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Figure 10. Molecular structure of HC(NC5H3ButO)3. 

According to the molecular structures of both [Tpom]H and [TpomBut]H, as shown in 

Figures 5 and 10, the conformation adopted is one in which the three oxygen atoms are 

on the same side as the C–H group.  As such, the ligands are ideally suited for 

coordinating via the oxygen atoms following metalation of the C–H bond. 

5.3 Tris(2-pyridonyl)methyl Complexes of Zinc 

5.3.1 [TpomR]ZnN(TMS)2: Effect of  Alkyl Substitution 

Treatment of Zn[N(SiMe3)2]2 with [Tpom]H or [TpomBut]H gives [N3-Tpom]ZnN(SiMe3)2 

or [N4-TpomBut]ZnN(SiMe3)2, respectively, as illustrated in Scheme 4. 
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Scheme 4. Synthesis of [Nx-TpomR]Zn[N(SiMe3)2], X = 3 when R = H,  and X = 4 when     

R = t-but.  

An interesting difference that arises from the presence of the t-butyl substituent is that 

the [TpomBut] ligand binds to the zinc center in a manner that approaches a N4-

coordination mode while [Tpom] ligand adopts a N3-coordination mode.18 This 

observation is based on the X-ray structures of [N4-TpomBut]ZnN(SiMe3)2 (Figure 11) and 

[N3-Tpom]ZnN(SiMe3)2 (Figure 12). 
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Figure 11. Molecular structure of [N4-TpomBut]Zn[N(SiMe3)2]. 

 

Figure 12. Molecular structure of [N3-Tpom]Zn[N(SiMe3)2]. 
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For both [N3-Tpom]ZnN(SiMe3)2
19

 and [N4-TpomBut]ZnN(SiMe3)2
20

 complexes , two of the  

Zn–O bonds are comparable to the average value for compounds listed in the 

Cambridge Structural Database21 (2.05 Å), the third Zn–O distance is considerably 

longer, i.e. 2.866(2) Å and 2.401(1) Å, respectively. Based on the magnitude of these 

distances, we conclude that there is a weak Zn–O secondary interaction for the 

[TpomBut] ligand but not for the [Tpom] derivative.  

The three pyridonyl groups of [N3-Tpom]Zn[N(SiMe3)2] are chemically equivalent on the 

NMR time scale down to –77  ˚C  based  on  variable  temperature 1H NMR spectroscopic 

studies. This result indicates that there is either rapid exchange between the 

coordinated and uncoordinated pyridonyl groups, such that the molecule is fluxional, 

or that the molecule adopts a five-coordinate structure in solution. A different 

observation was obtained for fluxional [N3-Tptm]Zn[N(SiMe3)2] in solution; a spectrum 

indicating two distinct pyridonyl environments starts to emerge at ca. -10˚C.22 

5.3.2 [N4-TpomBut]ZnOC6H4But: A Metallacarbatrane 

Treatment of [N4-TpomBut]Zn[N(SiMe3)2] with 4-t-butylphenol in benzene leads to a 

white precipitate of [N4-TpomBut]ZnOC6H4But (Scheme 5). Colorless crystals of [N4-

TpomBut]ZnOC6H4But suitable for X-ray diffraction were obtained from a CH2Cl2 

solution (Figure 13).  
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Scheme 5. Synthesis of [N4-TpomBut]ZnOC6H4But. 

 

Figure 13. Molecular structure of [N4-TpomBut]ZnOC6H4But. 
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The range of Zn–O bond lengths [2.090(3) Å – 2.164(3) Å]23 for [N4-TpomBut]ZnOC6H4But 

is much narrower than for [N4-TpomBut]Zn[N(SiMe3)2] [2.096(1) Å – 2.401(1) Å] and [N3-

Tpom]Zn[N(SiMe3)2] [2.095(2) Å – 2.866(2) Å]. Therefore, [N4-TpomBut]ZnOC6H4But 

exhibits a well-defined atrane motif.9,24  

Atranes are an interesting class of molecules that feature a tricyclic ring system in which 

the two bridgehead atoms are directly linked.9,24 Originally, [N4-N(CH2CH2O)3]E 

derivatives, in which one of the bridgehead atoms is nitrogen, were the only types of 

molecule described as having an atrane motif. Afterward, the term was expanded to 

include a variety of other systems.  For instance, compounds in which nitrogen is not 

one of the bridgehead atoms have been described as atranes. If the linkers between the 

bridgehead atoms are not [CH2CH2O] groups, the complex is also described as an 

atrane. For example, tricyclic compounds that feature transannular M–B bonds have 

been referred to “metallaboratranes”.25  Therefore, [N4-TpomBut]ZnOC6H4But  would be 

classified as a “metallacarbatrane”.26  

Atranes derived from [TpomR] differ from [N4-N(CH2CH2O)3]E and metallaboratrane 

derivatives by the fact that the transannular interaction is a normal covalent bond 

instead of a dative covalent bond. 

 The Zn–C bond lengths in [TpomR]ZnX (Table 1) are comparable to each other, but they 

are slightly longer than the mean Zn–C bond length of 2.01 Å for compounds listed in 

the Cambridge Structural Database.21,27,28 On the contrary, the Zn–C bonds in 
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[TpomR]ZnX are shorter than those in tris(2-pyridylthio)methyl derivatives.22,29,30 In both 

cases, the linkers contain the same numbers of atoms but they differ in nature and 

position, i.e. Zn–[NCS]–C versus Zn–[OCN]–C. 

Table 1. Zn–C bond lengths in [TpomR]ZnX and related compounds. 

 d(Zn–C)/Å 

[N3-Tpom]Zn[N(SiMe3)2] 2.064(2) 

[N4-TpomBut]Zn[N(SiMe3)2] 2.080(2) 

[N4-TpomBut]ZnOC6H4But  2.071(5) 

[N3-Tptm]ZnH 2.105(3) 

[N3-Tptm]ZnMe 2.098(2) 

[N4-Tptm]ZnN3 2.199(3) 

[N4-Tptm]ZnNCO 2.194(3) 

 

5.4 Tris(2-pyridonyl)methyl Complexes of Thallium: a Long Tl–C bond  

We have seen in the previous sections the application of [TpomR] ligands to zinc 

chemistry. Here we show that the [TpomBut] ligand also allows the isolation of a 

monovalent thallium alkyl complex. This is obtained via treatment of [TpomBut]H with 

TlN(SiMe3)2, as shown in Scheme 6.  
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Scheme 6. Synthesis of {[TpomBut]Tl}x, A: x = 1 when crystalized from toluene,                

B: x = 2 when crystalized from benzene.                                                                     

The molecular structure of [TpomBut]Tl as determined by X-ray diffraction has been 

obtained in two different polymorphs. A monomeric complex, [TpomBut]Tl (Figure 14), 

is obtained by diffusion of hexane into a toluene solution while a dimeric complex, 

{[TpomBut]Tl}2 (Figure 15), is obtained by diffusion of pentane into a benzene solution. 

For [TpomBut]Tl, the coordination environment surrounding the thallium is restricted to 

less than one hemisphere. However in the case of {[TpomBut]Tl}2, one of the oxygen 

atoms of the [TpomBut] ligand serves as a bridge between two thallium centers. Pulsed 
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gradient spin-echo diffusion NMR spectroscopic experiments, however, indicate that 

dimeric {[N3-TpomBut]Tl}2 does not persist in toluene and that the compound exists as a 

monomer in solution. 

 

Figure 14. Molecular structure of [N4-TpomBut]Tl. 
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Figure 15. Molecular structure of {[N3-TpomBut]Tl}2. 

The mononuclear [TpomBut]Tl crystal structure indicates that the coordination 

environment surrounding each thallium is restricted to less than one hemisphere of the 

atom.  While this motif could be anticipated for mononuclear compounds that feature 

face-capping ligands, such as tris(pyrazolyl)borato complexes, [TpR,R’]Tl,31 it is actually a 

general feature of monovalent thallium chemistry, and is commonly attributed to the 

presence of a lone pair on thallium.32 

Simple monovalent organothallium compounds (RTl) are generally unstable and easily 

disproportionate to R3Tl and elemental thallium.31 They are mainly restricted to 
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cyclopentadienyl and arene derivatives,31 and structurally characterized alkyl and aryl 

compounds are uncommon.  Also as  a  result  of  “thallophilic”33 interactions,34,35 many 

monovalent thallium alkyl and aryl compounds exist as oligomers, e.g. dimeric  [Ar’Tl]2 

(Ar’  =  C6H3-2,6-{C6H3-2,6-Pri
2}2),36 trimeric  [Ar”Tl]3 (Ar”  =  C6H3-2,6-{C6H3-2,6-Me2}2),36 

and tetrameric {Tl[C(SiMe3)3]}4.37 However, there is one monomeric compound listed in 

the Cambridge Structural Database, namely the  aryl  compound  Ar’’’Tl  (Ar’’’  =  C6H3-2,6-

{C6H2-2,4,6-Pri
2}2).38  Therefore, the isolation of [TpomBut]Tl is significant since it is rare 

example of a structurally characterized monovalent thallium alkyl complex that is 

devoid of  “thallophilic”  interactions.   

The Tl–C and Tl–O bond lengths within [TpomBut]Tl also merit discussion. Though the 

covalent radius of oxygen (0.66 Å) is smaller than that for carbon (0.76 Å),28 the average 

Tl–O bond length [2.681(3) Å] is significantly longer than the Tl–C bond length [2.490(7) 

Å]. This observation is reproduced by density functional theory calculations. 

Specifically, the calculated Tl–C bond length is 2.567 Å and the Tl–O bond lengths have 

an average value of 2.627 Å. This suggests that the Tl–O interaction is secondary in 

nature when compared to Tl–C interaction. In support of this suggestion, much shorter 

Tl–O bonds (e.g. 2.401 Å) have been reported for other monovalent thallium 

compounds.39 Also the Tl–C bond length for {[TpomBut]Tl}x is quite long when compared 

to other monovalent thallium alkyl compounds as shown in Table 2.  
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Table 2. Tl–C bond lengths in monovalent thallium alkyl complexes. 

 d(Tl–C)/Å 

[TpomBut]Tl 2.490(7) 

{[TpomBut]Tl}2 2.790(2) 

{Tl[C(SiMe3)3]}4 2.37 

[Ar’Tl]2 2.313(5) 

[Ar”Tl]3 2.331(4) 

Ar’’’Tl 2.34(1) 

 

Long Tl–C bond lengths comparable to that of [TpomBut]Tl have been observed in 

{Tl[CH(SiMe3){SiMe(OMe)2}Li]}2 (2.547 Å),40 in which each thallium is attached to two 

alkyl groups, and [Tl2{C{(PPh2)NSiMe3}2]2 (2.525 Å),41 in which the carbon atom bridges 

two thallium centers.  At the other extreme, much shorter Tl–C bonds are observed in 

trivalent thallium compounds, e.g. [BmBut]TlMe2 (2.14 Å)42 and Ar’Tl[B(C6F5)3] (2.165 

Å),36 making it evident that Tl–C bonds span a very large range. 

This can be rationalized by molecular orbital and natural bond orbital (NBO) analyses43 

since they indicate that the Tl–C bond has little covalent character (Figures 16 and 17). 

In addition to the presence of a lone pair on thallium, the NBO analysis also indicates 

the presence of a highly localized sp3 hybridized lone pair on carbon.44 Thus, this 

complex is better described as being zwitterionic. Generally, zwitterionic compounds 

that feature a formal negative charge on carbon are uncommon unless geometric factors 
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prevent the carbon lone pair from interacting with the metal.14  Some examples have the 

lone pair on carbon pointing away from the metal center, as in the case of the tris(3,5-

dimethylpyrazolyl)methyl complexes [C(pzMe2)]ZnX.45 In the [TpomBut]Tl compounds, 

there is no significant Tl–C covalent interaction despite the fact that the sp3 hybrid 

carbon orbital points directly at thallium, thereby underscoring the uniqueness of the 

compound (Figures 18, 19 and 20). 

 

Figure 16. Natural bond orbital for Tl lone pair (96.76% 6s, 3.24% 6p character). 
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Figure 17. Natural bond orbital for C lone pair (22.68% 2s, 77.30% 2p and 0.02% of 3d 

character). 

 

 

Figure 18. HOMO (Tl lone pair). 
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Figure 19. HOMO-1 (carbon lone pair). 

 

 

Figure 20. HOMO-1 (carbon lone pair, alternative view). 
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5.5 Conclusion 

In summary, tris(2-pyridonyl)methane derivatives, namely [Tpom]H and [TpomBut]H, 

may be obtained via the reaction of 2-pyridones with CHX3 and K2CO3 in the presence 

of [Bun
4N]Br, followed by acid-catalyzed isomerization with camphorsulfonic acid.  

These compounds provide access to a new class of L3X alkyl ligands that feature oxygen 

donors and are capable of forming metallacarbatranes, as exemplified by [N4-

TpomBut]ZnOC6H4But.  In addition, the [TpomBut] ligand also allows isolation of a 

monovalent thallium alkyl compound, [TpomBut]Tl, in which the Tl–C bond is long and 

has little covalent character. 

5.6 Experimental Section 

5.6.1 General Considerations 

All manipulations were performed using a combination of glovebox, high vacuum, and 

Schlenk techniques under a nitrogen or argon atmosphere.46  Solvents were purified and 

degassed by standard procedures.  1H NMR spectra were measured on Bruker 300 DRX, 

Bruker 400 DRX, Bruker 400 Cyber-enabled Avance III and Bruker Avance 500 DMX 

spectrometers.  1H NMR chemical shifts are reported in ppm relative to SiMe4 (G = 0) 

and were referenced internally with respect to the protio solvent impurity (G 7.16 for 

C6D5H, 7.26 for CHCl3, 5.32 for CDHCl2 and 2.50 for d6-DMSO).47  13C NMR spectra are 

reported in ppm relative to SiMe4 (G = 0) and were referenced internally with respect to 

the solvent (G 128.06 for C6D6, 53.84 for CD2Cl2, 77.16 for CDCl3, and 39.52 for d6-
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DMSO).47  Coupling constants are given in hertz.  Infrared spectra were recorded on 

PerkinElmer Spectrum Two spectrometer  and are reported in cm-1.  Mass spectra were 

obtained on a Jeol JMS-HX110H Tandem Double-Focusing Mass Spectrometer with a 10 

kV accelerated voltage equipped with FAB ion source.  All chemicals were obtained 

from Aldrich and Zn[N(SiMe3)2]2
48 and TlN(SiMe3)2

49 were obtained by the literature 

methods. 

5.6.2 X-ray Structure Determinations 

Single crystal X-ray diffraction data were collected on a Bruker Apex II diffractometer 

and crystal data, data collection and refinement parameters are summarized in Table 3. 

The structures were solved using direct methods and standard difference map 

techniques, and were refined by full-matrix least-squares procedures on F2 with 

SHELXTL (Version 2008/4).50  

5.6.3 Computational Details 

Calculations were carried out using DFT as implemented in the Jaguar 7.7 (release 107) 

suite of ab initio quantum chemistry programs.51  Geometry optimizations were 

performed with the B3LYP density functional52 using the 6-31G** (C, H, N, O) and 

LAV3P (Tl) basis sets, and atomic coordinates are listed in Table 4.53  NBO calculations 

were performed with NBO 5.054 as implemented in the Jaguar 7.7 (release 107) suite of 

programs using the 6-31G** and LAV3P basis sets.  Molecular orbital analyses were 
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performed with the aid of JIMP2,55 which employs Fenske-Hall calculations and 

visualization using MOPLOT.56 

5.6.4 Synthesis of HC(OC5H4N)3 and HC(OC5H4N)2(NC5H4O)   

(a)  A triphasic mixture of 2-pyridone (9.0 g, 94.6 mmol), [Bun
4N]Br (0.6 g, 1.86 mmol) 

and K2CO3 (40 g, 289 mmol) in CHCl3 (90 mL) and water (90 mL) was refluxed for 6 

days. The mixture was allowed to cool to room temperature and was treated with water 

(ca. 500 mL) and CH2Cl2 (ca. 600 mL), resulting in the formation of two layers.  The 

organic layer was separated, dried over Na2SO4 and filtered.  The volatile components 

were removed in vacuo to give a dark brown residue that was subjected to column 

chromatography on silica gel.  Elution with a mixture of ethylacetate and hexane (1:1 

with 1% v/v Et3N) produced HC(OC5H4N)3 (600 mg, 6 %), while elution with a mixture 

of ethylacetate and hexane (2:1 with 1% v/v Et3N) yielded HC(OC5H4N)2(NC5H4O) (750 

mg, 8 %).  Analysis calcd. for HC(OC5H4N)3: C, 65.1%; H, 4.4%; N 14.2% Found: C, 

65.2%; H, 3.8%; N 14.2%. 1H NMR (CDCl3): 6.86 [d, 3JH-H = 8, 3H of CH{(OC)N(C4H4)}3], 

6.94 [m, 3H of CH{(OC)N(C4H4)}3], 7.61 [m, 3H of CH{(OC)N(C4H4)}3], 8.14 [m, 3H of 

CH{(OC)N(C4H4)}3], 9.28 [s, 1H of CH{(OC)N(C4H4)}3].  13C{1H} NMR (CDCl3): 104.0 [1C 

of CH{(OC)N(C4H4)}3], 111.5 [3C of CH{(OC)N(C4H4)(CO)}3], 118.6 [3C of 

CH{(OC)N(C4H4)}3], 139.2 [3C of CH{(OC)N(C4H4)}3], 147.3 [3C of CH{(OC)N(C4H4)}3], 

161.2 [3C of CH{(OC)N(C4H4)}3].  FAB-MS: m/z = 296.16 [M+1]+, M = HC(OC5H4N)3. IR 

Data (ATR, cm-1): 3015 (w), 2963 (w), 1658 (br), 1594 (s), 1573 (s), 1541 (w), 1468 (s), 1431 
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(s), 1356 (w), 1340 (w), 1284 (w), 1259 (s), 1231 (s), 1143 (w), 1102 (m), 1049 (vs), 1021 

(vs), 990 (vs), 914 (m), 854 (m), 772 (vs), 735 (m), 664 (w), 615 (w), 559 (w), 513 (m), 496 

(m). Colorless blocks of HC(OC5H4N)3 suitable for X-ray diffraction were obtained from 

mixture of ethylacetate and hexane Analysis calcd. for HC(OC5H4N)2(NC5H4O): C, 

65.1%; H, 4.4%; N 14.2% Found: C, 65.4%; H, 3.9%; N 14.2%. 1H NMR (CDCl3): 6.20 

[“dt”,  3JH-H = 7, 4JH-H = 1, 1H of {(C4H4)N(CO)}2CH{N(C4H4)(CO)}], 6.58 [d, 3JH-H = 9,  1H of 

{(C4H4)N(CO)}2CH{N(C4H4)(CO)}], 6.86 [d, 3JH-H = 8,  2H of 

{(C4H4)N(CO)}2CH{N(C4H4)(CO)}], 6.96 [m, 2H of {(C4H4)N(CO)}2CH{N(C4H4)(CO)}], 

7.31 [m, 1H of {(C4H4)N(CO)}2CH{N(C4H4)(CO)}], 7.63 [m, 2H of 

{(C4H4)N(CO)}2CH{N(C4H4)(CO)}], 7.79 [dd, 3JH-H = 7, 3JH-H = 2, 1H of 

{(C4H4)N(CO)}2CH{N(C4H4)(CO)}], 8.15 [m, 2H of {(C4H4)N(CO)}2CH{N(C4H4)(CO)}], 

9.31 [s, 1H of {(C4H4)N(CO)}2CH{N(C4H4)(CO)}]. 13C{1H} NMR (CDCl3): 93.1 [1C of 

{(C4H4)N(CO)}2CH{N(C4H4)(CO)}], 106.2 [1C of {(C4H4)N(CO)}2CH{N(C4H4)(CO)}], 111.0 

[2C of {(C4H4)N(CO)}2CH{N(C4H4)(CO)}], 119.0 [2C of 

{(C4H4)N(CO)}2CH{N(C4H4)(CO)}], 121.7 [1C of {(C4H4)N(CO)}2CH{N(C4H4)(CO)}], 132.1 

[1C of {(C4H4)N(CO)}2CH{N(C4H4)(CO)}], 139.4 [2C of 

{(C4H4)N(CO)}2CH{N(C4H4)(CO)}], 139.9 [1C of {(C4H4)N(CO)}2CH{N(C4H4)(CO)}], 147.6 

[2C of {(C4H4)N(CO)}2CH{N(C4H4)(CO)}], 160.7 [2C of 

{(C4H4)N(CO)}2CH{N(C4H4)(CO)}], 161.6 [1C of {(C4H4)N(CO)}2CH{N(C4H4)(CO)}]. FAB-

MS: m/z = 296.2 [M+1]+, M = HC(OC5H4N)2(NC5H4O).  IR Data (ATR, cm-1): 3065 (w), 

2963 (w), 1670 (s), 1595 (s), 1574 (m), 1537 (m), 1471 (s), 1432 (s), 1401 (w), 1364 (w), 1342 
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(w), 1292 (w), 1261 (m), 1226 (s), 1187 (w), 1176 (m), 1142 (m), 1117 (s), 1102 (s), 1067 (s), 

1047 (s), 1020 (vs), 918 (s), 881 (m), 788 (s), 762 (vs), 672 (w), 647 (w), 630 (w), 618 (w), 

603 (w), 575 (w), 557 (w), 513 (m), 494 (m). Colorless blocks of HC(OC5H4N)2(NC5H4O) 

suitable for X-ray were obtained from mixture of ethylacetate and hexane. 

5.6.5 Synthesis of HC(OC5H4N)(NC5H4O)2   

HC(OC5H4N)(NC5H4O)2  (330 mg, 1.12 mmol) and camphorsulfonic acid (35 mg, 0.15 

mmol) were dissolved in a mixture of THF (1.5 mL) and toluene (3 mL) in a small 

ampoule. The reaction was heated at 90 qC for 2 hours resulting in a white precipitate. 

The solution was cooled to room temperature and filtered to isolate a white solid. The 

solid was washed with Et2O (3 u 1 mL) and dried in vacuo overnight (235 mg, 71%). 

Anal. calcd. for HC(OC5H4N)(NC5H4O)2: C, 65.1%; H, 4.4%; N, 14.2%. Found: C, 64.9 %; 

H, 4.2 %; N, 14.4 %. 1H NMR (CDCl3): 6.19 [t, 3JH-H = 7 Hz, 2H of 

HC(OC5H4N)(NC5H4O)2], 6.50 [d, 3JH-H = 9 Hz, 2H of HC(OC5H4N)(NC5H4O)2], 7.00 [d, 

3JH-H = 8 Hz, 1H of HC(OC5H4N)(NC5H4O)2], 7.03 [m, 1H of HC(OC5H4N)(NC5H4O)2], 

7.32 [m, 2H of HC(OC5H4N)(NC5H4O)2], 7.69 [m, 1H of HC(OC5H4N)(NC5H4O)2], 7.99 

[d, 3JH-H = 7 Hz, 2H of HC(OC5H4N)(NC5H4O)2], 8.15 [d, 3JH-H = 4 Hz, 1H of 

HC(OC5H4N)(NC5H4O)2], 8.61 [s, 1H of HC(OC5H4N)(NC5H4O)2. 13C{1H} NMR (CDCl3): 

88.5 [s, 1C of HC(OC5H4N)(NC5H4O)2], 105.0 [s, 2C of HC(OC5H4N)(NC5H4O)2], 111.5 [s, 

1C of HC(OC5H4N)(NC5H4O)2], 119.6 [s, 1C of HC(OC5H4N)(NC5H4O)2], 121.7 [s, 2C of 

HC(OC5H4N)(NC5H4O)2], 136.3 [s, 2C of HC(OC5H4N)(NC5H4O)2], 139.9 [s, 1C of 
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HC(OC5H4N)(NC5H4O)2], 140.5 [s, 2C of HC(OC5H4N)(NC5H4O)2], 147.2 [s, 1C of 

HC(OC5H4N)(NC5H4O)2], 160.0 [s, 1C of HC(OC5H4N)(NC5H4O)2], 162.3 [s, 2C of 

HC(OC5H4N)(NC5H4O)2].  FAB-MS: m/z = 296.2 [M + H]+. IR Data (ATR, cm-1): 3098 (w), 

1658 (vs), 15875 (s), 1534 (s), 1468 (m), 1430 (m), 1400 (w), 1358 (w), 1307 (w), 1263 (m), 

1232 (s), 1175 (m), 1140 (m), 1113 (s), 1049 (s), 1018 (m), 991 (w), 910 (s), 887 (m), 866 (m), 

849 (m), 778 (s), 761 (s), 734 (m), 655 (w), 631 (w), 583 (w), 569 (m), 552 (w), 517 (m), 500 

(s). Colorless blocks of HC(OC5H4N)(NC5H4O)2 suitable for X-ray were obtained from 

solution of acetone. 

5.6.6 Synthesis of HC(NC5H4O)3   

A mixture of HC(OC5H4N)3 (392 mg, 1.33 mmol) and camphorsulfonic acid (40 mg, 0.17 

mmol) in anhydrous toluene (ca. 2 mL) and THF (ca. 2 mL) was heated at 180 ˚C in a 

sealed tube for 5 days.  The mixture was allowed to cool to room temperature, thereby 

depositing a brown precipitate.  The mixture was filtered and the precipitate was 

washed with Et2O (ca. 5 mL) and acetone (ca. 5 mL) and dried in vacuo to give 

HC(NC5H4O)3 as a brown powder (110 mg, 28 %). Analysis calcd. for HC(NC5H4O)3: C, 

65.1%; H, 4.4%; N 14.2% Found: C, 65.1%; H, 3.8%; N 14.0%.  1H NMR (DMSO): 6.39 

[“dt”, 3JH-H = 7, 4JH-H = 1, 3H of CH{N(C4H4)(CO)}3], 6.52 [d, 3JH-H = 9,  3H of 

CH{N(C4H4)(CO)}3], 7.22 [dd, 3JH-H = 7, 4JH-H = 1,  3H of CH{N(C4H4)(CO)}3], 7.57 [m, 3H of 

CH{N(C4H4)(CO)}3], 8.53 [s, 1H of CH{N(C4H4)(CO)}3]. 13C{1H} NMR (DMSO): 74.0 [1C 

of CH{N(C4H4)(CO)}3], 107.0 [3C of CH{N(C4H4)(CO)}3], 120.4 [3C of 
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CH{N(C4H4)(CO)}3], 133.4 [3C of CH{N(C4H4)(CO)}3], 141.3 [3C of CH{N(C4H4)(CO)}3], 

160.4 [3C of CH{N(C4H4)(CO)}3].  FAB-MS: m/z = 296.2 [M+1]+, M = HC(NC5H4O)3.  IR 

Data (ATR, cm-1): 3088 (w), 3034 (w), 1654 (vs), 1582 (vs), 1531 (vs), 1469 (w), 1458 (w), 

1433 (w), 1399 (w), 1356 (w), 1304 (w), 1243 (s), 1182 (m), 1145 (m), 1133 (m), 1115 (m), 

1094 (w), 1053 (w), 1019 (w), 994 (w), 952 (w), 903 (m), 852 (w), 807 (w), 764 (vs), 729 

(m), 610 (w), 565 (m), 530 (m), 508 (s).  Brown needle-shaped crystals of HC(NC5H4O)3 

suitable for X-ray diffraction were obtained from the reaction mixture. 

5.6.7 Synthesis of 4-tert-butylpyridine-N-oxide  

4-tert-butylpyridine-N-oxide was prepared by a modification of the literature method.17  

Hydrogen peroxide (40 mL, 35% in water) was added to a mixture of 4-tert-

butylpyridine (18.5 g, 137 mmol) and glacial acetic acid (200 mL) and the mixture was 

heated for 4 hours at 100 ˚C under an atmosphere of N2.  The mixture was allowed to 

cool to room temperature, treated with another aliquot of hydrogen peroxide (40 mL, 

35%) and heated for 4 hours at 100 ˚C.  The mixture was allowed to cool to room 

temperature, concentrated in vacuo to a volume of ca. 100 mL and neutralized with 

NaOH (1 M).  The mixture was extracted into CH2Cl2 (ca. 700 mL) and the organic layer 

was collected and dried over Na2SO4, after which the volatile components were 

removed in vacuo to yield a yellow solid which was washed with pentane (ca. 50 mL) to 

yield 4-tert-butylpyridine-N-oxide (16.5 g, 80 %). 
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5.6.8 Synthesis of 4-tert-butyl-2-[1H]-pyridone  

4-tert-Butyl-2-[1H]-pyridone was prepared by modification of a literature method.16  A 

mixture of 4-tert-butylpyridine-N-oxide (10.7 g, 70.8 mmol) and acetic anhydride (30 

mL) was refluxed for 16 hours under an atmosphere of nitrogen.  The mixture was 

allowed to cool to room temperature and concentrated in vacuo to a volume of ca. 15 mL 

and poured into ice water (600 mL).  NaHCO3 was added until the solution became 

alkaline (pH = 8 - 9), and the resulting mixture was stirred for ca. 3 days and extracted 

with ethylacetate (700 mL).  The organic layer was collected and dried over Na2SO4, 

after which the volatile components were removed in vacuo to give 4-tert-butyl-2-[1H]-

pyridone as a brown powder (5.9 g, 55 %).  Analysis calcd. for 4-tert-butyl-2-[1H]-

pyridone: C, 71.5%; H, 8.7%; N 9.3% Found: C, 71.5%; H, 8.3%; N 9.0%.  1H NMR (C6D6): 

0.92 [s, 9H of HN(C3H3)(CC(CH3)3)(CO)], 5.70 [dd,  3JH-H = 7, 4JH-H = 1,  1H of 

HN(C3H3)(CC(CH3)3)(CO)], 6.68 [br, 1H of HN(C3H3)(CC(CH3)3)(CO)], 6.88 [d, 3JH-H = 7, 

1H of HN(C3H3)(CC(CH3)3)CO)], not showing [1H of HN(C3H3)(CC(CH3)3)(CO)]. 13C{1H} 

NMR (C6D6): 29.6 [3C of HN(C3H3)(CC(CH3)3)(CO)], 34.8 [1C of 

HN(C3H3)(CC(CH3)3)(CO)], 105.3 [1C of HN(C3H3)(CC(CH3)3)(CO)], 115.7 [1C of 

HN(C3H3)(CC(CH3)3)(CO)], 134.1 [1C of HN(C3H3)(CC(CH3)3)(CO)], 165.0 [1C of 

HN(C3H3)(CC(CH3)3)(CO)], 166.5 [1C of HN(C3H3)(CC(CH3)3)(CO)]. MS: m/z = 151.2 

[M]+, M = HNC5H3ButO.  IR Data (ATR, cm-1): 2961 (m), 2868 (w), 1648 (s), 1605 (vs), 

1553 (m), 1480 (m), 1459 (m), 1406 (s), 1364 (w), 1344 (w), 1330 (w), 1286 (s), 1259 (m), 

1218 (m), 1201 (m), 1090 (m), 1038 (vs), 1022 (vs), 989 (vs), 938 (m), 858 (m), 836 (m), 789 
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(s), 739 (w), 708 (w), 657 (w), 573 (m), 541 (m), 519 (m), 470 (m). Colorless block of 

HNC6H3ButO suitable for X-ray were obtained from hexanes. 

5.6.9 Synthesis of HC(OC5H3ButN)3 and HC(OC5H3ButN)2(NC5H3ButO)  

(a) A triphasic mixture of 4-tert-butylpyridone (5.8 g, 38.4 mmol), [Bun
4N]Br (0.5 g, 1.55 

mmol) and K2CO3 (25 g, 180.9 mmol) in CHBr3 (40 mL) and water (150 mL) was heated 

at 110 ˚C for 5 days.  The mixture was allowed to cool to room temperature and treated 

with water (400 mL) and CH2Cl2 (700 mL).  The organic layer was separated and dried 

over Na2SO4, after which the solvent was removed in vacuo to give a dark brown residue 

that was subjected to column chromatography on silica gel.  Elution with a mixture of 

ethylacetate and hexane (1:4 with 2% v/v Et3N) gave HC(OC5H3ButN)3 (1.6 g, 27 %), 

while elution with a mixture of ethylacetate and hexane (2:3 with 2% v/v Et3N) yielded 

HC(OC5H3ButN)2(NC5H3ButO) (600 mg, 10 %).  Analysis calcd. for HC(OC5H3ButN)3: C, 

72.5%; H, 8.0%; N 9.1% Found: C, 72.2%; H, 8.0%; N 9.0%. 1H NMR (CDCl3): 1.26 [s, 27H 

of CH{(OC)N(C3H3)(CC(CH3)3)}3], 6.86 [d, 4JH-H = 1,  3H of CH{(OC)N(C3H3)(CC(CH3)3)}3], 

6.95 [dd, 3JH-H = 5, 4JH-H = 2, 3H of CH{(OC)N(C3H3)(CC(CH3)3)}3], 8.07 [d, 3JH-H = 5, 3H of 

CH{(OC)N(C3H3)(CC(CH3)3)}3], 9.32 [s, 1H of CH{(OC)N(C3H3)(CC(CH3)3)}3]. 13C{1H} 

NMR (CDCl3): 30.6 [9C of CH{(OC)N(C3H3)(CC(CH3)3)}3], 34.9 [3C of 

CH{(OC)N(C3H3)(CC(CH3)3)}3], 103.9 [1C of CH{(OC)N(C3H3)(CC(CH3)3)}3], 108.2 [3C of 

CH{(OC)N(C3H3)(CC(CH3)3)}3], 116.2 [3C of CH{(OC)N(C3H3)(CC(CH3)3)}3], 147.0 [3C of 

CH{(OC)N(C3H3)(CC(CH3)3)}3], 161.6 [3C of CH{(OC)N(C3H3)(CC(CH3)3)}3], 163.7 [3C of 
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CH{(OC)N(C3H3)(CC(CH3)3)}3].  FAB-MS: m/z = 464.3 [M+1]+, M = HC(OC5H3ButN)3. IR 

Data (ATR, cm-1): 2967 (m), 2869 (w), 1604 (s), 1552 (m), 1481 (w), 1460 (w), 1406 (s), 1365 

(w), 1343 (w), 1285 (s), 1262 (w), 1218 (m),  1199 (m),  1098 (w), 1036 (vs), 920 (m), 869 

(m), 853 (m), 800 (m), 743 (w), 727 (w),  657 (m), 546 (w), 531 (m), 482 (w).  Colorless 

block of HC(OC5H3ButN)3 suitable for X-ray were obtained from mixture of hexane and 

ethylacetate. Analysis calcd. for HC(OC5H3ButN)2(NC5H3ButO): C, 72.5%; H, 8.0%; N 

9.1% Found: C, 71.8%; H, 8.1%; N 9.0%. 1H NMR (CDCl3): 1.22 [s, 9H of 

{(CC(CH3)3)(C3H3)N(CO)}2CH{N(C3H3)(CC(CH3)3)(CO)}], 1.26 [s, 18H of 

{(CC(CH3)3)(C3H3)N(CO)}2CH{N(C3H3)(CC(CH3)3)(CO)}], 6.26 [dd, 3JH-H = 7, 4JH-H = 2,  1H 

of {(CC(CH3)3)(C3H3)N(CO)}2CH{N(C3H3)(CC(CH3)3)(CO)}], 6.50 [d, 4JH-H = 2, 1H of 

{(CC(CH3)3)(C3H3)N(CO)}2CH{N(C3H3)(CC(CH3)3)(CO)}], 6.84 [d, 4JH-H = 1, 2H of 

{(CC(CH3)3)(C3H3)N(CO)}2CH{N(C3H3)(CC(CH3)3)(CO)}], 6.96 [dd, 3JH-H = 5, 4JH-H = 2,  2H 

of {(CC(CH3)3)(C3H3)N(CO)}2CH{N(C3H3)(CC(CH3)3)(CO)}], 7.72 [d, 3JH-H = 8, 1H of 

{(CC(CH3)3)(C3H3)N(CO)}2CH{N(C3H3)(CC(CH3)3)(CO)}], 8.06 [d, 3JH-H = 5, 2H of 

{(CC(CH3)3)(C3H3)N(CO)}2CH{N(C3H3)(CC(CH3)3)(CO)}], 9.29 [s, 1H of 

{(CC(CH3)3)(C3H3)N(CO)}2CH{N(C3H3)(CC(CH3)3)(CO)}]. 13C{1H} NMR (CDCl3): 29.7 [3C 

of {(CC(CH3)3)(C3H3)N(CO)}2CH{N(C3H3)(CC(CH3)3)(CO)}], 30.6 [6C of 

{(CC(CH3)3)(C3H3)N(CO)}2CH{N(C3H3)(CC(CH3)3)(CO)}], 35.0 [2C of 

{(CC(CH3)3)(C3H3)N(CO)}2CH{N(C3H3)(CC(CH3)3)(CO)}], 35.1 [1C of 

{(CC(CH3)3)(C3H3)N(CO)}2CH{N(C3H3)(CC(CH3)3)(CO)}], 93.0 [1C of 

{(CC(CH3)3)(C3H3)N(CO)}2CH{N(C3H3)(CC(CH3)3)(CO)}], 105.7 [1C of 
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{(CC(CH3)3)(C3H3)N(CO)}2CH{N(C3H3)(CC(CH3)3)(CO)}], 107.6[2C of 

{(CC(CH3)3)(C3H3)N(CO)}2CH{N(C3H3)(CC(CH3)3)(CO)}], 116.3 [1C of 

{(CC(CH3)3)(C3H3)N(CO)}2CH{N(C3H3)(CC(CH3)3)(CO)}], 116.6 [2C of 

{(CC(CH3)3)(C3H3)N(CO)}2CH{N(C3H3)(CC(CH3)3)(CO)}], 130.8 [1C of 

{(CC(CH3)3)(C3H3)N(CO)}2CH{N(C3H3)(CC(CH3)3)(CO)}], 147.2 [2C of 

{(CC(CH3)3)(C3H3)N(CO)}2CH{N(C3H3)(CC(CH3)3)(CO)}], 161.2 [2C of 

{(CC(CH3)3)(C3H3)N(CO)}2CH{N(C3H3)(CC(CH3)3)(CO)}], 162.0 [1C of 

{(CC(CH3)3)(C3H3)N(CO)}2CH{N(C3H3)(CC(CH3)3)(CO)}], 163.5 [1C of 

{(CC(CH3)3)(C3H3)N(CO)}2CH{N(C3H3)(CC(CH3)3)(CO)}], 163.9 [1C of 

{(CC(CH3)3)(C3H3)N(CO)}2CH{N(C3H3)(CC(CH3)3)(CO)}]. FAB-MS: m/z = 464.3 [M+1]+, M 

= HC(OC5H3ButN)2(NC5H3ButO).  IR Data (ATR, cm-1): 2962 (m), 2869 (w), 1669 (s), 1605 

(s), 1554 (m), 1532 (w), 1482 (m), 1407 (s), 1365 (w), 1343 (w), 1289 (m), 1258 (s), 1221 (m),  

1196 (m),  1133 (m), 1077 (vs), 1016 (vs), 945 (m), 932 (m), 863 (m), 830 (m), 796 (s),  742 

(w), 717 (w), 686 (m), 664 (m), 628 (m), 572 (m), 526 (m), 481 (m). Colorless crystals of 

HC(OC5H3ButN)2(NC5H3ButO) suitable for X-ray were obtained from the mixture of 

hexane and ethylacetate.  

5.6.10 Synthesis of HC(OC5H3ButN)(NC5H3ButO)2    

A mixture of HC(OC5H3ButN)3 (200 mg, 1.73 mmol) and camphorsulfonic acid (10 mg, 

0.37 mmol) in anhydrous benzene (ca. 4 mL) was heated at 90 ˚C for 3 hours.  After this 

period, the mixture was lyophilized in vacuo, and the resulting residue was washed 
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with Et2O (ca. 5 mL) and dried in vacuo to yield a white powder of 

HC(OC5H3ButN)(NC5H3ButO)2 (100 mg, 50%). Analysis calcd. for 

HC(OC5H3ButN)(NC5H3ButO)2: C, 72.5%; H, 8.0%; N 9.1% Found: C, 72.2%; H, 7.8%; N 

9.1%. 1H NMR (CDCl3): 1.19 [s, 18H of {(CC(CH3)3)(C3H3)N(CO)} 

CH{N(C3H3)(CC(CH3)3)(CO)}2], 1.28 [s, 9H of 

{(CC(CH3)3)(C3H3)N(CO)}CH{N(C3H3)(CC(CH3)3)(CO)}2], 6.23 [dd, 3JH-H = 8, 4JH-H = 2,  2H 

of {(CC(CH3)3)(C3H3)N(CO)}CH{N(C3H3)(CC(CH3)3)(CO)}2], 6.41 [d, 4JH-H = 2, 2H of 

{(CC(CH3)3)(C3H3)N(CO)}CH{N(C3H3)(CC(CH3)3)(CO)}2], 6.95 [br, 2H of 

{(CC(CH3)3)(C3H3)N(CO)}CH{N(C3H3)(CC(CH3)3)(CO)}2], 7.00 [d, 3JH-H = 5, 4JH-H = 2,  1H of 

{(CC(CH3)3)(C3H3)N(CO)}CH{N(C3H3)(CC(CH3)3)(CO)}2], 7.94 [d, 3JH-H = 8, 2H of 

{(CC(CH3)3)(C3H3)N(CO)}CH{N(C3H3)(CC(CH3)3)(CO)}2], 8.08 [d, 3JH-H = 5, 1H of 

{(CC(CH3)3)(C3H3)N(CO)}CH{N(C3H3)(CC(CH3)3)(CO)}2], 8.60 [s, 1H of 

{(CC(CH3)3)(C3H3)N(CO)}CH{N(C3H3)(CC(CH3)3)(CO)}2]. 13C{1H} NMR (CDCl3): 29.7 [6C 

of {(CC(CH3)3)(C3H3)N(CO)}CH{N(C3H3)(CC(CH3)3)(CO)}2], 30.6 [3C of 

{(CC(CH3)3)(C3H3)N(CO)}CH{N(C3H3)(CC(CH3)3)(CO)}2], 35.1 [2C of 

{(CC(CH3)3)(C3H3)N(CO)}CH{N(C3H3)(CC(CH3)3)(CO)}2], 35.1 [1C of 

{(CC(CH3)3)(C3H3)N(CO)}CH{N(C3H3)(CC(CH3)3)(CO)}2], 88.1 [1C of 

{(CC(CH3)3)(C3H3)N(CO)}CH{N(C3H3)(CC(CH3)3)(CO)}2], 104.4 [2C of 

{(CC(CH3)3)(C3H3)N(CO)}CH{N(C3H3)(CC(CH3)3)(CO)}2], 107.9[1C of 

{(CC(CH3)3)(C3H3)N(CO)}CH{N(C3H3)(CC(CH3)3)(CO)}2], 116.1 [2C of 

{(CC(CH3)3)(C3H3)N(CO)}CH{N(C3H3)(CC(CH3)3)(CO)}2], 117.2 [1C of 
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{(CC(CH3)3)(C3H3)N(CO)}CH{N(C3H3)(CC(CH3)3)(CO)}2], 135.2 [2C of 

{(CC(CH3)3)(C3H3)N(CO)}CH{N(C3H3)(CC(CH3)3)(CO)}2], 146.6 [C of 

{(CC(CH3)3)(C3H3)N(CO)}CH{N(C3H3)(CC(CH3)3)(CO)}2], 160.6 [1C of 

{(CC(CH3)3)(C3H3)N(CO)}CH{N(C3H3)(CC(CH3)3)(CO)}2], 162.8 [2C of 

{(CC(CH3)3)(C3H3)N(CO)}CH{N(C3H3)(CC(CH3)3)(CO)}2], 164.3 [2C of 

{(CC(CH3)3)(C3H3)N(CO)}CH{N(C3H3)(CC(CH3)3)(CO)}2], 164.7 [1C of 

{(CC(CH3)3)(C3H3)N(CO)}CH{N(C3H3)(CC(CH3)3)(CO)}2]. FAB-MS: m/z = 464.4 [M+1]+, M 

= HC(OC5H3ButN)(NC5H3ButO)2. IR Data (ATR, cm-1): 2964 (m), 2870 (w), 1666 (vs), 1598 

(s), 1553 (m), 1530 (m), 1481 (m), 1406 (m), 1362 (m), 1326 (w), 1299 (w), 1277 (m), 1248 

(m),  1224 (m), 1188 (m), 1122 (m), 1103 (m), 1062 (m), 1044 (s), 1022 (m), 954 (m), 927 (s), 

867 (m), 833 (w), 792 (m), 779 (m), 743 (w), 689 (m), 663 (w), 557 (m), 525 (m), 463 (m). 

Colorless crystals of HC(OC5H3ButN)2(NC5H3ButO)2 suitable for X-ray were obtained 

from acetone solution. 

5.6.11 Synthesis of HC(NC5H3ButO)3  

A mixture of HC(OC5H3ButN)3 (800 mg, 1.73 mmol) and camphorsulfonic acid (85 mg, 

0.37 mmol) in anhydrous toluene (ca. 5 mL) and THF (ca. 2 mL) was heated at 178 ˚C for 

5 days.  After this period, the mixture was allowed to cool to room temperature thereby 

resulting in the formation of an off-white precipitate.  The mixture was filtered and the 

precipitate was washed with Et2O (2 u 3 mL) and dried in vacuo to yield 

HC(NC5H3ButO)3, [TpomBut]H, as an off-white powder (300 mg, 38%).  Analysis calcd. 
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for HC(NC5H3ButO)3: C, 72.5%; H, 8.0%; N 9.1% Found: C, 71.7%; H, 7.8%; N 8.8%. 1H 

NMR (CDCl3): 1.22 [s, 27H of CH{N(C3H3)(CC(CH3)3)(CO)}3], 6.26 [dd, 3JH-H = 8, 4JH-H = 2,  

3H of CH{N(C3H3)(CC(CH3)3)(CO)}3], 6.46 [d, 4JH-H = 2,  3H of 

CH{N(C3H3)(CC(CH3)3)(CO)}3], 7.40 [d, 3JH-H = 8, 3H of CH{N(C3H3)(CC(CH3)3)CO)}3], 

8.37 [s, 1H of CH{N(C3H3)(CC(CH3)3)(CO)}3]. 13C{1H} NMR (CDCl3): 29.6 [9C of 

CH{N(C3H3)(CC(CH3)3)(CO)}3], 35.2 [3C of CH{N(C3H3)(CC(CH3)3)(CO)}3], 79.1 [1C of 

CH{N(C3H3)(CC(CH3)3)(CO)}3], 105.8 [3C of CH{N(C3H3)(CC(CH3)3)(CO)}3], 116.3 [3C of 

CH{N(C3H3)(CC(CH3)3)(CO)}3], 134.4 [3C of CH{N(C3H3)(CC(CH3)3)(CO)}3], 162.4 [3C of 

CH{N(C3H3)(CC(CH3)3)(CO)}3], 164.6 [3C of CH{N(C3H3)(CC(CH3)3)(CO)}3].  MS: m/z = 

464.3 [M+1]+, M = HC(NC5H3ButO)3.  IR Data (ATR, cm-1): 3089 (w), 2967 (m), 2869 (w), 

1666 (vs), 1597 (s), 1530 (m), 1475 (m), 1388 (m), 1368 (w), 1317 (w), 1249 (s), 1193 (s),  

1118 (m),  1074 (m), 1023 (m), 955 (s), 885 (w), 858 (m), 796 (m), 779 (s), 743 (w),  688 (s), 

621 (w), 603 (w), 568 (m), 552 (m), 526 (m), 466 (m).  Colorless crystals of 

HC(NC5H3ButO)3 suitable for X-ray were obtained from MeOH.  

5.6.12 Synthesis of [N3-Tpom]ZnN(SiMe3)2   

A mixture of [Tpom]H (18.0 mg, 0.06 mmol) and Zn[N(SiMe3)2]2 (20.0 mg, 0.05 mmol)  in 

C6D6 (ca. 2 mL) was heated for 3 weeks at 130 ˚C in an NMR tube equipped with a J. 

Young valve.  The mixture was lyophilized and the residue obtained was extracted with 

Et2O (ca. 2 mL).  The extract was cooled to -15 ˚C,  thereby  depositing  colorless crystals 

of [N3-Tpom]ZnN(SiMe3)2, suitable for X-ray diffraction (10.0 mg, 32%). 1H NMR (C6D6): 
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0.58 [s, 18H of {(CH3)3Si}2NZnC{N(C4H4)(CO)}3],  5.45  [“dt”, 3JH-H = 7, 4JH-H = 2,   3H of 

{(CH3)3Si}2NZnC{N(C4H4)(CO)}3], 6.38 [m, 3H of {(CH3)3Si}2NZnC{N(C4H4)(CO)}3], 6.48 

[m, 3H of {(CH3)3Si}2NZnC{N(C4H4)(CO)}3], 6.55 [m, 3H of 

{(CH3)3Si}2NZnC{N(C4H4)(CO)}3]. 13C{1H} NMR (C6D6): 5.8 [6C of 

{(CH3)3Si}2NZnC{N(C4H4)(CO)}3], 75.2 [1C of {(CH3)3Si}2NZnC{N(C4H4)(CO)}3], 108.1 [3C 

of {(CH3)3Si}2NZnC{N(C4H4)(CO)}3], 120.8 [3C of {(CH3)3Si}2NZnC{N(C4H4)(CO)}3], 133.0 

[3C of {(CH3)3Si}2NZnC{N(C4H4)(CO)}3], 139.2 [3C of {(CH3)3Si}2NZnC{N(C4H4)(CO)}3], 

164.2 [3C of {(CH3)3Si}2NZnC{N(C4H4)(CO)}3]. 

5.6.13 Synthesis of [N4-TpomBut]Zn[N(SiMe3)2]  

A mixture of [TpomBut]H (30.0 mg, 0.06 mmol) and Zn[N(SiMe3)2]2 (30.0 mg, 0.08 mmol) 

in C6D6 (ca. 1.2 mL) in an NMR tube equipped with a J. Young valve was heated at 120 

˚C for one week.  After this period, the mixture was allowed to cool to room 

temperature, during which period large colorless crystals of [N4-TpomBut]Zn[N(SiMe3)2] 

were deposited (20.0 mg, 45 %).  Crystals of [N4-TpomBut]Zn[N(SiMe3)2] suitable for X-

ray diffraction were obtained from benzene.  Analysis calcd. for [N4-

TpomBut]Zn[N(SiMe3)2]: C, 59.3%; H, 7.9%; N, 8.1% Found: C, 58.9%; H, 7.6%; N 7.9%. 1H 

NMR (C6D6): 0.63 [s, 18H of {(CH3)3Si}2NZnC{N(C3H3)(CC(CH3)3)(CO)}3], 0.85 [s, 27H of 

{(CH3)3Si}2NZnC{N(C3H3)(CC(CH3)3)(CO)}3], 5.79 [dd, 3JH-H = 8, 4JH-H = 2,  3H of 

{(CH3)2Si}2NZnC{N(C3H3)(CC(CH3)3)(CO)}3], 6.65 [d, 4JH-H = 2, 3H of 

{(CH3)2Si}2NZnC{N(C3H3)(CC(CH3)3)(CO)}3], 6.93 [d, 3JH-H = 8, 3H of 
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{(CH3)2Si}2NZnC{N(C3H3)(CC(CH3)3)(CO)}3]. 13C{1H} NMR (C6D6): 5.9 [6C of 

{(CH3)3Si}2NZnC{N(C3H3)(CC(CH3)3)(CO)}3], 29.3 [9C of 

{(CH3)3Si}2NZnC{N(C3H3)(CC(CH3)3)(CO)}3], 34.7 [3C of 

{(CH3)2Si}2NZnC{N(C3H3)(CC(CH3)3)(CO)}3], 74.9 [1C of 

{(CH3)2Si}2NZnC{N(C3H3)(CC(CH3)3)(CO)}3], 107.2 [3C of 

{(CH3)2Si}2NZnC{N(C3H3)(CC(CH3)3)(CO)}3], 116.0 [3C of 

{(CH3)2Si}2NZnC{N(C3H3)(CC(CH3)3)(CO)}3], 132.7 [3C of 

{(CH3)2Si}2NZnC{N(C3H3)(CC(CH3)3)(CO)}3], 163.3 [3C of 

{(CH3)2Si}2NZnC{N(C3H3)(CC(CH3)3)(CO)}3], 164.7 [3C of 

{(CH3)2Si}2NZnC{N(C3H3)(CC(CH3)3)(CO)}3]. 

5.6.14 Synthesis of [N4-TpomBut]ZnOC6H4But   

A mixture of [N4-TpomBut]Zn[N(SiMe3)2] (30.0 mg, 0.04) and 4-t-butylphenol (6.5 mg, 0.04 

mmol) was treated with benzene (ca. 6 mL) and stirred for 10 minutes at room 

temperature.  After this period, the mixture was centrifuged and the supernatant was 

decanted. Toluene (ca. 5 mL) was added and the mixture was stirred for few minutes. 

Then mixture was centrifuged and the supernatant was decanted. The washing 

procedure was repeated with pentane (ca. 5 mL) and the residue dried in vacuo to yield 

[N4-TpomBut]ZnOC6H4But as white powder (15 mg, 51%).  Crystals of [N4-

TpomBut]ZnOC6H4But suitable for X-ray diffraction were obtained from CH2Cl2.  

Analysis calcd. for [N4-TpomBut]ZnOC6H4But•0.7CH2Cl2: C, 63.1%; H, 6.9%; N, 5.7% 
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Found: C, 62.9%; H, 7.0%; N 5.3%. 1H NMR (CD2Cl2): 1.25 [s, 27H of 

(CH3)3CC(C2H2)2COZnC{N(C3H3)(CC(CH3)3)(CO)}3], 1.27 [s, 9H of 

(CH3)3CC(C2H2)2COZnC{N(C3H3)(CC(CH3)3)(CO)}3], 6.56 [d, 3JH-H = 7,  3H of 

(CH3)3CC(C2H2)2COZnC{N(C3H3)(CC(CH3)3)(CO)}3], 6.67 [d, 3JH-H = 6, 2H of 

(CH3)3CC(C2H2)2COZnC{N(C3H3)(CC(CH3)3)(CO)}3], 6.79 [br, 3H of 

(CH3)3CC(C2H2)2COZnC{N(C3H3)(CC(CH3)3)(CO)}3], 7.07 [d, 3JH-H = 6, 2H of 

(CH3)3CC(C2H2)2COZnC{N(C3H3)(CC(CH3)3)(CO)}3], 7.48 [d, 3JH-H = 7, 3H of 

(CH3)3CC(C2H2)2COZnC{N(C3H3)(CC(CH3)3)(CO)}3]. 13C{1H} NMR (CD2Cl2): 29.7 [9C of 

(CH3)3CC(C2H2)2COZnC{N(C3H3)(CC(CH3)3)(CO)}3], 32.0 [3C of 

(CH3)3CC(C2H2)2COZnC{N(C3H3)(CC(CH3)3)(CO)}3], 33.9 [1C of 

(CH3)3CC(C2H2)2COZnC{N(C3H3)(CC(CH3)3)(CO)}3], 35.5 [3C of 

(CH3)3CC(C2H2)2COZnC{N(C3H3)(CC(CH3)3)(CO)}3], 109.4 [3C of 

(CH3)3CC(C2H2)2COZnC{N(C3H3)(CC(CH3)3)(CO)}3], 115.7 [3C of 

(CH3)3CC(C2H2)2COZnC{N(C3H3)(CC(CH3)3)(CO)}3], 118.6 [2C of 

(CH3)3CC(C2H2)2COZnC{N(C3H3)(CC(CH3)3)(CO)}3], 126.0 [2C of 

(CH3)3CC(C2H2)2COZnC{N(C3H3)(CC(CH3)3)(CO)}3], 133.9 [3C of 

(CH3)3CC(C2H2)2COZnC{N(C3H3)(CC(CH3)3)(CO)}3], 165.2 [3C of 

(CH3)3CC(C2H2)2COZnC{N(C3H3)(CC(CH3)3)(CO)}3], 165.9 [3C of 

(CH3)3CC(C2H2)2COZnC{N(C3H3)(CC(CH3)3)(CO)}3], not observed [1C of 

(CH3)3CC(C2H2)2COZnC{N(C3H3)(CC(CH3)3)(CO)}3] , not observed [1C of 

(CH3)3CC(C2H2)2COZnC{N(C3H3)(CC(CH3)3)(CO)}3]. 
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5.6.15 Synthesis of [TpomBut]Tl  

A mixture of [TpomBut]H (10 mg, 0.02 mmol) and TlN(SiMe3)2 (20 mg, 0.05 mmol) was 

treated with C6D6 (ca. 1 mL) in an NMR tube equipped with a J. Young valve and 

monitored by 1H NMR spectroscopy.  The mixture was shaken occasionally and, after a 

period of 4 days, the solvent was lyophilized. The solid obtained was washed with 

pentane (ca. 2 mL) and dried in vacuo to give [TpomBut]Tl as an amber solid (7.0 mg, 

49%).  Crystals of [TpomBut]Tl suitable for X-ray diffraction were obtained by slow 

diffusion of hexane into a toluene solution, whereas crystals of {[TpomBut]Tl}2 suitable 

for X-ray diffraction were obtained by the slow diffusion of pentane into a benzene 

solution.  1H NMR (C6D6): 0.95 [s, 27H of TlC{N(C3H3)(CC(CH3)3)(CO)}3], 5.75 [dd, 3JH-H = 

8, 4JH-H = 2,  3H of TlC{N(C3H3)(CC(CH3)3)(CO)}3], 6.62 [d, 4JH-H = 2, 3H of 

TlC{N(C3H3)(CC(CH3)3)(CO)}3], 6.78 [d, 3JH-H = 8, 3H of TlC{N(C3H3)(CC(CH3)3)(CO)}3]. 

13C{1H} NMR (C6D6): 29.6 [ 9C of TlC{N(C3H3)(CC(CH3)3)(CO)}3], 34.6 [3C of 

TlC{N(C3H3)(CC(CH3)3)(CO)}3], 107.1 [3C of TlC{N(C3H3)(CC(CH3)3)(CO)}3], 117.3 [3C of 

TlC{N(C3H3)(CC(CH3)3)(CO)}3], 133.9 [3C of TlC{N(C3H3)(CC(CH3)3)(CO)}3], 161.4 [3C of 

TlC{N(C3H3)(CC(CH3)3)(CO)}3], 164.2 [3C of TlC{N(C3H3)(CC(CH3)3)(CO)}3].  The self-

diffusion constant for [TpomBut]Tl was determined by pulsed gradient spin-echo (PGSE) 

diffusion NMR spectroscopic experiments employing the Bruker stebpg1s pulse 

sequence, and the value of 6.27 u 10–10 m2s–1 is comparable to that of [TpomBut]H, 6.43 u 

10–10 m2s–1, indicating that both molecules have similar hydrodynamic radii and that 

[TpomBut]Tl is a monomer in toluene solution. 
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5.7 Crystallographic Data 

Table 3. Crystal, intensity collection and refinement data. 

 HC(OC5H4N)3 

 
HC(OC5H4N)2(NC5H4O) 

lattice Monoclinic Orthorhombic 
formula C16H13N3O3 C16H13N3O3 
formula weight 295.29 295.29 
space group P21/c P212121 

a/Å 8.9795(16) 8.3122(3) 
b/Å 9.7068(18) 10.8507(5) 
c/Å 16.817(3) 15.4823(6) 
D/˚ 90 90 
E/˚ 92.703(3) 90 
J/˚ 90 90 
V/Å3 1464.2(5) 1396.40(10) 
Z 4 4 
temperature (K) 125(2) 125(2) 
radiation (O, Å) 0.71073 0.71073 
U (calcd.), g cm-3 1.340 1.405 
P (Mo KD), mm-1 0.095 0.100 
T�max, deg. 30.65 32.52 
no. of data 
collected 

23167 24271 

no. of data used 4514 4914 
no. of parameters 200 200 
R1 [I > 2V(I)] 0.0539 0.0400 
wR2 [I > 2V(I)] 0.0854 0.0870 
R1 [all data] 0.1566 0.0552 
wR2 [all data] 0.1101 0.0942 
GOF 1.000 1.018 
Rint 0.1240 0.0390 
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Table 3. (cont.) Crystal, intensity collection and refinement data. 

 HC(OC5H4N)(NC5H4O)2 [Tpom]H 

 
lattice Monoclinic Trigonal 
formula C16H13N3O3 C16H13N3O3 
formula weight 295.29 295.29 
space group P21 R3 

a/Å 8.439(3) 15.486(3) 
b/Å 9.654(4) 15.486(3) 
c/Å 9.538(4) 5.0769(11) 
D/˚ 90 90 
E/˚ 112.338(5) 90 
J/˚ 90 120 
V/Å3 718.8(4) 1054.4(4) 
Z 2 3 
temperature (K) 125(2) 125(2) 
radiation (O, Å) 0.71073 0.71073 
U (calcd.), g cm-3 1.364 1.395 
P (Mo KD), mm-1 0.097 0.099 
T�max, deg. 32.36 31.64 
no. of data 
collected 

11954 5315 

no. of data used 4795 1540 
no. of parameters 200 67 
R1 [I > 2V(I)] 0.0418 0.0404 
wR2 [I > 2V(I)] 0.0926 0.1037 
R1 [all data] 0.0661 0.0451 
wR2 [all data] 0.1037 0.1063 
GOF 1.030 1.060 
Rint 0.0407 0.0380 
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Table 3. (cont.) Crystal, intensity collection and refinement data. 

 4-t-butyl-2-pyridone 
 

HC(OC5H3ButN)3 

lattice Triclinic Monoclinic 
formula C9H13NO C28H37N3O3 
formula weight 151.20 463.61 
space group P-1 P21/n 

a/Å 6.356(3) 11..3797(11) 
b/Å 7.596(3) 16.8458(15) 
c/Å 9.433(4) 13.7187(13) 
D/˚ 81.064(6) 90 
E/˚ 81.376(6) 100.3940(10) 
J/˚ 73.737(6) 90 
V/Å3 429.2(3) 2586.7(4) 
Z 2 4 
temperature (K) 170(2) 150(2) 
radiation (O, Å) 0.71073 0.71073 
U (calcd.), g cm-3 1.170 1.190 
P (Mo KD), mm-1 0.076 0.078 
T�max, deg. 30.78 32.17 
no. of data 
collected 

6914 43981 

no. of data used 2644 8926 
no. of parameters 107 316 
R1 [I > 2V(I)] 0.0552 0.0608 
wR2 [I > 2V(I)] 0.1302 0.1457 
R1 [all data] 0.1121 0.1242 
wR2 [all data] 0.1560 0.1723 
GOF 1.019 1.066 
Rint 0.0460 0.0711 
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Table 3. (cont.) Crystal, intensity collection and refinement data. 

 HC(OC5H3ButN)2(NC5H3

ButO) 

HC(OC5H3ButN)(NC5H3

ButO)2 
lattice Triclinic Monoclinic 
formula C28H37N3O3 C28H37N3O3 
formula weight 463.61 463.61 
space group P-1 P21/c 

a/Å 10.340(4) 11.7988(16) 
b/Å 11.806(5) 19.007(3) 
c/Å 12.079(8) 11.9442(16) 
D/˚ 104.041(7) 90 
E/˚ 94.552(7) 103.317(2) 
J/˚ 114.598(5) 90 
V/Å3 1273.1(11) 2606.5(6) 
Z 2 4 
temperature (K) 150(2) 130(2) 
radiation (O, Å) 0.71073 0.71073 
U (calcd.), g cm-3 1.209 1.181 
P (Mo KD), mm-1 0.079 0.077 
T�max, deg. 25.35 30.88 
no. of data 
collected 

10667 41584 

no. of data used 4616 8145 
no. of parameters 305 316 
R1 [I > 2V(I)] 0.0876 0.0681 
wR2 [I > 2V(I)] 0.1053 0.1459 
R1 [all data] 0.2268 0.1363 
wR2 [all data] 0.1230 0.1765 
GOF 1.032 1.020 
Rint 0.1628 0.0852 
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Table 3. (cont.) Crystal, intensity collection and refinement data. 

 [TpomBut]H [N3-Tpom]Zn[N(SiMe3)2] 
 

lattice Monoclinic Triclinic 
formula C28H37N3O3 C26H40N4O4Si2Zn 
formula weight 463.61 594.17 
space group P21/c P-1 

a/Å 11.8366(15) 10.347(3) 
b/Å 18.801(2) 10.513(3) 
c/Å 12.2176(16) 15.117(17) 
D/˚ 90 102.776(5) 
E/˚ 106.441(2) 105.658(5) 
J/˚ 90 97.886(5) 
V/Å3 2607.7(6) 1509.9(8) 
Z 4 2 
temperature (K) 150(2) 150(2) 
radiation (O, Å) 0.71073 0.71073 
U (calcd.), g cm-3 1.181 1.307 
P (Mo KD), mm-1 0.077 0.929 
T�max, deg. 30.75 30.63 
no. of data 
collected 

41441 24546 

no. of data used 8080 9236 
no. of parameters 316 342 
R1 [I > 2V(I)] 0.0569 0.0508 
wR2 [I > 2V(I)] 0.1401 0.0768 
R1 [all data] 0.0983 0.1087 
wR2 [all data] 0.1628 0.0905 
GOF 1.023 1.002 
Rint 0.0660 0.0708 
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Table 3. (cont.) Crystal, intensity collection and refinement data. 

 [N4-
TpomBut]Zn[N(SiMe3)2]  

[N4-
TpomBut]ZnOC6H4But  

lattice Orthorhombic Monoclinic 
formula C46H66N4O3Si2Zn C42H57Cl8N3O4Zn 
formula weight 844.58 1016.88 
space group P212121 P21/n 

a/Å 13.8655(11) 14.5805(16) 
b/Å 15.0021(12) 14.0968(15) 
c/Å 22.8550(18) 24.168(3) 
D/˚ 90 90 
E/˚ 90 93.703(2) 
J/˚ 90 90 
V/Å3 4754.1(7) 4957.2(9) 
Z 4 4 
temperature (K) 150(2) 150(2) 
radiation (O, Å) 0.71073 0.71073 
U (calcd.), g cm-3 1.180 1.363 
P (Mo KD), mm-1 0.608 0.968 
T�max, deg. 30.55 24.71 
no. of data 
collected 

76604 43118 

no. of data used 14503 8462 
no. of parameters 520 535 
R1 [I > 2V(I)] 0.0361 0.0690 
wR2 [I > 2V(I)] 0.0797 0.1524 
R1 [all data] 0.0536 0.1269 
wR2 [all data] 0.0877 0.1723 
GOF 1.019 1.133 
Rint 0.0473 0.1209 
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Table 3. (cont.) Crystal, intensity collection and refinement data. 

 [TpomBut]Tl 

 
{[TpomBut]Tl}2 

 
lattice Trigonal Monoclinic 
formula C28H36N3O3Tl C56H72N6O6Tl2 
formula weight 666.97 1333.94 
space group R-3 P21/n 

a/Å 15.492(4) 11.9498(15) 
b/Å 15.492(4) 10.7516(13) 
c/Å 19.782(5) 21.365(3) 
D/˚ 90 90 
E/˚ 90 92.803(2) 
J/˚ 120 90 
V/Å3 4111.6(16) 2741.7(6) 
Z 6 2 
temperature (K) 130(2) 150(2) 
radiation (O, Å) 0.71073 0.71073 
U (calcd.), g cm-3 1.616 1.616 
P (Mo KD), mm-1 5.925 5.924 
T�max, deg. 30.70 32.03 
no. of data 
collected 

21563 46294 

no. of data used 2818 9456 
no. of parameters 109 325 
R1 [I > 2V(I)] 0.0383 0.0319 
wR2 [I > 2V(I)] 0.0873 0.0720 
R1 [all data] 0.0508 0.0522 
wR2 [all data] 0.0927 0.0784 
GOF 1.030 1.030 
Rint 0.0739 0.0442 
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Table 4. Cartesian coordinates for geometry optimized structures of [TpomBut]Tl. 

[TpomBut]Tl 

-1480.69342327206 Hartrees    

atom x y z 
Tl -0.007073257 -0.005740297 5.696597513 
O 1.934943045 1.277553268 4.495005443 
N 0.524351765 1.278928468 2.669915594 
C -0.00425187 -0.006458295 3.129438362 
C 1.538710846 1.858075805 3.467592075 
C 2.061217616 3.117003615 3.002776322 
H 2.844601074 3.527205422 3.626426019 
C 1.600599825 3.763453864 1.881518183 
C 2.159551246 5.107065595 1.389863846 
C 2.714059091 4.926327838 -0.044756573 
H 1.942341435 4.591971607 -0.744897729 
H 3.525127639 4.19058726 -0.062755344 
H 3.111138772 5.877097766 -0.417599495 
C 1.021478962 6.156473013 1.372989306 
H 0.608376755 6.303490595 2.376206927 
H 0.200199517 5.86226972 0.712517564 
H 1.404239112 7.120070512 1.018358512 
C 3.29381858 5.631682083 2.288558761 
H 2.951856816 5.804964372 3.313881573 
H 3.663162964 6.585141224 1.896683764 
H 4.139483402 4.937106735 2.322482743 
C 0.543957854 3.13758469 1.151502454 
H 0.113653003 3.599192799 0.270928134 
C 0.054626046 1.932135655 1.559382558 
H -0.747231903 1.437461858 1.026064248 
O -2.077824626 1.06859008 4.472081143 
N -1.380502852 -0.186883669 2.666728642 
C -2.386740099 0.422542241 3.45389206 
C -3.738362187 0.249550069 2.988332828 
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H -4.482886023 0.738135911 3.603072726 
C -4.071575235 -0.486887245 1.877258657 
C -5.51543148 -0.668587464 1.384938468 
C -5.627945527 -0.112144103 -0.055939262 
H -4.954299872 -0.625988818 -0.748576601 
H -5.387716518 0.956020468 -0.084456314 
H -6.649760239 -0.23949879 -0.430624269 
C -5.867102903 -2.176276852 1.38244938 
H -5.793993766 -2.598349569 2.39003085 
H -5.204547062 -2.752303011 0.72937179 
H -6.893197422 -2.322050192 1.026474686 
C -6.534002613 0.06859144 2.273663217 
H -6.518505238 -0.303569125 3.302986457 
H -7.54440146 -0.085229014 1.880757664 
H -6.347917562 1.147250961 2.296781843 
C -3.004689231 -1.108236296 1.15872644 
H -3.191895579 -1.723099416 0.28661202 
C -1.715060779 -0.933402335 1.566243465 
H -0.888774824 -1.394472435 1.040329207 
O 0.154934838 -2.332592717 4.489036582 
N 0.844555822 -1.103563485 2.662812326 
C 0.852949748 -2.27214517 3.460533136 
C 1.694176265 -3.344742075 2.995027539 
H 1.671138609 -4.227058051 3.621065663 
C 2.480547332 -3.261451282 1.871807635 
C 3.38144461 -4.405135069 1.382002002 
C 2.948616565 -4.809257793 -0.04890603 
H 3.026634357 -3.975346453 -0.75324801 
H 1.912122719 -5.162800209 -0.060638945 
H 3.586675615 -5.618672624 -0.42089456 
C 4.851211726 -3.919105366 1.356739594 
H 5.183654006 -3.622994487 2.357004415 
H 4.989991909 -3.062307777 0.690481352 
H 5.507040359 -4.723379743 1.004786947 
C 3.294002356 -5.647082182 2.287131302 
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H 3.615675307 -5.42719134 3.310105507 
H 3.947357353 -6.434081289 1.89617418 
H 2.27680582 -6.050115678 2.327299806 
C 2.447651784 -2.035782425 1.138284025 
H 3.056269669 -1.888400813 0.254248152 
C 1.638542698 -1.017775209 1.547542893 
H 1.598409236 -0.078133321 1.011389272 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 



250 

5.8 References and Notes. 

                                                 

(1) (a) Scorpionates – The Coordination Chemistry of Polypyrazolylborate Ligands, S. 

Trofimenko, Imperial College Press, London, 1999. (b) Scorpionates II: Chelating 

Borate Ligands, C. Pettinari, Imperial College Press, London, 2008.  

 

(2) (a) Spicer, M. D.; Reglinski, J. Eur. J. Inorg. Chem. 2009, 1553-1574. (b) Parkin, G. 

New J. Chem. 2007, 31, 1996-2014. (c) Smith, J. M. Comm. Inorg. Chem. 2008, 29, 189-

233. (d) Riordan, C. G. Coord. Chem. Rev. 2010, 254, 1815-1825.  

 

(3) (a) Limberg, C.  Eur. J. Inorg. Chem. 2007, 3303-3314. (b) Quadrelli, E. A.; Basset, J. 

M.  Coord. Chem. Rev. 2010, 254, 707-728. (c) Floriani, C.  Chem. Eur. J. 1999, 5, 19-

23. 

 

(4) (a) Salinier, V.; Corker, J. M.; Lefebvre, F.; Bayard, F.; Dufaud, V.; Basset, J. M.  

Adv. Synth. Catal. 2009, 351, 2155-2167. (b) Salinier, V.; Niccolai, G. P.; Dufaud, V.; 

Basset, J. M.  Adv. Synth. Catal. 2009, 351, 2168-2177. 

 

(5) (a) Kläui, W.; Asbahr, H. O.; Schramm, G.; Englert, U. Chem. Ber. 1997, 130, 1223 

1229. (b) Leung, W. -H.; Zhang, Q. -F.; Yi, X. -Y.; Coord. Chem. Rev., 2007, 251, 

2266-2279. (c) Kläui, W. Angew. Chem. Int. Ed. Engl., 1990, 29, 627-637.  

 

(6) (a) Roesky, H. W.; Gries, T.; Dhathathreyan, K. S.; Lueken, H.  Z. Anorg. Allg. 

Chem. 1987, 547, 199-204. (b) Roesky, H. W.; Djarrah, H.; Thomas, M.; Krebs, B.; 

Henkel, G.  Z. Naturforsch. 1983, 38B, 168-171.  

 



251 

                                                                                                                                                             

(7) (a) Dinger, M. B.; Scott, M. J.  Eur. J. Org. Chem. 2000, 2467-2478. (b) Dinger, M. B.; 

Scott, M. J.  Inorg. Chem. 2000, 39, 1238-1254. (c) Dinger, M. B.; Scott, M. J.  Inorg. 

Chem. 2001, 40, 856-864. (d) Akagi, F.; Matsuo, T.; Kawaguchi, H.  J. Am. Chem. 

Soc. 2005, 127, 11936-11937. (e) Akagi, F.; Matsuo, T.; Kawaguchi, H.  Angew. 

Chem. Int. Ed. Engl. 2007, 46, 8778-8781. (f) Chaplin, A. B.; Harrison, J. A.; Nielson, 

A. J.; Shen, C.; Waters, J. M.  Dalton Trans. 2004, 2643-2648. (g) Müller, E.; Bürgi, 

H.-B.  Helv. Chim. Acta 1987, 70, 499-510. (h) Müller, E.; Bürgi, H.-B.  Helv. Chim. 

Acta 1987, 70, 511-519. (i) Müller, E.; Bürgi, H.-B. Helv. Chim. Acta 1987, 70, 520-

533. (j) Müller, E.; Bürgi, H.-B. Helv. Chim. Acta 1987, 70, 1063-1069.  

(k) Michalczyk, L.; de Gala, S.; Bruno, J. W. Organometallics 2001, 20, 5547-5556. 

(l) Paz-Sandoval, M. A.; Fernández-Vincent, C.; Uribe, G.; Contreras, R.; Klaebe, 

A. Polyhedron 1988, 7, 679-684. (m) Livant, P.; Northcott, J.; Webb, T. R. J. 

Organomet. Chem. 2001, 620, 133-138. (n) Tanski, J. M.; Kelly, B. V.; Parkin, G. 

Dalton Trans. 2005, 2442-2447. (o) Kelly, B. V.; Tanski, J. M.; Anzovino, M. B.; 

Parkin, G.  J. Chem. Crystallogr. 2005, 35, 969-981. (p) Yasuda, M.; Nakajima, H.; 

Takeda, R.; Yoshioka, S.; Yamasaki, S.; Chiba, K.; Baba, A.  Chem. Eur. J. 2011, 17, 

3856-3867.  

 

(8) Kobayashi, J.; Goto, K.; Kawashima, T.; Schmidt, M. W.; Nagase, S.   J. Am. Chem. 

Soc. 2002, 124, 3703-3712.   

 

(9) (a) Verkade, J. G.  Coord. Chem. Rev. 1994, 137, 233-295. (b) Verkade, J. G.  Acc. 

Chem. Res. 1993, 26, 483-489.  

 

(10) (a) Kawaguchi, H.; Matsuo, T.  J. Organomet. Chem. 2004, 689, 4228-4243. (b)  

Kelly, B. V.; Weintrob, E. C.; Buccella, D.; Tanski, J. M.; Parkin, G.  Inorg. Chem. 



252 

                                                                                                                                                             

Commun. 2007, 10, 699-704. (c) Tong, L. H.; Wong, Y. L.; Lee, H. K.; Dilworth, J. R.  

Inorg. Chim. Acta 2012, 383, 91-97. (d) Worl, S.; Hellwinkel, D.; Pritzkow, H.; 

Hofmann, M.; Kramer, R.  Dalton Trans. 2004, 2750-2757.  

 

(11) (a) Green, M. L. H.  J. Organomet. Chem. 1995, 500, 127-148. (b) Parkin, G.  in 

Comprehensive Organometallic Chemistry III, Volume 1, Chapter 1.01; Crabtree, R. 

H. and Mingos, D. M. P. (Eds), Elsevier, Oxford, 2006. (c) Green, J. C.; Green, M. 

L. H.; Parkin, G.  Chem. Commun. 2012, 48, 11481-11503. 

 

(12) (a) Verkade, J. G.  Coord. Chem. Rev. 1994, 137, 233-295. (b) Verkade, J. G.  Acc. 

Chem. Res. 1993, 26, 483-489. 

 

(13) (a) Kawaguchi, H.; Matsuo, T.  J. Organomet. Chem. 2004, 689, 4228-4243. 

(b) Kelly, B. V.; Weintrob, E. C.; Buccella, D.; Tanski, J. M.; Parkin, G.  Inorg. 

Chem. Commun. 2007, 10, 699-704. (c) Tong, L. H.; Wong, Y. L.; Lee, H. K.; 

Dilworth, J. R.  Inorg. Chim. Acta 2012, 383, 91-97. (d) Worl, S.; Hellwinkel, D.; 

Pritzkow, H.; Hofmann, M.; Kramer, R.  Dalton Trans. 2004, 2750-2757. 

 

(14)  For other L3X ligands, see: Kuzu, I.; Krummenacher, I.; Meyer, J.; Armbruster, F.; 

Breher, F.  Dalton Trans. 2008, 5836-5865. 

 

(15)  Gwengo, C.; Silva, R. M.; Smith, M. D.; Lindeman, S. V.; Gardinier, J. R.  Inorg. 

Chim. Acta 2009, 362, 4127-4136. 

 

(16) Witzel, B. E.; Shen, T. US Patent #3,654,291 (1972).  

 



253 

                                                                                                                                                             

(17) Bell, Z. R.; Motson, G. R.; Jeffery, J. C.; McCleverty, J. A.; Ward, M. D. Polyhedron 

2001, 20, 2045-2053.  

 

(18) The zinc center is characterized by a four- 4 geometry index of 0.62, 

such  that  it  is  best  described  as  possessing  a  “see-saw”  geometry.      See:    Yang, L.; 

Powell, D. R.; Houser, R. P. Dalton Trans. 2007, 955-964.  

 

(19) d(Zn–O) = 2.095(2) Å and 2.104(2) Å.  

 

(20)  d(Zn–O) = 2.096(1) Å and 2.179(1) Å. 

 

(21)  Cambridge Structural Database (Version 5.34).  3D Search and Research Using the 

Cambridge Structural Database, Allen, F. H.; Kennard, O. Chemical Design 

Automation News 1993, 8 (1), pp 1 & 31-37. 

 

(22) Sattler, W.; Parkin, G. J. Am. Chem. Soc. 2011, 133, 9708-9711.  

 

(23) As would be expected, these Zn–O bond lengths are longer than that pertaining 

to the zinc-aryloxide interaction (1.89 Å)  

 

(24) (a) Voronkov, M. G. Pure Appl. Chem. 1966, 13, 35-59. (b) Voronkov, M. G.; 

Baryshok, V. P. J. Organomet. Chem. 1982, 239, 199-249. (c) Woronkow, M. G.; 

Seltschan, G. I.; Lapsina, A.; Pestunowitschich, W. A. Z. Chem. 1968, 8, 214-217.  

 

(25) (a) Hill, A. F.; Owen, G. R.; White, A. J. P.; Williams, D. J.  Angew. Chem. Int. Edit. 

1999, 38, 2759-2761. (b) Braunschweig, H.; Dewhurst, R. D.  Dalton Trans. 2011, 



254 

                                                                                                                                                             

40, 549-558. (c) Amgoune, A.; Bourissou, D.  Chem. Commun. 2011, 47, 859-871. 

(d) Parkin, G. Organometallics 2006, 25, 4744-4747.  

 

(26) For some other compounds that can be classified as metallacarbatranes: 

(a) Chakrabarti, N.; Sattler, W.; Parkin, G. Polyhedron 2013, 58, 235-246. 

(b) Rong, Y.; Parkin, G. Aust. J. Chem in press (DOI: 10.1071/CH13263). (c)  

Miyamoto, R.; Santo, R.; Matsushita, T.; Nishioka, T.; Ichimura, A.; Teki, Y.; 

Kinoshita, I.  Dalton Trans. 2005, 3179-3186. (d) Halder, P.; Dey, A.; Paine, T. K.  

Inorg. Chem. 2009, 48, 11501-11503. (e) Vieira, F. T.; de Lima, G. M.; Wardell, J. L.; 

Wardell, S. M. S. V.; Krambrock, K.; Alcantara, A. F. d. C.  J. Organomet. Chem. 

2008, 693, 1986-1990. (f) Pellei, M.; Lobbia, G. G.; Mancini, M.; Spagna, R.; Santini, 

C.  J. Organomet. Chem. 2006, 691, 1615-1621. (g) Miyamoto, R.; Hamazawa, R. T.; 

Hirotsu, M.; Nishioka, T.; Kinoshita, I.; Wright, L. J.  Chem. Commun. 2005, 4047-

4049. (h) Kuwamura, N.; Kato, R.; Kitano, K.; Hirotsu, M.; Nishioka, T.; 

Hashimoto, H.; Kinoshita, I.  Dalton Trans. 2010, 39, 9988-9993.  

 

(27) the sum of the covalent radii of zinc (1.22 Å) and sp3 carbon (0.76 Å) is 1.98 Å 

  

(28) Cordero, B.; Gómez, V.; Platero-Prats, A. E.; Revés, M.; Echeverría, J.; Cremades, 

E.; Barragán, F.; Alvarez, S.  Dalton Trans. 2008, 2832–2838.  

 

(29) (a) Sattler, W.; Parkin, G.  Chem. Sci. 2012, 3, 2015-2019. (b) Sattler, W.; Parkin, G.  

J. Am. Chem. Soc. 2012, 134, 17462-17465.  

 

(30) Kitano, K.; Kuwamura, N.; Tanaka, R.; Santo, R.; Nishioka, T.; Ichimura, A.; 

Kinoshita, I. Chem. Commun. 2008, 1314-1316. 



255 

                                                                                                                                                             

  

(31) Janiak, C.  Coord. Chem. Rev. 1997, 163, 107-216. 

  

(32) See, for example, references 31, 33a, and: 

(a) Kristiansson, O.  Eur. J. Inorg. Chem. 2002, 2355-2361. (b) Akhbari, K.; Morsali, 

A.  Coord. Chem. Rev. 2010, 254, 1977-2006. 

 

(33) (a) Wiesbrock, F.; Schmidbaur, H.  J. Am. Chem. Soc. 2003, 125, 3622-3630. (b)  

Childress, M. V.; Millar, D.; Alam, T. M.; Kreisel, K. A.; Yap, G. P. A.; Zakharov, 

L. N.; Golen, J. A.; Rheingold, A. L.; Doerrer, L. H.  Inorg. Chem. 2006, 45, 3864-

3877.  

 

(34) (a) Uhl, W.  Adv. Organomet. Chem. 2004, 51, 53-108. (b) Uhl, W. Rev. Inorg. Chem. 

1998, 18, 239-282.  

 

(35) (a) Rivard, E.; Power, P. P.  Inorg. Chem. 2007, 46, 10047-10064. (b)  Power, P. P.  J. 

Chem. Soc. Dalton Trans. 1998, 2939-2951. (c) Power, P. P.  J. Organomet. Chem. 

2004, 689, 3904-3919. (d) Twamley, B.; Haubrich, S. T.; Power, P. P.  Adv. 

Organomet. Chem. 1999, 44, 1-65. 

  

(36)  Wright, R. J.; Phillips, A. D.; Hino, S.; Power, P. P.  J. Am. Chem. Soc. 2005, 127, 

4794-4799. 

 

(37) Uhl, W.; Keimling, S. U.; Klinkhammer, K. W.; Schwarz, W.  Angew. Chem. Int. 

Edit. Engl. 1997, 36, 64-65.  

 



256 

                                                                                                                                                             

(38) Niemeyer, M.; Power, P. P.  Angew. Chem. Int. Edit. 1998, 37, 1277-1279.  

 

(39) Bylikin, S. Y.; Robson, D. A.; Male, N. A. H.; Rees, L. H.; Mountford, P.; Schröder, 

M.  J. Chem. Soc. Dalton Trans. 2001, 170-180.  

 

(40) Hitchcock, P. B.; Huang, Q.; Lappert, M. F.; Zhou, M.  Dalton Trans. 2005, 2988-

2993.  

 

(41) Ma, G.; Ferguson, M. J.; Cavell, R. G. Chem. Commun. 2010, 46, 5370-5372.  

 

(42)  Yurkerwich, K.; Coleman, F.; Parkin, G.  Dalton Trans. 2010, 39, 6939 – 6942. 

 

(43)  Calculations and NBO analyses were performed by Dr. Yi Rong. 

 

(44) Note that the three N–C–N bond angles of 109.4(3)˚ correspond closely to the 

tetrahedral value.  

 

(45) (a) Bigmore, H. R.; Meyer, J.; Krummenacher, I.; Rugger, H.; Clot, E.; Mountford, 

P.; Breher, F.  Chem. Eur. J. 2008, 14, 5918-5934. (b) Cushion, M. G.; Meyer, J.; 

Health, A.; Schwarz, A. D.; Fernandez, I.; Breher, F.; Mountford, P.  

Organometallics 2010, 29, 1174-1190.  

 

(46) (a) McNally, J. P.; Leong, V. S.; Cooper, N. J. in Experimental Organometallic 

Chemistry, Wayda, A. L.; Darensbourg, M. Y., Eds.; American Chemical Society: 

Washington, DC, 1987; Chapter 2, pp 6-23. (b) Burger, B.J.; Bercaw, J. E. in 

Experimental Organometallic Chemistry; Wayda, A. L.; Darensbourg, M. Y., Eds.; 



257 

                                                                                                                                                             

American Chemical Society: Washington, DC, 1987; Chapter 4, pp 79-98. (c) 

Shriver, D. F.; Drezdzon, M. A. The Manipulation of Air-Sensitive Compounds, 2nd 

Edition; Wiley-Interscience: New York, 1986.   

 

(47) Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; 

Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I.  Organometallics 2010, 29, 2176-2179. 

 

(48) Bochmann, M.; Bwembya, G.; Webb, K. J. Inorg. Synth. 1971, 31, 19-24. 

 

(49)  Klinkhammer, K. W.; Henkel, S. J. Organomet. Chem. 1994, 480, 167-171. 

 

(50) (a) Sheldrick, G. M. SHELXTL, An Integrated System for Solving, Refining and 

Displaying Crystal Structures from Diffraction Data; University of Göttingen, 

Göttingen, Federal Republic of Germany, 1981. (b) Sheldrick, G. M. Acta 

Crystallogr. 2008, A64, 112-122. 

 

(51)  Jaguar 7.6, Schrödinger, LLC, New York, NY 2009. 

 

(52) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652. (b) Becke, A. D. Phys. Rev. A 

1988, 38, 3098-3100. (c) Lee, C. T.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-

789. (d) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200-1211. (e)  

Slater, J. C. Quantum Theory of Molecules and Solids, Vol. 4: The Self-Consistent Field 

for Molecules and Solids; McGraw-Hill: New York, 1974. 

 



258 

                                                                                                                                                             

(53)  (a) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270-283. (b) Wadt, W. R.; Hay, 

P. J. J. Chem. Phys. 1985, 82, 284-298. (c) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 

82, 299-310. 

 

(54) Glendening, E. D.; Badenhoop, J. K.; Reed,  A. E.; Carpenter, J. E.;  Bohmann, J. 

A.; Morales, C. M.; Weinhold, F. (Theoretical Chemistry Institute, University of 

Wisconsin, Madison, WI, 2001); http://www.chem.wisc.edu/~nbo5. 

 

(55) (a) Hall, M. B.; Fenske, R. F. Inorg. Chem. 1972, 11, 768-775. (b) Bursten, B. E.; 

Jensen, J. R.; Fenske, R. F. J. Chem. Phys. 1978, 68, 3320-3321. (c) Manson, J.; 

Webster, C. E.; Pérez, L. M.; Hall, M. B. 

http://www.chem.tamu.edu/jimp2/index.html 

 

(56) Version 2.0, June 1993; Lichtenberger, D. L. Department of Chemistry, University 

of Arizona, Tuscon, AZ 85721. 


