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ABSTRACT 

Expanding Biological Engineering from Single Enzymes to Cellular Pathways 

Nili Ostrov 

 

The emerging field of synthetic biology evolved from biological research much the same 

way synthetic chemistry evolved from chemical research; with accumulated knowledge 

of the structure of single genes and proteins and the methodologies to manipulate them, 

researchers turn to forward engineer complex biological systems to effectively 

manipulate living systems. Much like in the case of enzyme engineering, a rationally 

designed biological network is currently beyond our reach, and we turn to directed 

evolution to circumvent this gap in knowledge. Yet the unique nature of live biological 

networks uncovered new challenges previously unmet by single-gene molecular 

technologies, and extrapolation of current technologies to the manipulation of multi-

component has proven laborious and inefficient.  

To establish engineering technologies for living cells, novel directed evolution techniques 

are sought for that are compatible with simultaneous manipulation of multiple biological 

components in vivo.  In this work, we explore techniques for library DNA mutagenesis in 

the context of single and multiple genes. Chapter 1 provides an overview of the 

challenges in expanding current in vivo directed evolution methods from single enzymes, 

to the design pathways and cells.  Chapter 2 describes the design and characterization of 

an assay for combinatorial directed evolution of a single metabolic enzyme. In Chapter 3 

we present the utilization of our DNA assembly system, Reiterative Recombination, for 

attenuation of metabolic pathways. We use a library of promoters to combinatorially vary 



the expression of genes in the heterologous lycopene biosynthetic pathway in S. 

cerevisiae.  Finally, Chapter 4 explores the calibration of the dynamic range of genetic 

selection, using metabolic enzyme activity as probe for cell survival.  
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1 Chapter outlook 

Throughout history, human societies have continuously sought to harness their 

natural environment seeking better food, health, and shelter. The cultivation of crops and 

breeding of domesticated animals are perhaps the earliest attempts to beneficially shape the 

biological world. It was not until the late 20th century, however, that the powerful tools of 

recombinant DNA technology enabled highly precise manipulation of single genes, 

revolutionizing the way we utilize useful biological systems. Whereas our limited 

understanding of molecular mechanisms hampers true tailoring of biological behavior, 

directed evolution techniques combine rational design with molecular evolution to 

conveniently circumvent this difficulty. Traditionally targeting single genes by way of in 

vitro DNA mutagenesis, directed evolution is currently widely used for the development of 

enzymatic biocatalysts. However, as advances in synthetic biology improve our cell 

engineering capabilities, increasing research efforts are aimed at generating man-made 

networks of molecules that function in vivo for production of low-cost drugs, chemicals 

and energy. Technologies are thus needed to expand directed evolution from single to 

multiple biological components and to be carried out directly in the cell. Here we review 

current methods for in vivo directed evolution in light of the new challenges posed by the 

emerging fields of pathway and whole cell engineering.  
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1.1 In vivo directed evolution   

The field of synthetic biology aims to utilize natural building blocks to make new, 

useful biological tools. Yet our limited understanding of natural molecular systems makes 

rational design of even the simplest biological machine largely unattainable and the 

dynamic nature and complexity of living organisms greatly challenges the well-defined, 

predictable principles of traditional engineering disciplines.  Paradoxically, However, it is 

the same cellular properties that provide us with the most powerful tools for their 

engineering.1  

Laboratory directed evolution is now routinely used to develop improved catalysts 

for pharmaceutical and industrial purposes. It implements a Darwinian optimization cycle 

of DNA mutagenesis and selection by which the fittest variants with a desired phenotype 

are selected from a collection (‘library’) of mutants (Figure 1-1). It is hard to underestimate 

the contribution of recombinant DNA 

technology2 to the improvement of 

directed evolution techniques, enabling 

controlled manipulation of DNA to readily 

produce extensive genetic variation in the 

laboratory. In vitro molecular 

manipulation was fundamental for the 

development of directed evolution, as 

demonstrated by numerous successfully 

evolved biocatalysts.3 However, many of 

the methodologies traditionally used for 

Figure 1-1. Laboratory directed evolution. 

Mutagenesis is applied to increase genetic 

variability. The collection of mutants is 

then amplified and selected for a desired 

property.  
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evolution of single molecules prove laborious and inefficient once challenged by the 

complexity of multiple-component networks. As synthetic biology now pushes the 

boundaries of biological engineering, traditional methodologies for directed evolution face 

new challenged.  

In this chapter we introduce in vivo approaches for directed evolution, starting from 

engineering of single biocatalysts. We then discuss the challenges involved in engineering 

multi-component biological systems such as metabolic pathways and entire cellular 

networks, in light of currently available methodologies. Finally, we present new 

approaches and enabling technologies put forward to address large scale biological design. 

We limit ourselves to the work done in E. coli and S. cerevisiae, the most commonly used 

laboratory host thus far.  

1.2 Technologies for in vivo directed enzyme evolution  

Directed evolution has traditionally been an enzyme-oriented research field.4,5 It 

provides an efficient technological route to an otherwise unattainable challenge – altering 

enzyme functionality without having detailed understanding of its structure-function 

relationship. The overwhelming variety of highly efficient biological catalysts make them 

an extremely attractive technological tool, yet natural enzymes are rarely suitable for 

industrial purposes without adjustments in stability, specificity and efficiency.3 Without 

fundamental understanding of the underlying design rules, recombinant DNA techniques 

alone could not have been used to rationally build a tailor-made enzyme active site. 

However, in the context of laboratory evolution, the capability to efficiently mutate and 

select enzyme functionality allows us to search much beyond the limits of our 
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understanding of biological systems, and explore not only alteration of existing catalysts 

but also the evolution of novel non-natural functions.6  

Considering the ease of manipulation of single-gene fragments by PCR, it is not 

surprising that in vitro DNA mutagenesis is now routinely used to create libraries of 

protein and nucleic acid molecules for directed enzyme evolution.7 In vitro mutagenesis 

techniques for library generation have been developed extensively, and robust methods for 

both random library mutagenesis, such as error prone PCR and DNA shuffling, and 

targeted library mutagenesis, such as cassette mutagenesis, are available today.8,9 The most 

popular in vitro library methods have been thoroughly analyzed for their mutagenesis rate, 

mutational bias, dependence on DNA sequence and length and reproducibility.2,10 This 

comprehensive development and characterization of in vitro library mutagenesis methods 

have made these approaches generally accessible.  

By contrast, in vivo library mutagenesis approaches are less developed and reported 

optimization and characterization of these newer mutagenesis methods is limited. With the 

aim of minimizing experimental effort and maximize catalytic yield, researchers turn back 

to natural systems for new evolution approaches. Below we discuss current methods for in 

vivo mutagenesis and selection of biocatalysts.  

1.2.1 Methods for DNA mutagenesis  

Random mutagenesis. Though we are now able to control DNA mutagenesis at 

single nucleotide precision, in vitro random mutagenesis remains one of the most popular 

approaches for enzyme evolution, simply because it does not require any prior knowledge 

of protein structure or mechanism.11,12 Exhaustive random mutagenesis finds further 
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support in successful evolution experiments where beneficial mutations were found well 

outside of the protein active site.13,14 

While it is widely performed in vitro using PCR,3,14-18 random mutagenesis can also 

be carried out in vivo in ‘mutator’ strains in which one or more of the DNA repair 

components are compromised.19 Accumulation of mutations during DNA replication allow 

very large library size independent of DNA transformation efficiency, as demonstrated for 

both single enzyme20,21 and genomes.22 Nonetheless, repair-deficient strains inevitably 

randomize the host chromosomal DNA at a higher rate, limiting the potential for carrying 

out multiple rounds of mutagenesis and selection without removing the target gene of 

interest from the host strain. Furthermore, the mutagenesis cannot be targeted to residues 

of particular interest.2  

While toxic to the host cell in its current inception, an error-prone DNA 

polymerase engineered by Loeb and co-workers offers a clever strategy for carrying out in 

vivo mutagenesis without chromosomal modification.23 Polymerase I, specifically active in 

the replication of endogenous ColEI plasmids, has been mutated to have 80,000-fold 

increased mutagenesis over the natural enzyme. It was then used to improve beta-

lactamase antibiotic resistance, increasing it 150-fold.  

Significantly, Tsien and co-workers outperformed traditional in vitro mutagenesis 

techniques performing multiple rounds of random in vivo mutagenesis by somatic 

hypermutation. Taking advantage of the fact that the rate of somatic hypermutation, a 

mechanism unique to B cell lines, is 106 times higher than that in the rest of the genome,5 

they demonstrated substantial improvement of a red fluorescent protein variant.24  
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Borrowing a natural mutagenesis approach,  mutation accumulation by neutral drift 

has been used to allow comprehensive examination of sequence space for superior 

mutants.25 In this method, mutagenesis occurs while the original enzyme functionality is 

retained. The accumulation of non-deleterious mutations facilitates diversity that is then 

tested for new properties.26 For example, Tawfik and colleagues showed serum 

paraoxonase and P450 enzymes26 to evolve under neutral drift exhibiting significant 

changes in promiscuous activities and enzyme specificity.27-29 

Targeted Mutagenesis. As we cannot realistically test all possible random 

sequence, targeted mutagenesis is necessary to enrich the variant library with sequences 

that are most likely to produce a functional protein.3 Furthermore, Studies of protein 

tolerance to mutagenesis show each random mutation is more likely to damage then 

enhance catalytic activity, and typically inactivates many of the remaining active protein 

variants30 and disrupts synergistic beneficial mutations.31 In addition, it was found that 

most enzymes inherently carry additional, weaker promiscuous activities that require only 

a small number of mutations to enhance.32,33  

‘Smart’ focused libraries are increasingly being used34 to identify likely sites for 

evolutionary improvement35,36 permitting faster screening of smaller, high quality libraries. 

The recent evolution of transaminase for synthesis of the diabetic drug stagliptin37 using 

homology modeling, site directed mutagenesis and DNA recombination by shuffling 

demonstrate that combination of methods is often advantageous for successful enzymes 

evolution.  

Of the methods available for in vivo targeted mutagenesis, Homologous 

Recombination (HR) is central to diversification of natural systems. Once identified in 
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yeast, DNA recombination quickly became a useful tool for genetic manipulation38,39 40 

and centered much of eukaryotic genetic studies on S. cerevisiae as a model system.10,41 

The highly efficient HR machinery of S. cerevisiae is now routinely used to insert and 

knockout genes for strain and plasmid construction (Figure 1-2).10,39,42-45 Significantly, 

recombination-based mutagenesis methods are also found to be more likely to retain 

synergistic mutations.31  

 

 

A handful of reports exploit HR for library mutagenesis of enzymes. Already in 

1995 Sherman and co-workers used short DNA oligonucleotides to randomized a single 

position in the chromosomal CYC1 gene in yeast.46 Novo Nordisk and others reported the 

use of HR in yeast to shuffle beneficial mutations obtained from previous rounds of 

directed evolution.47-49 Resnick and co-workers have constructed Dellito perfetto, an in 

vivo genetic method for site directed mutagenesis in yeast.50,51 Remarkably, they 

specifically enhanced the efficiency of recombination by induction of DSB upon 

transformation of oligonucleotides,52  reaching recombination efficiency >10% using  

Figure 1-2. Homologous 

recombination for targeted DNA 

mutagenesis. The highly efficient 

homologous recombination 

mechanism in S. cerevisiae can be 

used to target desired sequenced. 

Homology sequences on either 

end of a DNA cassette guide its 

integration at the respective locus.  
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ssDNA to replaces a counter-selectable marker. Furthermore, Wittrup and co-workers 

applied in vivo loop shuffling to engineer a fibronectin variant with picomolar affinity to 

lysozyme.53  

Although naturally less efficient relative to S. cerevisiae, recombination-based 

targeted mutagenesis was successfully demonstrated in E. coli54-60 and mammalian 

systems.45,61-65 The Court laboratory has shown that recombination machinery from 

bacteriophage λ can be used to support efficient recombination in E. coli in a technique 

they call recombineering,66,67 and others have used recET proteins in E. coli to demonstrate 

recombination between linear and circular DNA.68 This technology was further utilized by 

Church and colleagues for high-throughput targeted mutagenesis using short DNA 

nucleotides (see below).      

HR holds the possibility for a simple and powerful technique for in vivo directed 

evolution, offering targeted, well controlled and highly efficient library mutagenesis. Our 

laboratory have previously demonstrated the use of S. cerevisiae recombination 

mechanism for directed evolution of plasmid-borne and  chromosomal targets for the 

engineering of enzymes69 and pathways.70 Ongoing efforts are made to develop a heritable 

recombination system, where the induction of mutagenesis is performed completely in 

vivo. By induction of homing endonucleases, a mutagenic DNA cassette is liberated from 

its carrier plasmid and guided by homologous sequences to recombine with its target gene. 

The process can be iterated multiple times, and beneficial mutations can be further 

accumulated by mating strains carrying different mutagenic libraries. This strategy should 

be extendable to chromosomal modifications in subsequent versions of the technology. 

Looking forward, there is significant potential for the development of diverse approaches 

to in vivo DNA library mutagenesis.  
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1.2.2 Genetic Selection methods  

The numbers game. The complexity of mutagenic libraries quickly increases with 

the number of targeted sites. For example, while one random amino acid exchange in a 

300-aa protein would provide 5,700 different mutants, and with an average of two 

simultaneous exchanges, the number of mutants increases to 16 million.36,71 These 

numbers suggest that the method of isolation step of a desired functional variant from a 

large pool of inactive ones may very well be the bottleneck for a successful evolution 

experiment, pressing the need for efficient, high throughput isolation schemes.  

Functional mutants can be isolated by way of screening individual variants for the 

desired activity, or alternatively by creating the conditions to eliminate all irrelevant 

variants so that only the desired phenotype is observed (Figure 1-3). While in vitro 

screening technologies have greatly improved in recent years, for example by the 

availability of fluorescence activated cell sorting (FACS),72 and these systems eliminate 

cellular limitations on the attainable library size such as transformation efficiency or 

toxicity of proteins, screening becomes more difficult as the variant library size 

increases.5,11 It is when very large variant libraries are tested that selection schemes 

become highly advantageous.73 
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The efficiency of a selection is a function of its throughput, sensitivity, precision 

and dynamic range.33 The most efficient in vivo selection scheme is the one provided by 

cell growth by genetic complementation. In genetic selections, the desired protein 

functionality is connected to cell growth by some detectable phenotype. The coupling of 

functionality to cell growth allows measuring cell fitness through competition, where 

millions of DNA variants are individually expressed in each cell, and active enzymes can 

readily be isolated by a simple growth assay using a defined, controlled selective 

pressure.12,74 Furthermore, identifying an efficient variant involves not only detection of 

protein activity, but also the unique DNA sequence encoding it. Cell-based in vivo assays 

greatly simplify this process by co-compartmentalization of both protein and DNA 

encoding it.6  

Figure 1-3. Selection vs. screen for isolation of a desired phenotype. Screening is 

performed by growing all genetic variants under non selective conditions. The desired 

phenotype is detected by screening all colonies for visible phenotype. Alternatively, 

when subjecting all variants to selective growth conditions, only colonies expressing 

the desired selectable trait are isolated.



12 

 

However, genetic assay are inherently limited to selectable cellular functions, and  

although they offer high throughput (~108 cells), they often display limited sensitivity.33 In 

fact, many desired biological functions are difficult to select for, and high throughput 

screens and selections are often developed for each unique application.33 Our lab has 

reported an in vivo method detecting functional enzymes by coupling catalytic activity to 

expression of selectable reporter gene.75,76 However, as increasingly demanding functions 

are desired by directed evolution, there is much need for new methods for the isolation of 

complex catalytic and cellular functions.   

1.3 Engineering multi-component biological systems  

Biological engineering is broadly applicable and is giving rise to promising 

research in cost effective production of foods, foods, fuels and pharmaceuticals in 

microbial ‘cell factories’,77,78 diagnostics development and drug delivery.79 Recent 

progress in molecular and systems biology has greatly expanded the toolkit available for 

biologists, chemists and engineers to selectively refine not only single genes and proteins, 

but entire living cells. In fact, we are witnessing a shift away from individual enzymatic 

reactions and towards systems of interacting biochemical reactions,80 pushing the 

boundaries of recombinant DNA technology to engineer new and useful biological 

systems.1  

With accumulated knowledge of the structure of single genes and proteins and the 

methodologies to manipulate them, researchers turn to engineer complex biological 

systems to effectively manipulate living systems.81,82 Synthetic biology is therefore distinct 

from traditional molecular biology or genetics in that it is an engineering-driven effort, 
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seeking to make the design and construction of complex biological systems easier, faster, 

cheaper and more efficient.1  

Much like in the case of enzyme engineering, we turn to directed evolution to 

circumvent our gap in knowledge of biological behavior. Yet the unique nature of live 

biological networks uncovered new challenges for which the extrapolation of current 

technologies to multi-component systems has proven not only extremely laborious but also 

inefficient. 

Thus, to accomplish an engineering technology based on living cells79, novel 

systems-level techniques are sought for that are compatible with large complex biological 

systems83 (Figure 1-4). Below, we consider key challenges of systems level engineering, 

and discussion emergent techniques for manipulation of pathways and entire cells.  

1.3.1 Challenges of scaling up directed evolution methods  

The tools used for system-level engineering are often the same ones developed for 

single genes, addressing the entire biological network instead of its constituent parts. Yet 

reductionist methods prove laborious and inefficient and require large-scale and high 

throughput adaptations. Here, we touch upon the main challenges in directed evolution of 

multi-component systems. 

Predictability of biological behavior. Biological systems display a degree of 

modularity that we only partly understand. The inherent sensitivity of biological systems to 

their environment and their natural tendency to mutate and evolve as the environment 

changes is a significant hurdle in the engineering of predictable biological systems, while it 

is also its greatest asset.1 In order to systematically engineer cellular properties, we will 

need a better understanding of the principles governing cellular architecture and regulation. 
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We further need to systematically standardize biological functions and building blocks, an 

effort pioneered by the BioBrick repository for biological parts.79  

Large Scale DNA manipulation. Perhaps the most obvious technical challenge one 

faces for system engineering is the scale of DNA to be manipulated. The length of even the 

simplest designed network may be several thousand base pairs long, and the smallest 

known genome is several million bases.84 This scale of DNA manipulation exceeds the 

currently available vectors and the limits of DNA elongation by PCR and chemical DNA 

synthesis methods.85  Hence, it is often necessary to shift from engineering of small mobile 

genetic elements, such as transposons, DNA cassette and plasmids, to engineering of 

chromosomes, a much more challenging undertaking.  

 

 

Mutagenesis efficiency. The complexity and size of genetic libraries exponentially 

increases with the addition of each new target.36,71 as targeted mutagenesis methods 

Figure 1-4. Expanding single enzyme engineering to multiple-component biological 

systems. As the number of genes and biological complexity increases, less 

technological tools are available for efficient manipulation of DNA and directed 

evolution.  
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become highly inefficient in the context of multiple targets,69,70 simpler, more efficient 

mutagenesis methods are required for rapid and efficient mutagenesis. 

Computational assisted design. metabolic engineering and synthetic biology both 

build on quantitative expansion of early studies in metabolic flux and genetic components, 

respectively.80 Computational models for both metabolic flux analysis (MFA),86,87 and 

synthetic genetic circuits88 are being developed to allow researchers to embark on 

ambitious engineering of living cellular networks.  

Integration with live host. While the expression of single enzymes is now 

commonly done in molecular biology research, the engineering of multiple heterologous 

enzymes in the same host often significantly effects host homeostasis and requires 

extensive optimization.80 As all metabolites are derived from a limited set of 12 precursor 

originating from central carbon metabolism,89 the interruption of metabolic flux is highly 

likely. One has to consider not only the metabolites feeding into and out of a heterologous 

genetic circuit, but also possible disruption of energy and information flux of the entire 

host cell. Another consideration could be toxicity of heterologous metabolic products, 

especially for biofuel and drug production.86. 

In vivo design by genetic engineering is therefore less limited by our ability to 

produce DNA fragments in vitro, and more by the methods available for DNA assembly 

and functional optimization in a living host. The variety of natural parts and the possibility 

of evolution of these parts bring great promise to the field. Next, we discuss recent 

advances in pathway and whole cell engineering. 
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1.3.2 Emerging Technologies for pathway and whole cell engineering 

Two major synergistic fields drive the development of new methods for 

engineering of multi-component systems.79,93 Metabolic engineering aims at the directed 

improvement of product formation through the modification of specific biochemical 

reactions,80,90 and synthetic biology attempts to construct non-natural devices using 

biological building blocks.85,91,92 The two fields interconnect in the investigation of 

metabolic flux, network regulation and high-throughput DNA manipulation.92  

For example, advances in metabolic engineering for industrial microbiology 

provided successful examples for production of commodity chemicals,90 biofuels93-97 and 

drugs,98-116117 with significant recent breakthroughs include expression of drug precursors 

for the anticancer drug Taxol118 and antimalarial drug artemisinin.119 However, though 

many studies have demonstrated the feasibility of metabolic engineering, only few achieve 

the yields, rates or titers required for practical production process.90  

Synthetic biology applications include the formation of artificial DNA replicating 

system using unnatural nucleotides,120 the incorporation of unnatural amino acids into 

proteins using an orthogonal translation system121 and the introduction of hydrogen 

producing machineries122 into heterologous hosts.  

DNA manipulation. New methods for DNA manipulation and assembly play key 

component in advances for multi-component biological systems. High speed, low cost 

DNA synthesis and sequencing methods with very low error rate123 are becoming more and 

more available,85,124 and the capacity and cost of synthesis, manipulation and analysis of 

DNA has exponentially increased.85  While in vitro biochemical enabled the leap from 

oligos to genes synthesis, in vivo processing made possible the leap from genes to 
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genomes, as large scale DNA manipulation relies heavily on in vivo recombination 

techniques.  

Several laboratories have demonstrated DNA assembly directly in cells125,126 using 

homologous recombination. Gibson et al127-129 constructed a synthetic microbial genome 

by assembly of synthetic DNA cassettes. Church and colleagues130 developed multiplex 

automated genome engineering (MAGE), an in vivo platform to combinatorially 

mutagenize the ribosome binding sites (RBS) using recombination of short 

oligonucleotides in E. coli. They bring genomic recombination efficiency up to ~30% to 

delete, replace or insert short (<30bp) DNA fragments. In a recently described technique, 

Conjugative Assembly Genome Engineering (CAGE), bacterial conjugation is applied to 

combine large contiguous regions of E. coli chromosomes,131 to site-specifically replace all 

314 TAG stop codons with synonymous TAA codons in parallel across the 32 E. coli 

strains later combined.  

Pioneering work by Itaya et al. uses homologous recombination in conjunction with 

elegant marker recycling strategies to integrate constructs 16 kb-3.5 Mb in size into the 

Bacillus subtilis genome,132,133 while Posfai and coworkers deleted large parts of E. coli 

genome to form a compact genome, eliminating unstable elements.134 In a remarkable 

genome design effort, Boeke and co-workers have constructed a partially synthetic 

eukaryotic chromosome, maintaining near wild-type phenotype while carrying an inducible 

genetic scrambling system to facilitate future studies.135  

Our lab has recently demonstrated Reiterative Recombination, a highly efficient 

technique for assembly of DNA into the yeast chromosome.70 The method relies on 

alternating pairs of endonucleases and selective markers, harnessing DSB-induced 
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recombination to sequentially incorporate DNA directly into the chromosome. Importantly, 

this system was further shown to be compatible with the construction of up to 104 variant 

libraries of metabolic pathway. 

Regulation of gene expression. The direct regulation of gene transcription has been 

a key tool for biological engineering since the early days of molecular research.136 

Traditionally, regulation of gene expression was performed by either complete deletion or 

overexpression. However, it is rarely the case in the cell, where metabolic steady state is 

constantly fine-tuned by balancing transcription, translation and degradation levels. It is 

desired to incorporate such dynamic regulation of gene expression to successfully design 

biological networks.   

Considering the extensive use of promoters to regulate gene transcription,136 it is 

surprising that relatively few studies attempted to extensively compare promoter 

strength.137 Systematic characterization and standardization of promoter properties has 

only recently taken place.138,139 Significantly, several groups have constructed well 

characterized promoter libraries in the common hosts E.coli 140-142, S. cerevisiae 143 144, P. 

pastoris145 and mammalian systems146, providing precise quantitative control of in vivo 

gene expression.  

Utilizing a targeted mutagenesis approach, Jensen and coworkers demonstrated the 

functionality of synthetic promoter libraries by randomizing the -35 to -10 upstream 

‘spacer’ region of prokaryotic 140,147,  yeast144 and mammalian genes 146. Using random 

mutagenesis, Stephanopoulos and colleges used constitutive promoters to construct and 

rigorously characterize libraries of promoter variants with broad range activity to be use in 

E. coli and S. cerevisiae. Both libraries demonstrated reproducible, homogenous, and 
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linear relationship between promoter strength and reporter activation, and further used to 

modulate gene expression for E.coli lycopene production141, and S. cerecisiae glycerol 

yield.143 Sauer and coworkers142 recently designed an insulated bacterial promoter library 

spanning two orders of magnitude by adding sequences extending beyond the core-

polymerase binding region in both the 5’- and 3’- directions, to reduce stimulatory and 

repressive effects of adjacent genetic elements.  

Synthetic RNA regulation provides another effective tool for modulating gene 

expression in response to changes in cellular metabolism.92 A variety of these riboswitch 

regulators have been used to interact with mRNA in response to small molecules148,149 or 

silence the expression of target genes.150,151  

A method termed Global Transcription Machinery Engineering (GTME) enables 

broad perturbation of the entire cellular transcriptome by alteration of global regulator 

proteins.152 It was utilized for engineering of sigma factors in E. coli or TFIII regulator in 

S. cerevisiae, eliciting multi-gene response to enhance ethanol tolerance and lycopene 

yield, respectively.153 The use of gene array technology enables investigation of whole cell 

changes to identify such regulators.4  

Engineering synthetic cellular pathways. Several examples exist where directed 

evolution have been implemented to engineer multiple-component pathways and novel 

genetic circuits. The shuffling of metabolic pathways was demonstrated for making 

chimeric nonribosomal peptides and polyketide analogs154-156 and further improving their 

functionality by directed evolution.157 Novel cellular behavior has been obtained using 

artificial “genetic oscillators”,81 synthetic genetic circuits designed to elicit programmable 

response to predefined stimuli.158-162  
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For example, synthetic auto regulatory feedback was used to detect ‘cellular 

memory’ in yeast163,164 in response to DNA damage.162,163 Arnold and coworkers have 

engineering microbial consortium communication signals, such that gene expression 

response is generated in a cell density-dependent fashion. Response is elicited by quorum 

sensing molecule,165 and was shown to sustain also upon biofilm formation.166,167  

Collins and coworkers utilized in silico modeling to design artificial gene networks 

guiding the production of a ‘timer’ controlling S. cereviaie sedimentation phenotype.168. 

Recently, the construction of an 'olfactory yeast' strain was reported, engineering S. 

cerevisiae with mammalian olfactory signaling pathway to detect the presence of DNT 

explosive mimic.169 Furthermore, spatial organization of bacterial metabolism was 

addressed by Delebecque et al.,122 who rationally designed multidimensional RNA 

structures as scaffolds for controlled in vivo organization of a hydrogen-producing 

pathway.  

 

1.4 Conclusions 

New technologies are emerging for faster, more efficient and cost effective 

engineering of complex biological systems. To enable breakthroughs in our cell 

engineering capabilities, the efficiency of existing molecular tools must be challenged and 

creatively adapted to be compatible with complex cellular networks. Modern directed 

evolution approaches, harnessing cellular processes to explore the interplay of random and 

rational design, are expected to provide ever more powerful tools for biological 

engineering. 
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2.1 Chapter outlook 

The directed evolution of biomolecules with new functions is largely performed in 

vitro, with PCR mutagenesis followed by high-throughput assays for desired activities. As 

synthetic biology creates impetus for generating biomolecules that function in living cells, 

new technologies are needed for performing mutagenesis and selection for directed 

evolution in vivo. Homologous recombination, routinely exploited for targeted gene 

alteration, is an attractive tool for in vivo library mutagenesis, yet surprisingly is not 

routinely used for this purpose. Here, we report the design and characterization of a yeast-

based system for library mutagenesis of protein loops via oligonucleotide recombination. 

In this system, a linear vector is co-transformed with single-stranded mutagenic 

oligonucleotides. Using repair of nonsense codons engineered in three different active-site 

loops in the selectable marker TRP1, we first optimized the recombination efficiency at 

single and multiple protein loops. Then, the utility of this system for directed evolution 

was explicitly tested by selecting functional variants from a mock library of 1:106 wild-

type:nonsense codons. Sequencing showed that oligonucleotide recombination readily 

covered this large library, mutating not only the target codon but also encoding silent 

mutations on either side of the library cassette. Together these results establish 

oligonucleotide recombination as a simple and powerful library mutagenesis technique and 

advance efforts to engineer the cell for fully in vivo directed evolution. 
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2.2 Introduction 

As advances in synthetic biology improve our cell engineering capabilities and 

increasing research efforts are aimed at generating networks of molecules that function in 

vivo, technologies are needed to allow directed evolution to be carried out directly in the 

cell. Homologous recombination (HR) holds the possibility for a simple and powerful 

library mutagenesis technique.  

The highly efficient HR machinery of S. cerevisiae is now routinely used, both with 

single-stand (ss)1-3 and double-stranded (ds)41,48-50 DNA, to insert and knockout genes for 

strain and plasmid construction.3,6-13 Classical studies in yeast genetics have laid the 

foundations not only for efficient delivery of foreign DNA1,14,15 but also for informed 

design of  plasmids6,16 and oligonucleotides2,8,17,18 as well as the elucidation of the 

mechanism underlying homologous recombination.19,20,24 

For example, Sherman and others explored synthetic oligonucleotide recombination 

into the yeast chromosome by way of DNA transformation, and found that the length of 

the oligonucleotide and homology region, as well as its GC content greatly contributed to 

the efficiency of integration.21-26 Interestingly, it was found that the frequency of gene 

targeting depends on the number of target copies27 and the targeted DNA strand.28 It was 

further shown that the efficiency of transformation was enhanced by using a large DNA 

‘carrier’ molecule.29 Gene alteration by oligonucleotide recombination has also been  

reported in E. coli30-32 and mammalian cells,10,33-36 where various methods are used to 

enhance the efficiency of HR which is naturally significantly low.37 

Yet this prior work predominantly focused on the recombination of individual 

cassettes targeting single loci,38-40 whereas the efficiency of simultaneously mutating, for 



37 

 

example, multiple loops in a protein or multiple distant genes is yet to be explored. 

Furthermore, while several recent studies demonstrate the potential of HR for the 

formation of libraries,41,42 it is yet to become a mainstay technology for library generation 

and directed evolution. Working towards truly in vivo targeted mutagenesis requires that 

the cell carries the potential library and shuffles upon induction. Reported optimization and 

characterization of newer in vivo mutagenesis methods is limited.  Looking forward, there 

is significant potential for the development of diverse approaches to in vivo DNA library 

mutagenesis. 

Here, as a first step towards the long-term goal of developing HR as a robust 

technology for in vivo library mutagenesis, we adapt HR techniques routinely used for 

targeted gene alteration for cassette library mutagenesis of multiple protein loops. 

Inspiration for this notion comes both from the longstanding use of bacterial mutator 

strains to generate libraries of random DNA mutations43 and the widespread use of HR for 

making gene deletions.11 We designed a recombination-based system specifically to meet 

the needs of protein directed evolution and challenged this system to search large libraries 

of mutations.  

The mutagenesis is affected by simple co-transformation of a linearized vector 

carrying the target gene and ss oligonucleotide(s) encoding the library mutations under 

standard electroporation conditions. Notably, with optimization of DNA transformation 

efficiency, it is currently possible to achieve 107-109 transformants which is sufficient for 

library experiments.44,45 The selectable TRP1 gene was used as the model system for the 

development of this technology. Three different active site loops were engineered with 

nonsense codons, and the efficiency of repair by oligonucleotide recombination was 
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studied. First, the efficiency of oligonucleotide recombination was optimized at a single 

loop. Then, these optimized conditions were used to evaluate the feasibility of 

simultaneously mutating two or three loops.  Finally, the utility of oligonucleotide 

recombination for directed evolution was challenged by carrying out a mock library 

selection. This library-oriented approach expands the use of HR for DNA manipulation in 

yeast, offering a straightforward method for mutagenesis in vivo that could ultimately 

replace current PCR-based in vitro methods. 

 

2.3 Results 

2.3.1 Trp1 model system 

Repair of nonsense codons in the classic yeast selection marker TRP1 presented a 

convenient model to develop our oligonucleotide recombination system. The gene product 

N-(5'-phosphoribosyl)-anthranilate isomerase (PRAI) is part of a large family of TIM-

barrel enzymes, a common fold shared by approximately 10% of all known enzyme.46 

Conveniently, the active-site in TIM-barrel enzymes is positioned on loops extending 

between α-helices and β-sheets (Figure 2-1), making it particularly well placed for 

oligonucleotide recombination. The enzyme yPRAI catalyzes an essential step in the 

tryptophan biosynthesis pathway of S. cerevisiae and thus offers a simple selection for 

growth in the absence of tryptophan.47 Nevertheless, oligonucleotide recombination as 

characterized in this work is not limited to mutagenesis of protein loops, but rather is a 

general technology readily applicable for library mutagenesis of any multiple-component 

system. 
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We identified three target residues, Arg44, Arg78 and Ser201, in yPRAI for 

engineering of ochre (TAA) nonsense codons (Figure 2-1).  Although the crystal structure 

for S. cerevisiae PRAI is not available, these residues were selected based on inspection of 

a homology model constructed using the Thermotoga Maritima PRAI using Swiss 

Model.48 The three target residues Arg44, Arg78 and Ser201 lie in catalytic loops 2, 3 and 

8 in yPRAI, respectively. The residues vary in their distance from the 3’ end of Trp1 gene, 

where a double strand break (DSB) is introduced, to control for the dependence of HR 

efficiency on proximity to the DSB.  Additionally, they also vary in their distance from one 

Figure 2-1. Residues selected for cassette mutagenesis of N-(5'-phosphoribosyl)-

anthranilate isomerase (yPRAI).  Homology model was constructed using PRAI from 

Thermatoga maritima (PDB: 1LBM4, PDB: 1NSJ19) on the Swiss-Model server. Here, 

the product analogue (reduced 1-(o-carboxyphenylamino)-1-deoxyribulose 5-

phosphate (rCDRP), dark blue) and residues 43-45 were taken from a homology model 

with PDB: 1NSJ.19 Residues Arg44, Arg78 and Ser201 (red) in loops 2, 3 and 8, 

respectively, were replaced with stop codons to knockout protein function . 

201 

78

44
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another, to explicitly test whether simultaneous mutagenesis of two loops is distance 

dependent. The reversion rate of plasmids carrying yPRAI with single, double or triple 

ochre codons was tested and found to be <3x106.  

As shown in Figure 2-2, the yPRAI gene was encoded on a 2µ (high copy number) 

vector carrying a URA3 marker, such that the linearized vector and fixing oligonucleotides 

are co-transformed into yeast. Cell survival on media lacking uracil depends on 

circularization of vector. Cell survival on media lacking tryptophan depends on repair of 

stop codons by oligonucleotide cassettes. The efficiency of oligonucleotide recombination 

could be scored simply as the ratio of colonies that survive on tryptophan and uracil 

deficient plates versus uracil deficient plates. We consider the recombination efficiency to 

be a working, rather than a theoretical, definition, because formally the vector must 

circularize in order to survive in uracil deficient media. Interestingly, in control 

experiments where the number of viable URA+ transformants was compared, 

transformation of linearized vector resulted in an order of magnitude less transformants 

than circular vector. However, no difference in the number of transformants was observed 

when linear vector was co-transformed with oligonucleotides (data not shown).  To 

minimize false positives, all experiments were carried out in yeast strain NP2273, which 

has a complete deletion of the TRP1 gene.49   

Initial quantification of oligonucleotide recombination efficiency was carried out 

by simply targeting an ochre codon. The mutagenic oligonucleotides used for Ser201 were 

then designed with additional silent mutations. The two additional silent mutations were 

added, one upstream and the other downstream of the mutated target codon, so that three 

codons were effectively mutagenized by each oligonucleotide. Incorporation of these 
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additional silent mutations both provides record that the recombination event occurred and, 

in combination with the ochre codon mutations, adds a unique restriction site. Importantly, 

control experiments using a single oligonucleotide with or without silent mutations showed 

the efficiency of recombination to be very similar. Hence, successful repair of the nonsense 

Ser201 codon in trp1 by HR with a fixing oligonucleotide generated functional yPRAI 

with the expected silent mutations and led to cell survival on media lacking tryptophan. 

 

 

2.3.2 Design of oligonucleotide recombination system for library mutagenesis 

While there are now standard protocols for performing gene knockouts using HR, 

these protocols cannot be simply translated to library mutagenesis. For library mutagenesis 

Figure 2-2. Oligonucleotide recombination via yeast HR. Oligonucleotide 

recombination provides a general method for generating targeted libraries of DNA 

mutants in vivo. A linearized vector expressing the target gene (gray) and linear 

ssDNA oligonucleotides (green, yellow, blue) are co-transformed into yeast. HR 

between the target gene and oligonucleotides yields libraries of mutated target gene 

that can be detected by growth selection. 
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it is important to be able to mutate multiple regions simultaneously, to have a simple 

protocol that can be implemented readily and rapidly during the iterative steps of mutation 

and assay, and to have high efficiency HR to cover large libraries of mutations. In fact, the 

handful of papers that have exploited HR for library mutagenesis have used different 

strategies for recombination.24,27,50,51 Thus, we designed an oligonucleotide recombination 

system explicitly for the needs of directed evolution with these criteria in mind.   

As illustrated in Figure 2-2, the vector carrying the target gene was linearized by 

restriction enzymes, causing a double strand break (DSB). The DSB was introduced just 

downstream of the 3’ terminus of the target gene TRP1 on a high copy plasmid to achieve 

high efficiency HR52 in order to enable the coverage of large libraries. Since the cut site is 

located outside of the coding gene, as opposed to internally as in most HR technologies, it 

allows for the possibility of mutating multiple regions simultaneously. 

 It is important to distinguish the two mutagenesis schemes addressed in this work: 

(1) mutagenesis of multiple codons within a single loop using a single oligonucleotide, and 

(2) mutagenesis of multiple loops simultaneously using multiple oligonucleotides. 

Assuming typical protein loop sizes and homology regions, the ss oligonucleotide can 

simply be synthesized, making the technique very straightforward to implement.   

The mutagenic ss oligonucleotides were designed to have sufficient homology for 

high efficiency HR and to be short enough for commercial synthesis.  Specifically, each 

oligonucleotide was designed with 30 bp homology on both sides of the codon to be 

mutagenized. Published studies have established that 30 bp is the minimal homology 

required for high-efficiency HR.22 Conveniently, 30 bp is shorter than a typical protein β-

strand or α-helix,46 allowing multiple mutagenic oligonucleotides to be used 
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simultaneously. Assuming a typical protein loop size of 10 amino acids, or 30 bp, the total 

oligonucleotide size (with homology) would be 90 bp. However, further investigation is 

required to optimize the number of residues to be mutagenized in each protein loop. 

Nevertheless, sequences of this length scale can be directly made by solid-phase 

synthesis,53 eliminating the need for further enzymatic manipulation of the mutagenic 

oligonucleotide. 

To optimize the likelihood of high efficiency recombination, particularly at 

multiple loops, the transformation was carried out at high concentrations of plasmid and 

oligonucleotides. While standard plasmid transformation protocols are expected to yield on 

average a single circular plasmid per yeast cell, it is now established that oligonucleotide 

transformation results in multiple oligonucleotides per cell. This is supported by multiple 

studies of gene targeting27 and further demonstrated in a recent report by Venter and 

colleagues, showing the average yeast cell likely takes up substantially more than 25 

(DNA) pieces in a single transformation experiment.54 Furthermore, early experiments 

demonstrated that co-transformation of large DNA fragments enhances oligonucleotide 

transformation efficiency.29 Thus, our working model is that each cell receives the plasmid 

and multiple copies of mutagenic oligonucleotide(s).   

2.3.3 Oligonucleotide recombination at a single loop 

First we examined a broad range of conditions to optimize the efficiency of 

oligonucleotide recombination targeting a single loop.  Specifically, we sought conditions 

that result in the greatest number of recombinants possible while maintaining a large 

number of overall transformants. Based on the S. cerevisiae HR machinery literature, we 

considered three main variables: the nature of the vector DNA (circular vs. linear),16 the 
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nature of the oligonucleotide DNA (ss vs. ds),12,50 and the ratio of vector to 

oligonucleotide.29 We used a sense strand oligonucleotide with forward orientation for all 

single strand oligonucleotide experiments, unless otherwise indicated. All experiments 

were performed at least in triplicate, and data were only included from experiments in 

which at least 106 transformants were achieved.   

The recombination efficiency was initially optimized based on repair of the 

nonsense codon in the trp1-Arg44* gene encoded on vector pNP2279 by the 

oligonucleotide Arg44Fix. To test whether co-transformation of circular or linearized 

vector yielded the largest number of recombinants, vector pNP2279 was linearized by 

digesting 30 bp downstream of the trp1 gene using the ClaІ restriction enzyme. As Figure 

2-3 shows, oligonucleotide recombination using linearized vector gave 50-fold higher 

recombination efficiencies than that using circular vector. 

Next, recombination efficiencies via co-transformation of varying ratios of 

linearized vector and either ss or ds ARG44Fix oligonucleotides were compared.  Figure 2-

3 presents the recombination efficiencies using 1:10, 1:100, 1:1000 and 1:10000 molar 

ratio of linearized vector to ss or ds oligonucleotide. A 1:1000 molar ratio of linearized 

vector to ss oligonucleotide yielded the highest recombination efficiency, 4.5  0.5%.  The 

efficiency at the 1:1000 molar ratio was 190-times that at the 1:10 molar ratio.  The 

efficiency of ss oligonucleotide at the 1:1000 molar ratio was 4 times that of ds 

oligonucleotide at the same ratio.   
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 To ensure that this measured efficiency for single-site recombination is general, 

the same optimized conditions were then used to repair nonsense codons in the trp1-

Arg78* and trp1-Ser201* genes, encoded on vectors pNP2284 and pNP2282, respectively, 

by the oligonucleotides Arg78Fix and Ser201Fix (Figure 2-4). The recombination 

efficiencies determined at positions 78 and 201 were 1.4  0.4% and 9.0  0.4%, 

respectively. Thus, the average efficiency of oligonucleotide recombination at a single loop 

was 5  2%, consistent with published efficiencies of HR at a DSB.22,55 

Figure 2-3. Optimization of experimental parameters for high rates of recombination.

(A) Linear or circular trp1-Arg44* vector (1 μg) is co-transformed with 5 μg of the ss

oligonucleotide ARG44Fix (1:1000 mol vector: oligonucleotide) into the Δtrp1 S.

cerevisiae strain NP2273. Co-transformation of linear vector and oligonucleotide yields

the greatest percentage of recombinants. (B) Linear trp1-Arg44* vector (1 μg) and

varying amounts of ss and ds oligonucleotides ARG44Fix and ARG44Fix_ds,

respectively, are co-transformed and recombinant colonies are scored by plating on SC

(Ura−) and SC (Ura−Trp−) selective plates. Co-transformation of 1:1000 molar ratio

vector: oligonucleotide yields the greatest percentage of recombinants. The data shown

are the mean ± the standard error of at least three separate experiments. 
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Interestingly, the measured efficiency was slightly higher at position 201, which is 

closer to the DSB, although there is not a correlation between the distance from the DSB 

and the efficiency of recombination. The small differences in measured efficiencies 

alternatively may arise from the permissiveness of the individual residue to amino acid or 

codon substitutions. Indeed in the mock selection experiment vide infra, we recovered not 

only the encoded TCC Ser codon, but also non-encoded codons (see below). 

Sequence analysis of recombinant colonies repaired at position Ser201 revealed 

that all colonies carried the oligonucleotide-encoded fixing codon (TCC) (Figure 2-5). 

Interestingly, 80% of tested colonies (16/20) were found to carry both downstream and 

upstream silent mutations, whereas 20% carried only the upstream silent mutation. This 

could be caused by either partial incorporation of the oligonucleotide or, alternatively, 

suggests a role for mismatch repair mechanism in oligonucleotide recombination. Further 

investigation is required to determine the underlying recombination mechanism.  

2.3.4 Oligonucleotide recombination at multiple loops 

With optimized conditions for oligonucleotide recombination at a single loop, we 

proceeded to test the efficiency of simultaneous mutagenesis at two and three loops. These 

experiments were carried out essentially as for the single-site recombination, except that 

equal molar quantities of the appropriate combinations of two or three of the 

oligonucleotides Arg44Fix, Arg78Fix, or Ser201Fix were co-transformed with the 

linearized plasmids pNP2283, pNP2280 or pNP2281. Simultaneous mutagenesis at 

positions Arg44 and Arg78 had an efficiency of 0.11  0.03%, and simultaneous 

mutagenesis of positions Arg44 and Ser201 had an efficiency of 0.32  0.15% (Figure 2-

4). Oligonucleotide recombination at two loops simultaneously therefore had an average 
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efficiency of 0.2  0.1%. The efficiency may be slightly higher when the two loops are a 

greater distance from one another, but the difference is at most slight.   

 

 

 

 

Figure 2-4. Efficiency of oligonucleotide recombination at multiple loops. Linear vectors

carrying trp1-Arg44*, trp1-Arg78*, trp1-Ser201*, trp1-Arg44*Arg78*, trp1-

Arg44*Ser201*, and trp1-Arg44*Arg78*Ser201* were co-transformed into the Δtrp1 S.

cerevisiae strain NP2273 with the appropriate oligonucleotide (see Table 2-3). (A)

Oligonucleotide used in this study to fix nonsense mutations in residues Arg44, Arg78,

and Ser201 in yPRAI. Sequences of target codons are highlighted. (B–C) Simultaneous

mutagenesis of multiple loops exhibits multiplicative efficiency. (B) Schematic

representation of one (a–c), two (d–e), or three (f) oligonucleotide mutagenesis. (C) The

data shown are mean ± standard error for percent recombination of at least three separate

experiments. 
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Next, we measured the efficiency of simultaneous mutagenesis at all three 

positions, Arg44, Arg78 and Ser201; it was 0.010  0.001% (Figure 2-4). Thus, 

simultaneous oligonucleotide recombination at two loops was 25-fold less efficient than 

that at a single loop, and at three loops was 20-fold less efficient than that at two loops. 

Notably, the efficiencies at multiple loops were nearly multiplicative. 

To increase the efficiency of simultaneous recombination at multiple loops, we 

tried two classic methods in yeast genetics.3 First, an overlapping oligomer was used to 

link two mutagenic oligonucleotides in an attempt to improve the efficiency of multi-loop 

mutagenesis.  In our system, such an approach did not lead to a significant increase in the 

number of recombinants (data not shown). Next, we aimed at improving the efficiency of 

vector re-circularization by co-transformation with an oligonucleotide that overlapped the 

DSB in the vector (Table 2-3, Fig. 2-6). Again, inclusion of this additional oligonucleotide 

did not improve the recombination efficiency. Thus, in its current form, our protocol for 

oligonucleotide recombination leads to drops in efficiency as additional loops are 

mutagenized.  

 

 

Figure 2-5. Single loop oligonucleotide mutagenesis at position 

Ser201: sequencing analysis of recombinant colonies. The DNA and 

protein sequence of the trp1-Ser201* vector are indicated above. The 

mutated Ser201 codon is framed. Arrows indicate location of silent 

mutation. 
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2.3.5 Mock selection via oligonucleotide recombination  

While the high efficiency of single-site recombination with our system suggests 

that it should allow for the generation of large libraries in vivo, and since HR is not 

routinely used for directed evolution, we explicitly challenged our system in a mock 

selection experiment. Given that 106 transformants can be readily obtained in S. cerevisiae, 

the mock selection experiment was designed to test the feasibility of enriching a functional 

TRP1 gene obtained by oligonucleotide recombination from a pool of oligonucleotides 

encoding a mock library of 1 active to 106 inactive trp1 variants. 

 Figure 2-6. Co-transformation of linker Oligonucleotide. Linear vectors carrying trp1-

R44*, trp1-R78*, trp1-S201*, trp1-R44*R78*, trp1-R44*S201*, and trp1-

R44*R78*S201* are co-transformed into the Δtrp1 S. cerevisiae strain NP2273 with the

appropriate oligonucleotides and with or without a 60 bp oligomer bridge (see Table 2-

3). Co-transformation with bridge showed no significant improvement in recombination

efficiency. The data shown are the mean ± the standard error of at least three separate

experiments 
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Specifically, linearized vector pNP2282, encoding the trp1-Ser201* gene with an 

ochre codon at position 201, was co-transformed with a 1:106 mixture of oligonucleotide 

Ser201LibraryFix: Ser201LibraryOpal (Figure 2-7). Both the Ser201LibraryFix and 

Ser201LibraryOpal oligonucleotides were designed such that they not only introduced a 

unique restriction site, but also encoded unique silent mutations on either side of the 201 

codon to mark the recombination event. Use of the opal codon in the mock library allows it 

to be readily distinguished from the vector ochre codon. The mock selection was carried 

out under the same optimized conditions used to measure the single-loop recombination 

efficiency. Thus, 108 cells were co-transformed with 3.5 x 1010 linear vector molecules and 

3.6 x 1013 total oligonucleotides. Transformants were then selected on SC (Ura-) plates to 

determine the library size, and recombinants were scored on SC (Ura-Trp-) plates to select 

for functional TRP1.  

Encouragingly, with 2.6 x 106 successful transformants on SC (Ura-) plates, 8328 

colonies survived on SC (Ura-Trp-) plates, demonstrating that a library of 1:106 was fully 

covered with this protocol.  The mock selection from a library of 1:106 was repeated three 

times. While the number of TRP+ colonies varied in each experiment, the library was 

successfully covered each time. 

We speculate that the library size that can be covered is greater than that predicted 

by the recombination efficiency because there is a vast excess of oligonucleotide molecules 

to number of linearized vector molecules, and the vector molecules again are in excess of 

the number of transformed cells (~3x105 oligonucleotides and ~300 plasmids per cell).  

However, this rationale has not yet been explicitly tested. The fact that the library size that 

can be covered cannot be simply calculated from the recombination efficiency 
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demonstrates the importance of directly testing HR in the context of library construction. 

Furthermore, since the library of 106 was covered in excess, it may be possible to cover 

even larger libraries not only for single-loop but also multiple-loop recombination.        

Eighteen individual colonies were first subjected to further selection in liquid 

media to cure the strain of what is presumed to be non-recombinant or recombinant non-

viable pNP2282 vector and then analyzed by sequencing.  Of the 18 colonies, 13 were 

successfully cured of non-recombinant pNP2282 and hence could be assigned to a TRP1 

gene and a 201 codon. The remaining 5 colonies that were not successfully cured were not 

analyzed further. As shown in Figure 2-7, all 13 recombinant colonies encoded functional 

TRP1 using the TCC Ser codon encoded by the oligonucleotide Ser201LibraryFix and its 

silent mutations.  

Because of inherent variability in the mock selection experiment, we repeated the 

experiment multiple times.  It should be noted that in some of these mock selections, we 

additionally observed a handful of viable recombinant carrying non encoded codons such 

as TGT (Cys) and TCA (Ser) at position 201. While the mechanism by which non-encoded 

codons arise is not known at this point, silent mutation analysis suggests they originate 

from alteration of the SER201LibraryOpal oligonucleotide. Furthermore, chimeric variants 

were previously suggested to arise from multiple crossover events between library 

oligonucleotides during in vivo recombination.25,51 Alternatively, it was suggested that 

mismatch repair mechanism may play a role in oligonucleotide recombination.34  

Importantly, in addition to potential biochemical significance of these residues that was not 

addressed in this study, from the vantage point of library creation these non-coded codons 

may be viewed as an additional source of mutation.  
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2.4 Discussion 

Together these results establish that oligonucleotide recombination can be used to 

construct large DNA libraries entirely in vivo. For library generation, as opposed to 

Figure 2-7. Mock library mutagenesis of trp1-Ser201* vector. (A) oligonucleotide 

cassette use for mock library mutagenesis. Target codon is marked in red. silent

mutations are marked blue. (B) Fixing codon was enriched from a mock library of 106

inactive variants in a single step. Vector NP2282, carrying a trp1-Ser201* allele, is 

targeted with a 1:106 mix of fixing to nonsense ssDNA oligonucleotides

(oligonucleotides SER201LibraryFix and SER201LibraryOpal, respectively). (C)

Eighteen viable colonies were analyzed by sequencing (see text), and 13 high quality

recombinant sequences were aligned using the clustalW server.5 The vector sequence 

is shown at the top. All sequenced colonies carried the fixing codon (TCC) at position 

201 (framed) as well as the encoded silent mutations upstream (A>G) and

downstream (T>C) (highlighted). Library results suggest that the library size is fully

covered and therefore may allow for larger library experiments. 

A 

B  C

1 

106
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targeted gene alteration, the efficiency of recombination is critical because it directly limits 

the number of variants that can be tested. We were able to optimize the recombination 

efficiency at a single loop to ~5%. These optimized conditions allowed a wt codon to be 

enriched from a mock library of 106 inactive variants (a typical library size for directed 

evolution) in a single step. Furthermore, the method is particularly straightforward to 

implement. All that is required is co-transformation of commercial ss oligonucleotides and 

linearized vector using a standard electroporation protocol. Thus, oligonucleotide 

recombination is competitive with, and for in vivo selections easier to implement, than in 

vitro PCR library mutagenesis techniques. 

The efficiency of oligonucleotide recombination at a single loop reported here is 

high and consistent with that reported in the recombination field with use of either a DSB 

or viral machinery.31,55 The significant enhancement in recombination efficiency using a 

linearized vector is in agreement with previous studies demonstrating that DSB induction 

significantly enhances oligonucleotide recombination in yeast from ~0.03% 10 up to 

20%.55,56  

To our knowledge this study is the first attempt to mutagenize multiple loops 

simultaneously by co-transformation of two or more oligonucleotides. Kmiec and others 

demonstrated that multiple codons could be mutagenized simultaneously using a single 

oligonucleotide.57,58 In MAGE, automation allowed for accumulation of multiple mutations 

by repetitive transformation.59 Significantly, for directed evolution it is advantageous to be 

able to mutate multiple positions at the same time.  

Single-loop recombination was highly efficient, averaging 5%, or 4.0×105 

recombinants. Multiple loops could be simultaneously mutagenized, although the 
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efficiencies dropped to 0.2%, or 6.0×103 recombinants, for two loops and 0.01% 

efficiency, or 1.5×102 recombinants, for three loops.  

We find that simultaneous transformation of two or three targeting oligonucleotides 

gives multiplicative recombination efficiencies. Compared to 5% average efficiency for 

single oligonucleotide recombination, the efficiencies for mutation using two and three 

oligonucleotides simultaneously were 0.2% and 0.01%, respectively. The multiplicative 

efficiency is consistent with current fundamental understanding of crossover events, which 

are independent events whose frequency is proportional to the distance between potentially 

homologous regions.60 Alternatively, the multiplicative efficiency could be explained 

simply as the probability of the two events occurring at the same time.  

We tried to overcome the multiplicative effect of simultaneous oligonucleotide 

recombination, first by linking two oligonucleotides together with a third oligomer to 

minimize the number of necessary crossovers, and next by using an oligomer to close the 

linearized vector. Neither of these strategies increased the recombination efficiency 

significantly. However, it is possible that moving the vector cut site into the target gene 

will allow for increased recombination at multiple locations. Finally, if the multiplicative 

effect arises from probabilities, it is possible that for targets farther apart, such as different 

chromosomes, this effect could be eliminated.  

Therefore, oligonucleotide recombination should allow for the construction of large 

libraries at a single loop or moderate size libraries at two loops, but it is not yet sufficiently 

efficient to simultaneously mutate more than two loops. Assuming 107 transformants, an 

efficiency of 5% at a single loop predicts complete coverage of a library of 2x105. 

Interestingly, our actual coverage in the mock selection experiment was even larger than 
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predicted by this estimation. We obtained ~8000 colonies from 2.6x106 unique 

transformants. This greater coverage may be attributed to the vast excess of 

oligonucleotides and plasmid molecules compared with the number of transformed cells, 

as was previously suggested by Truan and colleagues.61 Thus, we may be able to generate 

libraries even higher than our recombination efficiencies would predict. Notably, this result 

demonstrates the significance of library-oriented experimental setups for testing novel 

mutagenesis techniques. The efficiency of nucleotide recombination at two loops of 0.2% 

predicts library coverage of 104. Therefore, multiple oligonucleotide recombinations could 

be attractive for replacing iterative mutagenesis approaches where smaller, structure-based 

libraries are designed. For example, it has been shown that for directed evolution of 

enantioselective enzymes, simultaneous randomization is far more efficient than 

consecutive rounds of error-prone-PCR.62  

The recombination system presented here is engineered, and its mechanism is 

undefined at this point. The mutagenesis may occur via a combination of DSB repair and 

single-strand annealing (SSA) or during DNA replication.30,63,64 Currently, we are 

investigating the mechanism using knockouts of yeast recombination machinery with the 

goal of improving the recombination efficiency, particularly at multiple loops. For 

example, deletion of RAD51 could be used to establish that the mechanism involved is 

DSB repair,63 while RAD59 deletion may indicate that SSA is taking place.65,66 

Furthermore, as recent studies in both bacteria and yeast suggest a strand bias exists that 

affects the efficiency of oligonucleotide mutagenesis,34,50,67-72 it will be interesting to see if 

such bias can be exploited to increase recombination efficiency at multiple loops. 
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While used here for the mutagenesis of loops in the active site of an enzyme, the 

oligonucleotide recombination system reported here should be broadly useful for library 

mutagenesis not only of individual proteins, but also of other biomolecules such as RNA, 

multi-component systems such as metabolic pathways, and regions other than loops such 

as gene promoters.  For example, this mutagenesis strategy could be used to randomize 

promoter strengths of multiple genes in a biosynthetic pathway to maximize production of 

a natural product in a heterologous host.  Alternatively, the technology could be used to 

randomize the strength of interactions among multiple ribozymes in an engineered, 

artificial circuit. As synthetic biologists seek to engineer complex systems with increasing 

numbers of components, the need for directed evolution tools that allow large numbers of 

variations to be tested will only increase.   

Recombination is now widely employed as a tool for targeted gene alteration, yet 

surprisingly it is not yet routinely used to generate large libraries of DNA mutants. 

Oligonucleotide recombination has not been characterized and optimized specifically for 

library generation. Problems of how to mutagenize multiple positions simultaneously as 

well as the mechanism underlying chimeric codon formation have not been addressed.  

In vivo recombination is faster, cheaper, and more straightforward to implement 

than current in vitro PCR-based mutagenesis techniques, although the technology is less 

well developed for library mutagenesis at this time. To meet synthetic biology’s goal of 

cell engineering, the cell’s own synthetic machineries will need to be co-opted to construct 

new building blocks and pathways directly in living cells. 
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2.5 Experimental methods 

General materials and methods. Standard methods for molecular biology in 

Saccharomyces cerevisiae and Escherichia coli were used.73,74  S. cerevisiae strains were 

grown at 30 °C in media containing 2% glucose unless otherwise noted.  Restriction 

enzymes and Vent DNA polymerase were purchased from New England Biolabs.  Vent 

polymerase was used for all PCR reactions except yeast or E. coli colony PCR unless 

otherwise noted.  For yeast colony PCR, cells were prepared according to a reported 

protocol (http://labs.fhcrc.org/hahn/Methods/mol_bio_meth/pcr_yeast_colony.html), and 

amplifications were performed with GoTaq DNA polymerase (Promega). The dNTPs used 

for PCR were purchased from GE Healthcare Life Sciences DNA cassette oligonucleotides 

for each mutation along with complementary strands were purchased from Invitrogen or 

Integrated DNA Technologies.  DNA sequencing was performed by Genewiz or in the lab 

of Dr. Jingyue Ju at the Columbia Genome Center.  Pellet Paint was purchased from 

Novagen. Plasmid DNA was purified using QIAprep miniprep kits (Qiagen); for yeast 

minipreps, cells were vortexed with acid-washed glass beads (Sigma) for five minutes 

before cell lysis. PCR products were purified with agarose gel electrophoresis and 

QIAquick spin columns purchased from Qiagen. Yeast genomic DNA was purified using a 

YeaStar Genomic DNA Kit (Zymo Research). DNA concentrations were determined by 

absorption at 260 nm, and absorbance measurements were taken on a Molecular Devices 

SpectraMax Plus 384 instrument.  DNA Gels were run at 120-140 V for 45 min using a 

Bio-Rad PowerPac 100. Cells were incubated in a New Brunswick Scientific Series 25 

Incubator Shaker. All aqueous solutions were made with distilled water prepared from a 

Milli-Q Water System. For PCR, a MJ Research PTC-200 Pellier Thermal Cycler was 
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employed.  Transformation of E. coli was carried out by electroporation using a Bio-Rad 

E. coli Pulser.  Yeast electroporation was carried out using a Bio-Rad Gene Pulser Xcell 

and a previously reported protocol.75  

Plasmid Construction. Standard protocols for molecular biology and yeast 

genetics were used.76,77 The materials and primers used in this study are listed in Tables 2-

1 to 2-3. The TRP1 gene was subcloned into pHT2150 under control of the MET25 

promoter using primers VWC2031 and VWC2032 to generate plasmid pNP2278. Plasmids 

for expressing trp1 mutants were created using overlap extension PCR.  Two modified 

strands incorporating the trp1-Arg44* mutation were made from p424MET25 using the 

primers VWC2031 and VWC2036, and VWC2032 and VWC2035.  Following fusion, this 

fragment was amplified using VWC2034 and VWC2033, digested with SfiI and inserted 

into the multiple cloning site of the pHT2150 vector to generate pNP2279.  These steps 

were repeated on pNP2279 using primers VWC2031 and VWC2038, and VWC2032 and 

VWC2037 to generate pNP2280, trp1-Arg44*-Ser201* mutations.  These steps were then 

repeated on pNP2280 but instead using primers VWC2031 and VWC2040, and VWC2032 

and VWC2039 to generate pNP2281, trp1-Arg44*Arg78*Ser201* mutations. The 

remaining three plasmids pNP2282, trp1-Ser201* mutation, pNP2283, trp1-Arg44*Arg78* 

mutations, and pNP2284, trp1-Arg78* mutation, were created using restriction enzymes 

and ligation. 

pNP2278, pNP2280 and pNP2281 were digested with BstXI and SfiI to generate 

fragments 303 bp and 403 bp in length.  The 303 bp fragment from pNP2278, carrying no 

mutations, and the 403 bp fragment from pNP2280, carrying the trp1-Ser201* mutation, 

were ligated to make pNP2282.  The 303 bp fragment from pNP2281, carrying the trp1-
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Arg44*Arg78* mutations, and the 403 bp fragment from pNP2278, carrying no mutations 

were ligated to make pNP2283.  Finally, pNP2278 and pNP2283 were digested with MfeI 

and SfiI to generate fragments 145 bp and 561 bp in length.  The 145 bp fragment from 

pNP2278, carrying no mutations, and the 561 bp fragment from pNP2281, carrying the 

trp1-Arg78* mutation, were ligated to make pNP2284.  Linearized plasmids were prepared 

by digesting with SalI or ClaI, which cut once at the 3’ of TRP1 gene, within the multiple 

cloning site.  

Yeast Transformation. We used a high efficiency yeast electroporation protocol 

with slight modifications.45 A 10 mL culture of NP2273 was inoculated in fresh YPD and 

incubated at 30ºC overnight (250 mL).  The overnight culture was used to inoculate 100 

mL of 30°C YPD to reach an OD600 = 0.1.  This culture was grown to an OD600 = 0.6 – 0.8 

(~ 5 hr).  Then 1 mL filter-sterilized 1,4-dithiothreitol (DTT) solution (1M Tris, pH 8.0, 

2.5 M DTT) was then added to the 100 mL of YPD.  The cells were grown at 30ºC for 

another 20 min.  From this point forward, the cells were kept on ice.  The cells were 

harvested in 50 mL Falcon tubes at 2000 rpm at 4ºC for 5 min.  The supernatant was 

discarded and the cells were washed with 25 mL of E-buffer (10 mM Tris, pH 7.5, 270 

mM sucrose, 1 mM MgCl2) by pipetting up and down.  The cells were reharvested and 

resuspended in 1 mL of E-buffer and transferred to an autoclaved 1.5 mL microcentrifuge 

tube and spun down again in a tabletop centrifuge at 12000 rpm for 10-20 s.  The 

supernatant was discarded and resuspended using 50 µL of E-buffer.   

The cells were distributed into 4 tubes and added with vector and either ss or ds 

DNA oligonucleotides, and incubated on ice for 10 min (approximately 100 µL cells per 

tube).  The gene pulser was set to 540 V, 25 μF, 0 , and the cells were transferred to 2 
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mm electroporation cuvettes.  Immediately after electroporation the cells were recovered 

with 1 mL of 30ºC YPD.  The cells were then incubated at 30ºC for 1 hr before plating on 

SC(Ura-) and SC(Ura-Trp-), which gave transformants and recombinants, respectively. 

Prior to analysis, recombinant colonies were further grown in SC (Ura–Trp–) liquid 

selective media for 4 days with multiple seedings using fresh selective media. The cells 

were then plated on SC (Ura–Trp–) selective plates and the resulted colonies were 

sequenced. 

Mock library experiment. To generate a mock library, fixing and nonsense 

oligonucleotides (Ser201LibraryFix and Ser201LibraryOpal, respectively) were mixed to a 

final molar ratio of 1 to 106 Ser201LibraryFix to Ser201LibraryOpal and co-transformed 

with a linear trp1*-Ser201 vector by electroporation. The same amount of DNA 

oligonucleotides was used as in previous experiments, as well as the same optimized molar 

ratio of vector to oligonucleotides (1:1000). Each experiment yielded a transformation 

efficiency of an order of magnitude 105/µg of oligonucleotide DNA. At least 106 

transformants were achieved in each experiment, using up to 10 electroporation samples.  

Once electroporated, samples were rescued In YPD for one hour at 30˚C and then a 

1000-fold dilution was plated on SC (Ura-) plates to score for transformation efficiency 

and in 3-fold dilution was plated on SC(Ura-Trp-) plates to score for recombination 

efficiency. 2.6 x103 total colonies were counted on SC (Ura-) plates, whereas 2776 

colonies were counted on dual selection SC (Ura-Trp-) plates. Although fully fixed viable 

colonies were always recovered, variability in recombination efficiency was observed 

between experiments, with the number of colonies varying within an order of magnitude. 

The experiment was further performed independently by another student in the lab, Laura 
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Wingler, with similar results. No colonies were observed when linear vector was 

transformed without oligonucleotides. 

Seeding and sequencing of recombinant colonies. In order to isolate the 

recombinant plasmids carrying functional TRP1 that allows for cell survival, it is necessary 

to cure the cells of plasmids that did not undergo recombination. For this purpose, we used 

a continuous selection process in liquid selective media. 20-30 colonies were analyzed for 

each experiment. Each recombinant colony was further selected in SC (Ura-Trp-) liquid 

media for 4 days at 30ºC to cure the cell of additional trp1*-201 vectors. To avoid 

depletion of nutrients and maintain the stringency of selection, cells were diluted into fresh 

selective media each day, a process we refer to as 'seeding'. After 4 ‘seedings’ (day 5) each 

sample (i.e a single recombinant colony seeded in liquid selective media) was plated on 

selective SC (Ura-Trp-) plates. 

Colony PCR was performed on a single colony from each plate using the following 

protocol: the colony was resuspended in 50 μL dH2O, boiled in 100 ˚C bath for 1 minute 

and then vortexed for 1 minute. The supernatant was subjected to PCR amplification of 

TRP1 gene. Colony PCR protocol: 77 μL dH2O, 2 μL colony supernatant, 20 μL 5x GoTaq 

Buffer, 0.2 μL dNTPs, 0.2 μL primer VWC1051, 0.2 μL primer VWC1052 and 0.2 μL 

GoTaq Polymerase to a total of 100 μL reaction. The PCR reaction product was verified by 

gel electrophoresis for the correct size (1000 bp), purified using a Qiagen PCR purification 

kit and sequenced using the reverse primer VWC1051. Only high quality sequences were 

used for analysis. We compared sequencing results of the single seeded colonies to 

retransformed single colonies and found the seeding technique to be highly efficient for 

isolation of recombinant plasmids. (Data not shown) 
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Double stranded oligonucleotide preparation. dsDNA was prepared by 

annealing complementary ss oligonucleotides using the following annealing protocol. 

Complementary single strand oligonucleotide, dissolved in annealing buffer (500 mM 

NaCl, 10 mM EDTA, 10 mM Tris pH 7.5-8.0), were mixed (0.5 µg of each) and subjected 

to gradual cooling using a PCR machine: the sample was first heated to 95˚ C for 5 

minutes, and then cooled at 0.1 ˚C/sec to 46 ˚C, held constant for 30 minutes and cooled 

again to 8˚C at the same rate. 

Trp1* allele reversion rate. Reversion rate of target plasmids carrying trp1* allele 

with one (trp1*-201), two (trp1*-44-201) or three (trp1*44-78-201) ochre mutations was 

tested by plating 3x106 plasmid-carrying cells on double selective media SC (Ura-Trp-). 

No colonies were observed after 5 days.  

2.6 Strains, plasmids, and oligonucleotides 

Table 2-1. Strains used in this study 

Strain Origin Genes  

NP2273 ATCC4017202  MATa his3 ∆1 leu2∆0 met15∆0 ura3∆0 ∆TRP1 
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Table 2-2. Plasmids used in this study 

Vector Mutation Genes Strain 

pHT2150 H. Tao, P. Peralta-Yahya, J. Decatur, V.W. Cornish.  Characterization of a new 
glycosynthase cloned using chemical complementation. ChemBiochem 2008, 9(5). 

p424MET25   ATCC 87321 

pNP2278  URA3, TRP1 NP2278 

pNP2279 trp1-R44* URA3, trp1 NP2279 

pNP2284 trp1-R78* URA3, trp1 NP2284 

pNP2282 trp1-S201* URA3, trp1 NP2282 

pNP2283 trp1-R44*R78* URA3, trp1 NP2283 

pNP2280 trp1-R44*S201* URA3, trp1 NP2280 

pNP2281 trp1-R44*R78*S201* URA3, trp1 NP2281 

 
 
Table 2-3. Oligonucleotides used in this study. Point mutations are written in lowercase. 

 
Name  Sequence (5’ to 3’)  
ARG44Fix  VWC2041 CTGGGTATTATATGTGTGCCCAATAGAAAGagaACAATTGACCCGGTTATTGC

AAGGAAAATT 

ARG44Fix_ds  VWC2042 AATTTTCCTTCGAATAACCGGGTCAATTGTtctCTTTCTATTGGGCACACATATA
ATACCCAG 

ARG78Fix VWC2043 GGCACTCCAAAATACTTGGTTGGCGTGTTTcgtAATCAACCTAAGGAGGATGT
TTTGGCTCTG 

SER201Fix VWC2044 AGATTAAATGGCGTTATTGGTGTTGATGTAagcGGAGGTGTGGAGACAAATG
GTGTAAAAGAC 

SER201LibraryFix  VWC2218 TAGATTAAATGGCGTTATTGGTGTTGATGTGtccGGAGGCGTGGAGACAAATG
GTGTAAAAGAC 

SER201LibraryOpal VWC2219 TAGATTAAATGGCGTTATTGGTGTTGATGTGtgaGGAGGCGTGGAGACAAATG
GTGTAAAAGAC 

 
Table 2-4. Oligonucleotides used to construct trp1 variants.  
 
Name Sequence (5’ to 3’)  
VWC2031 GCATACGTCGGCCCCCGGGGCCATGTCTGTTATTAATTTCACA 

VWC2032 GCATACGTCGGCCGGCAGGGCCTTAATGGTGAT 

VWC2033 GGCCGGCAGGGCCTTA 

VWC2034 GGCCCCCGGGGCCAT 

VWC2035 ATATCTGTGCCCAATTAAAAGAGAACAATTGACCCGG 

VWC2036 GTCAATTGTTCTCTTTTAATTGGGCACACATATAATAC 

VWC2037 ATTGGTGTTGATGTATAAGGAGGTGTGGAGACAAAT 

VWC2038 TGTCTCCACACCTCCTTATACATCAACACCAATAACGC 

VWC2039 TTGGTTGGCGTGTTTTAAAATCAACCTAAGGAGGATGT 

VWC2040 CTCCTTAGGTTGATTTTAAAACACGCCAACCAAGTATT 
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Combinatorial Pathway Engineering via Reiterative Recombination 
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3.1 Chapter outlook 

Metabolic engineering is a rapidly growing research field with potential to 

profoundly impact the production of drugs, biofuels and commodity chemicals. Valuable 

complex natural products, unattainable or too complex for cost effective production by 

chemical synthesis, have now been successfully obtained from biosynthesis in microbial 

hosts. Yet current methods for gene deletion and insertion prove laborious and inefficient 

when applied to engineering of entire metabolic pathways. Furthermore, the tools available 

for directed evolution of single enzymes cannot be extrapolated for construction of 

combinatorial libraries required for optimization of metabolite yield. Our lab previously 

developed Reiterative Recombination, a powerful DNA assembly method which enables 

the infinite integration of DNA fragments directly into the yeast chromosome with high 

efficiency and in a user friendly fashion. In this work, we challenged this novel technology 

for combinatorial attenuation of gene transcription to regulate the flux through a lycopene 

biosynthetic pathway. Using three cycles of assembly, five promoters were shuffled to 

vary the expression of each gene, constructing a combinatorial pathway library. We discuss 

Reiterative Recombination as a generic technique for engineering of multi-component 

pathways.  
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3.2 Introduction 

Recent breakthroughs in the engineering of microbial hosts for the production of 

valuable natural product drugs2-4 suggest prospects for routine production of desired 

natural products in heterologous system.5-7 However, expression of complex molecules in 

microbial hosts is often characterized by low product yield, product toxicity, genome 

instability, and compromised cell growth.7,8 Once installed, optimization of product yield 

and expression of product analogues add further challenges.10-15 Much like for protein 

engineering, directed evolution offers to overcome some of these challenges, provided 

single-enzyme methodologies be adapted to multi-component, in vivo metabolic networks.  

For example, while plasmids are widely used for protein expression in microbial 

hosts, it is now widely accepted that cloning of heterologous pathways necessitates 

genomic integration in order to avoid the metabolic burden caused by multiple plasmids.16 

Yet integration of multiple genes is not only cumbersome and time consuming, but also 

restricted by the limited availability of selective markers in both E. coli and S. cerevisiae. 

In addition, the iterative process of mutagenesis and selection easily performed for 

evolution of single enzymes by isolation and retransformation of plasmids becomes 

substantially more complex in the context of multiple chromosomal components. Finally, 

the tools available for characterization of enzyme variants are not sufficient for 

characterization of complex cellular phenotype resulting from perturbation of metabolic 

networks. 

Reiterative Recombination allows in vivo construction of optimized, multi-gene 

pathways.9 It overcomes the critical shortcoming of existing in vivo DNA assembly 

methods - their very low efficiencies - by coupling DNA recombination to the repair of 
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double-strand DNA breaks (DSB’s). Our lab previously demonstrated the use of 

Reiterative Recombination for assembly of gene pathways and confirmed the method is 

suitable for construction of up to 104 member libraries.  

Here, we demonstrate Reiterative Recombination to be a highly efficient, 

technically straightforward technique for assembly and combinatorial shuffling of 

metabolic pathways, using the simple three gene lycopene pathway as a model system. We 

utilized libraries of widely used yeast promoters to assemble multiple libraries in the same 

host strain, combinatorially shuffling promoters for each of the pathway genes. We then 

screened the resulting colonies by eye for expression of the red pigment lycopene. 

Characterization of this initial library provides insight into the flux through the isoprenoid 

pathway and a basis for further development of this promising technology for metabolic 

engineering.    

3.2.1 DNA assembly via Reiterative Recombination  

Reiterative Recombination serves as an efficient DNA assembly system in S. 

cerevisiae. At each assembly cycle, the DNA fragment of interest is inserted downstream 

of the previous assembled fragment by recombination between a ‘donor’ module (vector) 

and an ‘acceptor’ module (genome), as depicted in Figure 3-1. The recombination event 

results in elongation of the construct of interest and simultaneously replaces a selectable 

marker, allowing selection of cells with the desired construct.  

In order to guide the assembly process, the DNA fragment to be assembled is first 

added with short homology sequences on both ends. The fragment is then introduced into 

the acceptor strain by co-transformation with a generic linear donor plasmid. Overlapping 

sequences allow the plasmid to circularize with the fragment upon transformation (a 
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process termed ‘gap repair’). Next, double strand break is induced at a designated locus in 

the acceptor strain chromosome to trigger recombination between the donor plasmid and 

acceptor chromosome at a unique designated locus. Building on an established technique 

for targeted gene disruption,17,18 Reiterative Recombination utilizes homing endonucleases 

with large unique recognition sequences (~20bp) to introduce DSBs at designated sites9 

stimulating homologous recombination between a donor and acceptor modules. DSB 

induction is facilitated by a homing endonuclease that is encoded by the donor plasmid. 

Importantly, the enzyme is tightly controlled under a galactose promoter which is activated 

only when cells are transferred into galactose containing media. Upon cleavage, the donor 

plasmid provides homology to repair the acceptor chromosome DSB guided by short 

regions of overlap. The fragment carried by the donor plasmid is added to the acceptor’s 

growing construct and simultaneously replaces the acceptor module’s endonuclease 

cleavage site and selectable marker.  

Selection of successful recombination events is enabled since after fragment 

integration only the acceptor module carries a promoter to actively transcribe the adjacent 

selectable marker.  Pairs of orthogonal selective markers and endonucleases are used for 

repeated iterations of the elongation cycle. All assembly occurs at the HO gene locus in a 

S. cerevisiae strain with full deletions of all markers used in our system.19 
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Figure 3-1. DNA assembly by Reiterative Recombination.9 General scheme of 

Reiterative Recombination, showing two rounds of elongation. Each round of 

elongation is achieved by recombination between an “acceptor module” (in the linear 

chromosome) and a “donor module” (in the circular plasmid). The two modules 

contain orthogonal homing endonuclease cleavage sites (triangles) adjacent to 

different selectable markers (purple and green). Both markers are downstream of a 

homology region (gray), but only the acceptor module contains a promoter (white 

‘prom’) driving marker expression. Endonuclease cleavage of the acceptor module 

stimulates recombination, joining the fragments being assembled (orange) and 

replacing the acceptor module’s endonuclease site and expressed selectable marker 

with those of the donor module. Repeating this procedure with a donor module of the 

opposite polarity returns the acceptor module to its original state, allowing the 

assembly to be elongated indefinitely. 
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3.2.2 Terpenoids pathway as model system 

 Terpenoids are a particularly prominent class of metabolic engineering targets. 

Though they are all derived from the universal precursor isopentenyl pyrophosphate (IPP), 

the >55,000 terpenoids isolated to date exhibit vast structural and functional diversity.20 

This important class of functionally modified terpene secondary metabolites is present in 

all living organisms, and display anticancer, antiparasitic, antimicrobial, antiallergenic and 

anti-inflammatory properties. Terpenoids are further used as industrial products such as 

flavors, fragrances, insecticides or food colorants.20 Many terpenoids, such as the 

chemotherapeutics taxol (paclitaxel), vinblastine and the antimalarial artemisinin are 

frontline therapeutics but cannot be sustainably supplied to the commercial market from 

their natural sources.3,21-23 Thus, recombinant biosynthesis of terpenoid in microbial host 

cells could replace the massive harvesting currently required to enable their large scale 

utilization. 

In recent years, considerable improvement has been achieved in microbial 

terpenoid yield.20 Particularly, efforts have been made to improve the availability of 

isoprenoid precursor molecules in microbial hosts, altering either the classical mevalonate 

(MVA) biosynthetic pathway in eukaryotes (Figure 3-2), or the recently discovered non-

mevalonate (DXP) pathway in bacteria.20,21,24-26 

Carotenoids such as lycopene and beta-carotene are neutraceutical terpenoids with 

remarkable antioxidant activity. The broad range of carotenoid colors conveniently allow 

for a visible screen, making them the focus of many metabolic engineering studies27-30 and 

particularly combinatorial biosynthesis.31 Specifically, lycopene can be monitored at 470 

nm wavelength or extracted into organic solvent to provide a sensitive assay, reaching 
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submilligram per liter differences in yield, and has therefore been the major carotenoid 

used for production in microbial hosts.32  

We initiated collaboration with the labs of Greg Stephanopoulos (MIT) and 

Mattheos Koffas at Rensselaer Polytechnic Institute (RPI) in aim to develop new 

methodologies for the construction of Saccharomyces cerevisiae phenotypes for the 

efficient synthesis of the isoprenoid precursors, IPP, GPP, FPP and GGPP. Taking 

advantage of its facile colorimetric screen and relatively short pathway, we chose lycopene 

as a proof of principle system to demonstrate combinatorial attenuation of gene expression 

using Reiterative Recombination.  

 

3.3 Results 

3.3.1 Efficiency of genomic cassette mutagenesis in S. cerevisiae 

Though highly efficient for DNA exchange, the process of homologous 

recombination is also tightly regulated in S. cerevisiae and maintained at low level during 

most phases of cell cycle to ensure genome integrity.33 Thus, while spontaneous 

recombination of foreign DNA is sufficient for single gene insertions and deletions, it has 

been a significant barrier for construction of large libraries directly in the yeast genome. 

Building on our previous studies of plasmid-based cassette mutagenesis, we first quantified 

the efficiency of cassette mutagenesis on the yeast chromosome by way of DNA 

transformation. 
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Figure 3-2. Lycopene biosynthetic pathway. The mevalonate pathway (blue) 

provides IPP and DMAPP which are the universal precursors for biosynthesis of 

terpenoids including, among others, phytoene and lycopene. Farnesyl-PP (FPP) is 

the natural precursor for steroid production in yeast, whereas GeranylGeranyl-PP 

(GGPP) can be used as precursor for heterologous expression of the anticancer 

drug Taxol. Heterologous genes that are used in this work to produce lycopene in 

yeast are marked in red (CrtE, CrtB and CrtI). 
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We therefore measured the efficiency of repairing point mutations and large 

deletions in the chromosomal target TRP1 by direct transformation of dsDNA. TRP1 gene 

is widely used as auxotrophic marker in S. cerevisiae and previously served as the model 

system for our plasmid-based cassette mutagenesis. Notably, we avoid the induction of 

DSB or over expression of proteins known to enhance recombination in yeast in order to 

establish baseline for the efficiency of chromosomal repair. 

To examine the efficiency of repairing a point mutation we used strain VC2445 (a 

variant of the common laboratory auxotrophic strain W303, kindly provided by R. 

Rothstein) carrying an intact recombination mechanism and a single mutation at TRP1 

nucleotide 247 which changes codon GAG (glutamic acid) to codon TAG (amber stop). To 

explore repair of deletion mutations we used the common laboratory strain FY251 carrying 

600 bp deletion spanning (-100) to (+502) of the TRP1 gene. Control experiments 

confirmed both strains do not grow in the absence of tryptophan (data not shown).  

Two fixing DNA cassettes were made by PCR using an intact TRP1 gene. For 

repair of point mutations, a 300 bp cassette was produced, and for repair of deletion 

mutants, 800 bp cassette spanning (-205) to (+620) of the TRP1 reading frame was 

produced. Each cassette was introduced into yeast by transformation. ~107 cells / ml 

survived transformation by electroporation.  The efficiency of gene repair by cassette 

mutagenesis was calculated by comparing the number of cells growing on media lacking 

tryptophan (SC(T-)), where successful recombination occurred, and the number of overall 

surviving cells after transformation (SC, non-selective media).  

Results are shown in Figure 3-3. Overall, the efficiency of dsDNA cassette 

recombination into the chromosome ranged 0.001 to 0.1 percent, significantly lower than 
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the previously observed efficiency of plasmid-based cassette mutagenesis.34 While 

increasing the amount of DNA cassette slightly improved the repair efficiency of point 

mutation, the repair of deletion mutation within the range tested was not significantly 

changed. Increasing the homology sequence on both sides of the target mutation greatly 

enhances recombination efficiency, as demonstrated for targeting TRP1 point mutation 

using the longer 800 bp repair cassette.  

Since transformation efficiency (~107 cells) is not limiting in this experiment and 

typically results in multiple copies of the fixing cassette per cell,35,36 the observed 

spontaneous recombination efficiency of ~0.01-0.05% is very low. It is, however, on par 

with previous cassette mutagenesis literature in the absence of DSB.37,38 dsDNA cassette 

mutagenesis thus proves insufficient to support large library size (>104) required for 

metabolic engineering.  

3.3.2 Adapting Reiterative Recombination for library assembly 

To overcome the limited efficiency observed by cassette mutagenesis, we adapt the 

highly efficient DNA assembly system Reiterative recombination for integration of 

pathway libraries directly in the yeast chromosome. Specifically, we use iterative cycles of 

targeted chromosomal recombination, originally designed for sequential assembly of single 

DNA fragments, to simultaneously assemble collections of DNA sequence variants.  

Slightly modifying the protocol described for single gene assembly (Figure 3-1),9 we 

simply co-transformed libraries of variants with a linear donor plasmid into the acceptor 

strain (Figure 3-4).  Libraries are accumulated in the same host by repeating the assembly 

cycle several times. The result is a collection of cells each carrying one of many possible 

gene combinations.  
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Figure 3-3. Efficiency of cassette mutagenesis in chromosomal TRP1 gene. 

Chromosomal mutations in the gene TRP1 were targeted for repair by 

transformation of dsDNA. The efficiency was calculated by comparing the 

number of cells able to grow on selective media lacking tryptophan and the 

number of total cells after transformation (no tryptophan selection). (A) 

Recombination efficiency for repair of point mutation using increasing 

amount of 300 bp dsDNA cassette. (B) Recombination efficiency for repair 

of deletion mutation using increasing amount of 800 bp cassette. (C) Effect of 

increased homology sequence (cassette length) on the efficiency of point 

mutation repair. 500 ng of either 300 bp or 800 bp dsDNA cassette was 

transformed into strain VWC2445. All experiments were performed in 

triplicates. 
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Like in the case of non-library DNA assembly, sequence homology guides the 

integration of fragments into the donor vector and acceptor strain. PCR is thus used to add 

homology on both ends of each of the library members. Thus, all library members are 

equally likely to undergo recombination with the donor plasmid and become integrated 

into the chromosome.  However, since it is known each cell receives a random collection 

of library variants upon transformation and only single copy of the donor (centromeric) 

donor plasmid that guides its integration, each cycle eventually gives rise to a library of 

host cells, each carrying one integrated library variant at the acceptor site. Adding an 

additional library into an existing pool of variant cells increases the complexity of the 

library at each cycle.  

3.3.3 Single gene attenuation using endogenous promoter library  

We chose to demonstrate the utility of Reiterative Recombination for library 

construction by attenuation of gene expression using promoter libraries. Promoter elements 

for the regulation of transcription are widely used in all fields of molecular biology, and 

are a central tool for the optimization of pathways’ flux in metabolic engineering 

strains.2,39-42 

For attenuation of gene expression we used a promoter library consisting of five 

endogenous constitutive yeast promoters. The library members, CYC1, KEX2, GPD1, 

PGK1 and TEF1 are all widely used S. cerevisiae promoters previously characterized as 

having a wide range of promoter activity.43 We used the same protocol as described for 

assembly of single DNA fragment with the following modifications. First, PCR was used 

to add all library promoters with common arbitrary 20 bp sequences on both ends to 
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facilitate analysis of recombinants (Figure 3-5). Additional PCR was used as previously 

described9 to add homology to both the donor plasmid and the gene downstream of the 

promoter library. The pool of PCR products carrying all library variants with identical 5’ 

and 3’ sequences was transformed into the acceptor strain with the respective donor 

plasmid for each cycle.9  

 

Figure 3-4. Adapting Reiterative Recombination for assembly of DNA libraries. (A) 

Schematic single cycle assembly of a DNA library. All fragments for assembly, 

including library of promoter variants (gray) and the respective Crt genes (yellow) are 

co-transformed with the donor plasmid into the acceptor strain (1). A single variant is 

then incorporated into the donor (2) and then the acceptor module (3), resulting in a 

pool of recombinant cells (4). (B) Iterative assembly of combinatorial libraries. 

Multiple gene libraries can be repeatedly assembled to form complex combinatorial 

pathways. Using a library of promoters (gray), the expression of multiple enzymes is 

altered to explore synergistic effects on lycopene yield.  

A 

B 
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To test the adapted Reiterative recombination protocol, we first transformed the 

promoter library with a LacZ reporter gene. The assembly of LacZ with five promoters 

simultaneously was used to both validate the library protocol and calibrate the dynamic 

range of each promoter activity as a baseline for attenuation of lycopene pathway genes. A 

single Reiterative Recombination library assembly cycle was used to co-transform LacZ 

Figure 3-5: Preparation of DNA for library assembly via Reiterative 

Recombination. (A) PCR overview, demonstrated here for a promoter library. 

Each fragment was added with homology on both ends to enable recombination. 

(i) Common arbitrary sequences are added on both ends of each promoter.  (ii) 

Homology is added to preceding assembly fragments (yellow), the respective Crt 

gene (brown) and donor plasmid (gray). (iii)  Homology to donor plasmid is 

extended to make the final fragment (iv). (B) Upon transformation into yeast, 

spontaneous recombination occurs between overlapping sequences to circularize 

the final donor plasmid. 

A 
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with all five members of the library into an acceptor strain LMW2591. Induction of 

recombination was performed by galactose media, cells were cured of excess donor 

plasmid and selected for successful recombination events as previously described (Figure 

3-1, 3-4).9 Several recombinant colonies were picked, tested for LacZ activity by liquid 

assay and further analyzed by PCR of genomic DNA to confirm correct integration of both 

promoters and LacZ gene.  

As shown in Figure 3-6, we were able to recover a variety of colonies displaying 

variable levels of LacZ activity. Sequencing confirmed all five library members were 

represented in the final pool of recombinant colonies. We then characterized gene 

expression level of each library promoter, and observed a dynamic range spanning 2 orders 

of magnitude in promoter activation. Interestingly, sequencing suggests the CYC1 weak 

promoter to be slightly more abundant among recombinant colonies than other library 

promoters (data not shown). 

Next, we similarly characterized the attenuation of the first gene in the lycopene 

pathway, CrtE, with the same five-member promoter library. We used a codon optimized 

CrtE gene, encoding Geranylgeranyl pyrophosphate (GGPP) synthetase from Erwinia 

herbicola (kindly provided by Greg Stephanopoulos). CrtE performs the same function as 

the endogenous S. cerevisiae GGPP synthetase protein (BTS1 gene) and is expected to 

increase the cellular pool of GGPP (Figure 3-2). The ADH transcription terminator 

sequence was added in all experiments. 
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We transformed CrtE into the acceptor strain with one, two, three or five of the 

library promoters in a single cycle. To control for bias towards either library members, 

equimolar amount of all library members were used at each transformation, keeping the 

total amount of DNA as well as induction and curing conditions constant. The distribution 

of promoters observed in one cycle of Reiterative Recombination assembly is presented in 

Figure 3-7.  

Except for single promoter experiments, where all recombinants carry the expected 

promoter, the results suggest over-representation of the weak promoter CYC1 among CrtE 

library recombinants. Interestingly, the same trend was also suggested by sequencing of 

the promoter library used for LacZ (data not shown). It is unlikely that such bias originates 

from differences in recombination efficiency among library variants, since all members 

Figure 3-6. Attenuation of LacZ expression using constitutive promoter library. (A) A 

mix of five promoters was co transformed with the LacZ gene PCR product and 

integrated into the chromosome via Reiterative Recombination. The levels of LacZ 

activity were tested in 24 randomly selected recombinants by liquid assay. (B) 

Recombinant Colonies carrying each of the library promoters were individually used 

to characterize the expression level of each library member. The experiment was 

performed in triplicates. 

A B
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carry the same 3’ and 5’ homology sequences and thus have equal probability for 

recombination with both donor and acceptor modules. 

The bias can be explained, however, by competitive advantage resulting from 

integrating of CYC1 over other stronger library promoters. During the assembly process, 

variants are grown in liquid selective media. Fast growing variants might overtake the 

culture during liquid selection growth, while the number of slow growing variants becomes 

exponentially scarce. For example, strong expression of heterologous genes which do not 

contribute to cell survival, could cause a metabolic burden and lead to slower cell growth. 

Cells carrying strong promoters might thus be selected against during the curing and 

recombinant growth selection assay while variants carrying weak promoters grow faster 

and take over the population. Nevertheless, it should be noted that the other weak library 

promoter, Kex2, was not found to be over-represented among recombinant colonies. 

Extensive investigation of promoter bias at the single gene level is required to draw further 

conclusion. Such inherent selective bias might eliminate many variants at early cycles of 

assembly, decreasing combinatorial complexity of the final pathway library.  
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3.3.4 Combinatorial attenuation of the lycopene pathway 

Next, we proceeded to add the genes CrtB and CrtI to achieve expression of 

lycopene. Significantly, each of the Crt genes are added with the same five member 

promoter library, using the same assembly process described for CrtE. Specifically, ~1400 

recombinant cells carrying CrtE with promoter library from the first cycle were used as the 

acceptor strain for transformation of the second cycle DNA, consisting of CrtB, five-

member promoter library, and the respective donor plasmid for cycle 2. Induction and 

Figure 3-7. Distribution of library promoters observed for single assembly cycle. (A) 

CrtE gene was assembled with one, two, three or five promoters in a single Reiterative 

Recombination assembly cycle. Eight recombinant colonies were randomly picked, 

genomic DNA was extracted and promoters upstream of CrtE were identified by 

sequencing. The distribution of promoters among the sequenced colonies is presented. 

The experiment was performed three times with similar results.  
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curing steps were performed as previously described.  For the third cycle of library 

assembly, CrtI was transformed with the same five-member promoter library into an 

acceptor strain comprised of cycle 2 recombinants.  Finally, cycle 3 recombinants carrying 

all three lycopene biosynthetic pathway genes were plated and visibly screened for the 

expression of red color as a result of lycopene expression (Figure 3-8) 

Notably, using the collection of recombinant colonies to initiate each cycle, we 

might be carrying on a certain number of non-cured colonies to the next cycle (i.e cells 

carrying excess donor plasmids that escaped the curing phase and therefore contain 

additional copies of library promoters). We thus added a selective marker TRP1 with the 

last pathway gene CrtI, to help ‘clean out’ the last library cycle and further verify the 

selection of only these recombinants carrying both integrated markers. For each cycle, we 

observe ~1400 recombinant colonies (i.e galactose-induced, diluted for screening on 

selective plates from 1 ml) that were used to inoculate the next cycle of library assembly.  

 

Figure 3-8. Recombinant colonies carrying a 

library of lycopene pathways. Three genes of 

the lycopene pathway were assembled, each 

with a library of constitutive promoters. The 

combinatorial library was plated on selective 

SC(LT-/FOA) media and incubated 3 days at 

30 ºC. 30 colonies were randomly selected for 

further analysis. 
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Interestingly, while the occurrence of white and orange colonies indicates that the 

multiple-gene attenuation library contains a range of lycopene expression levels, the 

majority of colonies observed were white with several easily detected orange colonies 

(Figure 3-8). The size of the library demonstrated in this work is relatively small, 

consisting of three cycles each with five-member library totaling 53=125 possible variants. 

Thus, to ensure the variability of the library is fully covered, the number of recombinants 

screened should exceed 3 times the library size. The number of colonies observed at each 

cycle after transformation (107 cells/ ml) and recombination (104-105 cells/ ml) ensures the 

library is fully covered. Notably, our analysis of recombinant colonies is aimed at 

demonstrating the feasibility and diversity of the library achieved by Reiterative 

Recombination technology, rather than isolating the highest yielding colony.  

Thirty colonies of the final cycle (cycle 3) were chosen for further analysis. To gain 

insight into the distribution of promoters as well as the effect of expression level on cell 

growth and lycopene yield, we characterized genomic and cellular phenotype. First, PCR 

and sequencing of genomic DNA was performed to identify which promoter is driving the 

expression of lycopene biosynthetic genes CrtE, CrtB and CrtI. Lycopene content was 

quantified by extraction into organic solvent. Finally, growth assay was performed to 

assess the degree of metabolic burden or other changes affecting cell survival.  The results 

are summarized in Figure 3-9. 

Several trends were observed. First, we found the promoter upstream of the first 

pathway gene, the GGPP synthase CrtE, to be a strong promoter for the majority of 

recombinant colonies. The second enzyme CrtB, which converts GGPP to phytoene, 

carried strong promoters (GPD) at colonies with low lycopene production, and weak 
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promoter (CYC1) at colonies expressing high level of lycopene. Interestingly, the promoter 

upstream of the third biosynthetic gene CrtI, encoding lycopene synthase, shows the 

opposite trend; weak promoters are observed for colonies with low lycopene expression 

whereas strong promoters are observed for colonies with high lycopene expression (Figure 

3-9).  

CrtE is a GGPP synthase that duplicates the functionality of the endogenous S. 

cerevisiae GGPP synthetase gene BST1 (Figure 3-2). It thus increases the pool of GGPP 

for the production of lycopene, but also as a precursor for multiple other cellular pathways. 

It is thus not surprising to find all colonies to carry strong CrtE promoters.   

CrtB and CrtI both encodes heterologous functional gene diverting S. cerevisiae 

metabolite flux towards the production of lycopene (Figure 3-2). It is interesting, thus, that 

the distribution of promoters driving CrtB and CrtI shows opposite trends. Clearly, strong 

GGPP synthase (CrtE) and lycopene synthase (CrtI) expression is sufficient for the 

accumulation of lycopene, even with low CrtB expression, Suggesting these enzymes are 

the bottleneck for flux thorough the pathway. It is possible that other factors not considered 

here such as cell growth or regulation of the precursor availability, also contribute to the 

regulation of lycopene production and therefore have an effect on the final composition of 

recombinants.   

Overall, library characterization provided interesting insights into the flux through 

the lycopene pathway that is in agreement with previous published work. Extensive 

characterization of larger number of variants from each cycle is required in order to 

unequivocally determine the most efficient scheme for promoter attenuation supporting 

high lycopene yield.   
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It was previously demonstrated that high level expression of heterologous products 

could result in metabolic burden.16,44 To test for metabolic burden caused by the lycopene 

pathway library, we determined the doubling time for each variant and compared it with 

the doubling time of the parent Reiterative Recombination strain (carrying no lycopene 

expression) (Figure 3-9). As shown in Figure 3-9, we found no correlation between 

doubling time and lycopene expression levels for the thirty colonies characterized here. It 

is possible that the levels of lycopene in the selected variants were too low to induce 

metabolic burden. Alternatively, it is possible that the process of library assembly by 

Reiterative Recombination inherently selects for fast growing variants with low metabolic 

burden.  

3.3.5 Synthetic promoter library  

Several synthetic promoter libraries have been constructed for metabolic 

engineering applications.1,45-47 We used a synthetic promoter library constructed by the 

Stephanopoulos lab that consists of 11 variants of the constitutive Translation elongation 

factor 1 (TEF1) promoter,1 spanning 8 to 120% of the unmutated TEF1 activity.  

Importantly, each variant carries between 4 and 71 point mutations of the wild type 

promoter, retaining very high degree of homology among library members (Figure 3-10). 

This library was specifically chosen to challenge our recombination-dependent assembly 

process, testing the effect of highly homologous variants on the effectiveness of donor-

acceptor DNA exchange. 
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Three synthetic promoter variants were chosen to evaluate the utility of the library 

for the attenuate the lycopene pathway by Reiterative Recombination. The weak, medium 

and strong promoters TEF2, TEF4 and TEF6, respectively, were added with appropriate 

homology on each end using PCR, as previously described (Figure 3-5). 

 

 As for the previous promoter library, attenuation of the lycopene pathway gene 

CrtE was performed by co-transformation of linear donor plasmid with equimolar amounts 

of all three promoters, the fragment encoding CrtE and the tADH transcription terminator. 

The resulting recombinant colonies were analyzed for chromosomal integration by PCR 

restriction analysis and sequencing. As previously described, cycle 1 (CrtE) library 

recombinants were used as an acceptor strain for the following two cycles of library 

Figure 3-10. Sequence alignment of synthetic TEF1 promoters used for pathway 

attenuation. Variants TEF2, TEF4 and TEF6 exhibit 0.07, 0.65 and 1.17 of native un-

mutated TEF1 promoter activity, respectively, as measured by reported gene 

expression by Nevoigt et al.1 Interestingly, the variant with the strongest activity, 

TEF6, carries only a single nucleotide deletion. The promoters were transformed with 

each of the CRT genes to attenuate lycopene production. 
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assembly for CrtB and CrtI. As before, cycle 3 was added with an additional selective 

marker TRP1 and screened by eye for expression of lycopene. 

Sequencing characterization of only 10 colonies of the first cycle of library 

assembly (CrtE) suggested all three promoters to be represented with no bias in promoter 

representation as previously observed for the natural five-member promoter library (data 

not shown). This could be due to the difference in the range of promoter activity between 

the synthetic and natural promoter libraries, since the two libraries have been calibrated 

separately and were not directly compared; the current synthetic library consists of 3 

promoters ranging 0.07 to 1.17 of natural strong promoter TEF1 as measured by GFP 

expression,1 whereas the previous five-member natural library ranges ~100-fold as 

measured by LacZ expression above.  

Unlike previous library assembly experiment, no orange colonies were detected in 

recombinants resulting of three-cycle assembly using TEF1 synthetic promoters. Although 

the correct selective marker exchange occurred as expected in all three cycles (as 

confirmed by selective conditions), we could not detect the genes of the second library 

(CrtB) in the final cycle 3 recombinants, which explains the lack of orange lycopene-

expressing colonies. This may be a result of spontaneous ‘pop-out’ mechanism triggered 

by multiple repeats of the almost identical TEF1 promoters at the acceptor locus, as 

frequently occurs in S. cerevisiae to eliminate sequences flanked by overlapping repeats.48 

Thus, the final recombinants, though carrying the correct selective markers as expected by 

Reiterative Recombination assembly, could result from a different mechanism that does 

not support the assembly of lycopene genes. We did not pursue this library further.  



96 

 

3.3.6 Combinatorial gene library guided by Flux Balance Analysis 

To demonstrate the utilization of our assembly method beyond promoter libraries, 

we explored the assembly of entire gene libraries. Previously, it has been shown that 

changes in expression of host genes involved in the isoprenoid or competing pathways can 

help alleviate terpenoid yield by increasing precursor availability.3,27,49,50 For example, 

HMG-CoA reductase (enzyme HMG1), which converts HMG-CoA to mevalonate (Figure 

3-2), was found to have a significant effect on isoprenoid pathway yield.3,50 Thus, we used 

Reiterative Recombination to simultaneously examine the effect of several S. cerevisiae 

genes on lycopene yield. 

In order to identify host gene likely to affect the biosynthesis of lycopene, we 

turned to computational modeling via Flux Balance Analysis. In collaboration with 

Mattheos Koffas laboratory at Rensselaer Polytechnic Institute (RPI), S. cerevisiae 

metabolic network was modeled to predict endogenous host genes whose deletion, over 

expression or attenuation is expected to significantly enhance lycopene yield. Of the genes 

identified by the algorithm, we chose the following five member library: ALD6, MVD1 

and ERG10 were selected of the genes suggested for over expression. ALD6 is a cytosolic 

aldehyde dehydrogenase required for conversion of acetaldehyde to acetate. MVD1 

(ERG19) is mevalonate pyrophosphate decarboxylasethe. Acetoacetyl-CoA thiolase 

ERG10 is involved in the first step in mevalonate biosynthesis, forming acetoacetyl-CoA. 

All three genes are expected to alleviate precursor availability for lycopene biosynthesis. 

The genes ARO2, involved in the biosynthesis of chorismate, and HXK1, catalyzing 

phosphorylation of glucose during glucose metabolism, were suggested as deletion targets 

and were chosen as negative controls.  
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We chose to shuffle these genes with the promoters previously used for attenuation 

of the pathway, namely the five-member constitutive promoter library (Figure 3-6). Each 

gene could pair with any of the five promoters giving rise to 25 possible combinations. 

Each library gene was added with arbitrary common 20 bp sequence tags on both 5’ and 3’ 

ends to facilitate recombinant analysis, as well as the necessary homology for assembly 

and to a common terminator sequence. Equimolar amounts of gene and promoter libraries 

were co-transformed into an acceptor strain carrying all lycopene biosynthetic genes under 

constitutive strong promoters (pGPD-CrtE, pPGK-CrtB, pTEF-CrtI, visibly orange in 

color). Recombinant colonies were plated on selective media and screened by eye for 

change in color after 3-5 days incubation.  

We could not visibly detect significant changes in phenotype between the starting 

acceptor strain expressing lycopene and the resulting library recombinants carrying an 

additional gene. Nevertheless, growth rate and lycopene yield were measured for 30 

colonies picked at random. As seen in Figure 3-11, though all recombinant colonies 

displayed higher lycopene yield than the previously constructed CrtEBI promoter 

attenuation library, we observed very small changes among variants.  

Several explanations could account for the lack of change in lycopene yield. First, 

it is possible that the genes chosen for library mutagenesis have no significant effect on 

lycopene yield under the experimental conditions used. Alternatively, the competitive 

pressure applied by liquid selection in Reiterative Recombination could have resulted in 

selection of only specific promoter/gene pairs in all colonies. The library was not 

characterized further.  
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Figure 3-11. Characterization of gene library recombinants. (A) Lycopene yield of thirty 

recombinant colonies of the fourth cycle of library assembly, adding additional copy of 

host genes to lycopene producing strains. Yield was measured by extraction of lycopene 

using acetone. The results are an average of three independent experiments. (C) Plotting 

of both lycopene yield and growth rate for thirty recombinants (both parameters 

normalized to arbitrary units for comparison). 

 

A 
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3.3.7 Exploring lycopene screening methods  

The colorimetric screen of lycopene expression has a limited dynamic range in S. 

cerevisiae compared to E. coli, making it difficult to distinguish different levels of 

lycopene production by visual screen of colonies. Furthermore, the extraction of lycopene 

from individual colonies for characterization of lycopene yield is a laborious time 

consuming task. Thus, In search of alternative lycopene-dependent in vivo phenotypes with 

increased sensitivity and dynamic range, we tested lycopene absorbance in liquid cultures 

as well as the effect of the steroid inhibitor Fluconazole as potential alternative methods to 

monitor and select for lycopene production. 

Liquid growth selection we first tested whether the accumulation of lycopene, 

characterize by visible change in colony color on plates, can be efficiently adapted to a 

more sensitive liquid detection assay. Lycopene absorbance has characteristic peaks at 

360nm, 443nm, 471nm and 502nm. This absorbance signature is clearly detectable in 

liquid lycopene-expressing cultures (Figure 3-12). We thus tested the feasibility of 

measuring increase in lycopene yield using liquid culture absorbance at 480nm.  

The following strains were compared: strain LMW2591 is a Reiterative 

Recombination acceptor strain carrying no lycopene pathway genes which served as a 

negative control. Strains LMW2681 and LMW2671 express lycopene using CrtEBI genes 

on the chromosome, with or without an additional copy of HMG1 host genes, respectively. 

Strain DR117 expresses lycopene using CrtEBI genes on a low copy plasmid.  All strains 

were grown under the appropriate selective conditions to maintain the pathway genes. 

OD600 was measured as indication of cell growth and OD480 was measured as indication of 

changes in lycopene content. The results are shown in Figure 3-12.   
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Although growth rate was similar for all strains, we found a significant difference 

in absorbance between lycopene producing strains versus control. Interestingly, we see an 

increase in the ratio OD480/OD600 over time, with expression from low copy plasmid 

slightly lower than chromosomal expression. This might be explained by variation in the 

accessibility of DNA or transcription regulation at different loci. Lycopene content seems 

to increase as the cells proceed into stationary phase. Overall, while we can clearly detect 

difference in absorbance between control and lycopene producing strains, these differences 

are relatively small (difference of ~0.1 in ratio OD480/600). These results suggest a liquid 

assay can be used to study the accumulation of lycopene and its effect on cellular 

phenotype, but might not be sufficiently sensitive to identify small differences in lycopene 

yield between variants in a directed evolution experiment.  

Fluconazole inhibition. Lycopene is made in S. cerevisiae from endogenous FPP 

molecules. However, FPP also serves as precursor for the endogenous biosynthesis of 

essential metabolites such as farnesyl and steroids (Figure 3-13). We therefore 

hypothesized that expression of lycopene might affect the flux towards the steroid 

pathway, resulting in alteration of cellular resistance to steroid inhibitors. Differences in 

resistance phenotype could be utilized as a growth selection to isolate lycopene producing 

variants out of large metabolic libraries. The commonly used antifungal drug Floconazole, 

inhibiting the conversion of inositol to ergosterol in the biosynthesis of steroids, was used 

to test this hypothesis.51  
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Figure 3-12. Liquid screen assay for lycopene expression. (A) Phenotype and 

absorbance spectrum of lycopene expressing S. cerevisiae in liquid culture. (B) 

Growth assay monitoring both cell density (OD600 -solid lines) and lycopene 

absorbance (OD480 -dashed lines) for strains LMW2591 LMW2681, DR117 and 

LMW2671 in selective media. (C) The difference in absorbance ratio OD480/OD600 

was calculated, normalized to control strain LMW2591 and plotted against growth 

duration.  
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An ‘inhibition zone assay’ (Halo assay) was performed to test for strain sensitivity 

to fluconazole using lycopene producing strain (LMW2681, carrying gene CrtEBI on the 

chromosome) and control strain carrying no Crt genes (LMW2591). To further evaluate 

the sensitivity of this assay, we also tested several variants of the promoter CrtEBI library 

described above which exhibit low lycopene yield. As expected, we found lycopene 

expression to elicit a significant difference in the resistance of S. cerevisiae to fluconazole. 

Surprisingly, however, lycopene did not increase the sensitivity of the strain but rather 

increased its resistance to the inhibitor, as indicated by a decrease in inhibition zone 

(Figure 3-13). All library variants exhibited similar inhibition to that of the control strain 

lacking lycopene, regardless of their measured lycopene yield (data not shown).  

We thus conclude that the increased resistance of lycopene producing cells to the 

steroid inhibitor fluconazole can be potentially utilized to increase the selective pressure in 

directed evolution experiments. For example, fluconazole added to the growth media might 

provide a selective advantage to high yielding cells, facilitating their isolation in 

competitive liquid selection. Yet the sensitivity of this inhibition assay, at least under 

current conditions, is not sufficient to distinguish between variants with low lycopene 

yield.  
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3.4 Discussion 

Despite great advances in industrial microbiology, genetics and computational 

tools, efficient engineering of metabolic pathways is still a complex and laborious task. 

Recent breakthroughs in the field2-4 demonstrate the enormous potential of microbial host 

engineering for the production of pharmaceuticals, commodity chemicals and biofuels, but 

also emphasize the laborious nature of engineering each new target molecule. 

Much like in the design of new catalysts, directed evolution has the potential to 

circumvent our lack of comprehensive understanding of biological networks, providing 

powerful tools for their manipulation. However, while enzyme evolution is now common 

practice for engineering of new catalysts, the highly efficient methodologies optimized for 

Figure 3-13. Effect of lycopene expression on fluconazole resistance.  (A) Schematic 

of Fluconazole metabolic inhibition. (B) Fluconazole inhibition assay. 300µg/ml 

Fluconazole was applied onto sterile paper disc and placed on culture plates. The 

inhibition zone of lycopene expressing S. cerevisiae (LMW2681) and control 

(LMW2591) was monitored after 24 hours incubation at 30ºC. 

BA 

LMW2591 LMW2681 
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single catalysts cannot be simply extrapolated for metabolic networks. Classic molecular 

biology tools for plasmid construction, mutagenesis, optimization and analysis for cloning 

of single genes prove laborious and inefficient when applied to multiple genes, and 

specifically in the context of large combinatorial libraries.  

For example, we have previously shown DNA cassette mutagenesis to be 

compatible with library mutagenesis by transformation when targeting a high copy 

plasmid. However, the low efficiency of this commonly used method for chromosomal 

mutagenesis prevents us from using it for metabolic engineering. The same problem was 

recently addressed, for example, by enhancing recombination efficiency using viral 

proteins combined with high throughput automated mutagenesis in MAGE.30,41  

Here, we show that Reiterative Recombination technique can be utilized for 

directed evolution of metabolic pathways. The key property allowing the translation of this 

system to library mutagenesis is its significantly high recombination efficiency in the yeast 

chromosome (up to 10%), which stems from the coupling of DNA recombination with 

timely induction of DSB at the target site. This unique assembly system provides access to 

an optimization process that is at the heart of metabolic engineering, enabling both the 

assembly of heterologous genes and the attenuation of expression simultaneously.  

Attenuation of gene expression, as opposed to overexpression alone, opens access to 

metabolic landscapes previously unattained by traditional methods. Thus, Reiterative 

Recombination offers a user friendly, efficient technology for metabolic engineering that is 

available to non-experts yet is compatible with the complexity of metabolic design.  

To adapt the method from single fragments to library assembly, by co-

transformation of multiple DNA sequence variants at each cycle.  Upon chromosomal 
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integration, a single library variant is integrated at the acceptor loci on the chromosome. 

Iteration of this assembly cycle enables accumulation of libraries to increase combinatorial 

complexity. 

We demonstrate the construction of a small library for the attenuation of lycopene 

expression. A body of literature on the engineering of microbial systems for expression of 

lycopene provided us with a wealth of information to test our system.27,28,31,50,52 We tested 

two promoter libraries, a five-member natural promoter library and a three- member 

synthetic promoter library constructed by the Stephanopoulos laboratory. Both libraries 

contain constitutive promoters and display a wide dynamic range of activity.  

While the synthetic library was successfully used for single cycle library assembly, 

we observed DNA instability when carried to the second (CrtB) and third (CrtI) libraries.  

We hypothesize the high similarity among library variants, all mutants of the same 

promoter TEF1, contributed to increase in undesired recombination among promoters as 

more libraries were added.  This observation is supported by sequencing data suggesting 

recombination also between individual TEF1 promoters to make hybrid variants. Similar 

mixing of promoters has not been observed for the other, natural promoter library.   

Since many natural pathways, such as polyketide biosynthetic pathways, carry 

repeated and duplicated sequences, we find it extremely important to address the issue of 

highly homologous sequences for Reiterative Recombination assembly.  

Alternatively, five commonly used constitutive yeast promoters carrying very little 

sequence homology were used to attenuate the lycopene biosynthetic genes CrtE, CrtB and 

CrtI. We successfully carried out 3 cycles of assembly, sequentially integrating each of the 
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lycopene genes with its own library of promoters.  This small library of 125 combinations 

was well covered by the number of recombinant colonies at each cycle.  

Sequence analysis of a single library assembly cycle suggests possible bias towards 

the selection of weak library promoters. This could be due to selection against metabolic 

burden caused by overexpression of a heterologous gene that does not contribute to cell 

survival. Growth rate could be a significant factor contributing to the enrichment of 

specific variants. We continue to investigate this issue by expanding our characterization 

effort to a larger number of variants and to previously unstudied intermediates of the 

assembly process. Specifically, decreasing the stringency of competitive growth selection 

by exchanging liquid culture with solid media could increase the survival of lycopene 

producing recombinants. We further plan to compare growth rate of individual strains 

carrying different promoter activities to test this concern. 

A wide range of lycopene production levels was observed in the final three-library 

recombinant pool, spanning ~10-fold in lycopene content. Notably, while the vast majority 

of colonies exhibit very low lycopene yield, single orange colonies were clearly visible. 

We characterized 30 recombinant colonies by DNA sequencing, lycopene extraction and 

growth rate analysis. Overall, we did not find a correlation between lycopene content and 

growth rate, indicating no metabolic burden is caused by low level lycopene expression.   

Several interesting trends were observed for the attenuation of lycopene 

biosynthetic genes by the five-member promoter library. First, we note no colony was 

observed where all Crt genes are driven by strong promoters. Exhaustive characterization 

of a larger number of colonies is needed to determine if indeed such combination was not 

produced by the library at hand.  Regardless of lycopene yield, the vast majority of 
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colonies tested were found to carry a strong promoter upstream of the CrtE gene. This is 

not surprising since this additional copy of GGPP synthase is expected to enhance the 

availability of isoprenoid precursors for many cellular pathways.  

An interesting relationship was observed between the promoters found upstream of 

the heterologous genes CrtB and CrtI. While high levels of lycopene seem to require a 

strong promoter upstream of CrtI, these colonies also all carry a weak promoter upstream 

of CrtB.  First, this finding suggests CrtI expression is sufficient for high level of lycopene 

production, even at low CrtB transcription, given the availability of GGPP precursor. The 

flux though the lycopene pathway is thus determined predominantly by the activity of 

lycopene synthase (CrtI).  (Figure 3-9).  

Expanded the library assembly beyond promoters, five genes of the host S. 

cerevisiae were selected by flux balance analysis modeling and shuffled into a strain 

producing lycopene with the same library of promoters previously used. Initial 

characterization of the library suggests no significant changes in lycopene yield resulted. 

This might be attributed to low contribution of the selected genes to lycopene yield, 

inherent selection against increase of yield due to metabolic burden, or may also result 

from additional mutations in either CRT or library genes. We did not characterize this 

library by sequencing, and thus further analysis is required to assess the effect of gene 

shuffling. 

Finally, in light of the low sensitivity of visible colony screen for lycopene, we 

attempted to find a cellular phenotype that can be used for high throughput identification 

of lycopene production in yeast. Both liquid colorimetric screen and the steroid inhibitor 

fluconazole were tested and found to provide significant detectable signal correlating with 
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lycopene production.  While suggesting a potential enhancement in the isolation of high 

yielding strains,  both methods were shown to be insufficiently sensitive to distinguish low 

level of lycopene, and therefore cannot be used for metabolic libraries such as the one 

presented above.  

Overall, these results demonstrate Reiterative Recombination to be a powerful 

method for combinatorial assembly of metabolic libraries in yeast. Each cycle for assembly 

of each library was constructed in one week, using a technically simple protocol and basic 

yeast genetic techniques. Further investigation of intermediate recombinants (i.e. cycle 1 

and 2) is required to support inherent selective pressure under current conditions.  

The selection for cell growth, rather than specifically selecting for a desired 

metabolic product, is a major recognized bottleneck in the field of metabolic engineering. 

Our library construction method allows assembly of any desired pathway, independent of 

selectable product. However, the selection for auxotrophic markers inherently implies that 

changes in growth rate can indirectly affect the library outcome. Altering the assembly 

conditions as well as testing other metabolic pathways using the same protocol can provide 

insight into the generality of our selection system and its limitations. For example, 

changing the duration or stringency of growth selection could provide further insights into 

the underlying evolutionary pressure, and attenuation of other pathways with the same 

promoter library could confirm the trends observed in initial experiments. 

Though directed evolution technologies clearly have the potential to revolutionize 

the way metabolic engineering is currently performed, our results also shed light on some 

of the challenges that will accompany this approach. Extensive investigation of these 
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bottlenecks can help us get a head start on designing the next generation of transformative 

technologies to address these challenges.  

In addition, the results presented here provide the basis for investigation of the flux 

through the terpenoid pathway. It is possible that the combination of promoters observed in 

this initial library is a result of additional factors not considered here, such as feedback 

inhibition or unknown effects of phytoene and lycopene in yeast. It is also interesting to 

see if similar patterns emerge when constitutive promoter library is replaced with inducible 

promoters that are activated only after the entire pathway is assembled. Another intriguing 

option is to change the order in which the genes are assembled to give the same final 

pathway library, or simultaneously assemble multiple genes in a single cycle.  

Building from this work, libraries can be constructed using not only promoters, but 

also enzymes, receptors, transcription factors and mRNA. Reiterative Recombination can 

be further used to construct new signaling pathways or encode synthetic circuits, 

harnessing yeast as a scaffold not only for the production of metabolites but also for 

developing new useful devices from biological components.     

 

3.5 Experimental methods 

General materials and methods. General materials and methods were as in Chapter 

2.  

Reiterative Recombination was performed as previously described9 with the 

following adjustments: Equimolar amounts of all library members (PCR product) were co-

transformed with the respective gene and donor plasmid. After each library was cured, the 

entire plate (rather than single colonies) was scraped and used to inoculate the next library 

cycle.  
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Lycopene extraction protocol (Stephanopoulos lab/MIT). S. cerevisiae cultures 

were grown in 30C shaker for 48 hours in selective media. Before extraction, the culture 

OD600 was measured for normalization. 2 ml of culture were then centrifuged for 5 minutes 

at 14,000 rpm and the supernatant was removed. 200 μl glass beads (425-600 μm – Sigma 

product# G8772) and 1 ml of acetone (containing 100 mg/L BHT – Sigma product# 

B1378) were added to the cell pellet. The tube is kept on ice. a FastPrep vortex machine 

was used to break the cells by 3 cycles of 45 seconds each,  at maximum speed (6.5). Cells 

were kept on ice in between cycles. The resulting lysate is carefully filtered using a 1 ml 

syringe and a 13 mm 0.2 μm PTFE syringe filter (VWR North American Cat.# 28145-

491). OD474 is measured for each sample in a quartz cuvette, using acetone containing 100 

mg/L BHT as reference sample. Lycopene concentration (mg/L) is determined from a 

standard curve (provided by Stephanopoulos lab at MIT) and divided by OD600 in order to 

normalize all samples to the number of cells.  

LacZ ONPG assay. 200ul cultures of all tested strains and LWM2591 acceptor 

strain control were inoculated in SC selective media in round bottom 96 well plate and 

grown at 30ºC overnight . The next day, the cells were harvested by centrifugation and the 

pellets were resuspended in 100 µL of distilled water and transferred to a flat-bottomed 96-

well plate to measure the absorbance at 600 nm.  Then, the cultures were transferred back 

to U-bottomed 96-well plate, centrifuged for 5 minutes at 2000 rpm, the supernatant was 

removed, and the pellets were resuspended in 100 µL of the Y-Per Protein Extraction 

Reagent and lysed for 30 minutes.  To measure the absolute β-galactosidase activity of the 

cells, the lysate was incubated with 8.5 µL of 10 mg/mL ONPG for about 10 min at 37°C 

until the positive control turned a yellow color.   After the incubation, the reaction was 
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stopped by adding 110 µL of 1M Na2CO3.  The lysates were centrifuged for 5 min at 2000 

rpm and the supernatants were transferred to a flat-bottomed 96-well plate.  The 

absorbance of the solution at 420 and 550 nm was measured using the HTS 7000 Plus 

BioAssay Plate Reader.  The β-galactosidase units were calculated using the following 

equation: β-galactosidase = 1000 * (A420/[A600 * time in minutes * volume assayed in 

mL]). 

Preparation of dsDNA cassette for TRP1 mutagenesis: Two fixing DNA 

cassettes were made by PCR using an intact TRP1 gene. For repair of point mutations, a 

300bp cassette was produced using primers NO32/NO33 and template vector pVC2278. 

For repair of deletion mutants, 800bp cassette spanning (-205) to (+620) of the TRP1 

reading frame was produced using primers NO36/NO37 on template strain VC2271 

(genomic DNA prep). 

Preparation of library fragments. Synthetic promoter library. Fragments were  

were prepared by PCR as previously described for Reiterative recombination9 using the 

following primers: cycle 1: TEF2, 4, 6: NO144-145, NO146-147, NO148-149, 

respectively.  CrtE-tADH: LW449 with either NO150/151/152 for TEF2,4,6, respectively. 

Cycle 2 primers: TEF2,4,6: LW375 with NO156/ 155/ 154 (respectively), CrtB: LW374-

NO153. For cycle 3: TEF2, 4, 6: NO160-161, NO162-163, NO164-165. CrtI-tACT-TRP1: 

LW461-456. Restriction analysis of library promoters: Spe1 digests TEF2 to make 129 bp 

and 273 bp. HindIII digests TEF4 to make 314 bp and 87 bp. HincII digests TEF6 to make 

129 bp and 273 bp. for restriction analysis, individual colonies genomic DNA was purified 

and served as template for PCR u LW317-LW447 to give 1320bp PCR product. The 
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product was then digested with either enzymes (15 µl PCR product, 2 µl SpeI or HindIII or 

HincII, 2 µl NEB buffer 2, 2 µl H2O), and incubated 4 hours at 37 ºC in a PCR block.  

Natural promoter library was prepared using the same protocol, with the following 

adjustments: Cycle 1: Promoters: NO285-271. CrtE: NO272-LW447. tADH: LW448-449. 

Cycle 2: Promoters: NO286-303. CrtB: NO304-305. Cycle 3: promoters: NO267-268. 

CrtI: NO-269-229. tACT: NO221-LW459. Trp1: LW460-461. LacZ promoter library 

primers: Promoter library: LW584-NO252. LacZ gene: NO253-254 to add Flag tag, then 

NO253-255. tADH: NO256-296. Plasmid pSC201 (provided by Stephanopoulos lab) was 

used as template for PCR of CRT genes. The following PCR conditions were used: 95 ºC - 

1 min, 95 ºC - 45 sec, 52 ºC – 1 min, 72c – 2 min, 72 ºC – 15 min. Repated steps 2-4 x25 

times.  Digestion products were analyzed on 2% agarose gel.  

Gene library: the following arbitrary sequences were added to each library member 

gene 5’ sequence: CTTTAATTCTAGCAAGTAAt. 3’ sequence: TATGCATATGGTTCACAGGA. 

Generation of random Sequences was made by random DNA sequences generator 

(http://www.faculty.ucr.edu/~mmaduro/random.htm). PCR was performed using the 

following primers: ALD6: NO275-276, HXK1: NO277-278. ARO2: NO279-280. ERG10: 

NO281-282. MVD1: NO283-284. The following primers are used to add homology to all 

promoters 1-5 carry the same common ends: all PCR with primers NO291-292. Five host 

genes carrying the same common ends: all PCR with primers NO293-294. tADH: NO295-

296. 

Transformation of promoter library. Equimolar amounts of purified PCR 

products of library members were co-transformed with the gene of interest, a terminator 

sequence, and the relevant donor plasmid for each cycle. All fragments contain the 
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respective homology (30-40 bp) to allow their assembly into the vector by gap repair. The 

total amount of DNA was 500-1000ng.  The resulting transformants were plated on the 

appropriate media. Induction and curing were performed as described 9. After the final 

cured recombinants were plated, the entire plate was scraped using 1ml water to start the 

next cycle of library transformation.  

Growth assay. Liquid growth assay was performed in 96 well plates using the 

appropriate selective media for the respective round of Reiterative Recombination 

assembly.9 Promoter library variants (cycle 3) were growth in SC(LT-) media, whereas 

gene library variants (cycle 4) were grown in SC(HT-) media. 200 µL media was 

inoculated to initial OD600 of 0.05, and growth was monitored at OD600 or at OD480 for 

lycopene absorbance. Plate growth assay for lycopene promoter library was performed by 

diluting an overnight culture to OD600 of 0.1, 0.01 and 0.001, and plating 2 µL of each 

variant on selective SC (LT-) and non-selective SC(L-) agar plates.  

Fluconazole Halo Assay. (Adapted from protocol53 

(http://www.med.unc.edu/~hdohlman/haloassay.html). A starter culture was grown at 30º 

C with shaking overnight, and 4 ml was mixed with sterilized solution of 0.5 % agar 

(autoclaved and cooled below 50ºC). The culture was then poured over the relevant 

selective plates - (SC (TL-) for LMW2681 or SC(H-) for LMW2591. Fluconazole was 

dissolved in sterilized water to final concentration 10 mg/ml. 300 µg fluconazole was 

applied on sterile filter paper disc, dried, and placed at the middle of the cultured plate 

using sterile technique. Plates were incubated at 30º C and inhibition zone was measured 

after 24 hours.  
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3.6 Strains, plasmids, and oligonucleotides 

Table 3-1 Strains used in this study 

Strain Genes  

FY251 MATa, ura3–52, his3∆200, trp1∆63, leu2∆ 

VWC2245 W303 with RAD5+  (provided by Rothstein’s lab) 

LMW2591 Reiterative Recombination parental acceptor strain  
BY4733 MATa-inc  

LMW2671 Round 4 recombinant from lycopene pathway  

LMW2681 Reiterative Recombination parental acceptor strain BY4733 MATa-inc, Round 3 
recombinants from lycopene library 

DR117 FY251 carrying CEN plasmid with CrtEBI. 

    
Table 3-2. Plasmids used in this study 

Vector Genes 
pSC201 URA3 integration plasmid with overexpressed crtE, crtB, and crtI (P. Ajikumar and 

G. Stephanopoulos)  
pVWC2278 pRS426 carrying wt S.Cerevisiae TRP1 
 

Table 3-3 Oligonucleotides used in this study 

Name Sequence 

NO32 GATGCTGACTTGCTGGGT 

NO33 AGCTGCACTGAGTAGTATG 

NO36 TACTGTTGACATTGCGAAGA 

NO37 TTAGTTTTGCTGGCCGCAT 

NO38 TGTGTACTTTGCAGTTATGAC 

NO39 CTTTTACACCATTTGTCTCC 

NO144 AaaattgtgcctttggacttaaaatggcgtACGGCTCTAAAGTGCTTCG 
 

NO145 GCTTTCGAACCAGAAACCATAAACTTGGATTAGATTGCTATG 
 

NO146 aaaattgtgcctttggacttaaaatggcgt ATAGCTTCAAAACGCTTCTAC 
 

NO147 GCTTTCGAACCAGAAACCATGAACTTAGATTAGATTGCTATG 
 

NO148 aaaattgtgcctttggacttaaaatggcgtATAGCTTCAGAATGTTTCTACT 
 

NO149 GCTTTCGAACCAGAAACCATAAACTTAGATTAGATTGCTATG 
 

NO150 TAGCAATCTAATCCAAGTTTATGGTTTCTGGTTCGAAAG 
 

NO151 TAGCAATCTAATCTAAGTTCATGGTTTCTGGTTCGAAAG 
 

NO152 TAGCAATCTAATCTAAGTTTATGGTTTCTGGTTCGAAAG 
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NO153 TAGCAATCTAATCTAAGTTTATGAGTCAACCACCTTTGTT 
 

NO154 AACAAAGGTGGTTGACTCATAAACTTAGATTAGATTGCTA 
 

NO155 AACAAAGGTGGTTGACTCATGAACTTAGATTAGATTGCTA 
 

NO156 AACAAAGGTGGTTGACTCATAAACTTGGATTAGATTGCTA 
 

NO157 
 

CTGTTGCGGAAAGCTGAAATAGAAACATTTTGAAGCTATATAGCTTCAGAATGTTTCTA 
 

NO158 CTGTTGCGGAAAGCTGAAATAGAAACATTTTGAAGCTATATAGCTTCAAAACGCTTCT 
 

NO159 CTGTTGCGGAAAGCTGAAATAGAAACATTTTGAAGCTATACGGCTCTAAAGTGCTTCGG 
 

NO160 GgacgctcgaaggctttTCTTCGAAAAATTCGCGTCTACGGCTCTAAAGTGCTTCG 
 

NO161 GTTTTCTTCATTTTGTAATTAAAACTTGGATTAGATTGCTATG 
 

NO162 GgacgctcgaaggctttTCTTCGAAAAATTCGCGTCTATAGCTTCAAAACGCTTCTAC 
 

NO163 GTTTTCTTCATTTTGTAATTAGAACTTAGATTAGATTGCTATG 
 

NO164 Ggacgctcgaaggcttt TCTTCGAAAAATTCGCGTCTATAGCTTCAGAATGTTTCTACT 
 

NO165 V GTTTTCTTCATTTTGTAATTAAAACTTAGATTAGATTGCTATG 
 

NO275 CTTTAATTCTAGCAAGTAATATGACTAAGCTACACTTTGA 

NO276 TCCTGTGAACCATATGCATATTACAACTTAATTCTGACAGC 

NO277 CTTTAATTCTAGCAAGTAATATGGTTCATTTAGGTCCAAA 

NO278 TCCTGTGAACCATATGCATATTAAGCGCCAATGATACCAA 

NO279 CTTTAATTCTAGCAAGTAATATGTCAACGTTTGGGAAACT 

NO280 TCCTGTGAACCATATGCATATTAATGAACCACGGATCTG 

NO281 CTTTAATTCTAGCAAGTAATATGTCTCAGAACGTTTACAT 

NO282 TCCTGTGAACCATATGCATATCATATCTTTTCAATGACAATA 

NO283 CTTTAATTCTAGCAAGTAATATGACCGTTTACACAGCAT 

NO284 TCCTGTGAACCATATGCATATTATTCCTTTGGTAGACCAG 
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Chapter 4 

Exploring the Dynamic Range of Genetic Selection  

Using PRA-Isomerase Catalysis 
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4.1 Chapter outlook 

A key component of a successful directed evolution experiment is the efficiency of 

its selection scheme. Genetic selection is perhaps the most powerful method for the 

isolation of a desired phenotype from a large population of cells, eliminating the growth of 

all undesired phenotypes under defined selective conditions. In S. cerevisiae, essential 

metabolic enzymes traditionally serve as genetic selective markers for plasmid and strain 

construction. However, in order to use growth selection for the identification of highly 

active enzyme variants, cell growth should be coupled with the level of enzyme activity. 

Here we examined the dynamic range of genetic selection by the common yeast 

auxotrophic marker TRP1, encoding the third enzyme in S. cerevisiae tryptophan pathway, 

phophoribosyl anthranilate isomerase (PRAI). We use mutants of PRAI varying in 

catalytic activity to study the effect of PRAI activity on the rate of cell growth. The role of 

metabolic enzymes in maintaining metabolic robustness and their utilization for broad 

range genetic selection is discussed.  
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4.2 Introduction 

A broad variety of methodologies has been applied to generate improved enzymes for 

therapeutic and industrial applications by Directed evolution. A typical laboratory 

evolution experiment consists of iterations of mutagenesis and selection of desired 

functionality; 1 hence experimental evolution is only as powerful as its mutagenesis and 

selection efficiency allow for.  

In a classic experiment, Beadle and Tatum pointed out that mutants can be screened 

based on enzymatic activity.2 Selection schemes, unlike  screens, do not require an active 

search for desired properties, but rather set the conditions to prevent the survival of 

undesired mutants, assessing up to 1010 clones in a single experiment in E. coli cells.3  

Specifically, it is in the realm of very large combinatorial libraries that selection gains 

critical importance.  

Genetic selection is perhaps the most powerful technique currently available for 

analyzing large libraries in a fast, high-throughput manner. It involves the 

complementation of a missing essential function for cell growth and requires the coupling 

of enzyme activity to cell survival. Enzyme activity represents very stringent selection 

criteria, as even the smallest change in catalytic residues or structural integrity could cause 

complete inactivation.4 Importantly, to distinguish highly active enzymes from less active 

ones, a genetic selection is needed that is sensitive over a wide dynamic range or enzyme 

activity.5 Indeed, many directed evolution examples exist where increased stringency of 

genetic selection is utilized to detect improved enzyme catalysis, include the evolution of 

triosephosphate isomerase (TIM),6 β-glucuronidase,7 β-lactamase antibiotic resistance 

genes,8 HIV thymidine kinase9 and catalytic antibodies.10 
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Complementation of biosynthetic enzymes is traditionally used as selection assay 

in S. cerevisiae.11 Yet central metabolism enzymes are known to be heavily regulated, 

making it difficult to predict the range of functional complementation of single enzymes of 

cell growth.12 Despite several attempts to optimize the selection stringency of metabolic 

genes,13 the dynamic range of such systems is still poorly characterized. To lay the 

foundations for using Trp1 genetic selection as a model system for developing novel in 

vivo evolution methodologies, we systematically characterized the dynamic range of this 

widely used selection scheme. 

 

 

 

4.2.1 PRA- Isomerase as a model enzyme for genetic selection  

Tryptophan synthesis from chorismic acid is a key metabolic pathway comprising 

five enzymes in S. cerevisiae.14  Phosphoribosyl anthranilate isomerase (PRAI) is the third 

biosynthetic enzyme (Figure 4-1), catalyzing an Amadori rearrangement which is the 

irreversible isomerization of an aminoaldose to an aminoketose.15  PRAI has been 

Figure 4-1. Tryptophan biosynthetic pathway.  Enzymes (gray) and intermediates are 

indicated. PRA-isomerase (PRAI) is highlighted. S. cerevisiae genes indicated in 

purple, bacterial genes indicated in pink. 
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classically used as an auxotrophic selection marker in yeast genetics, as cells lacking a 

functional enzyme cannot survive without exogenous tryptophan.16,17 It belongs to the 

family of triose phosphate isomerase (TIM) (βα)8-barrel proteins (figure 4-2), the most 

frequently encountered fold among single domain enzymes which is adopted by 10% of all 

known protein structures.18 

Extensive characterization of TIM (βα)8-barrel enzymes now support the notion of 

their divergent evolution from a common ancestor enzyme.19-21 Considering the ubiquity of 

TIM barrel enzymes in biosynthetic pathways of central metabolism and their catalytic 

versatility,22-24 it is perhaps not surprising that many TIM barrel enzymes display 

functional promiscuity25-27 and that their catalytic activity can be interconverted via 

directed evolution.28-33 In particular, PRAI has been the focus of much research in directed 

enzyme evolution,28-30,34,35 providing surprisingly broad insights into the evolution of 

different metabolic pathways.24,25,32 

Remarkably, it was shown that a single amino acid substitution is sufficient to elicit 

PRA isomerase activity in another TIM barrel enzyme, ProFAR isomerase, which 

performs an Amadori rearrangement in the histidine biosynthetic pathways,24,34 although 

the two enzymes share only 10% sequence similarity. The ability of a single amino acid 

exchange to drastically affect enzyme activity implies a close correlation between structure 

and function. 

To pursue our long-term aim of utilizing PRAI as a model system in the context of 

enzyme engineering, we sought to calibrate the dynamic range of the tryptophan genetic 

selection in S. cerevisiae. By mutating the active site of PRAI we constructed variants 
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ranging in catalytic efficiency, and used them to systematically probe the relationship 

between enzyme catalysis and cell survival.  

    

 

 

 

4.3 Results 

4.3.1 Mutagenesis of selected active site residues 

To calibrate the tryptophan genetic selection, we generated a series of active site 

mutations of PRAI enzyme using site-directed mutagenesis, with a goal of achieving a 

range of catalytic activities. While the crystal structure of S. cerevisiae yPRAI is not yet 

available, its remarkably stable homolog from the hyperthermophile bacteria T. maritima, 

Figure 4-2. PRAI structure. Phosphoribosyl anthranilate isomerase (PRAI) of 

Thermotoga Maritima in complex with reduced product (rCdRP).  α-helixes are 

shown in red, β sheets shown in yellow, and flexible loops shown in green. (PDB: 

1LBM). (A) Top view. The active site is located at the central barrel and flexible 

loops, stabilized by surrounding helixes.  (B) Side view.  The C-terminal face of the 

barrel β-sheets typically carries active site residues, while stability-determining 

residues are located at the N-terminal face. (C) Enzyme Surface. The substrate 

binding pocket is clearly visible.  

A B C
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encoded by the gene tTrpF, has been extensively studied,18,22,24,36-38 shown to complement 

PRAI deficiency18 and further investigated by directed evolution experiments.39  

In order to construct mutants that vary in catalytic activity, we examined the active site 

for candidate residues for mutagenesis. The residues to be mutated were chosen both for 

their potential significance for substrate interaction at the active site, and the degree of 

their evolutionary conservation among TIM barrel enzymes. The degree to which an amino 

acid position is evolutionarily conserved is strongly dependent on its structural and 

functional importance. We used CONSURF,40 a web-based tool to calculate a conservation 

score for each residue based on phylogenetic relations among sequence homologues 

(figure 4-3). Notably, selection of residues is also facilitated by the fact that in TIM barrel 

enzymes the stability of the fold is mostly maintained by the N-terminal face of the beta-

strands, while the active site is located on the opposite face of the barrel.41 Thus, varying 

residues in the active-site forming loops could alter catalytic function without affecting 

enzyme stability.42 

Six highly conserved PRAI active site residues were chosen for mutagenesis 

(Figure 4-4). Lysine at position 5 was replaced by another polar basic residue, arginine, 

which has a higher pKa, testing its effect on the acid-base reaction mechanism. Cysteine at 

position 7 was replaced with serine to test the effect of lower acidity on the Amadori 

rearrangement.  The serine and arginine at positions 34 and 36, respectively, both form 

hydrogen bonds with the carboxyl groups of CdRP. Changing Serine at position 34, a 

primary alcohol, to a threonine, a secondary alcohol, may weaken hydrogen bond 

interaction. The same effect is expected for mutagenesis of Arg36 to lysine which has 

lower pKa. Similarly, glutamine at position 81 and histidine at position 83 both form 
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hydrogen bonds with substrate hydroxyl group.  Replacing glutamine at position 81 with a 

charged histidine residue would most likely strengthen the hydrogen bond with the 

substrate, whereas replacing histidine at position 83 with uncharged asparagine would 

mostly likely lower the strength of hydrogen bonding. In addition, all residues but Cys7 

were further mutagenized to alanine (as C7A mutation was previously shown to be 

inviable).24 Mutagenesis was performed by either fusion PCR or site directed mutagenesis. 

Mutants were then purified for in vitro kinetic analysis and further tested for efficiency of 

complementation of S. cerevisiae PRAI functionality. 
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Figure 4-3. Position-specific conservation analysis for T.Maritima PRAI. Using 

CONSERF, Multiple sequence alignment of homologous structures is used to compute 

position-specific conservation score ranging 1 (not conserved, blue) to 9 (conserved, 

purple). Yellow color indicates insufficient data for analysis.  The high degree of 

conservation is observed around rCdRP product, indicating active site residues. 

Peripheral α-helixes provide structural stability and displaying lower degree of 

evolutionary conservation. Highly conserved residues surrounding the active site were 

chosen for analysis.  (PDB file: 1LBM) 
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Figure 4-4. PRAI residues chosen for mutagenesis. Structural and conservation 

analysis suggests residues to be evolutionary conserved and in close proximity to 

the active site. rCdRP product is shown in blue, candidate residues for mutagenesis 

are shown in orange.  

Lys5 

Arg36Ser34 

Gln81 
His83

Cys7 
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4.3.2 Purification and in vitro characterization of tTrpF variants 

All PRAI variants were overexpressed and purified in E. coli to conduct structural 

and kinetic analysis in vitro. To avoid contamination by endogenous E. coli tryptophan 

biosynthetic enzymes, we used an expression strain (KK8) which lacks the entire 

tryptophan biosynthetic pathway. Wild type T. Maritima TrpF and all variants were cloned 

into vector pVWC2323 and expression was induced using IPTG. To facilitate protein 

purification, cell extract was boiled at 80ºC to eliminate the vast majority of E. coli 

proteins, taking advantage of the extreme heat stability of T. Maritima proteins.43 

Finally, the boiled cell extract was further purified by anion exchange column. All 

mutants were successfully expressed and purified from E. coliwith the exception of R36A 

that could not be purified by anion exchange column (Figure 4-5). Notably, we did not use 

affinity purification for tTrpF variants to avoid any potential effects of a histidine tag on its 

structure or catalytic efficiency. However, the wt tTrpF was later successfully purified by 

nickel affinity using an N-terminal six histidine tag (data not shown).  

4.3.3 Kinetic assay  

A coupled enzyme assay15 was used to measure PRAI activity for all PRAI variants 

(Figure 4-6). In this assay, the measured PRAI activity is coupled to the activity f the 

preceding and the following biosynthetic enzymes in the tryptophan biosynthetic pathway 

to provide the substrate for PRAI catalysis and eliminate product inhibition, respectively. 

The reaction is initiated by conversion of the substrates PRPP and anthranilate into PRA 

and diphsphate by the enzyme Anthranilate-phosphoribosyl transferase. Then, the 

conversion of PRA to CdRP is measured by adding PRAI to the reaction mix and 

monitoring the rate of consumption of PRA. Finally, the reaction also contains the third 
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enzyme Indoleglycerol-phosphate synthase to avoid accumulation of the PRAI product, 

CdRP. Excitation and emission wavelength of 310 nm and 400 nm were used, respectively. 

The relative fluorescent quantum yields of anthranilate, PRA, and CdRP at 400 nm are 1: 

0.3: 0.06, respectively,44 providing convenient assay for separate detection of each reaction 

step by following decay in substrate fluorescence.  

 

 

Specifically, for the first reaction, we observe the decay in anthranilate 

fluorescence induced by the catalytic activity of Anthranilate-phosphoribosyl transferase 

(purified from S. cerevisiae, Kcat/Km=18.1 x105 M-1S-1). Thirty-fold excess of PRPP 

substrate is added to ensure anthranilate is exhausted from the reaction mixture. Next, 

either natural or mutant PRAI is added, resulting in further decay of fluorescence as PRA 

Figure 4-5. tPRAI purification. Following 5 hours Induction of PRAI expression in E. 

coli, cell extract were boiled to eliminate host proteins and the supernatant was further 

purified by anion exchange column. tPRAI monomer is expected at 23 kDa. (A) SDS 

PAGE analysis for purification of wild type tPRAI by anion exchange column. (1: 

protein ladder, 2: boiled extract, pellet. 3: boiled extract, supernatant. 4-5: flow 

through fractions. 6-15: protein elution fractions). (B) SDS PAGE for purification of 

variant Q81A purified by anion exchange column.  (1: protein ladder. 2: cell exract. 3: 

boiled extract, pellet. 4: boiled extract, supernatant. 5-6: flow through fractions. 7-15: 

protein elution fractions). 

A B

25kDa 25kDa
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is converted to CdRP. Finally, the CdRP product is converted to Indole-3-glycerol 

phosphate by the IGPS enzyme from T. Maritima (Kcat/Km= 3.8 x 106 M-1s-1). 

 

 

Kinetic parameters were extracted from fluorescent decay data using ‘progress 

curve analysis’ method enabling kinetic parameters to be extracted from a single progress 

curve.45,46 Briefly, the substrate concentration at each data point can be back calculated to 

Figure 4-6. In vitro coupled kinetic assay for PRAI activity. All measurements are 

performed at room temperature by monitoring the decay in substrate fluorescence at 

400 nm, using access of PRPP and IGPS.  (A) Schematic of overall coupled kinetic 

assay.  PRA, the substrate monitored to measure PRAI activity, is indicated in red. 

(B) Product inhibition of PRAI was observed by increasing the amount of enzyme 

IGPS (C-D) Decay of PRA substrate fluorescence as measured at 400 nm, shown for 

(C) variants Q81A (0.5 µM) and (D) K5A (5 µM). 

A C

B D
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extract the enzyme Km that best fit to a defined first order decay model curve, assuming 

the enzyme concentration and initial substrate concentration are known.  As previously 

reported,15 in the absences of IGPS enzyme we observed product inhibition of PRAI 

activity (Figure 4-6). Therefore, all experiments were performed with excess of IGPS to 

eliminate product inhibition.  

Kcat/Km values were obtained for all variants (Figure 4-7) with the exception of 

variants K5R and C7S which displayed very slow kinetic activity that did not allow 

interpretation by progress curve analysis. Overall, we found a wide range of kinetic 

activity, with Kcat/Km values spanning 8x102 to 1.5x105. Variant Q81H displayed 

exceptional curve shape with abrupt changes in initial velocity after reaction initiation and 

therefore could not be assigned kinetic parameters by progress curve analysis. We did not 

pursue further analysis of this variant.  Importantly, the parameters measured for un-

mutated tPRAI, Kcat/Km=5x106 M-1s-1, was consistent with previously published data 

(Kcat/Km= 13.3x106 M-1s-1),43 validating the integrity of this assay. 

 

 

Figure 4-7. Kcat/Km values for tPRAI variants. Kinetic parameters were extracted for 

each wt PRAI and variant using progress curve analysis.  
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The low catalytic efficiency observed for variants K5R and C7S is not surprising, 

as both residues are in high proximity to the active site and position 7 was previously 

suggested to take part in reaction mechanism.24 In addition, variant K5A showed 

significantly reduced kinetic activity compared to wt PRAI. A large decrease in catalytic 

activity was also observed when changing arginine at position 36 to lysine. Variants 

carrying a mutant serine residue at position 34 show reduced catalytic activity when 

replaced by alanine (Kcat/Km= 2.3x104 M-1s-1) and further decreases when replaced with 

threonine (Kcat/Km= 2.7x103 M-1s-1). Replacing glycine at position 81 to alanine seem to 

have a marginal effect on enzyme activity, with Kcat/Km= 1.5x105 M-1s-1. Histidine residue 

at position 83 also confers somewhat reduced catalytic activity when replaced by either 

alanine (Kcat/Km= 1x105 M-1s-1) which is further reduced for mutagenesis with asparagine 

(Kcat/Km= 2.1x104 M-1s-1). 

4.3.4 Circular Dichroism 

Secondary structure of wt PRAI and variants was analyzed using circular dichroism 

spectroscopy (Figure 4-8). While wild type tPRAI displayed an expected secondary 

structure signal, with alpha helix peaks at 208nm and 220nm in addition to 215nm beta 

sheet signal, the variants all display deviation from wild type that could suggest loss of 

alpha helical structures.  Interestingly, mutant C7S with significantly low catalytic activity 

displayed a different CD signal then the other variants tested, all with higher catalytic 

activity. The change in structure was not expected for mutagenesis of the selected residues, 

based on previous TIM barrel structure analysis.47 The difference in CD signal could result 

from perturbation of fold or stability in PRAI variants, possibly altering their resistance to 

the purification process (involving boiling), or alternatively their stability in solution over 
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time. However, further characterization of enzyme structure is required to determine if the 

alteration of enzyme structure could explain variation observed in catalytic activity.  

 

 

4.3.5 In vivo characterization of tTrpF variants 

In order to study the effect of tTrpF variants on yeast cell growth, variants were 

further tested for complementation of PRAI functionality.  S. cerevisiae lacking the entire 

TRP1 gene was transformed with a plasmid pVWC2148 carrying wild type or variant T. 

Maritimia TrpF gene, and growth was monitored in the absence of tryptophan, both in 

solid and liquid media (Figure 4-9). Doubling time for each variant was extracted. 

To test whether the complementation assay was affected by the concentration of 

variant PRAI protein in the cell, we also performed growth assays under lower level of 

Figure 4-8. Far UV circular dichroism of wt tPRAI and selected variants. All 

measurements were done in room temperature, using 800 µM enzymes in 

phosphate buffer. Each graph represents an average of 3 scans. 



136 

 

protein expression (Figure 4-9). Specifically, we used an inducible promoter to lower the 

level of transcription by adding methionine to the growth media. While all variants show 

slower growth rate under these conditions, the results were consistent with those observed 

under the standard high transcription level. we thus conclude protein concentration does 

not affect the differences in fitness observed between PRAI variants.    
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Figure 4-9. In vivo characterization of PRAI variants. Variants were expressed in S. 

cerevisiae lacking yTrp1 gene and cell growth was monitored in both solid and liquid 

selective media lacking tryptophan. (A) Plate growth assay. Colonies were plated on selective 

plates (arrow indicates increasing dilution) and colony growth was monitored after 3 days 

incubation at 30ºC. (B) Liquid growth assay in selective media. Cell density was monitored at 

OD600 at 30ºC shaker. (C) Plate growth assay under reduced expression levels. Variant 

transcription is regulated by a methionine-induced promoter, so that increasing methionine in 

the growth media reduces the level of protein expression. Upper panel dispays growth in non-

selective (tryptophan rich) media. Middle and bottom panel display growth in the absence of 

tryptophan using high (middle panel) or low (bottom panel) expression of PRAI enzyme.   

A 

B 

C 
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Finally, to further verify the difference in fitness between tPRAI variants under 

selective conditions, a competition assay was used where two variants are mixes at 1:100 

cell ratios and incubated in liquid selective media lacking tryptophan. The faster growing 

variant is expected to take over the population as it undergoes more rounds of division. 

The resulting culture was analyzed by PCR restriction analysis of the entire pool of 

plasmid DNA using variant-specific restriction enzymes (Figure 4-10).  wt tPRAI was 

observed to grow faster in selective media then both Q81H and R36K variants, although all 

demonstrated similar fitness by liquid growth analysis. We show variant R36K to grow 

faster than Q81H, and variant H83A to grow faster than variant Q81A. The competition 

assay is thus in agreement with initial characterization of variant fitness by growth assay.   

 

Figure 4-10. Competition growth assay between tPRAI variants. Variant fitness 

is tested by mixing yeast cultures bearing different variants in a 1:100 ratio. 

cultures are growth in selective SC(LT-) and non-selective SC(L-) media from 

OD600=0.1 to OD600=1. Plasmid DNA is extracted from the entire culture and 

analyzed by PCR and restriction analysis with an enzyme specific for the variant 

marked in red. the occurrence of same band both lanes indicates the DNA has not 

been digested, meaning the red variant is absence of the culture after selection.  
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Figure 4-11 summarized our finding for both in vivo and in vitro characterization of tPRAI 

variants. Overall, we did not find a correlation between PRAI catalytic activity and the 

respective cell growth rate, as indicated by doubling time and lag time (Figure4-11). The 

wide range of catalytic activities observed for the collection of variants was not reflected in 

cell growth differences under in vivo complementation assays. The lack of correlation 

could not be explained by the effect of protein concentration, since we tested 

concentration-dependence using methionine regulated promoter and observed the same 

differences in growth rate.  

 

 

 

 

Figure 4-11. Comparing in vivo and in vitro properties of tPRAI variants. (A) 

Doubling time and kinetic parameters were extracted for each variant, as described 

above. (B) Graphic display of relationship between growth and catalytic functionality. 

Kcat/Km is presented in red (right axis). Strain doubling time (DT) is presented in 

orange bars and lag time (time to reach OD600=0.2) is presented in blue bars (left axis). 

A B
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4.4 Discussion 

Pioneering work by Jeremy Knowles,6,48-50 Barry Hall51 and others established 

genetic complementation as a powerful method for studying enzyme catalysis specifically 

in the context of directed enzyme evolution. Here, we examined the dynamic range of a 

widely used tryptophan selection marker in S. cerevisiae to evaluate its potential as a 

model selection system for development of directed evolution techniques. Specifically, 

mapping enzyme activity in terms of in vivo selection assays could provide us with a 

straightforward, calibrated assay for detection and isolation active mutants from a large 

library of variants simply by monitoring cell growth. 

The extensively studied homologues PRAI enzyme of the thermophile bacteria T. 

maritima was chosen for its complementation of S. cerevisiae TRP1 deficiency, having 

been shown to be a highly stable protein and was previously used as scaffold for directed 

evolution. It is a highly efficient enzyme (Kcat/Km= 13.3x106 M-1s-1) and thus we expected 

active site mutagenesis to predominantly reduce its catalytic activity. We successfully 

generated a series of active site mutants and used them to test the correlation of enzyme 

activity with its complementation efficiency in a strain lacking endogenous PRAI enzyme. 

All variants were purified and characterized both in vivo and in vitro.  

A coupled kinetic assay was used to extract kinetic parameters for wt and active 

variants. Significantly, kinetic parameters for tPRAI were in agreement with previously 

published results.43 As expected, it was found that all variants have reduced catalytic 

activity compared to wild type tPRAI. Yet we were able to generate a wide range of 

catalytic activities by targeting residues surrounding the substrate binding site, ranging 

from 8x102 to 1.5x105 Kcat/Km.  Three of the variants, namely K5R, K5A and C7S 
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demonstrated very slow kinetics and could not be analyzed by progress curve analysis. In 

fact, variant C7A has been previously found to be kinetically inactive and does not grow 

on selective media.24 This is in agreement with the hypothesis that this is a catalytic 

residue acting as a base in the suggested acid-base catalysis mechanism.24  

Mutagenesis of residues Q81 and H83 had the least effect on enzyme catalysis. For 

both residues the conservative exchange (Q81H, H83N) causes more significant decrease 

in enzyme activity then alanine. These results suggest that residues 81 and 83 have a minor 

effect on active site functionality. Notably, variant Q81H displays exceptional kinetics, 

with changing velocity as substrate concentration decreases. It can be hypothesized that the 

exchange of glutamine with histidine might strengthens the to the reaction product which 

results in stalling product release and possibly effecting enzyme turnover rate. This 

hypothesis has not been investigated further. Replacement of residues S34 and R36 results 

in significant decrease in enzyme activity, both for alanine and conservative amino acid 

exchange, suggesting a possible role in substrate binding.  

We used Far UV circular dichroism analysis to evaluate the structural integrity of 

PRAI variants. Since all the mutations were selected within the active site of the enzyme, 

rather than on the stabilizing N-terminal face of the beta-barrel, we did not expect the 

selected resides to alter stability.  Surprisingly, significant differences were observed in 

secondary structure for PRAI variants.  We observed significant decreases in the 

characteristic alpha helix indicator peak at 220nm. Changes in folding efficiency, 

interruption of dimerization or increased susceptibility to destabilization upon boiling 

could explain such differences, as boiling is used in the purification process. The alteration 

of secondary structure might be a direct result of the mutagenized residue, in which case 
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we have probed the active site for stability-related residues. Nevertheless, the possible loss 

of structure did not completely eliminate enzyme activity, as observed by in vivo and in 

vitro assays. 

Finally, we used an in vivo complementation assay to study the effect of enzyme 

catalysis on cell survival. Variants were expressed from high copy plasmids under a strong 

promoter in S. cerevisiae lacking the PRAI enzyme. We found good agreement between 

solid and liquid media results, with mutants at residue 36 and 83 displaying fast wild type-

like growth, mutants of residue 34 and 81 displaying long lag time followed by rapid 

growth, and mutants of residues 5 and 7 showing very little growth under selective 

conditions. We further assessed variant fitness using competition assay, supporting relative 

fitness results as extracted from liquid and solid growth assay.  

Cell growth phenotype in genetic complementation assay depends on the total 

amount of active enzyme, which is determined by both specific enzyme activity and 

enzyme concentration in the cell.4 Thus, growth rate differences may provide information 

regarding changes in protein production, stability or catalytic activity, so that if a catalysts 

is active but in low amount, it might not support cell growth. We thus repeated the plate 

growth assay under lower expression of protein, so we can identify differences between 

strong variants by eliminating their overexpression. We found no change in relative growth 

between the variant, indicating enzyme concentration is no the determining factor for cell 

survival. 

Overall, no correlation was observed between cell growth and the respective 

catalytic efficiency of PRAI enzyme. While kinetic parameters of wild type and variants 

span several orders of magnitude, no such differences were observed for cell growth. It is 
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possible that in order to draw meaningful conclusions, a larger number of variants must be 

tested. Nevertheless, these preliminary results raise questions regarding the correlation 

between enzyme mutagenesis and selection in directed evolution experiments using TRP1.  

Early research in the field of metabolic flux previously observed in vitro enzyme 

activity to be a poor indicator for in vivo fitness,52-54 noting the lack of linear correlation 

between gene dosage and phenotypic expression. Moreover, it was observed that inherent 

buffering of flux makes it relatively insensitive to small variations in activity. Hartl 

described the saturation curve for the dependence of fitness on flux, noting the “diminution 

of selective effect” in which the increment of fitness for a given increase in enzyme 

activity can be calculated by [1/ (activity) 2]. For example, if activity change is 100 fold, 

the change in fitness is only 10-4. Thus, changes in single enzyme activity would be 

virtually too small to effect the overall fitness parameters.55,56  

On the other hand, a handful of directed evolution experiments harness this and 

similar genetic selection as a basis for isolation of mutants with varying catalytic activity. 

For example, Hilvert and colleagues have used similar tryptophan genetic selection to 

evolve S. cerevisiae chorismate mutase, a key enzyme in the biosynthesis of aromatic 

amino acids phenylalanine and tyrosine.4 In this case, enzyme mutagenesis widely varied 

cell growth rates, with a highly active variant significantly increasing cell growth rate.57  

Although TRP1 is extensively used as selection marker in S. cerevisiae and further 

utilized to study molecular evolution of TIM barrel of the tryptophan and other pathways, 

systematic characterization of the dynamic range of this selection scheme as yet to be 

published.   
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We believe it is highly interesting to revisit this problem in the context of enzyme 

directed evolution using state of the art molecular biochemistry and systems biology tools. 

It is possible that in the case of highly valuable and highly energy-consuming metabolite 

such as tryptophan,14,16 the complex regulation of the pathway is masking changes in 

single enzyme activity. Thus, the coupling between pathway enzymes via shared 

substrates/products buffers the effects of changing single catalytic function.  

Further experiments using lower PRAI enzyme catalysis then the one achieved in 

this work should be tested to probe the range of the TRP1 genetic selection. Similar studies 

using the less active S. cerevisiae PRAI enzyme, rather than T. maritime PRAI, might be 

used for this purpose to eliminate differences in enzyme stability or oligomerization that 

might have affected this study. 

Overall, our work highlights the significance of rigorously calibrating each 

selection scheme used for directed evolution experiments. Metabolic enzymes are widely 

utilized as markers for genetic selection in yeast for basic molecular biology as well as 

directed evolution applications. However, while selectable markers are a powerful tool for 

identification of functional enzymes, they might not provide the sensitivity and dynamic 

range required to efficiently detect a range of catalytic activities in the context of enzyme 

directed evolution.   

The lack of selection schemes for desired natural products and metabolites is a 

recognized bottleneck in the field of enzyme and metabolic engineering. As the complexity 

of molecules produced by microbial hosts in increasing, new methods are required to allow 

generic selection for metabolites regardless of their cellular function.  
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4.5  Experimental methods 

General materials and methods. General materials and methods were as in Chapter 

2.  

Mutagenesis of T. Maritima TrpF. Fusion PCR was used to make point mutations 

in the tTrpF gene using the primers specified in Table 4-3. Two fragments of TrpF were 

constructed using separate PCR reactions with mutation-containing primers. Then, the two 

fragments were fused using the two outmost primers of either PCR to produce the full 

length TrpF containing a point mutation. The template plasmid for fusion PCR was 

plasmid pVWC2148 containing wild type TrpF. Each point mutation also inserted a new 

restriction site allowing the verification of mutagenesis. The mutated fragments were 

subcloned back into plasmid pCWV2148, replacing the wt gene, and additionally 

subcloned into plasmid pVC2323 for E. coliexpression.  

Purification of T. Maritima tPRAI and mutants. Plasmid pVWC2323 bearing 

wild type or mutant tTrpF was transformed into E. coliKK8 cells purified using the 

following protocol. 43  Transformed cells were grown overnight at 37ºC in LB media 

supplemented with 0.1 mg/ml ampicillin and 0.025 mg/ml kanamycin. This culture was 

used to inoculate 4 L of the same medium. Shake at 37ºC until OD600 reached 0.5 - 0.6. 

Protein overexpression was induced by adding IPTG to final concentration of 1 mM and 

allowed to grow for 5 hours. Cells were harvested at 6000 rpm for 30 minutes, washed 

with 50 mM potassium phosphate buffer pH 7.8 added with 300 mM NaCl and harvested 

again, resulting in ~2.5 g/L of cells (wet weight). Cell were resuspend at in 100 mM 

potassium phosphate pH 7.8, 2 mM EDTA, 1 mM DTT, 0.3 mM PMSF and broken by 2 

cycles of french press and centrifuged at 12000 rpm for 60 minutes at 4ºC.  TrpF was 

purified from the soluble fraction only. Supernatant was incubated at 80 ºC for 10 minutes 
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in 1.5 ml eppendorf vials.to remove E. colihost proteins and centrifuged again at 12,000 

rpm for 20min at 4 ºC. Pellet was discarded, and supernatant was ialyze against 10 mM 

potassium phosphate pH 7.5, 2 mM EDTA, 0.4 mM DTT. A 5 ml DEAE column was 

equilibrated with equilibration buffer (10 mM potassium phosphate pH 7.5, 2 mM EDTA, 

0.4 mM DTT), and the supernatant was loaded, wash with 5 volumes of equilibration 

buffer, and eluted using a linear gradient of 20 to 180 mM potassium phosphate buffer.  

WT tTrpF elutes approximately at 70 mM potassium phosphate (as measured by SDS-

PAGE). Fractions containing TrpF were analyzed on SDS-PAGE, pooled and concentrated 

using Amicon centriprep (10,000 molecular cutoff).  

Growth analysis in S. cerevisiae. Strain VWC2273 was transformed with vector 

pVWC2148 carrying wt or mutant tTrpF. For liquid growth assay, an overnight culture 

was started from a fresh patch in 200 µl SC (L-) media. The next day, the culture was 

diluted to OD600 = 0.1 and in liquid SC(LT-) media. OD600 was monitored every 2-3 hours. 

For solid growth assay, the same overnight culture was further used to plate all variants on 

SC (LT-) and SC(L-) solid plates, using 2 µl of cultures diluted to OD600 = 0.1 or 0.01 or 

0.001. All measurements were done using three colonies of each variant, in triplicates. The 

OD was plotted in excel, the slope of the exponential growth phase (between OD=0.3 and 

OD=0.6) was calculated, and the doubling time was extracted using the formula [Ln2/ 

(exponential growth slope)].   

Growth analysis under lower expression levels. All variants expressed under the 

Met15 inducible promoter were down regulated by addition of 134 µM methionine to the 

growth media. colony growth on plates was monitored after 3 days incubation in 30ºC.  
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Competition selection assay. Cultures of two candidate variants for competition 

were mixed at 1:100 ratio ratios, as measured by OD600. cells were mixed in 1ml volume 

using selective SC(LT-) or noon selective SC(L-) media. All experiments started at 

OD600=0.1 and grown in 30ºC shaker until OD600=0.1. Then, the competition culture was 

used to inoculate miniprep cultures in non-selective media and the DNA extracted and 

subjected to PCR reaction with primers VWC1051 and VWC1052 to amplify the TrpF 

gene. PCR samples are then digested using specific restriction enzyme for one variant.  

Kinetic analysis. The measurement was performed at room temperature at 100 μl 

final volume, and repeated three times. The assay is performed in Tris buffer (50mM Tris 

4mM EDTA 4mM MgCl, 2mM DTT). Calibration curve was constructed for PRA and 

anthranilate prior to measurement, and used as reference for analysis (the slope of the 

curve is used as extinction coefficient for progress curve analysis). Cuvette is highly 

recommended over 96 well plates. All pipettes were calibrated prior to use, and reaction 

was stirred after addition of enzyme. The following amount of enzymes and reagents were 

used in each reaction mix for total volume 1 ml: 100 µM Anthranilate, 3 mM PRPP, 100 

µM Anthranilate phosphoribosyl transferase enzyme (TrpD), 10 µM IGPS enzyme (TrpC). 

MgCl2, EDTA and DTT were added to final concentrations 1.7 mM, 1.7 mM, 850 µM, 

respectively. PRAI concentration ranged 0.5 – 10 µM for wt and variants.  

Circular dichroism. Far UV CD spectra was measured at 800 µM wt or variant in 

10mM KH2PO4 buffer, All samples were kept at 4 ºC and filtered in .45 µm filter prior to 

scan. Far UV signal was measured using 0.1 cm cuvette, spanning 190 nm -250 nm, every 

1 nm, 100 nm/min, 1 second response tieme and 1 µm bandwidth, averaging 3 scans.  
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4.6 Strains, plasmids, and oligonucleotides 

Table 4-1 Strains used in this study 

Strain Genes  

NP2273  ATCC4017202 - MATa his3 ∆1 leu2∆0 met15∆0 ura3∆0 ∆TRP1 (S. cerevisiae) 

 

Table 4-2. Plasmids used in this study 

Mutation S. cerevisiae 

(pVWC2148) 

E. coli -TG1 

(pVWC2148) 

E. coli -KK8 

(pVWC2323) 

Wild type tTrpF  VWC2258 VWC2422 

tTrpF-K5A VWC2397 VWC2365 VWC2375 

tTrpF-K5R VWC2398 VWC2361 VWC2376 

tTrpF-C7S VWC2370 VWC2349 VWC2377 

tTrpF-S34A VWC2399 VWC2362 VWC2378 

tTrpF-S34T VWC2400 VWC2360 VWC2379 

tTrpF-R36A VWC2401 VWC2359 VWC2405 

tTrpF-R36K VWC2371 VWC2366 VWC2380 

tTrpF-Q81A VWC2372 VWC2367 VWC2381 

tTrpF-Q81H VWC2373 VWC2368 VWC2382 

tTrpF-H83A VWC2402 VWC2350 VWC2383 

tTrpF-H83N VWC2374 VWC2369 VWC2422 
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Table 4-3 Oligonucleotides used in this study 
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