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Abstract This paper presents a multiscale analysis of a

dilatant shear band using a three-dimensional discrete

element method and a lattice Boltzmann/finite element

hybrid scheme. In particular, three-dimensional simple

shear tests are conducted via the discrete element method.

A spatial homogenization is performed to recover the

macroscopic stress from the micro-mechanical force

chains. The pore geometries of the shear band and host

matrix are quantitatively evaluated through morphology

analyses and lattice Boltzmann/finite element flow simu-

lations. Results from the discrete element simulations

imply that grain sliding and rotation occur predominately

with the shear band. These granular motions lead to dila-

tion of pore space inside the shear band and increases in

local permeability. While considerable anisotropy in the

contact fabric is observed with the shear band, anisotropy

of the permeability is, at most, modest in the assemblies

composed of spherical grains.

Keywords Discrete element method � Homogenization �
Lattice Boltzmann method � Micromechanics of granular

materials � Microstructure � Strain localization

1 Introduction

Deformation bands in geological materials are narrow

zones of inhomogeneous strain. Their development is often

analyzed as a material bifurcation phenomenon that takes

place as a deviation from homogeneous deformation

[5, 34]. Deformation bands can be categorized as shear,

compaction, or dilation, depending on the predominant

mode of localized strain within the band. In geological

materials, shear occurs most commonly with some amount

of volumetric deformation, either dilation or compaction

[3, 7, 11, 33, 40]. For instance, compactive shear bands,

thin zones with reduced porosity and dominated shear,

have been reproduced in sand experimentally to study the

role of spatial variability of relative density on the onset,

propagation, and orientation of shear bands in [7]. On the

contrary, a dilatant shear band can cause an increase in

porosity and change of flow path, thereby altering the fluid

transport inside the pore space. This feature is of economic

importance, because dilatant shear bands may act as flow

conduits that leak injected pore-fluid in reservoirs [44].

To predict how formation of dilatant shear bands affects

the hydraulic properties, macroscopic finite element anal-

ysis may be used to capture the evolution of porosity.

Changes of permeability are then estimated from the

porosity evolution via empirical or semi-empirical consti-

tutive relations. This macroscopic approach has several

drawbacks. First of all, empirical models, such as capillary

tube model [36] and fissure model [19], are often designed

and validated for very specific types of materials with
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relatively simple pore geometry. Second, empirical models,

such as the modified Kozeny-Carman equation [4], are

often designed mainly to capture the macroscopic poros-

ity-permeability relation, while permeability changes due

to macroscopic shear and grain rearrangement, rotation,

and sliding are neglected. Hence, a macroscopic empirical

porosity-permeability relation may fail to deliver reliable

predictions when the permeability changes are caused by

factors other than volumetric changes of pore space, such

as isolation of the pores and changes in tortuosity and size

distribution of flow channels, as shown in [39].

Volumetric digital image correlation (VDIC) applied to

X-ray tomography images of geomaterials may help in

understanding the kinematics of grain motion and changes

in pore geometry as shown in [27, 32]. However, due to the

technical difficulty of conducting mechanical tests while

simultaneously performing CT X-ray imaging, experi-

mental measurement of microstructural attributes is rare

(e.g., [1, 16]). Furthermore, while continuum kinematics

quantities such as strain can be extracted via VDIC [7, 11],

tracking motion and deformation of individual grains is

still a computationally demanding process [1]. Recently,

Andò et al. [1] propose a discrete particle ID approach to

directly identify and keep track of individual grains without

the necessity of image analysis and hence significantly

improve the speed. However, post-processing procedures

are required to correct the error due to incorrect tracking of

grains with similar geometrical features.

DEM is widely used to model particle assemblies and to

simulate the mechanical behavior of granular materials.

Recent work has coupled DEM with LBM and finite ele-

ment models to study fluid flow processes that evolve on a

similar time scale as particles are being rearranged: soil

liquefaction, fluidized beds, and suffusion [8, 14, 15]. In

this study, our focus is on shear band formation in high-

porosity granular material under the fully drained condi-

tion. Because the shearing that produces shear bands in

sands is slow in comparison with fluid migration under the

drained condition, the current work decouples the DEM

and LBM analyses, with DEM used to simulate the for-

mation of a band and LBM analysis used to analyze the

fluid flow after formation of the band.

To analyze the links between microstructural granular

motion and macroscopic hydraulic properties in a repeat-

able and cost-efficient way, we introduce a multiscale

numerical alternative. This approach incorporates the dis-

crete element method (DEM) to simulate grain motion

inside the dilatant shear band and a multiscale lattice

Boltzmann (LBM)/finite element (FEM) scheme to capture

the evolution of permeability. Since the motion of every

particle in the DEM ensemble is recorded at every time

step, this approach makes it possible to quantify how

individual particles affect macroscopic hydraulic properties

without the necessity of introducing an additional phe-

nomenological law.

As for notations and symbols, bold-faced letters denote

tensors; the symbol ‘�’ denotes a single contraction of

adjacent indices of two tensors (e.g., a � b ¼ aibi or

c � d ¼ cijdjk); the symbol ‘:’ denotes a double contraction

of adjacent indices of tensor of rank two or higher (e.g.,

C : ee ¼ Cijklee
kl); the symbol ‘�’ denotes a juxtaposition of

two vectors (e.g. a� b ¼ aibj or two symmetric second-

order tensors (e.g., ða� bÞ ¼ aijbkl).

2 Method

2.1 Grain assembly from simple shear discrete element

simulation

In this study, we use the open source 3D discrete element

(DEM) code OVAL to simulate a simple shear test on a

specimen composed of spherical particles [2, 13, 25]. A

DEM simulation represents a granular material as an

assembly of elemental particles, among which interactions

are explicitly modeled by simplified constitutive contact

laws [13]. Each particle’s motions are obtained through

force and momentum balances, expressed as

m€uþ Cm _uþ PðuÞ ¼ Fext ð1Þ
I � €x ¼ Mext ð2Þ

where m and Cm are the mass and translational damping.

Vector PðuÞ is the net force imbalance vector due to the

inter-particle contact forces, and Fext denotes the external

loads exerted by walls or gravity. I is the moment of

inertia, €x is the rotational acceleration, and Mext is the

external moment on a particular grain. For simplicity,

gravity loads are neglected in the current discrete element

simulations. To solve Eq. 1, a time-stepping explicit

central difference leap-frog algorithm is used [13]. When

simulations are intended to approximate slow, quasi-static

loading conditions, the mass damping Cm and contact

damping Cs (described below) must be sufficient to

dissipate high frequency vibrational modes without

unduly impeding particle motions that arise from particle

interactions or the boundary conditions. The homogenized

macroscopic stress and strain tensors, r and e, of the

granular assembly are determined from the contact forces

fi
a and branch vectors lj

a between the centers of the Nc

contacting particle pairs and from the average deformation

gradient Fij of the assembly:

rij ¼
1

VX

XNc

a¼1

f a
i laj ; eij ¼

1

2
ðFikFkj � IijÞ ð3Þ

where VX is the assembly volume.
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2.1.1 Contact model

In our implementation, we use a simplified contact model

in which the grain-to-grain force-displacement relation is

governed by a frictional Hertz-Mindlin mechanism with

viscous damping but without cohesive bonding between

particles. Incremental changes in the normal and tangential

contact forces, f n and f t, are determined by the shear

modulus of the grains Gg, Poisson ratio m, radii of the

contacting grains R1 and R2, and the normal and tangential

displacements at the contact, dd and ds [21],

df n ¼ kndd; kn ¼
ffiffiffi
2
p

Gg

ffiffiffiffiffi
Re
p

1� m
d1=2 ð4Þ

df t ¼ ksds; ks ¼ 2
ffiffiffi
2
p

Gg

ffiffiffiffiffi
Re
p

2� m
d1=2 ð5Þ

where d is the indentation at the contact and Re is the

effective radius,

Re ¼ 2R1R2

R1 þ R2

ð6Þ

The tangential force is limited by the friction coefficient lf ,

such that jf tj � lf f n. Equation 5 gives the initial, elastic

tangential stiffness ks between elastic spheres. The incre-

mental tangential force f t, however, is path-dependent, and

an exact solution involves the history of normal and tan-

gential force at the contact [24]. The approximate solution

of Thornton and Randall [43] is used in the current simu-

lation, which permits solution of a full loading-unload-

ing-reloading cycle between two spherical grains.

To maintain a stable quasi-static simulation, a viscous

damping force is applied at each contact

f s;vis ¼ Cs _s ð7Þ

where _s is the tangential sliding velocity at a contact, and

Cs is the contact viscosity. This contact viscosity is ‘‘turned

off’’ whenever frictional sliding occurs, as such sliding

becomes a dissipation mechanism that prevents spurious

grain vibrations. Mass (global) damping (Cm in Eq. 1) can

delay or prevent the emergence of shear bands, since an

emerging difference in velocities on either side of the band

imparts a reactive viscous force that will suppress the

difference. To freely permit the spontaneous emergence of

shear bands, the viscosity Cm was set to zero, and the

contact (local) viscosity Cs ¼ 0:12
ffiffiffiffiffiffiffiffi
mkn
p

was used exclu-

sively as a damping measure. This small viscosity was

sufficient to maintain a stable simulation without unduly

affecting shear band thickness, since thickness is insensi-

tive to the contact damping parameter, just as it is insen-

sitive to the contact friction coefficient [23]. In this manner,

grain size and shape were the dominant factors controlling

the emergence and character of the shear band. In the

simulation, the shear modulus G was 29 GPa, the Poisson

ratio m was 0.15, and the friction coefficient between par-

ticles was 0.50. These values are in the ranges of those

measured for quartz grains [30].

2.1.2 Initial particle arrangement

The DEM simulation was conducted with an assembly of

129,000 spherical grains that were densely arranged with

an initial isotropic fabric. The distribution of particle sizes

is shown in Fig. 1 and corresponds to a poorly graded

medium sand with a coefficient of uniformity Cu of 1.4

(=D60/D10), a median particle size D50 (by volume) of 1.00

mm, and an effective size D10 of 0.754 mm. The dense

arrangement was attained from an initially sparse random

arrangement of particles by isotropically reducing the

boundary dimensions. During compaction, friction was

removed from the particle interactions, a technique that is

commonly used to achieve high packing densities [42]. The

compacted porosity was 0.337 (a void ratio of 0.509), with

an initial average coordination number of 5.52 contacts per

particle. Because of the isotropic compaction technique,

the initial normal stresses in all directions were nearly

equal to the mean stress of 416 kPa. These stresses, com-

puted with Eq. 3, are the inter-granular, effective stresses

that are developed by the contact forces.

2.1.3 Boundary conditions

The assembly shape and boundary conditions were chosen

to promote the free emergence of shear bands during

simple shear loading, and the assembly dimensions were

chosen to produce a shear band of sufficient volume for

studying its fabric and hydraulic properties. The DEM

assembly dimensions were 50.6 9 118 9 12.7 mm, or in

terms of the particle size D50, about 51 9 118 9 13D50.

Shearing was imposed across the 118 mm y-height by
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Fig. 1 The cumulative probability function of grain diameter of the

DEM assembly
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moving the top boundary horizontally at a constant velocity

in the x-direction (Fig. 2), while maintaining constant

assembly widths in the x-x and z-z directions and a

constant vertical stress ryy. That is, the vertical height was

freely allowed to change while the assembly was under-

going simple shear at a constant shearing rate and under

constant vertical stress. Periodic boundaries were used on

all sides of the assembly during the initial compaction

process [12], but the periodicity of the top and bottom

boundaries was broken at the start of shearing and replaced

with thin rigid horizontal layers of conforming spheres that

were arranged along the x-z planar directions. In this

manner, the top and bottom boundaries were modeled as

rough rigid platens. The four vertical sides, in x-y and y-

z planar directions, remained as periodic boundaries during

shear loading. With these conditions, a shear band could

develop along the full x-x width and z-z depth, while

passing across the periodic side boundaries.

2.2 Geometrical analysis on pore geometry

of simulated assembly

To analyze how grain rearrangement affects the hydraulic

property of the assembly, we convert portions of the 3D

DEM assembly into 3D discrete binary images. The binary

images are collections of binary voxels which signal

whether a cubic volume is occupied by solid (b = 255) or

by void (b = 0). The union of void voxels can be used as

the simulation domain for lattice Boltzmann flow prob-

lems. In addition, binary images can be analyzed with

software designed for tomographic images, such as ImageJ

[37].

We use a simple computer algorithm called seed-fill to

create the binary images of the DEM assemblies. As the

name implies, the seed-fill algorithm is used to grow the

region from a seed such that the ‘‘flag’’ or ‘‘identification’’

of the seed can be propagated in a confined object. The

seeds we used in the problem are the centroids of the

spherical particles. To obtain the binary image of the DEM

assemblies, we confine the growing of the seeds by pre-

venting them from growing outside the spherical particles.

The pseudo-code used to create binary image goes as fol-

lows, noting that the algorithm is recursive. A similar

algorithm has been used in [40] to determine the con-

nected/isolated porosity of Aztec sandstone. To quantita-

tively compare the geometrical features of the pore space

inside and outside the shear band, we extract a set of

geometrical parameters, i.e. the Euler number and the

Fig. 2 DEM assembly and loading conditions. Small boxes show

locations of the 4 mm unit cells used for pore-fluid analysis (Sect. 3.2)
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surface area/pore volume, which are found to be closely

related to hydraulic transport behavior of porous media [17,

22, 28, 37]. The open source computer algorithm used to

extract these parameters is provided by Legland [26]. The

Euler number of binary image E is defined as,

E ¼ N � C þ H ð8Þ

where N is the number of interconnected pores, C is the

number of loops in the pore space, and H is the number of

objects completely enclosed by pore space . In other words,

the Euler number is a measure of connectivity which is

positive if the pores are poorly connected and negative if

otherwise. A large negative Euler number indicates that the

pore space has a network-like topology and that there are

more possible flow paths for pore-fluid traveling from one

end to another end. In addition, tortuosity of flow channels

can be measured by computing the ratio between the sur-

face area and the pore volume. Obviously, a high surface

area/pore volume indicates that pore-fluid must travel

along a longer flow path from one end to the other.

2.3 Geometrical enhanced lattice Boltzmann/finite

element simulation

A multiscale lattice Boltzmann/Finite element method is

used to extract geometrical features and permeability from

the granular assembly. This hybrid method was originally

proposed in [45] to estimate permeability of Castlegate

Sandstone. Sun et al. [39] improved the accuracy and com-

putation efficiency of this method by incorporating geo-

metrical analysis in the permeability calculations. The key to

this improvement is partitioning the entire grain assembly

into unit cells where pore-scale lattice Boltzmann simula-

tions are conducted in the connected pores of each unit cell.

Since discretized voxel images may contain isolated pores if

the resolution is insufficient, this method is used to ensure

that discretization does not alter connectivity of the pores.

The lattice Boltzmann method we used is a single-relax-

ation time Bhatnagar-Gross-Krook (BGK) model [10, 38],

which solves a discretized Boltzmann equation by simulat-

ing the evolution of fluid particle distribution that propagates

and collides locally among lattice nodes. The macroscopic

fluid flow is then approximated by the overall particulate

motion of the fictitious fluid particles. The evolution of fluid

particle distribution function fi in direction ei is updated in

each time step through the following equation,

fiðxþ ei; t þ DtÞ � fiðx; tÞ ¼ �
1

s
ðfiðx; tÞ � f

eq
i ðx; tÞÞ ð9Þ

where feq is a truncated equilibrium distribution defined as

f
eq
i ¼ wiq

�
1þ 3ei � v

c2
s

þ 9ðei � vÞ2

c4
s

� v � v
2c2

s

�
ð10Þ

s is a parameter related to the dynamic fluid viscosity m, as

shown in the Chapman-Enskog equation (cf. [38]),

m ¼ Dtc2
s

�
s� 1

2

�
ð11Þ

where cs is the constant speed of sound. q and v are the

macroscopic density and velocity. They are determined

from the evolution of the particle distribution, i.e.,

q ¼
XN

i¼1

fi; v ¼ 1

q

XN

i

fiei ð12Þ

The effective permeability of a porous medium can be

measured by applying a pore pressure gradient along a basis

direction and determining the resultant fluid filtration velocity

from a pore-scale hydrodynamics simulation. Then, the

effective permeability tensor is obtained according to

kij ¼ �
lv

ðrxpÞj
1

VX

Z

X

viðxÞdX ð13Þ

where lv is the kinematic viscosity of the fluid occupying

the spatial domain of the porous medium X. To implement

this procedure, we first assume that the effective perme-

ability tensor kij is symmetric and positive definite.

Assuming that the principal axes of the permeability tensor

are aligned with the specimen axes, we determine the

diagonal components of the effective permeability tensor

kii by three hydrodynamics simulations. In each simulation,

we impose a pressure gradient on two opposite faces

orthogonal to an axis ei and no-slip boundary conditions on

the four sides parallel to ei where ei denotes an orthogonal

axis of a Cartesian system. This numerical treatment has

been previous used in [45] to estimate permeability of

Castlegate sandstone.

Another possible approach to estimate permeability is by

assigning uniform force in (9) at each lattice node such that

a gravitational body force leads to fluid flow [38, 41]. This

method may minimize the impact of artificial boundary

effect. However, this approach only works for periodic

media. Hence, non-periodic media must be made periodic

by specular reflection on its boundary. This technique

requires careful pre-programming to handle complicated

local metrics, such as corners. As a result, this approach is

not used in this study, but will be considered in future work.

3 Results and discussion

3.1 Microstructural attributes and homogenized

constitutive responses

The objective of the numerical experiments is to explore

how inter-particle motions, such as grain sliding and
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rotation and rearrangements of grains, influence macro-

scopic mechanical behavior and hydraulic properties of the

shear band. In real geomaterials, there are numerous other

microstructural attributes (e.g. grain size distribution, grain

shapes, grain surface roughness, scale of fluctuations of

mechanical properties) and mechanisms (e.g. grain sliding,

rotation, crushing, interlocking) that may influence the

overall macroscopic behavior in various degrees of impor-

tance. Since the influences of these factors are difficult to

analyze simultaneously, we restrict our focus to the effects

of grain sliding and rotation. To minimize the influence of

inherent heterogeneity, all grains in the granular assembly

are spherical with the distribution shown in Fig. 1.

3.1.1 Stress-strain response

Figure 3 shows the stress-strain response of the grain

assembly during simple shear loading with constant verti-

cal stress po ¼ 416 kPa. The peak shear stress occurs at

shear strain exy ¼ 4:4 %. After reaching this peak, softening

occurs as the shear stress decreases from 277 to around

170 kPa at exy ¼ 9 %. At strains beyond 9 %, the shear

stress fluctuates at 170 kPa, signifying a critical-state,

residual condition that continues even beyond 12 % strain,

to strain of 20 %, the terminal strain in the simulations. The

results correspond to peak and residual friction angles / of

33.6� and 22.2�, respectively. These strengths are some-

what smaller than would be expected with uncemented

sands, a result of the smooth spherical particle shapes. A

similar trend is observed in a plot of the mean stress

rxx þ ryy0þ rzz

� �
=3 (see Fig. 4), with the mean stress

reaching a maximum value at strain exy ¼ 3:8 % and then

remaining nearly level until it abruptly decreases between

the strains exy ¼ 6 % and 8 %. The average mean stress

then fluctuates at 440 kPa during the residual condition,

about 6 % larger than the initial confinement stress. These

changes in the mean stress result from changes in

horizontal confinement, ðrxx þ rzzÞ=2, since the vertical

stress ryy is maintained a constant 416 kPa throughout

shearing.

Even as the compressive mean stress increases, the

volume and porosity monotonically increase during

shearing and then remain constant after the shear stress

decreases to the residual level (Fig. 5). This trend is con-

sistent with the plastic dilatancy commonly observed in

dense spherical packings and in dense sands. Casagrande

[9] attributed this increase in volume to the re-arrangement

of densely packed particles as they rise up over neighbor-

ing particles. This phenomenon may be absent in loose

packings, in which shear may induce pore collapse and

densify the assembly.

Figure 6 shows the average coordination number of the

entire assembly (the average number of contacting neigh-

bors per particle) and the percentage of contacts that are

sliding. The results are slightly skewed by the top and

bottom layers of rigidly moving platen particles, which

have only interior neighbors and do not slide among

themselves. The average coordination number decreases

greatly in the early, pre-peak strains as particles disengage
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during this formative dilational stage. As shearing stress

approaches the peak, the number of contacts decreases

more slowly and remains nearly constant throughout the

subsequent peak, softening and residual periods (a trend

also observed by Thornton [42]). Figure 6 also shows that

frictional sliding is mobilized early in the loading process,

with the fraction of sliding contacts reaching a maximum

of 29 %, well before the peak stress is attained. The

fraction of sliding contacts then decreases to about 18 %

while the shearing stress is near its peak state. This

decrease in the number of sliding contacts suggests that

deformation begins to localize before the peak state is

reached and before a shear band is fully developed. Once a

shear band has formed and the material is softening (at

strains greater than 5 %), the fraction of sliding contacts

decreases again to less than 10 % during the remainder of

loading. In this final stage of loading, deformation and

sliding are concentrated in the small, localized volume of

the shear band.

3.1.2 Localized deformation in shear band

Localized deformation is apparent in Fig. 7, a view of the

x-y plane through the full z-depth of the assembly. The

figure shows the overall deformed profiles and the distri-

butions of individual particle rotations about their z-axes,

xz. At a pre-peak strain of exy ¼ 2 %, the deformed, tilting

profile is nearly uniform, although rotations, which are

both positive and negative, hint at intensely non-uniform

motions at the micro-scale of individual particles. A shear

band is clearly forming within the upper half of the

assembly at 6 % strain. Less apparent are other non-per-

sistent, ephemeral localization bands that occur between

strains of 4 and 6 %, near the peak stress condition. At

strains greater than 6 %, continued deformation coalesces

within the upper shear band. Although grain rotation is

more uniform prior to formation of the shear band, rota-

tions become concentrated within the band, with some

grains rotating about 19 radians (over three full rotations).

The shear band, occurring along a horizontal plane, is

located at about three-quarters of the assembly height from

the base of the assembly. In simulations on similar

assemblies, the band was found to occur at other heights,

the particular location being unpredictable and likely the

result of subtle weaknesses within the assembly.

The nature of stress and deformation within the band are

illustrated in Fig. 8 which shows profiles of porosity,

shearing strain and rotation, and confinement stress at the

bulk strain exy ¼ 12 %. Together, the three plots indicate

that the shear band is about 13–16 mm thick, or about

13–16 times D50. Porosity is clearly larger within the shear

band than elsewhere within the profile (Fig. 8a). Indeed,

historical awareness of such localization was based upon

x-ray transmission images showing thin planar features of

reduced density [6, 11, 29]. By comparing Figs. 3, 5, 7 and

8a, we see that softening and dilation become concentrated

within the shear band at strains of 5–8 %, after which,

material within the shear band attains a steady, critical-

state density. Outside of the shear band, the density retains
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Fig. 6 a Evolution of coordination number and b fraction of sliding contacts during simple shear loading
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(a) 2% shear strain (b) 4% shear strain

(c) 6% shear strain (d) 8% shear strain

(e) 10% shear strain (f) 12% shear strain

Fig. 7 Spatial distribution of rotation in assembly at shear strains = 2, 4, 6, 8, 10 and 12 %. Color indicates rotation (radians) of individual grains
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its pre-peak condition, as that material elastically unloads

while softening occurs within the band.

Figure 8b shows the profiles of two micro-scale mea-

sures of continuum deformation: the local shearing strain

exy and the mean rotation xz of particles along the height of

the assembly. This figure records the differences of strains

and rotations between two reference strains, exy ¼ 10 and

12 %. The 2 % increment is the average strain increment

hDexyi of the entire assembly, but strains near the center of

the shear band are more than 15 times larger than the

assembly strain, whereas strains outside of the shear band

are nearly zero. The mean particle rotations are also shown

in Fig. 8b. The rotations exhibit considerable scatter, as is

apparent in Fig.7, and within the band, the standard devi-

ation of these rotations is more than 5 times their mean

value. Separate scales are used in Fig. 8b for the mean

shear strain and particle rotation, since the rotation is half

of the strain rate _exy. The lines for shear strain and particle

rotation are nearly identical, showing that micro-rotation

and vorticity are nearly equal within the shear band.

Figure 8c gives the profile of the mean horizontal stress,

ðrxx þ rzzÞ=2, at the strain exy ¼ 12 %, in which the aver-

age horizontal confinement stress has been normalized with

respect to the initial mean stress po = 416 kPa. The aver-

age horizontal confinement throughout the assembly is

12 % larger than the initial value (also see Fig. 4). The

general increase in the average confinement can be inter-

preted as a response to a dilational tendency that is per-

mitted expression only in the vertical direction, while no

horizontal strain is allowed in the x-x and z-z directions.

Figure 8c shows, however, an reduction in the horizontal

confinement within the shear band, where the horizontal

stress is about 6 % less than the initial stress. This different

behavior within the band indicates that mechanical

behavior within the band has diverted from the pre-peak

response and from the response of material outside of the

shear band.

3.1.3 Fabric of contact orientation

A common measure of particle arrangement is the distri-

bution of the center-to-center orientations of pairs of con-

tacting particles [31]. During deformation, contacts are

more likely to be oriented in the direction of the major

principal compressive stress. Figure 9 shows the distribu-

tions of the orientations within the x-y plane for the initial,

unloaded assembly and at strain exy ¼ 12 %, within and

outside of the shear band. The initial distribution is iso-

tropic, a result of the isotropic compaction of the specimen.

Upon shearing, the distribution becomes highly anisotropic

with far more contacts in the direction of the major com-

pressive stress, r1, than in the orthogonal direction. Dis-

tributions inside and outside of the shear band also differ,

(a) (b) (c)

Fig. 8 Profiles of density, deformation, and confinement along the

assembly height a porosity and void ratio, b shear deformation Dexy

and particle rotation Dhz, and c horizontal confinement stress. Boxes

along right margins show locations of 4mm unit cells for pore

analysis (Sect. 3.2)

(a) εxy = 0 (b) εxy = 12% within shear band (c) εxy = 12% outside of shear band

Fig. 9 Rose diagrams of contact orientations
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with a slightly greater fabric asymmetry outside the shear

band. The figure also shows the directions of the major

principal compressive stress, differing by about 4.5�
between material within and outside the band, the latter

having a more horizontal orientation. The principal direc-

tions of the contact fabric, as defined by [35], are closely

aligned with the principal stress directions and differ in a

similar manner within and outside the shear band. These

results are further evidence that material behavior inside of

the shear band has diverted from that of material outside of

the shear band.

3.2 Pore geometry and homogenized hydraulic

properties of shear bands

To analyze effect of strain rotation on permeability, we

located the region of grains with the largest rotation

(defining the center of the shear band) and nearby, sur-

rounding grains within a 6 mm distance. The grains with the

maximum rotation are at (20.7, 90.1, 5.7 mm) relative to the

origin shown in Fig. 2. As shown in Figure 8, this location is

approximately at the mid-plane of the shear band.

We convert the shear band grain assembly into cubic

binary images of size 12 mm 9 12 mm 9 4 mm. To

maintain computational efficiency, we then split the

domain into nine 4mm x 4mm x 4mm unit cells, with each

cell containing about 107 particles. For comparison pur-

poses, we also extract the pore geometry of three other

adjacent 4 mm 9 4 mm 9 4 mm unit cells centered at

(16.7, 25.0, 5.7 mm), (20.7, 25.0, 5.7 mm), and (24.7, 25.0,

5.7 mm) and labeled them as ’’host matrix’’ (see Figs. 2,

8). Samples of binary images obtained from the DEM grain

assemblies are shown in Fig. 10. The resolution of the

binary images is 0.05mm per voxel.

To ensure that this binary volume is large enough to

serve as a representative elementary (porous) volume for

studying fluid flow, we follow the approach in [39, 40, 45]

and compute amount of energy dissipation per unit volume

of the binary sub-volumes in various sizes, i.e.,

D ¼
Z

V

2eijeijdV; eij ¼
1

2

�
vi;j þ vj;i

�
ð14Þ

where vi,j is the gradient of fluid velocity and l is the

viscosity. This energy dissipation rate is induced by pre-

scribing a pore pressure gradient on the top and bottom of

the sub-volume. Our goal is to test whether increasing the

size of the sub-volumes would induce severe fluctuation in

the dissipation rate per unit volume. If this is not the case,

then the sub-volume is considered to be large enough to be

a representative elementary volume.

Figure 11 shows the normalized energy dissipation

computed from 480 lattice Boltzmann simulations inside

the shear band. Different colors are used to represent the

sub-volume obtained at 0, 2, 4, 6, 8, 10, and 12 % shear

Fig. 10 Binary images generated from DEM assemblies outside (left) and inside (right) shear band at shear strain exy ¼ 12 %. Each cell contains

about 107 particles

10
−1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size of Numerical Specimen (mm3)

N
or

m
al

iz
ed

 D
is

si
pa

tio
n 

E
ne

rg
y

ε
xy

 = 12%

ε
xy

 = 10%

ε
xy

 = 8%

ε
xy

 = 6%

ε
xy

 = 4%

ε
xy

 = 2%

ε
xy

 = 0%

Fig. 11 Normalized energy dissipation per unit volume compute
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strain. We notice that fluctuation of energy dissipation rate

is large when the numerical specimens are less than 1 mm3,

but gradually decreases as the sample size get larger. (A

1 mm3 specimen will encompass, on average, only 1.7

particles.) When the size increases to 10 mm3, the energy

dissipation per unit volume begins to stabilize. Although

energy fluctuation has not yet fully diminished for the unit

cell extracted at 12 % shear strain, we decided to use

specimens of 64 mm3 to strike a balance between com-

putational efficiency and accuracy.

3.2.1 Pore geometry characteristics of shear band

and host matrix

Figure 12 summarizes the geometrical measurements and

permeabilities calculated via lattice Boltzmann simulations

from ten 4mm� 4mm� 4mm cubic unit cells: three are

located at the mid-plane of the shear band (labeled as

‘‘shear band’’), six are in a transitional zone near the edge

of the shear band (labeled as ‘‘transition zone’’), and three

are in the host matrix (labeled ‘‘host matrix’’, see Figs. 2,

8). Table 1 summarizes the locations of the unit cells.

Calculations on the binary images reveal that porosities

of all unit cells inside the shear band increase from around

0.34 to above 0.4 in the course of shearing from exy ¼ 0 to

12 % (also see Fig. 8). After the formation of the dominant

shear band at strains greater than 8 %, 5 out of 6 unit cells

stop increasing in porosity. On the other hand, porosity in

host matrix increases from initial 0.337 to 0.342, only a

1.5 % increase during the course of shearing.

The Euler number of the 64 mm3 unit cells, which

characterizes the complexity of pore network topology,

decreases between the strains exy ¼ 0 to 4 %. This decrease

indicates that flow paths become more network-like

between these strains. However, as the shear band begins to

form and the fraction of sliding contacts drops abruptly at

around 5 % strain (Fig. 6b), the Euler number increases

steadily from around -500 to -250. This suggests that the

pore-fluid flows through larger pore spaces with less

branching of the flow.

The ratio of surface area/pore volume (a measure of

pore tortuosity) of the host matrix fluctuates in a narrow

range between 11.5 to 12 mm-1 throughout the shearing,

whereas, within the shear band, the surface area/pore vol-

ume decreases from around 12.5 to 10 mm-1 between the

strains exy ¼ 0 to 8 % and then fluctuates at around 10

mm-1 thereafter. These changes are relatively minor,

suggesting that the geometrical tortuosity of the flow

channel remains similar throughout the shear test. This

trend may be attributed to the uniform spherical shape of

the grains and the disallowing of grain crushing in the

discrete element simulations.

3.2.2 Unit cell and multiscale permeability calculations

The unit cell permeability calculation shown in Fig. 12d

reveals that permeability (normal to the shear band, in the y-

direction) inside the shear band is between 2 and 2.5 times

larger than within the host matrix. This result is consistent

with the flow streamlines inside and outside the shear band

shown in Fig. 13, which indicate that flow velocity within a

unit cell inside the shear band is higher than that of the host

matrix if given the same prescribed pore pressure gradient.

We also perform regression analysis to check how well

the porosity and permeability inferred from binary images

correlate with the Kozeny-Carman equation, i.e.,

k ¼ ko

/3

ð1� /Þ2
; ko ¼ f ðsÞd2 ð15Þ

where d is the grain diameter and f(s) is the shape factor,

which accounts for the influence of the shape of the pore

geometry on permeability. The best fitting curve is shown

in Fig. 14. We found that ko = 5,231 Darcy with 95 %

confidence bounds of [5,122, 5,340].

Next, we use this ko value to back calculate the inferred

mean diameter via a modified Kozeny-Carman equation for

which d ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
180ko

p
(cf. [4]). Our intention is to test the

importance of changes of pore geometry on the permeability.

By treating ko as constant, the inferred mean diameter is

0.964 mm, with 95 % confidence bounds of [0.9539,

0.974 mm], a diameter that is only 3.6 % smaller than the

median particle size D50 = 1.0 mm and is about 28 % larger

than the effective size D50 = 0.754 mm. This result suggests

that pore shape is not an important factor leading to signifi-

cant permeability changes inside the shear band. This con-

clusion is attributed to the fact that the grain assem-

bly is composed of spheres that are rotationally invari-

ant. Whereas sphere rotations may cause relative contact

Table 1 Centroids of the 4 mm 9 4 mm 9 4 mm unit cell speci-

mens at which pore-scale flow simulation is conducted to obtain

effective permeability

Location Coordinate x Coordinate y Coordinate z

Host matrix 16.7 20 5.7

Host matrix 20.7 20 5.7

Host matrix 24.7 20 5.7

Upper transition zone 16.7 94.1 5.7

Upper transition zone 20.7 94.1 5.7

Upper transition zone 24.7 94.1 5.7

Shear band 16.7 90.1 5.7

Shear band 20.7 90.1 5.7

Shear band 24.7 90.1 5.7

Lower transition zone 16.7 86.1 5.7

Lower transition zone 20.7 86.1 5.7

Lower transition zone 24.7 86.1 5.7

Acta Geotechnica (2013) 8:465–480 475

123



displacements and enlarge the pore volume, the rotations of

individual spheres do not change the pore geometry. This

finding is consistent with the small changes in surface area/

volume and Euler number presented in Fig. 12.

The coefficient of determination R2 of Eq. 15 is 0.939.

The relatively narrow confidence intervals and the high

coefficient of determination indicate that Kozeny-Carman

equation is an appropriate model to correlate permeability

with porosity for the DEM assemblies. This result is

expected, as the microstructures inside and outside the

shear band are both composed of ideal spheres with little

overlapping (as indicated by the large porosity). We note,

however, that this simple mechanism may not be sufficient

to explain the permeability changes if other microstructural

attributes such as grain shape, grain size distributions are

significantly varied or if when grain crushing occurs.

Assuming that the permeability tensor is isotropic, we

conduct a finite element simulation to obtain the effective

permeability of the large specimen which consists of the

3 9 3 9 1 contiguous unit cells inside the shear band. For

comparison, we also upscale the unit cell permeability by

volume averaging and geometric averaging, i.e.,

�k ¼ 1

V

Z

B

kdV (volume averaged permeability) ð16Þ

�k ¼ exp
1

V

Z

B

logðkÞdV

0
@

1
A

(geometric averaged permeability)

ð17Þ

These two methods are often used as alternatives to the

inverse problem [4, 20]. Figure 15 compares the effective
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(e) 12% shear strain (inside Shear Band)

(a) 2% shear strain (inside Shear Band) (b) 2% shear strain (outside Shear Band)

(c) 6% shear strain (inside Shear Band) (d) 6% shear strain (outside Shear Band)

(f) 12% shear strain (outside Shear Band)

Fig. 13 Streamline of two pore volumes at shear strain = 2, 6, and 12 %. Color indicates magnitude of velocity
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permeability calculated by finite element method, volume

averaging, geometrical averaging, and the Kozeny-Carman

relation. We found that effective permeabilities obtained

by geometric averaging are the closest to those inferred

from finite element solutions. On the other hand, volume

averaging seems to overestimate the effective permeability

at higher porosity. This overestimation may be due to the

fact that the permeability field is much more heterogeneous

at higher porosity, as shown in Fig. 12.

3.3 Anisotropy of pore space in DEM assemblies

In order to quantify the anisotropy of the permeability, we

compute permeabilities parallel to the shear band (in the

x-direction) and compare them with permeabilities in the

normal direction (the y-direction).

Figure 16 shows the ratio between permeability normal

and parallel to the shear band. Although the permeability

inside the shear band tends to exhibit slightly larger

anisotropy, the anisotropies of both the host matrix and

shear band are both less than 20 %. This result suggests

that pore space of the spherical grain assembly remains

nearly isotropic even after undergoing significant shear.

4 Concluding remarks and future perspective

We present a multiscale lattice Boltzmann/finite element

numerical method that quantitatively links particulate

mechanics to macroscopic mechanical and hydraulic

properties of a grain assembly obtained from discrete ele-

ment simulations. Using a seed-filling algorithm, we pro-

vide a new method to convert DEM assemblies into binary

images. This treatment enables us to analyze hydraulic and

geometrical attributes of pore geometry in DEM assem-

blies with unprecedented detail. To the best of our

knowledge, this work is the first example of applications of

lattice Boltzmann simulations and geometrical measure-

ment on binary images of DEM assembly.

The DEM simulations demonstrate the manner in which

deformation and micro-rotation are localized within a shear

band. A persistent shear band forms when shearing stress is
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near its peak. Subsequent dilation occurs predominantly

within the shear band, leading to larger porosities than

within the surrounding matrix. Contact sliding is also

concentrated within the shear band. Vorticity nearly ceases

outside of the shear band, and within the band, vorticity

and mean grain rotation are nearly equal. The DEM results

suggest that mechanical behavior within the band diverges

from its pre-peak behavior and from the post-peak behavior

outside of the band: the mean confinement stress dimin-

ishes within the band, whereas it increases elsewhere.

Principal directions of contact fabric and stress coincide

within the band, although the directions differ significantly

from those outside the band. Although loading does induce

considerable anisotropy in the contact fabric—the orien-

tations of contacting pairs of particles—the resulting

anisotropy of permeability is, at most, modest in these

simulations of spherical particles.

We found that dilatancy inside shear band not only

increases porosity, but leads to a more interconnected pore

space (as indicated by the increased Euler number) and less

torturous flow paths (as indicated by the decrease in sur-

face/volume number). These geometrical changes in pore

pace induced by shear band formation lead, in turn, to an

increase in effective permeability.

Under the idealized situation in which assembly is

composed of spherical grains, we find that porosity

increase is the dominant factor causing the permeability

change. Although geometrical measures do confirm chan-

ges in pore geometry within a shear band, the influence of

these changes on permeability is minor.

Notice that the proposed numerical framework can also

be integrated with laboratory and field measurements. For

example, one could imagine calibrating the DEM models

with the pre- and post-loading scans and using the

numerical method to infer the evolutions of force chain and

permeability in between. However, since real particles are

rarely in perfectly spherical shape, a more sophisticated

method, such as the potential particle approach in [18],

must be used to faithfully replicate the geometrical attri-

butes of individual grains in the assemblies. This integra-

tion between experimental measurements and numerics is

outside the scope of this work, but will be considered in

future studies.

Since it is likely that shape changes on pore geometry may

play a bigger role if the assembles are composed of non-

spherical grains, we are currently investigating the effects of

particle shape on hydraulic properties by extending the study

to DEM assemblies composed of ellipsoids.
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1. Andò E, Hall SA, Viggiani G, Desrues J, Bésuelle P (2012)
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