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Abstract We propose a variational procedure for the recov-
ery of internal variables, in effect extending them from inte-
gration points to the entire domain. The objective is to per-
form the recovery with minimum error and at the same time
guarantee that the internal variables remain in their admis-
sible spaces. The minimization of the error is achieved by a
three-field finite element formulation. The fields in the for-
mulation are the deformation mapping, the target or mapped
internal variables and a Lagrange multiplier that enforces
the equality between the source and target internal variables.
This formulation leads to an L2 projection that minimizes
the distance between the source and target internal variables
as measured in the L2 norm of the internal variable space.
To ensure that the target internal variables remain in their
original space, their interpolation is performed by recourse
to Lie groups, which allows for direct polynomial interpo-
lation of the corresponding Lie algebras by means of the
logarithmic map. Once the Lie algebras are interpolated, the
mapped variables are recovered by the exponential map, thus
guaranteeing that they remain in the appropriate space.
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1 Introduction

The transfer of field data from one mesh to another is a need
that arises frequently within the context of mesh adaption
in the finite element method [5,14,26,27,31,33,34]. Fields
that are available at the nodes may be directly mapped by
using the corresponding interpolation functions. The situa-
tion is more complicated, however, in simulations that carry
state information in internal variables, as these are normally
available only at integration points.

1.1 Previous work

Related work to our proposed technique can be divided into
two classes of methods: the mapping of internal variables
from one mesh to another, and stress recovery techniques.

Different methods have been devised to map internal vari-
ables from one mesh to another. Ortiz and Quigley [27] pro-
pose transfer operators based on a three-field Hu-Washizu
formulation. By choosing discontinuous interpolation func-
tions for the deformation gradient and first Piola-Kirchhoff
stress fields, the authors derive transfer operators that are
local to each element. Radovitzky and Ortiz [33] use a trans-
fer operator which reduces to extrapolation of the internal
variables from the integration points in the source mesh to the
integration points in the target mesh. Rashid [34] introduces a
method that assumes constant values for the internal variables
within the cells of a Voronoi tessellation based on the integra-
tion points of the original mesh. These values are then trans-
ferred to the final mesh using another Voronoi tessellation
and an algorithm for finding the intersecting volumes of the
cells corresponding to the source and target meshes. Jiao and
Heath [14] propose a technique for transferring information
in surface meshes based on a third mesh that they term com-
mon refinement. This mesh is conformal to both the source
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and target surface meshes. The authors then proceed to define
an L2 minimization between the source and target internal
variable fields for the transfer. They also note the desirable
properties of the L2 minimization for mapping, such as that
it requires solving a linear system of equations with a corre-
sponding matrix that is positive-definite and sparse. Bucher
et al. [5] derive transfer operators that extrapolate the inter-
nal variables at integration points to nodes in the source mesh
using serendipity interpolation functions.

The proposed mixed finite element formulation is also
related to classical stress recovery techniques such as
interpolation-extrapolation from superconvergent points [2],
L2 stress projection [25], stress smoothing [13], supercon-
vergent patch recovery [43] and variational stress recovery
[23], among others. All of these start from a multi-field
variational principle, although their objectives are different
[42, chap. 8].

1.2 Admissible spaces

It is common for finite deformation constitutive models to
be endowed with internal variables that do not belong to
linear spaces. Nevertheless, a problem that is prevalent to the
mapping procedures hitherto described is that they transfer
internal variables with the addition operator, typically via
Lagrange interpolation. This operator, however, may not be
admissible in the spaces in which these variables exist, and as
a consequence such procedures do not, in general, guarantee
that transferred internal variables remain in their appropriate
spaces. For example, a scalar isotropic damage parameter
might be extrapolated outside of its admissible range, [0, 1).

1.3 Proposed method

We advance a three-field finite element formulation as a
method for recovering internal variables. The additional
fields in the formulation are the target field of internal vari-
ables and a Lagrange multiplier that enforces the equal-
ity between the source and target internal variables. The
Lagrange multiplier is subsequently identified as the corre-
sponding conjugate thermodynamic force. The formulation
leads to an expression for the target internal variables that
is an L2 projection of the source internal variables onto the
space spanned by the interpolation functions selected for the
extra fields. In effect, the projection extends the field of inter-
nal variables from the integration points to the entire domain.
Once extended in this manner, values for the internal vari-
ables may be computed at any arbitrary point as a means
of transferring the variables to a different mesh. By using
a variational approach, the distance between the source and
target internal variable fields is minimized in the L2 norm of
their space, and thus the projection is orthogonal and the cor-
responding operator is self-adjoint. The matrices that result

from the operator are symmetric positive definite, sparse and
of narrow band.

Next it is shown that for a set of common internal vari-
ables, the Lie algebras corresponding to these variables lie
in linear spaces and are therefore suitable for polynomial
interpolation. The proposed recovery scheme preserves the
constraints imposed on the internal variables as long as they
belong to a Lie group. We adhere to the classical definition of
internal variables as fields that are endowed with their own
evolution equations as to eliminate the explicit dependence
of the stored energy function from the history of deforma-
tion [1,24]. Thus, the proposed variational principle states
that thermodynamic forces conjugate to the internal vari-
ables (such as stresses) are not mapped, but are computed
instead based on the target internal variables, thereby satis-
fying their own constraints (such as that stresses be within
the elastic domain) and balance laws.

Assuming that internal variables belong to Lie groups,
the corresponding Lie algebras may be obtained using the
logarithmic map. Upon interpolation in the Lie algebra, the
internal variable of interest is recovered by using the expo-
nential map [9,16,19,37]. The computation of the logarith-
mic map may be effected by using explicit formulas (if the
eigenvalues are readily available) [15] or the inverse scaling
and squaring algorithm with Padé approximants [6,7]. A fast
and accurate method for the computation of the exponen-
tial map is provided by the scaling and squaring algorithm
with Padé approximants [10,11]. Most tensor fields of inter-
est, however, admit a polar decomposition and thus it proves
convenient to interpolate the rotational and stretch compo-
nents separately. An added benefit of this method is that the
computation of logarithmic maps for these components is
relatively straightforward.

Finally, the L2 projection and Lie algebra interpolation
are applied first separately and then concurrently to selected
numerical examples to demonstrate their effect on the recov-
ery of internal variables.

1.4 General framework

We are concerned with a general class of materials that
admit incremental variational constitutive updates. Within
this framework, an incremental stress potential embodies the
constitutive behavior of the material during a time increment,
including elasticity, viscoelasticity, viscoplasticity, and rate
dependence [3,8,18,20,22,28,41]. The mechanical response
of solids of this type is characterized by a dissipation poten-
tial of the form

D(F, Ḟ, z, ż) = Ȧ(F, z)+ φ(F, Ḟ, z)+ ψ∗(z, ż), (1.1)

in which A(F, z) is the Helmholtz free-energy density,
φ(F, Ḟ, z) is a viscous potential, ψ∗(z, ż) is a dual kinetic
potential or dissipation function, F is the deformation gra-
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dient and z is a collection of suitable internal variables
that describe the state of the material at a given point. The
first Piola-Kirchhoff stress and the conjugate thermodynamic
forces to z are given by

P = ∂D

∂ Ḟ
(F, Ḟ, z, ż) = ∂A

∂F
(F, z)+ ∂φ

∂ Ḟ
(F, Ḟ, z),

y = −∂A

∂ z
(F, z), (1.2)

respectively. In order to ensure a variational structure, we
have postulated the existence of a dual kinetic potential or
dissipation function ψ∗(z, ż) such that

y = ∂ψ∗

∂ ż
(z, ż). (1.3)

Next, we minimize the dissipation potential (1.1) with respect
to the internal variable rates as

inf
ż

[D(F, Ḟ, z, ż)] = inf
ż

[
Ȧ(F, z)+ ψ∗(z, ż)

]

+φ(F, Ḟ, z),

= inf
ż

[
∂A

∂F
(F, z) : Ḟ + ∂A

∂ z
(F, z)·

ż+ψ∗(z, ż)
]
+φ(F, Ḟ, z), (1.4)

which in turn leads to Biot’s equation for standard dissipative
systems

∂A

∂ z
(F, z)+ ∂ψ∗

∂ ż
(z, ż) = 0. (1.5)

Approximate solutions to this equation may be found by
recourse to the incremental energy density function for a
time increment t ∈ [tn, tn+1]

w(Fn+1, zn+1) :=
tn+1∫

tn

[
Ȧ(F, z)+φ(F, Ḟ, z)+ψ∗(z, ż)

]
dt,

(1.6)

in which the integral is evaluated using a midpoint-like rule
as follows

w(Fn+1, zn+1) ≈ A(Fn+1, zn+1)− A(Fn, zn)

+�t

[
φ

(
Fn+α,

�F
�t

, zn+α
)

+ψ∗
(

zn+α,
�z
�t

)]
, (1.7)

with

�t := tn+1 − tn,�F := Fn+1 F−1
n ,�z := zn+1 − zn,

(1.8)

and

Fn+α := exp[(1 − α) log Fn + α log Fn+1],
zn+α := (1 − α)zn + αzn+1, (1.9)

where α is an algorithmic parameter. In order to obtain an
explicit scheme, we choose α = 0. Next, we define the incre-
mental stress potential as

W (Fn+1) := inf
zn+1

[w(Fn+1, zn+1)]

= inf
zn+1

[
A(Fn+1, zn+1)− A(Fn, zn)

+�t ψ∗
(

zn,
�z
�t

)]

+�t φ

(
Fn,

�F
�t

, zn

)
. (1.10)

This minimization provides an optimal path for the internal
variables z in the time increment t ∈ [tn, tn+1]. Furthermore,
the Euler-Lagrange equation corresponding to (1.10) is

∂A

∂ zn+1
(Fn+1, zn+1)+ �t

∂ψ∗

∂ zn+1

(
zn,

�z
�t

)
= 0. (1.11)

which is a discrete version of Biot’s equation (1.5) [21]. The
incremental first Piola-Kirchhoff stress and tangent moduli
can be computed in turn as

Pn+1 := ∂W

∂F
(Fn+1), Cn+1 := ∂2W

∂F2 (Fn+1), (1.12)

respectively. Thus, by using variational constitutive updates,
the stress and the tangent moduli can be derived from the
hyperleastic-like potential (1.10) for a very general class
of constitutive behavior that may include viscosity and rate
dependence.

2 Finite element formulation

Consider a body B ⊂ R
3 undergoing a motion described by

the mapping x = ϕ(X, t) : B × [t1, t2] → R
3, with the

deformation gradient defined by F := Grad ϕ.
Assume that the boundary ∂B, with unit normal N , is

the union of a displacement boundary ∂ϕB, where bound-
ary displacements χ : ∂ϕB × [t1, t2] → R

3 are pre-
scribed, and a traction boundary ∂T B, where tractions T :
∂T B × [t1, t2] → R

3 are applied (∂ϕB ∩ ∂T B = ∅). Let
also R B : B × [t1, t2] → R

3 be the body force, with R the
mass density in the reference configuration. Furthermore, for

123



Comput Mech

every t ∈ [t1, t2] introduce the energy functional

�0[ϕ] :=
∫

B

A(F, z) dV −
∫

B

R B · ϕ dV

−
∫

∂T B

T · ϕ d S, (2.1)

in which A(F, z) is the Helmholtz free-energy density and
z is a collection of internal variables.

2.1 Three-field functional

The functional (2.1) is modified by introducing a constraint
as

�[ϕ, z̄, ȳ] :=
∫

B

A(F, z̄) dV +
∫

B

ȳ · ( z̄ − z) dV

−
∫

B

R B · ϕ dV −
∫

∂T B

T · ϕ d S, (2.2)

in which z̄ is the field of target internal variables that is
constrained to be equal to the source internal variables z by
means of the Lagrange multiplier ȳ. Although the Helmholtz
free-energy density A is now evaluated using z̄ instead of z,
the functionals in (2.1) and (2.2) are equivalent at this stage
due to this constraint.

Assume that ϕ ∈ U := (W 1
2 (B))

3, z̄, ȳ ∈ V :=
(W 1

2 (B))
q , in which W 1

2 (B) is the Sobolev space of square-
integrable functions with square-integrable first derivatives,
and q is the number of scalar parameters used to represent the
collection of internal variables. The functional (2.2) is opti-
mized by applying variations with respect to the independent
fields ϕ, z̄ and ȳ. Define test functions corresponding to these
fields as ξ ∈ U , η, ζ ∈ V , with ξ = 0 on ∂ϕB. The variations
follow as

D�[ϕ, z̄, ȳ](ξ) =
∫

B

P : Grad ξ dV −
∫

B

R B · ξ dV

−
∫

∂T B

T · ξ d S = 0, (2.3)

D�[ϕ, z̄, ȳ](η) =
∫

B

( ȳ − y) · η dV = 0, (2.4)

D�[ϕ, z̄, ȳ](ζ ) =
∫

B

( z̄ − z) · ζ dV = 0, (2.5)

where P := ∂A/∂F is the first Piola-Kirchhoff stress and
y := −∂A/∂ z̄ is the thermodynamic force conjugate to z̄.

The corresponding Euler–Lagrange equations are

Div P + R B = 0 in B, P N = T on ∂T B,

ȳ = y in B,

z̄ = z in B, (2.6)

as expected. Note that the equilibrium condition (2.6) is eval-
uated using the target internal variable field z̄, and therefore
equilibrium and constitutive constraints are satisfied using
this field. Next, introduce discretizations for the fields and
test functions as

ϕh(X) := Na(X)ϕa ∈ Uh, ξ h(X) := Nb(X)ξb ∈ Uh,

z̄h(X) := λα(X) z̄α ∈ Vh, ηh(X) := λβ(X)ηβ ∈ Vh,

ȳh(X) := λα(X) ȳα ∈ Vh, ζ h(X) := λβ(X)ζ β ∈ Vh,

(2.7)

where Na and Nb are interpolation functions for ϕ and ξ ,
λα and λβ are interpolation functions for ( z̄, ȳ) and (η, ζ ),
and (a, b) ∈ [1 . . . N ] and (α, β) ∈ [1 . . .M], in which N
is the number of nodes for ϕ, M is the number of nodes
for z̄ and ȳ respectively. Uh ⊂ U and Vh ⊂ V are finite-
dimensional subspaces of U and V respectively. Introducing
these discretizations into the variational statements (2.3)–
(2.5) gives
∫

B

P · Grad Na dV −
∫

B

R BNa dV −
∫

∂T B

T Na d S =0,

(2.8)

ȳh = λα

⎛

⎝
∫

B

λαλβ I dV

⎞

⎠

−1 ∫

B

λβ y dV, (2.9)

z̄h = λα

⎛

⎝
∫

B

λαλβ I dV

⎞

⎠

−1 ∫

B

λβ z dV, (2.10)

which are the discrete statements of equilibrium, the discrete
thermodynamic forces and discrete target internal variables,
respectively, and with I being the q × q identity. Note that
λα and λβ form a basis for the space Vh , therefore (2.9) and
(2.10) are projections of the fields y and z onto Vh . Effec-
tive computation of the integrals in these expressions readily
suggests the use of interpolation functions λα and λβ that
are of the same order or less than Na and Nb. This allows
the application of the same integration scheme for (2.9) and
(2.10) as for (2.8), ensuring that the projections will be fully
integrated (provided that full integration is used for the equi-
librium statement as well) using the same integration points,
thus avoiding any unnecessary transfer of variables at this
stage. Furthermore, if the interpolation functions λα and λβ
are discontinuous across element boundaries, the projection
(2.10) reduces to extrapolation of values from integration
points to nodes (cf. Ortiz and Quigley [27], Radovitzky and
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Fig. 1 The formulation (2.2)
leads to a projection (2.10) of
integration-point values of the
source field z into nodal values
of the discrete target field z̄α
(2.11). The discrete target field
z̄h covers the entire domain B
and is recovered by using the
nodal values z̄α and the
interpolation functions λα

source field available at  
integration points

global field through
projection

target fieldsource field

Ortiz [33]). For convenience, introduce

Hαβ :=
∫

B

λαλβ I dV, �β :=
∫

B

λβ z dV,

z̄α := H−1
αβ�β, (2.11)

in which z̄α are the nodal values of the discrete target field
shown in Fig. 1. Then the projection (2.10) can also be
expressed as

z̄h(X) = λα(X) z̄α. (2.12)

The proof that the projection is optimal is simple and
shown in the Appendix.

3 Interpolation of internal variables

The interpolation of internal variables using standard finite
element interpolation functions may lead to values that are
outside their admissible spaces. To ensure that polynomial
interpolation yields reasonable results, the internal variables
must belong to a vector space over the field of scalars.

3.1 Groups

A vector space is defined as an abelian group together with
the field of scalars and scalar multiplication. A group in turn
is defined as a set G and a binary operation that satisfy the
following group axioms:

1. The operation is closed on the set G.

2. The operation is associative.
3. The operation admits the identity element.
4. The operation admits the inverse for every element of

G.

If the operation is also commutative, the group is said to
be abelian [9,16,32,37]. Polynomial interpolation requires
addition as the group operation, but many internal variables of
interest, such as scalar damage, tensor fields like decomposi-
tions of the deformation gradient and others do not belong to
additive abelian groups. Polynomial interpolation, however,
may still be applied if these variables are transformed to addi-
tive abelian groups, and this may be effected by recourse to
Lie groups and Lie algebras.

3.2 Lie groups and Lie algebras

A Lie group G is defined as a multiplicative group, which is
also a manifold, that has the following properties:

1. The multiplication operation is smooth on the set G.
2. The inverse operation is smooth on the set G.

A Lie algebra is a vector space g with a bilinear operation
[u, v] := uv − vu ∀ u, v ∈ g, called the Lie bracket, that
satisfies:

1. Antisymmetry: [u, v] = −[v, u] ∀ u, v ∈ g.
2. The Jacobi identity: [u, [v,w]]+[v, [w, u]]+[w, [u, v]]=

0 ∀ u, v, w ∈ g.
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Table 1 Some common Lie
groups and their corresponding
Lie algebras

The Lie bracket for all these Lie
algebras is the commutator
[u, v] := uv − vu, except for
the reals, for which it is zero
a J := [0, I; −I, 0]; 0, I ∈
M(n)
bx, 0 ∈ R

n

Lie group Lie algebra

Positive reals Reals

R
+ = {a ∈ (0,+∞)} R = {b ∈ (−∞,+∞)}

General linear group n × n matrices

GL(n) = {A ∈ M(n)| det A �= 0} gl(n) = M(n)

Identity component of GL(n) n × n matrices

GL+(n) = {A ∈ GL(n)| det A > 0} gl(n) = M(n)

Special linear group Traceless matrices

SL(n) = {A ∈ GL(n)| det A = 1} sl(n) = {B ∈ gl(n)| tr B = 0}
Orthogonal group Skew-symmetric matrices

O(n) = {A ∈ GL(n)|AAT = I} so(n) = {B ∈ gl(n)|B = −BT }
Special orthogonal group (rotations) Skew-symmetric matrices

SO(n) = {A ∈ O(n)| det A = 1} so(n) = {B ∈ gl(n)|B = −BT }
Symplectic groupa

Sp(n) = {A ∈ GL(2n)|AT J A = J} sp(n) = {B ∈ gl(2n)|BT J = −J B}
Affine isometries (rigid body motions)b

SE(n) =
{(

A x
0T 1

) ∣
∣∣A ∈ SO(n)

}
se(n) =

{(
B x

0T 0

) ∣
∣∣B ∈ so(n)

}

A Lie algebra may be interpreted as the infinitesimal ver-
sion of its corresponding Lie group, and the transformations
that relate them are the exponential (from Lie algebra to Lie
group) and logarithmic (from Lie group to Lie algebra) maps
[9,16,32,37]. Note that the operation for the Lie algebras is
addition, which makes them amenable to polynomial inter-
polation. Some classical Lie groups and their corresponding
Lie algebras are shown in Table 1.

3.3 Interpolation and extrapolation

Implicit in the formulation of Sects. 1 and 2 is the assump-
tion that the source field z belongs to a vector space over the
scalars g with addition as the group operation. This ensures
that polynomial interpolation or linear combinations in gen-
eral yield values of z that belong to g. The source field z is the
result of applying the logarithmic map to an original field of
internal variables Z which cannot be interpolated or extrap-
olated directly by polynomials or enter a linear combination
inasmuch as its group operation is multiplication.

Assuming that an original field Z is given as a collection
of M point values Zα that belong to a Lie group G, with
g its corresponding Lie algebra, it may be interpolated or
extrapolated indirectly by

zα := log(Zα), Zα ∈ G, zα ∈ g, α ∈ [1 . . .M],

z(X) =
M∑

α=1

φα(X)zα, z(X) ∈ g, (3.1)

Z(X) := exp(z(X)), Z(X) ∈ G,

in which X is an arbitrary position within the domain and
φα are suitable interpolation functions. Likewise, any other
expression that involves discrete values of Zα may be eval-
uated in this manner. For example, the projection (2.10)
requires values of the source field z at integration points.
These are computed by applying the logarithmic map to the
corresponding integration point values of the original field
Z. Once the projection is performed, mapped values of the
original field are recovered by applying the exponential map
to the target field.

Failure to perform interpolation, extrapolation or linear
combinations with a scheme that preserves the variables in
their original space may lead to severe error and even non-
physical results. Tables 2 and 3 illustrate with some exam-
ples the significant difference in the results of interpolation
and extrapolation with and without the use of Lie algebras.
Examples of internal variables and their transformation to
Lie algebras are shown in Table 4.

4 Time derivatives and incremental updates

For completeness, in this section we address the issue of
time derivatives and incremental updates of internal variables
within the framework of Lie groups and Lie algebras.

4.1 Evolution of internal variables

Assume that the original internal variable Z(t) belongs to
a Lie group G from Table 1, with g its corresponding Lie
algebra. The evolution of Z(t) is described by suitable kinetic
equations of the general form
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Table 2 Interpolation and extrapolation without Lie algebras

Lie group G Z1 Z2 Z(0) ∈ G Z(2) ∈ G

R
+ 0.90 0.10 0.50 Yes −0.30 No

GL+(3)
(

2 0 4
0 2 0
0 0 2

) (
2 0 0
0 2 0
4 0 2

) (
2 0 2
0 2 0
2 0 2

)
No

(
2 0 −2
0 2 0
6 0 2

)
Yes

SL(3)
(

1 2 0
0 1 0
0 0 1

) (
1 0 0
2 1 0
0 0 1

) (
1 1 0
1 1 0
0 0 1

)
No

(
1 −1 0
3 1 0
0 0 1

)
No

SO(3)

(
1 0 0
0 0 −1
0 1 0

) (
0 0 1
0 1 0

−1 0 0

) (
0.50 0.00 0.50
0.00 0.50 −0.50

−0.50 0.50 0.00

)
No

( −0.50 0.00 1.50
0.00 1.50 0.50

−1.50 −1.50 0.00

)
No

Z1 = Z(−1) and Z2 = Z(1) are given data and belong to the corresponding Lie group. Z(ξ) := N1(ξ)Z1 + N2(ξ)Z2. N1(ξ) := 1
2 (1 − ξ) and

N2(ξ) := 1
2 (1 + ξ)

Table 3 Interpolation and extrapolation with Lie algebras

Lie group G Z1 Z2 Z(0) ∈ G Z(2) ∈ G

R
+ 0.90 0.10 0.30 Yes 0.03 Yes

GL+(3)
(

2 0 4
0 2 0
0 0 2

) (
2 0 0
0 2 0
4 0 2

) (
3.09 0.00 2.35
0.00 2.00 0.00
2.35 0.00 3.09

)
Yes

( −0.32 0.00 −1.14
0.00 2.00 0.00
3.42 0.00 −0.32

)
Yes

SL(3)
(

1 2 0
0 1 0
0 0 1

) (
1 0 0
2 1 0
0 0 1

) (
1.54 1.18 0.00
1.18 1.54 0.00
0.00 0.00 1.00

)
Yes

( −0.16 −0.57 0.00
1.71 −0.16 0.00
0.00 0.00 1.00

)
Yes

SO(3)

(
1 0 0
0 0 −1
0 1 0

) (
0 0 1
0 1 0

−1 0 0

) (
0.72 0.28 0.63
0.28 0.72 −0.63

−0.63 0.63 0.44

)
Yes

( −0.61 −0.54 0.58
−0.54 0.82 0.19
−0.58 −0.19 −0.79

)
Yes

Z1 = Z(−1) and Z2 = Z(1) are given data and belong to the corresponding Lie group. Z(ξ) := exp z(ξ), z(ξ) := N1(ξ)z1 + N2(ξ)z2,
z1 := log Z1, z2 := log Z2. N1(ξ) := 1

2 (1 − ξ) and N2(ξ) := 1
2 (1 + ξ)

Table 4 Examples of internal
variables and their
corresponding transformation to
Lie algebras

Internal variable Transformation

Scalar damage D ∈ [0, 1) with an independent evolution equation. Define H := 1 − D and
assume H ∈ R

+, a Lie group from Table 1. Then h := log(H) ∈ R is in the
corresponding Lie algebra and may be interpolated directly. The damage is
recovered with D = 1 − exp(h) as in (3.1), ensuring that D ∈ [0, 1),
provided that the evolution equation satisfies the constraint

Tensor damage det D ∈ [0, 1) with an independent evolution equation for anisotropic
damage. Define H := I − D, thus H ∈ GL+(3). Then
h := log(H) ∈ gl(3) is in the corresponding Lie algebra, and the
interpolated damage tensor may be recovered using the same procedure as
above

Tensor variables Belong to GL(3), interpolated by gl(3)

Isochoric deformations Belong to SL(3), interpolated by sl(3)

Rotations Belong to SO(3), interpolated by so(3)

Volumetric deformations Belong to R
+, interpolated by R

∂Z
∂t
(t) = f (Z(t)), Z(0) = I,

∂Z
∂t
(0) = z ∈ g. (4.1)

It can be shown that a one-parameter curve such as (4.1)
satisfies

∂Z
∂t
(t)Z−1(t) ∈ g, (4.2)

in which the inverse function Z−1(t) exists as that is one of
the requirements of Lie groups [9,16,32,37]. Examples of
kinetic equations that may be written in the form (4.2) are
shown in Table 5.

A one-parameter subgroup of the group G is a continuous
map Ẑ : R → G such that ∀t ∈ R and ∀s ∈ R it follows
that Ẑ(t + s) = Ẑ(t)Ẑ(s). It can be shown that this map is
differentiable and that there is a unique ẑ ∈ g independent
of t such that

Ẑ(t) = exp(t ẑ), (4.3)

and

∂ Ẑ
∂t
(t) = ẑ exp(t ẑ) = exp(t ẑ) ẑ, (4.4)
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Table 5 Examples of kinetic
equations for internal variables
that adopt the form 4.2

G and g are the corresponding
Lie group and Lie algebra

Kinetic equation G g Description

ḊD−1 = f (F, . . .) ∈ g

Ḣ H−1 ∈ g
R

+
R Scalar damage evolution. See corresponding note

on transforming D = 1 − H in Table 4
Ḋ D−1 = f (F, . . .) ∈ g

Ḣ H−1 ∈ g
GL+(3) gl(3) Tensor damage evolution. See corresponding

note on transforming D = I − H in Table 4
Ḟ p F p−1 = ε̇ p M ∈ g SL(3) sl(3) Flow rule for J2 plasticity extended to finite

deformations. ε̇ p: equivalent plastic strain rate;
M: direction of plastic flow with
tr M = 0, M : M = 3

2 [28]
Ḟ p F p−1 = ε̇ p M + θ̇ p N ∈ g GL+(3) gl(3) Flow rule for a porous metal plasticity

constitutive model for the simulation of ductile
damage. ε̇ p and M as above; θ̇ p: volumetric
plastic deformation rate; N := ± 1

3 I [41]
ṘRT = W ∈ g SO(3) so(3) Kinetic equation that describes the

evolution of a rotation

in which ẑ is known as the infinitesimal generator of the
subgroup Ẑ. For the proofs of (4.2), (4.3) and (4.4), and fur-
ther discussion see Gallier [9], Kosmann-Schwarzbach [16],
Procesi [32], Sepanski [37].

4.2 Incremental updates

Kinetic equations of the form (4.1) are generally integrated
in time using an incremental solution procedure with time
intervals [s, t], where s and t are assumed to be independent.
The state of the problem is known at time s and may be
updated to time t by

Z(t) = �Z(�t)Z(s), (4.5)

in which �t := t−s and �Z(�t) is an increment of the inter-
nal variable, with �Z(0) = I and (∂�Z/∂�t)(0) = z(s) ∈
g. The fact that (4.5) is a reasonable approximation can be
seen by differentiating it with respect to t and evaluating at
t = s, leading to

∂Z
∂t
(s) = ∂�Z

∂�t
(0)Z(s) ⇒ ∂Z

∂t
(s)Z−1(s) = z(s),

(4.6)

which is a kinetic equation of the form (4.2).
The increment �Z(�t)may be represented with a Taylor

series as

�Z(�t) = I + �t z(s)+ O[(�t)2]. (4.7)

On the other hand, the following exponential may be
expanded in a power series as

exp[�t z(s)] = I + �t z(s)+ O[(�t)2]. (4.8)

Thus, one possible approximation for the increment is to
assume that it is a one-parameter subgroup as in (4.3)

�Z(�t) ≈ exp[�t z(s)]. (4.9)

As examples, the incremental updates corresponding to
the kinetic equations of Table 5 are shown in Table 6.

5 Computation of the exponential and logarithmic maps

There exist different algorithms for the computation of the
exponential and logarithmic maps. In the case of scalar fields,
the problem is trivial. For tensors, Ortiz et al. [29] advocate
the use of power series or a spectral decomposition, depend-
ing on the norm of the operand. This approach, however, may
converge slowly (exponential) or not at all (logarithm) when
using the power series, or may require the use of complex
arithmetic when using the spectral decomposition.

Computer linear algebra systems such as Matlab [40] use
the scaling and squaring method combined with Padé approx-
imants for the computation of the exponential map. This algo-
rithm does not require the use of complex arithmetic for real
tensors and is optimized for fast convergence. See Higham
[11] and references therein.

Similar algorithms exist for the logarithmic map, such as
the inverse square and scaling method with Padé approxi-
mants [10]. This algorithm, however, relies on the computa-
tion of the square root of a tensor. This in turn requires the
computation of the Schur decomposition, which in general
is complex.

Another complication arises from the fact that a real matrix
with real negative eigenvalues has a real logarithm if and
only if it has an even number of Jordan blocks of each size
for every real negative eigenvalue. See Higham [12, Chap-
ters 1 & 11]. A tensor A ∈ GL+(3) with real eigenvalues
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Table 6 Examples of kinetic
equations for internal variables
and their corresponding
incremental updates

Increments take the form of
one-parameter subgroups (4.3)

Kinetic equation Incremental update

ḊD−1 = f (F, . . .), D = 1 − H H(tn+1) = − exp[� f (Fn+1, . . . )][1 − H(tn)]
Ḋ D−1 = f (F, . . .), D = I − H H(tn+1) = − exp[� f (Fn+1, . . . )][I − H(tn)]
Ḟ p F p−1 = ε̇ p M F p

n+1 = exp(�ε p M)F p
n

Ḟ p F p−1 = ε̇ p M + θ̇ p N F p
n+1 = exp(�ε p M + �θ p N)F p

n

ṘRT = W Rn+1 = exp(�W)Rn

has either three positive eigenvalues or one positive and two
negative eigenvalues. Thus, for the latter case there is no real
logarithm.

It is highly desirable to use algorithms that do not require
complex arithmetic. One way to achieve this is to compute the
polar decomposition of the tensor and obtain the logarithms
of the rotation and stretch components separately, interpolate
these, and then apply the exponential and recombine.

5.1 Logarithmic map

There exist explicit formulas for computing the logarithm of
a rotation [30]. The angle of rotation is given by

θ := cos−1 [ 1
2 (tr R − 1)

]
, R ∈ SO(3), θ ∈ [0, π ],

(5.1)

and the logarithm of the rotation is determined by

log R =

⎧
⎪⎪⎨

⎪⎪⎩

0 ∈ so(3), if θ = 0;
θ

2 sin θ
(R − RT ) ∈ so(3), if θ ∈ (0, π);

±π v̌ ∈ so(3), if θ = π;
(5.2)

in which v̌ ∈ so(3) is the skew-symmetric tensor such that
v̌ ·u ≡ v×u ∀ u ∈ R

3, v is the eigenvector corresponding to
the eigenvalue of 1 of R, and the sign is selected according
to continuity conditions from the field in the neighborhood.

It proves convenient to compute the polar decomposition
by means of the singular value decomposition (SVD) as fol-
lows: given A ∈ GL+(3), then

A = U DV T , U, V ∈ SO(3), D = diag(s1, s2, s3),

R := U V T , R ∈ SO(3),

S := V DV T , S ∈ S P D(3)

A = RS, polar decomposition,
(5.3)

in which s1, s2, s3 ∈ R
+ are the singular values of A,

and S P D(3) is the space of three-dimensional symmetric
positive-definite tensors. This is a vector space but not a Lie
group, since the product of two symmetric positive-definite
tensors is not necessarily symmetric. Nevertheless, one can

still use the logarithmic map as log : S P D(3) → S(3), where
S(3) is the vector space of three-dimensional symmetric ten-
sors. It follows that the exponential map can be used as well as
exp : S(3) → S P D(3) [9]. The logarithm of the rotation R
can be computed using (5.2) and the logarithm of the stretch
tensor S is readily obtained as the SVD yields its eigenvalue
decomposition, i.e.

log S = V (log D)V T , (5.4)

where log D := diag(log s1, log s2, log s3).

5.2 Exponential map

The exponential map may be treated in a similar manner as
the logarithmic map. Assume the existence of two tensors
W ∈ so(3) and H ∈ S(3) that are the result of interpolating,
extrapolating or otherwise manipulating the polar compo-
nents of a tensor field as presently described. Define

θ :=
(

W : W
2

) 1
2

(5.5)

as the angle of rotation. Then the exponential map for the
skew-symmetric tensor W is given by the expression

exp W =
⎧
⎨

⎩

I ∈ SO(3), if θ = 0;
I + sin θ

θ
W + (1 − cos θ)

θ2 W2 ∈ SO(3), if θ > 0;
(5.6)

which is often accredited to Rodrigues [9]. The exponential
map for the symmetric tensor H may be computed by using
the SVD, as in this case the eigenvalue decomposition can
be readily obtained from it. Start with

H =U DV T , U, V ∈ SO(3), D=diag(s1, s2, s3), (5.7)

then the eigenvalue decomposition of H is given by

H = U�UT , � = diag(λ1, λ2, λ3), (5.8)

with

λi =
{

si , if Uei = V ei ;
−si , if Uei = −V ei ;

(5.9)
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in which ei is the canonical basis. Equivalently, the eigenval-
ues of H are equal to its singular values, up to the sign, which
is determined by inspecting the corresponding left and right
singular vectors. If the singular vectors corresponding to a
singular value have the same sign, the eigenvalue is positive,
otherwise it is negative. The eigenvectors are choosen to be
the same as the left singular vectors. The exponential map
for H then follows immediately as

exp H = U(exp �)UT , (5.10)

where exp � := diag(exp λ1, exp λ2, exp λ3), and which
confirms that the exponential map maps symmetric tensors
to symmetric positive-definite tensors. Finally, the original
field is recovered by A = exp W exp H .

6 Numerical examples

In this section we demonstrate the performance of the afore-
mentioned techniques by means of three numerical examples.
The first case pertains to the L2 projection alone, in which we
compare the recovered internal variable fields obtained from
both global and element-by-element projections to exact
solutions. The second example concerns interpolation and
extrapolation alone applied to the bending of a straight beam
into a ring, for which the exact solution is available. Com-
parisons are made of fields recovered using direct and Lie
algebra interpolation and extrapolation. Finally, both the pro-
jection and interpolation are combined and used in simula-
tions of a large deformation J2 elasto-plasticity problem to
demonstrate their performance with respect to a number of
other commonly-used internal variable recovery schemes.

6.1 Projection of discontinuous scalar fields

We consider a simple example to demonstrate the effects of
the L2 projection separate from interpolation and extrapo-
lation. A cubic body of size 2 × 2 × 2 is centered at the
origin of a Cartesian coordinate system {XY Z}. The cube is
discretized by 8 hexahedral trilinear elements of equal size.
The following scalar field is prescribed at the eight standard
Gauss quadrature points in each finite element,

z(X) =
{

X + 1, if X ∈ [−1, 0);
X, if X ∈ [0, 1]. (6.1)

The values of the field at the quadrature points are projected
onto the nodes to obtain a mapped field z̄h(X). Two different
projection methods are used: the first is to apply the global
L2 projection as expressed in (2.10); the second is to restrict
the application of this projection to a single element, thus

recovering a local projection field where inter-element dis-
continuities may exist.

The projected field is shown in Fig. 2. The global L2 pro-
jection leads to a smooth linear field z̄h(X) = X

4 + 1
2 , which

is identical to the linear least squares regression of the nodal
values of the original field z(X). This confirms that the pro-
jection defined in (2.10) minimizes the error measured by
the L2 norm ||z̄h − z|| and is therefore optimal in this norm.
Note that the jump condition is not preserved when the global
L2 projection method is used, as both the trial and weighing
space are C0-continuous globally.

The local element-by-element approach, on the other
hand, preserves the jump condition and reproduces the exact
field in this example, as the local projection minimizes the
L2 norm as measured in each element, and the original linear
scalar field can be reproduced exactly with trilinear interpo-
lation functions.

This introductory example illustrates that different pro-
jection strategies may be derived from the same variational
statement. The choice of the trial and weighting space should
be made by considering the properties and nature of the field
under consideration.

6.2 Bending of a beam into a ring

This example demonstrates the use of Lie groups and their
corresponding Lie algebras as an aid to improve the interpo-
lation of a tensor field. An initially straight beam of dimen-
sions L × L

16 × L
16 is bent into a ring with neutral-axis radius

R = L
2π , with the height and depth remaining constant

throughout the deformation. In the deformed configuration,
the original centroid of the beam remains at the same position
and the two ends meet, forming a ring. The exact deforma-
tion gradient F expressed in matrix notation with respect to
the canonical basis ei reads

[F(X,Y )]ei =
⎛

⎜
⎝

R−Y
R cos( X

R ) − sin( X
R ) 0

R−Y
R sin( X

R ) cos( X
R ) 0

0 0 1

⎞

⎟
⎠ . (6.2)

The right polar decomposition of the deformation gradient is

F(X,Y ) = R(X) S(Y ), (6.3)

where

[R(X)]ei =
⎛

⎜
⎝

cos( X
R ) − sin( X

R ) 0

sin( X
R ) cos( X

R ) 0
0 0 1

⎞

⎟
⎠ , [S(Y )]ei =

⎛

⎜⎜
⎝

R−Y
R 0 0

0 1 0

0 0 1

⎞

⎟⎟
⎠ .

(6.4)

The beam is discretized with trilinear hexahedra into two
meshes: a coarse one of 16 elements and a fine one of 2,500
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Fig. 2 Projected scalar internal variable field: a global L2 projection, b local L2 projection

elements. The deformation gradient F(X,Y ) is first com-
puted via (6.2) at the nodes of the coarse mesh. Using the
element interpolation functions of the coarse mesh, we obtain
values of the deformation gradient Fh(X,Y ) at the position
of the nodes of the fine mesh and compare them with the
exact deformation gradient F(X,Y ) given by (6.2).

Four different schemes are used: (1) direct interpolation
of both the rotation and the stretch; (2) Lie algebra interpola-
tion of the rotation and direct interpolation of the stretch;
(3) Lie algebra interpolation of both the rotation and the
stretch; and (4) Lie algebra interpolation of the deforma-
tion gradient without polar decomposition. In the first three
schemes, the polar decomposition is applied to the deforma-
tion gradient and thus the rotation and stretch are interpolated
separately. The polar decomposition is not used in the last
scheme and therefore the logarithmic map is applied directly
to the deformation gradient. This serves to illustrate the dif-
ficulties encountered when applying the logarithmic map to
tensor fields with negative eigenvalues.

The exact form of the deformation gradient is available,
therefore it is possible to quantify the distribution of the inter-
polation error by comparing directly the interpolated defor-
mation gradient Fh(X,Y ) with the exact solution F(X,Y )
via the Frobenius norm, i.e.

e(X,Y ) = ||Fh(X,Y )− F(X,Y )||F

=
{
[Fh(X,Y )− F(X,Y )] : [Fh(X,Y )

−F(X,Y )]
} 1

2
. (6.5)

We now show that the use of Lie groups and Lie algebras
together with the polar decomposition in the interpolation
reduce the error significantly.

The results of using direct interpolation for both the rota-
tion and the stretch are shown in Fig. 3a. The interpolation
error e(X,Y ) is zero at the locations where the nodes of
the coarse and fine meshes coincide, as expected. By con-

trast, there is substantial discrepancy between Fh(X, Y ) and
F(X,Y ) away from these locations and the error reaches a
maximum emax = 0.1185 at radial planes that pass through
the center of each coarse hexahedral element.

Next are the results of using Lie algebra interpolation for
the rotation and direct interpolation for the stretch, shown in
Fig. 3b. There is a significant improvement of accuracy when
using this scheme, as the maximum error emax = 1.21 ×
10−15 is reduced by 14 orders of magnitude.

Figure 3c shows the results of applying Lie algebra inter-
polation for both the rotation and the stretch. The maximum
value of the interpolation error now becomes emax = 0.0177,
which falls in between the values of the two cases discussed
above. This is due to the fact that the stretch given by (6.4)
varies linearly along the Y direction. Thus, direct linear inter-
polation can reproduce the stretch exactly, while Lie alge-
bra interpolation cannot. This example demonstrates that the
appropriate choice of interpolation scheme depends on the
nature of the field. Note that in general, however, the stretch
is unlikely to have this simple form and linear extrapolation
may result in stretches that are not positive-definite.

Finally, the results of interpolation without the use of the
polar decomposition are shown in Fig. 3d. The maximum
value of the error is emax = 2.2, which is located near the top
of the ring. The reason for this severe error is that the large
rotations encountered near the top of the ring lead to defor-
mation gradients with negative eigenvalues, for which no real
logarithm exists. The algorithm for the computation of the
logarithmic map returns a complex, non-principal logarithm,
resulting in the loss of the bijection between the correspond-
ing Lie group and Lie algebra [12].

6.2.1 The effect of mesh refinement

We investigate the effect of mesh refinement on the overall
accuracy of the three interpolation schemes that use the polar
decomposition mentioned above. The error measure defined
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Fig. 3 Interpolation error (6.5) for different interpolation schemes: a direct interpolation of rotation and stretch. b Lie algebra interpolation of
rotation and direct interpolation of stretch. c Lie algebra interpolation of rotation and stretch. d Lie algebra without polar decomposition

by the norm (9.2) on the tensor field A is evaluated numeri-
cally at a variety of refinement levels, i.e.

E A =
⎛

⎝
∫

B

||Ah(X)− A(X)||2F dV

⎞

⎠

1
2

≈
⎛

⎝
NE∑

j=1

NG∑

i=1

||λα(ξ i )Aα − A(ξ i )||2F w(ξ i )J (ξ i )

⎞

⎠

1
2

(6.6)

where A can be any of F, R or S, E A is the error corre-
sponding to the interpolated tensor field A, ξ i is the integra-
tion point in the parametric domain, w(ξ i ) is the weight of
the Gauss quadrature, J (ξ i ) is the Jacobian determinant of
the isoparametric mapping, NG is the number of integration
points per element, and NE is the number of elements in the
mesh.

Initially, the domain of size L × L
16 × L

16 is meshed by
four elements along the X (length) direction and one ele-
ment along the Y (height) and Z (width) directions. The
aspect ratio of length divided by height of all the elements is
therefore l

h = 4. Then, we refine the mesh by increasing the
number of elements in both the X and Y directions, but main-
tain the number of elements along the Z direction equal to

one. In each refined mesh, the aspect ratio remains constant
and equal to four for all elements.

Figures 4a, b, c show the convergence curves for the
three interpolation schemes. The curves correspond to: direct
interpolation for both rotation and stretch (red), Lie algebra
interpolation for the rotation and direct interpolation for the
stretch (blue), and Lie algebra interpolation for both the rota-
tion and the stretch (green).

The behavior exhibited by the curves reflects the ability
of each interpolation scheme to reproduce the correspond-
ing exact field. For the ring configuration, the logarithm of
the rotation can be readily computed using (5.2), while the
logarithm of the stretch is trivial to compute in the canonical
basis ei . Thus, from (6.4) we obtain

[log R(X)]ei =
⎛

⎝
0 − X

R 0
X
R 0 0
0 0 0

⎞

⎠ , [log S(Y )]ei =
⎛

⎝
log( R−Y

R ) 0 0
0 0 0
0 0 0

⎞

⎠ .

(6.7)

It is immediately apparent from (6.4) and (6.7) that, as
the logarithm of the rotation and the stretch are both linear
with respect to the reference coordinates, the best scheme
for this case is to use Lie algebra interpolation for the rota-
tion and direct interpolation for the stretch. This is clearly
confirmed by Fig. 4a, b, c. The interpolation error of the
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Fig. 4 Convergence plots for the ring bending problem: error in a deformation gradient, b rotation and c right stretch

deformation gradient is shown in Fig. 4a, which shows lin-
ear convergence for direct interpolation, linear convergence
for Lie algebra interpolation, and exact representation, up to
machine precision, for mixed interpolation. Convergence on
the rotation is examined further in Fig. 4b, in which both
schemes that use Lie algebra interpolation for the rotation
are exact, up to machine precision. Conversely, convergence
for the stretch is exact up to machine precision when using
direct interpolation, as shown in Fig. 4c.

Note that Lie algebra interpolation for both rotation and
stretch has less error than direct interpolation for both rotation
and stretch, despite the fact that the stretch is linear with
respect to the reference coordinates.

6.2.2 Comparison with other recovery schemes

Our objective is to compare the recovery of internal variables
in three dimensions; relevant candidate methods for compari-
son, however, do not address this situation [5,14,34]. There-
fore, we now compare the performance of the variational

projection with respect to other simpler, customary transfer
schemes. To this end, the values of the exact deformation
gradient (6.2) are computed at the integration points of a
16-element coarse mesh and then transferred to the nodes
by means of various recovery methods. The assumption is
that once nodal values are obtained, the element interpola-
tion functions are used to extend the field over the entire
domain for the purpose of mapping it to a different mesh.
The schemes are summarized as follows:

1. Direct averaging that employs a searching scheme to
determine the closest integration point to a node in each
element. The value of the closest integration point is
then assigned to the node. If the same node is shared
by more than one element, then the integration point val-
ues are averaged among the elements attached to that
node.

2. Extrapolation. Additional interpolation functions are
established using the integration points as local nodes,
then the fields at the integration points are extrapolated
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Table 7 Minimum and
maximum error (6.5) at the
nodes and global error (6.6) of
various recovery methods for
the bending ring problem

Method e(Xα) EF

min max

1. Direct averaging 6.34 × 10−2 1.41 × 10−1 8.70 × 10−3

2. Extrapolation 6.62 × 10−2 6.96 × 10−1 5.08 × 10−2

3. Variational (polar, direct) 1.68 × 10−2 1.99 × 10−2 2.01 × 10−4

4. Variational (no polar, direct) 1.68 × 10−2 1.99 × 10−2 2.01 × 10−4

5. Variational (polar, mixed) 5.38 × 10−16 2.45 × 10−13 3.30 × 10−16

6. Variational (polar, both Lie) 7.80 × 10−3 8.70 × 10−3 3.35 × 10−16

to the actual nodes of each finite element. The nodal val-
ues are then averaged as in the previous scheme.

3. Variational projection with polar decomposition and
direct interpolation.

4. Variational projection with no polar decomposition and
direct interpolation.

5. Variational projection with polar decomposition, Lie
algebra interpolation for the rotation and direct interpo-
lation for the stretch.

6. Variational projection with polar decomposition and
Lie algebra interpolation for both the rotation and
stretch.

The minimum and maximum error (6.5) at the nodes as
well as the global error (6.6) of the six recovery procedures
are compared in Table 7.

The table shows that the four variational projection cases
result in less error than both the direct averaging and extrap-
olation methods, regardless of whether Lie algebra interpo-
lation is employed. This is consistent with the proposition in
Sect. 2 in which the variational projection is proved to min-
imize the L2 norm. Furthermore, the global error measured
by EF is reduced by a minimum of 12 orders of magnitude
when the interpolation for the rotation is conducted in so(3)
instead of SO(3).

Even though the local error measure at the nodes e(Xα)

is lower in the variational approach with mixed interpola-
tion than in the variational approach with full Lie algebra
interpolation, the reduction in global error EF is within the
same order. This is explained by recalling that the values
of the field at the integration points are computed using the
exact expression (6.2). When projecting to the nodes using
Lie algebra interpolation, some error is introduced into the
stretch, as discussed before. This error is manifested in the
values of the nodal local error e(Xα). In the computation of
the global error EF , however, the nodal quantities are used
to compute new values at the integration points. These new
integration point values are very close to the original ones
computed using the exact expression, hence the low values
for the global error.

Table 8 Material parameters for cylindrical billet

Young’s modulus E = 1.0 GPa

Poisson’s ratio ν = 0.3

Yield stress σy = 1.0 MPa

Hardening modulus H = 3.0 MPa

6.3 Elasto-plastic upsetting of an axisymmetric billet

This example demonstrates the ability of the variational pro-
jection to maintain internal variables in their admissible
space. The variational projection operator and the Lie algebra
interpolation techniques are integrated into a unified frame-
work. The simulation is a severe deformation test problem
proposed by Krieg and Krieg [17] and further examined by
Taylor and Becker [39] and Simo and Hughes [38]. For com-
pleteness, we briefly review the statement of the problem
below.

Consider a cylindrical billet with initial radius r = 10 mm
and initial height h = 30 mm. Due to radial symmetry, only
one eighth of the domain is included in the calculation. The
top of the cylinder is fixed by a roller such that it does not
move vertically but is free to expand horizontally. The bottom
of the cylinder is fixed horizontally, and a prescribed vertical
displacement is applied to it. The constitutive response of
the specimen is simulated via a J2 elasto-plastic model with
linear isotropic hardening. The material parameters used for
this calculation are those listed in Taylor and Becker [39] and
Simo and Hughes [38] (see Table 8).

Four finite element simulations are performed using the
Albany code developed at Sandia National Laboratories as
part of the LCM (Laboratory for Computational Mechanics)
project [36]. To preserve the radial symmetry of the cylinder,
hexahedral meshes are generated via a radial meshing algo-
rithm in Sandia’s CUBIT [35] mesh-generation software in
such a manner that node distribution is unbiased along the
radial direction. 8-node and 27-node Lagrange hexahedral
elements are both used on two meshes consisting of 693
and 2175 elements. The final configuration in all four sim-
ulations is attained using adaptive loading steps. Figure 5
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Fig. 5 Load-deflection curve of the elastic-plastic upsetting of an
axisymmetric billet

shows the resulting load-deflection curves and their good
agreement with existing curves [17,38,39]. The results of
Krieg and Krieg [17], Taylor and Becker [39] and Simo
and Hughes [38] are shown in dashed lines without mark-
ers as the corresponding curves were simply digitized from
these references. The results of our simulations are plotted
with continuous lines and markers for the data points for
clarity.

6.3.1 Admissible range of isochoric plastic response

The simulations are advanced until the billet has reached an
upsetting of 53%, just prior to contact between the deformed
shaft of the cylinder and the plane of the prescribed dis-
placement boundary condition. The plastic deformation in
this configuration is significant, and thus the plastic part of
the deformation gradient F p = (Fe)−1 F computed at each
integration point is extended to the entire domain by means
of the variational projection. Figure 6 shows the extended F p

fields of the two 8-node element meshes using direct inter-
polation. The color in the figure represents the determinant
of F p.

The flow rule for J2 plasticity is

Ḟ p F p−1 = ε̇ p M ∈ sl(3), (6.8)

in which ε̇ p is the equivalent plastic strain rate and M is
the direction of plastic flow, with tr M = 0 and M : M = 3

2
[28]. This flow rule is a kinetic equation of the form (4.2), and
therefore it is required that the plastic part of the deformation
gradient be isochoric, or equivalently that its determinant be
equal to one, i.e. F p ∈ SL(3) as stated in Table 5.

The simulation results indicate, however, that this is not
necessarily the case when the L2 projection is performed
without transforming F p to its corresponding Lie algebra for
interpolation, thus violating one of the fundamental assump-
tions of J2 plasticity. By using direct interpolation for F p,
spurious volumetric plastic deformations are introduced into
the extended field. This is evident in Fig. 6, in which the
determinant of the extended plastic part of the deformation
gradient is in the range det F p ∈ [0.83, 1.24] for the coarse
mesh, and det F p ∈ [0.64, 1.38] for the fine mesh.

This severe error occurs when the mesh is subjected to
a significant amount of distortion at the edge of the bottom
face, as shown in Fig. 6a. The spurious plastic volumetric
strain is not eliminated through refinement, as the significant
distortion of the finite element mesh is present regardless of
mesh size.

If the projection of the plastic part of the deformation
gradient F p is conducted through Lie algebra interpolation,
then it remains isochoric as illustrated in Fig. 7. This projec-
tion is obtained by first decomposing F p into rotation and
right stretch tensors via the singular value decomposition as
described in (5.3). Then, the rotation tensor is mapped from
SO(3) into so(3) using the logarithmic map (5.2) and the
stretch is mapped from GL+(3) to gl(3) by means of the

Fig. 6 Plastic part of the deformation gradient by direct interpolation for 8-node hexahedral elements: a 693-element mesh and b 2175-element
mesh

123



Comput Mech

Fig. 7 Plastic part of the deformation gradient by Lie group and Lie algebra interpolation for 8-node hexahedral elements: a 693-element mesh
and b 2175-element mesh

logarithmic map (5.4). Note that S P D(3) ⊂ GL+(3) and
S(3) ⊂ gl(3).

By applying the projection (2.10) on so(3) and gl(3)
where the addition operation is valid, the projected field is
guaranteed to remain in the admissible space. The projected
fields are then transformed from their Lie algebras so(3) and
gl(3) back to their Lie groups SO(3) and GL(3) by means of
(5.6) and (5.8), respectively. The extended plastic part of the
deformation gradient is then recovered by F p = RS at any
point of the finite element mesh. The results obtained from
this calculation show that the determinant of the plastic part
of the deformation gradient is equal to one (up to machine
precision) everywhere in the domain. No spurious dilation
or contraction is introduced due to the projection from inte-
gration points to nodes. This in effect prevents the injec-
tion of non-physical data into the simulation when remesh-
ing or post-processing take place. Figure 7 shows that the
isochoric constraint is preserved for both the coarse and the
fine meshes.

6.3.2 Comparisons with other internal variable recovery
schemes

We compare the performance of the same set of internal
variable recovery schemes discussed in Sect. 6.2.2 but now
using the upsetting billet example. The plastic part of the
deformation gradient F p at the integration points of the
coarse mesh is first projected to the nodes. Using these nodal
values and the element interpolation functions, the field is
extended over the entire domain, and this extended field is
used to compute the global error as defined in (6.6). Table 9
shows the results. Among the six internal variable recovery
schemes, only the ones using Lie algebras are able to pre-
serve the isochoric constraint of the J2 plasticity model. As
before, in the computation of the global error EF , the nodal
quantities are used to compute new values at the integra-
tion points. The new integration point values are very close

Table 9 Comparison of various internal variable recovery methods for
the upsetting billet problem

Method det F p EF

min max

1. Direct averaging 1.00 1.24 9.35 × 10−9

2. Extrapolation 0.95 1.10 1.56 × 10−8

3. Variational (polar, direct) 0.89 1.10 7.36 × 10−9

4. Variational (no polar, direct) 0.83 1.24 7.40 × 10−9

5. Variational (polar, mixed) 1a 1a 7.37 × 10−9

6. Variational (polar, both Lie) 1a 1a 7.07 × 10−9

a Up to machine precision

to the original ones, resulting the low values for the global
error.

Despite low values of the global error, it is clear that
using direct interpolation leads to large errors in the range
of det F p, and therefore any mapping of F p to a new mesh
that relies in direct interpolation will introduce large errors
into the field. Only the use of Lie algebra interpolation guar-
antees that the isochoric constraint will be preserved when
mapping the field to a new mesh.

7 Discussion

As mentioned in the Appendix, the three-field finite element
formulation (2.2) leads to an expression for the discrete tar-
get field z̄h that is a projection of the source field z onto
the space Vh spanned by the basis functions λα . As with all
projections, it is then evident that the error (9.11) can only
be zero if and only if the source field is already an element
of this space, i.e. z ∈ Vh . Conversely, by the idempotence
property of projection operators, projecting the discrete tar-
get field z̄h results in zero error. This is illustrated by the cube
example of Sect. 6.1, where it is shown that a discontinuous
field cannot be recovered by projecting it to a C0 continuous
space.
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The projection operator in effect extends the field of
source internal variables z, which only exists at integra-
tion points, to the entire domain. It does this by computing
nodal values of the internal variables (2.12) and using the
element interpolation functions, thus allowing the computa-
tion of the field at any point in the domain, for example the
location of the integration points of a different discretiza-
tion.

Once the source internal variables have been projected
by (2.10), the three-field functional (2.2) requires that the
energy density be evaluated using the discrete target field.
This implies that the equilibrium condition (2.8) must be
evaluated with the discrete target field as well. Assume that
the equilibrium condition is satisfied with the source field. In
general the projection error (9.11) is not zero and therefore it
is expected that there will be a residual force when evaluat-
ing (2.8) with the discrete target field. Provided that (2.8) is
stable, however, this residual force will be small if the error
(9.11) is also small.

If this residual force is unacceptable, equilibrium can be
restored by applying whichever solution scheme is being
employed for the simulation. Two options are available:
maintain the internal variables constant and iterate on the
deformation mapping or vice versa. The use of any of these
options and their effects on the residual, however, is beyond
the scope of this work.

The bending ring example of Sect. 6.2 demonstrates that
the appropriate use of Lie algebras in the interpolation results
in a significant reduction of the interpolation error. For this
particular example, however, the stretch is linear with respect
to the reference height, and therefore direct interpolation is
able to reproduce the stretch exactly. This example illus-
trates the importance of the proper selection of interpolation
scheme, in particular if further information is available about
the nature of the field, as is the case for the ring. In general,
however, the stretch is unlikely to have this simple linear
form, and direct extrapolation may lead to tensors that are
not positive-definite.

There are non-smooth fields of internal variables for which
smooth mapping methods, such as the present one, do not
apply directly. The projected discrete target field z̄h(X) in
(2.12) has the same continuity conditions as the interpolation
functions λα(X) in (2.7). Consider for example the flow rule
for J2 plasticity (6.8). This is a non-holonomic constraint
imposed on the plastic part of the deformation gradient F p,
and thus the equivalent plastic strain ε p can only be found by
means of an incremental update of the type shown in Table 6.
The Kuhn-Tucker optimality conditions require that ε̇ p ≥ 0
and therefore ε p ≥ 0 [38]. Thus, the equivalent plastic strain
ε p is a non-smooth (non-analytic, in fact) field that does not
belong to a group, as one of the requirements for groups is
smoothness. It can still be projected and interpolated directly,
but there is no guarantee that the projection will give rise to

values of the field greater or equal to zero everywhere in the
domain.

8 Conclusion

The proposed recovery operator is composed of two parts:
the variational L2 projection that minimizes the error; and
the mapping of fields to Lie algebras for interpolation and
mapping back to Lie groups.

We prove that the L2 projection can be derived naturally
from a variational formulation and that it minimizes the error
between the source and target fields. We also show that by
using Lie algebras many common tensor fields can be inter-
polated using standard finite element interpolation functions
while at the same time remaining in their admissible spaces.
This is of fundamental importance if the fields are required to
satisfy their own constraints. Among the well-known virtues
of the L2 projection is that it does not require search algo-
rithms and can be implemented with relative ease.

The computation of the logarithmic map leads to complex
arithmetic for tensors fields with negative eigenvalues. One
way to completely bypass complex arithmetic is the proposed
technique of using the singular value decomposition to com-
pute the polar decomposition, and then apply the logarithmic
map separately for the rotational and stretch components.

The numerical examples emphasize different aspects of
the method. First, the effect of the local and global L2 projec-
tions on continuous and discontinuous fields is investigated.
As expected, a global continuous projection approximates
better a global continuous field. Next, the effect of direct
and Lie algebra interpolation is considered by extending the
deformation gradient field of a bending ring. The results
show that avoiding the polar decomposition and using direct
interpolation instead of Lie algebra interpolation introduces
severe error. Finally, both the projection and interpolation are
used together in a billet upsetting example, where the field
of interest is the plastic part of the deformation gradient F p.
It is shown here that using direct interpolation gives rise to
severe error when the fields have constraints, such as the iso-
choric condition for J2 plasticity. The use of Lie algebras for
interpolation avoids this situation altogether, preserving the
isochoric constraint up to machine precision.

We conclude that the use of these techniques provide an
integrated and powerful method for projecting source fields
of internal variables from integration points to the entire
domain as target fields, which in turn serves the purpose of
mapping them to a different discretization.
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9 Appendix: error minimization

Proposition The projection defined by (2.10) is orthogonal
with respect to Vh and therefore the distance between source
and target fields is minimal in the L2 norm of V .

Proof Define the inner product in V as

(u, v) :=
∫

B

u · v dV, ∀ u, v ∈ V, (9.1)

and the corresponding L2 norm as

||u|| :=
⎛

⎝
∫

B

u · u dV

⎞

⎠

1
2

≥ 0, ∀ u ∈ V . (9.2)

We follow the approach outlined by Brenner and Scott
[4]. The variational statement (2.5) may be written after dis-
cretization as
∫

B

( z̄h − z) · ζ h dV = 0 (9.3)

where z ∈ V and z̄h, ζ h ∈ Vh . Using the inner product
notation introduced in (9.1) this discrete statement takes the
form

( z̄h − z, ζ h) = 0, ∀ζ h ∈ Vh (9.4)

which shows the fundamental orthogonality relation between
the projection error z̄h −z and the space Vh , therefore proving
that (2.10) is an orthogonal projection. Introduce the Cauchy-
Schwarz inequality

(u, v) ≤ ||u||||v||, ∀u, v ∈ V, (9.5)

then for any uh ∈ Vh

|| z̄h −z||2 = ( z̄h −z, z̄h −z)

= ( z̄h −z, uh −z)+( z̄h −z, z̄h −uh)

= ( z̄h −z, uh −z) from(9.4) with ζ h = z̄h − uh

≤ || z̄h −z||||uh −z|| from (9.5). (9.6)

If || z̄h − z|| = 0 then (9.6) is satisfied trivially and (2.10) is
optimal. If || z̄h − z|| > 0 then it follows that || z̄h − z|| ≤
||uh − z||. As uh is any element in Vh , this inequality is also
satisfied when taking the infimum

|| z̄h − z|| ≤ inf{||uh − z|| : uh ∈ Vh}, (9.7)

and by the definition of the infimum,

inf{||uh − z|| : uh ∈ Vh} ≤ || z̄h − z||, (9.8)

therefore to satisfy both (9.7) and (9.8) it follows that

|| z̄h − z|| = inf{||uh − z|| : uh ∈ Vh}. (9.9)

The infimum exists for some uh ∈ Vh , thus (9.9) is actually
a minimum

|| z̄h − z|| = min{||uh − z|| : uh ∈ Vh}, (9.10)

which shows that the projection (2.10) is optimal.

An alternate approach to determine that (2.10) is optimal
is to introduce the difference or error between z̄h and z into
a variational principle as

�[ z̄h] := || z̄h − z||2 =
∫

B

( z̄h − z) · ( z̄h − z) dV . (9.11)

Introducing as before the test function ζ h , and upon mini-
mization by applying variations, this leads to

D�[ z̄h](ζ h) = 2
∫

B

( z̄h − z) · ζ h dV = 0, (9.12)

which is equivalent to (9.3) and which implies that (2.10) is
optimal as it minimizes the error.

These two methods show that the variational principle
(2.2) results in a target field z̄h that minimizes the error in the
norm (9.2) with respect to the source field of internal vari-
ables z. Note that the error (9.11) is zero if and only if the
source field z is already a member of the discrete space Vh .
Thus, in general z̄h is not equal to z, and in the evaluation of
the equilibrium condition (2.6) with the target internal vari-
ables in a new mesh, there are two options: satisfy equilib-
rium by changing the deformation mapping and maintaining
the target internal variables constant, or satisfy equilibrium
by evolving the target internal variables and maintaining the
deformation mapping constant.
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