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Jan von der Goltz †‡ Prabhat Barnwal†

February 23, 2014

Abstract

Do residents of mining communities face health-wealth trade-offs? We conduct the first

extensive investigation assessing this question using micro-data from communities near about

800 mineral mines in 44 developing countries. Mining communities enjoy a substantial medium-

term rise in asset wealth (0.3σ), but experience a nine percentage point increase in anemia

among adult women, and a five percentage point increase in the prevalence of stunting in

young children. Both of these health impacts have previously been linked to metal toxicity -

and in particular, exposure to high levels of environmental lead. Benefits and costs are strongly

concentrated in the immediate vicinity (≤ 5km) of the nearest mine. We find no systematic

evidence of general ill health, and we observe health impacts only near mines of a type where

lead pollution is to be expected. Identification is based on a mine-level and mother-level panel,

and in the cross-section, on group effects. A novel instrumental variable serves as a cross-

sectional robustness check. To make plausible that the observed health impacts are due to

pollution, we develop difference-in-difference tests based on the known association of certain

mine types with lead pollution, and based on the pathophysiology of lead toxicity. Our results

represent the first comprehensive assessment of the local welfare impacts of mining in devel-

oping countries, and add to the evidence suggesting that communities near industrial centers

in developing countries face information or cost constraints that limit their choice sets.
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1 Introduction

This paper studies the local welfare impacts of mineral mining in 44 developing countries. We
show that, while residents of mining communities enjoy greater wealth than those living in control
communities, there is a trade-off: life near mines exacts a price in terms of a specific health burden.

In any country and at any time, the decision to live near centers of industrial activity involves
weighing the promise of economic opportunity against the risk of disamenity caused by pollution.
Nowhere is this choice starker than in developing countries. More often than not, opportunities
for making a good living are precious and few. At the same time, pollution tends to be poorly
regulated, and information on health risks and on countermeasures scarce. Poor infrastructure
and inflexible housing markets commonly make commuting to avoid pollution impracticable. Yet,
while “the literature on the health effects of pollution has advanced greatly in the last two decades,
almost all of this research has been conducted in developed country settings.” (Greenstone and
Jack (2013))

In the following, we present the first large-scale empirical assessment of the micro-level health-
wealth trade-offs posed by industrial operations in developing countries. We use the case of mining
and mineral processing to study the benefits and cost of industry to local communities across a
broad range of countries. The mining industry in poor countries poses particularly sharp trade-
offs, and hence, is an attractive test case to analyze. Single plants generate very high value. The
location of ore deposits dictates where mines open, and because of transport cost, often also where
smelters locate. Therefore, large operations are found in remote areas where they dwarf any other
enterprises - and the economic opportunities generated by the latter. Cities grow around mines, and
in some instances, other commercial activity may eventually reduce the importance of the mine.
But other mining towns - large and small - remain centered around extractive industry. Mines
and smelters therefore tend to play a conspicuous economic role. At the same time, however,
mines and smelters are very large polluters, and precisely because they are important sources of
revenue, foreign exchange, and employment, they are at risk of weak environmental regulation and
enforcement. What is more, some of the pollution near mines is hard to see, hard to predict, and
associated with health outcomes that are not widely known to be linked with pollution. Thus, in
choosing where to live, local residents may be acting on less than full information.

The importance of mining to development is reflected in a long tradition of research on the
macroeconomic implications of mining and the optimal management of mineral resources. How-
ever, although mining is among the oldest human economic activities, very little is known about
the local economic impact of mining, and about its impacts on other dimensions of well-being.
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This includes implications for the health of local communities: although there is an important
body of knowledge on pollution near mines and the toxic properties of common pollutants, there is
little systematic evidence on the actual clinical consequences of exposure to a mining environment.
The paucity of empirical evidence on the local welfare effects of mining is in stark contrast to the
strong passions that mining projects habitually evoke among the communities affected. Projects
have been supported vociferously, and people have fought over the right to work in mines. Yet, in
other places, mining has been desperately opposed, as citizens feared damage to their health and
environment. Our work shows that these political passions are grounded in a real trade-off. Across
a broad range of settings, the local benefits of mining are real, but so are the costs.

We analyze the effect of mining activity on asset wealth in local communities, on general
health, and on two specific health outcomes known to be linked to pollution encountered near
mines and smelters, namely anemia in adults and children, and growth in young children. We
compile a very large pooled dataset of 104 household surveys from 44 countries to enable us
to study the interplay of health and wealth effects across the developing world. Prior evidence
suggests that pollution and its health effects are concentrated in the direct vicinity of mines, and
our large pooled dataset has the added virtue of allowing us to study impacts at an appropriate
level of spatial disaggregation. We then use data from multiple sources on the location, output,
and type of mines to estimate the effect of closeness to mines in the cross-section, and the effect
of closeness and operational status in pseudo-panels. Cross-sectional identification rests on group
effects for each mine, with supporting evidence from an instrumental variables (IV) approach
in which we use the location of mineral deposits to instrument for the location of mines. We
identify the pseudo-panels with fixed effects at the level of individual mines, or compare only
among siblings born to the same mother. In addition to these standard cross-sectional and pseudo-
panel models, we develop additional difference-in-difference (DiD) tests based on prior knowledge
on the toxicological properties of mining pollution.

Our results show that, at the global mean, long-run asset wealth in mining communities rises
by about 0.1σ of an asset index computed for the country where the community is located and the
year in which the survey was taken. The medium-term wealth of households living in the vicinity
of an operating mine rises by about 0.3σ. Wealth effects are strongly concentrated in the direct
vicinity of the mine, and fall to zero beyond a distance of some 15-20km. There are few signs
of general ill health in mining communities. By way of contrast, we find clear evidence of two
health impacts that are known consequences of exposure to environmental lead and other metals.
Thus, women in mining communities show depressed blood hemoglobin values, and increases in
the incidence of anemia of three to nine percentage points. They also recover more slowly from
blood loss during pregnancy and delivery, a pattern consistent with prior toxicological research.
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Children in mining communities suffer some adverse growth outcomes from in utero exposure,
with a five percentage point increase in the incidence of stunting - although there is no conclusive
evidence of lower birth weight. Growth impacts weaken among older children, perhaps because
of the greater wealth enjoyed by households in mining communities. We note particularly that,
while our data contains no good measure of cognitive ability, lead exposure has previously been
shown to cause cognitive deficits in children at exposure levels below those associated with growth
retardation, and far below those associated with overt anemia.

Throughout this paper, we show well-identified reduced-form estimates of the impacts of min-
ing. Because they are reduced form, our health results should be interpreted as the compensated
impact of mining, including any positive effects through greater wealth in mining communities.
We also provide extensive evidence to make plausible that the observed health effects are likely
due to pollution, not other mechanisms. Firstly, we show that the cost mining communities pay in
terms of adverse health goes hand in hand with economic benefits, so that there is at least no indi-
cation that ill health is caused by deprivation. Secondly, we leverage knowledge on the association
of specific mine types with particular toxicants - and by extension, specific health impacts - to
conduct extensive falsification tests. We show both that we only observe those health impacts that
are expected from exposure to mining pollution, and that we only observe them near mine types
strongly associated with the release of contaminants. Finally, we describe a pattern of impaired
ability to recover from blood loss after pregnancy, and argue that this effect is consistent with a
known pathophysiological pattern of lead toxicity in adults, but not easily consistent with other
mechanisms.

The present paper makes three contributions to the economics and public health literature.
Firstly, we offer the first comprehensive and methodologically rigorous assessment of the local
welfare impacts of mining. Secondly, we add to the very limited knowledge on the trade-off
between economic opportunity and health in industrial centers in developing countries; we show
that in the important case of mining and smelting, such a trade-off exists, with real benefits and
real costs to individuals. Finally, we complement the toxicological and epidemiological literature
by demonstrating that the health effects expected from exposure to mining pollution are salient in
a well-identified study of the general population near a very large number of mines.

The remainder of the paper is organized as follows. Section 2 discusses prior work on welfare
in mining communities, and reviews results from environmental science and toxicology that guide
the way we develop hypotheses, measure impacts, and interpret results. Section 3 discusses data,
and Section 4 summarizes econometric methods. Section 5 presents results, and Section 6 shows
how observed treatment effects vary with covariates describing the economic and geographic en-
vironment. Section 7 concludes.
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2 Background

This section reviews prior studies of mining and wealth (Section 2.1), and research on health in
mining communities (Section 2.2). We then summarize the state of knowledge on environmental
pollution near mines, and the relationship between pollution and on the body burden of toxicants
(Section 2.3) . We establish that metals, and in particular lead, are of most concern as pollutants in
our sample sites, and discuss the toxic effects and toxicokinetics of lead (Section 2.4). The section
closes with a brief description of how the health consequences of lead poisoning - anemia, poor
growth in children, and cognitive deficits in children - affect those exposed, and what the economic
cost of those health conditions might be (Section 2.5).

2.1 Mining and wealth

Economics has traditionally studied mineral mining in the context of optimal resource man-
agement, or in a macroeconomic context of growth and public finance.1

The welfare impacts of mining at the local level have only recently received some attention.
As of the time of writing, we are aware of only two published papers that study mining at the kind
of disaggregated scale we consider. In a pioneering paper, Aragón and Rud (2013b) leverage a
change in local hiring and procurement policies in a single very large gold mine in Peru to identify
local economic impacts. Incomes in communities within 100km of the mine showed an elasticity
of 0.17 to production at the mine, alongside significant increases in the price of housing and of
locally produced agricultural output, and higher local public spending. Wilson (2012) shows that
asset ownership increased among residents of copper mining communities in Zambia during a
boom in the 2000s. A working paper by Aragón and Rud (2013a) investigates the impacts of
gold mining in twelve operations in Ghana on agricultural productivity. It finds stark decreases
in productivity (40%) in the general vicinity (less than 20km) of mines, relative to control areas
farther away. These are accompanied by large increases in the poverty headcount (18 percentage
points), and decreases in consumption, all driven by dire developments for rural households. The
latter two papers and another working paper by Kotsadam and Tolonen (2013) use sub-sets of the
micro data from the Demographic and Health Surveys also used for the present study. Kotsadam
and Tolonen (2013) argue that mining activity in a comprehensive sample of African mines fosters
sectoral shifts in employment out of agriculture (among women, into services, and among men,

1For a textbook-level overview of the former, see, e.g., Hartwick et al. (1986); for a survey of the latter, Frankel
(2010).
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into skilled manual labor) and increases cash employment among women, but is also associated
with women leaving the labor force altogether.

Long-term welfare in mining communities was also brought to the attention of the research
community by Dell’s work on the mita forced labor policy in Peru, although the focus of the paper
is on institutions and development, rather than the direct welfare impacts of mining per se. (Dell
(2010)) In other related work, Acemoglu et al. (2013), Dube and Vargas (2013), and Monteiro and
Ferraz (2009) have recently leveraged resource revenue at a disaggregated scale as an instrument
in the study of other objects of interest (health expenditure, conflict, and corruption, respectively).

2.2 Health effects of mining

Our paper asks how significant are the ultimate health effects of exposure to pollution from
every-day mining and mineral processing operations. Few studies have attempted this before, and
to the best of our knowledge, none considers the possible trade-off between wealth and health
effects, and none has studied the issue in a well-identified manner across many mine sites.

Prior work in economics on the issue is very limited. Aragón and Rud (2013b) find a significant
decrease in general health problems among adults with an expansion of production in the Yana-
cocha mine, Peru, and no effect among children. In a recent working paper, the same authors find
evidence of an adverse effect of mining activity on weight-for-height ratios and the prevalence of
cough in children living in the general vicinity of gold mines in Ghana, but no impact on stunting
and diarrhea. (Aragón and Rud (2013a)) Both of these results are incidental to the main focus of
the respective papers, and neither one of the studies argues that the observed health impacts are
likely to result from pollution. Some attention has been given to behavioral correlates of mining
activity. Wilson (2012) finds that sexual risk-taking tended to decrease in Zambian copper towns
during a boom (a finding we confirm, below). Corno and De Walque (2012) argue that in mining
communities in southern Africa, there was increased risk taking and HIV infection among migrant
miners, but no such effect among non-migrants.

In the field of public health, some case studies directly analyze health impacts in communities
near smelters. Factor-Litvak et al. (1999) find impacts on “intelligence, physical growth, preschool
behavior problems, renal function, blood pressure and hematopoiesis,” among children of up to 7.5
years of age living in a smelter town in Kosovo. (p. 14) Roels et al. (1976) show that among school
age children living near a lead smelter in Belgium, “undue lead absorption was accompanied by
early biochemical indications of disturbed heme biosynthesis,” but not by overt anemia. (Quotation
from Roels et al. (1980), p. 82.) Both papers show comparisons to a matched control group
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in addition to dose-response relationships. Dose-response relationships between blood lead (PbB)
and lower blood hemoglobin (Hgb)2 as well as reduced nerve conductivity, have also been reported
among children living near a lead smelter in Idaho, U.S. (Landrigan and Baker (1981), Schwartz
et al. (1990)) Baghurst et al. (1992) show a dose-response relationship between PbB and IQ in
children living near a lead smelter in Port Pirie, Australia. A range of papers by Hendryx and
various co-authors (see for instance Hendryx and Ahern (2008)) shows cross-sectional correlations
between county-level health outcomes and Appalachian coal mining. We review below the much
more extensive literature on individual links in the causal chain from mining to ultimate health
impacts, namely studies of (i) pollution near mines, (ii) the body burden of pollutants in residents
of mining communities, and (iii) the toxic impacts of substances released near mines.

Pollution due to mining is a special case of industrial pollution, and the latter has been ana-
lyzed in large and well-identified studies. (See Currie et al. (2013) for a major recent contribution.)
Yet, most of these investigate developed countries; studies of developing countries - certainly with
many sites - are rare. Chen et al. (2013) study reduced life expectancy from air pollution due
to power generation in China; Ebenstein (2012) assesses the effect of water pollution on gastro-
intestinal cancer rates in China; and Rau et al. (2013) show cognitive losses from lead exposure
near an abandoned toxic waste site in Chile. (Studies of air pollution from urban traffic - e.g., Gal-
lego et al. (2013) - are less immediately related.) At the same time, mining in developing countries
is distinct from other industrial activity in important ways. As argued, mining operations are large
polluters, but tend to contribute a large share to the local economy; health-wealth trade-offs can
therefore be expected to be particularly stark. Conversely, although regulation and enforcement
of environmental safeguards is weak in many developing countries, as very large point sources
of pollution, mines in principle lend themselves well to environmental regulation and remediation.
Furthermore, it is worth recalling that mining quite simply affects very many people - 3% (11%) of
our sample population reside within 5km (20km) of a mine we observe. Establishing whether min-
ing causes health effects is therefore of immediate use in flagging a potentially important leverage
point for policy.

2.3 Environmental pollution due to mining and its relationship to the body
burden of toxicants

A voluminous literature in environmental science has catalogued the pollutants emitted in the
course of normal operations near mines of different types. We base the following discussion on
Alloway (2013), Ripley et al. (1996), and Wright and Welbourn (2002).

2The papers report hematocrit, not hemoglobin levels, but the two measures are closely correlated, and are both
used to define anemia.
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Local communities can be exposed to pollution from mining and smelting through a multi-
tude of channels. These include dust from mining, handling, and processing; mine waste water;
direct exposure to abandoned mine tailings; metals from tailings leached into soil and water; and
particulate and gaseous emissions from roasting and smelting. Sometimes, the material extracted
is itself of concern, such as in lead, uranium, or asbestos mining. At other times, the concern is
with toxicants co-located with the mineral mined and released in processing, such as in the case
of heavy metals co-located with gold or silver, and released either in processing or weathering of
mine spoils. Finally, sometimes pollutants are used in processing, such as in the case of cyanide
leaching of gold, or gold and silver extraction by amalgamation.

We highlight two stylized facts on pollution near mines that are essential to the way we analyze
the health impacts of mining in this study.

(i) The kinds of pollutants near a given mine can be predicted well from the ore mined.
Table 1 summarizes in a highly stylized way which pollutants are associated with common (and
non-exclusively defined) mine types in our sample. The mapping is far from exact, but serves
as a useful first-order approximation. We leverage the association between target minerals and
toxicants to compare health effects across mine types, and to show that we find predicted health
impacts only near mine types where pollutants specific to the health impact in question are found.

Of particular interest to us is the association of most ‘polymetallic’ mines where any combina-
tion of copper, gold, lead, silver, and zinc are extracted with a characteristic suite of highly toxic
pollutants that includes most prominently lead, but also arsenic, cadmium, and chromium. (We
will refer to these metals and metalloids as ‘heavy metals’ - a term that is imprecise in that it does
not refer to a well-defined group of chemical elements, but has the advantage of being in everyday
semantics associated with the pollutants we have in mind. See Section 3.2.1 for coding notes.)
Pollution near polymetallic mines is of particular concern both because these elements are impor-
tant toxicants, and because the minerals mined are often nested in sulfide rock. When exposed
to air and water, the latter will tend to generate sulphuric acid, which in turn leaches metals from
the mine’s tailings; the resulting acid mine drainage can pose severe health and environmental
concerns. (Wright and Welbourn, 2002, p. 439)

(ii) The area in which highly polluted sites are found is typically small, and extends to at most
a few kilometers around the mine.
Thus, for lead and in the case of smelters, high exposure ranges have variously been associated
with distances from the point source of emissions of 0.5-1.8km (Fontúrbel et al. (2011)); 1-2.5km
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(Roels et al. (1980)); 2km (Recio-Vega et al. (2012)); perhaps 2-4km (within the town of Kosova
Mitrovica, Factor-Litvak et al. (1999)); about 3km, with an exponential decline of exposure up to
this distance (Benin et al. (1999)); and up to 4km (Landrigan and Baker (1981)). Mean PbB in the
high exposure groups was for Roels et al. (1980), 13-30 µg/dL; for Recio-Vega et al. (2012), 14-19
µg/dL; for Factor-Litvak et al. (1998), 28-39 µg/dL; and for Benin et al. (1999), 20-40 µg/dL.
Landrigan and Baker (1981) found PbB of no less than 40 µg/dL in 87% of children living within
4km of the source, as opposed to 19% of children living at a distance of 4km to 32km.3 All of
these values far exceed the reference value of 5 µg/dL (the 97.5th percentile of blood lead levels
found in the U.S.) set by the Centers for Disease Control to “trigger lead education, environmental
investigations, and additional medical monitoring,” (CDC (2012)) as well as the laxer and more
dated ‘level of concern’ of 10 µg/dL. (Roper et al. (1991))

In the present paper, we do not observe directly environmental pollution or the body burden
of toxicants. Rather, we use distance to the nearest mine as a proxy. The choice of a distance
cutoff to define the treated group is therefore crucial. Because pollution is known to generally
be localized, we look for health effects in a tightly defined treatment group, and consider only
households within no more than five kilometers of a mine to have been exposed. This choice is in
line with the empirical evidence summarized above on the extent of exposure in the case of lead -
the toxicant of most interest to us. It is a highly restrictive choice - and considerably tighter than
in other current studies of mining in economics, as is appropriate for our focus on health impacts.4

A key benefit of working with a large multi-country dataset is that it allows us to limit our
treatment group to residents of very limited areas around mines - while retaining enough statistical
power. With perfect data, we might define closeness even more restrictively. In the context of
available data, tighter definitions would risk making our distance proxy of exposure noisier both
because of the practice of jittering cluster geolocations in our socio-economic data (up to a distance
of about 5km - see below), and because of the fact that we work with (imperfectly recorded) mine
point locations, while mining operations can measure several kilometers across.5

3Ranges indicate means for populations groups that differ in age, gender, and other characteristics. Incidence
for Landrigan and Baker summarized by the authors. In the case of Benin et al, PbB was predicted from observed
environmental pollution; in all other studies, PbB was measured directly.

4Wilson (2012) uses a cutoff of 10km, while Aragón and Rud (2013b), Aragón and Rud (2013a) and Kotsadam
and Tolonen (2013) use a baseline cutoff of 20km, with sensitivity analysis for other choices.

5We also note that across a broad range of studies, the spatial distribution of pollution near mines is both uneven
and hard to predict: measurements taken at neighboring sampling points commonly show very different levels of
pollution. This implies that even when residents of mining communities have a general sense that they are at risk of
being exposed to pollution, they are unlikely to be able to assess very well how high their risk is. In consequence,
their incentives to take countermeasures may be weakened. It also suggests that our large population study will be
particularly useful in arriving at good general population impacts in the presence of large sampling variability. In
terms of modeling pollution, we further conclude that could at best hope to modestly improve our proxy of exposure
to contamination if we were to use geographic information in addition to distance.
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2.4 Pathophysiological and clinical effects of lead and other metal exposure

As noted, the mines in our sample are associated with characteristic sets of pollutants. Be-
cause the latter are known to cause specific health effects, we can develop predictions for expected
health impacts that are well-grounded in scientific knowledge. To the degree that we find expected
health impacts, but not others, we strengthen our case that impacts are likely due to environmental
pollution, rather than any other mechanism.

In our baseline investigation of health impacts, we do not distinguish between different types of
mines. Yet, our main concern is with the health consequences of environmental contamination with
heavy metals, and in particular, with lead. We focus on heavy metal contamination, first, because
the health impacts of exposure are well-known, important, and observable in our data, and second,
because a large number of mines in our sample are associated with this type of pollution (337 out
of 838 mines other than quarries within the cross-sectional sample). Since mines associated with
heavy metal pollution are well-represented in the data, our estimates of average health impacts
near all mines will tend to reflect impacts near these particular mines. It is also more feasible to
study health effects exclusively near this type of mine than near other types. Among heavy metal
pollutants, lead takes a central role, because it is known that the lead body burdens previously
measured near mines are high enough to cause health problems. We therefore discuss lead toxicity
and health impacts in the following.

The health effects of lead exposure have long been studied and are very well understood. (See
ATSDR (2007) for a general discussion.) The wide-ranging effects on adults include reduced blood
Hgb and overt anemia, cognitive defects, hypertension, and impaired renal function. In our data,
we are only able to observe one of these conditions, namely low blood Hgb/anemia. We adduce
two additional unspecific health outcomes as falsification tests, namely miscarriage and general
grave illness. For children under five years of age, we analyze two health outcomes that have
previously been linked with lead exposure in utero and among young children: anemia and growth
retardation. We also observe some health outcomes that have not been linked to lead (cough, fever),
or linked only weakly or at very high exposure (all-cause mortality, gastro-intestinal problems),
and use these as a falsification test. Regrettably, we do not have a good proxy of what is by far
the most feared consequence of lead exposure in children, namely impaired cognitive performance
and behavioral problems due to neurological damage.

2.4.1 Hematotoxic effects of lead

Lead depresses blood Hgb levels both by shortening red blood cell life spans, and by interfering
with enzymes (ALAD and ferrochelatase) essential to the synthesis of the heme component in red
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blood cells. Enzyme activity begins to be disrupted “at very low [PbB], with no threshold yet
apparent,” whether in adults, children, or newborns. (ATSDR, 2007, p. 69) Yet, we do not observe
ALAD or other sensitive biomarkers of lead hemotoxicity. The only biomarker we do observe,
Hgb, is among the least sensitive ones. Changes of Hgb have been reported at high PbB levels,
in excess of 40µg/dL in children, and 50µg/dL in adults. (ATSDR, 2007, p. 69,71f) That is, we
expect the hurdle to finding impacts on Hgb to be quite high.

Because Hgb levels are likely affected only by high lead exposure, we devise an additional,
more sensitive test of hematotoxic effects. We build upon the insight in Grandjean et al. (1989)
that, even when lead exposure is too low to reduce Hgb levels in adults, “increased demand on the
formation of blood following blood loss could result in a delayed blood regeneration in individuals
exposed to lead.” (p. 1385 - our emphasis) Grandjean et al. (1989) compare recovery from blood
donation in workers in a battery factory (with high lead exposure) to workers in a tin can factory
(with low exposure). While PbB in lead workers was high (40µg/dL at the median, compared to
about 7µg/dL among workers in the tin factory), there was virtually no difference between the
two groups of workers in initial Hgb levels. (p. 1386) Yet, 15 days after donating blood, “the
lower hemoglobin and erythrocyte count in the lead-exposed workers suggested delayed blood
regeneration.” (p. 1387) In our study, we show that Hgb recovery is similarly impaired among
women in mining communities after another kind of blood loss, namely, pregnancy and delivery -
a setup directly analogous to the experiment in Grandjean et al. (1989). Indeed, studying delayed
Hgb recovery in women after delivery may be a particularly suitable approach. Thus, Graziano
et al. (1991) point out that impaired recovery from blood loss could be mediated by depressed
levels of the hormone erythropoietin (EPO) in lead-exposed adults, and show that EPO levels
are lowered among pregnant women even at only modest PbB levels. That is, the population we
study is known to have the ‘right’ characteristics for a known physiological mechanism of delayed
recovery to be at work.

The effect of lead on children is of particular concern, since children are both more sensitive
in their reaction to body burdens of lead, and absorb far larger portions of lead present in water or
solids. In the case of anemia, however, we expect effects to be harder to demonstrate in children
than in adults. Lead has the same hematotoxic effect in children as in adults. However, by contrast
to adults, children are able to compensate for erythrocyte loss by increasing production of EPO,
and thus boosting the production of red blood cells. Thus, in a cohort of children aged 4.5-6.5
years, “children with elevated [PbB] maintain normal Hgb, but require hyperproduction of EPO
to do so.” (Factor-Litvak et al., 1998, p. 361) This ability fades with age: in the study cited, it
had decreased significantly in children who had reached 9.5 years of age, and, as noted, it is lost
completely in adults, where lead exposure is associated with lower EPO, rather than compensatory
over-production.
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In summary, we would expect Hgb in residents of mining communities to be measurably af-
fected only if there is substantial exposure to environmental lead. An effect should be detected
most easily in the recovery of Hgb after blood loss, followed by Hgb levels in adult women, and
least readily in Hgb in children.

2.4.2 Neurodevelopmental effects of lead exposure in children

Perhaps the chief concern with lead exposure in children is damage to the developing brain,
resulting in behavior problems and deficits in cognitive performance that may not be reversible with
conventional therapy. The presence of cognitive effects is well-established epidemiologically and
experimentally, as well as through an understanding of the mechanism of neutoxicity. (Lanphear
et al. (2005), Toscano and Guilarte (2005))

In the present study, we do not observe a good measure of cognitive performance. Our data
does record schooling, but we leave this outcome aside, since it is both a notoriously poor proxy of
cognitive ability, and likely to be strongly affected by any effects of mining on wealth. Instead, we
argue that cognitive impacts are very nearly implied by our findings. In particular, we note that lead
exposure levels previously reported to have been associated with cognitive impacts are far lower
than the high levels associated with decreased Hgb. Indeed, the main thrust of the recent literature
has been to demonstrate that there is no apparent threshold for cognitive effects, and that brain
development is affected from very low levels of exposure. (CDC (2012)) Thus, Lanphear et al.
(2005) found “evidence of lead-related intellectual deficits among children who had maximal blood
lead levels ≤ 7.5µg/dL,” with no evidence of a threshold. As reported above, this is far below PbB
levels of 40µg/dL or more previously associated with overt anemia. Hence, demonstrating overt
anemia implies a strong likelihood that the affected individuals - and presumably many others with
lower PbB - also suffer some cognitive and behavioral impairment.

2.4.3 Effects of lead on child growth

While there is a clear epidemiological link between lead and anemia, epidemiological stud-
ies are in less agreement on the nature of the effect of lead on growth in children - and indeed
on whether there is any effect. In addition, while there are several known mechanisms of the
hematotoxicity of lead, “the mechanism by which lead may reduce a newborn’s size is unknown.”
(Hernandez-Avila et al., 2002, p. 486)
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Correlations have been observed - including at moderate PbB on the order of 10µg/dL - be-
tween maternal or child blood lead and a wide range of measures of physical growth. These
include: low birth weight, BMI at birth, birth length, gestational age, and weight for gestational
age; low weight gain in one month-olds; low head circumference at 12 months and in children aged
18-36 months; and low height and weight in children of less than three years of age and children
of less than seven years of age. (ATSDR (2007), Bellinger et al. (1991), Hernandez-Avila et al.
(2002), Sanın et al. (2001), Zhu et al. (2010)) Interestingly for our discussion of results, Shukla
et al. (1989) and Shukla et al. (1991) find growth impacts during the first three years of life only
among children consistently exposed to lead, but no persistent effects of exposure in utero or in
infancy alone. In children whose lead exposure decreased eventually, higher growth was observed,
which “allowed them to catch up and even overshoot” the cohort mean. (Shukla et al., 1991, p.
890)

Conversely, however, other studies - as well as some of the same papers that found associations
with some index of growth - have variously failed to show correlations with gestational age, birth
weight, weight for gestational age, head circumference, and length at birth; and height (at age four,
in children of less than 58 months of age, in children aged 8-18 years who had been treated for lead
poisoning during childhood, and in a cohort of children followed over 13 years). (ATSDR (2007),
Bellinger et al. (1991), Factor-Litvak et al. (1999), Zhu et al. (2010))

In the present paper, we seek to exclude both endogeneity and small-sample bias as potential
sources of the ambiguous evidence in epidemiological studies. We are able to show some conclu-
sive evidence of effects of in utero exposure on one dimension of growth (height for age) among
very young children. However, our results mirror the existing evidence in that we find no clear
effects on another key measure of growth (birth weight).

2.4.4 Exposure to lead in utero and in infancy

Our results suggest that in our study sites, health effects are concentrated among the younger
children in our sample - infants, and perhaps children in their second year of life. For context, we
review the literature on lead exposure at different ages.

As a stylized fact, “blood lead levels [peak] in the age range of 1 to 3 years [. . . ], probably
because this period encompasses both the onset of independent ambulation and the time when a
child’s oral exploration of the environment is greatest.” (Bellinger, 2004, p. 1017) However, there
is an important earlier path of exposure, through transfer of lead from the mother’s body through
cord blood and breast milk. Lead crosses the placental barrier with ease: ratios of lead in umbilical

13



cord blood to lead in the mothers blood can exceed 90% (ATSDR, 2007, p. 172), and correlations
as high as 0.8 have been found between maternal and infant PbB. (Lauwerys et al., 1978, p. 280)
Indeed, “infants are born with a lead body burden that reflects the burden of the mother.” (ATSDR,
2007, p. 223) Exposure of children to lead in their mother’s body further continues through breast
feeding. Studies have found ratios of lead in breast milk to lead in maternal blood of up to 10%,
and one study found that lead from breast milk contributed between 40-80% of infant blood lead.
(ATSDR, 2007, p. 172)

Finding health impacts among infants is therefore particularly plausible if there is evidence of
maternal lead burdens. An absence of apparent impacts among older children in mining commu-
nities could be due to cessation of exposure, or to countervailing beneficial wealth effects.

2.5 Functional consequences of anemia, early childhood stunting, and cog-
nitive effects of high lead exposure

The principal functional consequence of anemia in adults is listlessness and a reduced ability to
perform physical work. The productivity loss due to (iron-deficiency) anemia in manual workers
has been estimated to be on the order of 5-17%, depending on how much the activities performed
rely on heavy physical labor. (Horton and Ross (2003)) In children, a range of randomized control
trials of iron supplements to cure anemia has shown that supplementation increases performance on
standardized tests (see Horton and Ross (2003) for a review), as well as primary school attendance.
(Bobonis et al. (2006))6 In addition, a possible association of iron deficiency anemia with deficits
in early cognitive development has received some attention. A meta-analysis found that a one
gram per deciliter increase in Hgb was associated with a 1.73 point increase on the IQ scale, but
causality has not been compellingly shown. (Balarajan et al. (2012), McCann and Ames (2007))

To the degree that our results conclusively establish that residents of mining communities are
overtly anemic or growth impaired due to lead exposure, direct cognitive damage due to lead is to
be expected, and would likely dominate any indirect effect from anemia. As we have noted above,
reduced Hgb has previously been observed in respondents with strongly elevated PbB, likely above
40 µg/dL. The threshold for growth effects is not clearly known, though some effects have been
demonstrated at levels above 10 µg/dL. Exposure to levels of lead in this range is expected to cause
considerable cognitive deficits. Using the dose-response from a reanalysis of seven longitudinal
studies by Lanphear et al. (2005), a move from a background lead level of perhaps 2 µg/dL to 20
µg/dL is associated with a loss of about six IQ points (0.29σ, or slightly more than the reported

6The intervention in Bobonis et al. (2006) combined iron supplementation with deworming.
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inter-generational IQ difference). The dose-response estimate in a recent well-identified study by
Rau et al. (2013) yields much larger estimates, with a 2.7 standard deviation expected decrement
from the same increase in PbB.7 Following Horton and Ross (2003), and assuming a correlation
of 0.62 between childhood and adult IQ, and a wage decrease of about eight percent associated
with a one-standard deviation decrement in adult IQ, we could estimate that children with a PbB
of 20 µg/dL could be expected to experience a lasting productivity loss of about 1.6% using the
Lanphear et al. (2005) relationship, and 13% using the Rau et al. (2013) relationship.

It is harder to predict the functional consequences of lead toxicity-induced stunting in our
study setting. Stunting in infancy and early childhood is a serious condition, associated with “short
adult stature, reduced lean body mass, less schooling, diminished intellectual functioning, reduced
earnings, and lower birth weight of infants born to women who themselves had been stunted as
children” - with often large adverse effects. (Dewey and Begum, 2011, p. 8) However, it is not
clear to what extent these findings apply to our context. This is, first, because our results show
unambiguous evidence of stunting in infants, but less crisp evidence of stunting in older children
in mining areas. Secondly, the impacts of stunting have principally been studied in the context of
malnutrition and repeated infection. (Fullerton et al. (2008)) By way of contrast, in our setting,
affected households are wealthier on average than the controls, and we find no evidence of more
frequent episodes of diarrhea and fever, or general ill health. That said, stunting is a disconcerting
indicator of poor development, and even a transitory effect is worrisome, given that “risk factors
that interfere with cognitive function are especially important during infancy.” (Berkman et al.,
2002, p. 564)

3 Data

3.1 Socio-economic and health data

We obtain socio-economic and health data from the Demographic and Health Surveys (DHS)
series of surveys, and pool all 104 available geo-coded DHS data from countries for which we have
mining data. This yields a dataset of repeated cross-sections covering 44 countries, with a total of
1.2m households, and several million individual records. About 170,000 households are within no
more than 20km of a mine recorded in our data, and enter our analysis. (Table 2) Their location

7Lanphear et al. (2005) obtain an empirical dose-response function of IQ to PbB that is close to semi-log linear,
with a predicted loss of 2.7 IQ points with a log-unit increase in PbB. Rau et al. (2013) find very large effects, with an
estimated linear decrease of 0.15-0.21 standard deviations in ability scores with a PbB increase of one µg/dL.
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is shown in Figure 1. There is a small but growing literature working with multiple DHS rounds,
although we are not aware of any published work that uses all available survey rounds. We extend
the use of the data along a number of dimensions, summarized in Appendix A.

The DHS data has some notable strengths: it covers a very large range of developing countries;
surveys have been conducted for nearly 30 years; individual surveys are fairly comparable; sam-
pling cluster geocodes are available for many survey rounds; and there is strong data on maternal
and under-five health, including anthropometrics and specifically, Hgb. These features currently
make DHS virtually the only choice to study global health and development at the micro level.8

However, the data also has some important limitations with implications for our work. (i) There
is relatively little data on socio-economic status, no information on wages, and little information
on employment. We therefore work with an asset index rather than more direct measures of wealth
or of income, and discuss employment outcomes only in passing. (ii) Because the surveys have
kept changing and improving, very few indicators of interest to us were collected in all surveys.
Indeed, working with the largest set of observations for which all indicators are available is im-
practical, because the number of observations is very small. On the other hand, estimating results
on pair-wise common sets would lead to tedious repetition. In our discussion of results, we seek to
strike a balance. We present side-by-side comparisons for core results where the sample changes
meaningfully. Where there is a strong regional pattern in the sub-sample that moves us away from
the ambition of a study of effects across a diverse set of developing countries, we seek to point it
out. (iii) Finally, we stress again that the data is cross-sectional. We therefore construct from the
pooled cross-section pseudo-panels at a level of commonality in the data (generally, at the level of
individual mines). In addition, we deploy a battery of other tests that help bolster causal claims.

3.1.1 Socio-economic data

Our core measure of wealth is a standard asset index computed over household durables and
housing characteristics. (Filmer and Pritchett (2001); see Appendix C for details) We do not in-
clude slow-moving or immutable traits of the household head, such gender, marital status, or ed-
ucation. An SES index including these characteristics might be of interest for the long-run cross-
sectional analysis, but our key interest is in dimensions of wealth that are reasonably sensitive at
least to medium-term effects. We compute the wealth index based on the largest set of assets and
housing characteristics available within each survey round.

8Other data with high coverage that include both health and socio-economics are either much less rich (IPUMS),
or much less harmonized (LSMS).
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The DHS surveys contain no information on wages, and limited information on employment.
In some surveys, women are asked about their employment status and occupation; in a smaller
number of surveys, we observe the same indicators for men. Information collected includes ques-
tions on unemployment, some questions on seasonality, and occupation. We also collect a dummy
variable for whether a household owned any land.

3.1.2 Health data

We obtain from the DHS detailed data on health among children below five years of age, and
among women aged 15-49 years. There is little information on older children, men of any age, and
women aged 50 years and over. In addition, we extract proxies of perinatal health care recorded for
up to five recent births. Finally, we construct infant and under-five mortality data for all children
whose births were recorded in any survey module.9

Our core health indicators are blood Hgb levels and an age-adjusted height index. Hgb is
adjusted for altitude, and expressed either as a continuous measure in standard units of grams
of hemoglobin per deciliter of blood (g/dL), or as a binary indicator for the clinical condition of
anemia, associated with blood Hgb below 12 g/dL in non-pregnant women and 11 g/dL in pregnant
women and children. (World Health Organization (2011))

Following standard practice, height is expressed as the difference between a respondent’s height
and the age-group median, normalized to standard deviations. We normalize using the median and
standard deviation provided by DHS (alternative normalizations make no empirical difference).
We consider the continuous height measure, as well as the clinical outcome of stunting (severe
stunting), defined as a height of at least two (three) standard deviations below the median.

We also extract a range of variables on other adult and child health outcomes, maternal health
care and the use of health care among all adult women, sexual risk taking, and nutrition. Definitions
are briefly listed in Appendix B.

9Because we construct these variables from birth records of all children ever born to the women in sample, the
mortality variables must be interpreted as being conditional on the mother’s survival until the time the survey was
taken.
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3.2 Mining data

We obtain data on the location and characteristics of mines and mineral deposits from four
data sources. These include a very large cross-sectional dataset that allows us to make meaningful
claims about the mean effect of mining across many developing countries; two panel datasets
of mine output that permit us to estimate mine-level panels and strengthen identification; and an
additional dataset of mine locations that serves to ensure robustness of our findings to measurement
error in the location of mines. In total, we observe communities near 838 mines in the cross-
section, and 515 mines in the panel.10 (Table 3)

3.2.1 Cross-sectional data on mine location

In the cross-section, we work with the United States Geological Survey’s Mineral Resource
Database. (United States Geological Survey (2005)) It contains the location of a very large set of
mines, legacies, deposits, and smelters (about 25,000 locations in total) across developing coun-
tries. Coverage is high globally, but especially dense for Latin America. The data contains geo-
logical information and some basic description of the nature of the mine for a substantial subset of
entries. However, there is no data on production, and start dates and status of operation are only
available for very few mines.

In our baseline cross-sectional model, we include among treatment locations all active mines,
legacies (that is, former mines that are now dormant), and smelters. We include smelters, because
in many of the locations we study, they are an integral part of the mining industrial complex.
We include legacies, because the cross-sectional data gives us little guidance in defining whether
a mine was operational during a given survey round. The resulting treatment definition should
be thought of as yielding ‘the effect of living in a location ever exposed to mineral mining or
processing’.

We extensively parse information on the types of mineral mined (or present in lesser quantities)
in a given location, first, to generate coherent groups of similar mines, and in a second processing
step, to sort these into larger (and not mutually exclusive) groups that share the same expected
pollutants and hence, the same health effects. We remove from our baseline sample all quarries,
gravel pits and sand mines. We do so because we seek to study the welfare impacts of mining as an
industry that generates very high value added, but is potentially severely polluting. Quarries differ

10Nearly all of those mines enter into our model when we use state-level effects (see Part 4). The number of mines
near which we observe at least one community within 5km (treatment) and one within 5-20km (control) is lower, with
226 mines in the cross-section, and 175 in the panel. These are the mines that enter into our mine-effects models.
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from mineral mines in both respects, at least as a matter of degrees. As we have argued above,
we are particularly interested in polymetallic mines near which we expect pollution with heavy
metals, and particularly with lead. For the purposes of the present paper, we define a mine to be
in this category if (i) lead is being mined or (if not targeted for extraction) known to be present in
significant amounts, or (ii) any two of the metals copper, gold, silver, and zinc are being mined.
This definition is necessarily imprecise, but gives due recognition to the special role of lead, and
seeks to exclude metal mines with different pollutant characteristics, such as alluvial gold deposits.

3.2.2 Mine-level production data

Since the USGS data provides virtually no time variation, we draw additional information
from two business intelligence firms; IntierraRMG (IntierraRMG (2013) - for whose product we
henceforth write ‘RMD’, for ‘Raw Materials Data’) and Infomine (Infomine (2013)).Both sources
record dates of operation and production information, alongside diverse additional characteristics
of the mines. Most mines included in the Infomine data are also available in the RMD data, but
not vice versa. To conserve consistency as far as possible, we therefore work with RMD as our
basic data, and add those Infomine entries that are not also contained in the RMD data. RMD
mines are more homogenous than those in the USGS sample: most of them are large mines, and
most of those close to DHS clusters are metal mines. While the set of mines included is far smaller
than for the USGS data, coverage of large mines is very comprehensive, and the mines recorded
in the dataset account for a very large share of global production of most metals since 1984. (For
instance, they account for around 80% of global gold production and 80-90% of global iron ore
production in the most recent decade for which data is available.)

Because there is some question as to the precision of geolocations recorded in the RMD data,
we gather mine geolocations from an additional dataset, Mining Atlas, for all RMD mines recorded
in this additional data source. In the current version of this paper, we use information from Mining
Atlas for three purposes: (i) to add geolocations for RMD mines wherever location is missing in
the original data; (ii) to identify and discard a small number of mines where location is plainly
not recorded with any precision in either dataset; and (iii) to check robustness of our results to
measurement error in geolocation. (See details in Appendix K.)

3.2.3 Other data

In the final section of this paper, we study policy correlates of treatment effects. We obtain
country-level data on GDP, governance, and conflict from the World Development Indicators;
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data on the efforts a given country made toward compliance with the Extractive Industries Trans-
parency Initiative from the Initiative’s website11; and state-level data on governance, geography,
and macroeconomic performance from Gennaioli et al. (2013).

4 Econometric Specification

4.1 Baseline treatment definition

In studying both economic and health impacts of mining, we define exposure to mining as
being geographically close to a mine in the cross-section, and as closeness interacted with the
mine being active in the panel. This choice is immediate for the study of economic impacts: with
transport and search cost, distance is the treatment of interest. For the purpose of studying health
impacts, distance acts as a proxy for the actual treatment of interest, pollution - which we do not
observe. We measure distance as the geographic distance between a cluster and the mine that is
nearest to it. In our baseline model, we define a cluster as being ‘close’, and hence, ‘treated’, when
it is within five kilometers of the nearest mine. We will also refer to this as the ‘direct vicinity’ of
the mine. We define a cluster as being in the control group when it is within 5-20km of the nearest
mine. We will refer to this as the ‘general vicinity’ of the mine. We do not use data from clusters
more distant than 20km from the nearest mine.

As we noted above, we bound our treatment group tightly, to enable us to detect health impacts
within the region in which pollution is likely to occur. Bounding our control group conservatively
helps identification. One need only consult maps of mining areas to confirm that over distances
as substantial as 40km or even 200km - as used elsewhere - many things other than closeness to
mines change, whether in the natural and the built environment, or in institutions. Because we
nearly exclusively study health impacts on women and children, we argue that impacts even within
the tight geographic bound of our definition are likely general population impacts, rather than the
effects of occupational exposure. We show below that, empirically, wealth effects dissipate within
20km at most, and far more rapidly in the panel. For the purpose of studying health impacts, this
is welcome news: we are comparing the treatment group to a control group that is in a meaningful
sense within the more general vicinity of a mine.12

11See www.eiti.org. The Extractive Industries Transparency Initiative (EITI) describes itself as “a global coalition
of governments, companies and civil society working together to improve openness and accountable management of
revenues from natural resources.’

12For the study of wealth benefits alone, one might have decided to compare those living within 20km of a mine to
those living farther afield. A loser definition of closeness would help balance the panel, but also weaken identification.
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In the panel, we define mining activity as a dummy variable taking value one when the mine
had non-zero output, and value zero when the mine was known to have had zero output. (We take
a conservative approach in that we never impute activity, not even indirectly by simply contrasting
observations before and after an opening date. - See Appendix A.) That is, in the present version of
the paper, we consider only extensive margin impacts of production. We do so because intensive
margin year-on-year variation in output is likely more weakly associated with health outcomes.
In this, mines differ from sources of pollution studied elsewhere. Extracting minerals from the
ground, breaking them up, and processing them generates a flow of pollution. At the same time
however, the stock of tailings dumped after processing will in many cases continue to generate a
pollution flow that correlates more with cumulative production (and due to weathering, continues
even as production ceases). The exact time pattern of pollution is thus hard to predict, but is
bound to lie somewhere between a pure flow and a pure stock problem. We therefore argue that
an extensive margin definition is more appropriate than either an intensive measure of activity,
cumulative production, or the cross-sectional ‘once-on-always-on’ measure.

4.2 Cross-sectional models

Our cross-sectional results reflect the long-run impact of mining. We include restrictive group
effects allow for unobserved local characteristics. As is well known, preferential sorting is likely to
undermine the identification of individual effects. In the cross-section, we are not able to decisively
address this issue, although we do explore its importance to the degree possible by studying the
population of never-movers. Because of the possibility of sorting, the correct way to read our cross-
sectional results is therefore to view them as the long-run effect of mining on ‘mining communities’
(much as a district or county-level study estimates effects on those units). As such, the effect is
identified; and to the degree that regional disparities matter, it is of policy interest. Our difference-
in-differences setup will then allow us to ascertain that impacts are not driven by sorting, and to
make stronger claims about the well-being of ‘people living in mining communities’.

4.2.1 Group effects

Our baseline cross-sectional model bases identification on demanding group effects. In the
preferred specification, we consider outcomes y for individuals or households i in sampling clus-
ter j within no more than 20km a mine, conditional on whether the cluster is close (within 5km)

Perhaps the most natural alternative, therefore, would be to move away from defining treatment as distance to nearest
mine, and instead study effects of mine density in (hopefully quite balanced) panels of administrative units. This
would, however, vitiate the purpose of studying health effects.
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to a mine, and conditional on other covariates X . Because distance is measured between mines
and sampling clusters, the treatment varies at the cluster level, not the individual level. Covariates
always include an indicator for whether the cluster is in an urban or rural setting, and some ap-
propriate measure of the age of the respondent, the respondent’s mother, or the household head.
Because DHS conducts repeated cross-sections, our model allows for repeated measurements of
effects near the same mine, while accounting for year-specific effects in each round of measure-
ments. We therefore use common effects γ for all observations near the same mine surveyed in the
same year (mine-year effects), and account for residual correlations by clustering error terms at the
mine level (not the mine-year level). We compare results to those from a model with less demand-
ing state-year effects (with the obvious modification in Equation 1).13 As is evident, wherever the
outcome of interest is binary, we model it using a linear probability model.

yi = β1closej + β2Xi + γmine−year + εi (1)

Threats to identification would arise if mining towns differed from neighboring communities
in geography, institutions or other characteristics in ways that correlate with potential outcomes.
However, for identification to be undermined, they would have to do so even compared to locations
very close by, because we choose distance cut-offs conservatively. Identification is also only af-
fected by such differences if they are not in some way due to the presence of the mine in long-run
equilibrium. For instance, infrastructure is likely to be affected by mining. Companies may build
railroads and roads; mining consumes water, and might make mining communities water-scarce.
Similarly, mining might have impacts - whether good or bad - on local governance and public
goods. In turn, infrastructure, governance, and public goods likely affect outcomes. Yet, this does
not affect the validity of our reduced-form estimates. Rather, it requires us to show further evi-
dence before we make claims about the mechanisms - crucially, pollution - by which mines affect
local communities.

4.2.2 IV-group effects

To address any concerns over endogenous choice of mining locations, we use the location and
characteristics of mineral deposits to instrument for the presence of mines.14 Work is ongoing to
improve efficiency of the IV estimates; in the present version of the paper, we therefore discuss
preliminary results as a robustness check on our cross-sectional group effects estimates. We use

13As we discuss in Appendix A, our estimates are always only based on observations within 20km of a mine,
including in the state-year model. The latter simply allows for less restrictive group effects than the mine-year model.

14This is similar in spirit to the geographic instruments pioneered by Duflo and Pande (2007).
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deposit information in two simple specifications to instrument for the treatment close, recording
whether cluster j is within 5km of a mine. (Equation 2) First, we deploy a dummy Wald instrument
that simply indicates whether there is a mineral deposit within 5km of a given cluster. In this case,
deposit is scalar, despite the vector notation in Equation 2. In our second specification, deposit

is a vector of dummy variables recording whether there is a deposit with a certain geological
characteristic within 5km of the cluster. In each case, the sample is restricted to clusters within no
more than 20km of any deposit. (See Appendix A for details on implementation.)

yi = β1closej + β2Xi + γstate−year + εi

closej = φ′depositj + δstate−year + ηj
(2)

Because there can be no mine without a mineral deposit, there are neither ‘defiers’ nor ‘always-
takers’ in our setup, and we can interpret IV estimates as the effect of treatment on the treated
(ETTs). Unsurprisingly, the instrument is exceedingly strong. (See Appendix D.) Since the true
global distribution of mineral deposits is clearly exogenous, the instrument is also exogenous, as
long as the assumption holds that there is no preferential prospecting for minerals. We believe
this is very likely the case, given (i) that most of the countries in our sample were surveyed long
ago, in colonial times, and given (ii) that there is little indication that either geographic or political
obstacles keep mining companies from pursuing promising deposits. We also believe that the
instrument is excludable. The most likely violations would be due to topographical features such
as land quality, gradient, or water availability. But because we so strongly restrict our analysis
in space, the exclusion restriction is only violated if these vary systematically between locations
within 5km of a deposit and those within 5-20km of a deposit. For the group instrument, the
restriction is even easier to satisfy: it requires only that the richness of deposits, as defined by
geological characteristics, not be correlated with outcomes other than through mining.

The group instrument is hence attractive in that it requires weaker identifying assumptions.
Regrettably, however, rich deposit information (e.g. more detailed information on geologic char-
acteristics) is only available in the USGS data for a relatively small sub-set of mines. In the present
version of the paper, we present only results obtained from the most widely available informa-
tion, namely, data on which minerals are present at a deposit. This does not mean that the group
Wald instrument compares “gold deposits to copper deposits”, etc. Rather, the data records com-
plex combinations of metals that tend to correlate with other geologic characteristics. Our group
Wald estimates pertain to this subsample only. By way of contrast, coverage of deposit locations

(without further details on characteristics) in the data is comprehensive. For the dummy Wald
instrument, we therefore have good reason to believe that our IV yields a sound estimate of the
general population effect. The Wald instrument also has the advantage of supreme tractability:
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since implementation requires literally no judgment calls that might be sensitive, it is highly ro-
bust.

We note that our cross-sectional instrumental variables strategy can very naturally be extended
to the panel setting by interacting the presence of mineral deposits with world minerals prices.
However, we empirically find that the interaction of deposits with price works well for instrument-
ing for the intensive margin, but is not clearly a strong instrument for the extensive margin. We
therefore leave use of the time-varying instrument for further work.

4.3 Difference in difference estimators

4.3.1 Pseudo-panels

Because of the highly conservative way in which we define the cross-sectional control group
and impose group effects, and because of the attractive characteristics of our instrument, we be-
lieve our cross-sectional setup offers well-identified estimates of the long-run impact of mining on
communities. Still, because of the possibility of sorting, it does not allow us to make claims about
the impact of mining on individuals. Because of the long-run nature of estimates, it also says less
than is desirable about the mechanisms through which mining affects well-being.

An immediate way of addressing both challenges is to construct pseudo-panels from the re-
peated cross-sectional DHS surveys. We construct these in two ways. Firstly, we compare ob-
servations from households surveyed at different times, but near the same mine. Secondly, we
compare children born to the same mother at different times. Plainly, since the data consists of
repeated cross-sections, comparisons in each case are across different individuals.

We then analyze outcomes for individuals i in cluster j at time t− σ . We model outcomes as
being conditional on whether the respondent lived in a community close to a mine at time t − τ ,
and whether the mine was operating at time t − τ .15 The survey year is t, and the indices τ and
σ are chosen, respectively, to refer to the time periods of interest for treatment and for outcomes.
Both depend on the outcome being investigated, and are either the interview year (τ or σ = 0), the
birth year (τ or σ = age), or the year a child was in utero (τ or σ = age + 1). (Obviously, σ ≤ τ )
We allow for time-invariant effects γ either for each mine, or for each mother (in which case

15For each respondent in our sample, we only observe current residence, and how long the household has been
resident. We have no information on previous residence. Therefore, the panel is inherently restricted to respondents
who have lived in the location where they were surveyed at least for τ years. (Although they may have moved to their
present location at a time before t− τ .)
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γmom replaces γmine in Equation 3), and for time-specific effects f(t). (Notice that in the mother-
level panel, while the DiD effect of interest is well identified, the coefficient on close cannot be
estimated, because we do not observe households moving.) We believe country-year dummies and
country linear trends are sufficiently flexible and appropriate for sample size in the mine-level and
mom-level model, respectively. We use these as our baseline models, and show robustness to using
different time effects.

yi(t−σ) = β1closej + β2operatingj(t−τ) + β3closej ∗ operatingj(t−τ)
+β4Xi + γmine + f(t) + εi(t−σ)

(3)

The mother-level pseudo-panel has the virtue of controlling more tightly for unobservable char-
acteristics than the mine-level panel. Perhaps most crucially, it is virtually immune to sorting, bar-
ring complex sorting behavior on changes in expected outcomes over time. However, the number
of mothers for whom we observe birth outcomes both when the mine is operational and when it
is not operational is very small for many indicators of interest. While mom-level estimates are
thus most impervious to identification challenges, they are vulnerable to small-sample issues, and
representative only of a sub-sample of our population. Mine-level estimates rest on larger sam-
ples, but require somewhat stronger sorting assumptions, namely, that sorting is sufficiently slow
relative to the frequency at which the outcomes of interest are measured.

We react to this trade-off in two ways. Firstly, we focus throughout on estimates where the
mom-level results are at least consistent with mine-level results. Secondly, we look for DiD tests
other than the pseudo-panel that are offer similar reassurance against sorting and other violations
of the identification assumptions as the mom-level panel, while conserving more sample size. We
describe these in the following section.

4.3.2 Other DiD tests

For some indicators, our sample is relatively small near mines where there is production in-
formation, so that pseudo-panel estimates encounter power problems, in particular when using
mother-level fixed effects. We therefore leverage the scientific understanding of the health con-
ditions of interest to our study to construct additional difference in differences tests that can be
implemented without the use of time-varying production data. All of these tests are similar in
spirit, but build on different insights into the likely nature of exposure and the organism’s reaction
to it.
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Mine types: Firstly, we make use of the fact that - as discussed above - distinct mine types are
associated with specific pollutants and health effects. This allows us to contrast differences across
distance groups near mines where an effect is expected, and near mines where no effect is expected.
(The effect of mine type alone is collinear with mine-year effects.)

yi = β1closej + β2minetypej + β3closej ∗minetypej + β4Xi + γmine−year + εi (4)

Identification rests on the assumption that potential health outcomes vary among those close
and not close to the mine in similar ways near mines of different types. With respect to sorting, the
assumption would be violated only if respondents were aware of how mine types differ in health
outcomes, and sort accordingly. This is of course conceivable. We address the problem in three
ways. Firstly, we define mine types narrowly, in ways that are plausibly hard to observe. Secondly,
we compare DiD results on health to those on wealth, and show that differences arise for health
outcomes, but not wealth. Thirdly, we show that there are DiD results only for specific expected
health outcomes, not general health.

Timing of birth relative to migration: Secondly, we use the fact that respondents who have
long been resident in mining communities are likely to have been exposed to more pollution.
Specifically, we leverage differences in exposure in utero, and compare among children i born
to migrants before their family moved to mining communities j, and those conceived after move

(and contrast this with the same statistic observed among those who migrated to locations slightly
farther away from the mine). (See Appendix A.)

yi = β1closej + β2conceived after movei + β3closej ∗ conceived after movei
+β4Xi + γmine−year + εi

(5)

The identifying assumption is hence that potential health outcomes do not vary systematically
with the exact timing of birth relative to the move, comparing those who moved to mining com-
munities to those who moved to communities farther away. It would be violated by sorting if, for
instance, pregnant women are more likely to hold off on moving when they are about to move
to mining communities, perhaps because they are weary of pollution, or conversely, if pregnant
women are more likely to speed up relocation, perhaps because they hope for good economic
opportunities. We estimate the model both with mine-year and mother fixed effects.
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Maternal Hgb recovery: Finally, we develop a DiD test based on the observation that in lead-
exposed adults, the recovery of Hgb after blood loss is even more readily affected than the steady-
state level of Hgb. As discussed above, this result was previously proven by studying Hgb recovery
after donating blood. Of course, we cannot identify blood donors in our sample. We do, however,
observe one population group that experiences dramatic drops in Hgb: women who are pregnant,
or have recently given birth. This allows us to formulate a test that asks whether differences in Hgb
between women i in mining and control communities j are particularly affected during pregnancy
and postpartum. In our preferred specification, we estimate the model with state-year effects,
since the number of women we observe within the time period of interest is borderline too small
for allowing for mine-year effects. (We discuss identifying assumptions and extensive robustness
checks below, in Section 5.3.)

yi = β1closej + β2pregnant or postpartumi + β3closej ∗ pregnant or postpartumi

+β4Xi + γstate−year + εi
(6)

5 Results

5.1 Effects on wealth

In the long run, mining towns are wealthier than neighboring communities
Households in mining communities are at the mean considerably wealthier in terms of asset own-
ership than those living farther afield, allowing for unobserved common wealth effects specific to
each mine in a given year.

The magnitude of the effect at the global average is on the order of 0.11 standard deviations
of the asset index. (Table 4) This is a considerable effect, given that in the countries in our sam-
ple, there is generally great within-country variation in asset ownership. In the linear index, the
magnitude of the effect is comparable to that of owning a car or motorbike in the case of Peru in
the year 2000, and to the effect of owning a radio or a watch in the case of Burkina Faso in the
year 2010. (See Appendix C for a description of the index and for examples of factor loadings.)
We argue below that, because of the spatial pattern of wealth effects, the estimate should be inter-
preted as a lower bound on the long-run effect of mining on community wealth. In Appendix E,
we show that our unweighted baseline estimates are considerably smaller than estimates obtained
by (i) weighting each mine equally, or (ii) weighting by estimates of the mine-year population.

Further, as a robustness check, IV estimates of the wealth effect give little indication that endo-
geneity might be driving results in the group-effects model. (Appendix D) The dummy IV estimate
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is not significant (t = 1.35), but the estimated effect is close to the FE benchmark, with a reason-
ably inflated IV standard error. (It is also not statistically different from the effect obtained from
our baseline specification.) The group-Wald result shows a significant and positive effect estimate
above the FE benchmark, though again not significantly different.16

We have argued that, if the object of interest is the effect of mining on household welfare,
rather than on communities, the most salient concern about identification in the cross-section is
preferential sorting. Our panel setup will allow us to decisively deal with this issue. To gather
preliminary information, we analyze cross-sectional results separately for households that report
never having moved from their current location. (Our data does not record previous place of resi-
dence, so we cannot assess out-migration.) We find little difference between never-movers and the
population when we allow for state-year effects, but find considerably (if not significantly) smaller
and weaker wealth effects for never-movers when allowing for mine-year effects. We interpret
this as weak evidence of sorting of migrants with better potential socio-economic outcomes into
mining communities, or sorting of previous residents with better potential outcomes out of mining
communities.17

Wealth results in the panel confirm the cross-sectional pattern
Pseudo-panel results confirm that mining activity is associated with higher wealth in communities
in the vicinity. (Table 5) The DiD coefficient on the effect of living close to a mine in a year when it
is operating is 0.26 standard deviations of the asset index in our preferred specification. While the
estimates vary with different models, they are always large, positive, and significant, whether we
work with mine-level or state-level pseudo-panels, and are very robust to different non-parametric
time controls. In terms of the linear asset index, the effect size is comparable to the impact of
having an electricity connection or living in a dwelling with finished flooring in the case of Peru
in the year 2000, and to the effect of owning a motorbike or mobile phone in the case of Burkina
Faso, in the year 2010. Panel results on asset wealth can be presumed to be more robust to sorting
than our cross-sectional results. However, because survey rounds are generally about five years
apart, there is still the possibility that rapid sorting could influence results.

By way of contrast to the DiD result, the single difference coefficients on whether a mine is
operating are highly sensitive to the non-parametric controls used. That is, there is no stable effect

16As is evident from both FE and IV estimates, the wealth effect is more dramatic for the sub-sample for which the
kind of deposit information used in the group-Wald instrument is available.

17For background, we note that there is only weakly more migration in mining communities than in neighboring
communities. However, in both mining and neighboring communities, the share of migrant households is very high
(around 60% of households migrated at some time, and about 23% migrated within the five years preceding the survey).
Sorting could therefore easily explain cross-sectional differences, if the characteristics of migrants (including those
unobserved households who left the communities) are sufficiently different.
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of mine operations beyond the immediate vicinity of the mine. The single difference coefficients
comparing areas close to mines to areas somewhat farther away tend to be negative, and not signif-
icant. Thus, communities within the direct vicinity of mines were wealthier than those in the more
general vicinity only when the mine was operating. This is of course reassuring for the validity of
our cross-sectional analysis. We also note that the combined effect of living close to a mine during
a year of operation is in the range of 0.1-0.15 standard deviations of the asset wealth index. This
is of the same order of magnitude as the cross-sectional effect; a very encouraging finding for the
external validity of our results, given that the two estimates come from entirely independent mine
data sets. At the same time, the panel effect is slightly larger, as is intuitive for a medium term
effect on the spatial distribution of wealth (recall that panel observations tend to be about five years
apart), as compared to the long-run effect.

Spatial extent of the wealth effect
Wealth effects decay steeply with distance to the nearest mine; communities beyond a distance of
about 15-20km show no effects in either the cross-section or the panel. In the panel, effects are
limited essentially to those living with 5km or at most 10km. (Figures 2 and 3) The difference in
spatial patterns between the cross-section and the panel allows for a number of possible explana-
tions. If both patterns are well-identified, one would argue that the discrepancy reflects the contrast
between short-run and long-run impacts, with further diffusion of wealth effects over time. If we
were not convinced of identification in the cross-section, we might feel that the pattern suggests
that mines tend to locate in places that are already wealthier than their surroundings - but this is not
consistent with the absence of a panel effect on the un-interacted dummy for closeness. Of course,
panel results come from a smaller sample, and simply might be more attenuated.

We have argued that, by comparing those living within 5km of a mine to those within 5-20km,
we estimate the effect of living within the direct vicinity of a mine, compared to living within the
more general vicinity. Figure 3 shows that this is the only first-order treatment effect in the panel.
Yet, patterns in the cross-section are more subtle. As Figure 2 illustrates, the treatment effect in our
definition is smaller than the long-run wealth effect on the direct vicinity of mines, as compared to
those living more than 20km away from the mine. The latter is a multiple of our baseline estimate,
on the order of 0.4 standard deviations of the asset index. The baseline estimate is, however, larger
than the average effect of living within the general vicinity of the mine, as opposed to living more
than 20km from the mine (0.05σ - results not shown).

Even in the cross-section, the estimated spatial extent of treatment effects is smaller than in
the case study analyzed in Aragón and Rud (2013b), who find “positive and significant [income
effects] for households located within 100km of Cajamarca city,” the community closest to the
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mine studied. The discrepancy could be due to the fact that the paper studies a policy change that
can be presumed to be very favorable for local welfare; or the fact that it considers the case of
a very large mine in a region with reportedly high transport cost. In addition, Aragón and Rud
(2013b) have income data available; presumably, a more sensitive measure of well-being than our
asset index. For Ghana, Aragón and Rud (2013a) find (adverse) effects “within 20km of mines”
only, and Kotsadam and Tolonen (2013) find sectoral employment shifts in a 20km region; both
are roughly in keeping with our definition of the general vicinity of a mine, though not with our
treatment definition.

Despite evidence of cross-sectional effects beyond 5km, we maintain as our basic specification
our dummy model using 5km as the cutoff for closeness to a mine. We make this choice because (i)
it emphasizes tight identification, especially given the steep decay of the panel effect, and because
(ii) it serves best our main purpose of analyzing the trade-off between wealth and geographically
limited health impacts. For the purpose of the joint investigation of health and wealth, we read
the spatial pattern in wealth impacts to confirm that our choice of communities within 5-20km of
a mine as a control group corresponds reasonably well to a meaningful definition of being in the
general vicinity of a mine, where communities are economically affected to some degree.

Other dimensions of welfare - health care investment and employment
Beyond asset wealth, we analyze impacts of living in the vicinity of a mine on two additional
dimensions of welfare, namely health care and employment. We briefly summarize prominent
patterns here; detailed results are shown in Appendix F.

There is strong evidence to suggest that in the long run, higher asset wealth in mining commu-
nities goes hand-in-hand with higher insurance coverage, and with a larger share of women giving
birth with some level of skilled assistance. Panel results suggest that benefits may extend beyond
the immediate vicinity of the mine. This is an intuitive finding, and suggests that access to public
goods generated by the mine extends further than direct wealth benefits.

To the degree that our interest is in contrasting wealth and health impacts, we are reassured that
residents of mining communities are no worse off in terms of health care than those living farther
afield, and perhaps weakly better off. We have therefore no reason to suspect that residents of
mining communities should experience adverse health outcomes because they are less well cared
for. The one potential exception to this pattern is that in our mother-level panel, we find significant
decreases in the share of women who gave birth in an improved setting in mining communities
when the mine was operational. The cross-sectional and mine-level panel evidence contradicts this
finding. However, we mention it here because it is at odds with our otherwise consistent evidence
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on wealth. We return to it explicitly when we discuss the recovery of maternal Hgb levels, below,
and show that there is no evidence that our results might be contaminated by differences in maternal
health care.

Regrettably, as mentioned, the DHS surveys contain no information on wages, and have lim-
ited coverage of employment. This prevents us from assessing whether the positive income effects
demonstrated by Aragón and Rud (2013b) for the context of high transport cost in the Peruvian An-
des hold more generally. In the cross-section, unemployment among men is virtually unaffected, as
is consistent with long-run general equilibrium. As is intuitive, the sectoral share of agriculture de-
creases alongside ownership of agricultural land (five percentage points); there is weak evidence of
a counterbalancing increase in manual wage work outside of the agriculture sector. Unfortunately,
due to the small sample of men for whom employment data was collected (nearly exclusively lim-
ited to mining towns in Ghana and Zimbabwe), it is hard to validate the cross-sectional results in
the panel. We note that employment effects are nearly always negative in sign - consistent with
cueing - but caution that the estimates are noisy and not stable.18

5.2 General health

In the following sections, we will demonstrate that residents of mining communities suffer
from specific health impacts known to be associated with heavy metal pollution. Before we discuss
these patterns, we show here that there is no systematic evidence of poor general health in mining
communities. (We also show in Appendix F that we find no indication of greater sexual risk taking
or substance abuse, consistent with Wilson (2012).)

For the cross-section, Table 6 shows that only in one instance (diarrhea in children under five
years of age) is there a significant adverse health effect on children or adults among the general
population living near any mine.19 Appendix G shows similarly sparse patterns among never-
movers, and for differential effects near heavy metal mines. We also observe that there is never
a differential general health impact of living near any mine or a heavy metal mine on infants -
an important falsification finding to which we return below. On the contrary, in the cross-section,
infant and under-five mortality rates decrease weakly among all households, and significantly and
strongly among never-movers. This result is of course consistent with greater wealth in mining

18We refer the reader to Kotsadam and Tolonen (2013) for a detailed discussion of effects on women and sectoral
shifts in sub-Saharan Africa.

19We test for differences in all available health indicators - as noted, the DHS surveys contain much less data on
adult health than on child health, and the selection of adult health outcomes is slim. We show no results for men’s
health outcomes, since the samples are very small and the results correspondingly uninstructive.
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communities, and indeed, spatial patterns in mortality rates virtually mirror patterns in wealth.
(Figure 4)

Panel results show no significant adverse health impacts at all, whether on adults or children.
(Table 8. See Appendix H for additional model specifications.) The estimated effects are bene-
ficial in the one instance in which coefficients are significant (reduced diarrhea among children
in the mom-level model), and the few other instances when they are borderline significant. Panel
results do not show a significant decrease in mortality, although the sign on the DiD coefficient is
negative.20

General health results are of some interest in themselves - it is perhaps instructive to know that
residents of mining communities at the global average are not indiscriminately less healthy than
their peers. However, they must be read with some caution. In the context of our quasi-global
study, the evidence of specific health impacts we show below is compelling because it confirms
predictions from theory. Where there is no clear theory, the absence of mean effects must not be
read to have any predictive power. Rather, we present these results here first and foremost as a
falsification test. The absence of such effects will serve as prima facie evidence to make plausible
that specific health impacts are due to pollution, not other mechanisms.

5.3 Evidence of hematotoxic effects

We have argued above that exposure to lead among residents of mining communities may affect
the hematopoietic system and reduce red blood cell survival. In the DHS data, we observe only
a single indicator of potential hematotoxicity - blood Hgb concentrations. As argued in Section
2.4, we would expect most strongly to see a reduced ability to recover from blood loss in adults,
alongside perhaps depressed Hgb levels. In children, we might expect to see reduced blood Hgb
levels, though in the age group we observe, children are likely able to compensate for lead expo-
sure. Our results confirm this expectation: we find strong evidence of lower Hgb levels and slower
Hgb recovery after blood loss in adult women, and limited weaker evidence of lower Hgb levels in
children.

20We do not further investigate whether the difference between the cross-section and the panel is due to sorting or to
the pace at which effects unfold; for our purposes, it is sufficient to establish here that there is certainly no evidence that
mining communities are worse off in terms of mortality than those farther afield, and some evidence to the contrary.
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Hemoglobin levels in adult women are strongly depressed in mining communities
In the cross-section, blood Hgb levels are depressed among women living in mining communities
by about 0.09 g/dL. The effect among never-movers is larger (0.13 g/dL), consistent with longer
exposure to environmental lead, although (on this smaller sub-sample) it is just below significance
(t = 1.56). Considering directly the clinical outcome of anemia, we find that prevalence is signif-
icantly elevated by three percentage points among all households, and by five percentage points
among never-movers. Estimates in the state-year model are attenuated.(Table 8)

Panel results confirm these patterns. Point estimates are larger, with DiD coefficients of a 0.33
g/dL decrease in blood Hgb, and nine percentage point increase in the incidence of anemia in our
preferred specification. (Table 9) A number of causes could account for the larger point estimate
in the panel; notably, the share of metal mines associated with lead pollution is higher in the panel
sample (and, as we show below, the treatment effect is concentrated near such mines). In the
long-run, there might also be more adaptation to avoid pollution.

The size of the effect can be compared, for instance, to changes in Hgb on the order of 1g/dL
associated with treating anemic pregnant women with a course of iron supplementation. (Sloan
et al. (2002)) That is, we obtain a general population effect estimate on the order of one-tenth
to one-third of the effect of a targeted intervention in a highly susceptible population. Another
point of comparison is the drop in blood Hgb during pregnancy and the first year post-partum,
estimated in our sample to be on the order of 0.44 g/dL (compared to women who gave birth two
or three years ago, and among women living at least 20km away from a mine). The increase in
the incidence of anemia is a large effect in absolute terms, but must be seen in the context of a
baseline proportion of anemic women of 35-37% in control locations. That is, the cross-sectional
effect amounts to an 8-9% relative increase in incidence, and the panel effect, to a 24-26% relative
increase.

We note that the single difference coefficient in distance suggests that when the mine is not
operational, residents of mining communities have higher Hgb levels than the control group. This
is perhaps a surprising finding, given that our wealth results showed a zero or weak negative effect
in mining communities when the mine is not operational. (Table 5) However, it further reassures
us against any concerns that geographic features, for instance altitude, might be driving the results.
It might be an additional factor in the difference between the cross-sectional and panel effect sizes.

We adduce two additional tests, both to further bolster identification, and to help establish that
pollution, rather than other possible causes, is the likely cause of depressed blood hemoglobin. (i)
Firstly, we show that Hgb effects are only observed near mines where the combination of minerals
mined suggests that lead contamination is likely to be present, and show that these mines do not
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differ from others in the wealth and general health of residents. (ii) Secondly, we provide direct
evidence of reduced ability to recover Hgb after blood loss, with less of pronounced differences in
levels - an effect that is hard to reconcile with any cause other than lead toxicity.

We observe effects on hemoglobin levels only near mines where we expect heavy metal pollu-
tion
We first show cross-sectional difference-in-difference results comparing the effect of living close
to a mine of a type where contamination with hematotoxic metals can be expected to living close
to other mines.21 As noted (in Section 3.2.1), our definition of such ‘heavy metal’ mines includes
lead mines, and polymetallic mines that are often associated with the release of lead and other
toxic metals. We also include all metals processing sites, because the pollutants emitted are similar
(with an additional burden of SO2 emissions). We expect this definition to be a meaningful but
far from perfect proxy of the probability that heavy metals are released into the environment, and
assume that DiD estimates will be attenuated from the true difference between heavy metal and
non-heavy metal mines.

DiD results show that effects on Hgb levels are statistically zero (and mildly negative) in
women living near mines where there is less reason to expect heavy metal contamination. (Ta-
ble 10) However, in mines where there is a high likelihood of such contamination, Hgb levels are
strongly and significantly depressed - by about 0.22 g/dL relative to women living farther away
from the same mines, and by 0.19 g/dL compared to women living near non-heavy metal mines.
Correspondingly, the incidence of anemia is five percentage points higher compared to women
living near non-heavy metal mines (compared to women living further away from the same mines,
it is six percentage points higher). The size of the cross-sectional effect near heavy metal mines is
far closer to the panel effect than the average effect in the cross-section (as alluded to above).

The DiD effect is robust to including interactions of the treatment dummy with region indica-
tors (hence allaying any concerns over geographical clustering of heavy metal mines), as well as
to including an interaction of the treatment with a pregnancy dummy. We note that there is a sig-
nificant negative effect of living near any mine in Latin America (the base category for the region
interaction), perhaps due to the imperfect nature of our definition of heavy metal mines. The effect
near any mine is statistically zero for the other regions. We then estimate the same model for the
asset index, and confirm that there is no differential wealth impact of living close to a heavy metal
mine, as opposed to any mine. We also show that we do not observe similar differential effects of
living near a mine associated with heavy metal contamination on two additional indicators of ill

21A similar test is hard to construct for the panel, since mines that are potentially associated with heavy metal
contamination make up a very large part of the sample.
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health among women, namely miscarriage, and grave sickness (as discussed above, there are also
no differential effects on children’s health).

The trajectory of maternal Hgb recovery after birth in mining communities corresponds with
known pathophysiological patterns
The left panel in Figure 5 shows the pattern of recovery from blood loss during pregnancy and
delivery among women living close to heavy metal mines, and those living in adjacent areas. Hgb
levels conspicuously diverge during pregnancy, and stay apart during the first one and one-half
years of the child’s life. However, thereafter, they converge to an apparent noise pattern about
a common mean. (The right panel shows the same data, with effects smoothed out for the nine
months from conception to birth, and each year of the newborn’s life, thereafter.) The pattern is
characteristic of a pollution-induced decreased ability to recover Hgb after blood loss, as described
in Grandjean et al. (1989) and discussed above, in Section 2.4.1, but not of other causes of anemia.

While the pattern is visually striking, given limited sample size, it is too strong a test to assess
the difference between coefficients for the two distance groups in each individual trimester. Instead,
we test for the difference in differences between the groups across two time periods: pregnancy and
the first year of the infant’s life (when there is the clear impression of divergence), and the second
and third years of the child’s life (when there is not). The results presented in Table 11 show that
the DiD coefficient is negative, large (0.26 g/dL), and significant. That is, the difference in Hgb
levels among women exposed to mining and other women is far greater during and after blood
loss due to pregnancy and delivery, than after some time has passed since delivery. The single
difference in distance is negative, consistent with the cross-sectional effect estimate. It varies in
between one-half the size and the full size of the cross-sectional estimate, but is far from significant
on the smaller sub-sample of women who are pregnant or have given birth recently. As expected,
Hgb is dramatically lower in all women during pregnancy and in the first year post-partum

The pattern is similar when we estimate the model with mine-level group effects, as shown
in Column (2); because of the small sample size and strong identification from the DiD setup,
we prefer the state-level model. In our baseline model, we consider a postpartum period of three
years. This seems more appropriate than shorter periods because the detailed time pattern of Hgb
recovery shown in Figure 5 suggests that differences even out only in the second year of the child’s
life. It seems more appropriate than longer periods because extending the window too far weakens
identification if birth spacing relates to wealth and potential health outcomes. Columns (3-5) show
that the effects are robust to extending the post-partum control period to four or five years; they are
directionally consistent but insignificant when we shorten it to just two years.
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Alternative explanations for the pattern of Hgb recovery after delivery are harder to come by
than those for single-difference difference in Hgb levels. Because the test uses as a counterfactual
women whose most recent birth lies somewhat more in the past, identification requires only that
the precise timing of pregnancies is ignorable within a limited time window. However, somewhat
complex behavior patterns could generate the observed effect. Perhaps most simply, wealth could
be associated with different child bearing choices in mining communities and control locations.
For instance, it might be that wealthier women (with higher baseline Hgb levels) tend to have
fewer children or space out births more in mining communities than in communities farther afield
- perhaps because of better earnings opportunities. The DiD effect could then be due to comparing
(relatively) poorer women in mining towns to richer controls in the pregnancy and post-partum
group, and (relatively) wealthier women in mining towns to poorer controls for the following
years.

To conclusively assess this concern, we first (i) refer to the falsification finding discussed above
(in 4.2) that indicated that in terms of general health, infants are not more strongly affected than
older children by closeness to any mine or to a heavy metal mine. This is not what one would expect
if women with poorer health outcomes tended to have more children in mining communities than
in other communities. Furthermore, we (ii) test for DiD effects in asset wealth. Column (9) shows
that there are no significant effects. However, since the sign of the coefficient is negative, we (iii)
also show results for Hgb recovery when we control directly for the household’s asset wealth, the
woman’s height, or whether she gave birth in an ‘improved’ setting. (As we have shown, asset
wealth is clearly endogenous to mining. Height is a wealth proxy that is plausibly endogenous
only in a sub-sample, namely among women who lived in their current location when they were
growing up, and in communities with a long history of mining.) As is evident from Columns (6-
8), the DiD effect is not sensitive to these controls. Finally, we (iv) show a placebo regression,
in which we select mothers observed in the same states and years as those in our DiD sample,
but in locations at least 20km away from any mine, and define as a placebo treatment the fact
of a household being in the bottom wealth quintile, as opposed to the top quintile. As expected,
Columns (10-12) show that women in poor households always have lower Hgb levels than those in
wealthy households - but there is no indication of a particular time pattern around pregnancy and
postpartum, with placebo DiD coefficients near zero.

In summary, we obtain two DiD tests by disaggregating effects, first among mine types, and
then with respect to recent pregnancy. The results are instructive both with respect to mechanisms
of treatment transmission and with respect to identification. In terms of mechanisms, they offer
strong evidence that the observed health effect is caused by pollution, not other facets of life near
mines. For instance, if the observed effect on Hgb were due to iron deficiency or malaria infection,
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nutritional behavior and infection rates would have to vary in systematically different ways near
metal and non-metal mines, and among pregnant and non-pregnant women across distance groups,
despite the fact that socio-economic outcomes do not vary in such ways. The results provide reas-
surance on identification, most importantly because they are very hard to explain with preferential
sorting. Because mine types differ in health impacts, but not in wealth impacts, one would have
to hypothesize that in their migration decisions, people not only take mine type into account, but
also differentially sort on their potential health and wealth outcomes. (We have discussed above
the corollary for Hgb recovery.) This would require an extraordinary level of sophistication and
information.

Patterns of anemia among children mirror those among women, but are less conclusive
Our data shows patterns of anemia among children in mining communities that resemble those
found among adult women. However, significant results are hard to come by. This may be because
the true treatment effect is weaker - we have noted above (Section 2.4.1) that young children are
known to be able to effectively compensate for the hematotoxic effects of lead. It may also be
due to small sample size (for children, we only have about half the number of observations in the
women’s sample), and the fact that the anemia effect appears to depend on age, with the youngest
children the most affected. Because the evidence is inconclusive, we discuss results relatively
briefly.

In the cross-section, we observe decreases in blood Hgb in children of about 0.07-0.09 g/dL
(significant only with state-year group effects, rather than mine-year effects), with insignificant
increases in anemia on the order of two percentage points. (Table 12) The panel shows statistically
insignificant losses of 0.32 g/dL from current exposure, but insignificant gains from consistent
exposure. (Table 13, Columns 4-5) When disaggregating by mine type, the effect is strongly
concentrated near heavy metal mines, but the DiD coefficient is again not significant. (Table 14,
Column 3)

Because we have shown that in mining communities, women (and pregnant women in particu-
lar) tend to be anemic, and because it is known that children are born with a lead burden mirroring
that of their mothers, we explore whether infants might be more strongly affected by pollution than
older children. Results are listed in Table 14. When we consider impacts on infants only, we find
a larger but insignificant effect on Hgb (0.14 g/dL), with no differential impact on the incidence
of anemia, relative to infants living farther away from the mine. (Columns 5 and 10) However,
the differential impact on infants near heavy metal mines (Columns 7 and 11) is both significant
and large. The triple-difference coefficient shows a 0.56 g/dL difference in Hgb levels, with an in-
crease in anemia incidence of 15 percentage points, and a nearly identical difference in differences
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between the effect on infants near heavy metal mines and other mines. However, we caution that
infants born in the direct vicinity of heavy metal mines tend to live in poorer households. (Column
8) As shown above, we did not find such a correlation between mine type and wealth in our analy-
sis of hematotoxic effects among women living near heavy metal mines. The fact that we do find
it here makes it less compelling to interpret the difference among mine types as evidence that the
health impacts are due to pollution.

5.4 Evidence of adverse growth outcomes

As noted, exposure to environmental lead has previously been linked to decreased growth early
in life. However, the evidence is mixed. In the following, we consider impacts on height for age,
and the incidence of stunting (height more than two standard deviations below the age-appropriate
median), as well as on absolute birth weight and the incidence of low birth weight (less than
2,500g). We find strong evidence of lower height among infants exposed to a mining environment,
and evidence of lower height in older children, but little indication of reduced birth weight.

In the long-run, children in mining communities grow taller than their peers; they are born
with equal birth weight, but are likely to be born less tall
In the cross-section, we observe better outcomes for height among children of less than five years
of age in mining communities (including near heavy metal mines) than in the controls, and no
differential impact on birth weight. (Table 15) This may not be surprising: growth is strongly
linked with nutrition, and with greater wealth in mining communities, there may also be better
diets.

However, the evidence is somewhat more subtle. Firstly, there is no indication of a positive
effect among never-movers. This is certainly consistent with a higher likelihood of exposure to
pollution, both directly and through the maternal body burden of lead - although it could of course
also be due to sorting or the somewhat lower though not statistically different economic benefits
among never-movers as compared to the general population. More intriguingly, although we find
no differences in birth weight, height is affected in infants born near heavy metal mines. We
do not find a differential impact on stunting in all children under five years of age among mines
where contamination with heavy metals is to be expected. However, for infants, the differential
effect of closeness to a heavy metal mine matters: the triple-difference effects are adverse, and
significant in the case of stunting and severe stunting. The DiD comparing the treatment effect of
closeness on infants near metal mines and other mines amounts to a loss of 0.1 standard deviations
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in the height measure, and a four and two percentage point increase in the incidence of stunting
and severe stunting, respectively. (Table 16) There is no difference between mine types in the
economic status of families with infants. (Columns 7 and 8) As a falsification test, we show that
there is no differential impact of closeness to a heavy metal mine on birth weight among infants,
as expected. (Columns 9-12)

While the cross-sectional evidence is mixed, it thus points to an adverse effect of in utero

exposure on height (though not birth weight) that then either dissipates with age, or is reversed by
some countervailing positive impact.

Panel evidence shows that in utero exposure to mining increases the incidence of stunting
Results from the mine-level pseudo-panel confirm that there is no effect of mining activity on birth
weight, that there is an effect on height, and that the latter is chiefly due to exposure in utero, and
attenuates with age. It also allows us to at least suggest that there are genuinely positive effects of
life in mining communities on growth in older children, so that children do not simply ‘out-grow’
the effects of in utero exposure without further exposure, as earlier reported by Shukla et al. (1991).

The DiD effect of in utero exposure among all children under five years of age shows a loss of
0.14 standard deviations in the height index, and a five percentage point increase in the incidence
of stunting and severe stunting (over a baseline incidence of 23% and 8%, respectively). (Table 17,
Column 1) The effect on the discrete outcomes is significant and robust; the one on the continuous
measure not significant (t = 1.39), but stable. In the case of the continuous index and of stunting,
the effect is larger and stronger when we estimate it for infants only. (Column 2 and 12)

The estimated effect of exposure during the first year of life is centered near zero for the con-
tinuous index, and adverse for the discrete outcomes. (Column 3) Results when estimating in
utero and birth-year effects jointly are more instructive. (Column 4) We find robust, stable, and
large adverse effects of in utero exposure on the continuous index (0.5 standard deviations) and
the discrete outcomes (an increase in incidence of eight and seven percentage points, respectively),
alongside stable (and in one case, significant) beneficial effects of birth-year exposure. This is at
least consistent with exposure to maternal lead loads in utero, alongside positive effects from the
socio-economic benefits of mining, once the child is born. (Since mine operation in utero and dur-
ing the first year of life is highly correlated, this finding also mechanically explains the relatively
subdued effects from the single-year regressions.)

While it is attractive to allow in utero and birth-year effects to jointly enter into the model,
the sample of children born just before and just after a mine opened or closed is small.22 To

22The DHS surveys record only health data from children born no more than five years before the survey time. This
helps identification, but limits sample size, in particular where we use mother-level effects.
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further solidify the result, we therefore show that a similar pattern emerges when we first estimate
separately the effect of the mine operating during the survey year (Column 5), and then compare
this estimate to the one obtained when we include also the effect of the mine operating during
gestation. (Column 6) Similarly, for height-for-age and stunting, there is an attenuated effect of
continuous exposure from conception to the survey time, contrasted with children who have never
been exposed. (Column 7) Both results conform with a push-pull between pollution and socio-
economic effects, and are less consistent with a mere attenuation of impacts as in Shukla et al.
(1991).

In Table 17, the last three columns for each outcome variable (e.g. column 8,9 and 10) show
that, when we estimate the effects of in utero and birth-year exposure with mother-level effects, the
results match the pattern found in the mine-level panel, but are not significant. This is regrettable,
but perhaps to be expected: although we observe more than 2,000 women near mines in our sample
for whom our data records child growth outcomes for at least two children born within five years of
each other, the sub-sample of mothers with births both while the mine was operational and while
it was not operational is now very small.

Patterns among children born to migrants provide further evidence of adverse effects on
growth
Because the panel evidence suggests that it is in utero exposure to mining that matters for growth
outcomes, we are able to leverage differences in the timing of exposure among children born to
migrants for an additional test. More precisely, we compare measures of growth in children born
to migrants - before and after migrating (in our preferred specification, within four years at most),
and born to mothers who moved to locations close to a mine and those who moved to slightly more
remote locations. (For details on how exposure groups are defined, refer to Appendix A.) This
strategy uses the cross-sectional mining data, and therefore helps generate a larger sample.

The DiD estimate of the effect on height-for-age of moving to a mining community before con-
ception is a 0.36 standard deviation adverse effect when controlling for mother-fixed effects, and
a 0.11 standard deviation insignificant adverse effect when allowing only for mine-year effects.
(Table 18) When we discard any observation for which treatment status is ambiguous, results in
the mother-level model are consistent in sign and approximate magnitude, but strongly attenuated.
This is as expected, given that the ‘donut hole’ approach strongly restricts and already small sam-
ple. In the mine-year model, estimated effects are larger and stronger than in the single cutoff
model. This is again intuitive, since the ‘donuthole’ definition likely reduces measurement error
in the treatment variable, but in the mine-year model, achieves this without reducing sample size
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too drastically. The results are reasonably stable when we change time window around the time of
migration. Additional robustness checks are provided in Appendix I.

For birth weight, we observe a large and significant adverse effect on the order of 160g-190g
when we compare births to the same mother, but no impact when we allow only for mine-level
effects. We can think of no obvious explanation for the divergence between the mine and mom-
level models - in particular since sorting is unlikely to be an issue.

6 Correlates of Treatment Effects

We conclude our analysis of the local welfare effects of mining by showing how treatment
effects vary with some characteristics of the local economies. To this end, we regress mine-level
estimates of the effect of closeness to the mine on variables describing the economic, geographic
and policy features either of the countries or the sub-national administrative units where the mine
is located. We describe in Appendix E the process of obtaining mine-level estimates; estimates
can only be obtained for a sub-set of mines in our sample. We also note that, while our aggre-
gate estimates are well-identified, the correlates of treatment effects we show here have no causal
interpretation.

With these caveats in mind, we describe three noteworthy patterns. First, we show that in a
regional disaggregation, residents of communities near mines in sub-Saharan Africa benefit more
in terms of wealth, and suffer less in terms of health impacts, than residents of mining towns else-
where. Secondly, the data suggests that the economic benefits to mining communities are greatest
where the overall economic environment is poor. (This result has a weaker correlate in health
effects.) Finally, we note that, while we find no compelling evidence that effects vary with gen-
eral measures of the quality of governance, participation in the Extractive Industries Transparency
Initiative (EITI) does correlate with greater wealth benefits.

Figure 6 shows the distribution of mine-level coefficients for the effect of closeness on wealth
and women’s hemoglobin. We note, first, that, while there is a wide range of effects, there is no in-
dication that outliers are driving results. Median effects go in the same direction as the global mean
effect. A regional disaggregation of treatment effects shows economic gains in all regions, includ-
ing the two most comprehensively represented in the sample - Latin America and the Caribbean
and sub-Saharan Africa. (Figure 7) Economic benefits are substantially higher in sub-Saharan
Africa, and (perhaps in consequence, given our reduced-form estimates), mean health effects near
African mines are statistically zero, while they are strongly negative in the other regions. (Table
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19, Columns 3 and 13) The distribution of coefficients by country is displayed in Figure 8; as is
evident, there is great variation in treatment effects even within world regions.

We find evidence to suggest that wealth effects in mining communities are strongest where
the economic environment is weak. This can be interpreted to suggest that the local economic
effect of mining is driven not by the interaction of mining with other economic activity, but by the
opportunities mining provides in areas where there is a paucity of other options. Thus, the local
wealth benefits of mining matter less in country-years with high GDP. Differences in GDP largely
absorb the regional disparities reported above, although the sample is too small to yield conclusive
evidence. Similarly, the expected economic benefits are lower (if never negative) in states with high
average levels of schooling; indeed, poor human capital dominates GDP as a predictor. Yet again
similarly, mining has less influence on the economic prospects of local communities in areas with
good access to the sea, and in areas with good access to electricity (although the effect correlates
only weakly with problems with access to land, and does not correlate with average travel time to
the nearest city). The relationship of effect estimates with the aggregate measure of institutional
quality defined in Gennaioli et al. (2013) is weak but consistent with the other evidence (better
institutions are associated with weaker effects). We find no correlation with dimensions of the
World Bank’s CPIA (not shown).

In light of the absence of strong correlations with general governance measures, it is notewor-
thy that we do observe stronger wealth effects in surveys conducted in countries at a time when
they had at least completed an EITI report - whether they were in compliance or not. (We cau-
tion again against a causal interpretation of this correlation.) The EITI initiative is recent, and
hence, few mines are observed after completion of a report. Since engagement with the EITI pre-
dates completion of reports, we also show the correlation between effects and a dummy recording
whether a country participated in the EITI at any point in time. When we use the latter definition,
we find weak but consistent positive effects.

In the smaller sample of mine-level effects on hemoglobin, the estimated impact is more ad-
verse in country-years with higher GDP. (There is no conclusive evidence of correlates of treatment
effects other than GDP; we omit results for conciseness.) Stronger adverse effects in wealthy coun-
tries are consistent, of course, with weaker socio-economic benefits, and hence, potentially weaker
compensation for pollution effects. However, whereas there was no indication of a curvature in
the relationship between GDP and local wealth effects, the relationship between Hgb effects and
GDP exhibits a distinct inverse-U shape. That is, adverse health effects are strongest in the poor-
est and the wealthiest countries in the sample. It is noteworthy that the data shows more adverse
effects in the poorest countries, despite the fact that it is here that wealth effects are strongest.
Possible explanations include a lower wealth elasticity of health spending in poorer countries, or
an independent effect of poor regulation; we are not able to assess these pathways conclusively.
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7 Conclusion

Summary
We present the first comprehensive empirical assessment of the health-wealth tradeoff in commu-
nities near mines, using micro-data from 44 developing countries. In communities in the vicinity
of mines, we observe important economic benefits, alongside serious health impacts, namely in-
creases in the incidence of anemia in adult women, and of stunting in young children. These health
impacts have previously been observed at levels of exposure to lead pollution that are known to
also cause cognitive deficits in children.

We obtain estimates of short to medium-term effects from mine-level and mother-level pseudo-
panels. Long-run cross-sectional estimates come from a group-effects model; we confirm them
with IV results that use deposit location and characteristics to instrument for mine locations.
To make plausible that the observed health impacts are due to pollution, we develop additional
difference-in-difference tests that leverage (i) the association of certain mine types with lead pol-
lution, and (ii) known pathological patterns of Hgb recovery in adults exposed to lead.

The economic benefits to mining communities in the long run are on the order of 0.1 standard
deviations of a country and year-specific asset index. Short to medium-term benefits to households
in communities near operating mines are larger, on the order of 0.3 standard deviations. Benefits
are strongly concentrated within the immediate vicinity (5km) of mines, and there are no asset
wealth effects at all beyond some 15-20km. Benefits in terms of healthcare extend beyond the most
direct vicinity of mines, although mining communities benefit at least as much as communities
farther afield.

The minerals mined in a given location are tightly associated with a range of pollutants likely
to be present in the environment, and the latter, with specific health conditions. We particularly
leverage the association of polymetallic (Copper, Gold, Lead, Silver, and Zinc) mines with lead
and other heavy metal pollution. We focus on analyzing impacts in mining communities on two
known consequences of lead exposure - namely, anemia in children and adults, and growth deficits
in children. The evidence conclusively reveals that the real economic benefits generated in mining
communities go hand in hand with increases in the incidence of anemia, by three to nine percentage
points in adult women. There is weaker but consistent evidence of similar effects in children.
Children in mining communities are not disadvantaged in all aspects of physical growth. Yet,
young children in mining communities are far more likely to be stunted or severely stunted than
those born in control groups, with an increase in incidence of five percentage points. There is very
limited evidence of reduced birth weight, and increases in stunting are clearly strongest among
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infants, and may persist less among older children. We show that by contrast to previously reported
results, our data suggests that it is in utero exposure to mining that matters for growth impacts
in children, and that such impacts do not exclusively result from prolonged exposure - at least
when we consider reduced-form impacts among a population where there are significant economic
benefits from mining operations.

This paper has shown reduced-form results throughout. To make plausible that the observed
health impacts are due to pollution, we demonstrate that impacts on known consequences of lead
exposure are by far the strongest near mines where pollution with lead and other heavy metals is
particularly likely. We also show that women who live close to mines recover more slowly from
blood loss during pregnancy and delivery, a pattern characteristic of lead exposure. By way of
contrast to these specific health impacts, there is no general pattern of ill health across all min-
ing communities, nor is there such a pattern in communities close to mines where heavy metal
contamination is to be expected.

Contribution to the literature
We hope to contribute to the literature in three distinct ways: by presenting the first comprehensive
assessment of the local welfare effects of mineral mining; by highlighting the presence of a wealth-
health trade-off in a major industry in developing countries; and by complementing the case study-
based public health literature with a broad and well-identified assessment of overt health effects in
the general population exposed to every-day mining operations, across a wide range of developing
countries.

The fact that we find adverse health effects even in the presence of economic benefits poses
an important puzzle. The standard framework of utility optimization over health and consumption
does not easily yield an optimal choice of worse health alongside higher wealth among residents
of mining towns. Possible explanations include limited information - we have argued above that
contamination near mines may not always be easily observed, and that its health impacts may not
be widely known. The fact that we find strongly raised wealth levels, but only weakly better health
care among households in the direct vicinity of mines at least suggests that residents of mining
communities are not making very decisive health investments to compensate for exposure to pol-
lution. An alternative explanation might suggest that the cost of avoiding exposure to pollution is
high, perhaps because decision on whether to live in mining towns in developing countries is less
like choosing an optimal distance along a continuum, and more like a discrete choice between two
stark options - namely living either in relatively unpolluted communities outside of a reasonable
commuting distance of the mine, or in a highly polluted but economically active community ad-
jacent to the mine. The fact that in our analysis of correlates of treatment effects, we observe the
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greatest wealth effects in areas that are economically less active is certainly consistent with such a
situation.

Policy implications
We conclude by highlighting some policy implications of our results.

Firstly, we note that, while we must leave open the exact magnitude of aggregate health dam-
ages,23 the presence of an observable health externality due to normal operations at mines in our
sample suggests that containment and remediation of mining pollution need to be revisited. The
cost to affected individuals is clearly very significant, with estimates of productivity losses due to
anemia in adults have been estimated to be on the order of 5-17%. Yet, the case for added scrutiny
is even more urgent: we work throughout with reduced-form estimates, so that our findings should
be read as compensated health impacts. As Graff Zivin and Neidell (2013) note, “optimal regu-
lation will occur at the point where the marginal costs of regulations ... are equal to the averted
health, avoidance, and medical costs associated with that marginal reduction in pollution”. (p.
12) The policy-relevant uncompensated cost of health effects may therefore be considerably larger
than the reduced-form results reflect.

Secondly, we have noted that the presence of adverse health impacts in a wealthier population
may suggest either that there is insufficient information on the health risks associated with mining
pollution, or that the cost of avoiding exposure to pollution is very high - perhaps because of where
housing is available, and the quality of public transport. Information deficits would be more easily
addressed than infrastructure deficits. However, since we also find that health impacts are limited
to the immediate vicinity of mines (consistent with prior evidence on the extent of pollution), there
may be some scope for policy to protect residents from the worst pollution.

Finally, empirical evidence on a high but localized wealth impact of mining suggests that min-
ing will tend to generate spatial inequalities. These need not necessarily be of concern, but could
be worrisome where they undermine political stability, or lead to dynamic inefficiencies in access
to schooling and economic opportunity.

23Estimating the aggregate cost of health impacts is complicated by data limitations; we show illustrative calcula-
tions in Appendix J.
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Figure 2: Effect of closeness to mine on asset wealth

Figure 3: Effect of mine operating on asset wealth
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Figure 4: Infant mortality and assest wealth near mines

Figure 5: Effect of closeness to mine on maternal Hgb recovery
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Figure 6: Distribution of mine-level coefficient estimates

Figure 7: Regional distribution of treatment effects
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Figure 8: Distribution of mine-level coefficients by country
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Table 1 - Mine types and pollutants

Mine type Pollutants of concern
Health effects of particular concern from plausible

exposure levels

Polymetallic mines Heavy metals, especially lead
Neurodevelopmental damage, anemia, growth

deficits (from Lead)

Small-scale gold and silver mining Mercury Renal problems, neurological conditions

Large-scale gold mining Cyanide Heart irregularities, thyroid problems

Bulk metal mines Particulates Respiratory problems, GI problems from turbid water

Coal Particulates, radionuclides
Respiratory problems, GI problems, lung cancer, non-

cancer respiratory disease

Phosphate rock Radionuclides Lung cancer and non-cancer respiratory disease

Quarries, including diamond mines Particulates Respiratory problems, GI problems from turbid water

Smelters Heavy metals, SO2 As above, and respiratory problems

Note:  based on ATSDR Toxicological Profiles, Alloway 2013, Ripley 1996, Wright and Welbourn 2002. Categories are not exclusive. Health effects as reported from
chronic low-level environmental exposure.

Page 1



Table 2 - Sample size

Pooled DHS Within 5km of a mine Within 5-20km of a mine
Households 1,192,492 37,608 132,797
% of total 3.2% 11.1%
Children under five years of age 1,364,156 31,964 121,519
Women aged 15 and over 2,877,024 87,234 310,096
Men aged 15 and over 2,717,928 82,973 294,723

Countries
Interview years
Survey rounds

Note: sample size based on all mines excluding quarries.

Overall sample size

With observations within 20km of a mine
44
25
104



Table 3 - Sample of mines

All developing-
country locations

With DHS cluster
within 20km

With DHS cluster
within 5-20km

With DHS cluster
within 0-5km

With DHS cluster
in both distance

categories

USGS
All entries 25,068
All entries excluding quarries 21,190 838 687 339 226

Of which:
   Active mines 3,839
   Legacies 7,526
   Unmined deposits 9,525
   Smelters 300

RMD
All entries excluding quarries 508 455 225 172

Infomine
All entries excluding quarries 7 6 4 3

Mines and mineral deposits

Mines



Table 4 - Cross-sectional effects on asset wealth

(1) (2) (3) (4)

HH close to mine 0.105*** 0.105*** 0.0784* 0.102***
(0.035) (0.0314) (0.0423) (0.0349)

N 90,319 90,319 31,079 31,079

R-squared 0.094 0.152 0.081 0.203
Number of groups 1,562 554 1,371 441

FE Mine*year State*year Mine*year State*year
Other controls

Asset index
All HHs Never-movers

Quadratic in household head’s age; urban/rural dummy.

Standard errors clustered at the mine or state level. ***, **, and * indicate statistical significance at
the 1%, 5%, and 10% level, respectively.



Table 5 - Asset wealth in the panel

(1) (2) (3)

HH close to mine -0.0555 -0.113 -0.0874
(0.0878) (0.089) (0.0954)

Mine operating 0.0651 -0.0296 0.0639
(0.0566) (0.0348) (0.133)

0.159* 0.262*** 0.229**
(0.0821) (0.0958) (0.105)

N 22,579 22,579 22,579
R-squared 0.153 0.13 0.152
States 141
Mines 218 218

FE State Mine Mine
Time effects Country*year Country*year State*year

(4) (5) (6)

HH close to mine -0.0381 -0.0352 0.0128
(0.0758) (0.0892) (0.0863)

Mine operating 0.0822 -0.0585* 0.261
(0.0663) (0.0354) (0.161)
0.126* 0.173* 0.106

(0.0697) (0.0897) (0.0879)

N 9,459 9,459 9,459
R-squared 0.171 0.141 0.167
States 136
Mines 205 205

FE State Mine Mine
Time effects Country*year Country*year State*year

Standard errors clustered at the state or mine level. Baseline specification highlighted in bold type. ***, **, and *
indicate statistical significance at the 1%, 5%, and 10% level, respectively.

All HHs

Never-movers

Asset factor index

Mine operating * HH close (DiD)

Mine operating * HH close (DiD)



Table 6 - General health outcomes in mining communities in the cross-section

Infant mortality Under-five mortality Diarrhea Cough Fever

(1) (2) (3) (4) (5)

HHs within 5 km -0.00234 -0.00288 0.0115** 0.00514 0.00227
(0.00229) (0.00277) (0.00579) (0.00969) (0.00791)

Observations 301,895 301,895 61,671 60,406 59,592
R-squared 0.003 0.005 0.028 0.007 0.009
Number of mine*years 1,566 1,566 1,510 1,503 1,384

Ever miscarried Female respondent
very sick

Night blindness
during pregnancy

Male respondent very
sick

(6) (7) (8) (9)

HHs within 5 km 0.00263 0.00328 0.00254 0.0120
(0.00460) (0.00527) (0.0104) (0.00977)

Observations 117,118 11,022 29,317 9,808
R-squared 0.061 0.011 0.001 0.011

Number of mine*years 1,469 151 1,185 151

Child health outcomes

Adult health outcomes

Standard errors clustered at the mine level. Sample: all households. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level,
respectively.



Table 7 - General health outcomes in mining communities in the panel

Cough Diarrhea Fever Ever miscarried Respondent
very sick

(1) (2) (3) (4) (5) (6) (7)

0.00132 0.000568 -0.0265 0.0123 -0.00241 -0.00838 0.00329
(0.00664) (0.00768) (0.0256) (0.0243) (0.0203) (0.0143) (0.00407)
0.00192 0.00133 0.00668 0.00662 0.00791 -0.0191 0.0731***

(0.00563) (0.00652) (0.0219) (0.0154) (0.0224) (0.0134) (0.0183)
-0.00137 -0.00399 0.00921 -0.00382 -0.0221 -0.00236 -0.00845
(0.00761) (0.00881) (0.0303) (0.0289) (0.0262) (0.0152) (0.0119)

Observations 43,057 43,057 15,342 15,467 15,594 29,666 4,111
R-squared 0.027 0.031 0.048 0.056 0.046 0.065 0.005

Number of fixed effects 259 259 236 237 230 202 63

Exposure period In utero In utero Survey year Survey year Survey year Survey year Survey year
Fixed effects
Time effects

Other controls

Standard errors clustered at the mine level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.

HH close to mine

Mine operating in exposure period

Mine operating in exposure period * HH close

Country*year dummies

Quadratic in respondent’s age;
urban/rural dummy.

Quadratic in mom age at birth; child age dummies, urban/rural dummy.

Country*year dummies

Child health outcomes Adult health outcomes

MineMine

Infant mortality Under-five
mortality



Table 8 - Cross-sectional effects on women's Hgb

(1) (2) (3) (4) (5) (6) (7) (8)

HHs within 5km -0.0863** -0.0494 -0.131 -0.0493 0.0262** 0.00957 0.0495* 0.0217
(0.0438) (0.0386) (0.0838) (0.0553) (0.0126) (0.0101) (0.0268) (0.0157)

N 38,217 38,217 13,506 13,506 36,225 36,225 13,204 13,204
R-squared 0.000 0.001 0.001 0.002 0.000 0.001 0.001 0.001
Number of groups 934 292 785 216 934 292 784 216

FE Mine*year State*year Mine*year State*year Mine*year State*year Mine*year State*year

Other controls

Standard errors clustered at the state or mine level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level,
respectively.

Hematotoxic effects on women

Altitude-adjusted hemoglobin (g/dL) Anemia

Quadratic in respondent’s age; urban/rural dummy. Quadratic in respondent’s age; urban/rural dummy.

All HHs Never-movers All HHs Never-movers



Table 9 - Panel effects on women's Hgb

(1) (2) (3) (4) (5) (6)

HH close to mine 0.261* 0.368*** 0.396*** -0.0572 -0.0856** -0.0949***
(0.151) (0.137) (0.146) (0.0391) (0.0340) (0.0347)

Mine operating in survey year -0.0234 0.0217 0.0852 -0.00637 -0.0221 -0.0298
(0.117) (0.121) (0.136) (0.0243) (0.0315) (0.0310)

Mine operating * HH close (DiD) -0.280 -0.298* -0.330* 0.0634 0.0779* 0.0864*
(0.189) (0.170) (0.173) (0.0496) (0.0454) (0.0453)

Observations 9,845 9,845 9,845 9,865 9,865 9,865
R-squared 0.008 0.011 0.007 0.005 0.006 0.005
States 69 69
Mines 122 122 122 122

FE State Mine Mine State Mine Mine

Time effects Country*year Year Country*year Country*year Year Country*year

Other controls

Hematotoxic effects on women

Standard errors clustered at the state or mine level. Baseline specification highlighted in bold type. ***, **, and * indicate statistical
significance at the 1%, 5%, and 10% level, respectively.

Quadratic in respondent’s age; urban/rural
dummy

Quadratic in respondent’s age; urban/rural
dummy

Altitude-adjusted hemoglobin (g/dL) Anemia



Table 10 - Cross-sectional hematotoxic effects on women near different mine types

Hgb (g/dL) Asset index Hgb (g/dL) Asset index Hgb (g/dL) Asset index Hgb (g/dL) Asset index Anemia Asset index Miscarriage Grave illness
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

-0.0863** 0.145** -0.0317 0.140* -0.161* 0.0558 -0.0285 0.144* 0.0125 0.141* 0.00347 0.00366
(0.0438) (0.0576) (0.0533) (0.0756) (0.0886) (0.0573) (0.0507) (0.0763) (0.0154) (0.0758) (0.00519) (0.00595)

-0.192** 0.0176 -0.253*** -0.0724 -0.192** 0.0162 0.0463* 0.0163 -0.00377 -0.00286
(0.0944) (0.101) (0.0876) (0.125) (0.0902) (0.101) (0.0248) (0.101) (0.0109) (0.00898)

N 38,217 25,695 38,217 25,695 38,217 25,695 36,225 25,676 36,225 25,676 117,118 11,022
R-squared 0 0.111 0.001 0.111 0.001 0.113 0.027 0.113 0.000 0.111 0.061 0.011
Mines 934 932 934 932 934 932 934 932 934 932 1,469 151

Standard errors clustered at the mine level. Other covariates: urban-rural dummy, quadratic in respondent's age. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level,
respectively.

Falsification testsAnemia and asset index

Hematotoxic effects near different mine types

Women’s hemoglobin (g/dL) and asset index

Other interactions Region dummies Pregnancy dummy

HH close to mine

HHs close to a 'heavy
metal' mine (DiD) 



Table 11 - Recovery of maternal Hgb

Asset index
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Pregnancy and infancy -0.569*** -0.602*** -0.530*** -0.588*** -0.588*** -0.564*** -0.560*** -0.467*** -0.0441 -0.625*** -0.609*** -0.546***
(0.0588) (0.0416) (0.0680) (0.0515) (0.0500) (0.0584) (0.0612) (0.0612) (0.0289) (0.117) (0.109) (0.0934)

HH close to mine -0.0389 0.0362 -0.146 -0.0678 -0.115 -0.0586 -0.0295 -0.0640 0.0699
(0.0834) (0.103) (0.102) (0.0741) (0.0714) (0.0847) (0.0899) (0.0758) (0.0490)
-0.261** -0.187* -0.150 -0.257** -0.239** -0.241** -0.267** -0.238** -0.0612
(0.109) (0.107) (0.122) (0.110) (0.110) (0.113) (0.112) (0.117) (0.0613)

Placebo - HH in lowest wealth quintile -0.0708 -0.179 -0.172
(0.126) (0.126) (0.104)

Pregnancy and infancy * placebo 0.0199 0.0217 -0.0369
(0.144) (0.128) (0.112)

Observations 5,094 5,094 4,012 5,911 6,618 4,976 4,797 4,089 4,976 1,950 2,582 3,975
R-squared 0.047 0.049 0.039 0.048 0.044 0.047 0.045 0.038 0.149 0.033 0.031 0.032
Number of group effects 167 557 166 169 169 165 162 155 165 88 120 158

Group effects State*Year Mine*Year State*Year
Years postpartum included Two Four Five Three
Additional controls

SES
Height-for-

age
Improved
delivery

No

Placebo restrictions State-year
in sample,

at least
40km from

mine

Country-
year in

sample, at
least 40km
from mine

Country-
year in

sample, at
least 20km
from mine

Standard errors clustered at the state level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.

Pregnancy and infancy * HH close (DiD)

Women's Hgb (placebo treatment)

No

State*Year State*Year
Three Three

No

Recovery of maternal Hgb after birth

No

Three
State * Year

Women's hemoglobin (g/dL) Falsification and placebo



Table 12 - Cross-sectional effects on children's Hgb

(1) (2) (3) (4) (5) (6) (7) (8)

HH close to mine -0.0688 -0.0920** -0.108 -0.137* 0.0154 0.0205* 0.0413 0.0293
(0.0461) (0.0388) (0.0885) (0.0803) (0.0141) (0.0115) (0.0270) (0.0191)

N 18,070 18,070 5,521 5,521 18,428 18,428 5,585 5,585
R-squared 0.065 0.065 0.068 0.066 0.051 0.051 0.053 0.051
Mines*Year 907 660 908 662
State*Year 317 220 318 221

Standard errors clustered at the state or mine level. ***, **, and * indicate statistical significance at the 1%, 5%, and
10% level, respectively.

Hematotoxic effects on children
Altitude-adjusted hemoglobin (g/dL) Anemia

All HHs Never-movers All HHs Never-movers



Table 13 - Panel effects on children's Hgb

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

-0.171 -0.230 -0.202 -0.410** 0.0589 0.0736* 0.0651 0.0695 0.122** 0.0264
(0.167) (0.160) (0.172) (0.166) (0.242) (0.0379) (0.0437) (0.0423) (0.0484) (0.0721)
-0.0369 0.117 -0.175 -0.297 0.0120 -0.00275 -0.0212 0.0791
(0.124) (0.136) (0.211) (0.207) (0.0468) (0.0467) (0.0634) (0.0595)
-0.0241 -0.222 -0.118 0.00322 -0.0217 -0.0343 0.176 0.112
(0.178) (0.205) (0.541) (0.603) (0.0415) (0.0789) (0.152) (0.136)

-0.166 -0.241 0.154 0.268 0.0275 0.0262 -0.186*** -0.216***
(0.133) (0.153) (0.242) (0.231) (0.0430) (0.0484) (0.0616) (0.0645)
0.0552 0.238 -0.184 -0.252 -0.0105 0.0174 0.0994 0.0918
(0.172) (0.219) (0.470) (0.528) (0.0476) (0.0852) (0.176) (0.184)

-0.303 0.0972
(0.292) (0.107)
0.163 -0.0464

(0.180) (0.0527)
-0.180 0.0537
(0.160) (0.0551)
-0.323 0.0474
(0.257) (0.0827)

Observations 5,015 5,015 5,015 3,888 4,695 5,015 5,015 5,015 5,092 5,092 5,092 3,944 4,772 5,092 5,092 5,092
R-squared 0.128 0.129 0.129 0.139 0.138 0.189 0.189 0.190 0.098 0.098 0.098 0.108 0.104 0.141 0.147 0.148
Number of fixed effects 141 141 141 129 132 4,088 4,088 4,088 142 142 142 130 133 4,144 4,144 4,144

Fixed effects
Time effects
Other controls

Standard errors clustered at the mine level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.

Child consistently
exposed
Child consistently
exposed * HH close
Mine operating in
survey year
Mine operating in
survey year * HH close

HH close to mine

Mine operating in birth
year
Mine operating in birth
year * HH close

Mine operating during
pregnancy
Mine operating during
pregnancy * HH close

Mine MineMom Mom

Hematotoxic effects on children - various exposure definitions
Altitude-adjusted hemoglobin (g/dL) Anemia

Country-birth year dummies Country linear trends Country-birth year dummies Country linear trends
Quadratic in mom age at birth; child age dummies,

urban/rural dummy.
Quadratic in mom age at birth;

child age dummies.
Quadratic in mom age at birth; child age dummies,

urban/rural dummy.
Quadratic in mom age at birth;

child age dummies.



Table 14 - Cross-sectional hematotoxic effects on children near different mine types

Hgb (g/dL)
Asset
index Hgb (g/dL)

Asset
index Hgb (g/dL)

Asset
index Hgb (g/dL)

Asset
index Anemia Anemia Anemia Diarrhea Cough Fever

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

-0.0688 0.188*** -0.0457 0.176*** -0.0516 0.201*** -0.0505 0.181*** 0.0110 0.0153 0.0112 0.00747 -0.00372 0.00248
(0.0461) (0.0529) (0.0516) (0.0643) (0.0509) (0.0540) (0.0574) (0.0649) (0.0148) (0.0157) (0.0154) (0.00743) (0.0117) (0.00925)

-0.108 0.0537 -0.0126 0.0876 0.0216 -0.00967 0.000953 0.0515** 0.00477
(0.109) (0.110) (0.119) (0.116) (0.0417) (0.0389) (0.0138) (0.0220) (0.0192)

Child in infancy -0.419*** 0.0474* -0.417*** 0.0301 0.144*** 0.146*** 0.0427*** 0.0173*** 0.0204***
(0.0594) (0.0272) (0.0647) (0.0240) (0.0163) (0.0187) (0.00580) (0.00609) (0.00690)

-0.0881 -0.118** 0.0503 -0.0538 -0.00749 -0.0505* 0.0116 -0.00826 -0.00819
(0.100) (0.0557) (0.109) (0.0548) (0.0261) (0.0293) (0.0134) (0.0120) (0.0134)

-0.00707 0.0682 0.0114 -0.0185 0.00319 0.00618
(0.155) (0.0801) (0.0345) (0.0113) (0.0119) (0.0126)

-0.563*** -0.247* 0.146** -0.0207 -0.0250 -0.0125
(0.197) (0.146) (0.0586) (0.0242) (0.0261) (0.0236)

N 18,070 12,713 18,070 12,713 18,070 12,713 18,070 12,713 18,428 18,428 20,278 61,671 60,406 59,592
R-squared 0.065 0.119 0.065 0.119 0.012 0.120 0.013 0.120 0.051 0.013 0.012 0.002 0.000 0.000
Mines 907 901 907 901 907 901 907 901 908 908 911 1,510 1,503 1,384

Standard errors clustered at the mine level.  ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.

HH close to a 'heavy metal' mine  and
child in infancy

AnemiaChildren’s hemoglobin (g/dL) and asset index Falsification tests
Hematotoxic effects on children near different mine types

HH close to mine

HHs close to a 'heavy metal' mine
(DiD) 

Nearest mine (< 20 Km)) is a 'heavy
metal' mine and child in infancy

HH close to mine  and child in
infancy



Table 15 - Cross-sectional effects on growth outcomes in children

All HHs Never-movers All HHs Never-movers All HHs Never-movers
(1) (2) (3) (4) (5) (6)

HH close to mine 0.0828** -0.00113 -0.0152* -0.0140 -0.00768 -0.00198
(0.0397) (0.0498) (0.00860) (0.0137) (0.00610) (0.00769)

N 40,653 16,982 40,653 16,982 40,653 16,982
R-squared 0.060 0.050 0.033 0.030 0.013 0.013
Mines*Year 1,244 1,042 1,244 1,042 1,244 1,042

All HHs Never-movers All HHs Never-movers All HHs Never-movers
(7) (8) (9) (10) (11) (12)

HH close to mine 6.173 -15.43 -0.00879 0.000516 0.0212 0.0325
(11.94) (19.50) (0.00832) (0.0109) (0.0257) (0.0301)

N 37,032 13,274 37,032 13,274 79,224 33,787
R-squared 0.004 0.004 0.001 0.002 0.007 0.013
Mines*Year 1,428 1,156 1,428 1,156 1,218 1,093

Standard errors clustered at the mine level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.

Growth outcomes in children
Height for age Stunting Severe stunting

Birth weight (g) Low birth weight Height for age (adult women)



Table 16 - Cross-sectional growth effects on children near different mine types

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

0.0760* 0.0607 -0.0180* -0.0122 -0.0105 -0.00877 0.108*** 0.118** 2.811 -3.117 -0.00619 -0.00463 0.0797* 0.0715
(0.0425) (0.0472) (0.00967) (0.0105) (0.00667) (0.00748) (0.0406) (0.0472) (12.58) (14.06) (0.00846) (0.0101) (0.0471) (0.0573)

0.0679 -0.0258 -0.00690 -0.0527 26.85 -0.00757 0.0390
(0.104) (0.0251) (0.0164) (0.0930) (32.30) (0.0153) (0.0906)

0.759*** 0.737*** -0.165*** -0.153*** -0.0699*** -0.0663*** 0.00319 0.0124 -10.89 -11.37 0.000691 0.00178 -0.0206 -0.0143
(0.0366) (0.0434) (0.00989) (0.0110) (0.00552) (0.00658) (0.0125) (0.0148) (6.917) (7.763) (0.00390) (0.00437) (0.0128) (0.0148)
0.0346 0.0761 0.0107 -0.00549 0.0121* 0.00500 -0.0339 -0.0397 15.10 24.21 -0.0114 -0.0131 -0.0220 -0.0270

(0.0532) (0.0634) (0.0128) (0.0135) (0.00731) (0.00824) (0.0296) (0.0354) (15.58) (18.86) (0.00951) (0.0111) (0.0287) (0.0344)
0.0948 -0.0550** -0.0156 -0.0370 2.230 -0.00557 -0.0301

(0.0726) (0.0216) (0.0107) (0.0272) (17.08) (0.00984) (0.0287)

-0.169 0.0681** 0.0290* 0.0282 -34.08 0.00787 0.0255
(0.111) (0.0328) (0.0165) (0.0642) (33.82) (0.0220) (0.0634)

N 40,653 40,653 40,653 40,653 40,653 40,653 28,585 28,585 37,032 37,032 37,032 37,032 27,466 27,466
R-squared 0.058 0.058 0.031 0.032 0.013 0.013 0.084 0.085 0.004 0.004 0.001 0.001 0.081 0.081
Mines 1,244 1,244 1,244 1,244 1,244 1,244 1,243 1,243 1,428 1,428 1,428 1,428 1,425 1,425

Standard errors clustered at the mine level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.

Nearest mine (< 20 Km) is a
'heavy metal' mine and child in
infancy
HH close to a 'heavy metal'
mine and child in infancy

Growth effects in children near different mine types

HH close to mine

HH close to a 'heavy metal'
mine (DiD) 
Child in infancy

HH close to mine and child in
infancy

Height for age

Height for age Stunting Severe stunting
Asset index for

height-for-age sample

Birth weight

Birth weight (g) Low birth weight
Asset index for birth

weight sample



Table 17 - Panel effects on growth outcomes in children

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20)

HH close to mine 0.188** 0.521** 0.0894 0.136 0.0686 0.130 0.159* -0.0483* -0.123*** -0.0371 -0.0442 -0.0419 -0.0377 -0.0457*
(0.0800) (0.206) (0.0898) (0.0889) (0.106) (0.0951) (0.0916) (0.0250) (0.0471) (0.0269) (0.0271) (0.0339) (0.0309) (0.0274)

Mine operating during pregnancy 0.0198 0.0992 0.0968 0.0980 0.180 0.0983 0.00109 -0.0375 0.00584 -0.00894 0.0240 0.0426
(0.0609) (0.130) (0.0712) (0.0828) (0.162) (0.172) (0.0174) (0.0308) (0.0230) (0.0246) (0.0662) (0.0614)

Mine operating during pregnancy *
HH close -0.138 -0.371* -0.517*** -0.423** -0.473 -0.449 0.0517* 0.145*** 0.0793* 0.0780 0.0214 0.0361

(0.0990) (0.216) (0.137) (0.183) (0.352) (0.350) (0.0275) (0.0507) (0.0421) (0.0709) (0.125) (0.114)
Mine operating in birth year -0.00575 -0.0877 0.189 0.156 -0.00779 -0.00819 -0.0162 -0.0358

(0.0594) (0.0699) (0.156) (0.171) (0.0196) (0.0259) (0.0587) (0.0572)
Mine operating in birth year * HH
close -0.00437 0.446*** -0.128 -0.00917 0.0362 -0.0330 -0.0743 -0.0724

(0.112) (0.149) (0.423) (0.415) (0.0287) (0.0437) (0.110) (0.105)
Mine operating in survey year -0.00294 -0.0966 -0.00528 -0.00179

(0.0528) (0.0927) (0.0182) (0.0249)
0.0479 0.365* 0.0343 -0.0392
(0.134) (0.187) (0.0374) (0.0843)

Child consistently exposed 0.0194 -0.00498
(0.0859) (0.0245)

Child consistently exposed * HH close -0.0632 0.0448
(0.113) (0.0311)

Observations 11,654 2,429 11,654 11,654 11,176 11,344 9,828 11,654 11,654 11,654 11,654 2,429 11,654 11,654 11,176 11,344 9,828 11,654 11,654 11,654
R-squared 0.110 0.085 0.109 0.110 0.111 0.113 0.115 0.196 0.196 0.197 0.069 0.094 0.069 0.069 0.070 0.070 0.071 0.089 0.089 0.090
Number of fixed effects 200 186 200 200 188 191 189 9,427 9,427 9,427 200 186 200 200 188 191 189 9,427 9,427 9,427

Fixed effects
Time effects
Other controls

Subsample No
Infants

only
No

Infants
only

Mine
Country-birth year dummies

Standard errors clustered at the mine level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.

NoNo

Quadratic in mom age at birth;
child age dummies.

Mom
Country linear trends

Mine
Country-birth year dummies

Mom
Country linear trends

Quadratic in mom age at birth; child age dummies, urban/rural dummy. Quadratic in mom age at birth; child age dummies, urban/rural dummy.

No

Quadratic in mom age at birth;
child age dummies.

No

Mine operating in survey year * HH
close

Growth effects in children
Height-for-age Stunting



Table 17 (ct'd)

(21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36)

HH close to mine -0.0416*** -0.0443 -0.0325*** -0.0388*** -0.0389** -0.0353** -0.0495*** -13.04 -17.46 -15.99
(0.0109) (0.0341) (0.0121) (0.0115) (0.0169) (0.0141) (0.0110) (41.86) (40.60) (42.45)

Mine operating during pregnancy -0.00125 -0.0138 -0.00663 -0.0217 -0.101** -0.115*** 60.33* 56.27 84.12 91.74
(0.0124) (0.0139) (0.0152) (0.0167) (0.0427) (0.0430) (31.28) (39.87) (61.91) (67.16)

Mine operating during pregnancy *
HH close 0.0500*** 0.0491 0.0703** 0.0866** 0.143 0.155 17.66 -8.429 -195.0 -241.7

(0.0140) (0.0342) (0.0295) (0.0361) (0.112) (0.110) (44.29) (73.02) (133.4) (153.4)
Mine operating in birth year -0.000598 0.00645 -0.0213 0.0261 42.05* 6.921 18.27 -13.72

(0.0122) (0.0151) (0.0374) (0.0327) (24.81) (29.84) (49.78) (54.90)
Mine operating in birth year * HH
close 0.0375** -0.0239 0.0284 -0.0311 23.36 29.94 63.56 128.7

(0.0154) (0.0305) (0.0649) (0.0520) (43.23) (69.70) (109.7) (115.8)
Mine operating in survey year -0.00411 0.0299

(0.0119) (0.0216)
0.0383** -0.0450
(0.0192) (0.0404)

Child consistently exposed 0.00909
(0.0180)

Child consistently exposed * HH close 0.0565***
(0.0148)

Observations 11,654 2,429 11,654 11,654 11,176 11,344 9,828 11,654 11,654 11,654 11,313 11,313 11,313 11,313 11,313 11,313
R-squared 0.055 0.055 0.055 0.055 0.056 0.056 0.060 0.051 0.047 0.051 0.038 0.038 0.038 0.029 0.028 0.029
Number of fixed effects 200 186 200 200 188 191 189 9,427 9,427 9,427 246 246 246 9,298 9,298 9,298

Fixed effects
Time effects
Other controls

Subsample No
Infants

only

Standard errors clustered at the mine level.  ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively.

Country-birth year dummies
Quadratic in mom age at birth; child age dummies, urban/rural dummy.

Quadratic in mom age at birth;
child age dummies, urban/rural

dummy.

No

Quadratic in mom age at birth;
child age dummies.

NoNo

MomMom

Birth weight

Mine

Severe stunting

Mine

Mine operating in survey year * HH
close

Growth effects in children

Country linear trends
Quadratic in mom age at birth;

child age dummies.

No

Country-birth year dummiesCountry linear trends



Table 18 - Cross-sectional growth effects on children born to migrants

(1) (2) (3) (4) (5) (6) (7) (8)

0.318*** 0.394*** -3.203 -15.56
(0.0913) (0.100) (38.11) (40.51)
0.0859** 0.0271 0.325*** 0.171 2.981 18.26 40.14 208.3***
(0.0367) (0.0501) (0.110) (0.172) (17.42) (21.89) (49.71) (77.74)
-0.108 -0.180* -0.356** -0.161 11.24 4.932 -162.5** -193.1**

(0.0790) (0.0998) (0.177) (0.350) (36.00) (40.77) (66.84) (95.84)

Observations 9,745 7,018 9,745 7,018 6,390 4,557 6,390 4,557
R-squared 0.057 0.050 0.122 0.130 0.015 0.020 0.025 0.130
Number of fixed effects 1,021 962 8,102 6,257 876 804 5,522 4,156

Group effects
Treatment definition

Standard erros clustered at the mine level.  ***, **, and * indicate statistical significance at the 1%, 5%, and 10% level, respectively. Data includes
children born within no more than four years of migration. Child age is recorded in months, but residence in years. Whether a child is born after
the family moved is therefore ambiguous for some children. We either assume that families who have been resident Y years moved exactly
(Y*12 + 6) months ago ('Mean assumed'), or exclude all children for whom treatment status is ambiguous ('Ambiguous excluded').

Mean
assumed

Ambiguous
excluded

Mean
assumed

Ambiguous
excluded

Mean
assumed

Birth weight (g)

Mine*year FE Mom FE
Ambiguous

excluded
Mean

assumed
Ambiguous

excluded

HH moved to within 5km of a
mine
Child born after move

Child born after move * HH
now within 5km of mine

Mom FE

Height for age

Mine*year FE



Table 19 - Correlates of treatment effects

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

-0.0928* -0.0784 -0.0932 0.0808 0.0446 -0.0303 -0.0893* -0.0726 -0.0606 -0.203* -0.335** -0.138
(0.0493) (0.0570) (0.0846) (0.0941) (0.0878) (0.0880) (0.0488) (0.0514) (0.124) (0.104) (0.132) (0.145)

0.0296 -0.363
(0.0584) (0.228)

0.162 -0.00676 0.311* 0.150
(0.101) (0.177) (0.170) (0.251)
-0.0317 -0.0862 0.0193 -0.0320
(0.106) (0.115) (0.212) (0.223)

-0.0794**
(0.0328)

-1.004**
(0.483)

-0.127**
(0.0622)

1.500**
(0.644)

0.122
(0.0898)

-0.771
(0.781)

0.184*** 0.161*** 0.150** 0.209** 0.604*** 1.091** 0.312*** 0.177*** 0.119* 0.102 -0.241*** -0.0343 -0.319*** -0.277**
(0.0430) (0.0618) (0.0660) (0.0842) (0.172) (0.432) (0.0770) (0.0427) (0.0641) (0.0794) (0.0806) (0.153) (0.110) (0.122)

Observations 228 228 238 228 135 137 137 228 228 70 101 101 107 101
R-squared 0.015 0.017 0.015 0.019 0.043 0.031 0.030 0.039 0.023 0.023 0.037 0.062 0.034 0.042

Conventional standard errors.

Constant

State average years
of education
Inverse distance to
coast
Power line density
(log)
Completed an
EITI report
Ever participated
in EITI
Institutional
quality

Rest of the World

Asset index Women's Hgb (g/dL)

Country log GDP

Country log GDP
squared
Sub-Saharan Africa
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Appendix D IV results

Table 1 - IV estimates of cross-sectional wealth effects

FE Benchmark IV 1 FE Benchmark IV 2
(1) (2) (3) (4)

0.0772** 0.0627 0.213** 0.333*
(0.0388) (0.0465) (0.0902) (0.172)

N 102,159 102,159 19,188 19,188
R-squared 0.158 0.122
State*year 410 410 207 207

FE Benchmark IV 1 FE Benchmark IV 2
(1) (2) (3) (4)

0.052 0.0209 0.199** 0.416***
(0.0452) (0.052) (0.0954) (0.158)

N 37,065 37,065 6,800 6,800
R-squared 0.185 0.193
State*year 315 315 170 170

Asset index

Cluster bootstrap standard errors, clustered at the state level. ***, **, and * indicate statistical significance at the
1%, 5%, and 10% level, respectively.

HH close to mine

All HHs

Never-movers

HH close to mine


