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ABSTRACT

Two-stage Continual Reassessment
Method and Patient Heterogeneity for

Dose-finding Studies

Xiaoyu Jia

The continual reassessment method (CRM) is a widely used model-based design

in Phase I dose-finding studies. This dissertation examines two extensions of CRM:

one is a two-stage method and the other is a method that accounts for patient het-

erogeneity. Originally proposed in the Bayesian framework, CRM starts by testing

the first patient at the prior guess of the maximum tolerated dose (MTD). However,

there are safety concerns with this approach as practitioners often prefer to start

from the lowest dose level and are reluctant to escalate to higher dose levels without

testing the lower ones with a sufficient number of patients. This calls for a two-stage

design, where the model-based phase is preceded by a pre-specified dose escalation

phase, and the phase transitions when any dose-limiting toxicity (DLT) occurs. In the

first part of this dissertation, I propose a theoretical framework to build a two-stage

CRM based on the coherence principle and prove the unique existence of the most

conservative and coherent initial design. An accompanying calibration algorithm is

formulated to facilitate design implementation. We demonstrate that by using real

trial examples, the algorithm yields designs with competitive performance compared

to the conventional design which uses a much more labor intensive trial-and-error

approach. Furthermore, we show that this algorithm can be applied in a timely and

reproducible manner.

In addition to the two-stage method, we also take into account of patient’s het-



erogeneity in drug metabolism rate that can result in different susceptibility to drug

toxicity. This led to a risk-adjusting design for identifying patient-specific MTDs.

The existing dose-finding designs which incorporate patient heterogeneity deal either

with only categorical risk factor or with continuous risk factor using models based

on strong parametric assumptions. We propose a method that uses a flexible semi-

parametric model to identify patient-specific MTDs, adjusting for either categorical

or continuous risk factor. Initially, our method assigns dose to patients using the

aforementioned two-stage CRM ignoring any patient heterogeneity, and tests the risk

effect as trial proceeds. It then transitions to a risk-adjusting stage only if sufficient

risk effect on toxicity outcome is observed. The performance of this multi-stage design

is evaluated under various scenarios, using dosing accuracy measures calculated based

on the final model estimate at the end of a trial and on the intra-trial dose allocation.

The results are compared to the conventional two-stage CRM without considering

patient heterogeneity. Simulation results demonstrate a substantial improvement in

dosing accuracy in scenarios where there are true risk effects on toxicity probability;

and in situations where risk factors do not have an effect, the performance of the

proposed method is also comparable to that of the conventional design.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

1.1 Phase I dose-finding study

Clinical trials are controlled experiments conducted on human beings to evaluate

the safety and effectiveness of new therapeutic regimen. They usually proceed through

several stages: Phase I, II and III, each with a different purpose. Following pre-clinical

and animal studies, Phase I trial is the first-in-human experiment, and it primarily

focuses on the safety of the drug. Within the trial, a discrete number of doses of

the experimental compound is studied, and one is identified as the most appropriate

dose under the pre-specified toxicity constraint. This is the dose with a toxicity

probability closest to the pre-specified target probability. It is also known as the

maximum tolerated dose (MTD). The rationale behind this approach is that toxicities

may serve as surrogate for tumor shrinkage in a patient undergoing cytotoxic cancer

treatment [7]. Such Phase I dose-finding studies usually use sequential designs.

There are two classes of sequential designs: rule-based and model-based. Origi-

nally used in oncology clinical trials, rule-based designs, such as “3+3”, were widely

adopted in Phase I trials. These designs follow a pre-specified rule to assign dose to

patients sequentially enrolled into the trial. Although simple enough, these designs

are rigid and do not have the flexibility to respond to unexpected addition of pa-
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tients or dose assignments. The design’s operating characteristics depends arbitrarily

on the underlying true dose-toxicity relationship and the MTD thus identified does

not correspond to any interpretable quantity upon repeated sampling. While “3+3”

method is considered safe, it has been criticized as over-conservative and tend to treat

patients excessively on low and inefficacious dose levels.

After O’Quigley [20] proposed the continual reassessment method (CRM), model-

based designs gained popularity. CRM approximates the true dose-toxicity relation-

ship through an increasing dose-toxicity function indexed by a single parameter. Dose

finding is formulated as a percentile estimation problem, in which, for a pre-specified

target toxicity probability, it aims to identify the dose level with an estimated dose

toxicity probability closest to this value; this is the dose at which the next patient will

be treated. Model based estimate converges fast to MTD, thus treats more patients

on the MTD than the “3+3” method. At the end of the trial, the data accumulated

throughout will be used to obtain the final estimate on the dose-toxicity curve and

the corresponding MTD.

1.2 Clinical Example: NeuSTART trial

The original CRM proposed by O’Quigley et al. in 1990 used the Bayesian frame-

work, and it usually treats the first patient enrolled into a trial on a prior guessed

MTD which is not necessarily the lowest dose level, and potentially skipping lower

dose levels without testing them. This can raise safety concerns as investigators often

prefer to start a trial from the lowest dose level and have a sufficient number of pa-

tients tested on each of these lower dose levels before escalating. A two-stage CRM

design can be used to satisfy this requirement. In such a design, the trial starts from

the lowest dose following a pre-specified dose assignment rule, and then switches to a

model-based design using the conventional CRM after the first toxicity occurs. The

following real trial example employed a two-stage design.
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NeuSTART was a multi-center Phase I dose-finding study. Its objective was to

determine the MTD of lovastatin for short-term acute stroke therapy [10]. The target

dose toxicity probability was 10%, and there were 5 dose levels. This study enrolled

33 patients with acute ischemic stroke in the trial. Lovastatin was administered in

increasing doses from 1 to 10 mg/kg daily for 3 days beginning within 24 hours after

symptom onset (Table 1.1). The primary safety event was occurrence of myotoxicity

or hepatotoxicity, defined by clinical and laboratory criteria, within a one month

period after treatment.

The original trial design used a two-stage CRM. Before any dose limiting toxicities

(DLT) occurred, the dose assignment followed a pre-specified dose escalation rule [10]:

the first and the second group of 3 patients would be assigned on dose level 1 (1 mg/kg)

and 2 (3 mg/kg), respectively, followed by 6 and 9 patients assigned on dose level

3 (6 mg/kg) and 4 (8 mg/kg), respectively. Twelve patients would be treated on

the highest dose level 5 (10 mg/kg). The second stage is activated when a primary

safety event is observed, at which time, the Bayesian CRM would be used to guide

the subsequent dose escalation process. The design parameters used in both stages

were determined using a trial-and-error approach described in Chapter 7 of Cheung

2011 [7].

1.3 Clinical Example: An oncology trial

The objective of this Phase I oncology trial was to determine an acceptable dose

among the five dose levels for a combination therapy of Gemcitabine, Cabazitaxel and

Cisplatin, to treat patients with non-muscle invasive bladder cancer via intravesical

administration. Gemcitabine and Cabazitaxel were the standard components and

Cisplatin was added as a third and experimental component. The dose of Gemcitabine

was fixed at 2g in all five dose levels, and the doses of Cabazitaxel and Cisplatin are

listed in Table 1.2. Cisplatin was only added on dose levels 3, 4, and 5. The toxicity
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Table 1.1: Dose levels in NeuSTART trial.

Dose level Lovastatin dose (mg/kg/day)

1 1

2 3

3 6

4 8

5 10

probabilities are expected to increase as dose level increases.

The MTD of this combination therapy is defined as the dose level associated

with a target probability of toxicity at 25%. DLT is defined as any grade 3 or 4

systemic toxicity or any grade 3 or 4 hematuria, dysuria, urinary retention, urinary

frequency/urgency, or bladder spasms using the NCI CTCAE version 4.0. Even

though the three-drug combination regimens are of ultimate interest, and MTD is

expected to be one of the three higher dose levels, physicians prefer to start the trial

by examining the toxicity tolerance of the standard therapy without Cisplatin, i.e.,

dose level 1 and 2. This requires conducting a two-stage design.

The above examples illustrate several scenarios where a two-stage design is used

in real world clinical studies. The major difference between a two-stage design and

the conventional one-stage Bayesian CRM is that the model-based phase is preceded

by a pre-specified escalation rule which dictates the initial dose escalation speed. The

fact that model based design is postponed after the first DLT is observed provides

an opportunity to use maximum likelihood estimation (MLE) rather than Bayesian

estimation. While the Bayesian method requires the use of a prior distribution on
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Table 1.2: Dose levels in the oncology trial.

Dose level Cabazitaxel Dose Cisplatin Dose

1 2.5mg

2 5mg

3 5mg 66mg

4 5mg 80mg

5 5mg 100mg

model parameters that may be perceived as subjective and arbitrary, the likelihood

method does not have this limitation. However, two-stage designs open up new ques-

tions, e.g., how to choose a dose escalation sequence with an appropriate escalation

speed before model-based design is activated?

1.4 Clinical Example: Irinotecan individual dosing

trial

Conventional dose-finding studies usually identify a common MTD for all en-

rolled patients and infer that it is the MTD of the target study population. How-

ever, many risk factors such as treatment history and demographic characteristics are

known to influence the individual patient’s susceptibility to drug toxicity. A Phase I

dose-finding study that considers additional risk factors and identifies patient-specific

MTDs would lead to more accurate dose recommendations for subsequent Phase II

and III clinical trials. Such individualized dosing strategy will reduce both over-dosing

and under-dosing rates and optimize the drug’s therapeutic effect. In addition, us-
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ing a sequential design that considers individual differences in drug tolerability can

directly benefit the patients participating in the study, as the feedback from the infor-

mation accumulated during the trial can re-enforce the individualized dosing strategy

and yield more accurate dose allocations for subsequently enrolled patients.

Phase I dose-finding oncology studies often recruit end-stage cancer patients who

have failed standard therapies. The eligible patients could be fairly mixed in terms

of disease status, types of cancer, demographic and pharmacogenetic characteristics.

Analyses of multiple early phase clinical trials revealed that various patient character-

istics compete with dose as the predictors of the treatment toxicity rate [25]. National

Cancer Institute (NCI) accounts for the contribution of prior therapy by establishing

separate phase II doses for heavily pre-treated from minimally pre-treated patients.

Most clinical trials have already been practicing individualized dosing by administer-

ing doses adjusted for body surface area (BSA), a measure associated with weight

and height. It was also observed in numerous studies that older patients are more

likely to suffer from severe adverse events than younger patients.

Van der Bol et al. reported an individualized dosing trial for the drug irinotecan in

cancer patients [30]. The metabolism of irinotecan involves several enzymes and drug

transporters including members of the cyto-chrome P450 3A (CYP3A4) and uridine-

diphosphate glucuronosyltransferase 1A (UGT1A) families. Both enzymes play an

important role in clearing irinotecan, and hence, influence the level of its active form

in human body. CYP3A4, in particular, competes with the irinotecan activation

pathway and transforms irinotecan into inactive substrates. Meanwhile, UGT1A de-

activates the active form of irinotecan. Because the expression and function level

of these proteins could be affected by numerous environmental and genetic factors,

the pharmacokinetics of irinotecan and its active form could vary greatly among

patients. Such large inter-individual variability in the drug’s clearance ability may

result in over-treatment with unacceptable toxicities in some and under-treatment

with diminished therapeutic effects in others. The trial focused on the heterogeneity
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of irinotecan clearance and was designed to assess an individualized dosing algorithm

based on a few baseline variables associated with irinotecan clearance. Both UTG1A1

genotype and age (≤55 versus >55), as known confounders, were considered as strati-

fying factors, and patients were matched on the status of these two factors within each

treatment group and each participating institution. The dose given to each individ-

ual was derived from the predicted irinotecan clearance based on a linear regression

model of the historical data:

0.0325× midazolam clearance (ml/min) − 0.0396× γ − glutamyltransferase (units/L)

+27.180× height(m) − 31.926

where midazolam assay directly measures CYP3A4 activity, and γ-glutamyltransferase

is a biomarker for liver function. The study was a two-arm randomized study pow-

ered by 50% inter-individual variability reduction of irinotecan concentration area

under curve (AUC) in the individualized dosing arm compared to the control arm.

In the treatment arm, each patient’s predicted irinotecan clearance level is calculated

using the above equation. And then the respective dose is calculated by multiplying

the predicted clearance by 22.157 (µg × h/mL), which was the mean concentration

AUC of irinotecan observed previously and arbitrarily defined as the target measure

of the systemic exposure for this study. Those patients in the control arm were given

conventional doses based on BSA alone. Forty patients were randomized. Compared

with the conventional dosing arm, the individualized dosing arm decreased the inter-

individual variability in the AUC of irinotecan and its active form by 19% and 25%,

respectively, but the differences were not significant. The incidence of grades 3 to

4 neutropenia/leukopenia was about 4 folds lower in the individualized dosing arm

(p=0.013), and the incidence of grade 3 to 4 diarrhea was equal in both arms (10%).

The results show that the baseline CYP3A4 activity, as determined by midazolam

clearance, varied widely among enrolled patients: in a range of 203–1257 mL/min with

a mean of 698 mL/min (95% confidence interval 609-786 ml/min). The dose range

was much broader in the group using the individualized dosing algorithm (380-1060
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Table 1.3: Multi-variable analysis on irinotecan data set.

Any DLT

Variable log(OR) 95% CI p value

Irinotecan clearance -4.1 (-7.4,-0.8) 0.01

Dose 2.6 (-1.9,7.1) 0.3

vs 480-800 mg).

We pooled data from both arms and analyzed it using multi-variable logistic mod-

els. The binary toxicity endpoints include severe neutropenia, severe leukopenia, se-

vere diarrhea and combined endpoint of any severe toxicities (grade ≥ 3). Since the

irinotecan doses were determined by the predicted clearance level in half of the pa-

tients and by BSA in the other half, neither predicted clearance level and BSA were

considered as covariates in the analyses. The variables of interest included in the

models are log-transformed dose and log-transformed observed irinotecan clearance

(measured by midazolam assay). Irinotecan clearance is significantly associated with

the probability of severe leukopenia (p=0.02) and of any severe toxicities (p=0.01,

Table 1.3), adjusting for dose. No significant non-linear effect or interaction effect

was detected.

While this randomized study demonstrated interesting benefit of individualized

dosing, its dose calculation relies on historical data, which may not always align with

the data collected from the ongoing prospective study. It would be useful to conduct

such trial using sequential design, so that the heterogeneity information on drug

toxicity from early enrolled patients can be used to improve the dosing algorithm and

yield more accurate dose allocation on subsequently enrolled patients.
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As an outline of this dissertation, we will first review the basic components of

CRM and the existing dose-finding designs that incorporate patient heterogeneity in

Chapter 2. To address the two-stage design problem, in Chapter 3 we propose a

theoretical framework based on the coherence principle and characterize each design

component under this framework. In Chapter 4, we further derive a semi-automatic

calibration algorithm to facilitate the implementation of our method in practical

clinical settings and illustrate the application of the algorithm using NeuSTART trial

and an oncology trial. Chapter 5 is devoted to address the patient heterogeneity issue

in dose-finding studies using sequential designs. We propose a flexible multi-stage

design to identify patient-specific MTDs adjusting for either continuous or categorical

risk factors. Simulations are performed to illustrate the benefit of using this risk-

adjusting design under various scenarios.
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Chapter 2

Review of dose finding studies

2.1 Continual reassessment method

CRM was first introduced by O’Quigley et al. [20] as a model-based sequential

method for dose finding studies. The basic idea of CRM is to assume a simple one-

parameter dose-toxicity model, and repeatedly estimate the dose-toxicity curve with

cumulated data collected from sequentially enrolled patients. The method appeals to

clinicians because it attempts to treat the next patient at the current best estimate of

the target dose [26], and has received much attention in the medical community [24;

18].

2.1.1 Basic components

We first describe the Bayesian version of the method. In a typical dose finding

study, we observe a pair of data (xi, yi) on the i’th patient enrolled in the trial, for

i = 1, . . . , N , where xi denotes the dose assigned to the patient i, and yi denotes

the binary toxicity indicator of the patient. The choice of dose xi is confined to

a discrete panel of dose levels, d1, . . . , dK . Dose finding is often formulated as a

percentile estimation problem, that is, for a pre-specified probability θ, we aim to

identify ν = arg mink |π(dk) − θ|, where π(x) = pr(yi = 1 | xi = x) is the true
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probability of toxicity at dose x [7]. CRM approximates π(x) through a dose-toxicity

function F (x, β) indexed by a single parameter β. The main idea of the method is

to treat the next patient at a dose with a toxicity probability estimated to be closest

to the target θ. Specifically, it sets xi+1 = arg mindk |F (dk, β̂
B
i )− θ|, where β̂Bi is the

posterior estimate of β based on observations from the first i patients. The process

is repeated until a pre-specified sample size N is reached.

An important point about the CRM is that the dose labels d1, . . . , dK are not the

actual doses administered, but are values re-scaled to a domain that is compatible

with the prior inputs to the model. More precisely, the dose label dk is obtained by

matching an initial guess of toxicity probability p0k for the dose k using the dose-

toxicity function F (x, β) under the prior model-based estimate β̂B0 , that is, setting

p0k = F (dk, β̂
B
0 ) where β̂B0 denotes the prior mean of β. The set of initial guesses

{p0k} is sometimes called the ‘skeleton’. Ideally the skeleton is chosen based on

clinical inputs to reflect the initial beliefs of the toxicity probability associated with

the test doses. In practice, such information is rarely available from the clinical

investigators, and as a result, if we believe ν0 is the maximum tolerated dose level a

priori, we will set p0ν0 = θ, so that the starting dose x1 = dν0 with F (x1, β̂
B
0 ) = θ.

Different skeletons may lead to very different operating characteristics. To avoid the

subjectivity in the specification of a particular skeleton, Yin and Yuan [31] proposed

specifying multiple skeletons, each representing a set of prior estimates of the toxicity

probabilities. Using the Bayesian model averaging to even out the contributions of

multiple skeletons into the sequential estimation procedure, this avoids the potential

bias caused by only using one specific skeleton. Another pragmatic approach is to

treat each p0k as a model parameter and tune it so that CRM will yield good average

operating characteristics [7]. However, this tuning problem can be a daunting task as

there are K parameters in the skeleton and each has infinitely many possible values.

As an alternative to the Bayesian approach, O’Quigley & Shen proposed us-

ing maximum likelihood estimate in conjunction with CRM [21]. The idea is to
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treat each subsequent patient at the model-based MTD xi+1 = ν̂i where ν̂i :=

arg mindk |F (dk, β̂i)−θ| and β̂i is the maximizer of the likelihood based on the first i ob-

servations. Since the likelihood approach does not require specification of prior distri-

bution of the model parameters, it addresses the perceived subjectivity of its Bayesian

counterpart discussed previously. However, for a one-parameter dose-toxicity func-

tion F , since β̂i exists if and only if there is heterogeneity in the toxicity outcomes

in the first i observations, the trial requires an initial dose escalating sequence {xi,0}

to determine dose assignments until β̂i exists. Thus, a likelihood approach implies

the use of a two-stage design, defined as xi+1 = xi+1,0 if Yj = 0 for all j ≤ i, and

xi+1 = ν̂i if Yj = 1 for some j ≤ i. As a result, a two-stage likelihood design allows

starting a trial at the lowest dose level which also addresses the safety concern raised

in one-stage Bayesian designs.

The idea of a two-stage design has been examined extensively by simulation [11;

13; 15]. In addition, Shen and O’Quigley [27] studied the large sample properties

of the likelihood CRM and showed that it consistently estimates the MTD even

when the assumed dose-toxicity model is incorrectly specified. Despite the theoretical

advantages, the actual usage of a two-stage likelihood CRM is still quite limited

primarily due to its complexity. First, as we no longer have a prior distribution of

β, neither β̂B0 nor ν0 is available in the specification of the dose labels as described

in the backward substitution procedure mentioned above. While Cheung 2011 [7]

proved that MLE is invariant to the choice of the initial value β̂0 for a given dose-

toxicity model, the role of the prior maximum tolerated dose ν0 remains unclear in

the likelihood approach. Second, the choice of the initial design sequence {xi,0} in

practice is often ad hoc and lacks systematic orientation.

In finite sample setting, the choice of CRM design parameters can be crucial to its

operating characteristics. First, it is quite plausible to specify a skeleton that can lead

to pathological and poor design performance [27; 8]. Second, an unexamined choice

of the initial dose sequence will cause dose escalations that are ethically unacceptable
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(i.e., incoherent)[6]. Lastly, there is a lack of discussion on how to choose a dose-

toxicity function. Overall, we need a systematic exposition on how to determine two-

stage CRM design parameters given certain clinical objective and sample size. In the

following chapters of this dissertation, in addition to solving the theoretical problems

remaining in the two-stage likelihood CRM, we will also propose calibration algorithm

to facilitate the choice of the design parameters to achieve satisfying performance.

2.1.2 Indifference interval and calibrated skeleton

CRM is proven to be consistent under certain model mis-specification but not

generally. Cheung and Chappell (2002) found that certain models with inappropriate

initial guess of dose toxicities can lead to pathological behavior. Suppose dose k is

the MTD, an indifference interval associated with this dose level k can be defined

as an interval θ ± δk, within which, the toxicity probability of dose k will eventually

fall into when the sample size is sufficiently large (δk denotes the half-width of the

indifference interval). δk specifies the minimal distance in toxicity probability from

dose k to its neighboring doses such that the doses can be correctly differentiated

given a large enough sample size. For a specific CRM design, the indifference interval

δ is defined as the union of the indifference intervals for each of the target doses

ν ∈ {2, . . . , K − 1}. CRM is said to have equi-indifference intervals if the length of

the indifference interval is the same for all ν = 2, . . . , K − 1.

While tuning for all K parameters p0k’s is quite computationally extensive, Lee

and Cheung (2009) developed an algorithm to calibrate the entire skeleton using only

two parameters under the Bayesian framework. Given the prior belief that dose level

ν0 is the MTD, thus p0,ν0 = θ, the algorithm specifies the choice of {p0k : k 6= ν0}

to CRM with equi-indifference interval of δ. Using this algorithm, we only need to

specify ν0 and δ to construct a calibrated skeleton that guarantees the design would

eventually select a dose with toxicity probability that falls within the interval of θ±δ.

This algorithm reduces the number of model parameters from K to 2 for constructing
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the skeleton.

The half-width indifference interval δ indicates the design resolution in large sam-

ple setting, i.e., the minimum distance of the target dose from its neighboring doses

so that this target dose can be correctly selected as the MTD. This in turn can be

used as a design tuning parameter to facilitate the design calibration in finite sample

settings. A large δ value defines dose labels that are further apart from each other

on the x-axis, hence indicating a working model with a steep slope, while a small δ

value corresponds to a flat working model. In the Phase I clinical trial, we can use

a series of working model with varying steepness via specifying a range of δ values,

evaluate their model performance, and determine the optimal δ value for the given

clinical scenario.

2.1.3 Coherence

For a two-stage CRM, the choice of an initial design also impacts the trial behav-

ior. An inappropriately chosen dose-escalating sequence may lead to unethical dose

assignment [6], and whether the dose assign is ethical or not is called the design’s co-

herence property [6]. A coherent dose assignment indicates that if the current patient

experiences toxicity, the probability of dose escalation on the next patient is zero, i.e.,

pr(xi − xi−1 > 0 | yi−1 = 1) = 0. Incoherence means the opposite. During the first

stage, without toxicity, the dose escalation follows a non-decreasing dose escalation

sequence, and thus, is coherent. The model-based dose assignment using CRM is also

proven to be coherent [6]. However, Cheung (2005) pointed out that the transition

point from first stage to the second stage during a two-stage trial may not be coher-

ent, i.e., the first model-based dose assignment after observing the first toxicity is not

necessarily coherent when the initial design is not chosen appropriately. In fact, an

overly conservative (slow) initial design will cause incoherence in a two-stage CRM.

Although incoherence in a two-stage design is a single point problem, which can

only occur on the first model-based dose assignment upon observing the first toxicity,
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the complexity of this problem is that it is unknown where the first toxicity would

occur during a dose-finding study using sequential design. If a two-stage trial enrolls

a total of N patients, presumably there are up to N different scenarios where the first

toxicity could occur, and a two-stage CRM is called coherent only if it is coherent

across all N scenarios.

The first part of this dissertation is intended to introduce a unified framework

to build a coherent two-stage CRM using likelihood approach. A comprehensive

calibration algorithm will be proposed and recommendations on design parameters

under various clinical scenarios will be made based on this framework.

2.2 Dose finding studies with patient heterogene-

ity

2.2.1 O’Quigley’s two-group CRM

O’Quigley et al. [22; 19] proposed two-parameter CRM models to identify group-

specific MTDs for patients belonging to high and low risk groups simultaneously in

a single trial. In addition to the parameter indicating the slope of the dose-toxicity

curve, another model parameter is introduced to represent the group effect on the

dose-toxicity curve. Below is the two-parameter empiric function:

F (yi = 1|xi = dk : zi) = d
exp(a+bzi)
k

with yi, xi, zi indicating binary toxicity outcome, assigned dose level, and risk group

(zi = 1 high risk and zi = 0 low risk for instance) for each patient, respectively. The

assigned dose level xi takes a value of dk (k = 1, . . . , K). Both groups share the same

K dose levels. The group effect is represented by b, and when b = 0, it indicates there

is no group difference, and all patients in both groups have the same toxicity tolerance

and thus share the same MTD. In real trial setting, even though we acknowledge the

group difference, we might not know which group has higher tolerance. In their first
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paper in 1999, O’Quigley et al. [22] assumed no prior knowledge on the magnitude

and direction of the difference between the two risk groups, and employed a two-stage

design. An arbitrary initial design was installed to allow independent dose escalation

in each group. Once the first toxicity is observed in one group, the usual one-sample

CRM F (yi = 1|xi = dk) = d
exp(a)
k will be used to assign the dose to the next patient

of the same group, and the dose escalation in the other group will still follow the

initial design. Once toxicities are observed in both risk groups, all data are pooled

to fit the two-parameter CRM model and model-based dose assignment will proceed

within each group.

O’Quigley and Paoletti [19] modified this two-group CRM design by incorporating

the prior knowledge on direction of the difference between the two risk groups. First,

instead of allowing independent dose escalation between the two risk groups during

initial design, the patients belonging to the low risk group are always assigned at

a dose level greater than or equal to the current dose level in the high risk group,

because low risk group is supposed to have higher drug tolerance level according to

the prior knowledge. Such initial design allows skipping doses in one group (low

risk group) but not the other (high risk group). However the escalation rule is still

arbitrarily determined. Second, Bayesian method was used to estimate parameters

a and b, with non-informative prior for a and normal prior for b with mean µb and

standard error σb. µb and σb can be determined to reflect the uncertainty on the

magnitude or even direction of the ordering between the two risk groups.

2.2.2 Bivariate isotonic design

Ivanova and Wang [14] proposed a bivariate isotonic design for ordered risk groups.

In addition to satisfy the assumption of non-decreasing dose-toxicity relationship

within a group, i.e., p̂j1 ≤ · · · ≤ ˆpjK , where j = 1, 2 indicating the risk group,

the dose-toxicity probability estimates are also subject to between group constraint

p̂2k ≤ p̂1k, k = 1, . . . , K, if group 2 is believed to have lower toxicity rate than group
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1, and vice versa. If no prior knowledge is available on ordering of risk groups, the

squared difference between bivariate isotonic estimates and observed dose-toxicity

probabilities are computed under both scenarios and the constrained estimator with

the smaller squared difference is chosen as the best estimate. For example, the squared

difference is

M (2,1) ≡
2∑
j=1

K∑
k=1

(p
(2,1)
jk − p̂jk)2

where p
(2,1)
jk is the result of bivariate isotonic regression estimate, assuming group 2 has

higher tolerance to toxicity. In case M (1,2) = M (2,1), the univariate isotonic estimate

of toxicity is obtained from the combined sample. The dose allocation rule for the

next patient is as follows: stay on current dose if the estimated toxicity probability

of the current dose is within θ ± ∆, and escalate/de-escalate if otherwise, where ∆

is a design parameter. Without prior knowledge on group orderings, the trial starts

with two independent initial designs similar to the one used in O’Quigley et al. 1999

[22]. With known group orderings, the design uses the informative initial design

in O’Quigley and Paoletti 2002 [19]. After toxicity is observed, the trial proceeds

following the dose allocation rule based on the bi-variate isotonic estimate.

2.2.3 Escalation with overdose control (EWOC)

Babb and Rogatko proposed EWOC method in 1998 [2]. The method controls the

overdose probability during the sequential design using CRM. Comparing to the stan-

dard CRM which chooses a dose with minimum absolute distance to target toxicity

rate, EWOC essentially chooses a dose via minimizing a risk function that has asym-

metric weights on overdose and underdose, i.e., a risk function that has more stringent

control on overdose probability. In their 2001 paper [3], they extended EWOC to guide

individualized dosing for dose-finding study, given continuous risk-modifying factor

and continuous dose. In the clinical example illustrated in the paper, the patient’s

individual tolerance to the experimental drug PNU is modified by endogenous plasma
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anti-SEA antibody concentration due to its neutralizing effect on the experimental

drug. Higher anti-SEA concentration is associated with higher tolerance and higher

dose. A two-parameter logistic model was used to model continuous dose (x) and

anti-SEA level (c), in relation to toxicity probability prc(x).

logit[prc(x)] = α + β ln(x) + δ ln(c)

It is assumed that β > 0 and δ < 0, so that the probability of DLT is an increasing

function of dose and a decreasing function of anti-SEA concentration. The MTD can

be expressed as a function of anti-SEA concentration c and denoted as γ(c), which

results in toxicity probability equal to θ = 0.1. After observing data from the first

i patients, the next optimal dose xi+1(c) is determined such that the overdose prob-

ability, i.e., the probability of assigning a dose greater than anti-SEA concentration

adjusted MTD, is less than a pre-specified threshold value 1−ω. The real trial exam-

ple designed using this method show that patients with high baseline anti-SEA have

robust tolerance to high doses of the experimental drug PNU.

2.2.4 Other model-based designs

Piantadosi and Liu [23] proposed to incorporate the pharmacokinetics parameter

in the CRM model to improve the dosing accuracy, and employed a bivariate logistic

dose-toxicity model as shown below. In addition to dose, a continuous covariate:

∆AUC , is included into the model. ∆(AUC) is the difference between estimated

pharmacokinetics parameter area under curve (AUC) and the observed AUC, which

is considered ancillary to dose administered.

logit(pr(dose,∆AUC)) = β0 − β1 × dose− β2 ×∆AUC

The method imposes a joint uniform prior distribution on the two parameters. After

obtaining their posterior estimates, the optimal dose to be assigned to the next patient

can be solved by inserting the parameter estimates into the above formula and setting
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the predicted difference (δAUC) at zero, i.e., dosei+1 = (β̂0i− logit(π))/β̂1i, where π is

the target toxicity probability.

Thall et al. [29] extended the dose finding method based on toxicity-efficacy trade-

off to account for additional covariate effect. The method imposes an informative

prior on covariate effect parameters obtained from preliminary fit of historical data

and a non-informative prior on dose-toxicity model parameter. Putting aside the

model complexity due to bivariate endpoints, the model on the toxicity endpoint for

patients observed during the trial is

logit(pr(x, Z)) = f(x, α) + βZ + xγkZ

This model is more complex because it not only has the main effect terms of

dose f(x, α), covariate βZ, but also the interaction term between dose and covariate

γkZ. For cytotoxic agent, the main dose effect can be specified as linear function

f(x, α) = α0 + α1x where α1 > 0 indicating that toxicity probability increases as

dose x increases. The prior distribution of covariate effect β is obtained from analysis

on the historical data. In contrast, the method keeps the prior of (α0, α1, γ) as non-

informative since they are associated with the effects of the experimental dose. In the

application example, the authors grouped the continuously measured covariate into

high, medium and low risk groups before applying the method.

2.3 Limitations of existing methods

Bayesian approach has many advantages and been widely adopted in clinical trial

designs. However it is still perceived as subjective compared to MLE. As illustrated in

the papers dealing with two risk group design [21; 22; 14], mis-specified priors on the

group ordering parameters may slow down the algorithm convergence, or even lead

to incorrectly determined MTD. In more complicated designs such as dose finding

with multiple risk groups, more parameters need cautious justification on their prior

distributions. The computational complexity is also a prominent issue with Bayesian
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method. Non-informative priors are usually considered equivalent to MLE, however,

the computation could be much more intensive than MLE.

MLE avoids subjectivity and is often computationally economical, but requires

an initial design to specify dose escalation before heterogeneous toxicity outcome

occurs and model based method is activated. Dose escalation without observing

toxicity outcomes is subject to ethical constraint that has two operationally conflicting

guidelines. Escalation is expected to proceed cautiously and not to overshoot the

target and put an unacceptably large number of patients at risk for toxic side effects.

Meanwhile, it is also desired to avoid treating too many patients at levels so far below

the target that the probability of seeing any treatment benefit is almost negligible.

The initial designs adopted in the reviewed literature [21; 22; 14] follow an arbitrary

escalation rule without sufficient justification from these perspectives.

Bivariate isotonic design is difficult to be extended to deal with continuous risk

factor. A more fundamental problem with this type of curve-free design is “rigidity”,

as pointed out by Cheung [5]. Due to lack of shared information across doses, when

target toxicity probability is low, the curve-free design may be confined to a low

dose and never escalate no matter how many more non-toxic outcomes observed.

A dose-finding study incorporating patient heterogeneity would likely deal with low

toxicity rate in one or multiple risk groups, suggesting the curve free method maybe

inefficacious for such purpose.

O’Quigley’s two-group CRM [22] and Thall’s individualized dosing on bivariate

outcome [29] deal with the categorical covariates. These methods can be extended

to multiple risk groups, which work for risk factors that are naturally measured in

discrete form such as heavily pre-treated versus treatment-naive patients. However,

it cannot be immediately applied on continuous risk factors as most newly identified

laboratory biomarkers through genomic or proteiomic studies. Oftentimes investiga-

tors may have knowledge on whether and how a biomarker influences patient drug

tolerance but reluctant to group the patients into high risk or low risk groups based
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on a specific cut-off value. In small sample study, information preservation by keeping

variable continuous and not dichotomizing it could potentially enhance design per-

formance. In such situation, it is desirable to develop a design that has the flexibility

to adjust for both continuous and categorical covariates.

Two-parameter EWOC [2] deals with both continuous dose and continuous co-

variate (anti-SEA concentration) using two-parameter parametric model. However,

the method is difficult to be generalized and adopted by other studies as it requires

much effort to specify the design parameters for each individual study.

The existing designs reviewed in this chapter deals with the risk factors that are

known to have effect on toxicity probability and incorporates this knowledge into the

design. However, the designs are less flexible in handling the opposite situation where

the risk factor turns out not affect the toxicity outcome in a particular trial. We will

propose a multi-stage design that evaluates the effect of risk factor on the toxicity

probability as trial goes on, and only allows adjusting individual risk factor when the

effect is evident.
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Chapter 3

Design components for two-stage

Likelihood CRM

To fully specify a two-stage likelihood CRM, we need to determine 1) a dose esca-

lating sequence {x0,i} in the first stage (initial design) to dictate the dose assignments

for initially enrolled patients before any DLT is observed, and 2) a working model to

be used to guide the dose escalation in the second stage, whereas the model parame-

ter β can be repeatedly estimated using accumulated data collected in the sequential

experiment to provide updated estimate on dose toxicity probabilities. Furthermore,

to fully specify a working model in the second stage, we need to determine, firstly the

dose-toxicity function to be used to approximate the true dose-toxicity relationship,

along with the initial value for the slope parameter β, i.e., β0, and the initial estimate

of toxicity probability on each dose level, i.e., p0k. With these initial values, the dose

labels can be determined using backward substitution and the sequentially collected

observed data can be used to obtain the updated model parameter estimate, which

then can be further used to obtain the updated model based estimates of dose toxicity

probabilities at each dose level.

In this chapter, we will characterize each of the three design components under

our proposed framework. We will start from the two design components required in
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the second stage model based design: dose-toxicity functions and specification of the

initial estimate of the dose toxicity probabilities, and then we will focus on how to

choose appropriate initial design. Theoretical results will be derived.

3.1 The Dose-toxicity model

3.1.1 ψ-equivalent functions

The CRM models the dose-toxicity relationship by a one-parameter function

F (., β). The two commonly used dose-toxicity models in the CRM literature are

the empiric function

F (x, β) = xexp(β) for 0 < x < 1

and the one-parameter logistic function

F (x, β) =
exp(a0 + βx)

1 + exp(a0 + βx)
for −∞ < x <∞

with a fixed intercept a0; see [9; 13; 21] for example. Other functions often consid-

ered include a hyperbolic tangent function [20] and a one-parameter logistic function

with a fixed slope [27].

Since the use of one-parameter function is not common in other statistical ap-

plications, the theory in this area is quite scattered. In this article, we provide a

systematic study of the following class of dose-toxicity functions in the context of the

CRM:

Consider the class of one-parameter functions

F (x, β) = ψ {c(β)h(x)}

where ψ, c, h are known functions that are strictly monotone [7].

This class includes the most commonly used dose-toxicity functions such as the em-

piric function and a one-parameter logistic function in the dose-finding literature [12].
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For example, the empiric function can be expressed as F (x, β) = exp{exp(β) log(x)},

with ψ(·) = exp(·), c(·) = exp(·), and h(·) = log(·).

Suppose that we can specify a skeleton {p0k} and an initial parameter value β̂0 so

that the dose labels dks are obtained by solving p0k = F (dk, β̂0) = ψ{c(β)h(x)}, and

dk = h(x) = ψ−1/c(β0). Then, the dose-toxicity model can be rewritten as

F (dk, β) = Fk(β) = ψ

{
c(β)

c(β̂0)
ψ−1(p0k)

}
(3.1)

which does not depend on the function h(x). Furthermore, Theorem 4.1 in [7] shows

that, for a given skeleton {p0k}, the maximum likelihood CRM is invariant among the

dose-toxicity functions represented by the same ψ function, regardless of the choice

of c(·) and β̂0. Hence, we can arbitrarily set c(β) = exp(β) and β̂0 = 0 without loss of

generality, and the ψ-representation of the dose-toxicity model (3.1) can be simplified

as

Fk(β) = ψ
{

exp(β)ψ−1(p0k)
}

(3.2)

Two dose-toxicity functions are said to be ψ-equivalent if they can be represented

by the same ψ. For example, consider one-parameter logistic function with fixed

slope a, Fa(x, β) = {1 + exp(−β− ax)}−1. Since the function class {Fa(x, β) : a > 0}

can be represented with ψ(z) = z/(1 + z) that is free of a, all functions in this

class are ψ-equivalent. It is immediately clear how the ψ-representation offers great

simplification in the model calibration problem; in the above example, for instance, it

suffices to consider Fa for a given and arbitrary choice of a. In addition, it allows us

to systematically expand the scope of the dose-toxicity functions for the CRM. Other

functional forms for modeling binary outcome such as complementary log-log and

probit functions can be conveniently summarized using this representation. Table 3.1

lists some commonly used dose-response models.
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Table 3.1: Dose-toxicity models generated by some common ψ.

Model ψ(z) Fk(β)

Empiric ez p
exp(β)
0k

Complementary log-log

with intercept a 1− e− exp(az) 1− e− exp(a+eβ [log{1−log(1−p0k)}−a])

with fixed slope 1− e−z 1− (1− p0k)
exp(β)

Logistic

with intercept a (1 + e−a−z)−1 exp[a+eβ{lgt(p0k)−a}]
1+exp[a+eβ{lgt(p0k)−a}]

with fixed slope (1 + z−1)−1 exp(β)p0k
1−p0k+exp(β)p0k

Probit

with intercept a Φ(a+ z) Φ
[
a+ exp(β){Φ−1(p0k)− a}

]
with fixed slope Φ {log(z)} Φ

{
β + Φ−1(p0k)

}
lgt(p) = log{p/(1− p)}; Φ is the cumulative distribution function of standard normal.

3.1.2 The skeleton and the irrelevance of ν0

For a given ψ-class dose-toxicity function with c(β) = exp(β) and β̂0 = 0, skeleton

{p0k} can be specified using an algorithm described in [7]: After specifying ν0 and δ,

set p0ν0 = θ, p0k can be determined recursively such that the skeleton satisfies

ψ−1(p0,k+1)ψ−1(θ − δ) = ψ−1(p0k)ψ
−1(θ + δ) for k = 1, . . . , K − 1. (3.3)

Since ψ is strictly monotone, the skeleton thus obtained is unique and strictly

increasing. Algorithm (3.3) requires the specification of δ, the half-width of the

design’s indifference interval [8]; that is, the design will converge with probability one

to a dose with toxicity probability falling onto the interval θ ± δ. While δ, as an

asymptotic design resolution, is only interpretable given large sample size, it can also

serve as a design parameter in finite sample setting to be tuned to achieve satisfying

design operating characteristics. Lee & Cheung [16] propose a numerical algorithm
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to calibrate the skeleton p0k via tuning δ under finite sample settings.

In addition to δ, algorithm (3.3) also requires the specification of the prior maxi-

mum tolerated dose ν0. As we attempt to steer away from the Bayesian approach, the

choice of ν0 is artificial at best, and may appear subjective. Importantly, the choice

of ν0 does have an impact on the performance of the Bayesian method [7]. However,

the following Theorem holds if using maximum likelihood method.

Theorem 1. Suppose that F (x, β) and F ∗(x, φ) are ψ-equivalent functions, and

that the respective dose-toxicity models are obtained according to (3.2) with skeletons

{p0k} and {p∗0k}, that is, Fk(β) = ψ{c(β)ψ−1(p0k)} and F ∗k (φ) = ψ{c(φ)ψ−1(p∗0k)}.

Further assume that both models satisfy the regularity conditions listed in section 3.3.

(a) If, for some λ > 0,

p∗0k = ψ{λψ−1(p0k)} (3.4)

then Fk(β̂i) = F ∗k (φ̂i) for all k, where β̂i and φ̂i be the maximum likelihood estimate

of β and φ given the observations {(xj, Yj) : j ≤ i}.

(b) If the skeletons {p0k} and {p∗0k} are generated using Algorithm (3.3) with (δ, ν0)

and (δ, ν∗0) respectively, then (3.4) holds.

Theorem 1 implies that the choice of ν0 is irrelevant in the likelihood estimate and

hence the performance of the likelihood CRM if the skeleton is chosen according to

Algorithm (3.3); hence, we can arbitrarily set ν0 = 1.

The proof of Theorem 1 and other theories developed in the following chapters

require the regularity conditions on the dose-toxicity model listed in section 3.3.

Proof of Theorem 1. By (3.4), F ∗k (φ) = ψ{c(φ)ψ−1(p∗0k)} = ψ{c(φ)λψ−1(p0k)},

whereas Fk(β) = ψ{c(β)ψ−1(p0k)}. Therefore, the two models represent re-parametrisation

of each other with c(β) = λc(φ), and the MLEs are identical, i.e., ĉ(β) = λ̂c(φ). By

invariance of maximum likelihood, we also have c(β̂i) = λc(φ̂i). The desired result in

Theorem 1(a) thus follows, i.e., Fk(β̂i) = F ∗k (φ̂i).

To prove Theorem 1(b), consider a given dose level k. By Algorithm (3.3), we

have
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ψ−1(p∗0k) =

{
ψ−1(θ + δ)

ψ−1(θ − δ)

}(k−ν∗0 )

ψ−1(p0ν∗0
) ≡ λ

{
ψ−1(θ + δ)

ψ−1(θ − δ)

}(k−ν0)

ψ−1(p0ν0) = λψ−1(p0k)

(3.5)

where

λ =

{
ψ−1(θ + δ)

ψ−1(θ − δ)

}ν0−ν∗0
.

Note the equivalence in 3.5 is due to the fact ψ−1(p0ν0) = ψ−1(p0ν∗0
) = ψ−1(θ) by

definition. Thus, assumption (3.4) holds.

3.2 The initial design

The primary appeal of a two-stage design is that it allows a safe starting dose,

which is usually the lowest dose level, that is, x1,0 = d1. Also since the initial design

does not prescribe de-escalation, that is, xi,0 ≤ xi+1,0, the dose sequence can be

equivalently represented by M0 = {m01,m02, . . . ,m0K}, where m0k =
∑N

i=1 I(xi,0 =

dk) is the initial cohort size of dose k and I(·) is an indicator function, such that∑K
k=1m0k = N . In practice, it is common to use equal cohort sizes for the non-

highest doses, such as, m01 = · · · = m0,K−1 = 3 with m0K = N − 3(K − 1). In order

to avoid over-conservative dosing among the earliest patients, Storer [28] suggests

that it may be reasonable to escalate relatively quickly at the start and slow down as

the trial moves to higher doses. This implies non-decreasing initial cohort sizes, that

is,

m01 ≤ m02 ≤ · · · ≤ m0,K−2 ≤ m0,K−1 ≤ m0K (3.6)

As a middle ground between equal cohort sizes and the general form of non-

decreasing cohort sizes (3.6), we focus our attention to the following class of initial

designs that allows at most one cohort size increment:

l = m01 = m02 = · · ·m0,j−1 < m0,j = m0,j+1 = · · ·m0,K−1 = l+s, and m0,K = N −m+,K−1,

(3.7)
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where m+,K−1 :=
∑K−1

k=1 m0k = l(K−1)+s(K−j) is the number of subjects needed to

escalate to the highest dose, and serves as an conservatism index of the initial design.

For the moment, assume that N is chosen so that m0,K ≥ l + s thus satisfying (3.6).

The initial design (3.7), abbreviated as a triple-indexed D0(l, s, j), allows an increase

in cohort size at most once at a dose level j ∈ {1, . . . , K − 1} by size s, and l ≥ 0 is

the cohort size for doses below j. In case when j = 1, D0(l, s, j) represents an initial

design with equal cohort sizes l+s. The design objective is thus to determine (l, s, j).

In practice, there is an inclination to choose a conservative initial design, that is, to

have a ”large” conservative index m+,K−1. On the other hand, Cheung [6] shows that

an over-conservative initial design causes incoherence in a two-stage CRM. That is,

dose escalation occurs on the next patient despite the current patient has developed

a toxicity. Therefore, a reasonable design approach is to seek the most conservative

D0(l, s, j) among all coherent initial designs in class (3.7).

Let T0 = min{i : Yi = 1} denote the index for the first patient with a toxicity.

Lemma. Suppose that a likelihood CRM is specified with ψ and {p0k} generated

according to Algorithm (3.3), so that Conditions 1–3 hold. Then if a two-stage CRM

with initial design D0(l, s, j) is incoherent, an incoherent escalation will occur with

probability one on the event {T0 = m+,K−1}. That is, xT0+1 = ν̂T0 > xT0 = xT0,0 when

T0 = m+,K−1.

Lemma holds also for any initial design M0 satisfying (3.6), and hence holds for

more general initial designs than D0 as described in (3.7).

Proof of Lemma.

Proof of Lemma. Assume without loss of generality that ψ is an increasing func-

tion, i.e., ψ′ > 0, and that ψ−1(p0k) < 0 for all k per Condition 2. For brevity, we

write ψ−1(p0k) as ψ−1
k as shorthand expression, and develop our proof in terms of

α = exp(β).

Let u ≤ N −m+,K−1 so that xu,0 = dζ for some 1 ≤ ζ ≤ K − 1. It can be verified

that u ≤
∑ζ

k=1m0k. Suppose that an initial design M0 satisfying (3.6) induces an
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incoherent escalation on {T0 = u}, that is, xu+1 = ν̂u > xu = xu,0 upon observing

xi = xi,0 for i ≤ u and Y1 = · · · = Yu−1 = 0 and Yu = 1. We will consider two cases

in the followings:

Case 1: u <
∑ζ

k=1 m0k for ζ = 1, . . . , K − 1

Case 2: u =
∑ζ

k=1 m0k for ζ = 1, . . . , K − 2

Under Case 1, we will show thatM0 will induce an incoherent escalation on {T0 = w}

for any w > u such that xw,0 = dζ . Analogously, under Case 2, we will show that

M0 will induce an incoherent escalation on {T0 =
∑ζ+1

k=1 mk,0}. By applying these

results under Cases 1 and 2 deductively, we can then show that M0 will induce an

incoherent escalation on {T0 = m+,K−1} as desired.

First consider Case 1 when u <
∑ζ

k=1m0k. The first derivative of log-likelihood

with respect to α based on the first u observations given {T0 = u} can be written as

l
′

u(α) =

ζ−1∑
k=1

{
m0k
−ψ′(αψ−1

k )ψ−1
k

1− ψ(αψ−1
k )

}
+ (u−

ζ−1∑
k=1

m0k)
−ψ′(αψ−1

ζ )ψ−1
ζ

1− ψ(αψ−1
ζ )

+
ψ
′
(αψ−1

ζ )ψ−1
ζ

ψ(αψ−1
ζ ){1− ψ(αψ−1

ζ )}
(3.8)

Let α̂u denote the solution to l
′
u(α) = 0. Then the assumption that incoherence occurs

on {T0 = u} implies ψ(α̂uψ
−1
ζ ) + ψ(α̂uψ

−1
ζ+1) < 2θ.

Likewise, we can write the first derivative of the log-likelihood based on the first

w observations given {T0 = w}, where w > u and xw,0 = dζ , as follows:

l
′

w(α) =

ζ−1∑
k=1

{
m0k
−ψ′(αψ−1

k )ψ−1
k

1− ψ(αψ−1
k )

}
+ (w −

ζ−1∑
k=1

m0k)
−ψ′(αψ−1

ζ )ψ−1
ζ

1− ψ(αψ−1
ζ )

+
ψ
′
(αψ−1

ζ )ψ−1
ζ

ψ(αψ−1
ζ ){1− ψ(αψ−1

ζ )}
(3.9)

with α̂w denoted as solution to l′w(α) = 0. Since
∑ζ−1

k=1m0k < u < w ≤
∑ζ

k=1m0k, the

second term on the right hand side in (3.9) is greater than its counterpart in (3.8),

and hence l
′
u(α) < l

′
w(α). As we can verify that l′u(α) and l′w(α) are decreasing in α

and have uni-root under Condition 3, we have α̂u < α̂w. As a result, ψ(α̂wψ
−1
ζ ) +

ψ(α̂wψ
−1
ζ+1) < ψ(α̂uψ

−1
ζ ) + ψ(α̂uψ

−1
ζ+1) < 2θ, that is, incoherence occurs on {T0 = w}.
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Analogously, under Case 2 when u =
∑ζ

k=1m0k, the first derivative of log-

likelihood with respect to α based on the first u observations given {T0 = u} can

be written as:

l
′

u(α) =

ζ∑
k=1

{
m0k
−ψ′(αψ−1

k )ψ−1
k

1− ψ(αψ−1
k )

}
+

ψ
′
(αψ−1

ζ )ψ−1
ζ

ψ(αψ−1
ζ ){1− ψ(αψ−1

ζ )}
(3.10)

and that based on the first w =
∑ζ+1

k=1mk,0 observations given {T0 = w} as:

l
′

w(α) =

ζ+1∑
k=1

{
m0k
−ψ′(αψ−1

k )ψ−1
k

1− ψ(αψ−1
k )

}
+

ψ
′
(αψ−1

ζ+1)ψ−1
ζ+1

ψ(αψ−1
ζ+1){1− ψ(αψ−1

ζ+1)}
(3.11)

According to (3.3), we have ψ−1
k+1 = rψ−1

k where r = ψ−1(θ + δ)/ψ−1(θ − δ) < 1

under the assumption ψ−1 < 0. Then we can re-write (3.11) as

l
′

w(α) = m01

{
−ψ′(αψ−1

1 )ψ−1
1

1− ψ(αψ−1
1 )

}
+

[
ζ∑

k=1

{
m0,k+1

−ψ′(αrψ−1
k )rψ−1

k

1− ψ(αrψ−1
k )

}
+

ψ
′
(αrψ−1

ζ )rψ−1
ζ

ψ(αrψ−1
ζ ){1− ψ(αrψ−1

ζ )}

]

= m01

{
−ψ′(αψ−1

1 )ψ−1
1

1− ψ(αψ−1
1 )

}
+

ζ∑
k=1

{
(m0,k+1 −m0k)

−ψ′(αrψ−1
k )rψ−1

k

1− ψ(αrψ−1
k )

}

+

[
ζ∑

k=1

{
m0k
−ψ′(αrψ−1

k )rψ−1
k

1− ψ(αrψ−1
k )

}
+

ψ
′
(αrψ−1

ζ )rψ−1
ζ

ψ(αrψ−1
ζ ){1− ψ(αrψ−1

ζ )}

]

= m01

{
−ψ′(αψ−1

1 )ψ−1
1

1− ψ(αψ−1
1 )

}
+

ζ∑
k=1

{
(m0,k+1 −m0k)

−ψ′(αrψ−1
k )rψ−1

k

1− ψ(αrψ−1
k )

}
+ rl′u(rα)

= A(α) + rl′u(rα) (3.12)

where

A(α) = m01

{
−ψ′(αψ−1

1 )ψ−1
1

1− ψ(αψ−1
1 )

}
+

ζ∑
k=1

{
(m0,k+1 −m0k)

−ψ′(αrψ−1
k )rψ−1

k

1− ψ(αrψ−1
k )

}
Since ψ

′
> 0 and ψ−1(p0k) < 0 by assumption, under non-decreasing cohort sizes

(3.6) , we have A(α) > 0. In addition, l
′
w(α̂w) = l

′
u(α̂u) = 0. By (3.12) we have

rl
′

u(rα̂w) = l
′

w(α̂w)− A(α̂w) = −A(α̂w) < 0 = l
′

u(α̂u) (3.13)
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Since 0 < r < 1, l
′
u(α̂u) > rl

′
u(rα̂w) > l

′
u(rα̂w). Since l

′
u(α) is decreasing function

for α, α̂u < rα̂w. As a result, ψ(α̂wψ
−1
ζ+1) +ψ(α̂wψ

−1
ζ+2) = ψ(rα̂wψ

−1
ζ ) +ψ(rα̂wψ

−1
ζ+1) <

ψ(α̂uψ
−1
ζ ) + ψ(α̂uψ

−1
ζ+1) < 2θ. Incoherence occurs with probability one on {T0 = w}.

That is, xw+1 = ν̂w > xw = xw,0.

The Lemma assumes the skeleton is generated using Lee and Cheung’s calibration

algorithm 3.3. This Lemma provides a convenient method to check whether a two-

stage CRM is coherent for any given initial design in most general form 3.6. Since a

two-stage CRM is coherent only if it is coherent across all N scenarios of when the

first toxicity occurs, it implies that we need to exhaust all N scenarios to check for

coherence before concluding the design is coherent. With this Lemma, this task is

further reduced to checking only one scenario when the first toxicity occurs on the last

patient assigned on dose level K − 1, i.e., {T0 = m+,K−1}. Following the procedures

described in Cheung (2011), for given target toxicity rate θ, number of doses K,

dose-toxicity function ψ, and the skeleton generated using Lee and Cheung (2009)’s

approach, the likelihood estimate of model parameter β̂ can be obtained under this

specific toxicity outcome, the following inequality will be checked [8]:

ψ{exp(β̂)ψ−1
K−1}+ ψ{exp(β̂)ψ−1

K } − 2θ > 0 (3.14)

If this inequality holds, the next dose assignment is coherent under this specific

toxicity outcome profile, according to the Lemma, the two-stage CRM using this

initial design is coherent under any toxicity outcome scenario.

Theorem 2. Suppose that the assumptions in the Lemma hold, and Condition

4 also holds.

(a) For any coherent initial design D0(l, s, j), there exists a triplet (l∗, s∗ = 1, j∗),

such that D0(l∗, s∗, j∗) is also coherent, with l∗(K−1)+s∗(K−j∗) ≥ l(K−1)+s(K−j).

(b) Among all D0(l∗, s∗, j∗) in part (a), there exists a unique triplet that has the

largest m+,K−1.

Proof of Theorem 2. Similar to the proof of Lemma, we assume without loss of
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generality that ψ is an increasing function, i.e., ψ′ > 0, and that ψ−1(p0k) < 0 for all

k per Condition 2. For brevity, we write ψ−1(p0k) as ψ−1
k as shorthand expression,

and develop our proof in terms of α = exp(β).

Suppose an initial designD0(l, s, j) is coherent with conservatism index n0 = l(K−

1)+s(K−j), and also that D0(l+1, s, j) is coherent with n1 = (l+1)(K−1)+s(K−j).

It is obvious that n1 > n0. Likewise, suppose that D0(l, s, j − 1) is coherent with

conservatism index n2 = l(K − 1) + s(K − j + 1), thus n2 > n0. To complete

the proof of Theorem 2(a), we will only need to consider a “boundary” coherent

initial design D0(l, s, j) with conservatism index n0, such that D0(l + 1, s, j) and

D0(l, s, j − 1) are incoherent; and prove that for this triplet (l, s, j), there exists a

coherent D0(l∗, s∗ = 1, j∗) with

n∗ = l∗(K − 1) + s∗(K − j∗) ≥ n0 (3.15)

The proof of Theorem 2(a) can then be completed by induction.

To facilitate the proof, we rewrite the first K − 1 cohort sizes of an initial design

D0(l, s, j) under (3.7) as D̄0(l
′
, s
′
, ω) = {l′ + q1, l

′
+ q2, . . . , l

′
+ qK−1} with

∑K−1
k=1 qk =

ωs
′
and qK−1−q1 = s or 0. ω and s

′
are non-negative integers. It is clear that for given

(l, s, j), there exists (l
′
, s
′
, ω) so thatD0(l, s, j) and D̄0(l

′
, s
′
, ω) are identical. Precisely,

this can be achieved by letting l
′
= l, s

′
= s, ω = K− j, and q1 = q2 = . . . = qj−1 = 0

and qj = qj+1 = . . . = qK−1 = s.

Now suppose that a boundary sequenceD0(l, s, j) can be represented as D̄0(l
′
, s
′
, ω̄).

It implies that D̄0(l
′
, s
′
, ω̄ + 1) is incoherent by definition of ”boundary” sequence,

since D̄0(l
′
, s
′
, ω̄ + 1) = D(l, s, j − 1). For given (l, s), the conservatism index of a

boundary sequence D0(l, s, j) equals to n0 = l
′
(K − 1) + ω̄s

′
. Therefore ω̄ = max{ω :

D̄0(l
′
, s
′
, ω) is coherent}.

Next we consider a class of initial design in the form of E0(l
′
, s
′
, ω) = {l′ + q

′
1, l
′
+

q
′
2, . . . , l

′
+ q

′
K−1} with

∑K−1
k=1 q

′

k = ωs
′

for non-negative integers ω and s
′

and q
′
K−1 −

q
′
1 = 1 or 0. It is easy to see that E0(l

′
, s
′
, ω) belongs to the class of initial design
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(3.7) with only cohort size increment 1.

It is clear that {E0} ⊂ {D̄0}. Note also that for given (l
′
, s
′
, ω), E0(l

′
, s
′
, ω) and

D̄0(l
′
, s
′
, ω) have the same conservatism index l

′
(K − 1) + ωs

′
. Define ω1 = max{ω :

E0(l
′
, s
′
, ω) is coherent}. Then for given l

′
and s

′
, if we can show that ω̄ ≤ ω1, it

implies that there exists a coherent design E0(l
′
, s
′
, ω1) that is more conservative than

D̄0(l
′
, s
′
, ω̄). Precisely, we will need to prove D̄0(l

′
, s
′
, ω1 + 1) is incoherent, then the

desired results follows from the definition of ω̄.

By definition of ω1 and the Lemma, E0(l
′
, s
′
, ω1 + 1) is incoherent on the event

{T0 = m+,K−1}. We will proceed the proof under three different cases with l
′
, s
′
fixed.

Case 1: D̄0(l
′
, s
′
, ω1 + 1) = {l′ + q1, . . . , l

′
+ q1}, i.e., qK−1 − q1 = 0. In this case,

it is clear that under (3.7) E0(l
′
, s
′
, ω1 + 1) = {l′ + q1, . . . , l

′
+ q1} = D0(l′, s

′
, ω1 + 1)

because q
′
K−1 − q

′
1 = 1 or 0. Therefore D̄0(l

′
, s
′
, ω1 + 1) is incoherent.

Case 2: D̄0(l
′
, s
′
, ω1 + 1) = {l′ + q1, . . . , l

′
+ qK−1} with qK−1 − q1 = 1.In this

case,it can be shown that under (3.7), E0(l
′
, s
′
, ω1 + 1) = {l′ + q1, . . . , l

′
+ qK−1} =

D0(l′, s
′
, ω1+1) because q

′
K−1−q

′
1 = 1 or 0.Therefore D̄0(l

′
, s
′
, ω1+1) is also incoherent.

Case 3: Finally, consider the case D̄0(l
′
, s
′
, ω1 + 1) = {l′ + q1, . . . , l

′
+ qK−1}

with qK−1 − q1 = s > 1. There exists q
′
1, q

′
2, . . . , q

′
K−1, such that E0(l

′
, s′, ω1 + 1) =

{l′ + q′1, . . . , l
′
+ q

′
K−1}

qK−1 − q1 =
K−2∑
k=1

qk+1 − qk = s and qk+1 − qk ≥ 0, 1 ≤ k ≤ K − 2

q
′

K−1 − q
′

1 =
K−2∑
k=1

q
′

k+1 − q
′

k = 1 and q
′

k+1 − q
′

k ≥ 0, 1 ≤ k ≤ K − 2

With at most one cohort size increment in both D̄0 and E0, there exists a J , such

that qJ − qJ−1 = s and qk+1 − qk = 0 for 1 ≤ k ≤ K − 2 and k 6= J . Likewise, there

also exits a J
′
, such that q

′

J ′
− q′

J ′−1
= 1 and q

′

k+1 − q
′

k = 0 for 1 ≤ k ≤ K − 2 and

k 6= J
′
.

If q
′
1 < q1, without loss of generality q

′
1 = q1 − 1, then the conservatism index of

D̄0(l
′
, s
′
, ω1+1) is q1∗(K−1)+s(K−J ′) and the conservatism index of E0(l

′
, s
′
, ω1+1)
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is q1 ∗ (K − 1) − (J − 1), contradicting the fact that their conservatism index are

identical. Thus, q
′
1 ≥ q1.

If q
′
K−1 > qK−1, without loss of generality q

′
K−1 = qK−1 + 1, then the conservatism

index of D̄0(l
′
, s
′
, ω1 + 1) is qK−1 ∗ (K − 1)− s ∗ (J

′ − 1) and the conservatism index

of E0(l
′
, s
′
, ω1 + 1) is qK−1 ∗ (K − 1) + (K − J), contradicting the fact that their

conservatism index are identical. Thus, q
′
K−1 ≤ qK−1.

Since q1 ≤ q′1 ≤ q′K−1 ≤ qK−1, for 1 ≤ k ≤ K − 1, there exists a k∗, such that

qk ≤ q
′

k when 1 ≤ k < k∗, and qk ≥ q
′

k when k∗ < k ≤ K − 1.

Given incoherent E0(l
′
, s
′
, ω1 + 1), the first derivative with respect to α of the

log-likelihood function upon {T0 = m+,K−1} is

l
′

E0(α) = l
′

{
K−1∑
k=1

−ψ′(αψ−1
k )ψ−1

k

1− ψ(αψ−1
k )

}
+

ψ
′
(αψ−1

K−1)ψ−1
K−1

ψ(αψ−1
K−1){1− ψ(αψ−1

K−1)}
+ An

where

An =
k∗∑
k=1

q
′

k

−ψ′(αψ−1
k )ψ−1

k

1− ψ(αψ−1
k )

+
K−1∑

k=k∗+1

q
′

k

−ψ′(αψ−1
k )ψ−1

k

1− ψ(αψ−1
k )

Define α̂E0 such that l
′
E0(α̂E0) = 0, By Lemma, incoherence indicates

ψ(α̂E0ψ
−1
K−1) + ψ(α̂E0ψ

−1
K ) < 2θ

Next we examine D0(l
′
, s
′
, ω1 + 1). When the first toxicity occurs on {T0 =

m+,K−1},the corresponding score function is

l
′

D0
(α) = l

′

{
K−1∑
k=1

−ψ′(αψ−1
k )ψ−1

k

1− ψ(αψ−1
k )

}
+

ψ
′
(αψ−1

K−1)ψ−1
K−1

ψ(αψ−1
K−1){1− ψ(αψ−1

K−1)}
+Bn

where

Bn =
k∗∑
k=1

qk
−ψ′(αψ−1

k )ψ−1
k

1− ψ(αψ−1
k )

+
K−1∑

k=k∗+1

qk
−ψ′(αψ−1

k )ψ−1
k

1− ψ(αψ−1
k )

An −Bn =
k∗∑
k=1

(q
′

k − qk)
−ψ′(αψ−1

k )ψ−1
k

1− ψ(αψ−1
k )

+
K−1∑

k=k∗+1

(q
′

k − qk)
−ψ′(αψ−1

k )ψ−1
k

1− ψ(αψ−1
k )
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Since
∑K−1

k=1 qk =
∑K−1

k=1 q
′

k, 0 ≤
∑k∗

k=1 (q
′

k − qk) = −
∑K−1

k=k∗+1 (q
′

k − qk). By the

assumptions of ψ
′
> 0 and ψ−1

k < 0 for all k. Condition 4 implies

ψ
′
(αψ−1

i )ψ−1
i

1− ψ(αψ−1
i )
≤
ψ
′
(αψ−1

j )ψ−1
j

1− ψ(αψ−1
j )

, 1 ≤ j ≤ i ≤ K

Hence An − Bn ≤ 0 and l
′
E0(α) ≤ l

′

D̄0
(α). In addition, l

′

D̄0
(α̂D̄0

) = 0 = l
′
E0(α̂E0) ≤

l
′

D̄0
(α̂E0). By Condition 3, each score is a decreasing function of α, α̂D̄0

≥ α̂E0 .

Thus,ψ(α̂D̄0
ψ−1
K−1) +ψ(α̂D̄0

ψ−1
K ) ≤ ψ(α̂E0ψ

−1
K−1) +ψ(α̂E0ψ

−1
K ) < 2θ. Therefore, the ini-

tial design D̄0(l
′
, s
′
, ω1 + 1) is also incoherent, and ω̄ ≤ ω1, thus n0 ≤ l

′
(K−1) +ω1s

′
.

There exists an initial design E0(l
′
, s
′
, ω1), belong to class (3.7) with s = 1 that is

more conservative than the ”boundary” sequence D0(l, s, j).

Next we prove part(b) of Theorem 2. Suppose D0(l∗, s∗ = 1, j∗) is coherent with

n∗ = l∗(K − 1) + K − j∗ ≥ n0. if D0(l∗, s∗ = 1, j∗) is not a boundary sequence, we

then check coherence of D0(l∗+ 1, s∗ = 1, j∗) or D0(l∗, s∗ = 1, j∗− 1) until we identify

the boundary sequence. If D0(l∗, s∗ = 1, j∗) is a boundary sequence,then it is the

most conservative and coherent initial design.

Next we show that, given we identify the boundary sequence with the largest

conservatism index n∗ = l∗(K − 1) + (K − j∗), there exists a unique pair (l∗, j∗)

such that the boundary sequence D0(l∗, s∗ = 1, j∗) has conservatism index n∗ =

l∗(K − 1) + (K − j∗). Suppose there are two pairs (l∗1, j
∗
1) and (l∗2, j

∗
2) and both yield

the same conservatism index. Without loss of generality, assuming l∗1 = l∗2 +1, we have

l∗1(K−1)+K−j∗1 = (l∗2+1)(K−1)+K−j∗1 = l∗2(K−1)+K−j∗2 +(j∗2−j∗1 +K−1). Since

1 ≤ j∗1 , j
∗
2 ≤ (K− 1), 1 ≤ (j∗2 − j∗1 +K− 1) ≤ (2K− 3), we have l∗1(K− 1) +K− j∗1 ≥

l2(K−1)+K−j∗2 +1, which contradicts the assumption. Therefore, such pair (l∗, j∗)

is unique.

Theorem 2 implies the unique existence of a most conservative coherent initial

design among all D0(l, s, j), for given ψ and {p0k}. As a consequence of the proof of

Theorem 2, this design can be attained by setting s = 1 and iterating (l, j) according

to the following algorithm:
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1. Initialize l = 0 and j = K − 1.

2. If D0(l, s, j) is coherent, update j = j−1 if the current j > 1; and set j = K−1

and l = l + 1 if the current j = 1.

3. If D0(l, s, j) is incoherent, stop iterating.

The last coherent D0(l, s, j) before stopping the iteration will be the most conservative

coherent initial design.

3.3 Regularity conditions

The following assumptions are commonly made for dose-toxicity models used with

the CRM, and they can be verified for each ψ considered in Table 3.1 with {p0k}

generated according to Algorithm (3.3).

Condition 1. ψ{exp(β)ψ−1(p0k)} is strictly increasing in k for all β.

This is true for all ψ class functions.

Condition 2. ψ{exp(β)ψ−1(p0k)} is monotone in β in the same direction for all k.

In Table 3.1, empiric/hyperbolic tangent, complementary log-log with sufficiently

large positive fixed intercept, logistic with sufficiently large positive fixed intercept,

and probit with sufficiently large positive fixed intercept are decreasing in β. The

other ψ class functions are increasing in β.

Condition 3. For any given 0 < p < 1 and k,

p
ψ
′{exp(β)ψ−1(p0k)}
ψ{exp(β)ψ−1(p0k)}

+ (1− p) −ψ
′{exp(β)ψ−1(p0k)}

1− ψ{exp(β)ψ−1(p0k)}

is continuous and strictly monotone in β, where ψ
′{exp(β)ψ−1(p0k)} denotes the

derivative of ψ{exp(β)ψ−1(p0k)} with respect to β.

Let R(β) = F
′

k(β){ p
Fk(β)

− 1−p
1−Fk(β)

} = F
′

k(β) p−Fk(β)
Fk(β){1−Fk(β)} . If R(β) is monotone

function in β, the function has uni-root at zero. Next we show it is monotone for

each ψ class function.
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Empiric/hyperbolic tangent: F
′

k(β) = Fk(β) exp(β) log(dk). R(β) = log(dk) exp(β)p−Fk(β)
1−Fk(β)

=

log(dk) exp(β)
{

1− 1−p
1−Fk(β)

}
. Since Fk(β) is decreasing on β and log(dk) < 0, R(β)

is decreasing on β.

Logistic with fixed intercept a0: F
′

k(β) = Fk(β){1 − Fk(β)} exp(β)dk < 0 for

sufficiently large positive a0. R(β) = exp(β)dk{p− Fk(β)}. Since Fk(β) is decreasing

on β and dk < 0, R(β) is decreasing on β.

Logistic with fixed slope:F
′

k(β) = Fk(β){1 − Fk(β)}. R(β) = p − Fk(β). Since

Fk(β) is increasing on β, R(β) is decreasing on β.

Complementary log-log with fixed intercept a0:F
′

k(β) = {1 − Fk(β)}[− log{1 −

Fk(β)}] exp(β)dk < 0, with sufficiently large positive a0 such that dk < 0. R(β) =

log{1−Fk(β)}{p−Fk(β)}
Fk(β)

exp(β)(−dk) = log{1−Fk(β)}{ p
Fk(β)
−1} exp(β)(−dk). Since Fk(β)

is decreasing on β, both log{1 − Fk(β)} and p
Fk(β)

− 1 are increasing functions of β.

−dk is positive. Therefore R(β) is increasing on.

Complementary log-log with fixed slope:

Probit with fixed slope:F
′

k(β) = φ{β + Φ−1(p0k)} > 0.R(β) = φ(β+dk)(p−Φ(β+dk)
Φ(β+dk){1−Φ(β+dk)}

Condition 4. ψ
′{exp(β)ψ−1(p0k)}gij(β) ≤ 0 for all k and i > j, where gij(β) :=

ψ
′{exp(β)ψ−1(p0j)}[1−ψ{exp(β)ψ−1(p0i)}]−ψ

′{exp(β)ψ−1(p0i)}[1−ψ{exp(β)ψ−1(p0j)}].

Empiric/hyperbolic tangent: F
′

k(β) = Fk(β) logFk(β) < 0. gij(β) = Fj(β) logFj(β){1−

Fi(β)} − Fi(β) logFi(β){1 − Fj(β)}. Suppose m(x) =
Fβ(x)

1−Fβ(x)
logFβ(x), m

′
(x) =

F
′
β(x){logFβ(x)+1−Fβ(x)}

(1−Fβ(x))2
> 0. Since 0 < Fβ(x) < 1, logFβ(x) < Fβ(x) − 1 on interval

0 < Fβ(x) < 1. Thus, m
′
(x) is increasing on x, and gij(β) > 0.

Logistic with large positive fixed intercept a0: F
′

k(β) = Fk(β){1−Fk(β)} exp(β)dk =

Fk(β){1−Fk(β)}{logitFk(β)−a0} < 0. gij(β) = {Fj(β){logitFj(β)−a0}−Fi(β){logitFi(β)−

a0}}{1 − Fj(β)}{1 − Fi(β)}. Suppose m(x) = Fβ(x){logitFβ(x) − a0}. m
′
(x) =

F
′

β(x){logitFβ(x) + 1
1−Fβ(x)

− a0}. Since F
′

β(x) > 0, and when a0 is sufficiently

large,m
′
(x) < 0. Thus, {Fj(β){logitFj(β) − a0} − Fi(β){logitFi(β) − a0}} > 0 for

j < i.gij(β) > 0.

Logistic with fixed slope has been shown in the Chapter 4 of [7].
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Complementary log-log with fixed intercept a0: F
′

k(β) = {1 − Fk(β)}[− log{1 −

Fk(β)}](log[− log{1 − Fk(β)}] − a0) < 0 for sufficiently large positive a0. gij(β) =

(log{1−Fi(β)}(log[− log{1−Fi(β)}]− a0)− log{1−Fj(β)}(log[− log{1−Fj(β)}]−

a0)){1−Fj(β)}{1−Fi(β)}. Suppose m(x) = log{1−Fβ(x)}(log[− log{1−Fβ(x)}]−

a0), m
′
(x) = − F

′
β(x)

1−Fβ(x)
(log[− log{1− Fβ(x)}]− a0 + 1) > 0. Thus, m

′
(x) is increasing

on x, and gij(β) > 0.

Complementary log-log with fixed slope: F
′

k(β) = −{1−Fk(β)} log{1−Fk(β)} >

0. gij(β) = [log{1− Fi(β)} − log{1− Fj(β)}]{1− Fi(β)}{1− Fj(β)}. Since log{1−

Fβ(x)} is decreasing in x, gij(β) < 0.

Probit with fixed slope: F
′

k(β) = φ{β + Φ−1(p0k)} > 0. Let the quantiles zk =

Φ−1(p0k) and zi > zj. gij(β) = φ(β + zj){1 − Φ(β + zi)} − φ(β + zi){1 − Φ(β +

zj)} = φ(−β − zj)Φ(−β − zi) − φ(−β − zi)Φ(−β − zj). Suppose m(x) = φ(x)
Φ(x)

.

m
′
(x) = −φ(x)

∫
Φ(x) dx

Φ(x)2
< 0. Thus, gij(β) < 0.

Probit with fixed intercept a0: F
′

k = φ{a0 + exp(β)dk} exp(β)dk < 0, with suf-

ficiently large positive a0. gij(β) = φ{−(a0 + eβdj)}djΦ{−(a0 + eβ)} − φ{−(a0 +

eβdi)}diΦ{−(a0 +eβdj)}. Let zi = −(a0 +eβdi), zj = −(a0 +eβdj), thus zi < zj. gij =

φ(zj)(−zj−a0)Φ(zi)−φ(zi)(−zi−a0)Φ(zj) = φ(zi)(zi+a0)Φ(zj)−φ(zj)(zj+a0)Φ(zi).

Let m(x) = φ(x)(x+a0)
Φ(x)

,m
′
(x) = φ(x)Φ(x)(−x2−xa0+1)−φ(x)2(x+a0)

Φ(x)2
< 0 when a0 is sufficiently

large positive. Hence m(x) is decreasing function of x. Thus, gij(β) > 0.
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Chapter 4

Design calibration and application

With large sample size, CRM converges to the doses with toxicity probability

falling within a window around the target rate θ. The half width of this window is

defined as the model sensitivity parameter δ [8]. However, with finite sample size,

it is important to calibrate the design parameters to achieve satisfying performance.

As discussed in previous Chapter, three design components may influence the design

performance of two-stage likelihood CRM: initial design D0, dose-toxicity function ψ,

and initial estimate of the dose toxicity probabilities, “skeleton”, (p0k). Theorem 2

reveals that the most conservative and coherent initial design can be determined for

given ψ and skeleton. From Theorem 1, skeleton can be determined for given model

sensitivity parameter δ. We propose a semi-automatic calibration algorithm which

iterates over a range of δ values, for given ψ, and evaluates the performance using

average accuracy across a set of true dose-toxicity profiles [16; 7]. This procedure can

be repeated for each ψ function to compare across different ψ.

4.1 Calibration algorithm

For given target toxicity rate θ, number of doses K, and total number of patients

N , we first specify one of the ψ functions listed in (3.1), then apply the following
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calibration algorithm:

• Step 1: Vary δ in a range between 0.01 to 0.7×θ by step size of 0.01 [16]. For

each δ, do step 2-5:

– Step 2: determine skeleton {p0k} using Algorithm (3.3) based on δ and

ν0 = 1.

– Step 3: Given (ψ, p0k), obtain the most conservative coherent D0(l∗, 1, j∗)

according to the algorithm in Chapter 3.

– Step 4: Specify λ and calculate the number of patients to be tested on the

highest dose level mK = λ/θ. The initial design obtained in step 3 will

be pruned down with respect to is constraints and total sample size N ,

according to Algorithm 10.2 in [7].

– Step 5: Simulate 2000 trials with the fully specified two-stage likelihood

CRM (ψ, p0k,D0), under K dose toxicity scenarios described using the

plateau configurations with an odds ratio of 2 [16]. Record the recom-

mended MTD in the end of each trial. Calculate the average probability

of correct selection (PCS) across the K scenarios.

• Step 6: Choose the δ value which yields the maximum average PCS. The corre-

sponding design parameters (p0k,D0) will be the recommended design parame-

ters, for the specific ψ.

In practice, the number of patients to be reserved on the highest dose level K is

usually determined separately as by the time the trial escalates to the highest dose

level dK without observing any toxicity, the highest dose is the one closest to the

pre-specified target toxicity rate and it is preferred to test more patients on this dose

level before claiming it as MTD. Usually λ = 1, 1.2, 1.5, 2, . . . [7] and its specific value

can impact the pruning of the initial design, hence the design performance.

This calibration algorithm can be repeated for each ψ function, and the respective

plot of average PCS versus δ can be generated to compare across the ψ functions.
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4.2 Redesign the NeuSTART trial

As described in the introduction section, NeuSTART is a dose finding trial that

aims to determine the maximum tolerated dose for lovastatin in stroke patients [10]

with θ = 0.1 and K = 5. The original trial design was the two-stage Bayesian

CRM with design parameters described in the introduction Chapter. This design was

calibrated by the trial-and-error approach [7].

We re-design NeuSTART using the likelihood CRM with the dose-toxicity func-

tions listed in (3.1). The design parameters are determined based on algorithms

described above, as follows. For each ψ, we first calculate the skeleton {p0k} using

algorithm (3.3) for δ ranging from 0.01 to 0.05 with increment of 0.0025; For each

pair (ψ, δ), we obtain the most conservative coherent D0(l∗, 1, j∗) according to the

algorithm in Chapter 3. In our study design we also set m05 = 12 with N = 33,

such that sufficient number of subjects would be tested at the highest dose if there

were no toxicity throughout. In order to make the calibrated designs comparable to

the original study design, we “prune” D0(l∗, 1, j∗) using Algorithm 10.2 in [7] with

respect to the constraint m05 = 12 and N = 33 while keeping the pruned design

coherent. For each completely specified design (ψ, δ,D0), we ran simulations under

K dose toxicity scenarios described as the plateau configurations with an odds ratio

of 2 [16]. Table 4.1 gives, for each ψ, the calibrated design that maximises the aver-

age probability of correctly selecting ν in the K scenarios. In addition, Figure (4.2)

displays the average probability of correct selection by (ψ, δ): the average accuracy

reaches maximum either at δ = 0.0275 or at δ = 0.0175; and, the difference in the

average accuracy is less than 1% when δ lies between 0.0175 and 0.0275. It gives

some assurance that the design performance is insensitive to the choice of δ over this

range, thus rendering the choice of “optimal” δ quite robust.

The performance of these calibrated designs are compared to the NeuSTART

study design under the toxicity scenarios listed in Table 4.1 using simulation with

5,000 replicates. Table 4.3 shows that all designs give comparable average probability
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of correct selection. Also, all the calibrated designs lead to slightly better performance

than the NeuSTART design when ν is at the highest dose—a rather common clinical

expectation a priori. Finally, this simulation study confirms that, for finite sample

settings, the CRM is robust against the choice of the dose-toxicity function as long

as the design parameters are well calibrated. In particular, it suggests and justifies

the use of the most commonly used empiric function.

4.3 Two-stage design for the oncology trial

As described in the introduction, the goal of this oncology trial is to identify MTD

among 5 dose levels with either 2-way or 3-way drug combinations of Gemcitabine,

Cabazitaxel and Cisplatin, for treating bladder cancer patients. The MTD combi-

nation will be estimated using a two-stage Bayesian CRM. In the first stage, a rule

based design will be used. Once a DLT is observed, we will switch to the second

stage using the CRM. There are several advantages of the CRM compared to con-

ventional designs. First, the CRM has been shown to have better performance than

the 3+3 design and treat fewer patients at suboptimal doses. Second, it allows for

the specification of a fixed sample size for the trial. Third, it assigns a dose after the

outcome of every patient is observed. The advantage of using a two-stage CRM over

a one stage-CRM is it starts at the lowest dose, like conventional designs. This is

desired because of safety concerns in starting with the combination of all three drugs

for intravesical use. Thus, the design is expected to be more conservative than the

one stage CRM and outperform the 3+3 design in selecting the correct dose as the

MTD.

The specified sample size is 24 patients using a cohort size of one. The first

patient will be assigned dose level 1 (2g of Gemcitabine and 2.5mg of CAB). Before

a DLT is observed, dose escalation will follow the dose sequence listed in Table 4.4.

Once a DLT is observed, dose escalations will be determined using a Bayesian CRM.
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Figure 4.1: Average probability of correct selection versus δ for each ψ-class functional

form.
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The CRM with an empirical dose-toxicity model and a normal prior distribution on

the parameter with mean 0 and variance of 0.55 will be used [17]. The expected

MTD is dose level 3. The dose-toxicity model is calibrated such that the method

will eventually select a dose that yields between 20% and 30% DLT [16; 8]. The

design will not allow for dose skipping and dose escalation immediately after a DLT

is observed [6].

The operating characteristics of our design under different various scenarios are

displayed in the table 4.5. With 24 patients, the design selects the correct MTD

with probabilities over 50% in all five scenarios, outperforming the conventional 3+3

design. The scenarios where selected to have neighborhood doses with DLT rates

within 10-15% of the MTD rate. If the neighboring doses have DLT rates significantly

different from the target of 25%, the probability of correct selection will be improved.

A stopping rule will be implemented whereby if the first two patients experience

toxicity the trial will be stopped for toxicity.

4.4 Comprehensive simulation results

Extensive simulations are performed in this section to recommend the optimal

design parameter δ under a wide range of clinical scenarios that are commonly en-

countered in practice [16]. The target toxicity probability considered for typical dose-

finding studies are 0.10, 0.20, 0.25, and 0.33, the sample sizes are 25, 30, 35, and 40,

and the number of doses ranges from 4 to 7. The dose-toxicity model is assumed to be

empiric function. Two thousand simulations were performed under each scenario and

no dose skipping during the dose escalation/de-escalation is allowed. The calibration

algorithm introduced in the previous section is used to make recommendations on

the optimal δ for each scenario. Tables 4.6,4.7,4.8,4.9 display the δ that yields the

highest average PCS, the corresponding pruned initial design, and the average PCS.

Another design parameter λ is specified at either 1 or 2. For θ = 0.10, these indicates
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the number of patients reserved to be tested on the highest dose level is 10 and 20

respectively. Larger λ requires more pruning on the initial design, thus allows more

aggressive dose escalation and yields higher accuracy (Table 4.6).

The optimal δ ranges between 0.02 and 0.04 for θ = 0.10, 0.03-0.04 for θ = 0.20,

0.04-0.06 for θ = 0.25, and 0.05-0.07 for θ = 0.33. These results are comparable to

the calibration results of one-stage CRM [16]. The optimal δ increases as the target

rate increases, and decreases as number of doses increases and number of patients

increases.
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Table 4.1: Calibrated design parameters for the likelihood CRM for NeuSTART, with

θ = 0.10, K = 5, m05 = 12, and N = 33.

ψ δ Skeleton according to (3.3) Initial Design, M0

p01 p02 p03 p04 p05 D0(l∗, 1, j∗) Pruned

Empiric .0275 0.10 0.16 0.24 0.33 0.42 6,6,7,7,7 4,5,6,6,12

Complementary log-log

with fixed intercept=1 .0275 0.10 0.17 0.25 0.34 0.43 6,6,7,7,7 4,5,6,6,12

with fixed intercept=3 .0175 0.10 0.14 0.19 0.25 0.32 4,4,5,5,15 4,4,5,5,15

with fixed intercept=5 .0175 0.10 0.14 0.19 0.26 0.33 4,4,5,5,15 4,4,5,5,15

with fixed slope .0275 0.10 0.17 0.29 0.47 0.68 6,6,7,7,7 4,5,6,6,12

Logistic

with fixed intercept=1 .0275 0.10 0.16 0.24 0.31 0.38 6,6,7,7,7 4,5,6,6,12

with fixed intercept=3 .0275 0.10 0.17 0.25 0.35 0.45 6,6,7,7,7 4,5,6,6,12

with fixed intercept=5 .0175 0.10 0.14 0.19 0.25 0.31 4,4,5,5,15 4,4,5,5,15

with fixed slope .0275 0.10 0.17 0.28 0.42 0.58 6,6,7,7,7 4,5,6,6,12

Probit

with fixed intercept=1 .0275 0.10 0.16 0.23 0.31 0.38 6,6,7,7,7 4,5,6,6,12

with fixed intercept=3 .0175 0.10 0.14 0.18 0.24 0.29 4,4,4,5,16 4,4,4,5,16

with fixed intercept=5 .0275 0.10 0.17 0.25 0.35 0.45 6,6,7,7,7 4,5,6,6,12

with fixed slope .0175 0.10 0.14 0.19 0.25 0.32 4,4,5,5,15 4,4,5,5,15
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Table 4.2: True dose toxicity probability scenarios for validation in the NeuSTART

trial.

Scenarios Validation sets

p1 p2 p3 p4 p5

1 .10 .25 .30 .35 .40

2 .04 .10 .25 .30 .35

3 .01 .04 .10 .25 .30

4 .01 .01 .04 .10 .25

5 .01 .01 .01 .04 .10
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Table 4.3: Operating characteristics of the calibrated designs and NeuSTART design

under the scenarios in Table 4.2.

Designs PCS (%) for each scenario

1 2 3 4 5 Average

NeuSTART

Bayesian 88 54 55 53 65 63.00

Likelihood 86 52 54 54 67 62.66

Empiric 87 53 56 45 73 62.67

Complementary log-log

fixed intercept=1 87 53 54 47 72 62.63

fixed intercept=3 87 44 45 47 75 59.75

fixed intercept=5 87 46 46 43 76 59.66

with fixed slope 89 51 48 46 71 61.06

Logistic

fixed intercept=1 86 54 56 46 73 62.82

fixed intercept=3 87 53 53 46 73 62.31

fixed intercept=5 87 45 45 47 75 59.79

with fixed slope 89 51 49 47 71 61.27

Probit

fixed intercept=1 86 54 56 46 72 62.94

fixed intercept=3 86 46 47 49 73 60.18

fixed intercept=5 87 53 54 47 72 62.45

with fixed slope 87 45 45 47 75 59.79

PCS is probability of correct selection
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Table 4.4: Calibrated initial design for the oncology trial.

Patient Number Cabazitaxel Dose Cisplatin Dose

1,2 2.5mg

3,4 5mg

5,6 5mg 66mg

7,8 5mg 80mg

9 to 24 5mg 100mg
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Table 4.5: Operating characteristics of the calibrated design for the oncology trial.

Method MTD below level 1 1 2 3 4 5

0.25 0.35 0.50 0.65 0.80

3+3 Design 0.44 0.36 0.18 0.02 0.00 0.00

Two-Stage CRM 0.07 0.60 0.30 0.03 0.00 0.00

0.15 0.25 0.40 0.55 0.70

3+3 Design 0.21 0.34 0.33 0.11 0.01 0.00

Two-Stage CRM 0.03 0.22 0.53 0.21 0.01 0.00

0.10 0.15 0.25 0.40 0.55

3+3 Design 0.10 0.19 0.30 0.30 0.10 0.02

Two-Stage CRM 0.01 0.03 0.25 0.51 0.19 0.01

0.03 0.07 0.15 0.25 0.40

3+3 Design 0.01 0.06 0.17 0.36 0.29 0.10

Two-Stage CRM 0.00 0.00 0.03 0.27 0.52 0.19

0.01 0.03 0.07 0.15 0.25

3+3 Design 0.00 0.01 0.05 0.17 0.32 0.46

Two-Stage CRM 0.00 0.00 0.00 0.05 0.31 0.65
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Table 4.6: Recommended design parameters for OR = 2 and θ = 0.10.

K N λ δ pruned D0 average PCS

4 25 1 0.03 (4,5,6,10) 45.95

2 0.04 (1,2,2,20) 46.94

30 1 0.02 (5,5,6,14) 47.38

2 0.03 (2,4,4,20) 48.75

35 1 0.02 (5,5,6,19) 49.59

2 0.03 (4,5,6,20) 50.54

40 1 0.02 (5,5,6,24) 52.3

2 0.02 (5,5,6,24) 52.3

5 25 1 0.03 (3,3,4,5,10) 40.11

2 0.03 (1,1,1,2,20) 41.04

30 1 0.03 (4,5,5,6,10) 41.16

2 0.04 (2,2,3,3,20) 43.19

35 1 0.02 (5,5,5,5,15) 43.38

2 0.04 (3,3,4,5,20) 45.19

40 1 0.02 (5,5,5,5,20) 45.71

2 0.03 (4,5,5,6,20) 45.72

6 25 1 0.04 (2,2,3,4,4,10) 36.6

2 0.03 (1,1,1,1,1,20) 36.88

30 1 0.02 (3,3,4,5,5,10) 37.38

2 0.04 (1,1,2,3,3,20) 39.77

35 1 0.02 (4,4,4,5,5,13) 39.16

2 0.02 (2,2,3,4,4,20) 41.23

40 1 0.02 (4,4,4,5,5,18) 41.43

2 0.02 (3,3,4,5,5,20) 42.43

7 25 1 0.04 (2,2,2,2,3,4,10) 33.53

2* – – –

30 1 0.04 (3,3,3,3,4,4,10) 33.54

2 0.04 (1,1,1,1,3,3,20) 36.31

35 1 0.02 (3,4,4,4,5,5,10) 35.71

2 0.03 (2,2,2,3,3,3,20) 37.67

40 1 0.02 (4,4,4,4,5,5,14) 37.29

2 0.02 (3,3,3,3,4,4,20) 38.7

*:Non-valid initial designs under all δ values.
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Table 4.7: Recommended design parameters for OR = 2 and θ = 0.20.

K N λ δ pruned D0 average PCS

4 25 1 0.04 (2,3,3,17) 54.45

2 0.04 (2,3,3,17) 54.45

30 1 0.04 (2,3,3,22) 57.05

2 0.04 (2,3,3,22) 57.05

35 1 0.04 (2,3,3,27) 60.18

2 0.04 (2,3,3,27) 60.18

40 1 0.04 (2,3,3,32) 62.9

2 0.04 (2,3,3,32) 62.9

5 25 1 0.04 (2,2,2,3,16) 48.45

2 0.04 (2,2,2,3,16) 48.45

30 1 0.04 (2,2,2,3,21) 50.8

2 0.04 (2,2,2,3,21) 50.8

35 1 0.04 (2,2,2,3,26) 53.9

2 0.04 (2,2,2,3,26) 53.9

40 1 0.04 (2,2,2,3,31) 56.61

2 0.04 (2,2,2,3,31) 56.61

6 25 1 0.03 (1,2,2,2,2,16) 44.13

2 0.03 (1,2,2,2,2,16) 44.13

30 1 0.03 (1,2,2,2,2,21) 46.74

2 0.03 (1,2,2,2,2,21) 46.74

35 1 0.03 (1,2,2,2,2,26) 50.02

2 0.03 (1,2,2,2,2,26) 50.02

40 1 0.03 (1,2,2,2,31) 52.7

2 0.03 (1,2,2,2,31) 52.7

7 25 1 0.03 (1,1,1,2,2,2,16) 40.71

2 0.03 (1,1,1,2,2,2,16) 40.71

30 1 0.03 (1,1,1,2,2,2,21) 43.81

2 0.03 (1,1,1,2,2,2,21) 43.81

35 1 0.03 (1,1,1,2,2,2,26) 46.74

2 0.03 (1,1,1,2,2,2,26) 46.74

40 1 0.03 (1,1,1,2,2,2,31) 49.93

2 0.03 (1,1,1,2,2,2,31) 49.93
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Table 4.8: Recommended design parameters for OR = 2 and θ = 0.25.

K N λ δ pruned D0 average PCS

4 25 1 0.06 (2,2,3,18) 56.14

2 0.06 (2,2,3,18) 56.14

30 1 0.04 (2,2,2,24) 59.91

2 0.04 (2,2,2,24) 59.91

35 1 0.05 (2,2,2,29) 62.76

2 0.05 (2,2,2,29) 62.76

40 1 0.04 (2,2,2,34) 64.93

2 0.04 (2,2,2,34) 64.93

5 25 1 0.04 (1,1,2,2,19) 51.19

2 0.04 (1,1,2,2,19) 51.19

30 1 0.04 (1,1,2,2,24) 55.02

2 0.04 (1,1,2,2,24) 55.02

35 1 0.04 (1,1,2,2,29) 57.76

2 0.04 (1,1,2,2,29) 57.76

40 1 0.04 (1,1,2,2,34) 60.52

2 0.04 (1,1,2,2,34) 60.52

6 25 1 0.04 (1,1,1,2,2,18) 46.71

2 0.04 (1,1,1,2,2,18) 46.71

30 1 0.04 (1,1,1,2,2,23) 50.84

2 0.04 (1,1,1,2,2,23) 50.84

35 1 0.04 (1,1,1,2,2,28) 53.97

2 0.04 (1,1,1,2,2,28) 53.97

40 1 0.04 (1,1,1,2,2,28) 56.1

2 0.04 (1,1,1,2,2,28) 56.1

7 25 1 0.04 (1,1,1,1,2,2,17) 42.89

2 0.04 (1,1,1,1,2,2,17) 42.89

30 1 0.04 (1,1,1,1,2,2,22) 47.19

2 0.04 (1,1,1,1,2,2,22) 47.19

35 1 0.04 (1,1,1,1,2,2,27) 49.99

2 0.04 (1,1,1,1,2,2,27) 49.99

40 1 0.04 (1,1,1,1,2,2,32) 52.24

2 0.04 (1,1,1,1,2,2,32) 52.24
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Table 4.9: Recommended design parameters for OR = 2 and θ = 0.33.

K N λ δ pruned D0 average PCS

4 25 1 0.06 (1,1,2,21) 59.91

2 0.06 (1,1,2,21) 59.91

30 1 0.07 (1,2,2,25) 63.69

2 0.07 (1,2,2,25) 63.69

35 1 0.06 (1,1,2,31) 66.04

2 0.06 (1,1,2,31) 66.04

40 1 0.05 (1,1,2,36) 68.14

2 0.05 (1,1,2,36) 68.14

5 25 1 0.07 (1,1,2,2,19) 53.73

2 0.07 (1,1,2,2,19) 53.73

30 1 0.06 (1,1,1,2,25) 57.38

2 0.06 (1,1,1,2,25) 57.38

35 1 0.05 (1,1,1,1,31) 60.58

2 0.05 (1,1,1,1,31) 60.58

40 1 0.05 (1,1,1,1,36) 62.84

2 0.05 (1,1,1,1,36) 62.84

6 25 1 0.05 (1,1,1,1,1,20) 49

2 0.05 (1,1,1,1,1,20) 49

30 1 0.06 (1,1,1,1,2,24) 52.44

2 0.06 (1,1,1,1,2,24) 52.44

35 1 0.06 (1,1,1,1,2,29) 55.68

2 0.06 (1,1,1,1,2,29) 55.68

40 1 0.05 (1,1,1,1,1,35) 58.29

2 0.05 (1,1,1,1,1,35) 58.29

7 25 1 0.05 (1,1,1,1,1,1,19) 45.04

2 0.05 (1,1,1,1,1,1,19) 45.04

30 1 0.05 (1,1,1,1,1,1,24) 48.11

2 0.05 (1,1,1,1,1,1,24) 48.11

35 1 0.05 (1,1,1,1,1,1,29) 51.69

2 0.05 (1,1,1,1,1,1,29) 51.69

40 1 0.05 (1,1,1,1,1,1,34) 54.27

2 0.05 (1,1,1,1,1,1,34) 54.27
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Chapter 5

CRM with continuous risk factor

The study objective of conventional dose-finding design is usually to identify a

common MTD associated with per-specified target toxicity rate for all patients. In

such studies we may run into the problem of substantial patient heterogeneity. A

typical example in cancer studies is that heavily pre-treated patients tend to have

less tolerance to drug toxicity, compared to treatment naive patients. Extensions

of standard design have been proposed to deal with heterogeneity: some sought to

identify MTD for discrete number of risk groups [21; 22; 14], others used fully param-

eterized models to identify patient specific MTD for continuous risk factor, but the

methods are difficult to generalize and adapt to a different trial. We propose a risk

adjusting design using a flexible multi-parameter model to identify patient specific

MTD among a discrete set of doses, and the patient heterogeneity can be indicated

by either continuous or discrete risk factor. The method in the following sections is

developed for continuous risk factor, but can be conveniently applied on discrete risk

factor.
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5.1 Design objective

The design objective is to evaluate the effect of a risk factor (continuous or dis-

crete) on dose toxicity probabilities, and when the effect is evident, the trial will

adjust for the risk factor in dose allocation and identify the patient-specific MTD:

ν(z) = argmin
k
|F (dk, z)− θ|, {k : k = 1, . . . , K}. where z denotes the continuous risk

factor.

The following notations will be used throughout this chapter to describe the clin-

ical setting and statistical models: Suppose a dose-finding trial has K dose levels and

enrolls N patients sequentially. For the i’th patient enrolled in the trial, xi is the

dose assignment and yi is the binary toxicity outcome. Specifically, xi is confined to

a discrete set of values, xi = dk, k = 1, . . . , K, and dk indicates the k’th dose level.

The patient’s risk factor value is represented using zi, with z0 a specified reference

level for this continuous risk factor. Model parameter γ indicates the effect size of

the risk factor on toxicity probability. Model parameter αk is the intercept of the

covariate-toxicity curve at the reference covariate value z0, for the k’th dose level.

The true covariate-toxicity relationship is represented using the the most common

logistic regression model, with a single continuous risk factor z and k dose levels. We

assume a linear function for covariate effect and non-parametric form for dose effect,

except that the toxicity probabilities are non-decreasing with dose levels for given

covariate z. Assuming there is no interaction effect between covariate z and dose

level dk, this model can be represented using the following K + 1-parameter model.

logit{Fk(z|αk, , γ)} = {αk + γ(z − z0)} (5.1)

where α1 ≤ α2 . . . ≤ αK . Fk(z) is the toxicity probability given dose level k and z.

When the patient population are homogeneous, because either all patients have

the same covariate value or the risk factor z does not have modifying effect on toxicity

probability (γ = 0), the product term on the right hand side of the equation becomes
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a constant, the model reduces to

logit{Fk(z|αk)} = αk (5.2)

The k + 1-parameter model (5.1) can be viewed as K parallel covariate-toxicity

curves, and each curve has a common “slope” γ and different “intercept” αk.

This true regression model (5.1) is also the working model to be used in the trial

design in the following sections.

5.2 Trial design

Presumably a risk-adjusting design is preferred when there is a plausible biolog-

ical mechanism for patient heterogeneity in drug tolerance. For example, CYP3A4

metabolises irinotecan, hence varying level of CYP3A4 activity modifies the individ-

ual’s toxicity probability. However, we do not expect such effect to be prominent

in every trial; thus, one should not assume the risk adjusting design is necessary at

the beginning of a trial. Instead, it would be useful to evaluate the risk effect using

the initially accumulated data, and only incorporate the individual risk level into the

dose allocation when the risk effect becomes evident in the patients enrolled in this

specific trial. If there is a lack of the risk effect during the trial, a conventional design

is sufficient to serve the purpose.

To achieve such flexibility in dealing with patient heterogeneity, the trial will pro-

ceed in two stages: In the beginning, the trial will be conducted using the conventional

design as if all patients are exchangeable in terms of risk in developing DLT. When

sufficient data are available, a testing procedure will be used to examine the effect

of risk factor z on toxicity probabilities. When the risk effect is significant enough

and exceeds a pre-specified threshold, the second stage, risk adjusting stage, will be

activated. During the risk adjusting stage, the K + 1-parameter model (5.1) will be

fitted using all data after each new patient is treated, and the parameter estimates
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will be updated to guide the risk adjusted dose assignment for the next patient.

Exchangeable stage: We use the two-stage likelihood CRM developed in chapter

3 during this stage. While all patients enrolled in the trial are treated exchangeably

in terms of individual susceptibility to drug toxicity, the trial will start from the

lowest dose level and the initial dose escalation follows a pre-specified rule (initial

design D0). Upon observing the first DLT, model based design will be activated and

the dose assignments will follow a conventional one-parameter CRM model with a

single parameter β modeling the dose-toxicity relationship, such as the one-parameter

logistic function.

Using ψ representation, the working model is

logit{Fk(β)} = {exp(β)/ exp(β0)logit(p0k)} (5.3)

MLE will be used to obtain the parameter estimate β̂. Therefore initial values

of design parameters do not impact the design performance [7]. β0 can be set to 0

and p0k can be determined by the algorithm (3.3) given a design parameter δ. Using

the calibration algorithm in chapter 4, the design parameters in this stage including

model sensitivity parameter δ and the most conservative and coherent initial design

D0 can be determined given the clinical parameters. The dose assignment for the

next patient enrolled in the trial is determined using the formula

x̂i = argmin
k
| exp(β̂)logit(p0k)

1 + exp(β̂)logit(p0k)
− θ| (5.4)

For ethical reason, we allow no more than one dose level escalation or de-escalation

at any time during the exchangeable stage.

Switching condition: As more data are cumulated during the exchangeable

stage, we may be able to start to test the presence of the patient heterogeneity by

fitting k+ 1-parameter model 5.1 on the data, and evaluate the risk effect estimate γ̂

and the significance level. However, certain conditions are required to obtain a valid

estimate of γ̂ using the k + 1-parameter model.
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Condition 1: Toxicity outcome heterogeneity is observed on at least one dose level.

Condition 2: Among the dose levels that satisfy condition 1, there exists non-

perfect partition of covariate z by toxicity outcome on at least one of them.

If we denote mk as the number of patients who are treated on dose level k and

tk as the number of them develop toxicity, then condition 1 is equivalent to that

there exists at least a k, k ∈ {k : mk > 0}, such that 0 < tk < mk. Condition 2

is equivalent to that among all the dose levels that satisfy condition 1, there exists

at least a k, such that min{zi : xi = dk, yi = 1} < max{zi : xi = dk, yi = 0}, and

min{zi : xi = dk, yi = 0} < max{zi : xi = dk, yi = 1}, i = 1, . . . , N .

Once these two conditions are met, we will fit the k + 1-parameter model to

obtain γ̂ and determine if the effect is strong enough to switch to the next stage,

risk-adjusting design. Assuming i− 1 patients have been treated in the exchangeable

stage, and both conditions are met, we can obtain γ̂ by maximizing the conditional

likelihood function [4]. Let j be the running index to denote the j’th patient from

the total of i− 1 patients treated thus far, and I(.) be an indicator function, the full

likelihood is

L(γ, α1, . . . , αK) =
exp[

∑K
k=1

∑i−1
j=1 yjI(xj = dk){αk + γ(zj − z0)}]∏K

k=1

∏i−1
j=1 [1 + exp{αk + γ(zj − z0)}]I(xj=dk)

The sufficient statistics for αk is
∑i−1

j=1 yjI(xj = dk), for k = 1, . . . , K. The

sufficient statistics for γ is
∑K

k=1

∑i−1
j=1 yj(zj − z0)I(xj = dk).

Let tk,i−1 =
∑i−1

j=1 yjI(xj = dk), which indicates the total number of toxicities

occurred on dose level k after i − 1 patients are treated. The conditional likelihood

function (conditioning on tk,i−1, the sufficient statistics for αk) is

L(γ|tk,i−1) =
K∏
k=1

exp{
∑i−1

j=1 (zj − z0)yjI(xj = dk)γ}∑
s(tk,i−1) exp{

∑i−1
j=1 (zj − z0)yjI(xj = dk)γ}

(5.5)

where
∑

s(tk,i−1) indicates summation of the summand over all the possible sets

{yj :
∑i−1

j=1 yjI(xj = dk) = tk,i−1}.
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γ̂ is estimated by maximizing the conditional likelihood (5.5). However, this esti-

mate may be highly variable due to small number of patients tested at the beginning

of a trial, thus lead to a large p value. To conduct such a risk-adjusting dose-finding

study, we often have some knowledge about the covariate effect while planning for the

trial, where at least we could anticipate the direction of the effect estimate. Therefore

we adopt one-sided test instead of two-sided test to evaluate the strength of the risk

effect on toxicity probability. If the one-sided p value is sufficiently small and less than

a pre-specified threshold p∗, the trial will switch to the risk-adjusting stage where the

subsequent dosing algorithm will take into account the individual risk z. Otherwise,

the trial proceeds in exchangeable stage, where β̂ in the regular one-parameter model

(5.3) will be updated using the i− 1 patients and dosing algorithm (5.4) will be used

to determine the dose level for the next patient. Meanwhile, k + 1-parameter model

will be re-fitted to obtain γ̂ each time a new patient is enrolled and treated, and the

switching condition will be re-examined to determine when the trial will switch to

the next stage.

We use Wald test statistic based on the asymptotic normality of γ̂ to derive the

one-sided p value. A trial would switch to the risk-adjusting stage only if the observed

covariate effect aligns with the prior knowledge and is evident enough. When an

opposite effect is observed, the trial will continue in the exchangeable stage because

of the uncertainty of the risk effect due to the conflict with the prior knowledge.

Risk-adjusting stage: When the switching condition is satisfied, i.e., the one-

sided p value drops below a threshold value p∗, the trial will switch to the next stage

and adjust for the individual risk factor. At this point, toxicity outcome heterogeneity

has been observed on at least one dose level, and possibly on multiple dose levels.

While it is possible that higher dose level(s) have not yet been assigned with any

patients, each of the lower dose levels should have been assigned with at least one

patient, due to the no dose skipping rule from the exchangeable stage. In other words,

we expect to test at least one patient on each of the consecutive dose levels starting
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from the lowest one.

For these consecutive dose levels each with at least one assigned patient, the cor-

responding covariate-toxicity curve intercept αk can be estimated given the recently

updated γ̂. Assuming a total of i− 1 patients enrolled and treated after entering the

risk adjusting stage, the full likelihood is

L(γ, α1, . . . , αK) =
exp[

∑K
k=1

∑i−1
j=1 yjI(xj = dk){αk + γ̂(zj − z0)}]∏K

k=1

∏i−1
j=1 [1 + exp{αk + γ̂(zj − z0)}]I(xj=dk)

We can set the following score functions to be zero

∂logL
∂αk

=
i−1∑
j=1

I(xj = dk)

[
yj −

exp{αk + γ̂(zj − z0)}
1 + exp{αk + γ̂(zj − z0)}

]
= 0 (5.6)

where k ∈ {k : 0 < mk, k = 1, . . . , K}, and mk =
∑i−1

j=1 I(xj = dk) and γ̂ is the

solution that maximizes the conditional likelihood (5.5).

To obtain the estimates of αk under the non-decreasing constraint, we first obtain

α̃k, which are the solutions to the equations (5.6). Specifically, α̃k equals to a finite

value when heterogeneous toxicity outcomes are observed on k’th dose level, i.e.,

k ∈ {k : 0 < mk, k = 1, . . . , K, and 0 < tk < mk}; α̃k equals to −∞ when no patient

developed toxicity on this dose level, i.e., k ∈ {k : 0 < mk, k = 1, . . . , K; and tk = 0};

α̃k equals to ∞ when all patients developed toxicities on this dose level, i.e., {k : 0 <

mk, k = 1, . . . , K and tk = mk}.

The solutions α̃k will be examined for violations of the non-decreasing constraint

between any neighboring pairs. When a violation occurs, we will apply the pool-

adjacent-violator algorithm (PAVA) [1] iteratively, until the updated estimate α̂k

satisfies the non-decreasing constraint, i.e., α̂1 ≤ α̂2 ≤ . . . ≤ α̂K , where {k : 0 <

mk, k = 1, . . . , K}.

To illustrate the calculation of α̂k following the aforementioned procedure, a snap-

shot of patient level data at the end of a simulated trial with K = 5 and N = 40 is

listed in Table 5.1. The data are grouped by dose levels, and both the covariate value

and toxicity outcome for each patient is listed. Through maximizing the conditional
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likelihood on this set of data, we obtain γ̂ = −3.5 and the associated one-sided p

value 0.027. Table 5.2 lists summary statistics for the patient level data in Table

5.1: number of assigned patients mk and observed toxicities tk on each dose level; the

corresponding raw estimate (α̃) and the constraint estimate (α̂). Since zero toxicity

occurs on dose level 1 and 5, α̃1 = α̃5 = −∞; the estimates on the rest of the dose

levels take finite values due to the heterogeneous outcome. Because α̃4 > α̃5, violating

the non-decreasing constraint, the patient level data on these two dose levels were

pooled together to obtain the updated estimates α̂4 = α̂5 = −0.86. Since there is

no further violation of the constraint among the updated estimate, they serve as the

final estimate of the intercept parameters.

Dose assignment algorithm: Similar to the dose assignment algorithm in the

exchangeable stage, the dose with toxicity probability closest to the target rate will

be assigned to the next patient in the risk adjusting stage. However, the dose toxicity

probabilities not only vary by doses but also depend on patient specific risk level, the

one dimensional search problem becomes two dimensional, with an additional factor

z. ν(z) = argmin
k
|F (dk, z)− θ|, {k : k = 1, . . . , K}.

After estimating the parameters γ̂ and α̂k, the entire covariate-toxicity curve can

be constructed by inserting these estimates into the k + 1-parameter model (5.1)

for each of the consecutively tested dose levels {k : 0 < mk, k = 1, . . . , K}. The

toxicity probability at covariate z on dose level k is estimated as F̂k(z|γ̂, α̂k) =

exp{α̂k+γ̂(z−z0)}
1+exp{α̂k+γ̂(z−z0)} . To determine the optimal dose for a newly enrolled i’th patient

with covariate zi, a set dose toxicity probability estimates can be read off the esti-

mated covariate-toxicity curves at z = zi, : {p̂k(z = zi), k = 1, . . . , K}. To determine

the dose assignment for this specific patient with covariate zi, we only need to concern

this panel of cross-sectional values instead of the entire covariate-toxicity curves, and

the decision becomes a one-dimensional problem.

However, the covariate-toxicity curves for some dose levels may not be distinguish-

able or even available, if the trial has not proceeded far enough to collect sufficient
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data. Particularly, two or more adjacent dose levels will have identical estimated

covariate-toxicity curves after applying PAVA. When there are multiple doses with

risk adjusted toxicity probability equally close to the target toxicity rate θ, denoted

as Ci = {k : |p̂k(z) − θ| ≤ |p̂j − θ|, j 6= k, j, k ∈ 1, . . . , K} and the estimated toxic-

ity probability p̂k(z) for this set is higher than the target toxicity rate θ, we would

consider the lowest dose in this set to be the most “likely” correct dose, because

potentially the lower dose may be differentiated from the rest and be the single dose

that is closest to the target rate should more data be collected. Likewise, we consider

the highest dose in this set to be the more “likely” correct dose when the estimated

probability p̂k(z) is lower than θ. In summary, the most “likely” dose is defined as

below, for the

ν̂(zi) =

 min{Ci(zi)} if p̂Ci(zi) ≥ θ,

max{Ci(zi)} if p̂Ci(zi) < θ
(5.7)

Figure 5.1 demonstrates an example where dose 1 and 2 share the same estimated

covariate-toxicity curve, dose 3 and 4 share the same covariate-toxicity curve, and

estimate on dose 5 is not available as trial has not escalated to the highest dose level

yet. With any given covariate z value, the set of point estimates on these curves at

z can be extracted and plotted separately as a function of dose. For a finite number

of doses, a dose-toxicity curve appears as a step function with at most K steps if

the estimates on all dose levels are available and distinguishable. As shown in Figure

5.2, the step function has only two steps as there are only two distinguishable dose

toxicity estimates from the five dose levels. The fifth dose level is not estimable and

indicated with a circle and labelled as“NA” on the step function. Since the cross-

sectional estimate of dose toxicity probabilities is also a function of covariate value z,

the position of the dose-toxicity curve (the step function) relative to the same target

toxicity rate θ vary depends on the input of z. If the newly enrolled i’th patient has a

relatively low tolerance level due to the low expression level of the metabolic enzyme,

i.e., zi = 3.35 as shown in the upper left graph of Figure 5.2, dose 1 and 2 are the



CHAPTER 5. CRM WITH CONTINUOUS RISK FACTOR 64

closest to the target rate. As both doses still appear more toxic than expected as they

yield higher toxicity probability than the target rate θ, according to the algorithm

5.7, dose 1 will be assigned to this patient. With higher covariate value, a patient is

able to tolerate higher dose level. Consequently, dose level 2 and 3 would be assigned

if z is sufficiently large (the upper right and middle left graphs in Figure 5.2).



CHAPTER 5. CRM WITH CONTINUOUS RISK FACTOR 65

T
ab

le
5.

1:
S
im

u
la

te
d

p
at

ie
n
t

d
at

a
on

ea
ch

d
os

e
le

ve
l

in
a

si
n
gl

e
tr

ia
l.

D
o
se

le
v
e
l
1

y
0

z
3
.3
1

D
o
se

le
v
e
l
2

y
0

0
0

0
0

0
0

0
0

0
0

1
0

z
3
.6
9

3
.2

3
.5
3

3
.4
2

3
.9
9

3
.4
1

3
.2
4

3
.3
8

3
.5
8

3
.7
8

3
.7
5

3
.0
2

3
.1
9

D
o
se

le
v
e
l
3

y
0

1
0

1
1

1
0

0
1

0
0

0
0

0
0

1
0

0
0

0
1

z
3
.5
3

3
.6
9

3
.3
1

3
.0
9

3
.4
1

3
.5
1

3
.4
2

3
.8
8

2
.9

3
.6
4

3
.2
9

3
.8
6

3
.3
4

3
.8
6

3
.4
6

2
.8
7

3
.3
1

2
.9
1

3
.5

4
.0
4

2
.7
4

D
o
se

le
v
e
l
4

y
0

1
0

z
3
.2
3

3
.5
2

3
.7
5

D
o
se

le
v
e
l
5

y
0

0

z
4
.0
1

3
.8
8



CHAPTER 5. CRM WITH CONTINUOUS RISK FACTOR 66

Table 5.2: Estimating α using simulated data in 5.1 with N = 40,K=5, z0 = 3.44, and

γ = −4. The conditional logistic regression yields γ̂ = −3.5 and p=0.027.

nk 1 12 14 2 2

tk 0 1 7 1 0

α̃k −∞ -2.74 -1.04 -0.61 −∞

α̂k −∞ -2.74 -1.04 -0.86 -0.86

The dose assignment algorithm is more complicated for patient tolerating higher

doses (high z value) as the decision may involve dose level(s) with unavailable toxicity

estimate. As shown in Figure 5.1, dose 5 is not available because either the trial has

not escalated to it or the dose is too toxic and the trial had finished at a lower dose.

This is problematic when both dose 3 and 4 are the closest doses to θ and their

estimate is below θ. According to definition 5.7, dose 4 should be the recommended

dose. However, we cannot rule out the possibility that dose level 5 is the most “likely”

dose just because data is not available to estimate its toxicity probability. There is a

higher chance that dose level 5 is the most “likely” one if the estimate p̂(z)3 = p̂(z)4

is too far below θ. We further incorporate “acceptable probability range” to facilitate

the decision making in such situations. The recommended dose from the estimable set

by definition 5.7 remain the most “likely” dose if the estimated toxicity probability

falls within an symmetric window around target rate [θ − h, θ + h]; otherwise, the

immediate next dose level outside the estimable set is the most “likely” dose. Suppose

h = 0.05, the middle right and bottom left graphs in Figure 5.2 illustrate that patients

with relatively large covariate values z = 3.80 and z = 3.95 are assigned dose levels 4

and 5, respectively, using this “acceptable probability range” approach. This dosing

algorithm provides another level of flexibility and allows dispersion in dose assignment

to explore the more toxic doses.

Furthermore, a map can be generated to illustrate the one-to-one correspondence



CHAPTER 5. CRM WITH CONTINUOUS RISK FACTOR 67

between risk factor level z and MTD. This map summarizes the dose assignment

decisions across a wide range of covariate z values, and it again appears to be a step

function (Figure 5.3). Instead of generating an individual graph for each specific z

value as in Figure 5.2, this map shows dose assignment for continuously changing

z values. One can easily identify the next optimal dose level by drawing a vertical

line with x-axis at z and the assigned dose level ν̂(z) would be the one that the line

crosses. Such map is particularly useful in the end of a trial as the final product of

dosing guidance to help physicians make a decision according to each patient’s specific

risk level.

5.3 Simulation

5.3.1 True scenarios

The true risk effect on toxicity probability γ is chosen based on Irinotecan data

analysis in the introduction section. The multi-variable analysis on composite DLT

endpoint (grade ≥ 3 neutropenia, leukopenia or diarrhea) suggests the effect estimate

of baseline clearance level (largely determined by CYP3A4 activity level) on toxicity

is -4.07, i.e., one unit increase in log transformed baseline clearance level decreases

the odds of having any DLT by 98%. Since −4 indicates a rather steep slope of the

covariate-toxicity curve, to evaluate the design performance under varying extent of

risk effect, the true γ takes one of the following three values: -4, -2, and 0. Particularly,

γ = 0 represents no covariate effect on toxicity probability and flat covariate-toxicity

curves, for which the conventional dose-finding study for homogeneous patient pop-

ulation is deemed to be sufficient. In addition to the slope parameter (γ), the true

“intercepts” αk’s are determined via specifying the true dose toxicity probabilities at

the reference covariate value z = z0. For each γ value, K true dose toxicity profiles at

z = z0 were generated to cover from the most toxic scenario (dose level 1 has target

toxicity probability) to the least toxic scenario (dose level K has the target toxicity
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Figure 5.1: An example of estimated covariate-toxicity curves: dose 1 and 2 share the same

curve; dose 3 and 4 share the same curve; dose 5 is not available. The covariate value and

the corresponding risk-adjusted MTD for 5 example patients are labelled.
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Figure 5.2: The estimated dose-toxicity curves given the estimated covariate-toxicity curves

in figure 5.1, for z = 3.35,z = 3.55,z = 3.73,z = 3.80 and z = 3.95. The risk-adjusted dose

for each of these z values is dose level 1, 2, 3, 4, and 5, respectively.
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Figure 5.3: The step function to map the covariate range and risk-adjusted MTD, with

the same 5 examples labelled on the map.
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probability). The target toxicity rate is θ = 25%.

All fifteen true scenarios (3 γ values and K = 5 sets of dose toxicity profiles) are

illustrated in Figures 5.4,5.5,5.6. In each figure, K = 5 scenarios were generated by

setting the toxicity probabilities given z = z0 as {0.25,0.4,0.45,0.55,0.55}, {0.05, 0.25,

0.4, 0.45, 0.55},{0.05,0.05, 0.25, 0.45, 0.55}, {0.05,0.05,0.08,0.25,0.45},{0.05,0.05,0.08,0.12,0.25}

[16]. The true αk’s are derived as αk = log{pk/(1 − pk)}, where pk is the k’th dose

toxicity probability. Larger γ indicates steeper covariate-toxicity curves and stronger

risk effect on toxicity probability. Consequently, a relatively small change in covariate

z would cause shift in MTD.

5.3.2 Trial simulation and conduct

With target toxicity rate θ = 0.25 and K = 5, for each trial, we specify the total

number of patients to be enrolled N = 40, the same sample size as the Irinotecan

trial[30]. The patient level data in each trial are simulated sequentially, with the

covariate value zi ∼ N(3.44, 0.31) and toxicity tolerance score ui ∼ U(0, 1). The

mean and standard deviation of the covariate distribution are estimated based on the

distribution of the natural log transformed baseline clearance level in the Irinotecan

data set [30]. The individual true toxicity probability at any covariate zi can be

calculated using π(dk, z) = exp{αk+γ(zi−z0)}
1+exp{αk+γ(zi−z0)} , where αk is the corresponding true

intercept value at dose level dk in the specified true scenarios. If ui is less than the

true toxicity probability π(dk, z), the patient will experience DLT and yi=1, otherwise

yi=0.

Based on Table 4.8 in chapter 4, the design parameters in the exchangeable stage

are determined as follows: one-parameter logistic dose-toxicity function, half width of

the indifference interval δ=0.04, and the most conservative and coherent initial design

D0 = {1, 1, 2, 2, 34}. Each simulated trial starts using the same two-stage likelihood

CRM design and the trial will either switch to risk-adjusting stage or remain in

the exchangeable stage depending on whether the switching condition is met. As
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Figure 5.4: True toxicity scenarios with γ = −4, K=5, θ=0.25 (horizontal reference line).

From top to bottom on the left-hand side, the 5 true covariate-toxicity graphs represent

most toxic scenario (dose level 1 has target toxicity rate of 25% at z0 = 3.45) to the least

toxic scenario (dose level 5 has target toxicity rate of 25% at z0 = 3.45). The reference

covariate value z0 = 3.45 is labelled using a vertical reference line. From top to bottom

on the right-hand side, the step function to map covariate range and the true risk-adjusted

MTD for each scenario.
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Figure 5.5: True toxicity scenarios with γ = −2, K=5, θ=0.25 (horizontal reference line).

From top to bottom on the left-hand side, the 5 true covariate-toxicity graphs represent

most toxic scenario (dose level 1 has target toxicity rate of 25% at z0 = 3.45) to the least

toxic scenario (dose level 5 has target toxicity rate of 25% at z0 = 3.45). The reference

covariate value z0 = 3.45 is labelled using a vertical reference line. From top to bottom

on the right-hand side, the step function to map covariate range and the true risk-adjusted

MTD for each scenario.
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Figure 5.6: True toxicity scenarios with γ = 0, K=5, θ=0.25 (horizontal reference line).

The 5 true covariate-toxicity graphs represent most toxic scenario (dose level 1 has target

toxicity rate of 25% at z0 = 3.45) to the least toxic scenario (dose level 5 has target toxicity

rate of 25% at z0 = 3.45). The reference covariate value z0 = 3.45 is labelled using a vertical

reference line.
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part of the switching criteria, we specify the threshold for one-sided p value range

among 0,0.01,0.05,0.1,0.2, 0.5 and 0.75, to reflect an increasingly flexible control on

entering the risk adjusting stage. Particularly, the p value threshold 0 allows no

transition into risk-adjusting stage, hence the entire trial is carried out using the two-

stage likelihood design to identify a common MTD for homogenous study population.

Different dosing algorithm is used in different stages as described previously. When

expanding to the unexplored high dose levels during the risk-adjusting stage, the half

width of the “acceptable probability window” h = 0.05, indicating the dose with

estimated toxicity probability within θ± 5%, i.e., [20%, 30%], is ”acceptable”.

All dose assignments and toxicity outcomes for patients enrolled during the trial

are recorded. If a trial stays within the exchangeable stage at the end of the simula-

tion, the final recommended MTD is recorded. Otherwise, a final set of estimates γ̂

and α̂k will be obtained using records of all N = 40 patients.

5.3.3 Simulation results

Under each of the 15 true scenarios and each p threshold value, two thousand trials

were simulated. Table 5.3 lists the number of trials remaining at the exchangeable

stage or entered the risk-adjusting stage in the end. With very strong risk effect on

toxicity, larger proportion of trials switched to risk-adjusting stage. Trials also have

higher chance to enter the risk-adjusting stage under more toxic scenario (scenario

1) compared to less toxic scenario (scenario 5). As the design parameter p threshold

increases, an increasing number of trials is allowed to switch to the risk-adjusting

stage.

With γ = 0, i.e., no risk effect on toxicity outcome and patients are homogeneous

in terms of probability of developing toxicity, the proportion of trials ended in risk-

adjusting stage are the false positive trials. The bottom panel in Table 5.4 shows the

design’s false positive rate increases as p value threshold increases. With non-zero

risk effect (γ = −4 or -2), the proportion of trials remaining at exchangeable stage
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are the false negative trials. Apparently the false negative proportion depends on the

risk effect size. The top two panels in Table 5.4 show that the false negative rate

decreases as p value threshold becomes large. For the true effect size γ = −4, the

design with p = 0.05 yields 6-15% false negative rates and around 7-11% false positive

rates across scenarios.
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To evaluate the benefit of using risk-adjusting design, we use two different ap-

proaches to summarize the results: 1) intra-trial dose allocation. 2) probability of

correct dosing, under-dosing and over-dosing based on the final model estimate in the

end of the trial.

Intra-trial dose allocation: The model based sequential design repeatedly up-

dates the dose-toxicity model based on the available data to treat the next enrolled

patient on the current best estimate of the MTD. This characteristic suggests that

its advantage is not only to obtain more accurate dose recommendation in the end

of a trial, but also to maximize the chance of receiving correct dose for the patients

participating the trial. Risk-adjusting design directly incorporates individual drug

tolerability when assigning doses to patients enrolled in a trial, thus enhancing the

dosing accuracy for each individual patient, which is desirable feature from an ethical

perspective. We evaluate the intra-trial dose allocation of risk-adjusting design and

make comparison with conventional design under various scenarios using simulated

data.

We denote the assigned dose for the i’th patient with covariate z following the risk-

adjusting design as x̂i(z), and the dose which should have been received according to

the simulated true tolerability, xi(z). Tables 5.5, 5.6, and 5.7 list the cross tabulations

of xi and x̂i divided by the number of simulated trials two thousand, under specific

scenarios defined by risk effect size, toxicity profile, and p threshold. The number

listed in the i’th row and j’th column in each square represents the percentage of

patients who should have received dose i while actually received dose j, j, i = 1, . . . , K.

The sum of the each K ×K square equal to 100.

Since the patient-specific risk factor z is simulated using a normal distribution

that samples more patients with covariate values around the mean z0, a majority of

patients is expected to receive the lowest dose under the most toxic scenario (scenario

1), and the highest dose under the least toxic scenario (scenario 5). Therefore, the

highest row percentage in each square shifts from dose 1 to dose 5, and within that
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row most patients are assigned on the correct dose (j = i) or neighboring doses.

Each square can be further summarized using the proportion of correct dosing,

under dosing and over dosing, which are the total proportions fall on, below and

above the diagonal line. These summaries are listed in Table 5.8. When there is a

strong risk effect (γ = −4 or γ = −2), the conventional design without adjusting

for risk factor (p threshold equals to 0) is least desirable, as it yields the lowest

correct dosing proportion. The dosing accuracy increases as the p threshold increases

to 0.20, and levels off as p continues to increase. Meanwhile, using risk-adjusting

design by relaxing p value threshold effectively reducing both over dosing and under

dosing proportions. Specifically, compared to the conventional design (p=0), using

risk-adjusting design with p threshold 0.20 increases the correct dosing proportion

from 33.2% to 42.1% (a relative increase of 27%) for γ = −4, and increases from

43.4% to 46.3% (a relative increase of 6.7%) for γ = −2. However, when there

is no risk effect (γ = 0), the conventional design (p=0) remains the most suitable

design and yields the highest correct dosing proportion and lowest under/over dosing

proportions. However, even in the least favorable scenarios for using risk-adjusting

design(γ = 0), the risk-adjusting design seems fairly robust and does not lose much

dosing accuracy, compared to the conventional design, as the difference in correct

dosing proportion using these two designs (p=0 vs. p=0.20) is only 2%.
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Dosing accuracy based on the final model estimate: As an end product of

the phase I dose finding trial, the dosing algorithm and its accuracy in predicting the

dose assignment of a future patient is of most interest. In the end of a risk-adjusting

design, the K + 1-parameter model will be fitted on all patients enrolled in the entire

trial to obtain the final model estimate α̂k and γ̂. Covariate-toxicity curves can be

constructed using these estimates and used to guide the dose assignment for future

patients. A map can also be generated between covariate value and the corresponding

risk-adjusted MTD using the same dosing algorithm described in the earlier sections.

On the x-axis of this map, covariate z is divided into consecutive intervals, with

each interval corresponding to an assigned dose level. There are up to K consecutive

intervals: and their corresponding MTDs are 1, . . . , K respectively. Similar map and

covariate intervals can be obtained based on the γ and αk’s values specified in the

true scenarios (right hand side graphs in Figures 5.4, 5.5, and 5.6: Oftentimes these

two sets of intervals do not align with each other perfectly. An extreme case would

be the design regards all patients exchangeable and recommends a common MTD in

the end, whereas these patients should have received different MTD’s according to

their individual risk levels, or vice versa. We further compare the dosing intervals at

the end of each simulated trial with the dosing intervals under the true scenarios, and

define the correct, over and under dosing intervals to be the covariate regions where

the estimated risk-adjusted MTD is the same as, above or below the true MTD. We

use C,O, and U to represent the union of the intervals on the real line that falls in

one of the three categories. C = {z : x̂(z) = x(z)} = ∪Kk=1{z : x̂(z) = x(z) = k},

O = {z : x̂(z) > x(z)}, and U = {z : x̂(z) < x(z)}. x̂(z) indicates the estimated

MTD at covariate z based on the model and x(z) indicates the true MTD at covariate

z based on the true scenario. The probabilities of correct dosing, under dosing and

over dosing can be calculated as the total sampling probabilities over each of these

three sets of intervals on the real line.

Since we use normal distribution with mean z0 = 3.45 and standard deviation
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σ = 0.31 to simulate the covariate z, this is also the sampling distribution in the

probability calculation.

Probcorrect =

∫
C

1

σ
√

2π
exp−

(z−z0)
2

2σ2 dz

Probover =

∫
O

1

σ
√

2π
exp−

(z−z0)
2

2σ2 dz

Probunder =

∫
U

1

σ
√

2π
exp−

(z−z0)
2

2σ2 dz

We further average the probabilities over K toxicity scenarios to obtain an average

performance in terms of correct dosing, over dosing and under dosing for each true

γ value and design parameter p threshold. The average performance is listed at the

bottom of the table 5.9. Note that the sum of the three probabilities is 1. The three

summary probabilities are plotted against the p value threshold in Figure 5.7. In

the top left graph, the correct dosing probabilities are plotted against the p value

threshold from 0 to 0.75, with each line representing a different true γ value. The

graphs for over dosing probabilities and under dosing probabilities are generated in a

similar manner. As demonstrated in the graph, when there is a very strong risk effect

(γ = −4), the correct dosing probability increases from 38.2% using the conventional

design (p=0) to 56.5% using the risk adjusting design with p value threshold 0.10,

representing a 48% relative increase in correct dosing. As the p value continues to

increase, the correct dosing accuracy plateaus and remains at a high level. The similar

gain in correct dosing probability is also observed when there is a relatively strong

risk effect (γ = −2), that the probability increases from 54% using conventional

design (p=0) to 59.8% using risk-adjusting design with p value 0.10, representing

a 11% relative increase. On the contrary, when there is no risk effect (γ = 0),

the conventional design is the most suitable design and yields the highest accuracy

with correct dosing probability 74%, and this probability tend to decline slowly as p

threshold increases as more trials would enter the risk-adjusting stage by chance.
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These graphs may be used to guide the choice of the design parameters if such

risk-adjusting design is of consideration. For example, to conduct a trial to identify

the individual MTD for patients treated with irinotecan, we probably can choose a

design with p threshold around 0.10 as it yields the highest correct dosing probability

under both true scenarios with strong risk effects. Meanwhile, even if the baseline

clearance level turns out not to relate with the toxicity outcome as much as expected,

using the risk-adjusting design suffers minor loss in dosing accuracy compared to the

conventional design as the probability of correct dosing only decreases from 74% to

71.7%, a roughly 2.3% decrease.

The rest of the graphs suggests that the risk-adjusting design not only increases

correct dosing probability, but also decreases both over dosing and under dosing

simultaneously, when there is true risk effect. Therefore the risk adjusting design

effectively increases the dosing accuracy by correctly allocating the patients to their

respective MTD according to their individual risk level.
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Figure 5.7: Correct, over and under dosing probabilities based on the final model estimate.
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Chapter 6

Conclusions and Discussions

This dissertation undertook tasks to address two different but related topics for

model based sequential design for dose-finding. First we developed a theoretical

framework to build a two-stage likelihood CRM. Such design addresses the ethical

concerns on the overly aggressive dose escalation at beginning of the trial of conven-

tional one-stage Bayesian CRM design by pre-specifying sufficient number of patients

are tested on lower dose levels. While it is desirable to escalate slowly to not over-

shoot the target dose level, overly conservative escalation will cause incoherent dose

escalation upon transition into the model based design, i.e., the first model based

dose assignment upon observing the first DLT will continue to escalate despite the

previous patient has already experienced a toxicity at a lower dose level. To guard

against such unethical dose escalation, we propose using the most conservative and

coherent design, and proved the unique existence of the most conservative and co-

herent initial design. In practice, however, we do not always have to use the most

conservative and coherent initial design. Rather, it can be used as a starting point

and further pruned according to sample size constraint.

In the second topic, building upon the likelihood CRM design, we proposed a

multi-stage design using a semi-parametric model to incorporate an external risk

factor and identify patient specific MTD. The design uses likelihood method which is
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computationally economical and easy to implement. The design allows the flexibility

of using conventional CRM to identify a common MTD for homogeneous patient

population when there is lack of risk effect, and switches into risk-adjusting design

when risk effect is sufficient. While developed for the situations with continuous

risk factor and discrete doses, the method can be easily generalized for categorical

risk factor and continuous dose. The method was illustrated and compared with the

conventional CRM design for homogeneous study population under various simulated

scenarios. In the future, more evaluations will be conducted to compare our design

to the existing methods for dose-finding studies with patient heterogeneity [21; 22;

14]. In addition, further study on the theoretical property of the proposed method is

also warranted.
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