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Abstract

We study the role that price transparency plays in determining the efficiency and

surplus division in a sequential bargaining model of price formation with asymmetric

information. Under natural assumptions on type distributions, and for any discount factor,

we show that the unobservability of past negotiations leads to lower prices and faster

trading. Unobservability therefore enhances the “Coasian effect” by fostering efficiency

and diverting more of the surplus to the player who possesses private information. In

addition, we show that the equilibrium is unique and is in pure strategies in the non-

transparent regime; this stands in sharp contrast to the existing literature and allows for

a better understanding of the Coasian effect and price observability.
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1 Introduction

Sequential bargaining is not only a workhorse in analyzing bilateral interactions, with applica-

tions ranging from dispute resolution to labor contracting, but also a model of price formation

and surplus division, which are of fundamental importance in economic theory. In dynamic trad-

ing environments, the details of information structures matter, because potential informational

spillovers across players and over time introduce various channels through which incomplete

information influences the price formation process. In bargaining games, a particular variation

in the information structure is whether price offers are made publicly or in private. The goal

of this paper is to investigate the effect of transparency in this sense on the price formation

process in an important class of bargaining environments: Coasian bargaining.

In our model, there is an impatient buyer and an infinite sequence of sellers. The first seller

makes an offer to the buyer, which the buyer either accepts or rejects. If the buyer accepts the

seller’s offer, the game ends. If the buyer rejects the seller’s offer, the buyer moves to the next

seller, who makes the buyer an offer. The game continues in the same fashion: if seller t’s offer

is rejected, the buyer moves to seller t+ 1. The gains from trade are commonly known, but the

buyer has private information about his willingness to pay.

Formally, we amend the classic Coasian bargaining model with a sequence of sellers instead

of one long-lived seller. This model allows us to compare two different configurations of infor-

mation flow among the short-lived sellers. As in a standard Coasian model, with appropriate

adjustments, our analysis remains valid when the roles and asymmetric information of the buyer

and seller are switched. Several real-world markets, housing transactions, certain labor markets,

corporate acquisitions, and over-the-counter derivatives trading, exhibit characteristics of this

model either with a long-lived informed buyer or a long-lived informed seller. The observability

of past rejected offers varies across these markets: among the examples listed, tender offers

for corporate acquisitions are most often made publicly and are observed even when rejected,

even though covert offers are not rare either. In housing markets and labor markets, offers are

often covert, while rejected offers made public are not uncommon either. In over-the-counter

markets as well, transactions are largely opaque and quotes are unobservable to subsequent

traders (see, e.g., Zhu 2012).1 Granted, all these markets have distinct characteristics and the

market outcomes are the result of a complicated interaction of various institutional details.

Our model, which is admittedly stark, captures one mechanism via which observability of past

offers may impact the outcomes, and, therefore, we believe that our results contribute to the

1Indeed, even though the precise number of past quotes is unlikely to be known, the amount of time that

traders spent searching for a particular deal might be observable. The same is true when an unemployed worker

searches for jobs. Therefore, a deterministic arrival of players in our Coasian model is a plausible description of

these markets.
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understanding of such markets.

We identify the role of price observability in determining the surplus distribution (measured

by the equilibrium prices), and the efficiency of trade (measured by the amount of delay before

trade takes place). More specifically, we compare the equilibrium price sequences and expected

delay under two opposing specifications: one where past prices are observable to subsequent

sellers (transparent regime) and one where they are not (non-transparent regime). Under natural

restrictions on the distribution of the buyer’s valuations, we find that prices are uniformly lower

in the non-transparent regime than in the transparent regime for each given discount factor

of the long-run buyer. Moreover, even though an agreement is eventually reached in either

regime, under stronger restrictions on the type distribution, we show that the expected delay

is larger in the transparent regime. In the flip side of the model, when an informed long-lived

seller sequentially meets buyers who make offers, the transparent regime leads to lower prices

and longer expected delay.

All of our results are obtained for the arbitrary discount factors of the long-run buyer and

not just for the case where the buyer is sufficiently patient. This feature makes our analysis

of the effect of price transparency robust to market frictions, which, beyond its theoretical

interest, is valuable in understanding interactions in real markets where frictions cannot be

ignored. Indeed, for the frictionless limit, the outcomes of both regimes are degenerate: trade

is efficient and the informed player captures all the surplus. This is consistent with the classic

Coase conjecture. From this perspective, our results imply that, away from the frictionless limit,

a lack of transparency enhances the “Coasian effect” by fostering efficiency and diverting more

of the surplus to the informed player.2 Moreover, the comparison with the Coase conjecture

implies that market frictions amplify the effect of transparency.

In an infinite horizon bargaining game without parametric assumptions or closed-form solu-

tions, comparing equilibrium price paths in two different extensive forms is a rather challenging

task. The observation that allowed us to make progress in this task comes from elementary

demand theory: the comparison of equilibrium prices in two markets boils down to the com-

parison of demand elasticities in these markets. We identify conditions ensuring an appropriate

demand elasticity ranking for our two dynamic bargaining environments. Our appeal to de-

2We believe this result may have something to add to the discussion of the design of certain markets. Since

transparency affects both the surplus distribution and the speed of trading, the answer to the design question

necessarily depends on the details of the markets and the designer’s objectives. If the market designer cares

more about faster trading when there is common knowledge of gains from trade, then non-transparency should

be preferred. For instance, in OTC markets, a trader often gets involved in many transactions and he is the more

informed party on some and the less informed party on others. In this sense, perhaps the surplus distribution

over different transactions might be averaged out for a given trader. In this case, maximizing the speed of

transaction could be a plausible mechanism design objective. If this were the case, our results would give

support to using a dark pool as opposed to an open-order book.
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mand theory not only resolves the analytical difficulties, but also highlights the economic forces

at play in dynamic bargaining problems.

To gain some intuition, first recall the well-known “skimming property” from Fudenberg,

Levine, and Tirole (1985): regardless of the regime and in any equilibrium, a price is accepted

by the buyer if and only if his valuation is above an associated cutoff. This property allows

one to interpret the buyer’s decisions as defining an endogenous demand curve that each seller

faces in equilibrium, where the probability of trade at each price is interpreted as the quantity

sold. Gul, Sonnenschein, and Wilson (1986) point out that, with this interpretation, when

both parties are long-run, their bargaining problem can equivalently be viewed as the problem

of a durable goods monopolist lacking the power to commit to a price. In contrast to Gul,

Sonnenschein, and Wilson (1986) where a single durable goods monopolist competes with his

future selves, in our model a sequence of sellers compete with each other over time. Each

seller faces a residual market characterized by a demand curve endogenously determined by the

equilibrium strategies of all past and future sellers.

With this interpretation at hand, the main exercise is to compare the demand curves faced by

each seller in both regimes. First consider a hypothetical price change by seller 1. Transparency

forces seller 2, who enters the game only when there is no trade in the first period, to respond

with a price change in the same direction. In contrast, in the non-transparent regime, seller

2 cannot react to such a price change. In equilibrium, the buyer fully anticipates the reaction

of seller 2 and hence is less sensitive to the price change by seller 1 in the transparent regime.

That is, the demand curve faced by seller 1 in the transparent regime is steeper than that in

the non-transparent regime. However, the ranking of the slopes of the demand curves does

not translate directly into the ranking of elasticities or the ranking of profit-maximizing prices.

Indeed, since a seller’s demand curve is determined jointly by the strategic choices of all previous

and future sellers, the relative positions of the two demand curves corresponding to the same

seller in either regime is a priori unclear. Therefore, the above simple intuition is not enough

given the subtleties of our problem. We show that a relatively benign regularity condition on

the buyer’s type distribution—increasing hazard rate—pins down the relative positions of the

demand curves and therefore allows an unambiguous comparison of prices in the two regimes.

We next explore which regime leads to a larger delay in trade. Delay in the context of the

bargaining model is related to the quantity traded in the analogous dynamic monopoly model

with larger quantities corresponding to smaller delay. Typically, a less elastic demand curve

implies a higher price, but, as is well-understood in demand theory, elasticities alone do not

determine the ranking of quantities. One needs to uncover additional details about the demand

functions, which are endogenous equilibrium objects in our model. In spite of this, we are able

to show that transparency entails more delay if the buyer’s type distribution is concave.
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Our contribution is not limited to the comparison of the two regimes. Even though the trans-

parent regime in isolation is the focus of the Coasian bargaining and durable goods monopoly

literature, the equilibrium characterization of the non-transparent regime is novel to this paper.

We are able to show that the equilibrium outcome in the non-transparent regime is unique and

is necessarily in pure strategies under the minimal assumption of increasing virtual valuation.

This result, which does not require any genericity assumption, is in sharp contrast to the classic

results of Coase bargaining where offers are publicly observable, in which case randomization

can happen in the first period and may be necessary off the equilibrium path (see Fudenberg,

Levine, and Tirole 1985 and Ausubel, Cramton, and Deneckere 2002). Gul, Sonnenschein, and

Wilson (1986) conjectured that a pure strategy equilibrium can be obtained for the no-gap

case with continuous distributions, and they argued that this is one of the properties for an

equilibrium to be “a salient predictor of market behavior.” Their conjecure remains open. The

pure strategy property in our model is also surprising in view of the results on dynamic mar-

kets for lemons with unobservable offers where randomization is a generic property (see Hörner

and Vieille 2009 and Fuchs, Öry, and Skrzypacz 2013). This equilibrium property allows for a

characterization of the role of transparency that is not possible elsewhere.

Related Literature

The role of observability has been investigated in different environments. Bagwell (1995) studies

the connection between commitment power and observability and shows that the first-mover’s

advantage can be eliminated if its action is not perfectly observed. Rubinstein and Wolinsky

(1990) study random matching and bargaining. In their complete information environment,

observability enlarges the equilibrium set by a folk theorem argument that is not at work in the

presence of incomplete information. Swinkels (1999) analyzes a dynamic Spencian signalling

model and obtains pooling equilibrium under private offers, while Nöldeke and van Damme

(1990) previously obtained the Riley outcome in the case of public offers.

Related to our study of the more standard Coasian bargaining with independent valuations

is the strand of literature that studies bargaining with interdependent values; see Evans (1989),

Vincent (1989), and Deneckere and Liang (2006). Our closest precursor is the work of Hörner

and Vieille (2009) who study an interdependent-value model with a single long-run player and a

sequence of short-run buyers, and find that inefficiencies take different forms in the two opposing

information structures. They show that in the hidden-offer case, multiple equilibria exist, all

in mixed strategies, and an inefficient delay occurs even as the discount factor goes to 1, while

in the public-offer case, remarkably, an inefficient impasse ensues beyond the first period. The

question about the impact of price transparency on surplus division and the timing of trade

for general discount factors is not addressed, however, and no clear-cut comparison of the two
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regimes in terms of price paths and the long-run player’s welfare is obtained. It is noteworthy

that our independent-value model is not a limiting case of Hörner and Vieille’s model, and

hence the qualitative divergence of results in terms of equilibrium structure, efficiency, and

price comparisons is not completely surprising.3 Beyond Hörner and Vieille’s (2009) initial

exploration, the role of transparency has been extended to other settings. Kim (2012) presents

a random matching model in which efficiency of trade may not be monotonic in the search

friction. Bergemann and Hörner (2010) study the role of transparency on auction outcomes.

In our model, efficiency is always obtained when the discounting friction vanishes. We

emphasize that bilateral sequential bargaining, rather than other centralized mechanisms, is

an appropriate model for thin markets in which trading opportunities do not arise frequently

and hence discounting frictions are non-negligible. Accordingly we focus on a comparison of

price dynamics, surplus division, and the timing of trade in the two regimes that is robust

to all discounting frictions, and this task requires new methods. We obtain an unambiguous

comparison and show that the informed player has a clear-cut preference over non-transparent

market information structure.

Several bargaining models that feature discounting as a source of search friction are similar

in structure to our model. Fudenberg, Levine, and Tirole (1987) consider bargaining games

where a seller can decide whether to switch to a new buyer or continue to bargain with an

incumbent buyer. They show that a take-it-or-leave-it offer endogenously emerges as an equi-

librium outcome. However, there are also other equilibria.

The paper is organized as follows. Section 2 introduces the formal model. Section 3 considers

a two-period example to demonstrate the forces driving our results. Section 4 establishes the

existence and the uniqueness of equilibrium for the non-transparent regime. Sections 5 and 6

present our results concerning the comparison of prices and speed of trade across two regimes,

and Section 7 concludes. All omitted proofs are relegated to the Appendix.

2 Model

A buyer bargains with a sequence of sellers. In each period t = 1, 2, ..., a new seller enters the

game. We refer to the seller at period t as seller t. Each seller has one unit to sell for which

his reservation value is normalized to 0. The buyer has demand for one unit.

The buyer discounts future payoffs at rate δ ∈ (0, 1) and has private information about his

3The results of Hörner and Vieille (2009) rely crucially on the assumption that buyer-seller types are suffi-

ciently interdependent and the discount factor is sufficiently large. Indeed, as the interdependence vanishes (i.e.,

the values of the uninformed short-run players become a constant), the lower bound required for the discount

factor converges to 1, implying that the limiting case is not a well-defined Coasian bargaining game.
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valuation, v, which we refer to as his type. The prior cumulative distribution of buyer types is

F , which has support [v, v̄], with v̄ > v > 0, and admits density f . We assume that there exists

a constant m > 0 such that 1/m < f (v) < m for any v ∈ [v, v̄] .4 Throughout, we assume that

F has increasing “virtual valuation”; that is,

v − 1− F (v)

f (v)
is increasing. (1)

This assumption is standard in the mechanism design literature. Bulow and Roberts (1989)

point out that this assumption is equivalent to the monotonicity of the marginal revenue of a

monopolist seller facing an inverse demand curve 1− F.
The bargaining within each period t is as follows. Seller t proposes a price pt to the buyer.

The buyer may choose to accept or reject this offer. If the price is accepted, the transaction

takes place at this price and the bargaining game ends; the buyer obtains a payoff of δt−1(v−pt),
while seller t obtains a payoff of pt. If the price is turned down, seller t leaves the market, and

the game proceeds to period t+ 1.

We refer to the information structure in which past rejected offers are observable to subse-

quent sellers as the transparent regime and the structure in which these offers are unobservable

as the nontransparent regime.

We consider the perfect Bayesian equilibria of the two specifications of the bargaining game.

The first thing to notice is that in both regimes, the “skimming property” is satisfied. That is,

after any history, on or off the equilibrium path, if a price offer p is accepted by a type v, then

it is also accepted by all types v′ > v. This allows us to cast the problem of each seller choosing

a price as a problem of each seller choosing a cutoff type k to trade with (or a probability of

trade).5

In the equivalent dynamic monopoly interpretation of Gul, Sonnenschein, and Wilson (1986),

a sequence of sellers face an inverse demand function 1− F. Each seller has unlimited supplies

and can serve a fraction of the market at some transaction price. The game is prolonged not

because all previous prices are rejected (in each period some prices can be offered and accepted),

but because the market is not fully penetrated.

4That is, we focus on the so-called gap case; see Section 7 for additional discussion. We emphasize that the

assumption that f is bounded below by a strictly positive number is important for the gap case. For instance,

if F (v) = (v − v)
2
/ (v̄ − v)

2
then the model behaves like a no-gap case even though v > 0.

5See, e.g., Fudenberg and Tirole (1991, p. 406). The proof for the skimming property does not rely on the

assumption of observability; the crucial elements are price posting by the seller and single-unit demand by the

buyer. In the non-transparent regime, it can be shown that the buyer uses a reservation price strategy, which

is stronger than the skimming property.
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3 An Example

We first consider a two-period version of our model. For further simplicity, we assume that

buyer types are uniformly distributed with support [0, 1].6

By the skimming property, for each on- or off-equilibrium-path history, there exists k1 such

that seller 2 believes that buyer types higher than k1 trade with seller 1 and the remaining types

are [0, k1] . Since the second period is the final period, regardless of the regime, a remaining

buyer type k accepts seller 2’s offer p2 if p2 is below k. Therefore, seller 2’s problem in either

regime can be cast as choosing p2 = k to solve

max
k
k(k1 − k).

Then, regardless of the regime, when the remaining types are [0, k1], seller 2 charges a price

p2 = 1
2
k1 and trades with buyer types

[
1
2
k1, k1

]
.

The two regimes differ in the formation of beliefs off the equilibrium path: whereas an off-

path price of seller 1 in the non-transparent regime does not affect the belief of seller 2, who

cannot observe this deviation, it does do so in the transparent regime. To be more specific, in

the non-transparent regime, seller 2 believes that the highest remaining buyer type is a fixed

constant k∗1, even when the actual cutoff of seller 1 is different. Therefore seller 2’s price in

the second period is a fixed constant equal to 1
2
k∗1. If seller 1 wishes to sell to types [k, 1], the

highest price he can charge is

p1(k) = (1− δ)k + δ
k∗1
2
. (2)

This is the price that makes the marginal type k indifferent between buying at a price p1 (k)

now and waiting until the second period for the constant price 1
2
k∗1. Hence, seller 1 in the

non-transparent regime solves the following problem:

max
k

(1− k)p1(k). (3)

It follows that

k∗1 =
1

2

(
1− 1

2

δ

1− δ
k∗1

)
.

Hence,

k∗1 =
1

2

(
1− δ

4− 3δ

)
, p∗1 =

(
1

2
− δ

4

)(
1− δ

4− 3δ

)
, p∗2 =

1

4

(
1− δ

4− 3δ

)
.

6Even though our general model assumes v > 0, assuming v = 0 greatly simplifies the computation in the

example. The intuition highlighted in this example applys to the non-trivial gap case where trade takes more

than one period to complete.
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In contrast, in the transparent regime, if seller 1 sells to buyer types [k, 1] for any k, seller

2 will correctly anticipate the remaining types to be [0, k] and charge a price 1
2
k accordingly.

Moreover, seller 2’s response of setting price 1
2
k to seller 1’s deviation is fully anticipated by

the buyer, implying that the highest price that seller 1 can charge and sell to buyer types [k, 1]

is

p1(k) = (1− δ)k + δ
k

2
= k

(
1− δ

2

)
. (4)

Now, seller 1’s problem is given by (3) where p1 (k) is specified by (4) . Simple algebra shows

that

k∗1 =
1

2
, p∗1 =

1

2

(
1− δ

2

)
, p∗2 =

1

4
.

We summarize our finding in Table 1 below.

period 1 cutoff period 2 cutoff period 1 price period 2 price

non-transparent 1
2

(
1− δ

4−3δ

)
1
4

(
1− δ

4−3δ

) (
1
2
− δ

4

) (
1− δ

4−3δ

)
1
4

(
1− δ

4−3δ

)
transparent 1

2
1
4

1
2
− δ

4
1
4

Table 1: Comparison of the two regimes

The contrast becomes more apparent if we take δ → 1, as shown in Table 2 below.

period 1 cutoff period 2 cutoff period 1 price period 2 price

non-transparent 0 0 0 0

transparent 1
2

1
4

1
4

1
4

Table 2: Comparison of the two regimes as δ → 1

This example illustrates the following qualitative results which we generalize later. The

prices are uniformly higher in the transparent regime, and hence the lack of transparency diverts

more surplus to the informed long-run buyer. In addition, the expected delay in trade, i.e., the

expected value of 1 − δτ(k) where τ(k) is the period in which type k trades, is higher in the

non-transparent regime, and hence the lack of transparency fosters efficiency.

4 Equilibrium

The analysis of the transparent regime is known from Fudenberg, Levine, and Tirole (1985).

Their model has two bargainers with unequal discount factors and thus includes our model as

a special case where the sequence of short-run sellers can effectively be thought of as one seller

with a discount factor equal to 0. For completeness we include the relevant results as Theorem

0.
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Theorem 0 The equilibrium of the transparent regime exists and the equilibrium outcome is

generically unique. There exists 0 < T <∞ such that trade takes place with probability 1 within

T periods.

It is worth emphasizing that even though in this regime the equilibrium need not be in pure

strategies, on the equilibrium path randomization can occur only in the first period. However,

randomization is necessary off the equilibrium path for the gap case.

We now turn to the analysis of the non-transparent regime, which is novel to this paper.

We establish that there is a unique equilibrium that is in pure strategies. This property is quite

convenient for our later analysis.

Theorem 1 Fix any δ ∈ (0, 1) . The equilibrium in the non-transparent regime exists and is

unique. In addition, there exists 0 < T <∞, such that all buyer types trade with probability 1

within T periods, and all players use pure strategies at or before period T.

This result is in contrast with existing results in two strands of the literature. On the one

hand, in Coasian bargaining models, uniqueness is established under a genericity condition,

and randomization is required off the equilibrium path. Gul, Sonnenschein, and Wilson (1986)

argued that pure strategy is one of the properties for an equilibrium to be “a salient predictor

of market behavior.”7 On the other hand, in bargaining models with interdependent values,

typically no pure strategy equilibrium exists; see, e.g., Hörner and Vieille (2009).8

The unobservability of the price history entails two competing effects that are absent in the

transparent regime. On the one hand, the skimming property implies only that the posterior

beliefs are distributions over truncations of the prior—instead of simple truncations of the

prior, as would be the case if the history were observable. This is simply because the outcomes

of potential randomizations by previous sellers are not observable (except trivially in the first

period when there is no prior randomization). On the other hand, if the posterior beliefs

were indeed simple truncations of the prior, our assumption of increasing virtual valuation

(or equivalently, the decreasing marginal revenue property) would imply that each seller has a

unique optimal pure strategy in the non-transparent regime, since in this regime the “inverse

demand curve” faced by the analogous monopolist is simply a linear transformation of 1− F .

This is in contrast to the transparent regime, where the demand faced by each seller must take

7In the no-gap case, pure strategy equilibrium is obtained in special cases that allow for closed-form solutions;

see, e.g., Stokey (1981) and Sobel and Takahashi (1983).
8When seller T + 1 is approached by the buyer, which is off the equilibrium path, the seller’s belief can be

arbitrary in a perfect Bayesian equilibrium. For instance, the belief can have {v, v̄} as the support and hence

lead to the randomization of seller T + 1. The potential multiple off-path plays in period T + 1, when the game

ends in period T in equilibrium, does not affect the equilibrium outcome. The Coasian bargaining literature

does not consider this kind of multiplicity of off-path play.
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into account the reaction of subsequent sellers, which depends on the details of F . Therefore,

the crux of our proofs for pure strategy and uniqueness is to show that the posterior beliefs,

even when price history is not observable, are necessarily simple truncations of the prior.

The strategy we use to prove Theorem 1 is to successively narrow down the possible supports

of mixed strategies that can be used by sellers. The details of the proof in Appendix A are

rather complicated and tedious. Here, we offer a brief outline to explain the basic idea. Fix

an equilibrium and let T be the last period in which trade occurs with a positive probability

in that equilibrium.9 As mentioned above, by the skimming property, we can identify seller

t’s offer pt in period t with the marginal buyer type kt, i.e., the lowest type that will accept

the price pt. Since seller t can play mixed strategies, the marginal types can be random as

well. Let Kt denote the support of marginal types in seller t’s randomization. In the fixed

equilibrium of the non-transparent regime, Kt depends only on the calendar time t, not on

the realizations of previous price offers. Write k̄t = supKt as the supremum of the support of

seller t’s randomization. Our goal is to show that for each 0 < t ≤ T , Kt =
{
k̄t
}

and thus to

establish that all equilibrium strategies at or before T must be pure. The next lemma is the key

step toward establishing this result and makes critical use of the increasing virtual valuation

assumption. For the proof see Appendix A.2.

Lemma 1 For any τ = 1, ..., T − 1, (∪τt=1Kt) ∩ [k̄τ+1, k̄1] =
{
k̄1, k̄2..., k̄τ

}
.

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!

!

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Figure 1: Kt is the support of seller t’s randomization. Lemma 1 implies that K1 does not intersect with

[k̄2, k̄1), and hence, the support of seller 1’s randomization is narrowed down.

9The number of periods it takes for the game to end depends on δ, and it grows unboundedly as δ → 1.
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Figure 1 illustrates the content of this lemma for τ = 1. The lemma establishes that, for

any t < T , all but the highest cutoff types in the support of seller t’s randomization are smaller

than the supremum of the support of seller T ’s randomization, k̄T . Then, since all trade must

take place in T periods, and hence k̄T = v, there are no cutoffs other than k̄t in the support of

seller t’s randomization, which completes the argument for the pure strategy.

With the pure strategy property at hand, we know that the posterior type distribution

must always be a truncation of the prior distribution F. Then the seller who faces the highest

remaining type k solves the following profit-maximization problem:

max
k′

(F (k)− F (k′)) [(1− δ)k′ + δp] .

The assumption of increasing virtual valuation guarantees that whenever the continuation equi-

librium price p is less than k, there is a unique solution k′ to the seller’s problem. In contrast,

in the transparent regime, since the continuation price p depends on today’s choice k′, the

uniqueness of the solution to the seller’s profit-maximization problem is not guaranteed. This

distinction allows us to establish the uniqueness of equilibrium in the non-transparent regime,

unlike in the transparent regime.

5 Price Comparison

In this section we make the stronger assumption that F exhibits an increasing hazard rate;

i.e., f (v) / (1− F (v)) is non-decreasing over [v, v̄] . This assumption is introduced into the

bargaining setup by Ausubel and Deneckere (1993), and we uncover a connection between

this assumption and demand theory. Under this assumption, we establish that any realized

price sequence of any equilibrium in the transparent regime is uniformly above that in the

non-transparent regime.

Let i = TR,NTR indicate the transparent and non-transparent regimes, respectively. We

let {pit} represent a realized equilibrium price sequence in regime i and let T i be the last period

in which trade takes place with positive probability along this equilibrium path. We adopt the

convention that pit = v for t > T i. Thus the price comparison is well defined even if T TR 6= TNTR.

Theorem 2 Fix any δ ∈ (0, 1) . Suppose that F exhibits an increasing hazard rate. Let {pTRt } be

any realization of the price sequence of any equilibrium in the transparent regime, and let {pNTRt }
be the unique equilibrium price sequence in the non-transparent regime. Then pTRt ≥ pNTRt for

all t.

Theorem 2 establishes a uniform ranking of equilibrium prices over all periods for any two

equilibria in the two regimes. Since equilibrium posteriors differ across regimes, equilibria, and
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periods, it is convenient to prove the following stronger form of Theorem 2 that establishes the

ranking even when the type distributions in the two regimes are different truncations of F as

long as the support in the transparent regime is larger.

Proposition 1 Fix any v̄ ≥ k̄TR ≥ k̄NTR ≥ v. Suppose the buyer’s type distribution is a

truncation of F with support
[
v, k̄i

]
in regime i = TR,NTR. Suppose F exhibits an increasing

hazard rate on [v, v̄] . Let {pTRt } be any realization of the price sequence of any equilibrium in

the transparent regime, and let {pNTRt } be the unique equilibrium price sequence in the non-

transparent regime, under the respective truncated distributions.10 Then pTRt ≥ pNTRt for all

t.

Theorem 2 is an immediate corollary of Proposition 1 with k̄TR = k̄NTR = v. The complete

proof of Proposition 1 is relegated to Appendix B. The form of Proposition 1, as opposed to

Theorem 2, facilitates the induction argument: the continuation games in both regimes have

truncated posteriors and trade in the continuation equilibria finishes one period faster than in

the original equilibria of the original game. Our induction argument is not straightforward.

Here, we first lay out the main steps of our proof. Then we further flesh out the steps where

our economic intuition plays a key role, and where the increasing hazard rate assumption is

used.

Proposition 1 is vacuously true if the truncations of F and the continuation equilibria are

such that in either regime all trade takes place within the first period, in which case the

transaction prices are identically v, the lowest buyer type. If the truncations in the two regimes

and the equilibrium price paths are such that it takes more than one period to complete trade

in either regime, it would suffice to show that the first-period equilibrium prices can be ranked

as desired, and the posteriors after the first period can be ranked. In this case, we could

invoke Proposition 1 for the continuation game with the continuation equilibrium path and the

truncated posteriors. The first-period equilibrium prices are determined by the continuation

equilibrium prices. Hence a ranking of first-period prices requires a ranking of the second-period

prices. However, we cannot establish the ranking of posteriors; instead, we utilize induction in

an argument by contradiction.

Formally, we do induction on max{T TR, TNTR}, where T i is the number of periods it takes

for all buyer types to trade for an arbitrary equilibrium price path in regime i given that the pos-

terior is a truncation of F with support
[
v, k̄i

]
. We have suppressed the dependence of T i on the

quantifiers to save on notation. Suppose for the purpose of induction that the claim in Propo-

sition 1 is true whenever the posterior truncations and continuation equilibrium price paths are

10By Lemma 2, a truncation of F on
[
v, kNTR

]
exhibits monotone marginal revenue. Hence Theorem 1

implies that there is a unique equilibrium in pure strategies.
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such that max{T TR, TNTR} = 1, ..., τ . We want to show that the claim is true if the posterior

truncations and continuation equilibrium price paths are such that max{T TR, TNTR} = τ + 1.

Our proof in Appendix B is split into three main parts: (i) We show that under the induction

hypothesis, the second-period price of the non-transparent regime is lower than any second pe-

riod equilibrium price of the transparent regime (Lemma 14 in Appendix B); (ii) then we show

that, under the induction hypothesis and using (i), the first-period price in the transparent

regime must be higher than the equilibrium price of the non-transparent regime (Lemma 15 in

Appendix B), and finally, we complete the proof by showing that (iii) the prices in the later

periods must also be ranked as claimed. We prove step (iii) by way of contradiction—if the price

ranking in later periods violates the desired ranking, it must be that the ranking of posterior

truncations does not satisfy the condition of the induction hypothesis, we then use equilibrium

conditions to argue that the supposed price ranking and the posterior ranking cannot be com-

patible. Since most of the economic intuition we developed is utilized in step (ii) (Lemma 15),

we highlight it in this section.

To establish (ii), i.e., to show that pTR1 ≥ pNTR1 , the intuition is discerned by comparing the

“demand curves” that seller 1 in either regime faces. Our proof amounts to showing that the

demand curve in the non-transparent regime is more elastic than that in the transparent regime

at pTR1 , the equilibrium price offer of the transparent regime. It follows from the elementary

monopoly-pricing theory that the first-period profit-maximizing price in the non-transparent

regime is lower than pTR1 .

We start by defining the relevant elasticities. To do this, let pTR2 (p) be the equilibrium

second-period price in the transparent regime, as a function of the first period-price p.11,12

Then, for any first-period price p, the cutoff buyer types who purchase in the first period in the

two regimes, kTR1 (p) and kNTR1 (p), are determined by the following indifference conditions:

p = (1− δ)kTR1 (p) + δpTR2 (p) (5)

and

p = (1− δ)kNTR1 (p) + δpNTR2 (6)

which can be rearranged, respectively, as follows:

kTR1 (p) =
p− δpTR2 (p)

1− δ
and kNTR1 (p) =

p− δpNTR2

1− δ
. (7)

11Note that first period price (and the rejection decision of the buyer) is the only history observable to seller

2. Therefore, writing his price choice as solely a function of first period price is without loss of generality.
12To give a clean intuition, in this section, we present the argument assuming that all sellers make pure

strategy price offers after every history. As discussed earlier, this is not generally true in an equilibrium of

the transparent regime. Even though it is known that the second period equilibrium choice is necessarily pure,

randomization may be used after a first period offer p which is off-equilibrium. Appendix B deals with the

general case.
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As explained earlier, seller 1’s problem in either regime can be thought of as the problem

of a monopolist who faces a demand curve that is shaped by the strategies of the subsequent

sellers, by identifying the probability of trade 1−F (ki1 (p)) as the quantity sold at price p. The

key, then, is to compare the following two demand curves faced by seller 1 in the two regimes

i = NR, TNR :

Qi(p) = 1− F (ki1(p)).

Letting pi1 represent the first-period equilibrium price in regime i, and assuming for the

purpose of contradiction that pTR1 < pNTR1 , we shall show that

F (kTR(pNTR1 ))− F (kTR1 (pTR1 ))

1− F (kTR1 (pTR1 ))
≤ F (kNTR(pNTR1 ))− F (kNTR1 (pTR1 ))

1− F (kNTR1 (pTR1 ))
. (8)

In terms of the demand curves Qi(p), this inequality says that the percentage decline in the

quantity sold in response to a price increase from pTR1 to pNTR1 is smaller in the transparent

regime than in the non-transparent regime.

It is convenient to refer to Figure 2 to describe the argument. The figure depicts repre-

sentative curves indicating the cutoff types that will purchase at each given price that seller

1 can charge in either regime, i.e., kNTR1 (p) and kTR1 (p). As indicated in the figure, let ∆i,

i = TR,NTR, be the “size” of the interval of types switching from buying to not buying

in the first period of regime i, in response to a price change from pTR1 to pNTR1 . That is,

∆i ≡ ki1(pNTR1 )− ki1(pTR1 ).

Two main steps of our argument are to show, as depicted in Figure 2, that kTR1 (pTR1 ) ≤
kNTR1 (pTR1 ) that ∆NTR ≥ ∆TR. That is, the monopolist corresponding to the transparent regime

sells more at price pTR1 than the monopolist corresponding to the non-transparent regime and

loses a smaller interval of types for switching to the higher price pTR1 .

The latter step is intuitive and is the exact consequence of the economic forces we have been

emphasizing: any price change by seller 1 in the transparent regime elicits a response by seller

2 in the form of a price change in the same direction, which is anticipated by the buyer. In

particular, a price increase in the transparent regime implies higher prices in ensuing periods,

so that, following such an increase, a smaller range of types switch from buying to not buying

when compared with the case of the non-transparent regime—where a price change cannot be

matched by subsequent sellers. It is worth noting that this step does not make use of the

induction hypothesis, but is a pure consequence of the economic forces at play. The former step

is more involved and is proven under the induction hypothesis.13

13The argument for this result uses the induction hypothesis as well as the economic intuition behind the

ranking of the elasticities. Firstly, the induction hypothesis implies that the second-period price can be higher

in the non-transparent regime, only if seller 2 of that regime has a more “optimistic” belief; i.e., if the cutoff

type purchasing in the first period is higher in the non-transparent regime. In other words, seller 1 sells more
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Notice that the two results, ∆NTR ≥ ∆TR and kTR1 (pTR1 ) ≤ kNTR1 (pTR1 ), would immediately

imply (8) if, say, F were the uniform distribution. However, for an arbitrary F , the ranking of

the numerators in (8) is not clear, simply because the relevant intervals of discouraged types

typically do not share end points, and therefore a smaller-sized interval (∆TR) can pack a

larger measure under F than can the larger interval (∆NTR). This would imply that the price

increase to pNTR1 would reduce the quantity sold by seller 1 in the transparent regime by a

larger absolute amount. Then the ranking of the percentage changes would be ambiguous.

This ambiguity is resolved for F satisfying the increasing hazard rate property. Now, the

increasing hazard rate property is precisely that the quantity (F (k + ∆)− F (k)) / (1− F (k))

is increasing in k (See Lemma 11 in Appendix B). This quantity is also increasing in ∆ by the

monotonicity of F . Therefore, (8) follows from the two observations (1) ∆NTR ≥ ∆TR and (2)

kTR1 (pTR1 ) ≤ kNTR1 (pTR1 ), for F satisfying the increasing hazard rate property.

 

  

 

 

 

 

 

 

 

 

 

 

Figure 2: The role of the increasing hazard rate assumption.

To summarize, (8) means that the percentage change in quantity in response to a given

price change (from pTR1 to pNTR1 ) is larger in the non-transparent regime; i.e., at this range of

prices, the demand curve faced by the monopolist in the non-transparent regime is more elastic.

Nevertheless, this monopolist strictly prefers the higher price pNTR1 to the lower price pTR1 , since

pNTR1 is the unique solution to his profit-maximizing problem. There, the monopolist in the

in the transparent regime while charging the lower price pTR
1 . This leads to a contradiction because switching

to the smaller quantity choice of seller 1 of the non-transparent regime leads to a larger absolute increase in

prices (due to the economic forces), which also translates into a larger percentage increase in price since the

pTR
1 is smaller. Therefore, if seller 1 of the non-transparent regime (weakly) prefers the smaller quantity, then

the seller 1 of the transparent regime should strictly prefer it. For a formal argument, see Appendix B.
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transparent regime, facing a less elastic demand, should also have the same preference over

these two prices, which contradicts the optimality of pTR1 . This establishes that pTR1 ≥ pNTR1 .

Since the price paths in the two regimes that the long-run buyer faces are uniformly ranked,

it follows immediately that the buyer has a clear-cut preference over the two regimes.

Corollary 1 Fix any δ ∈ (0, 1) . Suppose that F exhibits an increasing hazard rate. Then the

long-run buyer is better off in the non-transparent regime.

6 Expected Delay

As is well understood in the Coasian bargaining literature, as the buyer becomes extremely pa-

tient, the outcome becomes efficient. However, the literature so far has had little to say about

the delay and efficiency when δ is bounded away from 1. Instead, the literature has focused on

the limiting case of δ → 1 to study “real delay” in various environments. Studying the equilib-

rium outcomes in the limiting case is not only conceptually important for our understanding of

commitment power but also facilitates definite conclusions, such as the limiting efficiency result

for the gap case. Yet, to understand fully the applications in real-market environments, it is

necessary to consider discount factors that are bounded away from 1. This section is concerned

with the question of which regime leads to a longer delay in trade for any buyer discount factor

δ ∈ (0, 1) .

Under our interpretation, which identifies the probability of sale with the quantity sold by

a residual monopolist, the expected delay in sale is smaller if the sales are more “front-loaded,”

i.e., if earlier sellers cover a larger share of the market. In the example of Section 3, a comparison

of the two regimes in this dimension was immediate from the fact that the first seller in the

non-transparent regime serves a larger share of the market (targets a smaller cutoff type). In

the general model, however, the comparison of quantities sold by seller 1—or subsequent sellers,

for that matter—in the two regimes is not possible and should not be expected. This is because

the demand curves faced by seller 1 in either regime typically are related to each other in the

manner shown in Figure 3. Therefore, even though the ranking of the elasticities is possible,

it implies only that seller 1 in the transparent regime chooses a price above pNTR1 , and not

necessarily above p̄. Intuitively, when the game has a longer horizon, since the future prices

are also expected to be lower in the non-transparent regime, the buyer may have a stronger

incentive to wait, reducing the incentives of the seller to increase prices. Nevertheless, we are

able to establish the result for the general model under the additional assumption that the

buyer’s type-distribution is concave.

To formally state our result, let {kTRt } be a realization of an equilibrium cutoff sequence

in the transparent regime and let {kNTRt } be the unique equilibrium cutoff sequence in the
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Figure 3: Representative demand curves of seller 1 for the infinite horizon model. Note that the two demand

curves intersect at a price lower than the first period equilibrium price of the unobservable regime. This is

because when the horizon is longer than two periods, the game starting in the second period onward is no

longer identical across the two regimes.

non-transparent regime with the convention that ki0 = v̄ and kit = v for t > T i where T i is the

last period such that trade takes place with positive probability along the realized path. Given

these sequences, for each type v < v̄, and for either i = NTR, TR, there is a unique t such that

kit−1 > v ≥ kit. Let τ i(v) represent this t.

Then, a measure of the delay that type v experiences is 1 − δτ i(v)−1, which is the portion

of the payoff lost due to the delay in reaching an agreement. Therefore, the expected delay in

regime i is ∫ v̄

v

(1− δτ i(v)−1)dF (v) = 1−
∫ v̄

v

δτ
i(v)−1dF (v).

Notice that ex ante, the probability that the trade will take place at period t is F (kit−1)−F (kit).

Therefore, the above expectation can alternatively be expressed as

1−
∞∑
t=1

δt−1(F (kit−1)− F (kit)),

which simplifies to

(1− δ)
∞∑
t=1

δt−1F (kit). (9)

Proposition 2 Fix any δ ∈ (0, 1) . Assume that pTRt ≥ pNTRt for any t where {pTRt } is a

realization of the equilibrium price sequence of any equilibrium in the transparent regime and
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{pNTRt } is the unique equilibrium sequence of prices in the non-transparent regime. Then, for a

concave F , the expected delay in the transparent regime is larger than the expected delay in the

non-transparent regime.

The complete proof is presented in Appendix C. To gain some intuition into how the ranking

of prices helps and what role the concavity of the type distribution F plays, note that for each

i, we have14

pTRt = (1− δ)
∞∑
l=t

δl−tkTRl ≥ (1− δ)
∞∑
l=t

δl−tkNTRl = pNTRt . (10)

In words, the discounted sum of the tails of the cutoff sequence from period t on (which is equal

to the price in that period) is larger for the transparent regime than for the non-transparent

regime. It is clear that when F is applied to each kit to obtain the expression for the expected

delay in (9), this ranking need not be preserved. Proposition 2 shows that this ranking is

preserved when F is concave. The intuition can most easily be gleaned from the following

thought experiment: suppose that in each regime trade takes place in the second period at the

latest. Then, (10) implies that

(1− δ)kNTR1 + δkNTR2 ≤ (1− δ)kTR1 + δkTR2 and kNTR2 ≤ kTR2 .

This means that one of the following two rankings must hold:

1. kNTR1 ≤ kTR1 and kNTR2 ≤ kTR2 ;

2. kNTR1 > kTR1 ≥ kTR2 ≥ kNTR2 .

If the ranking in 1 obtains, (9) follows immediately from the monotonicity of F without

referring to concavity. Under the ranking in 2, the cutoffs in the transparent regime are “less

spread out”—as well as on average higher—than those in the non-transparent regime, which

implies that, evaluated under a concave and increasing function F , their expectation is larger.

To see how this intuition is generalized to longer horizons, consider an alternative interpre-

tation of our model as a bargaining game with a stochastic deadline: suppose that δ, instead

of representing the discount factor of the buyer, represents the probability with which the bar-

gaining ends before the next period, conditional on the fact that it has not yet ended. It is

14Since pure strategy is played on the equilibrium path after period 1 (Fudenberg, Levine, and Tirole 1985),

for any t ≥ 1, the indifference condition of the cutoff buyer type kt is given by

pit = (1− δ)kit + δpit+1,

where pit+1 is deterministic. Iterating this indifference condition, we obtain that prices are discounted sums of

the cutoff types.
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well understood that such a game is strategically equivalent to the game we have analyzed so

far. Then, “the smallest buyer type that gets to trade” in either regime is a random variable

assigning probability δt−1 to kit. If the realization of this random variable is k, then the realized

probability (or quantity) of sale is 1− F (k). Under this interpretation, 1 minus the expression

in (9) is the expected quantity sold or equivalently the expected probability of sale in either

regime. What (10) allows us to show is that the random variable determining the smallest

buyer type that trades in the transparent regime second-order stochastically dominates its non-

transparent regime counterpart. That is why the expectation of this random variable evaluated

at concave F is larger in the transparent regime, and so there is a lower expected probability

of trade or, equivalently, a higher expected delay, when past rejected prices are observable.

7 Concluding Remarks

To conclude, we emphasize several aspects of our model that we feel deserve further elaboration.

We can compare our model with classical models of oligopoly. In particular, the bargain-

ing model where previous prices are observable to future sellers is reminiscent of the “price

leadership” in oligopoly, as later sellers observe and react to choices that earlier sellers have

“committed to.” The non-transparent regime, on the other hand, is suggestive of “Bertrand

competition,” because each seller makes a price choice without observing the choices of any

other seller. Obviously, the analogy requires that the products of various sellers be vertically

differentiated, since in either regime, for a given price, each type of buyer prefers to buy from an

earlier seller rather than wait for a later seller—because of discounting. However the analogy is

superficial. The extensive form of our sequential bargaining game implies that later sellers face

an endogenously determined residual market, while in the standard oligopoly literature there

is a single demand curve common to all sellers. The implication of this is that a given seller in

the oligopoly model, by lowering his price, can steal buyers from higher-quality (earlier) sellers

as well as lower-quality (later) sellers. Whereas in the dynamic bargaining model, the buyers

of higher-quality (earlier) sellers are locked in, so that a deviation to a lower price can lure

buyers only from lower quality (later) sellers. This discrepancy creates very distinct incentives

to deviate and leads to different equilibrium outcomes. A second implication of this distinction

is that, while in our model, quantity competition is equivalent to price competition, this is

not true in an oligopoly model. Therefore, even though the forces we uncover that lead to the

comparison of the two regimes in our model are also present in models of oligopoly, they are

obscured by other mechanisms and therefore are not highlighted in that literature. In fact, to

our knowledge, the industrial organization literature has not studied analogous questions we

asked in this paper. In addition, most papers look at simple models with closed-form solutions.
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Our result might indeed shed light on the oligopoly literature.

Another “competitive” benchmark with which we can contrast the performance of the two

regimes is one where there is “within-period competition” between the short-run sellers; i.e., the

buyer meets two (or more) sellers each period and price is determined by competitive bidding. In

this case, it is easy to see that the prices will immediately be zero in either regime. Therefore,

our results suggest that the non-transparent regime leads to outcomes that are “closer” to

this benchmark. Rather than studying within-period competitive bidding, which would more

reasonably describe a “thick” market, our purpose in studying one-to-one bargaining is precisely

to unlock the strategic aspect of price formation.

We consider take-it-or-leave-it offers by the uninformed players. Introducing different bar-

gaining protocols would be an interesting exercise. If the informed buyer makes all the offers,

in both regimes an equilibrium is one where the buyer always offers the price 0 and all sellers

accept it. In this equilibrium, the buyer gets all the surplus. This is intuitive. In the complete

information of this game, when the long-lived buyer is making offers, in the unique equilibrium

he would always offer 0 regardless of his valuation. If in addition, the buyer’s type is his private

information, he cannot do worse than in the case of complete information when his type is

known. This observation is made by Ausubel and Deneckere (1989b, Theorem 4). Indeed, they

show that this is the unique equilibrium. This suggests that in our context, the uninformed

player must have some bargaining power for the impact of transparency to be present. If the

bargaining protocol is such that both parties can make offers, then the game becomes compli-

cated due to the signaling effect. The literature makes strong refinement assumptions. Ausubel,

Cramton, and Deneckere (2002, Theorem 7) show that Coase conjecture holds in alternating

offer bargaining games under a refinement they call “assuredly perfect equilibrium”. This re-

finement requires that, when an off-equilibrium action is observed, the players believe that it is

more likely to come from low buyer types, giving a strong structure to the off-path beliefs. We

believe the same logic works in our transparent regime. Similarly, two-sided uncertainty will

also give rise to signaling issues; see, for example, Cramton (1984), Chatterjee and Samuelson

(1987), and Abreu and Gul (2000).

Our bargaining model corresponds to the “gap” case—well known in the bargaining liter-

ature. In fact, the Coase conjecture fails in the no-gap case with short-run sellers: we can

employ the insights of Ausubel and Deneckere (1989a) to construct multiple non-stationary

equilibria, where the long-run buyer builds a “reputation” for having a low willingness to pay.

Nevertheless, the gap case nicely captures the insights of imperfect competition by silencing

the reputation effect.

Some interesting questions within our exact model remain unresolved as well. In particular,

we do not consider the ranking—across the two regimes—of ex-ante sums of expected payoffs
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or of cutoff types that trade each period. If we were to be able to establish the ranking of

cutoffs, the ranking of the discounted sum of payoffs would immediately follow. Yet, this is a

challenging exercise: In order to obtain a ranking of the cutoffs and hence the sum of payoffs,

one needs to be able to reason about the magnitude of price differences/ratios across regimes—

and not only their ordinal rankings. As the price path is an endogenous object in an infinite

horizon model, this becomes rather involved and our current proof strategies do not work.

In the supplemental material, we present our results on the special cases of power function

distributions and two-period models for general type distributions. In these two cases, we are

able to obtain unambiguous rankings of cutoffs and therefore efficiency. In addition, we show

in these two cases, we can drop the concavity assumption in Proposition 3. Moreover, in the

two-period case we are able to dispense with the increasing hazard rate condition for Theorem

2.15

A Proof of Theorem 1

We first prove that any equilibrium must be in pure strategies (Lemma 1). We then apply this

property to prove equilibrium existence and uniqueness.

By virtue of the skimming property (Fudenberg and Tirole 1991, p. 407) and the fact

that the only observable history in the non-transparent regime is rejection, in any equilibrium

we can identity seller t’s price pt with the infimum buyer type who accepts pt. For any fixed

equilibrium, since the seller in period t can potentially randomize, let Kt be the support of the

cutoffs in period t in this equilibrium and write

K = ∪Tt=1Kt.

For each t, define

k̄t := supKt and k
¯ t

:= inf Kt.

Hence, after period t the largest possible interval of remaining types is [v, k̄t), while the smallest

such interval is [v,k
¯
t). Define

k̄′t := supKt\{k̄t}.

By convention, sup∅ = −∞. Therefore, [v, k̄′t) is the second largest possible interval after

a (potential) seller randomization in period t. It is possible a priori that k̄′t = k̄t. All these

variables just defined depend on the fixed equilibrium. We suppress the dependence for notational

convenience.

15Note that power function distributions satisfy the monotone hazard rate assumption.
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A.1 Preliminary Results

In our dynamic environment, the distribution of types varies over time. We first make the obser-

vation that a lower truncation of F inherits the monotone marginal revenue (virtual valuation)

property from F.

Lemma 2 Assume that k−(1− F (k)) /f (k) is strictly increasing. Then k−(α− F (k)) /f (k)

is strictly increasing in k whenever F (k) < α ≤ 1.

Proof: Consider k′ < k and F (k) < α. We want to show

k − α− F (k)

f(k)
> k′ − α− F (k′)

f(k′)
. (11)

Define

L (α) = k − k′ + F (k)− F (k′)

f(k′)
− (α− F (k))

(
1

f(k)
− 1

f(k′)

)
.

Inequality (11) is equivalent to L (α) > 0. Notice that L (1) > 0 since F has increasing marginal

revenue (virtual valuation). For α < 1, we have two cases to consider: if 1/f (k)− 1/f (k′) ≤ 0,

then L (α) > 0 follows immediately by the definition of L (α) ; if 1/f (k) − 1/f (k′) > 0, then

L (α) is decreasing in α, and hence L (α) > L (1) > 0.

By standard arguments, in any equilibrium, kt ≥ v for any t and the game ends in finite

time with a price equal to v. This is formalized in Lemma 3.

Lemma 3 In any equilibrium of the non-transparent regime, there exists 0 < T <∞ such that

trade takes place with probability 1 within T periods.

Proof: We proceed in the following steps.

Step 1: A seller never makes a price offer below v. The argument is standard: all buyer

types will accept a price of (1− δ) v immediately, which is better than waiting for a price of

0 next period; but then
(
1− δ2

)
v will be accepted for sure because the best price in the next

period is bounded below by (1− δ) v; iterating this argument shows that a seller will never

make a price offer below (1− δn) v for any n, and the claim follows.

Step 2: Suppose to the contrary that there is an equilibrium in which there is some positive

measure of types that never trade for some history. Then in this equilibrium, kt > v for all

t > 0. In this case
{
kt
}

is a decreasing and hence convergent sequence: if, however, kt < kt+1

for some t, then seller t + 1 makes a profit of 0 by making an offer close to kt+1; but he can

makes a strictly positive profit by offering v according to the previous step. Consequently,∣∣kt − kt+1

∣∣→ 0. Thus, the profit of seller t converges to 0 as t→∞. Moreover, it must be that

kt ↓ v. To see this, suppose that limt→∞ kt = k∗ > v. Then seller t will get a profit close to 0 if
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t is large enough, but any seller can deviate to charge a price v, which, by the previous claim,

guarantees a strictly positive profit (F (k∗)− F (v)) v, a contradiction.

Step 3: Now from Step 2, for each ε > 0, there exists t such that v < kt < v + ε. Then we

claim that there exists ε such that for any k ∈ (v, v + ε) and any k′ ∈ (v, k],

(F (k)− F (k′)) k′ < F (k) v. (12)

To see this, note that the left-hand side is differentiable in k′, and its derivative is −f (k′) k′ +

F (k)− F (k′) . Now

−f (k′) k′ + F (k)− F (k′) < − 1

m
v + F (k)− F (k′)

< − 1

m
v + F (v + ε)− F (v)

< − 1

m
v +mε.

Hence, when ε < v/m2, −f (k′) k′ + F (k)− F (k′) < 0, and (12) follows immediately.

Step 4: Notice that the left-hand side of (12) is the highest possible payoff a seller can obtain

when facing buyer types [v, k] if he wants to sell to the types [k′, k] (it assumes that a price equal

to k′ will be accepted by all types above k′), while the right-hand side of (12) , by Step 1, is the

seller’s exact payoff from making a price offer v. Therefore, (12) implies that if kt < v + v/m2,

it is an ex-post strictly dominant strategy for seller t + 1 to make a price offer equal to v for

each realization of kt ∈ (v, kt]. Therefore, kt+1 = v is an ex-ante strictly dominant strategy for

seller t as long as v < kt < v + v/m2. This contradicts the supposition that kt+1 > v for each

t.

We next argue that the upper bound of the support of a seller’s potential randomization in

the fixed equilibrium is strictly decreasing over the periods during which trade takes place with

positive probability.

Lemma 4 In any equilibrium in which T is the last period in which trade takes place with a

positive probability, we have v̄ > k̄t > k̄t+1 for any t < T.

Proof: If k̄t ≤ k̄t+1, then seller t + 1 gets 0 profit. He can get positive profit by charging v.

Moreover, if k̄t = v̄, then seller t can charge v and get a strictly higher profit.

A.2 Pure Strategy: Proof of Lemma 1

Lemma 5 In any equilibrium, K1 ∩
[
k̄2, k̄1

]
=
{
k̄1

}
.

Proof: To prove this claim, note that by the definition of k̄2, the buyer type k ∈ [k̄2, k̄1] is

guaranteed to trade at or before period 2. Therefore, by choosing a marginal type k ∈ [k̄2, k̄1],
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seller 1 would sell with probability 1−F (k) . The price p1(k) is such that the marginal type k,

who will buy for sure next period, is indifferent between buying now or waiting:

k − p1(k) = δ (k − E [p2]) ,

where E [p2] is the expected price in period 2 (seller 2 could potentially randomize). Hence,

p1(k) = (1− δ)k + δE [p2] and therefore seller 1’s problem is

max
k

(1− F (k))[(1− δ)k + δE [p2]].

The first-order derivative of the objective function can be calculated to be

−f(k)

[
(1− δ)

(
k − 1− F (k)

f (k)

)
+ δE [p2]

]
. (13)

Since k− (1− F (k)) /f (k) is strictly increasing by assumption, (13) is strictly increasing over

the interval
[
k̄2, k̄1

]
. Now, since k̄1 maximizes seller 1’s profit (or types arbitrarily close to k̄1

if k̄1 = supK1 is not achieved by any k ∈ K1) and k̄1 is in the interior of [v, v̄], it must be

that (13) is 0 at k = k̄1. Moreover, since (13) is strictly increasing, it must be negative for any

k ∈ [k̄2, k̄1). Hence, no k ∈ [k̄2, k̄1) is optimal. Therefore, K1 ∩
[
k̄2, k̄1

]
=
{
k̄1

}
.

Lemma 5 does not imply that seller 1 must play a pure strategy. It does not rule out the

case that K1 contains points that are not in
[
k̄2, k̄1

]
, i.e., the case K1\

[
k̄2, k̄1

]
6= ∅. However,

we are able to successively narrow down K1. This is done in Lemma 1 of the main text.

Lemma 1 Fix any equilibrium in which the game ends for sure at T . For any τ = 1, ..., T − 1,

(∪τt=1Kt) ∩ [k̄τ+1, k̄1] =
{
k̄1, k̄2..., k̄τ

}
.

Proof: The proof is by induction. We proceed in the following steps.

Step 1: First note that K1 ∩
[
k̄2, k̄1

]
=
{
k̄1

}
. This is what we proved in Lemma 5. This

step shows that k̄1 is an isolated point in K1.

Step 2: Next we argue that for 1 ≤ τ + 2 ≤ T, if

(∪τt=1Kt) ∩ [k̄τ+1, k̄1] =
{
k̄1, k̄2..., k̄τ

}
, (14)

then (
∪τ+1
t=1Kt

)
∩ [k̄τ+2, k̄1] = {k̄1, k̄2..., k̄τ+1}.

In words, we want to show inductively that k̄t is an isolated point in the support of seller

t’s cutoffs and no seller will ever set a cutoff in the interval (k̄t, k̄t+1). The induction step is

illustrated in Figure 4.
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Figure 4: The left panel depicts the induction hypothesis; the right panel depicts the induction step.

From the induction hypothesis, (∪τt=1Kt) ∩ [k̄τ+1, k̄1] =
{
k̄1, k̄2..., k̄τ

}
. Recall that k̄′t =

supKt\{k̄t}. Take the smallest t∗ such that k̄′t∗ = sup{k̄′t|t = 1, ..., τ + 1}. That is, k̄′t∗ is the

highest among the “second highest equilibrium cutoffs” in periods up to τ+1. By the induction

hypothesis, for any t ≤ τ ,

k̄′t∗ ≤ k̄τ+1 < k̄t. (15)

If Kt\{k̄t} = ∅ for all t = 1, ..., τ + 1, then the proof is complete already. Suppose that

this is not the case. If k̄′t∗ < k̄τ+2, then the induction is complete as well. Now suppose that

k̄′t∗ ≥ k̄τ+2.

Step 3: We establish the following claims.

Claim 1: There exists ε > 0 such that (k̄′t∗ , k̄
′
t∗ + ε) ∩K = ∅. That is, there is no (future

or past) cutoff immediately above k̄′t∗ . Hence, in any period t after any history, buyer types

[k̄′t∗ , k̄
′
t∗ + ε) must be either entirely in the support of the posterior or entirely outside of the

support of the posterior.

Proof of Claim 1: By (15) , we have either k̄′t∗ = k̄τ+1 or k̄′t∗ < k̄τ+1. By (15) , in the former

case we have

k̄τ+2 < k̄′t∗ = k̄τ+1, (16)

and in the latter case we have

k̄τ+2 ≤ k̄′t∗ < k̄τ+1. (17)
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It follows immediately from Lemma 4 that there is no offer (buyer cutoff) within (k̄′t∗ , k̄
′
t∗ + ε)

in all periods t = 1, ..., T. ‖
Claim 2: There exists ε > 0 such that (k̄t∗ − ε, k̄t∗ + ε) ∩ K = {k̄t∗}. That is, there is no

(future or past) cutoff in an ε-neighborhood of k̄t∗ .

Proof of Claim 2: If t∗ ≤ τ , the claim follows from the induction hypothesis (14). If

t∗ = τ + 1, the problem arises only when k̄τ+1 = k̄′τ+1 because then k̄τ+1 is not an isolated

point. This means that there exists knτ+1 ↑ k̄τ+1. Then it must be that there exists t̄ < τ + 1

with equilibrium cutoffs knt̄ ∈ Kt̄ such that knt̄ ↑ k̄τ+1; otherwise, by the same line of arguments

in Step 1 that establishes Lemma 5, seller τ + 1 will not offer both knτ+1 and k̄τ+1. But then we

must have k̄′t̄ = k̄′t∗ . Since t̄ < τ + 1 = t∗, this contradicts the definition of t∗. ‖
Claim 3: k̄′t∗ 6= k̄t∗ . In addition, (k̄′t∗ , k̄t∗) ∩Kt = ∅ for all t ≤ t∗. That is, (k̄′t∗ , k̄t∗) includes

no past cutoffs.

Proof of Claim 3: First note that k̄′t∗ 6= k̄t∗ by Claim 2 above. The remaining part of Claim

3 follows from the induction hypothesis. ‖
Claim 4: (k̄′t∗ , k̄t∗−1) ∩Kt = ∅ for all t < t∗. That is, at the beginning of period t∗, buyer

types (k̄′t∗ , k̄t∗−1) are either entirely in the support of the posterior or entirely outside of the

support of the posterior.

Proof of Claim 4: This follows from the induction hypothesis (14) and Claim 3. ‖

From now on, we shall consider seller t∗’s optimization problem. For any buyer type k ≥ v,

let τ(k) be the (random) period at which type k ends up trading if he does not trade at or

before time t∗. The distribution of τ(k) for each k is determined by the equilibrium strategies

of sellers t > t∗.

Step 4: To target a cutoff type k, seller t∗ must choose a price p(k) satisfying the following

indifference condition:

k − p(k) =
∞∑

t=t∗+1

Pr(τ (k) = t)δt−t
∗
E [k − pt(kt)|kt ≤ k, kt ∈ Kt] . (18)

Using the fact that type k ≥ v must eventually trade in the future, the right-hand side of the

above expression can be rewritten as

kE[δτ(k)−t∗ ]−
∞∑

t=t∗+1

Pr(τ (k) = t)δt−t
∗
E [pt(kt)|kt ≤ k, kt ∈ Kt] .

Define

p(k) :=
∞∑

t=t∗+1

Pr(τ (k) = t)δt−t
∗
E [pt(kt)|kt ≤ k, kt ∈ Kt] ,
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and

d(k) := E[δτ(k)−t∗ ].

Hence p (k) and d (k) are type k’s expected discounted trading price and discounted trading

probability from period t∗ + 1 onward, conditional on this type not having traded at or before

t∗. Hence, (18) can be rewritten as

k − p(k) = kd (k)− p (k) .

Therefore, the cutoff price for type k at period t∗ can be written as p (k) = k (1− d (k))+p(k).

Step 5: We now consider seller t∗’s objective function. If seller t∗ targets a cutoff type

k ∈ [k̄′t∗ , k̄t∗−1), the trading probability can be written in the form of

β (α− F (k))

for some positive number α ∈ (F
(
k̄t∗−1

)
, 1] and β < 1. This follows from Claim 4 in Step

3: either all buyer types in the interval (k̄′t∗ , k̄t∗−1) have traded before t∗ or none of them has

traded before t∗. Therefore, seller t∗’s payoff by choosing a cutoff k ∈ [k̄′t∗ , k̄t∗−1) is

R (k) = β (α− F (k)) [k (1− d (k)) + p(k)] . (19)

Moreover, by Claim 2 in Step 3, if types
(
k̄t∗ − ε, k̄t∗ + ε

)
do not trade at period t∗, they will

trade together in the future. Thus we have

d(k) ≡ d(k̄t∗) and p(k) ≡ p(k̄t∗) for all k ∈
(
k̄t∗ − ε, k̄t∗ + ε

)
.

By Claim 1 in Step 3, we have

d(k) ≡ d(k̄′t∗) and p(k) ≡ p(k̄′t∗) for all k ∈ [k̄′t∗ , k̄
′
t∗ + ε).

In sum, seller t∗’s payoff (19) as a function of k is such that

R (k) = β (α− F (k))
[
k
(
1− d

(
k̄t∗
))

+ p(k̄t∗)
]

if k ∈ (k̄t∗ − ε, k̄t∗ + ε);

R (k) = β (α− F (k))
[
k
(
1− d

(
k̄′t∗
))

+ p(k̄′t∗)
]

if k ∈ [k̄′t∗ , k̄
′
t∗ + ε).

Step 6: Now consider the derivative of seller t∗’s payoff with respect to k. In the case that

k ∈ (k̄t∗ − ε, k̄t∗ + ε),

R′(k) = −f(k)

[(
1− d

(
k̄t∗
))(

k − α− F (k)

f (k)

)
+ p(k̄t∗)

]
.

Hence, we have

R′(k) = 0. (20)
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In the case that k ∈ [k̄′t∗ , k̄
′
t∗ + ε), R (k) is right-differentiable in k. As a result, for k ∈(

k̄′t∗ , k̄
′
t∗ + ε

)
,

R′(k) = −f(k)

[(
1− d

(
k̄′t∗
))(

k − α− F (k)

f (k)

)
+ p(k̄′t∗)

]
. (21)

Let R′
(
k̄′t∗
)

denote the left-derivative of R (k) at k = k̄′t∗ . Then

R′
(
k̄′t∗
)

=
(
1− d

(
k̄′t∗
))(

k̄′t∗ −
α− F

(
k̄′t∗
)

f
(
k̄′t∗
) )

+ p(k̄′t∗)

=
(
1− d

(
k̄′t∗
)) [(

k̄′t∗ −
α− F

(
k̄′t∗
)

f
(
k̄′t∗
) )

+
p(k̄′t∗)

1− d
(
k̄′t∗
)]

<
(
1− d

(
k̄′t∗
)) [(

k̄t∗ −
α− F

(
k̄t∗
)

f
(
k̄t∗
) )

+
p(k̄t∗)

1− d
(
k̄t∗
)]

= 0 (by Eq. (20)).

The inequality in the previous display follows from (i) the fact that both p(k) and d(k) are

increasing in k, and (ii) the fact that

k̄t∗ −
α− F (k̄t∗)

f(k̄t∗)
> k̄′t∗ −

α− F (k̄′t∗)

f(k̄′t∗)
.

Fact (i) follows from the definition of p(k) and d(k). Fact (ii) follows from Lemma 2.

Step 7: Now we have established that R′
(
k̄′t∗
)
< 0. Hence k̄′t∗ /∈ Kt∗ . In particular, there

exists η > 0 such that

R
(
k̄′t∗ +

ε

2

)
> R

(
k̄′t∗
)

+ η. (22)

Now, since k̄′t∗ /∈ Kt∗ , there exists a sequence knt∗ ∈ Kt∗ such that knt∗ ↑ k̄′t∗ . By the skimming

property, a price acceptable to knt∗ is also acceptable to k̄′t∗ . As knt∗ becomes arbitrarily close to

k̄′t∗ , the probability of sale from targeting knt∗ becomes arbitrarily close to the probability of sale

from targeting k̄′t∗ , and hence, for n large enough,

R
(
k̄′t∗
)
> R (knt∗)−

η

2
. (23)

It follows from (22) and (23) that for large n,

R
(
k̄′t∗ +

ε

2

)
> R (knt∗) +

η

2
.

Hence, knt∗ cannot be optimal, a contradiction. This establishes that either Kt\{k̄t} = ∅ for all

t = 1, ..., τ + 1, or otherwise k̄′t∗ < k̄τ+2. The induction is therefore complete.
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A.3 Existence and Uniqueness

Define the following function:

k(b, p) := argmaxk≥p[F (b)− F (k)][(1− δ)k + δp]. (24)

The solution to the maximization problem exists by the continuity of F and is unique by the

assumption that F satisfies increasing virtual valuation. Therefore, k(b, p) is a well-defined

function. Intuitively, k(b, p) is the current period marginal type that maximizes the seller’s

revenue given that the next period price is p and the highest type that has not traded so far is

b.

Lemma 6 (1) k(b, p) is continuous. (2) If k(b, p) > p, then k(b, p) is strictly increasing in b

and strictly decreasing in p.

Proof: (1) follows from the maximum theorem. (2) says that when the next period price is

higher, the current seller chooses a lower cutoff (sells to more buyer types) and when the highest

remaining type b is higher, he chooses a higher cutoff (sells to fewer types). The first-order

condition of (24) is given by

k − F (b)− F (k)

f(k)
= − δ

1− δ
p

and the claim follows from Lemma 2.

Define two sequences b0, b1, ... and p0, p1, ..., inductively, as follows:

b0 = p0 = v;

bs = sup {b : k(b, ps−1) = bs−1} ; (25)

ps = (1− δ)bs + δps−1.

Intuitively, we have reversed the timeline for the purpose of backward induction, where s ≥ 0

indicates the number of periods remain before the game ends (see Fudenberg, Levine, and Tirole

1985). When the game is over, i.e., when s = 0, the largest remaining type is b0 = v and the

price that leads to b0 = v (in the previous period) is p0 = v. Now b1 is the largest type such that

the game will finish this period if the remaining set of types is [v, b1] . Then p1 is the price that

leads to b1 (in the previous period). Hence, if the remaining set of types is [v, bs], the game will

finish in s periods (including the current period), and ps is the price that leads to the marginal

type bs (in the previous period).

Given (bs−1, ps−1) and bs−1 ≥ ps−1, bs (and therefore ps) is uniquely defined. However, we

cannot remove “sup” in (25) because if bs−1 = ps−1, then any b ∈ (bs−1, bs] satisfies (24) . The

following lemma is immediate by definition.
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Lemma 7 The set {b : k(b, ps−1) = bs−1} is a singleton whenever bs−1 > ps−1.

Lemma 8 (Existence) For each initial belief b ∈ (bs, bs+1], there is an equilibrium that ends

in exactly s+ 1 periods.

Proof: By the definition of b1, there is an equilibrium in which the game ends in 1 period

if the initial belief is in (b0, b1]. This establishes the claim for s = 0. Now we construct an

equilibrium for s > 1. For each b ∈ (b0, b1], set β0(b) = b and π0(b) = v and for n = 1, ..., s,

define πn, βn : (b0, b1]→ R, inductively, by the following:

πn(b) = (1− δ)βn−1(b) + δπn−1(b) and k(βn(b), πn−1(b)) = βn−1(b).

Now we claim that βn, πn satisfy the following properties:

(1) βn(b) is strictly increasing and continuous;

(2) βn(b) > πn−1(b);

(3) πn(b) is continuous and weakly increasing;

(4) βn(b0) = bn and βn(b1) = bn+1.

First, we argue that (1)–(4) hold for n = 1. Since b > b0 = π0(b), by Lemma 6, β1(b) is

strictly increasing and continuous, establishing property (1). Property (4) follows by definition

of the sequence b0, b1, .... Property (2) follows because β1(b) is strictly increasing, b > b0 and

β1(b0) = b1 ≥ b0 = π0(b).

Now assume that (1)–(4) hold for n = 1, ..., s− 1. We claim that they hold for n = s. Note

that βs(b) is continuous by induction hypothesis (3) and the continuity of k(·, ·). Again, by

Lemma 6 and induction hypothesis (3), βs(b) is strictly increasing. There (1) is confirmed. (3)

is immediate by definition of πs (b). By the definition of βs,

k(βs(b0), πs−1(b0)) = βs−1(b0) = bs−1,

k(βs(b1), πs−1(b0)) = βs−1(b1) = bs.

By the definition of bs and the uniqueness of βs, it is immediate that

βs(b0) = bs,

βs(b1) = bs+1.

Therefore (4) is confirmed. Notice that

βs(b) > βs−1(b) > πs(b).

Property (2) for n = s follows immediately.

So far, we have shown that βn is a one-to-one and onto map from the interval (b0, b1]

into (bn, bn+1]. This implies that for any initial belief b ∈ (bs, bs+1], there exists a unique
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b∗ ≡ β−1
s (b) ∈ (b0, b1]. Moreover, it is easy to see that the sequence {βs−1(b∗), ..., β0(b∗), v}

forms a sequence of equilibrium cutoffs for the game starting with belief b. This establishes the

claim.

Next, we show that the equilibrium constructed above is the unique equilibrium.

Lemma 9 (Uniqueness) For all initial beliefs b ∈ (bs, bs+1], in any equilibrium, trade must be

completed in exactly s+ 1 periods. Moreover, there is a unique equilibrium.

Proof: We proceed in the following steps.

Step 1: We first show that this is true for s = 0, i.e., there are no equilibria that last more

than 1 period for b ∈ (b0, b1] and there is a unique equilibrium in which the first seller charges

v.

First, there exists b∗ very small such that the game ends in one shot. Then consider b ∈
(b∗, b∗ + ε], where ε is such that for any v ∈ [b∗, b1],

(F (b)− F (b− ε)) b < F (b) v

or (
1− F (b− ε)

F (b)

)
b < v.

If in equilibrium seller 1 chooses a cutoff in (b∗, b∗ + ε) , then it contradicts the choice of ε. If in

equilibrium, seller 1 chooses a cutoff in (v, b∗], then the game ends in two periods. Then from

Eq. (24) seller 1’s problem is

k(b, v) = argmaxk≥v [F (b)− F (k)] [(1− δ) k + δv] .

Since the game ends in two periods, we know that k(b, v) > v. Therefore, by the monotonicity

established in Lemma 6, k(b, v) is strictly increasing in b. Therefore, for b ≤ b1, we have

k(b, v) ≤ k(b1, v) = v, which contradicting the assumption that k(b, v) > v. That is, the game

must end in one period if b ∈ (b∗, b∗ + ε].

Now consider v ∈ (v∗ + ε, v∗ + 2ε]. In equilibrium, the period 2 cutoff cannot be in (v +

ε, v∗ + 2ε] because of the choice of ε. If the period 2 cutoff is in (v, v∗ + ε], then the game ends

in two periods. But we can apply the previous argument again to derive a contradiction. The

proof for this step is completed by induction.

Suppose for the purpose of induction that the lemma is true for s = 1, 2, ..., N − 1 and

consider b ∈ (bN , bN+1].

Step 2: We first show that the game ends in exactly N + 1 periods. We consider two cases.

Case 1. Suppose that there exists an equilibrium that lasts longer than N+1 periods. Then,

it must be the case that in this equilibrium, the first seller with initial belief b chooses a cutoff
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k̃1 > bN , because, by the induction hypothesis, for any smaller cutoff the game ends in exactly

N additional periods. Similarly, the second seller with initial belief k̃1 chooses a cutoff level

k̃2 > bN−1 (this does not exclude the case where k̃2 > bN) and the s-th seller with initial belief

k̃s−1 chooses k̃s > bN−s+1 so that the game lasts more than N + 1 periods. Therefore, the price

that the second seller with initial belief k̃1 charges is strictly greater than

(1− δ)(bN−1 + δbN−2 + ...+ δN−2b1) + δN−1v.

On the other hand, we also know, by Lemma 8, that there is an equilibrium that lasts exactly

N + 1 periods. Let k∗s be the cutoff sequence of that equilibrium. Notice that k∗s ≤ bN+1−s.

Therefore, the price charged by the second period seller with initial belief k∗1 is at most

(1− δ)(bN−1 + δbN−2 + ...+ δN−2b1) + δN−1v.

But then, the first seller in the candidate equilibrium chooses a higher cutoff than the first

seller in the equilibrium of Lemma 8, even though both of these sellers have the same initial

belief and the second period price is less in the latter equilibrium. Since the optimal cutoff is

decreasing in the continuation price, this is a contradiction by Lemma 6.

Case 2. Now, suppose that there is an equilibrium that lasts N periods or less.

Suppose, first, that the cutoff k̂1 that the first seller with belief b chooses in equilibrium is

less than bN−1. Thereafter, there is a unique continuation equilibrium in which for all s the

cutoff chosen by the s-th seller with belief k̂s−1 is at most bN−s. Therefore, the price charged

by the second seller is at most

(1− δ)(bN−2 + δbN−3 + ...+ δN−2b1) + δN−1v.

On the other hand, the cutoff k∗s chosen by seller s in the equilibrium of Lemma 8 is strictly

greater than bN−s. And, therefore, the price is strictly above

(1− δ)(bN−2 + δbN−3 + ...+ δN−2b1) + δN−1v.

But this is a contradiction since k(b, p) is decreasing in p.

Now suppose that k̂1 > bN . Let s be the first period when the cutoff k̂s ≤ bN . Then it must

be that k̂s ≤ bN−s, because for any k ∈ (bN−s, bN ], there is a unique continuation equilibrium

that lasts at least N − s + 1 periods. Now, consider the equilibrium constructed in Lemma 8,

starting from initial belief βN−s(k̂s). Then, by construction, the seller with this belief chooses

k̂s. Moreover, by the induction hypothesis, the continuation of this equilibrium coincides with

the continuation of the other equilibrium where k̂s−1 chooses k̂s. This implies that the next

period price is the same in both equilibria. Call this price p. Note that k̂s−1 > bN > βN−s(k̂s).

But this is a contradiction since k(k̂s−1, p) > k(βN−s(k̂s), p).
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Step 3: Step 2 establishes that for b ∈ (bN , bN+1], all equilibria last exactly N + 1 periods.

We show that the equilibrium is unique, which is the one we constructed in Lemma 8.

Suppose by contradiction that there is another equilibrium (in addition to the one con-

structed in the proof of Lemma 8) that lasts exactly N + 1 periods. Let k∗ be the first period

cutoff of the equilibrium constructed in the proof of Lemma 8. Then, k∗ ≤ bN . Let k′ be the

first cutoff of the other equilibrium. Then it must be that k∗ 6= k′ because there is a unique N

period equilibrium following cutoff k∗ by the induction hypothesis.

Now, if k′ ≤ bN , it must be that k′ > bN−1, since otherwise the equilibrium lasts at most

N −1 periods. Suppose, w.l.o.g., that k∗ > k′. Then it must be the case that the second period

price in equilibrium of Lemma 8 is higher than the second period price following k′. This is

because, in the unique continuation equilibrium, all cutoffs are increasing in the initial belief,

since the functions βs(·) are increasing; and because, after each of these cutoffs, the equilibrium

lasts exactly N additional periods. But this leads to a contradiction since k(b, p) is decreasing

in p.

Now, suppose k∗ > bN . We shall use an argument similar to the one used to establish that

all equilibria last at least N + 1 periods. Let s be the first period when the cutoff k̂s ≤ bN .

Then it must be that bN−s ≤ k̂s ≤ bN−s+1, because that is the only way that the equilibrium

will have N − s+ 1 additional periods. Now, consider the equilibrium constructed in Claim 1,

starting from initial belief βN−s(k̂s). Then, by construction, the seller with this belief chooses

k̂s. Moreover, by the induction hypothesis, the continuation of this equilibrium coincides with

the continuation of the other equilibrium where k̂s−1 chooses k̂s. This implies that the next

period price is the same in both equilibria. Call this price p. Note that k̂s−1 > bN > βN−s(k̂s).

But this is a contradiction since k(k̂s−1, p) > k(βN−s(k̂s), p).

B Proof of Proposition 1

B.1 Preliminary Results

Before presenting our induction argument, we present some preliminary results which facilitate

the ensuing discussion. The first set of results are technical and they do not rely on equilibrium

conditions.

B.1.1 Technical results

The first result establishes a strong form of monotonicity for the solution of the profit-maximization

problem of a seller facing a truncation of F . In particular, the profit-maximizing prices of any

seller is non-decreasing in the highest type k̄ that he believes to be remaining, regardless of
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the continuation play. The solution to this maximization problem may not be unique (in the

transparent regime). Therefore, it is necessary to make precise the notion of monotonicity for

the set of profit-maximizing prices. The appropriate definition in this context is as follows:

Definition 1 Consider two sets X, Y ⊂ R. We say that the set X is greater than the set Y if

and only if for all x ∈ X and y ∈ Y, x ≥ y.

This set order is stronger than the strong set order (see Topkis 1998) which allows for non-

singleton intersections of two sets. We shall use the set order defined in Definition 1 when we

refer to monotonicity of sets.

Remark 1 Unlike in the non-transparent regime in which there is a unique equilibrium in pure

strategies, the equilibrium in the transparent regime may involve mixed strategies (especially off

the equilibrium path) and there may be multiple equilibria. The multiplicity of the equilibria

is not an issue as we fix an arbitrary equilibrium in the transparent regime and compare it

with the unique pure strategy equilibrium in the non-transparent regime. To deal with mixed

strategies, we consider sets of prices and introduce a strong notion of monotonicity of sets.

In addition, since the current period cutoff buyer type might face a random price by delaying

trade to the next period, we need to consider the expectation of this random price to study

this cutoff buyer’s incentives.

In our game, when a short-run seller faces buyer types
[
v, k̄
]
, he chooses a price p to

maximize [F (k̄)−F (ki(p))]p, where ki (p) is the cutoff buyer type in regime i. It turns out that

regardless of the properties of ki (p) , we can show that the set of optimal prices arg maxp[F (k̄)−
F (ki(p))]p is non-decreasing in k̄ in the sense of Definition 1.

Lemma 10 For any real-valued function k(p), arg maxp[F (k̄)−F (k(p))]p is non-decreasing in

k̄ in the sense of Definition 1.

Proof: Notice that the objective function has increasing differences in k̄ and p. It follows

from Topkis’s theorem that the solution set is non-decreasing in k̄ in the strong set order

(Topkis 1988). We strengthen this conclusion below. Suppose to the contrary that the ordering

in Definition 1 does not hold. That is, there exist p ∈ arg max[F (k̄) − F (k(p))]p and p′ ∈
arg max[F (k̄′)−F (k(p))]p, k̄ < k̄′ but p > p′. Then it follows from Topkis’s theorem that p and

p′ are maximizers for both objective functions:

[F (k̄)− F (k(p))]p = [F (k̄)− F (k(p′))]p′;

[F (k̄′)− F (k(p))]p = [F (k̄′)− F (k(p′))]p′.
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Subtracting the second equation from the first, we have

[F (k̄)− F (k̄′)]p = [F (k̄)− F (k̄′)]p′.

It follows immediately that p = p′, a contradiction.

Next, we establish a direct implication of the increasing hazard rate property for F . Specif-

ically, we show that a truncation of F inherits the hazard rate property from F. We present

the version that is actually used in our proof.

Lemma 11 Suppose that v < v+∆ ≤ k. Then if F has increasing hazard rate, i.e., f (v) / (1− F (v))

is non-decreasing, then (F (v + ∆)− F (v)) / (F (k)− F (v)) is non-decreasing in v.

Proof: First note that
f (v)

F (k)− F (v)

is non-decreasing in v. To see this, simply note that

f (v)

F (k)− F (v)
=

f (v)

1− F (v)
· 1− F (v)

F (k)− F (v)

=
f (v)

1− F (v)

(
1− F (k)

F (k)− F (v)
+ 1

)
,

and both terms are increasing in v. Now note that

F (v + ∆)− F (v)

F (k)− F (v)
= 1− F (k)− F (v + ∆)

F (k)− F (v)
.

Thus,

∂

∂v

(
F (v + ∆)− F (v)

F (k)− F (v)

)
=

f(v + ∆)

F (k)− F (v)
− F (k)− F (v + ∆)

(F (k)− F (v))2 f (v)

=
F (k)− F (v + ∆)

F (k)− F (v)

(
f(v + ∆)

F (k)− F (v + ∆)
− f (v)

F (k)− F (v)

)
≥ 0.

This completes the proof.

B.1.2 Preliminary equilibrium characteristics

Next we establish two intuitive but not immediate properties of equilibria in the transparent

regime. The first result establishes that for seller 1, the probability of sale decreases in his price

offer. The second establishes that a higher price in the first period leads to higher expected

continuation prices. To make these statements precise, it is necessary to introduce additional

notation.
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Notice that, under the transparent regime, the second-period price (on or off the equilibrium

path) can depend only on the first-period price, as this is the only observable history. Following

an off-equilibrium first-period price, seller 2 may play a mixed strategy. Let p̂TR2 (p) be the

expected second-period price if the first-period seller in the transparent regime chooses p. For

any price p that is accepted with a positive probability in equilibrium, there exists a unique k

that satisfies the indifference condition:

k − p = δ
(
k − p̂TR2 (p)

)
.

That is, the buyer type k is indifferent between buying at p in this period versus waiting for a

(random) price with an expectation of p̂TR2 (p) in the next period. This indifference condition

is well defined because, in equilibrium, if k is the highest type in the next period, all prices

in the support of the seller’s equilibrium strategy must induce the acceptance of k; i.e., all of

these prices are lower than k. We reformulate the indifference condition as follows for future

reference:

p = (1− δ)k + δp̂TR2 (p). (26)

Denote the unique cutoff type defined by this indifference condition by kTR1 (p),

kTR1 (p) =
p− δp̂TR2 (p)

1− δ
.

For future reference, let kNTR1 (p) be cutoff type defined by the indifference condition of the

non-transparent regime:

p = (1− δ)kNTR1 (p) + δpNTR2 ,

where pNTR2 is the unique equilibrium price in period 2 (in pure strategy).

Lemma 12 kTR1 (p) is non-decreasing in p.

Proof: Take p > p′ and suppose that kTR1 (p) < kTR1 (p′). Then, by Lemma 10,

p = (1− δ)kTR(p) + δp̂2(p) ≤ (1− δ)kTR(p′) + δp̂2(p′) = p′,

a contradiction.

The next lemma shows that in the transparent regime, a deviation by the first seller to a

higher price weakly increases the expected price in the second period.

Lemma 13 Let pTR1 be any price in the support of seller 1’s strategy. If pTR1 < p, then the

expected price in period 2 satisfies p̂TR2 (pTR1 ) ≤ p̂TR2 (p).
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Proof: Take p > pTR1 . Then Lemma 12 implies that kTR1 (pTR1 ) ≤ kTR1 (p). Moreover,

kTR1 (pTR1 ) = kTR1 (p) contradicts the optimality of pTR1 . Therefore, kTR1 (pTR1 ) < kTR1 (p). Then

the claim follows from Lemma 10.

Fudenberg, Levine, and Tirole (1985) prove that the equilibrium price in the second period

is a pure strategy, i.e., p̂TR2 (pTR1 ) = pTR2 . Our proof above does not utilize this result.

B.2 The Induction Proof of Proposition 1

Recall that T i is the last period during which trade takes place with a positive probability in

regime i on the given equilibrium path. If max{T TR, TNTR} = 1, then the prices in the two

regimes must equal v and the claim in Proposition 1 is vacuously satisfied.

Induction hypothesis: Assume that the claim in Proposition 1 is true for any k̄TR ≥ k̄NTR ≥
v and any equilibrium price paths {pi} such that max{T TR, TNTR} = 1, ..., τ , where τ ≥ 1.

Remark 2 We shall show that if k̄TR ≥ k̄NTR ≥ v is such that max{T TR, TNTR} = τ + 1 in

some equilibria of the two regimes, the prices can be ranked. We do this in three steps: (i)

we show that under the induction hypothesis, the second-period price of the non-transparent

regime is smaller than any possible second-period price of the transparent regime; (ii) then we

show that, under the induction hypothesis and using (i), the first-period price in the transparent

regime must be larger than the equilibrium price of the non-transparent regime. (iii) Finally,

we complete the proof by showing that the prices in the later periods must also be ranked as

claimed. Our discussion in the main text refers to step (ii).

We start with (i) mentioned in Remark 2.

Lemma 14 Fix any k̄TR ≥ k̄NTR ≥ v. Fix any equilibrium in the transparent regime, and let

pTR1 be any price in the support of seller 1’s equilibrium strategy. Suppose that max{T TR, TNTR} =

τ + 1. Then, p̂TR2 (pTR1 ) ≥ pNTR2 . That is, the expected second-period price in the transparent

regime following any equilibrium path history is no less than the second-period price in the

non-transparent regime.

Proof: We abuse notation slightly by writing ki1 as ki1(pi1). That is, ki1 is the equilibrium

marginal type that purchases at the given realized equilibrium price pi1 in period 1 in regime i.

Suppose to the contrary that the claim is false: p̂TR2 (pTR1 ) < pNTR2 . Then we claim that the

highest buyer type at the beginning of period 2 following pi1 must satisfy kTR1 < kNTR1 . To see

this, first note that from the second period onward, all trade takes place in at most τ periods

in the continuation equilibrium in either regime. If, however, kTR1 ≥ kNTR1 , it follows from
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the induction hypothesis (with k̄TR = kTR1 and k̄NTR = kNTR1 on the continuation game) that

p̂TR2 (pTR1 ) ≥ pNTR2 , a contradiction.

For each k ∈
[
v, k̄i

]
, define

pi1(k) := sup
{
p : ki1 (p) ≤ k

}
.

That is, pi1(k) is the highest price that seller 1 can charge so that buyer type k buys in period

1. Since pNTR1 is seller 1’s unique optimal price in the non-transparent regime, the following

must hold:

(F
(
k̄NTR

)
− F (kTR1 ))pNTR1 (kTR1 ) < (F

(
k̄NTR

)
− F (kNTR1 ))pNTR1 (kNTR1 ). (27)

The left-hand side of (27) is seller 1’s profit in regime NTR if he targets a cutoff type kTR1

with a price pNTR1 (kTR1 ); the right-hand side is seller 1’s profit by following the unique pure

strategy equilibrium: targeting equilibrium cutoff type kNTR1 with the equilibrium price pTR1 =

pNTR1 (kNTR1 ).16 By the previous claim, kTR1 < kNTR1 .

Inequality (27) can be rewritten as

F
(
k̄NTR

)
− F (kTR1 )

F
(
k̄NTR

)
− F (kNTR1 )

<
pNTR1 (kNTR1 )

pNTR1 (kTR1 )
,

and further as
F (kNTR1 )− F (kTR1 )

F
(
k̄NTR

)
− F (kNTR1 )

<
pNTR1 (kNTR1 )− pNTR1 (kTR1 )

pNTR1 (kTR1 )
. (28)

In words, (28) has the following interpretation: seller 1 in regime NTR faces a set of buyer

types
[
v, k̄i

]
; if seller 1’s targeted type increases from kTR1 to kNTR1 , the trading probability de-

creases by a percentage factor of
(
F (kNTR1 )− F (kTR1 )

)
/
(
F
(
k̄NTR

)
− F (kNTR1 )

)
, but this is ac-

companied by a larger percentage increase in price of
(
pNTR1 (kNTR1 )− pNTR1 (kTR1 )

)
/pNTR1 (kTR1 ).

Therefore, increasing the cutoff type from kTR1 to kNTR1 is desirable (recall that kNTR1 is the

equilibrium cutoff level).

We now argue that in regime TR, increasing the cutoff from kTR1 to kNTR1 strictly increases

the payoff of seller 1. This will lead to the desired contradiction. The idea is to show that in

the transparent regime, this change of cutoff types leads to a smaller percentage decrease in

trading probability—the left-hand side of (28)—but is accompanied by an even larger percentage

increase in price than in the non-transparent regime – the right-hand side of (28) .

We first compare the percentage changes in trading probability in the two regimes. Since

k̄TR ≥ k̄NTR by assumption, and kTR1 < kNTR1 by a previous claim, it is immediate that

F (kNTR1 )− F (kTR1 )

F
(
k̄TR

)
− F (kNTR1 )

≤ F (kNTR1 )− F (kTR1 )

F
(
k̄NTR

)
− F (kNTR1 )

. (29)

16To avoid introducing further notation, we slightly abuse notation.

39



We now compare the percentage changes in price in the two regimes. Note that

pTR1 (kTR1 ) = (1− δ)kTR1 + δp̂2(pTR1 )

< (1− δ)kTR1 + δpNTR2 (30)

= pNTR1 (kTR1 ),

where inequality (30) follows from the supposition that p̂2(pTR1 ) < pNTR2 .

Note also that since kTR1 < kNTR1 , it follows from Lemma 10 that pTR1 (kTR1 ) ≤ pTR1 (kNTR1 ),

and hence, by Lemma 13,

p̂TR2 (pTR1 (kTR1 )) ≤ p̂TR2 (pTR1 (kNTR1 )). (31)

Therefore,

pNTR1 (kNTR1 )− pNTR1 (kTR1 )

=
[
(1− δ)kNTR1 + δpNTR2

]
−
[
(1− δ)kTR1 + δp̂2(pTR1 )

]
= (1− δ)(kNTR1 − kTR1 )

≤ (1− δ)(kNTR1 − kTR1 ) + δ(p̂TR2 (pTR1 (kNTR1 ))− p̂TR2 (pTR1 (kTR1 ))) (32)

=
[
(1− δ)kNTR1 + δp̂TR2 (pTR1 (kNTR1 ))

]
−
[
(1− δ) kTR1 + δp̂TR2 (pTR1 (kTR1 ))

]
= pTR1 (kNTR1 )− pTR1 (kTR1 ),

where inequality (32) follows from (31) .

It then follows from (30) and (32) that

pNTR1 (kNTR1 )− pNTR1 (kTR1 )

pNTR1 (kTR1 )
<
pTR1 (kNTR1 )− pTR1 (kTR1 )

pTR1 (kTR1 )
. (33)

Combining (28), (29) , and (33) , we have

F (kNTR1 )− F (kTR1 )

F
(
k̄TR

)
− F (kNTR1 )

<
pTR1 (kNTR1 )− pTR1 (kTR1 )

pTR1 (kTR1 )
. (34)

This says that, in regime TR, increasing the cutoff from kTR1 to kNTR1 leads to a smaller per-

centage change in trading probability than in price.

Applying the same argument between (27) and (28) , we can rewrite (34) as(
F
(
k̄TR

)
− F (kTR1 )

)
pTR1 (kTR1 ) <

(
F
(
k̄TR

)
− F (kNTR1 )

)
pTR1 (kNTR1 ).

This inequality says that, in regime TR, seller 1 can be strictly better off by targeting the cutoff

type kNTR1 rather than the equilibrium cutoff type kTR1 , a contradiction.

The next lemma establishes (ii) mentioned in Remark 2. That is, it shows that the first-

period equilibrium price of the transparent regime is larger than the first-period equilibrium

price in the non-transparent regime.
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Lemma 15 Fix any k̄TR ≥ k̄NTR ≥ v. Fix any equilibrium in the transparent regime and let

pTR1 be any realized first-period equilibrium price. Let pNTR1 be the unique first-period equilibrium

of the non-transparent regime. Suppose max{T TR, TNTR} = τ + 1. Then, pTR1 ≥ pNTR1 .

Proof: For a contradiction, suppose that there exists pTR1 in the support of seller 1’s equilibrium

strategy in the transparent regime such that pTR1 < pNTR1 . Since seller 1 in the non-transparent

regime has a unique optimal strategy, we have, as in (27) ,

(F
(
k̄NTR

)
− F (kNTR1

(
pTR1

)
))pTR1 < (F

(
k̄NTR

)
− F (kNTR1

(
pNTR1

)
))pNTR1 ,

which can be rewritten as

F (kNTR1 (pNTR1 ))− F (kNTR1 (pTR1 ))

F
(
k̄NTR

)
− F (kNTR1 (pTR1 ))

<
pNTR1 − pTR1

pNTR1

. (35)

Now we compare

F (kNTR1 (pNTR1 ))− F (kNTR1 (pTR1 ))

F
(
k̄NTR

)
− F (kNTR1 (pTR1 ))

=
F (kNTR1 (pTR1 ) + ∆NTR)− F (kNTR1 (pTR1 ))

F
(
k̄NTR

)
− F (kNTR1 (pTR1 ))

to
F (kTR1 (pNTR1 ))− F (kTR1 (pTR1 ))

1− F (kTR1 (pTR1 ))
=
F (kTR1 (pTR1 ) + ∆TR)− F (kTR1 (pTR1 ))

1− F (kTR1 (pTR1 ))
,

where

∆i ≡ ki1(pNTR1 )− ki1(pTR1 ).

We make the following two claims.

Claim 1: kNTR1 (pTR1 ) ≥ kTR1 (pTR1 ).

Proof of Claim 1: If pTR1 is offered by seller 1 in regime NTR, then kNTR1 (pTR1 ) is the cutoff

buyer type; the indifference condition for kNTR1 (pTR1 ) is

pTR1 = (1− δ)kNTR1 (pTR1 ) + δpNTR2 . (36)

If pTR1 is offered by seller 1 in regime TR, then kTR1 (pTR1 ) is the cutoff buyer type; the indifference

condition for kTR1 (pTR1 ) is

pTR1 = (1− δ)kTR1 (pTR1 ) + δp̂TR2 (pTR1 ). (37)

By Lemma 14, pNTR2 ≤ p̂TR2 (pTR1 ). Taken together, equations (36) and (37) imply that kNTR1 (pTR1 ) ≥
kTR1 (pTR1 ). ‖

Claim 2: ∆NTR ≥ ∆TR.

Proof of Claim 2: The indifference condition for the cutoff type kNTR1 (pNTR1 ) in regime NTR

is given by

pNTR1 = (1− δ)kNTR1 (pNTR1 ) + δpNTR2 . (38)
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The indifference condition for the cutoff type kTR1 (pNTR1 ) in regime TR is given by

pNTR1 = (1− δ)kTR1 (pNTR1 ) + δp̂TR2 (pNTR1 ). (39)

Therefore,

kNTR1 (pNTR1 )− kNTR1 (pTR1 ) =
pNTR1 − pTR1

1− δ

≥ pNTR1 − pTR1 − (p̂TR2 (pNTR1 )− p̂TR2 (pTR1 ))

1− δ
= kTR1 (pNTR1 )− kTR1 (pTR1 ),

where the first line follows from (36) and (38) , the second line follows from Lemma 13 and the

supposition that pTR1 < pNTR1 , and the third line follows from (37) and (39) . This establishes

the observation. ‖
With these two claims, we are ready to prove the lemma. Note that

F (kNTR1 (pTR1 ) + ∆NTR)− F (kNTR1 (pTR1 ))

F
(
k̄NTR

)
− F (kNTR1 (pTR1 ))

≥ F (kNTR1 (pTR1 ) + ∆TR)− F (kNTR1 (pTR1 ))

F
(
k̄NTR

)
− F (kNTR1 (pTR1 ))

≥ F (kTR1 (pTR1 ) + ∆TR)− F (kTR1 (pTR1 ))

F
(
k̄NTR

)
− F (kTR1 (pTR1 ))

≥ F (kTR1 (pTR1 ) + ∆TR)− F (kTR1 (pTR1 ))

F
(
k̄TR

)
− F (kTR1 (pTR1 ))

,

where the first inequality follows from Claim 2, the second inequality follows from Claim 1 and

Lemma 11, and the third inequality follows from the assumption that k̄TR ≥ k̄NTR. Combining

this with (35), we get

F (kTR1 (pTR1 ) + ∆TR)− F (kTR1 (pTR1 ))

F
(
k̄TR

)
− F (kTR1 (pTR1 ))

<
pNTR1 − pTR1

pNTR1

,

which, after substituting in ∆TR, can be rewritten as(
F
(
k̄TR

)
− F (kTR1 (pNTR1 ))

)
pNTR1 > pTR1

(
F
(
k̄TR

)
− F (kTR1 (pTR1 ))

)
.

This says that, in regime TR, pNTR1 gives seller 1 a larger profit than the equilibrium price pTR1 ,

a contradiction.

We now complete the induction proof of Proposition 1. This is step (iii) mentioned in

Remark 2.

Proof of Proposition 1 We have already shown that pTR1 ≥ pNTR1 . Suppose to the contrary

that for some s ≤ τ + 1, we have pTRt ≥ pNTRt for all t < s, but pTRs < pNTRs . By the induction
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hypothesis, this is only possible if kTRs−1(pTRs−1) < kNTRs−1 (pNTRs−1 ). But then, the indifference condition

of buyer type kTRs−1(pTRs−1) in period s− 1 in regime TR is

pTRs−1 = (1− δ)kTRs−1(pTRs−1) + δpTRs ,

and the indifference condition of buyer type kNTRs−1 (pNTRs−1 ) in period s− 1 in regime NTR is

pNTRs−1 = (1− δ)kNTRs−1 (pNTRs−1 ) + δpNTRs .

Since kTRs−1(pTRs−1) < kNTRs−1 (pNTRs−1 ) and pTRs < pNTRs , we have, from the above two indifference

conditions, that pTRs−1 < pNTRs−1 , a contradiction.

C Proof of Proposition 2

Let {kit} be a realization of an equilibrium cutoff sequence in any equilibrium in regime i, with

the convention that kit = v for t > T i, where T i is the latest period in which trade takes place

with a positive probability. Define a random variable, xi, that takes values in {kit} , with a

cumulative distribution Gi defined as follows:

Gi (k) = Pr(xi ≤ k) = δτ
i(k),

where τ i(k) is the unique number that satisfies k ∈ [kiτ i(k), k
i
τ i(k)−1).

In words, the support of xi is the equilibrium cutoff in regime i. The marginal types trading

at time t or earlier in each regime have a total probability of δt−1 under the relevant random

variable.

Lemma 16 xTR second-order stochastically dominates xNTR. That is,

∀k :

∫ k

v

Pr(xTR ≤ x)dx ≤
∫ k

v

Pr(xNTR ≤ x)dx.

Proof: ∫ k

v

Pr(xTR ≤ x)dx =
∞∑

t=τTR(k)

(1− δ)δt−1(k − kTRt )

and ∫ k

v

Pr(xNTR ≤ k̃)dk̃ =
∞∑

t=τNTR(k)

(1− δ)δt−1(k − kNTRt )
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First assume that τTR(k) ≥ τNTR(k). Then,

∞∑
t=τNTR(k)

(1− δ)δt−1(k − kNTRt )−
∞∑

t=τTR(k)

(1− δ)δt−1(k − kTRt )

=
∞∑

t=τTR(k)

(1− δ)δt−1(kTRt − kNTRt ) +

τTR(k)−1∑
t=τNTR(k)

(1− δ)δt−1(k − kNTRt )

≥
∞∑

t=τTR(k)

(1− δ)δt−1(kTRt − kNTRt )

≥0,

where the first inequality is due to the fact that k ≥ kNTRt for all t ≥ τNTR(k), and the last

inequality is due to the price ranking. Now assume that τTR(k) < τNTR(k). Then,

∞∑
t=τNTR(k)

(1− δ)δt−1(k − kNTRt )−
∞∑

t=τTR(k)

(1− δ)δt−1(k − kTRt )

=
∞∑

t=τNTR(k)

(1− δ)δt−1(kTRt − kNTRt )−
τNTR(k)−1∑
t=τTR(k)

(1− δ)δt−1(k − kTRt )

≥
∞∑

t=τNTR(k)

(1− δ)δt−1(kTRt − kNTRt )−
τNTR(k)−1∑
t=τTR(k)

(1− δ)δt−1(kNTRt − kTRt )

=
∞∑

t=τTR(k)

(1− δ)δt−1(kTRt − kNTRt )

≥ 0,

where the first inequality follows because by the definition of τNTR(k) for t < τNTR(k) we have

k ≤ kNTRt , and the last inequality follows from the price ranking.

The proof of Theorem 2 immediately follows from the following lemma:

Lemma 17 If F is concave, then

∞∑
t=1

δt−1F (kTRt ) ≥
∞∑
t=1

δt−1F (kNTRt ). (40)

Proof: Notice that for the random variables defined above

Pr(xTR = kTRt ) = Pr(xNTR = kNTRt ) = δt−1 − δt = (1− δ)δt−1.

Then the left- and right-hand sides of (40) are the expectation of F (xTR)/(1 − δ) and the

expectation of F (xNTR)/(1 − δ), respectively. Then the claim follows by the second-order

stochastic dominance.
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