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ABSTRACT

Thin Film Mechanics

Ryan C. Cooper

This doctoral thesis details the methods of determining mechanical properties of two

classes of novel thin films suspended two-dimensional crystals and electron beam irra-

diated microfilms of polydimethylsiloxane (PDMS). Thin films are used in a variety of

surface coatings to alter the opto-electronic properties or increase the wear or corrosion

resistance and are ideal for micro- and nanoelectromechanical system fabrication. One

of the challenges in fabricating thin films is the introduction of strains which can arise

due to application techniques, geometrical conformation, or other spurious conditions.

Currently, inadequate models exist to model strain within thin films, making it difficult

to produce structurally robust thin films and to prevent premature failure of a coating or

device. It is thus imperative to understand and quantify thin film behavior under strain,

both to aid in the development of new materials and processing techniques, as well as to

enable the implementation of thin films into new designs.

Chapters 2-4 focus on two dimensional materials. Two dimensional materials repre-

sent the intrinsic limit of thin films–being constrained to one atomic or molecular unit

of thickness. These materials have mechanical, electrical, and optical properties ideal

for micro- and nanoelectromechanical systems with truly novel device functionality. As

such, the breadth of applications that can benefit from a treatise on two dimensional film

mechanics is reason enough for exploration. This study explores the anomylously high

strength of two dimensional materials. Furthermore, this work also aims to bridge four

main gaps in the understanding of material science: bridging the gap between ab initio

calculations and finite element analysis, bridging the gap between ab initio calculations

and experimental results, nanoscale to microscale, and microscale to mesoscale. A non-

linear elasticity model is used to determine the necessary elastic constants to define the

strain-energy density function for finite strain. Then, ab initio calculations–density fun-

ctional theory–is used to calculate the nonlinear elastic response. Chapter 2 focuses on

validating this methodology with atomic force microscope nanoindentation on molybde-



num disulfide. Chapter 3 explores the convergence criteria of three density functional

theory solvers to further verify the numerical calculations. Chapter 4 then uses this

model to investigate the role of grain boundaries on the strength of chemical vapor depo-

sited graphene. The results from these studies suggest that two dimensional films have

remarkably high strength–reaching the intrinsic limit of molecular bonds.

Chapter 5 explores the viscoelastic properties of heterogeneous polydimethylsiloxane

(PDMS) microfilms through dynamic nanoindentation. PDMS microfilms are irradiated

with an electron beam creating a 3 µm-thick film with an increased cross-link density.

The change in mechanical properties of PDMS due to thermal history and accelerator

have been explored by a variety of tests, but the effect of electron beam irradiation is still

unknown. The resulting structure is a stiff microfilm embedded in a soft rubber with some

transformational strain induced by the cross-linking volume changes. Chapter 5 employs

a combination of dynamic nanoindentation and finite element analysis to determine the

change in stiffness as a function of electron beam irradiation. The experimental results

are compared to the literature.

The results of these experimental and numerical techniques provide exciting opportu-

nities in future research. Two dimensional materials and flexible thin films are exciting

materials for novel applications with new form factors, such as flexible electronics and mi-

crofluidic devices. The results herein indicate that one can accurately model the strength

of two dimsensional materials and that these materials are robust against nanoscale defe-

cts. The results also reveal local variation of mechanical properties in PDMS microfilms.

This process allows one to design substrates that flex with varying amounts of strain on

the surface. Combining the mechanics of two dimensional materials with that of a locally

irradiated PDMS film could achieve a new class of flexible microelectromechanical syste-

ms. Large-scale growth of two dimensional materials will be structurally robust–even in

the presence of nanostructural defects–and PDMS microfilms can be irradiated to vary

strain of the electromechanical systems. These systems could be designed to investiga-

te electromechanical coupling in two dimensional films or for a substitute to traditional

silicon microdevices.
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Chapter 1

Introduction

Thin film technologies have seen rapid growth over the past century as new processe-

s and materials are developed to create smaller and lower-power devices. Micro- and

nanomelectromechanical systems (MEMS and NEMS) typically use thin films ranging

from 100 µm to less than 1 nm. Micro- and nanofabrication techniques typically employ

micro- and nanofilms to precisely define geometries, chemical, or electrical elements on

a surface–silicon or otherwise. Thin films are used in a variety of coatings to alter the

opto-electronic properties or increase the wear or corrosion resistance. These films provi-

de the opportunity for miniaturized devices, lower power consumption, high precision

manufacturing, smaller form factor, and less material use to name a few benefits.

One of the challenges in fabricating thin films is the introduction of residual strains

due to application techniques, geometrical conformation, or other spurious conditions.

These thin film stresses were first documented by Mills in 1877[67] and again by Bou-

ty in 1879 coining the term “electrostiction”[10]. Stoney then helped to quantify these

“electrostiction” stresses in 1909[100]. It is quite common for thin films to deform and

tear before accomplishing the designed task [10, 67, 100]. Even if the thin film is not a

moving or load-bearing part, the existence of residual strains and surface forces can cause

premature failures in devices. In order to mitigate these failures it is important to chara-

cterize the mechanical properties of thin films and their interaction with the substrates.

This work aims to provide a framework for analyzing thin films in a variety of nume-
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rical and experimental techniques. Two-dimensional crystals and PDMS microfilms are

explored in depth, but these methods are widely applicable to variety of novel material

characterization.

This work employs nanoindentation to investigate the mechanical response of novel

thin films, therefore I would be remiss to neglect introduction of modern nanoindentation.

A traditional hardness test uses a tip of known geometry (e.g. Knoop, Vickers, Berkovich,

etc.) and uses a known force, F to drive the tip into the surface of the sample. After the

tip is removed, one inspects the impression left by the indenter tip and measures the area,

A. The hardness, H is calculated as H = F/A. The hardness of a material can be desc-

ribed as the resistance of a material to plastic deformation. Indeed, an empirical result

of hardness measurements is H ∝ σyield and H ∝ σUTS, where σyield is the yield strength

of a material–stress beyond which the material is left with permanent deformation–and

σUTS is the ultimate tensile strength of the material–the stress beyond which there is da-

mage or failure of a material [11, 77]. Oliver and Pharr are credited with developing the

first modern nanoindenter in 1992 [74]. During loading, the material is deforming in an

elastic-plastic fashion and during unloading, the material recovers elastically. Measuring

the stiffness during unloading, S = ∂F/∂d–where F and d are force and displacement,

respectively–the modulus of the material is then determined to be E ∝ S/A. Nanoin-

dentation thus depends upon three main components, force-displacement measurement,

knowing the area of contact as a function of depth, and an accurate determination of

the initial point of contact. Once these three components are determined in a test, one

can then add a sinusoidal forcing function to measure both H and E as a function of

depth. The burgeoning field of nanoindentation has grown since its initial development

into a variety of applications, that are beyond the scope of this thesis because it has been

covered in other publications [19, 75, 109].

This work employs nanoindentation techniques to determine the mechanical properties

of novel thin film materials for use in MEMS and NEMS technologies. Nanoindentation

results rarely provide a straightforward stress-strain response of a material under loading–

the exception lying in microcolumn compression testing, which is by no means a trivial
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experimental procedure[29]. The measured force-displacement curve of materials under

nanoindentation usually results in a nonlinear response sometimes compounding both

geometric and material nonlinearities. The real benefit to nanoindentation of materials

is the ability to apply highly localized stress concentrations to test micro- and nanofilms.

Interpreting the results of nanoindentation requires some assumption about the materia-

l’s response to loading. In chapters 2-4, the 2D materials are assumed to store energy in

an nonlinear elastic manner (i.e. reversibly) until the point of brittle fracture. Chapter 5

assumes that the layers of PDMS behave in a linear viscoelastic manner (i.e. the stora-

ge of energy and loss of energy during loading are separable and proportional to strain

and strain rate, respectively). These material assumptions necessitate an analytical or

numerical model to predict the behavior of the assumed material properties under na-

noindentation. The model can then either be validated or refined to reflect experimental

measurements.

Chapter 2 investigates the nonlinear elastic properties of two dimensional molybdenum

disulfide. We derive a thermodynamically rigorous non-linear elastic constitutive equation

and then calculate the non-linear elastic response of two-dimensional MoS2 with first-

principles density functional theory (DFT) calculations. The non-linear elastic properties

are used to predict the behavior of suspended monolayer MoS2 subjected to a spherical

indenter load at finite strains in a multiple length scale finite element analysis model.

The model is validated experimentally by indenting suspended circular MoS2 membranes

with an atomic force microscope. We find that the two-dimensional Young’s modulus

and intrinsic strength of monolayer MoS2 are 130 N/m and 16.5 N/m, respectively. The

results approach Griffith’s predicted intrinsic strength limit of σint ∼ E
9
, where E is

the Young’s modulus. This study reveals the predictive power of first-principles density

functional theory, in the derivation of non-linear elastic properties of two-dimensional

MoS2. Furthermore, the study bridges three main gaps that hinder understanding of

material properties: DFT to finite element analysis (FEA), experimental results to DFT,

and the nanoscale to the microscale. In bridging these three gaps the experimental

results validate the DFT calculations and the multiscale constitutive model. This work
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was published in Physical Review B in January 2013.

Chapter 3 thoroughly compares density functional theory calculations across three

solvers to verify the numerical work in chapter 2. Li’s 2012 paper[59], "Ideal strength

and phonon instability in single-layer MoS2", presents density functional theory (DFT)

results of stress as a function of different strain states. The work of Cooper et al.[13],

"Nonlinear elastic behavior of two-dimensional molybdenum disulfide", performs the same

DFT calculations as part of an investigation into the nonlinear elastic properties of MoS2.

Some of the DFT results of Li are substantially different from our recently published

work[13]. While both papers agree on states of equibiaxial stress, there is substantial

disagreement on states of uniaxial tensile stress. In this comment we show that our DFT

computations are properly executed and consistent across three different DFT codes,

including the one used by Li[59]. This work is currently under review by Physical Review

B.

Chapter 4 extends the numerical work of chapter 2 to determine the strength of po-

lycrystalline graphene films created through chemical vapor deposition. Pristine graphene

is the strongest material ever measured. However, large-area graphene films produced by

chemical-vapor-deposition (CVD) are polycrystalline and thus contain grain boundaries

that can potentially weaken the material. We combine structural characterization by

transmission-electron-microscopy (TEM) with nanoindentation to study the mechanical

properties of CVD-graphene films with different grain sizes. We show that the elastic

stiffness of CVD-graphene is identical to that of pristine graphene if postprocessing steps

avoid damage or rippling. Its strength is only slightly reduced despite the existence of

grain boundaries. Indentation tests directly on grain boundaries confirm that they are

almost as strong as pristine. Graphene films consisting entirely of well-stitched grain

boundaries can retain ultra-high strength critical for a large variety of applications such

as flexible electronics and strengthening components. This work was published in Science

in May 2013.

The final study of this thesis in chapter 5 employs nanoindentation and finite element

analysis to investigate the viscoelastic properties of polydimethylsiloxane microfilms su-
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bject to electron beam irradiation. Polydimethylsiloxane (PDMS) is a common substrate

for microfluidic devices and for biological studies. The mechanical properties of PDMS

can be tailored to suit a variety of needs by altering the amount of accelerating agent

during crosslinking, changing the thermal history of curing the polymer, or irradiation to

induce cross-linking. The effects of thermal history and accelerator on mechanical proper-

ties has been investigated by a variety of tests, but the effects of radiation on mechanical

properties are still unknown. Herein, we describe a method of nanoindentation and finite

element model-based analysis to determine the viscoelastic properties of microfilms of

PDMS exposed to electron beam irradiation. This work is currently under review in the

Journal of Materials Research.

The nonlinear elastic model used in chapters 2-4 employs ab initio calculations so

it does not include any empirical parameters to tune to experimental measurements.

The nanoindentation results serve as a means of validating the numerical approximations

of density functional theory. The nonlinear elasticity theory depends only upon the

existence of a continuous strain-energy density function. Molecular dynamic simulations

would also provide a means of reproducing ab initio strain-energy density predictions,

but these simulations are time-dependent and limited to time steps of ≈1 femtosecond

[104]. By employing standard finite element analysis solutions, it is possible to calculate

quasi-static or time-dependent mechanical response of micromechanical structures that

would require millions to billions of atoms in a standard molecular dynamics simulation.

The simulations performed herein of 1 µm-graphene membranes would would consist of

approximately 26 million carbon atoms and a time scale on the order of 1 second. A

numerical calculation involving this many bodies would be computationally intense even

for some of the world’s largest supercomputers. These numerical calculations allow one

to predict longer time scale experiments and bulk deformation response using parameters

derived from first-principles results.

Chapter 5 provides a framework for determining mechanical properties of inhomo-

genous microfilms by fitting finite element analysis results to experimental data points.

Unlike chapters 2-5, the mechanical properties used in the finite element analysis are
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empirically determined. In this respect, the analysis and experiment lend insight into

bounds on the mechanical properties based upon experimental observations, as opposed

to validation of a theory based upon experimental results in chapters 2-4.

Inhomogeneous microfilms are common in biological tissues and are becoming more

widespread in NEMS and MEMS devices as flexible electronics become more widespread

[87, 118]. It is imperitive to develop experimental methods for determining mechanical

properties and strain states for these inhomogeneous microfilms.
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Chapter 2

Investigation of Nonlinear Elastic

Properties of MoS2

2.1 Introduction

Two-dimensional materials have recently become an area of increased research focus, de-

spite their long being considered thermodynamically unstable [78]. The experimental

significance of 2D materials was first revealed in 2004 when the electrical properties of

graphite crystals limited to only a few atoms thick were probed [71]. These 2D crystals

were obtained via the clever and simple mechanical exfoliation method. Since this groun-

dbreaking study, graphene and other 2D materials have been studied in areas of basic

research such as electronics, optics and mechanics [22, 40, 58, 62, 70, 72].

Two-dimensional materials serve as outstanding testbeds for fundamental studies of

mechanical properties under extreme strains [58]. They can be fabricated in a pristine

condition essentially free of defects which enables them to achieve extreme tensile strain

states prior to fracture or void nucleation. The mechanical flexibility of 2D materials

allows them to conform to a surface and adhere to it via van der Waals interactions, thus

simplifying the boundary conditions on a 2D material during mechanical characterization

[58]. In addition, the relatively small number of atoms per unit cell in known 2D mate-

rials offer the opportunity to use first-principles and molecular dynamics computational
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methods [111]. Finally, the 2D geometry restricts the possible deformation states which

renders higher-order non-linear continuum elasticity formulations sufficiently tractable to

combine with the atomistic methods to formulate multi-length scale models that can be

readily incorporated into standard finite element analysis formulations [111, 113]. Most

of these previous studies concentrated on monatomically-thin graphene, which is a single

close-packed atomic plane of a single component (i.e. carbon), but other more general

2D materials can be produced by mechanical exfoliation [5, 68, 72, 85, 94, 95].

In the current study, we extend these methods to to study 2D molybdenum disulfide,

which is a multi-component and multi-atomic layer system. Molybdenum disulfide is

a layered transition metal dichalcogenide (LTMD) composed of layers of molybdenum

atoms sandwiched between sulfur atoms, with each molybdenum atom ionically bonded

to six sulfur atom as seen in Figure 2.1. Multiple MoS2 layers are held together in the

bulk material through van der Waals interactions, so the MoS2 monolayers are easily

cleaved.
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Figure 2.1: Atomic structure of monolayer MoS2. The green and yellow spheres represent
Mo and S atoms, respectively: (A) top view of the atomic structure; (B) side view of
MoS2 to highlight the out-of-plane sulfur atoms; and, (C) oblique view of 4x4 unit cells.

Molybdenum disulfide has been used as a solid lubricant for centuries and was stu-

died as a material for detecting and rectifying radio signals in the 1950s [45]. Bulk MoS2

has a hardness of 1–1.5 on the Mohs scale and exhibits excellent lubrication in high

vacuum or under atmospheric conditions [45]. A study on bundles of MoS2 nanotubes

reveals a Young’s modulus of 120 GPa with an inter-tube shear modulus of 160±30 MPa

[49]. Bulk MoS2 is an indirect gap semiconductor with a band gap of 1.2 eV, but by

reducing the number of layers one can modify the band structure and create a direct

gap semiconductor [43, 56, 57, 62, 85, 98]. Recently, monolayers of MoS2 have been

investigated as materials for microelectromechanical systems (MEMS) and nanoelectro-

mechanical systems (NEMS) devices [49, 62, 72, 85]. The low power dissipation of MoS2

direct gap semiconductors and its low cost make it an ideal candidate for flexible electro-

nic applications. Studies have investigated the crystal structure and electrical properties

9



[42, 43, 45, 57, 62, 70, 72, 85, 94, 98]. Finally, the elastic properties of 2D MoS2 have been

investigated to characterize the Young’s modulus and breaking strength [5]. However a

more complete understanding of the mechanical properties of 2D MoS2 is necessary to be

able to predict its response upon incorporation into MEMS and NEMS devices.

The thickness of a 2D material is indeterminate because its out-of-plane electron

configuration may change as a function of deformation state. Hence, stress, σ, and

elastic moduli such as Young’s modulus, E, are defined intrinsically as force per length

rather than force per area. For purposes of comparison to 3D materials, the derived 3D

quantities of stress and elastic moduli of a 2D material can be determined as σ3D = σ/t

and E3D = E/t, respectively, where t is an assumed thickness of the 2D materials. Herein

we assume t = 0.615 nm as a representative thickness of 2D MoS2, which is the interlayer

spacing between layers of MoS2 in the bulk material)[45]. Unless explicitly expressed

otherwise with a superscript 3D, we assume all stress and moduli are 2D quantities.

The overall goal of this study is to determine the non-linear elastic properties of single

layer MoS2. First we derive a thermodynamically rigorous continuum elastic constitutive

model of the non-linear elastic response of MoS2 via a Taylor series expansion of the elastic

strain energy density potential. We then use density functional theory (DFT) to calculate

the elastic response of MoS2 for several in-plane deformation states of uniaxial strain as

well as biaxial strain. The magnitude of the applied strains ranges from infinitesimal

to finite deformations beyond that corresponding to the intrinsic (i.e. maximum) stress.

All components of the stiffness tensors of the higher-order elastic constitutive model are

determined by fitting the continuum model to the stress vs. strain results of the uniaxial

strain deformation states studied by DFT calculations. We use the crystal symmetry of

2D MoS2 to determine the number of independent elastic constants for the continuum

model. To verify the internal consistency of the higher order continuum theory, we

calculate the elastic response with DFT of MoS2 under a condition of uniaxial stress and

demonstrate that the continuum model—fit only to the uniaxial strain DFT results—

accurately predicts the DFT results in uniaxial stress. To validate the model, we use

AFM nanoindentation to determine the force-displacement response as well as the force

10



required to rupture a monolayer MoS2 film suspended over open circular holes. The results

of a detailed finite element analysis (FEA) of the indentation experiments using the non-

linear elastic continuum formulation are consistent with the experimental measurements

to within experimental uncertainty, thus validating the model.

2.2 Non-linear Elastic Constitutive Model

Figure 2.2 shows the undeformed unit cell of monolayer MoS2 described by two lattice

vectors ai (i=1,2). Unit vectors in the x1- and x2-directions relative to Figure 2.2 are

denoted as ê1 and ê2, respectively, and a1 = a1ê1 and a2 = a2(
1
2
ê1 +

√
3
2
ê2). As will

be discussed below, the magnitudes of the lattice vectors are a1 = a2 = 3.16Å in the

undeformed reference configuration.

A macroscopic homogeneous in-plane deformation of the 2D crystal results in deforma-

tion of the lattice vectors a′
i = Fai where F is the deformation gradient tensor and a′

i are

the deformed lattice vectors. Writing the Lagrangian strain tensor as η = 1
2

(
FTF− I

)
where I is the identity tensor, the strain energy density potential has the functional fo-

rm Φ = Φ(η), which quantifies the elastic strain energy per unit reference area of the

undeformed MoS2 [111].

x
1

x
2

a
2

a
1

S S

S SS

Mo Mo Mo

Mo Mo MoMo

Mo Mo MoMo

Figure 2.2: Unit cell of monolayer MoS2. The axes are labeled by the black arrows and
the unit cell is contained in the dashed red box. Atoms of S lie both above and below
plane of the Mo atoms.

The elastic strain energy density potential can be expressed as a Taylor series expan-
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sion in powers of strain as

(2.1)
Φ =

1

2!
Cijklηijηkl +

1

3!
Cijklmnηijηklηmn +

1

4!
Cijklmnopηijηklηmnηop

+
1

5!
Cijklmnopqrηijηklηmnηopηqr + ...

where Cijkl, Cijklmn, Cijklmnop, and Cijklmnopqr are the second-, third-, fourth- and fifth-

order stiffness tensors, respectively [111]; the summation convention is adopted for repea-

ting indices and summation for lower case indices runs from 1 to 3. The quadratic term

in strain suffices to describe a linear elastic material, so the higher-order terms are nece-

ssary to describe the non-linear response. The second Piola-Kirchhoff stress tensor, Σij,

defined in terms of its work conjugate Lagrangian strain is calculated by taking ∂Φ/∂ηij

to obtain

Σij = Cijklηkl +
1

2!
Cijklmnηklηmn +

1

3!
Cijklmnopηklηmnηop +

1

4!
Cijklmnopqrηklηmnηopηqr + ....

(2.2)

Upon adopting the Voigt notation [73], the stress tensor can be expressed as

(2.3)ΣI = CIJηJ +
1

2!
CIJKηJηK +

1

3!
CIJKLηJηKηL +

1

4!
CIJKLMηJηKηLηM + ...

where the lower case indices transform to Voigt indices in upper case letters as 11→1,

22→2, 33→3, 23→4, 13→5, and 12→6; the summation convention still holds and summa-

tion of upper case indices ranges from 1 to 6. The components of CIJ are the second-order

elastic constants (SOEC), those of CIJK are the third-order elastic constants (TOEC),

those of CIJKL are the fourth-order elastic constants (FOEC), and those of CIJKLM are

the fifth-order elastic constants (FFOEC).

A general anisotropic elastic solid has 21 independent components in the SOEC, 56

in the TOEC, 126 in the FOEC and 252 in the FFOEC. The deformation state of a 2D

material can be approximated as being solely an in-plane deformation state when the

contribution of bending deformation to the strain energy density is negligible compared

to that of in-plane deformation. This implies that only in-plane components (i.e. those

with indices that include only I, J=1, 2 and 6 or i, j=1 and 2) of the stiffness tensors

may be non-zero, and all out-of-plane components of the stiffness tensors are identically
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zero. An undeformed 2D MoS2 monolayer has point group D3h which has a hexagonal

crystal structure [68, 120]. Previous studies have shown that in-plane deformation states

for this point group have two independents components of the SOEC, three independent

components of the TOEC tensor, and four independent components of the FOEC tensor

[21, 55]. We calculate that the FFOEC tensor has five independent non-zero components

by imposing the symmetry elements of monolayer MoS2 symmetry on the tensor based

upon
(2.4)Cabcdefghij = QkaQlbQmcQndQoeCklmnopqrstQpfQqgQrhQsiQtj

where Q refers to the transformation matrix associated with a symmetry element. Thus,

monolayer MoS2 requires a total of only 14 independent components of the stiffness

tensors to describe finite in-plane deformations. The list of elastic constants is given in

Table 2.1.

For general infinitesimal in-plane deformations, the elastic response is isotropic and

linear with Young’s modulus E = (C2
11 − C2

12) /C11 and Poisson’s ratio ν = C12/C11 and

the full linear-elastic response is


Σ1

Σ2

Σ6

 =


C11 C12 0

C12 C11 0

0 0 C11−C12

2



η1

η2

η6

 . (2.5)

For general finite in-plane deformations, the elastic response is anisotropic and non-

linear and the in-plane components of the second Piola-Kirchhoff tensor, Σ1, Σ2, and Σ6,

are given by
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(2.6)

Σ1 = C11η1 + C12η2 +
1

2
C111η

2
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2
C111 +

1

4
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4
C222
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η26
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6
C1111η
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C11111 +

1

8
C11112 −

1

6
C11122 −

1

40
C22222

)
η1η2η

2
6

+
1

24

(
1

8
C11122 −

3

8
C11112 −

1

80
C11111 +

3

16
C12222 +

3

40
C22222

)
η46

+
1

4

(
1

2
C11111 +

3

2
C11112 + C11122 −

3

2
C12222 −

1

2
C22222

)
η21η

2
2

− 1

4

(
1

8
C12222 −

9

40
C11111 +

1

10
C22222

)
η22η

2
6

(2.7)
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Σ6 =
1

2
(C11 − C12) η6 +

1

4
(2C111 − C112 − C222) η2η6 −

1

4
(2C111 + C112 − 3C222) η1η6

+
1

12
(C1111 + 2C1112 − 3C1122) η1η2η6 −

1

48
(5C1111 + 4C1112 − 9C2222) η

2
1η6

+
1

48
(7C1111 − 4C1112 − 3C2222) η

2
2η6 −

1

96
(C1111 + 8C1112 − 6C1122 − 3C2222) η

3
6

− 1

240
(4C11111 + 5C11112 − 9C22222) η

3
1η6 +

1

24
(9C11111 − 5C12222 − 4C22222) η

3
2η6

+
1

240
(8C11111 + 15C11112 − 20C11122 − 3C22222) η1η

2
2η6

− 1

480
(C11111 + 30C11112 − 10C11122 − 15C12222 − 6C22222) η2η

3
6

+
1

480
(11C11111 + 30C11112 + 10C11122 − 45C12222 − 6C22222) η1η

3
6

− 1

240
(13C11111 + 30C11112 + 20C11122 − 45C12222 − 18C22222) η

2
1η2η6

(2.8)

where η1, η2, and η6 are the in-plane components of the Lagrangian strain tensor defined

relative to the orientation of monolayer MoS2 shown in Figure 2.2.

It is worth noting at this point that these elastic constants are not parameters used to

describe an empirically observed relation between stress and strain. These constants are

intrinsic elastic constants that describe the elastic energy stored in a material subjected

to finite elastic deformation. All of the atoms maintain nearest neighbors resulting in an

affine deformation even under high stress. The constants derived here are the minimum

number of constants to describe the strain-energy density function for a two dimensional

material with hexagonal group symmetry. The higher order constants have more obtuse

interpretations than small strain elastic constants such as Young’s modulus and Poisson

ratio, but in principal the elastic constants can be directly measured through experimen-

tal methods. In contrast to other empirical models, the choice of elastic constants is

determined through an analytic Taylor series expansion of the strain-energy density fun-

ction and group theory. The stress-strain relations herein depend only upon the existence

of a continuous potential during macroscopic homogeneous deformation of a crystal unit

cell.

We now consider several special deformation states that simplify the expressions for

the general non-linear in-plane elastic response which we will now refer to being in uniaxial

strain. The elastic response of monolayer MoS2 is calculated for these special states. With
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reference to Figure 2.2, a state of uniaxial strain in the x1-direction is characterized by

η1 ≥ 0 and η2 = η6 = 0. The corresponding elastic response gives Σ1 ≥ 0, Σ2 ≥ 0, where

Σ2 is the lateral constraint stress for this configuration, which is the stress required to

maintain zero strain in the lateral direction; symmetry dictates that Σ6 = 0. Similarly,

we consider a state of uniaxial strain in the x2-direction. Finally, we consider a state of

equibiaxial strain for which η1 = η2 = η ≥ 0 and η6 = 0 which results in Σ1 = Σ2 ≥ 0 and

Σ6 = 0. The deformation gradient tensors for the three deformation states, respectively,

are

F1 =

 λ1 0

0 1

 , F2 =

 1 0

0 λ2

 ,

Fbi =

 λbi 0

0 λbi


(2.9)

where the stretch ratio, λ1, is the ratio of the deformed length of the unit cell in the

x1-direction to the reference length, λ2 is defined analogously for deformation in the

x2-direction, and for the equibiaxial case λbi = λ1 = λ2.

For uniaxial strain in the x1-direction the general stress-strain response simplifies to

(2.10)Σ1 = C11η1 +
1

2
C111η

2
1 +

1

6
C1111η

3
1 +

1

24
C11111η

4
1

(2.11)Σ2 = C12η1 +
1

2
C112η

2
1 +

1

6
C1112η

3
1 +

1

24
C11112η

4
1

(2.12)Σ6 = 0 .

For uniaxial strain in the x2-direction there results

(2.13)Σ1 =C12η2+
1

2
(C111−C222+C112) η

2
2+

1

12
(C1111+2C1112−C2222) η

3
2+

1

24
C12222η

4
2

(2.14)Σ2 = C11η2 +
1

2
C222η

2
2 +

1

6
C2222η

3
2 +

1

24
C22222η

4
2

(2.15)Σ6 = 0 .

For the biaxial strain state there results

16



Σ1 = Σ2

= (C11+C12) η+
1

2
(2C111−C222+3C112) η

2+
1

6

(
3

2
C1111+4C1112−

1

2
C2222+3C1122

)
η3

+
1

24
(3C11111 + 10C11112 − 5C12222 + 10C11122 − 2C22222) η

4

(2.16)

(2.17)Σ6 = 0 .

It is significant to note that all fourteen elastic constants appear in the stress vs.

strain constitutive relationships for the three special cases collectively. Thus, the values

of the elastic constants can be determined by fitting to the stress vs. strain response as

calculated from first principles calculations.

In addition, we consider the elastic behavior of MoS2 under conditions of uniaxial

stress as a means to verify the internal consistency of the higher-order continuum theory.

Uniaxial stress in the x1-direction is characterized by Σ1 ≥ 0, Σ2 = 0 with η1 ≥ 0

and η2 ≤ 0 due to Poisson contraction. Uniaxial stress in the x2-direction is defined

analagously.

2.3 First Principles Calculations of Elastic Response

We use density functional theory (DFT) to calculate the elastic response for the three

special deformation states. The DFT calculations are performed with the VASP software

package [50–53, 80] using the projector augmented wave method and both the local

density approximation (LDA)[82] and the generalized gradient approximation (GGA)[80,

81] at 0 K.

A unit cell of one molybdenum atom and two sulfur atoms is employed assuming a

separation distance of 61.5 Åbetween MoS2 monolayers. The k-point grid is 13× 13× 3

with a cutoff energy of 500 eV. The undeformed equilibrium state is determined through

an energy and stress minimization as a function of the in-plane lattice vector and out-of-

plane sulfur atom heights. The equilibrium configuration is determined to be a spacing

of 3.122 Åbetween molybdenum atoms and an out-of-plane distance of 1.557 Åbetween a

plane of sulfur atoms and the intermediate plane of molybdenum atoms. These results are
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consistent with experimentally determined lattice spacing of 3.16 Åbetween Mo atoms and

1.59 Åout-of-plane height for S atoms in a bulk MoS2 crystal [8]. The stress components

computed in VASP are in terms of true stress, or Cauchy stress, σ, in units of force

per area on the cross-sectionl edges of the unit cell. For a 2D material it is appropriate

to express the stress in terms of force per length of the edge; this is obtained from the

product of the the stress components calculated from VASP and the interlayer spacing

of 61.5 Å.

The relation between the true stress and second Piola-Kirchhoff (P-K) stress Σ is

given as

Σ = JF−1σ
(
F−1

)T (2.18)

where J is the determinant of the deformation gradient tensor F [15]. In this work, we

did not explore the possibility of finite wave vector instabilities which might be relevant

at large strains. For example, in graphene a phonon instability of the K-mode occurs for

sufficiently large equibiaxial strain [63].

To calculate the elastic response of a given deformation state, the unit cell is deter-

mined according to the deformed lattice vectors a′
i which are functions of the applied F.

The molybdenum and sulfur atoms are relaxed in the strained unit cell into the minimum

potential energy configuration both in and out of the plane. A series of simulations is

performed for both uniaxial strain cases as well as the equibiaxial strain case, begin-

ning with strains within the linear-elastic regime and finishing with strains beyond that

corresponding to the intrinsic (i.e. maximum) stress.

The results of the VASP simulations are shown in Figure 2.3a where the second Piola-

Kirchhoff stress is plotted as a function of the Lagrangian strain and in Figure 2.3b the

true stress is plotted as a function of the true strain. True (i.e. Cauchy) stress is calculated

based on equation 2.18 and the true strain is given as ε = ln (λ). The calculated DFT

results are highlighted as symbols. The red symbols represent calculations for uniaxial

strain in the x1-direction, with the + and × symbols indicating the lateral constraint

and normal stresses as a function of prescribed strain η, respectively. The green symbols

represent calculations for uniaxial strain in the x2-direction, with the � and � symbols
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indicating the lateral constraint and normal stresses, respectively. The blue ⊗ symbols

represent the equibiaxial stress (Σ1 = Σ2) in the x1- and x2-directions.

The values of the fourteen independent components of the stiffness tensors are de-

termined by least-squares curve fitting of equations 2.10–2.17 to the corresponding DFT

calculations. The results, shown as solid colored lines in Figure 2.3, demonstrate that

the higher order continuum formulation accurately describes the calculated stress-strain

response up to approximately 0.30 Lagrangian strain or 0.25 true strain. The resulting

fourteen independent elastic constants for monolayer MoS2 are tabulated in Table 2.2.

For the linear-elastic regime at small strains, the Young’s modulus is E2D=129 N/m and

the in-plane Poisson’s ratio is ν = 0.29.

A fifth order expansion of the strain energy density function captures the anisotropy

of 2D MoS2 and the elastic instability used to predict failure of the material. The app-

ropriateness of the fifth order fit is verified by comparing the root-mean-square (RMS)

deviation defined as
√

SSE/n, where SSE is the sum of squares error and n is the nu-

mber of data points used in the fit. Comparing the RMS deviation for the 234 data points

of stress and strain, a third order elastic constant expansion results in a RMS deviation

of 1.404 N/m, a fourth order approximation results in 0.462 N/m, and the fifth order

approximation results in a 0.145 N/m RMS deviation. The third and fourth order app-

roximations cannot capture both the linear response and the peak stress at finite strains

in the same fit. The third and fourth order fits underpredict the Young’s modulus as

65 N/m and 104 N/m, respectively. The fifth order approximation captures the relevant

behavior of 2D MoS2 under tension including the linear-elastic response and the elastic

instability used to predict fracture.

It is interesting to note that the anisotropy of MoS2 is very prominent in Figure 2.3a

comparing the resulting second Piola-Kirchhoff stresses as a result of uniaxial strains in

the x1- and x2-directions. Along the x1-direction, as defined in Figure 2.1, the second

Piola-Kirchhoff lateral constraint stress becomes higher than the normal stress. The true

stress measure, in Figure 2.3b, reveals that this phenomenon is a result of the reference

area choice. In a system composed of one type of atom, such as graphene, this behavior
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has not been observed [111].
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Figure 2.3: 2.3a is the least squares curve fit to DFT data using the LDA functional
of three prescribed deformation states. Quantities are plotted in Second Piola-Kirchhoff
stress and Lagrangian strain. Symbols depict calculated data and lines indicate least
squares fits. 2.3b is the same data converted to true stress and true strain.

SOEC (N/m) TOEC (N/m) FOEC (N/m) FFOEC (N/m)
C11 = 140 C111 = -1300 C1111 = 8770 C11111 = -29830
C12 = 40 C112 = -1090 C1112 = 440 C11112 = -4340

C222 = -30 C1122 = -230 C11122 = -230
C2222 = 5870 C12222 = -8450

C22222 = -18930

Table 2.2: Non-zero independent elastic constants fit to the LDA functional DFT data
of monolayer MoS2 relating the second Piola-Kirchhoff stress tensor to the Lagrangian
strain deformation state. The SOEC, TOEC, FOEC and FFOEC, second-, third-, fourth-
and fifth-order elastic constants, respectively are tabulated.

The calculations are repeated using a projector augmented wave with a generalized

gradient approximation (GGA), the Perdew-Burke-Ernzerhof (PBE), functional in VASP.

The unit cell remains one molybdenum atom and two sulfur atoms and a separation

distance of 61.5 Å between MoS2 monolayers. The k-point grid remains 13× 13× 3 with

a cutoff energy of 500 eV. The undeformed equilibrium state is determined through an
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energy and stress minimization as a function of the molybdenum atom spacing and out-

of-plane sulfur atom heights. The equilibrium configuration is determined to be a spacing

of 3.182 Å between molybdenum atoms and an out-of-plane distance of 1.563 Å between

a plane of sulfur atoms and the intermediate plane of molybdenum atoms for the PBE

functional. The resulting higher order elastic constants are shown in Table 2.3 and the

graphs are shown in Figure 2.4.
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Figure 2.4: 2.4a is the least squares curve fit to DFT data using the PBE functional
of three prescribed deformation states. Quantities are plotted in Second Piola-Kirchhoff
stress and Lagrangian strain. Symbols depict calculated data and lines indicate least
squares fits. 2.4b is the same data converted to true stress and true strain.

SOEC (N/m) TOEC (N/m) FOEC (N/m) FFOEC (N/m)
C11 = 130 C111 = -1200 C1111 = 7800 C11111 = -26460
C12 = 40 C112 = -1010 C1112 = 580 C11112 = -4200

C222 = -60 C1122 = -50 C11122 = -800
C2222 = 5760 C12222 = -6880

C22222 = -21300

Table 2.3: Non-zero independent elastic constants fit to the PBE functional DFT data
of monolayer MoS2 relating the second Piola-Kirchhoff stress tensor to the Lagrangian
strain deformation state. The SOEC, TOEC, FOEC and FFOEC, second-, third-, fourth-
and fifth-order elastic constants, respectively are tabulated.
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The PBE functional results fit to the higher order nonlinear elastic constants predicts

a Young’s modulus of E = 118 N/m and a Poisson’s ratio of ν = 0.31. At strains above

20 % the difference in stress measures for LDA and PBE is approximately 15 %. The

calculations with LDA predict an elastic instability at η = 23.4% and Σ = 27N/m, while

the PBE calculations predict an elastic instability as η = 23.2 % and Σ = 24 N/m.

We verify in two ways that our calculations and constitutive model are correct and in-

ternally self-consistent. First we reproduce our VASP calculations of the elastic response

under all five deformation states considered herein with both the Abinit and Quantu-

m Espresso DFT software packages. The results from all three software packages are

quantitively consistent with each other for the PBE approximation, thus verifying the

DFT calculations. Second we demonstrate that the DFT calculations and the continuu-

m constitutive model are internally self consistent, individually for the LDA and PBE

approximations. To do so, we first calculated the elastic response for the equibiaxial and

the two uniaxial strain deformation states using DFT. Then we determined the fourteen

independent elastic constants of the continuum fifth order elastic constitutive description

by fitting to the DFT results of the equibiaxial and the two uniaxial strain deformation

states. We then predicted the elastic response under the two states of uniaxial stress using

the continuum model. We then calculated the elastic response for the two states of unia-

xial stress via DFT. The continuum predictions are compared to the DFT calculations

in Figures 2.5a for the LDA approximation and 2.5b for the PBE approximation. There

is a very good agreement between the predictions and the calculations, thus verifying

the internal consistency of the multiscale atomistic (DFT) and continuum constitutive

model. It bears emphasis that the fourteen elastic constants are determined by fitting to

DFT results from only the equibiaxial and uniaxial strain states for each approximation;

the DFT results for the two uniaxial stress deformation states were not used in the curve

fitting process.

For completeness, we now discuss the details of the DFT calculation under uniaxial

stress conditions. The uniaxial stress DFT calculations are achieved by relaxing the ê2-

components of the a1 and a2 lattice vectors for uniaxial stress in the x1-direction. The
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uniaxial stress state in the x2-direction is achieved analogously by relaxation of the ê1-

components. Li[59] performs uniaxial stress calculations that are not consistent with our

results. However, our results have been verified using three ab initio codes (ie. VASP,

Abinit, and Quantum Espresso), and a direct comparison to Li’s results will be made in

a forthcoming publication [14].
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Figure 2.5: Plotted above are the uniaxial stress calculations based upon DFT with a
LDA functional 2.5a and a PBE functional 2.5b. The + and × data points represent
the data calculated for a uniaxial stress state in the x1- and x2-directions, respectively.
The red and black lines represent the least squares curve fit prediction of the stress-strain
curve for uniaxial stress in the x1- and x2-directions, respectively. The data is plotted in
true stress and true strain.

2.4 Experimental Methods

Following the approach and procedures of Lee et al. [58], the specimens are fabricated on

a silicon substrate with a 300 nm epilayer of SiO2. We introduce an array of circular wells

with 500 nm diameter and 500 nm depth, via reactive ion etching, into the substrate fo-

llowing patterning via electron beam lithography. Then, MoS2 is mechanically exfoliated

onto the substrate. The individual flakes of MoS2, with sizes up to 4 µm by 8 µm, are
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randomly distributed atop the substrate and are large enough to cover several adjacent

wells.

The nanoindentation experiments performed in this study offer several advantages

over mechanical tests performed on nanotube structures. First, the sample geometry is

precisely defined and the 2D structure is less sensitive to material or substrate defects.

The circular freestanding monolayers of MoS2 are effectively clamped around the peri-

phery via van der Waals interactions with the substrate, which serves to constrain both

radial and out-of-plane displacements. Thus the boundary conditions are well-defined

and repeatable, whereas it is much more difficult to obtain such boundary conditions

when loading nanotube configurations.
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Figure 2.6: Suspended MoS2 on SiO2 substrate imaged via optical microscopy (A) and
AFM (B) and (C). The arrow in image (A) points to a flake of monolayer MoS2; (B)
shows the AFM image of the area highlighted in red in (A); the scale bars in (A), (B),
and (C) are 10 µm, 5 µm, and 100 nm, respectively; and, (D) shows the experimental
set-up graphically.

We use optical microstopy to identify candidate monolayer MoS2 sheets suspended

above wells, as seen in Figure 2.6A. Then an AFM (XE-100, Park Systems) in non-contact

mode confirms the monolayer thickness to be 0.615 nm [3]. Suspended monolayers are
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imaged in non-contact mode to determine the center of the membrane. The monolayer

films are then indented at their centers with the AFM to determine the force-displacement

response as well as the breaking force.

The AFM tip is a diamond cube corner on a silicon cantilever fabricated by MicroStar

Technologies; standard silicon AFM tips are not used because the load levels can cause

fracture of the tip prior to rupture of the monolayer MoS2. The tip radius, measured

before and after indentation using a transmission electron microscope (TEM), is 26 nm.

The AFM cantilever is calibrated against a reference cantilever for accurate determination

of its stiffness [105]. Indentations are performed on twelve suspended membranes from one

flake of MoS2 that can be seen in Figure 2.6. Each monolayer MoS2 membrane is loaded

and unloaded several times at a prescribed AFM tip displacement rate of 1.25 µm/s.

Eight of the membranes exhibit significant hysteresis of the force-displacement response,

indicating that the van der Waals interactions are not sufficient to preclude slipping at

the periphery of the suspended membranes; data from these membranes are not included

in subsequent analysis. Four of the membranes exhibit negligible hysteresis. The depth

of the indent load-unload cycles is increased in 30–50 nm increments until rupture of the

membrane is recorded, characterized by the tip plunging through the membrane and a

sudden diminution of the force. A typical set of data in Figure 2.7 show two loading-

unloading curves in blue and green, demonstrating the negligible hysteresis. Subsequently

in the red curve, the membrane is loaded to rupture shown by the × symbol. The average

breaking force of the four membranes is 1500 nN with a standard deviation of 300 nN.
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Figure 2.7: Typical loading-unloading curve for a monolayer MoS2 membrane. The blue
and green curves include both the loading and unloading data points. There is no evidence
of hysteresis. The red curve ends in abrupt fracture of the membrane, marked by the ×
symbol.

The force-displacement data are analyzed to characterize the elastic response of mo-

nolayer MoS2. A semi-empirical formula approximates the relationship between force and

displacement for an axisymmetric membrane under a central point load as [58]

F = σ0 (πa)

(
δ

a

)
+ E

(
q3a

)(δ

a

)3

(2.19)

where F is the applied force on the AFM tip, δ is the load point deflection, a is the

membrane radius, E and σ0 are the 2D Young’s modulus and prestress in the film,

respectively, and q = (1.05− 0.15ν − 0.16ν2), and ν = 0.29 the Poisson’s ratio. The

prestress and Young’s modulus are determined by fitting Equation 88 to the experimental

force-displacement data. The resulting measure of stiffness is valid only as an estimate of

the in-plane Young’s modulus; it does not offer any insight into 3D mechanical behaviors

such as bending stiffness. In this study, 26 loading curves yield an average value of Ē =

120 N/m with a standard deviation of 30 N/m and an average prestress of σ̄0 = 0.4 N/m

with a standard deviation of 0.2 N/m.
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2.5 Experimental Validation

We now discuss results of a detailed finite element analysis (FEA) of the indentation

of the circular monolayer MoS2 membrane and compare the results to the experimen-

tal data. The FEA simulation employs the higher-order non-linear elastic constitutive

behavior of Equations 4.5-4.10 as well as the elastic constants in Table 2.2 that have

been implemented into a User Material (UMAT) subroutine [113] for use with the co-

mmercially available finite element program ABAQUS [97]. This implementation is valid

for use in membrane elements, which implies that the bending stiffness of the MoS2 is

vanishingly small compared to the in-plane stiffness. This assumption is valid when the

radius of curvature of the deformed MoS2 monolayer is much greater than the distance

between nearest atomic neighbors. Specifically for these simulations, the smallest radius

of curvature in the MoS2 is the 26 nm of the indenter tip and the interatomic distance is

3.16 Å.

The circular membrane of diameter 500 nm is modeled with 9575 four-node memb-

rane elements and is clamped to inhibit displacements at its periphery and loaded at its

center with a frictionless rigid sphere of radius 26 nm. An equibiaxial prestress is set to

0.42 N/m, the average measure of prestress from AFM nanoindentations. The simula-

tion is performed in approximately 900 time increments equating to an average of 1.2

nm of indenter displacement per increment. The FEA formulation requires 3D stress

and modulus measures as well as a well-defined membrane thickness, so we perform the

computations using the derived 3D quantities. However we report the results in terms of

the intrinsic 2D quantities.

Figure 2.8 shows the simulated force-displacement curve at the center of the memb-

rane for both the LDA and PBE approximations, which are in good agreement with

experimental results from AFM nanoindentations. The close agreement between the re-

sults from the finite element model based on first-principles data and the nanoindentation

curve is a testament to the validity of the experimental and theoretical framework that

comprise this study.

Figure 2.9 shows the details of the stress concentration in the MoS2 monolayer under
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the indenter tip. At very shallow indentation depths, the stress state is axisymmetric

(cf. Figure 2.9A), consistent with elastic isotropy at small strains. At an intermediate

indentation depth in Figure 2.9B, the stress state begins to develop a six-fold rotation

symmetry, which becomes fully developed at large indentation depths of Figure 2.9C.

Thus monolayer MoS2 develops an elastic anisotropy with a six-fold rotation symmetry

at finite strains of an approximate equibiaxial nature, consistent with the D3h point

group of the hexagonal lattice. The deformation state in the very center of the indented

region experiences equibiaxial deformation, so that according to Figure 2.3a the LDA

data, the peak stress the MoS2 can withstand is 16.5 N/m a Lagrangian strain of about

0.23. At larger equibiaxial strains, the stress will decrease and the deformation state will

be unstable because of the negative local tangent modulus leading to strain softening.

Figure 2.9D shows the monolayer MoS2 at the state when the stress in the very center

has begun to decrease. The FEA simulation becomes unable to converge to equilibrium

solutions at an indentation depth past 102 nm, where force on the indenter tip in the first-

principles FEA model is 1490 nN for the LDA least squares fit and 1360 nN for the PBE

least squares fit, well within the experimental uncertainty of the measurements. The 95%

confidence interval for the experimental breaking force is 1350–1650 nN. A smaller degree

of uncertainty in experimental measurements would lend insight into which approximation

closer represents the mechanical properties of MoS2.
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Figure 2.8: Comparison of the multiscale finite element models based on first principles
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2.6 Conclusions

We have calculated using DFT the elastic response of monolayer MoS2 for in-plane con-

ditions of uniaxial strain and equibiaxial strain. The strains range from infinitesimal

values to finite values beyond that corresponding to the intrinsic (i.e. maximum) stress.

In addition, we derived the framework for a thermodynamically rigorous non-linear ela-

stic constitutive relationship for arbitrary in-plane deformation by expanding the strain

energy density in a Taylor series in powers of Lagrangian strain truncated after the fifth

power. There are fourteen indendent components of the resulting stiffness tensors. The

values of these components are determined by fitting to the DFT results. The resulting

multiscale continuum constitutive relationship is non-linear and anisotropic, although the

non-linearity does not manifest itself until a strain beyond about 0.05 and the anisotropy

becomes significant only after a strain of about 0.1. AFM nanoindentation experiments

performed on circular suspended monolayers of MoS2 provide experimental evidence of

intrinsic strength and in-plane Young’s modulus. A detailed finite element model (FEM)

of the experimental configuration was performed with ABAQUS along with a user mate-

rial (UMAT) which incorporated the continuum constitutive model for use in membrane

elements. The predicted force vs. displacement response as well as the force at rupture

of the MoS2 film correspond closely to the experimental values. This study bridges three

main gaps that hinder understanding of material properties: DFT to FEM, experimental

results to DFT, and the nanoscale to the microscale. In bridging these three gaps the

experimental results validate the DFT calculations and the multiscale constitutive model.

Our results show that MoS2 is a strong and flexible crystal. The maximum stress at

the point of fracture is the intrinsic strength of the MoS2, σint = 16.5 N/m as confirmed

with finite element analysis implementation of the non-linear elastic constants. When

assuming a monolayer thickness of t = 0.615 nm, the 3D intrinsic strength of MoS2 is

σ3D
int = 26.8 GPa. The in-plane Young’s modulus suitable for conditions of infinitesimal

strains is E = 16.5 N/m, or E3D = 210 GPa, which is consistent with the experimental

results of Bertolazzi[5]. The in-plane Poisson’s ratio suitable for conditions of infinitesimal

strains as calculated using DFT is ν = 0.29. It is interesting to note that Griffith [30]
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predicts the intrinsic strength of a material to be σint ≈ E/9, whereas experimental

and DFT results suggest σint ≈ E/8 in accordance with studies measuring the intrinsic

strength of graphene [58].
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Chapter 3

Comparison to T. Li

Two recent paper papers by Li[59] and by Cooper et al.[13] investigate the mechanical

properties of two-dimensional (2D) MoS2 under conditions of finite strain based upon

Density Functional Theory (DFT) calculations. The predicted uniaxial stress at finite

strains are different in the two papers. In particular, the uniaxial stress results in Figure

2 of Li[59] do not agree with the uniaxial stress results in Figure 5 of Cooper et al.[13].

Herein we show that the results of Cooper et al.[13] are correct. First, a brief introduction

will be given to define precisely all quantities. Subsequently, we present results from

three mainstream DFT packages, including the one used by Li[59]. We demonstrate that

the results of Cooper et al.[13] are robust and that results from all three packages are

consistent.

A uniaxial stress state is characterized by the application of stress in one direction

while allowing the material to remain stress free in the other two principal directions. In a

two dimensional material such as MoS2, only two principal directions are considered, here

assigned to be parallel to the zigzag direction (i.e. x1-axis) and the armchair direction

(i.e. x2-axis). This same convention is used both in Figure 1 of Li[59] and Figures 1-2

of Cooper et al.[13]. A state of uniaxial tensile stress for 2D MoS2 in the x1-direction

is defined by stress tensor components σ11 > 0 and σ22 = 0, with corresponding strain
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tensor components of ε11 > 0 and ε22 < 0, given a positive Poisson ratio. The uniaxial

tensile stress state in the x2−direction is defined analogously. An equibiaxial stress state

is defined as σ11 = σ22 and ε11 = ε22. The stress measure in a 2D material is defined as

force normalized on a per unit length basis. Herein we express the stress as a derived

3D quantity by normalizing the 2D stress by an effective thickness of the 2D material.

We report stress as a 3D quantity to facilitate comparison with Li’s[59] results. Thus,

engineering stress is defined as σeng = F/Ao where F is the current force and Ao is

the reference cross-sectional area. The corresponding engineering strain is defined as

εeng = (L − Lo)/Lo, where L is the current length, and Lo is the original length. True

stress is defined as σtrue = F/A, where A is the current area and is typically plotted

against true strain defined as εtrue = log (L/Lo).

Li[59] uses the Quantum Espresso density functional theory (DFT) computational

package to calculate two uniaxial stress states for 2D MoS2 (in the zigzag and armchai-

r directions) as well as the equibiaxial stress state, taking the MoS2 thickness to be

0.6145 nm. The stress measure is erroneously reported to be engineering stress, but the

results are in true stress (personal communication, August 29, 2012), while the strain

measure is engineering strain. Here we use three different DFT packages (VASP[50–53],

Quantum Espresso[25], and Abinit[27]) to calculate the mechanical response of 2D MoS2

under the same stress states, taking the thickness to be 0.615 nm (the difference in stress

arising from assuming a thickness which is 0.0005 nm greater is not perceptible on our

plots).

The results of the DFT simulation are expected to be very similar, though there may

be small discrepancies due to differences in the nature and degree of discretization of

the Kohn-Sham equation (e.g. K-points, plane-wave cutoff, etc), treatment of the core

electrons (ie. psuedopotential choice), and convergence criteria. In this comment, all

three codes utilize the generalized gradient approximation (GGA) of Perdew, Burke, and

Ernzerhof[80, 81] for the exchange-correlation functional.

Our VASP calculations employs the projector augmented wave method[7, 54] and the

plane wave cuttoff was chosen to be 420 eV, which was found to be converged. The charge
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self-consistency is terminated when changes in the total energy are less than 10−4 eV and

structural minimization is terminated when changes in the energy are less than 10−3 eV.

A k-point grid of 15×15×2 was used. When computing the x1−direction uniaxial stress

state the x2−components of the two lattice vectors is varied until | σ22 |≤ 0.01GPa. The

x2−direction uniaxial stress state is solved analogously. The unstrained unit cell in VASP

is found to have dimensions a1 = a2 = 3.183 (unit cell shown in Figure 1 of Li[59] and

Figure 2 of Cooper et al.[13]) with an out-of-plane sulfur ion height of 1.564 .

In both Quantum Espresso and Abinit, most aspects of the simulations were equiva-

lent. Trouiller-Martins pseudopotentials were used in both codes[106]. A plane wave

cutoff of 420 eV was used in Abinit while 1361 eV was used in Quantum Espresso, wi-

th both respective values giving converged solutions. The primitive unit cell is doubled

to create orthogonal lattice vectors. This ensures that only the e2−component of the

second lattice vector need be varied to ensure | σ22 |≤ 0.01GPa for uniaxial stress in

the x1−direction as required by the minimization algorithms within these codes. The

biaxial stress state is achieved by applying equal strains in the x1− and x2−directions.

A k-point grid of 10 × 10 × 1 was used. In Quantum Espresso, the self-consistency is

terminated when changes in the total energy are less than 13.6× 10−8 eV and the st-

ructural minimization is terminated when the force is less than 2.571× 10−2 eV/Å. In

Abinit, self-consistency was performed such that changes in the total energy are less than

27.2× 10−7 eV and the structural minimization is terminated when both the force is less

than 2.571× 10−3 eV/Å and the change in energy is less than 13.6× 10−4 eV between

structural change steps . In Quantum Espresso, the unstrained unit cell is found to be

a1 = 3.187 Å and a2 = 5.521 with an out-of-plane sulfur ion height of 1.574 Å. The

Abinit unstrained unit cell is determined to be a1 = 3.185 Å and a2 = 5.517 with an

out-of-plane sulfur ion height of 1.574 Å.

Our results from the three DFT packages are compared in Figure 3.1. In general,

our results are within sufficient agreement. Abinit and Quantum Espresso use the same

type of pseudopotential and are therefore nearly indistinguishable in most calculations.

Our VASP calculations result in a slightly smaller sulfur height, as seen in Figure 3.1d.
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All codes converge to the same stress until the point of elastic instability as seen in

Figures 3.1a-3.1c. The only appreciable difference is a ≈ 5% difference developing in our

VASP results relative to Abinit/Quantum-Espresso in the x2−direction for strains >20%.

We pressume that this difference can be attributed to the differences in the PAW approach

versus the Trouiller-Martins psuedopotential as substantial checks were performed on k-

point, plane-wave cuttoff, and convergence criteria in this region. In summary, there are

no major differences among our calculations with the three different DFT codes.
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Figure 3.1: 3.1a is the biaxial stress state calculated with VASP, Quantum Espresso, and
Abinit. 3.1b and 3.1c are the uniaxial stress states in the x1− and x2−directions, respe-
ctively, calculated with the same three DFT codes. The results of Li’s[59] uniaxial stress
DFT calculations–indicated by red ◦’s–are shown for comparison. There is a qualitative
and quantitave agreement between Li and the calculations of Cooper et al. for a biaxial
strain state in 3.1a, but there is qualitative disagreement in the x1− and x2−directions
as seen in 3.1b-3.1c. 3.1d shows the calculated sulfur height as a function of strain for
the three DFT codes for the uniaxial stress in the x1− and x2−directions in the upper
and lower axes, respectively.

The uniaxial stress states calculated by Li[59] are not consistent with that of Cooper

et al.[13]. Li uses the Quantum Espresso code with the generalized gradient approxima-

tion of Perdew, Burke, and Ernzerhof, along with Trouiller-Martins psuedopotentials[59]

and a plane wave cuttoff of 100 Ry (ie. 1360.57eV). Therefore, there should not be any

substantial deviation. Figures 3.1a-3.1c show the direct comparison of the two calcula-
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tions. The biaxial stress calculations shown in Figure 3.1a agree both qualitatively and

quantitatively, but there is a qualitative disagreement between the two sets of calculation-

s for the x1− and x2−direction as seen in Figures 3.1b-3.1c uniaxial stress calculations.

We have verified our calculations across three DFT packages and conclude that there is

a discrepency in the work of Li[59].
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Chapter 4

Mechanical Properties and Breaking

behaviors of Grains and Grain

Boundaries in Chemical Vapor

Deposited Graphene

In bulk three-dimensional (3D) materials, the inevitable presence of bulk and surface

defects limits the tensile strength to a value that typically falls well short of the intrinsic

strength predicted for homogeneous tensile cleavage [66]. Low-dimensional materials such

as two dimensional (2D) graphene or quasi-one-dimensional (1D) carbon nanotubes can

achieve record strength in part because of the lack of surface defects that often initiate

fracture in 3D materials. However, utilizing the ultrahigh strength of low-dimensional

materials on the macro-scale remains an open challenge, both from a technological per-

spective and as a matter of fundamental interest. At sufficiently large scales, all materials

will contain lattice defects, and the effects of such defects should be magnified in low-

dimensional materials, due to a reduction in the number of dimensions in which a material

can receive structural support: in the limit of a 1D atomic chain, even a single vacancy wi-

ll reduce the tensile strength to zero. Moreover, the same lack of surface-bulk distinction

that eliminates surface defects in low dimensional materials also renders them extremely
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sensitive to damage during processing.

We have previously used nanoindentation of freely suspended films in an atomic fo-

rce microscope (AFM) to show that graphene isolated by mechanical exfoliation is the

strongest known material and in its defect-free pristine state can achieve its intrinsi-

c strength before succumbing to rupture [58]. However, graphene produced by scalable

methods–such as Chemical-Vapor-Deposition (CVD)–produces graphene with various de-

fects, especially grain boundaries [39, 48, 88, 107, 121]. It is of fundamental importance

to understand how the nature and presence of such defects will degrade the mechanical

properties. Recent theoretical studies have argued that graphene grain boundaries can

be as strong as the pristine lattice, depending on their exact configuration, such as tilt

angle [28] and arrangement of defects [114]. On the other hand, nanoindentation tests

have shown that both the elastic stiffness and fracture strength of CVD-graphene with

µm-scale grain size are much smaller than those of defect-free pristine graphene and

that fracture occurs at grain boundaries [39, 88]. However, continued progress in deve-

lopment of techniques for processing graphene motivates re-examination of this question

from an experimental standpoint. Indeed, we find here (see Chap. 4.1) that techniques

used in earlier studies, which were standard practice at the time and remain widely used,

significantly degrade the strength of graphene. In this work we employ new processing

techniques that leave graphene’s strength intact. We use a commercial nanoindenter to

test a large number of samples for statistical analysis, and combine nanoindentation and

TEM characterization to test individual grain boundaries. The data are analyzed using

a multiscale model based on density functional theory and experimentally validated for

pristine graphene, as is done in 2 for two dimensional molybdenum disulfide.

Two types of graphene were grown on copper foil: continuous graphene films with

small grains (SG), and isolated single-crystals with large grains (LG) (see Methods in

Supplementary Materials). Dark-field TEM (DF-TEM) imaging [39] was used to map

the grain structure of the graphene films (Fig. 4.1A and C); each false-color area indicates

a distinct crystal orientation from the selected area electron diffraction (SAED) patterns

of Figs. 4.1B and 1D. These patterns confirm that the SG graphene is similar to the
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Figure 4.1: Materials and testing methods. (A, C) False-color DF-TEM images and
(B, D) SAED patterns of SG graphene and LG graphene films. (E) Schematic of the
suspended graphene film over hole for AFM nanoindentation tests. (F) SEM images of
the suspended LG graphene film over holes. The border of the graphene-covered area
is indicated by a dashed line for visualization. Wrinkles often present in the transferred
graphene can be seen. (G) Force-displacement curve of the SG graphene film in AFM
nanoindentation. The red line is a fitting curve to Eq. 2 of Ref. [58]. The inset shows
the AFM topology images of the suspended SG graphene film before and after fracture.
Scale bars: 3 µm in (A, F), 20 µm in (C), 1 µm in (G).

films studied previously [39, 88, 107]: it is polycrystalline with 1− 5 µm grains that are

stitched at well-defined grain boundaries, that have been observed to consist of pentagon

and heptagon carbon rings without any other defects such as holes [39, 107]. Small bilayer

patches are occasionally present in the middle of grains. The star-shaped LG graphene

grains are 50− 200 µm single crystals (Fig. 4.1D) [60, 83] of single-layer graphene with

small multilayer patches at the center. All of the nanoindentation experiments reported

below were performed on the single-layer areas of the SG and LG graphene films.

To create suspended membranes, graphene films grown on copper foil were transferred

onto a silicon dioxide substrate with an array of holes with 1 and 1.5 µm in diameter

(Fig. 4.1E, see Methods in Supplementary Materials, figs. 4.5 and 4.6). We found that

two of the processing techniques used in previous studies [39, 88] severely weakened the
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grain boundaries in CVDgraphene: etching the copper with ferric chloride (FeCl3) and

removal of a polymer support by baking in air (figs. 4.7 and 4.8). Both steps were avoided

herein: the copper was etched with ammonium persulfate instead of ferric chloride, and

polydimethylsiloxane (PDMS) was used to support the graphene during copper etching,

and to dry-stamp it onto the substrate without baking. The scanning-electron-microscopy

(SEM) image of Fig. 4.1F shows the transferred LG graphene film. (See Fig. 4.7A for

SG graphene) The graphene films form membranes tautly suspended above the holes,

with little contamination. Raman spectroscopy confirms that the membranes are highly

crystalline graphene with few defects. (Fig. 4.9)

We used nanoindentation to measure mechanical properties of the suspended memb-

ranes, as described in [58, 84]. A representative force-displacement curve obtained using

an AFM with a diamond tip of 26 nm radius is shown in Fig. 4.1G. The curve was well

fitted by a quasiempirical polynomial form [58]. The cubic fitting parameter yielded 99%

confidence intervals for the mean of elastic stiffness of 328 ± 15 N/m near that of pri-

stine graphene (340 N/m), and an order of magnitude higher than the value previously

reported for CVD-graphene (55 N/m) [88]. Moreover, the force required to break the

membrane is 2000 ± 420 nN, much greater than the previously observed (50-120 nN)

[39, 88]. The AFM images in the inset show a SG membrane before and after fracture.

The samples showed no sign of slippage at the periphery and the fracture pattern was

similar to that observed for pristine graphene (Fig. 4.10).

For statistical analysis of stiffness and strength, we tested a large number of specimens

using a nanoindenter, with a 38 nm radius diamond tip (Fig. 4.11A). Each membrane

was cyclically tested to increasing depth to fracture; the non-hysteretic force-displacement

curves were analyzed as above. Histograms of the derived elastic stiffness are shown in

Figs. 4.2A and B for LG and SG graphene (see Fig. 4.11B for pristine). We obtained

elastic moduli of 324 ± 13, 339 ± 17, and 328 ± 17 N/m (which correspond to a 3D

Young’s modulus of 1̃ TPa) for pristine, LG, and SG, respectively. Based upon one-

way ANOVA analyses, there are no statistical differences among these three values, or

between these and the value previously obtained for pristine graphene [58] (Fig. 4.12A
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Figure 4.2: Statistical analyses of nanoindenter results. The histograms of the elastic
stiffness of (A) LG, and (B) SG graphene films. The histograms of fracture load for (C)
LG, and (D) SG graphene films. A tip with 38 nm radius was used in all tests. The
dashed lines indicate fitted Gaussian distributions.

and table 4.1); all are in agreement with theoretical predictions in the absence of grain

boundaries [47]. The wider distributions observed for SG and LG graphene may be due

to the presence of wrinkles and small bilayer patches in the CVD-grown membranes.

The measured fracture loads for LG and SG membranes are shown in Figs. 4.2C and

D (see Fig. 4.11C for pristine). The measurements yield fracture loads of 3410 ± 260,

3370 ± 340, and 2590 ± 380 nN for the pristine, LG, and SG films, respectively. The

fracture load of the SG films is statistically different from that of the pristine and LG

films, while there is no statistical difference between the fracture loads of the pristine and

LG graphene based upon one-way ANOVA. (Fig. 4.12B and table 4.2) The smaller mean

fracture load and wider distribution observed for SG graphene indicates that the strength

is influenced by the randomly occurring defects and grain boundaries in the membranes.

Nevertheless, the measured fracture load of the SG graphene is much larger than seen in

previous measurements [39, 88].

We calculate the breaking strength of the graphene films as a function of the measured
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fracture load and tip diameter with an experimentally validated multiscale model based

upon atomic-scale ab initio density functional theory [113]. This constitutive model

informs a continuum description of anisotropic and nonlinear elastic behavior for in-plane

deformation [112, 113] that permits numerical modeling of the stress in the graphene up to

the point of rupture. Figure S9 shows the equibiaxial true stress vs. load under the center

of a 38 nm indenter tip for pristine graphene, which yields an equibiaxial breaking strength

of 34.5 N/m (103 GPa, when expressed as a 3D value). The mechanical strength or peak

stress that can be supported by graphene is a function of the loading configuration. For

uniaxial stress in the armchair direction, the same model predicts a strength of 39.5 N/m

(118 GPa), consistent with our previously-reported value of 42 ± 4 N/m for the same

loading configuration (see Supplementary Materials). With an identical fracture load,

LG graphene has an equivalent breaking strength to pristine graphene. Remarkably,

the average equibiaxial strength of SG graphene is only slightly smaller, 33 N/m (98.5

GPa). A similar value was obtained for SG membranes tested by AFM. These results

demonstrate that polycrystalline graphene with well-stitched grains can act as a large-

area ultra-strong material.

Because the stress decreases inversely with distance from the indenter tip, the stress

under the tip at rupture does not necessarily correspond to the grain boundary strength.

Therefore, we performed indentation tests directly on a few grain boundaries identified by

TEM. SG films were transferred onto TEM grids with 2.5 µm holes using a poly(methyl

methacrylate) (PMMA) transfer technique [39, 48], followed by annealing in hydrogen

and argon to remove the PMMA without reducing the strength of the films. The bright-

field TEM (BF-TEM) image of Fig. 4.3A shows a suspended SG film, with adsorbates

(likely PMMA residue) that decorate grain boundaries, as confirmed by higher-resolution

imaging (Fig. 4.3)[39, 47]; these adsorbates are not observed in LG films (Fig. 4.14). The

DF-TEM map of Fig. 4.3C shows the corresponding grain structure. The adsorbates

render the grain boundaries visible in AFM (Figs.4.3E, 4.15), but are also present at

wrinkles, so that AFM imaging alone is not sufficient to identify grain boundaries. Adso-

rbates are not expected to affect the grain boundary properties because of the very low
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Figure 4.3: BF-TEM observation of grain boundaries and AFM nanoindentation on grain
boundaries. BF-TEM images of (A) suspended SG graphene film over a hole and (B)
enlarged BF-TEM image of red-dotted area in (A). (C) False-color DF-TEM image and
(D) SAED of the same region. The diffraction spots corresponding to each color of (C)
are indicated in (D) with circles of different colors. (E) AFM topology image shows that
arrays of PMMA residue adhere to grain boundaries. The grain boundaries and inden-
tation point are indicated by dashed lines and white arrow in (E). (F) AFM indentation
results show that fracture occurs at slightly lower load when AFM tip indents on grain
boundary. Scale bar: 1 Îĳm except for 200 nm of (B).

stiffness and strength of PMMA.

Figure 4.3F shows the results of six indentation tests with the tip placed directly on

asymmetric tilt grain boundaries near the center of the membrane. An additional test

performed at the center of a grain away from grain boundaries (Fig. 4.15I) yielded fracture

load similar to that of pristine graphene. The fracture loads at the grain boundaries are

20-40 % smaller, but still an order of magnitude larger than previously measured [39, 88].

The same multiscale analysis described above gives a range of equibiaxial stress of 30-

33 N/m (90-99 GPa) for the strength of the grain boundaries, representing at most 15 %

reduction from the intrinsic strength. These results confirm that grain boundaries in

graphene can achieve ultra-high strength.

Atomistic scale simulations of symmetric tilt grain boundaries predict that grain boun-
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daries with large tilt angles can achieve near-intrinsic strength (above 30 N/m), but those

with low tilt angle possess lower strength of 13-26 N/m, depending on the precise arran-

gement of defects [28, 114]. The simulated grain boundaries consist of periodically spaced

pentagonheptagon ring defects along straight grain boundaries. The simulations predict

rupture initiation at the bond joining the pentagonal and heptagonal [48, 88, 121] rings,

and that decreasing its initial equilibrium length (i.e. smaller misfit “prestrain”) increases

grain boundary strength [28, 114].

The asymmetric tilt grain boundaries in the experiments, which cover a wide range

of tilt angles (cf. Fig. 4.16 and Table 4.3), consistently exhibited strength above 30 N/m,

suggesting that the predicted variation in strength with tilt angle does not occur in these

samples. The tortuous atomic structure of random [39] asymmetric grain boundaries

is significantly more complex than that assumed for the simulations of symmetric grain

boundaries [28, 114]. The more complex energy-minimizing structure [17] likely leads

to a smaller misfit “prestrain” of the critical atomic bonds at in the 5-7 defects, thus

explaining the ultra-high strength (see details in Fig. 4.16 and Table 4.3).

In addition to well-stitched grain boundaries, we also occasionally observe boundaries

in which the adjacent graphene grains overlap (50 nm in width) but do not covalently

join [39, 107] (Fig. 4.17). These boundaries were observed to be extremely weak, with

no measurable force upon AFM indentation. Overlapped grain boundaries have been

observed to possess higher conductance [107] than stitched boundaries, but will result in

much weaker films.

To further elucidate the fracture behavior of graphene, AFM nanoindentation on SG

membranes was performed to failure, and the ruptured films were observed with TEM.

Indentation on a grain boundary (cf. white arrow in Fig. 4.4A) initiates an intergranular

crack as in Fig. 4.4B and Fig. 4.18 under the approximately equibiaxial stress state

beneath the indenter tip–thus demonstrating the grain boundary to be somewhat weaker

than graphene. The crack later kinks into the adjoining grains due to the more complex

stress state. Contrary to the prediction or experimental observation during electron

irradiation [47], the torn edges of the transgranular cracks have irregular saw-tooth shapes
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Figure 4.4: (A) False-color DF-TEM image of the suspended SG graphene film over a
hole before indentation. The white arrow indicates the indentation point. (B) BF-TEM
image after indentation. The black-dashed lines indicate grain boundaries. (C) Enlarged
BF-TEM image of the red-dashed area of (B). Scale bars, 1 µm; (C) 200 nm.

as shown in the enlarged BFTEM image of Fig. 4.4C and Fig. 4.19.

Our measurements reveal that the elastic stiffness and strength of CVD-graphene a-

re comparable to those of pristine graphene despite the existence of grain boundaries.

Moreover, the strength of grain boundaries is much stronger than previously measured,

in agreement with the maximum values predicted in simulations. This study establi-

shes CVD-graphene as a large-area, high-strength material for flexible electronics and

strengthening components.

4.1 Materials and Methods

4.1.1 Synthesis of graphene

The 25 µm-thick copper foil (Alfa Aesar, 99.8%) was used for graphene growth under the

different conditions for small-grain (SG) and large-grain (LG) samples.

A. Growth condition for SG sample: The copper foil was heated to 1000 ◦C in a
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hydrogen flow of 2 sccm at a pressure of 50 mTorr. After annealing for 60 min, graphene

was grown by introducing methane gas flow of 35 sccm while maintaining hydrogen flow.

After growth at 300 mTorr and 1000 ◦C for 30 min, the sample was rapidly cooled to

ambient temperature under a flow of methane and hydrogen. As shown in Fig. 4.1A,

continuous and polycrystalline small-grain graphene was grown with grain size ranging

from 1 to 5 µm. B. Growth condition for LG sample: A closed pocket of copper foil was

used for growth of large-grain samples as reported by Li et al. [60]. The copper pocket

was heated to 1000 ◦C in a hydrogen flow of 2 sccm at a pressure of 1 mTorr. After

annealing for 60 min, graphene was grown at 10 mTorr and 1035 ◦C by flowing methane

of 1 sccm and hydrogen of 2 sccm. After growth for 60 min, the sample was rapidly cooled

to ambient temperature under a flow of methane and hydrogen. As shown in Fig. 4.1B,

the isolated and star-shaped large-grain graphene was grown with grain size ranging from

50 to 200 µm.

4.1.2 Preparation of samples for indentation

A 1 cm×1 cm array of circular wells, which have 1 µm and 1.5 µm in diameters and 800

nm in depth, were patterned on Si substrate with a 300 nm-thick SiO2 by nanoimprint

lithography and reactive ion etching as reported previously (2). Graphene films were

transferred onto the substrate through dry transfer technique as depicted in Fig. 4.5. After

attaching graphene-grown copper foil to a PDMS (polydimethylsiloxane, Dow Corning)

stamp, the copper was etched in ammFonium persulfate (Transene Co., APS-100, 20wt%)

for 2 hours, then the graphene was carefully washed with flowing DI water to remove

residue, followed by drying with a weak flow from a nitrogen gun. To check any damage

of graphene during etching process, all the samples on the PDMS stamps were observed

with optical microscope before transfer as shown in Fig. 4.6. The continuous SG graphene

film of Fig. 4.6A has a number of small bilayer patches and wrinkles, meanwhile the

starshaped LG graphene film of Fig. 4.6B exhibits a multilayer patch in the middle. The

prepared graphene film on a PDMS stamp was slowly placed onto the pre-patterned

substrate and we waited for a day until graphene film is fully transferred. After the
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Figure 4.5: Fabrication process of the suspended CVD-graphene film for indentation test.

Figure 4.6: Optical Images of graphene films on PDMS before transfer to the substrate.
Optical micrographs of (A) SG and (B) LG graphene films on PDMS stamps after etching
of copper. The scale bar is 20 µm.

PDMS stamp was heated on the hot plate of 100 ◦C for 10 min, the stamp was slowly

removed from substrate leaving behind suspended graphene. The success of this transfer

technique for the suspended graphene film indirectly verifies that CVD-graphene is strong.

The suspended pristine graphene for nanoindentation test was prepared by exfoliating

graphite on the substrate with holes as previously reported [58].

4.1.3 Preparation of TEM samples

The graphene films were transferred on top of thin silicon nitride TEM grids (Figs. 4.1A

and B) and perforated silicon nitride TEM grids with holes of 2.5 µm in diameter (Figs.

4.3 and 4.4) using PMMA transfer technique [39, 107]. After coating of PMMA layer,
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the copper foil was etched with ammonium persulfate for 2 h. After rinsing with DI

water repeatedly, the floating PMMA-coated graphene film was scooped with TEM grid.

For removal of PMMA thin film, TEM samples were dipped in acetone for a few hours,

and then annealed at 345 ◦C for 4 h in a forming gas of hydrogen and argon. The TEM

(JEOL JEM-100CX) was operated at 80 kV to avoid any damage to the graphene film

from electron bombardment [86, 122].

4.2 Supplementary Text

4.2.1 Defect sensitivity of 1D, 2D, and 3D materials

As shown by Orowan in 1949, the intrinsic tensile strength–the maximum stress a defect

free material can resist in tension before failure–scales as σint ∼
√

(Eγ/a), where E is

Young’s modulus, γ is the surface energy, and a is the atomic spacing [76]; more recent

theoretical estimates suggest that σint ≈ E/10 [18, 44]. However, typical 3D materials are

much weaker still due to the inevitable presence of defects that circumvent homogeneous

tensile cleavage by activating other failure mechanisms [66].

Reduction of material dimensionality has proven to be an efficacious method to pre-

clude the formation of initial defects or at least to constrain their sizes. For example,

quasi-1D materials such as silicon nanowires with diameters of a few tens of nanometers

can approach the intrinsic strength [99]. Metal nanowires can also achieve great strength

when free of dislocations [117], but the operative failure mechanism is due to homoge-

neous shear at stresses approaching the intrinsic shear strength of τint ≈ µ/2π, where the

elastic shear modulus µ = E/(2(1 + ν)). Only when the density of dislocations within

metal nanowires is so high as to render them immobile, the strength of a metal nanowi-

re can supersede the intrinsic shear strength and approach the intrinsic tensile strength

[117]. Nonetheless, the strength of nanowires remains limited by surface defects. Carbon

nanotubes more closely approach the 1D ideal, but are sufficiently sensitive to defects

that they can approach, but fall short of, the intrinsic strength [79].

Reduction of dimensionality also reduces the dimensions in which a material can

52



provide structural support; hence true 2D materials such as graphene where all atoms

exist on the surface are of particular interest. The lower dimensionality of graphene

relative to three dimensional bulk materials concomitantly reduces the dimensionality

of defects. The 3D bulk defects such as voids or different phases reduce to 2D defects,

whereas 2D bulk defects such as free surfaces, stacking faults, grain boundaries, and

twin boundaries reduce to 1D defects. Likewise, 1D bulk defects such as crack fronts

and dislocations lines reduce to 0D defects. Only the 0D bulk defects such as atomic

vacancies and substitutional atoms or interstitial atoms remain 0D defects.

The reduced dimensionality modifies stress distributions due to applied forces as well

as defects, which affects the interactions between defects. Taking R to be the distance

from a point load or a defect, the stress singularity of a point load changes from 1/R2 in

3D to 1/R in a 2D material. The stress variation introduced by voids changes from 1/R3

in 3D to 1/R2 in a 2D material. Likewise, the far-field stress of dislocation loops and

interior cracks in a 3D material each diminishes as 1/R3 in 3D but respective far-field

stress fields of a dislocation dipole and an interior crack diminish as 1/R2 in 2D. (However

the nearfield stress of dislocations retains the 1/R singularity and that of cracks retains

the 1/R0.5 singularity.) Thus the far-field stresses of 2D materials persist at greater

relative distances in a 2D material than in a 3D material, so 2D materials are generally

more sensitive to defects than 3D materials. However, in quasi-1D materials the stress

due to defects varies as 1/R0 (i.e. no diminution with distance), so 2D materials are less

sensitive to defects than 1D materials.

Notwithstanding that 2D materials are more defect-sensitive than 3D materials, 2D

materials can achieve much higher stress relative to the intrinsic strength. This is possible

because the defect densities in 2D materials can be much smaller than in 3D materials.

We have shown, for example, that suspended graphene prepared by mechanical exfolia-

tion and loaded mechanically via nanoindentation away from a free edge can achieve its

intrinsic strength, suggesting that the material is entirely free of defects in the region of

stress concentration. Of fundamental interest is the behavior of CVD-grown graphene

that contains defects. Atomic vacancies are one potential defect, but it is known that

53



the equilibrium concentration of atomic vacancies in graphitic materials is very low at a-

mbient temperature. Dislocations are known to exist in graphene, but are likely nucleated

from atomic vacancies only at high effective temperatures induced by transmission ele-

ctron microscope (TEM) observation [110]. Effective CVD growth of graphene has been

shown to produce graphene that is free of initial voids and cracks. Thus grain boundaries

are the only remaining defect of concern in graphene under ambient conditions.

4.3 Weakening of graphene during processing

As discussed in the main text, our results are in contradiction to previous studies (refs.

[39] and [88]), which report that CVD graphene is significantly less stiff and less strong

than pristine. It is important to identify the precise reasons(s) for weakness observed

previously, so that our results can be replicated and used to guide materials synthesis

and processing. As shown in the main text and methods, the SG CVD graphene used

in our study is highly similar in grain size and grain boundary shape to the graphene

studied previously, which argues against differences in the crystal structure of the as-

grown CVD graphene, and point instead toward processing details, as being the cause of

the discrepancy. Our sample preparation process differs from that of the previous studies

in two important ways: the use of ammonium persulfate ((NH4)2S2O8) instead of ferric

chloride (FeCl3) for copper etching, and the elimination of an air-baking step to remove

PMMA. We investigated the effect of each factor separately.

We found the use of ferric chloride etchant results in visible differences in the quality

and yield of the suspended graphene membranes: the graphene films tear more easily,

and the yield of suspended membranes is much lower (Figs. 4.7A and B). Testing of

the surviving suspended membranes showed an order of magnitude smaller fracture load

(Fig. 4.8A). This test directly implicates ferric chloride as a cause of the weakness of

previous films. Various metal particles, including iron present in ferric chloride, have

been demonstrated to etch graphene, leading to voids or other defects [9, 86, 96].

We next investigated the role of air-baking to remove PMMA. As a control, we found
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Figure 4.7: Effects of ferric chloride and annealing. (A) SEM image of SG graphene
film transferred by PDMS after etching of copper with ammonium persulfate. (B) SEM
image of cracked SG graphene film transferred by PDMS after etching of copper with
ferric chloride. BF-TEM images of the SG graphene film annealed at 345 oC for 4 h (C)
in a forming gas of hydrogen and argon and (D) in air. The air-annealed graphene has
many defects and cracks, which look like dark lines. The scale bar is 3 µm.

that CVD graphene samples processed with PMMA, etched in ammonium persulfate,

and annealed at high temperature in an inert background (345 ◦C for 4 h in a forming

gas of hydrogen and argon) did not show defects detectable in TEM imaging (Fig. 4.7C)

or reduction in mechanical strength (Fig. 4.8B). On the other hand, samples annealed

in air at both 200 ◦C and 300 ◦C showed damage to grain boundaries and decreases in

fracture load (Figs. 4.7D and 4.8B). Similar results have been observed previously, and

are attributed to local oxidation at chemically active grain boundaries [69]. Samples

annealed at 400 ◦C in air were completely destroyed.

These results confirm that processing differences are the primary cause of the discre-

pancy between our results and those reported previously , [39, 88]. They also indicate

that both use of ferric chloride and air-baking result in weaker graphene, and should be

avoided in most applications.
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Figure 4.8: Effect of ferric chloride and air-baking on mechanical strength of SG graphene
films. (A) Fracture load of SG graphene films prepared with different copper-etching
agents. In the transfer process, copper foils were etched with different copper-etching
agents of ammonium persulfate and ferric chloride. In case of ferric chloride, graphene
shows an order of magnitude smaller fracture load. These samples were not annealed.
(B) Fracture load of SG graphene films annealed in different conditions. In this case,
copper was etched with ammonium persulfate. When the suspended SG graphene film
was annealed at 345 oC in inert gas flow of H2 and argon, there is no degradation in
mechanical strength. However, air-baking shows a clear decrease in fracture load with
increasing temperature. All of the suspended SG graphene samples were broken after
air-baking at 400 oC. Each plot includes five-number summary: the sample minimum,
lower quartile, median, upper quartile, and sample maximum.

4.3.1 Raman spectroscopy of suspended graphene films

As shown in Figs. 4.9A-D, the location of suspended graphene film was identified with

optical microscope and AFM. To determine the quality of suspended graphene films,

Raman spectroscopy (Renishaw, inVia) was employed with 532 nm laser. As shown in

Figs. 4.9E and F, all suspended graphene films have relatively high I2D/IG intensity ratio

(> 4.5) and FWHM of 2D peak (< 29), consistent with a highly crystalline single-layer

graphene (exfoliated single-layer graphene suspended over hole, denoted as Ref. in Figs.

S5E and F). However, the suspended SG graphene films show a small D peak at most

of positions as shown in Fig. 4.9E. In case of suspended LG graphene films, no D peak

or relatively small D peak was observed as shown in Fig. 4.9F and elsewhere [60]. Even

though LG graphene consists of a single crystal, Raman spectra inform us that some area

of LG graphene has defects, probably atomic-level defects or wrinkles.
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Figure 4.9: Optical micrographs and AFM images of the suspended (A-B) SG and (C-
D) LG graphene samples. AFM images of (B) and (D) were obtained from the dashed
areas of (A) and (B), respectively. Raman spectra of the suspended (E) SG and (F) LG
graphene films were obtained from the positions indicated by numbers in AFM images of
(B) and (D). The Raman spectrum of a suspended single-layer graphene sheet exfoliated
from graphite (denoted as Ref.) is displayed for comparison. The scale bar is 10 µm for
optical micrographs and 1 µm for AFM images.
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4.3.2 AFM indentation process

The suspended graphene samples were carefully scanned in non-contact AFM mode to

locate an indentation spot. The force-displacement curves were obtained by indenting

the center of suspended graphene with an AFM (XE-100, Park Systems). The cantilever

with a diamond tip (tip radius = 26 nm, MicroStar Tech) was used. When the peak load

is smaller than fracture load, the loading and unloading force-displacement curves shows

no hysteresis, which means that the graphene film is fully clamped via van der Waals

interactions with the substrate and does not slip around the periphery during measure-

ment [58]. Therefore, the curves showing hysteresis were excluded from analyses. When

the SG graphene film was tested, small reductions in force-displacement response were

occasionally observed leading to a serrated curve as shown in Fig. 4.10, resulting in high

breaking load. These small drops during indentation were explained in terms of initiation

of cracks at grain boundaries [39]. However, the measured fracture load (Fig. 4.10) is an

order of magnitude higher than previously reported [39] and even comparable to that of

pristine graphene despite small drops. We also observed this behavior even in the suspen-

ded pristine graphene, which has an edge near the perimeter of the hole. Furthermore,

TEM observation and nanoindentation of Fig. 4.3 did not show this behavior even though

the AFM tip was place on the grain boundaries. From these, we can deduce that these

small drops are attributed to slippage of graphene rather than crack formation at grain

boundaries.

4.3.3 Nanoindenter indentation process

An Agilent G200 nanoindenter outfitted with a dynamic contact module (DCM) and

a piezoelectric positioning stage (Nanovision) was used to scan and indent graphene

samples. We used a diamond DCM tip (tip radius = 38 nm) fabricated by MicroStar

Tech. After scanning of the graphene samples, the topography image was used to position

the center of the graphene membrane under the diamond tip. This scanning-positioning

technique reproducibly located the tip to the center of the graphene membrane to within

1 nm. The G200 nanoindenter continuous stiffness method (CSM) was implemented in a
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Figure 4.10: Force-displacement curve of the SG graphene film acquired in AFM indenta-
tion test. The small drops in the curve are observed during indentation. AFM images of
the inset show the suspended SG graphene film before and after AFM indentation. The
scale bar is 0.5 µm.

modified manner to determine the point of surface contact. The CSM allows the loading

to have a sinusoidal signal applied during a test segment. Nanoindentation of semiinfinite

materials uses this sinusoidal load to continuously measure the stiffness of the material

as the load is increased [31]. In this method, the indenter tip is oscillated at its resonant

frequency. By monitoring the phase angle of the tip, we were able to detect changes in

surface stiffness below 1 N/m.

Nanoindentation of the graphene membranes was achieved through a three-step in-

dentation process. In the first two steps, the CSM was implemented to determine surface

contact. In the third step, the CSM was disabled to remove unwanted noise from the

force-displacement curves. The first step used the CSM method to determine surface

contact 800 nm from the center of the membrane on the silicon oxide. The second step

used the CSM method and a slower approach speed to determine when contact with the

graphene membrane was achieved by monitoring the phase angle of the indenter tip. The

third step disabled the CSM method and performed nanoindentations at the center of
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Table 4.1: ANOVA of elastic stiffness.

Source of Variation Sum of Squares d.f. Mean Square F-Statistic p-Value
Among Groups 14977.4 3 4992.467 2.257124 0.0820
Within Groups 630383.2 285 2211.871

Total 645360.6 288

Table 4.2: ANOVA of fracture load.

Source of Variation Sum of Squares d.f. Mean Square F-Statistic p-Value
Among Groups 16408785 2 8204393 14.23988 3.29× 10−6

SG vs. others 16376446 1 16376446 28.42363 5.47× 10−7

Between Pristine and LG 32339 1 32339 0.0561289 0.8132
Within Groups 61648701 107 576156.1

Total 78057486 109

the membrane at increasing depths until fracture was recorded. The depth increments

were typically 20 nm. The force-displacement curve from nanoindenter is similar to that

from AFM nanoindentation as shown in Fig. 4.11A. This can be fitted by the equation

used in our previous report [58].

As shown in Fig. 4.12B and C, the box plots of elastic stiffness and fracture load

for pristine, LG, and SG graphene films show that elastic stiffnesses of three samples

are almost the same. On the other hand, the average fracture load of SG graphene

looks smaller than those of pristine and LG graphene films. To verify this statistically,

we applied ANOVA (Analysis of Variance) to the nanoindenter results. As shown in

Table 4.1, when the stiffnesses of three groups in our work and pristine graphene in our

previous paper [58] were compared, p-values (larger than the threshold value of 0.05)

demonstrate that four groups of graphene share the same elastic stiffness value regardless

of measurement tools. On the other hand, Table 4.2 shows that pristine and LG graphene

films have the same average fracture load. However, fracture load of SG graphene film is

different from those of the others because p-value is much smaller than 0.05.
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Figure 4.11: Nanoindentation results and statistical analysis. (A) Force-displacement
curve of the LG graphene film with nanoindenter. The red line is a fitting curve to Eq. 1.
The histograms of (B) elastic stiffness and (C) fracture load for pristine graphene films.
A tip with tip radius of 38 nm was used in all tests. The dashed lines indicate fitted
Gaussian distributions.

Figure 4.12: Statistical analysis for comparison. The box-plots of (A) elastic stiffness
and (B) Fracture load for pristine, LG, and SG graphene films. Each plot includes five-
number summary: the sample minimum, lower quartile, median, upper quartile, and
sample maximum.
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4.3.4 Multiscale model of nonlinear and anisotropic elastic re-

sponse of graphene

In our previous study [58], we modeled the elastic response of graphene to be nonlinear and

isotropic based upon a third-order series expansion of the strain energy density potential.

The corresponding expression for uniaxial stress had both linear and quadratic terms

of strain. The linear coefficient, the Young’s modulus, was determined from fitting the

measured force vs. displacement curves to the quasi-empirical polynomial form [58]. The

quadratic coefficient was determined based upon fitting of the predicted force on the

indenter at failure to the measured breaking force. This analysis resulted in a predicted

intrinsic strength of graphene under uniaxial stress conditions to be 42±4 N/m, with the

stress measure being true (Cauchy) stress defined as force per current length.

We subsequently refined our analysis of the elastic behavior of graphene [112] by

expanding the strain energy density potential in a Taylor series truncated after the fifth

power in strain. Upon considering the symmetry elements of the graphene crystal lattice

to account for anisotropy in addition to nonlinearity, the continuum stress vs. strain

relationship has fourteen elastic constants. The values of these elastic constants were

determined by fitting the continuum theory to the stress vs. strain response calculated

via first principles Density Functional Theory (DFT) calculations. This analysis resulted

in a better estimate for the intrinsic strength of graphene under conditions of uniaxial

stress in the armchair direction (i.e. stress in the armchair direction while allowing for a

Poisson contraction in lateral directions) to be 39.5 N/m in true stress measure, which is

within the uncertainty of our previous estimate. When expressed as the derived 3D stress

measure upon normalization by 0.335 nm, the uniaxial stress in the armchair direction is

118 GPa true stress.

Likewise, under conditions of equibiaxial strain (i.e. equivalent stresses in armchair

and zigzag directions) for which the mechanical response is isotropic, the intrinsic strength

of graphene is 33.1 N/m in true stress measure, which corresponds to a derived 3D true

stress of 98.8 GPa.

The nonlinear and anisotropic elastic constitutive behavior of graphene was implemen-
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ted [113] as a user material (UMAT) subroutine for the general finite element method

(FEM) package ABAQUS [97]. A detailed FEM model of the nanoindentation of su-

spended circular monolayer films of graphene was then performed by assuming a rigid

spherical frictionless indenter tip [113]. The higher order elastic constants of graphene

have been calculated by a least squares fit to density functional theory (DFT) results

[112]. The constitutive model included fourteen elastic constants that describe the secon-

d Piola-Kirchhoff stress tensor in powers of the Lagrangian strain tensor, work conjugate

stress-strain tensors, expanded to the fifth order, as had been done in Chap. 2. In ABA-

QUS, The FEM model employed a 1 µm-circular membrane clamped at the perimeter

with 16524 four-node membrane elements and 16633 nodes. The indenter tip, modeled

as a rigid sphere, was pushed into the suspended membrane in 0.2 nm increments near

the point of elastic instability in frictionless contact. Two indenter radii were used to

model the two diamond indenters, 26 nm and 38 nm. The FEM model used in this study

has been used to accurately predict the intrinsic strength of pristine graphene [113]. It

captures the nonlinear and anisotropic behavior of graphene. The model provides a fra-

mework to accurately predict the stress experienced by the graphene membrane during

nanoindentation based on DFT calculations. The results of the analysis are in Fig. 4.13A

for two different indenter tip radii, where abscissa is the force on the indenter tip and

the ordinate is the equibiaxial stress in the true stress measure immediately under the

indenter tip. The maximum equibiaxial stress in Fig. 4.13A is slightly higher than 98.8

GPa due to a very small amount of amount viscosity introduced into the constitutive

equation in the UMAT implementation to stabilize strain localization that occurs prior

to overall elastic instability that leads to rupture. When this was transformed to show

stress vs. strain as shown in Fig. 4.13B, the Lagrangian strain at fracture is around 0.2.

4.3.5 Direct indentation on grain boundaries

As explained in the main text, grain boundaries in the suspended graphene films can be

identified via DF-TEM. The suspended LG graphene film has fewer remnant adsorbents

and single crystal electron diffraction as shown in Fig. 4.14. As shown in Fig. 4.15A,
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Figure 4.13: FEM analysis for determination of peak equibiaxial (true) stress. (A) FEM
simulation results with nonlinear elasticity assumption. Two different tips with tip radii of
26 nm and 38 nm were used. The curves show the results from this work and our previous
report [58]. (B) True stress vs. strain curve from FEM simulation. The Lagrangian strain
at fracture is around 0.2.

BFTEM of the suspended SG graphene film shows wrinkles and adsorbates. From SAED

of Fig. 4.15B, it is verified that the SG graphene is polycrystalline. By selecting the

desired diffraction spot with aperture (circles with different colors), the corresponding

DF-TEM images can be obtained as shown in Figs. 4.15C-F. Based on these four DF-

TEM images, the false-color DF-TEM image of Fig. 4.15G were assembled. The AFM

images of topology and phase in Figs. 4.15H and I show that adsorbates sit on grain

boundaries. Noted that these adsorbates are also located on wrinkles and inside of grains.

To determine the positions of the grain boundaries, therefore, both of DF-TEM and AFM

are required. Using DF-TEM and AFM, we can find the exact position of grain boundaries

in the suspended graphene and indent away from or on grain boundaries.

The graphene sheets with large-angle tilt boundaries with a high density of defects

are predicted to be as strong as the pristine form and stronger than those with low-angle

boundaries with fewer defects [28]. This predicted trend is contrary to the behavior in

three-dimensional materials. The predicted high strength of large-angle tilt boundaries

was explained in terms of the mechanics of critical covalent bonds joining pentagonal and

heptagonal defect rings periodically distributed along the grain boundary. The simula-

tions predict that this is the first bond to break at very high stresses. The initial misfit

“prestrain” in this critical bond strongly affects the breaking strength, with a smaller

misfit “prestrain” leading to greater grain boundary strength [28].
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Figure 4.14: TEM observation of LG graphene film. (A) BF-TEM image and (B) SAED
pattern of the suspended LG graphene film. The electron diffraction indicates this gra-
phene is a single crystal and a small number of adsorbates are observed. The scale bar is
1 µm.

Recently, Y. Wei et al. [114] predicted that it is not just the density of defects that

affects the mechanical properties, but also the detailed arrangements of defects. Even

though the predicted strength of grain boundary in graphene increases with larger tilt

angle, this trend breaks when pentagon-heptagon rings in grain boundary, which is usua-

lly observed in CVD-graphene, are not evenly spaced [114]. However, these simulations

assume that grain boundary is symmetrical in atomic scale, unlike in grain boundaries

of CVDgraphene. Experimentally, CVD-graphene has random asymmetric grain boun-

daries, containing pentagon-heptagon defects [39], but that the grain boundary atomic

structure was significantly more complex and tortuous than the symmetric tilt grain

boundaries of the simulations that we assumed to be straight. It is well established that

grain boundaries adopt complex atomic structures to minimize misfit elastic energy [17].

The misfit “prestrain” of the critical covalent bond joining the pentagonal and heptago-

nal rings in such low-energy random asymmetric grain boundaries will be smaller than

in less energetically favorable configurations. Thus, based on insight gained from the

above analysis of idealized grain boundary structures, randomly oriented asymmetric tilt

grain boundaries can be expected to exhibit very high strength, and our experiments

demonstrate that the strength approaches that of pristine graphene. (Figs. 4.16 and

table 4.3)
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Figure 4.15: Identification processes of grain boundaries in the suspended graphene film.
(A) BF-TEM image of the suspended SG graphene film and (B) SAED pattern. From
each spot (circles with different colors) of electron diffraction, DF-TEM images were
obtained as shown in (C-F). The small bilayer patch with round shape is indicated by
white arrow in E. (G) False-color DF-TEM image of the same sample. AFM images of
(H) topology and (I) phase show that the adsorbates are located along grain boundaries
of graphene. The white arrow of (I) indicates the indentation point when the center of
grain away from grain boundaries was indented by AFM as explained in the main text.
The scale bar is 1 µm.

Table 4.3: Breaking load vs. tilt angle. The angle of θ1 and θ2 (relative to grain boundary)
shows the grain boundaries are not symmetrical.

Sample θ1(deg) θ2(deg) θ1 + θ2(deg) Breaking Load (nN)
GB3 2 3 5 1405
GB6 7 9 16 1720
GB4 10 13 23 1449
GB5 13 14 27 1626
GB2 6 22 28 1695
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Figure 4.16: Relation between strength of grain boundary and tilt angle. (A) Schematic
of asymmetric grain boundary consisting of pentagon-heptagon rings. The angles of θ1
and θ2 in the left and right lattices are determined by electron diffractions. The tilt angle
of grain boundary is θ1 + θ2. Pentagon, hexagon, and heptagon rings are indicated by
blue, green, and red lines in the grain boundary. (B) Plot of strength vs. tilt angle. The
AFM indentation was performed on grain boundaries, which tilt angles are known by
TEM observation before indentation test. The strength of pristine graphene (defect-free)
is indicated in left-top corner. The measured strength in our work shows a relatively
high strength regardless of tilt angle, while atomistic simulations showed an increase of
strength as a function of tilt angle.

4.3.6 Mechanical properties of overlapped grain boundaries

We observed overlapped narrow areas crossing some of the suspended graphene film as

shown in Fig. 4.15A and 4.16A. Even though most of them are wrinkles, it turned out

that some of them are the overlapped grain boundaries as reported by Tsen et al. [107].

The overlapped grain boundary was identified with TEM as shown in Fig. 4.16. BF-

and DFTEM images of Figs. 4.16A-D confirm that the overlapped region is not a wrinkle

because it is located at the border of two different crystalline grains. In contrast, DF-TEM

image of a wrinkle shows one grain divided by this overlapped line. In addition, because

this boundary is brighter than other region in the DF-TEM image of Fig. 4.16D, this is a

crystalline grain boundary with overlapped width of 50 nm between two grains, not the

gapped grain boundary [107]. When the overlapped grain boundaries were examined, no

measurable force was detected as shown in Fig. 4.16E. The blue-dashed line indicates the

predicted force-displacement curve in AFM nanoindentation of the suspended graphene.

This means that the overlapped grain boundary are held together by van der Waals

interaction and is not stitched together via covalent bonding.
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Figure 4.17: Properties of overlapped boundary. (A) BF-TEM image of the suspended
SG graphene film and (B) enlarged TEM image of red-dashed area. The adsorbates are
present along the overlapped boundary with width of 50nm. (C) SAED pattern and (D)
False-color DF-TEM image of the same sample. (E) Force-displacement curve shows no
measurable force when the overlapped boundary was indented. The blue-dashed line of
(E) indicates the predicted behavior of the indented graphene. The scale bar is unit1µm
except for 100 nm of (B).

Figure 4.18: TEM observation of the SG graphene films after indentation on grain boun-
dary. (A and D) False-color DF-TEM images of suspended SG graphene film before
indentation. The white arrows indicate indentation points, where two grains meet at
grain boundary. The indentation was stopped before complete fracture. (B and E) BF-
TEM images of corresponding graphene films of (A) and (D) after indentation. There
is no other crack across the graphene film except for indentation spot. (C) Enlarged
DF-TEM and (F) BF-TEM images of the red-dashed areas in (B) and (E). A small crack
indicated by red circle was formed at the indented point, following grain boundary. The
scale bar is 1 µm except for 200 nm of (C) and (F).
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Figure 4.19: TEM observation of crack formation after nanoindentation. (A-C) BF-TEM
images shows various graphene fractures when the center of the suspended graphene
away from grain boundaries was indented. A crack was formed in indented spot and
propagated across grain boundaries as shown by yellow-dashed line in (A). Breaking of
graphene along a grain boundary was also observed in (B) and (C). The edges of a crack
along grain boundary are smoother than those propagating in the middle of grain as
shown in the inset of (C). The scale bar is 1 µm.

4.3.7 Crack propagation during indentation

In particular, when the center of the suspended graphene was indented away from grain

boundaries, a crack (yellow-dashed line) is seen to form under the indenter and to p-

ropagate toward the edge of hole, crossing the grain boundary as shown in Fig. 4.19A.

This result is not in accordance with experimental and theoretical results that mechanical

failure always initiates from grain boundaries [88, 114, 123]. Nonetheless, crack propa-

gation along grain boundaries was also observed as shown in Fig. 4.19B and C. Thus,

even though a crack formed initially under the indenter away from a grain boundary, it

occasionally deflects into and propagates along grain boundaries. Kim et al. reported

that, when a crack nearby the edge of a hole propagates in suspended graphene as a

consequence of electron beam irradiation, the crack propagates along straight lines alig-

ned in the armchair or zigzag directions of the graphene lattice [46]. However, this was

not found in our study, likely because different external agents caused the initiation and

propagation of cracks. Instead, the edges of cracks along grain boundary are smoother

than those in the middle of grains as shown in the inset of Fig. 4.19C.
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4.3.8 Main results and implications

1. We measure the mechanical properties of two different types of CVD graphene

(small- and large-grain). Our results demonstrate that large-area graphene with

mechanical properties comparable to those of pristine graphene can be produced

by CVD processes. In addition, the question of how grain boundaries influence the

mechanical properties of graphene is fundamental and essential for applications of

graphene in flexible electronics, NEMS, sensors, vapor barriers, and composites.

Our work experimentally confirms that a grain boundary can be virtually as strong

as the pristine lattice and further identifies what factors can deteriorate the mecha-

nical strength. The mechanical properties of grain boundaries in two-dimensional

materials are of fundamental interest because they behave differently from those

in three-dimensional materials. Our experimental and analytical techniques can

be extended to other 2D materials, such as MoS2, MoSe2, WSe2, and hBN, and

heterostructures, such as graphene-hBN.

2. Our work includes rigorous analysis by a fifth-order nonlinear anisotropic multiscale

stress-strain constitutive model incorporated into a detailed finite element analysis,

which enables us to determine the strength from the force on the indenter at rupture.

3. Our work demonstrates the mechanical difference between “stitched” and “overla-

pped” grain boundaries. This finding will guide efforts toward synthesis of strong,

large-area graphene. Our finding of the un-stitched “overlapped grain boundary”

indicates that growth of well-stitched CVD graphene is necessary for applicability

in large-area flexible electronics and mechanical reinforcement applications.

4. A major discrepancy between theory (“The grain boundary is as strong as pristine

graphene” in Ref. [28] and [114]) and previous experimental results (“The grain

boundary is extremely weak” in Ref. [39] and [88]) had not been explained before

our study. Our measurement experimentally validates the theoretical prediction

that some grain boundaries can approach the strength of pristine graphene.

5. A second discrepancy is that all of the grain boundaries we tested achieved a streng-

70



th approaching that of pristine graphene, whereas the theoretical efforts in Refs.

[28] and [114] predicted that some grain boundaries would fail at significantly lower

stresses. Based upon the failure mechanisms proposed by the theoretical studies,

we suggest that this discrepancy may be due to over-simplification of the atomic

structure of the grain boundaries assumed in the theoretical studies.

6. The elastic stiffness of CVD graphene measured in Ref. [88] is much smaller than

that of pristine graphene because of presence of ripples. Our transfer technique

can maintain the flatness of CVD graphene without ripples, resulting in graphene’s

intrinsic elastic stiffness.

7. Our work also introduces a well-developed technique to study the mechanical pro-

perties of grain boundaries in two-dimensional materials. In the previous method

of Ref. [88], identification of grain boundaries was performed in AFM imaging by

using the presence of processing residue. However, as shown in our work, the residue

can be located on the middle of a grain, overlapped grain boundaries, and wrinkles.

Therefore, without the combination of AFM and darkfield TEM, it is impossible to

find out the type of grain boundaries by AFM alone.

8. We also observed crack propagation when graphene is mechanically indented on or

away from grain boundary. This observation shows how the grain boundary acts

in two-dimensional materials during fracture. Our work demonstrates that a crack

propagates in more complicated way, not like in the simulations (along zigzag or

armchair direction)
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Chapter 5

Mechanical properties of heterogeneous

rigidity in poly(dimethylsiloxane) films

induced by electron beam irradiation

5.1 Introduction

Polydimethylsiloxane (PDMS) is a commonly used and well-established thermal-curable,

gas-permeable, and bio-compatible material that has found widespread use in microfui-

dics, microcontact printing and biological studies[119]. PDMS substrates patterned into

micron-scale pillars have become an important tool facilitating the measurement and

characterization of cellular forces[101]. The mechanical properties and pillar dimensions

(i.e. diameter and height) can be varied and quantified to create a real-time cellular

force map across the entire cell[24, 102]. A photocatalyst added to PDMS allows one to

pattern by photolothography, a useful approach in microfluidics[41]. Untreated PDMS

has been shown to be sensitive to deep-UV and e-beam irradiation[16, 26, 89, 108], which

induces cross-linking of the elastomer. Previous studies have investigated the surface che-

mical changes induced by irradiation, this study aims to quantify changes in mechanical

properties of e-beam-exposed PDMS.

The mechanical properties of PDMS can vary depending upon a number of factors.
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The Young’s modulus of spin-coated and drop-cast PDMS can differ by as much as 700%

depending upon the film thickness and coating conditions[103]. Changes in the curing

temperatures and duration can vary the the modulus as much as 60%[2, 61, 64]. Thermal

curing of PDMS has been shown to induce prestrain in the polymer [64]. The base-to-

accelerator ratio has the largest effect on the polymer stiffness. A collection of the PDMS

modulus values as a function of base-to-accelerator ratio, as reported in the literature,

is shown in Figure 5.3. These data lend insight into the variability of the mechanical

properties of PDMS–the parameters used in processing the PDMS are detailed in the

respective references. The temperature and length of cure time also influences the amount

of prestrain and stiffness of PDMS [64].

The ability to selectively vary the stiffness of PDMS can be exploited in a variety

of applications. For example, microfluidic channels and valves comprising regions of

variable and/or heterogeneous stiffness could be actuated in a geometrically-dependent

manner. Similarly, PDMS films with selectively variable stiffness play a critical role in

the investigation of cell mechanics.

We have recently developed a process whereby a PDMS film is exposed to an electron

beam in a pre-defined pattern, resulting in a surface of locally variable rigidity on the

micro- and nanoscale. Dynamic nanoindentation was used to quantify the changes to the

mechanical properties of the film. Because most of the electron energy is dissipated within

a relatively short range (a few microns at 30 keV) within the PDMS film, the resultant p-

roperties are not uniform in the out-of-plane (i.e. Z-direction). We have developed a finite

element model (FEM) in order to interpret the results of nanoindentation measurements

as a function of applied electron dose and to characterize quantitatively the mechanical

properties of the exposed regions of the film. This approach is broadly applicable to

materials systems comprising regions and layers with non-uniform mechanical properties,

such as cells and other biomaterials, and can thus facilitate better understanding of their

mechanical properties.
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5.2 Experimental

We now discuss the experimental investigation of the changes in mechanical properties due

to e-beam exposure. Surface irradiation of PDMS scises and cross-links polymer chains to

increase the cross-link density [37, 92, 93]. PDMS is cured with thermal energy to cross-

link dimethylsiloxane into polydimethylsiloxane. This increase in cross-linking induces a

volumetric shrinkage [64]. The e-beam exposure increases cross-link density, inducing a

transformation strain in the PDMS and modifies its mechanical properties (e.g. elastic

and viscoelastic properties). It is therefore necessary to quantify both transformation

strain and stiffness variation to accurately predict the mechanical properties of e-beam

irradiated PDMS.

The PDMS preparation is detailed in the Supporting Information. The e-beam patter-

ning is accomplished in two ways. An array of 1 µm-diameter evenly spaced in a square

grid of 8 µm distances is irradiated on the PDMS surface. Second, a 1 mm× 1 mm area

is irradiated. These two irradiated patterns on the PDMS surface provide insight into the

prestrain and stiffness changes–as will be discussed in further detail. The irradiated film

is estimated to be 3 µm-thick based upon quantum Monte Carlo simulations of electron

energy dissipation in the film[1].

The transformed PDMS is constrained on the surface of the otherwise untransforme-

d PDMS film, the transformation strain induces a strain in the untransformed PDMS

leading to an undulating surface profile measurable via optical profilometry for the 1 µm-

diameter array of exposed areas. The profiles of these arrays are used in a FEM to

determine the transformation strain as a function of the exposure dosage.

We describe the viscoelastic behavior of the PDMS by means of a complex shear

modulus, which characterizes the ability of the material both to store and damp energy.

The complex shear modulus, µ∗, is expressed as

µ∗ = µstorage + iµloss, (5.1)

where the real part, <(µ∗) = µstorage, characterizes elasticity, and the imaginary part,
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=(µ∗) = µloss characterizes damping. Considering µ∗ as a phasor with angle δ leads to

the loss factor,

tan(δ) = µloss/µstorage, (5.2)

which characterizes the damping capacity relative to the storage capacity.

To measure the complex shear modulus of the PDMS, we use an Agilent G200 Na-

noIndenter with Dynamic Contact Module (DCM) head, fit with a diamond flat-ended

cylindrical punch having a radius of 76.4 µm. When testing polymers by instrumented

indentation, the flat-ended cylindrical punch is advantageous, because the contact area

is constant and known throughout the experiment, even when viscoelasticity and creep

are manifest [35, 36]. By means of the Continuous Stiffness Measurement (CSM) option,

a normal force oscillation is applied to the indenter while in contact with the PDMS and

the characteristics of this oscillation lead directly to the complex shear modulus of the

material. The CSM comprises a lock-in amplifier and controlling software; it imposes an

oscillating force on the indenter at a specific frequency and measures the amplitude and

phase lag of the resulting displacement oscillation at that same frequency.

A single test on the PDMS comprises the following steps: First, with the head well

above the sample the indenter oscillates using a force amplitude of Fi = 20 µN and a

frequency of 110 Hz–this frequency being sufficiently close to the resonant frequency of

the nanoindenter to benefit from increased sensitivity. Then, the displacement amplitude,

Zi and phase lag, φi, are recorded in order to characterize the dynamics of the head in

the atmosphere. The head is then brought down to engage the sample; engagement

is sensed as a significant shift in the phase lag, φ. Following contact, the indenter is

pressed into the surface to a depth of 1.5 µm and the displacement amplitude of the

oscillations is measured, Zo. The force amplitude is then set to Fc = (100 nm)Fi/Zo. In

this way, the force amplitude produces an oscillation of approximately 100 nm. Finally,

the displacement amplitude, Zc, and phase lag, φc, are measured before disengaging the

indenter.

From these prescribed values and direct measurements, the contact stiffness S and
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damping Dω of the contact are calculated as [31]

S = Fc/Zc cosφc − Fi/Zi cosφi (5.3)

Dω = Fc/Zc sinφc − Fi/Zi sinφi. (5.4)

The stiffness and damping of the contact are the real and imaginary parts of the

stiffness phasor during contact, less the values of those same quantities measured for the

head in air in step 2 of the above procedure.

If the thickness of the PDMS is ×20 the contact radius or thicker, then it is straig-

htforward to calculate the components of the complex shear modulus and their ratio[36]

µstorage = S(1− ν)/(4a),

µloss = Dω(1− ν)/(4a), and

tan(δ) = Dω/S

(5.5)

where ν is the Poisson’s ratio and a is the radius of the flat-ended cylindrical punch.

However, a layered viscoelastic structure–such as PDMS adhered to a glass substrate–has

an apparent complex modulus, µ∗
apparent, that is influenced by the mechanical properties

of the underlying materials. Interpretation of the nanoindentation of layered structures

is an inverse problem. The mechanical properties of the constituents must be determined

based upon the apparent behavior of the overall layered structure [32, 33, 38, 75, 90].

Equation 5.5 quantifies the apparent properties of the e-beam-irradiated PDMS. A FEM

is used to model the behavior of the overall PDMS-glass layered structure in order to

estimate the influence of the substrate on µ∗
apparent.

The e-beam-irradiated PDMS has a higher cross-link density, and as such the stiffness

should be higher than the underlying unexposed PDMS. The goal of the nanoindentation

investigation and FEM analysis is to determine the change in stiffness as a function of

the e-beam dosage. Herein, we define a variable to refer to the ratio of the treated to

untreated PDMS modulus as Π ≡ ∆<(µ∗
exposed)

<(µ∗
unexposed)

where <(µ∗
apparent) is the real part of µ∗

apparent

i.e. apparent storage modulus. Based upon FEM results µ∗
apparent of the PDMS-glass film
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is a function of transformational strain, ε0, and Π.

Experimentally, we see that increasing exposure increases <(µ∗
apparent) and increases

the depth of PDMS sink-in as plotted in 5.1E. Therefore, we postulate that Π = Π(σq)

and d = d(σq) where σq is the exposure dosage–measured in a charge density of µC
cm2–

and d is the measured depression depth after e-beam exposure–as seen in the scanning

electron microscope image in 5.1A and diagrammed in 5.1B-C. The charge density, σq,

is a convenient measure of the e-beam treatment. It is not indicative of surface charge

density.

Two FEM’s are used to determine the mechanical response of the e-beam irradiated

PDMS. The first model is designed to determine the amount of transformation strain

induced through the process of irradiation. The second model is designed to determine

the change in stiffness of the irradiated film based upon the apparent properties of the

layered structure.

We now discuss the first FEM used to determine transformational strain, ε0. After

e-beam irradiation, the irradiated PDMS experiences a volume reduction and is "pulle-

d"into the film by the surrounding unirradiated PDMS. A periodic pattern of circular

areas exposed to 60, 750, 2100, 3400, 4700, and 6000 µC
cm2 e-beam doses as seen in the SEM

image of 5.1A. The depths measured by optical profilometry are plotted as a function of

σq in 5.1E.

We model one-fourth of a unit cell of this periodic, undulating structure as detailed

in 5.1C. We impose a volumetric shrinkage strain on the 3 µm × 1 µm quarter-cylinder

and calculate the depth of depression. We calculate the depth as a function of the

imposed strain and cylinder stiffness, Π = 2n where n = 0, 1, 2, ..., 9. The imposed

volumetric shrinkage is meant to simulate the transformation strain experienced during

e-beam irradiation. In this way, the transformation strain is calculated as a function of

Π and d as shown in 5.1D.
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Figure 5.1: Figure 1A is a scanning electron microscope image of the periodic array of
irradiated areas. The dashed line in 1A is the cut for 1B with the solid box representing
the repeating unit cell that was modelled in the FEM solution. The close-up of the unit
cell–as indicated by the rectangles in 1A–is detailed in 1C. 1D shows the FE results as
a function of Π and depth and 1E is the experimentally observed depth as a function of
e-beam exposure, σq

The second FEM is employed to determine Π(σq) based upon the range of ε0 deter-

mined by the first FEM. The PDMS is modeled as a linear-viscoelastic material rigidly

bonded to a linear-elastic glass substrate. The model schematic is shown in 5.2A. The in-

denter is modeled as a rigid cylinder with a fillet radius of 100 nm and radius R = 76.4 µm.

To reduce computational time, nodes in contact with the indenter are tied to the cylinder

surface. This simplification essentially imposes an infinite friction coefficient. However,

PDMS is a rubbery material so we expect a large coefficient of friction. In the calculation,
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the indenter is pushed into the surface of the viscoelastic elements to a depth of 1.5 µm.

After relaxation, the tip oscillates sinusoidally with amplitude 500 nm for 5 cycles. The

solution converges to steady-state within 3 cycles.

Experimental observations of the mechanical properties are in terms of the µ∗
apparent

for the layered PDMS structures diagrammed in 5.2A. A 1mm × 1 mm area is expo-

sed to e-beam exposures σq = 0− 6000 µC
cm2 , the experimental results of these exposu-

res and apparent moduli are given in Table 5.1. As σq is varied from 0− 6000 µC
cm2 ,

<(µ∗
apparent) = 1100−6200 kPa and tan(δ) = 0.19−0.10. These apparent properties de-

pend upon the transformational strain, ε0, change in stiffness due to irradiation, Π(σq),

and the mechanical properties of the underlying structure, i.e. µ∗
unexposed, µglass, and

νglass.

To determine the function Π(σq), we consider bounds on the apparent mechanical

properties due to variations in ε0 and Π, while µ∗
unexposed, µglass, and νglass remain constant

between nanoindentations. The first FEM determines that ε0 = 0%–6% as σq increases.

The first data point for the lower bound of prestrain and material properties is taken

as Π = 0 and ε0 =0%. This point corresponds to an unexposed area of PDMS i.e. no

transformational strain and no increase in rigidity. We increase Π with ε0 =6% in the

film until the highest value of apparent modulus is calculated–Π = 580, <(µ∗
apparent) =

6200 kPa. This data point is employed as the upper bound for the FEM calculations.

In determining the function Π(σq), these two values are taken as the boundary values of

the function, i.e. Π(0 µC
cm2 ) = 0 and Π(6000 µC

cm2 ) = 580. The FEM solution is then used

to fill in apparent material properties for Π = 0−580 and ε0 = 0%−6%. The upper and

lower bounds for apparent properties are illustrated in 5.2B-C by the red, dashed line

and blue, solid line, respectively. The red, dashed line represents the apparent modulus

as a function of the increase in rigidity due to e-beam irradiation for the highest expected

prestrain, ε0 = 6%. The experimental apparent moduli are measured as a function of

e-beam exposure, σq as listed in Table 5.1. We next provide a functional relationship

between Π and σq that maps the data between the upper and lower bound calculated via

FEM.
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5.3 Results

The cross-linking due to e-beam irradiation is a stochastic process that scises bonds an-

d creates multiple junction types [37, 92, 93]. There is no inherent reason to assume

that the dosage of e-beam irradiation will linearly increase the stiffness of PDMS. We

assume that the functional relationship between Π and σq is C0 continuous, monotonic,

and that the first derivative does not approach infinity. Under these assumptions, the

simplest relation–barring a direct linear relation, which does not capture the observe-

d behavior of the exposed PDMS under nanoindentation–is two linear functions. The

boundary conditions of the relationship are determined by the two points: Π(0 µC
cm2 ) = 0

and Π(6000 µC
cm2 ) = 580. Using these two boundary conditions, and assuming that two

regimes exist with distinct slopes, we execute a brute-force minimization routine to fit

the data within the FEM calculated bounds of <(µ∗
apparent) and tan(δapparent).

The minimization is achieved by varying the two slopes that define the two regimes

of stiffening as affected by e-beam irradiation. The experimental data and bounds are

shown in 5.2C-D for <(µ∗
apparent) and tan(δapparent), respectively. The optimization assigns

an error of 1/N for each data point that is mapped outside of the bounds calculated by

the second FEM, where N is the number of experimental data points mapped. The

optimized function results in

Π =

 3.05 cm2

µC
σq, if 0 µC

cm2 ≤ σq ≤ 145 µC
cm2

0.024 cm2

µC
(σq − 6000 µC

cm2 ) + 580, if 145 µC
cm2 < σq ≤ 6000 µC

cm2

. (5.6)

This functional relation helps to elucidate the effect of e-beam irradiation on the me-

chanical properties of PDMS films, plotted in 5.2B. Fitting the data to these two linear

functions, the predictive error between the model reduces from 0.36–a direct linear fit–to

0.01–a function with two linear regions.

Equation 5.6 has two linear regimes to describe the increase in stiffness as a function

of e-beam exposure. The initial linear regime–for σq ≤ 145 µC
cm2–compounds a nonlinear

mechanical response with an unknown function of cross-linking due to e-beam irradiation.

As the value of Π increases, the mechanical response becomes more linear as seen in 5.2C
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Figure 5.2: Figure 2A is a graphical representation of the FEM used to determine the
apparent properties of a viscoelastic layered material–e-beam exposed PDMS–rigidly bon-
ded to an elastic substrate–glass. Equation 5.6 is plotted in 2B showing the two linear
regimes of e-beam irradiation stiffening. Plotted in 2C-D is the resulting apparent µstorage

and tan (δ) as a function of Π for the e-beam exposed 3 µm film. The red dashed and
blue solid lines are the bounds set by the material properties and prestrain on the film.
The red line sets ε0 = 6% and the blue line sets ε0 = 0%. The black × data points
in 2C-D are the nanoindentation results plotted by use of a brute-force optimization to
determine the function of Π(σq), determined to be Equation 5.6. The error bars indicate
the standard deviation in apparent properties of the data at Π = 0, σq = 0 µC

cm2 .

and D. We have assumed two linear regimes, but the actual influence of e-beam irradiation

on the surface of PDMS could be more complex. The goal here is to gather as much insight

into the stiffening of e-beam-irradiated-PDMS without overstating the knowledge gained

from these experiments.

5.4 Outlook

In conclusion, we have–within experimental uncertainty–determined a functional rela-

tionship between e-beam irradiation and PDMS mechanical properties. The mechanical

properties of PDMS can be tailored to suit a variety of applications. Our description of
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highly localized variation of PDMS mechanical properties extends the range of applica-

tions possible for this versatile material, from biomimetic surfaces for studying cellular

mechanotransduction to microfluidic devices with locally varying stiffness actuators. It

should also be possible to use the localized increased stiffness of PDMS to shield delicate

components from large strains induced by bulk deformations of a flexible substrate–as

has been done with composite structures for flexible electronics [87]. The results and

methodology presented herein are broadly applicable in the understanding of complex

mechanical systems.

5.5 Materials and Methods

5.5.1 PDMS preparation

Standard microscope cover-glasses were cleaned for 12 h in a 1% v/v solution of the

detergent MICRO-90 (International Products, NJ, USA), rinsed in reverse osmosis water

(ROH2O) and blown-dry in a stream of filtered nitrogen. The samples are prepared by

mixing Sylgard 184 PDMS (Dow Corning, MI, USA) with a 50:1 ratio to the included

accelerator and degassed at 5 Torr for 10 min. The uncured PDMS mixture is then applied

to a microscope cover-glass and spin-coated for 45 s at 1000 rpm with an acceleration of

400 rpm/s resulting in a film 120 µm thick. PDMS (0.5 ml) was applied to the microscope

cover-glasses and spin-coated for 45 s at 1000 r.p.m. and an acceleration of 400 rpm/s to

form a uniform film. PDMS-coated cover-glasses were cured for for 17 h before further

processing. Substrates were subjected to an oxygen plasma in a tabletop Harrick PDC32G

plasma cleaner for 10 sec at a RF power of 18 W to induce surface hydrophilicity. Samples

were next coated with a conductive discharge layer to facilitate electron beam exposure.

A 5 nm thick discharge layer was applied to the substrates by spin coating 100 ul of

Aquasave (Mitsubishi Rayon) for 45 s at 4000 rpm and an acceleration of 400 rpm/s.

Samples were stored at RT until e-beam exposure.

The PDMS substrates were patterned by e-beam exposure using a scanning electron

microscope (FEI XL 30 Sirion) equipped with a Nabity NPGS pattern generator. The
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exposures used an accelerating voltage of 30 kV and a beam current of ≈2.5 nA. Substrates

were cleared of Aquasave in deionized water for 3-5 min and allowed to air dry for 30

min.

5.5.2 Finite Element details

Abaqus uses a Prony series to define viscoelastic materials [97]. Here we use a first-order

Prony series model, where the time-dependent Young’s modulus is defined as E(t) = E∞+
nE∑
i=1

Ei exp (−t/τi) and E∞ is the modulus at t = ∞ while Ei and τi are the viscoelastic

terms to describe the time-dependent modulus. Our model used a single Prony series term

and we normalized the time by the time-constant to simplify the material parameters.

This is appropriate because we only wished to characterize the layered material response

at the testing frequency of 110 Hz. The input parameters for Abaqus then include the

modulus at t = ∞, E∞, and a factor relating the modulus at E(t = ∞) to E(t = 0)

defined as g = 1 − E∞/E0. The relationship between the complex modulus and time

dependent modulus is as follows

g =
((µstorage+µloss)

2+µ2
storage−2µstorage(µstorage+µloss)+µ2

loss)

((µstorage+µloss)2−µstorage(µstorage+µloss))

E∞ = 3(1− g)(µloss + µstorage)
. (5.7)

Using these equations, we converted between the complex modulus and the input pa-

rameters for Abaqus, E∞ and g at the testing frequency. Equations 5.7 are necessary

because the experimental results are in terms of storage and loss modulus while the Prony

series viscoelastic material description used in Abaqus depends on the Young’s modulus

as a function of time.

The first model consisted of 25,379 nodes and 22,680 8-node quadrilateral elements.

A quarter-disk at the corner of the model was assigned a modulus 2nEsubstrate, where

n = 0..9 and Esubstrate was the Young’s modulus of the rectangular column as seen in

the schematic in Figure 1A. The model did not account for mass losses that may occur

during irradiation.

The second model was comprised of 2760 4-node axisymmetric elements and 2867
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nodes for the 120 µm thick PDMS simulation. The indenter was modeled as a rigid

cylinder with a fillet radius of 100 nm and R =76.4 µm. Each time step was T
91

where

T is the period of the osciallations. The apparent complex modulus was then calculated

using equations 2.

A bulk, cast PDMS was used to verify the FE calculations. In the bulk material,

the apparent properties are equivalent to the material properties. The storage modulus

and tan (δ) were measured to be 94.6 kPa and 0.41, respectively. Using equations 5.7,

E∞ = 0.17 kPa and g = 0.59. These material parameters were entered and used to

solve the semi-infinite, axisymmetric FE model. The FE model consisted of a 6000 µm

thick PDMS layer rigidly fixed to a linear-elastic, glass substrate in the FE model. The

resulting apparent properties were ¯storage = 95 kPa and tan (δ) =0.4–equivalent to the

material properties input into the model. This analysis served as a verification that the

FE solution converged to the desired solution for a semi-infinite viscoelastic solid subject

to indentation by a rigid flat-punch.

The determination of the spin-coated PDMS was essential to the investigation of the

exposed PDMS mechanical properties. The experimentally measured storage and loss

moduli of e-beam exposed PDMS are highly influenced by the properties of the underlying

unexposed PDMS properties. By first determining the mechanical properties of spin-

coated PDMS, we then investigated the mechanical properties of the exposed region.

The measurement of the modulus for the bulk and spin-coated PDMS was compared to

other mechanical tests of PDMS of different base-to-accelerator ratios in 5.3 represented

by the lower and upper + symbols, respectively. Both values were within the expected

range of modulus values for PDMS.
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Figure 5.3: Plotted here is the Young’s modulus of PDMS as a function of the base-
to-accelerator ratio measured by different research groups using different preparation
techniques and measurement methods. [4, 12, 23, 61, 64, 91, 103, 116] The upper and
lower + symbols are the measurements of 50:1 PDMS moduli for spin-coated and cast
PDMS in the current study, respectively.

Experimental data points were compared to the FE bounds on apparent properties.

The experimental data that fell outside of the bounds were assigned a uniform error of

(number of data points)−1 otherwise no error was assigned. The sum of function errors

was calculated between the bounds of m1 = mlin..42mlin and m2 = 0.01mlin..mlin in a

grid of 75072 solutions, where mlin refers to a direct linear function of Π(σq). As the

solution tended towards a step function–i.e. m1 � mlin and m2 � mlin–a uniform floor

error was achieved. We assumed that the smallest value of m1 and largest value of m2

that achieved the minimum floor error were the optimized linear regimes that describe the

relationship between e-beam dosage and Young’s modulus. The experimentally measured

85



values for the storage modulus and tan(δ) are shown in Table 5.1.

σq

(
µC
cm2

)
<(µ∗

apparent) (kPa) tan(δapparent) σq

(
µC
cm2

)
<(µ∗

apparent) (kPa) tan(δapparent)

0 1130±180 0.14±0.02 400 4338 0.14
10 2015 0.16 500 4549 0.14
10 2025 0.16 500 1809 0.10
20 2184 0.16 600 4513 0.14
30 2588 0.16 700 3889 0.14
40 2646 0.16 800 3346 0.14
50 2718 0.16 900 3270 0.14
60 2646 0.16 1000 3141 0.14
60 2718 0.16 1000 2835 0.09
60 2647 0.16 1500 4437 0.09
60 2742 0.16 1500 4266 0.09
70 2534 0.16 2000 5518 0.08
70 2556 0.16 2500 4336 0.11
70 2454 0.16 3000 4946 0.10
70 2370 0.16 3500 5283 0.10
80 2165 0.16 4000 4687 0.09
80 2146 0.16 4000 6072 0.09
90 2062 0.16 4000 5571 0.09
90 1958 0.16 5000 3432 0.08
90 1999 0.16 5000 3340 0.09
90 1521 0.17 6000 6168 0.09
100 2516 0.16 6000 6161 0.09
200 2532 0.16 6000 6375 0.09
300 3733 0.14

Table 5.1: Experimental results from nanoindentation on e-beam-exposed PDMS films.
The apparent properties of storage modulus in kPa and tan(δ) are given for reference. The
bounds on measured properties for no exposure is the standard deviation in experimental
measurements for 20 indentations.
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Chapter 6

Conclusions and Future Work

In conclusion, these experimental and numerical techniques provide a framework for de-

termining the mechanical properties of a variety of thin film materials. I provide a detailed

account of dealing with both material and geometrical nonlinearities that I encounter du-

ring nanoindentation of thin films. For future reference, I have included Appendices of

procedures for substrate fabrication, AFM nanoindentation, and the procedure for using

the 2D material nanoindentation method for the Agilent G200 nanoindenter. This work

has three main accomplishments. First, I provide novel implementation of nanoindenta-

tion techniques. Second, the mechanical properties of the thin films provide new results

interesting for basic science. Third, quantifying these mechanical properties helps in the

process of transferring these technologies to industrial solutions.

These methods help to show the breadth of possibilities for implementing nanoin-

dentation as a means of monitoring thin film properties for quality control or process

monitoring. In the case of 2D crystals–detailed in chapters 2-4, one could imagine using

these fracture loads with a chart of material strengths to ensure chemical vapor deposition

methods are consistent between processes. In the case of locally varied PDMS properties

reported in chapter 5, one could monitor the changes in microfilm stiffness as electron

beam irradiation is applied. Chapter 5 goes through this process methodically.

The results of chapters 2-4 demonstrate the high mechanical integrity of 2D crysta-

ls. These results parallelize computational and experimental techniques in an effort to

87



provide innovative techniques for new material design. The experimental validation of

first-principles multiscale modeling allows one to design the next material solutions with

insight from computational results, thus reducing the cycle of trial-and-error.

The high strength of CVD graphene necessitates a more thorough investigation of

the role of grain boundaries in 2D materials. Polycrystalline metals have been shown to

exhibit higher strength [65] as grain size decreases. Graphene with symmetric tilt grain

boundaries is estimated to reduce the strength of the crystal [114]. The experiments of

chapter 4 do in fact show a slight decrease in strength as grain boundaries are introduced,

but not to the extent that Wei et al. predict [114]. Looking forward, it will be interesting

to see more data correlating the grain boundary orientations and fracture force.

Further work is also necessary to estimate the effect of random defects the nanoinden-

tation analysis of failure. Previous work estimated that because the state of stress under

the nanoindenter tip is uniform and that fracture would occur at the highest point of st-

ress under the tip [58]. This assumption is valid for a pristine sheet of graphene. If one is

concerned with the weakening effects of defects in the membrane, then the state of stress

of the entire strained membrane must be integrated into the prediction of failure due to

a weakening defect. This will be especially important as different grain orientations are

stitched together and symmetry in the stress state is lost. Weibull provided a generalized

form of the “weakest link” theory in 1939 [115]. This theory can be incorporated into the

finite element analysis routine with experimentally measured grain boundary geometries

and subject to loading by spherical indentation. One can then approximate a risk of

rupture–or probability of failure–depending on a Weibull modulus.

If graphene’s high mechanical strength is to be utilized in new technologies, it is

imperative to investigate multiple scales of defects due to processing. The work in cha-

pter 4 investigates the effect of nanostructural defects on the strength of graphene. The

introduction of grain boundaries changes the orientation and number of covalent bonds

between carbon atoms in graphene. There is no evidence that suggests this will signifi-

cantly reduce the strength. The next level of investigation should explore the effect of

microstructural defects in graphene.
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The electron beam irradiation of PDMS provides a foundation for further investiga-

tion. The preparation methods of PDMS have been researched extensively. I have tried to

highlight the main components that affect PDMS stiffness i.e. casting method (spinning,

casting, molding, etc.), curing thermal history (temperature and time), and accelerating

agent. To quantify the changes in the stiffness, it is first necessary to have consistent

samples. The thickness of the irradiated sections was estimated based upon Monte Carlo

calculations [1]. This thickness should be validated with experimental measurement–

possibilities include cross-sectioning and performing measurements with AFM, SEM, or

optical microscopy. The study investigates the stiffening of PDMS with the hypothesis

that cross-link density increases through irradiation.

A statistical mechanics analysis of cross-linked polymer chains in a rubber estimates

the small strain modulus to be proportional to the cross-link density–assuming the length

of polymer chains is constant and only cross-link density increases[20, 34]. The stochastic

nature of electron beam irradiation of PDMS means that both chain length and cross-link

density could be changing in unknown ways. This is why I do not attempt to calculate

the change in cross-link density as a function of electron irradiation in Chapter 5. Further

work is needed to characterize the change in polymer chain length (i.e. molecular weight)

and cross-link density as a function of e-beam irradiation.

Aside from the characterization of the heterogeneous PDMS microfilms, these films

have already found use in biomimetic surfaces to monitor the growth of stem cells [6].

In chapter 5.4 I mention the possibility of shielding sensitive components from large

strains using e-beam irradiation for flexible electronics. The results indicate that the

stiffness increases ≈500×. This could easily protect a thin electrode from large strains

in a rubber-electronics interface. This problem represents a prime example of when the

primary objective may be electrodes, light emitting diodes, or otherwise, but because the

substrate is flexible an innovative solution is necessary to accomplish the task.

The results of this thesis could also be used as groundwork for two dimensional elect-

rodes adhered to microfilms of PDMS with user-defined stiffened platforms. This project

is interesting for both basic science and industry-strengthening innovation. The effects
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of strain on 2D material electrical properties is still being explored [83]. Locally varied

rigidity could serve as a tool to concentrate strained regions for electrical characteriza-

tion in new configurations. Both graphene and MoS2 fail at strains of ≈25% so it is

reasonable to imagine a device that contorts and flexes–such as PDMS–with 2D condu-

ctors and semiconductors. The sensitive connections for such a device–such as soldered

joints that fail at much lower strains–could be bonded to an electron beam irradiated

area with much higher stiffness. These systems could be designed for the basic science

investigation of electromechanical coupling in two dimensional films or for a substitute

to traditional silicon microdevices. In this manner, the work presented in chapters 2-5

can be used to guide further experiments involving two dimensional electronics adhered

to PDMS microfilms for new flexible electronics.

In conclusion, I have successfully characterized the mechanical properties of three

novel thin films. First, I characterized the nonlinear elastic properties of two dimensional

molybdenum disulfide. Secondly, I characterized the nonlinear elastic properties of che-

mical vapor deposited graphene and directly compare it to previous work on exfoliated (or

pristine) graphene. Finally, I measured the viscoelastic properties of PDMS microfilms

and determine the change in stiffness as a function of electron beam irradiation. These

projects span multiple time and length scales to provide new experimental and numerical

techniques for characterization of new thin film materials.
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Appendix I: Agilent G200 2D material

Nanoindentation Standard Operating

Procedure

105



1. Mount sample on aluminum nanovision puck using Crystalbond.

2. Ensure red-flagged pins are in XP shaft.

NOTE: If pins are not in place, the XP tip will be exposed after the next step. THIS

IS NOT GOOD. This can cause damage to the XP head, tip, etc. REMEMBER

TO PLACE FLAGS.

3. Open Nanosuite and click the red “XP” in the lower-right corner of the program

window. A message will ask if you want to change the workspace. Click “Yes”.

Close Nanosuite.

Figure 6.1: Location of workspace switcher.

4. Wait 10-30 s before reopening Nanosuite. Prematurely opening program can cause

driver and miscommunication errors.

5. Open method “G-Series Nanovision Interactive Scan-Herbert Fixed Load_slopecalc”

in folder “Ryan’s methods”.

6. Open G200 nanoindenter hood.
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7. Replace traditional sample holder with nanovision sample holder.

8. Mount single crystal aluminum standard in one of the sample mounts (with no

spring or washer) and mount sample with a spring and washer underneath as seen

in Fig 6.2.

(a) Al sample will be used as reference height.

(b) Ensure sample of interest is on the same plane or below Al surface as seen in

Fig. 6.2

Figure 6.2: Nanovision stage mounted in G200 with sample mounted in left slot and the
reference single crystal Al mounted in right slot. The Al surface will be used as reference
height and initial microscope-to-indenter calibration. Could also be another metal with
0.9 in total height.

9. Change the objective to the appropriate magnification.

(a) This operating procedure uses 100×.

NOTE: Use great CAUTION when moving the stage with the 100× magnifi-

cation. The focal height of the lens is very close to the surface of the sample.

DO NOT CRASH THE LENS INTO THE SAMPLE SURFACE while moving

the stage.

107



(b) The other available lenses are 10× and 40×.

10. In Nanosuite, right click the Handset window and change the template to “Nano

Positioning Sample Tray”.

11. Right click the Handset window again and change the X to “Nano Video Handset”.

12. With the blank video screen replacing the tray template, right click again and

change the Objective to 100× or whatever objective is loaded.

13. Click and hold the “Microscope up Fast” to raise objective away from sample.

NOTE: This step ensures the objective will not crash into sample. The absolute

height of the objective should be less than 750 µm.

14. Right click the video handset again and change the X back to “Nano Handset”.

15. Left click on the center of the template that has the Al reference sample. The setup

in Fig. 6.2 would be the right grey circle.

16. Right click and select “Move to Target”.

17. Right click the handset window again and change the X back to “Nano Video

Handset”.

18. Adjust the focus until the Al surface is in focus as shown in Fig. 6.3.

NOTE: This may require moving the sample laterally to have the Al directly under

the microscope. This can be done either in the “Nano Handset” menu by selecting

an area with left-click and moving to that area with the right-click menu or in the

“Nano Video Handset” by click anywhere in the video window. This will bring the

clicked point to the center of the field of view. Clicking and holding in this mode

will drive the stage continuously in the direction of the mouse be careful, the stage

can move quickly.

19. The light will also have to be adjusted. This is done by sliding the lightbulb seen

in Fig. 6.3. Or by adjusting the manual levers on the nanoindenter itself.
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Figure 6.3: Al sample brought into focus.

20. Find an area that does not have many previous indent locations.

21. Perform a microscope to indenter calibration by right-clicking the video screen.

Select “Advanced Settings”.

For the 100× objective:

(a) Change “Number of indents” to 5.

(b) Change “Distance From Center” to 10 microns.

(c) Change “Depth into Surface” to 1000 nm.

(d) Click “Next”.

22. After the 5 indents are made, move the red cross-hair to the center of the central

indent by click and moving the stage as seen in Fig. 6.4.

NOTE: If the 5 indents cannot be found by scanning the area, click “Back” and this

will center the stage to where the test began. Then click “Finish”. This will keep

the calibration from getting worse. Then, move 20 µm left and perform another
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microscope-to-indenter calibration, this time using “Number of indents”= 3. Now

the pattern should be more recognizeable.

Figure 6.4: Microscope to indenter properly centered before clicking “Finish”.

23. Perform another microscope to indenter calibration setting “Number of indents” to

1 inside the previous indent square.

24. Ensure that indent location does not need further calibration.

25. Right-click on video and bring change X to Nano Handset.

26. Move microscope to sample i.e. the left grey circle.

27. Right-click on video and bring change X to Nano Video Handset.

28. Do not change focus height. Open G200 hood and manually move sample into the

focal plane as seen in Fig. 6.5. The sample is spring-loaded, so be careful. Loosen
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the set screw while holding the Al puck and slowly bring it towards the microscope

while watching the video feed. Change light as necessary

Figure 6.5: Sample surface brought into focus after manually raising sample into focal
plain.

29. Move stage to bring 2D crystal into field of view as seen in Fig 6.6. Adjust focus

to make 2D crystal as clear as possible.
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Figure 6.6: Large grain CVD graphenere brought into focus at 100×.

30. Right click on video and select “Move Absolute/Relative”. Write down “Present

Table Position” “X” and “Y” coordinates.

31. Move field of view away from 2D crystal. Preferably to area without etched holes.

32. Redo microscope to indenter calibration following steps 20-24.

NOTE: DO NOT change focus height throughout the rest of the testing even if

indents are out of focus. Changing the focal plane changes the microscope to

indenter calibration.

33. Move field of view back to suspended 2D crystal.

NOTE: “Move Absolute/Relative” has a bug that keeps it from controlling the stage.

Just use the ‘X’ and ‘Y’ values to help navigate.

34. Center the red crosshair between the etched holes as seen in Fig. 6.6. Make sure

that an area is in the field of view that is not sensitive to scratching i.e. silicon

dioxide without graphene.
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35. Right click on the video image and change the X to “Scanning

36. Click the green down arrow “Move under probe and engage”. Handset”. A message

appears “NO IMAGE CURRENTLY AVAILABLE”.

37. Now an image is present of the last microscope image. This is not a live image.

Click and drag to create a scanning box on 9-16 holes as seen in Fig. ??.

NOTE: The holes in this operating procedure are 1 and 1.5 µm diameter. The

scanning area just needs to be at least 10 µm×10 µm. Bigger is better for slope

calculation.

Figure 6.7: Scanning area and scanning parameters properly set for first 10 µN scan.

38. Set the “Fixed Scan Load” to 10 µN.

39. Set the “Xslope” and “Yslope” to 0.00000.

40. Click the Green Triangle to start the scanning.

41. When the test has completed, save the sample in a subfolder labeled ‘Scans’.

42. Click the ‘Review’ tab and look at the 3D image.
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43. Change the ‘YSlopePosition’ value to an x-coordinate that can be used to calculate

the Y-slope. In Fig 6.8, this value is taken as 8.37 µm.

NOTE: This value is chosen for a part of the sample that is in a flat plane. You

may have to choose an x-coordinate +/- 0.1 µm depending on if it lands on a scan

location (there are 65 scan locations by default). image of the scan. Clicking and

holding the image shows a crosshair with x,y, and z-coordianate of the measured

surface.

Figure 6.8: Scanned image of surface with 10 µN scanning load. The “YSlopePosition”
and “XSlopePosition” have been set properly.

44. Repeat for the “XSlopeposition”.

45. Copy the “YSampleSlope” and “XSampleSlope” to the “Test” tab values of “YSlope”

and “XSlope”. There is no option to copy and paste, be carefule with +/- signs.

46. Change “Fixed Scan Load” to 0.2 µN.

47. Click green triangle to begin test.
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48. When test has finished go back to “Review” tab and see how much “YSampleSlope”

and “XSampleSlope” have changed. Enter the new values again as in Step 45.

49. Go back to the “Test” tab and click the camera button to “Show Video Image”.

50. Choose a new scan area that scans some of the previous area and an area that has

not been scanned as in Fig. 6.9.

Figure 6.9: New scan area that overlaps first area.

51. Begin test.

52. When test ends, go to review tab. Most likely the surface was damaged from the

initial 10 µN scan as seen in Fig. 6.10.
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Figure 6.10: New scan area that overlaps first area.

53. Repeat Step 45 for an undamaged section of the substrate.

NOTE: If slopes are varying more than 0.001, continue to scan areas and update

the slope until convergence is achieved.

54. Go back to the “Test” tab and click the camera button to “Show Video Image”.

55. Choose a scan area that scans the suspended 2D crystals as seen in Fig. 6.12.
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Figure 6.11: New scan area that scans suspended 2D crystals.

56. Begin test.

NOTE: If the scanning happens to begin–the bottom-left corner is the beginning

of the scan–in an etched hole, then stop the test immediately. The load will not be

properly applied and the suspended crystals will be ruined.

57. When test ends, change the scan area to encompass a single hole as seen in Fig. 6.13.
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Figure 6.12: New scan area that encompasses one hole.

58. Begin test.

59. When test ends, a single hole should be in the scanning window. Click the radio

button “Test” below the image.

60. Load the “V2_DCM-Cycles CSM membrane indentation test_nanovision” method.

61. This will open a new method and a new sample file. The last image in the scanning

window is preserved. Click the center of the hole and a blue crosshair appears as

seen in Fig. 6.13. This is where the test will occur.
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Figure 6.13: “Test” radio button activated and indentation method loaded. After clicking
the center, the blue crosshair marks the test location.

62. Right click on the inputs in the right part of the window and move the X to “Panel

Inputs”.

63. Change the “SampleRadius” to the appropriate value, here it is 500 nm.

64. Change the “Test Frequency” to the Harmonic frequency of the DCM tip.

NOTE: This value should be recorded in the log book. If it is not, or you have

changed the tip since the last time it was recorded. The “_HarmonicFrame” will

have to be calibrated. This procedure is laid out in the G200 manual.

65. Leave “CyclesofBasicMethod” as 3, “Number of Times to Load” as 5, “Maximum

Depth Limit” as 120 nm, and “Depth Increase in Basic Methods” as 40 nm.

NOTE: These settings make sure there are 2 CSM-enabled tests that move 30 nm

and 60 nm past the initial point of contact and three basic tests that move 120 nm,

160 nm, 200 nm past the initial contact point. These settings can be varied for other

geometries that require deeper or shallower indents for larger or smaller diameters,
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respectively.

66. Change “Y Distance for Surface Find” to 800 nm and leave “X Distance for Surface

Find” as 0 nm.

67. Leave “CSM Test Loading Rate” and “Test Loading Rate” at 5 and 15 µN/s. These

values determine how fast test is run. 15 µN/s is the upper limit for good data

collection.

68. If the time between scanning and indenting is more than 2 min, return to the

scanning method and repeat the scan of the hole. This will correct for any thermal

drift that occurs over time.

69. With blue crosshair centered and parameters set, press green triangle to begin test.

70. When test has completed, click the “Review” tab and then click the “Channels” tab.

71. Right click on graph and change “Y-Axis Channel” to “Slope Corrected Load on

Sample (nN)”

72. Right click on again on graph and change “X-Axis Channel” to “Displacement into

Surface (nm)”

73. If the test yeilds no results as seen in Fig. 6.14, then scan another hole and try

indenting again. When the test results look like Fig. 6.15, continue onto next step

for data analysis.
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Figure 6.14: Test results that yield no data. The hole is empty.

Figure 6.15: Test results that yield data. The hole is covered by a crystal.

74. Right click on graph and change “Y-Axis Channel” to “Phase Angle (deg)”
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75. Right click on graph and change “X-Axis Channel” to “Time (s)”

76. Highlight test 1:2.

77. The phase angle is 90 degrees until contact is made with the membrane, then a

dramatic change is registered, as seen in Fig. 6.16. Zoom in on the portion of the

graph with a stable phase angle and the drop as seen in Fig. 6.17.

Figure 6.16: Phase angle measured by CSM when contact is made.
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Figure 6.17: Contact point chosen based on drop in phase angle. Indicated by the
diamond labeled “C”.

78. Move the crosshairs to a point below the noise floor of the phase angle and press

“c” on the keyboard. The diamond marker that indicates point of contact will be

moved to the current crosshair location.

79. Right click on the right panel and select “Raw Channel Data”. This panel now

shows the data points for all data channels where the crosshair is located.

80. Zoom in on the point of contact “C” as seen in Fig. 6.18.

81. Make note of the value of “Displacement”. In Fig. 6.18 it is 1040.42 nm. The contact

point is only accurate to within 2.5 nm with the default settings.
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Figure 6.18: Contact point labeled “C”. Channel data located to right gives raw displa-
cement value of 1040.42 nm as point of contact.

82. Right click on graph and change “Y-Axis Channel” back to “Slope Corrected Load

on Sample (nN)”

83. Highlight test 1:3.

84. Move the crosshairs until the “Displacement” channel reads ≈1040 nm and press

“c” on the keyboard again.

85. Repeat for tests 1:4 and 1:5.

86. Check the boxes next to 1:3-5, and change the “X-Axis Channel” to “Displacement

into Surface”.

87. The resulting graphs should resemble Fig. 6.19.
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Figure 6.19: Contact points for tests 1:3-5 determined and force-vs-displacement results
shown. In the results below the graph, the Modulus is calculated in 2D and 3D values
(normalizing by the “SampleThickness” Input) and the prestress is calculated in 2D and
3D.

88. If the test does not measure a breaking point, as in the case of 1:3-4, then the

modulus should be accurate. If the membrane fractures during the test, the end

of the curve fit should be moved before fracture occurs. This is done by moving

the crosshairs and pressing “e” on the keyboard to indicate the end of the curve fit.

NOTE: The curve-fitting is done by a least-squares curve-fit to the function

F = σ2D
0 (πa)

(
δ
a

)
+ E2D (q3a)

(
δ
a

)3
where a is sample radius, E2D is the 2D modulus, σ2D

0 is the 2D prestress, q is a

function of Poisson ratio, F is applied force, and δ is the displacement of the center

of the membrane.

If the value of a is incorrect i.e. “SampleRadius”, then the 2D modulus will be

incorrect. If the “SampleThickness” is incorrect, then the value of 3D modulus and

3D prestress will be incorrect.

89. Change the value of “Drag Coefficient” to 0.8 Ns/m. The nanoindenter has inherent
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drag due to a number of factors. When the “Drag Coefficient” is updated, the force

values compentsate for the inherent drag. This will not affect results much, but it

shows there is no hysteresis in the loading-unloading until fracture occurs, as seen

in Fig. 6.20.

NOTE: The value of 0.8 Ns/m was calculated by indenting into empty holes at

different indenter speeds. I took at least 3-5 data points per speed. Then, I integra-

ted the total area between the curves and determined what drag coefficient would

lead to that amount of energy loss. Taking the average, I came up with the current

figure for drag in the system. In the future, it may be necessary to recalibrate this

figure, but it has been constant through multiple tip changes thus far.

Figure 6.20: Graph demonstrating little to no hysteresis after “Drag Coefficient” is upda-
ted and the fitted force plotted.

90. Highlight test 1:5.

91. Move the cursor to the maximum load measured, in the bottom left corner is the

value 3329.974 nN as seen in Fig. 6.20. This is the value of “Breaking Force”.

92. To plot two values of force on the same graph (in this case the fitted force and the
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measured force), right click on the graph and select “Properties”.

93. Check the box on the left “Multiple Channels”.

94. Click “Select...”.

95. Highlight “Fitted Force” and Click “Add”.

96. Click “OK”, then “OK” again.

97. Now three curves appear, zoom in and ensure that they describe the data well as

seen in Fig. 6.20.

98. Record the values of Modulus, prestress, and breaking force.

99. Repeat scanning and indenting procedure until data is statistically significant. NO-

TE: In the scanning method, the picture shown in the scanning window on the

“Test” tab can be changed to another image. Go to the “Review” tab select the

“3D” tab. Then, select the “Generated Graph” of interest. Select the “Test” tab

again and the scanning window will be updated.

100. When testing is complete, click the red up arrow to “Disengage Tip”.

101. Right click on the scanning window and move the X to “Nano Handset”.

102. Right click the nanohandset window and select “Initialize”.

103. Open the G200 hood and replace the traditional positioning tray.

104. Change the workspace back to XP by clicking the small blue icon in the bottom-

right of the Nanosuite window.

105. Restart the Nanosuite software and the nanoindenter is ready for the next user.

106. Place the Nanovision stage on the shelf below the main nanoindenter hood.

107. Replace the objective with the 10× objective.

108. Close hood of the nanoindenter.
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Final words of advice:

• Keep the number of tests in each sample file under 20. The more tests in a sample

file the higher the risk for crashing the software and losing data.

• Thermal drift is always a hurdle. One of the best ways to get close to thermal

equilibrium is to set up the sample and leave it alone for 3-5 hours. Testing can be

run remotely through a desktop sharing program.

• This method was validated using exfoliated graphene. If the method is not working

properly, you should be able to run experiments on graphene and get the same

results as C. Lee et al. 2008 and G. Lee et al. 2013.

• It is possible to indent into the silicon dioxide with the edges of the tip. This results

in almost a step response of force. It is not super-strong graphene.

• This test was designed to use a cube corner tip with a known radius. The expe-

rimental results will not be affected by unknown tip radii or other tip geometries,

but the post-processing of the data is dependent upon knowing the radius at the

very end of the tip that contacts the membrane.

• This method does not give the user an idea if the hole is well covered or even covered

at all, until indentation is performed. One way to work around this is to use SEM

or AFM to first examine the quality of the crystal and carefully document where

prime candidates for testing are located.
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Appendix II: XE-100 Nanoindentation

Standard Operating Procedure

AFM Standard Operating Procedure for imaging:

by Ryan Cooper

1. Open AFM door

2. Unclamp scanner head and unplug

3. Using one hand, slide scanner head to right to remove from AFM

4. Use AFM tweezers to pick up cantilever mounted on holder to gently attach can-

tilever to scanner head

(a) Important: To avoid losing tip from magnet’s pull, bring the cantilever

holder in at a 45º angle to its resting place. Also, hold cantilever holder by

corner and avoid blocking either of the holes

5. Turn on light bank

6. Turn on the three AFM programs:

(a) XEP (positioning software to control AFM)

(b) XEI (image software for analysis)

(c) XEC (camera software to see optical microscope image)

7. Click on “Part Select”
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(a) Turn on NC-AFM for non-contact mode

(b) Turn XY Voltage to high

(c) Turn Z Voltage to high

(d) Turn XY to 100 µm

(e) Turn Z-scanner to 20 nm

8. Turn on laser and click OK to frequency sweep

9. Use dials to move laser onto center of cantilever

10. Once laser is positioned in center of cantilever, adjust mirrors to maximize ‘A+B’

and minimize ‘A-B’ and ‘C-D’

(a) A+B ≈ 2

(b) A-B < 0.7

(c) C-D < 0.7

11. In the Scan Control Box, click “NCM setup”

(a) The peak corresponds to the resonance frequency

(b) Adjust the “Drive %” until 1/4 of the peak is approximately 0.25 µm and use

this as the set point by placing the red bar there

(c) Note: If the peak is very wide, the tip may not be good anymore

12. With “Focus Follow” checked, approach stage until substrate can almost be seen

13. Uncheck “Focus Follow” and focus on substrate

14. Using control knobs, move substrate to desired position

15. Close AFM door and place latch on without tightening down

16. Move the focal point up 100 µm from substrate
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17. Move AFM cantilever down until in focus (Now cantilever is 100 µm from substrate)

18. Check “Focus Follow”

19. Ensure approach is at the appropriate setting, if unsure use the slow setting

20. Click “Approach”

21. Set “Scan Rate” to ˜0.5 Hz

22. Set “Z-servo gain” to ˜ 1–2

23. Set “Scan Size” to appropriate setting, good to start with 20 µm

24. For imaging, look at Topography, NCM amplitude, and NCM phase in both dire-

ctions

25. Once image is obtained, analysis can be achieved on the image by right-clicking on

the image and selecting export

(a) Once in the XEI software, image can be flattened, measurements taken, and

saved as tiff or information per pixel for matlab or other software analysis

26. After images are taken, click “Lift Z” and raise scanner head to upper 3/4 of diagram

on screen

27. Turn off the laser

28. Turn off light bank

29. Unplug and unclamp scanner head

30. Carefully remove AFM tip

31. Remove sample

32. Replace scanner head, clamp and plug in

33. Close AFM door and close latch but do not tighten down
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AFM Standard Operating Procedure for indentation:

by Ryan Cooper

1. Open AFM door

2. Unclamp scanner head and unplug

3. Using one hand, slide scanner head to right to remove from AFM

4. Use AFM tweezers to pick up cantilever mounted on holder to gently attach can-

tilever to scanner head

1. (a) Important: To avoid losing tip from magnet’s pull, bring the cantilever

holder in at a 45º angle to its resting place. Also, hold cantilever holder by

corner and avoid blocking either of the holes

1. Turn on light bank

2. Turn on the three AFM programs:

1. XEP (positioning software to control AFM)

2. XEI (image software for analysis)

3. XEC (camera software to see optical microscope image)

1. Click on “Part Select”

1. Turn on NC-AFM for non-contact mode

2. Turn XY Voltage to high

3. Turn Z Voltage to high

4. Turn XY to 100 µm

5. Turn Z-scanner range to 20nm

6. Cantilever: **Choose Calibrated Cantilever type**
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1. Turn on laser and click OK to frequency sweep

2. Use dials to move laser onto center of cantilever

3. Once laser is positioned in center of cantilever, adjust mirrors to maximize ‘A+B’

and minimize ‘A-B’ and ‘C-D’

1. A+B ≈ 2 (if under 1.2 you will get error message)

2. A-B < 0.7

3. C-D < 0.7

1. In the Scan Control Box, click “NCM setup”

1. The peak corresponds to the resonance frequency

2. Adjust the “Drive %” until 1/4 of the peak is approximately 0.25 µm and use this

as the set point by placing the red bar there

3. Note: If the peak is very wide, the tip may not be good anymore

1. With “Focus Follow” checked, approach stage until substrate can almost be seen

2. Uncheck “Focus Follow” and focus on substrate

3. Using control knobs, move substrate to desired position

4. Close AFM door and place latch on without tightening down

5. Move the focal point up 200 µm from substrate

6. Move AFM cantilever down until in focus (Now cantilever is 200 µm from substrate)

7. Check “Focus Follow”

8. Ensure approach is on slow setting (in the tab “Set-up”-> “Approach”)

9. Click “Approach”
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10. Set “Scan Rate” to ˜0.5 Hz

11. Set “Z-servo gain” to ˜ 1–2

12. Set “Scan Size” to appropriate setting, good to start with 20 µm

13. For imaging, look at Topography, NCM amplitude, and NCM phase in both dire-

ctions

14. Once image is obtained, raise z-stage by 50 µm

Cantilever Calibration:

1. Open previous calibrated cantilever data such as “Namiki_set3_#2.xml” in “C:/Park

Systems/XEP/DB”

2. Change “Cantilever Stiffness” to 40 N/m as initial guess

3. Save as new tip name “_New Name_.xml”

4. open XEP

5. In part select, choose “_New Name_”

6. Perform Sensitivity Calibration to determine sensitivity

7. turn on NC mode

8. lift cantilever ˜100 µm off surface

9. move crosshair to end of calibration cantilever

10. scan 5x5 µm images until edge of calibration cantilever is found (Important: Stop

test immediately when edge is found)

11. choose indent location near edge of cantilever

12. use excel to interpolate linear section of Force-displacement data
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13. Use the Tortonese and Kirk “Characterization of application specific probes for

SPMs” to calculate Cantilever stiffness

14. Lift cantilever

15. Turn on NC mode

16. go to “C:/Park Systems/XEP/DB/“_New Name_.xml” and change cantilever sti-

ffness to new value

17. restart XEP to access calibrated cantilever data

Sensitivity Calibration:

1. Click “F/D Spectroscopy mode” (Important: Once clicked, the program switches

to contact mode)

2. Change “Set point” to 100 nN

3. Set “min” to 0 µm

4. Set “max” to 0.150 µm

5. Set “Points” to 1024

6. Right click on substrate (or any hard point on surface) and click move here

7. On same spot, right click again and choose “Add point”

8. Click “approach” then tip will be on that point

9. Click “Aquire”

10. Change “min” to -20 nm

11. Z-detector data should not be subject to hysteresis

12. Once data is acquired, lift z-stage 50 µm

13. Click “Mode” –> “Maintenance Mode” –> Password: “cantilever”
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14. Click “Mode” –> “Calibrate Mode” –>Click “Cantilever”

15. Use mouse to highlight linear, nonzero, response of Voltage-displacement response

16. Click “Calculate”

17. Click “Calibrate” (A-B sensitivity is typically ˜80)

18. Click “Save Calibration” 2–4 times to ensure data is saved

End of Calibration

Data Acquisition

1. Turn off laser

2. Change to NC-AFM

3. Turn on laser

4. Change resolution to 128 and increase scan rate

5. Image surface and find center of sample

6. Move z-stage up 50 µm

7. Click “F/D Spectroscopy mode”

8. Right click on image and select “Remove all points”

9. Right click on center of sample and choose “move here”

10. Right click on same spot and choose “add point”

11. Ensure approach setting is “slow”

12. Click “Approach”

13. Change “min” to 0 µm

14. Click “Acquire”
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15. Increase “min” by -20 µm per run until ready to break sample

16. Save graphs by double-clicking, checking the X-Y data box and clicking “export”

17. To perform more indentations, repeat “Data Acquisition” steps 1–16

End of Data Acquisition

Shut Down

1. After images are taken, click “Lift Z” and raise scanner head to halfway the diagram

on screen

2. Turn off the laser

3. Turn off light bank

4. Unplug and unclamp scanner head

5. Carefully remove AFM tip

6. Remove sample

7. Replace scanner head, clamp and plug in

8. Close AFM door and close latch but do not tighten down
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Appendix III: Nanoimprint

Lithography Standard Operating

Procedure
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Wafer Fabrication Standard Operating Procedure:

written by Ryan Cooper

E-beam evaporator (evaporating Chrome onto Si wafer)

1. If red light on top of machine is off, press “Manual”

2. Press “Navigator Panel” then “Pumping Control” then “vent PC” to vent process

chamber

3. Wait for red light to turn on again on top of device

4. Open the process chamber by pressing “Chamber Power” and “Chamber Up” simu-

ltaneously

5. Ensure shutter is blocking sample from e-beam evaporator

6. Load samples in top of process chamber

7. Locate crucible with chrome for deposition

(a) Note: Up to six crucibles can be used for multi-layered deposition

8. Close the process chamber by pressing “Chamber Power” and “Chamber down”

simultaneously

9. Press “calibrate ATM” then “Pump PC” to evacuate the process chamber

(a) Note: Log the time the PC starts to evacuate and the times when the pressure

reaches 8E-2 and 9E-6 (9E-6 is minimum operating pressure)

(b) Note: Its best to wait until PC pressure reaches 1E-6 to start evaporating

10. Turn chiller power on

11. Press “Navigator Panel” then “Power Control” to make “Power Interface” panel

appear

(a) Note: All Interlock lights on screen should be green

139



12. Start from bottom turning devices on:

(a) Contactor- “on”

(b) 10 seconds later- Press “Reset”

(c) High Voltage- “on”

(d) Filament- “on”

13. Press “Sigma” to open the Sigma interface

14. Update the Material/Sensor Setup with the settings for Chromium

15. Press “Zero thickness QCM 1” similarly 2

16. Start loop control

17. Quickly set output set point as 1%, then 1.5%

18. Increase the output set point by 0.5% intervals until desired set point is reached

(a) Note: Check last user’s set point for metal in use

19. Check viewer to see if e-beam is located on metal used for deposition, if not use

the Power Supply Controller dials “lat” and “long” on the “pos” row to move the

e-beam to desired position

20. When evaporation rate reaches a steady and desirable level, press “Zero Thickness

QCM” and then quickly open the source by pressing “Open”

(a) Note: The evaporation rate changes as the e-beam is shifted in the crucible,

be careful when adjusting the e-beam position while depositing on substrate

21. When desired thickness is achieved, close the source by pressing “Close”

22. Decrease e-beam power output by 0.5% intervals until 0% is reached then press

“Stop Power”

23. Press “Navigator” then “Power Control” to open the power control panel
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24. From the top of the panel turn components off (only the right column buttons):

(a) Filament- “Off”

(b) High voltage- “Off”

(c) Contactor- “Off”

25. Turn chiller off

26. Record final pressure

27. Press “vent PC” to vent the PC

28. Record in the log book the deposition rate, the metal, etc.

29. Press “Chamber Power” and “Chamber Up” simultaneously to raise the chamber

30. Remove the samples from the PC

31. Vacuum and brush clean the PC

32. Press “Chamber Power” and “Chamber Down” simultaneously to close PC

33. Press “calibrate ATM” then “pump PC” to evacuate PC

34. Log out
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Spin Coating w/ PMMA (anisole, anhydrous 99.7% 495 PMMA A6)

1. Swipe into spin coater

2. Set hot plate temperature to 180ºC

3. Turn on vacuum

4. Blow dry sample

5. Place on vacuum holder

6. Press “Program” then “Edit mode”

(a) Steps = 1/1

(b) Time: 00:45.0

(c) rpm: 3000 rpm

(d) Acel: 1000

7. Press “V” to vacuum hold sample

8. Drop on PMMA 495kA3

9. Press “start >”

10. After process, place on 180ºC hot plate for ˜1 min

11. After sample has been on hot plate ˜1 min, transfer to sample case

12. Log out of machine
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Nanoimprint:

1. Swipe into machine

2. Check gages

(a) First gage, should be above 600 psi

(b) Second gage should be about 500 psi

(c) Wall gage should be >80 psi (turn on)

3. Press “Recipe” then “User set”

(a) Pumping time: 2 min

(b) Pre-imprint: 180 ºC and 50 psi

(c) Imprint: 180ºC and 450 psi

(d) Process time: 3 min

4. Open nanoimprinter door slowly

5. Place down the big membrane first then place smaller membrane on top

6. Place sample on second membrane with master on top

(a) Note: be sure to offset the master slightly from the sample

7. Check the membrane on the metal ring and make sure magnets are properly placed

8. Ensure smaller membrane is between large membrane and sample and align metal

ring in machine

9. Press “Begin” then “OK”

10. When process ends, open SLOWLY and PAY ATTENTION to sample

11. Remove sample from nanoindenter
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12. IMPORTANT: When separating sample from master be sure not to induce any

shear stress between the sample and master. Use a razor to separate the sample

from the master and then gently flip over to prevent damage to master print.

13. When finished, log out of machine

144



I.C.P. (Oxford Plasma Lab 80 Plus)

1. Scan in to machine

2. Press “Process” then “Recipe” then “Load” then “OK”

3. Choose “OPT-ICP-Plasmaclean”

4. Click “OPT clean” then “edit step” specify step time: 10 min

5. Click “OK” then click “Run”

(a) When “Yellow Alert” appears, press “Accept”

6. After cleaning, and machine vented raise the chamber by choosing “Chamber up”

and pressing both “Hoist” buttons

7. Load sample

8. Choose “Chamber Down” and lower by pressing both “Hoist” buttons

9. Press “Stop” then “Evacuate”

10. When using Oxygen, do not enter wafer name

11. Press “Process” then “Recipes” then “Load” and choose “Changgu-02NOICP”

(a) Specify step time: 15 sec

(b) Press “Start”

(c) Yellow alert signifies the end of the process

12. If repeating the process, a second cleaning is not necessary. Start from Step 6.

13. When finished, log out of machine
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Chromium Etching

1. Fill beaker with CR-7S Cr etchent

2. Insert sample into etchent for 15 sec

3. Remove sample, blow dry, rinse, and blow dry a second time

4. Pour etchent into “Acid Waste” when done with CR-7S

PMMA Removal

1. Remove PMMA with acetone
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RIE (Technics Micro-RIE series 800)

1. Swipe in and turn on machine (switch on back of device)

2. Turn on CF4/O2 and set to 0.250 Torr with dial

3. Turn on Power and set to 100 Watts

4. Set timer: 8 min

5. Turn the dials off

6. Vent the chamber by alternately switching between vent and SOL’N to prevent

chemical release (3x is sufficient)

7. Load sample slightly off center towards back of machine

8. Turn pump on with SOL’N

9. Turn on gas

10. Turn on Power and start timer simultaneously

11. Wait for timer to run down and turn power off, then gas off

12. Vent machine by alternating between vent and SOL’N (3x is sufficient)

13. Remove sample

Final Cr etch

1. Fill beaker with CR-7S solution

2. Place sample in beaker

3. Allow all Cr to dissolve before removing (Will not etch as quickly as first Cr layer

due to oxidation in RIE process)

4. Pour empty etchent into “Acid Waste” container
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