
Design and Evaluation of
Procurement Combinatorial Auctions

Sang Won Kim

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

under the Executive Committee

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161446598?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


c©2014

Sang Won Kim

All Rights Reserved



ABSTRACT

Design and Evaluation of

Procurement Combinatorial Auctions

Sang Won Kim

The main advantage of a procurement combinatorial auction (CA) is that it allows suppliers to

express cost synergies through package bids. However, bidders can also strategically take advantage

of this flexibility, by discounting package bids and “inflating” bid prices for single-items, even in

the absence of cost synergies; the latter behavior can hurt the performance of the auction. It is an

empirical question whether allowing package bids and running a CA improves performance in a

given setting.

Analyzing the actual performance of a CA requires evaluating cost efficiency and the margins

of the winning bidders, which is typically private and sensitive information of the bidders. Thus

motivated, in Chapter 2 of this dissertation, we develop a structural estimation approach for large-

scale first-price CAs to estimate the firms’ cost structure using the bid data. To overcome the

computational difficulties arising from the large number of bids observed in large-scale CAs, we

propose a novel simplified model of bidders’ behavior based on pricing package characteristics.

Overall, this work develops the first practical tool to empirically evaluate the performance of large-

scale first-price CAs commonly used in procurement settings.

In Chapter 3, we apply our method to the Chilean school meals auction, in which the government

procures half a billion dollars’ worth of meal services every year and bidders submit thousands of

package bids. Our estimates suggest that bidders’ cost synergies are economically significant in this

application (∼5%), and the current CA mechanism achieves high allocative efficiency (∼98%) and

reasonable margins for the bidders (∼5%). We believe this is the first work in the literature that



empirically shows that a CA performs well in a real-world application.

We also conduct a counterfactual analysis to study the performance of the Vickrey-Clarke-

Groves (VCG) mechanism in our empirical application. While it is well known in the literature that

the VCG mechanism achieves allocative efficiency, its application in practice is at best rare due to

several potential weaknesses such as prohibitively high procurement costs. Interestingly, contrary to

the recent theoretical work, the results show that the VCG mechanism achieves reasonable procure-

ment costs in our application. Motivated from this observation, Chapter 4 addresses such apparent

paradox between the theory and our empirical application. Focusing on the high procurement cost

issue, we study the impact of competition on the revenue performance of the VCG mechanism using

an asymptotic analysis. We believe the findings in this chapter add useful insights for the practical

usage of the VCG mechanism.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

In many important procurement settings suppliers face cost synergies: for example, transportation

service providers can lower costs by coordinating multiple deliveries in the same route, and pro-

ducers can lower average costs by spreading a fixed cost across several units. Motivated by these

types of settings, auction mechanisms that allow bidders to submit package bids for multiple units

so that they can express their synergies, have received much recent attention in practice and the

academic literature. Indeed, these multi-unit auctions, typically referred to as combinatorial auc-

tions (CAs), have been implemented in many procurement applications. For example, Elmaghraby

and Keskinocak (2004), Sandholm (2006), and Hohner et al. (2003) describe applications at The

Home Depot, Procter & Gamble, and Mars Inc., respectively. This type of auctions have also been

implemented in non-procurement settings, most notably in the auctions for wireless spectrum run

by the Federal Communications Commission (FCC) (McDuff, 2003).1

A central auction design question in multi-unit settings is how allowing bidders to submit bids

for packages of units impacts the performance of the mechanism. From the perspective of an

auction designer, there are typically two measures that are relevant when evaluating performance:

(1) efficiency, which compares the actual bidders’ costs realized in the auction allocation relative

to the minimum possible cost allocation that can be achieved; and (2) optimality, which relates to

1Cramton et al. (2006) provides an overview on CAs.
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the total payments to the bidders by the auctioneer. The above design question is crucial because

allowing for package bidding via a CA can have countering effects on the performance under these

two measures, as we describe next.

On one hand, allowing package bids can enhance the performance especially in the presence of

cost synergies. In many procurement applications, such as the examples mentioned above, bidders

may have cost synergies due to economies of scale, which depend on the volume allocated to a given

supplier, and economies of density, which depend on the proximity of the units in an allocation. If

bidders were allowed only to submit bids for each unit separately, they would face the risk of

winning some units but not others. This phenomenon, known as the exposure problem, can make the

bidders less aggressive in expressing the economies of scale and density that arise from supplying

multiple units. Enabling package bidding through a CA eliminates this risk, potentially leading to

more efficient outcomes and lower procurement costs.

However, allowing package bids could also hurt the performance. As pointed out by Cantillon

and Pesendorfer (2006b) and Olivares et al. (2012), when using a first-price rule, bidders can engage

in strategic bundling in which they submit package discounts even in the absence of cost synergies.

One motivation to do so may be to leverage a relative cost advantage in a unit (for which the bidder

is the cost-efficient provider) into another unit (for which the bidder is not the efficient provider).

The firm may attempt to win both units by submitting a “discounted” package bid for the bundle

and “inflating” both single-unit bids. If the bidder wins the package, it will lead to an inefficient

allocation in which a unit is not served by the lowest-cost supplier. In addition, package bidding can

also lead to the threshold problem, in which “local” suppliers bidding for small packages free-ride

on each other to outbid “global” suppliers submitting bids on larger packages; this free-riding can

lead to less competitive bidding, higher margins and thereby higher payments for the auctioneer.

Milgrom (2000) and Baranov (2010) provide examples of the threshold problem.

Given the aforementioned trade-off, we expect that a CA should enhance the performance,

relative to auction mechanisms that preclude package bidding, if cost synergies are strong and the

incentives for the types of strategic behavior mentioned above are weak. However, analyzing the
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actual performance of a CA requires evaluating cost efficiency and the margins of the winning

bidders, which is typically private and sensitive information of the bidders. Moreover, existing

theory is not conclusive on how large the incentives for strategizing are in a specific application.

Thus motivated, in Chapters 2 and 3 of this dissertation we develop and apply an empirical approach

to evaluate the performance of first-price CAs based on observed bid data, and use it to inform the

auction design.

To measure the performance of a CA, it is essential to identify bidders’ supplying costs, which

are not directly observable in the bid data. In a CA, bidders may place discounted package bids,

which may reflect cost synergies. However, the presence of package discounts is not conclusive

about the performance of the auction. Bid discounts could also be driven by the types of strategic

behavior alluded to above; bidders could inflate their single-unit bids relative to package bids to

increase the probability of winning larger packages with relatively high margins, even in the absence

of cost synergies. Such strategic inflation of single-unit bids also results in package discounts. In

Chapter 2, we propose a structural estimation approach that identifies the bidders’ costs using actual

bid data, and therefore disentangles whether the discounts observed in the bid data are driven by cost

synergies or strategic markup adjustments. This distinction is important as one would expect a CA

to perform well only if the discounts observed are mostly explained by cost synergies.

Our method is based on the influential work of Guerre et al. (2000) for single-unit auctions that

was later extended by Cantillon and Pesendorfer (2006b) and was applied to the London bus routes

CAs with two or three units. More specifically, Cantillon and Pesendorfer (2006b) conduct the

structural estimation of first-price CAs in two steps. In the first step, a statistical distribution of the

competitors’ bids is estimated from bidding data. In the second step, the first-order conditions from

the bidder’s profit maximization problem are used to find the imputed costs that would rationalize

the bids observed in the data. These first-order conditions involve beliefs about the competitors’

bidding behavior, and the distribution estimated in the first step is used to sample competitors’ bids

and form these beliefs. The estimated costs enable the calculation of the cost efficiency and bidders’

margins in the CA to evaluate its performance. They also allow us to evaluate alternative auction
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designs. We show, however, that this approach cannot be directly applied to large-scale CAs with

many units, due to the high dimensionality of the bid vectors. This is an important limitation for

many real-world procurement applications of CAs; for example, Caplice and Sheffi (2006) and

Bichler et al. (2006) report CAs for transportation and procurement of inputs that typically involve

hundreds of units.

Consequently, an important methodological contribution of our work is the development of a

novel approach to apply structural estimation to large-scale first-price CAs. We introduce a “simpli-

fied” version of the bidder’s problem where the markups charged on package bids are chosen based

on a reduced set of package characteristics. With this simplification, the first-order conditions of the

bidder’s problem become computationally and econometrically tractable. We impose reasonable

restrictions to the structure of the markups that reduce the complexity of the bidders problem but

still provide sufficient flexibility to capture strategic behavior that can hurt the performance of a CA.

In addition, we introduce a parsimonious, yet flexible parametric description of the distributions of

competitors’ bids for CAs that involve heterogeneous units, and scale and density discounts. This

specification makes the estimation of the distributions of competitors’ bids tractable. Overall, these

two simplifications make the use of the structural approach feasible in large-scale CAs.

We expect that our approach, based on pricing package characteristics, can be used in other

real-world large-scale auctions. Despite the practical use of CAs like the ones mentioned above,

their econometric analysis has been limited due to the complexity. Even though our method may

need modification to accommodate different pricing and auction rules in those different settings, we

believe that our idea of using characteristic-based pricing can be a useful starting point to reduce

the complexity of econometric analysis in such large-scale settings.

In Chapter 3, we apply our method to the Chilean school meals CA in which the government

procures half a billion dollars’ worth of meal services every year to feed 2.5 million children daily.

This is one of the largest and most important social programs run by the Chilean government. The

application fits well within the class of large-scale CAs: each auction has about 30 units and firms

submit hundreds of bids (see Epstein et al. (2002) for more details on the auction). This application
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serves as a template to illustrate how to apply our method and show how its results can provide

managerial insights into the auction design. In particular, the government officials running this

auction have considered revising its format and we use the structural approach developed here to

inform this question. Moreover, to the best of our knowledge, this is the first work in the literature

that empirically shows that a CA performs well in a real-world application.

While Olivares et al. (2012) provide some empirical evidence of the benefits of the CA design

in the school meals application studied here, the structural approach contributes significantly to

the performance evaluation of this auction. The reduced-form analysis of Olivares et al. (2012)

provides a direct estimation of the bid discounts in this CA application – for the larger packages, the

discounts can be as large as 6% of the average bid price. However, it could not directly distinguish

between cost synergies and the strategic markup reductions from the package discounts. In contrast,

the results of our structural estimation show that cost synergies account for most of these discounts

(79-86%), and that cost synergies are significant and amount up to 5% of the average cost. The

rest of the bid discounts are explained by strategic markup adjustments. We also use the estimation

results to pin-point the package bids for which bidders engage in strategic bundling. In addition, the

estimated costs reveal that the CA achieves a high efficiency (in the order of 98-99% of the efficient

allocation) and reasonable margins for the bidders (in the order of 4-5%). Drivers of this result

are the relatively large cost synergies and the high level of competition in the auction; there is a

reasonable number of firms and most firms compete in all units and submit many package bids. For

the latter reason, firms do not seem to have enough market power to significantly harm efficiency by

using the flexibility that package bidding allows with strategic motivations. Overall, the structural

approach provides a direct measure of the good performance of the CA in this setting, which cannot

be done through a reduced-form approach. In summary, our results suggest that package bidding

and running a CA seems appropriate in this application.

Furthermore, we use the estimates of the structural model to evaluate alternative mechanism

designs for the school meals auction. In particular, we compare the total payments to bidders

of the current design (a first-price sealed-bid auction) against the Vickrey-Clarke-Groves (VCG)
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mechanism, which generalizes the second-price auction in multi-unit settings. It is well known in

the literature that truthful bidding is a dominant strategy, and therefore the VCG mechanism leads

to a fully efficient allocation. However, the VCG mechanism has been criticized for numerous

drawbacks, leading to a very rare use in practice. For example, Ausubel and Milgrom (2006) point

out that in the face of complementarities, the total procurement cost under the VCG mechanism can

be prohibitively high. Although the priority is generally given to allocative efficiency in a public

procurement project, the procurement cost is also an important performance measure and can be a

decisive factor to deny the use of the VCG mechanism. Therefore it is on itself interesting to see

how the VCG mechanism would work in a real world application.

Having estimated the bidders’ supplying costs which would be their reported bids if VCG

had been used, we were able to compute the procurement cost under this counterfactual scenario.

Interestingly, and contrary to the theoretical predictions in the literature, the results show that the

VCG mechanism performs well in that particular application despite the significant cost synergies –

the VCG procurement costs are very close to those of the first-price CAs in both 2003 and 2005. We

believe this result is driven by the significant amount of competition introduced by the large number

of package bids submitted by firms.

Motivated by this important observation using real-world data, Chapter 4 focuses on the revenue

properties of the VCG mechanism, addressing such apparent paradox between the theory and our

empirical application. More specifically, we examine the impact of competition on the revenue

performance of the VCG mechanism using an asymptotic analysis. The main insight that our

analysis provides is that the first order impact would be the competition measured by the amount

of bids placed rather than measured simply by the number of bidders; our results emphasizes

that the VCG mechanism is expected to work better when the bidders’ interests are not limited

to a small subset of units, resulting in high unit-wise competition, and when they place ample

combination bids that contain such units in which they are interested. In our empirical application, it

is relatively straightforward for bidders to estimate their supplying costs on many different packages,

and therefore they were able to place a large number of bids over most of the units in the auction
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– this scenario is precisely one in which our results suggest that VCG should work well. Although

the analysis we provide in Chapter 4 is yet preliminary, we believe that the findings in this chapter

adds useful insights for the practical usage of the VCG mechanism.

Literature review

This work adds to the stream of research in the literature that examines CAs. Most notably, Cramton

et al. (2006) provide a comprehensive overview of CAs. In addition, de Vries and Vohra (2003)

present a useful survey on CAs and Pekec and Rothkopf (2003) discuss the design issues in CAs.

CAs have been studied in various fields including economics, computer science, operations

research, and operations management. In operations research and computer science, there is an

active body of works that focus on the complexity of the auction mechanism. For example, Rothkopf

et al. (1998) and Sandholm (2006) analyze the winner determination problem of CAs, identifying

structures that lead to computational efficiency. By allowing combination bidding, CAs may result

in excessive amount of possible number of packages on which bidder can place bids, and this can

also cause challenges to bidders. Day and Raghavan (2009) propose a CA format where bidders

submit several matrix bids, effectively making the bidding expression compact. Also, An et al.

(2005) design a simple and efficient model for bidders’ valuation and efficient bidding strategies,

and evaluate the impact of the proposed strategies on the revenue of the CA.

In the economics literature, researchers have been particularly interested in the performance

analysis of package bidding through CAs. There are several papers analytically examine small size

CAs to study the implications of allowing package bidding. Baranov (2010) analyzes exposure and

threshold problems in CA settings and examines their impact on auction performance in terms of

both revenue and efficiency. Levin (1997) considers the optimal selling mechanism for complemen-

tary items. By analyzing a small CA, Maréchal and Morand (2009) also studies free-riding problem

in a first-price sealed-bid CA. Krishna and Rosenthal (1996) consider the case where multiple units

are auctioned simultaneously in the presence of synergies. There is also a growing body of research
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that empirically study CAs. For example, Ausubel et al. (1997) and Moreton and Spiller (1998) take

reduced-form approaches to analyze the extent of synergies among wireless licenses using data from

Personal Communication Service (PCS) spectrum auctions. There is also an increasing number of

papers that conduct structural estimation on auctions in multiple unit settings – we will discuss some

of these papers when we provide review on the structural estimation papers on auctions.

Practical applications of using CAs for procurement decisions are frequently discussed in the

literature. One major field of application is industrial sourcing decisions especially in B2B settings.

For example, Bichler et al. (2006) and Hohner et al. (2003) study the case of using CAs by Mars Inc.

for its important sourcing decisions. Similarly, Metty et al. (2005) examine Motorola’s world-wide

procurement operations that use CAs. Anther field where CAs have been actively discussed and

implemented is the procurement of transportation services (Sheffi (2004) provides an overview of

using CAs in the transportation procurement). Caplice and Sheffi (2006) examine implementation

of a CA for truckload transportation and Elmaghraby and Keskinocak (2004) describe the CAs used

for transportation services by retail firms such as The Home Depot Inc. and Wal-Mart Stores Inc.

Cantillon and Pesendorfer (2006a) provide detailed description of the first-price CA used to procure

public bus services to private providers in the city of London.

The application that we study in Chapter 3 is the CA used for procuring public school meal

services in Chile. Details of this particular application including the background, history as well as

the specific auction rules are presented in Epstein et al. (2002). Epstein et al. (2004) develop and

discuss the techniques to solve the winner determination problem that was used in this particular

application. Similarly, Catalán et al. (2009) also focuse on the computational aspects, reporting

the advances in the techniques of solving the winner determination problems in this application.

Chapter 3 is very closely related to Olivares et al. (2012), in which the authors conduct an empir-

ical investigation on this application. By taking a reduced-form approach, they found suggestive

evidence of cost synergies. Our analysis in Chapter 3 complement their results – we provide direct

estimates of the bidders’ costs and synergies as well as the efficiency of the allocation.

Our work is related to other structural estimation papers on auctions (see Athey and Haile
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(2006), Hendricks and Porter (2007), and Paarsch and Hong (2006) for good surveys). Most notably,

Reguant (2011) uses a first-order-conditions approach to structurally estimate a model of the day-

ahead wholesale electricity market in Spain, where “complex bids” allow companies to express cost

complementarities of operating across different hours in the same day. In addition, Fox and Bajari

(2013) use an estimator based on a pairwise stability condition to estimate complementarities in

an FCC spectrum auction, which is run in an ascending auction format without package bidding.

There has also been an important structural estimation literature studying multi-unit auctions of

homogeneous goods (see, e.g., Hortaçsu and McAdams (2010), Kastl (2011), and Chapman et al.

(2005)). Our method developed in Chapter 2 is built upon the structural estimation method on

CAs by Cantillon and Pesendorfer (2006b) which was inspired by the seminal work of Guerre

et al. (2000) for single-unit auctions. Cantillon and Pesendorfer (2006b) applied their method to

the London bus routes CAs with two or three units, but a direct application of their method is not

possible to large-scale CAs. To the best of our knowledge, this is the first work that does structural

estimation on large-scale CAs.

This work is also related to the growing literature in operations management that uses structural

estimation. Olivares et al. (2008) develop a structural approach to impute the cost of overage and

underage of a newsvendor, which is applied to the reservation of operating room time by an hospital.

Allon et al. (2011) conduct a structural estimation to measure the implicit waiting cost of customers

in the fast food industry. Similarly, Aksin-Karaesmen et al. (2013) estimate customer waiting costs

but develop a dynamic structural model to explain customer abandonments in a bank’s call center. Li

et al. (2011) also model consumer’s forward looking behavior through a dynamic structural model,

using data from the airline industry. Lu et al. (2012) study queues in the context of retail stores

and examine how customers’ waiting affects their purchasing behavior. Musalem et al. (2010) uses

store-level sales data to study the effect of out-of-stocks on customer choice. We add to this stream

of research by applying structural estimation in a service procurement setting, an important area in

operations and supply chain management.

Finally, Chapter 4 of this work is related to the literature that examine the pitfalls of the VCG
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mechanism and propose variants of the VCG mechanism that overcome such deficits. Most notably,

Ausubel and Milgrom (2006) provide a detailed analysis on the drawbacks of the VCG mechanism,

including low revenue problem and the possibility of collusion and shill bidding. Moreover, they

show that these problems are closely related to the core of the transferable utility cooperative game

played among the bidders and the auctioneer. Related to this, there is a growing body of work

that develops the so called core-selecting auctions intended to overcome such drawbacks that the

VCG mechanism faces. For example, Day and Milgrom (2008) discuss properties of the core-

selecting auctions and relates them to the stable mating mechanisms. Also Ausubel and Milgrom

(2002) explore ascending proxy auctions with package bidding, where the outcome is a point in the

core. Day and Raghavan (2007) develop a bidder-Pareto-optimal core-selecting auction, addressing

the computational difficulties in the payment calculation, and Day and Cramton (2012) develop

further a method to compute a (unique) point in the core that minimizes the distance from the VCG

payments in a given norm, using quadratic programming. One limitation in these papers is that they

only perform the analysis in complete information settings. In particular, Goeree and Lien (2009)

discover in a simple setting that the core-selecting auctions may result in inefficient allocation with

slightly worse revenue performance than the VCG auction in an incomplete information setting.

However, later work by Ausubel and Baranov (2010) identify the cases where the core-selecting

proxy auction outperforms the VCG mechanism in terms of the auction revenue also through a

full equilibrium analysis in a simple setting with incomplete information. We believe that our

analysis in Chapter 4 contribute to this line of research, taking a different direction – we identify the

environment where the VCG mechanism is expected to perform well in terms of the procurement

cost (or revenue), to enhance the practicality of the mechanism.

Organization of the Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2 we propose a structural

estimation approach for large-scale first-price sealed-bid CAs. After describing a structural estima-
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tion framework to estimate the primitives of first-price sealed-bid CAs in Section 2.2, we explain

the limitations in large-scale CAs. Sections 2.3 and 2.4 develop our proposed characteristic-based

markup approach and describe its further details. We then provide detailed description of the

estimation procedure using our approach in Section 2.5.

We apply our structural estimation method to the Chilean school meals auction in Chapter 2.

In Section 3.2, after providing a detailed description of the Chilean school meals auction and the

data, we discuss how the structural model assumptions fit into this application. We then present

the estimates for the distribution of the competitors’ bids in Section 3.3. Using these estimates,

3.4 provides cost and markup estimation results in both small and large-scale auctions. Finally, we

conduct performance analysis of the large-scale CAs using the cost and markup estimates in Section

3.5.

Chapter 4 studies the revenue properties of the VCG mechanism. Section 4.2 describes the rules

of the VCG mechanism and relates its outcome to the core of coalitional games. Using the estimates

from the Chilean school meals auction in Chapter 3 we perform a counterfactual analysis to see how

the VCG mechanism would work in this particular application in Section 4.3. Then we provide our

main analysis on the asymptotic revenue properties of the VCG mechanism in Section 4.4.
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Chapter 2

Structural Estimation Approach for

Large-Scale First-Price Sealed-Bid

Combinatorial Auctions

2.1 Introduction

A reduced-form analysis of the bid data can be used to provide a direct measurement of the package

discounts relative to single-unit bids observed in a CA. For example, in the context of the application

we study in Chapter 3, previous work by Olivares et al. (2012) provides evidence of significant

package discounts (see Figure 2.1). However, the presence of package discounts is not conclusive

about the performance of the auction. While bid discounts may reflect cost synergies, they could also

reflect the types of strategic behavior as described in Chapter 1; bidders could inflate their single-unit

bids relative to package bids to increase the probability of winning larger packages with relatively

high margins, even in the absence of cost synergies. Such strategic inflation of single-unit bids also

results in package discounts and a reduced-form analysis of the bid data cannot directly distinguish

between this and a cost synergy-based explanation. This is limiting when evaluating the efficiency

of the auction, since we expect a CA to perform well only if package bid discounts are mostly
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explained by cost synergies. Moreover, since a reduced-form analysis does not identify bidders’ cost

information from the observed bids, it cannot be used to evaluate alternative mechanism designs.

Figure 2.1 – Average scale discounts in per-meal bid prices.
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Average scale discounts in per-meal bid prices placed during 1999 - 2005. Dashed lines indicate 95%

confidence interval of the estimates. The discount is measured by the decrease in the per-meal bid price

when individual units are combined into a multi-unit package in the corresponding volume range. For

example, the price of a meal in a package with 7 units (about 20 million meals) is cheaper by 6% of

the average bid price compared to the bid prices of a meal in individual units. All the bid prices are

normalized to 1999 values using consumer price index.

As an alternative to this reduced-form approach, we propose a structural estimation approach

which directly identifies the bidders’ costs using actual bid data. In particular, our structural method

disentangles whether the discounts observed in bids are driven by cost synergies or strategic markup

adjustments. Our method is based on the seminal work of Guerre et al. (2000) for single-unit

auctions that was later extended by Cantillon and Pesendorfer (2006b) to a CA setting with a small

number of units. The main idea behind this structural approach is to use the first-order conditions

from the bidder’s profit maximization problem to find the imputed costs that would rationalize

the bids observed in the data. More specifically, Cantillon and Pesendorfer (2006b) conduct the

structural estimation of first-price CAs in two steps. In the first step, a statistical distribution of the

competitors’ bids is estimated from bidding data. In the second step, the first-order conditions from
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the bidder’s profit maximization problem are used to find the imputed costs that would rationalize

the bids observed in the data. These first-order conditions involve beliefs about the competitors’

bidding behavior, and the distribution estimated in the first step is used to sample competitors’ bids

and form these beliefs.

In a large-scale CA such as the one we analyze in Chapter 3 – where each bidder submits in

the order of hundreds or thousands of bids – a direct application of the Cantillon and Pesendorfer

(2006b) method may not be possible due to the large number of decision variables in the bidder’s

profit maximization problem. We develop a novel approach to overcome this issue, assuming a

“simplified” version of the bidder’s problem where the markups charged on the package bids are

chosen based on a reduced set of package characteristics. With this simplification, the bidder’s

problem becomes computationally and econometrically tractable so that the structural approach can

be effectively applied to large-scale CAs. Recall, however, that the main objective of the structural

approach is to identify the cost structure – which is a primitive in the structural model – separately

from the markups, which is chosen strategically by the bidders. Therefore, we impose reasonable

restrictions to the structure of the markups that reduce the complexity of the bidders problem but

still provide sufficient flexibility to capture strategic behavior that can hurt the performance of a CA.

In addition, we introduce a parsimonious, yet flexible parametric description of the distributions of

competitors’ bids for CAs that involve heterogeneous units, and scale and density discounts. This

specification makes the estimation of the distributions of competitors’ bids tractable. Overall, these

two simplifications make the use of the structural approach feasible in large-scale CAs.

To the best of our knowledge, our work is the first structural estimation approach on large-scale

CAs. We expect that our approach, based on pricing package characteristics, can be used in several

real-world large-scale auctions. Notably, CAs have been actively used in outsourcing transportation

services by, for example, The Home Depot (Elmaghraby and Keskinocak, 2004) and Proctor &

Gamble (Sandholm, 2006). As Caplice and Sheffi (2006) point out, in many cases these auctions

are done in large-scale – with a few hundreds of lanes. In addition, CAs also have been used in

many industrial procurements. For example, Mars Inc. used them to source packaging materials and
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raw materials (Hohner et al., 2003). In such settings, CAs are also used in large-scale, sometimes

including hundreds of items in one auction (Bichler et al., 2006). The FCC has also recently allowed

package bidding in its spectrum auctions, in which they can sell hundreds of licenses simultaneously

(McDuff, 2003). Even though our method may need modification to accommodate different pricing

and auction rules in these different settings, we believe that our idea of using characteristic-based

pricing can be a useful starting point to reduce the complexity of econometric analysis in these

large-scale settings.

The rest of the chapter is structured as follows. Section 2.2 develops a structural estimation

framework to estimate the primitives of first-price sealed-bid CAs and explain its limitations in a

large-scale setting. Section 2.3 introduces the characteristic-based markup approach for large-scale

CAs and Section 2.4 provides details on how to specify the markup restrictions. We present details

of the two step estimation procedure in Section 2.5, which includes the description of estimating

the distribution of competitors’ bids as well as estimating markups and costs based on the estimated

distribution. Section 2.6 provides the main conclusions of this chapter.

2.2 Structural Estimation Approach for Combinatorial Auctions

This section develops a structural estimation framework to estimate the primitives of first-price

single-round sealed-bid CAs. First, Section 2.2.1 describes the structural model and its primitives.

Section 2.2.2 describes a two-step estimation approach to estimate the primitives of the structural

model. Section 2.2.3 contains an informal discussion on identification. The standard structural

approach to estimate auctions was pioneered by Guerre, Perrigne, and Vuong (2000) (GPV) for

single-unit auctions. Cantillon and Pesendorfer (2006b) (CP) extended this approach to CAs and

applied it to the London bus route auctions with three or fewer units. The structural approach

introduced below closely follows the approach in CP, with some differences that we specify. Finally,

Section 2.2.4 discusses the limitations of applying this approach to large-scale CAs, due to the high

dimensionality of the bid vectors.
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2.2.1 A Structural Model for First-Price Sealed-Bid Combinatorial Auctions

First, we describe the basic setting of a CA. Let U denote the set of N units to be procured by an

auctioneer. There is a set F of supplier firms, referred to as bidders and indexed by f . A package

or combination, indexed by a, is a non-empty subset of units in U . We let A denote the set of all

possible packages and A = |A| (= 2N − 1) be the total number of them. Let baf denote the bid

price asked by bidder f to supply package a, and bf = {baf}a∈A the bid vector containing all bids

from that bidder.

The following assumption describes the auction format.

Assumption 2.1 (Auction Format). The auction has a first-price single-round sealed-bid format,

so that bidders submit their bids simultaneously and winning bidders are paid their submitted bid

prices for the packages awarded to them. The auction mechanism determines the winning bids

by solving the following mathematical integer program, referred to as the winner determination

problem:

minimize
∑

a∈A,f∈F
bafxaf (2.1)

subject to x ∈ X, xaf = {0, 1}, ∀a ∈ A, f ∈ F,

where xaf is a binary decision variable that is equal to one if and only if package a is assigned to

bidder f , and x = {xaf}a∈A,f∈F . We denote by X the set of feasible allocations; the set imposes

that each unit is allocated to exactly one bidder, that each bidder can win at most one package, and

potentially some additional allocative constraints.

The winner determination problem (2.1) minimizes the total procurement cost of the auctioneer,

given the submitted bids. We note that the additional constraints in the set of feasible allocations

could impose, for example, market share constraints that limit the maximum package size that a

single bidder can be awarded, which may be used to keep a diversified supplier base. In Section 3.2,

we provide more details on the winner determination problem and its integer program formulation

in the context of our specific empirical application.
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The structural estimation approach is based on an auction model with private information and

requires assumptions on the bidders’ information structure and bidding behavior in order to identify

their supplying costs.

Assumption 2.2 (Bidders’ Costs). Bidders have independent private costs. In particular, given an

auction, each bidder f ∈ F gets an independent random draw of a cost vector cf = {caf}a∈A, in

which caf is the cost of supplying package a for bidder f .

Before submitting its bid, each bidder observes its own vector of costs, but does not observe

the costs’ realizations of its competitors. Moreover, because costs are private, a bidder’s costs only

depend on its own private signal and it is not a function of the costs’ realizations of other bidders.

Based on this information structure, we make the following assumption on the bidders’ bidding

strategies.

Assumption 2.3 (Strategies). Bidders are risk-neutral and play pure bidding strategies. In partic-

ular, for a given auction, a bidder’s strategy is a function bf : <A+ 7→ <A+ that depends on its own

costs cf . Bidders place bids on all possible combinations of units.

In our sealed-bid format, bidders submit their bids in a game of incomplete information without

directly observing the bids nor the cost realizations of their competitors. Therefore, bidders face

uncertainty on whether they will win any given package. For each bidder, we capture this uncer-

tainty with the vector Gf (bf ) = {Gaf (bf )}a∈A, where Gaf (bf ) is the probability that bidder f

wins package a with bid vector bf . Using vector notation, we can then write a bidder’s expected

profit maximization problem as:

maximize
b∈<A

+

(b− c)TG(b), (2.2)

where vT denotes the transpose of a vector v. Note that each bidder has its own optimization

problem with its own cost and winning probability vectors. To simplify the notation, we omit the

subscript f whenever clear from the context.
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To formulate the optimization problem above, a bidder needs to form expectations about the

bidding behaviors of its competitors, so that it can evaluate the vector of winning probabilities

G(b), for a given value of b. Note that if bidder f anticipates that bidder f ′ uses a bidding

strategy bf ′(·), bidder f ′’s bids are random from bidder f ’s perspective; they correspond to the

composition bf ′(cf ′), where cf ′ is the cost vector for bidder f ′. Note that cf ′ is random from bidder

f ’s perspective, because it is private information. Assumption 2.4, described next, formalizes this.

Assumptions 2.1, 2.2, 2.3, and 2.4 are kept throughout the chapter.

Assumption 2.4 (Bid Distributions). a) Consider a given auction and any bidder f ∈ F . From

the perspective of other bidders, the bid vector of firm f , bf = bf (cf ), is random and is given by

the composition of the strategy used by firm f in the auction and its random cost vector cf (see

Assumptions 2.2 and 2.3). Accordingly, denote by Hf (·|Z) the distribution of bf , where Z is a

vector of observable bidders and auction characteristics. This distribution is common knowledge

among bidders.

b) For all bidders f ∈ F , the competitors’ random bid vectors {bf ′}f ′ 6=f are mutually independent

conditional on Z.

c) For all bidders f ∈ F , the distributions of competitors’ bids {Hf ′(·|Z)}f ′ 6=f and the winner

determination problem (2.1) induce the beliefs on the winning probabilities Gf (bf ), for any given

bf .

d) For all bidders f ∈ F , Hf (·|Z) has a continuous density everywhere.

We note that while Assumptions 2.1, 2.2, and 2.3 (or similar variations of them) are commonly

made in the literature, Assumption 2.4 departs from the standard structural approach followed by

CP and GPV in the following sense. The standard approach assumes that the primitives of the

model such as the number of bidders, the probability distribution of costs, and the utility functions

are common knowledge and that bidders play a Bayes Nash equilibrium (BNE) of the game induced

by the auction. In many settings, such as the first-price single-unit auction studied in GPV, this is

well justified because under mild conditions a unique symmetric pure strategy BNE always exists.
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However, there is no theoretical result available that guarantee existence of a pure strategy BNE

in a CA. As we describe next, Assumption 2.4 is weaker than assuming BNE play, but still lends

itself to using the two-step estimation approach in CP. In fact, an alternative would be to assume

that bidders play a mixed strategy BNE in the CA; this is guaranteed to exist. However, we believe

that formulating a structural model in terms of pure strategies is more transparent, has a clearer

interpretation, and yields simpler identification arguments.

More specifically, note that assuming pure strategy BNE play imposes two conditions for each

bidder: (i) the bidder correctly anticipates the strategies of its competitors, and therefore correctly

estimates the vector of winning probabilities given its own bids; and (ii) the bidder selects a bid

vector that maximizes its expected profit, given its costs and the winning probabilities function.

While conditions (a)-(c) in Assumption 2.4 are weaker than condition (i) in a private cost setting,

they impose the same restriction over bidders’ beliefs that we use in our structural estimation

approach: bidders in the auction can correctly anticipate their winning probabilities. This follows

because Assumption 2.4 imposes that bidders’ beliefs on winning probabilities are induced by

the distributions {Hf (·|Z)}f∈F , which are constructed with the correct strategies used by the

competitors in the auction together with their actual costs’ distributions. We also make a weaker

assumption relative to the aforementioned condition (ii) imposed by BNE: we will only assume that

each bidder selects a bid vector that satisfies the necessary first-order conditions of the expected

profit maximization problem (2.2). Despite these differences in the formulation of the structural

model, the first-order conditions introduced below in Section 2.2.2 are the same as the ones used by

CP to identify bidders’ costs.

Condition (d) in Assumption 2.4 guarantees the differentiability of the winning probability

vector G(·) that is needed to use the first-order conditions for estimation. Note that this assumption

is over the bids’ distributions, that are endogenously determined in the auction game. Although we

would prefer to make assumptions over model primitives that imply the assumptions on behavior,

the lack of theoretical results regarding the existence and characterization of pure strategy equilibria

in CAs does not allow us to follow this approach. We formalize the differentiability of G(·) in the



CHAPTER 2. STRUCTURAL ESTIMATION APPROACH FOR LARGE-SCALE FIRST-PRICE
SEALED-BID COMBINATORIAL AUCTIONS 20

following proposition. The proof of this proposition as well as all other proofs are provided in the

appendix of this chapter (see Section 2.7).

Proposition 2.1. In a given auction, the winning probability vector Gf (b) is continuous and differ-

entiable at all b, for all bidders f ∈ F .

2.2.2 A Two-Step Structural Estimation Method

For a given bidder, the necessary first-order conditions of the optimization problem (2.2) are given

by the matrix equation:

c = b+
{

[DbG(b)]T
}−1

G(b), (2.3)

where Db refers to the Jacobian matrix operator with respect to the variable vector b so that the

ijth element is [DbG(b)]ij = ∂
∂bj
Gi(b). Note that the Jacobian DbG(b) is a square matrix which

can have non-zero off-diagonal elements because packages of the same bidder compete against each

other. Now, for a given auction, there is one first-order-condition matrix equation per bidder. The

standard structural approach assumes that the observed bid vector of each bidder satisfies equation

(2.3). An important difference between first-price single-unit auctions and CAs is that in the former

this first-order condition is necessary and sufficient for optimality, while in the latter it is only

necessary. However, in principle it is possible to test computationally whether the observed bid

vector that satisfies (2.3) is locally or globally optimal for optimization problem (2.2). We provide

more details in the context of our application.

The first-order conditions (2.3), evaluated at the observed bid vector in the data, are the basis to

point identify that bidder’s cost vector, because the right-hand side only depends on the observed

bid vector b, the winning probabilities G(b) and their derivatives. Note that Assumption 2.4 implies

that bidders have the correct expectations about the vector of winning probabilities G(b). Hence,

these winning probabilities must be consistent with the actual auction play, and therefore can be

potentially estimated using bidding data from all bidders. For example, in the first-price single-unit

auction analyzed by GPV, the winning probability distribution – which in this case corresponds to
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the tail distribution of the competitors’ minimum bid – and its derivative can be estimated non-

parametrically. GPV replace these estimates in the first-order conditions to obtain point estimates

of bidders’ costs.

In a CA setting,Gf (·) is a vector of probabilities determined by the bid distributions of competi-

tors {Hf ′(·|Z)}f ′ 6=f and the winner determination problem (2.1) which has no analytical solution,

thereby complicating its estimation. CP uses a simulation-based two-step method to estimate Gf (·)

and to then use the first-order conditions to obtain point estimates of the bidders’ costs. This

procedure can be summarized as follows:

Step 1. Use bid data to estimate the distribution of bids, Hf ′(·|Z), for all firms f ′ ∈ F .

Step 2. To obtain the cost vector of firm f , cf , estimate via simulation the vector of winning

probabilities Gf (b)|b=bf and its Jacobian matrix DbGf (b)|b=bf evaluated at the observed bid

vector submitted by firm f , bf . Replace these on equation (2.3) to obtain a point estimate of

cf .

In step 2, winning probabilities are estimated via simulation, where each simulation run r =

1, ..., R, consists of the following:

• Fix the bid vector by firm f , bf , and for each competitor f ′ 6= f , independently sample the

competitor’s bids from the distribution Hf ′(·|Z) estimated in the first step. Let {brf ′}f ′ 6=f be

the bids sampled for each competitor firm in simulation run r.

• Solve the winner determination problem with bid vectors
(
bf , {brf ′}f ′ 6=f

)
. Record the pack-

ages won by firm f with indicators 1[winraf ] = 1 if and only if firm f wins package a in run

r.

The winning probabilities are estimated with the empirical frequency of wins over all runs in the

simulation, that is, Ĝaf (bf ) = 1/R
∑R

r=1 1[winraf ], whereR is an appropriately chosen large num-

ber. The Jacobian matrix of Gf (bf ) is computed numerically using a similar simulation technique

together with a finite-difference method. For example, to calculate the ath row and sth column
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element of the Jacobian, one can use a central finite-difference method described by the following

equation:

[DbGf (b)|b=bf ]as =
∂

∂bs
Gaf (b)|b=bf ≈

Gaf (bf + hes)−Gaf (bf − hes)
2h

,

where es is the sth canonical vector – the sth component of es is its only non-zero element with size

one. The step-size h is an appropriately chosen small value (see, for example, Glynn (1989)). The

estimations ofGaf (bf+hes) andGaf (bf−hes) can be obtained via simulation as above. Following

these two steps, once the winning probability vectorGf (bf ) and its Jacobian matrix [DbGf (b)|b=bf ]

are estimated, the cost vector is obtained by plugging the two quantities into the first-order condition

equation (2.3).

2.2.3 Identification

It is helpful to understand what patterns in the bid data drive the identification of the cost estimates

from equation (2.3). This first-order condition equation implies that the bid vector is equal to a

cost plus a markup vector, where the markup vector for bidder f , −
{

[DbG(b)]T
}−1

G(b), depends

implicitly on the competitors’ bid distributions estimated in the first step of the structural method,

{Hf ′}f ′ 6=f , from the bid data. It is therefore useful to analyze how these distributions affect the

estimated markups and the cost estimates. For this purpose, we conducted two types of numerical

experiments in small-scale instances. First, for given bids of a firm, we used the second step of

the structural method to study how that firm’s cost estimates changed for different distributions

of competitors’ bids. Second, we performed the opposite exercise and computed, for given costs,

the firm’s optimal bid vector for different distributions of competitors’ bids. In both cases, we

experimented with various model parameters; we present the results of a typical instance.

We assume a parametric model for the distribution of competitors’ bids. In particular, for the

base case, stand-alone unit bids from each bidder follow a bivariate normal distribution, so that

the bid by competitor f ′ for unit i = 1, 2, is given by bif ′ ∼ N(100, 152) with correlation ρ

between them. We model the package bids to be the sum of the realized stand-alone bids minus a
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deterministic discount of 10: b12f ′ = b1f ′ + b2f ′ − 10.

In the first experiment, we fix a bidder f and her bids bf = (b1f , b2f , b12,f ) = (90, 90, 170);

there is a discount of 10 in the package bid b12. Given the model of competitors’ distribution,

we perform the second step estimation to compute the winning probability vector and its Jacobian

matrix, and replace them in the first-order condition. This will give the cost estimates for this

particular bidder f , denoted by ĉ = (ĉ1, ĉ2, ĉ12), which then enable us to disentangle the cost

synergies from the discount. By varying the distributional parameters, we seek to examine the

impact of the distribution on the estimated cost synergies and markup adjustments. Table 2.1 reports,

for each scenario, the estimated cost synergy ĉ1+ĉ2−ĉ12 and the markup adjustment m̂1+m̂2−m̂12,

where m̂a := ba − ĉa.

In the second experiment, we again fix a bidder f and its costs cf = (c1f , c2f , c12f ) =

(80, 80, 152); there is a cost synergy of 8 in the package cost c12f . Given the model of competitors’

distribution, we computed the optimal bid vector for bidder f , using a simulation-based optimization

routine over a grid of bid prices. The optimal bid vector selected is the one that maximizes the

expected profit among all grid points. Of course, this bid vector satisfies the first-order conditions

(modulus the numerical error introduced by using a discrete grid). Table 2.2 reports, for each

scenario, the optimal bid vector b∗ = (b∗1, b
∗
2, b
∗
12) and the markup adjustment, m∗1 + m∗2 − m∗12,

where m∗a := b∗a − ca is the markup of package a.

To examine the impact of the competitors’ average unit prices, we perform the experiments

for different average prices on unit 1 while keeping the distribution of unit 2 unchanged. We

assume independence of the unit prices (ρ = 0) in this case. The top panel of Table 2.1 reports

the estimated cost synergy and markup adjustment in each scenario from the first experiment. The

results show that as the competitors’ average bid prices increase, the estimated markup adjustments

are larger. Similarly, the results from the second experiment (top panel of Table 2.2) reveal that

the markup adjustments become larger as the competitors’ bid increase on unit 1. Note that the

costs of the firm have not changed, so this markup adjustment is purely strategic. The intuition is

that as competitors’ bids on unit 1 increase, the firm becomes more competitive in unit 1 as well
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as in the bundle. Therefore, the firm can more easily exert market power and take advantage of

the additional flexibility provided by package bidding and submit a discounted package bid with

strategic motivations.

To analyze the impact of correlation among single-unit prices, we use the parameters of the

base case and repeated the numerical experiment with different correlation coefficients. The results,

reported on the middle panels of Table 2.1, show that as the correlation becomes more negative, the

estimated markup adjustments are larger and the estimated cost synergies are smaller. We observe

the same pattern in the second experiment; the results show that the estimated markup adjustments

are larger as the correlation becomes more negative (the middle panel of Table 2.2). This effect is

related to bundling motives in the multi-product monopolist literature. Cantillon and Pesendorfer

(2006b) and Olivares et al. (2012) discuss in more detail the relation between strategic markup

adjustments incentives for a bidder in a CA and bundling incentives for a multi-product monopolist.

Finally, to explore the impact of competitors’ discounts in the package bid b12, we conducted the

numerical experiment using different levels of deterministic discount as well as normally distributed

random discount with different variances. We chose the ranges of the level and the variance of

discounts to be close to what we observe in our data. The results from the first experiment, reported

in the bottom panel of Table 2.1, suggest that the magnitude and variance of the discounts do not

affect much the estimated markup adjustments and cost synergies if kept within these ranges. The

results from the second experiment shown in the bottom panel of Table 2.2 also suggest that the

optimal bid prices and markup adjustments are not affected much in these parameter ranges.

The results in the numerical examples provide useful insights about identification of costs.

Recall that observed package discounts are the sum of cost synergies plus markup adjustments.

Hence, the results suggest that as the means of the estimated distribution of competitors’ bids

become larger, and as the correlation among individual prices become smaller, the estimated markup

adjustments should increase, and therefore, the fraction of the package discounts explained by cost

synergies should decrease. In summary, when estimating the distribution of competitors’ bids,

correctly capturing the correlation and the heterogeneity of unit prices plays an important role in the
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estimation of the bidders’ cost structures.

2.2.4 Limitations in Large-Scale CAs

CP were able to effectively use the previous approach in auctions of at most three units. However,

there are two significant limitations in using the standard approach in large-scale CAs with more

units.

First, in large-scale CAs that are typically found in practice (including our empirical applica-

tion), firms may submit hundreds or even thousands of bids. In that case, the bid vectors {bf}f∈F ,

and therefore the distributions {Hf (·|Z)}f∈F that need to be estimated in the first step, are high

dimensional. For this reason, parametric restrictions need to be imposed to make the estimation

tractable. However, it is important to allow for sufficient flexibility in these restrictions. In their

application, CP developed a reasonable parametric model that balances flexibility with feasibility

in the estimation. We extend their approach to large-scale CAs. In particular, in Section 2.5.1 we

provide more details about a parsimonious, yet flexible parametric description of the distributions

of competitors’ bids for CAs that involve geographically dispersed and heterogeneous units as well

as scale and density discounts. These distributions are then taken as an input for the second step.

Second, there is a limitation in the second step of the CP approach when applied to large-scale

CAs: the high dimensionality of the first-order conditions (2.3). The dimension of this matrix

equation is determined by the number of bids, which increases exponentially with the number of

units in the CA. As the number of bids submitted by a bidder gets large, the winning probability

of each bid is likely to become very small and the simulation errors in estimating these rare-event

probabilities become large. Moreover, equation (2.3) requires taking derivatives over a large number

of variables; simulation error for these quantities may be even larger. These problems may not be

resolved by simply increasing the length of the simulation runs, because in the course of a simulation

run one needs to repeatedly solve the winner determination problem which is known to be NP-hard,

and solving these problems gets increasingly expensive computationally as the scale increases. For

example, using state-of-the-art solvers for integer programming, it takes in the order of seconds to
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solve a single instance of the winner determination problem in our empirical application that we

examine in Chapter 3.1 Hence, computation of G(b) and DbG(b) via simulation becomes quickly

intractable as the number of units auctioned increases. The difficulties in estimating G(b) make it

also unreasonable to assume that bidders would be able to solve (2.2) optimally.

An important methodological contribution of this chapter is to address the second problem – the

high dimensionality of the first-order conditions (2.3). Our approach imposes reasonable restrictions

in the structure of the markups which allow us to reduce the dimensionality of the problem. We

describe this approach in detail in the next section.

2.3 The Characteristic-Based Markup Approach for Large-Scale CAs

Our model is based on the approach described in Section 2.2. As mentioned above, a significant

complication of using this model in large-scale CAs is that the dimensionality of the first-order

conditions is too large. We develop an approach to reduce the dimensionality of the problem by

imposing additional assumptions on the bidders’ bidding behavior that have behavioral appeal and

make the estimation approach econometrically and computationally feasible in large-scale CAs.

Notice that in the first-order condition (2.3), the markup term −
{

[DbG(b)]T
}−1

G(b) provides

the flexibility to the bidder to assign a different and separate markup to each package. Hence, we

refer to this model as the full-dimension model. In contrast, we propose that the markup of each bid

is specified through a reduced set of package characteristics. Specifically, let wa be a row vector

of characteristics describing package a, with dimension dim(wa) = d that could be potentially

much smaller than A. The markup for package a is given by the linear function waθ, where θ is a

(column) vector of dimension d specifying the markup components associated with each package

characteristic. Instead of choosing the markup for each package, the bidder now chooses θ. Let

1In the application described in Chapter 3, typically we have about 30 units in an auction. To solve the winner

determination problems, we used CPLEX V12.1 called by a C routine and ran on Columbia Business school’s shared

cluster, where each machine has eight 2.4 GHz CPUs.
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W ∈ <A×d be a matrix containing the characteristics of all packages, so that the ath row of W

is wa. The following assumption, kept throughout the chapter, formalizes this simplification to the

bidders’ bidding behavior.

Assumption 2.5 (Characteristic-Based Markups). Consider a given bidder in a particular auc-

tion. Its bid vector is determined by b = c+Wθ, whereW is a fixed (A×d)- dimensional matrix of

package characteristics and θ is a d-dimensional vector of decision variables chosen by the bidder.

It is worth noting that our approach allows the specification of W to vary across bidders.

Like other quantities, we omit the firm index f in W for notational simplicity. Now under this

assumption, the bidder’s optimization problem becomes:

maximize
θ∈<d

(Wθ)TG(Wθ + c), (2.4)

whose first-order conditions yield:

[DθW TG(Wθ + c)]T θ = −W TG(Wθ + c). (2.5)

Here again the ijth element of the Jacobian matrix above is [DθW TG(Wθ+c)]ij = ∂
∂θj

[W TG(Wθ+

c)]i = ∂
∂θj
W T
i G(Wθ + c), where Wi is the ith column of matrix W . Re-arranging and replacing

terms, we can solve for the decision vector θ as follows:

θ = −
{

[DθW TG(b)]T
}−1

W TG(b). (2.6)

As in GPV and CP, this first-order-condition equation constitutes the basis of identification in

our structural model. Again, note that in each auction there is one first-order-condition matrix

equation per bidder and different bidders may have different characteristic matrices W . For each

bidder, under Assumption 2.5, the cost is given by c = b − Wθ. Hence, costs are uniquely

determined by θ, and moreover, if the matrix DθW TG(b) is invertible, equation (2.6) uniquely

identifies the markup vector θ. Therefore, equation (2.6) provides an alternative to (2.3) to estimate

costs. We provide conditions for the invertibility of this matrix in Section 2.4.3. In what follows,

we formalize this discussion with the following assumption that is kept throughout the chapter.
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Assumption 2.6 (First-Order Conditions). The observed bid vector of a given bidder in the

auction satisfies the necessary first-order conditions of the characteristic-based markup model given

by equation (2.5).

As with equation (2.3), the right-hand side of equation (2.6) can be estimated purely from ob-

served bidding data. In fact, our approach using equation (2.6) closely follows the two-step method

described in Section 2.2.2. However, the reduced dimensionality of equation (2.6) significantly

simplifies the computation burden in the second step, making it feasible in large-scale applications.

To see this, note that (2.6) is similar to (2.3), with the winning probability vector G(b) and

its Jacobian matrix DbG(b) replaced by the vector W TG(b) and its Jacobian matrix DθW TG(b),

which is now with respect to the markup vector θ. The first simplification is that the derivatives

are now taken with respect to d � A variables, effectively reducing the dimension of the problem.

Second, in the specifications we propose later, we will see that each element of the vector W TG(b)

is a (weighted) sum of winning probabilities over many packages. These aggregated probabilities

are larger than the winning probabilities of each individual package, and therefore easier to estimate

via simulation. Besides, there are fewer probabilities to be estimated; altogether these make the

second step computationally tractable.

One apparent limitation of Assumption 2.5 is that the markup is additive as oppose to multi-

plicative to costs, which may be more appropriate in some applications. A multiplicative markup,

however, would lead to different first-order conditions from which it is mathematically intractable

to identify bidders’ costs using bid data. A relatively simple way to make the additive assumption

less restrictive is to include package characteristics in W which are related to costs, so that the

markup can be scaled based on these cost-related characteristics. This approach is effective when

the cost heterogeneity across packages can be captured, at least partially, by a reduced set of known

variables. We come back to this point in the sequel.

Note that the characteristic-based markup model is very general and flexible in the specification

of markup structures. For example, if we specify the package-characteristic matrix W as the
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identity matrix, each package has its own markup and we are back to the full-dimension problem

(2.2). On the opposite extreme, one could choose d = 1 so that the markups of all packages are

determined by a single decision variable; while this specification significantly reduces the dimension

of the problem, this may be too restrictive. Between these two extremes there are many possible

specifications for W . Different specifications may be chosen depending on the details of the large-

scale application at hand, for example, those mentioned in Section 2.1. In particular, the next

section describes an approach to specify W that is sufficiently flexible to capture strategic markup

adjustments that arise in package bidding, but that at the same time is parsimonious and maintains

computational tractability.

2.4 Specifying Markup Restrictions

Recall from our discussion in the introduction that an important objective of our structural esti-

mation approach is to measure what portion of the observed package discounts can be attributed

to cost synergies versus strategic markup reductions. In fact, economic theory and the numer-

ical examples described in Section 2.2.3 show that firms may have incentives to make strategic

markup adjustments. Therefore, package discounts cannot be fully accrued to cost synergies a-

priori. Moreover, previous literature suggests that scale is likely to be the main driver of these

strategic markup adjustments (see the references in the introduction, in particular Olivares et al.

(2012), for a more detailed discussion). For this reason, we focus on developing a specification that

allows for markups to vary on the size of the package. Doing so helps separating what portion of the

volume discounts observed in the bid data arise from markup adjustments vis-à-vis cost synergies.

In Section 2.4.1 we show how to specify W using size as a package characteristic. Section 2.4.2

extends this base model by providing additional flexibility to provide a better approximation of the

estimates we would obtain with the full-dimension model. Finally, Section 2.4.3 describes some

additional requirements on the package characteristic matrix W that ensure identification of the

firms’ costs.
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2.4.1 Group-Based and Size-Based Markup Models

The key idea in our estimation approach is to impose restrictions on the markup structure to reduce

the dimensionality of the bidders’ problem. A special case of the characteristic-based markup

approach is to create a partition of the set of all packages, and allow each group (or set) of the

partition to have its own separate markup parameter. This group markup parameter then determines

the markup of all the packages in the corresponding group. This approach, referred to as the group-

based markup model, is defined formally as follows.

Definition. A markup specification follows a group-based markup model if each row of the package-

characteristic matrix W is composed by zeroes except for one and only one positive component.

Consider the following group-based markup model. Let {As}Ss=1 be a partition that covers all

possible packages. From this partition, a potential candidate for the package-characteristic matrix

W ∈ <A×S can be generated using indicator variables Was = 1[package a belongs to set As].

With this specification, the term W TG(b) in equation (2.6) has the following form:

W TG(b) =



W T
1 G(b)

W T
2 G(b)

...

W T
S G(b)


=



Probability of winning any package in A1

Probability of winning any package in A2

...

Probability of winning any package in AS


.

As seen above, the group-based markup model could significantly reduce the dimensionality

of the problem; if S � A, there are much less probabilities to estimate, as well as derivatives to

take in the Jacobian matrix. Moreover, while the winning probability of any given package a is

typically small and hard to estimate via simulation, the winning probability of a group of packages

aggregates these individual probabilities over a potentially large set of packages and, therefore, is

often much larger. For this reason, we require fewer simulation runs to obtain precise estimates of

these aggregated probabilities. All this makes the computation of the right-hand side of the first-
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order condition (2.6) tractable.

A special case of the group-based model is when the packages are grouped by their sizes. For

some defined measure of package size (e.g. the number of units in the package), let As be the set

of all packages of size s. The markup parameter θs represents the common markup charged to all

packages of size s; the bidder chooses S different markups, one for each possible size. This is

referred to as the pure size-based markup model. Recall that we want to disentangle what portion

of the observed bid discounts are explained by markup adjustments when bidders submit larger

packages. The pure size-based markup provides the minimum level of flexibility to capture such

strategic markup adjustments, and therefore, we believe it is a reasonable starting point to impose

markup restrictions in our approach.

Having defined the pure size-based markup model, we seek to understand whether it provides a

good approximation to the estimates of the full-dimension model. To do so, we provide an analytical

comparison of the markups estimated by the full-dimension model with those estimated via the

group-based markup approach.

Proposition 2.2. Consider a bidder submitting a bid vector b in a CA. Assume that all bids in b

have strictly positive probabilities of winning.

a) Suppose the CA has A packages. Let θa, a = 1, ..., A, be the estimated markup for package

a by the full-dimension model (2.3), and θu be the common markup estimated by the group-based

markup model (2.6) when the A packages form a single group, that is, ba = ca + θu, a = 1, ..., A.

Then, θu =
∑A

a=1 βaθa, for appropriately defined weights βa ≥ 0, a = 1, ...,K, that satisfy∑A
a=1 βa = 1.

b) Suppose the CA has 2 units. Let (θ1, θ2, θ12) be the estimated markup vector by the full-dimension

model (2.3) and let (θu, θv) be the estimated markup vector by the size-based model (2.6), where

θu is the common markup for single units and θv is the markup for the package. Then, θu =

βθ1 + (1− β)θ2 and θv = θ12 + γ(θ1 − θ2), for appropriately defined constants β ≥ 0 and γ.

We provide the proof of the above proposition in the appendix of this chapter (see Section 2.7)
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as well as the detailed expressions for the constants β’s and γ, which are functions of the partial

derivatives of the winning probabilities evaluated at the observed bid vector b (we omit them here

for brevity). The results from Proposition 2.2 provide important insights regarding the implications

on the group-based markup estimates. First, from the result in part (b), we observe that grouping

the units affect the estimated markup of the package, where the impact depends on the coefficient

γ and the difference of the individual unit markups. If the unit markups are very close to each

other, the effect of grouping on the package markup will be negligible. Moreover, note that if

γ is small, the effect of having a common markup for the units has a a negligible effect on the

estimated markup for the package. In fact, extensive numerical experiments have shown that in

our application, grouping a set of packages so that they share a common markup merely affects the

markups of other packages that are not in that particular group. In Section 3.4.1, we provide some

numerical validations supporting these observations in the context of our empirical application.

The previous discussion together with part (a) in the proposition can be summarized as follows.

Consider a situation in which the packages in the set As are grouped together, and let θs be the

common markup estimated by the group-based markup model. Let θa be the individual markup for

package a ∈ As estimated by the full-dimension model. Then, the previous discussion basically

suggests that:

θs ≈
∑
a∈As

βaθa,

where βa ≥ 0, ∀a ∈ As, are appropriately defined weights that satisfy
∑

a∈As
βa = 1. The result

is useful because it suggests that the estimated common markup is a convex combination of the

individual markups we would obtain from the full-dimension model (if we were able to estimate

them). Moreover,

|θa − θs| ≈ |θa −
∑
a′∈As

βa′θa′ | ≤
∑

a′∈As,a′ 6=a
βa′ |θa − θa′ |, ∀a ∈ As.

Therefore, the estimated common markup would be a good approximation to the individual markup

estimates from the full-dimension model if the latter markups are close to each other. Of course,

checking this condition is computationally intractable, because we would need to solve the full-
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dimension model. The next section describes a computationally tractable heuristic that aims at

providing more flexibility in the markup restrictions without increasing much the computational

burden of the method.

2.4.2 A Refinement of the Size-Based Markup Model

As suggested above, the main issue with the size-based markup model would be whether the

packages in the same size group are significantly heterogenous or not. For example, if one package

has a significantly different markup to the rest of the group in the full-dimension model (if we were

able to estimate it), it ideally should not be a part of the group.

Recall that one of the difficulties in the full-dimension model arises in the computation of a large

number of small winning probabilities via simulation. However, for a given firm, there still may be a

small number of packages with reasonably large winning probabilities that can actually be computed

with precision – we refer to these as “special packages”. It is then possible to assign and estimate

a separate markup for these special packages, without forcing them into a group and therefore

alleviating the potential biases previously discussed. Given their high winning probabilities, special

packages are also more likely to be part of the winning CA allocation, so it is useful to obtain

more precise estimates for their markups. Finally, in Section 3.4.1 we provide empirical evidence in

the context of our application that high winning probability packages tend to have larger estimated

absolute per-meal markups in the full-dimension model relative to the rest of their group. Hence,

removing them from the group and estimating a separate markup for each of them is likely to reduce

the bias associated with grouping in a significant way.

Another extreme alternative would be to estimate the model with special packages only, ignoring

the rest of the packages. Although the cost information of bids with small winning probabilities

may be less important for the estimation of the performance measures (since they are less likely

to be part of the winning CA allocation), they cannot be entirely eliminated in the estimation

procedure. One reason is that these packages may have significant winning probability in aggregate,

and therefore ignoring them in the first-order condition (2.6) can result in an inaccurate estimation
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for the costs of the large winning probability bids. In fact, we have estimated models with and

without the packages with small winning probabilities and found that the markup estimates of the

special packages changed substantially.

In addition, in some applications (including the one analyzed in this work) the units of the same

group can be heterogeneous and this could lead to differences in markups, even after separating the

special packages. In our application, units differ in their volume and so packages with the same

number but different composition of units could have different markups. To account for this hetero-

geneity, let vi be the volume of unit i and define va =
∑

i∈a vi as the total volume of the package.

The package-characteristic matrixW can be specified asWas = va ·1[package a has s units], which

is also in the class of group-based markups. With this specification, the packages in the same size

group will share the same markup parameter θs which is the per unit of volume markup, so that the

markup of package a is vaθs. Also, the sth element of the vector W TG is equal to the expected

volume of winning packages of size s. Overall, this specification makes the additive nature of

Assumption 2.5 less restrictive.

Based on the previous insights, we propose the following heuristic to build the package-characteristic

matrix W for a given firm:

1. Group packages according to their sizes and let Was = va · 1[package a has s units], so that

initially all packages with the same number of units share the same markup per unit of volume.

2. Run a simulation to obtain rough estimates of the winning probabilities of each package; this

simulation is quicker to run than solving for the first-order conditions. For each size group,

identify bids that have high winning probabilities relative to the rest. Each of these packages

is associated with a separate individual markup parameter.

3. For each size, further divide the rest of the bids into two groups: medium and low winning

probability groups. This step is motivated by the observation discussed in Section 3.4.1 that

winning probability is related to the magnitude of markups. In that section, we further justify

this step with empirical evidence in the context of our application.
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Through this heuristic procedure, we construct the corresponding package-characteristic matrix W

for each firm allowing for separate markups for each of the specified groups (including the groups

with a single special package). We refer to this approach to define the package-characteristic matrix

as the extended size-based markup model, which is a particular case of a group-based markup model.

For each firm, we use this specification within a two-step method similar to the one described in

Section 2.2.2. In the first step, we parametrically estimate the distribution of competitors’ bids. This

procedure requires a separate treatment and is described in detail in Section 2.5.1. In the second

step, we use the specification of W given by the previously described heuristic in the first-order

condition (2.6) to obtain a point estimate of θ, and therefore of c.

Our heuristic based on the extended size-based markup model aims to improve the approxima-

tion to the full-dimension model starting from the pure size-based markup model. However, it is

important to provide some empirical validation of this claim. For this purpose, we collected data

from two exceptionally small CAs in our application. The full-dimension approach was feasible to

implement in these smaller auctions and was compared with the results provided by the extended

size-based model using our heuristic method described above. Notably, the results of this analysis

presented in Section 3.4.1, suggest that the markups estimated with the two approaches are very

similar, providing support for our method. Finally, we note that in the related context of multi-

product monopolist pricing, Chu et al. (2011) provides computational and empirical evidence of the

effectiveness of size-based pricing in some settings. They also show examples where this restricted

pricing strategy is used in practice.

2.4.3 Further Requirements on the Package-Characteristics Matrix

We finish this section discussing issues related to identification that are important for the specifi-

cation of W . In particular, we provide conditions for which DθW TG(b) is invertible in equation

(2.6), and therefore, the first-order conditions uniquely identify the markup vector θ, and hence the

costs.

In some applications, bidders may not submit bids on all packages. For example, in our
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empirical application analyzed in Chapter 3, firms do not place bids on all possible combinations

because of two reasons: (1) firms have limits on the maximum number of units that can be included

in a package (these limits depend on the firm’s financial capacity); and (2) the number of possible

combinations is too large. However, this case can still be handled with our proposed approach

by treating the missing packages as bids with very high prices that have no chances of winning.

We refer to the bids which never win as irrelevant bids. In addition, some bids that are actually

submitted may also be irrelevant, in the sense that they have zero probabilities of winning. For

example, this could arise as a strategic decision in order not to win a specific package when the

auction rules require submission of bid prices on all packages. In contrast, a relevant bid has a

strictly positive probability of winning.

CP shows that in the full-dimension model irrelevant bids do not play a role in the first-order

conditions, and one can identify the markups for relevant bids after eliminating irrelevant bids from

the estimation. We extend this discussion to our group-based markup model, where we can still

identify markup variables as long as each group has at least one relevant bid. To see that, recall that

each column of package characteristics in W is associated with a markup variable in the bidder’s

decision θ. We say that a package a is associated with the markup variable θi if Wai 6= 0, that is,

the bid price of a depends on the value of θi. The following lemma is useful to characterize the

conditions needed for identification. It is also used for the proof of Theorem 2.1. We provide the

proof of this lemma in Section 2.7.

Lemma 2.4.1. Consider a given bidder and auction. For any package a ∈ A, Ga(b) = 0 implies

∂
∂θi
Ga(Wθ + c) = 0, for all i = 1, ..., d.

The lemma implies that if all the bids associated with a markup variable θi are irrelevant, then the

ith row of the Jacobian matrix DθW TG(b) will be all zero, and the matrix will not be invertible. In

this case, the markup vector of that bidder will not be identified, because (2.6) requires invertibility

of the Jacobian matrix. CP shows that, in the full-dimension model, this problem can be resolved

by eliminating irrelevant bids from the estimation, and by doing so, one can still identify markups
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for the relevant bids. We extend the discussion to our characteristic-based model, where we can still

identify markup variables as long as each of them has at least some relevant bids that are associated

with it. In what follows we examine this issue in more detail.

Consider a given firm. Without loss of generality, we assume packages are ordered such that all

the relevant bid packages (superscripted by R) are followed by the group of irrelevant bid packages

(superscripted by I), so that:

W =


WR

· · ·

W I

 , c =


cR

· · ·

cI

 , b =


bR

· · ·

bI

 , and G(b) =


GR(b)

· · ·

GI(b)

 .

By replacing these terms in equation (2.6), we obtain:

θ = −
{[
Dθ
(
(WR)TGR(b) + (W I)TGI(b)

)]T}−1 (
(WR)TGR(b) + (W I)TGI(b)

)
= −

{[
Dθ(WR)TGR(b)

]T}−1
(WR)TGR(b)

= −
{[
Dθ(WR)TGR(bR)

]T}−1
(WR)TGR(bR), (2.7)

where the second to last equation follows from GI(b) = 0 and Lemma 2.4.1. In the last equation,

it is implicitly assumed that the bidder only submit relevant bids. Because irrelevant bids never win

and moreover small changes in the markup vector will not turn them into relevant bids by Lemma

2.4.1, it is the same as if the bidder would not have submitted them (recall that non submitted bids

are also irrelevant). Therefore, the right-hand sides of equations (2.6) and (2.7) are equivalent.

Consequently, the elimination of irrelevant bids will not affect the identification of the markup

vector θ as long as the Jacobian in equation (2.7) is invertible. Finally, the following theorem

provides necessary and sufficient conditions to ensure the invertibility of the Jacobian DθW
TG for

the class of group-based markup models.

Theorem 2.1. Consider a given bidder and auction. Assume that the package-characteristic matrix

W is the specification of a group-based markup model. If the Jacobian matrix DθW TG(b) evalu-

ated at the observed bid vector b is invertible, then every group contains at least one relevant bid.
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The latter condition becomes sufficient for the invertibility of the Jacobian matrix if the following

additional conditions hold: (i) the observed bid vector is such that b − c ≥ 0; and (ii) all the

elements of W are non-negative (W ≥ 0). In this case, the markup vector θ is uniquely identified

by equation (2.6).

Note that the assumption b − c ≥ 0 is a mild rationality assumption on bidders’ behavior that

guarantees bidders make positive profits on each package conditional on winning that package.

Also note that under the previous assumption, assuming W ≥ 0 is essentially done without loss of

generality, in the sense that for a W matrix with negative entries, one can find another W matrix

with non-negative entries that produces the same markup estimates. A practical implication of the

theorem is that when implementing the heuristic described in Section 2.4 one needs to make sure

that each group of packages must include at least one relevant bid. After we imposed this, we were

always able to invert the Jacobian matrix computationally.

Another implication of the previous discussion is that the proposed method can only identify

the cost structure of packages associated with relevant bids, that is, cR = bR − WRθ, because

irrelevant bids provide no information to the first-order conditions (cR is the cost vector including

only components associated with relevant bid packages). Although it is not possible to point identify

the costs of irrelevant bids, CP showed that bounds on the costs of such irrelevant bid packages

can be obtained. However, computing these bounds is computationally expensive and becomes

infeasible in large-scale CAs. Instead, we infer the costs of those irrelevant bids using extrapolation.

We will come back to this point in Section 3.5.1 in the context of our application.

Finally, an important assumption needed for our approach is that bidders can win at most one

package. This is a frequent requirement in many real-world CAs, specially in settings with rich and

expressive package bidding. Without this requirement, it may not be possible to point identify costs.

For example, consider a CA with 2 units and suppose a bidder only submits bids for the individual

units. Suppose the bidder has a positive chance of winning both individual bids simultaneously,

which is equivalent to winning the two-unit package. Then, we have three unknowns to estimate
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(the cost for each individual unit and the cost for the package), but only two equations (the two

first-order conditions with respect to the individual bid prices).

2.5 Estimation

In this section, we propose an estimation method for large-scale CAs using the characteristic-

based markup model that we developed in the previous section. We adopt the two-step approach

introduced in Section 2.2.2. In the first step, we need to estimate the distributions of competitors’

bids, {Hf (·|Z)}f∈F , which are then used in the simulation-based routine in the second step to

sample competitors’ bids and estimate the terms in the first-order conditions given by equation (2.6).

Sections 2.3 and 2.4 addressed the complexity introduced in the second step due to the large-scale

nature of the auction. In particular, we simplified the first-order conditions of bidders by imposing

some structure in their markups. It was important that the structure was flexible enough to allow for

strategic markup adjustments.

As discussed in 2.2.4, for the estimation of large-scale CAs, another important challenge arises

in the first step. The complication in the first step is that in large-scale CAs, firms may submit

hundreds or even thousands of bids. Therefore, the bid vectors {bf}f∈F are high dimensional

precluding the use of a non-parametric approach like GPV to estimate the distribution of com-

petitors’ bids; CP faced a similar challenge even for a three-unit CA. We address this challenge

by proposing a parametric approach to model the bid distribution which can be used in CAs that

involve geographically dispersed and heterogeneous units that are subject to discounts due to scale

and density, like in our application. Section 2.5.1 describes our parametric approach. In Section

2.5.2, we then explain the simulation-based estimation procedure in the second step under the

characteristic-based markup model. Finally, Section 2.5.3 describes an algorithm to enhance the

computational efficiency in the second step estimation.
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2.5.1 Estimating the Distribution of Competitors’ Bids

It is important to emphasize that the simplifications in the two steps have different objectives. In the

first step, the objective is to introduce a parametric model that fits the competitive bidding landscape

data well. In the second step, the objective is to simplify the bidders’ decision space in the first-order

conditions. We note that the parametric model of the bid data in the first step will be more flexible

than the model for markups in the second step, because it will allow for scale and density discounts

both of which could be observed in the data. On the other hand, our extended size-based markup

model explicitly considers strategic discounts associated with scale, but not to density. The reason

is that, as mentioned in Section 2.4, economic theory suggests that scale (and not density) is likely

to be the main driver of the strategic markup adjustments we are trying to identify. In Section 3.4.1

we provide some empirical evidence of this claim in the context of our application.

The parametric approach we follow has an important difference with CP in that in our estimation

method the identification of the distribution of competitors’ bids is based on variation across pack-

age bids and firms in a single auction, and hence exploits the large number of package bids, which

is a key characteristic of large-scale CAs. In the standard structural approach to auctions (including

CP and GPV), the estimation of the bid distribution uses variation in a cross-section of auctions,

implicitly assuming that the same equilibrium is being played across these auctions. Hence, our

identification strategy can be more robust when there is unobserved heterogeneity across auctions

– changes in the auction characteristics and firm characteristics from auction to auction that are

observed by bidders but unobserved by the econometrician (see Krasnokutskaya (2011) for a more

detailed discussion on this issue).

Imposing parametric restrictions to the multivariate bid distribution needs to balance flexibility

with estimation feasibility. There are three key aspects typical in applications of CAs that are

important to account for: (i) units are heterogeneous; (ii) the correlation structure among the bids

from the same bidder; and (iii) package discounts. We discuss each of these three in what follows.

First, in many CAs, the bid prices are heterogenous among units and among firms. In ap-
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plications that involve logistics and transportation across dispersed geographic units (as the one we

study), heterogeneity among units arises primarily from the costs of serving different territories. For

example, units located in isolated rural areas tend to be more expensive than units in urban areas.

There is also heterogeneity across firms: some firms may have national presence, are vertically

integrated, and may have well functioning and efficient supply chains; other firms may be more

rustic local firms.

Second, package bids of the same bidder may be correlated. In CAs, there are two main factors

that can generate correlation between bids. First, a bidder that has a high cost in a given unit is likely

to submit higher prices for all packages containing that unit. Second, if there are local advantages,

a supplier charging a low price for a unit may also charge lower prices for nearby units. Hence,

the unit composition of the package bids together with the spatial distribution of the territorial

units provides a natural way to parameterize the covariance structure among package bids. As

described in Section 2.2.3, the correlation structure of the competitors’ bids has direct implications

on the incentives to engage in strategic markup adjustments, so it is important to allow for a flexible

covariance structure that incorporates these effects.

Third, CAs exhibit package discounts in the bids; the price per unit may decrease as the size of

the package increases. In applications where economies of density matter, the geographic location

can be another factor that determines the magnitude of the discounts; for example, combining two

units located nearby could lead to larger discounts (relative to a package with two distant units).

Accordingly, we develop the following econometric model for package bids that captures het-

erogeneity among units, correlation, and discounts. In particular, from the perspective of all other

firms, firm f ’s bids are specified by the following parametric model:

baf = −gscale(va, βscalek(f) )−
∑

c∈Cl(a)

gdensity(vc, β
density
k(f) ) · vc

va
+
∑
i∈a

δ̃if
vi
va

+ ε̃af . (2.8)

We note that the structure in this equation that separates individual prices with discounts is motivated

by Olivares et al. (2012). As defined earlier, vi denotes the volume of unit i and va =
∑

i∈a vi is
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the total volume of package a. With some abuse of notation, the dependent variable, baf , denotes

the price per unit of volume submitted by firm f for package a; that is, the actual bid price divided

by the total volume of the package, va. The four terms in the right-hand side of equation (2.8)

capture: (i) the effect of discounts due to size or scale (gscale); (ii) the effect of discounts due to

density (gdensity); (iii) the effect of the specific units contained in the package (the sum over units

i in package a), where δ̃if can be viewed as an average implicit price that bidder f is charging for

unit i among all the packages submitted, net of any scale and density discounts; and (iv) a Gaussian

error term ε̃af capturing other factors affecting the bid price. It is important to emphasize that the

discount functions gscale and gdensity should not be interpreted directly as cost synergies because

part of the discounts could also arise from strategic behavior.

This parametric specification also assumes that the bids across bidders are independent and

that the bid distribution of a bidder depends only on its own characteristics, Hf (·|Z) = Hf (·|Zf ).

Assuming that the bid distribution of a firm depends only on its own characteristics is not restrictive

when the distribution is estimated separately for each auction, because the characteristics of the

competitors are held fixed within the auction. In addition, to avoid making strong assumptions on

how firms choose which combinations to submit, we use the same package composition observed

in the data. That is, when generating competitors’ bid prices, we fix the packages on which the bids

were actually submitted by a particular bidder and simulate new prices for these packages.

The competitors’ bid distribution captures the relevant uncertainty faced by a bidder due to

asymmetric information in the auction game. Hence, it is important to distinguish which elements of

equation (2.8) are known by all other firms at the time of bidding and which are private information

to firm f submitting the bid vector. We use tilde (e.g. δ̃if ) to denote factors that are private

information to firm f and therefore treated as random parameters from the perspective of all other

bidders. As a consequence, the bid distribution Hf (·|Zf ) is characterized by the deterministic pa-

rameters {βscalek(f) , β
density
k(f) }f∈F (to be defined shortly) and the distribution of the random parameters

{δ̃if}i∈U,f∈F and {ε̃af}a∈A,f∈F . This distinction between deterministic and random parameters in

equation (2.8) is important for simulating winning probabilities. Next, we provide more details on
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how these different components are specified and estimated.

Model Specification and Estimation Method. First, consider the terms capturing scale and

density discounts, (βscalek(f) , β
density
k(f) ). The model allows for some observed heterogeneity of these

discounts across firms, with k(f) indicating the type of firm f . For example, firms could be

categorized based on their business size, because larger firms may operate at a different cost scale

and therefore their synergies could be different. Moreover, larger firms may also be able to bid

on larger packages, so their markup adjustments could also be different. We assume that the

heterogeneity in the discount curves across firms is considered common knowledge and that all

the uncertainty associated with the magnitude of the discounts is provided by the error terms ε̃af .

In fact, as discussed in Section 2.2.3, through small experiments we also found that modeling these

discount parameters as random variables does not affect the cost estimates by much, given the

magnitude of discounts observed in the data in our application.

To measure scale discounts, gscale is specified as a step function of the package volume va.

Because density discounts depend on the proximity of the units in the package, gdensity depends

on the volume of clusters of units in a package, where a cluster is a subset of the units in package

a which are located in close proximity. In equation (2.8), Cl(a) denotes the set of clusters in the

package and c indicates a given cluster in this set, with size vc. This approach follows directly from

the work of Olivares et al. (2012), and further details on a specific way of computing clusters used

in our application is described in the appendix of that article.

Consider now the term
∑

i∈a
vi
va
δ̃if , a weighted average of firm-unit specific random parameters

that capture the effects of the individual units contained in package a. The δ̃if ’s are average implicit

prices that bidder f charges for each unit among all the packages submitted, net of any discounts.

These implicit prices capture heterogeneity in the unit characteristics (e.g. urban vs. rural units) and

local advantages of a firm in that unit, among other factors. Part of the heterogeneity of this implicit

prices is considered to be private information. Accordingly, we let the vector of average implicit

prices δ̃f follow a multi-variate normal distribution with mean and covariance matrix (µ,Σ). More
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specifically, let:

δ̃if = δ̄i + βZZif + ψ̃r(i),f + ν̃if , (2.9)

so that µi = E(δ̃if ) = δ̄i+βZZif is specified by a unit fixed effect and the firm characteristics Zif .

Firm characteristics depend on the specific application, but may include an indicator on whether the

firm was awarded the unit in the previous auction and other covariates that capture local advantages

of the firm. The error terms (ψ̃r(i),f , ν̃if ) impose restrictions on the covariance matrix Σ based

on the spatial location of units. Let R be a set of regions that cover all the units in U and r(i)

denote the region that contains unit i; the number of regions, R, is smaller than the number of units.

Each firm is associated with a realization of the random vector ψ̃f = (ψ̃1f , · · · , ψ̃Rf ) from a multi-

variate normal distribution with zero mean and covariance matrix Ω. The error term ν̃if follows an

independent, heteroscedastic, zero-mean normal distribution with variance σ2
i .

Under the specification (2.9), the covariance structure of any two average implicit prices δ̃if

and δ̃jf is given by Cov(δ̃if , δ̃jf ) = Ωr(i),r(j) + σiσj1[i = j]. Thus, under this model, two unit

prices will be more positively correlated if the regional effects of the corresponding regions are

more positively correlated. Note that this specification imposes positive correlation among unit

prices in the same region; this restriction can be validated with data from the specific application.

The model is flexible in allowing positive or negative correlation among units in different regions.

Because R may be much smaller than the number of units, this specification provides a substantial

dimensionality reduction over the fully flexible covariance matrix Σ.

In summary, the competitor’s bid distribution Hf (·|Zf ;φ), where φ is the set of parameters that

fully describe the distribution, is a mixture defined by equations (2.8) and (2.9), ψ̃f ∼MVN(0,Ω),

ν̃if ∼ N(0, σi), and the error ε̃af which is assumed to have a zero-mean normal distribution with

variance dependent on the package size, σ2
ε,|a|. We seek to estimate the vector parameters βscale,

βdensity, δ̄ = (δ̄1, · · · , δ̄N ), βZ , σ2 = (σ2
1, · · · , σ2

N ), the covariance matrix Ω, and {σ2
ε,|a|} for

different package sizes. The following two-step method is used to estimate these parameters:

• First step: Estimate (2.8) via a Generalized Least Squares (GLS) regression to obtain es-
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timates of βscale, βdensity, {σ2
ε,|a|}, and point estimates of the realizations of the average

implicit prices δ̃if ’s.

• Second step: Replace the estimated δ̃if ’s into equation (2.9), and estimate the parameters

characterizing its multivariate-normal distribution through maximum likelihood.

Identification of the parameters is based on variation across units and firms within a single auction.

More specifically, the estimation of the scale and density discounts uses variation across different

combinations submitted by the same firm over the same set of units. Given consistent estimates

of the realized implicit average unit prices δ̃if , the second step provides consistent estimates of

{δ̄i, σi}i∈U , βZ , and Ω as long as Zif is orthogonal to the error components ψ̃r(i),f and ν̃if .

The consistency of our two-step method is a special case of the 2-step M-estimators described

in Wooldridge (2002).

2.5.2 Markup and Cost Estimation

Similar to the approach discussed in 2.2.2, under the characteristic-based markup model developed

in Section 2.3, markups are estimated using equation (2.6) in two steps. In the first step, the

distribution of the competitors’ bids are estimated, which are described in the previous section.

Then in the second step, given the estimated distribution of competitors’ bids, the aggregated

winning probabilities W TG(b) and its Jacobian DθW TG(b) are computed. In this section we

describe a simulation-based approach to estimate these quantities under the characteristic-based

markup model.

Specifically, given the point estimates φ̂ for the distribution parameters estimated in the first

step, each simulation run r consists of the following:

1. For each competitor f ′ (different from bidder f ), draw independently a bid vector b(r)f ′ (con-

taining all submitted packages by that firm) from the estimated bid distribution H(·|Zf ′ ; φ̂).

2. Using the observed bid bf for bidder f and the sampled competitors’ bids {b(r)f ′ }f ′ 6=f , solve

the winner determination problem.
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3. Let ι(r) be a vector of A binary variables indicating the packages awarded to the bidder f .

Store in memory the vector W T ι(r).

At the end of the simulation after R replications, the aggregated winning probability vector can be

estimated by:

W TG(b) ≈ 1

R

R∑
r=1

W T ι(r).

Note that if the distribution of competitors’ bids is estimated consistently, then the previous equation

provides consistent estimates of the aggregated winning probabilities as R becomes large. For the

computation of the Jacobian matrix DθW TG(b), a central finite difference method can be used,

which requires calculating the change in the winning probabilities from a small change in each

markup variable of θ. Because the bid is linear in θ (by Assumption 2.5), this is equivalent to

considering a small change in the observed bid vector b in the direction of each markup variable.

Specifically, consider a change in the jth component of the markup vector, and let Wi be the

ith column of the package-characteristic matrix W . Then the following central finite difference

equation can be used to calculate the ith row and jth column element of the Jacobian:

[DθW TG(b)]ij =
∂W T

i G(b)

∂θj
≈
W T
i G(b+ hWj)−W T

i G(b− hWj)

2h
.

Notice that since there are d number of markup parameters, we need to take d upward per-

turbations (b + hWj , for j = 1, · · · , d) as well as d downward perturbations (b − hWj , for

j = 1, · · · , d). Then the computation ofW T
i G(b+hWj) andW T

i G(b−hWj) is done via simulation

as before: in each simulation run, we solve the winner determination problems with each of the

perturbed bid vectors and keep track of the winning bids. Note that this means we need to solve the

winner determination problem (2d+ 1) times in each simulation run (d with upward perturbations,

d with downward perturbations, and one with unperturbed bids). This could cause significant

computational challenge in large-scale CAs – as the size increases solving one winner determination

problem becomes computationally more expensive, and the number of required perturbations also

increase. We will discuss this issue in more detail in the following section and propose an algorithm

to achieve a more efficient computation than this brute forth approach.
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Once the aggregated winning probability vector W TG(b) and its Jacobian matrix DθW TG(b)

are estimated, the markup vector θ for this bidder is obtained through the identification equation

(2.6): θ = −
{

[DθW TG(b)]T
}−1

W TG(b). The winning records used in the central finite differ-

ence method also enable to estimate the direct second-order derivatives of the bidders’ expected

profits with respect to each of their markup variables. We obtained that these estimates are negative

for all firms, which is consistent with the local optimality of the estimated markups.

2.5.3 Improving the Computational Efficiency

In the proceeding section, we described simulation-based approach for the second step estimation

under the characteristic-based markup model. As noted earlier, in each simulation run one needs

to solve the winner determination problems (2d + 1) times in total, while the sampled bid prices

of the competitors are kept fixed. This is because using common random numbers is known to

improve the estimation quality in this type of settings (see, for example, Glynn (1989)). As the size

of the auction increases, however, this task can become computationally intense. In this section,

we propose an algorithm that can alleviate the computational burden in this step. Specifically, we

examine whether we can reduce the number of winner determination problems one needs to solve

in a given simulation run.

Once the competitors’ bid prices are sampled at the start of a simulation run, one may begin with

solving the unperturbed problem and saving its solutions. Then the rest 2d of perturbed problems are

considered. In each perturbed problems, we set the initial solution to be the optimal solution of the

unperturbed problem. We note that when the perturbation size is small, the perturbed bid vector may

not affect the optimality of the initial solution. In our proposed algorithm, we check the optimality

of the initial solution first, then solve the winner determination problem only if the initial solution

is declared not to be optimal. Otherwise, we can skip solving the winner determination problem,

using the initial solution as the optimal solution for the particular perturbed problem. Since solving

the winner determination problem usually is the bottleneck of the computational process in the

second step, if we don’t need to solve the problem for many of the perturbed bids, that will save
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computation time in great deal.

We focus on the group markup model where any bid is associated with only one mark-up

parameter. Recall that in our structural model described in Section 2.2.1, we have an allocative

constraint in the winner determination problem that ensures that any winner can win at most one

bid. Therefore, the focal bidder f has at most one winning bid in the optimal solution. We will

call the mark-up parameter that is associated with the focal bidder’s winning bid to be a winning

markup parameter and call the rest non-winning markup parameters. We now examine the winner

determination problems in the following two types of perturbations.

First, consider the upward perturbations – making some of my bids more expensive. Note that

the perturbation will change the value of feasible allocations that includes allocating one of the

perturbed bids to the focal bidder. Therefore an upward perturbation will result in increased total

value of the feasible solutions that include the bids associated with the perturbed markup parameter.

For this reason, the optimal solution may change by an upward perturbation only if we perturb the

winning mark-up parameter. Moreover, increasing bids that is not a part of current optimal solution

(and therefore the winning mark-up) will never change the optimal solution after perturbation. Since

there is at most one winning bid in any given solution, during the d number of upward perturbation,

at least (d− 1) upward perturbations will not affect optimality of the current optimal solution, and

therefore we can skip solving for the winner determination problem.

We now turn our attention to the case of downward perturbations. A downward perturbation

of a non-winning markup may result in solution changes, since it decreases the total values of the

feasible allocations that involve the bids associated with the perturbed markup parameter. Also a

downward perturbation of a winning markup parameter may change the solution as well because

the decrease in each of the associated bids by this downward markup perturbation depends on the

volume of the package. Hence for downward perturbations, we conduct a sensitivity analysis to

examine the possibility of reducing the number of solving winner determination problems.

The main idea of the sensitivity analysis is to find a second-best solution at extra cost of

computation – which is might be compensated later – and use that information to detect the cases
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where solving the winner determination problem is unnecessary. The second-best solution is an

optimal solution with following two additional constraints: (1) one of the focal bidder’s bids must

win; and (2) current optimal solution is not feasible. The second-best solution found in this way is

the best possible solution where the focal bidder wins a bid other than the current optimal solution.

As will be clear below, we are interested in the case where the downward perturbation makes the

focal bidder a winner from a non-winner or the case where the focal bidder wins a bid other than her

current winning bid after the perturbation. In both cases, the new optimal solution is the second-best

solution that we have already computed. Therefore, the difference in the objective values between

the actual optimal solution and second-best solution will be used as a threshold that a perturbation

should overcome in order to affect the optimality of the initial solution. We explain further details

in what follows.

To proceed, we will use the following notations. First, we let Pi be the set of package indexes

corresponding to the bids associated with ith markup parameter. Denoted by vp is the volume

of package p. We will also let p∗ is the package index of the focal bidder’s winning bid in the

initial solution, which is the optimal solution of the unperturbed problem, and let γ to denote the

aforementioned threshold defined by “the objective value of the optimal solution minus the objective

value of the second-best solution. Finally, define Vi := maxp∈Pi vp, the maximum volume of the

packages in Pi. Note that given a per-meal perturbation size h, the decrease in a perturbed bid is

obtained by the volume of the package multiplied by h. Therefore, when the ith markup parameter

is perturbed, the decreases in the associated bid prices are at most h · Vi. Now we consider the

following four cases.

Case 1: a downward perturbation of non-winning markup i In this case, the perturbation can

decrease the objective value of the feasible allocations that include perturbed bids, which are not

part of the winning bids in the optimal solution. Therefore larger than the threshold the perturbation

may make such an allocation an optimal solution. In other words, the perturbation will not change

the optimal solution if the maximum possible decrease in the perturbed bid prices is less than the
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threshold. That is, one can skip the winner determination problem under the condition, h · Vi < γ.

Case 2: a downward perturbation of winning markup i Now the bid prices associated with

the winning markup will be all decreased by the perturbation. However, the magnitude may differ

depending on the volume of the packages. If the relative price drop of the currently winning bid

is sufficiently smaller than the price decrease of the other bids that are associated with the winning

markup, the initial solution may not remain optimal. Otherwise, the initial solution will remain

optimal, and one can skip the winner determination problem. Since the price drop in the winning

package p∗ will be h · vp∗ , the maximum possible relative price drop of bids in Pi is h · (Vi − vp∗).

Therefore solving the winner determination problem is unnecessary if the relative price change is

less than the threshold, that is h · (Vi − vp∗) < γ.

In summary, for an upward perturbation, we can skip solving the winner determination problem

if the perturbation is with respect to a non-winning markup parameter. For a downward perturbation,

we can apply the above inequalities to determine the winner determination problem is necessary.

Algorithm 1 describes the procedure in the lth simulation run. We let S(l)
0 be the vector of the

optimal solution in the lth simulation run for the unperturbed problem. Similarly, we let S(l)
i+ and S(l)

i−

be the optimal solution vectors for the ith upward and downward perturbed problems, respectively,

obtained in the lth simulation run.

In Chapter 3 we apply our method described in this Chapter to an empirical application, where

we have about 30 units in a CA. In that setting, it takes in the order of seconds to solve an instance of

the winner determination problem, which is a significant bottleneck of the computational procedure.

The approach developed in this section effectively reduced the computational burden – on average

it took about 40% of computational time compared to the brute forth method.
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Algorithm 1 Simulation Run l

1: For each bidder f ′ 6= f , sample b(l)f ′ from H(·|Zf ′ ; φ̂);

2: Solve the winner determination problem (WDP) with {b(l)f ′ }f ′ 6=f and bf ;

3: Store the solution in the vector S(l)
0 , and store winning markup index w∗;

4: for i = 1 to d (upward perturbation cycle) do

5: if i is a winning markup then

6: Set S(l)
0 as an initial solution and solve the WDP with {b(l)f ′ }f ′ 6=f and (bf + hWi);

7: Store the solution in the vector S(l)
i+;

8: else

9: Set S(l)
i+ ← S

(l)
0 ;

10: end if

11: end for

12: Find the second-best solution with {b(l)f ′ }f ′ 6=f and bf , and set γ;

13: for i = 1 to d (downward perturbation cycle) do

14: if (i = w∗ and h · (Vi − vp∗) < γ) or (i 6= w∗ and h · Vi < γ) then

15: Set S(l)
i− ← S

(l)
0 ;

16: else

17: Set S(l)
0 as an initial solution and solve the WDP with {b(l)f ′ }f ′ 6=f and (bf − hWi);

18: Store the solution in the vector S(l)
i−;

19: end if

20: end for

2.6 Conclusion

In this chapter, we develop a structural estimation approach for large-scale first-price CAs. An im-

portant methodological contribution of our work is to introduce a restricted markup model in which

bidders are assumed to determine their markups based on a reduced set of package characteristics.

The main advantage of this approach is that it reduces the computational burden of the structural
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approach so that it can be applied to large-scale CAs. We establish markup restrictions that are

parsimonious yet sufficiently flexible to capture strategic markup adjustments that can undermine

the performance of CAs. We expect that our approach, based on pricing package characteristics,

can be a useful starting point to reduce the complexity of econometric analysis in other real-world

large-scale auctions.

Moreover, we also propose a parametric approach to model the competitors’ bid distribution

that needs to be estimated in the first step, addressing the complexity of estimation in large-scale

CAs. We believe that our model provides a parsimonious, yet flexible parametric description of

the distributions for the competitors’ bids which can be especially useful in CAs that involve

geographically dispersed and heterogeneous units that are subject to discounts due to scale and

density.
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2.7 Appendix for Chapter 2 - Proofs

2.7.1 Notation

We begin by defining notation that is frequently used in this section. First, we consider a focal

bidder f , whose observed bid vector is denoted by b. All of the analysis is focused on this particular

bidder, and as before we omit the firm index f whenever it is clear from the context. Recall that

from the perspective of this focal bidder, competitors’ bid prices are random. All such random

quantities are defined over a probability space (Ω,F ,P). Note that P measures the probability of

each of the events characterized by the allocation of units to bidders in the CA. Hence, it defines

the vector of winning probabilities G(·). In addition, we define Ω∗ ⊆ Ω to be the sample space

where ties never happen in the winner determination problem. By Assumption 2.4, the distribution

of competitors’ bids is absolutely continuous, and hence we can find such a sample space so that

P(Ω∗) = 1. In words, this means that the winner determination problem has a unique solution

for any realization ω ∈ Ω∗. Accordingly, in our analysis we do not consider any issues related to

tie-breaking in determining the auction allocation.

We let b′ be the vector of competitors’ bid prices. That is, given a realization of ω ∈ Ω∗,

b′(ω) = {b′f ′(ω)}f ′ 6=f , where b′f ′(ω) is a vector of bids for competing firm f ′. Furthermore, we let

x = {xaf}a∈A,f∈F be aA×|F | dimensional vector such that xaf takes 1 if bidder f wins package a

and 0 otherwise. A vector x uniquely determines an allocation outcome. We denote byX , the set of

all feasible allocation outcomes that satisfy all the allocative constraints in the CA including the one

that each bidder can win at most one package (see Assumption 2.1). All the proofs in this section

are valid under any additional allocative constraints in the CA as long as they do not depend on bid

prices (so the constraints in our empirical application described in Sections 3.2.2 and 3.2.3 are all

valid). In addition, we let Xa ⊂ X be the set of allocations such that bidder f wins package a. We

adopt the null package, indexed by 0, and accordingly, we use X0 to denote the set of allocations

in which bidder f wins no package. We also let G0(b) be the probability that bidder f wins no

package given her bid vector b. Note that because bidders can win at most one package, Xa and Xs
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are disjoint for any packages a 6= s in A0 = A ∪ {0}, and we have
⋃
a∈A0

Xa = X .

Without loss of generality, we assume x is ordered in a way that the vector of bidder f ’s alloca-

tion decisions, denoted by xf , is followed by the vector of competitors’ allocation decisions, denoted

by x′, so that x = (xf , x
′). Additionally, we define a cost function: pa(ω) := minx∈Xa(b, b′(ω))Tx,

for each a ∈ A0. This is the minimum total procurement cost out of all the allocations where bidder

f wins package a given a realization ω ∈ Ω∗. It is important to note that because each bidder can

win at most one package, for any a ∈ A, pa(ω) only depends on the value of ba among bidder f ’s

bids in b.

Finally, for notational simplicity, we use Ga,s(b) to denote the partial derivative of the winning

probability Ga(b) with respect to the bid price bs. Similarly, when dealing with a characteristic-

based markup model, we let Ai ⊆ A to denote the set of packages associated with the ith markup

variable θi and let Ga,θi(b) to denote the partial derivative of the winning probability Ga(b) with

respect to the markup variable θi.

2.7.2 Proofs of Main Results

We will use some side-lemmas for the proofs of the main results. The proofs of these side-lemmas

are provided in Section 2.7.3, if not from a reference. We start with the following lemma that is

useful for the proof of Proposition 2.1.

Lemma 2.7.1. Define a function F : <n 7→ < such that:

F (y) =

ˆ
D(y)

f(x)dx,

where f : <m 7→ < is continuous and integrable in <m. Assume that the domain of integration

D(y) is a polyhedron formed by a given matrix A ∈ <k×m and a vector function b(y) ∈ <k with

k ∈ N such that D(y) := {x ∈ <m : Ax ≤ b(y)}. If b(y) is differentiable with respect to y, then F

is continuous and differentiable everywhere in <n.

Proof of Proposition 2.1. To prove the differentiability of the winning probability vectorG(b) with

respect to b, first fix an arbitrary package a ∈ A and look at the winning probability that bidder f
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wins package a, Ga(b). Notice that bidder f wins package a if one of the allocations inXa achieves

the minimum procurement cost among all possible allocations in X . We let K := |Xa|, the number

of distinct allocations in Xa, and index them by k = 1, 2, · · · ,K. Now we specifically consider the

event that bidder f wins package a as a result of allocation xk ∈ Xa. Accordingly, we let Ga(b;xk)

denote the probability that xk ∈ Xa becomes the final allocation (hence the minimizer of the total

procurement cost). Because the probability of ties is zero, the winning probability Ga(b) can be

expressed as Ga(b) =
∑K

k=1Ga(b;xk). Therefore it suffices to show that Ga(b;xk) is continuous

and differentiable for any given allocation xk.

Now given an arbitrary allocation xk ∈ Xa, we show the differentiability of Ga(b;xk) using

Lemma 2.7.1. By letting h(b′) denote the joint probability density function of competitors’ bids b′,

Ga(b;xk) can be written as Ga(b;xk) =
´
Dk(b) h(b′)db′, where Dk(b) is the set of b′’s for which

xk is the optimal allocation given b. Observe that Dk(b) can be expressed by the following set of

inequalities:

xTk (b, b′) ≤ yT (b, b′), ∀y ∈ X (⇒) (x′k − y′)T b′ ≤ (yf − xkf )T b, ∀y ∈ X.

The inequalities ensure that, given the placed bids (b, b′), the total procurement cost incurred by

allocation xk is cheaper than those of any other feasible allocations if we do not consider ties.

Therefore, we get: Dk(b) = {b′ ∈ <A×(|F |−1) : (x′k − y′)T b′ ≤ (yf − xkf )T b,∀y ∈ X}. If

we let J = |X| and index the feasible allocations by j, then Dk(b) is a polyhedron in <A×(|F |−1)

defined by Mb′ ≤ q(b), where the jth row of M is (x′k − y′j)T and the jth element of vector q(b) is

(yjf − xkf )T b, for j = 1, · · · , J .

By Assumption 2.4, the density Hf ′(·|Z) for each competitor f ′ is continuous everywhere and

independent across bidders, and hence, the joint density h(b′) is continuous on <A×(F−1). The

integrability of h(b′) is readily obtained as it is a probability density function. Finally, the function

q(b) is a linear function of b, and hence differentiable with respect to b. Therefore, by Lemma

2.7.1, Ga(b;xk) is continuous and differentiable with respect to the bid vector b. Since the choice

of package a ∈ A and allocation xk ∈ Xa was arbitrary, the proof is complete. �
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It is useful to examine some of the properties of the Jacobian matrixes DbG(b) and DθW TG(b)

for the proof of Proposition 2.2 and Theorem 2.1. The following lemma investigates those proper-

ties.

Lemma 2.7.2. For any given bidder and her bid vector b, we have the following properties for the

winning probability vector G(b).

1. The Jacobian matrix DbG(b) is symmetric.

2. For any package a, we have i) Ga,a(b) ≤ 0; ii) Gs,a(b) ≥ 0 for any s 6= a; and iii)∑
s∈AGs,a(b) ≤ 0.

3. Consider a group-based markup model specified by a package-characteristic matrix W whose

elements are all non-negative. Let the markup vector θ and D := DθW TG(b). Then Dij ≥ 0 for

any i 6= j.

Proof of Proposition 2.2. (Part a): In the full-dimension markup model, we have ba = ca+θa for

a = 1, . . . , A, and the first-order conditions, (2.3) yields:

[DbG(b)]T θ = −G(b), where θ := [θ1, ..., θA]T . (2.10)

Similarly, for the group-based markup model, we have ba = ca + θu for all a = 1, . . . , A. Note that

the package-characteristic matrixW ∈ <A is thenW = [1, 1, ..., 1]T . By letting α := [α1, ..., αA]T

where αa := Ga,θu(b), we have DθuW TG(b) = W TDθuG(b) = W Tα. Then the first-order

condition of this characteristic-based markup model, (2.5) now becomes:

[DθuW TG(b)]T θu = −W TG(b) (⇒) αTWθu = −W TG(b). (2.11)

Observe that by definition, ∂bs∂θu
= 1 for all s = 1, ..., A. Therefore by the chain rule, we get:

αa = Ga,θu(b) =
A∑
s=1

Ga,s(b) (⇒) W T [DbG(b)]T = αT .

Using this, left-multiplying byW T on both sides of equation (2.10) and then equating the right-hand

sides of equations (2.10) and (2.11) yields:
A∑
a=1

αaθa =

(
A∑
a=1

αa

)
θu (⇒) θu =

1∑A
a=1 αa

A∑
a=1

αaθa. (2.12)
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Note that by symmetry of the Jacobian matrix DbG(b), shown in part 1 of Lemma 2.7.2, we have

αa =
∑A

s=1Ga,s =
∑A

s=1Gs,a. Then part 2 of the same lemma implies αa ≤ 0 for all a = 1, ..., A.

Next we show that at least one αa < 0, which then implies that
∑A

a=1 αa < 0. Assume for the

purpose of contradiction that αa’s are all zero. This implies that the sum of all the column vectors

in the Jacobian matrix DbG(b) is a zero vector and therefore they are not linearly independent.

However, since all the bids have strictly positive winning probabilities, the Jacobian matrix DbG(b)

is invertible as shown in Theorem 2.1, hence a contradiction. Therefore, we have at least one αa that

is strictly negative, and so does
∑A

a=1 αa < 0. By defining βa := αa/(
∑A

s=1 αs), we get βa ≥ 0

and
∑A

a=1 βa = 1. Finally plugging them into equation (2.12), we get θu =
∑A

a=1 βaθa, which

completes the proof.

(Part b): The first-order conditions of the full-dimension model, (2.3) gives:
G1,1(b) G2,1(b) G12,1(b)

G1,2(b) G2,2(b) G12,2(b)

G1,12(b) G2,12(b) G12,12(b)



θ1

θ2

θ12

 = −


G1(b)

G2(b)

G12(b)

 (2.13)

Now consider the case where we use common markup θu for single unit bids and markup θv for the

bundle of the two, so that the package-characteristic matrix W is formed as follows:

W =


1 0

1 0

0 1


→ Unit 1: apply unit markup θu,

→ Unit 2: apply unit markup θu,

→ Package 12: apply package markup θv.

Note that by the chain rule, Ga,θu(b) = Ga,1(b) + Ga,2(b), for a = 1, 2, 12. Hence, the first-order

conditions (2.5) of this characteristic-based model yields:G1,1(b) +G1,2(b) +G2,1(b) +G2,2(b) G12,1(b) +G12,2(b)

G1,12(b) +G2,12(b) G12,12(b)


θu
θv

 = −

G1(b) +G2(b)

G12(b)


(2.14)

Left-multiplying by W T on both sides of (2.13) and then equating the right-hand sides of equations
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(2.13) and (2.14) give:

θu = βθ1 + (1− β)θ2,

θv = θ12 + γ(θ1 − θ2),

where β := det−1 {G12,12 (G1,1 +G1,2)− (G12,1 +G12,2)G1,12} ,

γ := det−1 {(G2,1 +G2,2)G1,12 − (G1,1 +G1,2)G2,12} ,

det := (G1,1 +G2,1 +G1,2 +G2,2)G12,12 − (G12,1 +G12,2) (G1,12 +G2,12) .

Note that by Theorem 2.1, the Jacobian matrix in (2.14) is invertible and therefore its determinant,

denoted by det, is not zero. To show β ≥ 0, first observe that det is strictly positive, since−(G1,1 +

G2,1 +G1,2 +G2,2) ≥ (G1,12 +G2,12) ≥ 0 and −G12,12 ≥ (G12,1 +G12,2) ≥ 0 by Lemma 2.7.2.

Similarly, the same lemma also implies −G12,12 ≥ (G12,1 + G12,2) ≥ 0 and −(G1,1 + G1,2) ≥

G1,12 ≥ 0. Therefore we get β ≥ 0, which completes the proof. �

Proof of Lemma 2.4.1. Fix a package a ∈ A. Note that by the chain rule and Assumption 2.5,

we have Ga,θi(b) =
∑

s∈A
∂bs
∂θi
Ga,s(b) =

∑
s∈AWsiGa,s(b). Therefore, it suffices to show that

Ga,s(b) = 0 for all s ∈ A.

First, we let p(ω) := mint∈A0 pt(ω), the minimum procurement cost given ω ∈ Ω∗. Note that

Ga(b) = 0 implies pa(ω) > p(ω) in a set of Ω′a ⊆ Ω∗, such that P(Ω′a) = 1. Also, we let ea ∈ <A

be the ath canonical vector, whose ath component is equal to one while all others are equal to zero.

We now show that Ga,s(b) = 0 for all s ∈ A \ {a}. First, take any package s 6= a and consider

a perturbation of decreasing bs by ε > 0. Recall that bidder f can win at most one package and

therefore pa(ω) does not depend on the value of bs. Therefore, decreasing bs will not change the

value of pa(ω). However, depending on whether bs is part of the current optimal allocation or not,

the value of the current optimal allocation may decrease by ε or stay the same (p(ω)) after the

perturbation. Thus, after such a perturbation the value of the current allocation will still be lower

than pa(ω). This implies that bidder f remains not winning package a for all ω ∈ Ω′a. Hence, we
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obtain Ga(b) − Ga(b − εes) = 0 for all ε > 0. Then the differentiability of G(b) established in

Proposition 2.1 implies Ga,s(b) = 0.

Similarly, to show that Ga,a(b) = 0, consider a perturbation of increasing ba by ε > 0. Then

again for all ω ∈ Ω′a, after such a perturbation, pa(ω) only increases (to be pa(ω) + ε) and remains

being larger than the optimal value p(ω). Hence bidder f can never win package a after the

perturbation, which implies Ga(b + εea) − Ga(b) = 0 for all ε > 0. Again by Proposition 2.1,

we obtain Ga,a(b) = 0.

By combining these results, we get Ga,θi(b) =
∑

s∈AWsiGa,s(b) = 0, which completes the

proof. �

The following Lemma provides invertibility conditions of a matrix, which is used to prove

Theorem 2.1.

Lemma 2.7.3 (Theorem 6.1.10 in Horn and Johnson (1985)). A matrix D ∈ <n×n is said to be

strictly diagonally dominant, if it satisfies:

|Dii| >
∑
j 6=i
|Dij |, ∀i = 1, 2, . . . , n.

If D is strictly diagonally dominant, then D is invertible.

Proof of Theorem 2.1. (Necessity): We first show that if the Jacobian matrixDθW TG(b) is invert-

ible, it must be that every markup variable has at least one relevant bid associated with it. For this,

assume there exists a markup variable, say θi, whose associated bids are all irrelevant. Now note that

[DθW TG(b)]ij =
∑

a∈Ai
WaiGa,θj (b). But then Lemma 2.4.1 implies thatGa,θj (b) = 0, ∀a ∈ Ai,

leading to [DθW TG(b)]ij = 0. Since this is true for any j = 1, 2, ..., d, the ith row of Jacobian

matrix DθW TG(b) will be a zero vector. Having a row of zeros implies that the matrix is not

invertible. This completes the proof of necessity.

(Sufficiency): We now show that if every markup variable has at least one relevant bid associated

with it and the additional conditions in the statement of the theorem hold, then the Jacobian matrix
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DθW TG(b) evaluated at the observed bid vector b is invertible, and therefore the markup vector θ

is uniquely determined by equation (2.6). For notational simplicity, we let D := DθW TG(b).

First, recall that in a group-based markup specification, for any package a, there is only one

markup variable that is associated with it, say markup variable θi. Then the profit that bidder f

makes from winning package a is Waiθi. By assumption, Waiθi ≥ 0 and Wai ≥ 0, for all packages

a. Therefore, θi ≥ 0, for all i. We now proceed to show that θi is indeed strictly positive for all

i = 1, 2, ..., d. By Assumption 2.6, θ satisfies equation (2.5): DT θ = −W TG(b). For the purpose

of contradiction, we fix i and assume that θi is zero. We examine the ith equation in (2.5):

Diiθi +
∑
j 6=i

Djiθj = −W T
i G(b). (2.15)

The first term on the left-hand side is zero by assumption. The second term is non-negative since we

know that (i) θj ≥ 0, ∀j; and (ii) Dji ≥ 0 by part 3 of Lemma 2.7.2. However, the right-hand side

is strictly negative because there is at least one relevant bid, say ba, that is associated with markup

variable θi, so that W T
i G(b) ≥ WaiGa(b) > 0. Therefore it is impossible for θ to satisfy equation

(2.5), which contradicts Assumption 2.6. Hence, θi > 0, for all i.

Now, we construct a diagonal matrix Θ so that Θii = θi for all i = 1, 2, ..., d. Because θi >

0, ∀i, it is clear that Θ is invertible. We now show that equation (2.5) implies that the matrix

DTΘ is strictly diagonally dominant, and therefore invertible by Lemma 2.7.3. To see this, take

any i ∈ {1, 2, ..., d}, and consider the ith equation in (2.5) (see (2.15)), for which we know that its

right-hand side is strictly negative. Therefore, using [DTΘ]ij = DjiΘjj = Djiθj , we reach the

following inequality:

[DTΘ]ii +
∑
j 6=i

[DTΘ]ij = −W T
i G(b) < 0 (⇒)

∑
j 6=i

[DTΘ]ij < −[DTΘ]ii.

Recall that when i 6= j, we have [DTΘ]ij = Djiθj ≥ 0, and this implies
∑

j 6=i |[DTΘ]ij | <

|[DTΘ]ii|. Since this is true for any i = 1, 2, ..., d, we conclude that DTΘ is strictly diagonally

dominant and hence invertible by Lemma 2.7.3. Since Θ is also invertible, the invertibility of D

follows with D−1 = (ΘTD)−1ΘT , and the proof for sufficiency is now complete. �
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2.7.3 Proofs of Side Lemmas

Proof of Lemma 2.7.1. We will prove differentiability of F by induction. Consider the basis case

of m = 1. Since D(y) is a polyhedron, it is a closed interval in <. Moreover, by assumption, each

boundary is either a differentiable function of y or infinity. We let such boundary functions to be

h(y), h̄(y) for lower and upper bounds (possibly infinity), respectively. Then F can be rewritten as

follows:

F (y) =

ˆ h̄(y)

h(y)
f(x1)dx1.

Then, for any j = 1, 2, . . . , n, we have:

∂F

∂yj
=
∂h̄(y)

∂yj
f(h̄(y))− ∂h(y)

∂yj
f(h(y)), by Leibniz Integral Rule.

Note that each term will vanish in case of infinite boundary by the integrability of f(·). Thus, by

the differentiability of the boundary function h and continuity of f , F is differentiable. Now set the

induction hypothesis that it is true for m − 1. For the case with m, without loss of generality pick

the first element in x and define F1 as follows:

F1(y, x1) =

ˆ
D(y;x1)

f(x1, x−1)dx−1,

where x−1 := (x2, . . . , xm), Ai is the ith column vector in A, A−1 := [A2, · · · , Am], and

D(y;x1) := {x̃−1 ∈ <m−1 : Ax̃ ≤ b(y), x̃1 = x1} = {x̃−1 ∈ <m : A−1x̃−1 ≤ b(y)−A1x1}. It is

clear thatD(y;x1) is also a polyhedron in <m−1 defined by a given matrixA−1 and a differentiable

vector b(y) − A−1x1. Hence, F1(y, x1) is differentiable with respect to y for any given x1, by

induction hypothesis. Now using F1, F can be expressed as:

F (y) =

ˆ
D1(y)

F1(y, x1)dx1

. Since D1(y) is a projection of D(y) onto x1 axis, it is also a polyhedron in < and thus a closed

interval. Hence after letting these boundaries to be h(y), h̄(y), and again by Leibniz Integral Rule,

its partial derivative with respect to yj becomes:

∂F

∂yj
=
∂h̄(y)

∂yj
f(h̄(y))− ∂h(y)

∂yj
f(h(y)) +

ˆ h̄(y)

h(y)

∂

∂yj
F1(y, x1)dx1,
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Therefore, ∂F
∂yj

is continuous for the case of m. Hence we conclude that F is differentiable for any

dimension m ∈ N and the proof is complete. �

Proof of Lemma 2.7.2. (Part 1): We fix two arbitrary but distinct packages a and s, and we first

show that Gs,a(b) ≤ Ga,s(b). We then establish the reversed inequality by exchanging the two

packages and using a symmetric argument. The arbitrary choice of the two packages a and s then

provides the completion of the proof.

Accordingly, take any two distinct packages a, s ∈ A and an arbitrary scalar ε > 0. We begin

by defining the following events:

Ωa := {ω ∈ Ω∗ : pa(ω) = min
t∈A0

pt(ω)},

Ωa,s := {ω ∈ Ωa : ps(ω) = min
t∈A0\{a}

pt(ω)},

Ωε
a,s := {ω ∈ Ωa : ps(ω) < pa(ω) + ε}.

By definition, Ωa denotes the event where bidder f wins package a, and Ωa,s ⊂ Ωa denotes the event

where the minimum allocation without bidder f winning package a is the one with her winning

package s. Also, Ωε
a,s ⊂ Ωa is the event where the minimum allocation with bidder f winning

package s is less than ε above from the current optimal value, pa(ω). Finally, we let Ωs ⊂ Ω∗ to be

the event where bidder f wins package s. Note that Ωa and Ωs are disjoint.

We use the following random variables: Y a±ε
s (ω) := 1[ ps(ω) = min(mint∈A0\{a} pt(ω), pa(ω)±

ε) ]. The random variables Y a±ε
s (ω) indicate bidder f ’s winning of package s when her bid ba

changes by +ε and −ε, respectively. Similarly, we define Y 0
s (ω) := 1[ ps(ω) = mint∈A0 pt(ω)],

that is, the indicator that the bidder wins package s given her bid price b at the realization of ω. Now

we divide the event set Ω∗ into the following four disjoint subsets and examine the values of the

random variables Y a+ε
s (ω) and Y 0

s (ω).

1. ∀ω ∈ Ω∗ \ (Ωa ∪ Ωs): Bidder f is winning neither a nor s, so Y 0
s (ω) = 0. Moreover,

increasing her bid ba by ε will not let her win s, hence, Y a+ε
s (ω) = 0.
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2. ∀ω ∈ Ωs: Bidder f is winning package s and increasing her bid on non-winning package a

will not change her winning s. Thus, Y 0
s (ω) = Y a+ε

s (ω) = 1.

3. ∀ω ∈ Ωa,s ∩ Ωε
a,s: Bidder f is winning package a, so Y 0

s (ω) = 0. Since ω ∈ Ωε
a,s, after

increasing ba by ε, the value of the current optimal allocation pa(ω) + ε becomes larger than

ps(ω). But then, ω ∈ Ωa,s implies ps(ω) becomes the lowest procurement cost after such a

perturbation. Hence, Y a+ε
s (ω) = 1.

4. ∀ω ∈ Ωa \ (Ωa,s ∩ Ωε
a,s): Bidder f is winning package a, so Y 0

s (ω) = 0. If ω 6∈ Ωa,s,

after increasing ba by ε, ps(ω) is not the lowest procurement cost. If ω 6∈ Ωε
a,s, ps(ω) is still

larger than the value of the current allocation, pa(ω) + ε, even after the perturbation. Hence,

Y a+ε
s (ω) = 0.

In words, (Ωa,s ∩ Ωε
a,s) is the only event in which bidder f ’s winning status of package s changes

by an ε increase in her bid ba. Therefore, we obtain:

Gs(b+ εea)−Gs(b)
ε

=
1

ε
E[Y a+ε

s − Y 0
s ] =

1

ε
P(Ωa,s ∩ Ωε

a,s), (2.16)

where ea is the ath canonical vector whose ath component is the only non-zero element and is equal

to one.

Now we look at the effect of decreasing bs by ε to the winning of package a. Similarly, we

divide the event set Ω∗ into the following three disjoint subsets and examine the values of random

variables Y s−ε
a (ω) and Y 0

a (ω).

1. ∀ω ∈ Ω∗ \ (Ωa): Since bidder f is not winning package a, Y 0
a (ω) = 0. Moreover, decreasing

her bid bs by ε will never let her win package a, hence, Y s−ε
a (ω) = 0.

2. ∀ω ∈ Ωε
a,s: Bidder f is winning package a, so Y 0

a (ω) = 1. Since ω ∈ Ωε
a,s, after decreasing

bs by ε, ps(ω)− ε becomes lower than the current optimal value, pa(ω), so bidder f will win

package s instead of a. Hence, Y s−ε
a (ω) = 0.
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3. ∀ω ∈ (Ωa \Ωε
a,s): Bidder f is winning package a, so Y 0

a (ω) = 1. Since ω 6∈ Ωε
a,s, decreasing

bs by ε cannot make the value ps(ω)−ε cheaper than the current optimal value, pa(ω). Hence,

the previous optimal allocation will remain optimal and Y s−ε
a (ω) = 1.

This time, Ωε
a,s is the only case that bidder f ’s winning status of package a is affected by an ε

decrease in her bid bs. Therefore, we get:

Ga(b)−Ga(b− εes)
ε

=
1

ε
E[Y 0

a − Y s−ε
a ] =

1

ε
P(Ωε

a,s). (2.17)

Since (Ωa,s ∩ Ωε
a,s) ⊆ Ωε

a,s, from (2.16) and (2.17) we get the following inequality:

Gs(b+ εea)−Gs(b)
ε

=
1

ε
P(Ωa,s ∩ Ωε

a,s) ≤
1

ε
P(Ωε

a,s) =
Ga(b)−Ga(b− εes)

ε
.

Recall that ε is an arbitrary positive scalar and Proposition 2.1 ensures the differentiability of G(b)

with respect to b. Thus, by letting ε vanish, we get Gs,a ≤ Ga,s.

In the previous argument, the only condition for the packages a and s is that they are distinct.

Hence, a symmetric argument also holds true and we get Gs,a ≥ Ga,s, and therefore Gs,a = Ga,s.

Since the choice of a and s was arbitrary, we conclude that the Jacobian matrix is symmetric and

this completes the proof of part 1.

(Part 2): To showGa,a(b) ≤ 0, fix a realization of ω ∈ Ω∗ and consider a perturbation of increasing

bidder f ’s bid price ba by ε > 0. If she currently wins package a, she may or may not win package

a after the perturbation. However, if she currently does not win package a, i.e., pa(ω) is not the

lowest procurement cost, she cannot win package a after the perturbation since pa(ω) + ε remains

being larger than the current optimal value. Since these are true for any ω ∈ Ω∗, increasing bid

price ba will never increase her chances of winning package a. Hence we get Ga(b+ εea) ≤ Ga(b),

for all ε > 0. Then the differentiability of G(b), shown in Proposition 2.1, implies Ga,a(b) ≤ 0.

Similarly, for the proof of Gs,a(b) ≥ 0 for any s 6= a, consider a perturbation of decreasing ba

by an arbitrary ε > 0. Given a realization of ω ∈ Ω∗, if she currently wins package s (possibly the

null package), she can either win package a instead of s or still win package s after the perturbation.



CHAPTER 2. STRUCTURAL ESTIMATION APPROACH FOR LARGE-SCALE FIRST-PRICE
SEALED-BID COMBINATORIAL AUCTIONS 67

However, if she currently wins package a, she will win package a for sure after the perturbation.

Therefore, decreasing her bid ba only possibly decrease her chances of winning package s, and we

getGs(b) ≥ Gs(b−εea), for all ε > 0. Again the differentiability ofG(b) then impliesGs,a(b) ≥ 0.

Finally, since
∑

s∈AGs(b) = 1−G0(b), so we get
∑

s∈AGs,a(b) = −G0,a(b) ≤ 0, where the

last inequality follows because G0,a(b) ≥ 0 by a similar argument as above. This completes the

proof of part 2.

(Part 3): Note that by Assumption 2.5, b = Wθ + c and by the chain rule, we have D :=

DθW TG(b) = W TDbG(b)W . Then for any i 6= j we get:

Dij =
∑
a,s∈A

WaiWsjGa,s(b) =
∑

a∈Ai,s∈Aj

WaiWsjGa,s(b),

where the second equality comes from the fact that Wai = 0 if a 6∈ Ai by its definition. In addition,

recall that in a group-based markup model, Ai and Aj are disjoint if i 6= j. Therefore by part 2

of this lemma shown above, Ga,s(b) ≥ 0 for all a ∈ Ai and s ∈ Aj . The non-negativity of the

elements in W then ensures that Dij ≥ 0 for all i 6= j, which completes the proof of part 3. �
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Chapter 3

Application to the Chilean School-Meal

Auction

3.1 Introduction

We effectively apply our structural estimation method developed in Chapter 2 to the Chilean school

meals CA (see Epstein et al. (2002) for a detailed description of the auction). This application

fits well within the class of large-scale CAs: each auction has about 30 units and firms submit

hundreds or even thousands of bids. This CA has a single-round sealed-bid first-price format. The

auction is used by the Chilean government to allocate contracts among private catering firms to

provide breakfast and lunch for 2.5 million children daily in primary and secondary public schools

during the school year. In a developing country where about 14 percent of children under the age

of 18 live below the poverty line, many students depend on these free meals as a key source of

nutrition. The CA, one of the largest state-run auctions in Chile, was used for the first time in

1999 and has been used every year since its inception awarding more than $3 billion of contracts.

Although this application has been praised for bringing transparency and lowering the procurement

costs of a high social impact public service, a detailed performance analysis of the CA format has

not been conducted. Moreover, government officials running this auction have considered revising
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its format, in part worried by the potential negative effects that can arise due to strategic bundling

(Olivares et al., 2012). Thus motivated, we use our structural approach to inform this auction design

question.

Our results show that for the Chilean auction, cost synergies are significant, amounting up to 6%

of the cost. Roughly 75% of the discounts observed in the bid data arise from cost synergies (the rest

is due to strategic markup adjustments). In part due to this large cost synergies, the CA achieves

a strikingly high efficiency, with an actual cost allocation only 1.5% higher than the minimum-

cost allocation. The results also show that while economies of scale (mostly generated by volume

discounts in input purchases) are larger than economies of density (arising from common logistics

infrastructure used to supply nearby units), they are both important in the firms’ operational cost

synergies. Finally, the estimated markups are on average around 5%, suggesting that the CA induces

a reasonable amount of competition among the suppliers. The level of markups coincides with

anecdotal evidence provided by the Chilean government.

Once we estimate the cost structure we can also perform other useful counterfactuals. One

important consideration the government has when running these auctions, which arises frequently in

other settings with synergies, is how to promote diversification and competition among bidders. On

one hand, if cost synergies are significant, it may be efficient and optimal in the short-run to allocate

all units to one or few firms. On the other hand, this could depress competition in the bidders’ market

for future auctions, as inactive firms may find it hard to compete head-to-head with incumbents,

increasing expected payments in the long-run. In the Chilean school meals auction, the government

imposes market share restrictions for bidders in the CA to promote long-run competition. The cost

estimates provided by the structural estimation can be used to evaluate the efficiency loss due to

these constraints. We find that the efficiency loss is very small, around 1%. The main reason for this

result is that cost synergies get practically exhausted at the point where the market share constraints

become binding.

Our results on the Chilean school meals auction complement those in Olivares et al. (2012) that

provide further suggestive evidence of cost synergies in this application. However, their approach
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does not provide direct estimates of the suppliers’ costs, which are needed to evaluate the perfor-

mance of the auction. In addition, their approach does not allow us to perform counterfactuals.

Other reduced-form approaches suffer from the same limitations (see Ausubel et al. (1997), Gandal

(1997), and Moreton and Spiller (1998)) that our structural estimation approach overcome. Going

back to our initial motivating auction design question, the structural approach provides a direct

measure of the good performance of the CA in this setting, which cannot be done through a reduced-

form approach. As far as we know, this is the first work that provides empirical evidence that a CA

performs well in a real-world application. In summary, our results suggest that package bidding and

running a CA seems appropriate in this application.

The rest of this chapter is structured as follows. In Section 3.2 we provide a detailed description

of the Chilean school meals auction and the data. We also discuss how the structural model

assumptions fit into this application. Section 3.3 presents the estimates for the distribution of the

competitors’ bids. Using these estimates, we then provide cost and markup estimation results in

Section 3.4 in both small and large-scale auctions. We conduct performance analysis of the large-

scale CAs using the cost and markup estimates in Section 3.5 and Section 3.6 provides the main

conclusions for this chapter.

3.2 The Chilean Auction for School Meals

The application we study in this chapter is the Chilean auction for school meals. In this section, we

provide a detailed description of the auction, the data collected. We also provide the justification of

the assumptions of the structural model developed in Chapter 2 in the context of our application.

3.2.1 Brief History

Junta Nacional de Auxilio Escolar y Becas (JUNAEB) is a government agency in Chile that provides

breakfast and lunch for 2.5 million children daily in primary and secondary public schools during

the school year. This is one of the largest and most important social programs run by the Chilean
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government. In fact, in a developing country where about 14 percent of children under the age of 18

live below the poverty line, many students depend on these free meals as a key source of nutrition.

Since 1999, JUNAEB assigns its school meal service contracts through a single-round, sealed-

bid, first-price CA, that was fully implemented for the first time that year. The CA has been used

every year since its inception awarding more than US$ 3 billion of contracts, being one of the largest

state auctions in Chile (in recent years, each auction awards contracts for about half a billion dollars).

The auction process begins with the registration of potential suppliers followed by an evaluation

conducted by the agency, which considers managerial, technical and financial performance metrics.

Some companies may be excluded from the auction if they do not pass this evaluation. Meal plans

and service quality are standardized, so that qualified suppliers compete on price.

For the purpose of the auction, Chile is divided into approximately 100 school districts or

territorial units (TUs) in 13 geographic regions. Each year, JUNAEB holds an auction for one-

third of the country (around 30 - 35 TUs), awarding three-year contracts. Typically about 20 firms

participate in each auction and they are allowed to submit package bids that cover any combinations

of TUs and specify the price to serve them. The maximum number of TUs that a firm is allowed

to include in any given package (ranging from one to eight TUs) depends on the firm’s financial

evaluation. Vendors can submit many bids and each package bid is either fully accepted or rejected

(i.e. the mechanism does not allocate a fraction of a bid); most firms submit hundreds or even

thousands of bids. Two potential sources of cost synergies motivate the use of CAs in this context:

(i) economies of scale, generated by volume discounts in the input purchases; and (ii) economies of

density that arise from common logistics infrastructure used to supply nearby units.

3.2.2 Auction Process

The auction process begins when JUNAEB invites and registers potential vendors. The agency then

evaluates the companies from a managerial, technical and financial point of view, and eliminates

those that do not meet minimum reliability standards. Qualifying vendors are classified according to

two characteristics: their financial capacity (based on data from the firms’ balance sheets), and their
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managerial competence. Usually, firms below a minimum level of managerial competence are not

allowed to participate in the auction. Meal plans are standardized and service quality requirements

are presented in detail. With that, firms compete on price basis. Potential vendors submit their

bids simultaneously and in a single-round through an online system. Contract winners are paid the

amount of their winning bids and are responsible for managing the entire supply chain associated

with all meal services in the awarded TUs. This includes from sourcing food inputs going all the

way to cooking and serving the meals in the schools.

Bidding language. A bid can cover any combination from one to eight TUs and specifies the

price for which the firm would serve all meals included in the TUs in the combination. Vendors can

submit many bids and each package bid is either fully accepted or rejected (i.e. the mechanism does

not allocate a fraction of a bid); most firms submit hundreds or even thousands of bids.

Winner determination. The allocation is chosen by selecting the combination of bids that supply

all of the TUs at a minimum cost. The problem is formulated as an integer program (IP) that incor-

porates other considerations and side constraints. There are four types of constraints implemented

in the auction and the details of those constraints are as follows. We then provide the mathematical

formulation of the IP in the following section.

1. Cover all TUs: the final allocation should cover all the TUs auctioned.

2. Maximum Number of TUs: There is a maximum number of TUs that each firm can be

allocated in any given auction. This maximum is based on the financial evaluation conducted

by JUNAEB every year and therefore can be different across firms and auctions, ranging from

1 to 8 TUs.

3. Global Market Share Constraints: To avoid excessive concentration and encourage diver-

sification, at any point in time, the total standing contracts of any firm cannot exceed 16%

of the total number of meals included in all TUs in the entire country. Hence, depending on
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the volume of standing contracts, the maximum volume can be also different across firms and

auctions.

4. Local Constraints: To facilitate supervision and control of the firms, there are constraints

on the maximum number of firms serving in each geographical region. On the other hand,

to actively respond to contingencies such as bankruptcies, there are also constraints on the

minimum number of firms serving in each geographical region. Geographical regions in low

population areas contain less than five TUs while regions with higher population typically

contain between 10 and 20 TUs.

5. Global Competition Constraint: For similar reasons as the global market share constraints,

there is a constraint in the minimum number of firms winning contracts in each auction (this

number can vary across auctions, usually being around 10).

3.2.3 Winner Determination Problem Formulation

We now provide the details of the integer programming (IP) formulation of the winner determination

problem (WDP). We begin by introducing notation that is not defined previously and we then

formulate the IP.

Index Sets. We let R denote the set of geographical regions indexed by r (recall that each geo-

graphical region contains several TUs). We let Af be the set of packages on which firm f places

bids. They are to distinguish fromA in case of missing bids (unobserved bids) by firm f . Arf ⊆ Af

represents the set of packages in Af that contain at least one TU in region r. Finally, we let |a|

denote the number of TUs in package a, and we let Af and Arf denote the number of packages in

the sets Af and Arf , respectively.

Constraints and Their Parameters. As described above, we have five types of allocative con-

straints in the auction. We also have an additional constraint imposed in our structural model,

namely, that each firm can win at most one package. We label those constraints as follows: (A)
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Cover all TUs ensures that all the TUs be contracted. (B) At most one package constraint imposes

that firms can win at most one package. (C) Maximum number of TUs bounds the number of TUs

that each firm can win. We let MXUf denote the maximum number of TUs that firm f can win.

(D) Global Market Share Constraints limits the total volume of standing contracts of each firm in

terms of the number of meals served. We let MXMf denote the total number of meals that firm f

can win in the auction being considered. (E) Local constraints bound the minimum and maximum

number of firms serving in each region. We use MNFr and MXFr to denote these bounds for

region r. (F) Global competition constraint sets the minimum number of firms being contracted in

the auction being considered. We let MNFg denote this minimum number.

Decision Variables. We let xaf be the firm-package allocation decision variable for package a

and firm f . This variable takes the value of 1, if firm f wins package a, and 0 otherwise. These

variables determine the allocation. The variable yrf is a regional allocation variable for region r

and firm f , taking the value of 1 if firm f wins a package that contains at least one TU in region r,

and 0 otherwise. They are used to count the number of firms serving in each geographical region

for the local constraints. The decision variable zf relates to the winning status of firm f . It is equal

to 1 if firm f wins a package and 0 otherwise. They count the number of winning firms to be used

in the global competition constraint.

IP Formulation of the WDP. First, notice that constraints (C) and (D) are firm-wise limits, and

for each firm any bids placed on packages that exceed the firm’s limits can never win. Therefore,

we eliminate such bids a priori from Af for each firm f ∈ F . That is for any given firm f and

for all a ∈ Af , we have |a| ≤ MXUf and va ≤ MXMf . Then, constraints (C) and (D) will be

automatically satisfied as long as firms win at most one package imposed by (B). Hence, we omit

(C) and (D) in our IP formulation. Recall that the objective is to minimize the total procurement

cost. Now we present the IP formulation of the WDP. The constraints that are not labeled impose the

correct values for the auxiliary variables yrf and zf , and the integrality constraints for all decision
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variables.

minimize
∑
f∈F

∑
a∈Af

bafxaf

subject to (A)
∑
f∈F

∑
a∈Af :i∈a

xaf ≥ 1, ∀i ∈ U

(B)
∑
a∈Af

xaf ≤ 1, ∀f ∈ F

(E) MNFr ≤
∑
f∈F

yrf ≤MXFr, ∀r ∈ R

1

Arf

∑
a∈Arf

xaf ≤ yrf ≤
∑
a∈Arf

xaf , ∀r ∈ R, ∀f ∈ F

(F)
∑
f∈F

zf ≥MNFg,

1

Af

∑
a∈Af

xaf ≤ zf ≤
∑
a∈Af

xaf , ∀f ∈ F

xsf , yrf , zf ∈ {0, 1}.

3.2.4 Description of the Data

Data were collected and processed for all auctions between 2002 and 2005. The dataset contains

all bids placed by all firms in each auction, the identity and characteristics of participating firms

in each auction, and detailed information on the auction parameters, including all the parameters

used to determine the side constraints of the winner determination problem. TU data includes its

annual demand (number of meals to be served), referred to as the volume of the TU, as well as

the geographic location of its schools. We also know the set of winning bids in each auction and

therefore, at every point in time, we know the identity of the firms serving each TU. Additional

details of the data can be found in Olivares et al. (2012).

We apply our method to the large-scale CA of 2003. In 2002, the auction faced some regularity

issues, and a second subsequent auction was used to award the contracts. Hence, we conservatively
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decided to exclude this year from our analysis. In 2004, the government introduced an electronic

bidding system to the auction process that resulted in a huge increase in the number of submitted

bids. On average, firms placed four times as many bids as they did in 2003, imposing an onerous

amount of computation time in the estimation. However, the estimation was more manageable for

the 2005 auction as the number of units auctioned and the participating firms were smaller, so we

estimated that year to cross-validate the results. Table 3.1 provides summary statistics of the 2003

auction.

Additionally, we also collected data from two exceptionally smaller-scale auctions that were

run between 1999 and 2005. These auctions were used to replace contracts from a few firms that

had some irregularities. The auctions had eight and six units, respectively, and about thirteen firms

participated. Given their smaller scales, these auctions can be estimated with the full-dimension

model described in Section 2.2. We used them to compare results between the full-dimension and

the extended size-based markup models, thereby providing validation of the methods developed in

this work. Section 3.4.1 reports this comparison.

3.2.5 Discussion on the Assumptions of the Structural Model

In this section, we discuss how the assumptions of the structural model fit into this application.

First, Assumption 2.1 ensures that the auction allocates at most one package per firm. While this

restriction is not explicitly imposed in our empirical application, firms actually win at most one

package in practice. In fact, among 41 winning firms between 2002 and 2005, only in one occasion

a firm won more than one package; this happened in 2002. Table 3.2 summarizes the winning

outcome in those years. Moreover, the government closely monitors the firms that participate in the

auction and keeps track of strict records regarding firms’ ownerships. Firms that are divided are

actually treated as a single firm in the entire auction process, and the government can prohibit firms

to win multiple packages through different entities. Hence, imposing this assumption is reasonable

in this setting.

Assumption 2.2 imposes independent private costs, which seems adequate in this application.
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YEAR 2002 2003 2004 2005

Total number of winning firms 10 9 11 11

Number of winning firms winning one bid 9 9 11 11

Table 3.2 – Fraction of winning firms that won only one package bid for different auctions.

Roughly, 75% of the cost structure of firms is associated with food inputs and labor. A significant

amount of these costs are common to all firms. However, this common part is not subject to

uncertainty; it is determined by food prices and wages that are common knowledge to all parties

involved at the time of the auction (wages of the cooks in this industry are actually regulated by the

government). There could still be some uncertainty about future food prices due to the three year

extension of the contracts. However, if prices change too much, there are rules in the auction that

allow all firms to adjust their bids accordingly, dramatically reducing this risk (these rules are based

on variation of food price indexes). Therefore, we believe the cost uncertainty is basically driven

by firm specific differences in (1) logistics and management abilities (constitute the other 25% of

the costs); and (2) idiosyncratic cost advantages related to food inputs determined by, for example,

better contracting terms with providers. We think (1) and (2) are well captured by an independent

private cost model.

Finally, Assumption 2.4 imposes that firms have the correct expectations regarding the vector

of winning probabilities given their bids and competitors’ strategies. As previously discussed, this

is similar to assuming equilibrium play as is usually done in the structural estimation literature.

While this may generally be a strong rationality assumption given the complexity of the auction, we

believe that in our application it may be less so. First, these auctions are repeatedly run every year

and all past bidding history is publicly available information (including winning and non-winning

bids). In this regard, we exclude auctions where the units were awarded for the first time (years

1999-2001), because bidders had less experience and history to rely on, and were less sophisticated,
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so that our structural model assumptions may be harder to justify. On a related point, note also that

we assume firms maximize expected profits in the current auction without incorporating the impact

on future auctions. This assumption is fairly standard in the structural estimation auctions literature,

and we believe it captures the first-order objective of firms in this market. Moreover, given that our

model is already very complex, adding dynamics would make it even more challenging. In addition,

note that under our characteristic-based markup model firms do not need to estimate the winning

probability of each individual package, but instead aggregated probabilities over several packages,

which can be more manageable.

Moreover, we know from anecdotal evidence that firms in our application are quite sophisticated

when bidding. In fact, because stakes are so high, firms invest important amounts of money in

business intelligence. Using the historical information together with current market intelligence,

firms indeed try to estimate the competitive landscape they will face. A personal interview with a

former CEO of one of the supplying companies (that also consulted for other firms) provided more

details about the bidding process. He began by creating a large spreadsheet with the packages he

was interested on and calculated detailed cost estimates for these. Then, he would choose a markup

for the different packages. Historical bid prices were used to decide the average margins to be

charged; the margins became smaller over time as the market became more competitive (e.g. when

larger catering companies entered the market). In addition, he would typically adjust the markup

depending on the number of units in the package, asking for a lower per-meal markup for larger

packages. Finally, based on historical bid data, he would also adjust markups for a few packages in

which he was “more competitive”.1 This provides further support for Assumption 2.4 and is also

consistent with the extended size-based markup model.

1The interviewee asked for confidentiality of his identity; we are grateful to this anonymous contributor for the insights

provided.
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3.3 Estimates of the Bid Distribution Parameters

This section describes the estimates of the distribution of the competitors’ bids, based on the model

presented in Section 2.5.1. We provide the results for the 2003 auction. Results for the 2005 auction

have similar pattern and magnitude, and are omitted for brevity.

The school meals auction exhibits significant differences in discounts across the largest firms

and the rest of the firms, so we categorize the bidders into two types, k(f) ∈ {L,O} (for Large and

Other), to estimate discounts. Recall from Section 3.2.1 that based on the financial evaluation and

business capability, each firm has a maximum number of TUs that it is allowed to win in a given

auction. We use this to measure the size of a firm. On the covariates Zif (see equation (2.9)) we

include an indicator on whether the firm won the unit on the previous auction (other covariates were

also tested but they did not exhibit explanatory power).

Table 3.3 reports estimates of βscale and βdensity from the first step regression (equation (2.8)).

The scale and density per-meal discount curves, gscale(va, βscalek(f) ) and gdensity(vc, β
density
k(f) ), are

specified as step functions with interval of three million meals per year in the package volume va

and cluster size vc, respectively. Each number indicates the average discount in per-meal price

when units are combined to form a package that belongs to the corresponding volume level. For

example, when units are combined into package a with volume va ∈ [18, 21], then, on average, a

large firm submits a bid that is Ch$ 22.78 cheaper per meal than the weighted average bid price of

those individual units in the package. If all these units are located nearby and form a cluster, there

is an additional discount of Ch$ 11.27 on average for a large firm. The results show that large firms

were able to provide higher discounts which can be as large up to 8.5% of the average bid price (the

average bid price in the 2003 auction is Ch$ 423). All the coefficients are estimated with precision

and are different from zero with statistical significance (0.01% significance level). The R-square

of the regression corresponding to equation (8) is 0.98 (with δ̃if ’s as fixed effects), which provides

some support that the parametric model adopted provides a reasonable approximation to the bid

data generating process.
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Table 3.3 – The first step regression results for the 2003 auction.

Large Firms Other Firms

Volume Scale Density Volume Scale Density

[3, 6] 8.33 (1.30) 6.46 (0.51) [3, 6] 8.50 (0.62) 1.82 (0.14)

[6, 9] 15.21 (1.33) 7.81 (0.53) [6, 9] 11.86 (0.64) 3.31 (0.19)

[9, 12] 17.82 (1.31) 8.10 (0.55) [9, 12] 13.50 (0.65) 3.92 (0.24)

[12, 15] 19.10 (1.30) 8.57 (0.56) [12, 15] 13.44 (0.67) 5.69 (0.28)

[15, 18] 20.76 (1.29) 9.13 (0.57) [15, 18] 12.42 (0.69) 6.96 (0.36)

[18, 21] 22.78 (1.30) 11.27 (0.65) [18, 21] 10.90 (0.72)

[21, 24] 24.38 (1.30)

[24, 27] 24.95 (1.35)

Regression results by equation (2.8) for the 2003 auction. Robust standard errors are shown in

parenthesis. Volume is measured in million meals per year and discounts in Ch$.

The second step estimation (equation (2.9)) provides estimates for the distribution of the average

implicit prices δ̃if ’s, characterized by {δ̄i, σi}i∈U , the covariance matrix Ω and βZ , the coefficients

of the firm characteristics. Due to space limitations, we do not report the estimates of the δ̄i

parameters, but these were estimated with precision - on average, the standard errors are 1.2% of

the point estimates. The estimated coefficient for βZ is -5.986 with a p-value of 0.012, suggesting

that on average firms that were awarded the unit in the previous auction submit bids that are around

1.5% cheaper.

Table 3.4 shows the correlations between the region effects ψr(i),f (which were calculated based

on estimates of the variance/covariance matrix Ω). These estimates imply a significant positive

correlation among units: on average, the correlation between the implicit prices of two units in the

same region is 0.68, and 0.45 for units located in different regions. The last column of the table
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shows the standard deviations of each region effect ψr(i),f (which corresponds to
√

Ωrr). All the

standard errors of the maximum likelihood estimates of equation (2.9) are computed via a parametric

bootstrapping procedure.

We also tested some of the parametric assumptions in our model. First, our approach assumes

that the implicit prices δif follow a normal distribution. For all the units, a Shapiro-Wilks test cannot

reject this assumption at 5% significance level (p-values are in the range 0.073 to 0.92). To test the

restrictions on the covariance structure of the implicit prices {δif}i∈U imposed by equation (2.9),

we compared this model against a more general model where the full covariance matrix across all

units Σ is unrestricted. A likelihood ratio test cannot reject that the two models are equivalent (p-

value > 0.6 for both 2003 and 2005 auctions). These tests confirm that our parametric assumptions

make the estimation tractable, while being reasonably flexible.

3.4 Cost and Markup Estimation Results

We estimate markups and costs for the school meals auction application using the two-step method

described in Section 2.2.2 and the competitors’ distribution of bids estimated in the previous section.

For the second step we use the extended size-based markup model heuristic described in Section

2.4.2. In addition, to validate our estimation approach, we also compared the estimation via the

full-dimension model and the extended size-based markup model using the two small CAs. Before

presenting these estimation results, we first discuss issues on specifying the package-characteristic

matrix W in our specific application. Then the small auction results are provided followed by the

results for the large-scale CAs.

First, in our empirical application, package volume – defined in terms of the annual demand of

meals for the TUs contained in the package – has a first-order effect on the bid price and so prices

may vary substantially even within each size group. For this reason, we assume that bids within

each group have a common per-meal markup, instead of a fixed absolute markup. Defining ba and

ca as the per-meal bid and per-meal cost of package a, and defining the non-zero components of W
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as Was = va, the firm’s decision variable θ can be interpreted as a per-meal markup vector. Related

to this, it is worth noting that in Proposition 2.2 we assumed that {θa}a∈{1,...,K} and θu are absolute

markups. In the per-meal markup specification, we obtain absolute markups by multiplying them by

the total meal volume in the package through theW matrix. In this case, the αa’s are not necessarily

all negative a priori. However, in our estimations they turned out to be negative for most of firms

and auctions, leading to weighted average markups when aggregated.

Second, in Section 2.4.2 we discussed how to divide the markup groups to refine the size-

based markup model. We try to have as many markup parameters as possible to the extent that

computational tractability is maintained. In our actual estimation for large-scale CAs, we use the

threshold probability of 10−3 to identify the high probability special package bids. Packages with

winning probabilities above 10−4 are categorized in the medium probability groups, and the rest

in the low probability groups. We selected these thresholds mainly for technical reasons. Recall

that we use the first-order condition equation (2.6) for our estimation and that requires estimating

the group winning probability and its Jacobian. Since we estimate these via simulation, to achieve

accurate estimation in reasonable computation time, the group probability should be above certain

magnitude. Given the simulation length that we use (around 100,000 runs), it seemed desirable to

force the individual probability to be at least 10−3. The two threshold probabilities were chosen

to ensure this. With this grouping procedure, a typical firm has a markup vector with dimension

d = 20.

3.4.1 Small Auctions Estimation

In this section, we estimate the markups and costs with the full-dimension model and the heuristic

based on the extended size-based model in the small-scale CAs. As in the large-scale case, we

follow the two-step approach described in Section 2.2.2; in the first step we parametrically estimate

the distribution of competitors’ bids using the model described in Section 2.5.1. Then, in the

second step, we applied the two different markup models in the first-order conditions and compare

the results. For the extended size-based markup model, bids with a winning probability above
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10−3 were considered high winning probability (special) packages and were assigned a separate

markup. On average, the extended size-based model uses only 35% of the markup variables of the

full-dimension model. Note that because the relevance of each bid only depends on its winning

probability and not on the markup specification, the set of relevant bids is the same for the two

models, and therefore, they are comparable. Packages with winning probability below 10−4 were

considered irrelevant. For each firm, the aggregated winning probabilities of these irrelevant bids

are on average less than 1% of the firms’ total winning probabilities. Hence, the effect of ignoring

these irrelevant (with positive probability) bids was negligible.

Figure 3.1 shows a scatter plot of the estimated per-meal markups from the two methods. Over-

all, the markup estimates of the extended size-based markup model are similar to those obtained

with the full-dimension model. The correlation between the markups is 0.982; their ratio is on

average 1.003 with a standard deviation of 0.127. The figure illustrates that the estimates for the

special packages are even closer to each other: the ratio is on average 0.998 with a standard deviation

of 0.004 and the correlation is 0.999. This provides some support for the conjecture that grouping

packages would have a negligible impact on the markups of the special packages, as discussed in

Section 2.4.1.

We also note that this specification of the extended size-based markup model separates each

size-group further into two sub-groups with medium and low winning probability packages as

described in the heuristic in Section 2.4.2. We used a winning probability of 6 × 10−4 to divide

the groups into medium and low winning probabilities. We observed that this additional refinement

to the size-based markup model – which was used in the calculation of the markups shown in the

figure – helped to improve the markup estimates (i.e. the estimates were closer to the estimates of

the full-dimension model).

To provide the performance metrics of a CA (winning bidders’ profit margins and efficiency

loss), we need to estimate the total supplying costs of the winning firms in the CA and the efficient

allocation. Notably, the estimated total supplying costs both in the winning CA and efficient

allocations are very close between the two methods (differ by less than 0.1%).
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Figure 3.1 – Markup estimates from the full-dimension and extended size-based model.
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This is a scatter plot comparing the estimates from the full-dimension model with those from the

extended size-based model. Circles denote markups of size-groups and squares show the special

packages. Two special packages with large markups (around Ch$ 25-28) are not shown to improve

visualization. The differences in the estimated markups for these two special packages was negligible

(less than 0.1%).

We also compared the estimates of the full-dimension model with those of the pure size-based

markup model, which does not isolate the high winning probability packages. Here, the pure

size-based markup model also specifies markups per meal, including the volume of packages in

the W matrix as described in Section 2.4.2. In this case, the ratio of the estimated per-meal

markups from the two methods (with the full-dimension markup in the denominator) is on average

1.138 with standard deviation of 0.365. As expected, the pure size-based markup model results in

significant bias in the estimated markups relative to the extended size-based model. In particular,

not separating the high winning probability packages leads to overestimating the group markups. A

partial explanation is that high winning probability packages tend to have larger estimated markups

relative to the rest of the group. To see that, let m̄h
s and m̄r

s be the average estimated per-meal
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markups of special packages with high winning probabilities (h) and the rest of the packages (r),

respectively, for a particular firm and package size s in the full dimension model. The ratio m̄h
s/m̄

r
s

is on average 1.22 with a standard deviation of 0.37. Hence, following the discussion around

Proposition 2.2, removing them from the group reduces the bias associated with grouping in an

important way.

Finally, we also performed an experiment to examine the impact of package density on strategic

markup adjustments. As briefly discussed in Section 2.4, economic theory predicts strategic markup

adjustments mainly driven by scale, and we did not incorporate explicitly the density effects in our

extended size-based markup model (even though the separation of special packages may correct

for it to some extent). To further justify this, we enriched the extended size-based markup model

with a markup variable associated with a per-meal density measure of the package. The measure

ranges between 0 and 1 and becomes larger as the package has more co-located units. The density

measure is motivated by the density discount function used in Section 2.5.1. In particular, we tested

two different density measures for robustness of the results and they both gave very similar results.

We provide the details of these density measures and the results in the appendix of this chapter (see

Section 3.7.2). The estimates imply small markup adjustments associated with density; they are

on average 0.11% of the average bid price; this is an order of magnitude smaller compared to the

markup adjustments associated with the scale effect. Moreover, the extended size-based model with

and without additional density parameter provide essentially the same markup estimates. The ratio

of the two markup estimates is on average 0.999 with standard deviation of 0.063. This provides

evidence that the density markup parameter do not play a significant role in the markup estimation.

Overall, this section provides evidence that our extended size-based model provides accurate

approximations to the full-dimension model estimates, requiring significantly lower computational

effort. In the small-scale CAs, the heuristic is an order of magnitude faster to run than the full-

dimension model, producing similar estimates. In the large-scale CAs, the full-dimension model is

computationally infeasible; we present the results using the extended size-based model heuristic in

the next section.
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3.4.2 Results for Large-scale CAs

The extended size-based markup model was used to estimate markups and costs for the package

bids in the 2003 auction. We also performed estimation for the 2005 auction and report some of the

results in the appendix of this chapter (see Section 3.7.1). In 2003, a total of 32 TUs in 5 regions

were auctioned and 20 firms participated placing more than 2000 bids per bidder on average.

After estimating the markups and costs of these firms, we numerically checked if the estimated

markup variables locally optimize the expected profit. Note that to fully evaluate the local optimality

of the markups, we need to estimate the Hessian matrices of the bidders’ expected profit. However,

estimating the Hessian matrices is computationally very intense, requiring an order of magnitude

more computational time than estimating the markups. Instead, we checked the second-order

derivatives of the bidders’ expected profits with respect to each of the markup variables and they

were all negative, consistent with the local optimality of the estimates.

Given the firms’ cost and markup estimates, two groups of firms were identified based on each

firm’s total winning probability, that is, the firm’s aggregated winning probabilities over all packages

in the auction. The “competitive” group consists of ten firms whose total winning probabilities

are higher than 45%. Firms in the other group have very low winning probabilities (less than

2%) except for one with 16% of total winning probability. In addition, from the 20 participating

firms there are two extreme firms with very competitive bids, for which the estimated markups are

unreasonably high and lead to negative costs for some packages. Despite their competitive prices,

these firms did not win any units and were disqualified from the allocation process, because of

quality considerations. For these reasons, we omit them from our analysis hereafter. In terms of

markups, the competitive firms have markup estimates ranging from 1.2% to 18% of the average

bid price with an average markup of 4.4% of the average bid price (US$ 0.88 per meal). The other

firms have lower markups, resulting in an average markup over all firms of around 2.8% of the

average bid price. Table 3.5 shows the average per-meal markup estimates for each package size (1

through 6 units) for representative firms in three different levels of total winning probabilities. The
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estimates indicate that firms reduce their markups as the size of packages increases, showing that

some portion of the discounts in package bids are due to markup adjustments.

Table 3.5 – Estimated markup levels and the winning probability levels.

Average Markup for Each Package Size Overall

Firm Prob 1 2 3 4 5 6 Average

47 0.9193 22.64 15.07 12.14 7.98 7.54 7.19 9.88

36 0.6642 3.00 2.39 2.21 1.77 1.50 1.41 2.07

19 0.1578 0.81 0.82 0.84 0.79 0.72 0.71 0.79

Results from the markup estimation for representative firms of different winning probability levels for

the 2003 auction. Prob refers to the probability that the firm wins any package. The rest are the average

per-meal markups corresponding to each package size. The markups are shown as a percentage of the

average bid price per meal (US$ 0.88).

Firms submit hundreds to thousands of bids, and about 13% of them are relevant bids.2 For

the competitive firm group, the fraction of relevant bids is higher, 22%. With the estimated markup

and cost information of relevant bids, we are able to compute the total cost and markup of the

CA allocation. The total procurement cost for the government was US$ 70.5 million per year and

the supplying costs for firms was US$ 67.2 million per year. This yields an average profit margin

to winning firms of 4.8%. This level of profit margins is consistent with the Chilean government’s

estimate for this market. In addition, the Chilean government has their own estimates for the average

TU costs, and these exhibit similar levels compared to our estimates. Both facts are re-assuring.

Note that the government does not have estimates for TU costs for each firm, nor of the variance

of these quantities. Moreover, they do not have reliable estimates for the level of cost synergies.

Hence, the government’s estimates are of course insufficient to evaluate the performance of the

auction, which is the objective of this work.

2Packages with estimated winning probability below 10−5 were considered irrelevant.
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Finally, to compare results, we also performed the estimation for the 2005 auction, where 16

firms participated for 23 units. The results are consistent with the 2003 auction, both in the shape

and level of the estimated markups. The total procurement cost amounts to US$ 53.4 million and

the total supplying cost is US$ 51.5, which give 3.5% of average profit margins to winning firms.

Next, we evaluate the cost synergies – cost savings from combining units together – implied by

the estimates. Recall that our main objective is to determine what portion of the observed package

discounts is due to cost synergies. Given the markup estimates, the per-meal cost of each package

a submitted by firm f is given by caf = baf − waθf/va, where θf is the markup vector estimated

for that firm, baf is the per-meal bid price placed by firm f for package a, and wa is the ath row

of package-characteristic matrix W used for bidder f . A direct calculation of the per-meal cost

synergy in this package, denoted by sa, can be computed from sa =
∑

i∈a
vi
va
ci − ca, where ci

is the point estimate for the cost of unit i. Table 3.6 shows some summary statistics of the cost

synergies. The cost synergies estimated directly from the cost estimates tend to increase as the size

of packages grow, and suggest that there are significant cost synergies amounting up to around 4.5%

of the average bid price.

Table 3.6 – Average cost synergies.

Package Size 2 3 4 5 6 7 8 Average

Cost Synergy (CH $) 5.17 11.59 14.40 13.71 15.07 16.64 18.93 13.64

% of Average Bid Price 1.22 2.73 3.39 3.22 3.55 3.92 4.45 3.21

Number of Observations 280 85 121 49 126 169 205

Average cost synergies computed directly from estimated costs of individual units and multi-unit

packages for 2003 auction. Package size refers to the number of units in a package. The cost synergy

measures the average per-meal cost savings when the units are combined to form a package of given

size.

One disadvantage of estimating cost synergies in this direct way is that the synergies can only

be computed for packages containing units whose single-unit bids are all relevant, which is not a
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representative sample of the bid population. In order to use a larger portion of the packages to

estimate cost synergies, we run a regression similar to (2.8) but replacing the dependent variable

baf by caf :

caf =
∑
i∈a

ξif
vi
va
− gscale(va, γscalek(f) )−

∑
c∈Cl(a)

gdensity(vc, γ
density
k(f) ) · vc

va
+ εaf , (3.1)

where again k(f) ∈ {L,O} indicates one of the two firm types. This regressions projects the

estimated costs on scale and density synergies, and provides estimates of the costs for every unit,

ξif , including those for which the single-unit bid was irrelevant. For relevant single-unit bids, ξif

and cif are quite close: their correlation is 0.993, the absolute different is about 1% and their

ratio averages 1.00 with a standard deviation of 0.011. Hence, equation (3.1) seems a reasonable

approach to estimate cost synergies.

Figure 3.2 plots the total cost synergies and bid discounts as a function of package volume.

We note that there are two small firms whose estimated cost synergies are significantly different

from the rest firms, and they are not included in the figure. The results show that while there is

some strategic markup adjustments, most bid discounts (at least 75%) are actually explained by cost

synergies. These synergies are quite significant and can be as large as 4.5% of the bid price on

average.

3.5 Efficiency and Counterfactual Analysis

The previous results suggest that in our application allowing package bidding may be appropri-

ate: cost synergies are significant and account for most bid discounts vis-à-vis strategic markup

adjustments. Moreover, the overall markups that firms gain do not seem too large, resulting in a

reasonable total procurement cost. Overall, our results suggest that the advantages of using package

bidding (allow bidders to express cost synergies) may be larger than its disadvantages (the additional

flexibility that firms can use to strategize and game the mechanism).

In this section we use our estimates to provide sharper results concerning the efficiency and

procurement cost of our CA. In particular, we study the allocative efficiency and procurement cost
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Figure 3.2 – Overall bid discount and cost synergy curves.
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of the first-price sealed-bid CA, and also examine the impact of the allocative constraints imposed

in the auction on the efficiency of allocation. We provide results for the 2003 auction. The results

for the 2005 auction are similar and consistent with the 2003 auction. We provide the counterfactual

results for the 2005 auction in the appendix of this chapter (see Section 3.7.1).

3.5.1 Performance of the First-Price CA

We first study the allocative efficiency of the first-price CA. The winning bidders’ costs under the

first-price CA allocation can be directly computed using the cost estimates obtained in Section 3.4.

If we had the cost estimates for all possible packages, we could also calculate the efficient allocation,

that is, the combination of package bids among all firms that achieve the minimum possible total

cost. Unfortunately, our structural estimation method only identifies the costs of relevant bids,

and the efficient allocation over this subset of combinations could overestimate the cost of the true

efficient allocation that considers all possible packages.



CHAPTER 3. APPLICATION TO THE CHILEAN SCHOOL-MEAL AUCTION 93

To address this issue, we propose estimating the cost of irrelevant bid packages through an out-

of-sample extrapolation based on equation (3.1). However, the total number of feasible packages

are in the order of millions and it is computationally infeasible to extrapolate to the entire set of

(out-of-sample) packages. Instead, we choose the set of packages on which at least one bidder

placed a bid, which is in the order of 30 thousand packages. We call this the expanded package set.

Then, for each firm, we extrapolate costs to all packages in this expanded package set that are also

in the set of feasible allocations. While this is a small subset of all possible packages, it provides a

reasonable approach to extend the set of bids observed in the data.

This out-of-sample extrapolation approach implicitly assumes that the selection of the bids in

the irrelevant bid sample is independent of the costs of these units. Recall that irrelevant bids include

bids that were not submitted by the bidder. Hence, in our application, it could be possible that the

sample selection of irrelevant bids is related to costs: for example, bidders are likely to bid on the

subset of combinations where they are more competitive, so that higher-cost combinations are not

submitted. If this is the case, then our cost extrapolation procedure could lead to a cost estimate

of the efficient allocation which is lower than the true one, so that we could overestimate the true

efficiency-loss of the first-price CA.

Recall that in 2003, the bidders’ supplying costs given by the auction allocation were equal to

US$ 67.2 million per year. The efficient allocation that minimizes the total supplying cost among the

feasible allocations over the set of relevant bids is equal to US$ 66.7 million per year, implying an

efficiency loss of 0.65%. When considering the expanded package set, the total supplying cost of the

efficient allocation goes down to US$ 66.2 million per year, with an efficiency loss of the first-price

CA of 1.5%. It is worth noting that the first-price CA tends to identify the most cost-efficient firms

in the different geographical regions. More specifically, there are nine firms in the CA allocation

and ten firms in the efficient allocation; the majority of them –seven firms– are present in both cases.

Two firms are allocated the exact same set of packages in both cases and other firms win packages

that contain many overlapping units or units from the same geographical regions. The efficiency

loss is arguably low. We believe this result is essentially driven by the high level of competition in
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the auction; there is a reasonable number of firms and most firms compete in all units and submit

many package bids. For this reason, firms do not seem to have enough market power to significantly

harm efficiency by using the flexibility that package bidding allows with strategic motivations.

Although the efficiency loss is overall evidently low, a few firms indeed engage in strategic

markup adjustments that are consistent with the economic arguments provided in Section 3.1. For

example, there is one firm winning eight units in the CA allocation, that essentially leveraged its cost

advantage in some units to win another unit in which it was not the cost-efficient firm. If this firm

was forced to just win its cost-efficient bundle, the loss of 0.65% over relevant bids is significantly

reduced. In summary, the high efficiency and relatively small profit margins for firms (around 5%

as presented in Section 3.4.2) achieved by the school meals CA suggests that it is a reasonable

mechanism for the procurement of this public service.

3.5.2 Supplier Diversification

The CA of our application imposes three types of constraints aimed at preserving a more diversified

supplier base: (1) a single bidder cannot be awarded more than 16% of the total volume including

outstanding contracts awarded in previous years (market share constraint); (2) a minimum number

of winning firms on each auction (global competition constraint); and (3) a minimum number of

winning firms on each of the 13 pre-specified geographic regions (local constraints). We now focus

on measuring what is the efficiency loss imposed by these constraints.

To study efficiency of the first-price CA, we have already calculated the minimum-cost allo-

cation that satisfies these constraints. We could compare this with the minimum-cost allocation

obtained under the larger feasible set of allocations when the constraints are removed. However,

this may not be a fair comparison because bids on packages that violate some of the constraints are

not submitted by the bidders. In other words, in the counterfactual world without the constraints

we should observe new package bids that are not observed under the current format with the

constraints. To address this issue, we expand the set of submitted bids in the counterfactual without

the constraints as we now explain.
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First, consider the market share constraint that imposes a maximum volume of 16% of the total

volume of the country, equivalent to about K = 40 million meals per year to each firm. Under this

constraint, bids on packages with larger volume than K will never be observed in the data. It turns

out that because of the 8 unit limit for the packages, the market share constraint is never binding

for those firms which do not have any existing outstanding contracts, because the maximum volume

that can be achieved with 8 units is less than K. So those firms do place bids on packages of any

volume with at most 8 units. We call such firms whose bidding is not limited by the market share

constraint the unrestricted firms.

To extrapolate costs to packages violating the market share constraint we do the following.

Consider a large bidder f that has existing outstanding contracts for a total volume of X . This firm

can only submit packages of volume less than or equal to K −X . Removing the constraint would

allow this bidder to submit packages of any volume up to K, as long as they have 8 units or less.

We denote by AX the set of observed combinations that are infeasible for bidder f but feasible

for the unrestricted bidders, hence contained in the expanded package set. We can use regression

(3.1) to predict the costs of combinations in AX for bidder f . Doing this for all bidders allows

us to build a larger feasible set that contains bids that would not be feasible when the 16% market

share constraint is included. Again the expanded package set which is in the order of 30 thousand

packages – still less than the 20 million possible packages that could be submitted – and provides a

reasonable set of bids to evaluate the effect of removing the market share constraints.

In contrast, packages that violate the local competition constraints are almost never observed.

To illustrate why this is the case, consider region 13 which has seven units but the minimum number

of firms required to win is four. Hence bids on any package containing five of more units in region

13 will violate this constraint and will never win. Note that unlike the market share constraint which

is a firm-wise restriction, local constraints are applied to all firms and hence no such packages are

found in the expanded package set. For this reason, we cannot analyze the effect of removing the

local constraints using the same approach to expand the set of bids. Finally, we note that it is

not a priori clear whether removing the global competition constraint would result in significantly
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different package bids submitted, because in any event firms cannot submit packages larger than

8 units. Therefore, we do not include additional bids associated to removing that constraint, and

we focus on the efficiency loss caused by the market share constraint and the global competition

constraint.

To measure the efficiency loss due to the market share and the global competition constraints,

we compare the minimum-cost allocations with all those constraints and without the two types of

constraints. We find that this efficiency loss in 2003 is about 0.57%, which is relatively small. The

final allocations in both cases look similar. Nine firms win in both cases and only one winner is

replaced by another. Two firms win exactly the same packages, and six other firms have many of

the winning units overlap in both cases or win units in the same region. The efficiency loss is mainly

triggered by one large firm who won a package of two units with market share constraint and won a

package of five units in the unconstrained case. The small impact of these constraints on efficiency

can be partially explained by the structure of the cost synergies in the industry. As we saw in section

3.4, scale cost synergies get exhausted, so there are small cost reductions for combinations that lie

beyond the volume range that is currently feasible in the auction. To further evaluate the inclusion

of these constraints in the mechanism, it would be useful to measure the value that the constraints

aimed at promoting supplier diversification bring in terms of increased competition. For example,

Olivares et al. (2012) show that local competition, measured by the number of firms serving nearby

units, has a significant effect in reducing prices in this application. This suggests that supplier

diversification at a local level can lead to increased competition. We leave this analysis for future

research.

3.6 Conclusions

In this chapter, we apply our structural estimation approach to the large-scale Chilean school meals

CA. We find that cost synergies in this auction are significant and the current CA mechanism,

which allows firms to express these synergies through package bidding, seems appropriate. In
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particular, the current CA achieves high allocative efficiency and a reasonable procurement cost.

We believe that this is the first empirical analysis documenting that a CA performs well in a real-

world application.

More broadly, our results highlight the importance of the simultaneous consideration of the

suppliers’ operational cost structure and their strategic behavior for the successful design of a CA.

In this way, we hope that this research agenda enhances the understanding of the performance of

CAs and thereby provide insights to improve their design.
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3.7 Appendix for Chapter 3

3.7.1 Results for the 2005 Auction

The results from the 2005 auction are similar to those of the 2003 auction: they give similar level

of cost synergies and strategic markup adjustments as well as the winning firms’ profit margins.

For example, in 2003 the cost synergies ranges from 1.8% to 4.6% of the average bid price and

in 2005 they were from 2.6% to 5.8% of the average bid price. The strategic markup adjustments

were 75% or more of the discounts in 2003 and 70% or more in 2005. In addition, the winning

firms’ average profit margins were around 5% in 2003 and 3.5% in 2005. While the results provide

roughly similar magnitude of these estimates, we still observe some differences between the two

auctions. However, note that the units in these two auctions are different so the costs need not be the

same (characteristic of the units and the meal plans are different). The number of bidders in the two

auctions was also different which can lead to differences in the markups. In this section, we further

provide the counterfactual results for the 2005 auction.

First, we find that the allocation is also highly efficient in 2005. Recall from Section 3.4.2 that

the total annual supplying cost in the first-price CA is US$ 51.53 million. The total annual supplying

cost of the minimum-cost allocation is US$ 51.49 million over the set of relevant bid packages and

US$ 50.70 million over the set of expanded package sets. This gives about 1.6% of efficiency loss

in the allocation by the first-price CA.

Finally, in 2005, we have a bit larger but still small efficiency loss incurred by the allocative

constraints. We consider the loss due to the market share constraints and global competition con-

straints. The efficiency loss in the constrained auction is 2.8% compared to the minimum-cost

allocation without those constraints. In 2005 the impact of the global competition is higher; it

imposes a minimum of 9 winners out of 16 bidders in 2005; in 2003 it also imposed the same

minimum but out of 20 bidders.
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3.7.2 Package Density Measures

In Section 3.4.1, we compared the estimated markups from the extended size-based model with and

without an additional markup variable associated with the density of the packages. In this section,

we provide two density measures we used in those comparisons.

To define measures of package density, we continue using the cluster volume described in

Section 2.5.1. Recall that in equation (2.8), the density discount term is specified as a step function

of cluster volume. Ideally, to test the effect of the density on the markup adjustments, we would

also add multiple density markup variables for each level of cluster volume. However, this is com-

putationally costly. Therefore, our objective in this section is to come up with a single-parameter

measure of density that reasonably follows such description. Specifically, we consider the following

two candidates; (i) one that assumes that markup adjustment due to density are “linear” in cluster

volume; and (ii) one that allows non-linearity in cluster volume.

First, the linear density per-meal measure for package a, denoted by dla is defined as follows:

dla =
1

va

∑
c∈Cl(a)

vc,

where Cl(a) is the set of clusters in package a and vc is the volume of cluster c ∈ Cl(a). This

measure takes the value between 0 and 1 (clusters are sets of co-located units so they always contain

more than unit). The first term is to normalize the density by volume, and the second term implies

that the cluster density is linear in its volume. Let θd be the per-meal markup variable associated

with this density measure, then the total package markup adjustment from the density effect is

given by dlaθdva =
∑

c∈Cl(a) vcθd. One limitation of this linear density measure is that it cannot

capture differences arising from different composition of clusters for packages of the same size. For

example, consider two packages consisting of four units with identical volume. Suppose further that

one package has a single cluster of four units while the other has two clusters of two units. Then, the

linear density measure coincides for both packages. However, intuitively one would expect larger

density effects for the package of four clustered units.

To accommodate this, we introduce a non-linear measure of density, defined as follows (per-
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meal):

dna =
1

va

∑
c∈Cl(a)

vc
va
vc.

Note that this measure also takes the value between 0 and 1. The main difference is that now the

cluster density has been weighted by its relative volume to the total package volume to capture the

relative impact of each cluster to the package density. Under this measure, the density of the two

packages in the above example will now be different as expected.

To capture the effect of package density on the potential markup adjustments, we added one

more markup variable that is associated with a density measure. Then, we compared the markup

estimates from this model with those of the extended size-based markup model. For robustness, we

have tested using the two density measures. In both cases, the markup adjustments associated with

the density was relatively very small; on average the magnitude of such markup adjustments was

0.096% or 0.134% of the average bid prices using non-linear and linear measures, respectively. In

fact, this is an order of magnitude smaller than the markup adjustments associated with the scale

effect. Given such a small effect, the markups with and without the density term are very similar

with both measures. Using the non-linear measure, the ratio between the model with the density

measure and the extended size-based markup is on average 0.999 with a standard deviation of 0.063.

With the linear measure, they are 1.008 and 0.079, respectively. These results provide evidence that

the strategic motivations associated with density seems much smaller, if any, compared to the scale

effect. The results also support our choice of size as a main package characteristics to identify the

sources of bidders’ strategic behavior.
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Chapter 4

Vickrey-Clarke-Groves Mechanism

4.1 Introduction

The Vickrey-Clark-Groves (VCG) mechanism generalizes the second-price auction in multi-unit

settings. The units in a VCG auction can be homogeneous as in the Treasury Bill auctions or

heterogeneous like in the FCC’s spectrum auctions. It is well known in the literature that the

VCG mechanism is strategy-proof: in a procurement setting, reporting one’s true supplying cost

is (weakly) better than any other bidding strategy, no matter how the competitors determine their

bids (see Mas-Colell et al. (1995) for a formal proof). Given the reported bids, the VCG mechanism

assigns the units to bidders so that the total reported cost – sum of the winning bids – is minimized.1

Therefore, the strategy-proofness along with the allocation rule implies that the VCG mechanism

always achieves the efficient allocation ex post; the VCG allocation is the one that minimizes the

total supplying cost. As discussed in earlier chapters, achieving allocative efficiency is particularly

attractive in public procurement applications such as the Chilean school meals program studied in

Chapter 3.

Despite the aforementioned theoretical virtues, however, the VCG mechanism has been crit-

icized for numerous drawbacks in settings with synergies, leading to a very rare use in practice.

1Similarly, in a forward auction, the allocation is determined by maximizing the total reported valuation.
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Ausubel and Milgrom (2006) explains this:

Why is the Vickrey auction design, which is so lovely in theory, so lonely in practice?

The answer, we believe, is a cautionary tale that emphasizes the importance of ana-

lyzing practical designs from many perspectives. Vickrey’s design has some impressive

theoretical virtues, but it also suffers from weaknesses that are frequently decisive.

In particular, they show that in the face of complementarities, the total procurement cost under the

VCG mechanism can be prohibitively high. Although the priority is generally given to allocative

efficiency in a public procurement project, the procurement cost is also an important performance

measure and can be a decisive factor to deny the use of the VCG mechanism. On top of this, the

weaknesses of VCG also include vulnerability to collusion by a coalition of losing bidders and

vulnerability to the use of multiple bidding identities by a single bidder (shill bidding), making the

mechanism even less attractive in practice.

When we say that a mechanism may result in a prohibitively high procurement cost, an impor-

tant question would be how high it should be to be prohibitive. For this, Ausubel and Milgrom

(2006) and Milgrom (2004) adopt the core, a solution concept in cooperative game theory, as a

competitive benchmark, and show that the VCG outcome may not be in the core of the transferable

utility cooperative game played among the bidders and the buyer (auctioneer), resulting in high

procurement cost. More specifically, it could be understood that if the outcome is not in the core,

the payments are so high that there is a group of bidders who can offer a more favorable deal to the

auctioneer. In addition, they also show that the other drawbacks mentioned above are also closely

related to the core – the deficiencies disappear if the VCG outcome is in the core. These findings

have motivated an active research agenda in recent years that studies alternative payment rules,

giving rise to the so-called “core-selecting auctions” that determine the auction allocation given the

reported bids so that the outcome is always in the core, alleviating the aforementioned drawbacks

(e.g. Day and Milgrom (2008)). However, Goeree and Lien (2009) point out that those variants may

fail to maintain the aforementioned virtues of VCG.



CHAPTER 4. VICKREY-CLARKE-GROVES MECHANISM 103

Therefore, an important research question would be whether we can characterize the cases where

the VCG outcome is in the core (or close to it) and achieves reasonable procurement costs. In fact, it

can be shown that when the units are substitutes, the VCG outcome is always in the core. However,

this may not be the case when the units exhibit complementarities, where allowing package bidding

has potential benefit. Hence, it is on itself interesting to see how the VCG mechanism would perform

in a real-world application, especially in which the units exhibit significant cost synergies. Thus

motivated, we conducted a counterfactual analysis to study the performance of VCG for the Chilean

school meals program. Recall that in Chapter 3, we have estimated the supplying costs of the firms

participating in the Chilean school meals program, using the structural estimation method developed

in Chapter 2. Having estimated the bidders’ supplying costs which would be their reported bids if

VCG had been used, we are able to compute the procurement cost under this counterfactual scenario.

Contrary to the theoretical predictions in the literature, the results show that VCG performs well in

that particular application despite the significant cost synergies depicted in Figure 3.2 – the VCG

procurement costs were very close to those of the first-price CAs in both 2003 and 2005. Consistent

to this observation, we also found that the VCG outcome is essentially in the core. We believe this

result is driven by the significant amount of competition introduced by the large number of package

bids submitted by firms. In the Chilean school meals auction, most of the firms place bids on every

unit, and therefore unit-wise the market is quite competitive. On top of that, firms also place many

package bids.

Motivated by this important observation using real world data, in this chapter we address such

apparent paradox between the theory and our empirical application. Focusing on the high pro-

curement cost issue, we study the impact of competition on the revenue performance of the VCG

mechanisms using an asymptotic analysis. Specifically, we find that the first order impact on the

performance of VCG is measured by the amounts of bids rather than just the number of bidders;

VCG mechanisms are expected to work better when the bidders’ interests are not limited to a small

subset of units and when they place ample combination bids that contain those units that they are

interested in. In many practical applications, such as spectrum rights or transportation procurements,
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it is expensive for bidders to correctly estimate their own valuations (or costs) on the combinations

of units. In such an environment, bidders’ interests could be restricted to a small subset of units,

and more importantly, they are discouraged from placing many combination bids. This is the type

of settings studied in the theoretical literature mentioned above. In the school meals procurement

setting, on the contrary, it is relatively straightforward for bidders to estimate their supplying costs

and they were able to place a large number of bids over most of the units in the auction. This

scenario is precisely one in which our analytical results suggest that VCG should perform well. We

note that the analysis we provide in this chapter is yet preliminary. However, the findings in this

chapter adds useful insights for the practical usage of the VCG mechanism. Our analysis opens

interesting future directions, which we discuss in Section 4.5.

The rest of the chapter is structured as follows. Section 4.2 describes the rules of the VCG

mechanism and relates its outcome to the core. Section 4.3 provides the counterfactual analysis

results using the estimates from the Chilean school meals auction data. We provide our main

analysis on the asymptotic revenue properties of the VCG mechanism in Section 4.4, and Section

4.5 provides the main conclusions to the chapter.

4.2 VCG Mechanism and the Core

In this section, we provide a detailed description of the rules of the VCG mechanism in a procure-

ment combinatorial auction setting. Then the connection between VCG outcomes and coalitional

games is discussed in Section 4.2.2. Finally, Section 4.2.3 provide an example where a VCG

outcome is not in the core, leading to a high procurement cost.

4.2.1 Rules of the VCG Mechanism

We first provide a formal description for the rules of the VCG mechanism. We begin with providing

useful notation.
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Notation. The auctioneer, indexed by 0, invites n risk-neutral bidders, indexed by i = 1, 2, . . . , n,

to procure K units of (possibly distinct) items. We let N be the set of those n bidders and U be

the set of K units. As in previous chapters, we use bia to denote the bid price asked by bidder i for

package a. We use x := (x1, x2, · · · , xn) to denote an allocation outcome which maps bidders to

packages. Specifically, we let xi to denote the (possibly empty) package that is allocated to bidder

i. We will also assume that every bidder places a bid on the empty package, or the null package,

with zero price. An allocation is feasible if every unit is assigned to exactly one bidder, and we let

X(S) denote the set of all feasible allocations for a given set of bidders S. Finally, we let A denote

the set of all possible packages out of the units in U and A0 := A ∪ {∅} be the set of all packages

including the null package. For notational simplicity, we will use N−i(:= N \ {i}) to denote the

set of bidders excluding a particular bidder i.

Outcome. Given the set of bidders N and their reported bids, an outcome of the VCG mechanism

is described by (i) an allocation; and (ii) payments to bidders. The allocation from the VCG

mechanism is determined by solving for the following optimization problem:

minimize
∑
j∈N

bjxj (4.1)

subject to x ∈ X(N), xj ∈ A0, ∀j ∈ N.

Accordingly, we let x∗ to denote the VCG allocation, that is:

x∗ := argmin
x∈X(N)

∑
j∈N

bjxj .

Note that this optimization problem can also be formulated as an integer program that is described in

Section 2.2.1, where the definition of the allocation vector is slightly different. In fact, the allocation

vector defined in this chapter leads to simpler notation for the theoretical analysis that we provide

in Section 4.4.

The VCG payment made to bidder i, denoted by pi, is defined as follows:

pi := min
x∈X(N−i)

∑
j∈N−i

bjxj −
∑
j∈N−i

bjx∗j
.
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Given the strategy-proofness of the VCG mechanism, the first term is same as the total cost of the

minimum allocation without bidder i, whereas the second term is the total cost of the minimum

allocation minus the winning bid by bidder i. After subtracting the winning bid of bidder i from the

second term and adding it back, we get:

pi :=

 min
x∈X(N−i)

∑
j∈N−i

bjxj −
∑
j∈N

bjx∗j

+ bjx∗j
,

which shows that the payment to this bidder is the summation of her contribution to the minimum

possible total cost and the amount of her winning bid. Observe that this payment scheme shows

how the VCG mechanism generalizes the second price auction. In the second price auction, the

winner, who places the minimum bid, gets paid the amount of the second minimum bid, which can

be decomposed into two parts: i) the second minimum bid subtracted by the minimum bid (which

is the winner’s contribution to the minimum possible total cost); and ii) the minimum bid (which is

the amount of her winning bid). Again under strategy-proofness of the VCG mechanism, the profit

that bidder i makes from the auction, denoted by πi, is:

πi := min
x∈X(N−i)

∑
j∈N−i

bjxj −
∑
j∈N

bjx∗j
, (4.2)

which is the amount of her contribution to the minimum possible supplying cost. In fact, an

important feature of this payment scheme is that the amount a winner receives depends on the bids

of other bidders; this is essential for the strategy-proofness. We close this subsection by describing

the auctioneer’s payoff. First, denote by T the value of the procurement project. It could also be

understood that T is the cost of the cheapest outside option for the auctioneer to procure the entire

project. Since her total payment (i.e. the procurement cost) is
∑

i∈N pi, the profit that the auctioneer

(indexed by 0) makes from this auction is:

π0 := T −
∑
i∈N

pi. (4.3)
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4.2.2 Connection to Coalitional Games

In the introduction of this chapter, we have discussed that the VCG mechanism may result in a

prohibitively high procurement cost, which is one of the reasons why its practical use is so rare. An

important question one may ask regarding this issue would be how high it should be to be declared

as prohibitively high. Notably, Ausubel and Milgrom (2006) adopt the core of the transferable utility

cooperative game played among the bidders and the buyer (auctioneer), as a competitive benchmark,

and show that the VCG outcome may not be in the core, resulting in a high procurement cost. More

specifically, it could be understood that if the outcome is not in the core, the payments are so high

that there is a group of bidders who can offer a more favorable deal to the auctioneer. In this section,

we discuss in more details the connection between the high procurement cost issue and the core of

coalitional games. Closely following Day and Raghavan (2007), we begin by describing a formal

definition of the core; Day and Milgrom (2008) also provide a useful description of this material.

Consider a coalitional game by the set of players N0(:= N ∪ {0}). In a procurement setting,

we define the coalitional value function, denoted by w, over a set of players S as follows:

w(S) :=


max
x∈X(S)

[
T −

∑
i∈S

bixi

]
, if 0 ∈ S,

0, if 0 /∈ S.

This means that the coalitional value function w(S) takes the value of the maximum possible payoff

of the auctioneer from the VCG mechanism if the player set S includes the auctioneer (and therefore

the trade occurs), and zero otherwise. Given the value function w and the set of playersN0, the core

of a game is then defined as follows:

Core(N0, w) := {π ≥ 0 : (a)
∑
i∈N0

πi = w(N0), (b)
∑
i∈S

πi ≥ w(S) ∀S ⊆ N0},

where π := (π0, π1, . . . , πn) denotes the payoff vector of the players. By definition, the core is the

set of feasible and non-negative payoff profiles that are efficient with respect to the reported bids

(condition (a)) and unblocked (condition (b)).
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In the previous section, we saw that the VCG allocation is the one that minimizes the total

reported values, and thus a VCG outcome is always efficient with respect to the reported bids.2

Therefore, if a VCG outcome is unblocked, then it is in the core. Next, we examine this concept

further.

In the context of auctions, if we assume that T is sufficiently large, and bidders’ supply profiles

are rich enough so that the trade always happens, then to examine the possibility of blocking

coalitions, we may only consider the coalitions that contain the auctioneer. Thus, with a slight

abuse of notation, we will use S ⊆ N be a set of bidders, and to differentiate, we let S0 ⊆ N0 to

be the coalition that contains the set of bidders S and the auctioneer. Accordingly, to simplify the

analysis we define another value function over S, denoted by v(S), as follows:

v(S) := min
x∈X(S)

∑
i∈S

bixi ,

which corresponds to the minimum total cost that the set of bidders S can offer to the auctioneer.

Notice that using the new value function, we can rewrite the payoff to bidder i (equation (4.2)) as

πi = v(N−i)− v(N), and also the total procurement cost as:

∑
i∈N

pi =
∑
i∈N

πi + v(N). (4.4)

In addition, we have the following relationship between the two value functions: w(S0) = T−v(S).

Using these relations and the new value function, from condition (b) we know that a coalition S0

blocks the current VCG outcome if the following inequality holds:

∑
i∈S0

πi < w(S0).

After separating out the auctioneer’s profit and applying equation (4.3) to the left-hand side, and

also applying the above relationship between the two value functions to the right-hand side, the

2It is important to note that the fact that the outcome is efficient with respect to the reported bids does not directly

mean allocative efficiency, which measures whether the allocation achieves the minimum possible total supplying cost.

In the VCG mechanism, however, the latter is implied by the strategy-proofness.
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previous inequality becomes:

T −
∑
i∈N

pi +
∑
i∈S

πi < T − v(S).

Finally, by canceling out T and rearranging terms after applying equation (4.4) to the left-hand side,

we get the following condition:

v(S) +
∑
i∈S

πi < v(N) +
∑
i∈N

πi. (4.5)

Now let us examine the physical meaning of the above inequality. First note that the right-hand

side of inequality (4.5) is the total procurement cost in the current VCG outcome. The left-hand

side is slightly more complicated. The first term, v(S) is the cheapest possible total reported cost

that the set of bidders S can achieve, and the second term is the total payoff that the bidders in

set S is making in the current VCG outcome. Therefore, the inequality (4.5) means that even after

being compensated their current VCG payoffs, the new set of bidders S is able to offer a cheaper

procurement cost to the auctioneer than the set of current winners does, hence blocking the current

VCG outcome. Note that this is equivalent to:

v(S)− v(N) <
∑
i∈N\S

πi.

That is, when the VCG outcome is blocked, there is a group of bidders (S in this case) that

have incentives to deviate from it and offer a better deal to the auctioneer. From the auctioneer’s

perspective, this is the case where the reduction in the procurement cost by giving less total profit

to the new set of winners (the right-hand side) is larger than the increase in the total supplying

cost, or equivalently the decrease in the allocative efficiency (the left-hand side). Overall, if the

VCG outcome is not in the core, and therefore there exists at least one blocking coalition, it can be

viewed that the current VCG outcome is overpaying to the VCG winners.

4.2.3 Example of a VCG outcome that is not in the Core

In this section, we provide an example of a VCG outcome in a very simple CA setting that is not

in the core and illustrate how such an outcome can result in a high procurement cost. We believe
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that this example provides insights on how the VCG performance is related to the core. A similar

example is provided in Ausubel and Milgrom (2006) for a forward auction setting, and the following

example is motivated by that.

Packages Bidder 1 Bidder 2 Bidder 3

Unit A $ 15 M - -

Unit B - $ 15 M -

Bundle A & B - - $ 40 M

Profit $ 10 M $ 10 M -

Payment $ 25 M $ 25 M -

Table 4.1 – Summary of bids and the VCG outcome.

Consider the case where there are two units to procure, labeled as units A and B. Suppose that

the auctioneer runs the VCG mechanism to allocate the procurement contracts, and three bidders,

labeled as bidders 1, 2, and 3, have participated. The supplying cost for unit A alone by bidder

1 is $ 15 million, and similarly bidder 2 can serve unit B at the cost of $ 15 million. Bidder

3 can only serve both units together at $ 40 million. They have infinite cost to serve any other

units or the bundle, and therefore each of the bidders places only one bid corresponding to the true

supplying cost. Table 4.1 summarizes the bidding result and the VCG auction outcome. Obviously,

the cheapest possible allocation is assigning unit A to bidder 1 and unit B to bidder 2, at the total

value of $ 30 million. The cheapest allocation without bidder 1 is assigning bundle AB to bidder

3 with the total value of $ 40 million, and therefore the payment to bidder 1 is (i) the value of its

winning package ($ 15 million) plus (ii) the difference in the minimum total costs with and without

bidder 1 (40−30 = $10 million). Similarly, the payment to bidder 2 is also $ 25 million. Therefore

the total procurement cost is $ 50 million.

This outcome is not in the core. Note that bidder 3, a non-winner, will be better-off to serve the
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two units at any payment between $ 40 million − $ 50 million. That is, there is an opportunity to

jointly deviate for bidder 3 and the auctioneer at the price of, say, $ 45 million for the procurement

of the two units by bidder 3. This example illustrates that a competitive procurement cost would

be $ 40 million. In fact, this could have been achieved if some other mechanism had been used.

For example, if the auctioneer combined the two units together, treating them as one unit, and had

run a second-price single-unit auction, and if bidders 1 and 2 formed an alliance to place a bid on

the bundle AB at the price of $ 30 million, the auctioneer could have procured units A and B at

the price of $ 40 million. Hence, the VCG procurement cost can be viewed as an “overpayment”

by $ 10 million. More importantly, this overpayment can be arbitrarily large depending on the cost

structure of bidder 3.

4.2.4 Core-selecting Auctions.

There has been an active body of work in recent years to propose auction mechanisms which ensure

that the outcome is always in the core so that the mechanism does not suffer from the aforementioned

problems of the VCG mechanism. Such auctions are called “Core-selecting Auctions.” It is worth

noting that, given a set of placed bids, there can exist multiple outcomes that are in the core. For

example, consider an auction with two units (units A, B) and three bidders (bidders 1, 2, 3). Suppose

that bidder 1 placed a bid of $ 10 on the bundle of the two, and bidders 2 and 3 place bids on units

A and B, respectively, both at the price of $ 7. If VCG was used, bidder 1 would win the two

units and get paid $ 14. Since $ 14 is the best that bidders 2 and 3 can offer, they cannot block the

current outcome. Therefore, the current VCG outcome is in the core. At the same time, consider an

alternative outcome that also assigns the two units to bidder 1 but pays only $ 7 instead of $ 14. For

the same reason, it is in the core as well. The latter payment scheme is in fact the first-price rule,

which will not lead to truthful bidding. This example illustrates the fact that different payment rules

can imply different bidding strategies, even if both produced core outcomes.

Therefore, the main issue in core-selecting auctions is which core outcome to select amongst

multiple core outcomes. A core outcome is called bidder-Pareto optimal if there is no other core



CHAPTER 4. VICKREY-CLARKE-GROVES MECHANISM 112

outcome weakly preferred by every winning bidder in a given allocation, and Day and Raghavan

(2007) and Day and Milgrom (2008) propose auctions that find efficient and bidder-Pareto optimal

outcomes that are in the core. An attractive property of efficient core-selecting auctions that are

also bidder-Pareto optimal is that, they minimize the bidders’ incentives to unilaterally misreport

true costs among all core-selecting auctions. In fact, they show that when the VCG outcome is in

the core, the proposed core-selecting auction will give the same outcome, leading to the efficient

allocation. Still, they may not be truthful, and therefore can lead to an inefficient allocation. For

example, Goeree and Lien (2009) report instances where such bidder-Pareto optimal core-selecting

auctions result in an inefficient allocation. In this chapter, we follow a different direction – we seek

to find characteristics of applications which ensure that the VCG outcome is in (or close to) the

core, so that it produces competitive procurement cost as well as the allocative efficiency.

4.3 VCG in the Chilean School Meals Program

Recall that the main objective of Chapter 2 was to develop a method to pin down bidders’ cost

information from observed bidding data in large-scale CAs. This was essential to directly measure

the performance of a CA. In Chapter 3, we effectively applied the method to the data from a real

world large-scale CA – the Chilean school meals auction. The uncovered cost information was

then used to provide the markup information of the winning firms as well as the efficiency of the

actual allocation. The results revealed that the first-price CA achieves high allocative efficiency with

reasonable margins to the winning firms.

In this section, we conduct a counterfactual analysis to see how the VCG mechanism would

perform in a real world application in terms of the procurement cost, and compare it with that of

the first-price CA which has been already computed in the preceding chapter. Having estimated the

costs of the bidders, we can directly use the estimated costs as the bids that bidders would report

in this counterfactual scenario due to the strategy-proofness of the VCG mechanism. We use the

same set of cost estimates used in Section 3.5.1 which include the costs estimated through an out-
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of-sample extrapolation over the extended package set as well as the costs of relevant bids directly

obtained by the structural estimation. We know VCG achieves the efficient allocation, which was

previously computed in Section 3.5.1. From the bids, we can compute the individual VCG payments

to the winning bidders, and by summing them, we obtain the VCG procurement cost.

We computed the procurement costs of both 2003 and 2005 auctions. The results show that the

total procurement costs from the VCG mechanism are very close to those of the first-price CA. As

seen in the previous chapter, the total annual procurement cost in the 2003 first-price CA is US$ 70.5

million. The total annual procurement cost under the VCG mechanism is US$ 70.3 million, which

is about 0.32% cheaper than the first-price CA. Similarly, in 2005 the total annual procurement cost

under VCG is computed to be US$ 53.5 million, which is only 0.23% more expensive than the total

procurement cost of US$ 53.4 million under the first-price CA.

As discussed earlier, the performance of the VCG mechanism is closely related to the core,

and we also examined further to see if the VCG outcomes in this counterfactual analysis are in the

core or not. Recall that we found significant cost synergies among the units in our application, and

as noted in Ausubel and Milgrom (2006) this is a type of environment where the VCG outcome

may not be in the core. In our application, we find that indeed the VCG payoffs lie essentially

in the core, which is consistent with the reasonable total procurement costs achieved by the VCG

mechanism. In particular, following Day and Raghavan (2007) we computed the closest point in the

core (with respect to the truthful bids) to the VCG payments under a suitable norm (more details

of this algorithm are provided in Section 4.6.1). Specifically, we find that the difference in the total

procurement costs between these two points is only 0.1% in 2003. Also, individual payments are

very similar as well; half of the winners receive exactly the same payments in the core point as in

VCG, and the rest receive payments that are no more than 0.7% apart. In 2005, the VCG payments

are even closer to the core payments with respect to the truthful bids. The difference of the total

procurement costs between these two points is less than 0.03% in 2005. Moreover, the individual

payments are also closer; two-thirds of the nine winners receive exactly the same payments in the

core point as in VCG and the rest three receive payments that are no more than 0.7% apart.
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Our results are at odds with the theoretical literature mentioned in Section 4.1 describing the

pitfalls of VCG; in our application, VCG achieves payments comparable to the first-price CA and

induces a reasonable procurement cost. Moreover, despite the significant cost synergies among the

units, the VCG outcomes are found to be essentially in the core. We believe this is a valuable

observation. It may provide insights that can help to characterize the environments where the VCG

mechanism is expected to perform well. In the remainder of the chapter, we develop our analysis in

this direction.

4.4 Analysis

Although the units are significantly complementary in our application, the previous counterfactual

analysis shows that the VCG mechanism achieves reasonable procurement costs, which are very

close to those of the first-price CA. Being consistent with these results, a further analysis shows that

the VCG outcomes in both years are essentially in the core. We believe these results are driven by

the significant amount of competition introduced by the large number of package bids submitted by

firms. In this case, a winning bidder is not that relevant; if her bids are eliminated, there is another

allocation whose total supplying cost is close to that of the minimum-cost allocation, leading to

reasonably low VCG payments. In contrast, in the example provided by Ausubel and Milgrom

(2006) as well as the one in Section 4.2.3, competition is limited, resulting in high VCG payments.

We believe that the VCG mechanism should achieve reasonable procurement costs in settings with

a reasonable amount of bidders that are able to submit many package bids. The latter should be

expected when it is relatively effortless for a bidder to evaluate the costs of many different packages.

These insights motivate the direction of our analysis in this section. In particular, we seek to

understand how increased competition affects the VCG outcome, making it close to the core and

leading to a competitive procurement cost. However, the main difficulty in such an analysis is that

given a set of reported bids, the core cannot be expressed analytically. To bypass this challenge, we

examine the asymptotic behavior of the procurement cost of a given VCG auction as the number of
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bidders (or equivalently the number of bids) grows. This still provides a meaningful direction. If

one can show that the procurement cost decreases sufficiently as the competition increases, and the

payoffs to the winning bidders eventually vanish, then it is equivalent to showing that the converging

point is in the core. Accordingly, we will focus on providing conditions under which the total payoff

to the bidders in a VCG outcome converges to zero as the competition increases.

We begin by providing the model assumptions that will be kept throughout the analysis. Ba-

sically, we adopt independent private cost paradigm as is common in the auction literature. In

particular, we assume that the costs of any given package placed by different bidders are indepen-

dently and identically distributed. We have argued in Section 3.2.5 how the independent private cost

assumption is justified in our application. However, the assumption of identical distribution might

be strong – in general there could be significant heterogeneity among bidders which can potentially

affect the nature of individual bidders’ cost structures. The assumption, however, makes the analysis

much simpler and still provide important insights on the relationship between increased competition

and the VCG performance. Therefore we will take the assumption as our starting point and discuss

about some of its relaxations later in this section.

Second, we assume that the units exhibit complementarity. More specifically, we assume that

the costs are sub-additive – there are non-negative cost synergies between any two disjoint packages

(including single unit packages). In fact, in our application, we do observe sub-additive costs

roughly on most packages as reported in Section 3.4.2. We believe this is a natural assumption

because in many multi-unit procurement settings, one can expect cost synergies amongst units and

packages, and these are the environment where multi-unit package auctions have potential practical

benefits.

To formalize the assumptions above, we first denote by cia the cost of supplying package a ∈ A

by bidder i ∈ N , and also let ci := {cia}a∈A be the cost vector containing all costs from bidder i.

Now, the following assumption describes the cost structure of the bidders.

Assumption 4.1. a) For all bidders i ∈ N , the random cost vectors, {ci}i∈N , are independent and



CHAPTER 4. VICKREY-CLARKE-GROVES MECHANISM 116

identically distributed from a joint distribution F that has a density.

b) For any package a ∈ A, there exist non-negative numbers ca and c̄a such that the support of the

marginal distribution of cia, denoted by Fa, is [ca, c̄a].

c) For each bidder and for all packages, the costs are sub-additive. That is, we have cis∪t ≤ cis + cit

for any disjoint packages s, t ∈ A, for all bidders i ∈ N .

In addition to the notation defined in Section 4.2.1, we will also use the following notation in

our analysis. First, we define a partition of a set of units as follows:

Definition. Given a set of units U , a partition is a set of nonempty subsets of U (hence a set of

packages in A) such that every unit in U is in exactly one of these subsets (or packages).

Accordingly, we let S be a set of all possible partitions of U . Notice that each partition S ∈ S

can be viewed as a “type” of allocations. For example, in a three unit CA (units A,B, and C), a

partition {A,B} and {C} characterizes a type of allocations that the first bundle is assigned to one

bidder and the other unit to another. Then we let S to denote the lower bound of the total costs arising

from the type of allocations that correspond to this particular partition S. That is, S :=
∑

a∈S ca.

Finally, we let PN denote the total procurement cost that the set of bidders N generates in a VCG

outcome. Note that using the value function defined in Section 4.2.2, the procurement cost can be

written as:

PN =
∑
i∈N

[v(N−i)− v(N)] + v(N).

In what follows, we analyze the relationship between the level of competition and the total

procurement cost. We do this by looking at the asymptotic behavior of the total procurement cost

of a given VCG auction as the number of bidders (or equivalently the number of bids) grows. We

provide two different approaches: one that considers unit-wise costs and another that examines

allocation-wise costs.
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4.4.1 Unit-wise analysis

In this approach, we use the stand-alone bids (i.e. bids that are placed on the individual units) to

analyze the total procurement cost in a VCG outcome. Our goal is to characterize the asymptotic

properties of the VCG procurement cost by examining the behavior of the stand-alone bids as

the number of bidders increases. We achieve this by constructing an upper bound for the VCG

procurement cost only using the second minimum bids placed on each of the individual units, which

requires that there are at least two stand-alone bids on each of the units. Moreover our analysis relies

on the fact that the bidders’ reported bids are sub-additive. Since sub-additivity of the supplying

costs were already assumed in Assumption 4.1, this would be achieved if we assume that bidders

place bids on all packages. To ensure this, we first make the following assumption. Later in this

section, we will weaken this assumption.

Assumption 4.2. Every bidder places bids on all units and packages.

We now begin our unit-wise analysis by showing that the total procurement cost of a given VCG

auction can be bounded by the “second order statistics” of the stand-alone bids. The following

lemma is helpful in constructing such a bound.

Lemma 4.1. Suppose Assumptions 4.1 and 4.2 hold. In a given VCG auction, any winning bid is

the minimum among the bids placed on that particular package. That is, for any winner i and her

winning package x∗i = a ∈ A, we have:

bia = b(1)
a ≡ min

j∈N
bja.

The proof of this lemma as well as the proofs of all other lemmas and propositions discussed in

this chapter are provided in Section 4.6.2. Basically, the above lemma states that whatever package

a bidder wins, the corresponding winning bid should be the minimum bid placed on that particular

package. Note that this may not be true in general; the sub-additivity of the costs are essential for

this result. For example, consider a two-unit two-bidder CA. Suppose bidder A places stand-alone

bids both of which are cheaper than the bids by bidder B. However, if bidder A has significant



CHAPTER 4. VICKREY-CLARKE-GROVES MECHANISM 118

negative synergy in the cost of the bundle so that the costs are strictly super-additive, it could be

optimal to assign only one unit to bidder A. In this case, bidder B wins the other unit even if her

stand-alone bid on that particular unit is not the minimum.

Using this result, we now characterize an upper bound for the VCG procurement cost only

using the second minimum bids placed on each of the individual units. The following proposition

establishes the bound.

Proposition 4.1. Suppose Assumptions 4.1 and 4.2 hold. Given a set of realized costs of the bidders,

the total procurement cost of the VCG mechanism cannot be larger than the sum of the second

minimum stand-alone bids. That is,

PN ≤
∑
u∈U

b(2)
u . (4.6)

Remark. Proposition 4.1 establishes a useful bound that makes the convergence analysis in a

random environment possible – it does not require the knowledge on the final VCG allocation,

which is crucial for the analysis. In fact, there is another bound that could be tighter than bound

(4.6), which is described as follows:

PN =
∑
i∈N

pi ≤
∑
i∈N

b
(2)
x∗i
.

Similar to bound (4.6), the above bound uses the fact that the payment to a winning bidder cannot

exceed the second minimum bid placed on the package that the particular winning bidder wins.

However, to use this bound, one needs to know the VCG allocation x∗ given the placed bids. The

difficulty arises by the fact that the winner determination problem of the VCG mechanism (4.1) has

no analytical solution, and therefore x∗ cannot be characterized a priori using the random bids.

Note that as the number of bidders increase, the second order statistic of each stand-alone bid

gets closer and closer to the lower bound of its support, forcing the total procurement cost to the

sum of the lower bounds of the stand-alone unit costs. Recall that our objective is to find conditions

where the total payoff of bidders vanishes as competition increases. Therefore it would be sufficient

if the procurement cost eventually approaches to the lower bound of the total supplying cost. One
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possible problem in this unit-wise approach is that the lower bound for the total supplying cost may

vary across allocations, but we are bounding the procurement cost only using the allocation that

purely consists of the stand-alone costs. That is, if there exists another allocation that achieves a

cheaper lower bound for its total cost than the sum of the lower bounds of the stand-alone costs,

then inequality (4.6) itself does not imply that the total payoff of bidders will eventually vanish.

For this, we further assume that all the feasible allocations have the same lower bounds – this could

arise in an environment where the cost synergies tend to be less significant when a firm’s unit costs

get more competitive. In Section 4.4.2, where we conduct the allocation-wise analysis, we relax

this assumption. The following assumption formalizes this.

Assumption 4.3. There exists a non-negative constant c such that S = c for any partition S ∈ S.

In real-world applications, a bidder may not attempt to win a certain set of packages, by

placing no bids on such packages. It may be because she already knows that she is not particularly

competitive on those packages and hence very unlikely to win one of those. Another possible

reason why she may not place such bids would be that it is too expensive for her to estimate her

own supplying costs on such packages. We note that this phenomenon may cause a problem in

our analysis. Recall that we rely on the order statistics of the stand-alone bids to bound the total

procurement cost, assuming that all the bidders place stand-alone bids on every unit. That is, our

analysis may not work if there are bidders that do not bid on individual units but do only on multi-

unit packages. As discussed in Chapter 3, however, we observed some notable bidding patterns in

the Chilean school meals auction data. First, a firm’s bidding may be concentrated in some subset

of units. Especially, bidders who have local cost advantage tend to focus on the units in which they

are competitive, placing stand-alone bids on those local units as well as multi-unit bids on packages

that contain those local units. Also, firms may not bid on large packages. In our application, for

each bidder a maximum package size was imposed by the auctioneer so that a bidder cannot win

packages that exceed her size limit. In other applications, it could also be determined by the bidder

depending on her service or production capacity.
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Our model assumptions on bidders’ bidding behavior is based on these observations. Specif-

ically, we assume that each bidder is interested in winning at most d units, and they randomly

select d units equally likely, then submit bids on all possible packages that consist of those units

only. Therefore, each bidder will place bids on (2d − 1) packages, that include the stand-alone

bids on the d units. Under this selection scheme, a particular unit will be selected by a bidder with

probability p := d/K (again K is the total number of units in the auction). Before we formalize

the assumptions on the bidders’ bidding behavior and provide the main result, let us first examine

an illustrating example which establishes the convergence results in a simple setting.

Example 1. In this example, we show that the expected total procurement cost of the VCG mech-

anism converges to zero if and only if the average number of interested bidders on each unit np

grows to infinity, under the assumptions described so far as well as some additional assumptions –

we assume that each of the unit costs follows a uniform distribution, and the lower bounds of the

feasible allocations are all c = 0. Now for the analysis, we let B(2:m) be the second order statistic

out of m i.i.d. observations from Uni[0, 1]. If each of the n bidders is randomly selecting d units

equally likely, then the (random) number of bids placed on a given unit i, denoted by Ni, follows

Binomial distribution with parameters (n, p), where p := d/K. Therefore, we have:

E[PN ] ≤
∑
i∈U

E
[
B(2:N

(n,p)
i )

]
= K ·E

[
B(2:N

(n,p)
1 )

]
, by bound (4.6)

= K ·
n∑
k=2

E
[
B(2:k)|N (n,p)

1 = k
]
·P
(
N

(n,p)
1 = k

)
,

= K ·
n∑
k=2

2

k + 1

(
n

k

)
pk(1− p)n−k,

=
2K

(n+ 1)p

n∑
k=2

(
n+ 1

k + 1

)
pk+1(1− p)n−k,

≤ 2K

(n+ 1)p

n∑
k=−1

(
n+ 1

k + 1

)
pk+1(1− p)n−k,
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which can be simplified as:

E[PN ] ≤ 2K

p(n+ 1)
≤ 2K

np
.

This provides sufficiency of the convergence, that is: np→∞ implies E[PN ]→ 0.

Now we turn our attention to the necessity of the convergence. We note the following observa-

tion that we had while analysing the estimated costs in our application in Chapter 3. First, the level

of synergies tend to depend on the level of the unit costs – when the unit costs are less aggressive,

the synergies were more variable and relatively larger on average. Second, when the package costs

are very competitive, it was usually the case that the unit costs were also very competitive – and it

was less likely that the unit costs are not that competitive but the synergies are significantly large.

To be consistent with these observations, we make further assumption on the relationship between

the synergy and the unit costs. Specifically, we assume that the maximum possible synergy level

depends on the level of unit costs. Formally, we assume that there exists a constant α ∈ (0, 1]

such that for any package a ∈ A and for any bidder i, we have
∑

u∈a α(ciu − cu) ≤ cia − ca. We

now explain the meaning of this assumption. Notice that by definition of the lower bound, we have

ca ≤ ca and by sub-additivity of the costs, we have ca ≤
∑

u∈a cu. That is, these two inequalities

define the possible synergy level in this package. However, to capture the pattern of the second

observation above, we assume that the smallest possible package cost ca, and hence the maximum

possible synergy, also depend on the unit costs
∑

u∈a cu. More specifically, we assume that ca is

lower bounded by α
∑

u∈a ci + (1− α)ca. Then, since Assumption 4.3 implies ca =
∑

u∈a cu, we

have
∑

u∈a α(ciu− cu) ≤ cia− ca. In the special case of this example where we have set c = 0, this

condition can be simplified to
∑

u∈a αc
i
u ≤ cia.

Now to show the necessity of the above convergence result in this environment, we will use

the fact that for any VCG outcome, the total procurement cost is always larger than the total

supplying cost. By Lemma 4.1 and the definition of α, the total supplying cost should be at least

α
∑

i∈U B
(1:N

(n,p)
i )

i . Hence, taking expectation and using the fact that Bi’s are i.i.d samples from
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Uni[0, 1], the expected total procurement cost is lower-bounded by:

E[PN ] ≥ αK ·E
[
B

(1:N
(n,p)
i )

1

]
≥ αK

np+ 1
,

where the second inequality is by Jensen using the fact that the function g(k) = 1
k+1 is convex.

Therefore, if np does not grow to infinity, E[PN ] cannot vanish.

We are now ready to establish the desired asymptotic results, generalizing the above example.

For analytical simplicity, however, we assume further that given n bidders, the number of interested

bidders for each unit is deterministic – that is exactly [np]. We call p intensity of the bidders’

interests. Under this assumption together with the assumptions made so far, we show in Theorem 4.1

that the total procurement cost of the VCG mechanism converges to the lower bound c in expectation

if and only if the number of bidders (who are interested in winning each unit) grows to infinity. Then

the corollary that follows establishes the desired result; the convergence of the VCG payoff profile

when competition increases. We first formalize the assumptions we discussed so far.

Assumption 4.4. Given a VCG auction with the set of n bidders N as well as the set of K units U ,

we assume that:

a) Each bidder places a bid on each of the units with interest intensity p ∈ (0, 1]. That is, each

bidder selects a unit with probability p and place a stand-alone bid on it.

b) Every package bid placed by a bidder only contains her interested units, which are the units on

which she places stand-alone bids.

c) The selection is balanced. That is, it is done in a way that the number of interested bidders for

each of the units is exactly [np].

d) There exists a constant α ∈ (0, 1] such that for any package a ∈ A and for any bidder i, we have∑
u∈a α

(
ciu − cu

)
≤ cia − ca.

We now present the main results from our unit-wise analysis.

Theorem 4.1. Consider a fixed set of units U , and suppose Assumptions 4.1, 4.3, and 4.4 hold.

Then the the expected total procurement cost of the VCG mechanism converges to the lower bound
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c if and only if the number of bidders n grows to infinity.

The above theorem states that the necessary and sufficient condition for the expected total

procurement cost of the VCG mechanism to converge to the lower bound c is that for each of

the units there should be infinitely many “interested” bidders. The intuition behind this result is

as follows. Recall that the profit that a winning bidder makes in the VCG mechanism is same as

her contribution to the minimum possible total cost. As the competition increases and therefore as

the number of placed bids increases, a particular winning bidder’s contribution decreases – when

the bidding is ample on each of the units, even without the specific winning bidder’s bids, we can

find another allocation that achieves the total cost also quite close to that of the optimal (efficient)

allocation. Our analysis upper-bounds the total cost of such an alternative allocation using the

second order statistics, which approaches to the lower bound c as the number of bids increases.

Note that once the procurement cost approaches to the lower bound of the total cost c, the payoff that

the winning bidders make will vanish. That is, even in the complementary environment, increased

competition can lead to a competitive VCG outcome. The following corollary provides this result.

Corollary 1. Suppose assumptions 4.1, 4.2, and 4.4 hold. Then the total VCG payoff that is given to

the winning bidders converges to zero in expectation if and only if the number of bidders increases

to infinity.

Our analysis highlights the impact of competition on the revenue performance of the VCG

mechanism. Although the result is intuitive, we believe our analysis provides helpful insights to

enhance the practicality of the VCG mechanism. High competition merely measured by the number

of bidders may not be enough – in our analysis, ensuring enough competition in each of the unit-

wise markets is the key to a competitive revenue performance of the VCG mechanism.

4.4.2 Allocation-wise analysis

In the previous analysis, we used the order statistics of the stand-alone bids on the individual units

to bound the total procurement cost. The main challenge in the analysis stems from the fact that
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in a VCG outcome it is not feasible to analytically characterize the final allocation using the costs.

The unit-wise analysis, which did not require the knowledge of the final allocation, was therefore

useful in obtaining the desired asymptotic results. However, we also had to impose some strong

assumptions. For example, we had to assume that all the bidders place bids on individual units.

Additionally, it was assumed that the lower bounds of all the feasible allocations are identical.

These assumptions might not be applicable especially when there are significant cost synergies

among the units, and individual unit costs are relatively very large. Moreover, we also assumed that

bidders’ interest on the auctioned units are spread all over the units equally likely, ensuring that the

competition grows unit-wise as the number of bidders increases. This assumption may not capture

the cases where the bidders’ interest could be concentrated on a subset of units. In this section, we

develop another approach in which we do not need to make such assumptions.

Whereas the previous analysis relies on the costs of each unit, in this approach we examine the

total cost of each allocation, hence called the allocation-wise analysis. Specifically, we consider the

set of feasible allocations and examine the properties of the allocations to characterize the asymp-

totic behavior of the VCG procurement cost. As alluded to above, we will relax the assumption

that all the lower bounds of the feasible allocations are identical. For example, consider a simple

two-unit CA. When the cost synergy between the two is very strong it is possible that the lower

bound of the cost for allocating the bundle to a single bidder (i.e. the lower bound of the cost for

supplying the bundle) could be smaller than the lower bound of the cost for the allocation where the

two units are given to two distinct bidders (i.e. the sum of the lower bounds of the individual costs

for each of the units). To extend our analysis to these types of cost structures, we first consider the

allocations that achieve the minimum possible lower bound among all the feasible allocations. The

following definition will be useful for our analysis in this direction.

Definition. Given the set of units U and its associated set of feasible allocations S, the minimum

lower bound of feasible allocations, denoted by S∗, is the minimum possible value of the lower
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bounds for the total supplying cost among all feasible allocations. That is,

S∗ := min
S∈S

S.

We call the allocations that achieve the minimum lower bound optimal allocations. The set of all

the optimal allocations, denoted by S∗, can be formally defined as follows:

S∗ := arg min
S∈S

S.

Using these definitions, we begin our analysis by providing the following lemma which estab-

lishes a bound that is applicable on any feasible allocation.

Lemma 4.2. Take any allocation S ∈ S. Then we have

PN − S∗ ≤ K

[∑
a∈S

b(2)
a − S∗

]
.

Note that the left-hand side, the total VCG procurement cost subtracted by the minimum lower

bound, corresponds to the maximum possible total payoff to the winning bidders in the particular

VCG outcome. The above lemma states that this maximum total payoff can be bounded by only

using the values of second order statistics of the reported bids placed on a feasible allocation S. This

is an important bound since it will hold for any feasible allocation we choose. The main reason why

it works for any allocation is that, no matter what the final VCG allocation is, the term
∑

a∈S b
(2)
a

will bound the payment to one VCG winner. The right-hand side is multiplied by the number of the

units K because it is the maximum number of winners in a VCG outcome. Using this result, we

now provide another asymptotic result, stated in the following theorem.

Theorem 4.2. The total procurement cost converges in probability to the minimum lower bound S∗

as the number of bidders grows to infinity if and only if there exists a partition S ∈ S∗ such that the

number of bids placed on each of the packages in S also grows to infinity.

Formally, after letting na(N) be the number of bids placed on package a given the set of

bidders N , and similarly defining nS(N) := mina∈S na(N), the above theorem is equivalent to
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the following mathematical expression:

PN
P−→ S∗ ⇐⇒ ∃ S ∈ S∗ s.t. nS(N) −→∞.

This asymptotic result also captures the importance of increased competition. Whereas the

results from the unit-wise analysis emphasizes the importance of competition at the individual

unit level, the results from this allocation-wise analysis highlights the importance of the amount

of package bidding. In particular, in an environment where cost synergies are strong, this analysis

suggests that having enough package bidding is essential for a reasonable performance of the VCG

mechanism.

4.5 Conclusions

In this chapter, we studied the revenue properties of the VCG mechanism. First, we performed a

counterfactual analysis on the Chilean school meals auction – based on the cost estimates obtained

in Chapter 3, we computed the total procurement cost if the VCG mechanism had been used in

stead of the first-price sealed-bid CA. Contrary to the recent theoretical work, the results showed

that VCG performs well in that particular application with procurement costs very close to those of

the first-price CA. Given its rare practical use as well as the criticism it has received in the literature

in terms of the potentially poor revenue performance, we believe it is an important observation to

report the nice revenue performance of the VCG auction in a real world application setting.

Motivated by this observation, this chapter focuses on the revenue properties of the VCG

mechanism, addressing such apparent paradox between the theory and practice. More specifically,

we examine the impact of competition on the revenue performance of the VCG mechanism using an

asymptotic analysis. The main insight that our analysis provides is that the first order impact would

be the competition measured by the amount of bids rather than measured simply by the number

of bidders; our results emphasize that the VCG mechanism is expected to perform better when the

bidders’ interests are not limited to a small subset of units, leading to high unit-wise competition,

and when they place ample combination bids that contain such units they are interested in.
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We believe the findings in this chapter add useful insights that could enhance the practical usage

of the VCG mechanism. In many practical applications, such as spectrum rights or transportation

procurements, it could be expensive for bidders to correctly estimate their own valuations on the

combinations of units. In such an environment, it might be the case that bidders’ interests are

restricted only to a small subset of units, and more importantly, they are discouraged from placing

many combination bids. In the school meals procurement setting, on the contrary, it is relatively

straightforward for bidders to estimate their supplying costs, and they were able to place a large

number of bids over most of the units in the auction. This scenario is precisely one in which the

results in this chapter suggest that VCG should perform well.

Our analysis opens interesting future directions. Throughout the analysis, we kept the number

of units fixed, purely measuring the impact of the increased bidders, and our results highlight

the importance of the amount of bids on the performance. However, in a multi-unit setting, the

number of possible bids per bidder also increases as the number of units increases, and therefore is

expected to have a potential impact on the performance as well. For this reason, the simultaneous

consideration of increased number of bidders and scale of the auction seems to provide useful

characterization of the bidding environment where the VCG mechanism is expected to perform

well. Another interesting future direction points to the characterization of the environments where

the VCG outcome always lies in the core. Our results are limited to the asymptotic case; we show

that the VCG outcome converges to a point that lies in the core. We believe finding the properties of

environments where the VCG outcome is always in the core, especially when the costs of the units

exhibit complementarity, will be a very important contribution to the literature as well as practice.
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4.6 Appendix for Chapter 4

4.6.1 Finding Core Payments

In Section 4.3, we reported that the VCG outcomes in our counterfactual analysis lie essentially

in the core, meaning that the payment vectors are very close to core payments – the individual

payments are no more than 0.7 % apart in both 2003 and 2005 auctions. In this section, we

summarize the algorithm by Day and Raghavan (2007) that we used to compute core payments.

Given the efficient allocation (i.e. the VCG winners and their winning packages), the objective is

to find a payment vector that is i) in the core; ii) and close to the VCG payment vector. Starting from

the VCG payment vector, we will adjust the payment vector iteratively until no blocking coalition

is found. Specifically, in each iteration we first check if there is a blocking coalition, then find a

new payment vector to the efficient winners adjusted to satisfy the core constraint that was violated

in the current payment scheme. We now formally describe this procedure.

We first provide some useful notation. Consider the coalition of winning bidders in the current

VCG allocation. We let W to denote the set of the efficient winners (i.e. the winning bidders in

the current VCG allocation) and πV CG to denote the vector of VCG payments to these winners. At

the start of iteration t, we let πt be the current payment vector for the efficient winners W . If this

outcome is not in the core, there exists a coalition of bidders W ′ and a payment vector π′ that can

block the current outcome. For each of the efficient winners f ∈W , let γf be the indicator whether

bidder f joins this (blocking) coalition, taking the value of one if it does and zero otherwise. Finally,

we denote by af the winning package of bidder f ∈W in the VCG outcome and also denote by a′f

the winning package of bidder f ∈W ′ in the blocking outcome. Later we will let W t to denote the

coalition found at iteration t that blocks the current payment outcome πt.

Conditions on the Payments to the Blocking Coalition. In each iteration, given the current

payment vector πt to the efficient winners, we seek to find a core constraint that is most-violated. A

core constraint is an inequality comparing the total payment to the bidders so that the new coalition
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will not block the current outcome. Hence, given a new coalition, we first compute the minimum

level of payment to each of the bidders so that they indeed join the coalition. This minimum payment

vector will be used to see if the new coalition can violate the associated core constraint. Hence, let

us first explain how to find this minimum payment vector.

Consider a coalition of biddersW ′ and its associated allocation. Now we first look at the bidders

that belong to the set W ′ \W . Because such a bidder currently makes zero profit in the efficient

outcome, she is willing to join the coalition W ′ as long as her profit is non-negative. Therefore,

the minimum level of payment to bidder f ∈ W ′ \W so that she joins the coalition W ′ will be

π′f = ba′f ,f , which is the true cost of her winning bid a′f in the new allocation. We now turn our

attention to the bidders in W ∩W ′. Note that such a bidder is only willing to join the coalition

W ′ if the new profit is at least as much as her current profit. Therefore, the minimum level of

payment to bidder f ∈W ′∩W so that she joins the coalitionW ′ will be π′f = ba′f ,f +(πtf −baf ,f ),

where the second term accounts for her current profit. In Day and Raghavan (2007), these minimum

requirements for the payments to a blocking coalition are referred to as “coalitional contribution.”

Similarly, from the auctioneer’s perspective, he will only be interested in the new coalition if he pays

at most the current total payment. Therefore, combining all these observations, the core constraint

associated with this new coalition W ′ can be expressed as follows:

πt0 =
∑
f∈W

πtf ≤ π′0 =
∑
f∈W ′

π′f =
∑
f∈W ′

ba′f ,f +
∑

f∈W∩W ′
(πtf − baf ,f ).

Each iteration consists of two steps. In the first step, we solve an integer program to find a core

constraint that is most-violated at the current payment vector. If there is no violating core constraints

found, then we are at a core outcome. Otherwise, we proceed to the second step, where we solve a

linear program to adjust the payment vector so that the violated core constraints found so far are all

satisfied and the total payment is as close to the VCG procurement cost as possible. We provide the

details of the two steps next.



CHAPTER 4. VICKREY-CLARKE-GROVES MECHANISM 130

Step 1: Core-constraint separation problem (SEP). The main idea of SEP is to see whether

we can find a coalition W ′ and its associated allocation that results in π′0 that is strictly less than

the current procurement cost πt0 through an integer program. If so, then the new coalition with

hypothetical payments π′ blocks the current outcome. The objective of SEP is to find the most-

violated core constraint, hence it minimizes the total payment in a new coalition. Using the notation

described in Sections 2.2.1, SEP is formulated as follows:

z(πt) = minimize
∑
f∈F

∑
a∈Af

bafxaf +
∑
f∈W

(πtf − baf ,f )γf

subject to
∑
f∈F

∑
a∈Af :i∈a

xaf ≥ 1, ∀i ∈ U

∑
a∈Af

xaf ≤ 1, ∀f ∈ F \W

∑
a∈Af

xaf ≤ γf , ∀f ∈W

x ∈ X,xaf , γf ∈ {0, 1}, ∀a ∈ A, f ∈ F

where X is the set of all feasible allocation satisfying all the allocative constraints such as market

share and competition constraints used in our application.

The optimal objective value, z(πt), is the minimal procurement cost π′0 we can find using the

reported bids and the current payment vector πt. If z(πt) = πt0, then there is no possible blocking

coalition with the current payment vector πt, indicating that the current outcome is in the core.

Therefore, the algorithm terminates with an outcome that is in the core. If z(πt) < πt0, however, we

just found a new payment vector π′ where all the bidders in the new coalition W ′ := W t and the

auctioneer become better-off compared to the current outcome. This means that the associated core

constraint πt0 ≤ z(πt) is violated, blocking the current outcome. In this case, we proceed further to

find a new set of payments to the efficient winners so that the violated core constraint that we found

in this iteration is satisfied. Next we describe how to adjust the payment vector for this purpose.

Step 2: Finding New Payments. Finding bidder-Pareto-Optimal core payments can be done by

solving a linear program, which is referred to as BPO in Day and Raghavan (2007). The main



CHAPTER 4. VICKREY-CLARKE-GROVES MECHANISM 131

idea is as follows. If there is a blocking coalition, an efficient winner who is not in the blocking

coalition W t can be viewed as an overpaid winner since they can be replaced by some other bidders

to achieve a cheaper procurement cost. So we adjust their payments. Let us call them “expensive”

winners. Also note that the objective value of SEP, z(πt), is linear in the payments to the winners

who remain in the new coalition W t, referred to as non-expensive winners. Therefore, we only

need to consider the total value z(πt) subtracted by the total money given to these non-expensive

winners to bound the payments to the expensive winners. This gives one inequality that the new

payment should satisfy regarding the payments to the expensive winners. Since this only considers

the blocking coalitionW t found at the current iteration t, to find a new payment we need to consider

all such constraints found so far. The following linear program formulates BPO.

minimize
∑
f∈W

πf

subject to
∑

f∈W\W s

πf ≤ z(πs)−
∑

f∈W∩W s

πsf , ∀s ≤ t.

baf ,f ≤ πf ≤ π
V CG
f .

Here we try to find a payment vector that maximizes the total payments (but bounded from above

by the VCG payments) because it will minimize the incentive of bidders not to report truthfully.

The solution to this problem then becomes our new candidate payment vector πt+1 and we return

to SEP to check if the new one is in the core.

4.6.2 Proofs

Proof of Lemma 4.1. Fix a winning bidder i and let a be the package that bidder i wins. Suppose,

for the sake of contradiction, that bia is not the smallest among the bids on a. Then the minimum

bid b(1)
a must be placed either by a non-winner or another winner. If it is placed by a non-winner, it

contradicts the optimality of current allocation – replacing bidder i with this particular non-winner

to assign package a in current allocation forms a feasible allocation that results in a cheaper total

cost. If the minimum bid is from a winner other than bidder i, say bidder j with her current winning
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package a′, then by the sub-additivity of the supplying costs described in Assumption 4.1, we have

bja∪a′ ≤ bja + b′ja < bia + b′ja since the supplying costs will be the bidders’ reported bids in VCG.

Therefore, assigning the package a ∪ a′ to bidder j while the rest assignments remain unchanged

will result in a cheaper total cost than the current allocation, which also contradicts the optimality of

the current allocation. Hence, bia should be the minimum bid on a, which completes the proof. �

Proof of Proposition 4.1. Choose any winner i. Given the realized costs, let a be her winning

package in the VCG auction, that is x∗i . Since the choice of winner i was arbitrary, it suffices to

show pi ≤
∑

u∈a b
(2)
u . Equivalently, if we show v(N−i) ≤ v(N) +

∑
u∈a b

(2)
u − bia instead, the

proof will also be complete by the relationship: pi − bia = πi = v(N−i) − v(N). Therefore we

will show the latter inequality. We show it by considering an alternative allocation without bidder

i, constructed as follows: for each unit u ∈ a, assign it to a bidder whose stand-alone bid for that

particular unit is the minimal when all the bids by bidder i are excluded. For example, if bidder

i’s bid is the minimum bid placed on unit u, then assign it to the bidder who placed the second

minimum stand-alone bid on unit u. If not, assign it to the bidder who placed the minimum bid. In

this way, the units in package a may be assigned to multiple bidders possibly including some of the

currently winning bidders. It is clear that this alternative allocation is feasible and does not involve

bidder i. Notice further that the total (reported) cost of this new allocation, denoted by TC, will be:

TC ≤
∑
j∈N−i

bjx∗j
+
∑
u∈a

b(2)
u . (4.7)

This inequality is by the sub-additivity of the supplying costs (again truthful bidding is assumed).

To verify inequality (4.7), first note that a winner in this alternative allocation can be categorized

into three types: 1) a bidder who wins a package in the VCG allocation only; 2) a bidder who

wins some of the units in package a only in the alternative allocation; and 3) a bidder who wins a

package in the VCG allocation and who also wins additional units in package a in the alternative

allocation. The cost of the winning package in the alternative allocation for a type 1) winner is just

her winning bid in the VCG allocation – this is a part of the first term on the right-hand side. The

cost of the winning package in the alternative allocation for a type 2) winner is at most the sum of



CHAPTER 4. VICKREY-CLARKE-GROVES MECHANISM 133

the individual costs on the units she wins, by sub-additivity of the supplying costs. Since the units

that a type 2) winner wins are all in package a, and initially we chose this particular winner such that

her stand-alone bids on these units are the minimum bids when bidder i’s bids were excluded, her

supplying cost on the package she wins is upper bounded by the sum of the second minimum bids

on the units in that particular package. This accounts for a part of the second term on the right-hand

side. Finally, for a type 3) winner, her winning package in the new allocation contains a package

she previously won in the VCG allocation and some of the units in package a. Like the type 1) case,

this winner’s reported cost on the package she won in the VCG allocation is just her winning bid in

that allocation. Similar to type 2) case, this bidder’s reported cost on the units in a that she wins in

the alternative allocation is at most the sum of the second minimum stand-alone bids on these units.

Therefore, again by the sub-additivity of the supplying costs, the cost of the package that she wins

in this alternative allocation is upper bounded by the sum of those two quantities.

At the same time, we can also bound TC from below. Note that TC represents the total reported

cost of a feasible allocation where bidder i does not win any package. Therefore, by the optimality

in the value function v(·) we have, v(N−i) ≤ TC. Combining this with inequality (4.7), we get:

v(N−i) ≤
∑
j∈N−i

bjx∗j
+
∑
u∈a

b(2)
u .

Using the definition of v(N) and the fact that a = x∗i , we then have:

v(N−i) ≤
∑
j∈N−i

bjx∗j
+ bia +

∑
u∈a

b(2)
u − bia

= v(N) +
∑
u∈a

b(2)
u − bia,

which establishes the desired inequality and therefore completes the proof. �

For the proof of Theorem 4.1, the following lemma is useful.

Lemma 4.6.1 (Corollary 3 in Albright and Derman (1972)). Let {Xi}ni=1 be n i.i.d samples from a

distribution F which has a finite mean and is absolutely continuous with density f . Then the num-

bers for the associated stochastic sequential assignment problem, {ai,n+1}ni=1, which are defined in
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Albright and Derman (1972), has the following asymptotic property: For any fixed i, 1 ≤ i ≤ n,

lim
n→∞

ai,n+1 = sup{x : F (x) = 0}.

Proof of Theorem 4.1. (Sufficiency): First, we let b(j:m)
u denote the jth smallest bid price out of

m bids placed on unit u. By Proposition 4.1 and part c) of Assumption 4.4, we have E[PN ] ≤∑
u∈U E

[
b
(2:[np])
u

]
. Also, by the payment rule of the VCG mechanism, it is clear that E[PN ] ≥ c.

Since Assumption 4.3 implies that c =
∑

u∈U cu, we have:∑
u∈U

cu ≤ E[PN ] ≤
∑
u∈U

E
[
b(2:[np])
u

]
.

Therefore, it suffices to show that lim
n→∞

E
[
b(2:[np])
u

]
= cu for all u ∈ U . For that, choose an

arbitrary unit u ∈ U , and consider a stochastic sequential assignment problem with the stand-alone

bids placed on this unit, {bju}[np]j=1, as the arriving values for the job. By the meaning of the quantities

a1,n+1 and a2,n+1 as described in Albright and Derman (1972), we have that:

E
[
b(1:[np])
u + b(2:[np])

u

]
≤ a1,[np]+1 + a2,[np]+1.

(This is implied by the fact that the expected performance of the assignment under incomplete in-

formation is inferior to the performance from the full information assignment.) From this inequality

together with the fact that E
[
b
(1:[np])
u

]
≥ cu and E

[
b
(2:[np])
u

]
≥ cu, Lemma 4.6.1 then implies that:

lim
n→∞

E
[
b(2:[np])
u

]
= cu.

Since the choice of unit u was arbitrary, the proof is now complete.

(Necessity): First, note that the payoff that each bidder makes in the VCG mechanism is always non-

negative, and therefore E[PN ] ≥ E[v(N)]. Given a set of realized costs, the minimum supplying

cost will be: v(N) =
∑

j∈N b
j
x∗j
≥
∑

j∈N α
∑

u∈x∗j
(bju − cu) + c ≥ α

∑
u∈U

(
b
(1:[np])
u − cu

)
+ c,

where the first inequality is by part d) of Assumption 4.4, and the second inequality comes from the

fact that b(1:[np])
u is the minimum bid among all the bids placed on unit u. Since this is true for any

realization, we get:

E[PN ] ≥ E[v(N)] ≥ α
∑
u∈U

(
E
[
b(1:[np])
u

]
− cu

)
+ c,
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and therefore, we have:

E[PN ]− c ≥ α
∑
u∈U

(
E
[
b(1:[np])
u

]
− cu

)
Hence, it suffices to show that the right-hand side cannot vanish if n is finite. For that, first suppose

that there exist a number M ∈ N such that [np] ≤ M . Then by definition of order statistics, it is

clear that:

E[PN ]− c ≥ α
∑
u∈U

(
E
[
b(1:[np])
u

]
− cu

)
≥ α

∑
u∈U

(
E
[
b(1:M)
u

]
− cu

)
.

So we will show that the right-hand side of above inequality is strictly positive for any n such

that [np] ≤ M . First note that, by part a) of Assumption 4.1, the distribution of the first order

static b(1:M)
u should have a density. In addition, by part b) of Assumption 4.1, the support of the

distribution for b(1:M)
u is also [cu, c̄u]. Therefore, for any ε ∈ (0, 1) we can find c(ε) ∈ (cu, c̄u)

such that 1− F (1:M)
u (c(ε)) = ε, where F (1:M)

u is the distribution of b(1:M)
u . But then E

[
b
(1:M)
u

]
=

´ c̄u
ci

(1−F (1:M)
u (t)dt ≥

´ c(ε)
cu

εdt = ε(c(ε)−cu) > 0. Since this is true for any u ∈ U , the right-hand

side of the above inequality is strictly positive if n is finite, and the proof is now complete. �

Proof of Lemma 4.2. Let v′ :=
∑

a∈S b
(2)
a and fix a winner i. We first show v(N − i) ≤ v′.

Note that for any package a ∈ S, one of the bids b(1)
a and b(2)

a is placed by a bidder other than

i. Now we choose a feasible allocation as follows: for each package a ∈ S, if b(1)
a is placed by

a bidder other than i, assign package a to this bidder. If b(1)
a is placed by bidder i, then assign

package a to the bidder who placed b(2)
a . Then the total supplying cost of this new allocation is

less than v′ by the sub-additivity of the costs. At the same time, since this is a feasible allocation

with bidder i winning nothing, the total supplying cost from this new allocation is at least v(N − i)

by the optimality of the value function v(·). Hence v(N − i) ≤ v′, which then implies πi =

v(N − i) − v(N) ≤ v′ − v(N). Since this is true for any winner i and there can be at most K

winners, we get PN =
∑

i∈N πi + v(N) ≤ K(v′ − v(N)) + v(N). Finally, using v(N) ≥ S∗, we

get the desired result. �

For the proof of Theorem 4.2, the following lemma is useful.
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Lemma 4.6.2. For any package a ∈ A, we have b(2)
a

P−→ ca. Moreover for any partition S ∈ S we

have
∑

a∈S b
(2)
a

P−→ S.

In the proof of Theorem 4.1 (Sufficiency part), we have shown that the second order static

converges in L1 to a finite lower bound. Lemma 4.6.2 described above is a direct consequence of

that result as convergence in the mean implies convergence in probability. The second statement

comes from the fact that convergence in probability is preserved through a finite addition of random

variables.

Proof of Theorem 4.2. (Sufficiency): Pick any S ∈ S∗. By Lemma 4.2, we have PN − S∗ ≤

K[
∑

a∈S b
(2)
a − S∗]. Moreover, it is clear by definition that PN − S∗ ≥ 0. Therefore, for any

ε > 0, {|PN − S∗| > ε} implies {K|
∑

a∈S b
(2:N)
a − S∗| > ε}. Hence, P(|PN − S∗| > ε) ≤

P(K|
∑

a∈S b
(2:N)
a − S∗| > ε) = P(|

∑
a∈S [b

(2:N)
a − ca]| > ε/K). Then by Lemma 4.6.2, we

have the right-hand side of the inequality above converges to zero, which completes the proof for

the sufficiency.

(Necessity): Suppose that there exists a constant M ∈ N such that nS(N) < M for all S ∈ S∗

for any set of bidders N . Then for each partition S ∈ S∗ we can find a package a(S) ∈ S

such that na(S)(N) < M for any N . Now fix ε > 0, and consider P(PN − S∗ > ε). Since

P(PN − S∗ > ε) ≥ P(v(N)− S∗ > ε), we will show that P(v(N)− S∗ > ε) does not converge

to zero for some ε > 0 if there exists such a constant M .

First, let S′ := minS∈S\S∗ S if S 6= S∗, otherwise set S′ := +∞. It is clear that the only

possible allocations that can achieve a total supplying cost in [S∗, S′) are those in S∗. Thus, we

pick ε ∈ (0, S′ − S∗), and restrict our attention to the partitions in S∗ only. Now, we define vS(N)

be the value function of the minimum supplying cost by only considering allocations corresponding

to partition S. Then, P(minS∈S∗ vS(N) > ε + S∗) = P(v(N) > ε + S∗). Moreover, for each S,

{b(1:N)
a(S) > ε+ ca(S)} implies {vS(N) > ε+ S∗}. Therefore, we get:

P(v(N) > ε+ S∗) = P(vS(N) > ε+ S∗, ∀S ∈ S∗) ≥ P(b
(1:N)
a(S) > ε+ ca(S), ∀S ∈ S∗).
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We now fix a bidder i, and consider P(bia(S) > ε + ca(S), ∀S ∈ S∗). This bidder may place

bid on all of such packages a(S)’s, only some of them, or none of them. And the probability is

minimum if she places bids on all of them. Let p(ε) be the value of this probability when bidder

i places bids on all of such a(S)’s for all S ∈ S∗. By Assumption 4.1, this probability should

be strictly positive as long as ε > 0. That is, P(bia(S) > ε + ca(S), ∀S ∈ S∗) ≥ p(ε) > 0, for

any ε ∈ (0, S′ − S∗). Finally, notice that the number of bidders who place bids at least one of

those packages a(S) is bounded by M × |S∗| which is also finite given that U is fixed. Therefore

when the number of potential bidders in N is larger than M × |S∗|, the probability P(b
(1:N)
a(S) >

ε + ca(S),∀S ∈ S∗) should be no smaller than the probability that there are exactly M × |S∗|

number of bidders who place bids on all of the packages a(S)’s which are all larger than the lower

bound of the packages a(S)’s by ε. Hence by the independence of costs across the bidders we get:

P(v(N) > ε + S∗) ≥ P(b
(1:N)
a(S) > ε + ca(S),∀S ∈ S∗) ≥ p(ε)M×|S

∗| > 0. Since this is true for

any N ≥M × |S∗|, we get lim infN→∞P(v(N) > ε+ S∗) ≥ p(ε)M×|S∗| > 0. Hence PN cannot

converge to S∗ if there exits such a constant M , and the proof is complete for the necessity. �
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Chapter 5

General Conclusions

This dissertation develops empirical and theoretical methods to analyze the performance of CAs in

procurement settings. In Chapter 2, we propose an empirical approach to evaluate the revenue

and efficiency performance of first-price CAs. One important feature of our method is that it

can be applicable to large-scale CAs which are frequently found in practice. In Chapter 3, we

apply our method to the bidding data from a real-world application. In particular, our results

show that the first-price CA in that application performs well, achieving high allocative efficiency

with a reasonable procurement cost. In addition, via a counterfactual analysis, we found that the

VCG mechanism, if it had been used in that application, would also perform well in terms of the

procurement cost. This observation, which is contrary to theoretical predictions in the literature,

motivated an analytical investigation of the VCG mechanism, and in Chapter 4, we examine the

impact of competition on the revenue performance of the VCG mechanism.

The main objective of Chapter 2 is to develop a structural estimation approach for large-scale

first-price CAs. An important methodological contribution of our work is that we propose methods

to overcome the curse of dimensionality that may arise when dealing with bids from large-scale

CAs. First, the standard structural approach followed by CP and GPV involves estimating the

distribution of competitors’ bids, which are high dimensional random vectors in large-scale CAs.

To address the complexity arising in this step, we propose a parametric approach to model the
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competitors’ bid distribution. We believe that our model provides a parsimonious, yet flexible

parametric description of the distributions for the competitors’ bids which can be especially useful in

CAs that involve geographically dispersed and heterogeneous units that are subject to discounts due

to scale and density. Second, high dimensionality of the winning probability vectors, which have

to be estimated, may also bring a severe computational challenge for large-scale CAs. We bypass

this issue by introducing a restricted markup model in which bidders are assumed to determine

their markups based on a reduced set of package characteristics. With this simplification, the first-

order conditions of the bidder’s problem become computationally and econometrically tractable.

We impose reasonable restrictions to the structure of the markups that reduce the complexity of

the bidders problem but still provide sufficient flexibility to capture strategic behavior that can

undermine the performance of a CA.

We hope that the methods we propose in this work will provide researchers and practitioners a

useful tool to analyze auction data from large-scale CAs in many different contexts. Many of the

CAs used in practice are indeed in large-scale, and therefore their econometric analysis has been

limited due to the complexity. Even though our method may need modification to accommodate

different pricing and auction rules in those different settings, we believe that our idea of using

characteristic-based pricing as well as our parametric model of bid prices can be a useful starting

point to reduce the complexity of econometric analysis in such large-scale settings.

We apply our structural estimation approach to the large-scale Chilean school meals CA in

Chapter 3. We find that cost synergies in this auction are significant, and the current CA mechanism,

which allows firms to express these synergies through package bidding, seems appropriate. In

particular, the current CA achieves high allocative efficiency with a reasonable procurement cost.

We believe that this is the first empirical analysis documenting that a CA performs well in a

real-world application. In addition, based on the cost estimates we also performed an interesting

counterfactual analysis – we computed the total procurement cost if the VCG mechanism had been

used in this particular application in stead of the first-price CA. Contrary to the recent theoretical

work, the results show that the VCG mechanism also performs well in this particular application –
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the procurement cost of the VCG mechanism were very close to that of the first-price CA. Given

the criticism that the VCG mechanism has received in the literature in terms of the potentially poor

revenue performance, we believe it is an interesting and important observation to report.

Motivated from this observation, in Chapter 4 we address such apparent paradox between the

theory and practice. Specifically, we study the impact of competition on the revenue performance

of the VCG mechanism using an asymptotic analysis. The main insight that our analysis provides

is that the first order impact would be the competition measured by the amount of placed bids rather

than the one measured by the number of bidders; our results emphasizes that the VCG mechanism

is expected to perform better when the bidders’ interests are not limited to a small subset of units

(so that it has high competition on every unit) and when bidders place ample combination bids that

contain such units in which they are interested. The findings in this chapter adds useful insights

for the practical usage of the VCG mechanism. In many practical applications, such as spectrum

rights or transportation procurements, it could be expensive for bidders to correctly estimate their

own valuations on the combinations of units. In such an environment, bidders’ interests might be

restricted to a small subset of units, and more importantly, they could be discouraged from placing

many combination bids. In the school meals procurement setting, on the contrary, it is relatively

straightforward for bidders to estimate their supplying costs, and they were able to place a large

number of bids over most of the units in the auction. This scenario is precisely one in which the

results in this chapter suggest that the VCG mechanism should perform well.

The chapters of this dissertation illustrate the constructive interplay between theoretical analysis

and empirical investigation. The structural estimation approach developed in Chapter 2 assumes

that the data we observe are generated by a well specified economic model, which is the bidders’

profit maximization problem. It shows how the economic theory can be useful in extracting useful

information from data that is essential for the performance evaluation of a given CA. In turn, the

empirical results using the method then led to an important observation which are at odds in the

literature that (theoretically) study the properties of the VCG mechanism, motivating a further

analytical investigation on the revenue performance of the VCG mechanism. More broadly, our
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results highlight the importance of the simultaneous consideration of the suppliers’ operational cost

structure and their strategic behavior for the successful design of a CA. In this way, we hope that

this research agenda enhances the understanding of the performance of CAs and thereby provide

insights to improve their design.
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