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Efficient Computation of Polymer Conformation Energy 

In Monte Carlo studies of polymer properties [1-3], the nonbonded contribution 
to the total conformational energy of a polymer is ordinarily taken as 

N-2 N 

U nb = I I f(r;j)' (1) 
i~l j~i+2 

where Unb is the conformational energy due to non bonded interactions, rlj is the 
squared distance between atoms i and j, N is the number of atoms in the chain, 
and the summation extends over all nonbonded atomic pairs in the polymer; 
f(r;j) is the potential energy contribution of atoms i and j as a function of ri2j • 

No matter what functional form is assumed for f(r;j) [4-6] [except for the 
trivial case/= 0, ignoring excluded volume effects entirely], the sum in Eq. (1) 
requires the function / to be evaluated approximately }N2 times for each sample 
polymer examined. Since the conformational energy of each polymer generated 
must be evaluated regardless of the sampling technique used, the total computa
tional time increases roughly as the square of the number of backbone atoms. 
This situation would easily put the most interesting lengths out of range of present
day computers, if not for the following stratagem [7]. 

Replace the function / by an approximating function j, and define a cutoff 
distance p such that 

f(r'fj) = 0, 

fMj) = j(/';), 2 2 
1"ij < P . 

(2) 

p is a natural parameter for hard-sphere potential energy models. For a continuous 
function, such as a Lennard-Jones potential, p may be defined as the separation 
beyond which the energy of interaction between two atoms is negligible. A 
"negligible" energy in this case should be chosen so that the sum of all such 
neglected contributions in the molecule does not exceed about 5-10 % of the 
average observed Unb . 

Let a be the fixed bond length for the backbone chain, as in Fig. 1. Then in 
the case r;j > p2, the increment k to be added to j (for fixed i) to find the index j' 
of the next atom along the chain where any interaction with atom i is possible is 

k = [1";; a P], 

178 

(3) 
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where [x] denotes the greatest integer not exceeding x. In other words, if one has 
just determined that no interaction exists for the current values of i and j, then 
use of 

j' =j +k, (4) 

with k given by Eq. (3), determines the second index of the next pair, ij', which 
must be examined. All intervening pairs may be skipped as geometrically excluded. 
This is illustrated in Fig. 1. 

FIG. 1. Example of a random-walk polymer in two dimensions, with step length a and 
interaction parameter p, chosen here to be -~a. Atoms i andj are separated by 6a > p, and hence 
do not interact. If by unlikely chance the next six steps after j lie along the line connecting it 
with i, the next possible interaction would not occur untilj' = j + k, where, by Eq. (6), k <:: 6. 
Hence, by taking k = 5 all intervening pairs which are geometrically excluded are skipped. The 
unlikely worst case of direct approach is shown with crosses representing atomic positions and 
the nearest possible overlap with atom i shown as a broken circle. Other apparent overlaps have 
not yet been detected, since they await incrementing of i. 

To calculate k, we begin with the easily proved inequality 

rif a P] ~ [ r~j] - [~] + 1. (5) 

thus obtaining 

k~k [v'r~p] - C, (6) 
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where [2 = a-2 and C = [pia] - 1. C and t are constants for a particular Monte 
Carlo experiment. We use t 2 instead of a-2 because computer multiplication is 
always faster than division. 

A function subprogram to evaluate the greatest integer in the square root of a 
number was written in order to circumvent the slower machine-supplied square 
root routine. For the sake of even faster code, we allow the integer part of the 
square root to be slightly underestimated. [Since, in Eq. (6), k' can never over
estimate k by more than unity, it is always safe to add (k' - 1), rather than k' 
or k, to j; this allowance may slightly lengthen the search, but never invalidates it.] 
A table is constructed beforehand containing the square roots of the first 1000 
integers, along with a subsidiary table containing the first five powers of 10. 
If the argument, rf;t2, exceeds 1000, it is multiplied successively by 0.01 until 
the result is less than 1000, note being taken of the number, n, of multiplications 
needed. The result is then truncated to an integer, which is used as the index 
for the table look-up. The table entry is then multiplied by 10", this factor being 
brought from the second table. The entire subprogram, coded in COMPASS 
(CDC assembly language), occupies seven words of memory in the CDC 6600, 
exclusive of the tables. In a time test, the code proved to be 40 % faster than the 
machine-supplied square root rontine. Usual underestimation was by one integer, 
and never exceeded two. 
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FIG. 2. Log-log plot of running time, T, for generation and analysis of 10,000 polymer 
samples of chain length N, vs N. 
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The efficiency imparted to the entire Monte Carlo program by this technique 
is difficult to estimate, but the overall efficiency may be appreciated by reference 
to Fig. 2, in which the natural logarithm of the running time, T, for generation 
and analysis of 10,000 samples by the method of Stellman and Gans [I] is plotted 
against In N. The line is quite straight (standard deviation of the fitted slope is 0.03), 
and yields the relationship 

(7) 

where ex = 2.62 and f3 = 1.25. Thus, in spite of many complicating factors, 
the time rises only as the 5/4 power of N, rather than with the square. This develop
ment offers much promise for future studies. 
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