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1. In trod u ction

A p art from th e  still m issing Higgs boson, th e  S tan d ard  M odel (SM) 
has been im pressively confirm ed by successful collider experim ents a t th e  
partic le  accelerators LEP, SLC, and T evatron  during  th e  last decade w ith  
high precision, a t th e  level of rad ia tive corrections. F u tu re  colliders like 
th e  upcom ing LHC or an  e+ e-  In terna tional L inear Collider (ILC), offer an  
even g rea ter physics po ten tia l, and in tu rn  represent a g reat challenge for

* Presented at the final meeting of the European Network “Physics at Colliders”, 
Montpellier, France, September 26-27, 2004.
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theo ry  to  provide even m ore precise calculations. A ccurate  predictions are 
necessary not only to  increase th e  level of precision of SM tests , b u t also to  
s tudy  th e  indirect effects of possible new particles.

W ith  increasing energies m any new processes w ith  heavy partic le  pro­
duction  will be accessible. Such heavy partic les are unstab le, so th a t  th e ir 
p roduction  leads to  m any-particle final sta tes, w ith  e.g. four or six fermions. 
P red ictions for such reactions should be based on full tran s itio n  m atrix  el­
em ents, im proved by rad ia tive  corrections as far as possible, and  call for 
p roper event generators.

Jo in t work done w ith in  th e  netw ork is reviewed here; m ore details can 
be found also in previous studies for fu tu re  colliders [1—3].

G,= 0 (1 +  Ar),  (1)

2. P recis ion  observab les and m u lti-loop  ca lcu la tion s

2.1. M uon lifetim e and W - Z  mass correlation

T he precise m easurem ent of th e  m uon lifetim e, or equivalently  of th e  
Ferm i constan t G^, sets an  im p o rtan t constra in t on th e  SM param eters,

7ra;(0)

\ /2M w2 sw2

w ith  s w2 =  1 — cw2 =  1 — M w 2/ M z 2, w here th e  q u an tity  A r  com prises 
th e  rad ia tive  corrections to  m uon decay (ap art from th e  photonic correc­
tions in th e  Ferm i m odel). Solving th is  re la tion  for th e  W -boson m ass M w  
yields a precise prediction  for M w  th a t can  be com pared w ith  th e  d irectly  
m easured value. R ecently  th e  full electroweak two-loop calcu lation  has been 
com pleted, w ith  th e  con tribu tions from closed ferm ion loops [4, 5], from 
bosonic loops involving v irtu a l H iggs-bosons [4], and th e  com plete bosonic 
corrections [5,6]. T h e  two-loop fermionic con tribu tions influence th e  M w  
prediction a t th e  level of ~  50M eV , th e  two-loop bosonic corrections by 
1—2M eV .

T he predictions a t th e  two-loop level have been fu rth e r im proved by 
universal higher-order con tribu tions to  th e  p-param eter. T he term s of th e  
order O (G j1m '^as) and O (G ^ m f) have been ob ta ined  in [7] and were found 
to  change M w  at th e  level of 5M eV  and  0.5 M eV, respectively. T h e  leading 
three-loop  bosonic con tribu tion  to  th e  p -param eter in th e  large Higgs m ass 
lim it [8], yielding th e  power M ^ / M ^ , is opposite  in sign to  th e  leading 
two-loop correction  ~  M _H /M ^. T he two term s cancel each o th er for a 
Higgs boson m ass around  480 GeV. T his in teresting  new resu lt stabilizes th e  
p ertu rb a tiv e  expansion and  m akes a strongly  in teracting  Higgs sector very 
unlikely in view of th e  electroweak precision d a ta .

T he prediction  for M w , including th e  above-m entioned two-loop and 
leading three-loop  effects, carries, besides th e  p aram etric  uncertain ty , an
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intrinsic theore tical uncertain ty , w hich is estim ated  to  be of 3—4M eV  [9,10], 
which has to  be com pared w ith  th e  aim ed precision of 7M eV  in th e  M w  
de term ina tion  a t a fu tu re  ILC [3].

2.2. Precision observables at the Z  resonance

In order to  describe th e  Z -boson  resonance a t LEP1 w ith in  satisfac­
to ry  precision it was possible to  param etrize  th e  cross section near th e  
resonance in such a way [11, 12] th a t  a Born-like form w ith  generalized 
“effective” couplings is convoluted w ith  QED s tru c tu re  functions m odel­
ing in itia l-sta te  rad ia tio n  (ISR). From  these effective Z -boson-ferm ion  cou­
plings so-called “pseudo-observables” were derived, such as various asym m e­
tries, th e  hadronic Z -p eak  cross section, p artia l Z -decay w idths, etc. T he 
precisely calcu lated  pseudo-observables are im plem ented in th e  program s 
Z f i t t e r  and TOPAZÜ [13]. A critical overview on high-precision physics at 
th e  Z  pole, in p articu la r focusing on th e  theore tical uncertain ties, can  be 
found in [14]. T h e  s ta tu s  of precision pseudo-observables in th e  MSSM is 
sum m arized in [15].

Following th e  form al tree-level like p aram etriza tio n  of th e  couplings, an  
“effective weak m ixing angle”, sin2 d fff, was derived for each ferm ion species. 
Am ong these param eters  th e  leptonic variable sin2 0 |ff plays a particu larly  
im p o rtan t role, since it is m easured w ith  th e  high accuracy of 1.7 x 10-4 
and is very sensitive to  th e  H iggs-boson m ass. Q uite recently, a substan tia l 
subclass of th e  electrow eak two-loop contribu tions, th e  fermionic con tribu ­
tions to  sin2 0| ff, were calculated  [16]; th ey  reduce th e  intrinsic theoretical 
uncerta in ty  to  ~  5 x 10- 5 .

W h e th e r th e  pseudo-observable approach will also be sufficient for 
Z -boson  physics a t th e  high-lum inosity  GigaZ option  rem ains to  be investi­
gated  carefully. In any case, su b stan tia l theore tical progress will be needed 
to  m atch  th e  aim ed GigaZ precision on th e  theore tica l side, e.g. for th e  ex­
pected  experim ental accuracy in sin 2 0 |ff of ab o u t 1.3 x 10- 5 . A full control 
of observables a t th e  two-loop level, im proved by leading higher-order effects, 
seems indispensable.

An im p o rtan t en try  for th e  precision observables w ith  a large p aram et­
ric uncerta in ty  is th e  photonic vacuum  po larization  a t th e  Z  scale. T he 
hadronic p a rt is determ ined  v ia a d ispersion re la tion  from th e  cross sec­
tion  for e+ e -  ^  hadrons w ith  experim ental d a ta  as inpu t in th e  low-energy 
regime. Possible scans w ith  th e  rad ia tiv e -re tu rn  m ethod  require a careful 
theore tical trea tm e n t to  reach th e  required  precision [17].
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2.3. D eep-inelastic neutrino  scattering

An independent precise d e term ina tion  of th e  electroweak m ixing angle 
in term s of th e  M w /M z  ra tio  has been done in deep-inelastic neu trino  sca t­
tering  off an  isoscalar ta rg e t by th e  NuTeV C ollaboration  [18], yielding a 
deviation  of ab o u t 3 s tan d ard  deviations from th e  value derived from th e  
global analysis of th e  o th er precision observables. A new calcu lation  of th e  
electroweak one-loop corrections was perform ed [19] to  investigate th e  stab il­
ity and size of th e  qu an tu m  effects, showing th a t  th e  theore tica l erro r of th e  
analysis in [18] was obviously underestim ated . T h e  new theore tical resu lt is 
now being used for a re-analysis of th e  experim ental d a ta  (see also [20] for 
ano th er recent recalculation of th e  electroweak rad ia tive corrections).

2.4. A t  the 2-loop fro n tie r

A lthough th ere  are no com plete nex t-to -nex t-to -lead ing  (NNLO) pre­
d ictions for 2 ^  2 sca tte ring  reactions and 1 ^  3 decays (w ith one tru ly  
m assive leg) available yet, significant progress was reached in th is direction 
in recent years.

Com plete v irtu a l two-loop am plitudes for (m assless) B habha sca tte ring
[21] and light-by-light sca tte rin g  [23] have been worked out. Also first steps 
have been m ade tow ards m assive B h ab h a  sca tte ring

In Ref. [22] th e  coefficient of th e  O (a 2 lo g (s /m 2)) fixed-order con tri­
bu tion  to  elastic large-angle B habha sca tte rin g  is derived by adap tin g  th e  
classification of infrared divergences th a t  was recently  developed w ith in  d i­
m ensional regularization, and applying it to  th e  regularization  scheme w ith  
a m assive pho ton  and electron.

T he subset of factorizable corrections, resu lting  from one-loop subrenor­
m alization, is considered in [24]. T his requires th e  evaluation of one-loop 
d iagram s in a rb itra ry  dim ension d =  4 — e. T he e-expansion covering th e  
orders 1 /e  and e, in p articu la r for th e  box graphs needed in B hab h a  sca t­
tering, was perform ed in [25], based on th e  work of [26] 1. For th e  genuine 
two-loop QED corrections to  B habha scattering , th e  m aster integrals for th e  
box w ith  th e  fermionic loop were calcu lated  [28], and th e  cross section w ith  
th e  corrections a t two loop resu lting  from these d iagram s [29].

A com plete set of m aster integrals for m assive two-loop B h ab h a  sca tte r­
ing has been derived in th e  m eantim e [30], and for form factors w ith  m ass- 
less [31] and  m assive propagators [32]. Moreover, two-loop QCD corrections 
for th e  electroweak forw ard-backw ard asym m etries were ob ta ined  [33]. Also 
tw o-loop m aster integrals and form factors from v irtu a l light ferm ions were 
derived and  applied to  Higgs boson p roduction  and  decays [34].

1 Techniques applied in the latter work have also been used in [27] for the analytic
calculation of Higgs boson decay into two photons.
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2.5. Electroweak radiative corrections at high energies

Electrow eak corrections far above th e  electrow eak scale, e.g. in th e  TeV 
range, are dom inated  by soft and collinear gauge-boson exchange, leading to  
corrections of th e  form a N logM ( s /M w 2) w ith  M  <  2 N . T he leading term s 
(M  =  2 N ) are called Sudakov logarithm s. A t th e  one-loop (N  =  1) and 
two-loop (N  =  2) level th e  leading and  subleading corrections to  a 2 ^  2 
process a t y 7s ~  1 TeV typically  am ount to  [35]

S1—loop 
LL

S1—loop 
NLL

S2—loop 
LL

S2— loop 
NLL

a

+-

nsw
3 a

2

ns, 2

+
a

2n 2s w4

3 a  
vr 2s w4

s

MW
s

MW

MW

M W 2

-  -2 6 % ,

-  16%,

^  -  3.5%, 

-  -4 .2 % , (2)

2

s4

s3

revealing th a t  these corrections becom e significant in th e  high-energy phase 
of a fu tu re  ILC. In  co n trast to  QED and QCD, w here th e  Sudakov logarithm s 
cancel in th e  sum  of v irtu a l and  real corrections, these term s need no t com ­
pensa te  in th e  electroweak SM for two reasons. T h e  weak charges of quarks, 
leptons, and electrow eak gauge bosons are open, no t confined, i.e. th ere  is 
(in co n trast to  QCD) no need to  average or to  sum  over gauge m ultip lets in 
th e  in itial or final s ta tes  of processes. Even for final s ta tes  th a t  are inclusive 
w ith  respect to  th e  weak charges Sudakov logarithm s do not com pletely can­
cel owing to  th e  definite weak charges in th e  in itia l s ta te  [36]. Moreover, th e  
large W - and Z -boson  m asses m ake an  experim ental d iscrim ination  of real 
W  - o r  Z  -boson p roduction  possible, in co n tras t to  unobservable soft-photon  
or gluon emission.

In recent years several calculations of these high-energy logarithm s have 
been carried  ou t in th e  Sudakov regime, w here all k inem atical invariants 
(p ip j) of different partic le  m om enta pi, p j are m uch larger th a n  all partic le 
masses. A com plete analysis of all leading and  subleading logarithm s a t th e  
one-loop level can be found in [37]. D iagram m atic calculations of th e  leading 
two-loop Sudakov logarithm s have been carried  ou t in [35,38]. D iagram m atic 
results on th e  so-called “angu lar-dependen t” subleading logarithm s have been 
presented in [35]. All these explicit results are com patib le w ith  proposed 
resum m ations [39,40] th a t  are based on a sym m etric S U (2)xU (1) theo ry  at 
high energies m atched  w ith  Q ED  a t th e  electroweak scale. In  th is  ansatz , 
im proved m atrix  elem ents M  resu lt from low est-order m atrix  elem ents M o
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upon dressing them  w ith  (operator-valued) exponentials,

M  ~  M o  ® exp (iew) ® exp (¿em) .  (3)

Explicit expressions for th e  electrow eak and electrom agnetic corrections ¿ew 
and ¿em, which do not com m ute w ith  each o ther, can, for instance, be found 
in [35]. For 2 ^  2 n eu tra l-cu rren t processes of four m assless fermions, 
also subsubleading logarithm ic corrections have been derived and resum m ed
[40] using an  infrared  evolution equation  th a t  follows th e  p a tte rn  of QCD. 
A pplications to  vector-boson pair p roduction  in p ro to n -p ro to n  collisions can 
be found in [41].

In supersym m etric  m odels th e  form of rad ia tive corrections a t high en­
ergies has also been worked ou t for a broad  class of processes [42]. B ased on 
one-loop results th e ir exponen tia tion  has been proposed.

2.6. H igher-order in itia l-sta te radiation

P h o to n  rad ia tion  off in itia l-sta te  electrons and  positrons leads to  large 
rad ia tive corrections of th e  form a N logN (m ^ /s ) . T hese logarithm ic correc­
tions are universal and  governed by th e  D G L A P evolution equations. T he 
solution of these equations for th e  electron-photon  system  yields th e  s tru c­
tu re  functions, generically denoted  by r (x) below, w hich can  be used via 
convolution to  im prove hard  sca tte rin g  cross sections cr(pe+ ,p e- ) by photon  
em ission effects,

1 1

0-(pe+ ,p e-  ) =  J  d x +  r  (x + ) ƒ  d x -  r  (x - ) 

o o
x <r(x+pe+ , x - p e-  ) .  (4)

W hile th e  soft-photon p a rt of th e  s tru c tu re  functions (x ^  1) can be re­
sum m ed, resu lting  in an  exponential form, th e  con tribu tions of hard  pho­
tons have to  be calcu lated  order by order in p e r tu rb a tio n  theory. In  [43] 
th e  s tru c tu re  functions are sum m arized up to  O ( a 3). Ref. [44] describes a 
calcu lation  of th e  (non-singlet) con tribu tions up  to  O ( a 5) and of th e  sm all-x 
term s [a log2(x)]N to  all orders (for previous calculations see papers cited  in 
Ref. [44]).
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3. R ad ia tive  correction s to  2 —— 3, 4 , . . .  p rocesses

3.1. Four-ferm ion fina l states and  W -pair production

Four-ferm ion final s ta tes  in e+ e -  collisions, which involve electroweak 
boson pair p roduction , are of special in terest since th ey  allow th e  m echanism  
of spontaneous sym m etry  breaking and th e  non-A belian s tru c tu re  of th e  
S tan d ard  M odel to  be d irectly  tes ted  by th e  experim ents. M oreover th ey  
provide a very im p o rtan t background to  m ost searches for new physics.

LEP2 has provided in th is  respect an  ideal tes tin g  ground for th e  SM. T he 
W  profile has been m easured w ith  g reat accuracy, new bounds on anom alous 
trilin ear gauge-boson couplings have been set, and single W , single Z , Z Z  
and Z y  cross sections have been determ ined  for th e  first tim e. T hese studies 
will be continued w ith  m uch higher s ta tis tics  and  energy a t a fu tu re  e+ e -  
L inear Collider.

In th is  contex t, th e  M onte C arlo four ferm ion generato r WPHACT 2 .0  has 
been com pleted [45], ad ap ted  to  experim ental requests and  used for sim u­
lation  of th e  LEP2 d a ta  [46]. WPHACT 2 .0  com putes all S tan d ard  M odel 
processes w ith  four ferm ions in th e  final s ta te  a t e+ e -  colliders, it m akes 
use of com plete, fully m assive helicity am plitude calculations and  includes 
th e  Im aginary  Ferm ion Loop gauge restoring  schem e2. T hanks to  these 
features and new phase space m appings, WPHACT has been ex tended  to  all 
regions of phase space, including k inem atical configurations dom inated  by 
sm all m om entum  tran sfe r and  sm all invariant m asses like single W , single Z , 
Z y  * and y  *Y* processes. Special a tten tio n  has been devoted to  Q ED  effects, 
which have a large num erical im pact, w ith  new options for th e  descrip tion  of 
In itia l S ta te  R ad ia tion  (ISR) and of th e  scale dependence of th e  electrom ag­
netic coupling. M oreover, th ere  is th e  possibility  of including CKM  mixing, 
and to  account for resonances in qq channels.

T he theore tica l trea tm e n t and  th e  presently  gained level in accuracy in 
th e  descrip tion  of W -pair-m edia ted  4ƒ p roduction  were triggered by LEP2, 
as it is reviewed in Refs. [43,48]. T he W  bosons are tre a ted  as resonances 
in th e  full 4ƒ processes, e+ e-  ^  4ƒ (+  y ). R adiative corrections are split 
into universal and non-universal corrections. T h e  form er com prise leading- 
logarithm ic corrections from ISR, h igher-order corrections included by using 
app ro p ria te  effective couplings, and  th e  Coulom b singularity. T hese cor­
rections can  be com bined w ith  th e  full low est-order m atrix  elem ents easily. 
T he rem aining corrections are called non-universal, since th ey  depend on 
th e  process under investigation. For LEP2 accuracy, it was sufficient to  in­
clude these corrections by th e  leading te rm  of an  expansion ab o u t th e  two 
W  poles, defining th e  so-called double-pole approxim ation  (DPA). D ifferent

2 In [47] the incorporation of the fermion-loop corrections into e+e ^  n fermions is 
discussed in terms of an effective Lagrangian approach.
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versions of such a DPA have been used in th e  lite ra tu re  [49-51]. A lthough 
several M onte C arlo program s exist th a t  include universal corrections, only 
two event generators, Y F S W W  [50] and R a c o o n W W  [51,52], include non­
universal corrections, as well as th e  op tion  of anom alous gauge couplings [53].

In th e  DPA approach, th e  W -p air cross section can be pred ic ted  w ith in  
a relative accuracy of ~  0.5%(0.7%) in th e  energy range betw een 180 GeV 
(170 GeV) and 500 GeV, which was sufficient for th e  LEP2 accuracy of ~  1% 
for energies 170—209 GeV. A t th resho ld  (y /s  <  170 G eV ), th e  present s ta te - 
o f-the-art p rediction  results from an im proved B orn approx im ation  based 
on leading universal corrections only, because th e  DPA is no t reliable there, 
and thus possesses an  intrinsic uncerta in ty  of ab o u t 2%, which dem onstra tes 
th e  necessary theore tica l im provem ents for th e  th resho ld  region. A t energies 
beyond 500 GeV, effects beyond O (a ) , such as th e  above-m entioned Sudakov 
logarithm s a t higher orders, becom e im p o rtan t and have to  be included in 
predictions a t per-cent accuracy.

A t LEP2, th e  W -boson m ass has been determ ined  by th e  reconstruc­
tion  of W  bosons from th e ir decay p roducts  w ith  a final accuracy of abou t 
30M eV . In [54] th e  theore tical u ncerta in ty  is estim ated  to  be of th e  order 
of ~  5 M eV. T heoretical im provem ents are, thus, desirable.

T he above discussion illu stra tes th e  necessity of a full one-loop calcu­
lation  for th e  e+ e-  ^  4 ƒ process and  of fu rth e r im provem ents by leading 
higher-order corrections.

3.2. S ing le-W  production

T he single-W  production  process e+ e -  ^  eve W  ^  eve +  2 f  plays a p a r­
ticu larly  im p o rtan t role am ong th e  4 ƒ p roduction  processes a t high sca tte r­
ing energies. T he process is p redom inantly  in itia ted  by eY* collision, where 
th e  pho ton  is rad ia ted  off th e  electron (or positron) by th e  W eizsäcker­
W illiam s m echanism , i.e. w ith  a very sm all off-shellness .

Consequently  th e  cross section rises logarithm ically  w ith  th e  sca tte ring  
energy and  is of th e  sam e size as th e  W -pair p roduction  cross section around 
yfs =  500 GeV; for higher energies single-W  dom inates over W^-pair p roduc­
tion.

T heoretically  th e  dom inance of pho ton  exchange a t low q2; poses several 
com plications. Technically, q2; ^  0 m eans th a t  th e  electrons (or positrons) 
are produced in th e  forward d irection  and th a t  th e  electron m ass has to  be 
tak en  into account in order to  describe th e  cross section there . Moreover, 
th e  m ere application  of s-dependen t leading-logarithm ic s tru c tu re  functions 
does no t describe th e  leading p ho ton -rad ia tion  effects properly, since ISR 
and final-sta te rad ia tio n  (FSR) show sizable interferences for forw ard sca t­
tering . T hus, th e  im provem ent of low est-order calculations by leading rad i­
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ation  effects is m ore com plicated th a n  for s-channel-like processes. Finally, 
th e  running  of th e  electrom agnetic coupling a (q ^ ) has to  be evaluated  in th e  
region of sm all m om entum  tran sfer (q^ <  0) w here th e  fit for th e  hadronic 
p a r t of th e  pho ton  vacuum  po larisation  [55] should be used.

T he M onte C arlo generato r K o r a l W  [56] has recently  been u p d a ted  to  
include th e  ISR -FSR  interference effects as well as th e  p roper runn ing  of 
a (q 2 ). Therefore, th is  program  now has reached a level of accuracy sim ilar 
to  th e  o th er s ta te -o f-th e-a rt program s for single-W  production: G r o 4 f  [57], 
N e x t c a l ib u r  [58], Sw a p  [59], W p h a c t  [45,60], and W t o  [61]. It should 
be kept in m ind th a t  none of these calculations includes non-universal elec- 
trow eak corrections, leading to  a theore tica l u ncerta in ty  of ab o u t ~  5% in 
cross-section predictions. A lthough th e  final solution for a high-energy Lin­
ear Collider certain ly  requires a full O (a )  calcu lation  of th e  4 f-p ro d u c tio n  
process, a first step  of im provem ent could be done by a careful expansion 
ab o u t th e  p rop ag ato r poles of th e  pho ton  and  W  boson. T h e  electroweak 
O (a )  corrections to  th e  process eY ^  veW , which are known [62], represent 
a basic building block in th is  calculation.

3.3. Progress fo r  m ulti-particle production processes

One-loop integrals becom e m ore and m ore cum bersom e if th e  num ber N  
of ex ternal legs in d iagram s increases. For N  >  4, however, no t all ex ter­
nal m om enta are linearly  independent because of th e  four-dim ensionality  of 
space-tim e. As known for a long tim e [63], th is  fact opens th e  possibility  to  
re la te  integrals w ith  N  >  4 to  integrals w ith  N  <  4. In recent years, various 
techniques for ac tu a l evaluations of one-loop integrals w ith  N  =  5, 6 have 
been worked ou t [64,65] (see also references there in  for older m ethods and 
resu lts). T he m ajo r com plication in th e  trea tm e n t of 2 ^  3 processes a t one 
loop concerns th e  num erical evaluation  of tenso r 5-point integrals; in p artic ­
ular, th e  occurrence of inverse G ram  determ inan ts  in th e  usual P assa rin o - 
V eltm an reduction  to  scalar integrals leads to  num erical instab ilities a t th e  
phase-space boundary. A possible solution to  th is  problem  was worked out 
in Ref. [65] w here th e  known direct reduction  [63] of scalar 5-point to  4-point 
integrals was generalized to  tenso r integrals, thereby  avoiding th e  occurrence 
of leading G ram  determ in an ts  com pletely. M ore work on one-loop N -p o in t 
integrals can  be found in [66].

In th e  evaluation  of real corrections, such as b rem sstrah lung , a proper 
and num erically stab le  separation  of infrared (soft and  collinear) divergences 
represents one of th e  m ain  problem s. In th e  phase-space slicing approach 
(see [67] and  references therein) th e  singular regions are excluded from th e  
“regular” phase-space in tegra tion  by sm all cu ts on energies, angles, or invari­
an t m asses. Using factorization  properties, th e  in teg ra tion  over th e  singular
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regions can  be done in th e  lim it of infinitesim ally sm all cu t param eters. T he 
necessary fine-tuning of cu t param eters  is avoided in so-called su b trac tio n  
m ethods (see [68-70] and references there in ), w here a specially tu n ed  aux­
iliary function is su b trac ted  from th e  singular in tegrand  in such a way th a t 
th e  resu lting  in tegral is regular. T he auxiliary  function  has to  be chosen 
sim ple enough, so th a t  th e  singular regions can be in teg ra ted  over an a ly t­
ically. In [68] th e  so-called “dipole su b trac tio n  approach” has been worked 
out for m assless QCD. and  subsequently  ex tended  for pho ton  em ission off 
m assive ferm ions [69] and for QCD w ith  m assive quarks [70].

A pplications were preform ed for com plete one-loop calculations of elec- 
trow eak rad ia tive corrections for specific 2 ^  3 processes of special in­
te re s t for a fu tu re  ILC, e+ e -  ^  v / H  [71, 72] and  e + e -  ^  t iH  [73-75]. 
In  [72, 73, 75] th e  technique [65] for trea tin g  tenso r 5-point integrals was 
employed. W hile [71, 73, 74] m ake use of th e  slicing approach  for t r e a t­
ing soft-photon  em ission, th e  results of Refs. [72, 75] have been ob ta ined  by 
dipole su b trac tio n  and checked by phase-space slicing for soft and  collinear 
brem sstrah lung . A naly tic resu lts for th e  one-loop corrections are provided 
in [76].

T he Yukawa coupling of th e  to p  quark  could be m easured a t a fu tu re  ILC 
w ith  high energy and lum inosity  a t th e  level of ~  5% [2] by analyzing th e  
process e+ e -  ^  t i H . A tho rough  prediction  for th is  process, thus, has to  
control QCD and electroweak corrections. R esults on th e  electrow eak O (a )  
corrections of Refs. [74,75] show agreem ent w ith in  ~  0.1%. T he results of 
th e  previous calcu lation  [73] roughly agree w ith  th e  ones of Refs. [74, 75] at 
in term ediate  values of y/s  and M h , b u t are a t variance a t high energies (TeV 
range) and  close to  th resho ld  (large M h ).

4. E vent gen erators for m u lti-p artic le  final sta te s

4.1. M ulti-purpose generators at parton level

T h e large variety  of different final s ta tes  for m ulti-partic le  production  
renders m ulti-purpose M onte C arlo event generators ra th e r im p o rtan t, i.e. 
generators th a t  deliver an  event generato r for a user-specified (as m uch as 
possible) general final s ta te  based on full low est-order am plitudes. As results, 
these tools yield low est-order predictions for observables, or m ore generally 
M onte Carlos sam ples of events, th a t  are im proved by universal rad ia tive 
corrections, such as in itia l-sta te  rad ia tio n  a t th e  leading-logarithm ic level 
or beam strah lu n g  effects. M ost of th e  m ulti-purpose generators are also 
interfaced to  parton-show er and hadron ization  program s. T he generality  
renders these program s, however, ra th e r com plex devices and, a t present, 
th ey  are far from representing  tools for high-precision physics, because non­
universal rad ia tive corrections are no t taken  into account in predictions.



Electroweak Physics 2543

T he following m ulti-purpose generators for m u lti-parton  p roduction , in­
cluding program  packages for th e  m atrix-elem ent evaluation, are available:

•  A m e g ic  [77]: H elicity am plitudes are au tom atically  generated  by th e  
program  for th e  SM, th e  MSSM, and  some new-physics m odels. V ari­
ous interfaces (ISR, PD Fs, beam  spectra , I s a j e t ,  etc.) are supported . 
T h e  phase-space generation  was successfully tes ted  for up to  six p a r­
ticles in th e  final s ta te .

•  G r a c e  [78]: T h e  am plitudes are delivered by a built-in  package, which 
can  also handle SUSY processes. T he phase-space in tegra tion  is done 
by B A S E S  [79]. Tree-level calculations have been perform ed for up 
to  (selected) six-ferm ion final sta tes. T h e  extension of th e  system  to 
include one-loop corrections is th e  G r a c e -L o o p  [80] program .

•  M a d e y e n t  [81] +  M a d g r a p h  [82]: T he M a d g r a p h  a lgorithm  can 
generate  tree-level m atrix  elem ents for any SM process (fully su p p o rt­
ing partic le  m asses), b u t a p ractical lim ita tion  is 9,999 diagram s. In 
addition , M a d g r a p h  creates M a d e y e n t , an  event generato r for th e  
requested  process.

•  P h e g a s  [83] +  H e l a c  [84]: T he H e l a c  program  delivers am plitudes 
for all SM processes (including all m asses). T h e  phase-space in tegra­
tio n  done by P h e g a s  has been tes ted  for selected final s ta tes  w ith  
up to  seven partic les. R ecent applications concern channels w ith  six- 
ferm ion final s ta tes  [85].

•  W h i z a r d  [86] +  C o m p h e p  [87] /  M a d g r a p h  [82] /  O ’m e g a  [88]: 
M atrix  elem ents are generated  by an au tom atic  interface to  (older 
versions of) C o m p h ep , M a d g r a p h ,  and  (the up -to -d a te  version of) 
O ’m e g a . P hase-space generation  has been tes ted  for m ost 2 ^  6 
and some 2 ^  8 processes; unw eighted events are supported , and a 
large variety  of interfaces (ISR, beam strah lung , P y t h i a ,  PD Fs, etc.) 
exists. T he inclusion of MSSM am plitudes (O ’m e g a ) and  im proved 
phase-space generation  (2 ^  6) are work in progress.

•  A l p g e n  [89] is a specific code for com puting  th e  p ertu rb a tiv e  p a rt of 
observables in high energy hadron-hadron  collisions, which require a 
convolution of th e  p e rtu rb a tiv e  quan tities  w ith  s tru c tu re  or fragm en­
ta tio n  functions th a t  account for non p e rtu rb a tiv e  effects.

Tuned com parisons of different generators, b o th  a t p a rto n  and  de tec to r level, 
are ex trem ely  im p o rtan t, b u t becom e m ore and  m ore laborious owing to  th e  
large variety  of m ulti-partic le  final s ta tes. Some progress to  a facilitation  
and au tom ization  of com parisons are m ade by M C -tester p ro ject [90] and 
Java interfaces [91].
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P articu la r progress was reached in recent years in th e  descrip tion  of 
six-ferm ion p roduction  processes. A p art from th e  m ulti-purpose genera­
to rs  listed in th e  previous section, also ded icated  M onte C arlo program s and 
generators have been developed for th is  class of processes:

•  S ix fa p  [92]: M atrix  elem ents are provided for all 6ƒ final s ta tes  (w ith 
finite ferm ion m asses), including all electrow eak diagram s. T he gen­
eralization to  QCD diagram s and th e  ex tension of th e  phase-space 
in tegra tion  for all final s ta tes  is in progress.

•  e e t t 6f  [93]: Only processes relevant for t i  p roduction  are supported  
(a new version includes e± in th e  final s ta te  and  QCD diagram s); finite 
ferm ion m asses are possible.

•  L u s i f e r  [94]: All 6 ƒ final s ta tes  are possible, including QCD diagram s 
w ith  up  to  four quarks; representa tive results for all these final sta tes 
have been presented. E x terna l ferm ions are m assless. A n unweighting 
a lgorithm  and  an  interface to  P y t h i a  are available.

•  P h a se  [95]: All S tan d ard  M odel process w ith  six ferm ions in th e  final 
s ta te  a t th e  LHC. I t em ploys th e  full set of tree-level Feynm an d ia­
gram s, tak in g  into account a finite m ass for th e  b quark . A n interface 
to  hadron ization  is provided.

A com parison of results [96] for some processes e+ e-  ^  6 ƒ relevant for t i  
p roduction  for m assless ex ternal ferm ions reveals good agreem ent betw een 
th e  various program s, w here m inor differences are presum ably  due to  th e  dif­
ferent trea tm en ts  of th e  b o tto m -q u ark  Yukawa coupling, which is neglected 
in some cases.

A tu n ed  com parison of results ob ta ined  w ith  L u s i f e r  and W h i z a r d  for 
a large survey of 6ƒ final s ta tes  has been presented in Ref. [94].

5. O ther d eve lop m en ts

5.1. A u tom atiza tion  o f loop calculations

Once th e  necessary techniques and theore tica l sub tleties of a p ertu rb a tiv e  
calcu lation  are settled , to  ca rry  ou t th e  ac tu a l calcu lation  is an  algorithm ic 
m a tte r. T hus, an  au tom ization  of such calculations is highly desirable, in 
order to  facilita te  re la ted  calculations. Various program  packages have been 
presented in th e  lite ra tu re  for au tom atized  tree-level, one-loop, and m ulti­
loop calculations. A com prehensive overview can, e.g., be found in [97]; in 
th e  following we have to  restric t ourselves to  a selection of topics, w here 
em phasis is p u t on electroweak aspects.

4.2. E ven t generators and results fo r  e+ e ^  6ƒ
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T he generation  of Feynm an graphs and am plitudes is a com binatorial 
problem  th a t  can  be a ttacked  w ith  com puter algebra. T h e  program  pack­
ages F e y n A r t s  [98] (which has been ex tended  in [99] for th e  MSSM) and 
D ia n a  [100] (based on Q g r a f  [101]) are specifically designed for th is task; 
also th e  G r a c e - L o o p  [80] system  au tom atically  generates Feynm an d ia­
gram s and  loop am plitudes. Moreover, th e  ta sk  of ca lcu lating  v irtu a l one- 
loop and th e  corresponding real-em ission corrections to  2 ^  2 sca tte ring  
reactions is by now well understood . Such calculations are w idely au to ­
m ated  in th e  packages F o r m C a l c  com bined w ith  L o o p T o o l s  [102], and 
G r a c e - L o o p  [80].

A n illu stra tin g  exam ple was provided for th e  differential cross section 
for e+ e -  ^  t i  in lowest o rder as well as including electroweak O (a )  cor­
rections. A program  F A + F C  [103] was ob ta ined  from th e  o u tp u t of th e  
F e y n A r t s  and F o r m C a l c  packages and m akes use of th e  L o o p T o o ls  
lib rary  for th e  num erical evaluation . A no ther program , T o p f i t  [103,104], 
was developed from an algebraic reduction  of Feynm an graphs (delivered 
from D ia n a )  w ith in  F o rm ; for th e  num erics L o o p T o o l s  is p artia lly  em ­
ployed. A com pletely independent approach has been m ade by th e  S a n c  
p ro ject [105]. T h e  S a n c  program  contains ano th er independent calculation 
of th e  O (a )  corrections to  e+ e-  ^  ti, th e  results of which are also included 
in [103]. M ore details on com parisons, including also o th er ferm ion flavors, 
can be found in [103,106]. T h e  agreem ent betw een th e  num erical resu lts a t 
th e  level of 10 d ig its reflects th e  enorm ous progress achieved in recent years 
in th e  au to m atiza tio n  of one-loop calculations.

T h e  one-loop calcu lation  for th e  process e+ e-  ^  ti(Y) including hard  
b rem sstrah lung  was originally perform ed in [104] w ithou t full au to m atiza ­
tion; it was repeated  in la te r course (ap art from th e  hard  b rem sstrah lung  
p art) as an  exam ple for au to m atiza tio n  in [107] . T he extension of D i­
a n a  tow ards full au to m atiza tio n  in term s of th e  package aiTALC is a new 
developm ent [107,108]; au to m atiza tio n  of th e  full calcu lation  is perform ed 
including renorm alization  and  th e  creation  and running  of a FO R TR A N  
code. A pplications to  th e  calcu lation  of th e  processes e+ e-  ^  f f (Y )  for 
various final fermions: t, b, e and  also sb, ct, are perform ed. For fu rther 
work in au to m atiza tio n  see [109,110].

5.2. N um erical approaches to loop calculations

M ost of th e  various techniques of perform ing loop calculations share th e  
com m on feature th a t  th e  in teg ra tion  over th e  loop m om enta is perform ed 
analytically. T his procedure leads to  com plications a t one loop if five or m ore 
ex ternal legs are involved, since b o th  speed and stab ility  of program s becom e 
m ore and  m ore jeopardized. A t th e  tw o-loop level, already  th e  evaluation  of
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self-energy and  vertex  corrections can lead to  extrem ely  com plicated higher 
transcenden ta l functions th a t  are hard  to  evaluate numerically.

An idea to  avoid these com plications is provided by a m ore or less purely 
num erical evaluation of loop corrections. T here  are two m ain difficulties in 
th is  approach. F irstly, th e  appearing  ultrav io let and  infrared divergences 
have to  be tre a ted  and canceled carefully. Secondly, even finite loop integrals 
require a singularity  handling  of th e  in tegrand  near partic le  poles, where 
Feynm an’s ie prescrip tion  is used as regularization.

In [111] a m ethod  for a purely  num erical evaluation of loop integrals 
is proposed. Each in tegral is param etrized  w ith  Feynm an param eters  and 
subsequently  rew ritten  w ith  p artia l in tegrations. T h e  final expression con­
sists of a qu ite  sim ple p a rt contain ing th e  singular term s and  an o th er m ore 
com plicated looking p a rt th a t  can  be in teg ra ted  num erically. T he actual 
applica tion  of th e  m ethod  to  a physical process is still work in progress.

T here are five papers in a series devoted to  th e  num erical evaluation  of 
m ulti-loop, m ulti-leg Feynm an diagram s. In  [111] th e  general s tra teg y  is 
ou tlined  and  in [112 ] a com plete list of results is given for two-loop functions 
w ith  two ex ternal legs, including th e ir infrared divergent on-shell derivatives. 
R esults for one-loop m ulti-leg d iagram s are shown in [113] and  additional 
m ateria l can  be found in [114]. Two-loop th ree-po in t functions for infrared 
convergent configurations are considered in [115], w here num erical results 
can be found.

Ref. [113] presents a detailed  investigation of th e  algorithm s, based on 
th e  B ernstein -T kachov  (BT) theorem  [116], w hich form th e  basis for a fast 
and reliable num erical in teg ra tion  of one-loop m ulti-leg (up to  six in th is 
paper) diagram s. T h e  ra tiona le  for th is  work is represented by th e  need 
of encom passing a num ber of problem s th a t  one encounters in assem bling 
a calcu lation  of some com plicated process, e.g. full one-loop corrections to  
e+ e -  ^  4 ferm ions. Furtherm ore, in any a tte m p t to  com pute physical ob­
servables a t th e  two-loop level, we will have to  include th e  one-loop p art, and 
it is ra th e r obvious th a t  th e  two pieces should be tre a ted  on equal footing.

All algorithm s th a t  aim  to  com pute Feynm an d iagram s num erically are 
based on some m an ipu la tion  of th e  original in tegrands th a t  brings th e  final 
answ er into som ething sm ooth . T his has th e  consequence of bringing th e  
original (L andau) singularity  of th e  d iagram  into some overall denom inato r 
and, usually, th e  m ethod  overestim ates th e  singular behavior around some 
threshold . In these regions an  a lte rna tive  derivation  is needed. In stead  of 
using th e  m ethod  of asym pto tic  expansions, a novel algorithm  is in troduced  
based on a M ellin-B arnes decom position  of th e  singular in tegrand, followed 
by a sector decom position  th a t  allows one to  w rite th e  L aurent expansion 
around threshold .
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P articu la r care has been devoted to  analyze those situations w here a 
sub-leading singularity  m ay occur, and to  properly  account for those cases 
w here th e  algorithm  cannot be applied because th e  corresponding B T  factor 
is zero although  th e  singular po int in p aram etric  space does no t belong to  
th e  in tegra tion  dom ain.

Finally, a descrip tion  of infrared  divergent one-loop v irtu a l configura­
tions is given in th e  fram ework of dim ensional regularization: here b o th  th e  
residue of th e  infrared pole and  th e  infrared finite rem ainder are cast into 
a form th a t  can  be safely com puted  num erically. T h e  collection of form u­
las th a t  cover all corners of phase space have been tran s la ted  into a set of 
FO R M  codes and th e  o u tp u t has been used to  create  a FO R TR A N  code 
whose technical descrip tion  will be given elsewhere.

Ref. [117] addresses th e  problem  of deriving a judicious and  efficient way 
to  deal w ith  tenso r Feynm an integrals, nam ely those integrals th a t  occur in 
any field theo ry  w ith  spin and non triv ia l s tru c tu res  for th e  num erato rs of 
Feynm an propagators. T his p ap er forms a basis for a realistic calcu lation  of 
physical observables a t th e  two-loop level.

T h e  com plexity  of handling two-loop tenso r integrals is reflected in th e  
following sim ple consideration: th e  com plete trea tm e n t of one-loop tenso r in­
tegrals was confined to  th e  appendices of [118], while th e  reduction  of general 
two-loop self-energies to  s tan d ard  scalar integrals already  required  a consid­
erable fraction of [119]; th e  inclusion of two-loop vertices requires th e  whole 
conten t of th is  paper. T he past experience in th e  field has shown th e  encom ­
passed convenience of gathering  in one single place th e  com plete collection 
of results needed for a broad  spectrum  of applications. In  recent years, th e  
m ost popu lar and qu ite  successful too l in dealing w ith  m ulti-loop Feynm an 
diagram s in Q E D /Q C D  (or in selected problem s in different m odels, charac­
terized  by a very sm all num ber of scales), has been th e  In teg ration -B y-P arts  
Identities m ethod  [120]. However, reduction  to  a set of m aster integrals is 
poorly  known in th e  enlarged scenario of m ulti-scale electroweak physics.

In [121] ano th er new m ethod  is presented in which alm ost all th e  work 
can be perform ed num erically: th e  tenso r integrals are num erically  reduced 
to  th e  s tan d ard  set of one-loop scalar functions and  any am plitude is calcu­
lated  sim ply con tracting  th e  num erically com puted  tenso r integrals w ith  th e  
ex ternal tensors. To th is  aim , a recursion re la tion  is in troduced  th a t  links 
h igh-rank tenso r integrals to  lower-rank ones. S ingular k inem atical configu­
ra tions give a sm oother behavior th a n  in o th er approaches because, a t each 
level of itera tion , only inverse square roo ts of G ram  determ inan ts  appear.
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In Refs. [122-126] (see also [127]) it was proved th e  im portance of elec­
trow eak one-loop corrections to  hadronic observables, such as bb, ‘p rom pt 
pho ton  +  j e t ’ and ‘Z  +  j e t ’ p roduction  a t T evatron  and  LHC and je t and  bb 
p roduction  in linear colliders, which can com pete in size w ith  QCD correc­
tions. T h eir inclusion in experim ental analyses is thus im p o rtan t, especially 
in view of searches for new physics. In case of ‘Z  +  j e t ’ p roduction  th ey  can 
rise to  0 (1 5 -2 0 % ) a t large transverse m om entum  a t th e  LHC, while being 
typically  half th e  size in case of ‘pho ton  +  j e t ’ p roduction . As these two 
channels are th e  con tribu to rs to  th e  Drell-Y an process, and  since th e  la tte r  
is envisaged to  be used as one of th e  m eans to  m easure th e  LHC lum inosity, 
it is clear th a t  neglecting them  in experim ental analyses would spoil th e  
lum inosity  m easurem ents.

Ref. [128] em phasised th e  im portance of NLO electrow eak effects in 
th ree -je t p roduction  in e+ e-  sca tte ring  a t th e  Z -pole (SLC, L E P  and  GigaZ), 
showing typical corrections of 0 (2 -4 % ) (e.g. in je t-ra te s  and  th ru s t) , com pa­
rable to  th e  SLC and L E P experim ental accuracy and  certain ly  larger th a n  
th e  one expected  a t GigaZ. T hey  also in troduce sizable parity -v io lating  ef­
fects into th e  fully differential s tru c tu re  of th ree -je t events in presence of 
beam  polarisation , which are of relevance as background to  new physics 
searches in SLC and GigaZ d a ta .

T h e  com plete set of electroweak O (a )  corrections to  th e  D rell-Y an-like 
p roduction  of Z  and  W  bosons have been studied  in [129-131]. T hese cor­
rections are phenom enologically relevant b o th  a t th e  T evatron  and  th e  LHC. 
It is shown th a t  th e  pole expansion yields a good descrip tion  of resonance 
observables, b u t it is no t sufficient for th e  high-energy ta il of transverse- 
m om entum  d istribu tions, relevant for new-physics searches. HORACE and 
WlNHAC are M onte C arlo event generators [132], developed for single W  
p roduction  and decay, which in th e ir cu rren t versions include higher-order 
QED corrections in leptonic W  decays, a crucial en try  for precision d e te r­
m ination  of th e  W  m ass and  w id th  a t hadron  colliders.

P ro d u ctio n  of vector-boson pairs is an  im p o rtan t p robe for po ten tia l non­
s tan d ard  anom alous gauge couplings. In  order to  identify possible deviations 
from th e  SM predictions, an  accu ra te  knowledge of th e  electroweak higher­
order con tribu tions is m an d ato ry  as well, in p a rticu la r for large transverse 
m om enta. A com plete electrow eak one-loop calcu lation  was perform ed for 
YZ p roduction  [133]; for o th er processes like 7 W , . . .  th e  large logarithm s in 
th e  Sudakov regim e were derived [41].

A fu rth e r aspect th a t  should be recalled is th a t  weak corrections n a t­
urally  in troduce parity -v io lating  effects in observables, detec tab le  th rough  
asym m etries in th e  cross-section. T hese effects are fu rth e r enhanced if polar-

6. E lec tr o w ea k  e ffe c ts  in  h a d r o n ic  p r o c e sse s
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isation  of th e  incom ing beam s is exploited, such as a t R H IC -Spin [134,135] 
and will be used to  m easure polarised s tru c tu re  functions.

7. C on clu sion s

D uring th e  recent years th ere  has been continuous progress in th e  devel­
opm ent of new techniques and  in m aking precise predictions for electroweak 
physics a t fu tu re  colliders. However, to  be p repared  for th e  LHC and a fu tu re 
e+ e -  linear collider w ith  high energy and lum inosity, an  enorm ous am ount of 
work is still ahead of us. N ot only technical challenges, also field-theoretical 
issues such as renorm alization, th e  trea tm en t of unstab le  particles, etc., de­
m and a higher level of understand ing . B o th  loop calculations as well as th e  
descrip tions of m ulti-partic le  p roduction  processes w ith  th e  help of M onte 
Carlo techniques require and  will profit from fu rth e r im proving com puting  
devices. It is certain ly  ou t of question  th a t  th e  list of challenges and in­
te restin g  issues could be continued a t will. E lectrow eak physics a t fu tu re 
colliders will be a highly exciting  issue.
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