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Abstract

Numerical Modeling of Shear Bands and Dynamic Fracture in Metals

Colin James McAuliffe

Understanding the failure of metals at high strain rate is of utmost importance in the

design of a broad range of engineering systems. Numerical methods offer the ability to

analyze such complex physics and aid the design of structural systems. The objective

of this research will be to develop reliable finite element models for high strain rate

failure modelling, incorporating shear bands and fracture. Shear band modelling is

explored first, and the subsequent developments are extended to incorporate fracture.

Mesh sensitivity, the spurious dependence of failure on the discretization, is a well

known hurdle in achieving reliable numerical results for shear bands and fracture, or

any other strain softening model. Mesh sensitivity is overcome by regularization, and

while details of regularization techniques may differ, all are similar in that a length

scale is introduced which serves as a localization limiter.

This dissertation contains two main contributions, the first of which presents sev-

eral developments in shear band modeling. The importance of using a monolithic

nonlinear solver in combination with a PDE model accounting for thermal diffusion

is demonstrated. In contrast, excluding one or both of these components leads to un-

reliable numerical results. The Pian-Sumihara stress interpolants are also employed

in small and finite deformation and shown to significantly improve the computational

cost of shear band modelling. This is partly due to the fact that fewer unknowns than

an irreducible discretization result from the same mesh, and more significantly, the

fact that convergence of numerical results upon mesh refinement is improved dras-

tically. This means coarser meshes are adequate to resolve shear bands, alleviating

some of the computational cost of numerical modelling, which are notoriously signif-

icant. Since extremely large deformations are present during shear banding, a mesh

to mesh transfer algorithm is presented for the Pian Sumihara element and used as



part of a remeshing strategy. A practical application of the numerical formulation

developed is modelling the shear band failure of a friction stir welded aluminum joint

under high rate loading. The energy absorption capacity of these joints are subse-

quently analyzed and found to be significantly weaker than untreated aluminum due

to the nonhomogeneous material properties of the joint.

The second contribution is extending the shear band model described previously

to account for fracture by way of the phase field method. The phase field method

is modified to account for the contribution of inelastic deformation to the creation

of fracture surfaces, which results in a rate and temperature dependent theory for

fracture, due to the rate and temperature dependence of plasticity. The combined

fracture and shear band model is shown to be capable of representing a wider spectrum

of strain rates than either the phase field model or the shear band model alone.
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Chapter 1

Introduction

Deformations in metals subjected to high strain rates may become unstable due are

shear banding or fracture. Shear banding is a localization phenomenon where thermal

softening leads to narrow zones of intense inelastic deformation [138]. While a shear

band typically precedes fracture, since the thermal softening leads to profound and

rapid loss of load carrying capability, the shear band is considered a failure mode in

its own right[9, 58, 88].

Experimentally derived material models for these loading regimes describe plas-

tic flow as being dependent on temperature, strain rate, and a hardening parameter

[138]. While several models are available, all are similar in that increasing tempera-

ture (due to plastic work) has a softening effect, causing plastic flow to occur more

readily, while increases in strain rate and the hardening parameter have a hardening

effect. Following the experimental work of [96], shear bands develop in three stages.

In Stage 1, before localization, a homogeneous distribution of plastic strain exists.

Stage 2 begins when the thermal softening effect dominates the strain and strain rate

hardening effects, resulting in strain softening, and thus strain localization. Stage

3 is marked by severe localization and rapid softening, a phenomena termed stress

collapse, which indicates a sudden and large drop in the material’s load bearing ca-

1



pability [140]. Shear bands can be modeled by a system of four partial differential

equations (PDEs) describing conservation of momentum, conservation of energy, elas-

tic and inelastic constitutive relations [138]. There are several examples of scenarios

where high strain rate failure involves both shear bands and cracks.

Shear banding as a precursor to void growth and fracture has been documented in

several experimental works such as [8, 52, 75, 112, 123]. In addition, a ductile - brittle

failure transition has been observed in the impact of notched plates by [80, 81, 144].

It was found that failure by shear banding occurred above a critical impact velocity,

while brittle fracture resulted from lower impact velocities. A final example is the

impact of metal plate with a projectile, where shear bands have been identified prop-

agating parallel to the impact direction, and cracks propagate perpendicular to the

impact direction [111], and shown schematically in Figure 1.1. For predictive numeri-

cal simulations of dynamic failure, it is thus crucial to account for both failure modes,

since exclusion of either mode neglects important physics observed in experiments.

Figure 1.1: On the left, a schematic illustration of a projectile penetrating a metal
plate, such as those shown in [111]. Shear failure occurs parallel to the impact direc-
tion while crack radiate out perpendicular to the impact direction. On the right, an
illustration of the phase field approximation to a crack is shown. In the fully fractured
phase, the phase field parameter c is 1, and 0 in the undamaged phase. The width of
the diffusive crack is determined by the parameter l0

As a prerequisite for combined shear band and fracture modeling, are several chal-

lenges in modeling shear bands without fracture to be overcome. For example, mesh

size sensitivity can be a hurdle in achieving reliable numerical results for shear bands
2



and other localization problems. Mesh size sensitivity is the absence of convergence

for localization problems upon refinement of the finite element mesh and has been

observed in computations [26, 86, 143, 145]. This will occur in the numerical solution

of localization problems if the governing system of PDEs has no intrinsic length scale.

Common regularization techniques which are effective for strain softening materials

are strain gradient theories [1, 2, 4], which have been used in the context of shear

bands in [3, 83, 136], nonlocal integral averaging methods (see [24] for a review), and

regularization through thermal diffusion [13, 17, 139].

A second numerical issue arising in shear band simulation is mesh alignment sen-

sitivity. This is the tendency of shear bands to propagate along element edges, intro-

ducing a spurious anisotropy due to the mesh. Element free interpolations have been

shown to significantly improve, but not eliminate this issue [85, 86]. The issues of

mesh size and alignment are addressed in chapter 2, where it is found that mesh size

sensitivity can be eliminated by using a monolithic nonlinear solver in conjunction

with diffusive regularization. Mesh alignment sensitivity is reduced, but not totally

eliminated by this formulation. Chapter 3 applies this formulation to the analysis

of friction stir welded aluminum joints under high rate loading. It is found that the

abrupt changes in material properties which arise from the distinct microstructural

zones produced by the stir welding process significantly reduce the energy absorption

capacity of the joint. This analysis suggests that weld capacity can be improved

through various process modifications leading to less abrupt property changes.

In addition to these two types of mesh sensitivity, shear bands simulations involve

fine scale solution features and steep gradients which require considerable resources to

resolve accurately. This problem is agitated by the fact that in general the location of

shear band initiation and its propagation path are not known a priori. In chapter 4, a

Pian-Sumihara type element, dubbed the Pian-Sumihara Shear Band Quad (PSSBQ)

is developed for shear bands. This element furnishes greater accuracy for less compu-
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tational resources than the irreducible shear band quad (ISBQ) also analyzed in that

chapter, which employs irreducible interpolations. In addition, it is shown that the

PSSBQ is less sensitive to the stiffening effect produced by mildly distorted meshes,

though remeshing is unavoidable for severely distorted meshes

Chapter 5 combines the shear model of earlier chapter with the phase field method

for fracture [34, 56, 103, 104]. Growth of cracks in the phase field models cited above

is driven by the elastic free energy. The elastic energy can then be split into portions

which contribute to fracture and portions which do not. For example [31, 103, 104]

decompose the strain energy using the principal strains, where only the tensile princi-

pal strains contribute to fracture. Inelasticity has been introduced to the phase field

model by [32] who combined the phase field model for dynamic fracture with the finite

deformation plasticity models in [124]. In addition, modeling of thermo mechanical

damage in tungsten subject to conditions found in a fusion reactor was conducted

by [44], who combined the phase field model with small deformation plasticity. For

an inelastic material, the growth of the elastic free energy will be limited by yield-

ing; in fact the elastic free energy can decrease once thermal softening begins. For

metals, where the inelastic response is independent of volumetric deformations, it is

conceivable that the elastic free energy due to tensile volumetric deformation will be

large enough to initiate a crack. However, the contribution of the extensive inelastic

working that occurs during the shear banding process will not be modeled. To rem-

edy this, the model presented in chapter 5 includes an enhancement of the phase field

model to account for the contribution of energy of internal inelastic variables to the

fracture energy. This leads to the addition of source terms in the phase field evolution

equation which are due to inelastic deformation. The physical motivation for inclu-

sion of these terms in the modeling framework is due to the well known relationship

between fracture and barriers to dislocation motion such as dislocation density and
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grain size. This leads to a model for fracture which is explicitly rate and temperature

dependent, due to the rate and temperature dependence of the internal variables.

Finally, appendix A briefly outlines work on isogeometric modeling of shear bands.

This is a promising avenue of research because isogeometric analysis is fully compat-

ible with the computational geometry technology employed by CAD software. Addi-

tionally, as shown here, NURBS shape functions are capable of accurately resolving

shear bands more efficiently than low order finite elements.
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Chapter 2

Analysis of a Monolithic Nonlinear

Solver for Shear Bands

Mesh size sensitivity can be a hurdle in achieving reliable numerical results for shear

bands and other localization problems. Mesh size sensitivity is the absence of conver-

gence for localization problems upon refinement of the finite element mesh and has

been observed in computations [26, 86, 143, 145]. This will occur in the numerical

solution of localization problems if the governing system of PDEs has no intrinsic

length scale. For example, Bazant and Belytschko [23] conducted an analytical study

of wave propagation in a one dimensional, rate-independent, adiabatic and isother-

mal, strain softening bar. They found that after reaching a threshold of material

instability the zone of plastic deformation will tend to a single point where the strain

becomes infinite. In a numerical solution to such a system, the only length scale

affecting the computation is the element size, and thus the width of the localization

band will be governed by the size of the finite element mesh chosen, i.e. the numerical

results will be mesh sensitive.

Inclusion of rate dependence as a means to regularize boundary value problems

is well developed from a theoretical standpoint [92, 108], and has been implemented
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in computations [76, 77]. Inclusion of rate dependence can be shown to prevent the

change of type of PDEs which occurs with strain softening, rate independent materials

[109]. The combined effects of inertia and rate dependence implies a length scale, but

the response inside the localization band grows exponentially [22]. Additionally, the

regularizing effect of rate dependence disappears over time, and is thus only effective

if used for loading durations which are not much longer than the material relaxation

time [24].

Common regularization techniques which are effective for strain softening mate-

rials are through strain gradient theories[1, 2, 4, 105, 117, 118], which has been used

in the context of shear bands in [3, 83, 136], nonlocal integral averaging methods,

see [24] for a review as well as [38, 127], and regularization through thermal diffu-

sion [13–18, 139, 140]. Nonlocal methods include an integral averaging operator in

the constitutive law which defines a certain state variable as a weighted average of

state variables in a predefined neighborhood. Strain gradient theories employ higher

order gradients of strain in the constitutive equations and diffusive regularization

couples the inelastic response of the material to diffusion via the energy equation.

Each of these three methods produces a material nonlocality, meaning that the con-

stitutive law at a material point in the domain depends on history variables within

some neighborhood of the point (in the case of integral averaging methods) or in the

immediate vicinity of the point (in the case of strain gradient theories and diffusive

regularization). This is in contrast to local material models where the constitutive

law at a material point depends only on the history variables at that particular point.

Nonlocality in all three of these cases leads to a characteristic length scale. It should

be mentioned that the steep gradients produced during localization problems are not

well resolved by coarse meshes. Thus inaccurate results can be obtained even if a

mesh insensitive formulation is used without sufficient mesh refinement. See [113]
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for a method which aims to improve the behavior of isoparametric elements used in

localization problems.

Despite the fact that diffusion leads to a material length scale it is often assumed

that since the process of shear band formation is very fast, being on the order of a

few microseconds, adiabatic conditions prevail in the material. Aside from eliminating

the only regularizing term in the system (and thus lead to mesh sensitive numerical

formulations), this assumption is not justified on physical grounds since while the

shear banding process does indeed only last a few microseconds, extremely steep

temperature gradients are produced. The numerical calculations presented in this

study actually predict that the diffusive and heat source terms in the energy equation

are the same order of magnitude within the vicinity of the shear band. A shear

band can thus be thought of as a boundary layer, the width of which is controlled

by competition between shear heating, which concentrates gradients, and thermal

diffusion, which smooths gradients [48–50].

While coupling diffusion to the inelastic response of the material leads to an

intrinsic length scale, an appropriate numerical formulation must be used to give

mesh insensitive results. A mesh insensitive formulation must preserve the physi-

cal interactions which give rise to the length scale. Several computations have used

splitting schemes which solve equations sequentially rather than simultaneously, and

do not use global nonlinear solution techniques such as Newton or Picard iterations

[21, 30, 102, 143, 145], (it should also be noted that [102, 143, 145] model the stage

three response using a viscous fluid model and thus the constitutive modeling in

this stage differs from that presented here). [30, 102, 143, 145] employ explicit time

integration and finite thermal conductivity. [21] also includes finite thermal conduc-

tivity, and employs an implicit-explicit Runge Kutta method, where in each governing

equation, one variable is treated implicitly while all others are treated explicitly. This

means, for example, the energy equation is solved implicitly to update the tempera-
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ture from time step n to time step n+1, with the values of stress and plastic strain

frozen at time step n. In these schemes, splitting errors occur due to the sequential

solution of coupled equations and will be present for any finite time step chosen.

Such errors have been found to lead to significantly degraded accuracy compared

to a nonlinearly consistent solver of similar mesh size and time step in nonlinear

and multiphysics problems such as radiation-diffusion, magnetohydrodynamics, and

shallow water flow [82]. Additionally for shear bands, since plastic straining is a

path dependent process, these errors are not recovered as the computation proceeds,

and the numerical approximation diverges from the true solution. To preserve the

intrinsic length scale in the PDE system and eliminate splitting errors, simultane-

ous solution methods are needed such as Implicit Nonlinearly Consistent (INC, also

known as monolithic or simultaneous) schemes. Studies by Batra and various co-

workers used simultaneous solvers to obtain mesh insensitive results for shear bands

[13–18, 139, 140]. They used the method of lines to reduce their system of PDEs

(which account for heat conduction) to a set of coupled ODEs, and an implicit ODE

integrator to obtain the system Jacobian (through finite differencing) and solve the

resulting numerical system.

A second numerical issue arising in shear band simulation is mesh alignment sen-

sitivity. This is the tendency of shear bands to propagate along element edges, in-

troducing a spurious anisotropy due to the mesh. Element free interpolations have

been shown to significantly improve, but not eliminate this issue [85, 86]. The mixed

formulation presented below does not eliminate alignment sensitivity, but the results

are improved in comparison to explicit solvers.

In this chapter, a small strain formulation for a thermo-visco-plastic material is

presented. This problem gives rise to a set of coupled, nonlinear PDEs, which are

solved using mixed finite elements. [125] developed a mixed finite element method

for elastoplasticity where displacement, stress, and equivalent plastic strain are inter-
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polated degrees of freedom. They linearized the resulting nonlinear residual at the

semi discrete level to develop a numerical solution using global Newton iterations at

the fully discrete level. This is in contrast to classical methods for plasticity such as

return mapping [124], where Newton iterations are carried out locally at the gauss

points during the stress update procedure. Here we extend the methodology of Simo

et al. [125] to account for a thermoviscoplastic flow rule and finite thermal conductiv-

ity by including a solution to the energy equation and temperature as an additional

degree of freedom. Simultaneously solving the entire system of PDE’s, as opposed to

using a split scheme where individual PDE’s in the system are solved sequentially,

results in a high level of robustness and mesh insensitive results (as long as thermal

conductivity is not zero). For comparison, we have provided results from the split

scheme used in [143]. This scheme is also used by [85, 86, 102], but in conjunction

with mesh free Galerkin methods as well as a different constitutive model for stage 3

of shear band formation.

The Jacobian of the system will be a large, sparse, unsymmetric matrix, the

derivation of which is outlined as follows. First, the weak form of the PDEs is obtained

by multiplying the strong form by a test function and integrating over the problem

domain. This defines the weak form of the residual of system F [u], where u =[
vi σij T γ̄p

]T
is the solution field. Here, vi is the velocity, σ the stress, T the

temperature and γ̄p the equivalent plastic strain. The system of equations is solved

when the boundary conditions are satisfied and

F [u] = 0 (2.1)

The residual is discretized in time using a backward Euler method, and discretized

in space using Galerkin’s method. The resulting nonlinear algebraic equations are

then solved using Newton’s method. A key point of this chapter is the computation
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of the Jacobian analytically by evaluating the Gateaux derivative of the time-discrete

residual. This leads to a Jacobian which is consistent with the backward Euler time

stepping procedure and avoids the use of numerical differentiation procedures, which

can be expensive.

The nonlinearly consistent framework requires full interpolation of the stresses and

equivalent plastic strain. The Pian-Sumihara (PS) interpolations have been shown

to perform well for incompressible elasticity [114], and have been used for mixed

plasticity problems by [125]. Analysis by constraint counting shows that this element

possesses the optimal constraint ratio for plane stress [146]. Employed here, this

element gives good accuracy for relatively coarse meshes and leads to fast convergence

of Newton’s method.

2.1 The Numerical Formulation

2.1.1 The PDE Model

The equations describing conservation of momentum and energy, as well as the elastic

and inelastic constitutive relations and boundary conditions can be written as a set

of coupled PDE’s, which include the following. The Momentum Equation, which

includes inertial effects but ignores body forces

ρv̇i = σij,j (2.2)

Here the velocity field is vi, the time t, the stress tensor σij, and the material density

ρ. The Energy Equation, which accounts for diffusion as well as heat production in

proportion to the plastic work, σijdpij [130], is written as

ρcṪ = κT,jj + χσijd
p
ij (2.3)
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Where T is the temperature, and κ, c, and χ are the conductivity, specific heat and

Taylor-Quinney coefficient, respectively. To develop the constitutive relations, the

rate of deformation is additively decomposed into elastic, inelastic and thermal parts,

i.e

dij =
1

2
(lij + lji) = deij + dpij + dtij (2.4)

Where the velocity gradient is defined as lij = vi,j. Thus the Elastic Constitutive

Relation, in rate form is

σ̇ij = Celas
ijkl

(
dkl − dpkl − dtkl

)
(2.5)

Where Celas
ijkl is the tensor of elastic moduli and the thermal rate of deformation is

dtij = αṪ δij (2.6)

The inelastic constitutive relation is given by

˙̄γp =

√
2

3
dpijd

p
ij (2.7)

where γ̇p is the time rate of change of the equivalent plastic strain.

J2 plasticity is employed, and thus the following additional constitutive relations

are used:

dpij =
3

2

g (σ̄, T, γ̄p)

σ̄
sij (2.8)

meaning the plastic strain tensor is in the same direction and the deviatoric stress

tensor sij defined by

sij = σij −
1

3
σkkδij (2.9)

The effective stress is given by

σ̄ =

√
3

2
sijsij (2.10)

12



using the relations (2.8)- (2.10), the following simplifications can be made

σijd
p
ij =

3

2

g (σ̄, T, γ̄p)

σ̄
sijsij = σ̄g (σ̄, T, γ̄p) (2.11)

√
2

3
dpijd

p
ij =

g (σ̄, T, γ̄p)

σ̄

√
3

2
sijsij = g (σ̄, T, γ̄p) (2.12)

Lastly the flow law g, which has been used in the computations [86, 144, 145], is

defined by

g (σ̄, T, γ̄p) = γ̇0

[
σ̄

σ0 [1 + γ̄p/γ0]N
{

1− δ
[
exp

(
T−T0
k

)
− 1
]}]m (2.13)

The material parameters γ̇0, m, N , and T0 are a reference strain rate, rate sensitivity

exponent, strain hardening exponent, and reference temperature. δ and k are thermal

softening parameters. The above relations can be combined into the four governing

equations which describe the evolution of the four unknown fields of velocity, stress,

temperature and equivalent plastic strain. These are

ρv̇i = σij,j (2.14)

σ̇ij = Celas
ijkl

(
1

2
[vk,l + vl,k]−

3

2

g (σ̄, T, γ̄p)

σ̄
skl − αṪ δkl

)
(2.15)

ρcṪ = κT,jj + χσ̄g (σ̄, T, γ̄p) (2.16)

˙̄γp = g (σ̄, T, γ̄p) (2.17)

Lastly the boundary conditions are
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vi = v̄i on Γv

T = T̄ on ΓT

σijnj = t̄i on Γt

qini = q̄ on Γq

(2.18)

Where t̄i and q̄ are the prescribed traction and prescribed flux respectively. This

model considers small strains, and additionally neglects the effects of voids and mi-

crocracking that exist in a shear band [112].

2.1.2 The Discrete Model

The Discrete Residual

The weak form is obtained by multiplying the momentum equation, elastic constitu-

tive equation, energy equation, and inelastic constitutive relation by the correspond-

ing weight functions: wv, wσ, wT , and wγ̄p respectively, and integrating over the prob-

lem domain. This defines the weak form of the residual F =

[
Fv Fσ FT Fγp

]T
where

Fv =

ˆ
Ω

wvi ρv̇i +∇ · wvi,jσijdΩ−
ˆ

Γt
wvi t̄idΓt = 0 (2.19)

Fσ =

ˆ
Ω

wσij

[
σ̇ij − Celas

ijkl

(
1

2
[vk,l + vl,k]−

3

2

g (σ̄, T, γ̄p)

σ̄
skl − αṪ δij

)]
dΩ = 0 (2.20)

FT =

ˆ
Ω

wT
[
ρcṪ − χσ̄g (σ̄, T, γ̄p)

]
+ κwT,jT,jdΩ−

ˆ
Γq
wTκq̄dΓq = 0 (2.21)

Fγp =

ˆ
Ω

wγ̄p [γ̇p − g (σ̄, T, γ̄p)] dΩ = 0 (2.22)

Note that the divergence theorem has been used where appropriate to reduce the

order of the derivatives in the equations. This weak form contains spatial derivatives

of velocity and temperature, and therefore these two fields must be approximated by
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C0 functions. On the other hand, spatial derivatives of the equivalent plastic strain

and the stresses do not appear and thus C−1 functions will suffice. Thus, we seek to

find vi ∈ Sv, σij ∈ C−1, T ∈ ST , and γ̄p ∈ C−1 such that at any time t

F = 0, ∀wv ∈ S0
v , ∀wσ ∈ C−1, ∀wT ∈ S0

T , ∀wγp ∈ C−1 (2.23)

where

Sv = {vi (X, t) |vi ∈ C0, vi = v̄i on Γv} S0
v = {wv (X) |wv ∈ C0, wv = 0 on Γv}

(2.24)

and

ST =
{
T (X, t) |T ∈ C0, T = T̄ on ΓT

}
S0
T =

{
wT (X) |wT ∈ C0, wT = 0 on ΓT

}
(2.25)

The weak form is discretized in time using the backward Euler method. The

trapezoidal rule has not been used because for certain regimes of mesh size and

time step for diffusion problems, this method can result in oscillations in the tem-

perature field, which is undesirable for this problem due to the nonlinear coupling

of temperature to other fields. The time discrete residual at time n+1 is then

n+1F =

[
n+1F

v
n+1F

σ
n+1F

T
n+1F

γp

]T
where
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Fv =

ˆ
Ω

wvρ [vi − nvi] + ∆t∇ · wvi,jσijdΩ−
ˆ

Γt
wvi ∆tt̄idΓt (2.26)

Fσ =

ˆ
Ω

wσij [σij − nσij] (2.27)

− wσ∆tCelas
ijkl

(
1

2
[vk,l + vl,k]−

3

2

g (σ̄, T, γ̄p)

σ̄
skl − αṪ δkl

)
dΩ

FT =

ˆ
Ω

wT
[
ρc (T − nT )−∆tχσ̄n+1g (σ̄, T, γ̄p)

]
(2.28)

+ ∆tκ∇wT,j∇T,jdΩ−
ˆ

Γq
∆twTκq̄dΓq

Fγp =

ˆ
Ω

wγ̄p [γ̄p − nγ̄p −∆tg (σ̄, T, γ̄p)] dΩ (2.29)

In the equation above and for the rest of this chapter, quantities are to be assumed

to be taken at time step n+1, unless otherwise indicated by a subscript n.

For a single element, let the Galerkin approximation be

vi = N v
iαv̂α wvi = N v

iαŵ
v
α

σij = Nσ
ijασ̂α wσij = Nσ

ijαŵ
σ
α

T = NT
α T̂α wT = NT

α ŵ
T
α

γ̄p = N
γ̄p
α ˆ̄γpα wγ̄p = N

γ̄p
α ŵ

γ̄p
α

(2.30)

Where N is a matrix containing the appropriate shape functions, and the hatted

field variables are to be understood as vectors of nodal values belonging to one el-

ement. Substitution of the Galerkin approximation into the time discrete residual,

Eqs. (2.26) - (2.29), leads to the fully discrete residual, which forms a set of coupled

nonlinear algebraic equations:
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F̂v
α = Mv

αβ (v̂β − nv̂β) + ∆t
(
fv,intβ − fv,extβ

)
= 0 (2.31)

F̂σ
α = Mσ

αβ (σ̂β − nσ̂β) + ∆tfσβ = 0 (2.32)

F̂T
α = MT

αβ

(
T̂β − nT̂β

)
+ ∆t

(
fT,intβ − fT,extβ

)
= 0 (2.33)

F̂γp
α = M

γp
αβ

(
ˆ̄γpβ − n ˆ̄γpβ

)
+ ∆tf

γ̄p
β = 0 (2.34)

All matrices M are mass matrices, and vectors f are forcings defined by

fv,intβ =

ˆ
Ω

N v
iβ,jN

σ
ijλσ̂λdΩ (2.35)

fv,extβ =

ˆ
Γt
N v
iβ t̄idΓt (2.36)

fσβ = −
ˆ

Ω

Nσ
ijβC

elas
ijkl

(
d̂kl − d̂pkl − d̂tkl

)
dΩ (2.37)

fT,intβ =

ˆ
Ω

κNT
β,jN

T
λ,jT̂λdΩ (2.38)

fT,extβ =

ˆ
Ω

NT
β χˆ̄σg

(
ˆ̄σ,NT

λ T̂λ, N
γp
λ

ˆ̄γpλ

)
dΩ +

ˆ
Γq
NT
β κq̄dΓq (2.39)

f
γ̄p
β = −

ˆ
Ω

N
γp
β g
(

ˆ̄σ,NT
λ T̂λ, N

γp
λ

ˆ̄γpλ

)
dΩ (2.40)

Linearization of (2.31) - (2.34) is presented in the next section.

Consistent Linearization

A consistent linearization of the PDE system can be obtained by differentiating the

time discrete residual (2.26) - (2.29), and substituting the Galerkin approximation

afterwards. While tedious, this method of linearization is somewhat less so than

differentiating the fully discrete residual (2.31) - (2.34). However, either method

could be used to linearize the system without the need for numerical differentiation.

The linearized system can be written in a partitioned form, at nonlinear iteration k

17



and time step n+1, as



Jvvi Jvσij JvT Jvγ̄p

Jσvi Jσσij JσT Jσγ̄p

JTvi JTσij JTT JT γ̄p

J
γ̄pv
i J

γ̄pσ
ij Jγ̄pT Jγ̄pγ̄p



k 

δvi

δσij

δT

δγ̄p


+



Fv

Fσ

FT

Fγp



k

= 0 (2.41)

The Galerkin approximation of the Newton correction is also needed. This is written

as

δvi = N v
iβδv̂β

δσij = Nσ
ijβδσ̂β

δT = NT
β δT̂β

δγ̄p = N
γp
β δ ˆ̄γpβ

(2.42)

The product of the Jacobian J and the Newton correction δu is the first variation

of F in the direction of δu. This is also known as the Gateaux derivative and is

defined as

Jδu = δF
[
uk
]

= lim
ε→0

F
[
uk + εδu

]
− F

[
uk
]

ε
=

d

dε
F
[
uk + εδu

] ∣∣∣
ε=0

(2.43)

This derivative can be computed analytically without numerical differentiation in

blocks, for example the block

Jvvi δvi = lim
ε→0

Fv [vi + εδvi]− Fv [vi]

ε
(2.44)

Plugging (2.26) into (2.44) gives
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Jvvi δvi = lim
ε→0

1

ε

{ˆ
Ω

wvρ [vi + εδvi − nvi] + ∆twvi,jσij −
ˆ

Γt
∆twvi t̄idΓt

}
(2.45)

− 1

ε

{ˆ
Ω

ρwv [vi − nvi] + ∆twvi,jσij −
ˆ

Γt
∆twvi t̄idΓt

}

Simplifying leads to the expression

Jvvi δvi =

ˆ
Ω

ρwvi δvidΩ (2.46)

Substitution of the Galerkin approximation for the Newton correction into (2.46),

leads to a vector of the Newton correction of the velocity field multiplied by a mass

matrix. i.e

Jvvαβδv̂β =

ˆ
Ω

ρN v
iαN

v
iβdΩδv̂β

Blocks arising from the linearization of the constitutive law can be computed similarly,

for example

JT γ̄pδγ̄p = lim
ε→0

FT [γ̄p + εδγ̄p]− F [γ̄p]

ε
(2.47)

Using (2.26) gives

JT γ̄pδγ̄p = lim
ε→0

1

ε

ˆ
Ω

∆tχwT [σ̄g (σ̄, T, γ̄p)− σ̄g (σ̄, T, γ̄p + εδγ̄p)]

= ∆t

ˆ
Ω

wT
mn

γ0 + γ̄p
χσ̄g (σ̄, T, γ̄p) δγ̄pdΩ (2.48)

Substituting the Galerkin approximation into (2.48) gives

JT γ̄
p

αβ δ ˆ̄γpβ = ∆t

ˆ
Ω

NT
α

mn

γ0 +N
γp
ζ

ˆ̄γpζ
χˆ̄σg

(
ˆ̄σ,NT

λ T̂λ, N
γp
λ

ˆ̄γpλ

)
N
γp
β dΩδ ˆ̄γpβ
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Repeating this process for each block leads to a Jacobian with the following block

structure:



Mv
αβ ∆tKv

αβ 0 0

∆tKσ Mσ
αβ + ∆tGσσ

αβ ∆tGσT
αβ ∆tG

σγ̄p
αβ

0 ∆tGTσ
αβ MT

αβ + ∆t
(
KT
αβ + GTT

αβ

)
∆tG

T γ̄p
αβ

0 ∆tG
γ̄pσ
αβ ∆tG

γ̄pT
αβ M

γp
αβ + ∆tG

γ̄pγ̄p
αβ



k 

δv̂β

δσ̂β

δT̂β

δ ˆ̄γpβ


+



F̂v

F̂σ

F̂T

F̂γp



k

= 0

(2.49)

The stiffness matrices arising from linearization of the inelastic constitutive law are

denoted by G. The structure of the Jacobian reflects the strongly coupled nature

of the system of PDE’s, and does not reveal any clear way to simplify or reduce the

system by eliminating any of the four fields in u. Note that the Jacobian is not

symmetric.

2.1.3 Choice of Shape Functions

It is well known that for similar mixed finite element formulations (e.g. in compu-

tational fluid mechanics [132] or incompressible elasticity [72]), the Babuska-Brezzi

(BB) condition [7, 36] applies, and hence the polynomial order of shape functions for

the different primary fields should be carefully selected. In this case, we find that

good performance can be obtained with discontinuous interpolations of stress and

plastic strain. Thus, the element shape functions used here are those first proposed

in [125], but with the addition of a temperature degree of freedom. The shape func-

tions are standard bilinear functions for velocity and temperature, combined with the

shape functions proposed by Pian and Sumihara [114] for stress and discontinuous

bilinear shape functions for the equivalent plastic strain. In two dimensions under
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plane strain conditions, the stress and equivalent plastic strain shape functions for a

square element are given by


σ11 σ12 0

σ21 σ22 0

0 0 σ33

 = Nσ
ijασ̂α =


σ̂1 + ξ2σ̂4 σ̂3 0

σ̂3 σ̂2 + ξ1σ̂5 0

0 0 σ̂6

 (2.50)

N
γp
λ
i (
ξj1, ξ

j
2

)
= δij i, j = 1, ..., 4 (2.51)

Where δij is the Kroneker delta and ξj1, ξ
j
2 are the isoparametric coordinates of the jth

gauss point of a two by two quadrature rule. Thus σ11 is linear in the X2 direction,

σ22 is linear in the X1 direction, and σ33 and σ12 are piecewise constant. All other

stress components are zero due to plane conditions. Both the stress and the equivalent

plastic strain shape functions are discontinuous from one element to the next. More

details on the Pian Sumihara interpolants for unstructured meshes in the context of

finite deformation is provided in chapter 4.

A rigorous mathematical study along the lines of the BB conditions is beyond

the scope of this chapter. However, the attractiveness of the Pian-Sumihara (PS)

element can be illustrated with the simpler constraint counting method [146] which

shows that the element has the ideal number of constraints for plane conditions. The

same analysis shows that piecewise constant stress shape functions will not be stable

and bilinear stress shape functions will lead to an element that tends to lock.

These shape functions result in three degrees of freedom per node: two velocities

and one temperature. The stress and equivalent plastic strain degrees of freedom are

discontinuous across element boundaries, and are therefore associated with elements

rather than nodes. The shape functions in equations (2.50) - (2.51) result in six

stress and four equivalent plastic strain degrees of freedom per element. Thus the
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total number of unknowns for the PS element is

nPS = 3nnode + 10nelem (2.52)

Where nnode and nelem are the number of nodes and elements in the mesh respec-

tively. Clearly, there is a significant increase in the number of unknowns of the mixed

element compared to the corresponding irreducible element. However, owing to the

discontinuous functions, the Jacobian of the PS is very sparse.

2.2 Implementation

This INC formulation has been implemented in one dimension in MATLAB and in

two dimensions as a user element in the FORTRAN based finite element program

FEAP [131]. All 2D meshes were generated using Gmsh [59]. ParaView [67] and

Matplotlib [74] were used to visualize the results.

A mesh refinement study has been conducted for a 20 × 20 µm2 part in plane

strain tension, and an alignment study has been conducted on the same part in plane

strain shearing as shown in Figure 2.1. Additionally, a 1D mesh refinement study has

been conducted for a 3 · 10−3m rod in tension.

Shear bands nucleate at material imperfections (or an inhomogeneity in the solu-

tion field such as a stress concentration), which is set for both the 1D and 2D tension

examples by altering the yield stress and yield strain at various points in the material.

For the shearing example, perturbing the material properties is not necessary because

the loading conditions shown in 2.1 b) produce a stress concentration which triggers

the shear band.

For each case, zero flux and zero traction boundary conditions are used. A time

step of 1E-8 seconds was used for all meshes in each 2D example for the INC method,

while a time step of 1E-9 was used for the 1D example. The conditionally stable
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(a) 1D Tension

5 m/s

-5 m/s

2E-5 m

2E-5 m
(b) Plane Strain Tension

10 m/s

1E-5 m

2E-5 m

2E-5 m

(c) Plane Strain Shearing

Figure 2.1: Problem Configurations for a) 1D tension example b) a 2D plane strain
tension example with a shear band resulting in 45o and c) a pure shearing example
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Table 2.1: Material Properties and Parameters

Property Name Symbol Value Unit
Young’s Modulus E 200E9 Pa
Poisson’s Ratio ν 0.3 -
Mass Density ρ 7830 kg

m3

Specific Heat c 448 J
kgK

Taylor - Quinney Coefficient χ .9 -
Thermal Conductivity κ 803.5 W

mK

Reference Strain Rate γ̇0 .001 1
s

Rate Sensitivity Parameter m 70 -
Yield Stress σ0 2000E6 Pa
Yield Strain γ0 .01 -

Strain Hardening Exponent n .01 -
Reference Temperature T0 293 K

Thermal Softening Parameter δ .8 -
Thermal Softening Parameter k 500 K

Table 2.2: 1D Meshes are arranged to provide finer resolution in the center of the
rod. The lengths of the partitions labeled A, B, and C (see Figure 2.1) are 400µm,
98µm, and 4µm respectively

1D Mesh Number Elements in A Elements in B Elements in C Total Elements
1 10 30 21 101
2 10 30 41 121
3 10 30 61 141
4 10 30 81 161

split method employs a time step according to the CFL condition explained below.

Four meshes were tested for the 1D example, with the element distributions for each

mesh shown in Table 2.2, with an applied velocity of 10 m/s to each end of the rod.

These will be referred to as 1D Meshes 1-4. Four meshes were tested for the plane

strain tension example, 10×10, 20×20, 40×40 and 80×80 elements, with an applied

velocity of 5 m/s. These will be referred to as 2D Meshes 1-4, respectively. Two types

of meshes were tested for the shearing case near the shear band zone: structured and

unstructured (see Figure 2.2). An applied velocity of 10 m/s was set on the upper left

edge of the pure shearing example shown in Fig. 2.1(b). These meshes were chosen

so that there would be roughly ten elements in the y direction in the middle 1.6 µm
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of the part. The applied velocity was ramped linearly from 0 to the full value over

one microsecond. For the FEAP implementation, Newton iterations using Eq. (2.49)

were terminated by the default FEAP tolerance, which is

Ek ≤ 10−16E1 (2.53)

Where

Ek = δukβF
k
β (2.54)

E1 = δu1
βF

1β (2.55)

For the MATLAB implementation, Newton iterations were terminated when the L2

norm of the residual reaches a tolerance of 10−13.

For comparison, results were obtained using a split, explicit scheme, which pro-

ceeds in three main steps as follows: first, stresses and the equivalent plastic strain

are updated using the semi-implicit stress update algorithm known as the Rate Tan-

gent Modulus method [116], assuming adiabatic heat rise. Second, the velocities are

updated according to the explicit scheme

nâ
v
β =

(
MvL

αβ

)−1
nf
v,int∗
β (2.56)

v̂β = nv̂β + ∆t nâ
v
β (2.57)

where nâ
v
β are the accelerations at time step n and v̂β are the velocities at step

n+1. This is a Forward Euler update of the momentum balance with MvL
αβ the lumped

mass matrix. The star on the internal force vector in Eq. (2.56) is to distinguish it
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(a) Structured Mesh (b) Unstructured Mesh

(c) Structured Mesh, zoomed to red box shown
above

(d) Unstructured Mesh, zoomed to red box shown
above

Figure 2.2: Meshes for the Shearing example

from the internal force defined in Eq. (2.35)

nf
v,int∗
β =

ˆ
Ω

N v
iβ,j nσijdΩ (2.58)

The last step is to update the temperature field according to

nv̂
T
β =

(
MTL

αβ

)−1
n

(
fT,intβ − fT,ext∗β

)
(2.59)

T̂β = nT̂β + ∆t nv̂
T
β (2.60)
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Again this is a Forward Euler update with lumped mass matrix MTL. The internal

and body heating vectors given by

nf
T,ext∗
β =

ˆ
Ω

NT
β nσ̄ ng

(
σ̄, NT

ζ T̂ζ , N
γp
ζ

ˆ̄γpζ

)
dΩ (2.61)

Note that here the stresses are not interpolated with their own shape functions,

instead the stresses and equivalent plastic strains are sampled at the Gauss points

during the numerical quadrature.

This method does not involve the factorization of any system matrices, nor does

it require Newton iterations, either at the global or local level (as is the case in return

mapping schemes) since the rate tangent modulus stress update is a one step method.

Since this scheme is conditionally stable, a Courant number of .7 has been used, and

thus the time step is obtained from is

∆t = .7 min
(
∆tmechanicalcrit ,∆tthermalcrit

)
(2.62)

where the mechanical and thermal critical time steps are

∆tmechanicalcrit =
h√
E
ρ

(2.63)

∆tthermalcrit =
ρch2

2κ
(2.64)

where h is the shortest node to node distance for any element in the mesh. For the

material properties and element sizes used, all cases are controlled by the mechanical

critical time step.
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2.3 Results

2.3.1 One Dimensional Tension

A single material imperfection was created in the rod by varying the yield stress and

yield strain smooth function β1D (see Figure 2.3) so that

σyield (X1) = σ0β (X1) (2.65)

γyield (X1) = γ0β (X1) (2.66)

β1D (X1) = 1− 0.01

[
sech

(
X1

5 · 10−5

)]2

(2.67)

−0.0005 0.0000 0.0005

X1 (m)

0.990

0.992

0.994

0.996

0.998

0.990

1.000

β
1
D

Figure 2.3: β1D function defined by Eq. (2.67)

This causes the shear band to initiate at the center of the rod. The shape functions

for the 1D element are linear for velocity and temperature, and piecewise constant

for stress and plastic strain. Average stress vs. average strain as well as the plastic
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Figure 2.4: 1D solution fields using the coupled formulation developed in this study
(shown on the left) and split scheme using the rate tangent modulus method (shown
on the right). Figures (c) and (d) are shown at an average strain of .035

strain for the two methods are shown in Figure 2.4. The INC method produces nearly

identical plots for each mesh configuration, even after stress collapse. On the other

hand the split scheme shows that increasing mesh refinement leads to earlier onset and

greater rapidity of stress collapse. In fact, due to this, results could not be obtained

after the onset of stress collapse for any of the 1D meshes 1-4, where element sizes at

the center of the domain are very small. Therefore, coarser meshes were used for the
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split method and thus Figure 2.4 should not be viewed as a direct comparison of the

two methods. The two methods are compared for identical meshes in the 2D tension

and shearing examples.

It should be emphasized that the split scheme used here is not the only possible

split solver. The scheme was chosen because it is commonly used in the literature,

and has a low computational cost per time step because it does not require any

nonlinear iterations. Possibilities for backward Euler split solvers include the Picard

linearization, as well as field split linearizations. These can be viewed as solving the

nonlinear equations (2.31) - (2.34) using some approximation P to the Jacobian J.

Three possibilities are

PPicard =



Mv
αβ ∆tKv

αβ 0 0

∆tKσ Mσ
αβ 0 0

0 0 MT
αβ + ∆tKT

αβ 0

0 0 0 M
γp
αβ


(2.68)

PFS1 =



Mv
αβ ∆tKv

αβ 0 0

∆tKσ Mσ
αβ + ∆tGσσ

αβ 0 0

0 0 MT
αβ + ∆t

(
KT
αβ + GTT

αβ

)
0

0 0 0 M
γp
αβ + ∆tG

γ̄pγ̄p
αβ


(2.69)

PFS2 =



Mv
αβ ∆tKv

αβ 0 0

∆tKσ Mσ
αβ + ∆tGσσ

αβ 0 ∆tG
σγ̄p
αβ

0 0 MT
αβ + ∆t

(
KT
αβ + GTT

αβ

)
0

0 ∆tG
γ̄pσ
αβ 0 M

γp
αβ + ∆tG

γ̄pγ̄p
αβ


(2.70)
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The effectiveness of these matrices as an approximate Jacobian can be evaluated

by examining the eigenvalues of the iteration matrix T defined by

T = I−P−1J (2.71)

Eigenvalues of T with modulus close to zero correspond to modes which will be

smoothed rapidly by updating the solution field with δuP where

δuP = P−1F (2.72)

Eigenvalues with modulus close to, but less than one correspond to modes which will

be smoothed very slowly, and eigenvalues with modulus greater than one correspond

to modes which will be amplified by the iteration defined in Eq. (2.72).

At an average strain of 0.035, the INC method converges with 6 Newton iterations

with a time step of 1E-9. Evaluating the iteration matrices for the three field split

approximations to the Jacobian with the same time step shows that all of the three

approximations will amplify, rather than smooth the error (see Figure 2.5). In order

for all modes to reside within the ball of convergence, the time step needs to be

reduced by three orders of magnitude for the Picard approximation, and one order of

magnitude for the field split approximations. These results are summarized in Table

2.3. These three implicit split methods will thus require more linear solves than the

INC method to simulate the same amount of physical time. Again, it should be

emphasized that this does not exhaust the possibilities of split solvers. However, in

light of the results just discussed as well as the fact that the INC solver is competitive

in terms of computational cost (see next section), we contend that future efforts are

better spent attempting to improve the efficiency of the INC solver, rather than

improve the accuracy and convergence behavior of a split solver.
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Figure 2.5: Eigenvalues of the iteration matrices for the a) Picard b) Field Split 1
and c) Field Split 2 approximations to the Jacobian. It is shown that if a time step
of 10−9 s a few eigenvalues will be outside the convergence region (the red circle) and
hence the methods will diverge. Note the two Field Split approximations are very
similar.
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Table 2.3: Time step required for all eigenvalues of the iteration matrices correspond-
ing to the approximations to J defined in Eqs. (2.68) - (2.70) to have modulus less
than one. The INC method converges in 6 iterations with a time step of 10−9.

Approximation Time Step Required for Convergence
Picard 2 · 10−12

Field Split 1 10−10

Field Split 2 10−10

2.3.2 Plane Strain Tension

To create a single material imperfection, the yield stress and yield strain was varied

across the plate according to the smooth function β2D (see Figure 2.6) so that

σyield (X1, X2) = σ0β (X1, X2) (2.73)

γyield (X1, X2) = γ0β (X1, X2) (2.74)

β2D (X1, X2) = 1− 0.04

[
sech

(√
X2

1 +X2
2

5 · 10−6

)]2

(2.75)

This results in a weak spot at the center of the plate, which corresponds to the

lower left corner of the modeled quadrant, upon which the shear band will nucleate.

Figure 2.7 shows the σ22 vs the infinitesimal strain ε22 at the center of the plate. The

INC scheme developed here converges quickly with refinement and is stable even at

very large strains. Conversely, the split scheme shows very slow convergence, and

additionally shows stability issues as localization becomes more severe. The plots

show that at lower strains, the INC and split schemes give results that are very

similar, however, as the system evolves the split scheme quickly diverges from the

INC solution.

The reason for the stark differences in behavior is that the coupled method pre-

serves the competition between heat conduction, which smooths temperature gradi-
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Figure 2.6: β2D function defined by Eq. (2.75)

ents (and thus also stress and strain gradients through the coupling of the system),

and heat production, which concentrates gradients. Due to this effect, any finite

value of thermal conductivity will lead to the localization band evolving indefinitely,

rather than showing a singularity [138] (However localization becomes stronger as the

thermal conductivity is decreased and the response tends to a singularity as thermal

conductivity tends to zero). Even with a very small value of thermal conductivity

regularization is achieved, since the diffusion term becomes very large with strongly

concentrated temperature gradients. Heat is thus removed from the shear band at a

faster rate as the localization becomes stronger and a singular response is avoided.

Split schemes such as the one described are not satisfactory because the coupling of

fields is lost as the simulation progresses. Contributing to this is the fact that the

function g (in Eq. 2.13) is very sensitive to small errors in temperature, leading to

errors in the entire solution field. These errors accumulate as the system evolves
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and cannot be recovered due to the history dependence of plasticity. Note that the

split scheme will converge in the limiting case of infinitesimal time step, but conver-

gence is so slow that for the practical choices of time step shown here, accuracy is

unacceptably poor.

Assuming adiabatic conditions is not reasonable numerically since mesh sensitive

results will be found, nor is it reasonable physically since the diffusive term and heat

source term are of the same order of magnitude (Figure 2.9). Adiabatic conditions

thus greatly over predict the rate of heating within the shear band, aside from elimi-

nating the material nonlocality that results in a characteristic length.

Comparison of computational cost

CPU times for each method on the tension example are shown in Figure 2.10. Each

of these computations were executed in FEAP version 8.2 [131] on a MacBook with a

2GHz Intel Core 2 Duo processor. The linear solver for the INC method is the PETSc

version 2.3 sequential sparse direct LU decomposition routine [10]. Upon mesh refine-

ment, the split method requires a smaller time step to meet the stability condition,

adding a significant cost to the simulation. The INC method is not constrained by

such a stability condition, although an arbitrarily large time step cannot be used

since the Newton algorithm uses the converged values from the previous time step as

the initial guess for the current time step. Thus the quadratic rate of convergence,

or the convergence at all is not guaranteed. However in practice, Newton’s method

converges quickly for time steps several orders of magnitude larger than the critical

time step of the split scheme (see for example Table 2.4). For example, 3-4 iterations

are required with a time step of 10−8 s for a fully formed shear band.

Using the INC solution on the finest mesh, mesh 4, as a benchmark, the CPU time

required to achieve a certain relative error can be computed. We define the error as

the average of the relative errors of the effective stress, temperature, and equivalent

35



Table 2.4: Nonlinear Iterations and CPU times on the finest mesh for time step
numbers 23, 32, and 130, which correspond to the onset of yield (stage I), the onset
of softening (stage II), and a fully formed shear band (stage III), respectively. The
time step is 10−8 s.

Number of Nonlinear CPU Time Cumulative CPU Time
Iterations [seconds] [seconds]

Stage I 7 26.13 228.97
Stage II 4 15.40 371.18
Stage III 3 11.84 1531.58

plastic strain taken at the lower left corner of the modeled domain, at 1.3µs. This

is plotted in 2.10 (b). Note that the highest level of resolution for the split method

has higher error than that of the lowest level of resolution for the INC method. This

translates to a reduction of cpu time by two orders of magnitude. Use of the split

scheme has lead some authors to conclude that the type of constitutive law employed

here is inappropriate for modeling behavior inside a shear band [102], and should

only be used up to the point of shear band initiation. However, our results show the

split scheme greatly under predicts the amount of plastic straining, suggesting this

conclusion should be reinvestigated.

2.3.3 Plane Strain Shearing

In the plane strain shearing example, no material imperfection is used to trigger the

shear band. The band is triggered by the stress concentration created by the boundary

conditions. Figures 2.11 and 2.12 show that alignment sensitivity is present for both

the split and INC methods since the shear band propagates more readily along element

edges. This is due to limitations in the ability of the finite element interpolants to

accurately approximate steep solution fields and gradients which occur in localization

problems. The alignment sensitivity is less severe with the INC method and the Pian

Sumihara quadrilateral, and it remains to be seen if this sensitivity can be eliminated

completely using a combination of INC and some other choice of interpolation. For
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example it has been noted by [85] that mesh free particle methods help in suppressing

alignment sensitivity.

2.4 Conclusion

A mixed element formulation has been developed which couples the inelastic response

to thermal diffusion. The strong form was discretized in time and the resulting

nonlinear weak form was linearized to find a numerically consistent Jacobian. The

Galerkin approximation was then used to obtain a fully discrete set of nonlinear

algebraic equations and the corresponding Newton linearization. Implementation

of the proposed algorithm yielded mesh insensitive results, owing to the fact that

diffusion acts as a regularizing parameter. Since diffusion removes heat from the shear

band at a faster rate when temperature gradients are steeper, a singular response is

avoided and a physical length scale results. This can also be interpreted as a material

nonlocality since the constitutive law at a certain point in the continuum depends

on history variables in the vicinity of the point (not just at the point itself) through

the diffusion operator. Mesh alignment sensitivity of the INC formulation is not

eliminated completely, but the sensitivity is not as severe compared to explicit solvers.

In the following chapter, this formulation is applied to the analysis of the energy

absorption capability of friction stir welded aluminum joints. Chapter 4 extends this

formulation to large deformations with remeshing.
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Figure 2.7: a) σ22 vs ε22 and b) Equivalent plastic strain vs time at the center of the
plate. Only the Pian-Sumihara(PS) element and the split scheme are shown. The
arrow indicates the direction of mesh refinement
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(a) Mesh 1 INC (b) Mesh 1 RTMM

(c) Mesh 2 INC (d) Mesh 2 RTMM

(e) Mesh 3 INC (f) Mesh 3 RTMM

(g) Mesh 4 INC (h) Mesh 4 RTMM

Figure 2.8: Surface plots of the Equivalent plastic strain. For all plots, the simulation
time is 1.3µs.
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Figure 2.9: Comparison of the diffusive and source terms in the discrete energy equa-
tion (2.33) along the white line shown in a); KTT̂n+1 and fT respectively. Note that
the diffusive and source terms are the same order of magnitude within the shear band
and thus assuming adiabatic conditions is not justified.
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Figure 2.10: Performance Comparisons for the plane strain tension example.
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(a) Structured Mesh, INC (b) Unstructured Mesh, INC

(c) Structured Mesh, RTMM (d) Unstructured Mesh, RTMM

Figure 2.11: Plots of the equivalent plastic strain for the shearing example. The INC
Method using the Pian-Sumihara quad is shown on the left and the split method is
shown on the right. The time is 0.6µs.
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Figure 2.12: Equivalent plastic strain across the length of the shear band for the two
methods and meshes. The time is 0.6 µs
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Chapter 3

Application of the Monolithic Shear

Band Solver to the Analysis of

Friction Stir Welded Aluminum

Joints Under High Rate Loading

High strength lightweight aluminum alloys offer potential advantages as replacements

for traditional steels in many Army vehicles in terms of weight specific mechanical

properties. Unibody chassis construction, as opposed to body on frame construction,

is being pursued to lend enhanced rigidity to maintain structural integrity during

potential under-body blast events. Since unibody construction requires the elimina-

tion of bolted joints, weldability of the chassis material is crucial. Alloys from the

aluminum 2XXX and 5XXX series are notoriously difficult to weld with conventional

techniques, but can be joined with Friction Stir Welding (FSW) [46].

FSW is a solid state joining process, which has recently been shown to be capable

of producing joints in aluminum up to 3 inches thick [133, 135]. The FSW tool

consists mainly of a shank, shoulder, and pin (shown in Figure 3.1), which rotate as
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they advance, stirring the material together. Significant inelastic deformation, heat

production, and dynamic recrystallization occur during this process, which results in

the formation of several zones with distinct microstructure and material properties

[89, 129, 134].

Figure 3.2 shows a cross-section of a typical FSW joint which illustrates the nature

of these distinct material zones. The material zone most immediately surrounding

the high-torque tool pin, inserted between the welded plates, is characterized by an

upper and lower weld nugget. The upper and lower weld nuggets are zones B and

A respectively in Figure 3.2. This comes both as a direct influence of the tool pin

on the material grain structure as well as the thermal properties of the material and

recrystallization processes. The tool shoulder creates a great deal of friction in contact

with the plate surface during the FSW process which generates an inordinate amount

of heat in comparison to the bottom of the plate. The difference in thermal inputs

and boundary conditions thus creates a through thickness variation in recrystallization

which leads to the distinct lower and upper weld nugget, marked as zones A and B,

respectively in Fig. 3.2. Just outside of the weld nugget, zone C in Figure 3.2, is a

third material zone which is still subject to both the mechanical and thermal influence

of the FSW stirring pin. Further from the tool is a fourth material zone, too distant

to be influenced by mechanical stirring, but still subject to thermal microstructural

effects as heat is conducted away from the FSW joint during processing. This is known

as the thermal affected zone and is marked by zone D in Figure 3.2 Computational

modeling of the FSW process, aimed at numerically predicting the FSW joint zones,

have been carried out by [62–64]. The importance of accounting for these variations

must be noted, and they will play a significant role in the simulations below.

In this chapter, the physical and numerical formulation of chapter 2 is employed

to model high rate loading of a small cross section of a stir welded joint. The goal

is to develop a predictive capacity for energy absorption and failure of FSW joints in
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dynamic loading, as well as to gain an understanding of the relationship between an

FSW joint microstructure and the resulting energy absorption capability and failure

strain.

Figure 3.1: FSW tool. The tool shoulder is butted against the workpiece and the
tool is rotated as it advances. This process mechanically stirs the workpiece metals
together at elevated temperature, but without melting.

3.1 Model Configuration for FSW Joint Simulation

A symmetric model of the FSW joint has been created, as seen in Figure 3.3, which

also shows the loading configurations tested. The model accounts for property vari-

ations in each FSW zone as shown in Table 3.1. These parameters were fit from the

experimental data by [78, 79]. The stir weld process involves extensive inelastic de-

formation as well as dynamic recrystallization in the upper weld nugget. Due to the

recrystallization, the grain size in the upper nugget is larger than that of lower nugget.

However, contrary to expectation given the grain size in the respective regions, the
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Figure 3.2: FSW Cross section. The labeled areas correspond to different weld zones
which have distinct microstructural and mechanical properties. Zone A is the lower
weld nugget, B the upper weld nugget, C the thermo-mechanical affected zone, and
D the thermal affected zone.

experimental data show that the upper weld nugget has a higher yield strength than

the lower weld nugget. It is suspected that the reason for this is a higher dislocation

density in the upper nugget [141]. At present, transmission electron microscopy which

could confirm this hypothesis is not available, but this is not crucial to the numerical

results presented here.

The 5 mm by 5 mm region includes the key region of interest with greatest prop-

erty mismatches and potential for failure initiation. Dynamic loading using a velocity

boundary condition was employed to simulate the major components of a blast event,
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Zone Name Yield Stress (Pa) Hardening Parameter
Unaffected Aluminum 414E6 0.05
Lower Weld Nugget 250E6 0.05
Upper Weld Nugget 300E6 0.01

Thermo-Mechanical Affected Zone 274E6 0.05

Table 3.1: Material Properties for the Weld Zones

Configuration Name Zone 1 Zone 2 Zone 3
Stir Weld (SW) Upper Weld Nugget Lower Weld Nugget TMAZ

Lower Nugget (LN) Lower Weld Nugget Lower Weld Nugget Lower Weld Nugget
Unaffected Aluminum (UA) Unaffected Al Unaffected Al Unaffected Al

Table 3.2: Material Properties for the problem configurations. See also Figure 3.3.

i.e. in-plane tension, through-thickness compression, and transverse shear, as illus-

trated in Figure 3.3. Two loading rates of 1E3 s−1 and 1e4 s−1 were investigated. By

way of comparison to the actual FSW material configuration (referred to as "SW" in

all results to follow), a region of uniform monolithic untreated aluminum material was

tested (referred to as "UA"). Further, as the lower weld nugget possesses the nomi-

nally weakest material properties of the FSW joint, a test case investigating a region

of uniform aluminum with lower weld nugget properties was investigated (referred to

as "LN"). The purpose of this is to further gauge the effect of non-uniformity in the

material properties of the weld joint on the energy absorption.

The graphs in the following section show two measures of energy absorption by

the part, the rate of strain energy, (Ẇ) and the strain energy (W). These quantities

are integrated over the part so that

Ẇ (t) =

ˆ
V

σijdijdV (3.1)

W (t) =

ˆ t

0

Ẇ (τ) dτ (3.2)
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Figure 3.3: Problem configurations showing boundary conditions and weld zones.

where, V is the volume element, t is time, σij is the stress and dij is the rate of

deformation. Ẇ at a given time, can be interpreted as the rate at which the part is

storing energy.

Following the experimental work of Marchand and Duffy [96], shear band for-

mation occurs in three stages. Stage 1 consists of homogeneous deformations, and

includes the linear elastic range, yielding point, and the inelastic strain hardening

range. Stage 2 occurs after the stress has passed through a peak, leading to initial

strain softening that corresponds to localized deformations, and is often referred to
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as localization. Stage 3, also known as stress collapse, is marked by significant strain

softening and precipitous drop in the load carrying capability of the material, leading

to strong localization and intense plastic deformation associated with shear bands.

Note that it is possible for Stage 3 deformations to develop at a material point, or

neighborhood of material points while the joint has reserve capacity. Since our main

concern here is the energy absorption capacity of the joint as a whole, we define global

failure when Ẇ drops below 90% of its peak value, which indicates the material has

lost significant ability to dissipate energy. The capacity of the material is then defined

as W at failure. Since Ẇ is a volume averaged quantity, it represents a global failure

criterion. It is also of interest to identify from which weld zone or zone interface failure

originates. For this purpose, identification of Stage 3 deformations as a local failure

criterion is also useful. In the results below, this information is tabulated showing

the nominal strain and W at global failure, using the criterion Ẇ(t) ≤ 0.9 max Ẇ(t).

In addition, the failure origin is noted by determining which area of the weld is the

first to enter Stage 3 deformation.
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3.2 Results

3.2.1 Cross weld tension

Results of the cross weld tension simulations (see Figure 3.3a) at two different strain

rates are shown below in Figures 3.4-3.5. Figure 3.4 shows characteristic contour plots

of equivalent plastic strain at the time of failure, and Von-Mises stress at the time

of peak Ẇ . Contour plots are shown side by side for a uniform region of untreated

aluminum followed by a plot of the simulated weld zone region in Figure 3.4. The

shear band pattern for the UA and SW cases are clearly different, with the shear

band in the SW case being contained entirely in zones 1 and 2. For the stir weld case,

Yielding is first observed in the zone 2, which corresponds to the lower weld nugget.

Localization is also first observed in this zone, but shear band initiation, as indicated

by a precipitous drop in the local stress level during loading, originates from the

upper weld nugget. This behavior is observed for both loading rates in the numerical

simulation. Quasi static experiments on FSW samples were reported in [78, 79]. They

concluded that the failure origin zone would be determined by which zone reaches

strain hardening saturation first and in the quasi static case, this was found to be the

LN. The dynamic case is somewhat more complicated, with rate effects and thermal

softening being present. Strain hardening saturation is not an adequate indicator for

failure because strain softening and localization does not necessarily imply failure,

which has been noted in the experimental work of Marchand and Duffy [96], and is

evident in the numerical results presented here. The nominal strain to failure, strain

energy at failure, and the zone in which failure initiates, as shown in Table 3.3.

Perhaps the most important feature of Figure 3.4 is the buildup of stresses that

occur near the material zone boundary. This is essentially an interfacial stress directly

due to the material inhomogeneity and property mismatch, which leads to failure of

the SW joint at lower strains compared to the unaffected aluminum. This effect
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leads to significant differences in the overall stress strain response of the joint, which

is shown in Figure 3.5, where the domain averaged stress σ22 is plotted against the

nominal strain. The oscillations present in these plots are due to elastic wave reflec-

tions, which are damped quickly by plastic deformation. This illustrates that in an

averaged sense, the FSW joint is marginally stronger than the lower weld nugget, but

at the cost of significant ductility, failing at less than half the nominal strain of the

untreated aluminum. The loss of mechanical capacity of the weld can clearly be seen

in comparing the FSW weld performance (SW) to that of unwelded aluminum (UA)

in Figure 3.6. The FSW joint fails at approximately 5 times lower mechanical energy

for the strain rate of 1E3 s−1 and 3 times lower for the rate of 1E4 s−1, due both to

softening (and lower initial rate of strain energy) and a lower strain capacity before

failure initiation see Table 3.3. Though thermo-mechanical property degradation due

to FSW processing clearly weaken the FSW joint strength, it is readily apparent that

inhomogeneity of the joint and interfacial stress risers are the key drivers for loss

of mechanical capacity. This is evidenced by the fact that if the entire region were

comprised of the nominally weakest material of the lower weld nugget, this would

still outperform the actual FSW. This comparison is clearly seen in Figure 3.6, in

which the rate of strain energy is comparable, yet the duration of significant energy

absorption prior to failure is much larger for monolithic LN material as compared

to the actual FSW joint. The reduction in energy absorption at the strain rate of

1E3 s−1 is greater than the reduction at the strain rate 1E4 s−1. This indicates that

the effect of material inhomogeneity decreases with increasing strain rate. This is

due to the fact that the material zones have the same rate hardening characteristics,

which become increasingly prevalent relative to the inhomogeneous strain hardening

characteristics as the applied strain rate increases.
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(a) Unaffected Aluminum at failure, Nominal
Strain Rate 1E3

(b) Stir Weld at failure, Nominal Strain Rate 1E3

(c) Unaffected Aluminum at peak Ẇ, Nominal
Strain Rate 1E3

(d) Stir Weld at peak Ẇ, Nominal Strain Rate 1E3

Figure 3.4
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(a) Tensile Stress in the Direction of Loading, Nominal Strain Rate 1E3
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(b) Tensile Stress in the Direction of Loading, Nominal Strain Rate 1E4

Figure 3.5: Domain averaged tensile stress in the direction of loading vs nominal
strain for each loading case. The x on the plot indicates the failure point.
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(b) Ẇ, Nominal Strain Rate 1E4

Figure 3.6: Rate of stress working for each case. The x on the plot indicate the failure
point
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Load Config. → Cross Weld Tension
Nom strain rate → 1E3

Mat Config. ↓ Nom. Failure Strain W at Failure Failure Origin
UA 0.48 2.64e+08 N/A
LN 0.75 2.58e+08 N/A
SW 0.15 5.23e+07 UN-TMAZ Interface

Nom strain rate → 1E4
Mat Config. ↓ Nom. Failure Strain W at Failure Failure Origin

UA 0.41 2.24e+08 N/A
LN 0.75 2.57e+08 N/A
SW 0.22 7.62e+07 UN-TMAZ Interface

Table 3.3: Results summary for the cross weld tension test: nominal strain at failure,
W at failure, and failure initiation zone ae tabulated
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3.2.2 Through thickness compression

The through-thickness compression test cases, illustrated in Figure 3.3b, again evi-

dence the distinctive features of strain localization and shear band formation. The

exact morphology of the shear bands and resulting stress field are quite different for

this different loading case. As was observed for the cross weld tension case, yielding

and localization are first observed in the LN of the stir weld. Additionally, the trend

that increasing the strain rate slightly mitigates the loss in energy absorption is also

observed. However, in the compression test, failure originates from the point where

the UN, LN, and TMAZ meet. Despite these differences, the trends shown in the

stress strain curves in Figure 3.8 are very similar to that of the tensile case, where the

FSW experiences a loss significant loss of ductility due to stress risers at the material

interfaces. The traces of rate of strain energy in Figure 3.9 are also relatively similar,

likely due to the fact that both loading cases are driven by normal strains as applied

at the macro level. More quantitatively, Table 3.4 shows that while a significant re-

duction occurs in both the strain to failure and the energy capacity, the reduction is

not as severe as it was in the cross weld tension case.

Load Config. → Through Thickness Compression
Nom strain rate → 1E3

Mat Config. ↓ Nom. Failure Strain W at Failure Failure Origin
UA 0.54 2.88e+08 N/A
LN 0.84 2.87e+08 N/A
SW 0.33 1.19e+08 UN-LN-TMAZ Point

Nom strain rate → 1E4
Mat Config. ↓ Nom. Failure Strain W at Failure Failure Origin

UA 0.53 2.91e+08 N/A
LN 0.83 2.85e+08 N/A
SW 0.46 1.67e+08 UN-LN-TMAZ Point

Table 3.4: Results summary for the through thickness compression test: nominal
strain at failure, W at failure, and failure initiation zone ae tabulated
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(a) Unaffected Aluminum at failure, Nominal
Strain Rate 1E3

(b) Stir Weld at failure, Nominal Strain Rate 1E3

(c) Unaffected Aluminum at peak Ẇ, Nominal
Strain Rate 1E3

(d) Stir Weld at peak Ẇ, Nominal Strain Rate 1E3

Figure 3.7
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(a) Compressive Stress in the Direction of Loading, Nominal Strain Rate 1E3
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Figure 3.8

59



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Nominal Strain

0

1

2

3

4

5

6

S
tra

in
Po

w
er

(J
/s

)

×1011

SW
LN
UA
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Figure 3.9: Rate of stress working for each case. The x on the plot indicate the failure
point
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3.2.3 Shear loadings

The FSW geometry is asymmetric, and therefore two cases of "clockwise" and "coun-

terclockwise" shear loading have been investigated. Both clockwise and counterclock-

wise cases produce very similar results both qualitatively and quantitatively, so only

the clockwise shear case is shown. Here, we observe that the strength reduction due

to the weld zones is much smaller than the normal loading cases, see Table 3.5. This is

due to the loading conditions producing high stress concentrations on the upper and

lower left corners of the weld, which are not adjacent to any material interface. The

stress concentrations produced at the material interfaces are thus less significant than

those produced due to the loading configuration; note the similar Von Mises stress

contour in Figure 3.10. In other words, we observe a failure which is localized within

a specific zone, in contrast to the normal loading cases where failure involved strong

interaction between zones resulting in failure initiation at the zone interface. This

is further evidenced by the shear stress response shown in Figure 3.11 and the rate

of strain energy plot in Figure 3.12. The overall trends of the normal loading cases

are reproduced, but the final results are much less drastic, with a slight reduction in

capacity being present for the FSW joint.

Load Config. → Clockwise Shear
Nom strain rate → 1E3

Mat Config. ↓ Nom. Failure Strain W at Failure Failure Origin
UA 0.36 7.30e+07 N/A
LN 0.72 1.09e+08 N/A
SW 0.51 6.86e+07 UN

Nom strain rate → 1E4
Mat Config. ↓ Nom. Failure Strain W at Failure Failure Origin

UA 0.17 3.37e+07 N/A
LN 0.29 3.66e+07 N/A
SW 0.20 2.48e+07 UN

Table 3.5: Results summary for the clockwise shear test: nominal strain at failure,
W at failure, and failure initiation zone ae tabulated
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(a) Unaffected Aluminum at failure, Nominal
Strain Rate 1E3

(b) Stir Weld at failure, Nominal Strain Rate 1E3

(c) Unaffected Aluminum at peak Ẇ, Nominal
Strain Rate 1E3

(d) Stir Weld at peak Ẇ, Nominal Strain Rate 1E3

Figure 3.10: Surface plots for the shear loading case
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Figure 3.11
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Figure 3.12: Rate of stress working for each case. The x on the plot indicate the
failure point
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3.3 Conclusion

We have investigated Friction Stir Welded (FSW) joint under various high strain rate

loading conditions using a thermal softening, rate dependent plasticity model. The

model accounts for thermal diffusion which regularizes the problem in the softening

region and is solved using a monolithic, (also known as implicit nonlinearly consistent,

or simultaneous) nonlinear solver. As a benchmark, the loading cases were also run

with the uniform material properties of the untreated aluminum (UA), and of the

lower weld nugget (LN), which is nominally the weakest constituent of a FSW joint.

Calculation of the strain to failure and strain energy at failure show decreased ductility

and energy absorption capacity for FSW joint in comparison to the UA and LN cases.

This is due to the mismatch of inelastic material properties, namely the yield stress

and hardening properties of the material zones. Such a mismatch lead to stress risers

which cause early failure.

Two factors were found to mitigate the effect of the material mismatch, the first

of which was increasing the strain rate. Since this leads to an increased prevalence on

strain rate hardening, which is the same for all weld zones, the mismatch caused by

the different strain hardening properties was less apparent. The second factor was the

loading configuration. In the shear tests, large stress concentrations were produced by

the loading conditions within a zone locally and not near to a material interface. This

lead to a failure which was localized to a zone, where again the material mismatch

was less apparent.

Quasi static experiments have identified the lower weld nugget as the typical zone

of failure origin in the stir weld. In contrast, the present dynamic analysis shows

that the early failure of the stir welded joint is primarily caused by the stress risers

at the material interfaces, and not due a single weld zone behaving as a weak link.

This presents a key point of the current analysis and immediately suggests that FSW

joint strength can be improved by minimization of interfacial stresses, which could
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theoretically be achieved through a variety of process modifications, alleviation of

abrupt property changes, and introduction of greater functional gradients within the

material.
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Chapter 4

A Pian-Sumihara Type Element for

Modeling Shear Bands at Finite

Deformation

4.1 Introduction

In chapter 2, it was shown that regularization through thermal diffusion in conjunc-

tion with a monolithic nonlinear solver will yield mesh insensitive results for a small

strain shear band model. The monolithic solver was found to converge significantly

faster than a field split solution of the same PDE model, which tended to grossly

underestimate the amount of plastic straining in the test problem examined. Note

that both methods are equivalent in the limiting case of infinitesimal mesh size and

time step. The stark difference in performance was concluded to be the result of split-

ting errors, which arise due to sequential solution of the governing and constitutive

equations in the two way coupled shear band model. Due to these errors, the mono-

lithic method was able to achieve higher levels of accuracy for roughly two orders of

magnitude less computational cost. For several other problems, splitting errors have
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been found to lead to significantly degraded accuracy compared to monolithic solvers

of similar mesh size and time step in nonlinear and multiphysics problems such as

radiation-diffusion, magnetohydrodynamics, and shallow water flow [82]. It should

be mentioned that the steep gradients produced during localization problems are not

well resolved by coarse meshes. Thus inaccurate results can be obtained even if a

mesh insensitive formulation is used without sufficient mesh refinement. See [113]

for a method which aims to improve the behavior of isoparametric elements used in

localization problems.

In this chapter, a large strain, incrementally objective formulation for a thermal

softening, rate dependent inelastic material with diffusive regularization, is presented.

This problem gives rise to a set of coupled, nonlinear PDEs, which are discretized and

linearized in a mixed finite element formulation. The results section of the chapter

focuses on comparing two types of elements, both of which employ a fully monolithic,

global constitutive update which occurs simultaneously with the update of the dis-

placements and the temperatures. The first element is the Irreducible Shear Band

Quad (ISBQ), which employs the same interpolations as the irreducible quad, where

history variables such as stress and equivalent plastic strain are sampled at the ele-

ment gauss points. The second is the Pian Sumihara Shear Band Quad (PSSBQ),

which is a mixed, assumed stress element using the stress interpolations first proposed

by Pian and Sumihara [114].

The PSSBQ, developed in this chapter can thus be viewed as an extension of

[125], who developed a mixed finite element method for elastoplasticity where dis-

placement, stress, and equivalent plastic strain are interpolated degrees of freedom.

They linearized the resulting nonlinear residual at the semi discrete level to develop a

numerical solution using global Newton iterations at the fully discrete level. This is in

contrast to classical methods for plasticity such as return mapping algorithms [124],

where Newton iterations are carried out locally at the gauss points during the stress
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update procedure. Here we extend the methodology of Simo et al. [125] to account

for a rate dependent, thermal softening flow rule and finite thermal conductivity by

including a solution to the energy equation, where temperature is considered as an

additional degree of freedom in the coupled multiphysics model. The algorithmic

approximation to the Lie derivative and Jaumann rate of Kirchhoff stress are derived

for an incrementally objective implementation of the PSSBQ.

Among the celebrated features of the Pian-Sumihara element are the suppression

of volumetric locking and reduced stiffening with mesh distortion for linear elasticity

[146]. Under the same conditions of linear elasticity, volumetric locking is suppressed

for four noded quad elements with the FBar or Bbar method, but distortion induced

stiffening is still present. We show the same behavior occurs for the shear band

problem by comparing results from the ISBQ and PSSBQ each with and without

remeshing. While transferring solution variables from mesh to mesh is standard for

the ISBQ, an additional step is required for the PSSBQ. This extra step is described

in the text.

4.2 The Numerical Formulation

4.2.1 The PDE Model

The equations describing conservation of momentum and energy, as well as the elastic

and inelastic constitutive relations and boundary conditions can be written as a set of

coupled PDEs, as follows. The Momentum Equation, which includes inertial effects

but ignores body forces

ρ0üi = J
(
F−1
Aj σij

)
,A

(4.1)

69



Here the displacement is u, the time t, the Cauchy stress tensor σij, and the

reference material density ρ0. The deformation gradient is given by FiA = xi,A and

its determinant by J. Capital subscripts have been used for quantities on the initial

configuration and lowercase subscripts are used for quantities on the current configu-

ration. The Energy Equation, which accounts for diffusion as well as heat production

in proportion to the plastic work, τijdpij [130], is written as

ρ0cṪ = κJF−1
Aj F

−1
Bj T,AB + χτijd

p
ij (4.2)

Where T is the temperature, and κ, c, and χ are the conductivity, specific heat and

the Taylor-Quinney coefficient, respectively. The Kirchhoff stress τij is the Cauchy

stress weighted by J so that τij = Jσij.

To develop the constitutive relations, we begin with a multiplicative decomposition

of the deformation gradient into elastic (superscript e), thermal (superscript t) and

inelastic (superscript p) parts, see also Figure 4.1

FiA = F e
iaF

t
aqF

p
qA (4.3)

the velocity gradient lij = ḞiAF
−1
Aj can thus be expanded as

lij = Ḟ e
iaF

e,−1
aj + F e

iaḞ
t
aqF

t,−1
qb F e,−1

bj + F e
iaF

t
aqḞ

p
qAF

p,−1
Ar F t,−1

rb F e,−1
bj (4.4)

This can be viewed as an additive split of the velocity gradient, where the first term

on the right hand side of (4.4) is the elastic part of lij, the second term is the thermal

part and the third term is the inelastic part. Note, some authors prefer to include the

thermal part of the deformation gradient in F e [86]. Thus, the rate of deformation

dij, which is the symmetric part of the velocity gradient, is additively decomposed
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Figure 4.1: Multiplicative Split of F per equation (4.3)

into elastic, inelastic and thermal parts, so that

dij =
1

2
(lij + lji) = deij + dpij + dtij (4.5)

Where deij, d
p
ij and dtij are the elastic, inelastic and thermal rates of deformation,

respectively. This particular decomposition of dij assumes that the elastic and thermal

parts of the strain are small, an assumption appropriate for metals subjected to the

loading conditions studied here.

An objective stress rate is employed so that the material derivative of Kirchhoff

stress, τ̇ij = Jσ̇ij, is defined as

τ̇ij =
∇
τ ij + (ωikτkj − τikωkj) (4.6)
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where ∇τ ij is the Jaumann rate of Kirchhoff stress and ωij = 1
2

(lij − lji) is the spin

tensor. In the rotation free reference frame, the elastic constitutive relation is given

by
∇
τ ij = Celas

ijkl

(
dkl − dpkl − dtkl

)
(4.7)

Then replacing ∇τ ij in (4.6) with the right hand side of (4.7) results in

τ̇ij = Celas
ijkl

(
dkl − dpkl − dtkl

)
+ (ωikτkj − τikωkj) (4.8)

Where Celas
ijkl is the tensor of elastic moduli and the thermal rate of deformation is

dtij = αṪ δij (4.9)

The inelastic constitutive relation is defined by

˙̄γp =

√
2

3
dpijd

p
ij (4.10)

where ˙̄γp is the time rate of change of the equivalent plastic strain. J2 plasticity is

employed, and thus the following additional constitutive relations are used:

dpij =
3

2τ̄
g (τ̄ , T, γ̄p) sij (4.11)

where the deviatoric Kirchhoff stress sij is

sij = τij −
1

3
τkkδij (4.12)

the effective, or Von - Mises stress is then

τ̄ =

√
3

2
sijsij (4.13)
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using (4.10) along with (4.11) and (4.12) the inelastic work rate term in the energy

equation (4.2) can be simplified to

τijd
p
ij =

3

2τ̄
g (τ̄ , T, γ̄p) sijsij = τ̄ g (τ̄ , T, γ̄p) (4.14)

Similarly, the right hand side of (4.10) can be reduced

√
2

3
dpijd

p
ij =

1

τ̄
g (τ̄ , T, γ̄p)

√
3

2
sijsij = g (τ̄ , T, γ̄p) (4.15)

Lastly, we define the flow law g, which has been used in the computations [86, 144,

145], by

g (τ̄ , T, γ̄p) = γ̇0

[
τ̄

σ0 [1 + γp/γ0]N
{

1− δ
[
exp

(
T−T0
k

)
− 1
]}]m (4.16)

The parameters γ̇0, m, N , and T0 are a reference strain rate, rate sensitivity exponent,

strain hardening exponent, and reference temperature, respectively. δ and k are

thermal softening parameters. See also Table 2 for a complete parameter list used in

the model. Here we use a single constitutive model for the entire process, however

use of different material models for different stages of deformation have been explored

by [102]. The above equations can be combined into four governing equations which

describe the evolution of the four unknown fields of displacement, stress, temperature

and equivalent plastic strain. These are
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ρ0üi =
(
F−1
Aj τij

)
,A

(4.17)

τ̇ij = Celas
ijkl

(
dkl −

3

2τ̄
g (σ̄, T, γ̄p) skl − αṪ δkl

)
+ (ωikτkj − τikωkj) (4.18)

ρ0cṪ = κJF−1
Aj F

−1
Bj T,AB + χτ̄g (τ̄ , T, γ̄p) (4.19)

˙̄γp = g (τ̄ , T, γ̄p) (4.20)

Lastly the boundary conditions are

u = ū on Γu

T = T̄ on ΓT

niσij = t̄j on Γt

niqi = q̄ on Γq

(4.21)

Where t̄j and q̄ are the prescribed traction and prescribed heat flux on the deformed

boundary. The effects of voids and microcracking that exist in a shear band [101, 112]

are not modeled in this study.

Before moving on to the discrete model, we note that there will be four configura-

tions of interest: the isoparametric, the reference, the deformed configuration at time

n+1, and the deformed configuration at time n, depicted in Figure 4.2. These con-

figurations are associated with the coordinates ξp, XA, n+1xi, and nxa, respectively.

The associated stress measures are the isoparametric stress Σpq for the isoparametric

configuration, the second Piola Kirchhoff Stress SAB for the reference configuration,

and the Cauchy stress n+1σij and nσab for the deformed configurations at n+1 and

n, respectively. The isoparametric configuration, upon which gauss quadrature is

performed, does not change with time, while the deformed configuration does. The

reference configuration is arbitrary, and for convenience in the implementation of the
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numerical formulation outlined below, we take the reference configuration at time

n+1 as the deformed configuration at time step n.

Figure 4.2: Geometric configurations used in the numerical implementation. For con-
venience we let the reference configuration coincide with the deformed configuration
at time n.

4.2.2 The Discrete Model

The Discrete Residual

The weak form is obtained by multiplying the momentum equation, elastic consti-

tutive equation, energy equation, and inelastic constitutive relation by the weight

functions wu, wσ, wT , and wγ̄
p respectively, and integrating over the problem do-

75



main in the initial configuration. This defines the weak form of the residual R =[
Ru Rσ RT Rγ̄p

]T
where

Ru =

ˆ
Ω0

[
wui ρ0üi + wui,AF

−1
Aj τij

]
dΩ0 −

ˆ
ΓT0

wui T̄idΓT̄0 = 0 (4.22)

Rσ =

ˆ
Ω0

wσij

[
τ̇ij − Celas

ijkl

(
dkl −

3

2τ̄
g (τ̄ , T, γ̄p) skl − αṪ δkl

)
− (ωikτkj − τikωkj)

]
dΩ0 = 0

(4.23)

RT =

ˆ
Ω0

{
wT
[
ρ0cṪ − χτ̄g (τ̄ , T, γ̄p)

]
+ κJF−1

Aj F
−1
Bj w

T
,AT,A

}
dΩ0 −

ˆ
Γq0

κwT q̄dΓq0 = 0

(4.24)

Rγ̄p =

ˆ
Ω0

wγ̄
p

[γ̇p − g (τ̄ , T, γ̄p)] dΩ0 = 0 (4.25)

Note that integration by parts has been used where appropriate. Also bold letters

are use indicate a matrix or a vector and a bold uppercase T indicates the transpose

operation. This weak form contains spatial derivatives of displacement and temper-

ature, and therefore these two fields must be approximated by C0 functions. On the

other hand, spatial derivatives of the equivalent plastic strain and the stresses do not

appear and thus C−1 functions will suffice. Thus, with these minimum continuity

requirements in mind, we seek to find u ∈ Su, σ ∈ C−1, T ∈ ST , and γ̄p ∈ C−1 such

that at any time t

R = 0, ∀wu ∈ S0
u, ∀wσ ∈ C−1, ∀wγ̄p ∈ S0

T , ∀wγp ∈ C−1 (4.26)

Where

Su = {u (X, t) |u ∈ C0, u = ū on Γu} S0
u = {wu (X) |wu ∈ C0, wu = 0 on Γu}

(4.27)
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and

ST =
{
T (X, t) |T ∈ C0, T = T̄ on ΓT

}
S0
T =

{
wT (X) |wT ∈ C0, wT = 0 on ΓT

}
(4.28)

The weak form is discretized in time using Newmark’s method for the momentum

equation with integration parameters B and G. The backward Euler method is used

for the remaining three equations. The trapezoidal rule has not been used because

for certain regimes of mesh size and time step for diffusion problems, this method can

result in oscillations in the temperature field, which is undesirable for this problem

due to the nonlinear coupling of temperature to other fields.

The time discrete residual at time n+1 is then n+1R =

[
n+1R

u
n+1R

σ
n+1R

T
n+1R

γ̄p

]T
.

Note, for the rest of this chapter, quantities to the right of an equal sign shall be

assumed to be evaluated at time step n+1 unless otherwise noted by a left subscript.

In order to ensure incremental objectivity, time stepping for the elasticity equation

is performed as follows: first, quantities associated with the current configuration are

pulled back to the reference configuration. Time discretization with backward Euler

is performed on the pulled back quantities, and the results are then pushed to the

current configuration. Details can be found in [124]. The incrementally objective,

algorithmic approximation to the rate of deformation becomes

∆t dij =
1

2

[
δij − f−1

ai f
−1
aj

]
(4.29)

where the incremental deformation gradient fia maps from the deformed configuration

at time step n to the deformed configuration at time step n+1 so that

fia = FiB nF
−1
Ba (4.30)
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Objective algorithmic approximations for the Jaumann rate of Kirchhoff is obtained

by first defining the algorithmic approximation to the Lie derivative of Kirchhoff stress

. The Lie derivative of Kirchhoff stress is the push forward of the time derivative of

the pull back of the Kirchhoff stress, namely

Lvτij = FiAFjB
∂

∂t

[
F−1
AkF

−1
Bl τkl

]
(4.31)

Using the relationship between the Kirchhoff and second Piola Kirchhoff stress

SAB = F−1
Ai F

−1
Bj τij (4.32)

the Lie derivative can also be written as

Lvτij = FiAFjB
∂

∂t
[SAB] (4.33)

The algorithmic approximation to the Lie derivative of Kirchhoff stress is given by

[124] as

Lv τij =
1

∆t
(τij − τ̃ij) (4.34)

where τ̃ is the Kirchhoff stress at time n, which is associated with the deformed

configuration at time n, pushed to the deformed configuration at time n+1 so that

τ̃ij = fiafjb nτab (4.35)

The Lie derivative and the Jaumann rate are related by

∇
τij = Lvτij + (dikτkj + τikdkj) (4.36)
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combining (4.36) with (4.34) the algorithmic approximation to the Jaumann rate

becomes
∇
τij =

1

∆t
(τij − τ̃ij) + (dikτkj + τikdkj) (4.37)

The time stepping procedure results in the following semi discrete residuals

Ru =

ˆ
Ω0

[
wui

ρ0

β∆t2
[ui − ũi] + wui,AF

−1
Aj τij

]
dΩ0 −

ˆ
ΓT0

wui T̄idΓT̄0 (4.38)

Rσ =

ˆ
Ω0

wσij[
1

∆t
(τij − τ̃ij)− Celas

ijkl

(
dkl −

3

2τ̄
g (τ̄ , T, γ̄p) skl − αṪ δkl

)
(4.39)

− (dikτkj + τikdkj)]dΩ0

RT =

ˆ
Ω0

[
wT
[ρ0c

∆t
(T − nT )− χτ̄g (τ̄ , T, γ̄p)

]
+ κJF−1

Aj F
−1
Bj w

T
,AT,B

]
dΩ0 (4.40)

−
ˆ

ΓQ0

κwT Q̄dΓQ0

Rγ̄p =

ˆ
Ω0

wγ̄
p

[
1

∆t
(γ̄p − nγ̄

p)− g (τ̄ , T, γ̄p)

]
dΩ0 (4.41)

Where T̄i and Q̄ are the prescribed traction and heat flux on the reference con-

figuration. The momentum equation uses a second order time stepping procedure

where

ũi = nui + ∆t nvi +
∆t2

2
(1− 2B) nai (4.42)

For a single element, let the Galerkin approximation be

ui = Nu
iαûα wui = Nu

iαŵ
u
α

σij = Nσ
ijαλ̂α wσij = Nσ

ijαŵ
σ
α

T = NT
α T̂α wT = NT

α ŵ
T
α

γ̄p = N
γ̄p
α ˆ̄γpα wγ̄p = N

γ̄p
α ŵ

γ̄p
α

(4.43)

Where N is a tensor containing the appropriate shape functions. Note the number

of indices for N depends on whether the field is a scalar, vector, or tensor. The
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subscript α is always associated with the number of degrees of freedom, the range of

which depends on the field in question and its associated shape functions. The ranges

of α for the elements implemented in this study are given in Table 4.1. The hatted

field variables are to be understood as vectors of degrees of freedom belonging to one

element. Substitution of the Galerkin approximation into the time discrete residual,

Eqs. (4.38)- (4.41), leads to the fully discrete residual, which forms a set of coupled

nonlinear algebraic equations:

R̂u
α = Mu

αβ

(
ûβ − ˜̂uβ

)
+ fu int

β − fu ext
β = 0 (4.44)

R̂σ
α = Mσ

αβ

(
λ̂β − ˜̂

λβ

)
+ fσβ = 0 (4.45)

R̂T
α = MT

αβ

(
T̂β − nT̂β

)
+
(
fT int
β − fT ext

β

)
= 0 (4.46)

R̂γ̄p

α = Mγ̄p

αβ

(
ˆ̄γpβ − n ˆ̄γpβ

)
+ f γ̄

p

β = 0 (4.47)

All matrices M are mass matrices. Linearization of (4.44) - (4.47) is presented in the

next section.

Consistent Linearization

A consistent linearization of the PDE system can be obtained in one of two ways. The

first is by differentiating the time discrete (but spatially continuous) residual (4.38)

- (4.41), and substituting the Galerkin approximation into the result. The second

method is to differentiate the fully discrete residual (4.44) - (4.47). In this study, the

former method is used, however, either method could be used to linearize the system

without the need for numerical differentiation. The linearized system can be written
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in a partitioned form, at nonlinear iteration k and time step n+1, as



Juui Juσij JuT Juγ̄
p

Jσui Jσσij JσT Jσγ̄
p

JTui JTσij JTT JT γ̄
p

J
γ̄pu
i J γ̄

pσ
ij J γ̄

pT J γ̄
pγ̄p



k 

δui

δσij

δT

δγ̄p


+



Ru

Rσ

RT

Rγ̄p



k

= 0 (4.48)

The Galerkin approximation of the Newton correction is also needed. This is

δui = Nu
iαδûα δσij = Nσ

ijαδλ̂α δT = NT
α δT̂α δγ̄p = N

γ̄p
α δ ˆ̄γpα (4.49)

The product of the Jacobian J and the Newton correction δp is the first variation of

R in the direction of δp, where p = [ui σij T γ̄p]T . This is also known as the Gateaux

derivative and is defined as

Jδp = δR
[
pk
]

= lim
ε→0

1

ε

(
R
[
pk + εδp

]
−R

[
pk
])

=
d

dε
R
[
pk + εδp

] ∣∣∣
ε=0

(4.50)

This derivative can be computed analytically without numerical differentiation in

blocks, and subsequently the Galerkin approximation can be introduced, leading to

the fully discrete Jacobian. Detailed derivations for a few blocks can be found in

Appendix C. The resulting fully discrete linearized system is then



Mu
αβ + Lu

αβ Ku
αβ 0 0

Kσ
αβ + Lσ

αβ Mσ
αβ + Sσαβ + Gσσ

αβ GσT
αβ G

σγ̄p
αβ

LT
αβ GTσ

αβ MT
αβ +

(
KT
αβ + GTT

αβ

)
G
T γ̄p
αβ

0 G
γ̄pσ
αβ G

γ̄pT
αβ M

γ̄p
αβ + G

γ̄pγ̄p
αβ



k 

δûβ

δλ̂β

δT̂β

δˆ̄γpβ


+



Ru
α

Rσ
α

RT
α

Rγ̄p

α



k

= 0

(4.51)

M denotes mass matrices, K stiffness matrices arising from linear material behavior,

G matrices arising from nonlinear material behavior, L matrices arising from non-
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linear geometric behavior, and S is due to the spin correction term in the Jaumann

rate. The structure of the Jacobian reflects the strongly coupled nature of the sys-

tem of PDEs, and does not reveal any clear way to simplify or reduce the system by

eliminating any of the four fields in p. Note that the Jacobian is not symmetric.

4.2.3 Shape Functions

The preceding formulation has been presented as a general mixed formulation which

permits the use of a monolithic thermo-mechanical solver. Choice of shape functions

should be made carefully taking into consideration the continuity requirements in

equations (4.27) and (4.28), and the Babuška-Brezzi conditions [7, 36]. Additionally,

careful choice of shape functions can be used to develop a locking free formulation,

an important feature for simulating large, nearly incompressible deformations, as is

the case with shear bands. It is also possible to reduce the formulation to one with

identical interpolation as an irreducible element while retaining the fully monolithic

thermo-mechanical solver. For a four node quad this is done by choosing the following

shape functions for equivalent plastic strain and each stress component

Ni

(
ξj1, ξ

j
2

)
= δij i, j = 1, 2, 3, 4 (4.52)

Where ξ1, ξ2 are the isoparametric coordinates, and
(
ξj1, ξ

j
2

)
are the typical gauss

quadrature points. Note that in this case the history variables are sampled at the

gauss points. Thus in the linearized system (4.51), the Newton corrections for stresses

and equivalent plastic strains δσ̂ and δ ˆ̄γp are vectors containing stress and equivalent

plastic strains at the gauss points. However, in contrast with common implementa-

tions of a four noded quad, where history variables are updated locally on the gauss

points, here the updates are done on the global level by solving for all gauss points

at once.
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This local technique is inappropriate for the thermo mechanical shear band model

where the temperature dependent constitutive law at one gauss point is coupled to

other gauss points through the flow of heat caused by thermal diffusion. We will refer

this element, where the interpolation is identical to the irreducible four node quad,

but where the history variable update is fully monolithic as defined in (4.51), as the

Irreducible Shear Band Quad (ISBQ). For more details of this type of interpolation

in the context of plasticity, see [42]

The second 2D element we have implemented we term the Pian-Sumihara Shear

Band Quad (PSSBQ). The equivalent plastic strains are sampled at the gauss points

according to (4.52), in the same way as the ISBQ. However the PSSBQ uses the Pian-

Sumihara functions for interpolating stress [114], which are known to be free of locking

in the incompressible limit, and to perform well with a distorted mesh [146]. Recall

that there are three configurations of interest, the isoparametric, the reference, and

the deformed configurations, which have associated with them the isoparametric stress

Σab, the Second Piola Kirchhoff Stress SAB and the Cauchy stress σij, respectively (see

Figure 4.2). In order to complete the formulation of the PSSBQ we need to define the

algorithmic approximation to the Cauchy stress, as well as the incrementally objective

approximations to the Lie derivative and Jaumann rate of the Kirchhoff stress using

the Pian-Sumihara functions for stress. First, the isoparametric stress is defined as

Σab = NΣ
abαλ̂α (4.53)

and expanded to


Σ11 Σ12 0

Σ21 Σ22 0

0 0 Σ33

 =


λ̂1 + ξ2λ̂4 λ̂3 0

λ̂3 λ̂2 + ξ1λ̂5 0

0 0 λ̂6

 (4.54)
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Where the degrees of freedom defining the stress field are λ̂, and the shape functions

NΣ
abα interpolate the isoparametric stress. The Cauchy stress is then computed by

pushing these stresses to the current configuration with the isoparametric map F iso
ia ,

evaluated at the center of the element, i.e.

σij = F iso
ia F

iso
jb Σab (4.55)

substituting (4.54) into (4.55) the algorithmic approximation to the Cauchy stress is

σij = F iso
ia F

iso
jb N

Σ
abαλ̂α (4.56)

Alternatively, we can define the shape functions interpolating the Cauchy stress Nσ
ijα

as

Nσ
ijα = F iso

ia F
iso
jb N

Σ
abα (4.57)

resulting in

σij = Nσ
ijαλ̂α (4.58)

Next, the objective approximations to the Lie derivative and Jaumann rate of Kirch-

hoff stress are derived. Recalling equation (4.33), the definition of the second Piola

Kirchhoff stress is needed. Substituting (4.55) into (4.32) we have

SAB = JF−1
Ai F

−1
BjN

σ
ijαλ̂α (4.59)

Then using (4.57) and defining the map from the isoparametric to the reference config-

uration F iso
Aa = F−1

Ai F
iso
ia the algorithmic approximation to the second Piola Kirchhoff

stress is

SAB = JF iso
AaF

iso
BbN

Σ
abαλ̂α (4.60)
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Similar to (4.57), the shape functions interpolating the second Piola Kirchhoff stress,

NS
ABα, can be defined as

NS
ABα = F iso

AaF
iso
BbN

Σ
abα (4.61)

resulting in

SAB = JNS
ABαλ̂α (4.62)

and

nSAB = nJN
S
ABα nλ̂α (4.63)

With (4.61), (4.60), and (4.32), the Cauchy stress can be written in terms of the

second Piola Kirchhoff stress interpolants as

σij = NS
ABαFiAFjBλ̂α (4.64)

Which is the form of the Cauchy stress employed in our implementation. Next the

algorithmic approximation to the Lie derivative of Kirchhoff stress can then be defined

as

F−1
Ai (Lv τij) F−1

Bj =
1

∆t
(SAB − nSAB) (4.65)

then substituting (4.62) and (4.63) for SAB and nSAB respectively

F−1
Ai (Lv τij) F−1

Bj =
1

∆t

(
NS
ABα

[
Jλ̂α − nJ nλ̂α

])
(4.66)

By moving the deformation gradient terms from the left to the right hand side, the

algorithmic approximation for the Lie derivative of Kirchhoff stress is

Lv τij =
1

∆t

(
Nσ
ijα

[
Jλ̂α − nJ nλ̂α

])
(4.67)
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Using the same spin correction in (4.36), the Jaumann rate of Kirchhoff stress is then

∇
τij =

(
Nσ
ijα

[
Jλ̂α − nJ nλ̂α

])
+ J∆t

(
dikN

σ
kjα +Nσ

ikαdkj
)
λ̂α (4.68)

Note that equation (4.68) is equivalent to equation (4.37), with τij = JNσ
ijαλ̂α and

τ̃ij = nJN
σ
ijα nλ̂α Since the shape functions Nσ

ijα are deformation dependent, the

reference configuration is used to compute the weight and shape functions NS
IJα,

with the Cauchy stress computed from (4.64). Note that now wherever the Cauchy

stress appears, additional geometric linearization terms will arise due the deformation

gradients in (4.64). With the shape functions fully defined, the number of degrees of

freedom for each field in each element are then given in Table 4.1

Table 4.1: Degrees of freedom for each element

Field DoF for PSSBQ DoF for ISBQ
ûα 8 8
λ̂α 6 16
T̂α 4 4
ˆ̄γpα 4 4

4.3 Results

4.3.1 Implementation Details

The ISBQ and the PSSBQ have been implemented as user elements in the finite

element code FEAP [131]. Meshes were generated using gmsh [59], and ParaView

[67] and Matplotlib [74] were used to visualize the results. A mesh refinement study

has been conducted for a 20 × 20 µm2 part in plane strain tension on 20 by 20, 40

by 40, 80 by 80 and 160 by 160 meshes, which will be referred to as meshes 1 - 4.

Only the upper right quadrant is modeled due to symmetry, as shown in Figure 4.3.

The linear problem (4.51) is assembled using PETSc version 3.4 [10] and solved using
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Figure 4.3: Problem Statement

the PETSc interface to UMFPACK [45], a sparse direct solver. Newton iterations are

terminated using the criterion

max

{∥∥∥∥Ru

Ru
0

∥∥∥∥ ,∥∥∥∥Rσ

Rσ
0

∥∥∥∥ ,∥∥∥∥RT

RT
0

∥∥∥∥ ,∥∥∥∥Rγp

Rγp

0

∥∥∥∥} ≤ tol (4.69)

Where tol = 1.0E−8. The material parameters used in this study are shown in Table

4.2.

Table 4.2: Material Properties and Parameters [145]

Property Name Symbol Value Unit
Young’s Modulus E 200E9 Pa
Poisson’s Ratio ν 0.3 -
Mass Density ρ 7830 kg

m3

Specific Heat c 448 J
kgK

Taylor - Quinney Coefficient χ 0.9 -
Thermal Conductivity κ 803.5 W

mK

Reference Strain Rate γ̇0 0.001 1
s

Rate Sensitivity Parameter m 70 -
Yield Stress σ0 2000E6 Pa
Yield Strain γ0 0.01 -

Strain Hardening Exponent n 0.01 -
Reference Temperature T0 293 K

Thermal Softening Parameter δ 0.8 -
Thermal Softening Parameter k 500 K
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A material imperfection in the form of a depreciated yield stress and strain is ap-

plied at the lower left corner of the modeled domain, which creates an inhomogeneity

in the solution field, upon which the shear band will nucleate. The yield stress and

strain are varied according to the smooth function Y (see chapter 2 for more details),

so that

σyield (X1, X2) = σ0Y (X1, X2)

γyield (X1, X2) = γ0Y (X1, X2) (4.70)

where

Y (X1, X2) = 1− 0.04

[
sech

(√
X2

1 +X2
2

5 · 10−6

)]2

(4.71)

The PSSBQ can be shown to posses the ideal constraint ratio for the displacement -

stress formulation [146], and is thus free of volumetric locking in the incompressible

limit. The ISBQ, on the other hand, is known to lock and therefore the F̄ method

[126], the finite deformation extension of the B̄ method [71], is employed. With this

method, the dilatation J is replaced with the mean dilation J̄ , so that

J̄ =

´
Ω0
JdΩ0´

Ω0
dΩ0

(4.72)

This approach was originally suggested by Nagtegaal et. al. [107]. The deformation

gradient FiI is then replaced with F̄iI

F̄iI =

(
J̄

J

)1
3

FiI (4.73)

Lastly, the derivatives of the displacement shape functions Nu
iα,j are replaced with

N̄u
iα,j so that

N̄u
iα,j = Nu

iα,j + δij

(
N̂u
kα,k −Nu

kα,k

)
(4.74)
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Where the dilatational part of the derivatives Nu
kα,k are replaced by the mean dilata-

tional part N̂u
kα,k

N̂u
kα,k =

´
Ω0
JNu

kα,kdΩ0´
Ω0
JdΩ0

(4.75)

The two elements have been implemented with a remeshing procedure, in an

attempt to minimize the effect of mesh distortion degrading solution accuracy. The

remeshing procedure is as follows: first, nodes are rezoned with several sweeps of the

algorithm given by [65]. See figure 4.4 for images of the distorted and rezoned meshes.

Note, the connectivity is unchanged, and only the nodal positions of the mesh are

changed. Next, the stresses and equivalent plastic strains are projected from the gauss

points to the nodes using an L2 projection [131]. The nodal velocities, accelerations,

temperatures, and the projected values of stress and plastic strain are then transferred

from the nodes of the old mesh, to the nodes of the new mesh. This requires evaluation

of the inverse isoparametric map, which is given in [66]. The displacements are

not transferred, and instead are set to zero since the remeshed configuration simply

becomes the new reference configuration. The stresses and equivalent plastic strains

are transferred from the nodes of the new mesh, to the gauss points of the new mesh.

For the ISBQ, the remeshing procedure is now complete, but the PSSBQ requires

an additional step to recover the stress parameters λ̂α from the stress at the gauss

points. This is achieved by solving the following linear system

M e
αβλ̂

e
β = P e

β (4.76)

where

M e
αβ =

ˆ
Ωe
Nσ
ijαN

σ
ijβdΩe (4.77)

and

P e
β =

ˆ
Ωe
Nσ
ijβσijdΩe (4.78)
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(a) (b)

Figure 4.4: Final mesh for the PSSBQ without remeshing shown on the left, and with
remeshing shown on the right. Note the extremely poor aspect ratio of the elements
in the zoomed region on the left and the improvement after remeshing on the right.

The superscript e indicates this process is carried out locally for each individual el-

ement. Now, all computations are done on the rezoned mesh, which reduces mesh

distortion as a source of error. On the other hand, the mesh to mesh transfer intro-

duces an artificial diffusion to the solution, which is a source of error. Remeshing is

thus a trade off between these two types of error. For the PSSBQ, remeshing at every

time step degrades the results due to the diffusion effect described above. Therefore,

when remeshing is used for this element, it is done every 10 time steps. On the

other hand, the results of the ISBQ improve with more frequent remeshing, and so

remeshing for this element is done at every time step. Results are shown in the next

section.

4.3.2 Solution Plots and Discussion

Solution plots of the equivalent plastic strain at the time of 1.3 µs are shown in

Figure 4.5, with the ISBQ without remeshing shown in the left column, the ISBQ

with remeshing at every time step in the center column, and the PSSBQ without
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remeshing is in the right column. The Von Mises stress histories are very similar

for all elements, however, some differences are very apparent in Figure 4.6 which

gives a more detailed look at the convergence of the each element by plotting the

equivalent plastic strain history. The plots are taken at the lower left corner of the

modeled domain, where the plastic strain is highest, and the PSSBQ on a 220 by 220

mesh without remeshing is used as a reference. The times shown are 1.0 µs to 1.3

µs, since before 1.0 µs there is very little difference in the plots. The results of all

methods appear to be converging to the same result, with the PSSBQ converging very

quickly. Remeshing at every time step significantly improves the results of the ISBQ,

while remeshing every 10 time steps slightly improves the results for the PSSBQ. As

mentioned previously, remeshing the PSSBQ at every time steps leads to degraded

convergence due to the prevalence of the artificial diffusion caused by the mesh to

mesh transfer procedure. The effect of this diffusion decreases with decreasing mesh

size however. The Pian Sumihara quad has been shown to have greater robustness

under mesh distortion than the irreducible quad for elasticity problems [146]. The

same behavior regarding robustness under distortion is observed for the shear band

problem. While the PSSBQ will still fail with very severely distorted meshes, the

decreased sensitivity of the results to small distortions is clearly advantageous.

Figure 4.7 shows the equivalent plastic strain profile across the shear band at a

time of 1.3 µs. Note that for the PSSBQ the width of the shear band, which can be

estimated from the figure at 4 - 5 microns, is unchanged with mesh refinement. The

ISBQ on the other hand, tends to significantly smear out the shear band with coarser

meshes, though with finer meshes, the same width as the PSSBQ is observed. The use

of remeshing with ISBQ gives results which match the PSSBQ better at the center

of the shear band, but the width and shape of the shear band seem to be slightly

altered due to the error introduced by the mesh to mesh transfer.
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Figure 4.5: Equivalent Plastic Strain Field at 1.3 µs. ISBQ without remeshing is in
the left column, ISBQ with remeshing is in the center column, and PSSBQ without
remeshing is in the right column
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The computational resources required to execute simulations with either of the

two elements is ultimately controlled by the linear solution of the system, Eq. (4.51).

Contributing to the processing and storage costs are the sparsity structure of the

Jacobian, and the number of unknowns in the system. Both elements lead to very

sparse Jacobians, owing to the discontinuous functions for stress and equivalent plastic

strain. The number of unknowns for the two elements are

nISBQunknowns = 3nnodes + 20nelements (4.79)

nPSSBQunknowns = 3nnodes + 10nelements (4.80)

While the size of the linearized system obtained by PSSBQ is significantly smaller

compared to ISBQ, the PSSBQ tends to more linear iterations per simulation , which

partly negates this benefit, see Figure 4.8 and Table 4.3. Overall, the PSSBQ is

slightly faster and slightly less memory intensive when comparing the resources used

for a given mesh. When we account for the rate of convergence however, the cost ad-

vantage of the PSSBQ becomes very significant. Figure 4.8 shows such a comparison

using as an error measure the sum of the errors in the equivalent plastic strain, Von

Mises stress, and Temperature with respect to the reference solution run at the lower

left corner of the modeled domain. The reference solution is obtained by running the

problem with PSSBQ without remeshing on a very fine mesh, consisting of 240 by

240 elements. The error for the PSSBQ on mesh 1 is comparable to the error for

the ISBQ on mesh 4, but with the required resources reduced by roughly 2 orders of

magnitude.

4.4 Conclusion

A monolithic formulation for simulation of shear bands has been developed. The for-

mulation accounts for large deformations, with an incrementally objective treatment
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Table 4.3: Total Linear Iterations

PSSBQ no rem. PSSBQ w. rem. ISSBQ no rem ISSBQ w. rem
Mesh1 411 414 385 409
Mesh2 414 418 395 410
Mesh3 418 419 398 408
Mesh4 419 419 398 404

of the hypoplastic constitutive law. Two elements have been assessed, the first is the

Irreducible Shear Band Quad (ISBQ), which employs the same interpolation as the

four noded quad used in irreducible finite elements, but with the history variables

updated simultaneously with the displacements and temperatures. The F̄ method

was implemented with the ISBQ to prevent volumetric locking. The second is the

Pian Sumihara Shear Band Quad (PSSBQ), a mixed, assumed stress element which

again employs a fully monolithic constitutive update. The incrementally objective,

algorithmic approximation to the Lie derivative of Kirchhoff stress was derived for

this element. The formulation was linearized analytically at the time discrete level,

to provide an exact Jacobian.

Both elements were implemented in FEAP and run on a test problem: a plate

in plane strain tension with four meshes of increasing refinement. Both elements

appear to be converging to the same result, but the PSSBQ, likely owing to its

robustness under distorted meshes, converged faster than the ISBQ. The elements

were also implemented with a remeshing procedure, which improved performance by

minimizing mesh distortions, but also introduced a diffusive error as solution variables

were transferred from the old mesh to the new mesh. Future work will continue to

evaluate the most efficient interpolations and mesh-to-mesh transfer operators for the

monolithic shear band formulation.
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Figure 4.6: Equivalent Plastic Strain vs Time at the lower left corner of the modeled
domain 100 remeshing steps were taken when remeshing was used with the ISBQ and
10 remeshing steps were taken when remeshing was used with the PSSBQ
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Figure 4.7: Equivalent Plastic Strain across the shear band, the time is 1.3 µs
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Chapter 5

A Unified Model for Metal Failure

Capturing Shear Banding and

Fracture

In this chapter a combined thermal softening shear banding and phase field fracture

model is presented. The shear band model consists of an elastic - viscoplastic, strain

hardening, strain rate hardening, and thermally softening material. Thermal diffusion

is accounted for, which weakly defines a length scale and regularizes the problem.

This type of model and diffusive regularization have been studied in references [13,

16, 17, 19, 20, 99, 100, 140]. Fracture is accounted for with the phase field method,

which is a regularized Griffith type [61] fracture model based on energy minimization

[34, 56, 103, 104]. The crack is approximated as a continuous entity, whose width

is defined by a small process zone parameter, see Figure 1.1. It is thus possible to

approximate the fracture energy with a volume integral, which does not require a

procedure for tracking the crack surface. It has been shown in [33, 56] that in the

limit as the process zone parameter tends to zero, the phase field approximation to
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the fracture energy converges to that of the discontinuous crack. Phase field models

have been extended to account for dynamic brittle fracture in references [31, 35].

Growth of cracks in the phase field models cited above is driven by the elastic

free energy. The elastic energy can then be split into portions which contribute to

fracture and portions which do not. For example [31, 103, 104] decompose the strain

energy using the principal strains, where only the tensile principal strains contribute

to fracture. Inelasticity has been introduced to the phase field model by [32] who

combined the phase field model for dynamic fracture with the finite deformation

plasticity models in [124]. In addition, modeling of thermo mechanical damage in

tungsten subject to conditions found in a fusion reactor was conducted by [44], who

combined the phase field model with small deformation plasticity. For an inelastic

material, the growth of the elastic free energy will be limited by yielding; in fact the

elastic free energy can decrease once thermal softening begins. For metals, where the

inelastic response is independent of volumetric deformations, it is conceivable that

the elastic free energy due to tensile volumetric deformation will be large enough to

initiate a crack. However, the contribution of the extensive inelastic working that

occurs during the shear banding process will not be modeled. To remedy this, the

model presented here includes an enhancement of the phase field model to account

for the contribution of energy of internal inelastic variables to the fracture energy.

This leads to the addition of source terms in the phase field evolution equation which

are due to inelastic deformation.

An interesting aspect of this enhancement to the phase field model is the partition

of the inelastic work into heat and cold work, which is energy stored by defects in the

metal’s lattice [28]. In the present model, heat production drives thermal softening

and shear bands, while cold work terms along with the elastic energy drives cracks.

The partition of the inelastic work is thus significant in determining the eventual

mode of failure. Citing the experimental work of [55, 130], shear band models nearly
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universally assume that the fraction of inelastic work converted to heat is a constant

in the neighborhood of 0.9. This constant is frequently referred to as the Taylor

Quinney fraction. However, more recent experiments by [68, 95, 98] have convincingly

demonstrated that the fraction of inelastic work converted to heat depends on strain,

strain rate and temperature. Furthermore, theoretical objections to constant partition

of inelastic work have been pointed out in [138].

Several studies have been conducted which aim to theoretically or experimentally

determine the partition of inelastic work. Early examples are [6], where an expression

for the partition is derived from residual stress theory, [142]. More recently, [122] used

a dislocation density strain hardening model within a thermodynamic framework

similar to the one presented here to model the stored energy. Another approach is

that of [40], calculated the stored energy of cold work from dislocation theory and

incorporated this into a crystal plasticity, high rate failure model. A dislocation

theory approach was also taken in [27], who concluded that the stored energy of cold

work depends not only on the dislocation density but on the dislocation structure as

well. A method for experimental determination of the partition is given in [69], where

the stored energy of cold work as a function of plastic strain for a few metal alloys is

calculated from the experiments of [68]. Lastly, [90, 91] calculate the partition from

the phenomenological plasticity model employed therein.

Using a rigid plastic model, Wright and Walter [140] studied the strain to failure

of a thermal softening, rate dependent material over several decades of strain rate.

This is illustrated here in Figure 5.1. The failure strain plotted against the strain

rate results in a U shape, since thermal diffusion inhibits localization at low strain

rates, and inertia inhibits it at high strain rates. This leaves a range of strain rates

where thermal softening shear bands occur most readily, which will be referred to in

this work as the critical shear band zone (zone 3 in Figure 5.1). Other zones on the

U curve are the diffusion stabilized zone (zone 1 in Figure 5.1), where no localization
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Figure 5.1: Schematic illustration of the results reported in [140], for a rigid plastic
model. Zone 1 is the diffusion stabilized zone, where thermal diffusion is able to
prevent severe localization due to the slow loading rate. Zone 2 is the first transition
zone, where severe localization occurs at increasingly low strains. Zone 3 is the critical
shear band zone, where thermal softening failure is most prevalent. Lastly, zone 4 is
the second transition zone, where inertia effects become important. Inertia has been
shown to delay shear localization [57]

occurs, and the two transition zones on either side of the critical shear band zone

(zones 2 and 4 in Figure 5.1). Further studies on the effect of strain rate on shear

banding have been conducted by [57, 60].

In the numerical experiments shown in this study, a constant partition of the

inelastic work is assumed, and the failure strain and energy dissipation of a one

dimensional model is studied over a wide range of strain rates and values of the

Taylor Quinney fraction. Significant differences in the failure behavior of the shear

band, and combined model are present in all zones except the critical shear band
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zone. Of particular interest are the transition zones, where differences between the

two formulations becomes most important for high rate failure modeling.

5.1 Proposed Model Derivation

In this section the proposed modeling framework is developed. The combined phase

field and shear band model consists of macro and micro force balance equations, the

energy balance equation, and the entropy inequality. In addition, elastic and inelastic

constitutive relations are needed. A brief review of the requisite kinematics is given

before developing the governing equations.

5.1.1 Kinematics

The decompositions of FiA, lij, and dij used in this chapter are the same as those used

in chapter 4. Some additional kinematic quantities will be needed, the first being the

elastic Right Cauchy Green tensor, defined as

Ce
qr = F e

kqF
e
kr (5.1)

giving the elastic Green strain as

Ee
qr =

1

2

(
Ce
qr − δqr

)
(5.2)

Differentiating (5.2) with respect to time gives the rate of Green strain

Ėe
qr =

1

2

(
Ḟ e
kqF

e
kr + F e

kqḞ
e
kr

)
(5.3)

102



Note that the first and second terms of this equation can be written respectively as

Ḟ e
kqF

e
kr = F e

iqḞ
e
jaF

e,−1
ai F e

jr = F e
iql

e
jiF

e
jr (5.4)

F e
kqḞ

e
kr = F e

iqḞ
e
iaF

e,−1
aj F e

jr = F e
iql

e
ijF

e
jr (5.5)

and thus the elastic deformation rate and the rate of elastic Green strain have the

relation

Ėe
qr =

1

2
F e
iq

(
leji + leij

)
F e
jr = F e

iqd
e
ijF

e
jr (5.6)

5.1.2 Balance laws and entropy inequality

There are three balance laws governing the physical system. They are the macro force

balance, the micro force balance, and the energy balance. In addition, the entropy

inequality must be satisfied. The macro force balance is

ρ0üi = PiI,I +Bi (5.7)

where ρ0 is the reference density, ui is the displacement, Bi is the body force per

reference volume, and PiA is the first Piola Kirchhoff stress. Cracks, which are char-

acterized by the phase field parameter c, are assumed to evolve under the influence

of micro forces [128], which are governed by the following equation

ρ0θc̈ = HI,I −K +G (5.8)

Here, θ is the micro inertia, which accounts for the local inertia of accelerating material

at the crack tip. The external micro force, G, which may be used to model bond

breakage due to reactive materials or internally pressurized cracks. The internal

micro force is denoted as K, which is the main driving force of the crack. It will

be shown later that K depends on the elastic free energy and, a novel feature of
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the present model, the stored energy of internal inelastic variables. Lastly, HI is the

micro traction.

The energy balance law is given by

ρ0ė = SIJĖIJ +Kċ+HI ċ,I + ρ0R−QI,I (5.9)

where SIJ is the second Piola Kirchhoff stress, ĖIJ is the rate of Green strain, R is

the heat supply and QI is the heat flux through the reference area.

Lastly the entropy inequality is [97]

ρ0η̇ ≥
(
QI

T

)
,I

+ ρ0
R

T
(5.10)

where η is the specific entropy, and T is the temperature.

The free energy per unit mass is

ψ = e− Tη (5.11)

or in rate form

ψ̇ = ė− Ṫ η − T η̇ (5.12)

Substituting (5.12) into (5.10)

SIJĖIJ +HI ċ,I +Kċ− ρ0

(
ψ̇ + Ṫ η

)
≥ QIT,I

T
(5.13)

The terms on the left hand side account for the internal energy dissipation per unit

reference volume, D ≥ 0 so that

D = τijdij +HI ċj +Kċ− ρ0

(
ψ̇ + Ṫ η

)
(5.14)
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where we have used the identity SIJĖIJ = τijdij, with τij being the Kirchhoff stress.

The rate of deformation dij and conjugate stress measure τij are convinient because

it permits the use of the additive decomposition in (4.4). using (5.14), along with

(5.12), the energy equation (5.9) can be written in an alternative form, which will

prove to be convenient later

ρ0T η̇ = D −QI,I + ρ0R (5.15)

Using the additive decomposition of dij in (4.4), the stress power term in (5.13) is

expanded so that entropy inequality becomes

τijd
e
ij + τijd

t
ij + τijd

p
ij +HI ċ,j +Kċ− ρ0

(
ψ̇ + Ṫ η

)
≥ QIT,I

T
(5.16)

the elastic part of the stress power, using (5.6) can alternatively be written as

τijd
e
ij = τijF

e,−1
qi F e,−1

rj Ėe
qr (5.17)

also the thermal part of the stress power can be replaced with

τijd
t
ij = τijδijαṪ (5.18)

Where α is the coefficient of thermal expansion. Defining the elastic second Piola

Kirchhoff stress, which is the second Piola Kirchhoff stress with respect to the elastic

configuration, as

Seqr = τijF
e,−1
qi F e,−1

rj (5.19)

Eq. (5.17) can be written as

τijd
e
ij = SeqrĖ

e
qr =

1

2
SeqrĊ

e
qr (5.20)
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substituting (5.20) into the entropy inequality (5.16) gives

1

2
SeqrĊ

e
qr + τijδijαṪ + τijd

p
ij +HI ċ,I +Kċ− ρ0

(
ψ̇ + Ṫ η

)
≥ QIT,I

T
(5.21)

Now, the free energy is assumed to be a function of elastic right Cauchy Green

tensor Ce
ij, T, c, c,j, and n internal variables ξi for i = 1, n so that

ψ = ψ (Ce, T, c, c,j, ξ1, . . . , ξn) (5.22)

The internal variables quantify microstructural details of the material which affect

the mechanical response [120]. Common examples of internal variables are dislocation

density, isotropic hardening parameter, and back stress [110]. The time derivative of

the free energy is now

ψ̇ = (∂Ceψ)qr Ċ
e
qr + ∂TψṪ + ∂cψċ+ ∂c,Iψċ,I +

n∑
i=1

Ξiξ̇i (5.23)

Where the Ξi = ∂ξiψ are the thermodynamic forces conjugate to the ξi. substituting

this into (5.21) gives

D =
(
Seqr − 2ρ0 (∂Ceψ)qr

)
Ċe
qr + (τkkα− ρ0∂Tψ − ρ0η) Ṫ

+ (K − ρ0∂cψ) ċ+
(
HI − ρ0∂c,Iψ

)
ċ,I + τijd

p
ij − ρ0

n∑
i=1

Ξiξ̇i

≥ QIT,I
T

(5.24)

Since the above inequality should hold for an arbitrary thermodynamic process, which

is to say that Ėqr, Ṫ , ċ, ċ,I can assume arbitrary values, the coefficients of these values

should be zero so that

Seqr = 2ρ0 (∂Ceψ)qr (5.25)
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HI = ρ0∂c,Iψ (5.26)

and

η = τkk
α

ρ0

− ∂Tψ = Π− ∂Tψ (5.27)

We assume the internal micro force K is given in the form

K = K∗
(
EIJ , ĖIJ , c, ċ, c,I , T

)
+ ρ0∂cψ (5.28)

Where K∗ is a dissipation function. The dissipation is now

D = Dp +Df ≥ 0 (5.29)

Dp = τijd
p
ij − ρ0

n∑
i=1

Ξiξ̇i ≥ 0 (5.30)

Df = K∗ċ ≥ 0 (5.31)

Where Dp and Df are the contributions to the dissipation from inelasticity and frac-

ture respectively. The inelastic dissipation is thus interpreted as the inelastic stress

power less the rate of energy stored by changing internal variables. In light of (5.27),

the rate of entropy production can be expanded using the chain rule

η̇ = ∂TΠṪ −
[

(∂TCeψ)qr Ċ
e
qr + ∂TTψṪ + ∂Tcψċ+ ∂Tc,Iψċ,I +

n∑
i=1

∂TΞiξ̇i

]
(5.32)

substitution of (5.29) and (5.32) into the energy equation (5.15) leads to

ρ0T (∂TΠ− ∂TTψ) Ṫ = ρ0T (∂TCeψ)qr Ċ
e
qr + τijd

p
ij − ρ0

n∑
i=1

(Ξi − T∂TΞi) ξ̇i

+ ρ0T∂THI ċI + ρ0T∂TKċ+K∗ċ

−QI,I + ρ0R (5.33)
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We let the specific heat be a constant, defined as

ĉ =
∂e

∂T
=
∂e

∂η

∂η

∂T
= T

(
∂Π

∂T
− ∂2ψ

∂T 2

)
= constant (5.34)

The energy equation can thus be written as

ρ0ĉṪ = ρ0T (∂TCeψ)qr Ċ
e
qr + τijd

p
ij − ρ0

n∑
i=1

(Ξi − T∂TΞi) ξ̇i

+ ρ0T∂THI ċI + ρ0T∂TKċ+K∗ċ

−QI,I + ρ0R (5.35)

This equation accounts for heat storage, thermo elastic heating, inelastic work, en-

ergy storage by internal variables, reversible and dissipative heat generation due to

fracture, thermal diffusion, and heat supply.

5.1.3 Specification of the Free Energy

The constitutive relations now depend on the specified form of the elastic and fracture

contributions to the free energy. We use a general form, where the free energy is

additively decomposed into thermal, elastic, fracture, and internal variable parts: ψt,

ψe, ψf , and ψξ respectively, giving

ψ = ψt + ψe + ψf + ψξ (5.36)

The elastic and internal variable portions are further broken into portions which

contribute to fracture and portions which do not. Splitting the free energy is typically

done to permit modeling of fracture in tension only. In accordance with the constant

specific heat assumption eq. (5.34), the thermal part of the free energy is given by
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[40]

ρ0ψ
t = −ρ0ĉT log T/T0 (5.37)

The elastic part of the free energy is

ρ0ψ
e = W + [m(c)− 1]W+ (5.38)

Where W is a function of the elastic deformation and the elastic material properties

and W+ is the damaged free energy. The degradation function m(c) models the loss

of strength in the material due to fracture, and is often chosen to be a quadratic.

Note that this is notationally different from most phase field models where the elastic

free energy is defined as

ρ0ψ
e = W− +m(c)W+ (5.39)

Where W− is the undamaged free energy. The reason for this difference is that the

resulting definition of the elastic second Piola Kirchhoff stress, after using equation

(5.25) in equation (5.38), will look familiar to the shear band only model, but with

an additional term appended accounting for degradation of the stress due to fracture.

Examples of W used in the literature for small strain analysis are a volumetric -

deviatoric split of the strain energy used in [5], which is

W =
1

2
Celas
ijkl εijεkl (5.40)

W+ = (λ+ 2µ/3)
〈
ε2ii
〉

+ µεdevij ε
dev
ij (5.41)

Where εij is the small strain tensor, the deviatoric strain tensor is εdevij = εij− 1
3
εkkδij,

λ and µ are Lame’s constants, and 〈 〉 are Macaulay brackets, defined as

〈x〉 =


0, if x ≤ 0

x, if x > 0

(5.42)
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In this split tensile volumetric and deviatoric strains contribute to damage. The finite

deformation analogue of this split was used in a phase field model with plasticity in

[32].

A second popular split, used in [31, 103, 104] is based on principal strains so that

W+ =
λ

2
〈εpr1 + εpr2 + εpr3 〉2 + µ

(
〈εpr1 〉2 + 〈εpr2 〉2 + 〈εpr3 〉2

)
(5.43)

where the principal strains εpra and principal directions pa are given by the spectral

decomposition of the small strain tensor

ε = εijei ⊗ ej =
3∑

a=1

εpra pa ⊗ pa (5.44)

The fracture energy is given by the phase field theory [34, 56, 103, 104] as

ρ0ψ
f = Gc

[
c2

4l0
+ l0c,Ic,I

]
(5.45)

As noted earlier, the phase field approximation to the fracture energy converges to

that of the discontinuous crack in the limit as the process zone parameter l0 goes to

zero [33, 56]. Lastly, the free energy due to internal variables is

ρ0ψ
ξ =

n∑
i=1

(
Ξiξi + [m(c)− 1] Ξiξ

+
i

)
(5.46)

Where the ξ+
i are the internal variables whose evolution contributes to fracture. Thus,

this modeling framework allows the choice of which internal variables contribute to

the generation of fracture surfaces and which do not. In addition, similar to the no-

tion of splitting the elastic free energy, the contribution of a single internal variable

may be split into a fracture producing part and a non fracture producing part. This

is where the present formulation departs significantly from existing phase field models
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which incorporate plasticity [32, 44], and as shown below, these contributions to the

free energy will lead to additional source terms in the phase field evolution equation.

The physical motivation for inclusion of these terms in the modeling framework is

due to the well known relationship between fracture and barriers to dislocation mo-

tion such as dislocation density and grain size. This leads to a model for fracture

which is explicitly rate and temperature dependent, due to the rate and temperature

dependence of the internal variables.

Adopting as an example a volumetric - deviatoric split of the elastic strain energy

[124], the elastic second Piola Kirchhoff stress, and thus the Kirchhoff stress, can

be determined. The elastic energy is thus composed of a volumetric contribution

U (Je), dependent on the elastic volume change Je, and a deviatoric contribution

W̄
(
C̄e
qr

)
, dependent on the deviatoric part of elastic right Cauchy Green tensor C̄e

qr =

Je,−2/3F e
kqF

e
kr. W , U , and W̄ are defined as

W = U (Je) + W̄
(
C̄e
qr

)
(5.47)

U (Je) =
1

2
k

[
1

2

(
Je,2 − 1

)
− ln Je

]
(5.48)

W̄
(
C̄e
qr

)
=

1

2
µ
(
trace

[
C̄e
qr

]
− 3
)

(5.49)

W is split so that W+, the fracture producing portion, depends on the volumetric

expansion so that

W+ =


0, if Je ≤ 0

U (Je) , if Je > 0

(5.50)

Using (5.25) with the above definitions and the relation τij = SeqrF
e
iqF

e
jr the Kirchhoff

stress becomes

τij = τ sbij + τ fij (5.51)
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Where τ sbij is the contribution of the familiar elastic - plastic material law, and is

defined as

τ sbij =
k

2

(
Je,2 − 1

)
δij + µdev

[
b̄e
]

(5.52)

Where dev
[
b̄eij
]
is the deviatoric part of the tensor b̄eij = Je,−2/3F e

iqF
e
jq, with the elastic

left Cauchy Green tensor being beij = F e
iqF

e
jq. The decrement in stress due to cracking

τ fij is then

τ fij =


0, if Je ≤ 0

[m(c)− 1] k
2

(Je,2 − 1) δij, if Je > 0

(5.53)

There are other options for splitting the energy, for example the deviatoric part of

the elastic free energy can be included, which would result in an extra term in τ fij

With the elastic constitutive relation specified, the terms micro force balance must

now be developed. The micro force traction in the present formulation is identical to

that of other phase field models. This is

HI = ρ0
∂ψ

∂c,I
= 2Gcl0c,I (5.54)

However, the internal micro force contains extra source terms as follows

K = ρ0
∂ψ

∂c
+K∗ =

∂m

∂c

(
W+ +

n∑
i=1

Ξiξ
+
i

)
+ Gc

c

2l0
+K∗ (5.55)

Now, substituting (5.54) and (5.55) into (5.8) the micro force strong form becomes

ρ0θc̈ = 4l0c,II − c−
2l0
Gc
∂m

∂c

(
W+ +

n∑
i=1

Ξiξ
+
i

)
− 2l0
Gc
K∗ (5.56)

Note that the addition of the terms
∑n

i=1 Ξiξ
+
i results in the possibility of cracking

due to evolving internal inelastic variables, in contrast to the classical phase field

method, where only the elastic free energy W+ contributes to fracture.
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The final equations needed for the strong form are the inelastic constitutive equa-

tions. The equivalent plastic strain evolves according to the following equation

˙̄γp =

√
2

3
dpijd

p
ij (5.57)

Since metal plasticity is considered here, the inelastic response is independent of

volumetric deformation and thus the inelastic rate of deformation can be simplified

to

dpij =
3sij
2τ̄

g (τ̄ , T, ξi) (5.58)

where sij = τij − 1
3
τkkδij is the deviatoric Kirchhoff stress and τ̄ =

√
3
2
sijsij is the

effective Kirchhoff stress. Using (5.58) in (5.57) gives

˙̄γp = g (τ̄ , T, ξi) (5.59)

Where the constitutive function g (τ̄ , T, ξi) gives the equivalent plastic strain rate

as a function of stress, temperature and internal variables. Lastly, the constitutive

relations for the ξi are [120]

ξ̇i = Xi (τ̄ , T, ξi) (5.60)

An example of which, that has been used for shear band modeling by [17] is (using

the present notation)

ξ̇ = τ̄ γ̇p/ (1 + ξ/ξ0)n (5.61)

In this case, there is one internal variable ξ which represents the extent of work

hardening in the material.
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Putting all of these equations together, the strong form consists of the balance

laws

ρ0üi = PiI,I +Bi (5.62)

ρ0ĉṪ = ρ0T (∂TEeψ)qr Ė
e
qr + τ̄ g (τ̄ , T, ξi)− ρ0

n∑
i=1

(Ξi − T∂TΞi) ξ̇i

+K∗ċ−QI,I + ρ0R (5.63)

ρ0θc̈ = 4l0c,II − c−
2l0
Gc
∂m

∂c

(
W+ +

n∑
i=1

Ξiξ
+
i

)
− 2l0
Gc
K∗ (5.64)

and the constitutive relations

τij = τ sbij + τ fij (5.65)

τ sbij =
k

2

(
Je,2 − 1

)
δij + µdev

[
b̄e
]

(5.66)

τ fij =


0, if Je ≤ 0

[m(c)− 1] k
2

(Je,2 − 1) δij, if Je > 0

(5.67)

˙̄γp = g (τ̄ , T, ξi) (5.68)

ξ̇i = Xi (τ̄ , T, ξi) (5.69)

5.2 1D Numerical Solutions With Constant Parti-

tion of Inelastic Work

To illustrate the basic behavior of the present model, several numerical experiments

in one dimension are given below. Small strains are considered so that all stress

measures are equivalent, and represented by σij. There is no micro inertia or fracture

dissipation, i.e. θ = 0 and K∗ = 0. A quadratic degradation function is employed:

m(c) = (1− c)2, which is the most commonly used degradation function, though

114



others are available, subject to certain restrictions [32]. The equivalent plastic strain

is taken as the only internal variable, and represents the extent of work hardening

of the material. As pointed out in the introduction, in general the Taylor Quinney

fraction is not a material constant but depends on strain, strain rate, and temperature,

as shown experimentally by [68, 98]. According to the previous section, the fraction

of inelastic work converted to heat is

χ = 1− ρ0

∑n
i=1 (Ξi − T∂TΞi) ξ̇i
σ̄g (σ̄, T, γ̄p)

(5.70)

When the equivalent plastic strain is the only internal variable, n = 1 and

ξ̇ = g (σ̄, T, γ̄p) (5.71)

The conjugate force to γ̄p is a stress like variable related to isotropic strain hardening

[93], and is defined as

Ξ = ∂γ̄pψ (5.72)

Then equation (5.70) becomes

χ = 1− Ξ− T∂TΞ

σ̄
(5.73)

This approach for computing χ has been taken by [90, 91], but the predicted values

of χ for steels tends to be significantly lower than the experimental predictions of

[98]. In what follows, it is assumed that a constant fraction of the inelastic work is

converted to heat, and that the remaining plastic work is expended by creating new

fracture surfaces.
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The strong form (5.62) - (5.69) becomes

ρü = σ,x (5.74)

ρĉṪ = κT,xx + χσg (σ̄, T, γ̄p) (5.75)

c = 4l0c,xx +
4l0
Gc
c
(
W+ + P+

)
(5.76)

σ = Celasεe +
[
(1− c)2 − 1

]
Celas 〈εe〉 (5.77)

˙̄γp = g (σ̄, T, γ̄p) (5.78)

(5.79)

Insulated thermal boundary conditions are chosen and a velocity is applied to each

end. The rod is initially at rest, with a temperature of 315K. The total strain is

additively discomposed into elastic, inelastic and thermal parts as

εtotal = u,x = εe + εp + εt (5.80)

where the thermal part of strain is

εt = α∆T (5.81)

and the plastic strain is

εp =

ˆ t

0

g (σ̄, T, γ̄p) dt′ (5.82)

where t′ is a dummy integration parameter and t is time. Thus, the elastic strain can

be computed by

εe = εtotal − εp − εt. (5.83)

The free energy terms which contribute to fracture are the elastic free energy

W+ =
1

2
Celas 〈εe〉2 (5.84)
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and the inelastic free energy, which is related to the accumulated plastic work

P+ =

ˆ t

0

(1− χ)σg (σ̄, T, γ̄p) dt′ (5.85)

Four versions of the above model are considered, the first being the model as it is

written, which will be called the combined phase field and shear band model (PFSB)

and accounts for both shear banding and fracture. In the second version the phase

field parameter is fixed at 0, which reduces the PFSB model to previously studied

thermal softening shear band models. The abbreviation used for this is SB. The third

version considers isothermal conditions (PFIT), implying that χ = 0, which excludes

the possibility of thermal softening, leaving fracture due to accumulation of inelastic

work as the only source of failure. The fourth and final version considered is the same

as the PFIT model, but with the inelastic contribution to fracture P+ neglected, and

so is abbreviated PFITNP. This model is most similar to existing combined phase

field models with plasticity [32, 44]. A summary of the models is shown in table 5.1

Table 5.1: Summary of models tested.

Model Name Taylor Quinney Parameter Phase Field Fracture Source Terms
PFSB χ 6= 0 Governed by Eq. (5.76) P+ and W+

SB χ 6= 0 Fixed at 0 -
PFIT χ = 0 Governed by Eq. (5.76) P+ and W+

PFITNP χ = 0 Governed by Eq. (5.76) W+ only

The problem studied is a 0.001 m rod with a central imperfection in the yield

strength and critical energy release rate Gc and a velocity applied at each end. A

wide range of nominal strain rates are tested, from 10−1 to 105, with the intent of

examining the effect of rate on the mode and strain at failure. The effect of the Taylor

Quinney fraction χ on the response is also studied over a range of values.
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Table 5.2: Material Properties and Parameters. Johnson - Cook parameters were
taken from [17] and are for HY 100 steel.

Property Name Symbol Value Unit
Young’s Modulus E 200E9 Pa
Mass Density ρ 7860 kg

m3

Specific Heat ĉ 473 J
kgK

Reference Stress A 111.4E6 Pa
Hardening Parameter B 579.1E6 Pa

Rate Sensitivity Parameter c 0.028 -
Strain Hardening Exponent N 0.054 -
Reference Temperature T0 300 K
Reference Temperature Tm 1800 K

Thermal Softening Parameter m 0.8 -
Critical Energy Release Rate Gc 1.25E-4 J

m2

Process Zone Parameter l0 5.0E-5 m

The material parameters are chosen to be representative of HY 100 steel, where

the Johnson Cook flow law has been used so that

g (σ̄, T, γ̄p) = exp

1

c

 σ̄[
A+B (γ̄p)N

] [
1−

(
T−T0
Tm−T0

)m] − 1

 (5.86)

The phase field length scale parameter, which defines the width of the diffuse crack

process zone, was chosen to be 5.0E-5 m. In the elastic setting, this parameter effects

the peak stress obtained by the material before softening. In the one dimensional,

quasi static case, homogeneous solutions of the elastic phase field model predict the

critical stress as [31]

σc =
9

16

√
EGc
6l0

(5.87)

It is apparent that the critical stress tends to infinity as l0 tends to zero. Physically,

this corresponds to the well known crack tip singularity present in linear elastic frac-

ture mechanics with discrete crack topology. In real materials however, experiments

show finite fracture process regions. Process zone modeling dates back to the well
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known Barenblatt-Dugdale model which introduces the concept of a bounded stress

within the cohesive zone at the crack tip [11, 53].

In this study, l0 simply serves as a regularization parameter. It’s value does not

determine the stress at which fracture occurs, because the stress in the specimen

is limited by the yield stress. However, smaller values of l0 lead to higher fracture

strains. Determination of a physically motivated choice of l0 is an ongoing area of

research for the present authors.

5.2.1 Failure and post localization behavior

Given sufficient input strain, the combined phase field and shear band model will

eventually lead to fracture. However, since stress collapse due to thermal softening is

an instability in its own right, failure is divided into three categories based qualita-

tively on the extent of thermal softening before fracture. The failure categories and

in Table 5.3.

Failure Mechanism with χ = 0.9 Strain Rates [1/s]
Fracture without thermally induced stress collapse 1.0E-1 − 1.0E+2
Thermally induced stress collapse with early transition to fracture 1.0E+2 − 1.0E+4
Thermally induced stress collapse with late transition to fracture 1.0E+4 − 1.0E+5

Table 5.3: Failure mechanisms and corresponding strain rate loading ranges.

Fracture without thermally induced stress collapse tends to occur at the low range

of the strain rates modeled here, which lie in the diffusion stabilized zone of the shear

band model. At these strain rates thermal diffusion has enough time to spread the

heat generated by inelastic deformation throughout the domain, resulting in nearly

homogeneous conditions within the rod. However, despite the fact that the heat

production is not sufficient to produce failure, the continued inelastic straining leads

to fracture. In this range of strain rates, the shear band only model is essentially

stable, and large strains are needed to produce significant softening. This is evident
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from Figure 5.2a, where the stress strain curves from the four formulations, PFSB,

SB, PFIT, and PFITNP are plotted side by side with the phase field parameter vs

strain and the temperature vs strain. The temperature rise up to fracture is about

150 degrees, which does not lead to significant thermal softening. The PFSB and SB

models perform nearly identically up until the point of fracture, with a slightly slower

rate of temperature rise for the PFSB model. This is because the increase of the phase

field parameter degrades the stress, which in turn results in less inelastic straining

and thus less heat production. Note that inelastic straining and heat production

cannot continue in the fully fractured phase since by definition the equivalent plastic

strain rate is zero for an unstressed material, i.e. g (σ̄ = 0, T, γ̄p) = 0. The PFITNP

model is similar to the other models only at small strains, and continues to harden

without failure. This is due to the fact that the only source term for fracture in the

PFITNP model is the elastic free energy, the growth of which is limited by yielding.

The implications of this are discussed further in the next section. The PFIT model

fails at the earliest strain, since all of the inelastic work contributes to fracture, as

opposed to the PFSB model, where a tenth of the inelastic work is generates fracture

and the remainder is converted to heat.

Failure due to thermally induced stress collapse with early transition to fracture

tend to occur in the transition zone between the diffusion stabilized zone and the

critical shear band zone, and is probably where the differences between the PFSB

and SB formulations are most important for failure modeling. In these intermediate

rates, thermal softening induced stress collapse occurs at roughly the nominal strain

for both the SB and the PFSB formulations, but the post localization behavior of the

two models is very different.

For the SB model, after an initial rapid stress collapse the rate of softening de-

creases significantly and a great deal of additional input strain is needed to continue

to soften the material, see Figure 5.2b. In contrast for the PFSB model, the stress
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collapse causes the stress to drop to zero without a decrease in the softening rate.

This is because the phase field parameter has grown to a significant value, roughly

0.6, during the plateau region of the stress strain curve, and the subsequent intense

inelastic straining resulting from thermal softening stress collapse causes the material

to quickly transition to fracture. The differences in the post localization behavior of

the two models is of particular importance in higher dimensions, where the propaga-

tion characteristics of the shear band depend on the unloading rate. Again, the PFIT

model, which is most appropriate for small strain rates, fails at very low strains. The

PFITNP model is not shown since no failure is predicted by this model.

Thermally induced stress collapse with late transition to fracture occurs in the

critical shear band zone, and there are only minor differences between the two models

in this range until late in the stress collapse process. Due to slower heat production,

the PFSB model shows slightly higher strain to failure than the SB model, see Figure

5.2c. The post localization behavior of the two models is also similar, since thermal

softening is prevalent at these rates and thus fracture will not occur until late in the

stress collapse process. Further details on the effect of the strain rate and Taylor

Quinney fraction on the failure characteristics are given in section 5.2.3.

5.2.2 Inelastic contribution to fracture

A comparison of the elastic and inelastic contributions to fracture vs nominal strain

for the PFSB model are shown in Figure 5.3, with the same strain rates as were shown

in the previous section. These are the inelastic free energy, the elastic free energy,

and the sum of the two, defined as

inelastic energy ψi = (1− c)2 P+ (5.88)

elastic energy ψe = (1− c)2W+ (5.89)

total energy ψtot = ψi + ψe = (1− c)2 [P+ +W+
]

(5.90)
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(c) χ = 0.9, ε̇0 = 5.0E + 4

Figure 5.2: Plots illustrating the three failure categories. Stress vs nominal strain
is shown in the left column. In the right column the phase field parameter and
temperature vs nominal strain is shown. The left axis is for the temperature, which
is plotted in red, and the right axis is for the phase field parameter c, which is plotted
in blue.
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Up until the point of fracture, the contribution of the inelastic free energy is much

higher than the elastic contribution, due to the fact that the elastic strain is small

compared to the inelastic strain. After fracture, inelastic straining ceases and the

inelastic free energy drops to zero due to the degradation function (1− c)2, while the

elastic strain increases rapidly. The increase in the elastic strain is because the strain

increments in the fully fractured phase are modeled as pure elastic, even though they

physically represent a separated material.

In the one dimensional setting, it is clear that the growth of the elastic free energy

will be quadratic in the elastic range, but the onset of yielding will limit further growth

of this term. In fact, with thermally induced softening, the elastic free energy can

decrease as the material unloads. Thus, unless fracture occurs before yielding, crack

formation will not be possible in the one dimensional setting unless the contribution

of inelastic deformation to fracture is accounted for as in the present formulation.

This is evident from figure 5.4, where the free energies are shown vs strain for the

PFSB, PFIT, and PFITNP models.

Here it is shown that when the inelastic free energy is not accounted as a source

term in the phase field equation, the elastic free energy does not increase beyond

the peak stress, thus prohibiting the occurrence of a crack, as shown by the light

blue curve in Figure 5.4. In contrast, when the inelastic free energy is accounted for,

the phase field source term will continue to increase, even during thermal softening.

Additionally, continued growth of the phase field parameter degrades the stress as

previously mentioned, which leads to smaller increments of inelastic strain, which

means a larger portion of the total strain increment will be elastic. This is why the

elastic free energy is larger and why it continues to grow after yielding when the

inelastic contribution to fracture is accounted for, as shown in figure 5.3.

In multi dimensional simulations of elastic plastic materials, it is possible for cracks

to occur without consideration of P+ if the loading is sufficiently triaxial. However
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for shear bands, extensive inelastic deformation occurs in an essentially isochoric

manner, and exclusion of this term ignores the contribution of this deformation to

fracture. Exclusion of P+ or a similar term as presented in the previous section would

model fracture as independent of the state of the material’s microstructure. This is

in contrast to the fact that microstructural characteristics which impede dislocation

motion such as dislocation density and grain size are related to fracture.

Elastic Free Energy Inelastic Free Energy Total Free Energy

0.0 0.3 0.6 0.9
Nominal Strain

0.0

0.5

1.0

1.5

2.0

E
ne

rg
y

(J
)

×107

(a) χ = 0.9, ε̇0 =1.0

0.00 0.15 0.30 0.45
Nominal Strain

0.0

0.8

1.6

2.4

E
ne

rg
y

(J
)

×107

(b) χ = 0.9, ε̇0 =5.0E+3

0.00 0.15 0.30 0.45
Nominal Strain

0.0

0.8

1.6

2.4

E
ne

rg
y

(J
)

×107

(c) χ = 0.9, ε̇0 =5.0E+4

Figure 5.3: For the PFSB model the elastic, inelastic, and total free energies, which
serve as the driving forces for fracture, are shown vs nominal strain.
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Figure 5.4: The total free energy for the PFSB, PFIT, and PFITNP models is shown
vs nominal strain. For the PFITNP model, the only fracture producing contribution
to the free energy is the elastic energy, shown in light blue, which does not increase
significantly beyond the yield point.

5.2.3 Effect of strain rate and Taylor Quinney fraction on fail-

ure strain

The combined phase field and shear band model has been tested for Taylor Quinney

fractions of 0.5, 0.7, and 0.9, with strain rates varying from 10−1 to 105. Here, we

define failure as a drop in the integral averaged stress to 0.9 of the peak value in its
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history ˆ
Ω

σ(x, t)dΩ = 0.9 max

[ˆ
Ω

σ(x, t)dΩ

]
(5.91)

and as a second condition, there must be severe strain localization at the center of

the rod. The range of strain rates was chosen to illustrate the zones in Figure, which

are the diffusion stabilized zone, the critical shear band zone, and the two transition

zones above and below the critical shear band zone, as illustrated in Figure 1. In the

transition zone above the critical shear band zone inertia effects are significant and the

conditions in the domain are highly non uniform due to elastic wave propagation. For

the current test problem, strain rates beyond 1.0E+5 1/s lead to significant thermal

softening at the ends of the rod, which can occur while the center of the rod has not

yet been loaded. Since the aim of studying the one dimensional test problem is to

compare the four formulations in the simplest possible setting, we leave these higher

rates to future studies.

The failure strain vs strain rate is shown in figure 5.5. For the shear band only

model, the diffusion stabilized, first transition, and critical shear band zones can be

clearly identified. The second transition zone can not be clearly shown due to the

effect described in the previous paragraph. For a Taylor Quinney parameter of 0.9,

which is the value used typically in the literature, differences in the failure strain

in the diffusion stabilized zone are due to fracture occurring without much thermal

softening. In the first transition zone, some differences in failure strain are present,

but the response of the PFSB and SB formulations mainly differs beyond the failure

point recorded for this plot. Lastly, the PFSB and SB formulations are most similar

in the critical shear band zone, where there are only slight differences in the failure

strains of the two models. It is worth noting that since the inelastic source term in the

phase field equation is strain, strain rate, and temperature dependent, the fracture

response is also dependent on these quantities as well.

126



For the isothermal PFIT model , increased strain rate is found to always decrease

the strain to failure with χ held fixed. In the context of the model, this is due to the

rate dependence of the Johnson Cook model, where higher strain rates lead to higher

yield stresses, which causes the plastic work term in equation (5.85) to accumulate

faster. The presence of thermal softening in the PFSB model leads to larger failure

strains compared to the PFIT model, and in addition there is a minimum strain to

failure in the critical shear band zone for the PFSB model.

While a fully variable fraction is not modeled, a parametric study of constant

Taylor Quinney fraction has been conducted, and this parameter was found to have

a significant effect on the results. A lower Taylor Quinney fraction not only leads

to a higher fraction of the inelastic work available as a source term in the phase

field equation, but less heat will be generated, resulting in a lower susceptibility to

thermal softening induced stress collapse. In the results shown in Figure 5.5, lowering

the fraction significantly biases the results toward fracture.

Experimental work on carbon steels by [51] show a transition from essentially

isothermal conditions to essentially adiabatic conditions over the course of three

decades of strain rate. This was used by [137], to develop an expression for χ as

a function of strain rate as a smooth step function. We use a similar expression here,

namely

χ = 0.45 + 0.45 tanh

(
0.6 log

(
ε̇0
50

))
(5.92)

Which is the same as the function used by [137], but the limiting values of χ used

here are 0.0 and 0.9, instead of 0 and 1. The transition region from χ = 0.0 to

χ = 0.9 is thus 1.0 1/s - 1.0E+3 1/s. The results of this are shown in Figure 5.5d,

which demonstrates that the PFSB and PFIT models are identical at low strain

rates, where the effects of temperature are very small. For the same reason, there

is no failure predicted by the SB model. As the strain rate is increased, the strain

to failure predicted by PFSB and PFIT begins to increase, due to the fact that the
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fraction of inelastic work that generates fracture decreases. This trend is in qualitative

agreement with experiments on HY 100 steel by [119], where the failure strains at

intermediate strain rates were found to be larger than failure strain of quasi static

tests. In this region, the failure strain of the PFSB model is higher than the PFIT

model, indicating that temperature rise is improving the ductility of the material. The

PFSB and SB model meet in the critical shear band zone, where thermal softening is

most prevalent. Thus the PFSB model coincides with the PFIT model at low strain

rates where the thermal softening is negligible, and with the SB model in the critical

shear band zone, where thermal softening induced stress collapse occurs most readily.

In the transition region, which is of the most interest, failure strains for the PFSB

model are higher than the PFIT model, but significantly lower than the SB model.

5.3 Conclusion

A formulation for simultaneously modeling shear bands and fracture was developed

using conservation laws and thermodynamic principles. The formulation combines

a thermally softening shear band model with the phase field method for fracture.

The phase field method presented here differs from existing ones in that it includes

a term accounting for the creation of fracture surfaces stored energy of cold work,

which is energy stored by imperfections in the crystal lattice of a metal upon inelastic

straining. Thus, the inelastic work is partitioned into heat, which contributes to

thermal softening, and stored energy of cold work, which contributes to fracture.

A simple, one dimensional parametric study was conducted with constant partition

of cold work to illustrate the basic behavior of the model and compare the model

with two special cases. The original model, abbreviated as PFSB to indicate that

thermal softening and fracture are present, was compared to the isothermal case

(PFIT) which models ductile fracture without temperature rise, and the damage free
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Experimental Results, Rajendran 1995
Experimental Results, Marchand 1988
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Figure 5.5: Failure strain vs strain rate for different values of χ. The black dots are
from experimental tension tests on HY 100 steel from [119], which consisted of a quasi
static test and a split Hopkinson test at 1500 1/s. The black diamond is the failure
strain from a Hopkinson bar torsion test at 3300 1/3.

case (SB), which reduces the model to thermal softening shear banding models found

in the literature. The final model tested was isothermal with damage, but without

the inelastic contribution to fracture introduced in section 5.1 of this chapter. This

model was abbreviated at PFITNP and was found to never lead to failure since the

only source of damage is the elastic free energy, the growth of which is limited by

yielding. Material parameters were chosen for a typical steel and strain rates of 10−1
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to 105 were tested. Using a Taylor Quinney fraction of 0.9, it was found that in the

diffusion stabilized zone, where shear banding does not occur, fracture occurs in the

PFSB model without much thermal softening. In the first transition zone, there are

also very significant differences between the PFSB and the SB models, principally in

the post stress collapse behavior, where the unloading rate of the present model is

much faster than the shear band only model.

For all strain rates, the PFSB model predicts higher failure strains then the PFIT

model, indicating that temperature rise improves the ductility of the material. Using

a strain rate dependent Taylor Quinney fraction which ramps smoothly from a value

of 0.0 to 0.9 over the strain rates 1.0 1/s to 1.0E+3 1/s, the PFSB model coincides

with the PFIT model at low strain rates, where thermal softening is negligible, and

with the SB model in the critical shear band zone, where thermal softening is most

prevalent. This formulation is very important for accurate failure modeling in higher

dimensions, where the unloading rate effects the propagation characteristics of the

shear band. In the critical shear band zone, where thermal softening is prevalent,

the models behaved quite similarly. Thus, it is expected that the present model will

be valid for failure modeling in a much broader range of strain rates than the shear

band only model, as well as significantly improve the accuracy of failure modeling in

the transition regions. Furthermore, the framework presented here permits modeling

of the relationship between fracture and barriers to dislocation motion such as dislo-

cation density and grain size. This leads to a model for fracture which is explicitly

rate and temperature dependent, due to the rate and temperature dependence of the

internal variables.

Future studies will include determination of the most physically reasonable values

for the phase field length scale parameter, l0, which at present is interpreted as a

regularization parameter. In addition, multidimensional studies will be conducted,
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where the triaxiality of the load will contribute to the tendency of the material to

fracture or shear band, in addition to the effects modeled here.
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Chapter 6

Conclusion

This dissertation has presented a number of contributions to numerical modeling of

high rate failure in metals. Chapter 2 demonstrated that a monolithic nonlinear

solver in conjunction with thermal diffusion lead to results which were insensitive to

mesh size and which had a reduced sensitivity to mesh alignment in comparison with

a split nonlinear solver. This formulation was then applied to the analysis of fric-

tion stir welded aluminum joints under high rate loading in chapter 3, where it was

found that the abrupt changes in material properties which arise from the distinct

microstructural zones produced by the stir welding process significantly reduce the

energy absorption capacity of the joint. This analysis suggests that weld capacity

can be improved through various process modifications leading to less abrupt prop-

erty changes. Chapter 4 developed a Pian Sumihara type element for shear bands

which was shown to furnish greater accuracy for less computational resources than

standard irreducible interpolations. This element was also shown to be less sensitive

to the stiffening effect observed in mildly distorted meshes. Chapter 5 introduced a

combined model for shear banding and fracture, the behavior of which was studied

in a simple one dimensional setting. This model is important for realistic dynamic

failure simulation of metals where cracks and shear bands are both typically present
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There are numerous future directions for this work, both in terms of enhanced

physical modeling as well as improved numerical procedures. Numerical improve-

ments include analysis of efficient and scalable composable linear solvers for the shear

band and combined shear band and fracture models. As shown in chapter 2, split

solvers are not suitable nonlinear solvers for the shear band problem, but this does

not exclude the possibility of the use of a split method as a preconditioner for the

linear solve phase of the monolithic scheme. Thus the block structure of the Jacobian

matrix, which are dependent upon the type of shape functions used, can be exploited,

and special solvers which may exist for sub problems of the multiphysics shear band

problem can be leveraged. An example of this would be using multigrid in the pre-

conditioning scheme for the thermal part of the shear band problem. The notion of

composable linear solvers and the implementation of them in PETSc is described in

[37].

A second future area of numerical research is the use of isogeometric analysis with

the formulations presented here. Appendix A gives a brief account of preliminary re-

sults for this, where it is shown that NURBS elements outperform the Pian-Sumihara

element on the plate in tension test problem used in chapter 2. In addition, T-splines

have been successfully used for phase field fracture analysis by [31], suggesting that

isogeometric analysis will also be successful for the combined phase field and shear

band model of chapter 5. Isogeometric analysis may also help suppress the mesh

alignment sensitivity that was only partially cured by the monolithic solver in chap-

ter 2.

Enhancements to physical modeling will include crystal plasticity based calcula-

tion of the evolution of internal plastic variables described in 5. From a theoretical

standpoint, this appears to be the most promising method for accurate calculation

of the partition of inelastic work into heat, and appears to posses the most favorable

agreement with experiment [40]. As pointed out in chapter 5, the tendency of a ma-
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terial to fail by fracture or shear banding is very sensitive to this partition, and thus

the partition must be accurately calculated.
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Appendix A

Isogeometric modeling of shear bands

The contents of this appendix are reproduced from a work in progress by Luc Berger-
Vergiat, Colin McAuliffe and Haim Waisman. Input from the co-authors is gratefully
acknowledged.

Isogeometric Analysis [43, 73] (IGA) was originally developed with the intent
of streamlining the simulation and design process. This process typically starts with
discrete geometrical description of the part or system to be analyzed with a Computer
Aided Design (CAD) package, which employ the NURBS basis functions [12, 54].
Once the geometry is fully described it is passed on to the simulation group, which
in turn rediscretize the geometry according to the needs of the simulation technique
chosen for analysis. IGA eliminates this rediscretization step from the simulation work
flow by using the same basis functions for both the CAD geometrical description and
analysis phases. Another added benefit of this approach is that now the geometry
used during the analysis is exact.

Despite the original intent, perhaps the most interesting feature of IGA is the
property of the NURBS shape functions when used for simulation. Basis functions
constructed with NURBS are globally continuous across elements, not only within
them. This means that solution computed with IGA are higher order and not piece-
wise higher order as would be the case with the p − version of the finite elements
method. Moreover, it is also easy to raise the polynomial order of these NURBS
basis [47] which lead to more accurate simulations [25] with roughly as many nodes
as for a simulation with a low order basis. This last property is due to the fact that
IGA allows for a new type of refinement named k−refinement, an attractive feature
which raises the order of the shape functions without excessively increasing the size
of the linear system to be solved. Nonetheless, it should be noted that these matrices
are also much denser than standard FEM matrices since the NURBS basis is not
compactly supported.

The aim of the use of NURBS here is to reduce the computational cost of shear
band simulations by finding shape functions which furnish the greatest accuracy for
the lowest cost. To this end we tested multiple elements, with a focus on IGA based
elements. The main evaluation method of these discretizations is study of the conver-
gence rates, volumetric locking and memory usage. This paper begins by presenting
the IGA formulation for the mixed finite elements, then introduces the PDE model
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we chose to employ for shear bands. Finally, we study two test cases and assess the
convergence properties of the proposed elements.

A.1 Computational modeling with NURBS func-
tions

NURBS are functions designed to exactly represent curves and were originally created
for computational geometry purposes. Detailed description of these functions, their
properties, and how to compute them can be found in Piegl and Tiller [115] and
Rogers [121].

NURBS are parametrized curves in d-dimensional spaces (Rd for example), con-
structed as a tensorial product of d 1D-NURBS curves. 1D-NURBS are themselves
constructed as a rational combination of B-splines. In order to further describe B-
splines functions we need to introduce the parametric space used to construct them.
The parametric space associated with a B-spline function is called a knot vector and
is composed of non-decreasing real numbers (the knots) Ξ = {ξ1, ξ2, . . . , ξn+p+1}. By
convention, the knot vector is scaled so that it spans the unit subspace [0, 1] ⊂ R,
where R is the space of all real numbers. The multiplicity of knots cannot exceed the
degree of the curve p + 1 where p is also the degree of the polynomial basis used to
construct the B-spline. n is the number of basis functions defined on the knot vector,
it is also the number of control points used to describe the geometry of the B-spline.
A knot vector is said to be open if its first and last knots have multiplicity p+1. Open
knot vectors are commonly used since they produce bases that are interpolatory at
the endpoints of the interval.
B-spline basis of order p are constructed recursively from an underlying piecewise
constant basis

Ni(ξ) =

{
1 if ξi ≤ ξ ≤ ξi+1,
0 otherwise. (A.1)

Bases of order p are then constructed using the following recursion formula

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ) (A.2)

first introduced by Cox and de Boor [47].
The associated B-spline curve is obtained using a linear combination of the basis
function as follows

C(ξ) =
n∑
i=1

PiNi(ξ) (A.3)

where Pi ∈ Rd is the i− th control point.
The B-splines can then be extended to multiple dimensions using a tensorial product,
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Figure A.1: On the left a quadratic basis of NURBS functions is represented. On
the right the corresponding curve (in blue) is obtained where • represent the control
points.

in the case of d = 2, we get the following expression for a B-spline surface

S(ξ, η) =
n∑
i=1

m∑
j=1

Ni(ξ)Mj(η)Pij, (A.4)

where Mj(η) are basis functions defined by the following knot vector H =
{η1, . . . , ηm+q+1}.
Finally NURBS basis functions are created using a rational combination of 1D
B-spline basis functions, here again for d = 2, the result is

Rij(ξ, η) =
Ni(ξ)Mj(η)wij∑n

i=1

∑m
j=1Ni(ξ)Mj(η)wij

. (A.5)

These shape functions are combined with the control points to construct NURBS
surfaces as follow

S(ξ, η) =
n∑
i=1

m∑
j=1

RijBij. (A.6)

An example of a basis of NURBS functions and its associated curve are presented
in Figure A.1.

Note how three shape functions are non zero over three elements instead of two
as is the case for Lagrange or Hermite polynomials. It can also be observed that
the curve is not interpolatory at all points. It generally is interpolatory only at the
boundary.

The NURBS basis forms a partition of unity which makes it easy to use as a shape
function basis for the finite element method (FEM). NURBS k-refinement preserves
the number and geometry of the elements on the mesh for any order of shape functions,
which allows us to use NURBS of different order in a mixed formulation.

149



A.2 Numerical results
In this section convergence studies for the plate in tension problem shown in chapter
2 are conducted for the small strain shear band formulation. Higher order NURBS
shape functions are used for the displacement, temperature, and stress fields, while
irreducible interpolation is used for the equivalent plastic strain field. The reason
for this is that higher order interpolations for the equivalent plastic strain have been
observed to lead to oscillations in this field, which are unphysical and fatal to the
simulation. It may be possible to include an artificial diffusion term to smooth these
unphysical oscillations, and thus permit use of NURBS functions on this field.

The error norm is defined here as the relative distance in an Euclidian space be-
tween some reference solution and the current computed solution, which is expressed
as follow:

e =
||uref − u||2
||uref ||2

=

n∑
i=1

(uref,i − ui)2

n∑
i=1

u2
ref,i

. (A.7)

The error terms for a specific solution field are computed at nodes which are shared
by coarse and fine meshes, as illustrated by the red circles in Figure A.2. This also
ensures that all the values used to compute the error on each mesh are actually values
which have been solved for and not interpolated. This means that the error presented
is least biased by the post-processing operations, and number of terms are determined
by the coarsest grid.

Figure A.2: The error terms contributing to the error norm are computed at the
nodes denoted by •, which are shared on all hierarchy of grids.

On all the examples studied, the same structured discretizations have been
employed, which have been generated by a tensorial product type of construction.
Meshes with 10 by 10, 20 by 20, 30 by 30 and 40 by 40 elements are used, which allows
observation of how the convergence rate is affected by h refinement. Convergence
of the error is also investigated by k-refinement capabilities of the NURBS shape
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functions.

As expected, the convergence of the fields discretized with NURBS shape func-
tions exhibit fast convergence rates and smaller initial errors on coarse meshes see
Figure A.3b to A.3e. These are significantly lower than the convergence rate and
initial error observed for the Pian Sumihara element. The convergence rates of the
EQPS are similar for all the elements.

The dependence of the computational time (CPU time) with respect to the size
of the mesh (in 2D) is of the same order for all the elements. Therefore, the cost of
mesh refinement for the NURBS element is comparable to the Pian Sumihara element.
Thus to achieve a similar accuracy the NURBS element will take less cpu time than
the Pian Sumihara element. Similarly Figure A.3g shows that the NURBS element
requires less memory for a given accuracy than the memory required by the Pian
Sumihara element, especially if high order NURBS functions are used.
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Figure A.3: Convergence rate of the NURBS element using different order of NURBS
basis function are shown for each solution field. Cpu time and memory usage are also
shown. 152



Appendix B

Stability Analysis of the Shear Band
Problem

The contents of this appendix are reproduced from a work in progress by Miguel Ar-
riaga, Colin McAuliffe and Haim Waisman. Input from the co-authors is gratefully
acknowledged.

Quantitative identification of stress collapse is of great interest for understanding
the behavior of shear band models. Additionally, potential practical applications of a
stress collapse identification method are element deletion schemes or domain decom-
position based on stress collapse criteria. While mathematical instability does not
necessarily imply stress collapse [91], instability analysis is a useful first step toward
identifying stress collapse. Instability analysis of shear band models is conducted with
the perturbation method of various continuous forms of shear band models [9, 58, 88]
and the eigenanalysis of the acoustic tensor [87]. These methods each give the insta-
bility conditions for a single material point.

The perturbation method can also be applied to the semi discrete system of ordi-
nary differential equations (ODEs) which result from applying Galerkin’s method to
the strong form given in chapter 2. This methodology results in a global instability
criterion and has been applied to crystal growth in [84].

The general autonomous form of a system of equations is

L(u̇) = F (v) (B.1)

where u represents all non-constant variables of the problem and L represents a linear
operator. Note that F (v) is not a linear function of v.

Consider v∗, a solution to (B.1) at a given moment in time, or in other words, an
equilibrium point. Linearizing F (v) with a Taylor Series Expansion around v∗ gives

F (v) = F (v∗) + F ′(v∗)(v − v∗) (B.2)

Since v∗ is an equilibrium point, then F (v∗) = 0, in which case (B.1) becomes

L(v̇) = F ′(v∗)(v − v∗) (B.3)
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The problem can be centered at the equilibrium point such that the origin becomes
the new equilibrium point. This is done by defining a new variable u(t) = v(t) − v∗
which permits application of Lyapunov indirect stability analysis [106]. Since v∗ is a
fixed equilibrium point u̇ = v̇. Substituting this in (B.3) gives

L(u̇) = Au (B.4)

where A = F ′(v∗) is the Jacobian of F (v).
Applying the Galerkin discretization, these operators will assemble into matrices

as follows,
Mu̇ = Au (B.5)

where M is the assembled matrix for all the mass matrices and A = K + G is the
assembled matrix for both the linear stiffness matrices (K) and the stiffness matrices
associated with the non-linear behavior (G), as described in chapter ??.

Consider a linear perturbation of the form

u = u0e
λt (B.6)

where we will call λ ∈ C an eigenvalue and u0 the corresponding eigenvector. Plugging
(B.6) into (B.5) leads to

λMu = Au⇒ (A− λM) u = 0 (B.7)

Non-trivial solution of (B.7) requires

det (A− λM) = 0 (B.8)

which translates into a typical generalized eigenvalue problem [41].
The fact that λ is in the complex plane allows for some conclusions to be taken

from its value. A very interesting description of these in the perspective of musical
instruments is given by [70]. In short, a strictly imaginary value of λ corresponds to an
oscillatory motion, whereas a strictly real value of λ corresponds to monotonic solution
which can be asymptotically stable (λ < 0) or unstable (λ > 0). A combination of
both is also possible, corresponding to a stable (unstable) oscillatory mode for a
negative (positive) real part of the eigenvalue. This method for stability analysis
(called the first method of Lyapunov) and was proposed by Lyapunov[94] and has
also been referred to as the indirect method of Lyapunov[39, 106]. Shear banding
instability is thus indicated by at least one eigenvalue with positive real part.

Preliminary results with the use of this method have determined that eigenanalysis
of the local element form of (B.5) agrees with the local stability criteria from [88].
Eigenanalysis of the global form of (B.5) detects local instabilities as well as a global
instability mode which dominates when the shear band propagates through the entire
part. Research on these techniques for detecting shear banding is ongoing.

154



Appendix C

Linearization Examples

In this appendix two blocks of the Jacobian in equation (4.51) are derived in detail.
The variation of the momentum equation with respect to displacement is computed
by

Juui δui = δRuu [δui] = lim
ε→0

1

ε
(Ru [ui + εδui]−Ru [ui]) =

d

dε
Ru [ui + εδui]

∣∣∣
ε=0

(C.1)

Plugging (4.38) into (C.1) and separating the derivative into three parts due to the
inertia term, the J in the stress divergence term, and the F−1 in the stress divergence
term, gives

δRuu = δRü + δRJ + δRF−1

(C.2)

with

δRü =

ˆ
Ω0

wui
ρ0

B∆t2
δuidΩ0 (C.3)

δRJ =

ˆ
Ω0

wui,AF
−1
Aj (δJ [δui])σijΩ0 (C.4)

δRF−1

=

ˆ
Ω0

wui,A
(
δF−1

Aj [δuj]
)
JσijΩ0 (C.5)

Noting the following linearizations of J and F−1, which are derived in detail in [29]

lim
ε→0

1

ε
[J [ui + εδui]− J [ui]) = Jδuk,k (C.6)

lim
ε→0

1

ε

(
F−1
Aj [uj + εδuj]− F−1

Aj [uj]
)

= −F−1
Ak δuk,j (C.7)
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equations (C.3) - (C.5) can be written as

δRü =

ˆ
Ω0

wui
ρ0

B∆t2
δuidΩ0 (C.8)

δRJ =

ˆ
Ω0

wui,AF
−1
Aj τijδuk,kΩ0 (C.9)

δRF−1

= −
ˆ

Ω0

wui,AF
−1
Ak τijδuk,jΩ0 (C.10)

after some index manipulation, δRuu is

δRuu =

ˆ
Ω0

wui
ρ0

B∆t2
δui − wui,AF−1

Aj [τijδkl − τilδjk] δuk,ldΩ0 (C.11)

Substitution of the Galerkin approximation into (C.11), leads to

δRuu
α = Juuαβδûβ =

ˆ
Ω0

ρ0

B∆t2
Nu
iαN

u
iβ − JNu

iα,AF
−1
Aj

[
Nσ
ijζ λ̂ζδkl −Nσ

ilζ λ̂ζδjk

]
Nu
kβ,ldΩ0δûβ

(C.12)
or

Juuαβ =

ˆ
Ω0

ρ0

B∆t2
Nu
iαN

u
iβ − JNu

iα,AF
−1
Aj

[
Nσ
ijζ λ̂ζδkl −Nσ

ilζ λ̂ζδjk

]
Nu
kβ,ldΩ0 (C.13)

The first term is a linear mass matrix and the second term is a stiffness matrix arising
from geometric nonlinearity. In equation (4.51), these are denoted as Mu

αβ and Lu
αβ

respectively. The second example we will derive is the block Jσuαβ, which is the variation
of the elasticity equation with respect to displacement. This is

Jσui δui = δRσ [δui] = lim
ε→0

1

ε
(Rσ [ui + εδui]−Rσ [ui]) =

d

dε
Rσ [ui + εδui]

∣∣∣
ε=0

(C.14)

Separating δRσ into a five parts,

δRσ = δRσJ + δRσspin + δRσmat + δRσdp + δRστ̃ (C.15)
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due to the J term in the Jaumann rate, the d terms in the spin correction, the d term
in the material rate, the J terms in dp, and the F terms in τ̃ , respectively, we obtain

δRσJ =

ˆ
Ω0

wσij (δJ [δui]) [σij −∆t (dikσkj + σikdkj)] dΩ0 (C.16)

δRσspin = −
ˆ

Ω0

wσij∆tJ ((δdik [δui])σkj + σik (δdkj [δuk])) dΩ0 (C.17)

δRσmat = −
ˆ

Ω0

wσij∆tC
elas
ijkl (δdkl [δuk]) dΩ0 (C.18)

δRσdp =

ˆ
Ω0

wσij∆tC
elas
ijkl

3skl
2τ̄

(δg (Jσ̄, T, γ̄p) [δui]) dΩ0 (C.19)

δRστ̃ = −
ˆ

Ω0

wσij (δfia [δui]) nτabfjb + fia nτab (δfjb [δuj]) dΩ0 (C.20)

The linearizations of f and f−1 are needed for Jστ̃ and terms which contain linearized
d. These are

lim
ε→0

1

ε
(fia [ui + εδui]− fia [ui]) = δui,jfja (C.21)

lim
ε→0

1

ε

(
f−1
ai [ui + εδui]− f−1

ai [ui]
)

= −f−1
aj δuj,i (C.22)

using (C.21) in (C.20), the linearization of τ̃ij becomes

δτ̃ij [δui] = (δkiτ̃lj + τ̃ilδkj) δuk,l (C.23)

using (C.22), the linearization of d becomes

2∆t (δdij [δui]) = −
(
δf−1

ai [δui]
)
f−1
aj − f−1

ai

(
δf−1

aj [δuj]
)

(C.24)
= − (δilEkj + Eikδjl) δuk,l (C.25)

where
Eij = f−1

ai f
−1
aj (C.26)

to linearize g, the chain rule is necessary, the result is

δg (Jσ̄, T, γ̄p) [δui] = δg (Jσ̄, T, γ̄p) (δJ [δui]) (C.27)
= mg (Jσ, T, γ̄p) δuk,k (C.28)
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using (C.21) - (C.28) we can rewrite (C.16) - (C.20) as

δRσJ =

ˆ
Ω0

wσij [τij −∆t (dikτkj + τikdkj)] δul,ldΩ0 (C.29)

δRσspin =

ˆ
Ω0

wσij
1

2
[δliEkrτrj + Eikτlj + τilEkj + τirErkδlj] δuk,ldΩ0 (C.30)

δRσmat =

ˆ
Ω0

wσijC
elas
ijrl Erkδuk,ldΩ0 (C.31)

δRσdp =

ˆ
Ω0

wσij∆tC
elas
ijkl

3mskl
2τ̄

g (Jσ̄, T, γ̄p) δur,rdΩ0 (C.32)

δRστ̃ = −
ˆ

Ω0

wσij [δkiτ̃lj + τ̃ilδkj] δuk,ldΩ0 (C.33)

we group the material terms, δRσmat and δRdp into Kσ and the remaining three
geometric terms into Lσ so that

Kσ =

ˆ
Ω0

wσijC
elas
ijrl Erkδuk,l + ∆tCelas

ijkl

3mskl
2τ̄

g (Jσ̄, T, γ̄p) δur,rdΩ0 (C.34)

Lσ =

ˆ
Ω0

wσij
{

[τij −∆t (dikτkj + τikdkj)] δkl +
1

2
[δliEkrτrj + Eikτlj + τilEkj + τirErkδlj]

− [δkiτ̃lj + τ̃ilδkj]
}
δuk,ldΩ0 (C.35)

Substitution of the Galerkin approximation then gives Kσ
αβ and Lσ

αβ, with Jσuαβ =
Kσ
αβ + Lσ

αβ.
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