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Collapse of polar ice sheets during the stage 11

interglacial
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Contentious observations of Pleistocene shoreline features on the
tectonically stable islands of Bermuda and the Bahamas have
suggested that sea level about 400,000 years ago was more than 20
metres higher than it is today'™. Geochronologic and geomorphic
evidence indicates that these features formed during interglacial
marine isotope stage (MIS) 11, an unusually long interval of warmth
during the ice age'™. Previous work has advanced two divergent
hypotheses for these shoreline features: first, significant melting of
the East Antarctic Ice Sheet, in addition to the collapse of the West
Antarctic Ice Sheet and the Greenland Ice Sheet'®; or second,
emplacement by a mega-tsunami during MIS 11 (ref. 4, 5). Here
we show that the elevations of these features are corrected downwards
by ~10 metres when we account for post-glacial crustal subsidence of
these sites over the course of the anomalously long interglacial. On
the basis of this correction, we estimate that eustatic sea level rose to
~6-13 m above the present-day value in the second half of MIS 11.
This suggests that both the Greenland Ice Sheet and the West
Antarctic Ice Sheet collapsed during the protracted warm period
while changes in the volume of the East Antarctic Ice Sheet were
relatively minor, thereby resolving the long-standing controversy
over the stability of the East Antarctic Ice Sheet during MIS 11.

The stability of ice sheets in the face of continuing global warming is
an issue of significant societal concern. Satellite gravity measurements
indicate that the Greenland Ice Sheet (GIS) and the West Antarctic Ice
Sheet (WAIS), the two ice sheets most susceptible to climate change,
are experiencing a net mass loss®”, with evidence of an accelerating
pace®2. In contrast, the current mass balance of the much larger East
Antarctic Ice Sheet (EAIS) is uncertain, even in sign®’, though a recent
study'' has inferred EAIS mass loss localized to coastal regions. This
uncertainty about the stability of the EAIS in a progressively warming
world has been a key motivation for studies of the palaeoclimate record
during past warm intervals.

One such study, a statistical analysis of widely distributed sea-level
markers related to the last interglacial (MIS 5e; about 120,000 years ago),
concluded with 95% confidence that eustatic sea level (ESL; defined as
the globally averaged sea-level change) was >6.6 m higher during MIS
5e than at the present day, and with 66% confidence that ESL was
>8.0m higher". (This inference, higher than earlier estimates™, is
supported by a recent analysis of MIS 5e sea-level records from
Florida'®.) Estimates of the ESL rise associated with collapse of polar
ice sheets range from 3.4 m (ref. 16) to 7 m for the GIS, and from 3.2 m
(ref. 17) to 5m for the WAIS, where the upper bounds refer to the
complete disappearance of the ice sheet. Thus, whereas the estimate of
peak ESL during MIS 5e implies significant collapse of both the GIS
and the WAIS, it also implies that the EAIS remained relatively stable.

It is within this context of assessing potential future instability of the
EAIS that the sea-level highstand features found at ~20 m (here and
elsewhere, height above present-day sea level is meant) in Bermuda
and the Bahamas, and which formed during the MIS 11 interglacial
(~424-395 kyr ago), have taken on great significance. MIS 11 spanned
two precession cycles and was the longest interglacial of the past

500 kyr (refs 18, 19), including the current interglacial MIS 1 (Fig. 1)
and MIS 5e (Supplementary Fig. 4). If the ESL during the MIS 11
interglacial peaked at a level 20 m higher than today'~, then at least
8 m of that rise must have come from melting of the EAIS. Geologic
evidence for a ~20-m sea-level highstand in Bermuda and the
Bahamas is convincing. In Bermuda, reasonably well-dated deposits
with thalassinidean shrimp burrows, foraminifera, and gastropods
characteristic of littoral and intertidal environments constrain relative
sealevel at 21.3 = 1.0 m during MIS 11 (refs. 2, 3). On Eleuthera, in the
Bahamas, a gently sloping erosion surface capped with fenestrae-rich
intertidal beach deposits provides a maximum sea-level estimate of
20 = 3 m, and the occurrence of pendant fibrous cements suggests a
minimum sea level of 17 = 2 m (we will henceforth quote a sea-level
estimate of 18.5 = 3.6 m for this site); multiple dating methods suggest
that these deposits were formed during MIS 11 (ref. 1).

How do these observations compare to other MIS 11 sea-level
indicators or proxies? In a recent survey of MIS 11 sea-level records
worldwide (most of which are located in tectonically active regions),
Bowen® estimated peak MIS 11 sea level using a range of tectonic uplift
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Figure 1 | Comparison of the duration of the MIS 11 and MIS 1
interglacials. Plot of the LR04 benthic oxygen isotope stack®® (left-hand
vertical axis) over a time window spanning the MIS 11 (blue; bottom time scale)
and MIS 1 (red; top time scale) interglacials. The mean standard error on §'*0
in the LR04 stack is 0.06%o with an age error of 4 kyr for the intervals
considered here. The juxtaposition illustrates the significantly longer duration
of maximum interglacial conditions during MIS 11 relative to MIS 1. ESL
associated with the model ice history used to calculate GIA effects during MIS
11 is shown by dashed line (right-hand vertical axis). Note the hiatus in model
ice volume changes from 410 to 401 kyr ago (black bar). An analogous
comparison between the duration of MIS 11 with MIS 5e can be found in
Supplementary Fig. 4.
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corrections based on different assumed ages and elevations of MIS 5e
sea-level markers. If we adopt Kopp et al.’s"® recent inference of the age
and peak magnitude of ESL during MIS 5e as a constraint on the latter,
then Bowen’s estimates from far-field sites imply that peak sea level
during MIS 11 was 6-9m above the present-day value, an estimate
consistent with marine §'®0 isotopic anomalies®’. However, Bowen
excluded a number of outliers, including the well-studied Bermuda
and Bahamas sites, and following McMurtry et al.®, he attributed the
anomalously high elevation of shoreline features at those sites to
deposition by storms or a mega-tsunami.

The two explanations for the MIS 11 highstand features in Bermuda
and the Bahamas—global sea-level rise associated with significant
EAIS melting'~, or mega-tsunami deposition*>—ignore the potential
signal from glacial isostatic adjustment (GIA). The GIA signal may be
significant at the two sites, as they both are located on the peripheral
bulge of the ancient Laurentian ice complex. As a consequence, they
would be subject to local crustal subsidence and sea-level rise of ampli-
tude ~1-2mmyr~ ' during any interglacial®'.

To explore the potential contribution from GIA to MIS 11 highstand
elevations, we compute global sea-level variations over the past 500 kyr
using a gravitationally self-consistent theory valid for spherically
symmetric, linear viscoelastic Earth models* (see Supplementary
Information). As an illustration of the physics of interglacial sea-level
trends, we plot the predicted change in sea level across the warmest,
most stable interval in MIS 11 (as implied by 3'°O records), a 9-kyr
period spanning 410-401 kyr ago that occurred during the second half
of MIS 11 (Fig. 2). The predictions adopt an Earth model with upper-
mantle and lower-mantle viscosities of 5 X 10*° Pas and 5 X 10*' Pas,
respectively (model LM***; see Supplementary Information).

In the near-field of the former MIS 12 ice sheets, the predicted sea-
level change is dominated by radial crustal motions. For example, in
regions once covered by ice sheets, post-glacial rebound of the crust
produces a sea-level fall of amplitude up to ~1-2 cmyr ™', leading to a
net fall over 9 kyr that can exceed 100 m (these amplitudes are well off
the scale of Fig. 2). Surrounding these regions of uplift are peripheral
bulges predicted to subside at rates of up to 0.2-0.3 cmyr~ ' during the
interglacial. This subsidence accounts for the (red) zones of sea-level
rise in Fig. 2, with maximum amplitude of ~20 m, that encircle the
Laurentian, Fennoscandian and Antarctic ice complexes. In contrast, a
sea-level fall of 2-3m is predicted across most of the far-field of the
former ice sheets during MIS 11. This fall is due to a combination of
two processes: (1) deglaciation-induced ocean loading effects, which
act, near continental margins, to tilt the crust such that continents
are deformed upward (that is, sea level falls) and offshore regions
downward*"*; and (2) the redistribution—or syphoning—of water
from ocean basins towards regions of peripheral bulge and offshore
subsidence™.
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Figure 2 | Predicted sea-level change across the hiatus in ice volume changes
(410-401 kyr ago) spanned by the model MIS 11 interglacial. The GIA
calculation is based on the ice history discussed in Supplementary Information
and the LM**** viscosity model. The colour scale saturates in regions within the
near-field of the late Pleistocene ice sheets.
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Following Fig. 2, we conclude that in the absence of interglacial ice
volume changes and steric effects, sea-level highstands will date to the
end of the interglacial at sites within the subsiding peripheral bulge of
major ice centres, and to the beginning of the interglacial over most of
the far-field (Fig. 3). (Of course, any sea-level signal associated with
interglacial ice volume variations and with ocean temperature and
salinity changes will be superimposed on these predicted GIA trends.)
Consider Bermuda: the predicted relative sea-level history for this site
(Fig. 3 and Supplementary Fig. 1, solid red line) exhibits a monotonic
rise across MIS 11, reaching a level 11.9 m above the present-day value.
The predicted highstand for the Bahamas (dashed red line, Fig. 3),
lying on the outer flank of the same peripheral bulge, is 7.4 m. It is
clear that the amplitude of highstands at Bermuda or the Bahamas,
indeed at all sites within a peripheral bulge, will be a strong function of
the duration of the interglacial highstand. In this regard, the protracted
length of MIS 11, relative to the Holocene (Fig. 1) or MIS 5e (Sup-
plementary Fig. 4), should be manifested by highstands of particularly
large magnitude. From this it also follows that simple field com-
parisons of the relative elevations of Holocene, MIS 5e and MIS 11
sea-level markers on these islands would lead to an erroneous assess-
ment of the difference in ESL between those times.

This result may be stated with more generality. The elevation of an
ancient interglacial highstand at any site within a peripheral bulge will
be governed by the difference in the state of isostatic disequilibrium at
the end of the ancient interglacial relative to the disequilibrium at the
present day in that same location. As the MIS 11 interglacial was sig-
nificantly longer than the current interglacial (or MIS 5e), more sub-
sidence had occurred by the time the final MIS 11 shoreline indicators
were emplaced on those islands than during the current (or MIS 5e)
interglacial. Further, as the current interglacial proceeds, sites like
Bermuda and the Bahamas will be subject to a continuing sea-level rise
as the present peripheral bulge continues to subside. Thus, the height of
these ancient MIS 11 highstand features will progressively fall as time
progresses (even in the absence of any future change in ice volume).

By contrast, the highstand amplitude at sites located in the far field
will depend on the difference in isostatic disequilibrium at the beginning
of the interglacial relative to the disequilibrium at the present day.
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Figure 3 | Predicted relative sea-level changes across the model MIS 11
interglacial. The calculations are based on the ice history discussed in
Supplementary Information and the LM viscosity model. The top two curves
are predictions for Bermuda (solid red line) and the Bahamas (dashed red line)
at locations of published data discussed in text. The lower coloured curves,
predictions for a number of far-field sites, are included for comparison: the Gulf
of Aden, Red Sea (brown), Curacao (green), Coorong, South Australia
(magenta), Oahu, Hawaii (blue) and Cape Town, South Africa (cyan). The
black line shows the ESL variation associated with the adopted ice history (as in
the dashed blueline in Fig. 1 and the black line in Supplementary Fig. 1) and the
thin horizontal dashed line references to present-day sea level.
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Thus, perhaps counter-intuitively, the current elevation of these
highstands does not depend on the duration of the ancient interglacial.

Global predictions of current MIS 11 shoreline elevations within each
of the two zones discussed above are shown in Fig. 4a and b: Fig. 4a
encompasses sites where the highstand occurred at the end of the
modelled interglacial hiatus in ice mass change (for example, 401 kyr
ago) whereas Fig. 4b encompasses sites where the highstand occurs at
the beginning of the modelled hiatus (410kyr ago). These results
represent the predicted contribution to observed MIS 11 highstands
from GIA alone; this contaminating signal should be removed from
geological observations before they are used to infer the difference in
ESL (or ice volume) between MIS 11 and the present.

As noted above, the GIA contribution to the MIS 11 shoreline
elevations in Bermuda and the Bahamas is predicted to be 11.9m
and 7.4 m, respectively (Fig. 3). Correcting the published highstand
estimates at these sites for these GIA predictions yields residual MIS 11
sea-level elevations of 9.4 = 1m for Bermuda and 11.1 £3.6m in
Eleuthera (Supplementary Table 1). Although additional field obser-
vations in the Bahamas could greatly decrease the multi-metre error
associated with these sea-level estimates, we conclude that no signifi-
cant contribution from melting of the EAIS is required to explain the
geologic observations at the two sites.

In our analysis, we implicitly assume that melting of the WAIS and
the GIS occurred towards the end of the MIS 11 interglacial, such that
the contribution of the melt event to sea level at Bermuda and the
Bahamas could be added to a coeval GIA-induced highstand. This
timing for ice sheet collapse is strongly supported by at least two
arguments. First, if the collapse took place at the beginning of the
hiatus in MIS 11 melting (that is, at ~410 kyr ago), then the associated
ESL rise would have had to be close to 20 m in order to fit the observed
highstand elevations at Bermuda and the Bahamas. However, in this
case, the predicted highstand elevation at far-field sites would have
been even greater than 20 m (that is, an ~20-m melt signal added to
the GIA-induced highstand of a few metres; Fig. 3), a situation apparently
ruled out by far-field observations’. Second, GIA calculations predict a
submergence of up to several metres for far-field sites by 401 kyr ago
(Fig. 3) and an average submergence of ~1m at the specific far-field
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Figure 4 | Plot of the predicted GIA-induced present-day elevation of MIS
11 highstands that are currently greater than zero. Elevation is shown for all
sites in which sea-level peaks either at the end of the hiatus in ice volume
changes spanned by the model MIS 11 interglacial (a; that is, at 401 kyr ago; see
also Supplementary Fig. 1) or at the beginning of that hiatus (b; that is, at
410kyr ago).
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sites considered by Bowen®. Therefore, correcting an inferred sea-level
peak of 6-9 m for this GIA-induced contamination yields a predicted
ESL ~1m higher (that is, 7-10m), in accord with the residual
highstand elevations at Bermuda and the Bahamas cited above (Sup-
plementary Table 1).

In the Supplementary Information we present results of sensitivity
tests related to GIA predictions. First, we extend the duration of the
MIS 11 hiatus in ice mass change from 9 to 14 kyr. In this case, the GIA-
induced elevation of MIS 11 shorelines at sites within the Laurentian
peripheral bulge are predicted to increase by ~1-2m when viscosity
model LM is adopted, yielding residual MIS 11 highstand elevations of
7.0 £ 1 m for Bermuda and 9.9 = 3.6 m in Eleuthera (Supplementary
Table 1), and thus lowering the inferred peak ESL during MIS 11 by
~1-2m. Second, we considered an alternative viscosity profile, VM2
(ref. 26), characterized by a lower-mantle viscosity that is a factor of
two smaller than model LM. In this case, the predicted GIA contri-
bution to MIS 11 highstand elevations within the peripheral bulge is
reduced by a factor of ~2. This reduction yields residual (GIA-
corrected) MIS 11 elevations of 150+ 1 m and 14.3 *3.6m at
Bermuda and the Bahamas, respectively, values that appear to be at
odds with lower far-field estimates®. Last, we performed a Monte Carlo
parameter search in which we varied mantle viscosity, lithospheric
thickness, and the duration of the modelled hiatus in MIS 11 ice
volume changes, and tested for the consistency of the GIA-corrected
highstand elevations. This exercise yields a preferred bound on the
peak ESL during MIS 11 of 6-13 m.

In summary, observations of MIS 11 highstand features in Bermuda
and the Bahamas must be corrected for the significant contaminating
signal of GIA before these data are used to infer peak ESL during the
MIS 11 interglacial. We conclude that ESL reached ~6-13 m above the
present-day value in the late stages of MIS 11. It is unlikely that ocean
thermal expansion contributed more than ~1 m to this inference'**.
Therefore, although this estimate of peak ESL indicates significant
collapse of both the WAIS and GIS during the MIS 11 interglacial, it
rules out any significant melting of the EAIS during this unusually
prolonged period of ice age warmth.
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